
www.allitebooks.com

http://www.allitebooks.org

Programming Microsoft®
Dynamics™ NAV

Create, modify, and maintain applications in
NAV 5.0, the latest version of the ERP application
formerly known as Navision

David Studebaker

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Programming Microsoft® Dynamics™ NAV

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2007

Production Reference: 2121007

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-904811-74-9

www.packtpub.com

Cover Image by David Studebaker (navbook@libertyforever.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

David Studebaker

Reviewers

Luc Van Dyck

Mark Brummel

Senior Acquisition Editor

Douglas Paterson

Development Editor

Mithil Kulkarni

Technical Editors

Nilesh Kapoor

Divya Menon

Kushal Sharma

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Production Coordinators

Shantanu Zagade

Manjiri Nadkarni

Cover Designer

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

Foreword

In 1986 the Navision founders Jesper Balser, Torben Wind, and Peter Bang were
looking back on the successful release of their first product “PC-Plus”. It was the first
easy-to-use accounting package for the IBM PC on the Danish market. It immediately
picked up a huge market share and the founders started thinking about how to
expand the business. They decided to try to sell a vertical solution for auto-repair
shop spare-part management—but they were immediately flooded with requests
from potential customers who wanted to have the product tailored exactly to meet
their needs. Because of this they decided to get out of the customization business, thus
enabling partners to do the customization while providing them with the right tools.
PC-Plus used a database, which was based on the ISAM database, which Anders
Hejlsberg wrote as a sample program for his Pascal compiler. However the database
was not multiuser and if the power went, data could easily get corrupted. Other
database alternatives were either too expensive or of poor quality, so they decided
to write their own database. The result of this was the Navision product, which had
a rich set of tools for modifying the business application and a robust multiuser
version-based database. The product became a huge success with a rapidly growing
number of partners, who recognized a big business opportunity, and customers, who
could have the product tailor-made to fulfill the specific needs of their businesses.

The Windows version of Navision was released in 1995 and became part of the
Windows revolution. The rest is history: the company went international, went
public, and in 2002 was acquired by Microsoft. I joined Navision in 1987 and have
been a part of this amazing journey. Today as part of Microsoft, the team and I have
started a new journey with the product now called Microsoft Dynamics NAV and will
bring the product to the .net platform. Next, we will introduce a new role-tailored
client, enabling us to reach even more partners and customers moving forward.

Michael Nielsen, Director of Engineering, Microsoft Dynamics NAV

www.allitebooks.com

http://www.allitebooks.org

About the Author

David Studebaker is currently a Principal of Liberty Grove Software, Inc., with
his partner Karen Studebaker. Liberty Grove Software provides development,
consulting, training, and upgrade services for Microsoft Dynamics NAV resellers and
firms using NAV internally. Liberty Grove Software is a Microsoft Certified Partner.
David has been recognized by Microsoft three times as a Certified Professional for
NAV—in Development, in Applications, and in Installation & Configuration. He is
also a Certified Microsoft Trainer for NAV. He began developing with C/AL in 1996.

David Studebaker has been programming since taking his first Fortran II course
in 1962. In the fall of 1963 he took the first COBOL course taught at Purdue
University, where the first U.S. computer science department was later created.
The next spring, undergraduate student David was assigned to teach the
graduate-level class. Since that time, David has been an active participant in each
step of computing technology—from the early mainframes to today's technology,
from binary assembly coding to C/AL. He has worked with over 40 different models
and brands of computers, over a dozen operating systems, and over two dozen
different programming languages.

Special projects include the development of first production SPOOL system in 1967.
In the decades following, David was project manager and lead developer for several
commercially distributed business application systems. Application areas in which
David has worked range from engineering to manufacturing to freight carriage to
general accounting to public mass transit to banking to not-for-profit and association
management to legal billing to distribution/inventory management to shop floor
data collection and production management.

www.allitebooks.com

http://www.allitebooks.org

David has a BS in Mechanical Engineering from Purdue University and an MBA
from the University of Chicago, both with concentrations in Computer Science.
David has been a computer operator, system programmer, application programmer,
business analyst, consultant, service bureau operations manager, bureaucrat,
teacher, project manager, trainer, documenter, software designer, mentor, writer,
and entrepreneur. He has been partner or owner and manager of several computer
systems businesses, while always maintaining a significant role as a business
application developer. David's work with relational databases and 4th-generation
languages with integrated development environments began in 1984.

David assisted in script-writing for a series of audio training courses for early
PC operating systems and wrote for a newsletter Computers in Education. A series
of articles by David concerning the use of computer systems to track and help
manage manufacturing shop floor operations were published in several trade
and professional magazines. He was lead author of the Product Identification and
Tracking section of the SME Tool and Manufacturing Handbook. For over ten years,
David was a reviewer of business applications-related publications for Computing
Reviews of the Association for Computing Machinery (ACM). David has been a
member of the ACM since 1963 and was a founding officer of two local chapters of
the ACM.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Luc Van Dyck is active as a software consultant and works for a Belgian Microsoft
partner. He started working with Dynamics NAV in 1997 (at that time it was called
Navision Financials 1.10).

In the year 1999, he started the website http://myNavision.net to provide a forum
and downloads for users of the Dynamics NAV ERP system. When Microsoft bought
Navision Software A/S in 2002, the site was renamed to http://mibuso.com;
mibuso.com is one of the largest on-line communities of Microsoft
Dynamics professionals.

This on-line community gives users and developers of products from the Microsoft
Dynamics family (Navision, Axapta, CRM, Great Plains, ...) a place to exchange ideas
and tools, and to find business partners and products. The website provides you
with a forum where you can ask questions about the different Dynamics products. It
also contains a large selection of downloads, in different categories (code examples,
demo versions, webcasts, factsheets, tools, etc.). Microsoft partners can submit their
company details to the Business Directory and publish their add-ons or factsheets in
the Product Directory.

In October 2004, he was awarded with the MVP status (Most Valuable Professional)
by Microsoft, for his active participation in the Dynamics community.

www.allitebooks.com

http://www.allitebooks.org

Mark Brummel is an all-round NAV expert. He started 10 years ago in 1997 as an
end user, being an early adopter of the system. Two years later he started working
for a local reseller and used his end-user perspective to develop add-ons for NAV.

In the following years he has developed five major add-ons for three NAV partners
and was involved in over a hundred implementations. Next to the development
projects he has guided and trained both experienced consultants and young talent in
becoming NAV experts.

Because of his experience in all aspects of NAV implementations Mark started to
specialize in escalation engineering. In the year 2006, he started his own company
specialized in this field, helping both end-users and partners with problems.

To share knowledge he writes articles and gives workshops. He also assists Microsoft
at events like Tech Ed and Convergence and participates in product development.

One of his special skills is performance-tuning of NAV systems, combining both
technical and functional knowledge to establish better-running systems and happier
end users.

In the year 2006, Mark Brummel was rewarded with the MVP award by Microsoft.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: The Basic Ingredients 11

Some Unique NAV Terms Defined 12
The C/SIDE Integrated Development Environment 13

Object Designer Tool Icons 14
Seven Kinds of NAV Objects 15
More Definitions (Related to NAV) 16
NAV Functional Terminology 18
Getting Started with Application Design 18

Tables 19
Example: Table Design 19
Example: Table Creation 20

Forms 22
Card Forms 23
Tabular Forms 24
Main/Sub Forms 24
Matrix Forms 25
Trendscape Forms 26
All Forms 27
Creating a Card Form 27
Creating a List Form 31

Reports 34
Creating a List Format Report 35

Codeunits 38
MenuSuites 39
Dataports 39
XMLports 40
Integration Tools 40
Backups and Documentation 41
Summary 42

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Tables 43
Overview of Tables 43

What Makes Up a Table? 44
Table Naming 45
Table Numbering 45
Table Properties 45
Table Triggers 47
Keys 49
SumIndexFields 52

Expanding Our Sample Application 53
Table Creation and Modification 53
Keys 60
Adding Some Activity-Tracking Tables 61
New Tables 63
Keys and SumIndexFields in Our Examples 68

Types of Tables 72
Totally Modifiable Tables 72
Content-Modifiable Tables 82
Read-Only Tables 83

Summary 85
Chapter 3: Fields 87

Fields 87
Field Properties 87
Field Numbering 94

Renumbering a Field 95
Changing the Data Type of a Field 96

Field Triggers 98
Some Data Structure Examples 99

More Definitions 99
Variable Naming 100
Data Types 101

Fundamental Data Types 101
Numeric Data 101
String Data 102
Time Data 102

Complex Data Types 104
Data Item 104
DateFormula 104
Data Structure 110
Objects 111
Automation 111
Input/Output 111
References and Other 112

Table of Contents

[iii]

Data Type Usage 112
FieldClasses 113
Filtering 118

Defining Filter Syntax and Values 119
Experimenting with Filters 123

Summary 131
Chapter 4: Forms 133

What Is a Form? 133
Controls 134
Bound and Unbound 134

NAV Form Look and Feel 134
Types of Forms 136

Accessing the Form Designer 141
What Makes Up a Form? 141

Form Properties 143
Forms Controls 145

Explore 146
Inheritance 149
Experimenting with Controls 149

Control Triggers 151
Control Properties 153

Experimenting with Control Properties 155
Some Control Property Tips 155

More Illumination with C/ANDL 157
Update the Member Forms 161

Testing Forms 167
Creative Plagiarism 167
Form Design Hints 168

A Quick Tour of the Form Designer 169
Keys to Learning NAV 172
Summary 173

Chapter 5: Reports 175
What is a Report? 176
NAV Report Look and Feel 176
NAV Report Types 177

Report Types Summarized 181
Report Naming 182
Report Components Overview 182

The Components of a Report Description 183
Report Data Flow 183
The Elements of a Report 186

Report Properties 186

Table of Contents

[iv]

Report Triggers 188
Data Items 189
Data Item Properties 190
Data Item Triggers 193
Data Item Sections 194

Run-Time Formatting 194
Report Wizard-Generated Sections 195
Report Section Descriptions 195
More Run-Time Formatting 198
Section Properties 198
Section Triggers 199

Controls for Reports 200
Control Properties 202
Inheritance 203

Request Form 203
Request Form Properties 205
Request Form Triggers 205
Request Form Controls 205
Request Form Control Triggers 206

Processing-Only Reports 206
Revising a Generated Report 207

Revision—First Design 208
Revision—Second Design 211

Creating a Report from Scratch 213
Creative Report Plagiarism 223

Special Output Issues 223
Printing PDF Files 224
Printing HTML Formatted Output 224
Printing to an Impact Printer 225

Summary 225
Chapter 6: Introduction to C/SIDE and C/AL 227

Essential Navigation 228
Object Designer 228

Starting a New Object 229
Some Designer Navigation Pointers 236
Exporting Objects 237
Importing Objects 238
Text Objects 240

Object Numbers 240
Some Useful Practices 241
Changing Data Definitions 242
Saving and Compiling 242
Some C/AL Naming Conventions 244

Table of Contents

[v]

Variables 245
Global Variables 245
Local Variables 245
Special Working Storage Variables 246

A Definition of Programming in C/SIDE 249
Functions 250
Basic C/AL Syntax 258

Assignment and Punctuation 258
Wild Cards 259
Expressions 260
Operators 260

Some Basic C/AL 264
MESSAGE, ERROR, CONFIRM, and STRMENU Functions 265

SETCURRENTKEY Function 270
SETRANGE Function 270
GET Function 271
FIND–NEXT Functions 272
BEGIN–END Compound Statement 274
IF–THEN–ELSE Statement 274
Indenting Code 275

Some Simple Coding Modifications 276
Adding a Validation to a Table 276
Adding Code to Enhance a Report 280

Summary 289
Chapter 7: Intermediate C/AL 291

Development 291
C/AL Symbol Menu 292
Internal Documentation 294

Computation—Validation Utility Functions 296
TESTFIELD 296
FIELDERROR 297
VALIDATE 298
ROUND 299
TODAY, TIME, and CURRENTDATETIME Function 300
WORKDATE Function 300

Data Conversion Functions 301
FORMAT Function 301
EVALUATE Function 302

DATE Functions 302
DATE2DMY Function 302
DATE2DWY Function 302
DMY2DATE and DWY2DATE Functions 303

Table of Contents

[vi]

CALCDATE Function 303
FlowField-SumIndex Functions 304

CALCFIELDS Function 305
CALCSUMS Function 305

Flow Control 306
REPEAT–UNTIL Control Structure 306
WHILE–DO Control Structure 307
CASE–ELSE Statement 307
WITH–DO Statement 309
QUIT, BREAK, EXIT, SKIP, and SHOWOUTPUT Functions 310

QUIT Function 310
BREAK Function 311
EXIT Function 311
SKIP Function 311
SHOWOUTPUT Function 311

Input and Output Functions 312
NEXT Function (with FIND) 312
INSERT Function 313
MODIFY Function 313

Rec and xRec 313
DELETE Function 314
MODIFYALL Function 314
DELETEALL Function 315

Filtering 315
SETRANGE Function 316
SETFILTER Function 316
COPYFILTER and COPYFILTERS Functions 317
GETFILTER and GETFILTERS Functions 317
MARK Function 318
CLEARMARKS Function 318
MARKEDONLY Function 318
RESET Function 318

InterObject Communication 319
Via Data 319
Via Function Parameters 319
Via Object Calls 319

Use the New Knowledge 320
A Development Challenge for You 320

Phase 1 321
Phase 2 322
Phase 3 322

A Sample Approach to the Challenge 322
Phase 1 322

Table of Contents

[vii]

Phase 2 327
Phase 3 329

Summary 334
Chapter 8: Advanced NAV Development 335

Callable Functions 336
Codeunit – 358 Date Filter-Calc 336
Codeunit 359 – Period Form Management 337
Codeunit 365 – Format Address 339
Codeunit 396 – NoSeriesManagement 340
Codeunit 397 – Mail 341
Codeunit 408 – Dimension Management 342
Codeunit 412 – Common Dialog Management 342

Sampling of Function Models to Review 344
Codeunit 228 – Test Report-Print 344
Codeunit 229 – Print Documents 345
Some other Objects to Review 345
Management Codeunits 345

Documenting Modifications 346
Multi-Language 347
Multi-Currency 348
Code Analysis and Debugging Tools 348

Developer's Toolkit 349
Relations to Tables 350
Relations from Objects 351
Source Access 352
Where Used 352
Try it Out 354

Working in Exported Text Code 356
Using Navigate 358

Testing with Navigate 359
The Debugger 362
The Code Coverage Tool 363
Dialog Function Debugging Techniques 364

Debugging with MESSAGE 364
Debugging with CONFIRM 364
Debugging with DIALOG 364
Debugging with Text Output 365
Debugging with ERROR 365

Summary 366
Chapter 9: Designing NAV Modifications 367

Starting a New NAV Enhancement Project 367
Design of NAV Modifications 368

Table of Contents

[viii]

Knowledge is Key 370
Creating a New Functional Area 370

Advantages of Designing New Functionality 371
Enhancing an Existing Functional Area 372
NAV Development Time Allocation 373
Data-Focused Design for New Functionality 373

Define the Big Picture: The End Goals 373
A Simple Sample Project 374

Then Define the Little Pictures 374
Sample Project Continued—1 375

Define What Data is Required to Create the Pictures 375
Sample Project Continued—2 375

Define the Sources for the Data 375
Sample Project Continued—3 376

Define the Data "Views" 377
Sample Project Continued—4 378

Other Factors Must Always be Considered 378
NAV Processing Flow 378

Data Preparation 379
Enter Transactions 379
Provide for Additional Data Testing 380
Post the Journal Batch 380
Access the Data 381
Continuing Maintenance 381

Designing a New NAV Application Functionality 381
Define the Data Tables 382
Design the User Data Access Interface 382
Design the Data Validation 382
Appropriate Data Design Sequence 383
Design Posting Processes 383
Design Support Processes 383
Double-Check Everything 384

Summary 384
Chapter 10: External Interfaces 385

MenuSuites 385
MenuSuite Levels 386
MenuSuite Structure 387

MenuSuite Internal Structure 388
MenuSuite Development 389
NAV Menus before V4.0 393

Dataports 394
Dataport Components 394

Table of Contents

[ix]

Dataport Properties 395
Dataport Triggers 397

Data Item 398
Data Item Properties 398
Data Item Triggers 400

Dataport Fields 401
Dataport Field Properties 405
Dataport Field Triggers 406

XMLports 406
XMLport Components 407

XMLport Properties 408
XMLport Triggers 410
XMLport Data Lines 410
XMLport Line Properties 414
Element or Attribute 417
XMLport Line Triggers 418

Advanced Interface Tools 419
Automation Controller 419
NAV Communication Component 420
Linked Server Data Sources 420
NAV ODBC 421
C/OCX 421
C/FRONT 421
NAV Application Server (NAS) 422

Summary 422
Chapter 11: Design to Succeed 423

Design for Efficiency 424
Disk I/O 424
Locking 424
C/SIDE versus SQL Server Databases 426
SQL Server I/O Commands 428

FINDFIRST Function 428
FINDLAST Function 429
FINDSET Function 429

Design for Updating 430
Customization Project Recommendations 430

One at a Time 431
Design, Design, Design 432
Test, Test, Test 432

Plan for Upgrading 436
Benefits of Upgrading 437
Coding Considerations 437

Good Documentation 438
Low-Impact Coding 438

Table of Contents

[x]

The Upgrade Process 439
Upgrade Executables Only 439
Full Upgrade 440

Tips for Small Successes 441
Cache Settings for Development 441
Two Monitors 442
Simple System Administration 442
Careful Naming 445

Tools 445
Code Coverage 446
Client Monitor 447
Creating Help for Modifications 448
Implementation Tool 448
Other Reference Material 448

Summary 450
Index 451

Preface
There are two mistakes one can make along the road to truth...

not going all the way, and not starting. – The Buddha

By choosing to study C/AL and C/SIDE, you have started down another road.
The knowledge you gain here and subsequently about these tools can be applied to
benefit yourself and others. The information in this book will shorten your learning
curve on how to program for the NAV ERP system using the C/AL language and
the C/SIDE integrated development environment.

By embarking on the study of NAV and C/AL, you are joining a high-quality,
worldwide group of experienced developers. There is a collegial community of
C/AL developers on the Web who readily and frequently share their knowledge.
There are formal and informal organizations of NAV-focused users, developers,
and vendor firms both on the Web and in various geographic locations. The NAV
product is one of the best on the market and it continues to grow and prosper.
Welcome aboard and enjoy the journey.

A Business History Timeline
The current version of Microsoft Dynamics NAV is the result of much inspiration
and hard work along with some good fortune and excellent management
decision-making over the last quarter century or so.

The Beginning
Three college friends, Jesper Balser, Torben Wind, and Peter Bang, from Denmark
Technical University (DTU) founded their computer software business in 1984
when they were in their early twenties. That business was Personal Computing &
Consulting (PC & C) and its first product was called PC Plus.

Preface

[2]

Single User PC Plus
PC Plus was released in 1985 with a primary goal of ease of use. An early employee
said its functional design was inspired by the combination of a manual ledger
journal, an Epson FX 80 printer, and a Canon calculator. Incidentally, Peter Bang is
the grandson of one of the founders of Bang & Olufsen, the manufacturer of home
entertainment systems par excellence.

PC Plus was PC DOS-based, a single user system. PC Plus' design features included:

An interface resembling the use of documents and calculators
Online help
Good exception handling
Minimal computer resources required

The PC Plus product was marketed through dealers in Denmark and Norway.

Multi-User Navigator
In 1987, PC & C released a new product, the multi-user Navigator and a new
corporate name, Navision. Navigator was quite a technological leap forward.
It included:

Client/Server technology
Relational database
Transaction-based processing
Version management
High-speed OLAP capabilities (SIFT technology)
A screen painter tool
A programmable report writer

In 1990, Navision was expanding its marketing and dealer recruitment efforts into
Germany, Spain, and the United Kingdom. Also in 1990, V3 of Navigator was
released. Navigator V3 was still a character-based system, albeit a very sophisticated
one. If you had an opportunity to study Navigator V3.x, you would instantly
recognize the roots of today's NAV product. By this time, the product included:

A design based on object-oriented concepts
Integrated 4GL Table, Form, and Report Design tools (the IDE)
Structured exception handling
Built-in resource management

•
•
•
•

•

•

•

•

•

•

•

•

•

•

•

Preface

[3]

The original programming language that became C/AL
Function libraries
The concept of regional or country-based localization

When Navigator V3.5 was released, it also included support for multiple platforms
and multiple databases. Navigator V3.5 would run on both Unix and Windows NT
networks. It supported Oracle and Informix databases as well as the one
developed in-house.

At about this time, several major strategic efforts were initiated. On the technical
side, the decision was make to develop a GUI-based product. The first prototype of
Navision Financials (for Windows) was shown in 1992. At about the same time, a
relationship was established that would take Navision into distribution in the United
States. The initial release in the US in 1995 was V3.5 of the character-based product,
rechristened Avista for US distribution.

Navision Financials for Windows
In 1995, Navision Financials V1.0 for Microsoft Windows was released. This
product had many (but not all) of the features of Navigator V3.5. It was designed
for complete look-and-feel compatibility with Windows 95. There was an effort to
provide the ease of use and flexibility of development of Microsoft Access. The new
Navision Financials was very compatible with Microsoft Office and was thus sold
as "being familiar to any Office user". Like any V1.0 product, it was fairly quickly
followed by a V1.1 that worked much better.

In the next few years, Navision continued to be improved and enhanced. Major new
functionalities were added:

Contact Relation Management (CRM)
Manufacturing (ERP)
Advanced Distribution (including Warehouse Management)

Various Microsoft certifications were obtained, providing muscle to the marketing
efforts. Geographic and dealer base expansion continued apace. By 2000, according
to the Navision Annual Report of that year, the product was represented by nearly
1,000 dealers (Navision Solution Centers) in 24 countries and used by 41,000
customers located in 108 countries.

•

•

•

•

•

•

Preface

[4]

Growth and Mergers
In 2000, Navision Software A/S and its primary Danish competitor, Damgaard A/S,
merged. Product development and new releases continued for the primary products
of both original firms (Navision and Axapta). In 2002, the now much larger Navision
Software, with all its products (Navision, Axapta, and the smaller, older C5 and
XAL) was purchased by Microsoft, becoming part of the Microsoft Business Systems
division along with the previously purchased Great Plains Software business and
its several product lines. Since that time, one of the major challenges for Microsoft
has been to meld these previously competitive business into a coherent whole. One
aspect of that effort was to rename all the products as Dynamics software, with
Navision being renamed to Dynamics NAV.

Fortunately for those who have been working with Navision, Microsoft has not only
continued to invest in the product, but has increased the investment. This promises
to be the case for the foreseeable future.

C/AL's Roots
One of the first questions often asked by developers and development managers new
to C/AL is "what other language is it like?" The proper response is "Pascal". If the
questioner is not familiar with Pascal, the next best response would be "C" or "C#".

At the time the three founders of Navision were attending classes at Denmark
Technical University (DTU), Pascal was in wide use as a preferred language not
only in computer courses, but in other courses where computers were tools and
software had to be written for data analyses. Some of the strengths of Pascal as a tool
in an educational environment also served to make it a good model for Navision's
business applications development.

Perhaps coincidentally (perhaps not) at DTU in this same time period, a Pascal
compiler called Blue Label Pascal was developed by Anders Hejlsberg. That compiler
became the basis for what was Borland's Turbo Pascal, which was the "everyman's
compiler" of the 1980s because of its low price. Anders went with his Pascal compiler
to Borland. While he was there Turbo Pascal morphed into the Delphi language
and IDE tool set under his guidance. Anders later left Borland and joined Microsoft,
where he led the C# design team. Much of the NAV-related development at
Microsoft is now being done in C#. So the Pascal-C/AL-DTU connection has come
full circle, only now it appears to be C#-C/AL. Keeping it in the family, Anders'
brother, Thomas Hejlsberg is also now working at Microsoft on NAV and AX at the
campus in Copenhagen.

Preface

[5]

In a discussion about C/AL and C/SIDE, Michael Nielsen of Navision and
Microsoft, who developed the original C/AL compiler, runtime, and IDE, said that
the design criteria were to provide an environment that could be used without:

Dealing with memory and other resource handling
Thinking about exception handling and state
Thinking about database transactions and rollbacks
Knowing about set operations (SQL)
Knowing about OLAP (SIFT)

Paraphrasing some of Michael's additional comments, the language and IDE
design was to:

Allow the developer to focus on design, not coding, but still allow flexibility
Provide a syntax based on Pascal stripped of complexities, especially relating
to memory management
Provide a limited set of predefined object types, reducing the complexity and
learning curve
Implement database versioning for a consistent and reliable view of
the database
Make the developer and end user more at home by borrowing a large
number of concepts from Office, Windows, Access, and other
Microsoft products

Michael is still working as part of the Microsoft team in Denmark on new capabilities
for NAV. Another example of how, once part of the NAV community, most of us
want to stay part of that community.

The Road Ahead
This book will not teach you programming from scratch, nor will it tutor you
in business principles. To get the maximum out of this book, you should come
prepared with some significant experience and knowledge. You will benefit most if
you already have the following attributes:

Experienced developer
More than one programming language
IDE experience
Knowledgeable about business applications
Good at self-directed study

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Preface

[6]

If you have those attributes, then by careful reading and performance of the
suggested exercises in this book, you should significantly reduce the time it will take
you to become productive with C/AL and NAV.

This book's illustrations are from the W1 Cronus database V5.0.

Hopefully this book will smooth the road ahead and shine a little light on some of
the potholes and the truths alike. Your task is to take advantage of this opportunity
to learn and then use your new skills productively.

What This Book Covers
Chapter 1 covers basic definitions as they pertain to NAV and C/SIDE. Also, an
introduction to seven types of NAV objects, Form and Report Creation Wizards, and
tools that we use to integrate NAV with external entities is provided. There is a brief
discussion of how different types of backups and documentation are handled in
C/SIDE at the end.

Chapter 2 focuses on the top level of NAV data structure: tables and their structures.
You will work your way through hands-on creation of a number of tables in support
of an example application. We will review most types of tables found in the out-of-
the-box NAV application.

In Chapter 3, you will learn about the basic building blocks of NAV data structure,
fields and their attributes, data fields that are available, and field structure elements
(properties, triggers) for each type of field. This chapter covers the broad range of
Data Type options as well as Field Classes. You will see one of the date calculation
tools that gives C/AL an edge in business. We will also discuss the concept of
filtering and how it can be considered as you design your database structure.

In Chapter 4, we will review different types of forms and work with some of these,
and review all the controls that can be used in forms. You will learn to use the Form
Wizard and have a good introduction to the Form Designer. You will expand your
example system, creating a number of forms for data maintenance and inquiry.

In Chapter 5, we will learn about on the structural and layout aspects of NAV Report
objects. Also, you will be experimenting with some of the tools and continue to
expand your example application.

Chapter 6 will help you learn about the general Object Designer Navigation as well as
more specific Navision individual (Table, Form, Report) Designers. This chapter also
covers variables of various types created and controlled by the developer or by the
system, basic C/AL syntax and some essential C/AL functions.

Preface

[7]

Chapter 7 covers a number of practical tools and topics regarding C/AL coding and
development. You will learn about the C/AL Symbol Menu and how it assists in
development. This chapter also discusses various Computation, Validation and Data
Conversion functions, Dates, Flowfields and SIFT, Processing Flow Control,
Input—Output, and Filtering functions.

In Chapter 8, we will review a number of tools and techniques aimed at making the
life of a NAV developer easier and more efficient. There is also a section on Code
Analysis and Debugging is provided.

Chapter 9 will help you deal with the software design for NAV. This chapter covers
designing NAV modifications, creating a new function area or enhancing an existing
functional area. The chapter also provides you the information needed for designing
a new NAV application.

Chapter 10 focuses on interfaces with NAV. Overall, you will learn about MenuSuites,
Dataports, XMLports, and advanced Interfaces in this chapter.

Chapter 11 will help you become even more productive in C/AL development. It
will provide you with some tips for design efficiency; it will help you learn about
updating and upgrading the system and more about enjoying working with NAV.

What You Need for This Book
You will need some basic tools including at least the following:

1. A copy of the Application Designer's Guide manual for C/AL
2. A license and database that you can use for development experimentation.

An ideal license is a full Developer's license. If the license only contains the
Form, Report, and Table Designer capabilities, you will still be able to do
many of the exercises, but you will not have access to the in inner workings
of Forms and Tables.

3. The best database for your development testing and study would probably
be a copy of the NAV Cronus demo/test database, but you may want to have
a copy of a production database at hand for examination as well. This book's
illustrations are from the W1 Cronus database for V5.0.

If you have access to other NAV manuals, training materials, websites and
experienced associates, those will obviously be of benefit as well. But they are not
required for your time with this book to be a worthwhile investment.

Preface

[8]

Who is This Book For?
The business applications software designer/developer who:

Wants to become productive in NAV C/SIDE—C/AL
development as quickly as possible
Understands business applications and the associated
software
Has significant programming experience
Has access to NAV including at least the Designer granules,
preferably a full development license and a standard Cronus
demo database
Is willing to do the exercises to get hands-on experience

The Reseller manager or executive who wants a concise, in depth view of
NAV's development environment and tool set
The technically knowledgeable manager or executive of a firm using NAV
that is about to embark on a significant NAV enhancement project
The technically knowledgeable manager or executive of a firm considering
purchase of NAV as a highly customizable business applications platform
The reader of this book:

Does not need to be expert in object-oriented programming
Does not need to have previous experience with NAV

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

GLEntry."Posting Date" IN [0D,WORKDATE]
Description[I+2] IN ['0'..'9']
"Gen. Posting Type" IN ["Gen. Posting Type"::Purchase,
"Gen. Posting Type"::Sale]
SearchString IN ['','=><']
No[i] IN ['0'..'9']
"FA Posting Date" IN [01010001D..12319998D]

•

°

°

°

°

°

•

•

•

•

°
°

Preface

[9]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

GLEntry."Posting Date" IN [0D,WORKDATE]
Description[I+2] IN ['0'..'9']
"Gen. Posting Type" IN ["Gen. Posting Type"::Purchase,
"Gen. Posting Type"::Sale]
SearchString IN ['','=><']
No[i] IN ['0'..'9']
"FA Posting Date" IN [01010001D..12319998D]

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[10]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

The Basic Ingredients
He who has not first laid his foundations may be able with great ability
to lay them afterwards, but they will be laid with trouble to the architect and
danger to the building—Niccolo Machiavelli

To me programming is more than an important practical art. It is also a gigantic
undertaking in the foundations of knowledge—Grace Murray Hopper

In Chapter 1, we will deal with the basic foundations of Microsoft Dynamics NAV
(pronounced as N-A-V, spelling it out), the objects that make up an NAV application,
and their essential capabilities and limitations. While NAV has many structural and
syntactical similarities to other programming languages, particularly Object Pascal;
NAV has many unique features and facilities as well.

Once you are through with Chapter 1, you will feel more comfortable with the NAV
development environment, will get acquainted with the tools, and will look forward
to getting more detail. Also, you will develop knowledge that will allow you to begin
thinking about application development within the NAV environment, using the
NAV programming language.

While learning the NAV development environment, we will develop a simple
application as a functional enhancement to the base product. Our application will be
designed for the management of a fictitious association for those who work with
C/SIDE and C/AL. We'll call it the worldwide Charter/Association of NAV
Developers Ltd, or C/ANDL for short. The goal of C/ANDL is to shed a little light
into NAV Development. We will deal with member records, skills and education
information, hold meetings, and offer some training publications for sale. Our
application will be designed as a new application function, but with the plan of using
base functionality for various accounting functions.

www.allitebooks.com

http://www.allitebooks.org

The Basic Ingredients

[12]

Some Unique NAV Terms Defined
The following are some unique definitions in NAV:

C/AL: Client/Application Language is the programming language meant
for customization of NAV. It was built by the NAV development team using
C++, though we never see any C++ code directly in the NAV product.
C/AL is the tool used to define the processes by which data is manipulated,
to define the business rules that will control the various applications, and to
control the flow of all the logical processing sequences. C/AL is also used
to manipulate objects, to control the execution flow of objects, to create new
functions complementing the functions that are built in, and to manipulate
data in many different ways.
C/SIDE: Client/Server Integrated Development Environment is the
development tool specified for using C/AL. It includes the language editor,
compiler, debugger, reports and form generators and code management
tools. Almost all the C/AL development is done within C/SIDE without
the use of external tools. For most application development, NAV is entirely
self sufficient except for those services provided by the Windows operating
systems. It is possible, though generally not recommended, to write code
using a text editor and then import it into C/SIDE.
Filtering: The application of range constraints is to control what data
is processed or made visible. For example, a filter for payment data for
Customer No. 20134 would show the payments for that customer only.
Although not really unique to NAV, filters combined with other NAV
features are uniquely powerful in NAV. The extreme flexibility of filtering in
NAV allows you to easily create very focused views into the data. Filters can
be defined as ranges, boolean expressions, specific selections, etc. that delimit
the data to be selected into a subset to be utilized in a process (display,
calculation, report, etc.). Thus, NAV filters are a very powerful tool for both
the developer and the user.
SIFT: Sum Index Field Technology is a very clever method of providing
instantaneous response to user inquiries. Most application systems provide
fast response to requests for summary information by maintaining
pre-calculated totals ("bucketed data"). NAV retains all data in detail and,
through the use of SIFT and applied data filters, it provides the activity totals
or subsets of information subject to a wide range of selection constraints
instantly. Your data structure design will determine whether SIFT results
are available and if available, how fast the response will be. Even though the
designers of NAV were very clever in giving you special tools to use, you are
still responsible for how well those tools will work for your users.

•

•

•

•

Chapter 1

[13]

C/FRONT: This is an application programming interface that allows you to
develop applications in other programming languages to access a Microsoft
NAV database, either the C/SIDE Database Server or the Microsoft SQL
Server. The primary component of C/FRONT is a library of callable
C functions, which provide access to every aspect of data storage and
maintenance. This allows creation of custom components written in C, C++,
VB, Delphi, and the Visual Studio.NET languages as well as other languages
that support compatible calling conventions. C/FRONT is only tested by
Microsoft for use with code built using either the Watcom C or Microsoft
C++ compilers. C/AL triggers cannot be invoked via C/FRONT code.
C/FRONT comes as a set of files to be installed guided by the instructions
given in the C/FRONT manual.
C/OCX: This is an application interface to allow integration between C/AL
and a properly defined OCX routine. This allows access to many ActiveX
controls available from third-party vendors. Such controls must be
non-visual as far as NAV is concerned (but they may open their own
windows for user interaction).

The C/SIDE Integrated Development
Environment
The C/SIDE Integrated Development Environment is referred to as the Object
Designer within NAV. It is accessed through the Tools | Object Designer menu
option as shown in the following screenshot:

•

•

The Basic Ingredients

[14]

Object Designer Tool Icons
The following screenshot shows an Object Designer form, containing a list of several
tool icons. These Object Designer tooltool Icons are shown isolated in the screenshot
and then described briefly in the following table. Some of the terminologies in these
descriptions will be explained later in this book. Additional information is available
in the C/SIDEC/SIDE Help files and the Microsoft NAV documentation.Microsoft NAV documentation..

Chapter 1

[15]

Seven Kinds of NAV Objects
NAV C/AL is not considered an object-oriented language even though C/AL uses
seven kinds of objects. These seven object types are listed on the left side of the
Object Designer window as shown in the following screenshot:

NAV is not an object-oriented language because you can only use the predefined
object types. The seven types of objects in C/AL are as follows:

Table: These are the definers and containers of data.
Form: These are this screen display constructs for the user interface.
Report: These allow the display of data to the user in "hardcopy" format,
either onscreen (preview mode) or via a printer device. Report objects can
also update data in processes with or without accompanying data display
output to the user.
Dataport: These allow the importing and exporting of data from/to
external files.
XMLport: These are similar to Dataport but specific to only XML files and
XML formatted data.
Codeunit: These are containers for code.
MenuSuite: These contain menus and are structured differently from
other objects.

•
•
•

•

•

•

•

The Basic Ingredients

[16]

More Definitions (Related to NAV)
The following are a few more definitions related to NAV:

Database: This consists of two database definitions (physical and logical). There
are two implementations of the physical database (C/SIDE Database Server
and Microsoft SQL Server). The C/SIDE Database Server was formerly known
as the "Native" database because for number of years, this proprietary server
was the only database for NAV. In earlier versions, it did not have a name other
than "the NAV (or Navision) Server". The logical database definition relates
to the sum total of the relationships between data, the indexes that control
data access, and in NAV, the SumIndexFields and FlowFields (special data
summing features, which are explained in detail in a later chapter).
NAV is a relational database system. The Development Environment
(C/SIDE) and tools (C/AL), makes the choice of underlying database
(C/SIDE Database Server or Microsoft SQL Server) platform almost
transparent to the developer. In this book we will not concern ourselves with
the physical database definition because, except in rare circumstances, our
development work will not be guided by physical database factors. When
you become involved in more complex design activities, you will likely need
to be concerned about the differences between the two database options.
Properties: These are the attributes of the element (e.g. object, data field, or
control) that define some aspect of its behavior or use. For example, display
length, font type or size, and if the elements are either editable or viewable.
Fields: These are the individual data items.
Records: These are group of fields (data items) that are handled as a unit in
most Input/Output operations. The table data consists of rows of records
and columns consisting of fields.
Controls: These are containers for constants and data. The visible displays in
reports and forms consist primarily of controls.
Triggers: The generic definition is a mechanism that initiates (fires) an action
when an event occurs such as reaching a certain time or date or upon receiving
some type of input. A trigger generally causes a program routine to be executed.
NAV triggers have some similarities to those in SQL, but they are not the same.
NAV triggers are locations within the various objects where a developer can
place comments or C/AL code. The following are the NAV triggers:

Documentation Triggers consist of comments only. Every object
type except MenuSuite has a single Documentation trigger.
Event Triggers are "fired" when the specified event occurs. Each
object type has its own set of predefined triggers. The event
trigger name begins with the word "On" such as OnInsert,
OnOpenForm, and OnNextRecord.

•

•

•
•

•

•

◦

◦

Chapter 1

[17]

Function Triggers are "functions" that can be defined by the
developer. They represent callable routines that can be accessed
from other C/AL code either within or outside the object where
the called function resides. Many function triggers are provided
as part of the standard product. As a developer, you may add
your own custom function triggers as needed.

License: A data file supplied by Microsoft that allows a specific level of access
to specific object number ranges. NAV licenses are very clever constructs,
which allow distribution of a complete system, all objects, modules, and
features while constraining exactly what is accessible and how it can be
accessed. Of course, each license feature allowing access to various objects
and system functions, including the ability to do development, has its
price. Microsoft Partners have access to licenses to provide support and
customization services for their clients. The broadly featured Partner licenses
are often referred to as a developer's license, but end-user firms can also
purchase licenses allowing them developer access to NAV.
Object numbers and field numbers: The object numbers from 1 (one) to
50,000 and in the 99,000,000 (i.e. 99 million) range are reserved for use
by NAV as part of the base product. Objects in this number range can
be modified or deleted, but not created with a developer's license. Field
numbers are often assigned in ranges matching the related object numbers
(i.e. starting with 1 fields relating to objects numbered 1 to 50,000, starting
with 99,000,000 for fields in objects in the 99,000,000 and up number range).
Object and field numbers from 50,001 to 99,999 are generally available to the
rest of us for assignment as part of an ad hoc customization developed in the
field using a normal development license. But object numbers from 90,000 to
99,999 should not be used for permanent objects as those numbers are often
used in training materials. Microsoft allocates other ranges of object and field
numbers to ISV (Independent Software Vendor) developers for their
add-on enhancements. Some of these (in the 14,000,000 range in North
America, other ranges for other geographic regions) can be accessed,
modified, or deleted but not created, using a normal development license.
Others (such as in the 37,000,000 range) can be executed but not viewed or
modified with a typical development license. The following table summarizes
the content as:

Object Number Range Usage
1 – 9,999 Base application objects
10,000 – 49,999 Country-specific objects
50,000 – 99,999 Customer-specific objects
100,000 – 99,999,999 Partner-created objects

◦

•

•

The Basic Ingredients

[18]

Work Date: This is a date controlled by the operator that is used as the
default date for many transaction entries. The System Date is the date
recognized by Windows. The work date can be adjusted at any time by the
user, is specific to the workstation, and can be set to any point in the future
or the past. This is very convenient for procedures such as closing off Sales
Order entry for one calendar day at the end of the first shift, then having the
Sales Orders entered by the second shift dated to the next calendar day. You
can set the work date by selecting Tools|Work Date, and then entering
a date.

NAV Functional Terminology
For various application functions, NAV uses terminology that is more akin to
accounting terms than to traditional data processing terminology. Some examples
are as follows:

Journal: A table of transaction entries, each of which represents an event, an
entity, or an action to be processed. There are General Journals for general
accounting entries, Item Journals for changes in inventory, etc.
Ledger: A detailed history of transaction entries that have been processed.
For example, General Ledger, a Customer Ledger, a Vendor Ledger, an
Item Ledger, etc. Some Ledgers have subordinate detail ledgers, typically
providing a greater level of date plus quantity and/or value detail.
Posting: The process by which entries in a Journal are validated, and then
entered into one or more Ledgers.
Batch: A group of one or more Journal entries that were Posted in one group.
Register: An audit trail showing a history by Entry No. ranges of the Journal
Batches that have been Posted.
Document: A formatted report such as an Invoice, a Purchase Order or a
Check, typically one page for each primary transaction.

Getting Started with Application Design
Our design for the C/ANDL application will start with the beginning of a Member
Table, a Member Card, a Member List Form, and a Member List Report. Along the
way we will review the basics of each of the NAV object types.

•

•

•

•

•

•

•

Chapter 1

[19]

Tables
Table objects are the foundation of every NAV application. Every project should be
started by designing the tables. Tables contain the definitions of the data structures,
the data relationships within and between the tables, as well as many of the data
constraints and validations. The coded logic in table triggers not only provides
the basic control on the insertion, modification, and deletion of records, but also
embodies many of the business rules of an application. As we see when we dig
into tables further, such logic isn't just at the record level but also at the field level.
Putting as much of an application design as possible within the tables makes the
application easier to develop, debug, support, modify, and upgrade.

Example: Table Design
Let us try a simple introduction to creation of a table for our NAV Developer
Association application. We will create a basic Member table. The first thing we
will do is inspect the existing definitions for tables containing name and address
information, such as the Customer table (table object 18) and the Vendor table (table
object 23). From the common definitions in these tables, we see some patterns as to
field names and definitions that we decide to copy. The Member table will contain the
following data fields:

Field names Definitions
Member ID 10 character text (code)
Title/Prefix 10 character text
First Name 20 character text
Middle Initial 3 character text
Last Name 20 character text
Suffix 10 character text
Address 30 character text
Address 2 30 character text
City 30 character text
State/Province 10 character text
Post code 20 character text (code)
Country/Region code 10 character text (code)

This is a good illustration of how the design must begin with the tables. As you can
see, in the preceding data field list, three of the fields have special text formats. That
is because these are going to be referenced by or will reference to other data tables, so
these are data codes rather than descriptive data.

The Basic Ingredients

[20]

The Member ID will be a unique identifier for our Member record as it will also be
referenced by other subordinate tables. The Post code and Country/Region code
will reference other existing tables for validation. We choose the name, size, and data
definition of these last two fields based on inspecting the equivalent field definitions
in the Customer and Vendor tables.

We will have to design and define any referenced validation tables before we can
eventually complete the definition of the Member Table. But our goal at the moment
is just to get started.

Example: Table Creation
Open the Object Designer, click on Table (on the left column of buttons) and click
on New (on the bottom row of buttons). Enter the first field name (Member ID)
in the Field Name column and then enter the data type in the Data Type column.
For those data types where length is appropriate, enter the maximum length in the
Length column. Enter Description data as desired; these are only for display here as
internal documentation.

As you can see in the following screenshot (and will have noticed already if you are
following along in your system), when you enter a Text data type, the field length
will default to 30 characters. This is simply an 'ease-of-use' default, which you
should override as appropriate for your design. The 30 character Text default and
10 character Code default are used because this matches many standard application
data fields of those data types.

The question often arises as to what field numbering scheme to use. Various systems
follow a variety of standard practices. In one system you might increment the field
by twos, in another by fives, and in another by thousands but in NAV, when you are
creating a new table from scratch, it is a good idea to increment the Field No. by 10 as
you have seen in the above screenshot. The default increment for Field No. is 1. For
a group of fields (such as an address block) where you are certain you will never add
any intervening fields, you could leave the increment at 1. But there is no penalty or
cost for using the larger increment, so it's not a bad thing to do all the time.

Chapter 1

[21]

The numeric sequence of fields determines the default sequence in which data
fields will display in a wide variety of situations. An example would be the order
of the fields in any list presented to the user for setting up data filters. This default
sequence can only be changed by renumbering the fields. The compiler references
each field by its Field No. not by its Field Name, so the renumbering of fields can be
a challenge once you have created other routines that reference back to these fields.
At that point, it is generally better to simply add new fields where you can fit them
without any renumbering.

In fact, it can be irritatingly painful to renumber fields at any point after a table has
been defined and saved. In addition to the field numbers controlling the sequence of
presentation of fields, the field numbers control bulk data transfer (those transfers
that operate at the record level rather than explicitly field to field transfer—e.g. the
TRANSFERFIELD instruction). In a record-level transfer, data is transferred from
each field in the source record to the field of the same number in the target record.

So you can see that it is a good idea to define an overall standard for field numbering
as you start. Doing so makes it easier to plan your field numbering scheme for
each table. Before you begin, enter the definition into C/SIDE. Your design will be
clearer for you and your user if you are methodical about your design planning
before you begin writing code (i.e. try to avoid the Ready-Fire-Aim school of system
development). The increment of Field No. by 10 allows you to insert new fields in
their logical sequence as the design matures. While it is not required to have the data
fields appear in any particular order, it is frequently convenient for testing and often
clarifies some of the user interactions.

When you have completed this first table, your definition should be like the
following screenshot:

The Basic Ingredients

[22]

At this point, you can exit and save your Member Table. The easiest way to do this is
to simply press Esc until you are asked to save your changes. When you respond by
clicking Yes, you will be asked for the Object Number and Name you wish to assign.
In a normal development situation, you will want to plan ahead what Object Number
and descriptive Object Name you want to use. We will discuss Object Numbering
in more detail later. In this case, we will use table Object No. 50000 and name it as
Member. We are using 50000 as our Table Number just because it is the first (lowest)
number available to us for a custom table through our Table Designer granule license.

Note that NAV likes to compile any object as it is saved, so the Compiled option is
automatically checkmarked. A compiled object is one that can be executed. If the
object we were working on was not ready to compile without error, we could unselect
the Compiled option in the Save As window as shown in the following screenshot.

Be careful, as uncompiled objects will not be considered by C/SIDE when changes
are made to other objects. Until you have compiled an object, it is a "work in
progress", not an operable routine. As a matter of good work habits, make sure that
all the objects get compiled before you end work for the day.

Forms
Forms fulfill two basic purposes. Firstly, they provide views of data or processes
designed for on-screen display only. Secondly, they provide key points of user data
entry into the system. In standard NAV, there are two basic types of forms:

Card forms
Tabular forms

•
•

Chapter 1

[23]

From a practical point of view, there are also special versions of Card forms that use
a Matrix Control and are therefore often referred to as Matrix forms. Beyond that,
there is a variation of the Matrix form, which is called a Trendscape form. There are
also combination forms consisting of a Card form plus a Tabular form, called a Main/
Sub Form. These are user interfaces that appear as forms but are not Form objects.
These user interfaces use various dialog functions.

Card Forms
Card forms display one record at a time. These are generally used for the entry or
display of Master table records. For example, Customer Card for customer data,
Item Card for Inventory items, and G/L Account Card for General Ledger accounts.
Card forms often have multiple pages (tabs) with each tab on the Customer Card (for
example) focusing on a different set of related customer data. Card forms for Master
records display all the fields into which data must be entered by users. Typically,
they also display summary data about related activity so that the Card form can be
used as the primary inquiry form for its Master records. The following screenshot is
a sample of a standard Customer Card:

The Basic Ingredients

[24]

Tabular Forms
Tabular forms display a simple list of any number of records in a single table. The
Customer List form in the following screenshot shows a subset of the data for each
customer displayed. The Master record list show fields intended to make it easy to
find a specific entry. Tabular forms for lists often do not allow entry or editing of the
data. Tabular forms such as those for Journals are inherently intended for data entry.

Main/Sub Forms
Another form style within NAV consists of a Card form plus a List form. These are
called Main/Sub forms and are also referred to more casually as Header/Detail
forms. An example is the Sales Order form as shown in the following screenshot.
In this example, the upper portion of the form (the Main form) is a Card form with
several tabs showing Sales Order data fields that have one occurrence. The lower
portion of the form (the Subform) is a Tabular form showing a list of all the line items
on the Sales Order. Line items may include product to be shipped, special charges,
comments and other pertinent order details. The information to the right of the data
entry is related data and computations that have been retrieved and formatted.
On top of the form, the information is for the Ordering customer and the bottom
contains information for the item on the selected line.

Chapter 1

[25]

Matrix Forms
Matrix forms display multiple records at one time, and are also used to display
the "intersect" of two related tables. For example: a spreadsheet-style matrix form
showing the "intersect" (stock on hand) for each item at each location. The Items
(No. and Description) are shown on the Y axis (vertically) in the leftmost column
and the Locations on the X axis (horizontally) across the top, and each intersect point
contains the count of inventory for an item at a location.

In the following screenshot, the AMSTERDAM Lamp, item number 1928-S, has
149 lamps in stock in the BLUE warehouse and 55 in the GREEN warehouse. At the
same time, we show a negative inventory in the RED warehouse, indicating that we
have probably processed shipments for product for which the receipts have not yet
been posted.

The Basic Ingredients

[26]

Trendscape Forms
Trendscape forms have similar format to Matrix forms but, with the addition of
Trendscape Option Buttons and their underlying logic, the Trendscape forms are
used to display time dependent data. The X-axis of a Trendscape matrix form is
always date based, generally using the system Virtual Date table. The Trendscape
option buttons allow the filtering and calculation of displayed information based
on various accounting periods selected by the user. A Trendscape form is generally
used for data that needs to be reviewed in summary form by various accounting
periods (weeks, months, quarters, etc.).

The sample Trendscape form in the following screenshot shows Budget data by
date. This image is summarized on a monthly basis (i.e. the 31 button is selected).
The top of this form allows the entry of frequently used filter data, the left column (Y
axis) shows the budget accounts, the X axis heading shows the date ranges for each
column, and the individual cells display the budgeted total for each row-column
intersect (i.e. for each budget account by period). Specifically, the budget for Total
Sales of Retail for the month period starting 09/01/07 is -100,610.

Chapter 1

[27]

All Forms
A Form consists of Form properties and Triggers, Controls, and Control properties
and Triggers. Data controls generally are either labels displaying constant text or
graphics, or containers that display data or other controls. Controls can also be
elements such as buttons, menu items, and subforms. While there are a few instances
where you must include C/AL code within form or form control triggers, in general
it is a good practice to minimize the amount of code embedded within forms. Most
of the time, any data-related C/AL code can (and should) be located within the table
object rather than the form object.

Creating a Card Form
Let us try creating a Card form and a Tabular List form for the table we created
a little while ago. The NAV IDE consists of some object generation tools (i.e. the
Wizards) to create basic forms and reports. These tools are useful either to create
simple objects or as a starting place for more complicated objects. One of the
(many) nice features of C/SIDE is that you can generate an object, then climb into
the generated object and modify it as though you had done all the coding from
scratch by hand. This generation process is a one way process; once the generated
object has been accepted and turned into an object under development, it cannot be
manipulated within the form wizard again. For this reason, all of your wizard

The Basic Ingredients

[28]

design work for a particular form needs to be done at one time, before any manual
object manipulation occurs. The Form Wizard and Form Designer tools are available
to anyone who has a license containing the Form Designer granule.

We will be using the Form Wizard to create both of our forms. Later we will do more
with these forms, but for now we will just see how the Form Wizard works. Open
the Object Designer, click on Form and then click on New. The Form Wizard's first
screen will appear. Enter the name (Member) or number (50000) of the Table with
which you want the form to be associated (bound). Choose the option Create a form
using a wizard. This time choose a Card-Type Form. Then click on OK as shown in
the following screenshot:

The next screenshot provides the option of creating a plain form (no tabs) or a tabbed
form with one or more tabs. We can also name the tabs on this screen. This time,
even though it is overkill at the moment to have a tabbed Card form, let us generate
a form with one tab and use the default tab label of General. Now click on Next.

Chapter 1

[29]

The next step is to choose what fields are to appear on our new form and how they
will be placed. In this case, we are going to use all the fields and simply put them into
two columns. First, let us take a quick walk through the controls on the Wizard form
so we know what our basic toolkit is. There are six buttons associated with the design
of the Card form on which we are working as shown in the following screenshot:

Button Description

Choose one of the available fields

Choose all the available fields

Remove one field from the object

Remove all fields from the object

Insert a visual Separator (i.e. a horizontal line)

Insert a Column Break (i.e. create a column split by ending one column and
beginning another)

Display a Preview (screen display) of the object being created in the Wizard

The left column shown in the following screenshot, having the heading Available
Fields, lists all the fields from the source table that have not yet been chosen for the
Form object. The right column, headed Field Order, lists all the fields that have been
chosen in the order in which they will appear on the form.

In the following screenshot, you can see that we have split the Field Order column
into name information and address information. It is not a very elegant design
but right now we are still in first grade, i.e. just learning basics. We will deal with
appearance issues later. Put all the fields on the form that are in your table.

The Basic Ingredients

[30]

At any point during your work, you can take a sneak peek at what you are creating
(i.e. click on the Preview button). When you are done with all the fields on your
new form and you are satisfied with the layout, click on Finish. You will get the
generated form object in the Form Designer as shown in the following screenshot:

We are now through with the Form Wizard and have transitioned into the Form
Designer. The Graphical User Interface Guidelines for NAV Card forms tell us that
we should have all the long fields on the left side of the form and only short fields
in the right column. Doing that with this form would have most, if not all, of the
fields for this form in the left column. Obviously, there is an opportunity here for
some subjective form design discussion or debate (which we are going to leave
unaddressed). At the moment, we are going to leave our form as it is. If you want to
experiment with different layouts later, that would be a good way to practice using
some of the C/SIDE tools.

If we want to modify the form manually, we could do that now. If so, it would be a
good idea to first save what we have done so far. We will do that the same way as we
did when we saved our table earlier. Press Esc and respond Yes to the Do you want
to save the changes to the Form query.

Now enter the Form number (ID), you want to assign (50000) and name (Member
Card). We are using the number 50000 just because that is the first custom form
object number available to us with our Form Designer granule license. After you
have the form saved so you don't lose what you've done so far, you could start
making manual changes. But we're not ready for that level of difficulty yet. We will
get into that in the Chapter covering Forms.

Chapter 1

[31]

Creating a List Form
Our next task is to use the Form Wizard to create a tabular Member List form. Open
the Object Designer, click on Form, and then click on New. Once again the Form
Wizard's first screen will appear. Enter the name (Member) or number (50000) of
the table with which you want the form to be associated. Choose the option Create
a form using a wizard. This time choose the option to create a Tabular-Type Form.
Then click on OK as shown in the following screenshot:

Now you will have the opportunity to choose which data fields will appear on each
line of the tabular display. When List forms are designed for some type of referential
lookup, generally they don't contain 100% of the data fields available, especially
when working with a larger table. So let's choose a subset of the data fields to be
displayed, just enough to make the display meaningful and easy to use.

Remember we can always return to the created form and easily add fields we left
off or remove something we decide is not needed. In addition, NAV forms include
a feature that allows you to have some field columns identified as Not Visible by
default. This property is field specific and controls whether the column for a data
field displays on screen or not.

On a Tabular form, even the non-programmer user can change the Visible property
of each column to create a customized version. This user customization is tied to
the individual user login and recorded in their ZUP file. ZUP files record user-specific
system state information so it can be retrieved when appropriate. In addition to user
screen changes, the ZUP file records the identity of the most recent record in focus
for each screen, the most recent contents of report selection criteria and request form
field contents, and a variety of other information. When the user returns to a screen
or report, whether in the same session or after logout and return, data in the ZUP file
helps restore the state of various user settings. This feature is very user friendly.

www.allitebooks.com

http://www.allitebooks.org

The Basic Ingredients

[32]

Let us choose just basic Name and Address fields for our initial List form as shown
in the following screenshot.

The Form Wizard functions essentially the same for Tabular
forms as it does for Card forms.

As with the Card form, at any point during your work you can take a sneak
peek at what you are creating (i.e. click on the Preview button). If you feel like
experimenting, you could move fields on and off the form or put fields in different
orders. If you do experiment, use Preview to check the effects of your various
actions. If your form gets hopelessly confused, which happens to all of us sometimes,
just click on Esc, but be careful not to save the results and then start over. When you
are done with all the fields on your new form and you are satisfied with the layout,
click on Finish.

We are now done with the Form Wizard for our new List form and have transitioned
into the Form Designer. If we want to modify the form manually, we could do that
now. As before, just press Esc and respond Yes to the Do you want to save the
changes to the Form query. Enter the Form number (ID), you want to assign (50001)
and name (Member List). If you reused the Form object number 50000, you would
have overwritten the Card form, you created earlier.

At this point, we have a data structure (Table 50000—Member), a form to enter and
maintain data (Form 50000—Member Card) and a form to display or inquire into a list
of data (Form 50001—Member List). Let us use our Member Card to enter some data
into our table. In a full application, we would be accessing our form from a Menu.

Chapter 1

[33]

But for now, we will just run our form directly from the Object Designer.

Choose Object Designer | Form, highlight the line for form 50000 (as shown in
the background of the preceding screenshot), and then click the Run button at the
bottom of the Object Designer form. You should now see your Member Card on the
screen similar to the preceding screenshot, but with all fields empty (blank). Enter
data into the fields. Put in your name and address for the first entry (just for fun).

When you have finished making the entry, press F3 (the NAV New Record key) to
file away the data just entered and prepare it for the entry of a new record. Do that.
Enter at least a couple more Member records as shown in the following screenshot
both for your experience of doing the data entry and to generate several Member
records to use for later testing.

The Basic Ingredients

[34]

Now we are going to look at the data through the List form you created. Exit the
Member Card form, highlight Form 50001, Member List, and then Run it. You will
see a list of all the entries you just entered, in order by the Member ID number.

Click on Help on the main menu above the main toolbar. Choose Overview of F
Keys and study the information shown by pressing Shift, Control, and Shift plus
Control. These are the standard F Key functions throughout NAV.

Hopefully you are beginning to get a feeling for the ease of use and power of
C/SIDE and NAV. Now that you have taken a quick look at where the data is defined
and where it is entered, we will look at where it is extracted and reported.

Reports
Report objects can be used for several purposes, sometimes more than one purpose
at a time. One type is for the display of data. This can be on-screen (called Preview
mode) or output to a printer device (Print mode). The displayed data may be as
read from the database or may be the result of significant processing. As you would
expect, a report may be extracting data from a single table (e.g. a list of customers) or
a combination of several tables (e.g. a Sales analysis report).
Another type of report object processes data, without any display formatted output
of the processed results. Typically, such reports are referred to as batch processing
reports. Reports can also be used as containers for program logic to be called from
other objects or executed as an intermediate step in some sequence of processes.
Normally this task would be handled by codeunit objects, but you could also use
report objects if you want to do so.
Report formats are limited to a combination of your imagination, your budget, and
the capabilities of NAV reporting. On one hand, NAV reporting is very powerful
and flexible in terms of what data can be reported, plus the various types of filtering
and combining can be done. On the other hand, NAV reporting is relatively limited
in terms of formatting.
You can do most of what is normal and needed in terms of textual formatting, but
have very limited graphical capability and almost no color capability. For these
reasons, there are a number of good products, both from Microsoft and from
third-party vendors, to provide additional reporting capabilities complementary to
those within NAV. New to V5.0 is a built-in functionality to use XML Style Sheets to
support exporting data to programs outside of NAV, especially those that are part of
Microsoft Office such as Word and Excel.
Common report formats in NAV include document style (e.g. Invoices or Purchase
Orders) also called Form-Type, list style (e.g. Customer List, Inventory Item List,
Aged Accounts Receivable) also called Tabular-Type, and label format style (e.g. a
page of name and address labels) called Label-Type.

Chapter 1

[35]

A significant aspect of the NAV report object is the built-in read-then-process
looping structure, which automates the sequence of read a record, then process it,
and then read the next record. When manually creating or enhancing reports, you
can define one data structure as subordinate to another, thus creating nested read-
then-process loops. This type of predefined structure has its own good points and
bad points. The good points usually relate to how easy it is to do the kind of things
it is designed for and the bad points relate to how hard it is to do something that the
structure doesn't anticipate. We will cover both sides of discussion when we cover
Reports in more detail.

Creating a List Format Report
Let us create a simple list format report based on our Member table. We will use the
Report Wizard this time. Just like the Form Wizard, the Report Wizard is quite useful
for simple reports. The Report Wizard and Report Designer tools are available to
anyone who has a license containing the Report Designer granule.

When you are doing more complex reports, it is often only modestly helpful to start
with the Report Wizard. For one thing, the Report Wizard only deals with a single
input table. However, even with complex reports, sometimes it is a good idea to
create a little test version of some aspect of a larger report. Then you may create your
full report without use of the Wizard, but letting the Report Wizard generate code to
be your tutor in some aspect of layout or group totaling.

Open the Object Designer, click on Report, and then click on New. The Report
Wizard's first screen will appear. Enter the name (Member) or number (50000) of the
table with which you want the report to be associated. Choose the option Create a
report using a wizard. This time choose a Tabular-Type Report Wizard to create a
Member List. Then click on OK as shown in the following screenshot:

The Basic Ingredients

[36]

Next, you will be presented with the window show in the following screenshot for
choosing what data fields you want on your report. The order in which you place
the fields in the Field Order column, top to bottom, will be the order in which they
appear in your report, left to right.

Just as with the Form Wizard, you can Preview your report in the process of its
creation, to see if you are getting the layout you want. More often with reports than
with forms, you will perform quite a bit of manual formatting, after you finish with
the Wizard. Because the report preview function utilizes the driver for the current
default printer for formatting, make sure you have a default printer active and
available before you attempt to preview an NAV report.

After you have chosen the fields you want on your report (some are suggested in
the preceding screenshot), click on Next. This will bring up a screen allowing you to
predefine a processing/printing sequence for this report. You can select from any of
the defined keys. At the moment our Member table only has one key so let's choose the
No, I don't want a special sorting of my data option. As you will see later, that will
generate a report where you can choose the sort sequence for each run. Click on Next.

Now you can choose a List Style or a Document Style layout. Click on each one of
them to get an idea of the difference. If you like, Preview the report in process for
each of these options chosen. Note that when you Run a report (and previewing it,
is running it), the first thing you see is called the Report request screen. A Report
request screen from the Member List report would look like the following screenshot:

Chapter 1

[37]

The Report request screen is where the user enters any variable information, data
filters, page, printer setups, and desired sort order to control each report run. At the
bottom right of the screen is the Sort... button, which allows the user to choose which
predefined data key will apply to a particular report run. The user can also choose to
Print the report (output to a physical device) or Preview it (output to the screen). To
start with, just click on Preview to see your currently chosen layout.

Once you are satisfied with the layout, click on Finish. Again, just as with the Form
Wizard, you will now be in the Report Designer, ready to make manual changes
(isn't consistency great?). Exit the Report Designer by pressing the close-window
icon, saying Yes, you do want to save the changes, and then saving your new report
as ID 50000 and Name "Member List". If you then run your new report, using the
Run button, it should look much like the following screenshot:

There is a lot more to learn about the design, creation, modification, and control
of Reports.

For the moment, we are done with our introduction to development, but will
continue with our introductory review of NAV's object types.

The Basic Ingredients

[38]

Codeunits
A codeunit is a container for "chunks" of C/AL code to be run "inline" or called
from other objects. These "chunks" of code are properly called Functions. Since we
said earlier that you could use a Report object as a container for code segments (i.e.
functions), why do we need codeunits? One reason is that early in the life of C/SIDE,
only codeunits could be used in this way. Somewhere along the line, the C/SIDE
developers decided to relax that particular constraint, but from a system-design
point of view, there are still very good reasons to use codeunits rather than other
objects for function containers.

One important reason is that the license specifically limits access to the C/AL code
within codeunits differently than that within reports. The C/AL code within a report
can be accessed with a "lower level" license than is required to access the C/AL
code in a codeunit. If your customer has license rights to the Report Designer, they
can access C/AL code within Report objects. A large percentage of installations
have Report Designer license privileges. But they cannot access C/AL code within
codeunit objects unless they have access to a more expensive license with Developer
privileges (i.e. Application Builder or Solution Developer).

Another reason is that the codeunits are better suited structurally to contain only
functions. Even though functions could be placed in other object types, the other
objects types have superstructures that relate to their designed primary use for
forms, reports, etc. Use of such an object primarily as a repository for functions,
designed to be called from other objects creates code that is often more difficult to
interpret, use, and maintain.

Codeunits act only as a container for C/AL coded functions. They have no auxiliary
functions, no method of user interaction, no predefined processing or predefined
anything. If you are creating one or two functions that are closely related to the
primary activity of a particular report, but are needed both from within and outside
of the report, then, by all means, include the functions in the report. But otherwise,
use a Codeunit.

There are several codeunits, delivered as part of the standard NAV product, which
are really function libraries. These codeunits consist totally of utility routines,
generally organized on some functional basis (e.g. associated with Dimensions or
with some aspect of Manufacturing or some aspect of Warehouse management).
Some developers create their own libraries of favorite special functions and include
such a "function library" codeunit in systems on which they work.

Chapter 1

[39]

MenuSuites
What is a MenuSuite? MenuSuites are the objects that are displayed as User
Menus. They differ considerably from the other object types we have discussed
earlier. MenuSuites have a completely different structure; they are also maintained
differently. In older versions of NAV, menus were constructed as versions of
Form objects. With the release of Version 4.0, MenuSuites were offered as a way of
providing a User Interface essentially similar to that found in the Outlook Navigation
panel. MenuSuites are also maintainable in a limited way by the end user without
any special license requirements. In addition, MenuSuites have the advantage of only
showing the menu items that the user has permissions to access.

MenuSuite entries do not have maintainable properties or contain triggers. With the
advent of MenuSuites, NAV developers lost the ability to embed C/AL code within
the menus. The only customizations that can be done with MenuSuites is to add,
delete, or edit menu entries. In a later Chapter, we will discuss more about how to
work with (and around) MenuSuite constraints.

Dataports
Dataports are specialized objects designed to export and import data between the
NAV database (either implementation) and external text files. Dataports allow for a
limited set of external data formats, generally focused around what are commonly
referred to as "comma-delimited" files. Not that they literally have to be delimited
only with commas, but that is the category of file structure.

Dataports can contain C/AL logic that applies to either the importing or the
exporting process (or both). The internal structure of a dataport object is somewhat
similar to that of a report object combined with a table object. Dataports are driven
by an internal read-then-process loop similar to that in reports. Dataports contain
field definitions that relate to the specific data being processed.

Dataports are relatively simple and quite flexible tools for importing and exporting
data. The data format structure can be designed into the dataport as well as logic
for accommodating editing, validating, combining, filtering, etc. of the data as it is
passed through the dataport. Dataports can be accessed directly from a menu entry,
in the same fashion as forms and reports.

The Basic Ingredients

[40]

XMLports
At first glance, XMLports are for importing and exporting data, similar to the
Dataports. But XMLports differ considerably in their operation, setup, and intended
usage. XMLport objects can only be used for XML-formatted data. They must be
"fired off" by some other routine (i.e. cannot be run directly through a menu entry).
XML stands for eXtensible Markup Language. XML is a markup language much like
HTML. XML was designed to describe data so that it would be easier to exchange
data between dissimilar systems, for example, between your NAV ERP system and
your accounting firm's financial analysis and tax preparation system.

XML is designed to be extensible, which means that you can create or extend
the definition so long as you communicate the revised XML format to your
correspondents. There is a standard set of syntax rules to which XML formats must
conform. XML is becoming more and more important because most software uses
XML. For example, the new versions of Microsoft Office are quite XML "friendly".

Integration Tools
These integration tools are designed to allow direct input and output between
NAV databases and external, non-NAV routines. But they do not allow access to
C/AL-based logic. The internal business rules or data validation rules that would
normally be enforced by C/AL code or trigger actions or various properties do not
come into play when the data access is by means of one of the following integration
tools. Therefore, you must be very careful in their use.

N/ODBC: NAV provides the standard ODBC interface between external
applications (such as Word, Excel, Delphi, Access, etc.) and the NAV
database. This is a separately licensed granule.
C/OCX: This provides the ability to use OCXes to interface with the NAV
database. This is also a separately licensed granule.
C/FRONT: This provides the ability to access the NAV database directly from
code written in languages other than C/AL. Earlier, this type of interface was
primarily coded in C, but with V4.0 SP1, we now have the ability to interface
from various .NET languages. In future versions, this capability is likely to
expand considerably. This too is a separately licensed granule.
Automation: This allows access to registered automation controller libraries
within Windows from in-line C/AL code (e.g. can directly push data into
a Word document template or an Excel spreadsheet template from C/AL).
Automation controllers cannot be used to add graphical elements to NAV but
they can contain graphical user interfaces that operate outside of NAV. When
it is feasible to use an automation controller for interfacing externally, it is a
simple and flexible way to expand the capabilities of your NAV system.

•

•

•

•

Chapter 1

[41]

Backups and Documentation
As with any system where you can do development work, careful attention to
documentation and backing up your work is very important. C/SIDE provides a
variety of techniques for handling each of these tasks.

When you are working within the Object Designer, you can back up individual
objects of any type or groups of objects by exporting them. These exported object
files can be imported in bulk or one object at a time to recover the original version of
one or more objects. When objects are exported to text files, you can use a standard
text editor to read or even change them. If, for example, you wanted to change all
the instances of the field name Customer to Patient, you might export all the objects
to text and make a mass "Find and Replace". You won't be surprised to find out that
making such code changes in a text copy of an object is subject to a high probability
of error, as you won't have all the safety features of the C/SIDE editor keeping you
from hurting yourself.

You can also use the NAV Backup function to create backup files containing just
system objects or including data (i.e. a typical full system backup). A developer
would typically use backup only as an easy way to get a complete snapshot of all
the objects in a system. Backup files cannot be interrogated as to the detail of their
contents, nor can selective restoration can be done. So, for incremental development
backups, object exporting is the tool of choice.

Internal documentation (i.e. inside C/SIDE, not in external documents) of object
changes can be done in three areas. First is the Object Version List, a field attached to
every object, visible in the Object Designer screen. Whenever a change is made in an
object, a notation should be added to the Version List.

In every object type except MenuSuites, there is a Documentation trigger at the top
of the object. That is the recommended location for noting a relatively complete
description of any changes that have been made to the object. Then, depending on
the type of object and the nature of the specific changes, you should also consider
annotating each change in the code, so it can be easily identified as a change by the
next developer looking at this object.

In short, everything you have learned earlier about good backup practices and good
documentation practices applies, when doing development in NAV C/SIDE. This is
true whether the development is new work or modifications of existing logic.

The Basic Ingredients

[42]

Summary
In this chapter, we have covered the basic definitions of terms related to NAV and
C/SIDE. Then, we followed with the introduction of seven types of NAV objects
(Tables, Forms, Reports, Codeunits, MenuSuites, Dataports and XMLports). We
also had an introduction to Form and Report Creation Wizards through review and
hands-on use with the beginning of an NAV Developer Association application.
Finally, we looked briefly at the tools that we use to integrate with external entities
and also discussed how different types of backups and documentation are handled
in C/SIDE. Now that we have covered the basics in general terms, let's dive into the
detail of the primary object types. In the next chapter, we will focus on Tables.

Tables
Design is a plan for arranging elements in such a way as to best accomplish a
particular purpose—Charles Eames

The basic building blocks of any system are the data definitions. When you consider
the full range of capabilities and features built into the table structure for Microsoft
Dynamics NAV, that principle is even more applicable. In NAV, the data definitions
are made up of tables and, within the tables, the individual data fields exist. Whether
you are working on a new application or a tightly integrated modification, the first
level of detailed design and development for a NAV application must be the
data structure.

In NAV, the table definition can include considerably more than the traditional data
fields and keys. The table definition can also include a considerable portion of the
data validation rules, processing rules, business rules, and logic to ensure referential
integrity. In this chapter, we will learn how to design and construct tables for data.
We will review the various choices available and how these choices can affect the
subsequent phases of design and development.

Overview of Tables
A table provides the basic definition for data in NAV. It is important to understand
the distinction between the table (definition and container) and the data (the
contents). The table definition describes the data structure, validation rules, storage,
and retrieval of the data that is stored in the table. The data is the raw material that
originates (directly or indirectly) from the user activities and subsequently resides in
the table. The table is not the data, but the definition of data, though we commonly
refer to data and table as if they were one and the same thing (internally in NAV, in
the Permissions setup, for example, the data is logically referred to as Table Data).
We will take the more relaxed approach here.

Tables

[44]

Tables are the critical foundation blocks of NAV applications. You can't have any
permanent data that is not stored in a table. When you define temporary data
variables within an object for use within the object only, you don't have the full range
of data definition tools available. They are only available when the data is defined
in a table.

In general, it is easy to design, develop and maintain, and embed much of the system
design in the tables. You will find that this approach has a number of advantages
as follows:

Centralization of rules for data constraints
Clarity of design
More efficient development of logic
Increased ease of debugging
Improved compatibility with new versions of NAV

What does it mean to embed system design in the tables in NAV? How does this
provide the mentioned advantages? In a nutshell, embedding the system design in
the tables means fully utilizing the capability of NAV table objects to contain code,
properties, etc. that define their content and processing parameters. This will include
the code that controls the factors like what happens when new records are added,
changed or deleted, and how data is validated. All these should be a part of the
table. The table object should also include the common functions used in various
processes to manipulate the table and its data. We will explore these capabilities
more completely through examples and analysis of the structure of table objects.

What Makes Up a Table?
A table is made up of Fields, Properties, Triggers (some of which may contain C/AL
Code), Keys, and SumIndexes. The table definition takes full advantage of these tools
and reduces the effort required to construct the other parts of the application. It will
have a considerable impact on the processing speed, efficiency, and flexibility of the
application. These components combine to implement many of the business rules of
the application as well as the rules for data validation.

A table can have:

Up to 500 fields
A defined record size of up to 4KB (up to 8KB for SQL Server)
Up to 40 different keys

•

•

•

•

•

•

•

•

Chapter 2

[45]

Table Naming
There are standardized naming conventions defined for NAV. Your modification
will fit better within the structure of NAV, if you follow these conventions. In all the
cases, the names for tables and other objects should be as descriptive as possible,
while keeping them to a reasonable length. This is the one way to make your
work self-documenting (which of course reduces the required amount of
auxiliary documentation).

Table names should always be singular. The table containing customers should
not be named "Customers", but rather "Customer". The table we created for our
Developer Association NAV enhancement was named "Member", even though it
contains data on many members.

In general, you should always name any table so that it is easy to identify the
relationship between the table and the data it contains. Consistent with the principle
of being as descriptive as possible, the two tables containing the transactions on
which a main/subform combination form is based should normally be referred to as
a Header table (for the main portion of the form) and a Line table (for the subform
portion of the form). As an example, the tables underlying a Sales Order form are the
Sales Header and the Sales Line tables. The Sales Header table contains all the
data that occurs only once for a Sales Order and the Sales Line table contains the
multiple lines from the order. Additional information on table naming can be found
in the Terminology Handbook for C/SIDE from Microsoft.

Table Numbering
There are no hard and fast rules for table numbering, except that you must only use
the table object numbers that you are licensed to use. If all you have is the rights to
the Table Designer, then you are only allowed to create tables numbered from 50000
to 50009. In general, you should let your common sense be your guide.

If you are creating several related tables, you should ideally assign them related
numbers, probably sequentially. But otherwise, there are no particular limitations or
consequences for assigning table numbers in whatever way makes sense to you in
the context of your design.

Table Properties
You can access the properties of a table while viewing the table in Design mode,
highlighting the first blank field line (the one below all the fields) and clicking on the
Properties icon or pressing Shift + F4 as shown in the following screenshot.

Tables

[46]

You can also perform a similar operation via Edit | Select Object, and then pressing
Shift + F4.

This will take you to the Table - Properties display. The following screenshot is the
Table - Properties display for the Cronus Item table.

Chapter 2

[47]

The contents of the screenshot are described as follows:

ID: This is the Object Number of the table.
Name: This is used as the default caption when data from this table is
displayed.
Caption: This contains the defined caption for the currently selected
language. The default language for NAV is US English.
CaptionML: This defines the MultiLanguage caption for the table. For an
extended discussion on the language capabilities of NAV refer to the
section on MultiLanguage Functionality in the NAV Application Designer's
Guide manual.
Description: This is optional for your documentation use.
DataPerCompany: This lets you define whether or not the data in this table
is segregated by company (the default) or is common (shared) across all the
companies in the database.
Permissions: This allows you to instruct the system to allow a user of this
table to have certain levels of access (r=read, i=insert, m=modify, d=delete) to
the table data in other table objects. For example, users of the Customer table
are allowed to read (i.e. view, see) the data in the Cust.Ledger Entry table.
LookupFormID: This allows you to define what Form is the default for
looking up data in this table.
DrillDownFormID: This allows you to define what Form is the default for
drilling down into data that is summarized from this table.
DataCaptionFields: This allows you to define specific fields whose contents
will be displayed as part of the caption. For the Customer table, the No.
and the Name will be displayed in the caption banner at the top of a form
showing a customer record.
PasteIsValid: This determines if the users are allowed to paste data into
this table.
LinkedObject: This lets you link this table to a SQL Server object.

As a developer, you will be most likely to deal with the two Form ID properties
and occasionally with the Caption, CaptionML, DataCaption, and Permissions
properties. You will rarely deal with the others.

Table Triggers
The first table trigger is the Documentation trigger. This trigger serves only the
purpose of being a location for whatever documentation you require. No C/AL code
is executed in a documentation trigger. There are no syntax or format rules here.

•

•

•

•

•

•

•

•

•

•

•

•

Tables

[48]

It is good, and should be a common practice, to briefly document every change to an
object in the documentation trigger. Use of a standard format for such entries makes
it easier to create them and understand them two years later.

There are four other Table Triggers, shown in the following screenshot, each of
which can contain C/AL code:

The code contained in a trigger is executed prior to the event represented by the
trigger. In other words, the code in the OnInsert()trigger is executed before the
record is inserted into the table. This allows you, as the developer, a final opportunity
to perform validations and to enforce data structure such as referential integrity. You
can even abort the intended action at this point if data inconsistencies or conflicts are
found. The contents of the screenshot are as follows:

OnInsert(): This is executed when a new record is to be inserted in (addedexecuted when a new record is to be inserted in (added
to) the table. New records are added when the last field of the primary key is
completed and focus leaves that field.
OnModify(): This is executed when any field (other than a primary key field)
in a record is changed, determined by the "before" record image (xRec) being
different from the "current" record image (Rec). During your development
work, if you need to see what the "before" value of a record or field is, you
can always reference the contents of xRec and, if you wish, compare that to
the equivalent portion of Rec, the current value in memory.
OnDelete(): This is executed when a record is to be deleted from the table.
OnRename(): This is executed when some portion of the primary key of theThis is executed when some portion of the primary key of the is executed when some portion of the primary key of the
record is about to be changed. Changing any portion (i.e. the contents of
any field) of the primary key is considered as a Rename action to maintain
referential integrity. Unlike most other systems, NAV allows the primary
key of any master record to be changed and automatically maintains all the
affected references that point back from other records..

•

•

•

•

Chapter 2

[49]

It is interesting to note that there is an apparent inconsistency in the handling of
data integrity by NAV. On one hand, the Rename trigger automatically maintains
referential integrity by changing all the references back to a record whose primary
key is changed (renamed). However, if you have deleted that record, NAV doesn't
do anything to maintain referential integrity. In other words, child records could be
orphaned by a deletion, left without any parent record. As the developer, you are
responsible for ensuring this aspect of referential integrity.

When you write C/AL code that updates a table within some other object (e.g. a
Codeunit, a Report, etc.), you can control whether or not the applicable table update
trigger fires (executes). For example, if you were adding a record to our Member table
and used the following C/AL code, the OnInsert() trigger would fire.

Member.INSERT(TRUE);

However, if you use either of the following C/AL code options instead, the
OnInsert trigger would not fire and none of the attendant logic would be executed.

Member.INSERT(FALSE);

or

Member.INSERT;

Default logic such as enforcing primary key uniqueness will still happen whether or
not the OnInsert trigger is fired.

Keys
Every NAV table must have at least one key, the primary key. The primary key is
always the first key in the key list. By default, the primary key is made up of the first
field defined in the table. In many of the reference tables that is the only field in the
primary key and the only key is the primary key, such as in the Payment Terms table
as shown in the following screenshot:

Tables

[50]

The primary key must have a unique value in each table record. You can change the
primary key to be any field or combination of fields that serve the functional design
up to 20 fields, but the uniqueness requirement must be met. It will automatically be
enforced by NAV, i.e. NAV will not allow you to add a second record in a table with
a duplicate primary key.

If you look at the primary keys in the supplied tables, you will note that many of
them consist of or terminate in a Line No., an Entry No., or some data field whose
contents serve to make the key unique. For example, the Ledger Entry table in
the following screenshot uses the Entry No. only as the primary key. It is a NAV
standard that Entry No. fields contain a value that is unique for each record.

Chapter 2

[51]

The primary key of the Sales Line table shown in the following screenshot is made
up of multiple fields, with the Line No. of each entry as the terminating key field. In
NAV, Line No. fields are assigned a unique number within the associated document.
The Line No. combined with the preceding fields in the primary key (usually
including fields such as Document Type and Document No.) makes each primary
key entry unique.

All keys except the primary key are secondary keys. There are no uniqueness
constraints on secondary keys. There is no requirement to have any secondary keys. If
you want a particular secondary key not to have any duplicate values, you must code
that logic by checking for duplication before completing addition of a new entry.

The maximum number of fields that can be used in any one key is 20. The total
number of different fields that can be used in all the keys cannot exceed 20. If the
primary key includes three fields (as in the preceding screenshot), then the secondary
keys can utilize up to seventeen other fields (20 minus 3) in various combinations
plus any or all of the fields in the primary key. If the primary key has 20 fields, then
the secondary keys can only consist of different groupings and sequences of these
20 fields.

Some other significant key attributes include:

Keys can be enabled or disabled. Disabled keys are not automatically
updated until they are enabled again. Since you can only enable or disable
keys manually from the Table Designer key viewing screen (i.e. not through
program control), there is very limited utility to this capability. There is a
Key Group property that can be set up by the developer to allow users to
enable and disable groups of keys at one time (i.e. by Key Group).

•

Tables

[52]

SQL Server-specific key properties: As Microsoft strongly encourages more
and more of the NAV installations to be based on SQL Server, as opposed to
the native C/SIDE database, more such SQL Server-specific parameters are
added to NAV. If you are developing modifications for a single installation
and they are using SQL Server, then you would be wise to tailor what you
do to SQL Server. Otherwise, in the near future, you should still design your
enhancements so that they will work well on both database options. The
key properties can be accessed by highlighting a key in the Keys form, then
clicking on the Properties icon or pressing Shift+F4.

SumIndexFields
Since the origination of NAV as Navision, one of its unique capabilities has been
the SIFT feature. SIFT stands for SumIndexField Technology. SumIndexFields areSIFT stands for SumIndexField Technology. SumIndexFields are stands for SumIndexField Technology. SumIndexFields areSumIndexField Technology. SumIndexFields areumIndexField Technology. SumIndexFields areIndexField Technology. SumIndexFields arendexField Technology. SumIndexFields areField Technology. SumIndexFields areield Technology. SumIndexFields areSumIndexFields are
decimal fields attached to a table key definition. These fields serve as the basis for
FlowFields (automatically accumulating totals) and are unique to NAV. This featureThis feature
allows NAV to provide almost instant responses to user inquiries for summed data
related to the SumIndexFields.

SumIndexFields are accumulated sums of individual fields (e.g. columns)
maintained automatically by NAV during updates of the data. Because the totals are
pre-calculated, they provide very high speed access to inquiries.

For example, users might want to know the total of the Amount values in a Ledger
table. The Amount field could be attached to any (or all) keys. Then, FlowFields
can be defined in another table as display fields that take the advantage of the
SumIndexFields to give the users almost instantaneous response to Ledger Amount
inquires relating to those keys.

In a typical system, hundreds or thousands of records might have to be processed
to give such results. Obviously, this could be very time consuming. In NAV, using
the C/SIDE database, as few as two records need to be accessed to provide the
requested results.

Because the SIFT functionality is not natively built into SQL Server as it is in the
C/SIDE database, FlowField inquiries require more processing by the system when
using the SQL Server. However, they still provide the same logical advantages and
are very fast when calculating the values.

In the C/SIDE database, SumIndexFields (SIFT fields) are stored as part of the key
structure. This makes them very quick to access for the calculation task, and relatively
quick when they need to be updated. In SQL Server, the SIFT data is stored in a
separate table, one for each primary table having SIFT fields.

•

Chapter 2

[53]

In the SQL Server environment, updating data that has a heavy component of SIFT
fields can become painfully slow, if not properly and regularly maintained. In a
nutshell, you should be more conservative about using SIFT fields in the SQL Server
environment and more careful about maintenance of the database. We will discuss
FlowFields more a bit later.

Expanding Our Sample Application
Before moving on, we need to expand the design of our C/ANDL application. Our
base Member table design has to be enhanced, both by adding and changing some
fields. We also need to add some reference tables.

Some of our design decisions here will be somewhat arbitrary. While we want a
design that is relatively real, our primary goal is to create a design that we can use as
a learning tool. We want to set up the data structures that can serve as a logical base
for several different form types. If you see some missing capabilities and you want to
add them, you should feel free to do so. You can also adjust these examples to make
them more meaningful to you.

Table Creation and Modification
In Chapter 1, we created a Member table for our Developer Association application.
When we did that, we just included the minimum fields to give us something to start
with. Now let us add a few more data fields to the Member table and then create an
additional table, which will contain reference data for our application. Then, we will
revise our Member table to refer to this new table.

Our new data fields are shown in the following table:

Field No. Field Name Description

1000

Member Type

Choose only one out of Student, Professional,
Retired. This will be an Option data type, with
the choices being the options. In order to allow
for the possibility of a partial entry without the
Member Type, we will make the first option a
blank (one space followed by a comma).

1010

NAV Involvement Since

Choice of entries from a list of years.

1020

Business Class

Choose one entry from a maintainable list, which
will initially include Government, Education,
Manufacturing, Service, Distribution, Microsoft.

1050

Executive

From 1050 to 1100; A list of mutually exclusive
choices of business roles.

Tables

[54]

Field No. Field Name Description
1050 Executive
1060 Technical Management
1070 Development
1080 Sales
1090 Consulting
1100 Training
2000 Status Inactive or Active—another Option field. We will

use an Option field here rather than the Boolean
(Active—Yes or No) because it allows us to add
another status option later relatively easily if we
need to do so.

Because the first few of these are a new type of data describing the Member, we will
assign field numbers in a new range (1000 and up). Before Status and any other
fields, we will leave space for additional Member descriptive fields to be added
later. That's why we have numbered Status at 2000, to leave space in the lower
number range.

Your task at this point is to open up your NAV, get to the Object Designer | Tables
and find your Member table (number 50000, remember?). Highlight the Member table
and click the Design button. When you are done, the bottom part of your Member
table should look similar to the following screenshot:

Chapter 2

[55]

Next, we need to fill in the OptionString and Caption for the two option fields.
Highlight the Member Type field, click on the Properties icon or press Shift+F4.
Enter the OptionString as shown in the next screenshot; don't forget the leading
space followed by a comma to get a blank option. Then, copy and paste the same
information into the Caption property. The CaptionML property should fill in
automatically with your default language choice. Your resulting properties should
look similar to the following screenshot:

Tables

[56]

Now, similarly enter the OptionString of Inactive,Active for the Status field. We are
not going to have a blank option here as we will let the default Status be Inactive
(a design decision). Your resulting Status field Option properties should look like the
following screenshot:

Next, we want to define the reference table we are going to tie to the Business Class
field. We will keep this table very simple, just containing a Code as the unique key
field and a text Description. You should create a New table, define the two fields,
and save this as Table 50001 Business Class, as in the following screenshot:

Chapter 2

[57]

The next step is to use the Form Designer to create a List form for this table (Form
50002—Business Classes). You should be able to zoom through this process pretty
quickly. Go to Forms, click on New, enter 50001 in the Table field, choose the
Create a form using a wizard option, and finally choose Tabular-Type Form. Then,
populate the form with all (both) the fields from your Business Class table and exit,
saving the form as number 50002, named Business Classes.

Now, go back to the Business Class table, set the Table - Properties of
LookupFormID and DrillDownFormID to the new form we have just created. As
a reminder, you will use Design to open the table definition, focus on the empty
line below the Description field, and either click on the Properties icon or press
Shift+F4. In the values for the two FormID Properties, you can enter either your
Form name (Business Classes) or the Form Object Number (50002). Either one will
work and gives the result shown in the following screenshot. Then, exit and save
the table as compiled.

Tables

[58]

Finally, again open the Member table. This time highlight the Business Class field
and access its properties screen. Fill in the Property value for TableRelation as
50001 (the table number) or Business Class (the table name) as shown in the
following screenshot:

Exit and save the table. To check that the last couple of changes are working
properly, run the Member table (i.e. highlight the table name and click on the Run
button) and scroll to the right until you have the cursor in the Business Class field.

If all has gone according to plan, the Business Class field will display a Lookup
Button (the upward pointing arrow button). If you click on that button or press F6,
you should invoke Form 50002—Business Classes, which you have just created.
While you are in that form, go ahead and make some entries such as the examples
shown in the following screenshot (feel free to add more choices if you feel creative
at the moment):

Chapter 2

[59]

The other Member table field that we can further define at this point is NAV
Involvement, which will contain the year in which the member began their work
with NAV (Navision). We could possibly refer to the virtual table Date but it would
get a little tricky to just focus on years as that table contains individual month and
day and year. We could use the MinValue and MaxValue properties, and constrain
the entries between 1990 and 2010, but that would not allow a 0 (zero) to be entered
when the correct answer is not known. So, let us choose to use the ValuesAllowed
property and enter a list of the specific years we want to allow. There certainly are
more sophisticated ways to accomplish this through C/AL code, but this approach
works for now and uses knowledge we already have. The result looks like the
following screenshot:

Tables

[60]

Keys
Let us add a couple of additional keys to our Member table. Our original Member
table has a primary key consisting of just the Member ID. You might find it useful
to be able to view the Member list geographically or alphabetically. To make that
change you will have to access the window for maintenance of a table's key by
selecting View, then Keys from the Menu bar at the top of the screen as shown in the
following screenshot:

Once you have displayed the Keys, you can then change the existing keys or add
new ones. To add a new key, highlight the first blank line (or press F3 to create a
additional blank line above an existing key) and then click the ellipsis button (the one
with three dots) to access the screen that will allow you to select a series of fields for
your key.

Chapter 2

[61]

You can also use the lookup arrow if you want to enter only a single key field or
want to enter several key fields one at a time for some reason. However, the end
result will be the same. You should choose the tool option (ellipsis or arrow) that is
easier for you to use. The fields will control the sort order of the table in the order
they are listed on this screen, for example the top field is the most important, the next
field is the second most important, etc. When you exit this screen, make sure that you
click OK, otherwise your changes will be discarded.

For a good geographical Key, you might choose Country/Region Code, State/
Province, City and for an alphabetical key, you might choose Last Name, First
Name, Middle Initial. Since these are secondary keys you do not have to worry
about there being a duplicate entry. And remember, the primary key is automatically
and invisibly appended to each secondary key.

In the Chapter on Forms, we will create a new version of the Member form, which
will show the new fields we have just added. For the time being, you can experiment
with updating the Member table by using the Run button from the Object Designer.
Enter some data into the table and don't forget to experiment with the sort feature
by clicking on the Sort icon or pressing Shift+F8. In the later chapters, we will add
C/AL code to both table and field triggers, explore SumIndexFields and other
features, and will also build a more fully featured application.

Adding Some Activity-Tracking Tables
Our Association (C/ANDL) is a busy group. We need to keep track of information
about our members that will allow C/ANDL to facilitate networking between
members with similar attributes. That means, we have to record certain important
member attributes such as their employer type, job category, and the certifications
they have obtained.

Tables

[62]

In addition, C/ANDL is sponsoring some educational activities at which our
members may be either instructors or students. For example, C/ANDL may put on
a course relating to NAV Development with one member acting as an instructor
and several other members attending as students. We need to keep track of each
member's involvement in the education program and keep track of whether the
participation was as a student or teacher. If they attended as a student, then we want
to track the credits earned.

Finally (at least for now), C/ANDL is encouraging the members to volunteer at a
local school that has financial problems and can really use their help. We have a large
corporation, BigC Inc., to sponsor us for this project. Different activities will be worth
so many points per hour of volunteer work. BigC has agreed to donate $5 for each
earned volunteer point. We are going to use this money to buy computers for the
schools and also to honor the members who earn the most volunteer work points.
So we also want to track the volunteer efforts of our members and the work points
earned by each.

Based on these requirements, we need to expand our application design. Up to now,
we have defined a minimal Member table, one reference table (Business Class) and
also created the forms for each of them. Ideally, you have also entered some test data
and then added a few additional fields to the Member table (which we will not add to
our forms).

Now we will further expand the Member table, add some more reference tables, plus
add a couple of Ledger (i.e. activity history) tables relating to Member activities.
Following that we will also create some forms to utilize our new data structures.

Our C/ANDL application will now include the following tables:

Member: A master list of all members
Business Class: A reference list of possible business class values
Certification: A reference list of available certifications
Volunteer Activity: A reference list of defined volunteer activities
Course: A reference list of available courses
Member Certification: A list of the certifications that have been achieved
by our members
Volunteer Activity Ledger: A detailed history of all the volunteer activity
by our members
Education Activity Ledger: A detailed history of all the courses taken by
our members

•

•

•

•

•

•

•

•

Chapter 2

[63]

Remember, the purpose of this example system is to follow along on a hands-on
basis in our system. You might like to try different data structures and other object
features. It will also be good if you make some mistakes and see some new error
messages. This is meant to be a learning experience and a test system is the right
place to learn from mistakes. To put it simply, you should create each of these objects
in your development system and learn by experimenting.

New Tables
We will be adding a reference table, which will contain the possible Certifications ofCertifications of
our members, as shown in the following screenshot:, as shown in the following screenshot:

Then, we will add a reference table as shown in the following screenshot, which will
contain the information on various Volunteer Activities that our system will
be tracking.

Tables

[64]

Next, we will add a reference table that will contain information on the Courses and
Seminars that C/ANDL will hold as shown in the following screenshot.

In order to track the certifications and activities, we need to have tables to assemble
data about members. For certifications, we need to maintain a list of all Member
Certifications, as shown in the following screenshot:

In order to operate the table in a relational fashion, the references to other related
tables must be defined. In this case, the Member ID field must refer to the Member
table and the Code field must refer to the Certification table. The following
screenshot shows the Code field reference example. You need to add a similar
TableRelation property to the Member ID field, pointing to the Member table.

Chapter 2

[65]

For the activities that we are tracking, we need to have Ledger (history) tables. Since
we have not yet discussed how we would get data into such tables, we will simply
define them and then define the associated forms that will allow us to enter enough
test data to take us through our next testing steps. This, by the way, is a normal
way to tiptoe into a full system development effort. It allows us to validate our base
table/data design (our foundation), before we spend too much effort on building
system functions.

First we will create the Volunteer Activity Ledger table as shown in the following
screenshot, designed to track the volunteer effort of each Member by Date with
the number of Hours and the extended number of Points earned (for those BigC
donations tied to the points).

Tables

[66]

The fields that need to reference other tables are Member ID to the Member table and
Activity Code to the Volunteer Activity table.

In addition to the information that is required to uniquely identify each entry
(Member ID, Activity Code, and Activity Date) and the information we are tracking
(Hours and Points), we will also include the Description field.

It would be a fair suggestion, based on the principles of relational database
normalization, to suggest that the Description field should not be duplicated into
this ledger record. This particular table is not the strongest possible illustration of the
reasoning. You might look at the Sales Order Header and Sales Order Line tables,
where there are a lot more fields that were duplicated from the source tables. There
are a considerable number of instances in NAV (and other similar systems), where
the better design decision is to duplicate data into related files.

There are two primary reasons for this. Firstly, this approach allows the user to tailor
the data each time it is used. In this case, it might mean that the description of the
volunteer activity could be edited occasionally or even frequently to provide more
specific detail of what was done. Secondly, it allows easier and faster processing of
the table data in question. In this case, if you want to sort the data on the Description
field for reporting purposes, you should have the Description in the table or, if you
want to filter out and review only entries with certain key words in the Description,
you want to have the Description in the table.

Chapter 2

[67]

The following screenshot is of our Education Activity Ledger. The fields that need
to reference other tables here are the Member ID to the Member table and Course
Code to the Course table.

The Role field allows us to define whether the participation in a particular course is
as a student or instructor. The following screenshot is for the Properties of the
Role field:

Tables

[68]

Keys and SumIndexFields in Our Examples
The following screenshot is displaying the Keys (we initially defined one) for our
Volunteer Activity Ledger:

Since we want to have a quick and easy access to the total volunteer Hours and
Points accumulated, we must define these fields as being SumIndexFields. This
activates NAV's SIFT (Sum Index Flow Technology) feature, as shown in the
preceding screenshot. The fields in question are associated with one or more keys.
If we want to access similar totals when we are processing the table sequenced by
the Description field, the first thing we should have is a key that includes that field,
and the second is to have these fields identified as SumIndexFields for that key. The
following screenshot shows how the keys will look after we have defined a second
key, containing the Description field (it may not be the first field in the key). It also
illustrates the fact that it does not matter what sequence the SumIndexFields are in.

The following screenshot is of Keys structure we defined for our
Education Ledger table:

Chapter 2

[69]

Now that we have put together the support tables, we can update the Member table to
integrate with these and begin to take advantage of the structure we are building.

In the preceding screenshot, the Description field for the objects entered is a Version
tracking code. A Description of PN.01, PN.02, and PN.03 indicates that a field was
added in modification 1 and then changed in both modifications 2 and 3 The goal is
to keep track of the circumstances under which the object is modified and to identify
what is the current level of updating for each object. In this case, we have chosen
a version code consisting of PN (for Programming NAV) and a two digit number
referring to a modification instance where the object is created or changed.

Tables

[70]

You can make up your own version identification codes, but you should be
consistent and faithful in their use. These codes should be tied to comments inside
the objects and should allow you to maintain external documentation describing the
purpose of various modifications and enhancements.

Three of our new fields in the preceding screenshot are FlowFields. Let us take
a quick look at each of them. The following image shows the Properties for the
Volunteer Hours FlowField.

The following screenshot illustrates how a FlowField is defined. When you click on
the CalcFormula property, an ellipsis icon will appear and clicking it will give you
the Calculation Formula screen. In the following screenshot, the values filled in are
the same as in the preceding screenshot (CalcFormula property).

Chapter 2

[71]

In the following two screenshots, the other two FlowFields are shown. A bit
more is shown, so that the FieldClass and CalcFormula properties can be
illustrated effectively.

Tables

[72]

Each of these FlowFields is a Sum and each of them is the sum of the data WHERE
(Member ID = FIELD(Member ID). In other words, this is a summation of all the
applicable data belonging to this member (whatever member's record is
being processed).

The other properties that you should note are the DecimalPlaces and
BlankNumbers properties. They have been set to control the display of the data,
to appear in a format other than that which would result from the default values.
You should adjust them to whatever values your subjective sense of visual design
dictates. But remember, consistency with other parts of the system should be an
overriding criterion for the design of an enhancement.

Types of Tables
For our discussion, we will break the table types into three groups. As a developer,
you can change the definition and the contents of the first group (i.e. Totally
Modifiable Tables). You cannot change the definition of the second group, but can
change the contents (i.e. Content Modifiable Tables). The third group can be accessed
for information, but data within is not modifiable (i.e. these table are intended to be
Read-Only Tables).

Totally Modifiable Tables
The following are the tables in the Totally Modifiable Tables group:

Master: This contains primary data (such as Customers, Vendors, Items,
Employees, etc.). These are the tables that should be designed first. If you
consider the data definition as the foundation of the system, the Master
tables are the footings providing a stable base for that foundation. When
working on a modification, any necessary changes to Master tables should be
defined first. Master tables always use card forms as their primary user input
method. The Customer table is a Master table. A Customer record is shown
in the following screenshot:

•

Chapter 2

[73]

The preceding screenshot shows how the Card form segregates the data into
categories on different tabs (e.g. General, Communications, Invoicing, etc.)
and includes primary data fields (e.g. No., Name, Address), reference
fields (e.g. Salesperson Code, Responsibility Center), and a FlowField
(e.g. Balance (LCY)).
Journal: This contains unposted activity detail, the data that other systems
refer to as "transactions". Journals are where most repetitive data entry
occurs. The standard system design has all Journal tables matched with
corresponding Template tables (i.e. a Template table for each Journal table).
The standard system includes journals for Sales, Cash Receipts, General
Journal entries, Physical Inventory, Purchases, Fixed Assets, and Warehouse
Activity among others.
The transactions of a journal can be segregated into batches for entry, edit
review, and processing purposes. Journal tables always use tabular forms as
their primary user input method. The following screenshot shows two
Journal Entry screens. They both use the General Journal table, but with
different forms and different templates (templates are explained in the
following section).

•

Tables

[74]

The two journals appear quite different from each other, even though they
are based on the same table.

Template: This table type operates from behind the scenes, providing
control information for a Journal, which operates in the foreground. By
use of a template, multiple instances of a Journal can be tailored for
different purposes. Control information contained by a template includes
the following:

The default type of accounts to be affected (e.g. Customer,
Vendor, Bank , General Ledger)
The specific account numbers to be used as defaults including
balancing accounts
What transaction numbering series will be used
Default encoding to be applied to transactions for this journal
(e.g. Source Code, Reason Code)
Specific Forms and Reports to be used for data entry and
processing of both edits and posting runs

•

°

°

°

°

°

Chapter 2

[75]

As an example, General Journal Templates allow the General Journal table
to be tailored to display fields and perform validations that are specific to
the entry of particular transaction categories, for example, Cash Receipts,
Payments, Purchases, Sales, and other transaction entry types. Template
tables always use tabular forms for user input. The following screenshot
shows a listing of the various General Journal Templates defined in the
Cronus International Ltd. demonstration database. Not all of the fields
available in these particular templates are displayed in this illustration.

Ledger: This table type contains posted activity detail, the data that other
systems call "history". The basic data flow is from a Journal through a
Posting routine into a Ledger. A distinct advantage of the way NAV
Ledgers are designed is the fact that NAV Ledgers allow the retention of all
detail indefinitely.
While there are protocols and supporting routines to allow compression of
the ledger data (i.e. summarization), as long as your system has sufficient
disk space, you can (and should) always keep the full historical detail of all
activity. This allows users to have total flexibility for historical data analysis.
Most other systems require some type of periodic summarization of data (e.g.
by accounting period, by month, by year). That summarization definition
(also called "bucketing") constrains the ways in which historical data analy-
sis can be done. By allowing the retention of historical data in full detail, the
NAV system designer is allowed to be less visionary because future
analytical functionality can still take advantage of this detail. User views of
Ledger data are generally through use of tabular forms. In the end, the NAV
approach of long-term data retention in complete detail lets users obtain the
most possible value out of their data.

•

Tables

[76]

Ledger data is considered as accounting data in NAV. That means you are not
allowed to directly enter the data into a ledger, but must "Post" to a ledger.
(Although you can physically force data into a ledger with your Developer
tools, you should not do so.) Because it is accounting data, it also means that
you are not allowed to delete data from a Ledger table; you can compress or
summarize data using the provided compression routines, thus eliminating a
level of detail, but you cannot eliminate anything that would
affect accounting totals for money or quantities.
The following screenshot shows a Customer Ledger Entries list (financially
oriented data) and an Item Ledger Entries list (quantity-oriented data). In
both the cases the data represents historical activity detail with accounting
significance, and there are other data fields in addition to those shown in the
following screenshot. The fields shown are typical and representative. The
users can utilize some of the tabular form tools (which we will discuss in the
chapter on Forms) to change the data columns that are displayed.

In the Customer Ledger Entries form, you can see critical information such
as the Posting Date (the effective accounting date), the Document Type (the
type of transaction), the Customer No., the Original and Remaining Amount
of the transaction, and Entry No., which uniquely identifies each record.
Open entries are those where the transaction amount has not been fully
applied, such as an Invoice amount not fully paid or a Payment amount not
fully consumed by Invoices.

Chapter 2

[77]

In the Item Ledger Entries form, you can see similar information pertinent
to inventory transactions. As previously described, Posting Date, Entry
Type, and Item No., along with the assigned Location for the Item, control
the meaning of each transaction. Item Ledger Entries are expressed both in
Quantity and Amount (Value), as you can see. Open entries here are tied to
the Remaining Quantity, for example, material that has been received
but not yet fully shipped out. In other words, the Open entries represent
current inventory.
Reference: This table type contains lists of codes as well as other validation
and interpretation reference data that is used (referred to) by many other
table types. Reference table examples are postal zone codes, country codes,
currency codes, exchange rates, etc. Reference tables are often accessed under
Setup menu options as they must be set up prior to being used for reference
purposes by other tables.
The following screenshots show some sample reference tables; i.e. for
(warehouse) Locations, for Countries, and for Payment Terms. Each table
contains data elements that are appropriate to its use as a reference table,
plus, in some cases, fields that control the effect of referencing a particular
entry. These data elements are usually entered as a part of a setup process,
then updated on occasion as appropriate, i.e. they generally do not contain
data originating from system activity.

The Location List in the preceding screenshot is a simple validation list of the
Locations for this implementation. Usually, they represent physical sites,
but depending on the implementation they can also be used simply to
segregate types of inventory.

•

Tables

[78]

For example, locations could be Refrigerated versus Un-refrigerated or there
could be a location for "Failed Inspection".

The Countries/Regions list in the preceding screenshot acts as validation
data, controlling what County Code is acceptable, but it also provides control
information for the mailing Address Format (general organization address)
and the Contact Address Format (for the individual).
The Payment Terms table shown in the following screenshot provides a list
of payment terms codes along with a set of parameters that allows the system
to calculate specific terms. In this set of data, for example, the code 1M(8D)
will yield payment terms of 1 month with a discount of 2% applied for
payments processed within 8 dats of the invoice date. In another instance,
14DAYS payment terms will calculate the payment as due in 14 days from
the date of invoice with no discount available.

Chapter 2

[79]

Register: This table type contains a record of the range of transaction ID
numbers for each batch of posted ledger entries. Register data provides an
audit of the physical timing and sequence of postings. This combined with
the full detail retained in the ledger makes NAV a very auditable system, i.e.
you can see exactly what activity was done and when it was done.
Another NAV feature, the Navigate function, which we will discuss in detail
later, provides a very useful auditing tool. The Navigate function allows the
user (who may be a developer doing testing) to highlight a single ledger entry
and find all the other ledger entries and related records that resulted from the
posting that created the highlighted entry. User views the Register through
a tabular form as shown in the following screenshot. You can see that each
Register entry has the Creation Date, Source Code, Journal Batch Name, and
the identifying Entry No. range for all the entries in that batch.

Posted Document: This table type contains the posted copies of the original
documents for a variety of data types such as Sales Invoices, Purchase
Invoices, Sales Shipments, and Purchase Receipts. Posted documents are
designed to provide an easy reference to the historical data in a format
similar to what one would normally store in paper files.
It is important to note that posted documents are not considered accounting
data in NAV, therefore are allowed to be deleted. There are times when it is
useful to create critical management reports based on the information con-
tained in a posted document table. In that case, it is important through code
modification or procedures to ensure that valuable data is not allowed to be
deleted or otherwise manipulated to give misleading results to the system
users. A posted document will look very similar to the original source
document, i.e. a posted invoice will look very similar to the original Sales
Order or Sales Invoice. The posted documents are included in the
Navigate function.

•

•

Tables

[80]

The following screenshots show a Sales Order before Posting and the result-
ing Posted Sales Invoice document. Both documents are in a Header/Detail
format, where the information in the Header applies to the whole order and
the information in the detail is specific to the individual Order Line. As part
of the Sales Order form, there is information displayed to the right of the
actual order, designed to make life easier for the user, by giving clues to
related data available without a separate lookup action.

Chapter 2

[81]

Setup: This table type contains system or functional application control
information. There is one setup table per functional application area, e.g.
one for Sales & Receivables, one for Purchases & Payables, one for General
Ledger, one for Inventory, etc. Setup tables contain only a single record.
Since a setup table only has a single record, it can have a null value primary
key field.

Temporary: This table type is used within objects to hold temporary copies
of data. A temporary table is defined within an object as a variable using a
permanent table as the template. That means a temporary table will have
exactly the same data structure as the permanent table after which it is
modeled, but with a limited subset of various other attributes.
Temporary tables are created and are empty when the parent object
execution initiates and they disappear along with their data when the
parent object execution terminates (i.e. when the temporary table variable
goes out of scope). The data in a temporary table resides in the client system
and not in the system database. This provides an advantage for faster
processing because all the processing is local.
Temporary tables are not directly visible or accessible to users. They cannot
directly be the target of a form or report object. Temporary tables are
intended to be work areas and as such, temporary containers of data. The
definition of a temporary table can only be changed by changing the
definition of the permanent table after which it has been modeled.

•

•

www.allitebooks.com

http://www.allitebooks.org

Tables

[82]

Content-Modifiable Tables
The only table type included in the Content-Modifiable Table group is as follows:

System: This table type contains user-maintainable information that pertains
to the management or administration of the NAV application system. System
tables are created by NAV. You cannot create system tables as they affect
the underlying NAV executables. But with full developer license rights,
you can modify these system tables to extend their usage. With full system
permissions, you can also change the data in system tables.
An example is the User table, which contains user login information. This
particular system table is often modified to define special user access
routing or processing limitations. Other system tables contain data on
report-to-printer routing assignments, transaction numbers to be assigned,
batch job scheduling, etc. The following are examples of system tables in
which definition and content can be modified. The first six relate to system
security functions.

User: The table of identified users and their login password for
the Database Server access method.
Member Of: This contains User Security Role information.
User Role: This contains the defined User Security Roles
available. Each User Role is made up of a group of individual
object permissions i.e. Read, Insert, Modify, Delete, and Execute
Permissions.
Permission: The table of the individual object access permissions.
Windows Access Control: The table of the security roles that are
assigned to each Windows Login.
Windows Login: The table for Windows Logins that have been
created for this database.

The following two tables are used to define system data structure:

Company: The companies in this database. Most NAV data is automatically
segregated by Company.
Database Key Groups: This defines all the key groups that have been set up
to allow enabling and disabling table keys.

•

°

°

°

°

°

°

•

•

Chapter 2

[83]

The following tables contain information about various system internals. Their
explanation is outside the scope of this book.

User Menu Level
Send-to Program

Style Sheet
User Default Style Sheet
Record Link

Read-Only Tables
The only table type included in the Read-Only Table group is as follows:

Virtual: This table type is computed at run time by the system. A Virtual
table contains data and is accessed like other tables, but you cannot modify
either the definition or the contents of a virtual table. Some of these tables
(such as the Database File, File, and Drive tables) provide access to
information about the computing environment. Other virtual tables (such as
Table Information, Field, and Monitor tables) provide information about
the internal structure and operating activities of your database.
Some virtual tables (such as Date and Integer) provide tools that can be used
in your application routines. The Date table provides a list of calendar periods
(days, weeks, months, quarters, and years) to make it much easier to manage
various types of accounting and managerial data handling. The Integer table
provides a list of integers from -1,000,000,000 to +1,000,000,000. As you
explore standard NAV reports, you will frequently see the Integer table
being used to supply a sequential count to facilitate a reporting sequence.
You cannot see these tables presented in the list of table objects, but can only
access them as targets for Forms or Reports or Variables in C/AL code. The
knowledge of the existence, contents or usage of these virtual tables is not
useful to an end user. However, as a developer, you will regularly use
some of the virtual tables. You may find educational value in studying the
structure and contents of these tables and also be able to create valuable tools
through knowledge of and accessing one or more virtual tables.

•

•

•

•

•

•

Tables

[84]

The following screenshot shows a list of many virtual and system tables:

Chapter 2

[85]

Summary
In this chapter, we have focused on the top level of NAV data structure, tables and
their structures. We worked our way through hands-on creation of a number of
tables and their data structures in support of our C/ANDL application. In the next
chapter, we will focus on what more can be done in the Triggers. We also reviewed
most of the types of tables found in the out-of-the-box NAV application. Finally,
we identified the essential table structure elements including Properties, Object
numbers, Triggers, Keys, and SumIndexFields.

In the next chapter, we will dig deeper into the NAV data structure to understand
how fields and their attributes are assembled to make up the tables. Then, we will
explore using tables in other object types, heading towards obtaining a full kit of
tools to perform NAV development.

Fields
The secret of getting ahead is getting started. The secret of getting started is
breaking your complex overwhelming tasks into small manageable tasks, and then
starting on the first one—Mark Twain

As you know, design of an application starts with the data. The data design depends
on the types of data that your development tool set allows you to use. Since NAV is
designed specifically to develop financially oriented business applications, the NAV
data types are financially and business oriented, and also have some special features
that make it easier to design and develop typical business applications. Furthermore,
these same special features can make your applications run faster.

In this chapter, we will cover the data types that you are most likely to use. We will
also take an overview of the others. In addition, we will also cover field classes,
which are where the special features are enabled.

Fields
A field is the basic element of data definition in NAV—the "atom" in the structure of
a system. The mechanical definition of a field consists of its number, its description
(name), and its data type (and, of course, any parameters required for its particular
data type). From a logical point of view, a field is also defined by its Properties and
the C/AL code contained in its Triggers.

Field Properties
The specific properties that can be defined for a field partially depend on the data
type. First we will review the universal field properties. Then we will review the
properties that are data-type dependent plus some other field properties. You can
check out the remaining properties by using Help within the Table Designer.

Fields

[88]

You can access the properties of a field while viewing the table in Design mode, by
highlighting the field line whose properties you wish to examine and clicking on the
Properties icon or pressing Shift + F4. All the property screenshots in this section areAll the property screenshots in this section are
obtained in this way for fields within the standard Customer table. As we review
various field properties, you will learn more if, using the Object Designer, you follow
along in your NAV system. Poke around and explore different properties and the
values they can have. Use the Field Help function liberally and read the help for
various properties.

The property value enclosed in < > (less than sign, greater than sign), is the default
value for that property. When you set a property to any other value, < and > should
not be present unless they are supposed to be the part of the property value (e.g. part
of a Text string value).

All data types have the following properties:

Property Property Description
Field No. Identifier for the field within the table object.

Name Label by which code references the field. The name can be
changed at any time and NAV will automatically ripple that
change throughout the code.

Caption and Caption ML Work similarly to the Name table property.
Description Used for internal documentation only.

Data Type Identifies what kind of data format applies to this field (e.g.
Integer, Date, Code, Text, etc.).

Enabled Determines if the field is activated for data handling or not.
This property defaults to yes and is rarely changed.

The following screenshot shows the BLOB properties for the Picture Field in the
Customer table:

Chapter 3

[89]

This set of properties, for fields of the BLOB data type, is the simplest set of field
properties. After the properties that are shared by all data types, appear the
BLOB-specific properties—SubType and Owner:

SubType: This defines the type of data stored in the BLOB. The three
sub-type choices are Bitmap (for bitmap graphics), Memo (for text data), and
User-Defined (for anything else). User-Defined is the default value.
Owner: The usage is not defined.

The available properties of Code and Text fields are quite similar to one another.
The following are some common properties between the two as shown in the
screenshot overleaf:

DataLength: This specifies how many characters long the data field is.
InitValue: This is the value that the system should supply as a default when
the system actively initializes the field.
AltSearchField: This allows definition of an alternative field in the same
table to be searched for a match if no match is found on a lookup on this data
item. For example, you might want to allow customers to be looked up either
by their Customer No. or by their Phone No. In that case, in the No. field
properties you would supply the Phone No. field name in the AltSearchField
field. Then, when a user searches in the No. field, NAV will first look for
a match in the No. field and, if it is not found there, it will then search
the Phone No. field for a match. Use of this property can save you a lot of
coding, but make sure both fields have high placement in a key so the lookup
will be speedy.
Editable: This is set to No when you don't want to allow a field to ever be
edited for example, if this is a computed or assigned value field that the user
should not change.
NotBlank, Numeric, CharAllowed, DateFormula, and ValuesAllowed: All
these support placing constraints on the specific data that can be entered into
this field.
TableRelation and ValidateTableRelation: These are used to
control referencing and validation of entries against another table.
(TestTableRelation is an infrequently used property, which controls whether
or not this relationship should be tested during a database validation test.)

•

•

•

•

•

•

•

•

Fields

[90]

Let us take a look at the properties of couple more Data types, Integer and Decimal.
You may find it useful to explore them on your own as well. Specific properties
related to the basic numeric content of these data types are as follows and are also
shown in the following screenshot:

DecimalPlaces: This sets the number of decimal places in a Decimal
data item.
BlankNumbers, BlankZero, and SignDisplacement: All these can be used to
influence the formatting and display of the data in the field.
MinValue and MaxValue: These can constrain the range of data
values allowed.
AutoIncrement: This allows setting up of one field in a table to automatically
increment for each record entered. This is almost always used to support
automatic updating of a field used as the last field in a primary key, enabling
creation of a unique key.

•

•

•

•

Chapter 3

[91]

The field properties for an Integer field with a FieldClass property of FlowField
are similar to those of a field with a FieldClass property of Normal. The differences
relate to the fact that the field does not actually contain data but holds the
formula by which the displayed value is calculated, as shown in the following
screenshot overleaf.

Fields

[92]

Note the presence of the CalcFormula property and the absence of the
AltSearchField, AutoIncrement, and TestTableRelation properties. Similar
differences exist for FlowFields of other data types.

The properties for an Option data type, whose properties are shown in the following
screenshot, are essentially like those of the other numeric data types, but with a data
type-specific set of properties as described below:

OptionString: This spells out the text interpretations for the stored integer
values contained in Option data type fields.
OptionCaption and OptionCaptionML: These serve the same captioning
and multi-language purposes as other caption properties.

•

•

Chapter 3

[93]

The properties defined for FlowFilter fields, such as Date Filter in the following
screenshot overleaf, are similar to those of Normal data fields. Take a look at the
Date Filter field (a Date FlowFilter field) and the Global Dimension 1 Filter field
(a Code FlowFilter field) in the Customer table. The Date Filter field property looks
similar to a Normal FieldClass field.

Fields

[94]

The Global Dimension 1 Filter field property values are different than those of the
Date Filter because of the data type and its attributes rather than the fact that this is a
FlowFilter field.

Field Numbering
The number of each field within its parent table object is the unique identifier that
NAV uses internally to identify that field. You can easily change a field number
when you are initially defining a table layout. But after you have a number of other
objects (e.g. forms, reports, or codeunits) referencing the fields in a table, it becomes
challenging (and therefore inefficient, sometimes to the point of almost impossible)
to change the numbers of one or more fields. Therefore, you should plan ahead
to minimize any need to renumber the fields. You should also be cautioned that,
although you can physically delete a field and then reuse its field number for a
different purpose, doing so is likely to cause you much grief.

Chapter 3

[95]

You must take care about how the field numbers affect your users because the
numeric sequence of fields within the table controls the sequence of the field
names when they are displayed in field selection lists. These field selection lists are
presented when a user or developer constructs a data Filter, does Form or Report
Designer field selection, views a zoom display or creates a default form or report.zoom display or creates a default form or report. display or creates a default form or report.
If the fields in a table are not in relatively logical sequence, or fields with a similar
purpose are not grouped, the system will be harder to understand and therefore
harder to use.

Unfortunately, that criticism could be made about the field sequence structure of
some of the standard system's principle Master tables (e.g. Customer, Vendor, and
Item). This has happened over a decade of changes and functional expansion. During
that time, the original field numbers have largely remained unchanged in support of
backward compatibility. At the same time, new related fields have been added in less
than ideally related field number sequences. The result is a list of fields presented to
users in a sequence that follows very few logical rules.

For new fields that you add to tables which are part of the standard NAV product,
the new field numbers must be in the 50000 to 99999 number range, unless you have
been explicitly licensed for another number range. Field numbers for fields in new
tables that you create may be anything from 1 to 999,999,999 (without the commas).

Renumbering a Field
What if, after considering the layout of the fields in the Member table, it looks like it
would make more sense to have the Business Class field sequenced after the NAV
Involvement Since field (admittedly a very subjective and arbitrary design decision).
Since we have not yet tied these fields to other objects in a complicated way, maybe
it's still easy to do the renumbering.

Before we try the next experiment, make sure that you have data in your Member
table for at least one Member. For this test, make sure the Business Class field is
filled in. Now, open the Member table with the Designer, then renumber field 1010
(Business Class) to 1025. Exit, save, and compile the table. Since you have data in
field 1010, you will get a message similar to the following screenshot:

Fields

[96]

In the screenshot, NAV is explaining that you cannot make this change. Why not?
Because, C/SIDE is checking the consistency of the definition of the stored data of
that field in the table definition and that checking is based on the field number, not
the field name. You are not allowed to change the field numbers when data is present
in the field.

This particular situation comes up regularly when we are enhancing existing routines.
For example, we want to reduce the size of a text field for some reason. If the data
already in the table has any values that would exceed the new smaller field size,
NAV will not allow us to make the change until we resolve the inconsistency. We can
expand the field, because that will not create any inconsistency.

NAV acts like the understanding parent of a teenager. It gives us enough freedom to
do lots of creative things on our own, but every now and then it warns us and keeps
us from hurting ourselves.

Changing the Data Type of a Field
The larger issue here is the question of how to change the Data Type of a field. This
change may be the result of a field renumbering, as we just saw in our experiment or
it could be the result of an enhancement. Of course, if the change is at our discretion,
we might decide simply not to do it. But what if we have no choice? For example,
perhaps we had originally designed the Postal Zone field as an Integer to only
handle US ZIP Codes, which are numeric. Then later we decide to generalize and
allow postal codes for all countries. In that case, we must change our data field from
integer to code, which allows all numerals and upper case letters.

In this case, how do we solve the data definition—data content inconsistency caused
by the change? We have a couple of choices. The first option, which could work
in our C/ANDL database because we have very little data and it's just test data, is
simply to delete the existing data, proceed with our change, then restore the data
through keyboard entry.

When dealing with a significant volume of production data (more typical when
changing a production system), you must take a more conservative approach. Of
course, more conservative means more work.

Chapter 3

[97]

Let us look at the steps required for a common example of changing the data type
because of a design change. In this example, we will assume that the field 110 Post
Code was defined as Data Type of Integer and we need to change it to Data Type of
Code, Length 20. The steps are as follows:

1. Create a new, temporary field 111 named Temp Post Code, data type Code,
and Length 20. Any allowable field number and unique name would work.

2. Copy the data from the original field 110 Post Code into the new temporary
field 111, deleting the data from field 110 as you go, using a Processing Only
report object created just for this purpose.

3. Redefine field 110 to new Data Type.
4. Copy the data from the temporary field 111 back into the redefined field 110,

deleting the data from field 111, using a second Processing Only report object
created just for this purpose.

5. Delete the temporary field 111.

If we had to renumber the fields, we would essentially have to do the same thing
as just described, for each field. Whenever you attempt a change and see the earlier
message, you will have to utilize the procedure just described.

What a lot of work just to make a minor change in a table! Hopefully, this convinces
you of the importance of carefully considering how you define fields and field
numbers initially. By the way, this is exactly the sort of process that Upgrade Data
Conversions go through to change the field structure of a table in the database to
support added capabilities of the new version.

Fields

[98]

Field Triggers
To see what field triggers are, let us look at our Table 50000 Member. Open the table
in Design mode, highlight the Member ID field and press F9. The window shown in
the following screenshot will appear:

Each field has two triggers, the OnValidate() trigger and the OnLookup() trigger,
which function as follows:

OnValidate(): The C/AL code in this trigger is executed whenever an entry
is made by the user. It can also be executed under program control through
use of the VALIDATE function (which we will discuss later).
OnLookup(): The C/AL code in this trigger is executed in place of the
system's default Lookup behavior, even if the C/AL code is only a comment.
Lookup behavior can be triggered by pressing F6 or by clicking on the
lookup arrow in a field as shown in following screenshot:

•

•

Chapter 3

[99]

If the field's TableRelation property refers to a table and that table has a default
LookupFormID defined, then the default behavior for that Lookup form is to
display that form, to allow selection of an entry to be stored in this field. You may
choose to override that behavior in a special case by coding different behavior.

Be careful. Any entry whatsoever in the body of an OnLookup() trigger
will eliminate the default behavior. This is true even if the entry is only a
comment and there is no executable code present. A comment line could
make an intended default lookup not occur

Some Data Structure Examples
Some good examples of tables in the standard product to review for particular
features are:

Table 18—Customer, for a variety of Data Types and Field Classes. This table
contains some fairly complex examples of C/AL code in the table Triggers. ATriggers. A. A
wide variety of field property variations can be seen in this table as well.
Tables 21 and 32—Cust. Ledger Entry and Item Ledger Entry, for a variety
of complex secondary key formats.
Table 37—Sales Line, for the SumIndexFields attached to various keys.
Table 50—Accounting Period, has a couple of very simple examples of Field
OnValidate trigger C/AL code. For slightly more complex examples, take a
look at Table 167—Job. For much more complex examples, you can look at
almost all of the master tables such as Customer, Vendor, Item, etc.

You can find all the tables at Tools | Object Designer, by clicking on Tables.

More Definitions
Let's get some more basic definitions for NAV available, so we can make sure that
our terminology is clear.

Data Type: This describes/defines what kind of data can be held in this storage
element, whether it be numeric (e.g. integer, decimal), text, binary, time, date,
Boolean, and so forth. The data type defines the constraints that are placed on
what the contents of a data element can be, defines the functions in which that data
element can be used, and defines what the results of certain functions will be.

Fundamental (Simple) data type: This has a simple structure consisting of a single
value at one time, e.g. a number, string of text, character, etc.

•

•

•
•

Fields

[100]

Complex data type: This has a structure made up of or relating to simple data types,
e.g. records, program objects such as Forms or Reports, BLOBs, DateFormulas, an
external file, an indirect reference variable, etc.

Constant: This is a data element explicitly specified in the code by value, not
modifiable 'on the fly', known in some circles as 'hard wired' data. All simple data
types can be represented by constants.

Variable: This is a data element that can have a value assigned to it dynamically, as
the program runs. Except for special cases, a variable will be of a single, unchanging,
and specific data type.

Variable Naming
Variable names in NAV can either be global (defined across the breadth of an object)
or local (defined only within a single function). Variable names must be uniqueunique
within their sphere of definition. There must not be any duplication between global
and local names. Even though the same local name can be used in more than one
function within the same object, doing so can confuse the compiler. Therefore, you
should make your working variable names unique within the object.

Variable names in NAV are not case sensitive. They are limited to 30 characters in
length and can contain most of the standard ASCII character set.

Uniqueness includes not duplicating reserved words or system variables. That is
an interesting challenge as there is no comprehensive published list of the reserved
words available. A good guideline is to avoid using as a variable name any word
that appears in either the C/SIDE Help or the Application Designer's Guide as an
UPPER CASE word.

There is a 30-character length limit on variable names. Variable names can contain all
ASCII characters except for control characters (ASCII values 0 to 31 and 255) and the
asterisk (*, ASCII value 42). Note that the compiler won't tell you an asterisk cannot
be used in a variable name. It is also a very good idea to avoid using the question
mark (?, ASCII value 63).

The first character must be a letter A to Z (upper or lower case) or an underscore
(_, ASCII value 95). It can be followed by any combination of the legal characters. If
you use any characters other than the alphabet, numerals, and underscore, you must
surround your variable name with double quotes (e.g. "cust list", which contains
an embedded space, or "No." which contains a period). While the Application
Designer's Guide doesn't tell you that you can't use a double quote character within a
variable name, common sense and the compiler tell you not to do so.

Chapter 3

[101]

Data Types
We are going to segregate the data types into relatively obvious groupings. Overall
we will first look at Fundamental (aka simple) data types, and then Complex data
types. Within fundamental data types, we will consider Numeric, String, and Time
Types, while in complex data types we will look at Data Items, Data Structures,
Objects, Automation, Input/Output, References, and others.

Fundamental Data Types
Fundamental data types are the basics from which the complex data types are
formed. They are grouped into Numeric, String, and Time Data Types.

Numeric Data
Just like other systems, NAV allows several types of numeric data types. What
numeric data types you may use and how you may use them will be dependent on
whether you are designing your code to run only on the C/SIDE database, only on
the SQL Server database, or to be database independent. If the C/SIDE database
approach works on SQL Server, then that is the database-independent approach. For
details on the SQL Server-specific representations of various data elements, you can
refer to the Application Designer's Guide documentation. The various numeric data
types are as follows:

Integer: An integer number ranging from -2,147,483,648 to +2,147,483,647.
Decimal: A decimal number ranging from -1063 to +1063 stored in memory
with 18 significant digits.
Option: A special instance of an integer, stored as an integer number ranging
from -2,147,483,548 to +2,147,483,547 (we have not identified any instances
of the negative values being used for options). An option is normally
represented in the body of your C/AL code as an option string. You can
compare an option to an integer in C/AL rather than using the option string,
but that is not a good practice because it eliminates the self-documenting
aspect of an option field.
An option string is a set of choices listed in a comma-separated string, one
of which is chosen and stored as the current option. The currently selected
choice within the set of options is stored as the ordinal position of that
option within the set. For example, selection of an entry from the option
string of red, yellow, blue would result in the storing of 0 (red), 1 (yellow),
and 2 (blue). If red were selected, 0 would be stored in the variable; and if
blue were selected, 2 would be stored.

•

•

•

Fields

[102]

Boolean: These are stored as 1 or 0, programmatically referred to as True or
False, but displayed as Yes or No.
Binary: This is just what its name indicates, binary data. There are limited
tools available to deal with binary data in NAV but, with persistent effort, it
can be done.
BigInteger: 8-byte Integer as opposed to the 4 bytes of Integer. BigIntegers
are for very big numbers.
Char: A numeric code between 0 and 256 representing an ASCII character. To
some extent Char variables can operate either as text or as numeric. Numeric
operations can be done on Char variables. Char variables can be defined with
character values. Char variables cannot be defined as permanent variables in
a table, but only as working variables within C/AL objects.

String Data
The following are the data types included in String Data:

Text: This contains any string of alphanumeric characters from 1 to 250
characters long. The actual physical string in memory consists of a length
byte plus the data. Thus an empty text field is only 1 byte long, providing
the efficient use of space. When calculating the 'length' of a record for design
purposes (relative to the maximum record length of 4096 characters), the full
defined field length should be counted.
Code: This contains any string of alphanumeric characters from 1 to 250
characters long. All letters are automatically converted to uppercase when
entered. All numeric entry is automatically right justified on display,
otherwise the entry display is left justified. SQL Server applies a somewhat
different set of sorting rules for code fields than does the C/SIDE database.

Time Data
The following are the data types included in Time Data:

Date: This contains an integer number, which is interpreted as a date ranging
from January 1, 0 to December 31, 9999. A 0D (numeral zero, letter dee)
represents an undefined date.
A date constant can be written as a letter D preceded by either six digits in
the format MMDDYY or eight digits as MMDDYYYY (where M = month, D
= Day and Y = year). For example 011908D or 01192008D, both representing
January 19, 2008. Later, in DateFormula, we will find D interpreted as Day,
but here the trailing D is interpreted as date (data type) constant.

•

•

•

•

•

•

•

Chapter 3

[103]

NAV also defines a special date called a "Closing" date, which represents the
point in time between one day and the next. The purpose of a closing date is
to provide a point at the end of a day, after all real date- and time-sensitive
activity is recorded, when accounting "closing" entries can be recorded.
Closing entries are recorded, in effect, at the stroke of midnight between two
dates i.e. this is the date of closing of accounting books, designed so that one
can include or not include, at the user's option, closing entries in various
reports. When sorted by date, the closing date entries will get sorted after all
normal entries for a day. For example, the normal date entry for December
31, 2006 would display as 12/31/06 (depending on your date format
masking), and the closing date entry would display as C12/31/06. All
C12/31/06 ledger entries would appear after all normal 12/31/06 ledger
entries. The following screenshot shows some closing date entries from
2003 and 2004.

Time: This contains an integer number, which is interpreted on a 24 hour
clock, in milliseconds, from 00:00:00 to 23:59:59:999. A 0T (numeral zero,
letter tee) represents an undefined time.
DateTime: This represents a combined Date and Time, stored in Coordinated
Universal Time (UTC) and always displays local time (i.e. the local time on
your system). DateTime fields do not support NAV "Closing Date". DateTime
values can range from January 1, 1754 00:00:00.000 to December 31, 9999
23:59:59.999. An undefined DateTime is 0DT.
Duration: This represents the positive or negative difference between two
DateTime values, in milliseconds.

•

•

•

Fields

[104]

Complex Data Types
Complex Data Types are constructed from the Fundamental Data Types. They are
grouped into Data Item, Date Formula, Data Structure, Objects, Automation, Input/
Output, References, and Other.

Data Item
The data types included in Data Item are as follows:

BLOB: This can contain either a graphic in the form of a bitmap or specially
formatted text or other developer-defined binary data, up to 2 GB in size. The
term BLOB stands for Binary Large OBject. BLOBs can be included in tables.
BigText: This can contain large chunks of text, up to 2GB in size. For working
storage, BigText data are not included in tables for permanent storage,
BigText data must be moved to BLOB variables. BigText variables cannot
be directly displayed or seen in the debugger. There is a group of functions
that can be used to handle BigText data (e.g. to move it to or from a BLOB, to
read or write BigText data, to find a substring, to move data back and forth
between BigText and normal Text variables, etc.).

If you wish to handle text strings in a single data element greater
than 250 characters in length, you can use a combination of BLOB and
BigText variables.

GUID: This is used to assign a unique identifying number to any database
object. GUID stands for Globally Unique Identifier, a 16-byte binary data
type that is used for the unique global identification of records, objects, etc.
The GUID is generated by an algorithm created by Microsoft.

DateFormula
The only data type defined in DateFormula is as follows:

DateFormula, provides the storage of a simple, but clever set of constructs to support
the calculation of run-time sensitive dates. A DateFormula is a combination of:

Numeric multipliers (e.g. 1, 2, 3, 4…)
Alpha time units (all must be upper case)

D for a day
W for a week

•

•

•

•

•

◦
◦

Chapter 3

[105]

WD for day of the week, i.e. day 1 through day 7 (either in the
future or in the past, not today), Monday is day 1, Sunday is day 7
M for calendar month
CM for current month
P for accounting period
Y for year

Math symbols
+ (plus) as in CM + 10D means the Current Month end plus 10
Days or the 10th of next month
– (minus) as in –WD3 means the date of the previous Wednesday

Positional notation (D15 means the 15th of the month and 15D means 15 days)

Payment Terms for Invoices make very productive use of DateFormula. All
DateFormula results are expressed as a date based on a reference date. The default
reference date is the system date, not the Work Date.

Here are some sample DateFormulas and their interpretations (displayed dates are
based on the US calendar) with a reference date of March 9, 2007, a Friday:

CM = the last day of Current Month, 03/31/07
CM + 10D = the 10th of next month, 04/10/07
WD6 = the next sixth day of week, 03/10/07
WD5 = the next fifth day of week, 03/17/07
CM – M + D = the end of the current month minus one month plus one
day, 03/01/07
CM – M = the end of the current month minus one month, 02/28/07

Let us do some experimenting with some hands-on evaluations of several
DateFormula values. What we will do is create a table that will calculate the entered
dates using DateFormula and Reference Dates.

First, create a table using the Table Designer as you did in earlier instances. Go to
Tools | Object Designer | Tables. Click on the New button and define the fields as
in the following screenshot. Save it as Table 60000, named Date Formula Test. After
you are done with this test, we will save this table for some later testing.

◦

◦
◦
◦
◦

•

◦

◦

•

•

•

•

•

•

•

Fields

[106]

Now we will add some simple C/AL code to our table so that when we enter or
change either the Reference Date or the DateFormula data, we can calculate a new
result date.

First, access the new table via the Design button, then go to the global variables
definition form through the View menu option, suboption Globals, and then choose
the Functions tab. Type in our new Function's, name as CalculateNewDate on the
first blank line as shown in the following screenshot and then exit from this form
back to the list of data fields.

Chapter 3

[107]

From the list of data fields, either press F9 or click on the C/AL Code icon:

In the following screenshot, you will see all the field triggers plus the trigger for the
new function you just defined, all ready for you to add some C/AL code. The table
triggers are not visible unless we scroll up to show them.

Since our goal this time is to focus on experimenting with the DateFormula, we are
not going to go into much detail about the logic we are creating. Hopefully, your
past experience will allow you to understand the essence of the code.

We are simply going to create the logic within our new function,
CalculateNewDate(), to evaluate and store a result date based on the DateFormula
and Reference Date that we enter into the table.

Fields

[108]

Just copy the C/AL code exactly as shown in the following screenshot, exit, compile,
and save your table.

When you close and save the table, if you get an error message of any type, you
probably have not copied the C/AL code exactly as it is shown in the screenshot.

This code will cause the function CalculateNewDate() to be called any time an
entry is made in either the Reference Date for calc or the Date Formula to test fields.
The result will be placed in the Date Result field. The use of an integer value in the
redundantly named PrimaryKey field allows you to enter several records into the
table (by numbering them 1, 2, 3, and so forth) and also allows you to compare the
results of date calculations using several different formulae.

Let us try a few examples. We will access the table via the Run button. Enter a
Primary Key value of 1 (i.e. one).

PrimaryKey = 1

For Reference Date for calc enter the letter t (tee), upper case or lower case, it doesn't
matter. That will give you the date for Today, whatever the system date is while
experimenting. The same date will appear in the Date Result field, because at this
point there is no DateFormula entered. Now enter 1D (numeral 1 followed by the
letter dee, upper case or lower case, C/SIDE will take care of making it upper case)
in the Date Formula to test field. You will see the Date Result field contents are
changed to be one day beyond the date in the Reference Date for calc field.

Chapter 3

[109]

Let us enter another line. Start with a numeral 2 in the PrimaryKey field. Again,
enter the letter t (tee) in the Reference Date for calc field and just enter the letter W
in the Date Formula to test field. You should get an error message telling you that
your formulas should include a number. Make the system happy and enter 1W. You
should see a date in the Date Result field that is one week beyond your testing date.

Set the system's Work Date to a date about in the middle of a month. Start another
line with the number 3 in the Primary Key, followed by a W (for Work Date) in the
Reference Date for calc field. Enter cm (or CM or cM or Cm, it doesn't matter) in the
Date Formula to test field. Your result date will be the last day of your work-date
month. Now enter another line using the Work Date, but enter a formula of –cm (the
same as before, but with a minus sign). This time your result date will be the first day
of your work-date month.

Enter another line with a new Primary Key. Skip over the Reference Date for calc
field and just enter 1D in the Date Formula to test field. What happens? You get an
error message. NAV cannot deal with making calculation without a Reference Date.
If we put this function into production, we might enhance our code to check for a
Reference Date before calculating. We could default an empty date to the System
Date or the Work Date and avoid this particular error.

The following screenshot shows more sample calculations. Build on these and
experiment on your own. You can create lots of different algebraic formulae and get
some very interesting results. One NAV user has due dates on Invoices on 10th of
the next month. The Invoices are dated at various times during the month they are
actually printed. But by using the DateFormula of CM + 10D, the due date is always
the 10th of the next month.

Fields

[110]

Don't forget to test with WD (weekday), P (period), Q (quarter), and Y (year).

It may seem that we overemphasized this experiment. But you got to see a lot more
here than just date calculations.

You created a new table, just for the purpose of experimenting with a C/AL
feature that you might use. This is a technique that comes in handy when
you are learning a new feature, trying to decide how it works or how you
might use it.
We put some critical logic in the table. When data is entered in one area, the
entry is validated and, if valid, the defined processing is done instantly.
We created a common routine as a new function. That function is then called
from multiple places to which it applies.
We did our entire test with a table object and a default tabular form that is
automatically generated when you Run a table. We didn't have to create
much of a supporting structure to do our testing. Of course, when you are
designing a change to a complicated existing structure, it is likely that you
will have a more complicated testing scenario. But one of your goals will
always be to simplify your testing scenarios to both minimize the setup effort
and to keep your test narrowly focused on the specific issue.
We saw how NAV tools make a variety of relative date calculations easy.
These are very useful in business applications, many aspects of which are
very date centered.

Data Structure
The following are the data types in Data Structure:

File: This refers to any standard Windows file outside the NAV database.
There is a reasonably complete set of functions to allow creating, deleting,
opening, closing, reading, writing and copying (among other things) data
files. For example, you could create your own NAV routines in C/AL
to import or export data from a file that had been created by some
other application.
Record: This refers to a single line of data within a NAV table. Quite
often multiple instances of a table are defined for access, to support some
validation process. The working storage variable for the table will be of the
data type Record.

•

•

•

•

•

•

•

Chapter 3

[111]

Objects
Form, Report, Dataport, Codeunit, XMLPort, each represents an object of the type
Form, Report, Dataport, Codeunit or XMLPort respectively. Object data types are
used when there is a need for reference to an object or some portion of an object from
within another object. Examples are cases where one object invokes another (e.g.
calling a Report object from a Form object or from another Report object) or where
one object is taking advantage of data validation logic that is coded as a function in a
Table object or a Codeunit object.

Automation
The following are the data types in Automation:

OCX: This allows the definition of a variable that represents and allows
access to an ActiveX or OCX custom control. Such a control is typically
another, external application object, small or large, which you can then
invoke from your NAV object.
Automation: This allows the definition of a variable that you may access
similarly to an OCX but is more likely to be a complete independent
application. The application must act as an Automation Server and must
be registered with the NAV client calling it. For example, you can interface
from NAV into the various Microsoft Office products (e.g. Word, Excel) by
defining them in Automation variables.

Input/Output
The following are the data types in Input/Output:

Dialog: This allows the definition of a simple user interface window without
the use of a Form object. Typically, dialog windows are used to communicate
processing progress or to allow a brief user response to a go/no-go question.
There are other user communication tools as well, but they do not use a
dialog data item.
InStream and Outstream: These are variables that allow reading from and
writing to external files, BLOBS, and objects of the Automation and OCX
data types.

•

•

•

•

Fields

[112]

References and Other
The following data types are used for advanced functionality in NAV, typically
supporting some type of interface with an external object.

RecordID: This contains the object number and primary key of a table.
RecordRef: This identifies a field in a table and thereby allows access to the
contents of that field.
KeyRef: This identifies a key in a table and the fields it contains.
Variant: This defines variables typically used for interfacing with
Automation and OCX objects. Variant variables can contain data of a number
of other data types.
TableFilter: This defines variables used only by the permissions table related
to security functions.

Data Type Usage
Some data types can be used to define permanently stored data (i.e. in tables) or
working storage data definitions (i.e. within a Global or Local data definition within
an object). A couple of data types can only be used to define permanently stored data.
A much larger set of data types can only be used for working storage data definitions.

•

•

•

•

•

Chapter 3

[113]

The list in the following screenshot shows which data types can be used where:

FieldClasses
Each data field has a Field Class Property. We will cover most of the properties in
the next chapter, but the FieldClass has as much affect on the content and usage
of a data field as does the data type, maybe even more in some instances. For
that reason, we will discuss FieldClasses as a follow-on to our discussion on
Data Types.

Fields

[114]

The following are the three FieldClasses:

Normal: The FieldClass containing all the 'normal' data. If the FieldClass is
Normal, then the field contains just what you would expect, based on the
Data Type and all the descriptions.
FlowField: The FieldClass that connects a datafield to a previously defined
SumIndexField in a table. The FlowField is an important and controlling
property of a field. FlowFields do not contain data in any conventional sense.
They are really virtual fields. A FlowField contains the definition of how to
calculate the data that it represents at run time.
A FlowField value is always 0, unless something happens to cause it to be
calculated. If the FlowField is displayed directly on a form, then it is calculated
automatically on initial display. FlowFields are also automatically calculated
when they are the subject of predefined filters as part of the properties of a
Data Item in an object (this will be explained in more detail in the chapters
covering Reports and Dataports). In all other cases, a FlowField must be forced
to calculate using the C/AL <Record>.CALCFIELDS function. This is also true
if the underlying data is changed after the initial display of a form (i.e. the
FlowField must be recalculated to take the change into account).

Because a FlowField does not contain any actual data, it cannot
be used as a field in a key.

When a data item has its FieldClass set to FlowField, another directly
associated property becomes available: CalcFormula. The CalcFormula is the
place where you can define the formula for calculating the FlowField. This
formula consists of five components as follows:

FlowField type (aka Method)
Sign control (aka Reverse Sign)
Table
Field
Table Filter

On the CalcFormula property line, there is an ellipsis button displayed.
Clicking on that button will bring up the form similar to the
following screenshot:

•

•

◦
◦
◦
◦
◦

Chapter 3

[115]

The following screenshot shows seven FlowField types:

The explanation of the seven FlowFields is given in the following table:

FlowField
Type

Field Data
Type

Description (in all cases it applies to the specified set
within a specific column in a table (i.e. field)

Sum Decimal The sum total
Average Decimal The average value (i.e. the sum divided by the count)
Exist Boolean Yes or No, does an entry exist?
Count Integer The number of entries that exist
Min Any The smallest value of any entry
Max Any The largest value of any entry
Lookup Any The value of the specified entry

The Reverse Sign control allows you to change the displayed sign of the
result for FlowField types Sum and Average only; the underlying data is
not changed.
Table and Field allow you to define to what Table and to what Field within
that table your Calculation Formula will apply. When you make the entries
in your Calculation Formula screen, there is no validation checking by the
compiler that you have chosen an eligible table–field combination. That
checking doesn't occur until run time. Therefore, when you are creating a
new FlowField, you should test it as soon as you get it defined.

Fields

[116]

The last, but by no means least significant, component of the FlowField
Calculation Formula is the Table Filter. When you click on the ellipsis in the
table filter field, the window shown in the following screenshot will appear:

When you click on the Field column, you will be invited to select a field from
the table that was entered into the Table field earlier. This field will have the
filter rules you define on this line, which will also indicate which type of filter
is this. The explanation is given in the following table:

Filter
Type Value Description Filtering Action OnlyMax-

Limit
Valuels-
Filter

Const A constant which will be
defined in the Value field

Uses the constant to filter for
equally valued entries

Filter A filter which will be
spelled out as a literal in
the Value field

Applies the filter expression
from the Value field

Field A field from the table
within which this
FlowField exists

Uses the contents of the
specified field to filter for
equally valued entries

False False

If the specified field is
a FlowFilter and the
OnlyMaxLimit parameter is
True, then the FlowFilter range
will be applied on the basis of
only having a Max Limit, i.e.
having no bottom limit. For
example, this is useful for date
filters for Balance Sheet data.

True False

If the specified field is
a FlowFilter and the
OnlyMaxLimit parameter is
True, then the FlowFilter range
will be applied on the basis of
only having a Max Limit, i.e.
having no bottom limit. For
example, this is useful for date
filters for Balance Sheet data.

False True

Chapter 3

[117]

FlowFilters: These do not contain any information permanently. They
are defined for the purpose of holding filters on a per user basis, with the
information being stored at the local workstation. A FlowFilter field allows a
filter to be entered at a parent record level by the user (e.g. G/L Account) and
applied (through the use of FlowField formulas, for example) to constrain
what child data (e.g. G/L Entry records) is selected.
A FlowFilter allows you to provide very flexible data selection functions to
the users in a way that is very simple to understand. The user does not
need to have a full understanding of the data structure to apply filtering in
intuitive ways, not just to the primary data table but also to the subordinate
data. Based on your C/AL code design, FlowFilters can be used to apply
filtering on more than one subordinate table. Of course, it is your
responsibility as the developer to make good use of this tool. As with many
C/AL capabilities, a good way to learn more is by studying standard code.
A number of good examples on the use of FlowFilters can be found in the
Customer (Table 18) and Item (Table 27) tables. In the Customer table, some of
the FlowFields using FlowFilters are Balance, Balance (LCY), Net Change, Net
Change (LCY), Sales (LCY), and Profit (LCY). There are others as well. The
Sales (LCY) FlowField FlowFilter usage is shown in the following screenshot:

•

Fields

[118]

Similarly constructed FlowFields using FlowFilters in the Item table include
Inventory, Net Invoiced Qty. Net Change, Purchases (Qty.), and a whole host
of other fields.
Throughout the standard code there are a number of FlowFilters that appear
in most of the Master table definitions. These are the Date Filter and Global
Dimension Filters (Global Dimensions are user defined codes to facilitate the
segregation of accounting data by meaningful business break-outs such as
divisions, departments, projects, customer type, etc.). Other FlowFilters that
are widely used in the standard code, for example, related to Inventory
activity, are Location Filter, Lot No. Filter, Serial No. Filter, and Bin Filter.

Filtering
As mentioned earlier, filtering is one of the very powerful tools within NAV C/AL.
Filtering is the application of defined limits on the data to be considered in a process.
Filter structures can be applied in at least three different ways, depending on the
design of the process. The first way is for the developer to fully define the filter
structure and the value of the filter. This might be done in a report designed to show
only information on a selected group of customers, for example those with an open
Balance on Account. The Customer table would be filtered to report only customers
who have an Outstanding Balance greater than zero.

The second way is for the developer to define the filter structure, but allow the user
to fill in the specific value to be applied. This approach would be appropriate in an
accounting report that was to be tied to specific accounting periods. The user would
be allowed to define what period(s) were to be considered for each report run.

The third way is the ad hoc definition of a filter structure and value by the user. This
approach is often used for general analysis of ledger data where the developer wants
to give the user total flexibility in how they slice and dice the available data.

It is quite common within the standard NAV applications and in the course of
enhancements to use a combination of the different filtering types. For example, the
report just mentioned that lists only customers with an open Balance on Account (via
a developer-defined filter) could also allow the user to define additional filter criteria.
Perhaps, the user wants to see only Euro currency-based customers, so they would
filter on the Customer Currency Code field.

Filters are an integral part of FlowFields and FlowFilters, two of the three Field
Classes. These are very flexible and powerful tools, which allow the NAV designer to
create forms, reports, and other processes that can be used by the user under a wide
variety of circumstances for various purposes. In most systems, user inquiries (forms
and reports) and processes need to be quite specific to different data types and ranges.
The NAV C/AL toolset allows you to create relatively generic user inquiries and
processes and then allow the user to apply filtering to fit their specific needs.

Chapter 3

[119]

Defining Filter Syntax and Values
Let us go over some common ways in which we can define filter values and syntax.
Remember, when you apply a filter, you will only view or process records where the
filtered data field satisfies the limits defined by the filter.

Equality and inequality
either an equal (=) sign or no sign filters for data "equal to" the
filter value.
Data Type - description Example Filters
Integer =200
Integer 200
Text Chicago
Text " (two single quote marks)

a greater than (>) sign filters for data greater than the filter value
Data Type - description Example Filters
Integer >200
Date >10/06/07
Decimal >450.50

a less than (<) sign filters for data less than the filter value
Data Type - description Example Filters
Integer <150
Date <10/07/07

the equal sign can be combined with the greater than (>=) or less
than (<=) signs to filter for data "greater than or equal" OR "less
than or equal" to the filter value
Data Type - description Example Filters
Integer <=100
Date <=12/31/07
Date >=1/1/08
Text '>= Grade B

•
◦

◦

◦

◦

Fields

[120]

Not Equal is represented by the combination of the "less than"
symbol plus the "Greater than" symbol to filter for data not equal
to the filter value
Data Type - description Example Filters
Integer <>1
Date <>TODAY (TODAY is a system

variable representing the current
system date

Boolean <>yes (an awkward way of
stating "No"

Ranges
Ranges are defined by an expression containing two dots in a row
(in other words ..). Ranges are inclusive, that is the maximum
and minimum values are included within the range. Ranges have
three variations. The first is the from - to version which includes
both a bottom end or minimum to the range and a top end
or maximum.

Data Type - description Example Filters
Integer 1..10
Date 5/1/07..5/31/07
Text Jones..Smith
Decimal 100.01..199.99

The second range variation consists of the range operator (the
two dots ..) plus a range maximum This means "give me all the
values from the lowest possible value up to and including the
range maximum. This is generally the same as using the less than
or equal to (<=) format.

Data Type - description Example Filters
Integer ..10 (Gives the same results as

<=10)
Date ..12/31/07
Decimal ..99.99

◦

•

◦

◦

Chapter 3

[121]

The third range variation consists of a lower limit (minimum)
value flowed by the range operator (..).

Data Type - description Example Filters
Integer 100.. (Gives the same results as

>=100)
Date 1/1/07..
Decimal 100000.00..

Boolean operators
There are two Boolean operators. The operators are the
ampersand sign (&) representing the logical AND operation and
the pipe symbol (|) representing the logical OR operation.
The OR operator can be used to create a discontinuous set of
allowed values.

Data Type - description Example Filters
Integer 5|10|15|20 (This will give you

matches on all four of the stated
values and only on those values.)

Date 10/1/07|11/1/07|12/1/07 (This
filter will pass through on records
dated on the first date of the
three months)

The AND operator can generally only be used in combination
with other filtering operators.

Data Type - description Example Filters
Integer (>=100) & (<=1000) (Gives the

same result as the range 100.1000)
Date <>TODAY (TODAY is a system

variable representing the current
system date

Boolean <>yes (an awkward way of
stating "No"

◦

•

◦

◦

◦

Fields

[122]

Wild cards
There are three wild card characters that can be used within filter
constructs. Wild cards only apply to string data. You will not find
the term wildcard defined or the usage of wildcards described in
the Microsoft documentation or Help.
Asterisk (*) represents any character and any number of characters.

Data Type - description Example Filters
Text *st* (Includes all data containing

the lowercase letters 'st')
Text st* (Includes only the data starting

with the lowercase letters 'st')
Text *st (Includes only the data ending

with the lowercase letters 'st')

Question mark (?) represents any character, but only one character.

Data Type - description Example Filters
Text ?st? (Includes all data which is

four characters long with the
middle two characters being the
lowercase letters 'st')

Text ????st (Includes all data which is
exactly six characters long ending
with the lowercase letters 'st')

"At" symbol (@) eliminates case sensitivity for the value
following. The @ is often used in combination with the asterisk to
make the filter value satisfy a wider range of data

Data Type - description Example Filters
Text *@st* (Includes all data containing

any of the strings 'st', 'St', 'ST'
or 'sT')

Text @*st* (Gives the same results as
the previous example)

•

◦

◦

◦

◦

Chapter 3

[123]

Combinations – Many of these filter constructs can be used in combination.
Again, the caution applies about thoroughly testing your creations before
inflicting them on unsuspecting users. It is relatively easy to create a filter
which, on initial thought seems logical, but which won't work the way you
thought it would. In addition, the C/AL compiler routine which interprets
filters is not perfect. It can get confused or just fail.

Be very cautious about using combinations that contain wildcards, especially (but
not limited to) those expressions containing both wildcards and Boolean operators.
Be very cautious about constructing filters based on exclusions. Generally, the
limited "inclusive" approach works better. For example, you might want to print a
Customer list excluding all Customers for the Salespeople with codes of JR and MD.

You might try create a filter on Salesperson Code such as (<>JR) AND (<>MD). The
C/SIDE routine that checks filter will not accept that as a valid entry. The same goes
for <> (JR AND MD), as well as the attempt to put in two separate filter entries (only
one filter string is allowed per data field.). What to do?

To simplify, let us assume all our Salesperson Code are just two characters long. You
should create a filter on the Salesperson Code in the form (..JQ) | (JP..MC) | (ME..).
This translates to all the Customers having either a Salesperson Code less than or
equal to JQ or (the pipe symbol: |) from JP to MC or greater than or equal to ME. In
other words, all the two character codes except JR and MD.

Experimenting with Filters
Now it is the time for you to do some creative experimenting with filters. We want
to accomplish several things through our experimentation. Our first purpose is to
get more comfortable with how filters are entered. Secondly, we want to see the
effects of different types of filter structures and combinations. If we had a database
with a large volume of data in it, we could also experience the speed of effecting the
filtering on fields in keys and fields not in keys. But the amount of data in the Cronus
database is small and our computers are very fast, so any speed differences will be
difficult to see.

We could experiment on any report that allows filtering. To give us some options
for our experimentation, we will use the Customer/Item List. This will report which. This will report which
Customer purchased what Items. The Customer/Item List can be accessed on the
NAV user menu via Sales & Marketing | Reports | Customer | Customer/Item List.

•

Fields

[124]

When you initially run the Customer/Item List, you will see just three data fields
listed for entry of Filters on the Customer table as shown in the following screenshot:

There are also three data fields listed for entry of Filters on the Value Entry table as
shown in the following screenshot:

Chapter 3

[125]

In each case, these are the fields that the developer determined should be emphasized.
If you run the report without any filters at all, using the standard Cronus data, the
contents of the first page of the report will resemble the following screenshot:

Fields

[126]

If you want to print information only for customers whose names begin with a letter
A, your filter will be very simple, similar to the following screenshot:

The resulting report will be similar to the following screenshot, showing only data
for the two customers on file whose names begin with the letter A.

Chapter 3

[127]

If you want to expand the customer fields on which you can apply filters, click on the
first empty field and you will see something similar to the following screenshot. The
size of the pop-up window can be stretched as large as your display image allows
and you can then scroll down to see rest of the fields.

Fields

[128]

This provides us access to all the fields in the customer record, the table identified
in the Tab heading. From this list we can choose one or more fields and then enter
filters on those fields. If we chose Territory Code, for example, then the Request
Form would look similar to the following screenshot. And if we clicked on the
lookup arrow in the Filter column, a screen would pop-up allowing us to choose
data items from the related table, in this case, Territories.

Chapter 3

[129]

This particular Request Form has tabs for each of the two primary tables in the
report. Click on the Value Entry tab to filter on the Item-related data. If we filter on
the Item No. for Item No's that contain the letter W, the report will be similar to the
following screenshot:

If we want to see all the items containing either the letter W or the letter S, our filter
would be *W* | *S*. If you made the filter W | S, then you would get only entries
equal exactly to W or to S because we didn't use any wild cards.

Fields

[130]

You should go back over the various types of filters we discussed and try them all.
Then you should try some combinations. Get creative! Try some things that may or
may not work and see what happens. Explore a variety of reports or list screens in
the system and try applying filters to see what happens. A good screen to which to
apply filters is the Customer List (Sales & Marketing menu | Sales | Customers
| F5). This is supposed to be a non-threatening learning experience (you can't hurt
anything or anyone).

This is also an opportunity to learn more about the NAV User Interface, because that
is what you must use to do your filtering. There are four buttons at the top of the
screen that relate to filtering, plus one for choosing the active key. In Windows XP,
they look like the following screenshot:

From left to right, they are as follows:

Field Filter (F7)—Highlight a field, press F7 (or select View | Field Filter),
and the data in that field will appear in a display ready for you to define a
filter on that data field. You can edit the filter in any way before you
click OK.
Table Filter (Ctrl+F7)—Press the Ctrl Key and F7 simultaneously (or select
View | Table Filter). You will be presented with a form that allows you
to choose any number of fields in the left column and, in the right column,
enter filters to apply to those fields. Each of these individual filters is a Field
Filter, the same as would have been applied using the Field Filter option just
described. The filters for the individual fields are "ANDed" together (i.e. they
all apply simultaneously). If you invoke the Table Filter form when any Field
Filters are already applied, they will be displayed.
Flow Filter (Shift+F7)—Press the Shift Key and F7 simultaneously (or select
View | Flow Filter). You will be presented with a form that allows you to
choose any number of fields in the left column and in the right column, enter
filters to use with those fields. On initial display, it will show all the Flow
Filter fields available. For any Flow Filter field, you can enter a filter, which
will then be applied to the underlying data for FlowFields whose definition
includes a constraint by that particular Flow Filter field.
You can also use this form to enter Field Filters, but you will not be able to
see the field filters that are already in effect via this form. To remove Flow
Filters, you must call up this form and manually remove the filters, by
deleting the filter lines or at least the filter values.

•

•

•

Chapter 3

[131]

Show All (Shift+Ctrl+F7)—This will remove all Field Filters, but will not
remove any Flow Filters.
Sort (Shift+F7)—allows you (or your user) to choose which key is active on a
displayed data list (unless the underlying C/AL code overrules). By properly
choosing a key that contains the field on which you wish to filter, you can
significantly affect the speed of the filtering process. Of course this is true for
filtering processes coded in C/AL as well.
When you are viewing a form and want to check if filters are in effect, check
the bottom of the screen for the word FILTER as shown in the next image.

One of the most frequent support calls by new users seems to be "My data
has disappeared." The proper response is "Does it say FILTER at the bottom
of the screen?" Almost always the answer is "Yes", in which case the proper
assistance is to use the Filter icons we just reviewed to inspect and/or clear
unwanted filters (typically using the Table Filter and Flow Filter to inspect,
possibly using the Show All and Flow Filter to clear filters.

Summary
In this chapter, we have focused on the basic building blocks of NAV data structure,
fields and their attributes. We reviewed the types of data fields, properties, and
trigger elements for each type of field. Then, we walked through a number of
examples to illustrate most of these elements, though we have postponed exploring
triggers until we have enough knowledge of C/AL coding techniques to make
that worthwhile.

The Data Type and FieldClass determine what kind of data can be stored in a field.
When you combine the table structure with properly designed fields, the essence
of your application system design is defined. In this chapter, we have covered the
broad range of Data Type options as well as the FieldClasses.

We also considered some examples of different types and classes, and discussed how
they are used in an application. We dug into the date calculation tool that gives
C/AL an edge in business applications. We also discussed Filtering in some detail,
and how filtering is considered as we design our database structure, and how the
users will access data. Finally, more of our NAV application was constructed with
some features worth emulating in your own future designs.

In the next chapter, we will look at Forms in more detail and see how we can design
Forms to take advantage of the data structures we have now put in place.

•

•

Forms
Form follows function—that has been misunderstood. Form and function should be
one, joined in a spiritual union—Frank Lloyd Wright

While Frank Lloyd Wright may not have been referring to NAV Forms when he talked
about form and function, what he said certainly applies to NAV systems. Forms are
the window of the system through which the users can view the data in real time.

Forms and their functions must be one and the same to the users. If the forms bring
attention to themselves rather than to the data that they expose or make harder for
the users to see critical patterns and trends in the data, then the design has not been
achieved as per Wright's goal of a "spiritual union".

In this chapter, we will explore the various types of forms that NAV offers you. We
will review many of the options for formatting, for data access, and for tailoring your
forms. We will also learn about the Form Designer tools and the inner structures of
forms.

What Is a Form?
Forms serve the purpose of both input and output. Forms are views of data or
process information designed for on-screen display only. Forms can also be a user
data entry vehicle. Either type of form, card or tabular, can be used both for inquiry
or data entry.

Forms

[134]

Controls
Controls are the containers on forms. They can display data, text, pictures, or the
results of an expression in C/AL. Container controls, such as Frames and Tab pages,
can contain other controls. Frames make it easy for the developer to treat a set of
other controls as a group, and Tabs make it easy for the user to consider a set of
controls as a group.

Bound and Unbound
Forms created can be "bound", tightly associated with a specific table, or "unbound",
not associated with a table. Typically, a card or a list form would be bound. Instances
of unbound forms are rare. An example in recent versions is Form 591 – Payment
Tolerance Warning. In older versions, (before V4.0) menu forms were unbound.
When a form is bound to a table, it is easy to tie the controls on the form to the fields
in the table.

A bound form can have unbound controls, i.e. controls that display computational
results or values entered into working storage variables. Generally controls on an
unbound form are generally unbound. Either category, bound or unbound, can
have controls that refer to tables to which the form is not bound. Unbound forms are
generally used for displaying information or processing status.

NAV Form Look and Feel
Most of the time the particular form type will be relatively obvious. The specific
layout and features of the form object available to you as a developer, will offer
many choices. Thus, some forms require many design decisions. C/SIDE allows
you to create forms with vastly different "look and feel" attributes. But the standard
NAV application only uses a few of the possibilities, and closely follows a set
of GUI (Graphical User Interface) guidelines, already published, that offer close
compatibility with other Windows and Microsoft applications.

Good design practice dictates that enhancements should integrate seamlessly
unless there is an overwhelming justification for being "different". The best advice
you can follow for design of forms is to make your new forms have the same look
and feel as the forms in the "out-of-the-box" product. When you add changes to
forms, make changes look as similar to the original form look and feel as your new
functionality allows.

Chapter 4

[135]

There certainly will be instances where you will need to provide a significantly
different form layout in order to address a need that the standard NAV system
simply does not need to address. Perhaps, you need to provide two or more tabular
displays in the same form. Maybe you need to use colors to warn of a critical
situation or you need to create a screen layout for a display significantly different
from a standard desktop video display. Each in such cases, remember that the
basic NAV forms look and feel has withstood the test of time for usability and for
(reasonably) good taste. Even when you are going to be different, continue to be
guided by the environment and context in which you are planting your new work.

An example of such a non-standard form is shown in the following screenshot. In
this case, the goal is to have the header information visible all the time, while making
a variety of related detail information readily accessible. A basic Header/Detail
format is used, but the Detail section is a tabbed form where some of the tabs are in
card format and some are in a tabular format as shown overleaf.

Forms

[136]

Types of Forms
Let us briefly review types of forms that we will use in an application. Then we will
step to several examples using our C/ANDL system to illuminate our path. From an
application design point of view, we need to consider which form type to use under
what circumstances. The following are the different form types:

Card form: These display and allow updating of a single record. A Card form
is generally used for Master table and Setup data. Complex cards can contain
a number of tabs, and may even display data from subordinate tables.
Tabular or List form: These display a list of any number of records at one
time, one line per record, with each displayed data field shown as a column.
The Reference table maintenance and inquiry use Tabular forms. List forms
use the same format as Tabular forms but (usually) are not editable. They
can be used, for example, to show a list of master records to allow the user
to compare records or to easily choose one master record on which to focus.
Some specific List forms, such as Ledger Entries, allow editing of some fields
(such as Invoice Due Dates).
Tabular/List forms are widely used as transaction entry forms. One of NAV's
design features is to allow volume data entry activities to be done with little
or no mouse usage. This provides higher data entry speed in situations where
volume entry is feasible.
You can create a version of Tabular forms that is particularly suitable
for high volume data entry into transaction journals. In the NAV
documentation these are referred to as "Worksheet Forms". Worksheet
forms use the AutoSplitKey property combined with an integer field as the
last field in the table's primary key. This results in the entered data being
automatically sequenced as it is entered. The C/AL code must handle the
incrementing of the integer field as new records are appended.

•

•

Chapter 4

[137]

The AutoSplitKey property will handle the creation of a new integer for a
record being inserted between two other existing records. It does so by
"splitting" the number range between the two original records to assign an
integer value to the new, inserted record. For example, if the original records
had keys ending in the values 50000 and 60000, then AutoSplitKey will
assign the value 55000 to the new inserted record key.
A simple tabular form may show all the fields in a reference table to allow
entering data or choosing one entry from among the available set. A
complex tabular or list form might show data from several tables and some
computed fields.
Main/Sub or Header/Detail form: This consists of combination of two forms.
The primary form is a card form that contains a subform control. This control
references a secondary form, which is a tabular form. This form type is often
appropriate whenever you have a parent record tied to a subordinate or child
set of data in a one-to-many relationship.
Header/Detail forms are used in Sales and Purchasing functions for Quotes,
Orders, and Invoices, both before and after Posting. Header/Detail forms
are also used in other areas such as Manufacturing Work Orders, Production
Bills of Material, and Production Routings.
Matrix form: This form type display results based on the intersections of two
tables, called the source table and the matrix source table. The display is in
a spreadsheet-style matrix format. The displayed data element of the source
table is the leftmost column. The matrix source table principle data element
is displayed across the top row, in the column header row position, with
the results of the cell source data expression filling out the body of
the matrix.
The actual data displayed for each matrix cell may be computed from the
intersection of these two tables. For it could be from some other table, but
selected based on the results of the intersection of these two tables, for
example, where values from the intersects are used in an algorithm with or to
filter values in other tables.
Trendscape form: This is equipped with Trendscape control buttons, which
allows the displayed data to be filtered by a user selected date range. The
following screenshot shows Trendscape buttons at the bottom of a form:

•

•

•

Forms

[138]

Trendscape forms may use different form types for the display of
date-filtered data, and several variations occur in the standard NAV system.
In Form 490, the Acc. Schedule Overview, the Trendscape date filter
applies to all data appearing on the screen and the form is a Matrix form
supplemented with a Tab control.

In Trendscape Form 492, Item Availability by Location, shown in the
following screenshot, the date-filtered data is displayed using the
subordinate Form 515, Item Avail. by Location Lines, which is a Tabular
form placed in a subform control on the parent Form 492. All the data being
displayed by Form 492 has the same date filter applied to it. The result is that
the form is displaying the data "as of" the date filter range.

Chapter 4

[139]

In Form 5983, Service Item Trendscape, shown in the following screenshot,
the data is also displayed in a subform control, this time referring to form
5984. This form displays data for one date range on a line. The increment
in the date range from line to line is controlled by the selected
Trendscape button.

Take a look at these additional standard out-of-the-box forms for a represent-
ative sample of Trendscape forms: Forms 113, 157, 415, 490, 492, 5226, and
5983. You can access all of these forms via Tools | Object Designer | Form.
Obviously, the data displayed must be time related (e.g. generally tied to a
Posting Date).
Dialog form: This is a simple display form embedded in a process, used to
communicate with user/operator.
Request form: This is a relatively simple form consisting of several tabs,
allowing control information to be entered to control the execution of a
report object.

All the form types above, except the last two, are Bound forms associated with
Tables, displaying the data from those tables. Such forms, properly designed, are the
key to easy and efficient use of a Navision application. Matrix and Trendscape forms
are sometimes bound to virtual tables (e.g. Date, Integer). The Dialog and Request
forms are generally associated with Reports and will be discussed further in
that context.

•

•

Forms

[140]

Form Names
Card forms are named similarly to the table with which they are associated plus the
word Card. For example, Customer table and Customer Card, Item table and Item
Card, Vendor table and Vendor Card.

There is a special instance of Card forms used for the single record Setup tables that
are used for unique setup and control information throughout NAV. The Setup
tables are named after the functional area plus the word Setup. The associated form
should also be (and generally is) named similarly to the table. For example, General
Ledger Setup table and General Ledger Setup form, Manufacturing Setup table
and Manufacturing Setup form.

Tabular forms are also named similarly to the table with which they are associated,
but in the plural form as they display multiple entries at once. For example, Country
table and Countries form, Shipment Method table and Shipment Methods form, Work
Shift table and Work Shifts.

Journal entry (worksheet) forms are given names tied to their purpose plus the word
Journal. In the standard product several Journal forms for different purposes may be
associated with the same table. For example, the Sales Journal, Cash Receipts Journal,
Purchases Journal, and Payments Journal all associated to the Gen. Journal Line
table (i.e. different forms, same table).

List forms are named similarly to the table with which they are associated. The List
forms, which are simple non-editable lists, have the word list associated with the
table name. For example, Customer List, Item List, and Vendor List. The List forms
associated with Ledger Entry tables are named after the tables, but in the plural
format. For example, Customer Ledger Entry table and Customer Ledger Entries,
Item Ledger Entry table and Item Ledger Entries, BOM Ledger Entry table and BOM
Ledger Entries.

Ideally, if there is a Header and Line table associated with a data category, such as
Sales Orders, the related main form and subform should be named to maintain the
relationship between the tables and the forms. In some cases, it is better to tie the
form names directly to the function they address rather than the underlying tables.
An example of that approach is the two forms making up the form called by the Sales
Order menu entry, Sales Order tied to the Sales Header table and the Sales Order
Subform tied to the Sales Line table.

Chapter 4

[141]

Sometimes, while naming forms you will have a conflict between naming based on
the associated tables and naming based on the use of the data. For example, the menu
entry Contacts invokes a Main form/Subform named Contact Card and Contact
Card Subform. The respective tables are the Contact table and the Contact Profile
Answer table. The context usage should take precedence in the form naming.

Accessing the Form Designer
The Form Designer is accessed via Tools | Object Designer | Form. The Form
Designer can be opened either with a new form via the New button or on an existing
form via the Design button (more detail on this process will follow shortly). Once
the Form Designer is open, a row of control icons appear at the top of your screen.
The following table explains the icons:

At various points during the creation and maintenance of a form, you can use these
icons or their keystroke shortcuts or, in some cases, their right-click menu shortcuts,
to access these various Form Designer functions.

What Makes Up a Form?
All forms are made up of certain common components. How are these components
assembled to create the different form types? The basic elements of a form object are
the Form Triggers and Properties, plus the Controls with their Control Triggers
and Properties.

Forms

[142]

The following screenshot shows the Form Triggers. We will not spend much time
on Form Triggers because it is generally a bad practice to insert any C/AL code
in forms. You probably wonder "Why do triggers exist if we shouldn't use them?"
The most likely answer is that they exist for historical reasons; as NAV has new
capabilities added over the years, the need to use Form Triggers has become reduced
almost to the point of non-existence.

However, some of the standard objects have code in Form Triggers and there are
still a few instances where the best way to accomplish a data form linkage requires
insertion of C/AL code into a Form Trigger. Be forewarned that future versions of
NAV will further constrain, or may even eliminate, our ability to insert C/AL code
within a form. The correct approach is to put your logic within the tables or in
well-organized functions defined in a Codeunit.

Chapter 4

[143]

Form Properties
The following screenshot shows the Forms - Properties screen. We will step through
the list briefly, but you should actually go to the Form - Properties screen and invoke
Help for each field.

Forms

[144]

To illustrate Form properties, we chose to look at the properties of our Member Card
that we have created earlier. Many of the properties are typically left in their default
condition. The following are the properties with which we are most likely to
be concerned:

ID: The unique object number of the form.
Name: The unique name by which this form is referenced in C/AL code.
Caption and CaptionML: The form name displayed, depending on the
language option in use.
Width and Height: These define the operating size of the form when opened.
These are generally used when the form is a subform. Then they must match
the size of the subform control as it is defined on the main form.
Editable: This determines whether the controls in the form can be edited
(assuming the table and field Editable properties are Yes).
MultipleNewLines: When set to Yes, allows the insertion of multiple new
lines between existing records. By default, it is set to No, which prevents
users from inserting new lines between records.
TableBoxID: This must be filled in with the appropriate Table Box Control
ID number for any List-style form, as the list appears in a Table Box control.
SourceTable: The name of the table to which the form is bound. It must be
filled in if this is a Bound form.
SourceTableView: This can be utilized automatically and without exception
to apply certain filters or open the form with a default key other than the
Primary key.
AutoSplitKey: This allows for the automatic assignment of a primary key,
provided the last field in the primary key is an integer (there are exceptions
to this, but we won't worry about them). This feature enables each new
entry to be assigned a key that will cause it to remain sequenced in the table
following the record appearing above it.
On a new entry at the end of a list of entries, the trailing integer portion of the
primary key is automatically incremented by 10000 (the increment value can-
not be adjusted). When an entry is inserted between two previously existing
entries, their current key-terminating integer values are summed and divided
by two (hence the term AutoSplitKey) with the resultant key value being
used for the new entry. Since 10000 can only be divided by two and rounded
to a non-zero integer result 17 times, only 17 new entries can be inserted
between two previously recorded entries.

•

•

•

•

•

•

•

•

•

•

Chapter 4

[145]

DelayedInsert: This delays the insertion of a new record until the user
moves focus from the new line being entered. If this value is No, then a new
record will automatically be inserted in the table as soon as the primary
key fields have been completed. This property is generally set to Yes when
AutoSplitKey is set to Yes. It makes it easier to have complex new data
records entered with all necessary fields completed.
Permissions: This allows you to instruct the system to allow a user of this
form to have certain levels of access (r=read, i=insert, m=modify, d=delete)
to the TableData in the specified table objects. For example, users of the
Customer form are allowed to read (i.e. view) the data in the Cust. Ledger
Entry table. Anytime you are defining special permissions, be careful to test
with an end user license.
TimerInterval: This defines a time interval in milliseconds for the firing of
the active form's OnTimer trigger, thus executing the code in that trigger. This
property is not used very often. When used, it requires thorough and
careful testing.

We will discuss a number of the different types of controls that can appear on forms.
In the course of that discussion, we will touch on a couple of controls where the use
of trigger-based C/AL code is required in NAV versions up through V4.0 SP3.

Forms Controls
Controls on Forms serve a variety of purposes. Some controls are containers for
constants and data (text and graphics). The following screenshot is from the Form
Designer showing some of the constants (the left column) and data controls (the
right column) on the Customer Card (Form 21):

A second group of controls (e.g. tabs, frames, and subforms) act as containers for
other child controls.

•

•

•

Forms

[146]

The following two screenshots are developer's views of a tab control (from the
Customer Card, Form 21) and of a frame (from Form 256, Payment Journal), each of
which in turn contains basic controls for text and data:

The third group of controls contain action instructions (e.g. command and menu
buttons). The following screenshot is of the user's view of the command and menu
buttons at the bottom of the Customer Card (Form 21) after the user has clicked on
the Customer button showing some action options:

Explore
When you are using the Form Designer, the new Controls for your form can be
accessed via the Toolbox:

Chapter 4

[147]

The Controls Toolbox is shown in the center section in the following screenshot:

The description of the the control represented by each of the Toolbox icons follows:

Label: This contains a literal, which must be defined prior to compilation.
Text Box: This contains the value of a text, integer, or decimal variable bound
to the control.
Check Box: This contains the value of a Boolean, showing a check mark for
Yes (True).
Option Button: This shows a bullet for the current option value of the bound
variable. There should be a count of option buttons equal to the number
of possible options for the designated variable (e.g. three buttons for three
options, etc.).
Command Button: This contains C/AL code and/or properties that will
invoke an action when the button is clicked/pushed.
Menu Button: This provides access to a list of actions, each of which contains
C/AL code and/or properties similar to a Command Button, in other words,
a Menu Button is equivalent to a list of Command Buttons.
List Box: A feature not implemented in the Designer, but accessible to a
clever (and knowledgeable) developer editing the form in text mode (not
recommended as a normal development technique).
Frame: This has the purpose of containing other controls, which are either
managed as a group by the developer or should be seen by the user as
belonging together (such as the frame screenshot near the top of the
page opposite).
Image: This allows the display of a picture. The only data format supported
for images is the bitmap format of up to 32KB in size. The image control is
analogous to a text label in which the contents of the image control must be
defined during development before compilation.

•
•

•

•

•

•

•

•

•

Forms

[148]

Picture Box: This allows the display of a picture from bitmap formatted data.
The contents of a picture box can be changed dynamically during
program execution.
Shape: This allows a very minimal graphical capability through the selection
of one out of eight shape alternatives. The shape options provided are
rectangle, rounded rectangle, oval, triangle, NW-Line (back leaning line),
NE-Line (forward leaning line), HorizLine, and VertLine. The use of these
shapes allows some very limited on-screen graphics. The properties support
choosing at least the size, line width, and line color plus a couple of other
attributes depending on the specified shape.
Indicator: This provides a progress bar graphical display. Not often used
because in most cases it requires the dedication of a form object for which
there is a license fee, but more importantly, because a form cannot be
used during some types of transaction processing. There is an equivalent
code snippet available that you can use with a Dialog form (no object
is consumed). Indicators are used on some statistics forms to show, for
example, the percentage complete of a task.
Tab Control: A container control that provides tabs as on card forms. Tabs
make it easier to organize a large number of fields into related groupings.
Tab Controls can also be used on a form that is not a card form (for example,
Form 113 Budget).

Although moving from one Tab to another on a form is usually done with
a mouse click, it can also be done by the keyboard with Ctrl+PageUp and
Ctrl+PageDown.

Subform: A container control that allows you to nest one form within
another form (but not within another subform). The typical use is a header/
detail form where you have a one (header) to many (detail) data relationship,
but subform controls certainly are not limited to that usage.
Table Box: The essential base container control for any tabular form. A Table
Box gives you rows and columns in a spreadsheet-style format. It is usually
bound to a table. It contains label and text box controls bound to the fields
in the table. The label controls become the column headers and the text box
controls replicate down the columns and form the rows of records going
across the table box.
Matrix Box: This allows the placement of a matrix box control, which can
then be set up and utilized as briefly described earlier in the description of
form types.

•

•

•

•

•

•

•

Chapter 4

[149]

Report Frame: This has never been implemented.
Lock: This allows you to select a control, then "lock" it to allow multiple
insertions of the selected control. It is not often useful.
Add Label: This allows you to add a label control to whatever controls you
select until you close the toolbox.

Inheritance
One of the attributes of an object-oriented system is the attribute inheritance of
properties. While NAV is more properly described as object based rather than
object oriented, the properties that affect data validation are inherited. In addition, a
property like decimal formating is also inherited. If the property is explicitly defined
in the table, it cannot be less restrictively defined elsewhere. This basic concept
applies on inheritance of data properties beginning from fields in tables to forms and
reports, and from forms and reports to controls within forms and reports.

Experimenting with Controls
The best way to get familiar with the various controls is to create an empty form on
which we can experiment arbitrarily. Pop up the Controls Toolbox and, one at a time,
select each control type and place it on the form. Look at the control's properties,
change a property and then Run the form, while remaining inside the Form
Designer, by pressing Ctrl+R. By repeating the above steps, keep experimenting
until you can identify the various controls fairly specifically.

Running from within the Designer is a very quick and easy way to see the
results of a form change without committing to the change (i.e. without
saving and compiling the object). Because it does an instant compile first,
it is a good basic error check. Then you can see the results of your change,
adding a field, changing field location, or changing validation logic,
without committing to overwriting the old version.

To get started, let us create a test form and bind it to the Customer table. The
Customer table has a variety of data types and using an existing table will make the
testing easier. Go to Tools | Object Designer | Form and click on the New button.
Enter Customer in the Table field, select Create a blank form, and click OK. Now
you should see a blank form in the Form Designer workspace.

•

•

•

Forms

[150]

Click on the Controls Toolbox icon. Select the textbox icon and place it on your test
form. Your screen will look similar to the following screenshot:

Press Ctrl+R to run the form. An error message will be displayed, as shown in the
following screenshot:

When you click OK, C/SIDE will take you directly to the property field (SourceExpr)
that must be filled in before the form is compiled and run. An easy choice is to
assign the Name field to this control and then, click Ctrl+R. This time your test form
will run and you should see at least a part of a Customer Name as shown in the
following screenshot:

Chapter 4

[151]

Make a note of the Customer Name, and then change it. To update the modified
record, page down (PgDn) to the next Customer record, and then page up (PgUp)
again. Note that the Customer Name has been changed. For the sake of consistency
of test data, it would be a good idea to change the name back to what it was
originally by editing it a second time.

Now, Esc from the running form back to the Form Designer worksheet. Either
right click on the Text Box control or right-click + choose Properties or click on the
Properties icon at the top of the screen. You will see the Properties list for a Text
Box control. Find the Editable property and change it from the default <Yes> to No.
Again, click Ctrl+R to run the test form. Now you will see that the text box is gray,
rather than white, as shown in the following screenshot, indicating that you cannot
change the contents (i.e. it is not editable). Try to change the displayed Customer
Name; you cannot.

We have just touched the tip of the iceberg in terms of possible combinations
of controls, properties, and settings. You should spend at least an hour or two
experimenting with various combinations. Later, when you feel you have a better
grasp for the combinations that you may want to use, then you can experiment
with some more. The best two ways to understand the possibilities of C/AL are to
study existing code and to experiment. Another good way is to study the available
documentation. The better sources for additional information on controls are the
Help files and the NAV Application Designer's Guide manual. In the manual, search
for the control name and scan the manual text for all the matching hits.

Control Triggers
To illustrate all the Control triggers, we will take a look at the following two
screenshots. The first screenshot consists of Control Triggers for a Text Box control
and the second consists of Control Triggers for a Command Button control including
the OnPush trigger, which is not present for a text box.

Forms

[152]

The guideline for the use of these triggers is the same as the one for Forms Triggers:
if there is a choice, don't put C/AL code in a Control Trigger. It is always a good
policy not to put code in Forms, even though NAV doesn't follow that advice. There
may be occasions where you have to put code in a control trigger, but don't do it just
because it is the easy way out. Remember that in future versions of NAV, it is very
likely that our ability to put C/AL logic within a form will be very limited. Not only
will this approach make your code easier to upgrade in the future, but it will also
make it easier to debug and easier for the developer following you to decipher
your changes.

Chapter 4

[153]

Control Properties
The following two screenshots show all the properties for form controls and also
which controls have which properties. If you do not see a property listed here, it
is not available. This matrix makes it obvious which properties have controls in
common and which are unique to specific controls.

Forms

[154]

I
Generally you will choose a control based on the primary functionality of the
controls but sometimes you may choose a control based on the particular properties
a control has. Obviously, properties that controls size (e.g. Width, Height, etc.),
position (e.g. Xpos, Ypos, HorzGlue, VertGlue, Visible, etc.), and appearance
(e.g. HorizAlign, VertAlign, ForeColor, BackColor, BackTransparent, Border,
BorderColor, BorderStyle, BorderWidth, FontName, FontSize, FontBold,
FontItalic, etc.) are important and applied to most controls. Properties that control
access, contents or actions are applied to fewer controls but have more impact on the
application (e.g. Enabled, Editable, Focusable, MinValue, MaxValue, NotBlank,
Numeric, CharAllowed, DateFormula, etc.).

Chapter 4

[155]

You will find more detail on control properties in the C/SIDE Help. It would be a
good idea at this point to review the contents of C/SIDE Help for a number of the
controls shown in the preceding screenshots. Most of the properties have reasonable
descriptions in the Help file.

Experimenting with Control Properties
Once you have reviewed the controls, you should then reinforce them by
experimenting. You can explore the Control properties by doing the following:

1. Create an empty test form.
2. Call up the Controls Toolbox.
3. Select a control and place it on the form.
4. With the new control highlighted, call up the Properties list.
5. Change the property of interest and see what happens.

For most controls, this type of testing works best if you make just one change at a
time. After you get comfortable with the effect of changing individual properties,
you may want to change multiple properties at one time to see how they interact.

Some Control Property Tips
The following are a few tips about various properties that you might find useful:

All the properties that represent measurements are in units of 1/100 of a
millimeter. You cannot change the unit of measure to anything else. In the
English system, there are 2540 1/100 mm in an inch. If a YPos property is
equal to 5080 then that control is positioned two inches to the right of the
left margin.
HorizGlue (options are Left, Right, or Both) and VertGlue (options are Top,
Bottom, or Both) are the properties that determine the control's anchoring on
a form. When you set these properties to Both, the control will resize when
the form resizes. In fact, you can just set one of these properties to Both and
the control will resize on that axis.
On a tabular form, at least one control should always have the HorzGlue
property set to Both. The Form Wizard will do that automatically. To keep
buttons positioned in their usual location at the bottom right of a form, you
should set HorzGlue to Right and VertGlue to Bottom. When you create a
Subform, which generally contains a TableBox for tabular data display, you
should set these properties to Both for both the Subform and the TableBox so
that they will resize in unison with each other and with the parent form.

•

•

Forms

[156]

A number of the controls can be reset dynamically during run time. This
allows you to change the look or the behavior of controls (and thereby
the parent form) based on user actions or the data contents of the form.
For example, you can dynamically set control properties Height, Width,
Decimal Places, ForeColor, FontBold, Editable, Indent, Visible, LogHeight,
LogWidth, XPos and YPos with the C/AL commands as shown in the
following Help list:

The graphical capabilities of NAV are very limited. You can set control
border, foreground, and background colors of controls using a numerical
value to define the setting (see the Help for "RGB Color Model")—no
WYSIWYG tool here. You can set various font attributes, but again with a
very limited set of choices. You can display a few graphical shapes and,
with quite a bit of effort, use them to create some primitive graphics. You
can even display pictures, but only in bitmap format. There are some
third-party tools available to compensate for these limitations, but if you
want to use graphics in any meaningful way with NAV, you should look to
interface with a friendly tool with capabilities, such as one of the Microsoft
Office Excel components.
Some properties can be used in lieu of C/AL code. For example, the
PushAction property can be used in some instances rather than embedding
C/AL code in the OnPush trigger. Read Help to learn more about
PushAction.
Controls that are bound to a table field will inherit the settings of those
properties that are common to both. Inherited property settings that involve
data validation cannot be overridden, but all others can be changed. This is
another instance where it is generally best to define the properties in the table
for consistency and ease of maintenance, rather than defining them for each
instance of use in a form or report.

•

•

•

•

Chapter 4

[157]

More Illumination with C/ANDL
For each of our most recently defined tables, we need to create new forms. We have
six new tables. So we need six new tabular forms because these tables are all simple
in structure. At the moment, all we want to do is enter or look up data, therefore
we can use the Form Designer to create all six of these. Assign names and object
numbers to your new forms as follows:

Table No. Table Name Form No. Form Name

50002 Certification 50003 Certifications

50003 Volunteer Activity 50004 Volunteer Activities

50004 Course 50005 Courses

50005 Volunteer Activity Ledger 50006 Volunteer Activity Ledger

50006 Education Activity Ledger 50007 Education Activity Ledger

50007 Member Certification 50008 Member Certifications

Let us step quickly through the creation of Form 50003 Certifications as follows:

1. Access the Form Designer and prepare to create a new form: Tools | Object
Designer | Form, then the New button, enter the Table name Certification,
choose the option Create a form using a wizard: and choose
Tabular-Type Form.

Forms

[158]

2. Since this table only has three fields, use the >> button to populate the form
with all the fields in one click.

3. Click on Finish. Use the design tools to adjust the columns to be easier
to read and better looking. Obviously, these terms are subject to
your interpretation.

Chapter 4

[159]

4. Finally, close the Form Designer and save the new Form object with the
appropriate ID and Name (in this case, 50003 and Certifications).

Obviously we would like each table to be readily accessible by both the lookup
and drilldown functions that are created automatically when table references are
defined in other tables. In order to do that, we must define the LookupFormID and
DrillDownFormID for each of these tables. The following screenshot shows the
properties defined for the Certification table. You should do the same in your
database. Now follow the same sequence of form creation and table property update
for the other five new tables.

Now that you have completed that, you should be able to go through the following
test data entry task with the aid of the lookup function on those fields that reference
other tables.

Run the Certifications form (Form Object No. 50002).

Create a couple of new entries as shown in the following table:

Code Category Description

DEVELOP NAV NAV Development

MCP MS Microsoft Certified Professional

Forms

[160]

Close this form and open the Member Certifications form (Form Object No. 50008).
You should see a Lookup arrow on the Member ID field (although in the following
screenshot it looks as if the Lookup arrow is at the left of the Code field, it is really
hanging off the right end of the Member ID field).

Click on the arrow and it will bring up your Member list, allowing you to select a
member. Moving to the next member field will display the lookup arrow for the
Certifications table. Click on that arrow and your display should look similar to
the following screenshot:

Chapter 4

[161]

Once you have learned more about C/AL coding, we will create the logic to
automatically fill in the Description field in this table and "copy from reference table"
fields in the other tables. But for now we can either enter fields manually or just leave
them blank.

Update the Member Forms
The Member Card and Member List, as originally created, are now out of date as
we have added quite a few fields to the Member table. Since we created the original
forms with the Form Wizard, we don't have a big time investment. So, rather than
manually modifying forms through the Form Designer, let us start by creating new
versions with the Form Wizard, and then making manual modifications as needed.

Create a New Member List
Let us start with the simpler form, the Member List. The first step is to use the Form
Wizard and create a form based on the Member table that contains all the fields in
that table. After creating a form, save it with the same object name and number as we
used originally (Form 50001 Member List).

Now let us simplify our form a little. Some users may want to see only a minimal set
of the data fields, whereas other users may want to view a larger set, maybe all the
available fields. Since our new Member List form contains all the fields in the table,
we have satisfied the latter need. Assuming the majority of users won't need to
see many fields, we will make other fields default to Invisible, but still available
if desired.

This can be done by simply changing one property on each desired field i.e. Visible
to No. We will start with the Title field. Highlight that field on the form in the Form
Designer and click on the Properties icon.

Forms

[162]

Set the Visible property to No as shown in the following screenshot:

If we do the same thing for all the fields except Member ID, First Name, Last
Name, the various Address fields, and the Member Status field, we will have a
form similar to the following screenshot. You can make your form similar to the
following screenshot by adjusting the column widths to better fit the data and by
expanding the column heading row vertically (it is automatically set up to display in
multi-line format).

Chapter 4

[163]

Whenever a user makes adjustments to a form such as column widths and heading
row height, the adjustments will be "remembered" in the user-specific ZUP file, (ZUP
referring to User Profile) while you can set some system and object properties to
override the standard behavior. Normally, the ZUP file will record every form size
and layout adjustment as well as the identity of the specific record highlighted the
last time the form was opened.

Whenever you change and recompile a form in C/SIDE, it resets all user
modifiable parameters back to the default condition. Therefore, whenever
you make a form change for your user, no matter how minor, you will be
affecting all users who utilize that form.

If a user wishes to make a column Visible that you have defaulted to Invisible, they
simply need to use the Show Columns function available from the View menu at the
top of the screen as shown in the following screenshot.

Show Column will list all the columns on the currently active form with a check
mark beside all those that are currently visible. The check mark space on this list can
be toggled to allow total user control of visibility of the listed columns. The user can
also highlight a column on a form, and then select the Hide Column option and that
column will become invisible immediately.

The user can also "grab and squeeze" one edge of a column to make it invisible. Just a
caution: this feature can sometimes be invoked accidentally, allowing a user to lose a
column inadvertently. Columns that have been made invisible through any of these
methods can be made Visible again through the Show Column option.

Forms

[164]

A variety of other user-controlled layout changes can also be made. Column widths
can be changed. Header or detail row heights can be changed. Columns can be
moved left and right. All these capabilities apply only to tabular forms. All user
changes disappear when a form is recompiled by a developer.

Create a New Member Card
Now let us take on the creation of a new Member Card. We are going to start with
the Form Wizard and create a usable, but not fully featured, Member Card. Then we
are going to use the Form Designer and enhance the Wizard generated Form.

First, start up the Form Wizard just as you did for the Member List form, but this
time choose the Card format option. You will do this by accessing theaccessing the Form Designer
to create a new form via Tools | Object Designer | Form, then the New button,
entering the table name Member, choosing the option Create a form using a wizard,
and choose Card-Type Form.

We are going to have tabs for General Information, Communications, and
Education Activity. This is a good opportunity to use tabs to organize our
information and to present more information than can comfortably fit on one tab
(i.e. page) or is more clearly organized by having more than one tab. Remember,
don't use the tabs if there is no particular good reason to use them, the user's
navigation task becomes easier, if a form doesn't have tabs. You will note that most
(if not all) NAV card forms have at least one tab. Exceptions include many of the
statistics forms.

Using the capabilities of the Form Wizard, create a Member Card similar to the
following screenshot. The Education Activity Tab will be empty for the moment, but
we will soon be using the Form Designer to add a subform control there.

Chapter 4

[165]

As you can see, a nice looking and relatively complete multi-tab card form can be
created just using the Form Wizard. Now we will use the Form Designer to work
on our generated Card form. What we want to do is add a display to the Education
Activity Tab listing all the Education Activity entries for the Member. We obviously
need to add one or more controls and associate them with the Education Activity
table, linked by Member ID.

Our first task is just to add a TableBox control to the form on that tab. But look at
the properties list of TableBox. There is no Source Table for any control; only the
SubFormView and SubFormLink properties exist, giving us a hint of what we need
to do. It turns out that what we need to do is set up a MainForm/SubForm structure
similar to that used for Sales Orders or Purchase Orders. Typically a subform is a
Tabular form, a form with a TableBox. So let's create one for ourselves.

Using the Controls Toolbox, add a Subform control to the Education Activity Tab.
You should be working in a reduced screen size, not full screen. Size the subform box
so it nicely fits to the form. Look at the subform control properties and note the size
(Width and Height properties), so you can match the size when you create the form
that is going to fit here. Set the Border control to None so that the subform control
will be invisible (only the TableBox contained within will be visible). Now exit and
save your changes.

Next, we are going to create a form that will fit in the subform control, named Form
50009, Education Activity Subform. Actually, if we wanted to attempt to be clever
and very conserving of form objects (as they cost license fee), we can probably just
rework on our Form 50007, Education Activity Ledger, to serve a dual purpose.
Generally, experience says being too clever ends up causing more trouble than
it's worth.

In this case, we can follow a relatively simple path. The data layout of the table,
Education Activity Ledger, is simple and we will show all the fields. We will use
the Form Wizard, create a tabular form including all the fields, remove the buttons
from the form (select and delete), and then size the resulting TableBox to match

Forms

[166]

the size of the Subform control we created in the Member Card Education Activity
Tab (access the properties and set Height and Width). Squeeze the Form Designer
worksheet down to the same size as the Table Box. Set the HorzGlue and VertGlue
of this tabular form to Both so that it will be resized along with the parent control
and form. Now, save this new form as Form 50009, Education Activity Subform.

Return to the Member Card and open it in the Form Designer. Focus on the
Education Activity Tab, the subform control, and open the subform control's
properties. Edit the SubformID property to Education Activity Subform. Edit the
SubformLink property to have the Member table field Member ID linked to the
Education Activity Ledger table field Member ID (i.e. Member ID to Member
ID—seems logical enough, right?). Be sure to set HorizGlue and VertGlue to Both so
that your subform will resize in synch with the main form.

Chapter 4

[167]

Testing Forms
We have just created a couple of forms using the Form Wizard. This was a one-way
process (you can't take a generated form object back into the Wizard). Then we
stepped gently into the forms we generated and made some minor modifications.
Often, when you are creating totally new forms, the modifications you make to a
generated form will be more significant. The modifications may involve C/AL code,
moving a number of fields around, manually adding new controls, etc.

These are normal development activities. The point to remember is that you should
test and retest thoroughly. Make backup copies of your work every time you get
a new set of changes working relatively well. While it is exceedingly rare for the
NAV native database to be corrupted, it is not all that unusual for something you
are performing in a test mode to confuse C/SIDE to the point that it crashes. If
that happens, any unsaved changes will be lost. Therefore, after each change, or
controlled group of changes, you should save your object. In fact, if you are doing
complicated things, it is not a bad idea to have a second backup copy of your object
that you refresh every hour or two of development effort.

Your testing should include the everyday items such as field to field transition.
Highlight the first field on the form, then use the Tab key to move from field to field.
If you don't get the focus flow pattern that is going to be best for your user, the
simplest solution is to use the NextControl property to adjust the field to field focus
sequence. To use the NextControl property, do the following steps:

1. Identify the two controls you wish to have in sequence, i.e. first, then second.
2. Access the properties of the second control and copy the ID value into

the clipboard.
3. Access the properties of the first control and paste that value into the

NextControl property field value.

Creative Plagiarism
When you want to create new functionality that you haven’t developed recently (or
at all), start with a simple test example. Better yet, find another object that has that
capability and study it. In many lines of work, the term "plagiarism" is a nasty term.
But when it comes to modifying a system such as NAV, plagiarism is a very effective
research and design tool.

Define what you want to do. Search through the Cronus demonstration system (or
your system) to find one or more forms that have the feature you want to emulate (or
a similar one). If there are both complex and simpler instances of forms that contain
this feature, concentrate your research on the simpler one first. Make a test copy of

Forms

[168]

the form and dig into it. Make liberal use of the Help information. Search the PDF
copy of the Application Designer's Guide manual. The reality is that your best guide
will be an existing object that does something much like what you want to do.

There is an old saying "Plagiarism is the sincerest form of flattery". When designing
modifications for NAV, the more appropriate saying might be "Plagiarism is the
quickest route to a solution that works". If you like to learn by exploring (a very good
way to learn more about how NAV works), then you should allocate some study
time to simply exploring the NAV Cronus demo system.

One of your goals could be to identify forms that represent good models to study
further. At the extreme you might plagiarize these (a better phrase—"use them as
models for your development work"); at the minimum you will learn more about
how the expert developers at NAV design their forms.

Form Design Hints
Whenever possible, start a new form just as we have done in our work here. Use the
Form Wizard to generate a basic structure, and then begin modifying it from there.
Sometimes, the form you want to create is so different from what comes out of the
Wizard that using the Wizard is an impediment, not assistance. But usually, you
can get a jump start from the Wizard and, sometimes you can even do the whole job
there. Automation can be a good idea, even for developers.

One aspect of NAV that is often overlooked is its ability to cater to the user doing high
volume data entry. Whether you are making modifications to Order Entry or Journal
Entry forms, or you are creating brand new forms, you need to keep the touch typist's
needs in mind. NAV forms can be designed so that no mouse action is required, i.e.
everything can be done from the keyboard. It's good to respect that feature.

Minimize the use of Tab controls except when they are needed. Use shortcut keys for
frequently used functions. Group information on forms similarly to the way it will
be entered from source material. It is a good idea to spend time with users reviewing
the form layout before locking in a final form design. If necessary, you may want
to develop two forms for a particular table, one laid out for ease of use for inquiry
purposes and another laid out for ease of use for volume data entry.

Wherever it is rational to do so, make your new forms similar in layout and
navigation to the forms delivered in the standard NAV product. These generally
conform to Windows design standards and standards that are the result of
considerable research. Since someone has spent a lot of money on that human
interface research, it's usually safer to follow the Windows and NAV standards than
to follow one's own intuition.

Chapter 4

[169]

The exceptions come, of course, when your client says "this is the way I want it
done". Even then you may want to work on changing the client's opinion. There is
no doubt that training is easier and error rates are lower when the different parts
of a system are consistent in their operation. Users are often challenged by the
complications of a system with the sophistication of Dynamics NAV. It is not really
fair to make their job any harder. In fact, your job is to make the user's job easier and
more effective.

A Quick Tour of the Form Designer
Although we have created a number of forms using the Form Wizard and modified
a couple of them with the Form Designer, there are a number of features of the Form
Designer that we have not yet discussed.

Let us start with the Font Tool. First, highlight a control that contains text. The
control can be any control that has properties affecting Font Tool. That can be
font or horizontal alignment properties. The Font Tool can be accessed by clicking
on the Font icon at the top of the Form Designer screen or via the menu bar
View|Font option. In either case, the Font Tool will pop up as shown in the
following screenshot.

You can define a font in the box on the top left and a font size in the box on the top
right. Font attributes of Bold, Italic, and Underline are represented by the obvious b,
i, and u respectively. Horizontal alignment is selected by the left align, center align,
right align and "left for alphanumeric, right for numeric" alignment options. The box
is a visual shortcut to the properties. You can always go directly to the properties to
make settings there.

Next is the Color Tool. To view the Color Tool, highlight a control that has
ForeColor, BackColor, or BorderColor properties. The Color Tool can be accessed by
clicking on the Color icon at the top of the Form Designer screen or via the menu bar
View|Color option. In either case, the Color Tool will pop up.

Forms

[170]

The tool provides a limited set of color choices. Clicking on a color button will choose
that color for you. In the preceding screenshot, Black is chosen for the ForeColor,
White for the BackColor, and Black for the BorderColor. At the bottom of the tool
you can choose a BorderStyle and a BorderWidth. The two check boxes determine
whether or not a color will be displayed at all for that property.

If you make these settings directly in the Properties screen, more choices will be
available than in the Color Tool. If you are using colors, it is not a bad idea to start
with the Color Tool and then adjust from there. Colors are defined by a number that
represents a particular color. The best information on color setting on forms is found
in Help by looking up RGB Color Model. You still have to experiment, but at least
you'll have an idea where you are heading and how bumpy the path will be.

Finally, there is the Field Menu. For a Bound form, the Field Menu provides a list
of all fields in the table. This lets you to use a click and drag approach for placing
additional data field controls on a form. To view the Field Menu, click on the
Field Menu icon at the top of the Form Designer screen or go via the menu bar
View|Field Menu option. In either case, the Field Menu will pop up. The following
screenshot shows the field menu for the Volunteer Activity table:

Chapter 4

[171]

Two additional Form Designer features that are of interest at this point are the Grid
option and the Ruler option. These control displays that are intended to assist you in
placing controls on a form. The Grid option controls the display of a grid pattern of
dots in the background. The Ruler option controls the display of X and Y axis rulers
around the form. These are of modest use in helping you to visually align control
placement. But if you want to place controls accurately, you should really use the
properties for positioning.

The last Form Designer features we are going to review at this point are the Format
menu options. They can be seen in the following screenshot.

The Snap to Grid option will make any control placements snap to specific
horizontal and vertical Grid lines. The Application Designer's Guide implies the
"snap to" points are spaced at 1/100 millimeter increments. But when you use Snap
to Grid and view the resulting XPos and YPos property changes, the increment
appears to be 110/100 mm. If you want full flexibility in control positioning,
you can turn this option off. For quick positioning and alignment, it is a very
useful feature.

Forms

[172]

The Align option allows you to select a group of controls (see the preceding
screenshot where a group of check boxes are selected to be aligned) and then choose
a basis for alignment (one of Left, Right, Top or Bottom). Backup up your form work
before you use this option and then make your choice very carefully. It is all too
easy to end up with a group of controls in a stack. There is no undo! The only way
to undo a bad choice with this tool is to exit the Form Designer without saving the
changes to your form. On the positive side, this is a very useful tool to align a group
of similar controls, if you are careful.

The Bring to Front and Send to Back option gives you a tool to use with overlapping
controls. This can be useful when you are creating a complicated form. Usually this
happens when you are using Frame, Image, Picture, or Shape controls. This allows
you to control which set of overlapping controls is in front and which is at the back.

Keys to Learning NAV
Remember the keys to learn NAV are as follows:

Read this book and do the exercises.
Read the Application Designer's Guide; study the parts of it that seem most
applicable and useful to you.
Experiment with and explore the NAV Cronus demonstration system as
a user.
Study existing objects.
Create new objects trying out ideas. The best time to fail is when a customer
is not depending on you.

•

•

•

•

•

Chapter 4

[173]

Summary
At this point you should be feeling relatively comfortable in the navigation of NAV
and with your own use of the Object Designer. You should be able to use the Form
Wizard readily and Form Designer in an "advanced beginner" mode. Hopefully, you
have taken full advantage of the various opportunities to create tables and forms
both to our recipes and experimentally on your own.

In this chapter, we have covered a lot of ground. Our focus has been the interactive
windows into NAV Forms.

We have also reviewed different types of forms and worked with them. We have
reviewed all the controls that can be used in forms and we worked with several.
We have also lightly reviewed form and control triggers, learned to use the Form
Wizard, and acquired a good introduction to the Form Designer.

With the knowledge gained, we have expanded our C/ANDL system, creating a
number of forms for data maintenance and inquiry, as well as studied the full Form
Designer environment and tools.

In the next chapter, we will learn our way around the NAV Report Wizard and
Report Designer. We will dig into the various triggers and controls that make up
reports. We will also create a number of reports to better understand what makes
them tick and what we can do within the constraints of the Report Designer tool.

Reports
Simple things should be simple and complex things should be possible—AlanKay

The library of reports provided as part of the standard NAV product distribution
from Microsoft are considered relatively simple in design and limited in their
features. Some people feel that the provided reports should satisfy most needs
because of their simple and basic structure, which is made much more powerful and
flexible through the multiplier of NAV's filtering and SIFT capabilities. Others say
that leaving the base product very simple creates more opportunities for creative
NAV Partners and Developers to sell their services to customers who want reports
that are fancier, either in complexity or appearance.

Whatever the reason, the fact remains that NAV's standard reports are basic and, to
obtain more complex or more sophisticated reports, we must creatively utilize the
Report Designer. Through creative use of the Report Designer, many different types
of complex report logic may be implemented. You can also use the Report Designer
to output processed data to other reporting tools such as Excel or to 'third-party'
reporting products.

In this chapter, we will review different types of reports and the components that go
to make up reports. Just as with forms, we'll look in detail at the triggers, properties,
and controls. We'll create some reports with the Report Wizard and some manually
through direct use of the Report Designer. We'll also modify a report or two using
the Report Designer (the only way C/SIDE to modify a report object). We'll examine
the data flow of a standard report and the concept of reports used for processing
only (with no report output).

Reports

[176]

What is a Report?
A report is a vehicle for organizing, processing, and displaying data in a format
suitable for outputting to a hardcopy device. Reports may be displayed on-screen
in Preview mode rather than being printed, but with the same formatting as though
they were printed. In fact, all the report screenshots in this book were taken of
reports generated in Preview mode.

Once generated, a report is static, not interactive. All specification of the criteria for
a report must be done at the beginning, before it is generated. Once generated, the
contents of the report cannot be modified or drilled into. Drillable content would not
be suitable for printing and therefore wouldn't be a report. It is possible that a future
version will contain drillable on-screen reports (but then that might be just another
version of forms).

In NAV, report objects can also be classified as ProcessingOnly by setting the correct
report property (i.e. setting the ProcessingOnly property to Yes). A ProcessingOnly
report will display no data to the user in the traditional reporting manner, but will
simply process and update data in the tables. A report can add, change, or delete
data in tables, whether the report is ProcessingOnly or it is a normal
printing report.

In general, reports are associated with one or more tables. A report can be created
without being externally associated with any table, but that is the exception, not the
rule. Even if a report is associated with a particular table, it can freely access and
display data from other referenced tables.

NAV Report Look and Feel
C/SIDE will allow you to create reports of many different kinds with vastly different
"look and feel" attributes. Consistency of report look and feel does not have the same
level of design importance as does consistency of form look and feel. The standard
NAV application only uses a few of the possible report styles, most of which are in a
relatively "plain-Jane" format. While good design practice dictates that enhancements
should integrate seamlessly unless there is an overwhelming justification for being
different, there are many opportunities for providing replacement or additional
reporting capabilities. The tools that are available within NAV for accessing and
manipulating data in textual format are very powerful. But in order to provide
information in a graphical format, you really need to export the data to a tool such
as Excel.

Chapter 5

[177]

NAV Report Types
The following are the types of reports:

List: This is a formatted list of data. A sample list report in the
standard system is the Customer – Order Detail list shown in the
following screenshot:

Document: This is formatted along the lines of a pre-printed form, where
a page (or several pages) represents a complete, self-contained report.
Examples are Customer Invoice, Packing List (even though it's called a list ,
it’s a document report), Purchase Order, and Accounts Payable check.

•

•

Reports

[178]

The following screenshot is a Customer Sales Invoice document report:

Chapter 5

[179]

The List and Document report types are defined based on their layout. The next three
report types are defined based on their usage rather than their layout.

Transaction: These reports provide a list of ledger entries for a particular
Master table. For example, a Transaction list of Item Ledger entries for all
items matching particular criteria or a list of General Ledger entries for some
specific accounts as shown in the following screenshot:

Test: These reports are printed from Journal tables prior to posting
transactions. Test reports are used to pre-validate data before posting.

•

•

Reports

[180]

The following screenshot is a Test report for a General Journal batch:

The following screenshot is for another General Journal batch, containing only
one transaction but with multiple problems, as indicated by the warning
messages displayed:

Chapter 5

[181]

Posting: This is a report printed as an audit trail as part of a "Post and Print"
process. The printing of these reports is actually controlled by the user's choice
of either a Posting Only option or a Post and Print option. The Post portions
of both the options work similarly. The Post and Print option runs a user-
definable report, which is similar to the report one would use as a transaction
report. This means that such an audit trail report, which is often needed by
accountants, can be re-generated completely and accurately at any time.

Report Types Summarized
Type Description
List Used to list volumes of like data in a tabular format, such as Sales Order

Lines, a list of Customers, or a list of General Ledger Entries.
Document Used in "record-per-page" situations, such as a Sales Invoice, a Purchase

Order, a Manufacturing Work Order, or a Customer Statement.
Transaction Generally a list of transactions in List format, such as a list of General Ledger

Entries, Physical Inventory Journal Entries, or Salesperson To-Do List.
Test Printed in List format as a pre-validation test and data review prior to a

Journal Posting run. A Test Report option can be found on any Journal form
such as General Journal, Item Journal, or the Jobs Journal.

Posting Printed in List format as a record of what data transactions were Posted into
permanent status (i.e. moved from a Journal to a Ledger). A Posting report
can be retained as an audit trail of posting activity.

•

Reports

[182]

Report Naming
Simple reports are often named the same as the table with which they are primarily
associated plus a word or two describing the basic report purpose. The report type
examples we've already looked at illustrate this: General Journal–Test, G/L Register,
Customer Order–Detail.

Common key report purpose names include the words Journal, Register, List, Test,
and Statistics.

The naming of reports can have a conflict between naming based on the associated
tables and naming based on the use of the data. Just as with forms, the usage context
should take precedence in naming reports.

Report Components Overview
What we generally refer to as the report or report object is technically referred to as a
Report Description. The Report Description is the information describing the layout
for the planned output and processing logic to be followed when processing the
data. Report Descriptions are stored in the database in the same way as other table or
form descriptions.

As with forms, we will just use the term reports, whether we mean the output, the
description, or the object. Reports share many other attributes with forms including
aspects of the Designer, features of various Controls, some Triggers, and even some
of the Properties. Where those parallels exist, we should take notice of that. The
consistency of any toolset, including NAV, makes it easier to learn and to use. This
applies to developers as well as to the users.

The overall structure of an NAV Report consists of all the following elements. Any
particular report may utilize only a small number of the possible elements, but many,
many different combinations are feasible and logical.

Report Properties
Report Triggers
Data Items

Data Item Properties
Data Item Triggers
Data Item Sections

Section Properties
Section Triggers
Controls

Control Properties

•
•
•

°
°
°

°
°
°

°

Chapter 5

[183]

Request Form
Request Form Properties

Request Form Triggers
Request Form Controls

Request Form Control Properties
Request Form Control Triggers

The Components of a Report Description
A Report Description consists of a number of primary components, each of which
in turn is made up of secondary components. The primary components Report
Properties and Triggers and Data Item Properties and Triggers define the data
flow and overall logic for processing the data. Another set of primary components,
Data Item Sections and Controls, define the appearance of the information that is
presented for printing (or equivalent) output. The component is constructed using a
moderately primitive, yet useful, report layout "painter". The report painter allows
us to create a report layout in a semi-graphical format, a limited WYSIWYG. Even
though the primary parts of a report are separate and different, they are only semi-
independent. Each interrelates with and is dependent on the others.

There is another primary functional component of a report description, the Request
Form. It displays as a form when a report is invoked. The purpose of the Report
Request Form is to allow users to enter information to control the report. Control
information entered through a Request Form may include filters, control dates,
other control parameters, and specifications as well as which available formatting or
processing options to use for this instance of the report (i.e. for this run). The Request
Form appears once at the beginning of a report at run time.

Report Data Flow
One of the principle advantages of the NAV report is its built-in data flow structure.
At the beginning of any report, you must define the data item(s), i.e. tables, that the
report will process. There are rare exceptions to this requirement, where you might
create a report for the purposes of processing only. In such a case, you might have
no data item, just a set of logic whose data flow is totally self-controlled. Normally
though, NAV automatically creates a data flow process for each data item. This
automatically created data flow provides specific triggers and processing events:

1. Preceding the data
2. For each record of the data
3. Following the end of the data

•

•

°

°

°

°

Reports

[184]

The underlying "black-box" report logic (the part we can't see or affect) loops
through the named tables, reading and processing one record at a time. That flow is
automatic, i.e. we don't have to program it. Therefore, any time we need a process
that steps through a set of data one record at a time, it is quite likely we will use a
report object.

If you've ever worked with some of the legacy report writers or the RPG
programming language, you will likely recognize this behavior. That recognition
may allow you to more quickly understand how to take advantage of NAV reports.

The reference to a table in a report is referred to as a Data Item. One of the
capabilities of the report data flow structure is the ability to nest data items. If Data
Item 2 is nested within Data Item 1 and related back to Data Item 1, then for each
record in Data Item 1, all the related records in Data Item 2 will be processed. The
following screenshot shows the data item screen.

This particular example uses tables from our C/ANDL system. The design is for a
report to list all the Education Activities by Course for each Member. Thus Member is
the primary table (i.e. DataItem1). For each Member, we want to list all the Courses
that have had activity (i.e. DataItem2). And for each Course, we want to list its
Education Activity (i.e. DataItem3).

On the Data Item screen, we initially enter the table name Member, as you see in the
following screenshot. The Data Item Name, which is what the C/AL code will refer
to, is DataItem1 in our example here. When we enter the second table, Course, then
we click on the right arrow at the bottom of the screen. That will cause the selected
data item to be indented relative to the data item above (the "superior" data item).
What that does to data flow is to nest the processing of the indented data item within
the processing of the superior data item. In this instance, we have renamed the Data
Items only for the purpose of our example illustrating data flow within a report. The
normal default behavior would be for the Name in the right column to default to the
table name shown in the left column (e.g. the Name for Member would display by
default as <Member>). This default Data Item Name would only need to be changed
if the same table appeared twice within the Data Item list. In that case,
for the second instance of Member, for example, you would simply give it the
Name Member2.

For each record in the superior data item, the indented data item will be fully
processed. What records are actually processed in the indented table will depend on
the filters, and the defined relationships between the superior and indented tables.
In other words, the visible indentation is only part of the necessary definition. We'll
review the rest of it shortly.

Chapter 5

[185]

For our example, we enter a third table, Education Activity Ledger, and enter our
example name of DataItem3.

The following chart shows the data flow for this Data Item structure. The chart boxes
are intended to show the nesting that results from the indenting of the Data Items in
the preceding screenshot. The Course Data Item is indented under the Member Data
Item. That means for every processed Member record, all selected Course records
will be processed. That same logic applies to the Course records and Education
Activity records (i.e. for each Course record processed, all selected Education
Activity records are processed).

Reports

[186]

Again, the blocks illustrate how the data item nesting controls the data flow. As you
can see, the full range of processing for DataItem2 occurs for each DataItem1 record.
In turn, the full range of processing for DataItem3 occurs for each DataItem2 record.

The Elements of a Report
Earlier we reviewed a list of all the elements of a Report object. Now we're going to
learn about each of those elements. Our goal here is to understand how the pieces of
the report puzzle fit together to form a useful, coherent whole. Following that, we
will do some development work for our C/ANDL system to apply some of what
we've reviewed.

Report Properties
The Report Properties are shown in the following screenshot. A number of these
properties have essentially the same purpose as those in forms (and other objects
too). We won't spend much time on those.

Chapter 5

[187]

The description is as follows:

ID: The unique report object number.
Name: The name by which this report is referred to within C/AL code.
Caption: The name that is displayed for this report; Caption defaults
to Name.
CaptionML: The Caption translation for a defined alternative language.
ShowPrintStatus: Determines if the status of print processing is shown along
with a user-accessible Cancel button.
UseReqForm: Determines if a Request Form should be displayed to allow the
user choice of Sort Sequence and entry of filters and other requested control
information.
UseSystemPrinter: Determines if the default printer for the report should
be the defined system printer or if NAV should check for a setup-defined
User/Report printer definition.
ProcessingOnly: This should be set to Yes when the report object is being
used only to process data and no report output is to be generated. If this
property is set to Yes, then that overrides any other property selections that
would apply in a report-generating situation.
TransactionType: This can be in one of four basic options: Browse,
Snapshot, UpdateNoLocks, and Update. These control the record locking
behavior to be applied in this report. The default is UpdateNoLocks. This
property is generally only used by advanced developers
Description: This is for internal documentation; it is not often used.
TopMargin, BottomMargin, LeftMargin, RightMargin: Define the default
margins for the report document. The units are in 1/100 millimeters (just like
placement of controls on forms and, as you will see later, in report layouts).
These settings can be overridden by the user if the Request Form is active (in
that case the user can access File | Page Setup from the menus at the top of
the screen and change any of the margin values).
HorzGrid, VertGrid: Define the values for the visible grid, which is
intended to help you align controls in the report layout "painter" screen.
(Not very useful.)
Permissions: This provides report-specific setting of permissions, which are
the rights to access data, subdivided into Read, Insert, Modify, and Delete.
This allows the developer to define report and processing permissions that
override the user-by-user permissions security setup.

•

•

•

•

•

•

•

•

•

•

•

•

•

Reports

[188]

The following printer-specific properties can be overridden by user selections made
at run time.

Orientation: Defines whether the default print orientation for printed output
will be portrait or landscape.
PaperSize: Defines the default paper size to be used. See Help for
additional information.
PaperSourceFirstPage, PaperSourceOtherPages: These allow defining the
printer tray to be used for the first and subsequent report pages. Because the
control codes for printers differ greatly from one to another, the various tray
descriptions are not likely to be meaningful except for a particular printer.
Choosing the desired control code will be a matter of trial and error testing.
DeviceFontName: This allows defining a printer resident font to be used.
Most useful for controlling impact printers to keep the printer from operating
in a graphic (i.e. slow) mode.

Report Triggers
The following screenshot shows the Report Triggers available in a report:

The description is as follows:

Documentation() serves only the purpose of containing whatever
documentation you care to put there. No C/AL code is executed in a
Documentation trigger. You have no format restrictions, other than common
sense and your defined practices.
OnInitReport() executes once when the report is opened.

•

•

•

•

•

•

Chapter 5

[189]

OnPreReport() executes once after the Request Form completes. All the Data
Item processing follows this trigger.
OnPostReport() if the report is completed normally, this trigger executes
once at the end of all other report processing. All the Data Item processing
precedes this trigger.
OnCreateHyperlink() contains code to be executed when a user creates a
hyperlink, for example to send a report by email.
OnHyperlink() executes a URL string.

There are general explanations of Report Triggers both in the Application Designer's
Guide and the on-line Help; you should also review those explanations.

Data Items
The following screenshot is very similar to the example we looked at when we
reviewed Data Item Flow. This time though, we allowed the Name assigned to the
Data Items to default. That means the names will be assigned to be the same as the
table names they reference.

Reasons for changing the names assigned include making them shorter for ease of
coding or making them unique, which is required when the same table is referred
to multiple times in a report. For example, suppose you were creating a report that
was to list first Open Sales Orders, then Open Sales Invoices, and then Open Sales
Credit Memos. Since all three of these data sets are in the same tables (Sales Header
and Sales Line), you might create a report with Data Item names of SalesHeader1,
SalesHeader2, and SalesHeader3, all referencing Sales Header Data Items.

•

•

•

•

Reports

[190]

Data Item Properties
The following screenshots show the properties of the three Data Items in the
previous screenshot. The first one shows the Member-Properties:

The following screenshot shows Course-Properties:

Chapter 5

[191]

The following one shows the Education Activity Ledger—properties:

These are the descriptions of each of the properties mentioned:

DataItemIndent: This shows the position of the referenced Data Item in the This shows the position of the referenced Data Item in the
hierarchical structure of the report. A value of 0 (zero) indicates that this
Data Item is at the top of the hierarchy. Any other value indicates the subject
Data Item is subordinate to (i.e. nested within) the preceding Data Item with
a lower valued DataItemIndent property (e.g. a DataItemIndent of 1 is
subordinate to 0).
Looking at the first property listed in each of the three preceding screenshots,
we see Member with DataItemIndent = 0, Course with DataItemIndent = 1,
and Education Activity Ledger with DataItemIndent = 2. Referring back
to the earlier discussion about data flow, we can see that the specified Course
table data will be processed through for each record processed in the Member
table and the specified Education Activity Ledger table data will be proc-
essed through completely for each record processed in the Course table.
DataItemTable: This names the table assigned to this Data Item.
DataItemTableView: Definition of the fixed limits to be applied to the Definition of the fixed limits to be applied to the
Data Item (what key, ascending or descending sequence, and what filters to
apply). If you don't define a key, then the users can choose what key they
wanted to control the data sort used during processing.

•

•

•

Reports

[192]

If you choose a key and, in theand, in the, in the ReqFilterFields property, you do not
specify any Filter Field names to be displayed, this Data Item will not
have a tab displayed as part of the Request Form. That will keep the user
from filtering this Data Item.

DataItemLinkReference: This names the Data Item in the hierarchy above This names the Data Item in the hierarchy above
the Data Item to which this one is linked. The linked Data Item could
also be referred to as the parent Data Item. As you can see, this property
is Undefined for Member because Member is at the top of the Data Item
hierarchy for this report.
DataItemLink: This identifies the field-to-field linkage between this Data
Item and its parent Data Item. That linkage acts as a filter because only those
records in this table will be processed that have a value match with the
linked field in the parent data item. In our sample, the Course Data Item does
not have a DataItemLink specified. That means that no field linkage filter
will be applied and all of the records in the Course table will be processed for
each record processed in its parent table, the Member table.
NewPagePerGroup, NewPagePerRecord: These define whether or not a These define whether or not a
page break should automatically be taken at the start of each new group or
each new record. Groups of data provide the basis for generated breakouts
and totalling functions.
ReqFilterHeader, ReqFilterHeadingML: The heading that will appear at theThe heading that will appear at the
top of the Request Form tab for this Data Item. That tab is where the user can
enter filters for this Data Item.
ReqFilterFields: This allows you to choose certain fields to be named on the This allows you to choose certain fields to be named on the
appropriate Report Request Form tab to make it easier for the user to use
them as filter fields. So long as the Report Request Form tab is activated for
a Data Item, the user can choose any available field in the table for filtering,
regardless of what is specified here. Note the earlier comments for the
DataItemTableView property are relative to this property.
TotalFields, GroupTotalFields: These define all the fields in the Data Item These define all the fields in the Data Item
for which you want the system to automatically maintain totals for all the
data processed. GroupTotalFields are subtotals by group. These totals can be
printed in any of the appropriate footer sections.
CalcFields: This names the FlowFields that are to be calculated for each This names the FlowFields that are to be calculated for each
record processed. Because FlowFields do not contain data, they have to
be calculated to be used. When a FlowField is displayed in a form, NAV
automatically does the calculation. When a FlowField is to be used in a
report, you must instigate the calculation. That can either be done here in this
property or explicitly within the C/AL code.

•

•

•

•

•

•

•

Chapter 5

[193]

MaxIteration: This can be used to limit the number of iterations (i.e. loops) This can be used to limit the number of iterations (i.e. loops)
the report will make through this Data Item to a predefined maximum. An
example would be to set this to 7 for processing with the virtual Date table to
process one week's worth of data.
DataItemVarName: This contains the name shown in the right column of the
Data Item screen, the name by which this table is referenced in this report's
C/AL code.
PrintOnlyIfDetail: This should only be used if this Data Item has a child
Data Item, i.e. one indented/nested below it. If PrintOnlyIfDetail is Yes,
then sections associated with this Data Item will only print when data is
processed for the child Data Item.
In the preceding screenshots, you have seen that this property is set to Yes
only for the Course Data Item. That is done so that if there is no Education
Activity for a particular Course for that Member, nothing will print for that
Course. If we wanted to print only Members who have Education Activity,
we could also set to Yes the PrintOnlyIfDetail property on the Member
Data Item.

Data Item Triggers
Each Data Item has the following Triggers available:

The description is as follows:

Documentation() is actually the same instance of this trigger that showed
when we looked at the report triggers. There is only one Documentation
trigger in any object.
The rest of the Data Item triggers are where the bulk of the flow logic is
placed for any report. Additionally, developer defined functions may be
freely and voluminously added, but, for the most part, they will be called
from within these three triggers.

•

•

•

•

Reports

[194]

OnPreDataItem() is the logical place for any pre-processing to take place
that couldn't be handled in report or Data Item properties or in the two
report pre-processing triggers.
OnAfterGetRecord() is the data "read/process loop". Code placed here
has full access to the data of each record, one record at a time. This trigger is
repetitively processed until the logical end of table is reached for this table.
This is where you would likely look at data in the related tables. This trigger
is represented on our report Data Flow diagram as any one of the boxes
labeled Data Item processing Loop.
OnPostDataItem() executes after all the records in this Data Item are
processed unless the report is terminated by means of a User Cancel or
execution of a C/AL BREAK or QUIT function, or an error.

Data Item Sections
Earlier in our discussion of reports, we referred to the primary components of
a report. The Triggers and Properties we have reviewed so far are the data flow
components. Now we're going to review the elements of sections, which are the
output layout and formatting components.

Each report layout can consist of a number of layout sections, each defining a portion
of the printed report structure. Each section can appear not at all, one time, or several
times. Each section can appear (or not) for each Data Item. Your work on sections
occurs on the Section Designer screen. The Section Designer is accessed from the
Report Designer Data Item screen via the top menu bar, selecting View|Sections.

Run-Time Formatting
When NAV prints a report (to screen, or to hardcopy, or to PDF, or whatever), NAV
will use the printer driver for the currently assigned printer to control the formatting.
If you change the target printer for a report, the output results may change
depending on the attributes of the drivers of the first printer and the second printer.

In most cases, the display on screen in Preview mode will accurately represent how
the report will appear when actually printed. In some cases though, NAV's output
generation on screen differs considerably from the hardcopy version. This appears to
be most likely to occur when the selected printer is either an impact printer (e.g. dot
matrix) or a special purpose printer (e.g. a bar code label printer).

•

•

•

Chapter 5

[195]

Report Wizard-Generated Sections
If you create a report using the Report Wizard, you will get some sections created by
the Wizard. All the sections shown in the following screenshot of our Report 50000
Member List, which we created in an earlier chapter, were generated by the Report
Wizard. The generated sections include the controls that display headings (Member,
Header (1) and Member, Header (2)) and data (Member, Body (3)).

In one way, sections are similar to triggers. They are executed based on the
occurrence of certain processing events. All the report sections are listed and
described in the following section. Very few reports contain all of these in one
report. You can have multiples of any of the sections and can have any combination
of sections. Each section can display just one line or a whole page. In fact a section
may display no lines, but simply be present as a container for some C/AL code to be
executed at the right point in the report processing sequence. You cannot have more
than one section on a report line. The sequence of sections is fixed and cannot be
changed, but any section may be skipped in the course of processing.

Report Section Descriptions
The report sections are described in the following list:

Header: This generally describes the beginning of the report. At least one
header section for the primary Data Item is usually set to appear at the top of
each page. The first header section in the preceding screenshot illustrates a
header that we would likely print at the top of each page.
Group Header: This is generated at the beginning of a defined group, a
group usually being a sub-total level. For example, a report showing Sales by
Customer, with Customers grouped by Territory, could have a group header
for each Territory.

•

•

Reports

[196]

TransHeader: This is generated at the point of a page transition, on the new
page. This allows for report design features such as the carry forward of
totals from a previous page to the next page, a common layout style.
Body: This is typically the primary point to output data for the report. But a
summary report, for example, might not have a body section at all, but only a
footer section.
TransFooter: This is generated at the point of a page transition (page
overflow), at the bottom of a page. Often used in combination with a
TransHeader section, showing the accumulative totals at the bottom on one
page, these same totals then being printed by a TransHeader section at the
top of the next page. Or, in a variation of that, you might show just the total
for the page in the TransFooter and have no following TransHeader section.
Group Footer: This is generated at the end of a group of data. This section
typically contains subtotals. It may also contain fixed data such as contract
terms on the bottom of an Invoice, etc.
Footer: This is generated at the end of the processing for a Data Item. If the
report contains nested data items, then the footer for the child data item
would be invoked for every record in the parent data item. A Footer section
usually contains higher-level totals. If it is the footer for the primary Data
Item for the report, it will often contain grand totals. Obviously it can contain
whatever information is appropriate for the end of the particular report.

When a report is created totally within the Report Designer using the Wizard only
to access the Create a blank report option, only the body sections are generated
automatically as you define Data Items. Any additional sections are added while
working in the Section Designer screen. You can invoke the Insert New Section
screen from the Edit menu New option, or by simply pressing F3. In either case, you
will see the window shown in the following screenshot:

•

•

•

•

•

Chapter 5

[197]

Using our Member Education Activity report as an example, if we added a new
section for each of the possible choices, we would have the following. Note that the
nesting (indentation) of the dependent (child) data items is shown by the > and >>
symbols leading the individual section names where appropriate.

Also, note the sequential numbering in parentheses for the sections. Each sequence
relates to the Data Item tied to that set of sections. In our example, there are sevenData Item tied to that set of sections. In our example, there are seven tied to that set of sections. In our example, there are seven
sections tied to Member, seven tied to Course, and only three sections tied to
Education Activity Ledger.

Reports

[198]

More Run-Time Formatting
NAV's report processing logic is not directly visible to us (it is one of those software
"black boxes" that we aren't allowed to see into) and that makes understanding
how it works more difficult. When NAV prepares to execute a section for printing,
it evaluates how much print space this section will take and compares that to the
calculated space remaining available on the page.

If NAV calculates that printing this section would overflow the defined physical
page, then NAV will force a page break (with the associated TransFooter, Header,
and TransHeader processing) and print this section on the new page. If you've
defined any combination of footer sections (TransFooter, GroupFooter, Footer), you
may have a circumstance where the NAV report processing logic just seems to go
crazy. Your challenge is to figure out what it is projecting when it tries to print a
section and then seems to haphazardly print several pages in order to get that section
out. If you accidentally specify a section bigger than a page in size, your results can
be even more unusual.

Section Properties
The properties for a Header section are shown in the following screenshot:

The description is as follows:

PrintOnEveryPage: This is self-explanatory. Set it to Yes if you want this
section to be printed at the top of every page. The default is No (obviously),
but the Report Wizard sets this to Yes when it creates a header section.
SectionWidth: This is the measure in 1/100 mm of the physical width of the
print section.
SectionHeight: This is the measure in 1/100 mm of the physical height of the
print section. The default height for a single line is 423 mm/100. The value
here will be used by NAV's print management routine to determine if this
section can be printed on this page or if a page break should be forced first.

•

•

•

Chapter 5

[199]

KeepWithNext: If this is set to Yes, then NAV will attempt to keep this
section's output on the same page with the output of the next section of
the same type for the same Data Item. If you have several of these strung
together, you may occasionally get some surprising results.

The properties for a Body section are a subset of what was just described for header.

The properties for a Footer section are a superset of those for a header.

The following is the only additional property:

PlaceInBottom: This allows you to control whether the footer will just follow
whatever printed previously without any special positioning (the default)
or if the footer should be forced to the bottom of the page. If you have two
footer sections defined, this property must be the same in both.

Section Triggers
The following are the section triggers:

•

•

Reports

[200]

Their description is as follows:

OnPreSection() contains code that is executed before NAV begins
processing the section. Intended primarily as a place to decide "print or don't
print" based on data or some status of the processing, when this trigger is
processed, the NAV report processing has not yet done its report spacing
calculations to determine page positioning. The Application Designer's
Guide makes a strong point that data manipulation processing should not
occur here.
OnPostSection() contains code to be executed after the section is processed
but before it is printed (i.e. the page number is correct). Again, data
manipulation processing should not occur here.

Controls for Reports
Only the controls that are actually implemented for reports are listed. Even though
the controls toolbox has all the same icons in the Report Designer as it does in the
Form Designer, the inoperable ones are grayed out. Look at the following screenshot:

•

•

Chapter 5

[201]

The following is the description of those controls that are mostly implemented
for reports:

Label: This contains a literal, which must be defined (i.e. to a fixed value)
before compilation.
Text Box: This contains the value of a variable, bound to the control, which
can be displayed in one or more characters.
Image: This allows the display of a picture. The only data format supported
for images is the bitmap format with a maximum size of 32 Kb. The image
control is analogous to a text label in that the contents of the image control
must be defined during development, before compilation.
Picture Box: This allows the display of a picture from bitmap-formatted data
(maximum size of 32 Kb) or a BLOB (bitmaps with a maximum size of 2 GB).
The contents of a picture box can be changed dynamically during program
execution. In Chapter 7, we will discuss the C/AL function CALCFIELDS.
That function must be applied to any BLOB data before it can be displayed.
Shape: This allows a very minimal graphical capability through the selection
of one of eight shape alternatives. The shape options provided are rectangle,
rounded rectangle, oval, triangle, NW-Line (back leaning line), NE-Line
(forward leaning line), HorizLine, and VertLine. The use of these shapes does
allow some very limited on screen graphics. The properties support choosing
at least the size, line width, and line color plus a couple of other attributes
depending on the specified shape. But NAV won't print colors, only display
them on-screen.
Lock: A toolbox function, not a control, which allows you to select a control,
then "lock" it in to allow multiple insertions of the selected control. Frankly,
this is not often useful.
Add Label: This is also a toolbox function, not a control, which adds a
label control to whatever controls you select until you close the toolbox.
Interesting, but also not all that useful.

Report controls don't have any triggers.

•

•

•

•

•

•

•

Reports

[202]

Control Properties
The list of properties for individual report controls is the same as the list for those
same controls in the forms context. But some of those properties either don't make
sense in the report context (e.g. ToolTip) or just don't work in that context (e.g. those
properties relating to color). The following screenshot lists the properties for report
controls. Those with X serve a purpose similar to their defined purpose in a form
control. Those properties with blank entries serve no purpose in a report.

Chapter 5

[203]

Inheritance
Inheritance operates for data displayed through report controls just as it does for
forms controls, but obviously limited to print-applicable properties. Properties, such
as decimal formatting, are inherited. Remember, if the property is explicitly defined
in the table, it cannot be less restrictively defined elsewhere. This is one reason why
it's so important to focus on table design as the foundation of the system.

Request Form
The Request Form is a form that is executed at the beginning of a report. Its presence
or absence is under developer control. A Request Form looks similar to the following
screenshot based on one of our C/ANDL reports:

The tabs tied to the Data Items appear as a result of report and Data Item property
settings. The Options tab appears when you, as the developer, create a form
requesting user interaction with the report beyond the entry of filters. You should
also note in the screenshot above that the Request Form is where the Sort, Print,
and Preview buttons appear. If you create a report with no Request Form (i.e.
UseReqForm property set to False), you won't have the Print and Preview
options available.

Reports

[204]

A complicated Options tab is represented in the following screenshot of the Options
tab for the Statement Report 116.

A Request Form Options tab can be created from the Report Designer's Data Item
screen by accessing View, Request Form. When you do that for a new Request
Options Form, you are presented with a blank slate similar to the
following screenshot:

From that point, the layout design process is very much similar to the general-
purpose Form Designer. There are some important differences though. First, this is
an unbound form. It is not tied to any table. Second, at the point where the Request
Form executes, not much has happened within the report. The OnInitReport()
trigger has run and the Data Item Table Views have been set in accordance with
what was defined in the Data Item properties. These differences significantly affect
the logic flow and associated C/AL code that we create to support a Request Form.

Chapter 5

[205]

Request Form Properties
While there is a full set of form properties available for viewing and setting any
Request Form, they do not seem to be useful. Setting these does not appear to change
the behavior of a Request Form.

Request Form Triggers
A considerable number of triggers show up when you look at the C/AL code (F9)
display for a Request Form. Only six of those triggers appear to be actually executed:

OnInit() executes as the Request Form opens. This is a good place to
initialize any Request Form variables.
OnOpenForm() executes immediately after the OnInit() Request
Form trigger.
OnActivateForm() executes when the Options tab of the Request Form
is activated.
OnDeactivateForm() executes when the Options tab of the Request Form is
deactivated by either returning to a Data Item tab or by exiting the
request form.
OnQuesryCloseForm() and OnCloseForm() execute (in that order) when the
report completes.

Request Form Controls
Although when you call up the Toolbox while in Request Form Designer, it appears
that all the controls we reviewed in the chapter on Forms are available, most of them
don't operate in this context. The controls that are available to you are the ones that
allow you to display or enter data that can logically be used to control the report you
are about to run. The controls that are useful in the Request Form are:

Label
Text Box
Check Box
Option Button

The operation and properties for each of these controls are essentially the same as
they would be for a standard form (see the Forms chapter for more information on
form controls' behavior).

•

•

•

•

•

•

•

•

•

Reports

[206]

Request Form Control Triggers
In the chapter on forms, you were cautioned not to place C/AL code within a form
if there was a way to avoid doing so. In the case of Request Forms, the only way to
validate control information input in unbound controls is within the form. There are
a number of triggers available for Request Form controls, but the most common (and
most logical to use) is the OnValidate() trigger. This trigger executes when data has
been entered into a control and completed with an Enter or Tab key.

Processing-Only Reports
One of the report properties we reviewed earlier was ProcessingOnly. If that is set
to Yes, then the report object will not output a report, but will simply do whatever
processing you program it to do. The beauty of this capability is that you can use
the built-in processing loop of the NAV report object along with its sorting and
filtering capabilities to create a variety of data updating routines with a minimum
of programming. Use of the report objects also gives you access to the Request Form
to allow user input and guidance for the run. You could create the same
functionality using Codeunit objects and programming all the loops, the filtering,
the user-interface Request Form, etc., yourself. But with a Processing-Only Report,
NAV takes the load off you.

When running a Processing-Only object, you see very little difference as a user.
You see that there is no visible output at the end of processing, of course. And at
the beginning, the Processing-Only Request Form looks very much as it would
for a printing report. Just a little earlier in the section on Request Forms, we saw a
sample Request Form for one of our multi-table C/ANDL reports. The following is a
screenshot of that same report structure, but now it is set up for Processing Only.

Chapter 5

[207]

As you can see, comparing this Request Form screenshot to the one shown earlier for
a standard report run, the differences are that the Print and Preview buttons missing
in this screenshot, with an OK button in their place. Everything else looks the same.

Revising a Generated Report
In Chapter 1, we created Report 50000 Member List, using the Report Wizard. Look
at the sections for that report, recalling that all this came from the Report Wizard.

The first section is Member, Header (1). While this section is designed to be the
effective "report header", you can see that it is really a header for the Data Item for
which the Wizard generated the report. This is often the case, as there is no way to
have a section that isn't tied to a specific Data Item.

As a default for this header the Wizard uses the name of the primary Data Item (the
only one that the Wizard will ever "know" about) as the Report Title (see "Member"
in the first Label Control). That Label Control is left justified with a subheading
below of a text box Control containing the COMPANYNAME field, a system
variable based on the name of the company open in the database at the time this
report is being run (when you open the database, you see a list of the Companies
available, by Company Name).

On the right side of this first section, the Wizard puts fields for the Date the report
is being run, the page number, and the ID of the user running the report. The
positioning of these fields at the right side of the Header (1) section is right justified
at the right margin of the page based on the default printer page setup at the time of
the report generation.

Reports

[208]

Now look at the Header (2) and Body sections. See how the data fields extend
beyond (to the right of) the right end of the Header (1) controls. If in fact the report
date and page number are at the right side of the page, then it would seem these
fields are off the edge of the paper. Let's find out.

If you haven't entered any sample Member data, now would be a good time to enter
at least a few Member records, filling in all the fields on at least some of the records.
Now run Report 50000, selecting the Preview option so that you can see the results
on your screen. What is the right edge of the displayed data? If your report looks like
the following screenshot, your rightmost fully displayed field is Post Code. But the
rightmost field in our layout was Country/Region Code.

What you see is the result of the Wizard creating the layout it was told to create. It
doesn’t matter whether or not it would work properly in an operational situation. Of
course, if you decided to change your page setup from Portrait to Landscape, then
your printed page would be wide enough for the report as currently laid out.

Revision—First Design
Let's try that. Open Report 50000 in the Designer, highlight the first empty Data
Item line and click on View | Properties. Click on the Orientation property and
change it to Landscape. Exit, save, and compile the object. Run the report in again
Preview mode. This time you should see all of the data in the Header (2) and Body
sections on your screen. Of course, your user could have used his/her page setup to
accomplish the same thing, but if your report was always going to require landscape
orientation, it only makes sense for you as developer to set it once rather than every
user setting it themselves.

Another alternative would be to change the report layout so it will fit on the page in
portrait mode. Because the Wizard uses the maximum size of each field to position
fields and because the Wizard only places fields in a single row, its layout creativity
is pretty low. You, on the other hand, can be much more creative. To save time, you
start with the Wizard. When the Wizard has done its work, guided by you, you take
over and improve the result.

Chapter 5

[209]

To experiment with that approach, let's first change the Report Orientation property
from Landscape back to Portrait. Once that's done, you should save and compile
your report. Now we're going to revise the generated report in a couple of simple
ways just so you can get an idea of what can be done. After that, it'll be up to you to
explore these and other options.

First, copy the generated report so we can work on it without fear of losing what we
have done successfully so far. Open the report in Designer, then select File | Save As
and save the report as ID 50003 with -1 appended to the name. We're just trying to
select an ID that isn't in use and to which we have access. NAV doesn't allow
two objects of the same type to have the same name, so we've changed the name
enough to take care of that requirement. You should have a screen similar to the
following screenshot:

The first approach we're going to try is to put the data onto two lines. This is a
several-step process, which you can approach in a variety of ways. We'll talk about
one approach, but you should experiment with different methods and, over time,
choose the approach that is most comfortable and efficient for you. We'll do our
work on the copied object, 50003.

You can use either a visual "painter" mode or you can work strictly "by the
numbers" using the properties. If you want perfect alignment and very fine control
of positioning of controls, you will use the XPos and YPos properties in the end,
whether or not you start with the "paint" drag-and-drop approach. Many find the
combination approach easier because using drag-and-drop allows you to see the
approximate layout, but setting the XPos and YPos properties lets you fine-tune
the result.

In this case, we will move the State/Province, Postal Zone, and Country controls
to a second line in the Body section, below the City control. We will move the three
controls together just as they are originally positioned, but will locate them on a
second line of the section, left justified with the City control. You can highlight all
three controls at once, drag them over and drop them into the position. You can use
the group movement to align them by eye to the best of your ability.

Reports

[210]

Some of the things that seem intuitive to do just can't be done. It isn't possible to use
the align tool to left align the group of three controls with another control. The tool
would just left align all four controls and that wouldn't be useful as the three controls
on one line would end up stacked on top of one another (i.e. the group would not
be left aligned, but each of the individual controls would be left aligned to the same
position). You can't access properties for the three controls as a group, only for each
control individually.

So once you get your control positioning approximated by eye, then you must check
the XPos and YPos figures and align each control individually. After you get done
with the data controls, you have to reduce the height of the label (header) controls
to one line (423 mm/100) and then position them the same way. When you're all
done, your sections should look somewhat similar to the following screenshot. It
may take you a little practice to get the hang of this combined "left brain–right brain"
approach, using both visual and data-oriented tools.

When you save, run and preview this version (Repot 50003), you should see a report
result similar to the following screenshot:

Chapter 5

[211]

Revision—Second Design
The other design approach we could easily use is to reduce the size of some of the
fields where it appears the size allowed by the Wizard's generated layout is larger
than the size we really need. In this case, by observation (and experience), it looks
like we could squeeze down the Title/Prefix, the Address Line, the City, and the
State/Province fields somewhat. Doing all these isn't necessary, so decide which ones
will get you the most space with the least effort and let's go to work.

As before, we want to work on a copy of our original and, as before, we have to
give it a unique name. So we'll use the same essential technique as before (highlight
Report 50000, go to Design | File | Save As, set ID to 50004, and set Name to
Member List-2) to create the copy. Since we're going to be shortening some data
controls and we would like to have the end result look as well positioned as what the
Wizard does, we need to check what the Wizard does for inter-field spacing. If we
check the properties of the first three or four controls on a row in a section, we'll find
that the Wizard spaces controls 150 mm/100 apart. So when you re-position controls,
you'll want to do the same.

The first step is to shorten the City field. Highlight the data control in the Body
section, and then use the layout paint function to grab a handle on the right side of
the control and drag it to the left, thus shortening the control. When you think you've
got it resized appropriately, then it's time for a test run. One way to really test your
new sizing is to enter a Test Member record with each field filled in to its maximum
size. Those fields that are numeric, text, or code, can be filled in with the repeating
string '1234567890134567890….'. With that test data, you can clearly see in a test run
how well your control sizes fit your defined field sizes.

In this screenshot you can see that our shortened City field control will display
24 characters out of the 30 the field can hold. If you think that size will work well
enough for our report, we can move on to the next step. Otherwise you should resize
the field and test again.

Reports

[212]

Once that field size is acceptable, then adjust the next field size, and test again.
Continue this cycle until you have your fields shrunk down so that you can fit your
Body section data onto a single print line. Once that is done, the next step is to move
the reduced-size controls into their final position on the line. This can be done, as
in the earlier design revision effort, by first using drag-and-drop, then fine-tuning
the position by adjusting the XPos and YPos properties. It's probably just as easy
to determine by inspection and simple math what the proper XPos for each control
should be, and then set it accordingly. Yes, it's somewhat tedious to go step by step
through each control's properties, rounding the adjusted lengths to logical figures,
and calculating the proper XPos for the next control, using the formula:

Control N Xpos + Control X Width + 150 control separator = Control N+1 Xpos.

When you've got the Text controls in the Body Section all moved to their desired
positions, then you need to resize and move the Label controls in the Header section
so that they each match their respective Text controls. When you're all done, your
redesigned report layout should look similar to the following screenshot:

Once you like the result and decide this is the copy of the report that you want to
keep for production use, it's time to wipe out the development copies and replace the
original copy with the new version. One choice is to Design the final copy, then use
File | Save As and assign the ID and name to overwrite the original ID of 50000 and
Member List. Then delete the development Report objects 50003 and 50004. Or you
could delete report objects 50000 and 50003, then renumber object 50004 to 50000 and
rename it to Member List. The result is the same; you should do whatever feels more
comfortable to you.

Chapter 5

[213]

Creating a Report from Scratch
Even when you're going to create a report that cannot be done with the Report
Wizard, it's still a good idea to use the Report Wizard as a starting point, if feasible.
Choose the primary table in terms of data flow and layout, then rough out the report
using the Wizard. Once that is done, begin modifying the report using the Designer
to add parent and child data items, to add additional total levels, etc.

If your final target report is to be an Invoice format, for example, you could begin
the report development by using the Wizard to lay out the Invoice Detail line.
You would then use the Designer to create the Invoice Header sections and the
appropriate Footer sections.

Let's start a simple Invoice example. A good designer defines the goal before
starting development. To work the other way around is known as the "Ready, Fire,
Aim" approach.

A simple INVOICE layout might look like the following:

The first thing we need to create is a table listing the charges to be invoiced. We'll
create a Member Charge table for our C/ANDL system. Remember, this is just an
example and a lot simpler than the Invoice data in the NAV standard system.

Reports

[214]

See the following screenshot for the data fields with which you could start:

We'll give the Member ID a relationship to the Member table as shown in the
next screenshot:

Chapter 5

[215]

Now we'll define some Keys. The Document No., Line No. fields will provide us
with a unique key combination, so we'll use that as our primary key. Then we'll add
a couple more keys based on what we as developers think the users will find useful
(or, if this were real rather than an exercise, we would add keys based on how the
users told us they would use the data in this table).

Now, let's populate the table with enough data that we can do a simple test. At
this point, rather than creating a form, we will just Run the table and use the
automatically generated temporary form to enter our sample data.

The next step in our example is to use the Report Wizard to create a first draft
Invoice report based on the Member Charge table. This is what we've been trying
to get to. The other work so far was a matter of building the foundation on which
we could construct a report. This Wizard-generated report structure can then be a
starting point for the full Invoice layout creation. We will save this as Report 50020
– Member Invoice.

Reports

[216]

Step 1 is to call up the Report Wizard, give it the name of the target table, the Member
Charge table, and tell it to create a Tabular-Type report.

Step 2 is to choose the fields to be displayed, based on the layout we created earlier.
Remember, we are using the Report Wizard to layout the basic Invoice Line section,
and then we're going to manually revise the report layout after the Report Wizard
does its magic.

Chapter 5

[217]

Step 3 is to define the data sequence we want to use. In this case, we don't want to
allow the user to define a sequence at report print time, because we want to define
the sequence based on the table's primary key as shown in the following screenshot.
We will choose the Document No., Line No. key for our predefined sort sequence.

Step 4 is to define our data grouping. This tells the Report Wizard to create totals
based on this data grouping. This will cause the Report Wizard to generate the
C/AL code for our Invoice Totals based on the Document No. Line No. keys.

Reports

[218]

Step 5 is to choose the field(s) to be totaled from those eligible. We are allowed to
pick from the integer and decimal fields. By choosing Amount plus Tax, we will
have a total for the whole document.

Step 6 is to choose a report style. If you don't already know which style you want
when you get to this point, the best way to choose is to pick one, then Preview what
it will look like, then exit the preview display, pick the other one, and preview what
it will look like. You can go back and forth between the options until you decide
which is closest to your target layout, then choose that one and proceed.

Chapter 5

[219]

Step 7 is to save your generated report with a unique number and name.

At this point, it is a good idea to preview the generated report to see what you've got.
In fact, you probably will want to print it out, so that you can more easily compare
the generated result to your original layout and identify what remains to be done.

It's always useful at this point to also compare the printout of the generated report
to the sections, to see what controls were used for each of the displayed fields. From
that information, you can begin to plan how you want to manually change the
sections to make the final report look like your original design layout.

Reports

[220]

Often, it is also useful to look at two or three of the standard NAV reports for similar
functions to see how they are constructed. There is no sense in re-inventing the
wheel (i.e. a report of a particular type) when someone else has not only invented a
version of it already but provided you with the plans (i.e. the ability to peer into the
C/AL code and the complete structure of the existing report object).

Chapter 5

[221]

After you have moved some fields around, and added some header fields that your
layout calls for, your in-process report design may look similar to the following
screenshot. It's still not complete, but it's beginning to take shape. Note that to
populate the Company Address fields shown here, C/AL code will also have to be
added to read the Company Information table (Table 79).

Reports

[222]

At frequent intermediate points, it is very helpful in C/SIDE development to do
test runs. This is particularly true when developing forms or reports. If we do
a preview run of our report at the point of the sections layout in the preceding
screenshot and select Document No. 100, we will get the INVOICE shown in the
following screenshot:

Obviously the job is not done yet, but we are well on the way. To finish this
particular example, we need some C/AL programming tools that we won't
learn about until a later chapter. So we might want to lay this example aside and
experiment with something else for a little while.

A key point of all this is to realize that even though the Wizards are of limited
capability, they still can be used to make the work a lot easier. This is especially true
for relatively straightforward forms and reports.

Of course there will be occasions when using the Report Wizard is simply not useful,
in which case you will begin with a totally blank slate. There will also be cases
where you do start out with the Wizard's output and strip out some of what the
Wizard puts in. The reason for using the Wizard is not the high quality of the code it
generates (it's adequate, but not very elegant), but for the time it saves you.

Chapter 5

[223]

Creative Report Plagiarism
Just as we talked about in the chapter on Forms, when you want to create a new
report of a type that you haven't done recently (or at all), it's a good idea to find
another report that is similar in an important way and study it. At the minimum,
you will learn how the NAV developers solved a data flow or totaling or filtering
challenge. In the best case, you will find a model that you can follow closely,
respectfully plagiarizing a working solution, thus saving yourself much time
and effort.

When it comes to modifying a system such as NAV, plagiarism is a very effective
research and design tool. In the case of reports, your search for a model may be
based on any of several key elements. You might be looking for a particular data
flow approach and find that the NAV developers used the Integer table for some
Data Items (as many reports do).

You may need a way to provide some creative filtering similar to what is done in
an area of the standard product. You might want to provide user options to print
either detail or a couple of different levels of totaling, with a layout that looks good
no matter which choice the user makes. You might be dealing with all three of these
design needs in the same report. In such a case, you are likely to be using multiple
NAV reports as your models, one for this feature, another for that feature, and
so forth.

More likely, if you have a complicated, application-specific report to create, you
won't be able to directly model your report on something that already exists. But
quite often, you can still find ideas in standard reports that you can apply to your
new report design. Most of the time, you'll be better off if you are only required to
develop a modest amount of new design concept rather than inventing a totally
new approach.

Too often, if your design concept is too big a leap from what has been done before by
others you will find the tools available have built-in constraints that make it difficult
for you to achieve your goal. In other words, generally you should build on the
obvious strengths of C/AL. Creating entirely new approaches may be very satisfying
(when it works), but too often it doesn't work well and costs a lot.

Special Output Issues
This section discusses some issues related to report output.

Reports

[224]

Printing PDF Files
Creating reports as electronic PDF (Adobe Portable Document Format) files allows
reports to be stored, shared, transmitted, and used as searchable source documents.
Fortunately, there is no particular barrier to creating PDF reports from NAV. All
you need to do is install one of the many available PDF printer driver emulators and
select that device when printing.

Printing HTML Formatted Output
This capability is even simpler than printing PDF formatted files. HTML formatted
printing is built into NAV. In fact, you not only can print to HTML formatted files,
but there is also a built-in option supporting the creation of HTML formatted report
output and attaching it to an email ready to send. Both of these options are available
on the File menu after you have printed a report in Preview mode. The print to
HTML option is shown in the following screenshot as Save as HTML the print to
HTML and attach to an email option is shown in the following screenshot as
Send|Report by E-Mail….

Chapter 5

[225]

Printing to an Impact Printer
The first advice you will likely receive when considering printing to an impact
printer (typically a dot-matrix printer) from NAV, is "don't do it". Because NAV
and Windows really want to consider all output devices as graphic devices, some
inherent conflicts are set up with a fixed format device such as a dot-matrix printer.
If you don't design your report sections and controls in exactly the correct fashion,
dot-matrix output will either be a mess or incredibly slow or both. Fortunately, there
are some techniques that are not too difficult to apply.

First, because the print-line height on an impact printer is a function of the print head
and paper tractor mechanism, there is generally only one "natural" line height, often
this equates to either six lines per inch or eight lines per inch. When you lay out your
report sections, make sure that all lines are exact multiples of a single line height. The
normal default for NAV is a line height of 423 mm/100. This height works well for
six lines per inch impact printing.

The other technique you must use is to ensure that all controls are ID numbered in
sequence left to right on each line and top to bottom, line by line, section by section.
In other words, if you were to take a copy of your physical page layout showing
each print control on the layout, the numeric sequence would have to follow the
same pattern going down the page as your eyes are following when reading this
paragraph, left to right on a line, then down from the right end of one line to the left
end of the next line. If you do not do this, Windows attempts to output to the printer
in a graphics mode and the results are quite unpredictable, sometimes even varying
from page to page within a report. Control ID numbers do not need to be contiguous,
do not need to be in any particular number ranges. They simply need to be in
ascending order in the pattern described.

Summary
In this chapter, we have focused on the structural and layout aspects of NAV Report
objects. We have studied those primary structural components, data and format,
along with the Request Form. We have experimented with some of the tools and
modestly expanded our C/ANDL application.

In the next chapter, we are going to begin exploring the key tools that pull the
other pieces together, the C/SIDE development environment and the C/AL
programming language.

Introduction to
C/SIDE and C/AL

Language is a process of free creation; its laws and principles are fixed, but
the manner in which the principles of generation are used is free and infinitely
varied—Noam Chomsky

In the preceding chapters, we introduced the basic building block objects of NAV
tables, forms, and reports. In each of these we reviewed the triggers within various
areas such as the overall object, controls, data items, the Request Form, and so on.
The purpose of each trigger is to be a container in which C/AL code can reside. The
triggers are "fired", i.e. invoked or executed, when certain pre-defined events occur.

In this chapter, we're going to begin learning more about the C/AL programming
language. We'll start with the basics, but we won't spend a lot of time on those. Many
things you already know from programming in other languages apply to C/AL. Inother languages apply to C/AL. In to C/AL. In
addition, many of the basic definitions can be found in the Application Designer'sApplication Designer's
Guide and in the online C/AL Reference Guide that is part of the NAVt of the NAV Help.

Our goal here is to make it faster for you to learn how to navigate and productively learn how to navigate and productively
use the C/SIDE development environment as well as to be comfortable in C/AL.
We'll focus on the tools and processes that you use most often. Hopefully, you will
also learn concepts that you can apply in more complex tasks down the road.

As with most programming languages, you have considerable flexibility for defining
your own model for your code structure. However, when you are inserting new code
within existing code, there's a strong argument for utilizing the model that already
exists in the original code. When you feel compelled to improve on the model of the
existing code, do so in small increments.

Introduction to C/SIDE and C/AL

[228]

Essential Navigation
All development for NAV normally takes place within the C/SIDE environment. The
only exceptions are the possibility of doing development in Text mode using any text
editor or the Developer's Toolkit. That approach is generally only appropriate for
simple modifications to existing objects. In general, the recommendation is "don't do
it that way".

As an Integrated Development Environment, C/SIDE provides you with a
reasonably full set of tools for your C/AL development work. C/SIDE is not nearly
as fully featured as Microsoft's Visual Studio, but the features it does have are quite
useful. C/SIDE includes a smart editor (it knows something about C/AL, though
sometimes not as much as you would like), the one and only C/AL compiler,
integration with the application database, and tools to export and import objects both
in compiled format and as formatted text files.

We'll explore each of these C/SIDE areas in turn. Let's start with an overview of the
Object Designer.

Object Designer
All the NAV object development work can be done within the C/SIDE Object
Designer. The Object Designer is accessed by selecting Tools | Object Designer or
pressing Shift+F12, as shown in the following screenshot:

Chapter 6

[229]

The type of object on which you're going to work is chosen by clicking on one of the
buttons on the left side of the Object Designer screen. The choices match the seven
object types Table, Form, Report, Dataport, XMLPort, Codeunit, and MenuSuite.
When you click on one of these, the Object Designer screen display is filtered to
show only that object type. There is also an All button, which allows objects of all
types to be displayed on screen.

No matter which object type has been chosen, the same four buttons appear at
the bottom of the screen: New, Design, Run, and Help. But, depending on which
object type is chosen, the effect of selecting one of these options changes. When you
select Design, you will open the object that is currently highlighted in a Designer
specifically tailored to work on that object type. When you select Run, you will be
requesting the execution of the currently highlighted object. The results of that, of
course, will depend on the internal design of that particular object. When you select
Help, you will be presented with the overall C/SIDE Help screen, positioned at the
general Object Designer Help.

Starting a New Object
When you select New, the screen you see will depend on what type of object has
focus at the time you make the New selection. In each case, you will have the
opportunity to begin creating a new object and you will be presented with the
Designer for that particular object type.

The New Designer screens for each of the object types are as follows:

The Table Designer screen is shown in the following screenshot:

The Table Designer invites you to begin defining data fields. All the associated C/AL
code will be embedded in the underlying triggers and developer-defined functions.

Introduction to C/SIDE and C/AL

[230]

For the Form Designer the first screen is as follows:

Any New Form effort begins with the choice of using the Wizard. If you wish not to
use the Wizard and want to begin designing your form from scratch, you will select
the Create a blank form option and then will see the following screen, which is your
form layout screen:

Chapter 6

[231]

For Report Designer you first see the following screen:

Any new report effort begins with the choice of using the Wizard. If you wish not to
use the Wizard and want to begin designing your report from scratch, you will select
the Create a blank report option. You'll then see the following screen where you can
begin by defining the primary DataItem for your report.

Introduction to C/SIDE and C/AL

[232]

The Dataport Designer is as seen in the following screenshot:

There is no Wizard for Dataports, so you go directly to the Dataport Designer
screen. Notice that just like in the Report Designer screen, the Dataport Designer
screen is set up for you to enter the DataItem(s) that your Dataport will process.
We'll go into Dataports in more depth later, but it's interesting to note the basic
similarity between Reports and Dataports. They both provide a predefined
processing cycle that loops through the records of the input data.

Codeunits have no superstructure or surrounding framework around the single code
trigger. Codeunits are primarily a shell in which you can place your own functions
and code so that it can be called from other objects.

XMLports are tools for defining and processing XML data structures. XML is a
set of data formatting rules for dissimilar applications to exchange data. In NAV,
XMLports must be executed from other code (preferably Codeunits) as they cannot
be run directly.

Chapter 6

[233]

It was possible to define and process XML data prior to the addition of XMLports
in V4.0, but it was a lot harder. The XML Designer provides considerable assistance
in defining the hierarchical data structures of XML. XMLports are not essential to
basic C/AL work and so far, most enhancements don't require XML interfaces, so
we won't be spending much time on this object type. Once you become comfortable
using C/SIDE and C/AL, you will want to learn about XML and XMLports because
XML is becoming more and more important for inter-system data exchanges.

MenuSuites were also (along with XMLports) introduced in V4.0 of NAV. The initial
screen that comes up when you ask for a new MenuSuite asks you to choose what
MenuSuite Design Level you are preparing to create. The following screenshot
shows all 14 available Design Level values:

Introduction to C/SIDE and C/AL

[234]

When one of those design levels has been used (i.e. created as a MenuSuite option),
that design level will not appear in this list the next time New is selected in the
MenuSuite Designer. MenuSuites can only exist at the 14 levels shown. Only one
instance of each level is supported. Once you have chosen a level to create, NAV
shifts to the MenuSuite Designer mode, which looks similar to a MenuSuite in
production mode except for the heading at the top. The following screenshot shows a
Navigation Pane (the MenuSuite displayed) ready for production use:

Chapter 6

[235]

The following screenshot shows the same Navigation Pane in Designer mode:

As you can see, the main visible differences are the change in the heading to indicate
what MenuSuite Level is being Designed (Company in this case) and the chevrons to
the left of each menu bar icon.

Pressing Alt+F12 or selecting Tools | Navigation Pane Designer will also take you
into the Navigation Pane (MenuSuite) Designer. The only way to exit this Designer
is by pressing Esc with focus on the Navigation Pane or by right-clicking on the
Navigation Pane Designer heading and selecting the Close Navigation Pane Designer
option that displays. There are a number of basic look and feel differences between the
MenuSuite Designer and the other object designers. Some of these are simply due to
the ways MenuSuites are different from other NAV objects and some are undoubtedly
due to design decisions made by the Microsoft developers of the tool.

We will discuss what you can do with MenuSuite development more in Chapter 10.

Introduction to C/SIDE and C/AL

[236]

Some Designer Navigation Pointers
In many places in the various designers, standard NAV data entry keyboard
shortcuts apply. For example:

F3 to create a new empty entry.
F4 to delete an entry.
F8 to copy the preceding entry.
F5 to access the C/AL Symbol Menu, which shows you a symbol table for the
object on which you are working. But this isn't just any old symbol table; this
is a programmer's assistant. We'll go into how this works after we learn more
about C/AL.
F9 to access underlying C/AL Code.

These last two (F5 and F9) are particularly useful because sometimes the icons that
you might normally use to access these areas disappear (a long standing system
idiosyncrasy). The disappearing icons are disconcerting, but only a minor problem if
you remember F5 and F9.

F11 to do an on-the-fly compile (very useful for error checking code as you
write it).
Shift+F4 to access properties.
Ctrl+Alt+F1 to bring up a Help screen showing all the available Function
Key actions.
Ctrl+X, Ctrl+C, and and Ctrl+V in normal Windows mode for deletion (or cut),
copy, and paste, respectively.
You can cut, copy, and paste C/AL code relatively freely within an object or
from object to object, much as if you were using a text editor. The source and
target objects don't need to be of the same type.
Ctrl+F8 while highlighting any data record to zoom in on a display of thezoom in on a display of the in on a display of the
contents of all the fields in that record. This works for users and their data as
well as for developers.

When you are in a list of items that cannot be modified, for example the C/AL
Symbol Menu or a Zoom display on a record, you can focus on a column, click on
a letter, and jump to the next field in sequence in the column starting with that
letter. This works in a number of places where search is not supported, so it acts as
somewhat of a search substitute.

•

•

•

•

•

•

•

•

•

•

Chapter 6

[237]

The easiest way to copy a complete object in order to create a new version is to:

1. Open the object in Design mode.
2. Click on File | Save As object, assign a new object number, and change the

object name (no duplicate names are allowed). A quick (mouseless) way to
do a Save As is Alt+F, Alt+A, continuously holding down the Alt key while
pressing first F, then A.

Don't ever delete an object or a field numbered in a range where your license doesn't
allow creation of an object. If you don't have a compiled back-up copy of what
you've deleted available for import, you will lose the ability to replace the deleted
item. If you want to use an object or field number for a different purpose than the
standard system assignment (not a good idea), make the change in place. Don't try a
delete, followed by add; it won't work.

Exporting Objects
Object ExporExport can be accessed for backup or distribution purposes via can be accessed for backup or distribution purposes via File | Export.
Choosing this option brings up a standard Windows file-dialog screen with the file
type options of .fob (NAV object) or .txt as shown in the following screenshot.
The safer, more general purpose format for exporting is as a compiled object, created
with a file extension of .fob. But the alternative is available to export an object as a
text file with a file extension of .txt. An exported text file is the only way to use an
external tool such as a third-party text editor to do before and after comparisons of
objects or to search objects for the occurrences of strings (such as variable names).

Introduction to C/SIDE and C/AL

[238]

A compiled object can be shipped to another system as a patch to install with little
fear that it will be corrupted midstream. The system administrator at the other
system simply has to import the new object with some directions from you. Exported
compiled objects also make excellent backups. Before changing or importing any
working production objects, it's always a good idea to export a copy of the "before"
object images into a .fob file, labeled so you can easily find it for retrieval. Any
number of objects can be exported into a single .fob file. You can later selectively
import any one or several of the individual objects from that group .fob.

Importing Objects
Object Import is accessed via File | Import. The import process is more complicated
than the export process because there are more possibilities and decisions that are to
be made. Since we've already mentioned exporting both text and compiled versions
of an object, you might assume we can import both formats and you would be
correct. The difference is that when you import a compiled version of an object, the
Object Designer allows you to make decisions about importing and provides you
with some information to help you.

However, when you import a text version of an object, the new version is brought in
regardless of what it overwrites and regardless of whether or not the incoming object
can actually be compiled. In other words, by importing a text-formatted object, you
could actually replace a perfectly good, modified production object with some trash
that only had a passing resemblance to a text object. The moral of this story is "Be
very, very careful when importing" or "Look before you leap". It is best if
text-formatted objects are never used when sending objects to an end user
for installation.

When you import a compiled object (i.e. from a .fob file), you will get one of two
decision-message screens, depending on what the Object Designer Import finds
when it checks for existing objects. If there are no existing objects that the Import
logic identifies as matching and modified, then you will see the following dialog:

The safest thing to do is always open the Import Worksheet by clicking on the No
button. Then examine what you see there before proceeding with the import.

Chapter 6

[239]

If the .fob file you are importing is found to have objects that could be in conflict
with existing objects that have been previously modified, then you will see the
following dialog:

In this case, you will definitely want to click OK to open the Import Worksheet and
examine the contents.

An example of what you might see in the Import Worksheet is shown in the
following screenshot:

While all of the information presented is useful at one time or another, usually you
can focus on just a few fields. The basic question, on an object-by-object basis, is
"Do I want to replace the old version of this object with the new copy?" In the case
of tables, import also allows you to merge the incoming and existing table versions.
Only very sophisticated developers should attempt to use this feature.

Introduction to C/SIDE and C/AL

[240]

The rest of us should always either choose the Import Action Replace or Skip (or
Create, if it is a new object). This latter statement applies to all the object types.

At the bottom of the preceding screenshot, you can see the comparison of the
Existing object and the New object information. You must use this information to
help you decide whether or not to accept the import of this object (action of Create
or Replace or action of Skip). More information on using the Import Worksheet and
the meaning of various Warnings and Actions can be found in C/SIDE Reference
Guide Help under Import Worksheet.

Text Objects
A text version of an object is especially useful for a few development tasks. C/AL
code or expressions can be placed in a number of different nooks and crannies
of objects. In addition, sometimes object behavior is controlled by Properties.
Consequently, it's not always easy to figure out just how an existing object is
accomplishing its tasks. But an object exported to text has all its code and properties
flattened out where you can use your favorite text editor to search and view.
Text copies of two versions of an object can easily be compared in a text editor. In
addition, a few tasks, such as renumbering an object, can be done more easily in the
text copy than within C/SIDE.

Object Numbers
In Chapter 1 we reviewed some object numbering practices followed in NAV.
The object number range for general purpose custom objects (those not part of
an add-on) starts at 50000. If your client has purchased the license rights to Table
Designer, the rights to 10 table objects are included, numbered 50000 to 50009. With
Form Designer come the rights to 100 forms objects, numbered 50000 to 50099. With

Chapter 6

[241]

the Report Designer and Dataport Designer come the rights to 100 report objects
and 100 dataport objects respectively, each numbered 50000 to 50099. With the
XMLport Designer come the rights to 100 XMLport objects, numbered 50000 to
50099. Codeunit objects must be licensed separately. As part of the standard system,
the customer has access to the MenuSuite Designer, not to add new levels, but just to
modify the Company level.

Some Useful Practices
Liberally make backups of objects on which you are working. Always make a
backup of the object before you start changing it. Do the same regularly during the
development process. In addition to power outages and the occasional system crash,
once in a while you may do something as a developer that upsets C/SIDE and it will
go away without saving your work.

Use F11 to test-compile frequently. You will find errors more easily this way.

When developing forms or reports, use Alt+F, Alt+R to do test runs of the objects
relatively frequently. Whenever you reach a stage of having a working copy, save it.

Never design a modification that places data directly in or changes data directly in
a Ledger table without going through the standard Posting routines. It's tempting
to do, but doing so is an almost sure path to unhappiness. If you are creating a new
Ledger for your application, for the sake of consistency with the NAV standard flow,
design your process with a Journal table and a Posting process.

It at all possible, try to avoid importing modifications into a production system when
there are users logged into the system. If a logged in user has an object active that is
being modified, they will continue working with the old version (courtesy of NAV's
Versioning feature) until they exit and re-enter. Use of the old object version may
cause confusion or possibly even more serious problems.

Whenever possible try to test modifications in a reasonably current copy of the
production system. Do your final testing using real data (or at least realistic data)
and a copy of the customer’s production license.

If you wish to reduce the likelihood that a change to a production system is
incompatible with the rest of the system, recompile all the objects in the system
after importing changes. You must have all referenced Automation or OCX routines
registered in your system for this to work well. Note that, in systems in which
developers have left inoperable or obsolete "temporary" objects (i.e. systems that
have not had proper "housekeeping"), you may uncover serious problems this way,
so be prepared.

Introduction to C/SIDE and C/AL

[242]

Changing Data Definitions
The integration with the application database is particularly handy when you are
making changes to an application that is already in production use. C/SIDE is good
about not letting you make changes that are inconsistent with existing data. For
example, let's presume you have a text field that is defined as being 30 characters
long and there is already data in that field in the database, one instance of which is
longer than 20 characters. If you attempt to change the definition of that field to 20
characters long, you will get an error message when you try to save and compile the
table object. You will not be able to force the change until you adjust either the data
in the database or you adjust the change so that it is compatible with all existing data.

Saving and Compiling
Whenever you exit the Designer for an object, if you have changed anything, by
default NAV wants to save and compile the object on which you were working. You
will see a dialog similar to the following screenshot:

If you want to save the changed material under a new object number, you must
Cancel this option and exit after using the File | Save As option. If your object under
development is at one of those in-between stages where it won't compile, you can
uncheck the Compiled check box and just Save without compiling. You should not
complete a development session without getting a clean compile.

On occasion, you may make changes that you think it will affect other objects. In
that case, from the Object Designer screen, you can select a group of objects to be
compiled. One relatively easy way to do that is to mark each of the objects to be
compiled, then use the View | Marked Only function to select just those marked
objects. That allows them to be compiled en masse. Marking an object is done by
putting focus on the object and pressing Ctrl+F1. The marked object is then identified
with a bullet in the left screen column for that object's row.

Chapter 6

[243]

See the four marked objects in the following screenshot:

Selecting View | Marked Only yields the following screenshot:

Introduction to C/SIDE and C/AL

[244]

Select all the entries, press F11, and respond Yes to the question "Do you want
to compile the selected objects?" Once the compilation of all the selected objects
is completed, you will get a message indicating how many of the objects had
compilation errors. After you respond to that message, only the objects with errors
will remain marked. Since the Marked Only filter will be on, just those objects that
need attention will be shown on the screen.

Some C/AL Naming Conventions
In the previous chapters, we have discussed naming conventions for tables,
forms, and reports. In general, the naming guidelines for NAV objects and
C/AL encourage consistency, common sense, and intelligibility. It is good to use
meaningful names. These makes the system more intuitive to the users and more
self-documenting to those who must maintain and support the system. If you have
access to a copy of the document C/AL Programming Guide, you will find there a
section on NAV Naming Conventions that covers the basics.

When naming internal variables, try to keep the names as self-documenting
as possible. Make sure you differentiate between similar, but different, values
such as Cost (cost from the vendor) and Amount (selling price to the customer).
Embedded spaces, periods, or other special characters must be avoided. When you
are defining multiple instances of a table, either differentiate clearly by name (e.g.
Item and NewItem) or by a suffix number (e.g. Item1, Item2, Item3). In the very
common situation where a name is a compound combination of words, begin each
abbreviated word with a capital letter (e.g. NewCustBalDue).

Avoid creating variable names that are common words that might be reserved words
(e.g. Page, Column, Number, and Integer). C/SIDE will not warn you that you
have done so and you may find your logic and the automatic logic working at very
mysterious cross purposes. Do not start variables with a suffix "x", which is used in
some automatically created variables (such as xRec). Be sure to clearly differentiate
between internal variable names and those originating in tables. C/SIDE will allow
you to have a global name, local name, and/or record variable name, all with
the same literal name. If you do this, you are practically guaranteeing a variable
misidentification bug where the compiler uses a different variable than what you
intended to be referenced.

When defining a temporary table, preface the name with Temp. In general, use
meaningful names that help identify the type and purpose of the item being named.
When naming a new function, you should be reasonably descriptive. Don't name
two functions located in different objects with same name. It will be too easy to get
confused later.

In summary, be careful, be consistent, be clear, and use common sense.

Chapter 6

[245]

Variables
As we've gone through our examples showing various aspects of C/SIDE and C/AL,
we've seen and referred to variables in a number of situations. Some of the following
is likely obvious, but for clarity's sake we'll summarize here.

In Chapter 3, Fields, we reviewed the various Data Types that can be defined for
variables defined within objects (referred to in Chapter 3 as Working Storage Data
Types). Working Storage consists of all the variables that are defined for use within
an object, but whose contents disappear when the object closes. The Data Types
discussed there are those that can be defined in either the C/AL Global Variables or
C/AL Local Variables tabs. Variables can be defined in these and several other places
in an NAV object.

Global Variables
Global Variables are defined on the C/AL Globals form Variables tab, which we
have just accessed in our function creation exercise.

Global Text Constants are defined on the Text Constants tab section of the C/AL
Globals form. The primary purpose of the Text Constants area is to allow easier
translation of messages from one language to another. By putting all message text
in this one place in each object, a standardized process can be defined for language
translation. There is a good explanation in the Application Designer's Guide on how
to create Text Constants.

Global Functions are defined on the Functions tab of that same form.

Local Variables
Local Variables can only exist defined within the range of a trigger. This applies
whether the trigger is a developer-defined function or one of the default system
triggers or standard application-supplied functions.

Function Local Variables
Function Local Variables are defined on one or another of the tabs on the C/AL
Locals form that we use for defining our function.

Parameters and Return Value are defined on their respectively named tabs.

The Variables and Text Constants tabs for C/AL Locals are exactly similar to the
C/AL Globals tabs.

Introduction to C/SIDE and C/AL

[246]

Other Local Variables
Trigger Local Variables are also defined on one or another of the tabs on the C/AL
Locals form. The difference between trigger Local Variables and those for a function is
that the first two tabs, Parameters and Return Value, are disabled for triggers that are
not defined as functions. The use of the Variables and Text Constants tabs are exactly
the same for triggers as for functions. When you are working within a trigger, you can
access the Local Variables through the menu option View | C/AL Locals.

Special Working Storage Variables
These are those variables that can be defined within an object for use within that
object only.

Temporary Tables
Temporary tables were discussed in Chapter 2. Now let's take a quick look at how
one is defined. Defining a Global Temporary table starts just like any other Global
Variable definition of the Record data type. Select View | C/AL Globals, enter a
variable name, data type of Record, and choose as the Subtype the table whose
definition is to be replicated for this temporary table. With focus on the new Record
variable, click on the Properties icon (or press Shift+F4). Set the Temporary property
to Yes. That's it, you’ve defined a Temporary Table..

Chapter 6

[247]

Now you can use the temporary table just as though it were a permanent table with
some specific differences:

The table contains only the data you add to it during this instance of the
object in which it resides.
You cannot change any aspect of the definition of the table in any way,
except by changing the permanent table (which was its template) using
the Table Designer, then recompiling the object containing the associated
temporary table.
Processing for a temporary table is done wholly on the client system and is
therefore inherently single user.
A temporary table creates no additional network traffic and is therefore faster
than processing the same data in a permanent, database-resident table.

Sometimes it is a good idea to copy database table data into a temporary
table for repetitive processing within an object. This can give you a
significant speed advantage for a particular task.

Arrays
Arrays of up to 10 dimensions containing up to a total of 1,000,000 elements in a
single variable can be created in an NAV object. Defining an array is done simply by
setting the Dimensions property of a variable to something other than the default
<Undefined>. An example is shown in the following screenshot:

•

•

•

•

Introduction to C/SIDE and C/AL

[248]

The semicolon separates the dimensions of the array. The numbers indicate the
maximum sizes of the dimensions. This example is a two dimensional array which
has three rows of 99 elements each. An array variable like TotalArray is referred to in
C/AL as follows:

The 15th entry in the first row would be TotalArray[1,15]
The last entry in the last row would be TotalArray[3,99]

Initialization
When an object is initiated, all the variables within the object are automatically
initialized. Booleans are set to false. Numeric variables are set to zero. Text and code
data types are set to the empty string. Dates are set to 0D (the undefined date) and
Times are set to 0T (the undefined time). The system also automatically initializes all
system-defined variables.

Of course, once the object is active, you can do whatever initialization you wish.
And if you wish to initialize variables at intermediate points during processing, you
can use any of several approaches. Initialize a Record variable (for example, our
TempCust temporary table) with the INIT function in a statement in the form:

TempCust.INIT;

In that case, all the fields, except those in the primary key, are set either to their
InitValue property value or to their data type default value. Primary key fields must
be explicitly set by C/AL code.

For other types of data, you can initialize fields with the CLEAR function in a
statement in the form:

CLEAR(TotalArray[1,1]);
CLEAR(TotalArray);
CLEAR("Shipment Code");

The first example would clear a single element of the array, the first element in the
first row. Since this variable is a Decimal data type, the element would be set to 0.0
when cleared. The second example would clear the entire array. In the third example
a variable defined as a Code data type would simply be set to an empty string.

•

•

Chapter 6

[249]

System-Defined Variables
NAV also provides you with some variables automatically. What variables are
provided is dependent on the object in which you are operating:

A Definition of Programming in C/SIDE
Many of the things that we do during development in C/SIDE might not properly
be called programming. But so long as these activities contribute to the definition
of the object and affect the processing that occurs, we'll include them in our broad
definition of C/SIDE programming.

These activities include setting properties at the object and Data Item levels, creating
Request Forms in Reports, defining Controls and their properties, defining Report
Sections and their properties, creating Source Expressions and, of course, writing
C/AL statements in all the places that you can put C/AL. Our study will include
C/SIDE programming primarily as it relates to tables, reports, and Codeunits. We
will touch on C/SIDE programming for forms and dataports, but not for XMLports
because that is a relatively advanced C/AL topic and because, at this time, XMLport
programming requires additional knowledge that we will not address in this book.
And, since there can be no programming done with MenuSuites, we obviously will
omit those objects from the programming part of our discussions.

There is considerable similarity across NAV objects, just as you would expect. Most
have some kind of properties and triggers. Two, forms and reports, have controls.
Two, reports and dataports, have built-in data item looping logic. All five object
types that we are considering can contain C/AL code in one or more places. All
five of these can have functions defined that can then be called either internally or
externally, though good coding design says that any functions that are designed as
"library" functions should be placed in a Codeunit. Don't forget, your fundamental
coding work should focus on tables as much as possible, the foundation of the
NAV system.

Introduction to C/SIDE and C/AL

[250]

Functions
A function is a defined set of logic that performs a specific task. Similarly to many
other programming languages, C/AL includes a set of prewritten functions that are
available to you to perform quite a wide variety of different tasks. The underlying
logic for some of these functions is hidden, invisible, and not modifiable. These
functions are properly considered part of the programming language. Some simple
examples:

DATE2DMY: Supply a date, and depending on how you call this function, it
will give you back the integer value of either the day, the month, or the year
of that date.
STRPOS: Supply a string variable and a string constant; the function will
return the position of the first instance of that constant within the variable, or
a zero if the constant is not present in the string contained in the variable.
GET: Supply a value and a table, and the function will read the record in the
table with a primary key equal to the supplied value, if one exists.
INSERT: Add a record to a table.
MESSAGE: Supply a string and optional variables; the function will display a
message to the operator.

Such functions are the heart of the C/AL language. There are over 100 of them.
On the whole, they are designed around the essential purpose of an NAV system:
business and financial applications data processing. As these functions are not
modifiable, they operate according to their predefined rules.

As a point of information, a trigger is a combination of a defined event and a
function that is performed when the event occurs. In the case of the built-in
functions, NAV supplies the logic and the processing/syntax rules. In the case of
triggers, as the developer, you supply the processing rules.

In addition to the pre-written "language component" functions, there are a large
number of pre-written "application component" functions. An example might be
one to handle the task of processing a Customer Shipping Address to eliminate
empty lines and standardize the layout based on user-defined setup parameters.
This function would logically be placed in a Codeunit and thus made available
to any routine that needs this capability. In fact, this function exists. It is called
SaleHeaderShipTo and is located in the Format Address Codeunit. You can explore
the following Codeunits for some functions you might find useful to use or from
which to borrow logic. This is not an all-inclusive list, as there are functions in other
Codeunits that you will also likely find useful in some future development project.

•

•

•

•

•

Chapter 6

[251]

Some Codeunits containing useful functions are shown in the following table:

Object number Name
1 ApplicationManagement

356 DateComprMgt
358 DateFilter-Calc
359 PeriodFormManagement
365 Format Address
397 Mail
412 Common Dialog Management
5053 TAPIManagement
5054 WordManagement
6224 XML/COM Management

99000755 Calendar Management

The pre-written application functions generally have been provided to address the
needs of the NAV developers working at Microsoft. But you can use them too. Your
challenge will be to find out that they exist and to understand how they work. There
is very little documentation of these "application component" functions.

One significant aspect of these application functions is the fact that they are written
in C/AL and their construction is totally exposed. In theory, they could be modified,
though that is not advisable. If you decide to change one of these functions, you
should make sure your change is compatible with existing uses of that function. A
useful "trick" to find all the locations of use for a function is to add a dummy calling
parameter to the function (temporarily) and then compile all objects in the system.
You will get errors in all objects that call the changed function (don't forget about
having all Automation and OCX functions registered before compiling and don't
forget to remove the dummy calling parameter when you're done with testing).

We can also create our own functions for any needed purpose. There are several
reasons for creating new functions. The most common reason is to create a single,
standardized instance of the logic to perform a specific task. Just about any time
you need to use the same logic in more than one place, you should be considering
creating a callable function. If you need to create a customized variation on one of
NAV's existing functions, rather than change the original function, you should copy
the original into your own Codeunit and modify it as needed there.

Introduction to C/SIDE and C/AL

[252]

Another occasion when you should be creating functions is when you're modifying
standard NAV processes. One recommended rule of thumb is that whenever more
than one line of code is needed for the modification, the modification should be
created as a function in an external (i.e. modification-specific) Codeunit. That way
the modification to the standard process can be limited to a call out to the new
function. Though that approach is great in concept, it's often difficult to implement in
practice. If, for example, you're not just adding logic, but you want to revise the way
existing logic works, sometimes it is very convoluted to try to implement the change
through just a call and an external (to the mainline process) function. Perhaps a more
realistic approach is to set the threshold for creating an external function at some
higher level such as 20 lines or 50 lines of new or changed code.

Let's take a quick look at how a function can be created. We're going to add a new
Codeunit to our C/ANDL application, Codeunit 50000. Since this is where we
will put any callable functions we need for our Member-oriented application, we
will simply call it Member Management. In that Codeunit, we're going to create a
function to calculate a new date based on a given date. If that seems familiar, it's the
same thing we did in Chapter 3 to illustrate how a DateFormula data type works.
This time, our focus is going to be on the creation of the function.

Our first step is to copy Table 60000, which we created for testing, and then save it as
table 60001. As a reminder, we do that by opening Table 60000 in the Table Designer,
then selecting File | Save As, changing the object number to 60001 and the Name to
Date Formula Test-2 (see the following screenshot), then exiting and compiling.

Chapter 6

[253]

Once that is done, it would be good to change the Version List to show that this table
has been modified. If you used the coding of PN for Programming NAV and .06 for
a Chapter 6 change, then the Version List change would be to add PN.06 to whatever
was there previously.

We can create our new Codeunit by simply clicking on the Codeunit button, then
on the New button, and then choosing File | Save As, and entering the Object ID of
50000 and Name as Member Management.

Now to the hard part, designing our new function. When we had the function
operating as a local function inside the table where it was called, we didn't have to
worry very much about passing data back and forth. We simply used the data fields
that were already present in the table and treated them as global variables (which, in
effect, they were). Now that we're going to have our function be external to the object
from which it's called, we have to worry about passing data values back and forth.
Here's the basic logic of our function:

Output = Function (Input Parameter1, Input Parameter2)

In other words, we need to feed two values into our new callable function and accept
one value back on completion of the function's processing.

Our first step is to click on View | C/AL Globals, then the Functions tab.
Enter the name of the new function following the guidelines for good names,
(ApplyDateFormula), and then click on the Locals button. This will allow us to
define all the variables that will be local to the new function. The first tab on the
Locals screen is Parameters, i.e. input variables.

Introduction to C/SIDE and C/AL

[254]

Again, in keeping with good naming practice, we will define two input parameters,
as shown in the following screenshot:

An important note regarding the Var column at the left of the Parameters
tab form: If we check that column, then the parameter is passed by
reference to the original calling routine's copy of that variable. That
means when the called function (this one) changes the value of an input
parameter, the original variable value gets changed. Because we've
specified the input parameter passing here with no Var checkmark,
changes in the value of that input parameter will be local to the copy
of the data passed in to this function and will not affect the calling
routine. Checking the Var control on one or more parameters is a way to
effectively have more than one result passed back to the calling routine.

Chapter 6

[255]

Now we need to select the Return Value tab and define our output variable. That
will look like the following:

Once we complete the definition of our function and its local variables, we can exit
via the Esc key and the results will be saved. One way to view the effect of what we
just defined is to view the C/AL Symbol Menu. From the Codeunit Designer screen,
with your new Codeunit 50000 in view and your cursor placed in the code area for
our new function, click on View | C/AL Symbol Menu (or just press F5) and you
will see the following image:

Introduction to C/SIDE and C/AL

[256]

You can see that our ApplyDateFormula function has been defined with two
parameters and a result. Now, press Esc or select OK, move your cursor to the OnRun
trigger code area and again press F5 to view the C/AL Symbol Menu. You won't see
the two parameters and result. Why? Because those are local variables, which only
exist in the context of the function and are not visible outside the function. We'll
make more use of the C/AL Symbol Menu a little later, as it is a very valuable C/AL
development tool. But right now we need to finish our new function and integrate it
with our test Table 60001.

Move your cursor back to the code area for our new function. Then click on the menu
item Window | Object Designer | Table button, then on Table 60001 | Design, and
press F9. That should take you to the C/AL Code screen for Table 60001. Highlight
and cut the code line from the local CalculateNewDate function. Admittedly this
will not be a particularly efficient process this time, but hopefully it will make the
connection between the two instances of functions easier to envision. Using the
Window menu option, move back to our Codeunit function and paste the line of
code we just cut from Table 60001. You should see the following on screen:

Now edit that line of code so the variable names match those shown in our function
trigger above. This should give you the following display:

Press F11 to check to see if you have a clean compile. If you get an error, do the
traditional programmer thing. Find it, fix it, recompile. Repeat until you get a clean
compile. Then exit and Save your modified Codeunit 50000.

Chapter 6

[257]

Finally we must return to our test Table 60001, to complete the changes necessary to
use the external function rather than the internal function. The two lines of code that
called the internal function CalculateNewDate must be changed to call the external
function. The syntax for that call is:

Global/LocalVariable :=
 Local/GlobalObjectName.FunctionName[Parameter1,Parameter2,…].

Based on that, the new line of code should be:

"Date Result" := MemMgmnt.ApplyDateFormula("Date Formula to test,
 "Reference Date for calc");

Copy that line of code in place of the old function calls as shown in the following
screenshot. To finish your housekeeping for this change, you should go to View |
Globals | Functions tab and delete the now unused local function. Return to the
Globals tab and add the variable as shown in the following screenshot:

If all has gone well, you should be able to save and compile this modified table.
When that works successfully, then Run the table and experiment with different
Reference Dates and Date Formulas, just like you did back in Chapter 3. You should
get the same results for the same entries.

Introduction to C/SIDE and C/AL

[258]

You might ask "Why couldn't I just replace the logical statement in the existing
local function with a call to the new external function?" The answer is "You could".
The primary reason for not doing that is the fact that the program would then
be making a two-level call, a less efficient procedure. On the other hand, this
approach might create a sturcture that is easier to understand or easier to maintain,
a relatively subjective decision. In the end, such a decision comes down to a matter
of understanding what the best criteria are on which to judge the available design
decisions, then applying those criteria.

You should now have a good feeling for the basics of constructing both internal
and external functions and some of the optional design features available to you for
building functions.

Basic C/AL Syntax
C/AL syntax is relatively simple and straightforward. The basic structure of most
C/AL statements is essentially similar to what you learned with other programming
languages. C/AL is modeled on Pascal and tends to use many of the same special
characters in the same fashion as does Pascal. Some examples are as follows:

Assignment and Punctuation
Assignment is represented with a colon followed by an equal sign, the combination
being treated as a single symbol. The evaluated value of whatever expression is to
the right of the assignment symbol is assigned to the variable on the left side.

CustRec."Phone No." := '312-555-1212';

All statements are terminated with a semi-colon (see the preceding line as an
example). Multiple statements can be placed on a single program line, but that makes
your code hard for human beings to read.

Fully qualified data fields are prefaced with the name of the record variable of which
they are part (see the preceding code line as an example where the record variable
is named CustRec). Essentially the same rule applies to fully qualified function
references; the function name is prefaced with the name of the object in which they
are defined.

Single quotes are used to surround string literals (see the preceding code line for a
phone number string).

Chapter 6

[259]

Double quotes are used to surround a variable name that contains any characters
other than numerals or upper and lower case letters. For example, the Phone No.
field name in the preceding code line is constructed as "Phone No." because it
contains a space and a period). Other examples would be "Post Code"(contains a
space), "E-Mail" (contains a dash) and "No." (contains a period).

Parentheses are used much the same as in other languages, to indicate sets of
statement elements to be interpreted according to their parenthetical groupings.

Brackets "[]" are used to indicate the presence of subscripts for indexing of array
variables. On occasion a text string can be treated as an array of characters and you
can use subscripts with the string name to access individual character positions
within the string. For example, Address[1] represents the first or left-most character
in the Address variable contents.

Statements can be continued on multiple lines without any special punctuation.
The example below shows two instances that are interpreted exactly the same by
the compiler.

CustRec."Phone No." := '312' + '-' + '555' + '-' + '1212';
CustRec."Phone No." := '312' +
 '-' + '555' +
 '-' + '1212';

Wild Cards
A Wild Card is a character that can be used in place of one or many other characters.
There are two wild cards in C/AL. They are the question mark (?) and the asterisk
(*). The question mark is a wild card representing one character. If you search in
NAV for a match for the string 'a??ke', you will be rewarded with results such as the
following: appke, aaake, abake, adeke, afike, azoke, a37ke, a%#ke, and many more
possibilities.

The asterisk is a wild card representing a string of zero or more characters. If you
search a field in NAV for the string a* you will get all the instances with strings
starting with the letter a. If you search for the string a*e, you will get all the strings
that start with the letter a and end with the letter e and have anything in between,
including all the possibilities shown for our ? search. Please be very cautious in
using wildcards in your code. They can lead to unexpected results, and on certain
occasions, cause severe performance degradation.

Introduction to C/SIDE and C/AL

[260]

Expressions
Expressions in C/AL are made up of four elements: Constants, Variables, Operators,
and Functions. Actually you could include a fifth element, Expressions, because an
Expression may include within it a subordinate expression. As you become more
experienced in coding C/AL, you will find that the capability of nesting expressions
can be either a blessing or a curse.

You can create complex statements that will conditionally perform important control
actions. These can allow you to create a code statement that operates in much the
way that a person would think about the task.

You can also create complex statements that are very difficult for a human to
understand. These are tough to debug and sometimes almost impossible to deal with
in a modification.

One of your responsibilities over time will be to learn to tell the difference so you can
do the former without doing the latter.

According to the Application Designer's Guide, "a C/AL Expression is a group of
characters (data values, variables, arrays, operators, and functions) that can be evaluated
with the result having an associated data type". We just looked at two code statements
that accomplish the same result, namely that of assigning a literal string to a text
data field. In each of these, the right side of the assignment symbol (i.e. to the right of
the :=) is an expression. In each of these, the whole statement is also an expression.
These statements are repeated below:

CustRec."Phone No." := '312-555-1212';
CustRec."Phone No." := '312' + '-' + '555' + '-' + '1212';

Operators
We're going to review C/AL operators grouped by category. Depending on what
data types you are using with a particular operator, you may need to know what
the type conversion rules are (i.e. what the allowed combinations of operator and
data types are in an expression). The Application Designer's Guide provides good
information on type conversion rules in two different sections of the manual,
particularly in the section headed Type Conversion.

Chapter 6

[261]

Before we discuss the operators that can be categorized, let's discuss some operators
that don't fit any of the categories. Included in this grouping are the following:

The first symbol, a single dot or period, doesn't have a given name in the NAV
documentation, so we'll call it the Member symbol. It indicates that a field is a
member of a table (TableName.FieldName) or that a control is a member of a form
(FormName.ControlName) or report (ReportName.ControlName) or that a function is
a member of an object (Objectname.FunctionName).

We discussed parenthetical grouping and indexing earlier.

The Scope operator is a two character sequence ::, two colons in a row. The Scope
operator is used to allow C/AL code to refer to a specific Option value using the text
descriptive value rather than the integer value that is actually stored in the database.
For example, in our C/ANDL database Member table, we have an Option field
defined that is called Status with Option string values of Inactive and Active. Those
values would be stored as integers 0 and 1, but we would like to use the strings to
refer to them in code, so that our code would be more self-documenting. The Scope
operator allows us to refer to Status::Inactive (rather than 0) and Status::
Active (rather than 1). These constructs are then translated by the compiler to 0
and 1, respectively. If you want to type fewer characters when entering code, you
can just enter enough of the Option string value to be unique, then let the compiler
automatically fill in the rest when you next save and compile the object.

The Range operator is a two character sequence "..", two dots in a row. This
operator is very widely used in NAV, not only in your C/AL code, but also in the
filters entered by users. The English lower case alphabet could be represented by
the range a..z; the set of single digit numbers by the range -9..9; all the entries
starting with the letter a (lower case) by a..a*. Don't underestimate the power of the
range operator.

Introduction to C/SIDE and C/AL

[262]

Arithmetic Operators and Functions
The Arithmetic operators include the following:

As you can see by the data type column, these operators can be used on various data
types. Numeric includes Integer, Decimal, Boolean, and Character data types. String
includes Text and Code data types. Sample statements using DIV and MOD follow
where BigNumber is an integer containing 200:

DIVIntegerValue := BigNumber DIV 60;

The contents of DIVIntegerValue after executing the preceding statement would
be 3.

MODIntegerValue := BigNumber MOD 60;

The contents of MODIntegerValue after executing the preceding statement would
be 20.

The syntax for these DIV and MOD statements is:

IntegerQuotient := IntegerDividend DIV IntegerDivisor;
IntegerModulus := IntegerDividend MOD IntegerDivisor;

Chapter 6

[263]

Boolean Operators
Boolean operators only operate on expressions that can be evaluated as Boolean.
They are as follows:

The result of an expression based on a Boolean operator will in turn be Boolean.

Relational Operators and Functions
The Relational Operators are listed in the following screenshot. Each of these is used
in an expression of the format:

Expression RelationalOperator Expression

For example: (Variable1 + 97) > ((Variable2 * 14.5) / 57.332)

We will spend a little extra time on the IN operator, both because this can be very
handy and because it is not documented elsewhere. The term valueset in the
Evaluation column for IN refers to a list of defined values. It would be reasonable to
define a valueset as a container of a defined set of individual values, or expressions,
or other valuesets. Some examples of IN as used in the standard NAV product code
are as follows:

GLEntry."Posting Date" IN [0D,WORKDATE]
Description[I+2] IN ['0'..'9']
"Gen. Posting Type" IN ["Gen. Posting Type"::Purchase,
 "Gen. Posting Type"::Sale]
SearchString IN ['','=><']
No[i] IN ['0'..'9']
"FA Posting Date" IN [01010001D..12319998D]

Introduction to C/SIDE and C/AL

[264]

Here is another example of what IN used in an expression might look like:

TestString IN ['a'..'d','j','q','l'..'p'];

If the value of TestString were 'a' or 'm', then this expression would evaluate to
TRUE (Yes). If the value of TestString were 'z', then this expression would evaluate
to FALSE (No).

Precedence of Operators
When expressions are evaluated by the C/AL compiler, the parsing routines use a
predefined precedence hierarchy to determine what operators to evaluate first, what
to do second, and so forth. That precedence hierarchy is provided in the Application
Designer's Guide, but for convenience the information is repeated here.

Some Basic C/AL
It's time for us to learn some more of the standard functions provided for our
convenience by C/SIDE. We will focus on those most frequently found useful.

Chapter 6

[265]

MESSAGE, ERROR, CONFIRM, and STRMENU
Functions
There is a group of functions in C/AL called dialog functions. The purpose of these
functions is to allow for communications (i.e. dialog) between the system and the
user. There are eleven different dialog functions available. At least three of those
are easy to use as tools in testing and debugging. In order to make it easier for us to
proceed with our next level of C/AL development work, we're going to take time
now to learn about those three dialog functions.

In each of these functions, data values can be inserted through use of a substitution
string. The substitution string is the % (percent sign) character followed by the digit 1
through 9, located within a message text string. That could look like the following:

MESSAGE('A message + a data element to display = %1',OrderAmount);

If the OrderAmount value was $100.53, the output from the preceding would be:

A message + a data element to display = $100.53

You can have up to nine substitution strings in one dialog function. In all cases, the
use of substitution strings and their associated display values is optional. You can
also use any one of the dialog functions simply to display a completely predefined
text message with nothing variable.

MESSAGE Function
MESSAGE is the most commonly used dialog function. It is easy to use for the
display of transient data and can be placed almost anywhere in your C/AL code.
All it requires of the user is acknowledgement that the message has been read.
The disadvantage of messages is that they are not displayed until either the object
completes its run or pauses for some other external action. Plus, if you should
inadvertently create a situation that generates hundreds or thousands of messages,
there is no graceful way to terminate their display once they begin displaying.

It's common to use MESSAGE as the poor man's trace tool. You can program the
display of messages to only occur under particular circumstances and use them to
view either the flow of processing (by outputting simple unique codes from different
points in your logic) or to view the contents of particular data elements through
multiple processing cycles.

MESSAGE has the following syntax: MESSAGE (String [, Value1] , …]), where there
are as many ValueX entries as there are %X substitution strings (up to nine).

Introduction to C/SIDE and C/AL

[266]

Here is a sample debugging message:

MESSAGE('Loop %1, Item No. %2',LoopCounter,"Item No.");

The output would look like the following (when the counter was 12 and the Item No.
was I0123):

ERROR Function
ERROR is formatted almost exactly like MESSAGE except, of course, the function name
is obviously different and, of course, ERROR behaves differently. When an ERROR
function is executed, the execution of the current process terminates, the message is
immediately displayed and the database remains unchanged as though the process
calling the ERROR function had not run at all.

Sometimes you can use the ERROR function in combination with the
MESSAGE function to assist in repetitive testing. MESSAGE functions can
be placed in code to show what is happening with an ERROR function
placed just prior to where the process would normally complete. Because
the ERROR function rolls back all database changes, this technique allows
you to run through multiple tests against the same data without any
time-consuming backup and restoration of your test data. This isn't likely
to be the original intended purpose of this function, but it turns out to be
a very useful one.

ERROR has the following syntax:

ERROR (String [, Value1] , …]) where there are as many ValueX entries as there
are %X substitution strings (up to nine).

If the preceding MESSAGE was an ERROR function instead, the code line would be:

ERROR('Loop %1, Item No. %2',LoopCounter,"Item No.");

Chapter 6

[267]

The output would look like the following screenshot:

Except for the exclamation point in a triangle symbol, you couldn't tell this was an
ERROR message, although your process would terminate, which would be a clue.
A better way of communicating would be to let the users know that they had just
received an ERROR message, for example by including the word ERROR in your
message, something like the following:

Even in the best of circumstances, it is difficult for the system to communicate clearly
with the users. Sometimes our tools, in their effort to be flexible, make it too easy for
developers to take the easy way out and communicate poorly or not at all. In fact,
an ERROR statement of the form ERROR('') will terminate the run and roll back all
processing without even displaying any message at all. An important part of
your job as a developer is to ensure that your system communicates clearly
and completely.

CONFIRM Function
A third dialog function is the CONFIRM function. A CONFIRM function call causes
processing to stop while the user responds to the dialog. In a CONFIRM, you would
likely include a question in your text because the function provides Yes and No
button options.

Introduction to C/SIDE and C/AL

[268]

In a debugging situation, it's sometimes useful to use CONFIRM to control the path
processing will take. You can display the status of data or processing flow and
then allow the operator to make a choice (Yes or No) that can then be used to
influence what happens next. This is exactly what CONFIRM is designed for in normal
processing. But execution of a CONFIRM function will also cause any pending MESSAGE
outputs to be displayed before the CONFIRM function displays. Consequently,
combined with MESSAGE and ERROR, creative use of CONFIRM can add to your
debugging/diagnostic toolkit.

CONFIRM has the following syntax:

BooleanValue := CONFIRM(String [, Default] [, Value1] ,…) where
Default choice is TRUE or FALSE and there are as many ValueX entries as there are
%X substitution strings (up to nine).

If you just code CONFIRM(String), the Default choice will be false. Note that true
and false appear onscreen as Yes and No (an interesting feature that is consistent
throughout NAV for Boolean values).

A CONFIRM function call with a similar content as the preceding examples might look
like this for the code and the display:

CONFIRM('Loop %1, Item No. %2\OK to continue?',
 TRUE,LoopCounter,"Item No.");

In typical usage, the CONFIRM function is part of or referred to by a conditional
statement that uses the Boolean value returned by the CONFIRM function.

An additional feature to note here is the use of the backslash (\) which forced a new
line in the displayed message. This works throughout NAV screen display functions;
to display a backslash, you must put two of them in your string, i.e. \\.

Chapter 6

[269]

STRMENU Function
A fourth dialog function is the STRMENU function. A STRMENU function call also
causes processing to stop while the user responds to the dialog. The advantage of
the STRMENU function is the ability to provide several choices, rather than just two.
Unfortunately, in a STRMENU, you cannot include a question in your text but must
rely on either the phrasing of your choices and context, or some other mechanism to
make it clear to what the user is responding. Perhaps for this reason, STRMENU is not
heavily used. A common use is to provide an option menu in response to the user
pressing a command button.

STRMENU has the following syntax:

IntegerValue := STRMENU(StringVariable of Options separated by commas
[, OptionDefault])

where the OptionDefault is an integer representing which of the options
will be selected by default when the menu displays. If you do not provide an
OptionDefault, 1 will be used (i.e. the first option listed will be the default).

Here is an example of STRMENU:

OptionNo := STRMENU('Red,Yellow,Black
 Stripes,Show more options...',4);

Setting the default to 4 caused the fourth option (Show more options…) to be the
default selection when the menu was displayed.

If the user responds Cancel or presses Esc, the value returned by the function is 0.

Use of the STRMENU function eliminates the need to use a Form object when asking
the user to select from a limited set of options. The STRMENU can also be utilized from
within a report or Codeunit when calling a Form would restrict processing choices.

Introduction to C/SIDE and C/AL

[270]

SETCURRENTKEY Function
The SETCURRENTKEY function behaves considerably differently when using the
C/SIDE database than when using the SQL Server database. The explanation that
follows focuses on the C/SIDE database behavior. On SQL Server, SETCURRENTKEY
only determines the order in which the data will be presented to the processing, but
the actual key choice is made by the SQL Server Query Analyzer.

The SETCURRENTKEY function allows you to select the specific key to be used for
subsequent processing, thus defining the sort order to be used. The syntax is:

[BooleanValue :=] Record.SETCURRENTKEY (FieldName1,
 [FieldName2], …)

The BooleanValue is optional. If you do not specify it and no matching key is
found, a run-time error will occur. This may not be a bad thing, as generally your
key specification in code is fixed (not variable) and you would want to know during
initial testing that you had not specified an existing key. In addition, if keys are later
changed, you will want to make sure that either you have allowed for that in your
error handling or that you have allowed the run-time error to identify a problem and
stop processing until it is corrected.

If the key structure you specify is a partial structure, for example only one field, and
that structure matches multiple keys, C/AL may not select the key you intended.
Therefore it is good to provide a complete key specification.

SETRANGE Function
The SETRANGE function provides the ability to set a simple range filter on a field.
SETRANGE syntax is as follows:

Record.SETRANGE(FieldName [,From-Value] [,To-Value]);

Prior to applying its range filter, the SETRANGE function removes any filters that were
previously set for the defined field. If SETRANGE is executed without any From or To
values, it will clear the filters on the field.

If SETRANGE is executed with only one value, that will act as both the
From and To values.

Chapter 6

[271]

Some examples of the SETRANGE function in code are as follow:

Filter to get only members with ID from 100 through 499, or from the variable values
LowVal through HiVal:

Member.SETRANGE("Member ID",100,499);

Member.SETRANGE("Member ID",LowVal,HiVal);

Clear the filters on Member ID:

Member.SETRANGE("Member ID");

Filter to allow all records with dates up through the contents of the field "Volunteer
ActivityLedger"."Activity Date":

ActRate.SETRANGE("Effective Date",0D,
 "Volunteer ActivityLedger"."Activity Date");

GET Function
GET is the basic data retrieval function in C/AL. GET retrieves a single record, based
on the primary key only. GET has the following syntax:

[BooleanValue :=] Record.GET ([KeyFieldValue1]
 [,KeyFieldValue2] ,…)

The parameter(s) for the GET function are the primary key value (or values, if the
primary key consists of more than one field).

Assigning the GET function result to a BooleanValue is optional. If the GET function
is not successful, i.e. no record is found, and the statement is not handled by code or
assigned, the process will terminate with a run-time error. Typically, therefore, the
GET function is encased in an IF statement structured something like the following:

IF Customer.GET(NewCustNo) THEN …

GET data retrieval is not constrained by filters. If there is a matching. If there is a matching
record in the table, GET will retrieve it.

Introduction to C/SIDE and C/AL

[272]

FIND–NEXT Functions
The FIND function is the general purpose data retrieval function in C/AL. It is much
more flexible than GET, therefore more widely used. GET may have the advantage
of being faster as it operates only on an unfiltered direct access via the primary key,
looking for a single uniquely keyed entry. FIND has the following syntax:

[BooleanValue :=] RecordName.FIND ([Which])

Just as with the GET function, assigning the FIND function result to a Boolean value
is optional. But in almost all cases, FIND is embedded in a condition that controls
subsequent processing appropriately.

FIND differs from GET in several important ways:

FIND operates under the limits imposed by whatever filters are applied on the
subject field.

FIND uses whatever key is currently selected.

There are also special versions of the FIND function for use with the SQL Server
database. The intent is to allow C/AL coding to be optimized for SQL Server
compatibility as these instructions are especially designed for use with SQL Server.
The SQL Server-related FIND functions are:

FINDSET: Allows defining the standard size of the read record cache;
defaults to 500.
FINDFIRST: Finds the first record in a table that satisfies the defined filter and
current key. Conceptually equivalent to the FIND('-') but much better for
SQL Server.
FINDLAST: Finds the last record in a table that satisfies the defined filter and
current key. Conceptually equivalent to the FIND('+') but much better for
SQL Server.

Through the [Which] parameter, FIND allows the specification of what record is
searched for relative to the defined key values. The defined key values are the set of
values currently in the fields of the active key in the memory-resident record of
table RecordName.

•

•

•

Chapter 6

[273]

The following table lists the Which parameter options and prerequisites. The results
are always relative to the selected set (i.e. they respect applied filters).

The FIND function is quite often used as the first step in the course of reading a set of
data, for example, reading all the Sales Invoices for a single Customer. In such a case,
the NEXT function is used to trigger all the data reads after the sequence is initiated
with a FIND.

The typical read loop is as follows:

IF MyData.FIND('-') THEN
 REPEAT
 Processing logic here
UNTIL MyData.NEXT = 0;

We will discuss the REPEAT–UNTIL control structure in more detail in the next
chapter. Essentially, it does what it says; "repeat the following logic until the defined
condition is true". In the case of the FIND–NEXT, the NEXT function provides both
the definition of how the read loop will advance through the table and provides the
exiting condition.

When DataTable.NEXT = 0, that means there are no more records to be read. We
have reached the end of the data, based on the filters and other conditions that apply
to our reading process.

The specific syntax of the NEXT function is DataTable.NEXT(Step). DataTable is the
name of the table being read. Step defines the number of records NAV will move
ahead (or back) per read. The default Step is 1, meaning NAV moves ahead one
record at a time, reading every record. A Step of 0 is ignored. If the Step were 2,
NAV would move ahead two records at a time and the process would only be

Introduction to C/SIDE and C/AL

[274]

presented with every other record. Step can also be negative, in which case NAV
moves backwards through the table. This would allow you to do a FIND('+') or
FINDLAST for the end of the table, then a NEXT(-1) to read backwards through the
data. This is very useful if, for example, you need to read a table sorted by date and
want to access the most recent entries first.

BEGIN–END Compound Statement
In C/AL, there are instances where the syntax rules only allow for use of a single
statement. But your design may require the execution of several code statements.
C/AL provides at least two ways to address this need. One method is to have the
single statement as a call to a function that contains multiple statements.

On the other hand, in-line coding is often more efficient to run and significantly
easier to understand. So C/AL provides a tool to define a Compound Statement or
Block of code. A compound statement containing several, or even many, statements
can be used in place of a single code statement

A compound statement is enclosed by the reserved words BEGIN and END. The
compound statement structure looks like this:

BEGIN
 <Statement 1>;
 <Statement 2>;
 ..
 <Statement n>;
END

IF–THEN–ELSE Statement
IF is the basic conditional statement of most programming languages. It operates in
C/AL similar to other languages. The basic structure is: IF a conditional expression
is true, THEN execute Statement-1 ELSE (if conditional not true) execute Statement-
2. The ELSE portion is optional. The syntax is:

IF <Condition> THEN <Statement-1> [ELSE <Statement-2>]

As with other languages, IF statements can be nested so that you have conditionals
dependent on the evaluation of other conditionals. Obviously one needs to take care
with such constructs, as it is easy to end up with convoluted code structures that are
difficult to debug and difficult for your successor developer (i.e. the next person that
works on this system) to understand.

Chapter 6

[275]

As you work with NAV C/AL code, you will see that often the <Condition> is
really an expression built around a standard C/AL function. This approach is
often used when the standard syntax for the function is Boolean value, function
expression. Some examples are:

IF Customer.FIND('-') THEN...

IF Update.CONFIRM('OK to update?',TRUE) THEN...

IF TempData.INSERT THEN...

IF Customer.CALCFIELDS(Balance,Balance(LCY)) THEN...

Indenting Code
Because we have just discussed BEGIN–END compound statements and IF conditional
statements, which also are compound (i.e. containing multiple expressions), this
seems a good time to discuss indenting code.

In C/AL, the standard practice for indenting subordinate, contained, or continued
lines is relatively simple. Always indent such lines by two characters except where
there are left and right parentheses to be aligned.

Some examples are:

IF (A <> B) THEN
 A := A + Count1
ELSE
 B := B + Count2;

Or:

IF (A <> B)
THEN
 A := A + Count1;

Or:

IF (A <> B)
THEN BEGIN
 A := A + Oount1;
 B := A + Count2;
 IF C > (A * B) THEN
 C := A * B;
END
ELSE
 B := B + Count2;

•

•

•

•

Introduction to C/SIDE and C/AL

[276]

Some Simple Coding Modifications
Now we're going to actually add some C/AL code to some objects we've created for
our C/ANDL application.

Adding a Validation to a Table
Let's start with some code in the Validation triggers of our Table 50005–Volunteer
Activity Ledger. When a new record is added to this table, we would like all the
fields to be filled in. The description should be copied from the Volunteer Activity
table. We can do that at the time the Volunteer Activity Code is validated. We also
want to calculate the number of Volunteer Hours worked times the Points per Hour
for the appropriate activity.

The basic logic is defined by the following pseudo-code:

In the Activity Code OnValidate trigger:

GET the Volunteer Activity record; allow for a no-match lookup.
Copy VolunteerActivity.Description to
VolunteerActivityLedger.Description

In the Hours OnValidate trigger:

GET the Volunteer Activity record; allow for a no-match lookup.
Assign the result of the expression VolunteerActivityLedger.Hours times
VolunteerActivity.PointsPerHour to VolunteerActivityLedger.Points.

In reality, the actual code is simpler than the pseudo-code. That's often the case with
NAV code. Once you have figured out a good process flow design, C/AL coding
is usually a relatively quick process. Much more of your time is likely to be spent
designing and testing than actually coding.

You should now open up the Table Designer, Design Table 50005, and translate the
preceding pseudo-code into C/AL. Then save and compile the table. Now enter
some data to see if your modifications work. If they do not, then your job is to figure
out what you did wrong and fix it.

•

•

•

•

Chapter 6

[277]

As with almost any coding task, there are multiple correct ways to write the code. In
this case for example, we need to GET the Volunteer Activity record associated with
this data item from two different OnValidate triggers. Should we write essentially
the same code in both triggers, or should we create a new function that does the
GET and call that function from each of the triggers? At this point in our application
design, either answer is a reasonable one. It might be a good idea if you try both
ways so you can understand the differences in the ways you would structure the
code for each. We’ll step through the option of adding code to both triggers.

Adding a Table Validation Coding Option
The first thing is to define a global variable allowing us to reference the Volunteer
Activity table from C/AL code within the Volunteer Activity Ledger table.

When an Activity Code entry is made into a Volunteer Activity Ledger record, we
will want to access the related Volunteer Activity record using a GET statement. An
easy way to begin that coding is to use a tool built into C/SIDE. That tool is the C/AL
Symbol Menu, which is accessed via the screen's top menu View | C/AL
Symbol Menu.

All objects, records, and data fields, whether defined by the developer or
automatically by the system, are listed in the leftmost column of the C/AL Symbol
Menu display. In the next chapter we'll explore this tool some more.

Introduction to C/SIDE and C/AL

[278]

Right now we just want to use it very simply to help us enter our VolActy variable
and the related GET function in the correct format and with the correct spelling.

We can just use this screen as a reference tool or we can use it to populate our
code. In this case, let's do the latter. Once we've highlighted the elements we want
(as shown in the preceding screenshot), working in the columns from left to right,
we can double-click on the rightmost element and it will be inserted into our
development screen (as shown in the following screenshot).

What has been pasted into our code is not workable. It is just a template that we
can begin with to create the code we want. In this case, referring back to our
pseudo-code, we see that we want our GET function embedded in a condition,
followed by an action expression to be executed if the condition is true. That code
can be structured as shown in the following screenshot:

Chapter 6

[279]

Time to test. Exit the table and compile. Enter some test data. Does the description
copy in from the Volunteer Activity record as you wanted it to? If not, it's now time
to figure out why. If it does work (or when it does), congratulations!

Our next modification has a very similar structure, except for the action expression.
To create the IF + GET portion of our statement, we could do a copy and paste,
or a view and type, or go through the same process we went through for the first
instance. Once we've done that, then we must type in our expression to do the math.
We have the names of two of the variables at hand because they are part of the table
in which we are coding. But it just might be easiest to look up the third variable
(Points per Hour) in the C/AL Symbol Menu and click it in.

As you can see in the following screenshot, the selected field variable pops in
complete with the qualifying record variable name VolActy.

Once again, it's time to test our work. Exit and save, and compile. Test entry of some
Hours in the Volunteer Activity Ledger. Does the new code properly calculate and
store the Points? Before you move on, make sure this part works correctly.

Introduction to C/SIDE and C/AL

[280]

Adding Code to Enhance a Report
As you may recall, our C/ANDL members' volunteer activities serve two purposes.
One is simply to provide direct benefits through the volunteer work. The other is to
"earn" the promised payments from our sponsor company, BigC. Originally BigC
agreed to pay $5 per point for the work done. But there have been some discussions
going on and BigC has decided to raise the rate for work done on or after Jan 1, 2008
to $6 per point and is going to provide a special holiday bonus rate for work done
during December 2007 of $10 per point.

So we've got some work to do on our application. We haven't gotten around to
creating our report that would show BigC how much members have worked and
therefore earned. It's time for us to do that. While we could just hard-code these
rate changes in that report, we've decided that we're going to allow for more
user-oriented flexibility than hardcoding would provide. We need to create a new
table that will contain the rates along with the effective dates. Because we need a
good unique primary key, we'll include a record entry number as well.

Table 50008 – Activity Rate will contain the entries as:

Entry No.: Integer
Effective Date: Date
Rate: Decimal

Create your new table.

Now we're going to use the Report Wizard to create a framework for a report to
show how much we've earned.

Layout for Report 50002 – Volunteer Activity Earnings

Data Element Source Table
Member ID Volunteer Activity Ledger
Activity Code Volunteer Activity Ledger
Description Volunteer Activity Ledger
Date Volunteer Activity Ledger
Hours Volunteer Activity Ledger
Points Volunteer Activity Ledger
Rate Activity Rate
Amount Earned calculated in Report 50002

•
•
•

Chapter 6

[281]

Since the first set of fields come from the same table, we can readily drive the Report
Wizard with that table (Table 50005 – Volunteer Activity Ledger), then add in the
rest of the fields and necessary processing.

Create the basic version of Report 50002. While you're at it, create totals on the Hours
and Points columns.

Add the controls for the Rate and Amount Earned fields to the generated report.
Make the column header control for Amount Earned print on two lines. Looking at
the logic that was generated to calculate totals for Hours and Points, you'll see that
it's tied to the Data Item that is driving the report. You also want to calculate a total
for the Amount Earned column, but you'll have to handle that in manual code. Since
the generated report doesn't calculate and print grand totals, add that feature too.

Add the logic into the OnAfterGetRecord trigger to look up the applicable Activity
Rate for each Volunteer Activity Ledger record. Now code the calculation for
Amount Earned. Don't forget to define the necessary global variables. Test your
report and fix any problems.

In case you're having some problems, here are some screenshots showing one
solution to this task along with brief descriptions of the developer work done along
the way.

First we need to define the new table:

Introduction to C/SIDE and C/AL

[282]

As part of the definition process we will set the minimum and maximum number of
decimal places on the Rate variable to two (i.e. DecimalPlaces property of 2:2).

In order to select data based on the Effective Date field, we need to have a key
on that field. We want the effective sort to be Effective Date, then Entry No., but
because the primary key is appended to every other key we don't need to explicitly
add that field to our secondary key.

Now we can use our previous experience and generate a List format report based on
the Volunteer Activity Ledger. We will select all the fields, order it by Member,
group it by Member, and total both the available fields. The following screenshot is
from a generated report with no modifications:

Chapter 6

[283]

The following is the same report in Section Designer:

Introduction to C/SIDE and C/AL

[284]

Once we have a generated basic version of Report 50002, we can start polishing it
for production use. The first thing we should do is to add the new working storage
(i.e. global) variables to support our lookup code and the totalling. In actuality, the
process of writing the C/AL code and defining the new variables is a back and forth
process, doing first one, then the other, and then back to the first. We'll just show the
final results here. These are the final set of globals:

The next screenshot is a snapshot of the final mainline C/AL code. First an
intermediate variable (EffectiveRate) is cleared to 0 and the Activity Rate
table key tied to Effective Date is assigned as the active key. When the Volunteer
Activity Ledger record is read in, the Activity Date in that record is used to act as
a High Value for a filter on the Activity Rate table so we can find the applicable
Rate record. Next, a FIND('+') is performed to find the last entry (highest date).
Assuming one is found, EffectiveRate is calculated, EarnedAmount is calculated,
and the EarnedAmount totals are calculated. By the way, the expression Variable1
+= Variable2 gives the same results as Variable1 := Variable1 + Variable2, and
the expression Variable1 -= Variable2 gives the same results as Variable1 :=
Variable1 - Variable2.

Chapter 6

[285]

In the preceding screenshot, because the variable "Volunteer Activity
Ledger"."Activity Date" refers to a data field within the table that is the focus of
the current record trigger, the table name is not required. For unqualified variable
names, the compiler will look first to the currently in-focus table, then to the global
and local variables. So that line of code could just as easily be:

ActivityRate.SETRANGE("Effective Date",0D, "Activity Date");

In fact that latter style is the preferred method of coding variables for the current
data item. However, if you happen to use the Symbol Menu to fill in a variable name,
it will include the full table qualification as shown in the preceding screenshot.

Quite a bit more work was required in the Sections portion of the report to get to our
desired result. Going from the top down the following changes were made:

The Report label was changed from the default to one better representing the
intended report usage.
A Group Header section was subjectively judged unnecessary. The C/AL
code contained in its trigger was reviewed and was not found to have any
effect outside that section. So the section was deleted.
Two new report columns were added i.e. Rate and EarnedAmount.
The controls were created by copying existing controls, then modifying
properties. The new controls were positioned carefully by examining the
relative position of the generated controls, then mimicking their spacing.

•

•

•

Introduction to C/SIDE and C/AL

[286]

A Group Footer Section (5) was added for the sole purpose of including the
horizontal line graphic control for appearance's sake. A Group Footer Section
(7) was added to contain code to reset the MemberEarnedTotal value after it
was printed. A screenshot of that code follows the Section screenshot:

•

Chapter 6

[287]

Finally a Footer Section was added to print the report grand totals.

Of course, as this development proceeded, various sets of tests needed to be run.
As with any development effort, there were some "oops" along the way and minor
changes in direction. The final data input for testing purposes for the Volunteer
Activity Ledger table is as shown:

And the test data for the Activity Rate table is as shown in the
following screenshot:

•

Introduction to C/SIDE and C/AL

[288]

After all this work, we are finally ready for a test run of our modified report. A
screenshot of that is as follows:

Note that we didn't have to do anything to calculate the totals for the two generated
columns. That is because those columns contain data from a Data Item and in the
properties for that Data Item, the TotalFields property contained the field names of
Hours and Points.

There are many different ways to accomplish essentially the same result as this
particular Report 50002. Some of those paths would be indistinguishable to the user.
Some would not even be meaningfully different to the next developer who has to
work on this report. What is important is that the result works reliably, provides the
desired output, operates with reasonable speed, and does not cost much to create or
maintain. If all those goals are met, most of the other differences are generally not
terribly important.

Chapter 6

[289]

Summary
Thought is the blossom; language the bud; action the fruit behind it
—Ralph Waldo Emerson

In this chapter we've covered topics including Object Designer navigation as well as
more specific navigation of individual Object (Table, Form, Report) Designers.

We covered a number of C/AL language areas in relative detail including
functions and how they may be used, variables of various types (both development
and system), basic C/AL syntax, and discussion of C/AL expressions and
operators. Some of the essential C/AL functions we covered included dialogs
for communication with the user, SETRANGE filtering, GET and FIND, and related
functions, BEGIN–END for code structures, plus IF–THEN–ELSE for basic process
flow control.

Finally, we got some hands-on experience by adding validation code to a table and
adding code to significantly enhance a generated report.

In the next chapter, we will expand our exploration and practice in the use of the
tools of C/AL.

Intermediate C/AL
A language that doesn't have everything is actually easier to program in than some
that do—Dennis Ritchie

In the last chapter, we learned enough C/AL to create a basic operational set of
code. In this chapter, we will learn more about C/AL functions and pick up a few
good habits along the way. The C/AL functions represent a significant portion of
knowledge that you will need on a day-to-day basis, as you are getting started as a
professional C/AL Developer.

Our goal is to understand more complex C/AL statement types, to be able to
competently manage I/O, to create moderately complex program logic structures,
and to understand data filtering and sorting as handled in NAV and C/AL. Since the
functions and features in C/AL are designed for business and financial applications,
you can do a surprising amount of work with a relatively small number of
language constructs.

Keep in mind that anything discussed in this chapter will not relate to MenuSuites,
as they contain no C/AL.

Development
All NAV development is done in C/AL and all C/AL development is done in
C/SIDE. As an Integrated Development Environment, C/SIDE contains a number
of tools designed to make our C/AL development effort easier, among which is the
C/AL Symbol Menu.

Intermediate C/AL

[292]

C/AL Symbol Menu
When you are in one of the Object Designers, the C/AL Symbol Menu is accessed
from either the menu option View|C/AL Symbol Menu or just by pressing F5. The
default three-column display has variables and function categories in the left column.
If the entry in the left column is a system function or a variable of function type,
then the center column contains subcategories for the highlighted left-column entry.
Finally, the right column contains the set of functions that are part of the highlighted
center-column entry. In a few cases (such as subforms or BLOB fields or Matrix
controls), there is additional information displayed in columns further to the right.
Those columns are accessed through the arrows displayed just below the rightmost
display column, as shown in the following screenshot:

The C/AL Symbol Menu is a very useful multi-purpose tool for the developer. You
can use it as a quick reference to see what C/AL functions are available to you, to
access Help on those functions, and to view what other systems would refer to as the
Symbol Table. You can also use the C/AL Symbol Menu to paste variable names or
code structures into your code.

The reference use is most helpful when you are starting as a C/AL developer. It is
a very useful guide to the inventory of available code tools. This reference has some
very handy features. The first one is the general syntax for the highlighted function
shown at the bottom left of the screen, as shown in the previous screenshot.

You have also quick and focused access to C/SIDE Reference Guide Help. When
you put focus on an entry in the right (third) column and press F1, you will be taken
directly to the Help for that function. If focus is in the left or center column, pressing
F1 may just bring up the general C/SIDE Reference Guide Help rather than a
specific entry.

Chapter 7

[293]

The second use of the C/AL Symbol Menu is as a symbol table. The symbol table
for your object is visible in the left column of the C/AL Symbol Menu display. The
displayed symbol set (i.e. variable set) is context sensitive. It will include all system-
defined symbols, all your Global symbols, and Local symbols from the function
that had focus at the time you accessed the C/AL Symbol Menu. Though it would
be useful, there is no way within the Symbol Menu to see all Local variables in one
view. The Local symbols will be at the top of the list, but you have to know the name
of the first Global symbol to determine the scope of a particular variable (i.e. does it
appear in the symbol list before or after the first Global?).

The third use for the C/AL Symbol Menu is as a code template with a paste function
enabled. Paste is initiated by pressing either the Apply button or the OK button. In
both the cases, element with focus will be pasted into your code. Apply will leave
the Symbol Menu open and OK will close it (double-clicking on the element has the
same effect as clicking on OK).

If the element with focus is a simple variable, then that variable will get pasted into
your code. If the element is a function whose syntax appears at the lower left of the
screen, the result of the paste action (i.e. Apply or OK or double-click) depends on
whether or not Paste Arguments (just below the leftmost column) is checked or not.
If Paste Arguments is not checked, then only the function itself will be pasted into
your code. If Paste Arguments is checked, then the complete syntax string, as
shown, will be pasted into your code. This can be a very convenient way to create
a template to help you more quickly enter the correct parameters with the correct
syntactical punctuation.

When you are in the C/AL Symbol Menu, you can focus on a column, click on a
letter and jump to the next field in sequence in the column starting with that letter.
This acts as a limited Search substitute, a sort of assisted browse.

Intermediate C/AL

[294]

Internal Documentation
When you are creating or modifying software, it is always a good thing to document
what you have done. It is often difficult for developers to spend much time (i.e.
money) on documentation because most never enjoy doing it and the benefits are
uncertain. A reasonable goal is to provide enough documentation so that a smart
person following you, working on the same code, can understand the reason behind
what you have done. It is true that if you choose good variable names, the C/AL
code will tend to be self-documenting in terms of the logic flow. But you need to add
comments to describe the functional reason for the change.

In the case of a brand-new function, a simple statement of purpose is all that is
necessary. In the case of a modification, it is very useful to have comments providing
a definition of what the change is intended to accomplish from a functional point
of view and a description of what has been changed. If there is good external
documentation of the change, then the comments in the code can refer back to this
external documentation. In any case, the primary focus should be on the functional
reason for the change, not just the technical reason.

In the following example, the documentation is for a brand-new report. The
comments are in the Documentation trigger, where there are no format rules, except
for those you impose. This is a new report, which we created in the previous chapter.
The comment is coded to indicate the organization making the change (we are
crediting our book "Programming NAV") and a sequence number for this change.
In this case we are using a two digit number (06) for the change, plus the version
number of the change, 00, hence PN.06.00, followed by the initials of the developer
(DAS) and the date of the change as shown in the following screenshot.

You can make up your own standard format that will identify the source and date
of the work, but do have a standard and use it. When you add a new data element
to an existing table, the Description property should receive the same modification
identifier that you would place in the code comments.

When you make a subsequent change to an object, you should document that
change in the Documentation trigger and also in the code, as described earlier. Inline
comments can be done in two ways. The most visible way is to use a // character
sequence (two forward slashes). Whatever text follows the slashes on that line will
be treated as a comment by the compiler, i.e. will be ignored. If the comment spans
two physical lines, the second portion of the comment must also be preceded by two
forward slashes.

Chapter 7

[295]

In the following screenshot we have used // to place comments inline in code to
identify a change:

In this case, we have made the modification version number to 01, resulting in
PN.06.01. In the following code, modifications are traced by bracketing the additional
code with comment lines containing the modification identifier, and start and end
indicators. The NAV published standards do not include the dashed lines, as shown
here, but doing something like that often makes it easier to spot modifications when
you are scanning code rapidly. Don't forget, you can create your own standards, but
then you should follow them consistently.

The second way to place a comment within code is to surround the comment with
a matched pair of braces { }. Because braces are less visible than the slashes, you
should always use // when your comment is relatively long. If you want to use
{ }, it wouldn't be a bad idea to insert a // comment at the beginning and end of
the material inside the braces, to make the existence of the comments more readily
identifiable. For example:

{//PN.06.02 start deletion -------------
//PN.06.02 replace validation with a call to an external function
…miscellaneous C/AL validation code
//PN.06.02 end deletion ------------- }

Intermediate C/AL

[296]

When you delete code, you should always leave original statement in place, but
commented so that it is inoperative. When you change existing code, you should
leave the original code in place, but commented out, with the new version being
inserted as shown in the following screenshot:

Don't forget to update the external version numbers located in the Version List field
on the Object Designer screen.

From previous experience, you know that it is not the format of the internal
documentation that is critical. It is the fact that it exists in a consistent and reliable
fashion that accurately describes the code changes that have occurred.

Computation—Validation Utility
Functions
C/AL includes a number of utility functions designed to facilitate data computations
and validation or initiation of field contents. The following are some of the
Validation Utility Functions:

TESTFIELD
The TESTFIELD function is widely used in standard NAV code. With TESTFIELD,
you can test a variable value and, if necessary, issue an error message in a single
statement. The syntax is as follows:

Record.TESTFIELD (Field, [Value])

If a Value is specified and the field does not contain that value, an error condition is
raised (i.e. the process terminates) and the associated error message is issued. If no
Value is specified, the condition evaluated is relative to zero or blank. If no Value is
specified and the field is zero or blank, then that is an error.

Chapter 7

[297]

The advantage of TESTFIELD is ease of use and consistency in code. The
disadvantage is that the error message, although not as hard to understand as others,
is not as informative as you might provide as a careful developer.

FIELDERROR
Another function very similar to the TESTFIELD function is the FIELDERROR function.
But where TESTFIELD performs a test and terminates with either an error or an OK
result, FIELDERROR presumes that the test was already performed and the field failed
the test. The FIELDERROR is designed to display an error message, and then trigger a
run-time error, thus terminating the process. The syntax is as follows:

TableName.FIELDERROR(FieldName[,OptionalMsgText]);

If you include your own message text, for example:

you will see an error message from FIELDERROR similar to the following screenshot:

The error message begins with the name of the field, which is the FieldName
parameter in the function call (in this case Member), followed by your specified
MsgText (The data is not like it should be), which is in turn followed by the word
"in", the qualified name of the first table field (Member.Member ID) and the value in
that field (42).

If you do not include your own message text, your function call will look like the
following screenshot:

If you don't specify your own message text, the default message comes in two
flavors. The first instance is the case where the referenced field is not empty, such as
in the following screenshot. In this case, the contents of the field are the option
text Retired.

Intermediate C/AL

[298]

The error message logic presumes that the error is due to a wrong value.

Following is another instance of a FIELDERROR function call with no message
text supplied.

In this case the field was empty. The resulting error message logic presumes that the
error is the due to empty field, shown in the following screenshot:

VALIDATE
The syntax of the VALIDATE function is as follows:

Record.VALIDATE (Field [, Value])

VALIDATE will fire the OnValidate trigger of Record.Field. If you have specified a
Value, then that Value is assigned to the field and the field validations are invoked.
If you don't specify a Value, then the field validations are invoked using the field
value that already exists in the field. This function allows you to easily centralize
your code design around the table, a definite advantage and one of NAV's strengths.

Chapter 7

[299]

ROUND
The ROUND function lets you control the rounding precision for a decimal expression.
The syntax for the ROUND function is as follows:

DecimalResult := ROUND (Number [, Precision] [, Direction])

where Number is what is being rounded, Precision spells out the number of digits
of decimal precision, and Direction indicates whether to round up, round down, or
round to the nearest number. More specifically, some examples of Precision values
are as follows:

Precision value Rounding effect
100 To a multiple of 100
1 To an integer value
.01 To two decimal places (the US default)
0.01 Same as .01
.0001 To four decimal places

As noted, if no Precision value is specified, the US Localization will default to two
decimal places, the standard for US currency. Default options in other localizations
may differ.

The options available for the Direction value are shown in the following table:

Direction value (a text value) Rounding effect
'=' Round to the nearest (mathematically correct)
'>' Round up
'<' Round down

The following statement:

DecimalValue := ROUND (1234.56789,0.001,'<')

would result in a DecimalValue containing 1234.567 whereas the statements:

DecimalValue := ROUND (1234.56789,0.001,'=')
DecimalValue := ROUND (1234.56789,0.001,'>')

would each result in a DecimalValue containing 1234.568.

Intermediate C/AL

[300]

TODAY, TIME, and CURRENTDATETIME
Function
TODAY retrieves the current system date as set in the operating system. TIME
retrieves the current system time as set in the operating system. CURRENTDATETIME
retrieves the current date and time in the DATETIME format, which is stored in UTC
international time and then displayed in local time. The syntax is as follows:

DateField := TODAY;
TimeField := TIME;
DateTimeField := CURRENTDATETIME;

These are useful for date- and time-stamping transactions or for filling in default
values in fields of the appropriate data type. For data entry purposes, the current
system date can be entered by simply typing a letter t or T or the word TODAY in the
date entry field. NAV will automatically convert that entry to the current system date.

WORKDATE Function
A useful feature of NAV is the Work Date. Many standard NAV routines default
dates to WorkDate rather than to the system date. When a user log into the system,
the Work Date is initially set equal to the system date. But at any time, the operator
can set the Work Date to any date by accessing Tools | Work Date, and then
entering the desired new Work Date as shown in the following screenshot:

The syntax for using the WorkDate is as follows:
DateField := WORKDATE;

For data entry purposes, the current system date can be entered by the operator
simply typing a letter w or W or the word WORKDATE in the date entry field.
NAV will automatically convert that entry to the current system date.

Chapter 7

[301]

Data Conversion Functions
Some data type conversions are handled in process by NAV without any particular
attention on part of the Developer (e.g. Code to Text, Char to Text). Some data type
conversions can only be handled through C/AL functions. Formatting is included as
a data type conversion.

FORMAT Function
The FORMAT function provides for the conversion of an expression of any data type
(e.g. integer, decimal, date, option, time, Boolean, etc.) into a formatted string. The
syntax is as follows:

StringField := FORMAT(ExpressionToFormat [, OutputLength]
[, FormatString or FormatNumber])

The formatted output of the ExpressionToFormat will be assigned to the output
StringField. The optional field controls the conversion according to a complex set
of rules. These rules can be found in the C/SIDE Help file for the FORMAT function.
Whenever possible, you should always apply FORMAT in its simpler form. The best
way to determine the likely results of a FORMAT expression is to test it through a
range of the values to be formatted. Make sure to include the extremes of the range
of possible values in your testing.

The optional OutputLength field can be zero (which is the default), a positive
integer, or a negative integer. The typical OutputLength value is either zero, in
which case the defined format is fully applied, or it is a figure designed to control the
maximum character length of the formatted string result.

The last optional parameter has two totally separate sets of choices. One set,
represented by an integer FormatNumber, allows the choice of a particular predefined
(i.e. standard) format, of which there are four to nine choices depending on the
ExpressionToFormat data type. The other set of choices allows you to build your
own format expression. The Help information for the FORMAT property provides a provides a
relatively complete description of the available tools from which you can build your
own format expression. The FORMAT property Help also provides a complete list of
the predefined format choices.

Note that a FORMAT function which cannot be executed will create a run-time error
that will terminate execution of the process. Thus the importance of thorough testing
to avoid production crashes.

Intermediate C/AL

[302]

EVALUATE Function
The EVALUATE function is somewhat the reverse of the FORMAT function. It allows
you to convert a string field into the defined data type. The syntax of the EVALUATE
function is as follows:

[BooleanField :=] EVALUATE (ResultField, StringToBeConverted [, 9]

The handling of a run-time error can be done by specifying the BooleanField. The
ResultField data type will determine what data conversion the EVALUATE function
will attempt. The data type of the ResultField must be one of the following: integer,integer,
Boolean, date, time, code, option, text constant, or GUID. The format of the data
in StringToBeConverted must be compatible with the data type of ResultField
otherwise a run-time error will occur. The optional parameter, number 9, only
applies for XMLport data exporting.

DATE Functions
In order to convert numeric data to Date data types and Dates to numeric data,
C/AL uses a series of Date functions.

DATE2DMY Function
DATE2DMY allows you to extract the sections of a date (Day, Month, and Year) from a
Date field. The syntax is as follows:

IntegerVariable := DATE2DMY (DateField, ExtractionChoice)

The fields IntegerVariable and DateField are just as their names imply. The
ExtractionChoice parameter allows you to choose which value (day, month, or
year) will be assigned to the IntegerVariable. The following table provides the
DATE2DMY extraction choices:

DATE2DMY Extraction Choice Integer Value Result
1 2 digit day (1 – 31)
2 2 digit month (1 – 12)
3 4 digit year

DATE2DWY Function
DATE2DWY allows you to extract the sections of a date (Day of the week, Week of the
year, and Year) from a Date field. The syntax is as follows:

IntegerVariable := DATE2DWY (DateField, ExtractionChoice)

Chapter 7

[303]

The fields IntegerVariable and DateField are just as their names imply. The
ExtractionChoice parameter allows you to choose which value (day, week, or year)
will be assigned to the IntegerVariable.

The following table provides the DATE2DWY extraction choices:

DATE2DWY Extraction Choice Integer Value Result
1 2 digit day (1 – 7 for Monday – Sunday)
2 2 digit week (1 – 53)
3 4 digit year

DMY2DATE and DWY2DATE Functions
DMY2DATE allows you to create a date from integer values (or defaults) representing
the Day of the month, Month of the year and four digit Year. If an optional
parameter (Month or Year) is not specified, the corresponding value from the system
date is used. The syntax is as follows:

DateVariable := DMY2DATE (DayValue [, MonthValue] [, YearValue])

The only way to have the function use Work Date values for Month and Year would
be to extract those values and then use them explicitly. An example is as follows:

DateVariable := DMY2DATE(22,DATE2MDY(WORKDATE,2),DATE2MDY(WORKDATE,3))

This example also illustrates how expressions built upon functions
can be nested.

DWY2DATE operates similarly; allowing you to create a date from integer values
representing the Day of the week (1 to 7, i.e. Monday to Sunday), Week of the year
(from 1 to 53) and four digit Year. The syntax is as follows:

DateVariable := DWY2DATE (DayValue [, WeekValue] [, YearValue])

An interesting result can occur if the specified week spans for two years. In that case
the year of the result will vary depending on the day of the week in the parameters
(i.e. the year of the result may differ from the year specified in the parameters).

CALCDATE Function
CALCDATE allows you to calculate a date value to be assigned to a Date data type
variable based on a Date Expression applied to a Base or Reference Date. If you don't
specify a BaseDateValue, the default date used is the current system date. Otherwise
the BaseDateValue can be supplied either in the form of a variable of data type Date
or as a Date constant.

Intermediate C/AL

[304]

The syntax for CALCDATE is as follows:

DateVariable := CALCDATE (DateExpression [, BaseDateValue])

There are a number of ways by which you can build a DateExpression. The rules
for the CALCDATE function DateExpression are similar to the rules for DateFormulaDateFormula
described in Chapter 3.

If there is a CW, CM, CP, CQ, or CY (Current Week, Current Month, Current Period,
Current Quarter, Current Year) parameter in an expression, then they will be
evaluated based on the BaseDateValue. If you have more than one of these in your
expression, the results are unpredictable.

If your Date Expression is stored in a DateFormula variable (or a Text or CodeDate Expression is stored in a DateFormula variable (or a Text or Code is stored in a DateFormula variable (or a Text or Code
variable with the DateFormula property set to Yes), then the Date Expression willDate Expression will will
be language independent. If you create your own Date Expression in the form of a
string constant within your inline C/AL code, surrounding the constant with < >
delimiters as part of the string, that will make the constant language independent.
Otherwise, the Date Expression constant will be language dependent.

Regardless of how you have constructed your DateExpression, it is important to
test it carefully and thoroughly before moving on. One easy way to test it is by using
a Report whose sole task is to evaluate your expression and display the result. If you
want an easy way to try different Base Dates, then you can use the Request Form,
accept the Base Date as input, then calculate and display the DateVariable in the
OnValidate trigger.

Some sample CALCDATE expression evaluations are as follows:

('<CM>',031008D) will yield 03/31/2008, i.e. the last day of the Current
Month for the date 3/10/2008.
('<-WD2>',031007D) will yield 03/06/2007, i.e. the WeekDay #2 (the prior
Tuesday) before the date 3/10/2007.
('<CM+1D>',BaseDate) where BaseDate equals 03/10/08, will yield
04/01/2008, i.e. the last day of the month of the Base Date plus one day (the
first day of the month following the Base Date).

FlowField-SumIndex Functions
In the chapter on Fields, we discussed SumIndexFields and FlowFields. To recap
briefly, SumIndexFields are defined in the screen where Keys are defined. They
allow very rapid calculation of values in filtered data. SumIndexFields are the
basis of FlowFields; a FlowField must refer to a data element that is defined as a
SumIndexField.

•

•

•

Chapter 7

[305]

When you access a record that has a SumIndexField defined, there is no visible
evidence of the data sum that SumIndexField represents. When you access a record
that contains FlowFields, the FlowFields are empty virtual data elements until
they are calculated. When a FlowField is displayed in a form, it is automatically
calculated by NAV; the developer doesn't need to do so. But in any other scenario,
the developer is responsible for calculating FlowFields before they are used.

CALCFIELDS Function
The syntax for CALCFIELDS is as follows:

[BooleanField :=] Record.CALCFIELDS (FlowField1 [, FlowField2] ,…)

Executing the CALCFIELDS function will cause all the specified FlowFields to be
calculated (i.e. updated). Specification of the BooleanField allows you to handle any
run-time error that may occur. The run-time errors for CALCFIELDS usually result
from a coding error or a change in a table key structure.

The FlowField calculation takes into account the filters that are currently applied to
the Record. After the CALCFIELDS execution, the included FlowFields can be used
similarly to any other data fields. The CALCFIELDS must be executed for each cycle
through the subject table.

CALCSUMS Function
The CALCSUMS function is conceptually similar to CALCFIELDS. But the CALCFIELDS
operates on FlowFields and CALCSUMS differs by operating directly on the record
and field where the SumIndexField is defined. That difference means that you must
specify the proper key plus any filters to apply (the applicable key and filters to
apply are already defined in the properties for FlowFields).

The syntax for CALCSUMS is as follows:

[BooleanField :=] Record.CALCSUMS (SIFTField1 [,SIFTField2] ,…)

Prior to this statement, you must have specified a key and that key must have the
SIFTFields defined. And before executing the CALCSUMS function, you need to
specify any filters that you want to apply to the record data from which the sums
are to be calculated. TheThe SIFTField calculations take into account the filters that are
currently applied to the Record.

Executing the CALCSUMS function will cause all the specified SIFTField totals to be
calculated. Specification of the BooleanField allows you to handle any run-time
error that may occur. The run-time errors for CALCSUMS usually result from a coding
error or a change in a table key structure.

Intermediate C/AL

[306]

Before the execution of CALCSUMS, SIFTFields contain only the data that originated
with the individual record that was read. After the CALCSUMS execution, the included
SIFTFields contain the totals that were calculated by the CALCSUMS function (these
totals only affect the data in memory, not that on the disk). These totals can then be
used the same as data in any field, but if you want to access the individual record's
original data for that field, you must either save a copy of the record before executing
the CALCSUMS or you must re-read the record. The CALCSUMS must be executed for
each cycle through the subject table.

The CALCSUMS function operates somewhat differently in the SQL Server environment.
If you are using CALCSUMS in code designed for use with SQL Server, you should
review the differences, as they can have a significant affect on performance.

Flow Control
The structures defined for flow control are as follows:

REPEAT–UNTIL Control Structure
REPEAT–UNTIL allows you to create a repetitive code loop REPEATing a block of code
UNTIL a specific conditional expression evaluates to TRUE. In that sense REPEAT–
UNTIL defines a block of code, operating like the BEGIN–END compound statement
structure which we covered in the previous chapter. In this case, the REPEAT tells
the system to keep reprocessing the block of code, while the UNTIL serves as the exit
doorman, checking if the conditions for ending the processing are true. Because the
exit condition is not evaluated until the end of the loop, a REPEAT–UNTIL structure
will always process at least once through the contained code.

REPEAT–UNTIL is very important in NAV because it is frequent part of the data input
cycle with FIND-NEXT structure, which will be covered shortly.

An example of the REPEAT–UNTIL structure to process data in a 10-element array is
as follows:

LoopCount := 0;

REPEAT

 LoopCount := LoopCount + 1;

 TotCustSales := TotCustSales + CustSales[LoopCount];

UNTIL LoopCount = 10;

Chapter 7

[307]

WHILE–DO Control Structure
A WHILE–DO control structure allows you to create a repetitive code loop DOing a
block of code WHILE a specific conditional expression evaluates to TRUE. WHILE–DO
is different from REPEAT–UNTIL, both in the possible need for a BEGIN–END structure
to define a block of code and in the timing of the evaluation of the exit condition.

The syntax of the WHILE – DO control structure is as follows:

WHILE <Condition> DO <Statement>

The Condition can be any Boolean expression, which evaluates to TRUE or FALSE.
The Statement can be a simple expression or the most complex possible compound
BEGIN–END–ENDEND statement. Most WHILE–DO loops will contain a BEGIN–END block of code.
The Condition will be evaluated at the beginning of the loop. When it evaluates
to FALSE, the loop will terminate, meaning that a WHILE–DO loop can be exited
without processing.

An example of the WHILE-DO structure to process data in a 10-element array is
as follows:

LoopCount := 0;
WHILE LoopCount < 10
DO BEGIN
 LoopCount := LoopCount + 1;
 TotCustSales := TotCustSales + CustSales[LoopCount];
END;

CASE–ELSE Statement
The CASE–ELSE statement is a conditional expression very similar to IF–THEN–ELSE
except that it allows for more than two choices of outcomes for the evaluation of the
controlling expression. The syntax of the CASE–ELSE statement is as follows:

CASE <ExpressionToBeEvaluated> OF
 <Value Set 1> : <Action Statement 1>;
 <Value Set 2> : <Action Statement 2>;
 <Value Set 3> : <Action Statement 3>;
 ...
 ...
 <Value Set n> : <Action Statement n>;
 [ELSE <Action Statement n + 1>;
END;

Intermediate C/AL

[308]

The ExpressionToBeEvaluated must not be a record. The data type of the Value
Set must be compatible with (i.e. able to be automatically converted to) the data type
of the ExpressionToBeEvaluated. Each Value Set must be an expression, a set of
values or a range of values. The following example illustrates a typical instance of a
CASE–ELSE statement:

 CASE Customer."Salesperson Code" OF
 '2','5','9': Customer."Territory Code" := 'EAST';
 '6'..'8': Customer."Territory Code" := 'WEST';
 '3': Customer."Territory Code" := 'NORTH';
 '1'..'4': Customer."Territory Code" := 'SOUTH';
 ELSE Customer."Territory Code" := 'FOREIGN';
 END;

In this example, you can see several alternatives for the Value Set. The first
line (EAST) Value Set is a list of values. If the "Salesperson Code" is equal
to '2' or equal to '5' or equal to '9', the value EAST will be assigned to the
Customer."Territory Code". The second line (WEST) Value Set is a range, any
value from '6' through '8'. The third line (NORTH) Value Set is just a single value
('3'). Looking at the bulk of standard code, you will see that the single value is
the norm for CASE structures. The fourth line (SOUTH) Value Set is again a range
('1'..'4'). If nothing in any Value Set matches ExpressionToBeEvaluated, then
the ELSE clause will be executed.

An example of an IF–THEN-ELSE statement equivalent to the preceding CASE-ELSE
statement is as follows:

 IF Customer."Salesperson Code" IN ['2','5','9'] THEN
 Customer."Territory Code" := 'EAST'
 ELSE IF Customer."Salesperson Code" IN ['6'..'8'] THEN
 Customer."Territory Code" := 'WEST'
 ELSE IF Customer."Salesperson Code" = '3' THEN
 Customer."Territory Code" := 'NORTH'
 ELSE IF Customer."Salesperson Code" IN ['1'..'4'] THEN
 Customer."Territory Code" := 'SOUTH'
 ELSE Customer."Territory Code" := 'FOREIGN';

The following is a more creative, somewhat less intuitive example of the CASE–ELSE
statement. In this instance, the ExpressionToBeEvaluated is a simple TRUE and
the Value Set statements are all conditional expressions. The first line containing
a Value Set expression that evaluates to TRUE will be the line whose Action
Statement is executed. The rules of execution and flow in this instance are same as
the previous example.

 CASE TRUE OF
 Salesline.Quantity < 0:

Chapter 7

[309]

 BEGIN
 CLEAR(Salesline."Line Discount %");
 CredTot := CredTot - Salesline.Quantity;
 END;
 Salesline.Quantity > QtyBreak[1]:
 Salesline."Line Discount %" := DiscLevel[1];
 Salesline.Quantity > QtyBreak[2]:
 Salesline."Line Discount %" := DiscLevel[2];
 Salesline.Quantity > QtyBreak[3]:
 Salesline."Line Discount %" := DiscLevel[3];
 Salesline.Quantity > QtyBreak[4]:
 Salesline."Line Discount %" := DiscLevel[4];
 ELSE
 CLEAR(Salesline."Line Discount %");
 END;

WITH–DO Statement
When you are writing code referring to fields within a record, the most specific
syntax for field references is the fully qualified reference. When referring to the field
City in the record Customer, use the reference Customer.City.

In many C/AL instances, the record name qualifier is implicit, i.e. the compiler
assumes a default record qualifier based on context within the code. This happens
automatically for variables within a form that is bounded to a table. The bound table
becomes the implicit record qualifier for fields referenced in the Form object. In a
Table object, the table is the implicit record qualifier for fields referenced in the
C/AL internal to that object. In Report and Dataport objects, the Data Item record
is the implicit record qualifier for the fields referenced within Data Item-specific
triggers (e.g. OnAfterGetRecord, OnAfterImportRecord, etc.).

In all other C/AL code, the only way to have an implicit record qualifier is to use the
WITH–DO statement. WITH–DO is widely used in Codeunits and processing Reports.
The WITH–DO syntax is as follows:

WITH <RecordQualifier> DO <Statement>

Typically, the DO portion of this statement will be followed by a BEGIN–END code
block, i.e. the Statement will be a compound statement. The scope of the WITH–DO
statement is terminated by the end of the DO Statement.

Intermediate C/AL

[310]

When you execute a WITH–DO statement, RecordQualifier becomes the implicit
record qualifier used by the compiler until the end of the Statement or until it is
overridden by a nested WITH–DO statement. Where fully qualified syntax would
require the following form:

Customer.Address := '189 Maple Avenue';
Customer.City := 'Chicago';

the WITH–DO syntax takes advantage of the implicit record qualification making the
code easier to write, and hopefully easier to read, for example:

WITH Customer DO
BEGIN
 Address := '189 Maple Avenue';
 City := 'Chicago';
END;

Nested WITH–DO statements are valid, but not generally used, and are not
recommended because they can easily lead to developer confusion and therefore
result in programming bugs. The same comments apply to nesting a WITH–DO
statement within a function where there is an automatic implicit record qualifier,
such as in a table, bound form, report, or dataport. Of course, wherever the
references to other record variables occur within the scope of a WITH–DO, you must
include the specific qualifiers. This is particularly important when there are variables
with the same name (e.g. City) in multiple tables that might be referenced in the
same set of C/AL logic.

QUIT, BREAK, EXIT, SKIP, and SHOWOUTPUT
Functions
There is a group of C/AL functions that can be used to control the flow and affect
the processing under different circumstances. Each acts to interrupt flow in different
places and with different results.

QUIT Function
The QUIT function is the ultimate processing interrupt for Report, Dataport or
XMLport objects. When a QUIT is executed, processing immediately terminates even
for the OnPostObject triggers. The syntax of the QUIT function is as follows:

CurrReport.QUIT;
CurrDataport.QUIT;
CurrXMLport.QUIT;

Chapter 7

[311]

BREAK Function
The effect of a BREAK function depends on the context in which it executes. If the
BREAK is within a loop structure such as a WHILE–DO or REPEAT–UNTIL loop, BREAK
exits the loop as if the loop exit condition had been satisfied except it exits at the
point of the BREAK. If the BREAK function is not in a loop, then its execution will exit
the trigger. BREAK can only be used in Data Item triggers in Reports, Dataports, and
XMLports.

The BREAK syntax is one of the following:

CurrReport.BREAK;
CurrDataport.BREAK;
CurrXMLport.BREAK;

EXIT Function
EXIT is used to end the processing within a C/AL trigger. EXIT works the same
whether it is executed within a loop or not. EXIT can be used simply to end the
processing of the trigger or to pass a return parameter from a local function. If EXIT
is used without a return parameter then a default parameter of zero is returned. The
syntax for EXIT is as follows:

EXIT([<ReturnValue>])

EXIT could be considered as an acceptable substitute for the dreaded GOTO.

SKIP Function
When executed, the SKIP function will skip the remainder of the processing in the
current cycle in the current trigger. Unlike BREAK, it does not terminate processing
in the trigger. It can be used only in the OnAfterGetRecord trigger of a Report,
Dataport, or XMLport object. The SKIP syntax is one of the following:

CurrReport.SKIP;
CurrDataport.SKIP;
CurrXMLport.SKIP;

SHOWOUTPUT Function
SHOWOUTPUT can be used only in the OnPreSection trigger of Report objects. If
it is set to FALSE, then the section is not outputted, but any other processing is
performed. The syntax of SHOWOUTPUT is as follows:

[BooleanValue :=] CurrReport.SHOWOUTPUT ([BooleanExpression])

Intermediate C/AL

[312]

If there is no explicit SHOWOUTPUT function, the implicit value will be TRUE, i.e. the
section will be outputted.

Input and Output Functions
In the previous chapter, we learned a little about the basics of the FIND function.
We learned about FIND('-') to read the beginning of the selected records and
FIND('+') to begin reading at the far end of the selected records. Now we will
review additional functions that are generally used with FIND in typical production
code. While designing the code by using the Modify and Delete record functions,
you need to consider the possible interactions with other users on the system. There
might be someone else modifying and deleting records in the same table in which
your application is working.

You will likely want to utilize the LOCKTABLE function to gain total control of the data
briefly, while updating the data. You can find more information on LOCKTABLE in
both the Application Designer's Guide and in the on-line C/AL Reference Guide (i.e.
C/SIDE Help). Be aware that LOCKTABLE performs quite differently in the C/SIDE
database from how it performs in the SQL Server database.

NEXT Function (with FIND)
The syntax defined for the NEXT function is as follows:

IntegerValue := Record.NEXT (ReadStepSize)

The full assignment statement format is rarely used to set an IntegerValue. In addition,
the rules for the resulting IntegerValue are not clear in the available documentation.

If the ReadStepSize value is negative, the file will be read in reverse; if that value
is positive (the default), then the file will be read forward. The size of the value in
ReadStepSize controls which records are read. For example, if ReadStepSize is 2
or -2, then every second record will be read. If ReadStepSize is 10 or -10, then every
tenth record will be read. The default value is zero, in which case every record will
be read (the same as if it were 1 or +1) and the read direction will be forward.

In a normal data input loop, the first read is instigated by a FIND function followed
by a REPEAT–UNTIL loop with the exit condition for that loop being a NEXT expression
similar to UNTIL Record.NEXT = 0;.

The full C/AL syntax would look like the following:
IF CustRec.FIND('-') THEN
REPEAT
 Block of C/AL logic
UNTIL CustRec.NEXT = 0;

Chapter 7

[313]

INSERT Function
The purpose of the INSERT function is to insert (i.e. add) records into the table. The
syntax for the INSERT function is as follows:

[BooleanValue :=] Record.INSERT ([TriggerControlBoolean])

If the BooleanValue is not used and the INSERT function fails (if, for example,
inserting would result in a duplicate primary key condition), then the process will
terminate with an error statement. Any detected error should either be handled or
should terminate the process.

The TriggerControlBoolean value is a TRUE or FALSE entry, which controls
whether or not the table's OnInsert trigger fires when this INSERT occurs. The
default value is FALSE. If you let the default FALSE control, you run the risk of not
running error checking that the table's designer assumed would be run when a new
record was added.

If you are reading a table and you need to also INSERT records in that
table, the INSERTs should be done to a separate instance of the table,
either a global or local variable.

MODIFY Function
The purpose of the MODIFY function is to modify (i.e. update) existing data records.
The syntax for MODIFY is as follows:

[BooleanValue :=] Record.MODIFY ([TriggerControlBoolean])

If the BooleanValue is not used and the MODIFY fails (if, for example, the
modification would result in a duplicate primary key condition), then the process
will terminate with an error statement. Any detected error should either be handled
or should terminate the process. The TriggerControlBoolean value is a TRUE or
FALSE entry, which controls whether or not the table's OnModify trigger fires when
this MODIFY occurs. The default value is FALSE.

MODIFY cannot be used to cause a change in a primary key field. In that case, the
RENAME function must be used.

Rec and xRec
In Table and Form objects, the system automatically provides you with the system
variables Rec and xRec. After a record has been modified, Rec represents the current
record data in process and xRec represents the record data before it was modified. By
comparing field values in Rec and xRec, you can determine if changes have been

Intermediate C/AL

[314]

made to the record in the current process cycle. When any table is updated through a
MODIFY, the data in xRec is updated to what was in Rec followed by the change. Rec
and xRec records have all the same fields in the same structure as the table to which
they relate.

DELETE Function
The purpose of the DELETE function is to delete existing data records. The syntax for
DELETE is as follows:

[BooleanValue :=] Record.DELETE ([TriggerControlBoolean])

If the BooleanValue is not used and the DELETE fails, then the process will terminate
with an error statement. Any detected error should either be handled or should
terminate the process.

The TriggerControlBoolean value is a TRUE or FALSE entry, which controls
whether or not the table's OnDelete trigger fires when this DELETE occurs. The
default value is FALSE. If you let the default FALSE prevail, you run the risk of
not running error checking that the table's designer assumed would be run when a
record was deleted.

MODIFYALL Function
MODIFYALL is the high-volume version of the MODIFY function. If you have a group of
records in which you wish to modify one field in all of them to the same new value,
you should use MODIFYALL. MODIFYALL is controlled by the filters that apply at the
time of invoking. MODIFYALL does not do any error checking, such as checking for an
empty set.

The other choice for doing a mass modification would be to have a FIND–NEXT loop
in which you modified each record one at a time. The advantage of MODIFYALL is that
it allows the system to optimize processing for the volume update.

The syntax for MODIFYALL is as follows:

Record.MODIFYALL (FieldToBeModified,NewValue [,TriggerControlBoolean])

The TriggerControlBoolean value is a TRUE or FALSE entry, which controls
whether or not the table's OnModify trigger fires when this MODIFY occurs. The
default value is FALSE.

Chapter 7

[315]

In a typical situation, a filter or series of filters would be applied to a table followed
by the MODIFYALL function. A simple example where we are going to reassign all the
Territory Codes for a particular Salesperson to NORTH is as follows:

CustRec.SETRANGE("Salesperson Code",'DAS');
CustRec.MODIFYALL("Territory Code",'NORTH',TRUE);

DELETEALL Function
DELETEALL is the high volume version of the DELETE function. If you have a group of
records that you wish delete, use DELETEALL. The other choice would be to have
a FIND–NEXT loop in which you delete each record one at a time. The advantage
of the DELETEALL is that it allows the system to optimize processing for the
volume deletion.

The syntax for DELETEALL is as follows:

Record.DELETEALL (FieldToBeModified,NewValue [,TriggerControlBoolean])

The TriggerControlBoolean value is a TRUE or FALSE entry that controls whether
or not the table's OnDelete trigger fires when this DELETE occurs. The default
value is FALSE. If the TriggerControlBoolean value is TRUE, then the OnDelete
trigger will fire for each record deleted. In that case, there is no speed advantage for
DELETEALL versus the use of a FIND–DELETE–NEXT loop.

In a typical situation, a filter or series of filters would be applied to a table followed
by the DELETEALL function, similar to the preceding example. Like MODIFYALL,
DELETEALL respects the filters that have been set and does not do any error checking.

Filtering
We have talked about the fact that the filtering capabilities built into NAV provide
a significant additional level of power to the system. This power is available
to the users and to the developer as well. It is true that other systems provide
filtering of data for inquiry, reporting, or analysis. But few other systems have
filtering implemented as pervasively as does NAV nor do they have it tied to the
detailed retention of historical data. The result of NAV's features is that even the
most elementary implementation of NAV includes very powerful data analysis
capabilities for end-user use.

You as the developer should appreciate the fact that you cannot anticipate every
need of any user, let alone anticipate every need of every user. For that reason, you
should give the user as much freedom as you can. Wherever feasible, the user should

Intermediate C/AL

[316]

be given the opportunity to apply their own filters so that they can determine the
optimum selection of data for their particular situation. On the other hand, freedom,
here as everywhere else, is a double-edged sword. With the freedom to decide just
how to segment one's data, comes the responsibility for figuring out what constitutes
a good segmentation to address the problem at hand.

Since you, as the experienced systems designer and developer, presumably have
considerable insight into good ways to analyze and present the data, it may be best
for you to provide some predefined selections. And in some cases, the data structure
means that only a very limited set of options make sense (maybe just one). The end
result is that in most cases you should provide one or more specific accesses to data
(forms and/or reports), but then, if possible, also provide the more sophisticated
users access to manipulate the data creatively on their own.

When applying filters using any of the options, be very conscious of the table key
that will be active when the filter takes affect. In a table containing a lot of data,
filtering on a field that is not represented very high in the currently active key may
result in poor (or very poor) response time for the user. Conversely, in a system
suffering from poor response time during processing, you should first investigate the
relationships of active keys to applied filters.

SETRANGE Function
SETRANGE allows you to set a simple range filter on your data. The syntax is
as follows:

Record.SETRANGE (Field [,LowValue] [,HighValue]);

If both the optional parameters are omitted, any filtering that was previously applied
to Record.Field will be cleared. In fact, this is the recommended way for clearing
filters on a single field. If only one parameter is specified, it becomes both the high
and low range values. In other words, you will be filtering on a single value in this
field. If you specify both a low and high range value, the filter will be logically the
same as: LowValue less than or equal to Field less than or equal to HighValue. If you
happen to specify a HighValue that is greater than the LowValue, you will exclude all
data, resulting in selecting an empty set.

SETFILTER Function
SETFILTER allows you to apply any Filter expression that could be created manually,Filter expression that could be created manually, expression that could be created manually,
including various combinations of ranges, C/AL operators, and even wild cards.
SETFILTER syntax is as follows:

Record.SETFILTER (Field, FilterString [, FilterValue1], . . .]);

Chapter 7

[317]

FilterString can be a literal such as '1000..20000' or 'A*|B*|C*'. Optionally,
you can use variable tokens in the form of %1, %2, %3, and so forth, representing
variables (but not operators) FilterValue1, FilterValue2, and so forth to be
substituted in the filter string at run time. This construct allows you to create
dynamic filters whose data values can be defined dynamically at run time. A pair of
SETFILTER example is as follows:

CustRec.SETFILTER("Salesperson Code",'DAS'|'EFF'|'TKW');
CustRec.SETFILTER("Salesperson Code",'%1|%2|%3',SPC1,SPC2,SPC3);

If SPC1 equals' DAS', SPC2 equals 'EFF', and SPC3 equals 'TKW', these two examples
would have the same result. But obviously the second option allows flexibility not
allowed by the first option.

COPYFILTER and COPYFILTERS Functions
These functions allow copying the filters on a single field or all the filters on a record
(table) and applying what is copied to another record. The syntaxes are as follows:

FromRecord.COPYFILTER(FromField, ToRecord.ToField)
ToRecord.COPYFILTERS(FromRecord)

Note that the COPYFILTER structure begins with the FromRecord variable while that
of COPYFILTERS begins with the ToRecord variable.

GETFILTER and GETFILTERS Functions
These functions allow you to retrieve the filters on a single field or all the filters on a
record (table) and assign the result to a text variable. The syntaxes are as follows:

ResultString := FilteredRecord.GETFILTER(FilteredField)
ResultString := FilteredRecord.GETFILTERS

The text contents of the ResultString will contain an identifier for each filter and
the currently applied value of the filter. GETFILTERS is often used to retrieve the
filters on a table and print them as part of a report heading. The ResultString will
look similar to the following:

Customer:: No.: 10000..999999, Balance: >0

Intermediate C/AL

[318]

MARK Function
A Mark on a record is an indicator that disappears when the current session endsMark on a record is an indicator that disappears when the current session endson a record is an indicator that disappears when the current session ends
and which is only visible to the process setting the mark. The MARK function sets the
Mark. The syntax is as follows:

[BooleanValue :=] Record.MARK ([SetMarkBoolean])

If the optional BooleanValue and assignment operator (:=) is present, the MARK
function will give you the current Mark status (TRUE or FALSE) of the Record.
If the Optional SetMarkBoolean parameter is not present, the Record will be
Marked (or unmarked) according to that value (TRUE or FALSE). The default for
SetMarkBoolean is FALSE. The MARK functions are a little tricky to use, so should
be used carefully, only when a simpler solution is not readily available. MARKing
records can cause significant performance problems for SQL Server installations.

CLEARMARKS Function
CLEARMARKS clears all the marks from the specified record (i.e. from the particular
instance of the table in this instance of the object). The syntax is as follows:

Record.CLEARMARKS

MARKEDONLY Function
MARKEDONLY is a special filtering function that can apply a Mark-based filter.

The syntax for MARKEDONLY is as follows:

[BooleanValue :=] Record.MARKEDONLY ([SeeMarkedRecordsOnlyBoolean])

If the optional BooleanValue parameter is defined, it will be assigned a value TRUE
or FALSE to tell you whether or not the special MARKEDONLY filter is active. Omitting
the BooleanValue parameter, MARKEDONLY will set the special filter depending on the
value of SeeMarkedRecordsOnlyBoolean. If that value is TRUE, it will filter to show
only Marked records; if that value is FALSE, it will remove the Marked filter. Though
it may not seem logical, there is no option to see only the unmarked records. The
default value for SeeMarkedRecordsOnlyBoolean is FALSE.

RESET Function
This function allows you to RESET (i.e. clear) all filters that are currently applied to a
record. The syntax is as follows:

FilteredRecord.RESET;

Chapter 7

[319]

RESET also sets the current key back to the primary key, removes any marks, and
clears all internal variables in the current instance of the record.

InterObject Communication
There are several ways for communicating information between objects during
NAV processing.

Via Data
The most widely used and simplest, is through data tables. For example, the table
No. Series is the central control for all document numbers. Each object that assigns
numbers to a document (e.g. Order, Invoice, Shipment, etc.) accesses the No. Series
table for the next number to use, and then updates the table so that the next
object demanding to assign a number to the same type of document will have the
correct information.

Via Function Parameters
When one object calls a function in another object, information is generally passed
through the calling and return parameters. The calling and return parameter
specifications were defined when the function was originally coded. The generic
syntax for a function call is as follows:

[ReturnValue :=] FunctionName ([Parameter1] [,Parameter2] ,…)

The rules for including or omitting the various optional fields are specific to the local
variables defined for each individual function. When you as a developer design the
function, you define those rules and thereby determine just how communications
with the function will be handled.

Via Object Calls
Sometimes you need to create an object which in turn calls other objects. You may
simply want to allow the user to be able to run a series of processes and reports
but only enter their controlling parameters once. Your user interface object is then
responsible for invoking the subordinate objects after having communicated setup
and filter parameters. There is a significant set of standard functions designed for
various modes and circumstances of invoking other objects. Examples of these
functions are SETTABLEVIEW, SETRECORD, and GETRECORD (there are others as
well). There are also instances where you will need to build your own data
passing function.

Intermediate C/AL

[320]

In order to properly manage these relatively complex processes, you will have to be
familiar with the various versions of RUN and RUNMODAL functions. You will also need
to understand the meaning and effect of a single instance or multiple instances of an
object. Briefly, key differences between invoking an object from within another object
via RUN versus RUNMODAL are as follows:

RUN initiates a new instance of the invoked object every time, which means all
internal variables are initialized.
RUNMODAL does not initiate a new instance of the invoked object, nor are
internal global variables reinitialized each time the object is called. The object
can be re-initialized with CLEAR(Object).
RUNMODAL does not allow any other object to be active while it is running,
whereas RUN does.

Covering these topics in more detail is too advanced for this book, but once you have
mastered the material covered here, you should study the information in the C/SIDE
HELP and reference manuals relative to this topic.

Use the New Knowledge
Now we are going to take some of the knowledge that we have gained in this and
preceding chapters and do some development work for the C/ANDL system.

A Development Challenge for You
We are going to create a Member Volunteer Statistics report. As we have gone
through the various development efforts for the C/ANDL system, most have been
at least moderately real-life in approach, and in addition focused on illustrating
material covered in this volume.

In this particular case, we are going to stray a little in the sense that while the overall
goal is reasonably real-life, our approach will be aimed more at using our new
knowledge than creating the best possible code. Where appropriate, we should take
note of our compromises. For example, normally a Statistics function like that which
we are going to create would be done via a form rather than a report (e.g. see Form
151 Customer Statistics).

•

•

•

Chapter 7

[321]

The Member Volunteer Statistics report will have the following layout:

This layout is split into four sections. The top section, marked , is the report header.
We will generate some of this with the Report Wizard and create our own code for
the rest. The next section, marked , is the Member information. The existence of
that section will be generated using the Report Wizard, but we will add code for
both the Name field and the Area of Responsibility. Section will be generated
completely manually. The same will be true for section .

If you are willing, it would be a good exercise to try creating this report on your
own. If you are done and want to look at another approach, we will walk through an
example approach together. Or you might just prefer to walk through the example
first, and then experiment on your own. First, let us define the steps that we need to
take to create this report. They are as follows:

Phase 1
1. Create a new report 50003 using the Report Wizard. Focus the report on the

Member table to get started.

2. Create logic to properly display the Member Name.

3. Create logic using a CASE statement to fill a text description for the work
Area of Responsibility (Executive, Technical Manager, Developer, Sales,
Consulting, or Training).

4. Create logic to display the date-specific heading based on the Work Date.

Intermediate C/AL

[322]

Phase 2
5. Add the Volunteer Activity Ledger Data Item.
6. Create Header and Body Sections for this Data Item.

Phase 3
7. Create a Footer Section to hold Report totals.
8. Create logic to calculate Report totals using one approach.
9. Add a second Footer Section for a new set of Report totals.
10. Create logic to calculate Report totals using a different approach.

Now you can either go to work (good experience) or read on for one way to address
the task.

A Sample Approach to the Challenge
There are many ways to solve a programming task; the illustration that follows is
one of them. If your approach is significantly different, but works well, it's excellent.
You may have come up with a better approach than this one. The measures of
quality should be reliablility and speed when in production, along with clarity of the
design, which should also be easy to maintain.

Phase 1
We will address the first four steps described earlier as follows:

Step 1
Our first step will be to use the Report Wizard to create a report structure for the
heading and the specified Member data. From our Report Wizard, we get a basic
report structure with a single Data Item for the Member table as shown in the
following screenshot:

Chapter 7

[323]

We will adjust the properties of the Member Data Item to add a value (Member ID)
to the ReqFilterFields, shown in the following screenshot, to force a Selection Tab to
appear for the Report Request Form.

Since the Name and Area of Responsibility fields will need to be filled in manually,
only the Member No. field will be part of the Report Wizard report layout results.

The Section layout is a good start, but we need to create the Name field and the Area
of Responsibility field with their associated headings as shown in the following
screenshot. We also need to add another heading line showing date information as
per our report design layout.

Intermediate C/AL

[324]

As we begin to build the pieces, we add fields as needed to the Global Variables. We
need fields, as shown in the following screenshot, to build the concatenated Name, to
build the heading line (ActivityDateHeading and AsOfYear), and to store the Area
of Responsibility description field for printing as shown in the following screenshot:

Step 2
Since the MemberName exists in the Member table in its component parts (first
name, last name, etc.), we have to build the Name field by using string concatenation
(i.e. similar to "First Name" + "Last Name"). As we start to build the logic to do
the Name concatenation, it becomes obvious that this is a somewhat complex piece
of logic that would be suited to be placed in its own function for clarity. So we
have created a function, which is invoked with the simplest possible expression
ConcatenateName;. When we are writing the logic to concatenate the components
of name fields, we realize that we want to protect against overflow, thus the addition
of a work field (ShortenBy) to our Globals will make the string manipulation code a
little easier to understand.

Chapter 7

[325]

Step 3
Since the Area of Responsibility field in our Member table is several discrete fields,
we will use a CASE statement to choose a description for this field. To make the code
clearer for debugging and future maintenance, we put the CASE statement in its
own function as well, as shown in the following screenshot:

Our CASE statement (and previously our report design) presumes that only one
of the various Area of Responsibility options will be TRUE. When we review the
Member table definition, we realize that constraint is not part of our basic design, in
other words we have just found a logic hole that needs to be patched. We might as
well take care of that, while making these other changes.

Intermediate C/AL

[326]

As we make this change, we realize that if we only want one of six possible values
to be true, we should have defined the table originally with a single option field
rather than six separate fields. But, as often happens as a system evolves, that is an
earlier design flaw that we are not going to fully correct at this point. In a production
system, resolving such a problem might require a brief system shutdown, some data
conversion processing, perhaps even some minor user training, and documentation
changes. At the moment, though, we will just add the editing capability to properly
constrain the data as shown in the following screenshot:

Chapter 7

[327]

Step 4
Rather than using the System Date for the report, we will use the Work Date. This
will allow the user to set the Work Date and create a report showing the appropriate
data as of a particular date. So we need to access the Work Date, manipulate it, and
apply the results as a filter to limit the Volunteer Activity records processed.

Phase 2
In Phase 2, we need to add the Volunteer Activity Ledger Data Item, link it with
the Member Data Item, and create the related Header and Body report Sections. The
visual appearance of the resulting report layout is a very important and subjective
task. In most cases, this being no exception, several test runs and some manual
adjusting of various layout aspects is necessary. The steps included in this phase are
as follows:

Intermediate C/AL

[328]

Step 5
Add the Volunteer Activity Ledger Data Item as shown in the following screenshot:

Link the new Data Item to the Member Data Item. Also add a Key definition to the
DataItemTableView property, as shown in following screenshot, so that the Request
form will not show a default Selection Tab.

Chapter 7

[329]

Step 6
Create the Header and Body report Sections for the Volunteer Activity Ledger data
as shown in the following screenshot:

Use Alt+F | Run | Preview to see the sample output. This sample used a Work Date
of 9/25/08 and filtered on Member ID = 406. The following screenshot displays
the output:

Phase 3

Steps 7 and 9
We add the working storage variables to collect our totals and to hold our filters. The
totaling variables are all arrays of two entries, [1] for Hours and [2] for Points.

Intermediate C/AL

[330]

We create two sets of variables, one for each of the approaches to totaling that we
want to implement.

If our approach is to use functions for clarity of structure, we need to create new ones
for each of our two totaling routines.

Chapter 7

[331]

Add the new Footer Section as shown in the following screenshot. Since our reason
for having two sets of totals was simply for the experience and to compare the
results, we put both set of totals in the same Footer Section. We could just easily have
used two Footer Sections.

Steps 8 and 10
One totaling function uses a READ-REPEAT-UNTIL-NEXT loop to process filtered
Activity data and to accumulate totals.

Intermediate C/AL

[332]

The second totaling function applies filters and uses the CALCSUMS function to
accumulate the same totals so that we can vividly see how each approach works.

At the end of processing detail data, we call the totaling functions. Once they have
done their work, we compare the results to make sure that our code is working
as expected.

Chapter 7

[333]

In the interest of the multi-language capability of NAV, we put the string literal for
our error message in the Text Constants area, as shown in the following screenshot:

Finally, after debugging is complete, we can run a successful test. The output will be
similar to the following screenshot:

Intermediate C/AL

[334]

Summary
In this chapter, we have covered a number of practical tools and topics regarding
C/AL coding and development. We started with reviewing methods and then dove
into a long list of functions that you will need on a frequent basis.

We started this chapter by covering development assisted by use of the C/AL
Symbol Menu, followed by a discussion of development documentation. Then we
covered a variety of selected data-centric functions, including some for Computation
and Validation, Data Conversion, and Date handling. Next, we reviewed functions
that affect the flow of logic and the flow of data, including Flowfields and SIFT,
Processing Flow Control, Input and Output, and Filtering.

In the next chapter, we will move from the details of the functions to the broader
view of C/AL development including models of code usage in the standard product
code, integration into the standard NAV code, and some debugging techniques.

Advanced NAV Development
You think you know when you can learn, are more sure when you can write, even
more when you can teach, but certain when you can program—Alan Perlis

Once you have achieved some mastery in the basics of C/AL programming, you
are ready to start creating your own C/AL in NAV. But it is important that you get
some familiarity with NAV C/AL code in the standard product first. You may recall
the advice in a previous chapter that the new code you create should be visually
and logically compatible with what already exists. If you think of your new code as
a guest being hosted by the original system, you will be doing what any thoughtful
guest does—fitting smoothly into the host's environment.

An equally important aspect of becoming familiar with the existing code is
to increase the likelihood of being able to take advantage of its features and
components to address some of your application requirements. There will be at least
two groups of material that you can use.

One group is the Callable Functions that are used liberally throughout NAV. There
is no documentation for most of those functions so you must either learn about them
here or through doing your homework (i.e. studying NAV code). The second group
includes the many code snippets that you can copy when you face a problem similar
to something the NAV developers have already addressed.

The code snippets differ from the callable functions in two ways. Firstly, they are not
structured as coherent and callable entities. Secondly, they may only apply to your
problem as a model, code that must be modified to fit the situation (e.g. changing
variable names, adding or removing constraints, etc.).

In this chapter, we will look at some of the code structures. We will also discuss
techniques for working with the code, for debugging, and as a developer, taking
advantage of the strengths of the C/SIDE and NAV environment. Following this
chapter, you should have enough tools in your NAV toolkit to start doing basic
development projects.

Advanced NAV Development

[336]

Callable Functions
There are many callable functions in the standard NAV product. Most of these
are designed to handle a very specific set of data or conditions and have no
general-purpose use (e.g. the routines for updating Check Ledger entries during a
posting process are likely to apply only to that specific function). If you are making
modifications to a particular application area within NAV, you may find functions
in that area that you can utilize either as they exist or as models for new similar
functions which you have to create.

However, there are also some functions within NAV that are relatively general
purpose. They either act on data that is common in many different situations (e.g.
dates) or they perform processing tasks that are common to many situations (e.g.
provide access to an external file). We will review a number of such functions that
you may find usable at some point. If nothing else, they are useful as study guides
for "here is how NAV does it". Example functions follow.

Codeunit – 358 Date Filter-Calc
This codeunit contains two functions you could use in your code to create filters
based on the Accounting Period Calendar. The first is CreateFiscalYearFilter
which has syntax of:

CreateFiscalYearFilter.DateFilterCalc
 (Filter,Name,BaseDate,NextStep)

The calling parameters are Filter (text, length 30), Name (text, length 30), BaseDate
(date) and NextStep (integer).

The second such function is CreateAccountingPeriodFilter which has syntax of:
CreateAccountingPeriodFilter.DateFilterCalc
 (Filter,Name,BaseDate,NextStep)

The calling parameters are Filter (text, length 30), Name (text, length 30), BaseDate
(date) and NextStep (integer).

In the following code screenshot from Form 151 – Customer Statistics, you can see how
NAV calls these functions. Form 152 – Vendor Statistics, Form 223 – Resource Statistics,
and a number of other Master table statistics forms also use this set of functions.

Chapter 8

[337]

In the next code screenshot, NAV uses the filters stored in the CustDateFilter array
to constrain the calculation of a series of Flowfields for the Customer Statistics form.

When one of these functions is called, the Filter and Name fields are updated within
the functions so you can use them effectively as Return parameters allowing the
function to return a workable filter and a name for that filter. The filter is calculated
from the BaseDate and NextStep you supply.

The returned filters are supplied back in the format of a range filter string,
'startdate..enddate' (e.g. 01/01/07..12/31/07). If you call01/01/07..12/31/07). If you call. If you call CreateFiscalYear,
the Filter will be for the range of a fiscal year, as defined by the system's
Accounting Period table. If you call CreateAccountingPeriodFilter, the Filter
will be for the range of a fiscal period, as defined by the same table.

The dates of the Period or Year filter returned are tied to the BaseDate parameter,
which can be any legal date. The NextStep parameter says which period or year to
use, depending on which function is called. A NextStep = 0 says use the period or
year containing the BaseDate, NextStep = 1 says use the next period or year into
the future, and NextStep = -2 says use the period or year before last (i.e. step back 2
periods or years).

The Name value returned is also derived from the Accounting Period table. If
the call is to the CreateAccountingPeriodFilter, then Name will contain the
appropriate Accounting Period Name. If the call is to the CreateFiscalYearFilter,
then Name will contain 'Fiscal Year yyyy', where yyyy will be the four digit
numeric year.

Codeunit 359 – Period Form Management
This codeunit contains three functions that can be used for date handling. They are
as follows:

FindDate function
Calling Parameters (SearchString (text, length 3),
CalendarRecord (Date table), PeriodType (Option, integer))
Returns DateFound Boolean

 FindDate(SearchString,CalendarRec,PeriodType)

•

°

°

Advanced NAV Development

[338]

This function is often used in Matrix forms to assist with the date calculation. The
purpose of this function is to find a date in the CalendarRecord table based on the
parameters passed in. The search starts with an initial record in the CalendarRecord
table. If you pass in a record that has already been initialized (i.e. you positioned the
table to some date), then that will be the base date, otherwise the Work Date will
be used.

The PeriodType in the function is an Option field with the option values of 'day,
week, month, quarter, year, accounting period'. For ease of coding you could call the
function with the integer equivalent (0, 1, 2, 3, 4, 5) or set up your own equivalent0, 1, 2, 3, 4, 5) or set up your own equivalent) or set up your own equivalent
Option variable.

Finally, the SearchString allows you to pass in a logical control string containing
=, >, <, <=, >=, etc. FindDate will find the first date starting with the initialized
CalendarRecord date that satisfies the SearchString logic instruction and fits the
PeriodType defined. E.g. if the PeriodType is day and the date 01/25/08 is used
along with the SearchString of >, then the date 01/26/08 will be returned in the
CalendarRecord.

NextDate function
Calling Parameters (NextStep (integer), CalendarRecord
(Date table), PeriodType (Option, integer))
Returns NextStep integer

 NextDate(NextStep,CalendarRec,PeriodType)

NextDate will find the next date record in the CalendarRecord table that satisfies
the calling parameters. The CalendarRecord and PeriodType calling parameters for
FindDate have the same definition as they do for the FindDate function. However,. However,
for this function to be really useful, the CalendarRecord must be initialized before
calling NextDate, otherwise the function will calculate the appropriate next date
from day 0. The NextStep parameter allows you to define the number of periods of
PeriodType to move, so as to obtain the desired next date. For example, if you start
with a CalendarRecord table positioned on 01/25/08, a PeriodType of quarter (i.e.
3), and a NextStep of 2, the NextDate will move forward two quarters and return
with CalendarRecord focused on Quarter, 7/1/08 to 9/30/08.

CreatePeriodFormat function
Calling Parameters (PeriodType (Option, integer),
DateData (date))
Returns FormattedPeriod (Text, length 10)

 FormattedDate := CreatePeriodFormat(PeriodType,DateData)

•

°

°

•

°

°

Chapter 8

[339]

CreatePeriodFormat simply allows you to supply a date and specify which of its
format options you want via the PeriodType. The function's return value is a
10-character formatted text value, e.g. mm/dd/yy or ww/yyyy or mon yyyy or qtr/-character formatted text value, e.g. mm/dd/yy or ww/yyyy or mon yyyy or qtr/
yyyy or yyyy.

Codeunit 365 – Format Address
The functions in the Format Address codeunit, as the name suggests, serve the
purpose of formatting addresses. The address data in any master record (Customer,
Vendor, Sales Order Sell-to, Sales Order Ship-to, Employee, etc.) may contain
embedded blank lines, e.g. the Address 2 line may be empty. When you print out the
address information on a document or report, it will look better if there are no blank
lines. These functions take care of that.

In addition, NAV provides setup options for multiple formats of City – Post Code
– County – Country combinations. The Format Address functions also take care of
formatting your addresses according to what was chosen in the setup or has been
defined in the Countries/Regions form for different Postal areas.

There are over 50 data-specific functions in the Format Address codeunit. These
data-specific functions allow you to pass a record parameter for the record
containing the raw address data (such as a Customer record, a Vendor Record, a
Sales Order, etc.). These function calls also require a parameter of a one-dimensional
Text array with 8 elements of length 90. Each function extracts the address data from
its specific master record and stores it in the array. The function passes that data
to a general-purpose function, which does the actual work of re-sequencing and
compressing the data according to the various setup rules.

The following is an example of function call format for these functions for Company
and the Sales Ship-to addresses. In each case AddressArray is Text, Length 90, and
one-dimensional with 8 elements.

"Format Address".Company(AddressArray,CompanyRec);
"Format Address".SalesHeaderShipTo(AddressArray,SalesHeaderRec);

The result of the function's processing is returned in the AddressArray parameter.

In addition to the data-specific functions in the Format Address codeunit, you can
also directly utilize the more general-purpose functions contained therein and called
by the data-specific functions. If you have added a new address structure as part
of an enhancement you have coded, it is likely that you would want to create your
own data-specific address formatting function in your own codeunit. But you might
as well design your function to call the general purpose functions that already exist
(and are debugged).

Advanced NAV Development

[340]

The primary general-purpose address formatting function (and the one you are most
likely to call directly) is FormatAddr. This is the function that does most of the work
in this codeunit. The syntax for the FormatAddr function is as follows:

FormatAddr(AddressArray,Name,Name2,ContactName,Address1,Address2,
 City,PostCode,County,CountyCode)

The calling parameters of AddressArray, Name, Name2 and ContactName are all text,
length 90. Address1, Address2, City and County are all text, length 50. PostCode
and CountryCode are code, length 20.

Your data is passed into the function in the individual Address fields. The results are
passed back in the AddressArray parameter for you to use.

There are two other functions in the Format Address codeunit that can be called
directly. They are FormatPostCodeCity and GeneratePostCodeCity. The
FormatPostCodeCity function serves the purpose of finding the applicable
setup rule for PostCode + City + County + Country formatting. It then calls the
GeneratePostCodeCity function, which does the actual formatting.

If you are going to use functions from Codeunit 365, take care that you truly
understand how they operate. In this case, as well as all others, you should study a
function and test with it before assuming you understand how it works. There is no
documentation for these functions, so their proper use is totally up to you.

Codeunit 396 – NoSeriesManagement
Throughout NAV, master records (e.g. Customer, Vendor, Item, etc.) and
activity documents (Sales Order, Purchase Order, Warehouse Transfer Orders,
etc.) are controlled by the unique identifying number assigned to each one. This
unique identifying number is assigned through a call to a function within the
NoSeriesManagement codeunit. That function is InitSeries. The calling format for
InitSeries is as follows:

NoSeriesManagement.InitSeries(WhichNumberSeriesToUse,
 LastDataRecNumberSeriesCode, SeriesDateToApply, NumberToUse,
NumberSeriesUsed)

The parameter WhichNumberSeriesToUse is generally defined on a
Numbers Tab in the Setup record for the applicable application area. The
LastDataRecNumberSeriesCode tells the function what Number Series was used
for the previous record in this table. The SeriesDateToApply parameter allows the
function to assign ID numbers in a date-dependent fashion. The NumberToUse and
the NumberSeriesUsed are return parameters.

Chapter 8

[341]

The following screenshots show examples for first Table 18 - Customer and then
Table 36 - Sales Header:

With the exception of GetNextNo (used in assigning unique identifying numbers
to each of a series of transactions), you are not likely to use other functions in the
NoSeriesManagement codeunit. They are principally used either by the InitSeries
function or other NAV routines whose job it is to maintain Number Series control
information and data.

Codeunit 397 – Mail
This codeunit contains a series of functions for interfacing with Microsoft Outlook as
an Automation Controller. Since the complexity of both Automation Controllers and
the APIs for various products, including Outlook, are beyond the scope of this book,
we will not cover the functions of this codeunit in any detail. Suffice it to say that if
you are going to create code that deals with Outlook in any way, you should start
with this codeunit either for functions you can use directly or as a model for what
you need to do.

In older versions of Dynamics NAV (then called Navision), codeunit 397 contained
logic for interfacing with a MAPI mail client through the OCX interface. If you need
an SMTP interface in Version 4.x, you should seek out a copy of Codeunit 397 prior
to Version 4.0 of NAV. In Version 5.0, Codeunit 400 provides SMTP mail access.

Advanced NAV Development

[342]

Codeunit 408 – Dimension Management
Codeunit 408 – Dimension Management is of general interest because dimensions
are so widely used (and useful) throughout NAV. Dimensions are a user-definable
categorization of the data. There are two Global Dimensions, which are carried
as values in the primary data records. Any dimensioned data can also have up
to six additional categorizations (Shortcut Dimensions), which are stored in
subordinate tables. Each dimension can have any number of possible values. More
detailed information about Dimensions in NAV is available in the Help and in
printed documentation about the functional application. A good place to start is the
Dimension Table Help.

When you move, process, post, delete, or otherwise manipulate many different types
of NAV data, you must also deal with the associated Dimensions data. The functions
in Codeunit 408 support that activity. You would be wise not to be particularly
creative in your use of the Dimension Management functions, but to simply find and
study existing code used in a situation that you feel is similar to that on which you
are working.

If you are manipulating standard system records (records that are part of the system
as delivered from Microsoft), then you would most likely be calling functions in
Codeunit 408 directly, perhaps even cloning existing code from another routine
for your calling routines. If you are creating new tables that contain Dimensions,
you may need to create your own Dimensions handling functions to reside in your
codeunit. In this case, you would be wise to model your new functions as closely as
possible on the standard code in Codeunit 408. Take note that in most of NAV, any
posting of Dimensions initially uses temporary table in order to avoid degrading
performance by locking critical Dimensions tables. This is one of those times where
creativity is not likely to pay off.

Codeunit 412 – Common Dialog Management
The Common Dialog Management codeunit contains just one function, the OpenFile
function. This function provides the system's access to the OCX module for the
Microsoft Common Dialog Control, which is a standard part of Windows.
The Common Dialog Control provides a user interface function for accessing
external files.

Chapter 8

[343]

The following screenshot appears when the Common Dialog Control is executed:

The code that invoked this dialog is as follows:

CDM.OpenFile('Import Member List','',4,'*.csv|*.csv|*.txt|*.txt',0);

The syntax for the OpenFile function is as follows:

OpenFile (ScreenTitle,DefaultFileName,FileTypeOption,FileTypeFilterSt
ring,Action)

The calling parameters are ScreenTitle (text, length 50), DefaultFileName
(text, length 250), FileTypeOption (option choices of ' ', Excel, Word, Custom),
FileTypeFilterString (text, length 250), Action (option choices of Integer,
Open, Save).

In this instance the ScreenTitle is defined, the DefaultFileName is omitted, there
is a FileTypeOption of Custom, which allows the FileTypeFilterString to be
specified for *.csv and *.txt (see Files of type in preceding screenshot), and
an Action of 0 (zero), which defines what Action button (Open or Save) will be
displayed (Open is chosen here).

The syntax rule for the FilterTypeFilterString is a string sequence consisting of
the Filter Type description followed by a pipe symbol followed by the Filter Mask.
Each subsequent filter option description+mask sequence is separated from the
preceding one by another pipe symbol.

Advanced NAV Development

[344]

The default filter options in Codeunit 412 are defined as Text strings as shown in the
following screenshot:

Sampling of Function Models to Review
It is very helpful when you're creating new code to have a model that works that
you can study (or clone). This is especially true in NAV where there is little or no
"how to" documentation available for many different functions. One of the more
challenging aspects of learning to develop in the NAV environment is learning how
to address the wide variety of common issues in the "NAV way".

A list of objects that contain functions that you may find useful as models, and
certainly find useful as subjects for study follows. Here is how "it's" done in NAV
("it" obviously varies depending on the function's purpose). When you build your
function modeled on one of NAV function, that code should reside in a customer
licensed codeunit.

It is not a good practice to add custom functions to the standard
NAV codeunits. Keeping customizations well segregated makes both
maintenance and upgrades easier.

Codeunit 228 – Test Report-Print
This codeunit contains a series of functions to invoke the printing of various Test
Reports. These functions are called from various data entry forms, typically Journal
forms. You can use these functions as models for any situation where you want to
allow the user to print a test report from a form menu or command button.

Although all of the functions in this codeunit are used to print Test Reports, there
isn't any reason you couldn't use the same logic structure for any type of report. The
basic logic structure is to create an instance of the table of interest, apply any desired
filters to that table instance, execute other appropriate setups for the particular
report, and then call the report with a code line similar to the following:

REPORT.RUN(ReportID,TRUE,FALSE,DataRecName)

Chapter 8

[345]

The first Boolean option will enable the Report Request form if TRUE. Use of the
RUN function will invoke a new instance of the report object. In cases where a new
instance is not desired, RUNMODAL is used.

Codeunit 229 – Print Documents
This codeunit is very similar to Codeunit 228 in the structure of its internal logic.
It contains a series of functions for invoking the printing of document formatted
reports. An NAV document is generally a report formatted such that a page is the
basic unit (e.g. invoices, orders, statements, checks). For those documents printed
from the Sales Header or Purchase Header, a basic "calculate discounts" function is
called for the header record prior to printing the chosen document.

In some cases, there are several reports (in this case, documents) all generated from
the same table such as the Sales Quote, Sales Order, Sales Invoice and Sales
Credit Memo. For such situations, the function has a common set of pre-processing
logic followed by a CASE statement to choose the proper report object call. In the case
where there is only one report-table combination (e.g. Bank Checks), the function is
simpler but still basically has the same structure (just without the CASE statement).

Some other Objects to Review
Some other Codeunits that you might productively review for an insight into how
NAV manages certain activities and interfaces are:

Codeunit 80 – Sales-Post: For posting journal data into a ledger
Codeunit 90 – Purch. Post: For posting journal data into a ledger
Codeunit 5053 – TAPI Management: For Telephone API handling
Codeunit 5054 – Word Management: For interfacing to Microsoft Word
Codeunit 6201 – Conventions: For a number of data format
conversion functions
Table 330 – Currency Exchange Rate: Contains some of the key currency
conversion functions

Management Codeunits
There are approximately 100 codeunits with the word Management as part of their
description name. Each of these codeunits contains functions whose purpose is the
management of some specific aspect of NAV data. Most of these are very specific to
a narrow range of data. Some can be considered more general because they contain
functions that you can reuse in another application area (such as the functions in
Codeunit 396 – NoSeriesManagement).

•
•
•
•
•

•

Advanced NAV Development

[346]

The key point here is that when you are working on an enhancement in a particular
functional area, you should check to see what Management Codeunits are utilized
in that area. Several possibilities exist. You may be able to use some function(s)
directly. This will have the benefit of reducing the code you have to create and
debug. Of course, when a new version is released, you will have to check to see if
the function(s) on which you relied have changed in any meaningful way that might
affect relative to your code.

If you can't use any of the existing material as is, in many cases you will find
functions that you can use as models for similar tasks in the area of your
enhancement. And, even if that is not true, by researching and studying the existing
code, you will learn more about how the data is structured and the processes flow in
the standard system.

Documenting Modifications
We have discussed many of the good documentation practices that you should follow,
when modifying an NAV system. We will briefly review those here.

Identify and document your modifications. Assign a unique project ID and use it for
version tags and all internal documentation tags. Assign a specific number range for
any new objects.

Wrap your customizations in code with tagged comments. Place an identifying "Mod
starts here" comment before any modification and a "Mod ends here" comment at
the end. Retain any replaced code inside comments. Depending on the amount of
replaced or deleted code, it should be commented out with either slashes or braces
(// or { }).

No matter how much or what type of standard NAV C/AL code is
affected, the original code should remain intact as comments.

Always include explanatory documentation in the Documentation Trigger of
modified objects. In the case of changes that can't be documented in-line such as
changes to properties, the Documentation Trigger may be the only place you can
easily create a documentation trail describing the changes.

If your modification requires a significant number of lines of new code or code that
can be called from more than one place, you should strongly consider putting the
body of the modification into a separate new codeunit (or codeunits) or at least in
a new separate function (or functions). This approach allows you to minimize the
footprint of your modifications within the standard code making. Generally that will
make both maintenance and upgrading easier.

Chapter 8

[347]

Where feasible to do so, create new versions of standard objects and modify those
rather than modifying the original object. This works well for many reports and
some forms but often doesn't work well for tables, codeunits, and many forms.

Maintain an external document that describes the purpose of the modification
and a list of what objects were affected. Ideally this documentation should begin
with a Change Request or Modification Specification and then be expanded as the
work proceeds. The description should be relatively detailed and written so that
knowledgeable users (as well as trained C/AL developers) can understand what has
been done and why.

Multi-Language
The NAV system is designed as a multi-language system, meaning it can interface
with users in more languages than just English. The base product is distributed with
American English as the primary language, but each local version comes with one
or more other languages ready for use. Because the system can be set up to operate
from a single database displaying user interfaces in several different languages,
NAV is particularly suitable for firms operating from a central system serving users
in multiple countries. NAV is used by businesses all over the world, operating in
dozens of different languages. It is important to note that when the application
language is changed, that has no affect on the data in the database and, in fact, does
not multi-language enable the data.

The basic elements that support the multi-language feature include:

Multi-Language Captioning properties (e.g. CaptionML) supporting
definition of alternative language captions for all fields, button labels,
titles, etc.
Application Management codeunit logic that allows language choice
on login.
fin.stx files supplied by NAV, which are language specific and contain texts
used by C/SIDE for various menus such as File, Edit, View, Tools, etc. (fin.
stx cannot be modified except by the Microsoft NAV Development Team).
The Text Constants property ConstantValueML supporting definition of
alternative language messages.

Before embarking on creating modifications that need to be multi-language enabled,
be sure to review all the available documentation on the topic. It would also be
wise to do some small scale testing to ensure you understand what is required and
that your approach will work (always a good idea for any potentially significant
compatibility issue).

•

•

•

•

Advanced NAV Development

[348]

Multi-Currency
NAV was one of the first ERP systems to fully implement a multi-currency system.
Transactions can start in one currency and finish in another. For example, you can
create the order in US dollars and accept payment for the invoice in Euros. For this
reason, where there are money values, they are generally stored in the local currency
(e.g. LCY) as defined in setup. But there is a set of currency conversion tools built
into the applications and there are standard (by practice) code structures to support
and utilize those tools. A couple of example of code segments from the Sales Line
table illustrating handling of money fields follow:

As you can see, before you get too far into creating any modification that has money
fields, you would want to familiarize yourself with the NAV currency conversion
feature and the code that supports it. A good place to start is the C/AL code
within Table 37 - Sales Line, Table 39 - Purchase Line, and Table 330 – Currency
Exchange Rate.

Code Analysis and Debugging Tools
The tools and techniques that you use with NAV to determine what code to modify
and to debug modifications are essentially the same. The goal in the first case is to
focus your modifications so that you have the minimum effect on the standard code.
This results in multiple benefits. Smaller pieces of well focused code are easier to
debug, easier to document, easier to maintain, and easier to upgrade. Because of
NAV's relatively tight structure and unique combination of features, it is not unusual
to spend significantly more time in determining the right way to make a modification
than it actually takes to code the modification. Obviously this depends on the type

Chapter 8

[349]

of modification being made. Unfortunately the lack of documentation regarding the
internals of NAV also contributes to an extended analysis time required to design
modifications. The following sections review some of the tools and techniques you
can use to analyze and test.

Developer's Toolkit
To paraphrase the introduction in the NAV Developer's Toolkit documentation, the
Toolkit is designed to help you analyze the source code and make it easier to design
and develop application customizations and perform updates. The Developer's
Toolkit is not part of the standard product distribution, but is available to all
Microsoft Partners for NAV for download from the Partner website. While it takes a
few minutes to set up the Developer's Toolkit for the database on which you will be
working, the investment is still worthwhile. You should follow the instructions in the
Developer's Toolkit manual for creating and loading your Toolkit database. The Help
files in the Developer's Toolkit are also generally useful.

The NAV Developer's Toolkit has two major categories of tools, the Compare and
Merge Tools, and the Source Analyzer. The Compare and Merge Tools are useful
anytime you want to compare a production database's objects to an unmodified
set of objects to identify what has been changed. This might be in the process of
upgrading the database to a new version or simply to better understand the contents
of a database when you are about to embark on your own modification adventure.

The Source Analyzer tools are the more general-purpose set of tools. Once you
have loaded the source information for all your objects into the Developer's Tools
database, you will be able to quickly generate a host of useful code analyses. The
starting point for your code analyses will be the Object Administrator view as
shown in the following screenshot:

Advanced NAV Development

[350]

When you get to this point, it's worthwhile experimenting with various menu
options and various objects just to get comfortable with the environment and how
the tools work. Not only are there several tool options, but also several viewing
options. Some will be more useful to you than others depending on your working
habits as well as the specifics of the modification task you are addressing.

Relations to Tables
With rare exceptions, table relations are defined between tables. The Toolkit allows
you to select an object and request analysis of the defined relations between elements
in that object and various tables. As a test of how the Relations to Tables analysis
works, we will expand our Table entry in the Object Administrator to show all the
tables. Then we will choose the Location table, right-click, and choose the option to
view its Relations to other Tables with the result shown in the following screenshot:

Chapter 8

[351]

If we want to see more detail, we can right-click on the Location table name in the
right window, choose the Expand All option, and see the results as shown in the
following screenshot:

This shows us the Relations to Tables, with the relating (from) field and the related
(to) field both showing in each line.

Relations from Objects
If you are checking to see what objects have a relationship pointing back to a
particular table (i.e. the inverse of what we just looked at), you can find that out
in essentially the same fashion. Right-click on the table of interest and choose the
Relations from Objects option. If you wanted to see both sets of relationships in the
same display, you could then right-click on the table name in the right window and
choose the Relation to Tables option.

Advanced NAV Development

[352]

At that point your display would show both sets of relationships as shown in the
following screenshot for the table Sales Line:

Source Access
On any of these screens you could select one of the relationships and drill down
further into the detail of the underlying C/AL code. There is a search tool, the Source
Finder. When you highlight one of the identified relationships and access the Code
Viewer, the Toolkit will show you the object code where the relationship is defined.

Where Used
The Developer's Toolkit contains other tools that are no less valuable to you as a
developer. The idea of Where Used is fairly simple: list all the places where an
element is used within the total library of source information. There are two different
flavors of Where Used. The Toolkit's Where Used is powerful because it can search
for uses of whole tables or key sequences or individual fields. Many developers use
other tools (primarily developer's text editors) to accomplish some of this. But the
Developer's Toolkit is specifically designed for use with C/AL and C/SIDE.

Chapter 8

[353]

The second flavor of Where Used is Where Used With. This version of the Toolkit
Where Used tool allows you to focus the search. Selecting the Where Used With
Options bring up the screen in the following screenshot. As you can see, the degree
of control you have over the search is extensive.

Screenshots of the other three tabs of the Where Used With Options form follow:

Advanced NAV Development

[354]

Try it Out
To really appreciate the capabilities and flexibilities of the Developer's Toolkit, you
must work with it to address a real-life task. For example, what if your firm was
in a market where merger of firms was a frequent occurrence? In order to manage
this, the manager of accounting decides that the system needs to be able to merge
the data for two customers, including accounting and sales history under a single
customer number. You decide that to do that, you must first find all the instances
of the Customer No. referenced in keys of other tables. The tool to do this in the
Developer's Toolkit is the Source Finder.

Calling up the Source Finder, first you Reset all fields by clearing them. Then
you enter what you are looking for i.e. Customer No. as shown in the
following screenshot:

Chapter 8

[355]

Then you specify that you are only looking for information contained in Tables, as
shown in the following screenshot:

and only in Keys, as shown in the following screenshot:

Advanced NAV Development

[356]

Your initial results will look like the following screenshot:

This data could be further constrained through the use of Filters (e.g. to find only
Key 1 entries) and can be sorted by clicking on a column head.

Of course, as mentioned earlier, it will help you to experiment along the way. Don't
make the mistake of thinking the Developer's Toolkit is the only tool you need to
use, but also don't make the mistake of ignoring this one just because it won't
do everything.

Working in Exported Text Code
As mentioned a little earlier, some developers export objects into text files then use a
text editor to manipulate them. Let us take a look at an object that has been exported
into text and imported into a text editor.

Chapter 8

[357]

We will use one of the tables that are part of our C/ANDL development, the
Volunteer Activity table, 50003 as shown in the following screenshot:

The general structure of all exported objects is similar, with differences that you
would expect for the different objects. For example, Table objects have no Sections,
but Report objects do. You can also see here that this particular table contains no
C/AL-coded logic, as those statements would be quoted in the text listing.

You can see by looking at this table object text screenshot that you could easily
search for instances of the string Activity Code throughout the text export of the
entire system, but it would be more difficult to look for references to the Volunteer
Activity form, Form50004. And, while you can find the instances of Activity Code
with your text editor, it would be quite difficult to differentiate those instances that
relate to the Volunteer Activity table from those in the Volunteer Activity
Ledger from those simply defined as Global Variables. But the Developer's Toolkit
could do that.

Advanced NAV Development

[358]

If you were determined to use a text editor to find all instances of "Volunteer
Activity". "Activity Code", you could do the following:

Rename the field in question to something unique. C/SIDE will rename all the
references to this field. Then export all the sources to text followed by using your text
editor (or even Microsoft Word) to find the unique name. You must either remember
to return the field in the database to the original name or you must be working in a
temporary "work copy" of the database, which you will shortly discard.

One task that needs to be done occasionally is to renumber an object or to change
a reference inside an object that refers to a no longer existing element. The C/SIDE
editor may not let you do that easily, or in some cases, not at all. In such a case, the
best answer is to export the object into text, make the change there and then import it
back in as modified. Be careful though. When you import a text object, C/SIDE does
not check to see if you are overwriting another instance of that object number.
C/SIDE makes that check when you import a fob (i.e. a compiled object).

Theoretically, you could write all your C/AL code with a text editor and then
import the result. Given the difficulty of such a task and the usefulness of the tools
embedded in C/SIDE, such an approach would be foolish. However, there are
occasions when it is very helpful to simply view an object "flattened out" in text
format. In a report where you may have overlapping logic in multiple data items
and in several section triggers as well, the only way to see all the logic at once is in
text format.

You can use any text editor you like, Notepad or Word or one of the visual
programming editors; the exported object is just text. You do need to cope with the
fact that when you export a large number of objects in one pass, they all end up in
the same text file. That makes the exported file relatively difficult to deal with. The
solution to that is to split that file into individual text files, named logically, one for
each NAV object. There are several freeware tools available to do just that. Check one
of the NAV forums on the Internet.

Two excellent NAV forums are www.mibuso.com and www.
dynamicsuser.net.

Using Navigate
Navigate is an often under-appreciated tool both for the user and for the developer.
We will focus here on its value to the developer. We will also mention how you
might enhance your extension of the NAV system by expanding the coverage of the
Navigate function.

Chapter 8

[359]

Testing with Navigate
Navigate is a form object (Form 344) that searches for and displays the number
and types of all the associated entries for a particular posting transaction. The term
"associated" in this case is defined as those entries having the same Document
Number and Posting Date.

Navigate can be called from the Navigate button, which appears on each screen that
displays any of the entries that a Navigate might find and display. It can also be
called directly from various Navigate entries in the user Menu. These are generally
located within History menu groups.

If you invoke the Navigate form using the menu, you must actually enter the Posting
Date and Document Number of the entries you wish to find. Or, alternately you
can enter a Business Contact Type (Vendor or Customer), a Business Contact No.
(Vendor No. or Customer No.), and optionally, an External Document No. There are
occasions when this option is useful, but the Posting Date + Document No. option is
much more frequently useful.

Instead of seeking out a Navigate form and entering the critical data fields, it is much
easier to call Navigate from a Navigate button on a form showing data. In this case
you just highlight a record and click on Navigate to search for all the related entries.
In the following example, the first General Ledger Entry displayed is highlighted.

Advanced NAV Development

[360]

After clicking on the Navigate button, the Navigate form will pop up, filled in, with
the completed search, and will look similar to the following screenshot:

Had we accessed the Navigate form through one of the menu entries, we would
have filled in the Document No. and Posting Date fields and clicked on Find. As
you can see here, the Navigate form shows a list of related, posted entries including
the one we highlighted to invoke the Navigate function. If you click on one of the
items in the Table Name list at the bottom of the form, you will see an appropriately
formatted display of the chosen entries.

Chapter 8

[361]

For the G/L Entry table in this form, you would see a result like the following
screenshot. Note that all the G/L Entry are displayed for same Posting Date and
Document No., matching those specified at the top of the Navigate form.

You may ask "Why is this application form being discussed in a section about C/AL
debugging?" and the answer would be: "When you have to test, you need to check
the results. When it is easier to do a thorough check of your test results, your testing
will go faster and be of higher quality." Whenever you make a modification that will
affect any data that could be displayed through the use of Navigate, it will quickly
become one of your favorite testing tools.

Modifying for Navigate
If your modification creates a new table that will contain posted data and the records
contain both Document No. and Posting Date fields, you can include this new tableDocument No. and Posting Date fields, you can include this new table and Posting Date fields, you can include this new tablePosting Date fields, you can include this new table fields, you can include this new table
in the Navigate function.

The C/AL Code for Posting Date + Document No. Navigate functionality is
found in the FindRecords function trigger of Form 344 – Navigate. The following
screenshot illustrates the segment of the Navigate CASE statement code for thestatement code for the code for the Item
Ledger Entry table:

Advanced NAV Development

[362]

The code checks the READPERMISSION. If that is enabled for this table, then the
appropriate filtering is applied. Next, there is a call to the InsertIntoDocEntry
function, which fills the temporary table that is displayed in the Navigate form.
If you wish to add a new table to the Navigate function, you must replicate this
code for your new table. In addition, you must add the code that will call up the
appropriate form to display the records that Navigate found. This code should be
inserted in the ShowRecords function trigger of the Navigate form similar to the lines
in the following screenshot:

Making a change like this, when appropriate, will not only provide a powerful tool
for users, but will also provide a powerful tool for you as a developer.

The Debugger
C/SIDE has a built-in Debugger that is very helpful in tracking down the location of
bugs. There are two basic usages of the available debugger. The first is identification of
the location of a run-time error. This is fairly simple process, accomplished by setting
the debugger (from the Tools Menu) to) to Active with the Break on Triggers option
turned off as shown in the following screenshot. When the run-time error occurs, the
debugger will be activated and display exactly where the error is occurring.

Chapter 8

[363]

The second option is the support of traditional tracing of logic. Use of the Debugger
for this purpose is hard work. It requires that you, the developer, have firmly in
mind how the code logic is supposed to work, what the values of variables should
be under all conditions, and the ability to discern when the code is not working
as intended.

The Debugger allows you to see what code is being executed, either on a step-by-step
basis (using F8) or trigger by trigger (using F5). You can set your own Breakpoint
(using F9), points at which the Debugger will break the execution so you can
examine the status of the system. The method by which execution is halted in the
Debugger doesn't matter (so long as it is not by a run-time error); you have a myriad
of tools with which to examine the status of the system at that point.

Other development environments have more flexible and more sophisticated
debugging tools than the one in C/SIDE. Many debuggers allow a person to set
the value of operating variable mid-stream in processing at a breakpoint, but the
C/SIDE Debugger does not. Regardless, the C/SIDE Debugger is quite a useful
tool and it is the only debugger that works in C/SIDE. It will pay you to learn
to use it. The only way to do that is through hands-on practice. The Debugger is
documented reasonably well in the Application Designer's Guide. Beyond studying
that documentation, the best way to learn more about the C/SIDE debugger is to
experiment using it.

The Code Coverage Tool
Code Coverage is a tool that tracks what code is executed and logs that information is a tool that tracks what code is executed and logs that information
for your review and analysis. Code Coverage is accessed from the Tools | Debugger
option. When you invoke Code Coverage, all that happens is you are opening the
Code Coverage form. You then start Code Coverage by clicking on Start, and stop it
by returning to the form. That's done through the Windows menu option as the Code
Coverage form will remain open while it is running. The Application Designer's
Guide provides some information on how to interpret the information collected.

Just like the Debugger, there is no substitute for experimenting to learn more about
using Code Coverage. Code Coverage is a tool for gathering a volume of data about
the path taken by the code while performing a task or series of tasks. This is very
useful for two different purposes. One is simply to determine what code is being
executed (another valuable debugging tool). But this tracking is done in high speed
with a log file, whereas if you do the same thing in the debugger, the process is
excruciatingly slow and you have to log the data manually.

Advanced NAV Development

[364]

The second use is to identify the volume of use of routines. By knowing how
often a routine is executed within a particular process, you can make an informed
judgement about what routines are using up the most processing time. That, in turn,
allows you to focus any speed-up efforts on the code that is used the most. This
approach will help you to realize the most benefit for your code acceleration work.

Dialog Function Debugging Techniques
In previous chapters, we have discussed some of the other simpler debugging
techniques that you can productively use when developing in C/AL and C/SIDE.
Sometimes these simpler methods are more productive than the more sophisticated
tools because you can set up and test quickly, resolve the issue (or answer a question)
and move on. The simpler methods all involve using one of the C/AL DIALOG
functions such as MESSAGE, CONFIRM, DIALOG, or ERROR.

Debugging with MESSAGE
The simplest method is to insert MESSAGE statements at key points in your logic. It
is very simple and, if structured properly, provides you a simple "trace" of the code
logic path. You can number your messages to differentiate them and can display any
data (in small amounts) as part of a message.

The disadvantage is that MESSAGE statements do not display until processing either
terminates or is interrupted for user interaction. If you force a user interaction at
some point, then your accumulated messages will appear prior to the interaction.
The simplest way to force user interaction is a CONFIRM message in the format
as follows:

IF CONFIRM ('Test 1',TRUE) THEN;

Debugging with CONFIRM
If you want to do a simple trace but want every message to be displayed as it is
generated (i.e. have the tracking process move at a very measured pace), you could
use CONFIRM statements for all the messages. You will then have to respond to each
one before your program will move on, but sometimes that is what you want.

Debugging with DIALOG
Another tool that is useful for certain kinds of progress tracking is the DIALOG
function. This function is usually set up to display a window containing a small
number of variable values. As processing progresses, the values are displayed in real
time. This can be useful in several ways. A couple of examples follow:

Chapter 8

[365]

Simply tracking progress of processing through a volume of data. This is
the same reason you would provide a DIALOG display for the benefit of the
user. The act of displaying does slow down processing somewhat. During
debugging that may or may not matter. In production it is often a concern,
so you may want to update the DIALOG display occasionally, not on
every record.
Displaying indicators for processing reaching certain stages. This can be used
either as a very basic trace with the indicators showing the path taken or so
that you may gauge the relative speed of progress through several steps. E.g.,
you might have a six-step process to analyze. You could define six tracking
variables and display them all in the DIALOG.
Each tracking variable would be initialized with values that would be de-
pendent on what you are tracking, but each would likely be different (e.g.
A1, B2000, C300000, etc.). At each step of your process, you would update
the contents and display the current state of one of the variables (or all of the
variables). This can be a very visual and intuitive guide for how your process
works internally.

Debugging with Text Output
You can build a very handy debugging tool by outputting the values of critical
variables or other informative indicators of progress either to an external text
file or to a table created just for this purpose. This approach allows you to run a
considerable volume of test data through the system, tracking some important
elements while collecting data on the variable values, progress through various
sections of code, etc. You can even timestamp your output records so that you can
use this method to look for processing speed problems.

Following the test run, you can analyze the results of your test more quickly than if
you were using displayed information. You can focus on just the items that appear
most informative and ignore the rest. This type of debugging is fairly easy to set up
and to refine as you identify the variables or code segments of most interest. This
approach can be combined with the following approach using the ERROR statement if
you output to an external text file, then close it before invoking the ERROR statement,
so that its contents are retained following the termination of the test run.

Debugging with ERROR
One of the challenges of testing is maintaining repeatability. Quite often you need
to test several times using the same data, but the test changes the data. If you have a
small database, you can always back up the database and start with a fresh copy each
time. But that that can be inefficient and, if the database is large, impractical. One
alternative is to conclude your test with an ERROR function.

•

•

Advanced NAV Development

[366]

The ERROR function forces a run-time error status, which means the database is not
updated (i.e. it is rolled back to the status at the beginning of the process). This works
well when your debugging information is provided by using the Debugger or by use
of any of the DIALOG functions just mentioned. If you are using MESSAGE, you could
execute a CONFIRM immediately prior to the ERROR statement and be assured that
all messages were displayed. Obviously this method won't work well when your
testing validation is dependent on checking results using Navigate or your test is
a multi-step process such as order entry, review, and posting. But in applicable
situations, it is a very handy technique for repeating a test with minimal effort.

When testing the posting of an item, it can be useful to place the test-concluding
ERROR function just before the point in the applicable Posting codeunit where the
process would otherwise complete successfully.

Summary
In this chapter, we have reviewed a number of tools and techniques aimed at
making your life as an NAV developer easier and more efficient. Many of these
topics require more study and some hands-on practice by you. Among the topics
we covered are functions that you can use "as is" and functions that you can use as
models for your own code. We have reviewed some guidelines for documenting
your modifications and briefly discussed dealing with Multi-Language and Multi-
Currency compatibility. Finally we have gone over a host of handy code analysis and
debugging techniques including use of the Developer Toolkit, working in objects
exported as text, using Navigate, using the Debugger and associated tools, and some
handy tips on other creative techniques.

By this point in the book, we have covered many of the core elements of NAV
development. You should be just about ready begin your own development project.
In the next chapter we are going to consider a number of important concepts that
need to be considered when designing and creating modifications to an NAV system.

Designing NAV Modifications
When I am working on a problem, I never think about beauty. I think only of how
to solve the problem. But when I have finished, if the solution is not beautiful, I
know it is wrong.—attributed to R. Buckminster Fuller

In this chapter we are going to discuss a number of issues that must be considered
when designing and developing modifications for Microsoft Dynamics NAV. We
will also consider the differences between a minor enhancement and the creation of a
new subsystem. Further, we will explore the NAV processing flow and explain how
to design modifications compatible with the unique NAV structure.

Starting a New NAV Enhancement
Project
Whenever you start a new project, you must define the goals and boundaries for the
project. Some of them are as follows:

What are the functional requirements and what flexibility exists within these?
What are the user interface standards?
What are the coding standards?
What are the budgets, both time and financial?

Before starting a modification project, you must also determine which end goals are
compatible with the base product you are proposing to modify. You probably don't
want to use Microsoft Dynamics NAV as the basis for a modification to control a
submarine's atomic reactor or as the basis for modification to create CAD drawings.

•

•

•

•

Designing NAV Modifications

[368]

When you are making modifications to a system, the defined goals and boundaries
must be flexible enough not only for the basic functional design and development
to operate properly but also to fit the result of that work within the existing system.
Modification project budgets must allow for the effort necessary to properly
integrating the new material with the original.

Now that you have good insight into the workings of the NAV C/SIDE
Development Environment and C/AL, it is a good time to review how you deal
with software design for NAV. Most developers feel that designing for NAV
enhancements and modifications requires more forethought and knowledge of
the specifics of the application than we have needed with other systems. So let us
explore what is special about designing NAV modifications.

Design of NAV Modifications
New material should be as compatible and as consistent with the original as possible.
After you are done, it should be difficult (or impossible) for a new user to tell what's
original and what's a modification. Otherwise you may end up with a Frankenstein
system, where it is easy to identify new patched-on parts because you can see all the
stitches and the bolts that (barely) hold them together.

Take a look at the following two examples of form modifications. The bad example
is the first one. Hopefully its flaws are obvious (e.g. it does not follow Microsoft
NAV GUI standards, has bad positioning of a new field, non-standard use of shape,
garish use of color, and is ugly). The example of difficult-to-detect modification is the
second form, where the Date Added field is added to the bottom right column of the
standard form layout, shown in the second of the following screenshots:

Chapter 9

[369]

Another approach to adding new fields to a form is to put them all on a new tab.
This keeps the modifications clearly identified. However, it may make use of the new
fields awkward. Obviously there is no single best answer. The right design decision
will depend on the specific situation.

New code should be modeled onto the code that is already present. You might feel
that you know how to write better code than the code on which you are working.
May be you are right. But when you modify an existing system you should respect
the structure and design of the code that makes up the system you are changing.
That does not mean you can't or shouldn't be creative, but that you should put rather
strict boundaries on that creativity.

For example, the standard code structure for issuing an ERROR message looks like
the following:

IF CheckLedgEntry.FIND('-') THEN
 ERROR(Text006,"Document No.");

With the following defined Text variable:

Text006 Check %1 already exists for this Bank Account.

Therefore you shouldn't be coding an ERROR message that looks similar to the
following, where the message is hard-coded in-line, making it difficult to enable
multilanguage capabilities.

IF CheckLedgEntry.FIND('-') THEN
 ERROR('Check %1 already exists for this Bank Account.',"Document
 No.");

Designing NAV Modifications

[370]

This approach of having all messages in Text variable supports the
multi-language capabilities of NAV.

Knowledge is Key
In order to respect the existing system being modified, you have to understand
and appreciate the overall structure and design philosophy of that system. Among
other things, NAV has unique data structure tools (SIFT and FlowFields), quite a
number of NAV specific decimal and date functions which make it easier to program
business applications, and a data structure (journal, ledger, etc.) which is inherently
accounting structured.

The object base of NAV the and specific built-in function set of C/SIDE also add to
its differences. Overall, because NAV is philosophically different from most other
ERP application systems, learning NAV is challenging. A big part of your job will be
to learn how NAV is different from other systems you have modified in the past so
that the material you create will fit well within NAV.

If you are like most other developers, after a while you will learn to really appreciate
NAV differences because with NAV you have lots of tools and capabilities you
haven't had before. Nevertheless, the learning curve is significant, both because
of the differences between NAV and other business software packages, and also
(unfortunately) because there is a lack of product design documentation to help you
over that learning curve. Hopefully, this book is making your leap into NAV easier
than it would have been otherwise.

No matter which type of modification you are developing, you should resist the
temptation to imprint your personality and your knowledge of "better ways to do it"
on the system. If you have a totally irresistible urge to do it "your way", you should
probably create your own system, not support and enhance NAV (or any other
package product).

Creating a New Functional Area
The first thing to consider is whether you are creating software for a new functional
area or creating an integrated modification of existing NAV functionality. Based on
your experience with other systems, you will likely appreciate how and why these
two project types are significantly different from each other. Or you may ask "How
should I differentiate?"

Chapter 9

[371]

One way would be that if you are adding an entry to the main menu or adding at
the top level of one of the primary submenus, then your modification is likely to be
a new functional area. If there is no menu entry at all involved in your enhancement,
then almost certainly it is not a new functional area. To make sure we all are on theTo make sure we all are on the
same wavelength here, let us discuss briefly some of the issues that make working on
these two task types different from one another.

Advantages of Designing New Functionality
When creating new functionality, you have a lot more leeway in the design of your
data structure, forms, processing flow, and user interface subtleties than you do
when you are enhancing existing functionality. Nevertheless, you still have a strong
responsibility for consistency with the design of the original system.

Menu structure, form navigation, invoking of reports, indeed, the whole user
experience needs to be designed and implemented in a manner consistent with the
out-of-the-box product. If you don't do that, you will significantly increase trainingIf you don't do that, you will significantly increase training
requirements, error rates, and overall user frustration within the application. When
there are significant user interface design inconsistencies from one portion of the
system to another, it is unnecessarily challenging (and expensive) for users.

New functionality will likely have a relatively full representation of new instances of
NAV objects, almost certainly including one or more tables, reports, and forms along
with a menu entry or two. You may also have dataports or XMLports as well.

Some developers find that designing new functionality is generally an easier task
than modifying existing functionality. There are several reasons for this. One reason
is that you have more freedom in your user interface design. Of course, those aspects
of the new application that are similar to functionality within the base system should
be modeled on the NAV standard approach.

A second reason is that much of what you are creating will involve completely
new objects. Creating a new object may be easier because you don't have to study,
understand, and integrate with all the complexities of an existing object. Even
documenting a new object is easier because you can put most, if not all, of your
internal documentation comments in one place, rather than having to identify and
comment individual modifications in place.

A third reason is that it is much easier to provide ease of upgrading. A new object
can often be moved to an upgraded version with little or no change. In fact, this
aspect of system maintainability sometimes leads to utilizing new objects (and
justifying their use) for modifications even when they are not otherwise required.
This possibility of easier upgrading should not be interpreted to mean that custom

Designing NAV Modifications

[372]

objects don't need to be carefully examined during an upgrade. There is always the
possibility that the data structure or flow on which the modification design was built
has been changed in the new version. In that case, the custom object will need to be
revised just as would the embedded customization.

Enhancing an Existing Functional Area
When you are modifying existing functionality, you should operate with a very
light touch, changing as little as possible to accomplish your goals. Your new code
will look like NAV code and your user interface will work like the standard product
interface. Of course, you will leave behind a well documented trail. Your new fields
will fit neatly and tightly on the forms. Your new function will operate so similarly
to existing standard NAV functions that little or no user training will be required
except to inform users that the new function exists and what it does.

In contrast to the pros and cons of creating a new functional area with your
modification, there is a different set of pros and cons when your modification is
localized and tightly integrated into existing NAV structure and code. Because your
modification should closely resemble the design and structure of what already exists,
which means you don't have nearly as much creative freedom as to how to do what
you're going to do.

Modifying an existing function means you may not need to learn as much about
optional approaches. Plus, while you should be intimately familiar with the
processes and logic in the parts of the system you are affecting, you can usually focus
your study on a relatively small segment of the original system, thus reducing the
breadth of your study of the existing system. Finally, when you are modifying an
existing function, you have the distinct advantage of knowing that the base on which
you are building is already debugged and working.

Testing can be easier in a smaller modification. Often you will have your choice
of testing using the Cronus demo database or using a test copy of the production
database. Depending on exactly what your modification does of course, you may
be able to use existing setups, master table data, perhaps even existing in-process
transactions to test your modification. Since the creation of a consistent set of test
data can be a very time-consuming process, this is a significant advantage.

Advantages of using a copy of the live database for testing include having a fully set
up system that matches the customer's production environment as well as data that
matches the real production world. This can make it quite a bit easier to compare
new results to previous results and to spot speed bottlenecks that relate to historical
data volumes. This applies to any type or scope of modification.

Chapter 9

[373]

NAV Development Time Allocation
For many years, those responsible for software development technology have been
promising to increase the ratio of design time and effort to the coding time and
effort. But, very few systems or toolsets have fulfilled that promise, particularly in
the business application marketplace. In a majority of customization cases, a lot more
time and effort is spent writing and debugging code than in the design of that code.

The NAV structure, code functions, and IDE tool set actually begin to fulfill that
long-delayed promise of significantly reducing the code coding effort to design effort
ratio. It is not unusual, while making an NAV modification, to spend several hours
studying existing code, testing logic and flow with a variety of data samples, before
making a code change of just two, three, or four lines to effect a significant change.

You might work on the design side of the task for a half day, and then spend a half
hour on the actual implementation of your design. This is due to the combination
of the very tight code structure and the powerful set of language functions NAV
provides. That is not enough to say that NAV is perfectly assembled and has no
places where the code could be significantly improved. But if it were perfect, there
wouldn't be much work left for us to do, would there?

Data-Focused Design for New
Functionality
Any new application design must begin with certain basic analysis and design tasks.
That is just as applicable when our design is for new functionality to be integrated
into an existing standard software package such as NAV. Before we dig into what
needs to be done in an NAV system, let us briefly consider some of what has to
happen in any system when you are designing and developing a new area of
application functionality.

Define the Big Picture: The End Goals
What capability is the new application functionality intended to accomplish? This
needs to be spelled out in sufficient detail so that the designers will know when
they are done. Not only do the end goals need to state what the new functional
expectations are, they also need to state what they are not, and what resource
constraints must be taken into account. There is no sense in allowing the system
designers to take advantage of the latest computing technology if the application
must operate on five-year-old computer systems.

Designing NAV Modifications

[374]

A Simple Sample Project
This example is intended to illustrate the concepts discussed here, not to represent
a complete system design. Let us assume we are working with a firm that has
NAV installed and operating. It distributes electronic consumer goods. Several of
its equipment vendors provide significant rebates based on the volume of certain
products purchased and sold in specific geographic areas. Reporting is to be done on
a monthly basis. To keep our example simple, we will assume the geographic areas
are defined by Postal Zone Code ranges. The report we will print for each vendor
will look similar to the following Vendor Rebate Report draft layout. If you can
provide the same information in a more attractive layout, you should feel free to
revise this design to fit your improved approach.

Then Define the Little Pictures
What information must the new application functionality make available to the users
in order to accomplish those lofty goals? How do the users expect that data to be
presented? What type of constraints exist due to practice or practicality? Define what
actions are to be performed by the system when presented with the appropriate and
expected data or user actions.

Chapter 9

[375]

Sample Project Continued—1
Our end goal is to create an easy-to-maintain small subsystem. It should allow
the user to maintain data on what products, vendors, and geographic areas are to
be reported. This will keep the new functional application flexible. The reporting
process should be a simple report run with a time period parameter. Normal filtering
should be enabled to allow flexibility. The processing will not change any data. This
will minimize its impact on the system. If possible, the design should not change any
standard data structures. This will make it easier to debug, maintain, and upgrade.

Define What Data is Required to Create the
Pictures
In order to accomplish the stated goals, we must determine what data is required.
What will it take to construct the material the users need to see? With what level
of detail and in what structural forms must the data be stored and how it must be
retrieved? In light of the actions that the new system must perform, what data are
required to support them?

Sample Project Continued—2
First we must define the data that determine what transactions will be considered.
In this case, it is pretty simple. We need a list of the vendors to whom we will report.
We need a list of the products on which rebates will be paid for each vendor, as
these are the product sales that we will count. We need a list of the definitions of the
geographic areas on which each vendor is focusing, i.e. a list of Postal Zone
Code ranges.

The system activity data we need includes all the individual sales transactions for
the products in question along with the applicable Post Codes. Since the rebates are
calculated on the price paid to the vendor for the product, we will need our cost for
the product for each sale. Before we go further, we need to clarify whether the rebate
is paid based on the post code of the location that buys the item or the location to
which the item is shipped. Let us assume we asked the question and found it is the
location to which the item is shipped. That means we will use the Ship-to Post Code.

Define the Sources for the Data
Having defined what data and other inputs are required to be able to provide
the required outputs and system actions, we have to define the sources of all this
material. Some may be input manually, some may be forwarded from other systems,
some may be derived from historical accumulations of data, and some will be

Designing NAV Modifications

[376]

computed from combinations of all these, and more. In any case, every component
of the information needed must have a clearly defined point of origin, schedule of
arrival, and format.

Sample Project Continued—3
Part of our control information should be a list of product (i.e. Item) codes by
rebating Vendor. If this list is built by making sure that the Vendor – Item
combinations match available combinations in the standard master table data.
Then, in our new application, we can use the Item No. as the first point of control
for data gathering. We should create one table keyed on Vendor + Item No. and a
second table keyed on Vendor + From Post Code + To Post Code. We will call
these, respectively, the Vendor Rebate Totaling table and the Vendor Post Code
Range table.

If, in the first table, we include work fields (not filled in the permanent data table) for
the From Post Code and To Post Code, we will have a table structure that matches
the report structure. We will also include variables in which we can sum up totals.
In processing we can then use this table as the definition template for a Temporary
table where the totals are accumulated for reporting. The following screenshots show
what those table designs might look like: first the Vendor – Item table and Keys, and
then the Vendor – Post Code table.

Chapter 9

[377]

The first place we might look at as a possible primary data source is the Item
Ledger Entry table. That table contains an entry for every sale transaction and every
purchase transaction and it is organized by Item, i.e. by product. An alternative
location would be the Sales Invoice Line table, which would also have all the
product sales detail. A third possible data source would be the Sales Shipment Line
table. That table also contains the product quantity shipped and cost data. These
records are child records of the Sales Shipment Header records, where the necessary
Ship-to address information is located.

After studying the three options, we see that they all can be filtered by Item No., all
have cost information (which equates to what we paid the vendor for the product)
and all have a way to get to the shipment document where the Ship-to address
information is located. To decide which to use, we must investigate the relationships
for each of the detail data tables to the Sales Shipment Header.

At first it appears the Sales Shipment Line data would be the easiest to use and
the Sales Invoice Line data would be the hardest to use. These judgements are
based on the ease with which all the related data can be accessed from the intended
primary data source. But our study determines that the Item Ledger Entry cost
information is the most fully updated of the choices. In addition, the Item Ledger
Entry records have a field, Document No., that points directly at the related Sales
Shipment Header.

The Item Ledger Entry cost information is "best" because all adjustments get
applied to the Item Ledger, but previously posted Invoice and Shipment cost data is
not updated by adjustments subsequent to the posting. Therefore our design choice
depends on whether or not it is necessary to use the most accurate possible cost
information. At this point in our example, we will assume that it was determined
that the cost information in the Sales Shipment Line table will be sufficiently
accurate as it would be accurate as of the time of shipment.

Define the Data "Views"
Based on all the definitions spelled out in the preceding steps, define how the data
should be presented. How does it need to be "sliced and diced"? What levels of detail
and summary? What sequences and segmentations? What visual formats? What

Designing NAV Modifications

[378]

media? This definition must be wholly in the context of the original big picture goals.
Success isn't going to be measured by the sophistication of the tools but by how well
the system serves its masters, the users for whom it was originally intended.

Sample Project Continued—4
The visual format requirements for our sample project are pretty simple. We will use
the draft layout as the model for our report. In this particular example, the report
layout essentially provides the required levels of detail and summary. We need to
sum up product costs for the individual sales transactions by Item No. within Post
Code range within a Transaction Date range within Vendor. The Transaction Date
range will be a report filter. Exactly how we construct the logic and internal global
variables to collect and print the data will depend on factors such as whether we are
doing this for multiple vendors at one time or only one vendor at a time. Since the
new tables are very simple in their structure, we just use default formatting for a
tabular form to maintain and view those tables.

Other Factors Must Always be Considered
Of course, many other issues need to be considered in the full design of a system,
including user interface specifications, data and access security, accounting
standards and controls, etc. In this discussion and the associated example, the focus
is on the data and its handling.

NAV Processing Flow
The steps in reviewing the flow of data through the NAV system are as follows:

1. Prepare all the Master data, reference data, and control and setup data. Much
of this preparation is done initially when an application is first set up for
production usage.

2. Enter transactions into a Journal table; preliminarily validating data as it is
entered, referencing auxiliary data tables as appropriate.

3. Provide for additional test validations of data prior to submitting the Batch
to Posting.

4. Post the Journal Batch, finally validating the transaction data, adding entries
as appropriate to one or more Ledgers and, perhaps a Register and a
document history.

Chapter 9

[379]

5. Access the data via Forms and/or Reports of various types as appropriate.
At this point, total flexibility exists. Whatever tools are available and
are appropriate to provide system users with what they need should be
used. There are some very good, but somewhat limited (in terms of visual
technologies) tools built into NAV for data manipulation, extraction, and
presentation. In the past, these capabilities were considered good enough to
be widely accepted as full OLAP (Online Analytical Processing) tools.

6. Continue maintenance of Master data, reference data, and setup and control
data, as appropriate. The loop returns to Step 1 of this data flow sequence.

Data Preparation
Prepare all the Master data, reference data, and control and setup data. Much of this
preparation is done initially when an application is first set up for production usage.

Naturally, this data must be maintained as new Master data becomes available, as
various system operating parameters change, etc. The standard approach for NAV
data entry is to allow records to be entered that have just enough information to
define the primary key fields, but not necessarily enough to support processing. This
allows a great deal of flexibility in the timing and responsibility assignment for entry
and completeness of new data.

On the other hand, it allows initial and incomplete data entry by one person, with
validation and completion to be handled later by someone else. For example, a
sales person might initialize a new customer entry with name, address, and phone
number, saving the entry when the data to which they have access is entered. At this
point, there would not be enough information recorded to process orders for this
new customer. At a later time, someone in the accounting department might set up
Posting Groups, Payment Terms, and other control data that should not be controlled
by the sales department. This new entry could make the new customer record ready
for production use. Given that in many instances data comes into an organization on
a piecemeal basis, the NAV approach allows the system to be updated on an equally
piecemeal basis providing a certain flexible, user friendliness that many accounting-
oriented systems lack.

Enter Transactions
Enter transactions into a Journal table; preliminarily validating data as it is entered,
referencing auxiliary data tables as appropriate.

NAV uses a relational database design approach that could be referred to as
a "rational normalization". NAV resists being constrained by the concept of a
Normalized data structure, where any data element appears only once. The NAV

Designing NAV Modifications

[380]

data structure is normalized so long as that principle doesn't get in the way of
processing speed. Where processing speed or ease of use for the user is improved
by duplicating data across tables, NAV does so. For the sake of a label, this could be
called "rational normalization".

At the point where Journal transactions are entered, a considerable amount of data
validation takes place. Most, if not all, of the validation that can be done based on the
combination of the individual transaction entry plus the related Master records and
associated reference tables (e.g. lookups, application or system setup parameters,
etc.) is done when a Journal entry is made. Still, the practice continues of allowing
entries to be made that are incomplete and not totally ready for processing.

Provide for Additional Data Testing
Provide for additional test validations of data prior to submitting the Batch
to Posting.

Any additional validations that need to be done to ensure the integrity and
completeness of the transaction data prior to being Posted are done both in
pre-Post routines and directly in the course of the Posting processes. When a Journal
Entry is Posted, it becomes a part of the permanent accounting record in the system.
In general, NAV follows the standard accounting practice of requiring Ledger
corrections to be made by Posting reversing entries, rather than deletion of problem
entries. That makes NAV a very auditable system, a key requirement for a variety of
government, legal, and certification requirements for information systems.

Depending on the specific application function, when Journal transactions don't
pass muster during this final validation stage, either the individual transaction is
bypassed while acceptable transactions are Posted, or the entire Journal Batch is
rejected until the identified problem is resolved.

Post the Journal Batch
Post the Journal Batch, finally validating the transaction data and adding entries as
appropriate to one or more Ledgers and, perhaps a Register and a document history.

As mentioned earlier, Ledgers are handled as permanent records of what
transactions have been processed. Most data cannot be changed or deleted once it is
resident in a Ledger except by a subsequent Posting process.

Chapter 9

[381]

Related data recorded during the Posting process is not necessarily considered
permanent data. For example document histories such as Posted Invoices, Posted
Shipments, Posted Receipts and such, while useful information, can be deleted.

Access the Data
Access the data via Forms and/or Reports of various types as appropriate, assuming
total flexibility. Whatever tools are available and are appropriate should be used.
There are some very good, tools in NAV for data manipulation, extraction, and
presentation. These include, among other things, the SIFT/FlowField functionality,
the pervasive filtering capability (including the ability to apply filters to subordinate
data structures), the Navigate function, and even the Form and Report Wizards.

There are a number of methods by which data can be pushed or pulled from an
NAV database for processing and presentation outside NAV. This allows use of
more graphically oriented outputs or use of other specialized data analysis tools
such as Microsoft Excel or others. Even given NAV's lack of graphical presentation
capabilities, NAV still provides a very respectable set of user data review and
analysis tools through use of the very flexible filtering toolset combined with the
truly unique SIFT technology.

Continuing Maintenance
Maintenance of Master data, reference data, and setup and control data as
appropriate. The loop returns to the first Step of this data flow sequence,
Data Preparation.

Designing a New NAV Application
Functionality
Given the preceding top-down view how an NAV application works in general, let
us now discuss how we should go about designing a modification. Our view once
again will be data centred. At this point, we will only consider the design issues for
new functionality. Our design process will presume that the overall goals for the new
functionality have already been clearly and completely defined (the "big picture").

When one is designing a much more limited "tweak" modification, the design
process is extremely dependent on exactly what is being done, and is very difficult to
generalize. Some of the following will apply in such a case, but very selectively.

Designing NAV Modifications

[382]

Define the Data Tables
This definition includes the data fields, the keys to control the sequence of data
access and to ensure rapid processing, frequently used totals (which are likely
to be set up as SumIndex Fields), references to lookup tables for allowed values,
and relationships to other primary data tables. It is important not to just define
the primary data tables (e.g. those holding the data being processed in the course
of business activity). The design definition activity at this point must also include
any related lookup tables and controlling "setup" information tables. Finally, it is
appropriate to consider what "backward looking" references to these new tables will
be added to the already existing portions of the system. These connections are often
the finishing touch that makes the new functionality operate in a truly seamlessly
integrated fashion with the original system.

Design the User Data Access Interface
Design the forms and reports to be used to display or interrogate the data. Define
what keys are to be used or available to the users. Define what fields will be allowed
to be visible, what are the totaling fields, how the totaling will be accomplished
(e.g. FlowFields, on-the-fly), and what dynamic display options will be available.
Define what type of filtering will be needed. Some filtering needs may be beyond
the ability of the built-in filtering function and may require auxiliary code functions.
Determine whether external data analysis tools will be needed and will therefore
need to be interfaced. Design considerations at this stage often result in returning to
the previous data structure definition stage to add additional data fields, keys, SIFT
fields, or references to other tables.

Design the Data Validation
Define exactly how the data must be validated before it is accepted upon entry into
a table.

There are likely to be multiple levels of validation. There will be a minimum level,
which defines the minimum set of information required before a new record is
accepted. The minimum may be no more than an identifying number or it may
include several data fields. At the least, it must include all the fields that make up the
primary key to the table.

Subsequent levels of validation may exist relating to particular subsets of data,
which are in turn tied to specific optional uses of the table. For example in the
base NAV system, if the manufacturing functionality is not being used, the
manufacturing-related fields in the Item Master table do not need to be filled in.
But if they are filled in, then they must satisfy certain validations.

Chapter 9

[383]

As mentioned earlier, the sum total of all the validations that are applied to data
when it is entered into a table may not be sufficient to completely validate the data.
Depending on the use of the data, there may be additional validations performed
during the processing, reporting, or inquiries.

Appropriate Data Design Sequence
Perform the above three steps for the permanent data (Masters and Ledgers) and
then for the transactions (Journals). As a general rule, once all the supporting tables
and references have been defined for the permanent data tables, there are not likely
to be many, if any, such new definitions required for the Journal tables. If any
significant new supporting tables or totally new table relationships are identified
during the definition of Journal tables, you should go back and re-examine the
earlier definitions. Why? Because there is a high likelihood that this new requirement
should have been defined for the permanent data and was overlooked.

Design Posting Processes
First define the final data validations, then define and design all the ledger and
auxiliary tables (e.g. Registers, Posted Document tables). At this point you are
determining what the permanent content of the Posted data will be. if you identify
new supporting table or table reference requirements at this point, you should go
back to the first step to make sure this requirement didn't need to be included at that
earlier design definition stage.

Whatever variations in data are permitted to be Posted must be assumed to be
acceptable in the final instance of the data. Any information or relationships that
are necessary in the final Posted data must be ensured before Posting is allowed
to proceed.

Part of the Posting design is to determine whether data records will be accepted or
rejected individually or in complete batches. If the latter happens, you must also
define what constitutes a batch. If the former, it is quite likely that the makeup of a
Posting Batch will be flexible.

Design Support Processes
Design the processes necessary to validate, process, extract, and format data for the
desired output. In earlier steps, these processes may be assumed to exist. That way
they can be defined as "black boxes" in terms of the available inputs and required
outputs without overdue regard for the details of the internal processes. That allows
the earlier definition and design steps to proceed without being sidetracked into the
inner-working detail of these processes.

Designing NAV Modifications

[384]

These processes are the cogs and gears of the functional application. They are
necessary, but often not pretty. By leaving design of these processes in the
application design as late as possible, you increase the likelihood that you will be
able to create common routines and to standardize how similar tasks are handled
across a variety of parent processes. At this point you may identify opportunities or
requirements for improvement in material defined in a previous design step. In that
case, you should return to that step relative to the newly identified issue. In turn,
you should also review the effect of such changes for each subsequent step's area
of focus.

Double-Check Everything
Do one last review of all the defined reference, setup, and other control tables to
make sure that the primary tables and all defined processes have all the information
available when needed. This is a final double-check step.

Summary
By now it will be exceedingly obvious that this design approach is an iterative
approach. At each step there are opportunities to discover things that ideally would
have been dealt within a previous step. When such discoveries are made, the design
work should return to that previous step and proceed methodically back to where
the discovery was made.

It is important to realize that returning to a previous step to address a previously
unidentified issue is not a failure of the process, it is a success. A paraphrase of a
quote attributed to Frank Lloyd Wright says,

"You can use an eraser on the drafting table or a sledge hammer on the
construction site."

It is much cheaper and more efficient to find and fix design issues during the
design phase rather than after the system is in testing or, worse yet, in production
(it's quieter too).

Now that we have reviewed the flow of information through an NAV system and
discussed an overview of how we should design creation of a new functional area
as a modification, we will continue exploring auxiliary tools and features that
contribute to the power and flexibility of NAV.

External Interfaces
A picture is worth a thousand words. An interface is worth a thousand
pictures—Ben Shneiderman

In this chapter, we will look at how your NAV processes can interface with outside
data sources or targets from NAV and how the outside world (systems and users)
can interface with NAV data and objects. Users of the system must communicate
with the system by finding the location of the tool that they wish to use. The Menu,
provided in NAV by means of the MenuSuites, provides access to the tools.

NAV must also accommodate communication with other software or hardware.
Sometimes that communication is either Inside-Out (i.e. instigated by NAV) or
Outside-In (i.e. triggered by the outside connection). When we consider
system-to-system communications, it's not unusual for the process to be a two way
street, a meeting of peers.

To make it easier for our users to meet their needs, we have to understand the
features and limitations of MenuSuites. To supply, receive, or exchange information
with other systems (hardware or software), we need at least a basic understanding of
the interface tools that are part of NAV.

It is critical to understand that because of the way some data is retrieved
from the NAV database, particularly FlowFields, it is very risky for an
external system to access NAV data directly without using one or more
C/AL based routines as an intermediary.

MenuSuites
MenuSuite objects were added to NAV with the release of V4.0 to provide a user
interface very similar to that of Microsoft Office products. The obvious goal was to
make the learning curve for new users shorter by leveraging familiarity. The effect
is limited by the fact that NAV is nothing like a standard Office application, but the
commonality of appearance was achieved.

External Interfaces

[386]

One major advantage of MenuSuites is the fact that the Menus can be modified by
users. There is a predefined Menu Section called Shortcuts. Users can copy menu
items from the location where they appear in the standard system to the Shortcuts
section. In this way, users (or the user IT staff) can build their own menu section
containing their personal frequently used menu entries. Another significant feature
of MenuSuites is the fact that they automatically adapt to show the functions
currently enabled by the active license and the user permissions. In other words, if
you are not allowed to use a particular NAV function, you won't see it on
your menu.

MenuSuite Levels
There are 15 levels of menu objects. They go from level 1 to 15, 1 being a "lower" level
than level 2, etc. The displayed set of menus is built up by first using the lowest level,
then amending it by applying next higher level, and so forth until all defined levels
have been applied. Wherever a higher level redefines a lower level, the higher level
definition takes precedence.

The available menu levels are MBS, Region, Country, Add-on 1 through Add-on
10, Partner, and Company. The lowest level that can be modified in Design mode
without a special license is the Partner Level (you can open lower levels but you
cannot save changes). The lower levels are reserved to the NAV corporate developers
and the ISVs who create Add-ons. The following screenshot shows a MenuSuite
with the original Microsoft master MenuSuite object (MBS), a regional
localization object (Region), a Partner-created object (Partner), and an end-user
Administrator-created MenuSuite object (Company).

Chapter 10

[387]

MenuSuite Structure
The Menu displayed when you enter NAV is a roll-up of the contents of all the menu
objects, filtered based on your license and your assigned permissions. Each level has
the ability to override the lower levels for any entry with the same GUID number.
(Globally Unique Identifier (GUID) numbers are unique numbers that can be used
for the identification of database objects, data records, etc. The value of each GUID is
generated by Microsoft developed algorithm. The standard GUID representation is
{12345678-1234-1234-1234-1234567890AB}).

A changed Menu entry description is a higher-level entry overriding a lower-level
entry. The lower-level entry isn't really changed. A deleted lower-level entry is
not really deleted. Its display is blocked by the existence of a higher-level entry
indicating the effective deletion.

The changes that are made to one MenuSuite object level are stored as the
differences between the effective result and the entries in the lower-level objects. On
the whole this doesn't really make any difference in how you maintain entries, but
if you export menu objects to text and study them, it may help explain some of what
you see there and what happens when changes are made to MenuSuite entries. Some
examples are as follows:

The following screenshot shows the user view of the Financial Management menu
in its original form as shipped by Microsoft.

External Interfaces

[388]

The following screenshot shows the developer view of the same menu with two
modifications. The first modification is a change in the description of the Chart of
Accounts menu item to NEW TEST Chart of Accounts. The second modification
is an added menu entry, New Form for Menu Test, immediately below the
first modification.

MenuSuite Internal Structure
The following screenshot shows the exported text for the unmodified Chart of
Accounts and Budgets menu items.

Chapter 10

[389]

The next screenshot shows the exported text for the Partner object. You can also see
the modification for the Chart of Accounts entry containing enough information to
have the new description override the original along with the GUID number of the
original entry. The added menu entry (New Form for Menu Test) contains all of
the necessary information to completely define that entry. By examining the entry
GUIDs and the NextNodeID values, you can see that the menu is constructed as a
simple, singly linked list.

Now, if we open the MenuSuite Designer at the Company level, we can reverse
the two changes we earlier made at the Partner level so that the displayed menu
will look as though no changes had ever been made. What actually happens?
Entries in the Company-level MenuSuite object are overriding the entries in the
Partner-level object, which are in turn are overriding the entries in the MBS-level
object. The following screenshot shows the entries that were added to the Company
level object when we "restored" the menu appearance by changing the first entry
description back and by deleting the added entry.

If you are faced with working on a MenuSuite containing several levels and you
want to start by analyzing what menu entries are touched at each level, your only
good option is to export each of the levels to text and analyze the text.

MenuSuite Development
The MenuSuite Designer can be accessed through two paths. Users with
appropriate permissions (and developers) can access the MenuSuite Designer
through the Tools menu as shown in the following screenshot. This path will only
allow access to the Company-level menu, the highest of the levels.

External Interfaces

[390]

Access to the other levels of MenuSuite objects is through Tools | Object Designer
| MenuSuite in a fashion essentially similar to accessing other NAV objects for
development purposes.

To exit MenuSuite Designer, right-click on the open MenuSuite object heading.
You will see the Close Navigation Pane Designer option as shown in the following
screenshot (Navigation Pane Designer is an alternative name for the MenuSuite
Designer). Click on that option to close the Designer. You will have the usual
opportunity to respond to "Do you want to save the changes".

Chapter 10

[391]

Once you have opened the MenuSuite Designer at the desired level (typically
Partner or Company), your next step is to create menu modifications. As mentioned
in Chapter 1, the development tools for MenuSuites are quite different in form than
those of other NAV objects. To access the development options for a MenuSuite,
highlight an item (e.g. a menu or menu entry) and right-click. After highlighting a
menu, you will see the display similar to the following screenshot:

If you select the Create Menu option, you will see the form in the following
screenshot. This allows you to create a new Menu. For example, you might want to
create a new menu allowing access to a limited set of inquiry forms.

In this form, you can enter whatever the new Menu's Caption is to be and choose
a Bitmap to be displayed as the icon at the left of the caption string when the
MenuSuite is displayed.

External Interfaces

[392]

If you highlight a menu entry and right-click, you will see the option list shown in
the following screenshot:

The options shown on this menu are the total set available for a MenuSuite item. The
first set of options allows you to Create, Delete, or Rename items. The Move Up and
Move Down are the principal positioning tools. If you click on Properties, you will
see a display similar to the following screenshot:

The only object types allowed are Table, Form, Report, Dataport, and Codeunit. Once
you have chosen an object type, you can specify the particular object of that type
to be executed and what the Captions are to be. And that's all that you can do as a
developer in a MenuSuite. An appropriately authorized user can do exactly the
same things, but only in the Company level MenuSuite.

Chapter 10

[393]

If you are creating a new Menu containing menu items that exist in other Menus, you
can populate it very quickly and easily. Create a new Menu, and just copy and paste
menu items into it from other Menus.

There is no allowance for any type of embedded C/AL code in a MenuSuite item
to handle control, filtering, special validation, or other logic. You cannot invoke
a specific function within an object. If you want to include any such customized
capability, you must put that logic in an object, such as report, dedicated to handle
the control task. Your MenuSuite item can then execute that control object, which
will apply your enhanced control logic and then invoke another object.

NAV Menus before V4.0
Versions of NAV (aka Navision) prior to V4.0 had a menu system made from Forms
objects. The appearance of the menu was quite different from MenuSuites (see the
following screenshot from a V3.7 US-localized database).

Clicking on an entry in the left-hand panel would change the display in the
right-hand panel. This was accomplished by a series of forms, one for each functional
menu (e.g. General Ledger, Fixed Assets, etc.). These forms were stacked one on top
of the other, with the Visible property being used to determine which specific menu
form was visible at any point in time.

External Interfaces

[394]

When an entry in the left panel was clicked, it would set its designated menu form
Visible and set all the others as Not Visible. Because each menu was a form, any
desired C/AL logic could be embedded in that form. But this approach had the
disadvantage of not allowing users to modify or create their own Shortcut menus. In
addition, it did not fit the desired Microsoft model of the Office menu format.

Dataports
Dataports are objects specifically designed for the purpose of importing and exporting
external text files. Dataports for text files in standard format, such as .csv files, are
quickly and easily created. Conversely, Dataports can be quite complex, manipulating,
filtering, and otherwise processing the data. Dataports can be designed to include user
involvement to specify filters or the external data file name and path. Or they can be
set up to operate totally in the background with no direct user interaction.

Dataport Components
The basic structure of a Dataport is quite similar to that of a report. An NAV
Dataport structure may include any or all the following elements. A particular
Dataport might utilize only a small number of the possible elements, but many
different combinations are possible.

Dataport Properties
Dataport Triggers
Data Items

Data Item Properties
Data Item Triggers
Dataport Fields

Field Properties
Field Triggers

Request Form
Request Form Properties
Request Form Triggers
Request Form Controls

Request Form Control Properties
Request Form Control Triggers

•

•

•

°

°

°

°

°

•

°

°

°

°

•

Chapter 10

[395]

Dataports can be either Import (reading a text file and updating one or more NAV
tables) or Export (reading one or more NAV tables and creating a text file output).
Depending on whether a Dataport is importing or exporting, different properties and
triggers come into play. As a developer you must determine whether your Dataport
design is to be used just for Import, just for Export, or if you will allow the user to
dynamically choose Import or Export.

Dataport Properties
Dataport properties are shown in the following screenshot. A few of these properties
are essentially similar to those of other object types such as Reports and Forms. We
won't spend much time on these. We will delve into properties that are specific
to Dataports.

The description is as follows:

ID: The unique dataport object number.
Name: The name by which this dataport is referred to within C/AL code.
Caption: The name that is displayed for this dataport; Caption defaults
to Name.
CaptionML: The Caption translation for a defined alternative language.

•

•

•

•

External Interfaces

[396]

Import: This can contain the default <Yes>, Yes, or No. It can also be set
dynamically (i.e. at run time) in the OnPreDataportTrigger. If Import
is equal to default <Yes>, then the user can choose on the Request Form
Options tab whether the Dataport processing is going to be an Import or an
Export. Otherwise, if Import is set to Yes, then processing will be an Import.
If Import is set to No, then processing will be an Export.
In the latter two cases, the Request Form Options tab will not display an op-
tion or otherwise hint whether an Import or an Export is about to be execut-
ed. In those cases, you need to make clear what is going to happen, either by
properly naming the object or by a message or documentation. Screenshots
displaying the two instances of the Request Form Options Tab will follow
later in this chapter.

Take note that if you test run a Dataport from within the Designer (using
File | Run) and the run is an Import, then no data will be inserted into
the database.

FileName: This can be filled with the predefined path and name of a specific
external text data file to be either the source (for Import) or target (for
Export) for the run of the Dataport or this property can be set dynamically.
Only one file at a time can be opened, but the file in use can be changed
during the execution of the Dataport (a relatively tricky-to-use, seldom
used feature).
FileFormat: This specifies whether the file format is to be Fixed or Variable.
It defaults to <Variable>. A Fixed format file will be processed based
on fixed length fields of predefined sizes. A Variable format file will be
processed based on field delimiters specifying the start and end of all fields,
and the separator between each field.
FieldStartDelimiter: This applies to Variable format external files only. It
defaults to <">—double quote, the standard for so-called "comma-delimited"
text files. This property supplies the string that will be used as the starting
delimiter for each data field in the text file. If this is an Import, then the
Dataport will look for this string and use the string following, until a
FieldEndDelimiter string is found, as data. If this is an Export, the Dataport
will insert this string at the beginning of each data field.
FieldEndDelimiter: This applies to Variable format external files only. It
defaults to <">—double quote, the standard for so-called "comma-delimited"
text files. This property supplies the string that will be used as the ending
delimiter for each data field in the text file. This string will be used in similar
fashion just to that described for the FieldStartDelimiter.

•

•

•

•

•

Chapter 10

[397]

FieldSeparator: This applies to Variable format external files only. Defaults
to <,>—a comma, the standard for so-called "comma delimited" text files.
This property supplies the string that will be used as the delimiter between
each data field in the text file (looked for on Imports or inserted on Exports).
RecordSeparator: This defines the string that will be used as the delimiter at
the end of each data record in the text file. If this is an Import, the Dataport
will look for this string to mark the end of each data record. If this is an
Export, the Dataport will append this string at the end of each data
record output. The default is <NewLine> which represents any combination
of CR (carriage return - ASCII value 13) and LF (line feed – ASCII value 10)
characters.
DataItemSeparator: This defines the string that will be used as the
delimiter at the end of each Data Item (e.g. each text file). The default is
<NewLine><NewLine>.
UseReqForm: This determines whether a Request Form should be displayed
to allow the user choice of Sort Sequence, entry of filters, and other requested
control information. The options are Yes and No. The default is <Yes>.
ShowStatus: This determines whether the processing status and a user-
accessible Cancel button are shown or not. The options are Yes and No. The
default is <Yes>.
TransactionType: This identifies the Dataport processing Server Transaction
Type as Browse, Snapshot, UpdateNoLocks, or Update. This is an advanced
and seldom used property. For more information, you can refer to Help files
and SQL Server documentation. The default is <UpdateNoLocks>.
Permissions: This provides report-specific setting of permissions, which
are rights to access data, subdivided into Read, Insert, Modify, and Delete.
This allows the developer to define report and processing permissions that
override the user-by-user permission security setup.

For more information on each of these properties, please look them up in the C/SIDE
Reference Guide (i.e. online C/SIDE Help). There is a good description of various
options and their effects for each of these properties.

Dataport Triggers
The Dataport triggers, shown in the following screenshot, are a relatively simple set.
Their description is as follows:

Documentation() is for your documentation comments.is for your documentation comments.
OnInitDataport() executes once when the Dataport is loaded.
OnPreDataport() executes once after the Request Form has completed, after
table views and filters have been set. Those can be reset here.

•

•

•

•

•

•

•

•

•

•

External Interfaces

[398]

OnPostDataport() executes once after all the data is processed, if the
Dataport completes normally.

Data Item
Most Dataports have only a single Data Item. A Dataport can have multiple Data
Items, but they can only be processed sequentially. Dataport Data Items cannot be
nested (i.e. indented) even though the Data Item screen has the indentation buttons
visible and active. The one exception is Dataports which create User Portal XML files.
It is very rare for a Dataport to have more than one Data Item.

Data Item Properties
Data Item properties are shown in the following screenshot. Most of these are similar
to a Report Data Item.

•

Chapter 10

[399]

Their description is as follows:

DataItemIndent: This shows the position of referenced data item in the
hierarchical structure of the Dataport, but cannot be used for Dataports.
DataItemTable: This names the table assigned to this Data Item.
DataItemTableView: This defines the fixed limits that are to be applied to
the Data Item (what key to use, ascending or descending sequence, what
filters to apply, etc.).
ReqFilterHeader, ReqFilterHeadingML: The heading that will appear at the
top of the Request Form tab for this Data Item.
ReqFilterFields: This allows you to choose certain fields to be named on the
appropriate Dataport Request Form tab to make it easier for the user to use
those as filter fields.
CalcFields: This names the FlowFields that are to be calculated for each
processed record. Because FlowFields do not contain data, they have to be
calculated to get exported.
DataItemLinkReference: This names the Data Item in the hierarchy above
the Data Item to which this one is linked. Generally not used in Dataports.
DataItemLink: This identifies field-to-field linkage between the data item
and its parent data item. Generally not used in Dataports.
AutoSave, AutoUpdate, and AutoReplace: All these are only meaningful for
Import. In an Import, they control what the automatic processing defaults
are for our data.

If AutoSave is No, then the only processing that occurs for
our data is what we do in C/AL code. The default is Yes
If AutoSave is Yes and:

If AutoUpdate is No and AutoReplace is No, then
imported data will be inserted in the database unless
a duplicate primary key is identified. In that case, a
run-time error occurs and processing is terminated.
If AutoUpdate is Yes and AutoReplace is No, then
imported data is inserted in the database with
duplicate key items updating existing records.
Updating means filled fields in the import data will
overwrite existing data; empty fields in the import
data will have no effect. This is the default setting.
If AutoReplace is Yes, then imported data is inserted
in the database with duplicate key items overwriting
existing records. In this case, the AutoUpdate value
doesn't matter.

•

•
•

•

•

•

•

•

•

°

°
°

°

°

External Interfaces

[400]

Data Item Triggers
The following screenshot shows the Data Item triggers:

Their description is as follows:

OnPreDataItem(): the logical place for pre-processing to take place that
wasn't handled in OnInitDataport() or OnPreDataport().
OnBeforeExportRecord(): for Export only. This trigger is executed after
the NAV record has been retrieved from the database, but not yet exported.
This is where you can make decision about exporting a particular record
or not. The retrieved record is available in the Data Item at this point for
examination or manipulation.
OnAfterExportRecord(): for Export only. This trigger is executed after the
data has been written out to the text file. In the case where you need to do
some type of post-output processing on a per-record basis, that code can be
put in this trigger.
OnBeforeImportRecord(): for Import only. This trigger is executed before
the next external record is read in, allowing you to manipulate the external
file before reading it.

•

•

•

•

Chapter 10

[401]

OnAfterImportRecord(): for Import only. This trigger is executed after the
next external record has been read and mapped into the input fields, but
before it has been written out to the database. This allows you to do whatever
pre-processing or exception processing you need to do (including skipping
or exiting records).

Dataport Fields
Dataport fields can be added in several ways. Each of them is called by the Field
Designer screen, accessed from View | Dataport Fields. For our example, we will
create a Dataport with one DataItem, our Member table. After calling the Field
Designer, it will look similar to the following screenshot:

•

External Interfaces

[402]

The first, and most obvious, method of defining Dataport fields would be to click on
the Lookup arrow in the SourceExpr column. This will bring up a field list for the
highlighted DataItem (in this example, a list of the fields in the Member table).

You can highlight and select (via the OK button) fields one at a time to be inserted in
the Field Designer list.

A second method of defining Dataport fields is to call up the Field Menu by
clicking on the icon at the top of the Object Designer form, as shown in the
following screenshot:

Chapter 10

[403]

On the Field Menu, you can highlight any number of fields from the DataItem,
and then right-click in the first empty Field Designer SourceExpr line. You will be
presented with the message shown in the following screenshot. If you respond Yes,
the highlighted fields will be added to the Field Designer list (duplicate entries are
allowed). Using this method you can load the Field Designer with any number of
the DataItem fields with a minimum amount of effort. In fact, with just four quick
clicks, you can insert all the fields at once (click on the Field Menu icon, click on the
upper left corner of the Field Menu list, right-click on the empty SourceExpr line,
and finally click on Yes).

The third method relates to referencing Global variables rather than fields within a
DataItem. Often when you want to manipulate data you are importing, rather than
having the initial import directly into DataItem fields, you will import into working
storage (Global) variables. In this case, you cannot look up the variables. You must
simply type the variable name into the SourceExpr field. Error-checking of these
entries only occurs when the object is compiled. Therefore it's a good idea to press
F11 every time you enter a Global variable. This will compile the Dataport object to
catch typos or missing variable definitions.

External Interfaces

[404]

Some examples of instances where you might want to import into Global
variables are:

When an incoming text field might be longer than the defined field in
the database
When you need to replace the incoming data element with other information,
e.g. the incoming data has text for Yes or No and your data field is a Boolean
to which you need to assign TRUE or FALSE
When you need to do a format conversion of the data, e.g. the incoming data
is dates in the text format of 'mm/dd/yy', including the slashes, and your
data field has a Data Type of Date
When there is data in the incoming record that you will use for computation
or decision making in a preprocess mode, but which will not be imported to
the Data Item

A wide variety of other instances are certainly possible based on your
specific situation.

In the Field Designer, there are two columns headed StartPos and Width (shown in
the following screenshot). These columns are only meaningful for Dataports whose
FileFormat is Fixed. If the FileFormat is Variable, any data in the StartPos and
Width columns is ignored.

•

•

•

•

Chapter 10

[405]

Dataport Field Properties
Dataport Field properties are shown in the following screenshot:

Their description is as follows:

Enabled: This indicates whether data will be placed in the field for Export or
data in the field will be transferred to the database for Import.
SourceExpr: This must be a valid C/AL variable name for Import, either
from the DataItem or a Global variable. For Export, this can be any C/AL
expression, i.e. you could export the result of a formula or a constant.
Caption and CaptionML: The field name displayed, depending on the
language option in use.
StartPos: The position of the leftmost character of this data field in the
external text record format—for Fixed FileFormat only.
Width: The number of characters in this data field in the external text record
format—for Fixed FileFormat only.
CallFieldValidate: This applies to Import and DataItem fields only. If this
property is Yes, then whenever the field is imported into the database, the
OnValidate() trigger of the field will be executed.
Format: This applies to Export only. This property can contain any NAV
Format expression, standard or custom, compatible with the data type of this
field.
AutoCalcField: It applies to Export and Flowfield Data Fields only. If this
property is set to Yes, the field will be calculated before it is retrieved from
the database. Otherwise, a Flowfield would export as an empty field.

•

•

•

•

•

•

•

•

External Interfaces

[406]

Dataport Field Triggers
There are two Dataport Field triggers as shown in the following screenshot:

Their description is as follows:

OnAfterFormatField applies to Export only. This trigger allows access to
the data field being exported after it has been formatted for export, but before
it has been written to the external text file. The data will be in the System
variable Text with a maximum length of 1024 characters.
OnBeforeEvaluateField applies to Import only. This trigger allows access
to the data field being imported from the external text file before it has been
processed in any way. The data will be in the System variable Text with a
maximum length of 1024 characters.

XMLports
XML is eXtensible Markup Language, a structured text format that was
developed specifically to describe data to be shared by dissimilar systems. Because
the manual creation and handling of XML-formatted data is rather tedious and very
subject to error, NAV has XMLports, a data import/export function that processes
XML-formatted data only. Use of XMLports allows the setup of XML-based
communication with another system.

XML is very important because in the future, most system-to-system
communication will be built on XML documents.

XML data is text based, with each piece of information structured in one of two
basic formats:

<StartTag>data value</EndTag> (an Element format)
<Data Item Name = "data value"> (an Attribute format)

•

•

•

•

Chapter 10

[407]

Single or double quotes can be used in an attribute. Elements are considered more
general purpose than Attributes, probably because they are easier to parse and
generate simpler data structures when there are multiple entries created for one
level. Complex data structures are built up of combinations of these two formats.
For example:

<Table='Sample XML format'>
 <Record>
 <Data Item 1>12345</Data Item 1>
 <Data Item 2>23456</Data Item 2>
 </Record>
 <Record>
 <Data Item 1>987</Data Item 1>
 </Record>
 <Record>
 <Data Item 1>22233</Data Item 1>
 <Data Item 2>7766</Data Item 2>
 </Record>
</Table>

In this case we have a set of data identified as a Table labeled 'Sample XML format',
containing three Records, each Record containing data in one or two fields named
Data Item 1 and Data Item 2. The data is clearly structured and in text format
so that it can be read and processed by any system that is prepared to read this
particular XML format. If the field tags are well designed, the data becomes readily
interpretable by normal humans as well. The key to successful exchange of data
using XML is simply the sharing and common interpretation of the format between
the transmitter and recipient of the information.

XML is a standard format in the sense that the data structure options are clearly
defined. But it is very flexible in the sense that the identifying tag names in <>
brackets and the related data structures that can be defined and handled are totally
open ended. XML data structures can be as simple as a flat file consisting of a set
of identically formatted records or as complex as an order structure with headers
containing a variety of data items, combined with associated detail lines containing
their own variety of data items.

XMLport Components
Although in theory XMLports can operate in both an import and an export mode, in
practice individual XMLport objects tend to be dedicated to either import or export.
In general, this allows the internal logic to be simpler. XMLports consist of fewer
components than do Dataports or Reports.

External Interfaces

[408]

XMLports have no Request Forms or Data Items (they cannot run, except by being
invoked from another object type). The components of XMLports are as follows:

XMLport Properties
XMLport Triggers
XMLport Lines

XMLport Line Properties (aka fields)
XMLport Line Triggers

XMLport Properties
XMLport properties are shown in the following screenshot:

Their description is as follows:

ID: The unique XMLport object number.
Name: The name by which this XMLport is referred to within C/AL code.
Caption: The name that is displayed for this XMLport; Caption defaults
to Name.

•

•

•

°

•

•

•

•

Chapter 10

[409]

CaptionML: The Caption translation for a defined alternative language.
Direction: This defines whether this XMLport can only Import, Export, or
<Both> (default).
DefaultFieldsValidation: This defines the default value (Yes or No) for
the FieldValidate property for individual XMLport data fields. The default
for this field is Yes, which would in turn set the default for individual field
FieldValidate properties to Yes.
Encoding: This defines the character encoding option to be used, UTF-8
or UTF-16. UTF-16 is the default. This is inserted into the heading of the
XML document.
XMLVersionNo: This defines to which version of XML the document
conforms, Version 1.0 or 1.1. The default is Version 1.0. This is inserted into
the heading of the XML document.
Format/Evaluation: This can be C/SIDE Format/Evaluate or XML Format
Evaluate. This property defines whether the external text data is (for imports)
or will be (for exports) XML data types or C/SIDE data types. Default
processing for all fields in each case will be appropriate to the defined data
type. If the external data does not fit in either of these categories, then the
XML data fields must be processed through a temporary table.
This approach will have the external data read into text data fields with data
conversion logic done in C/AL into data types that can then be stored in the
NAV database. Additional information is available in the online C/SIDE
Reference Guide (i.e. the Help files). The default value for this property is
C/SIDE Format/Evaluate.
TransactionType: This identifies the XMLport processing Server Transaction
Type as Browse, Snapshot, UpdateNoLocks, or Update. This is an advanced
and seldom-used property. For more information, you can refer to the Help
files and SQL Server documentation.
Permissions: This provides report-specific setting of permissions, which are
rights to access data, subdivided into Read, Insert, Modify, and Delete. This
allows the developer to define permissions that override the user-by-user
permissions security setup.

•

•

•

•

•

•

•

•

External Interfaces

[410]

XMLport Triggers
The XMLport has a limited set of triggers as shown in the following screenshot:

Their description is as follows:

Documentation() is for your documentation comments.
OnInitXMLport()is executes once when the XMLport is loaded.
OnPreXMLport()is executes once after the table views and filters have been
set. Those can be reset here.
OnPostXMLport()is executes once after all the data is processed, if the
XMLport completes normally.

XMLport Data Lines
An XMLport can contain any number of data lines. The data lines are laid out in a
strict hierarchical structure, with the elements and attributes mapping exactly, one
for one, in the order of the data fields in the external text file, the XML document.

•

•

•

•

Chapter 10

[411]

The sample XMLport in the following screenshot shows data being extracted from
the Customer table and Country/Region table to create an XML document file.

The last data line in the sample (Sales, referencing a FlowField) has the
AutoCalcField property set to Yes (the default) so that the FlowField will be
calculated before it is outputted (see the preceding screenshot).

External Interfaces

[412]

The following two screenshots show the C/AL code that is a part of this sample
XMLport. The line of code in the first screenshot assigns a text literal value to the
variable (Chapter 10 XML Example) defined by its placement in the DataSource
column in the XMLPort Designer. The line of code in the second screenshot sets a
filter on the Country table so that only the single Country Name associated with the
Customer record's Country Code will be output.

The XML document output from this sample XMLport is shown in the following
screenshot. Note that the XML document is headed with a line showing the XML
version and encoding type. That is followed by the text literal, which we coded,
then the selected data.

Chapter 10

[413]

XMLports cannot run directly from a menu command, but must be executed by
properly constructed C/AL code. XMLports run from C/AL code that calls the
XMLport and streams data either to or from an XML document file. This code is
typically written in a Codeunit but can be placed in any object that can contain
C/AL code.

This example process is driven by C/AL code in a Codeunit, illustrated in the
following screenshot. This is the minimum amount of code required to execute an
exporting XMLport. The illustration is as follows:

Line 1 – Creates the data file to contain the XML document. The variable
OutStreamObj is defined as Data Type OutStream
Line 2 – Creates an OutputStream.
Line 3 – Executes the specific XMLport.
Line 4 – Closes the text data file.

An equivalent Codeunit designed to execute an importing XMLport would look
similar to the following screenshot. The InStreamObj variable is defined as Data
Type InStream.

•

•

•

•

External Interfaces

[414]

XMLport Line Properties
The XMLport Line properties which are active on a line depend on the contents
of SourceType property. The first four properties listed are common to all three
SourceType values (Text, Table, or Field) and the other properties specific to each
are listed below the screenshots showing all the properties for each SourceType.

Indentation: This indicates at what subordinate level in the hierarchy of the
XMLport this entry exists. Indentation 0 is the primary level, parent to all
higher numbered levels. Indentation 1 is a child of indentation 0, indentation
2 is a child of 1, and so forth. Only one Indentation 0 is allowed in an
XMLport (i.e. only one primary table).
TagName: This defines the Tag that will be used in the XML document to
open and close the data associated with this level. If the Tag is Customer,
then the start and ending tags will be <Customer> and </Customer>. No
spaces are allowed in a TagName; you can use underscores, dashes, periods.
TagType: This defines if this data item is an Element or an Attribute.
SourceType: This defines the type of data this field corresponds to in the
NAV database. The choices are Text, Table, and Field. Text means that the
value in the SourceField property will act as a Global variable and, typically,
must be dealt with in embedded C/AL code. Table means that the value in
the SourceField property will refer to an NAV table. Field means that the
value in the SourceField property will refer to an NAV field within a table.

SourceType as Text
The following screenshot shows the properties for SourceType asas Text:

•

•

•

•

Chapter 10

[415]

The description of the Text-specific properties is as follows:

TextType: This defines the NAV Data Type as Text or BigText. Text is
the default.
VariableName: This contains the name of the Global variable, which can be
referenced by C/AL code.

The Occurrence property is discussed later in this chapter.

SourceType as Table
The following screenshot shows the properties for SourceType as Table:

The description of the Table-specific properties is as follows:

SourceTable: This defines the NAV table being referenced.
VariableName: This defines the name to be used in C/AL code for the NAV
table. Essentially, this is a definition of a Global variable.
SourceTableView: This enables the developer to define a view by choosing a
key and sort order or by applying filters on the table.
CalcFields: This lists the FlowFields in the table that are to be
automatically calculated.

•

•

•

•

•

•

External Interfaces

[416]

LinkTable: This allows the linking of a field in a higher-level item to a
key field in a lower-level item. If, for example, you were exporting all the
Purchase Orders for a Vendor, you might Link the Buy-From Vendor No. in
a Purchase Header to the No. in a Vendor record. The LinkTable in this case
would be Vendor and LinkField would be No.; therefore LinkTable and
LinkFields work together. Use of the LinkTable and LinkFields operates the
same as applying a filter on the higher-level table data so that only records
relating to the defined lower-level table and field are processed. See the
online C/SIDE Reference Guide Help for more detail.
LinkTableForceInsert: This can be set to force insertion of the linked table
data and execution of the related OnAfterInitRecord() trigger. This
property is tied to the LinkTable and LinkFields properties. It also applies
to Import.
LinkFields: This defines the fields involved in a table + field linkage.
Temporary: This defaults to No. If this property is set to Yes, it allows the
creation of a Temporary table in working storage. Data imported into this
table can then be evaluated, edited, and manipulated before being written
out to the database. This Temporary table has the same capabilities and
limitations as a Temporary table defined as a Global variable.

The MinOccurs and MaxOccurs properties are discussed later in this chapter.

SourceType as Field
The following screenshot shows the properties for SourceType as Field:

•

•

•

•

Chapter 10

[417]

The description of the Field-specific properties is as follows:

SourceField: This defines the data field being referenced. It may be a field in
any defined table.
FieldValidate: This applies to Import only. If this property is Yes, then
whenever the field is imported into the database, the OnValidate() trigger
of the field will be executed.
AutoCalcField: This applies to Export and Flowfield Data fields only. If this
property is set to Yes, the field will be calculated before it is retrieved from
the database. Otherwise, a flowfield would export as an empty field.

The details of the MinOccurs and MaxOccurs properties are as follows:

Element or Attribute
An Element data item may appear many times but an Attribute data item may only
appear (at most) once; the occurrence control properties differ based on the TagType.

TagType as Element
The Element-specific properties are as follows:

MinOccurs: This defines the minimum number of times this data item can
occur in the XML document. This property can be Zero or Once (the default).
MaxOccurs: This defines the maximum number of times this data item can
occur in the XML document. This property can be Once or Unbounded.
Unbounded (the default) means any number of times.

TagType as Attribute
The Attribute-specific property is as follows:

Occurrence: This is either Required (the default) or Optional, depending on
the text file being imported.

•

•

•

•

•

•

External Interfaces

[418]

XMLport Line Triggers
The XMLport line triggers are shown in the following screenshot:

The triggers appearing for the XMLport data line depend on the values of the
DataType field. As you can see in the preceding screenshot, there are different
triggers depending whether DataType is Text, Table or Field.

DataType as Text
The triggers for DataType as text are:

Export::onBeforePassVariable(), for Export only. This trigger is typicallyThis trigger is typically
used for manipulation of the text variable.
Import::OnAfterAssignVariable(), for Import only. This trigger gives gives
you access to the imported value in text format.

DataType as Table
The triggers for DataType as table are:

Import::OnAfterInsertRecord(), for Import only. This trigger is typically
used when the data is being imported into Temporary tables. This is where
you would put the C/AL code to build and insert records for the permanent
database table(s).
Export::OnPreXMLItem(), for Export only. This trigger is typically used for
setting filters and doing initializations before finding and processing the first
database record.

•

•

•

•

Chapter 10

[419]

Export::OnAfterGetRecord(), for Export only. This trigger allows access
to the data after the record is retrieved from the NAV database. This trigger
is typically used to allow manipulation of table fields being exported and
calculated depending on record contents.
Import::OnAfterInitRecord(), for Import only. This trigger is typically
used to check whether or not a record should be processed further or to
manipulate the data.
Import::OnBeforeInsertRecord(), for Import only. This is another place
where you can manipulate data before it is inserted into the target table. This
trigger is executed after the OnAfterInitRecord() trigger.

DataType as Field
The triggers for DataType as field are:

Import::OnAfterAssignField(), for for Import only. This trigger provides
access to the imported data value for evaluation or manipulation before
outputting to the database.
Export::OnBeforePassField(), for Export only. This trigger provides
access to the data field value just before the data is exported.

Advanced Interface Tools
NAV has a number of other methods of interfacing with the world outside its
database. We will review those very briefly here. To learn more about these you
should begin by reviewing the applicable material in the Application Designer's
Guide and other documentation as well as the online C/SIDE Help material.
You should also study any sample code, especially that in the standard system as
represented by the Cronus Demonstration Database. And, of course, you should take
advantage of any other resources available including the Internet forums focusing
on NAV.

Automation Controller
One option for NAV interfacing is by connection to COM Automation servers. A
key group of Automation servers are the Microsoft Office products. Automation
components can be instantiated, accessed, and manipulated from within NAV
objects using C/AL code. Data can be transferred back and forth between the NAV
database and COM Automation components.

•

•

•

•

•

External Interfaces

[420]

Limitations include the fact that only non-visual controls are supported. You cannot
use a COM component as a control on an NAV Form object. However, a COM
component can have its own window providing an interactive graphical
user interface.

Some common uses of Automation Controller interfaces are to:

Populate Word template documents to create more attractive
communications with customers, vendors, and prospects (e.g. past due
notices, purchase orders, promotional letters)
Move data to Excel spreadsheets for manipulation (e.g. last year's sales data
to create this year's projections)
Move data to and from Excel spreadsheets for manipulation (e.g. last year's
financial results out and next year's budgets back in)
Use Excel's graphing capabilities to enhance management reports
Access to and use of ActiveX Data Objects (ADO) Library objects to support
access to and from external databases and their associated systems

NAV Communication Component
The NAV Communication Component is an automation server that provides a
consistent API (Application Programming Interface) communications bus adapter.
Adapters for use with Microsoft Message Queue, Socket, and Named Pipe transport
mechanisms are supplied with NAV. Adapters for other transport mechanisms can
be added.

The NAV Communication Component enables input/output data-streaming
communication with external services. Function calls can be done on either
a synchronous or asynchronous basis. The details on NAV Communication
Component are available in the Help file devguide.chm.

Linked Server Data Sources
The two table properties, LinkedObject and LinkedInTransaction, are available
when the NAV database is SQL Server. Use of these properties in the prescribed
fashion allows data access, including views, in linked server data sources such as
Excel, Access, another instance of SQL Server, and even an Oracle database.
For additional information, see the Application Designer's Guide section on
Linked Objects.

•

•

•

•

•

Chapter 10

[421]

NAV ODBC
The NAV ODBC interface (referred to as N/ODBC) is an NAV-specific
implementation of the standard ODBC (Open DataBase Connectivity) toolset.
N/ODBC is simple to install and, once installed, can be made readily available to
users to directly extract data from the NAV database. N/ODBC can only be used
with the C/SIDE database, not with the SQL Server database option.

Because N/ODBC Write operations bypass all NAV's triggers (i.e. no business
logic is processed), no N/ODBC writing should occur except under the most
controlled conditions. In Read mode, N/ODBC operates very similarly to any
other ODBC connection.

There is a separate N/ODBC Driver Guide for reference, which must be reviewed
prior to installing N/ODBC. N/ODBC must be licensed separately.

C/OCX
NAV interfaces with properly installed and registered Custom Controls (i.e. .ocx
routines) through the C/OCX interface granule. The interface and limitations are
similar to those available for Automation Server Controls. Using C/OCX is one way,
generally a relatively economical way, to interface between NAV and various other
software products or hardware products. An excellent example would be to use
Microsoft Common Dialog Control to invoke the standard File Open/Save dialog
for user convenience.

C/FRONT
C/FRONT is a programming interface that supports connection between
C language-compatible software and the NAV database. C/FRONT provides a
library of functions callable from C programs. These functions provide access to
all aspects of the NAV database with the goal of providing a tool to integrate
external applications with NAV. There is a separate manual called C/FRONT
Reference Guide.

Since its original development, C/FRONT has been enhanced to provide its API
access to languages other than C and C++. Earlier, C/FRONT was made usable
by additional languages such as Visual Basic. Now, it can be used by any
.NET language.

External Interfaces

[422]

NAV Application Server (NAS)
The NAV Application Server is a middle-tier server than runs as a service. It is
essentially an automated user client. Because NAS was created primarily using
components from the standard NAV C/SIDE client module, NAS can access all of
NAV's business rules. NAS is a very powerful tool, but it can run only NAV Report
and Codeunit objects and only those that do not invoke a graphical user interface of
any type. Any error messages that are generated by an NAS process are logged
in the Event Viewer or written to a file defined when NAS is started from a
command line.

If there are processing tasks that need to be automated, NAS is a very good solution.
However, NAS operates essentially the same as any other NAV C/SIDE client
(except for being automated). It processes all requests in its queue one at a time, in
the same manner as the GUI client. Therefore, as a developer, you need to limit the
number of concurrent calls to an NAS instance as the queue should remain short
to allow timely communications between interfaces. If necessary, additional NAV
Application Servers can be added to the system configuration (with appropriate
license purchases).

Summary
In this chapter, we have focused on interfaces with NAV. The initial area of interface
we discussed was user management and accessing the system. The other interfaces
we discussed tie to other systems or even hardware as well. Data is moved into
and out of NAV, both on a batch and interactive basis, either in an automatic or
a user-controlled mode. And some of the interfaces created can even facilitate
controlling other systems from NAV or the other way around.

In this chapter we have covered MenuSuites, Dataports, XMLports, and advanced
Interfaces. In the next chapter we will cover some additional advanced and broader
topics related to overall system design and implementation.

Design to Succeed
Look, we'd get along much faster if we knew what we were doing—Doctor Who

Whatever we do to change or enhance an NAV system, whether developing a
minor modification for a single site, or developing a full-blown system for many
installations, we need to plan for the future. That means we need to consider the
effect of our design and our code in variety of ways over and above the functionality
we are initially attempting to achieve.

We should consider the fact that someone else can meet up with our code in the
course of their maintenance activities. We should consider the fact that regardless
of the database platform in use, Microsoft SQL Server is likely to be the choice in
the relatively near future. We should also consider the fact that, if this system is
performing well for the users, it needs to be upgraded to a new version at some point.

Before we begin writing code, we should have a firm definition of what we aim to
accomplish and how it is going to be accomplished. We need to design our
changes to the database and the process flow not only so that they work well for the
intended purpose, but also so that they do not negatively impact on previously
implemented code.

No matter how much effort we put into our designs creating clean and simple code,
we must test it thoroughly and realistically. These systems are very complex and
the results of our "simple" changes often have significant unintended consequences.
Isaac Asimov once made a statement to the effect that many significant discoveries are
preceded by the comment "That's funny…"

If this book has helped you feel that you are ready to move from the status of
beginning C/AL Developer to intermediate or even advanced, there are quite a
number of other issues that you will need to deal with that we haven't discussed yet.
Fortunately, there are other resources available to use that can help you. In addition,
if you rigorously apply the techniques you've learned here, you will have a good
foundation on which to build advanced knowledge.

Design to Succeed

[424]

Design for Efficiency
Whenever you are designing a new modification, you not only need to design to
address the defined needs, but also to provide a solution that processes efficiently.
An inefficient solution carries unnecessary ongoing costs. Many of the things that
you can do to design an efficient solution are relatively simple.

Disk I/O
The slowest thing in any computer system is the disk I/O. Disk I/O takes the most
time, generally more time than any other system activity. Therefore, if you have to
choose where to concentrate your efforts in designing with respect to efficiency, you
should focus on minimizing the disk I/O.

The most critical elements are the design of the keys, the number of keys, the
design of the SIFT fields, the number of SIFT fields, the design of the filters, and
the frequency of accesses of data (especially FlowFields). If your system is going to
have five or ten users, processing a couple of thousand order lines per day and not
being heavily modified, then you probably won't have much trouble. But if you are
installing a system with one or more of the following attributes, which can have a
significant effect on the amount of disk I/O, you will need to be very careful with
your design and implementation.

Critical attributes
large number of users
high transaction volumes
large stored data volumes
significant modifications

Very complex business rules

Locking
One important aspect of the design of an integrated system such as NAV, that is
often overlooked until it rears its ugly head after the system goes into production,
is the issue of "Locking". Locking occurs when one process has control of a data
element, record, or group of records (e.g. table) for the purpose of updating the data
within the range of the locked data and, at the same time, another process requests
the use of some portion of that data but finds it to be locked by the first process.

•

°

°

°

°

•

Chapter 11

[425]

In the worst case, there is a design flaw; each process has data locked that the other
process needs and neither process can proceed. This is a "deadlock". Your job as a
developer or system implementer is to minimize the locking problems and eliminate
any deadlocks.

Locking interference between processes in an asynchronous processing environment
is inevitable. There are always going to be points in the system where one process
instance locks out another one momentarily. The secret to success is to minimize
the frequency of these and the time length of each lock. Locking becomes a
problem when the locks are held too long and the other locked-out processes are
unreasonably delayed.

You might ask "What is an unreasonably delay?" For the most part, a delay becomes
unreasonable when the human beings, whom we call users, can tell it is happening.
If the users see stopped processes or simply experience counter-intuitive processing
time lengths (i.e. a process that seems ought to take 10 seconds actually takes
two minutes), then the delays are probably unreasonable. Of course, the ultimate
unreasonable delay is the one that does not allow the work to get done in the
available time.

The obvious question is how to avoid locking problems. The best solution is simply
to speed up the processing. That will reduce the number of lock conflicts that arise.
Important recommendations for speed include:

Restricting the number of active keys
Restricting the number of active SIFT fields, eliminating them when feasible
Carefully reviewing the keys, not necessarily using the "factory
default" options
Making sure that all disk accessing code is SQL Server optimized

Some additional steps that can be taken to minimize locking problems are:

Always process tables in the same relative order.
When a common set of tables will be accessed and updated, lock a "standard"
master table first (e.g. when working on Orders, always lock the Order
Header table first).
Process data in small quantities (e.g. process 10 records or one order, then
COMMIT, which releases the lock).
In long process loops, process a SLEEP command in combination with an
appropriate COMMIT command to allow other processes to gain control
Shift long-running processes to off-hours.

•

•

•

•

•

•

•

•

•

Design to Succeed

[426]

For more information, refer to the relevant documentation. There are several NAV
documents containing valuable SQL Server recommendations including:

The Application Designer's Guide
Installation & System Management: SQL Server Option for the C/SIDE Client
Microsoft Business Solutions—Navision SQL Server Option Resource
Kit Whitepaper..

C/SIDE versus SQL Server Databases
The issue of the two available databases for NAV creates an interesting set of
tensions. The original C/SIDE database is so simple to use and is so low in cost, that
it has many fans. On the other hand, SQL Server is considered as state-of-the-art
technology, very powerful and flexible, deserving of full faith and trust. Let us take
a look at some of the differences between the two database implementations as they
affect NAV in a production environment. They are as follows:

•
•
•

Chapter 11

[427]

It depends on your environment which of these differences is the most important.
There is little doubt that at some point in the future of NAV, SQL Server will be
the only real option. It is the product in which Microsoft is investing and which
generates the most revenue. For example, to use the 3-tier structure and the new
SharePoint-based client planned for V5.1, it will be necessary to operate on the SQL
Server database.

Among the many challenging issues in current installations, there are some items
that affect daily productivity of the system. According to specialists in NAV
SQL Server installations, it is very important to set up the system correctly at the
beginning, making whatever adjustments are appropriate relative to the maintenance
of indexes and SIFT fields. Even after the system has been properly set up, it must
receive regular, competent maintenance by a skilled NAV SQL Server expert. Some
third-party tools are also available in the market to help address the NAV-specific
issues of SQL Server installation maintenance. They still require expert hands at
the controls.

Conversely, the C/SIDE database requires an absolute minimum of maintenance.
Many C/SIDE database installations have operated for years with only rare attention
from an experienced technician.

Design to Succeed

[428]

If, as a developer, you are targeting your code to run in a SQL Server environment,
you need to make sure that you understand and appreciate the SQL Server-specific
issues. You must take advantage of the SQL Server-specific I/O commands to
make your functions more efficient. They should not cause problems if your code
is also used in a C/SIDE database environment. If your code may be used in either
environment, you should target SQL Server.

SQL Server I/O Commands
C/AL I/O statements are converted by the C/SIDE compiler into T-SQL statements
to be directed to SQL Server. If you want to optimize your C/AL code for the SQL
Server environment, you need to learn about how various C/AL code sequences are
interpreted for SQL Server, how SIFT works in SQL Server, and how to optimize key
handling in SQL Server. As stated earlier, the same C/AL code will almost always
work for both C/SIDE and SQL Server database platforms. But it does not mean that
the same code is the best choice for both.

There are several sources of information about NAV and SQL Server, but none of
them is very complete yet. The sources include Application Designer's Guide and the
SQL Server Resource Kit, especially the SQL Server Option Resource Kit whitepaper.
You can also find additional information and assistance on www.mibuso.com and
www.dynamicsuser.net. Finally, there are third party seminars and training
programs available led by experts in this area.

Three commands, FINDFIRST, FINDLAST, and FINDSET, have been added to C/AL
for helping the compiler optimize the generated SQL commands. In the C/SIDE
database, the choices of how the data is accessed are relatively straightforward and
simple (at least for the developer). But many more options are available for data
access in SQL Server. When you properly use the tools and information available
to you to allow (normally) or help (not often) SQL Server choose a better data access
method, it can make a great deal of difference in processing efficiency. If you use
these commands to improve your SQL Server code performance, they will just
work fine in the C/SIDE database where they will be translated to work the same as
FIND('+'), FIND('-'), and FIND('-') respectively.

FINDFIRST Function
The FINDFIRST function is designed to act the same as FIND('-') but with the
advantage (for SQL Server code generation) of explicitly reading only the first record
in a set. FINDFIRST is interpreted as a T-SQL statement of the form SELECT TOP 1 *.
There are many instances when processing logic only wants to know if a record set
has data or not, or wants to access just the first record in the set. FINDFIRST is the
right choice in the SQL Server environment for those cases.

Chapter 11

[429]

The syntax of FINDFIRST is as follows:

[BooleanValue :=] RecordName.FINDFIRST

FINDLAST Function
The FINDLAST function is designed to act the same as FIND('+') but with the
advantage (for SQL Server code generation) of explicitly reading only the last record
in a set. There are many instances when processing logic only wants to access just
the last record in the set, perhaps to find an entry number in the last entry to be
incremented for the next entry, such as when a table like G/L Entries is being
updated. FINDLAST should be used in those cases in the SQL Server environment.
FINDLAST is interpreted as a T-SQL statement of the form SELECT TOP 1 *, DESC.

The syntax of FINDLAST is as follows:

[BooleanValue :=] RecordName.FINDLAST

FINDSET Function
The FINDSET function is designed to act the same as FIND('-'), UNTIL NEXT = 0 but
with the advantage (for SQL Server code generation) of generating code to read the
requested data as a set. This obviously applies to the instances when processing
logic wants to access all the records in a set, perhaps to update them. It is quite
important for the sake of efficiency to use FINDSET for those situations in the SQL
Server environment.

There is a database property, settable for an NAV SQL Server installation, called
Record Set, which allows an installation to define the default number of records in
a set.

The syntax of FINDSET is as follows:

[BooleanValue :=] RecordName.FINDSET(UpdateRecordsBoolean,UpdateKeyBo
olean)

The UpdateRecordsBoolean parameter must be set to TRUE if any of the data records
will be updated during the loop through the set. The UpdateKeyBoolean must be set
to TRUE if any of the Key fields will be updated. If UpdateKeyBoolean is TRUE, then
UpdateRecordsBoolean must also be TRUE.

Design to Succeed

[430]

FINDFIRST, FINDLAST, and FINDSET
Just as with the earlier described FIND functions, assigning the result of any
of these three FINDxxx functions to a BooleanValue is optional. But typically
the FIND function is embedded in a condition, which controls subsequent
processing appropriately.

FINDFIRST, FINDLAST, and FINDSET all operate under the limits imposed by
whatever filters are applied on the subject field. However, in the SQL Server
environment, they do not necessarily use whatever key is currently selected by the
C/AL code. The T-SQL data request is constructed and SQL Server determines
what index to use. It is important in the interest of efficient SQL Server processing to
understand what happens and how to optimize the results.

Any FlowFields in the found records are set to zero and must be updated with
CALCFIELDS.FINDSET to process the data in ascending sequence.

Design for Updating
One must differentiate between "updating" a system and "upgrading" a system.
In general, most of the NAV development work we will do is modifying
individual NAV systems to provide tailored functions for end-user firms. Some
of those modifications will be created as part of an initial system configuration
and implementation, i.e. before the NAV system is in production use. Other
such modifications will be targeted at a system that is being used for day to day
production. All these cases are "Updating".

Upgrading is when you implement a new version of the base code and port all
the previously existing modifications into that new version. We will cover issues
involved in upgrading later.

Any time you are updating a production system by applying modifications to it,
a considerable amount of care is required. Many of the disciplines that should be
followed in such an instance are the same for an NAV system as with any other
production application system. But some of the disciplines are specific to NAV and
the C/SIDE environment. We'll review a representative list of both types.

Customization Project Recommendations
Some of these recommendations may seem patently obvious. That might be a
measure of your experience and your own common sense. Even so, it is surprising
that the number of projects go sour because one (or many) of the following
suggestions are not considered in the process of developing modifications.

Chapter 11

[431]

One modification at a time
Design thoroughly before coding
Multi-stage testing

Cronus for individual objects
Special test database for functional tests
Copy of production database for final testing as appropriate
Setups and implementation

Testing full features
User interface tests
System load tests
User Training

Document and deliver
Follow up and move on

One at a Time
It is very important that changes made to the objects should be made in a very well
organized and tightly controlled manner. In most situations, only one developer at
a time will make changes to an object. If an object needs to be changed for multiple
purposes, the first set of changes should be fully tested (at least through development
testing) before the object is released to be modified for a second purpose.

If the project in hand is so large and complex or deadlines are so tight that this
approach is not feasible, then you should consider use of a software development
version control system such as Microsoft's Visual SourceSafe.

Similarly, as a developer working on a system, you really should only be working
on one functional change at a time. That is not to say that you might not be working
on changes in two different systems in parallel, but simply that you shouldn't be
working on multiple changes in a single system in parallel. It's challenging to keep
all the aspects of a single modification to a system under control without having
incomplete pieces of several tasks, all floating around in the same system.

If multiple changes need to be made to a single system in parallel, then one approach
would be to assign multiple developers, each with their own individual components
to address. Another approach would be for each developer to work on their own
copy of the development database, with a project librarian assigned to resolve
overlapping updates. This is one area where we should learn from the past. In

•

•

•

°

°

°

°

•

°

°

°

•

•

Design to Succeed

[432]

mainframe development environments, having multiple developers working on the
same system at the same time was common. Then the coordination problems were
addressed and well-documented in professional literature. Similar solutions would
still apply.

Design, Design, Design
As mentioned much earlier in this book, the NAV system has made giant strides
towards the long standing goal of creating an environment for the developers where
the majority of their efforts are spent on design, not on writing code. Design in this
case includes functional design (accomplishing the task), system design (the logic of
our process), and code design (accomplishing the modification with the least effect
on the original system).

It is not unusual, when making a small modification in the NAV environment, to
spend several hours designing the modification then only writing a few lines of code.
This ratio does not mean you've been wasting time just thinking and planning and
not doing anything. In fact, it means you've been working hard to do the right thing.
Remember, the less code changed means the less debugging effort required.

Test, Test, Test
As you know, there is no substitute for complete and thorough testing. Fortunately,
NAV provides some useful tools to help you to be more efficient than you might be
in some other environment.

Cronus-Based Testing
If your modifications are not tied to previous modifications and not tied to specific
customer data, then you should use the Cronus database as a test platform. This
works well when your target is a database that is not heavily modified in the area
on which you are currently working. As the Cronus database is small, you will not
get lost in deep piles of data. Most of the master tables are populated, so you don't
have to create and populate this information. Setups are done and generally contain
reasonably generic information.

If you are operating with an unmodified version of Cronus, you have both the
pro and con that your test is not affected by other pre-existing modifications. The
advantage is the absence of clouding factors (e.g. is some other modification tripping
up your modification?) and the disadvantage, of course, is that you are not testing
in a wholly realistic situation. You will generally not detect a potential performance
problem when testing in a Cronus database.

Chapter 11

[433]

Sometimes even when your modification is targeted at a highly modified system
where those other modifications will affect what you are doing, it's useful to test a
version of your modification initially in Cronus. This can allow you to determine that
your change has internal integrity before you move on to testing in the context of the
fully modified copy of the production system.

If the target database for your modifications is an active customer database, then
there is no substitute for doing complete and final testing in a copy of the production
database. You should also be using a copy of the customer's license. This way you
will be testing the compatibility of your work with the production setup, the full set
of existing modifications, and of course, live data content and volumes. The only
way to get a good feeling for possible performance issues is to test in a copy of the
production database.

Testing in Production
While it is always a good idea to thoroughly test before adding your changes to the
production system, sometimes, if you're very careful, you can safely do your testing
inside the production environment. If the modifications consist of functions that do
not change any data and can be tested without affecting any ongoing production
activity, you might decide to test within the production system.

The examples of such eligible modifications can range from a simple inquiry form or
a new analysis report or export of data that is to be processed outside the system to
a completely new subsystem that does not change any existing data. There are also
situations where the only changes to the existing system are the addition of fields to
existing tables. In such a case, you may be able to test just a part of the modification
outside production (we'll discuss that mode of testing a little later), and then
implement the table changes to complete the rest of the testing in the context of the
production system.

If your modification includes changes that would be visible to production users, such
as adding an option to a button menu on a form, that falls within the category of a
change that affects production. Generally speaking, you should not test that type
of change in place in the production system. Sometimes you can start with a test
instance of the form, assigned to an object number that only a developer can access,
and test it from there. At other times, because objects are interrelated and refer to
each other only by their object number, that approach can't be used. Then you may
be forced to do your testing in a test copy of the database.

Testing within the production environment can be done in at least two ways. The
first is simply to run the test object from the Object Designer screen. If the intended
production process is to run a form, from which you can then access other objects,
you can just highlight that form object entry and Run it. The other way is to add the
new functionality to the Company Menu Level, but assign it to Test User; or you

Design to Succeed

[434]

may require certain privileges to access the new entries. Even this Menu change
should be considered as a change to the production system and tested offline before
implementing it in the production environment. In other words, be very careful and
very methodical about what you change and how you implement changes.

Using a Testing Database
From a testing point of view, the most realistic testing environment is a copy of
actual production database. There are often very good excuses about why it is just
too difficult to test using a copy of the actual production database.

Don't give in to excuses – use a Testing Database!

Remember, when you implement your modifications, they are going to receive the
"test of fire" in the environment of production. If you haven't done everything to
assure success, you need to surely find out what you did not consider. Let us review
some of the problems involved in testing with a copy of the production database and
how to cope with them.

"It's too big"—is not a good argument relative to disk space. With USB disk drives
available for less than $0.20 US per GB, you can easily afford to have plenty of spare
disk space.

"It's too big"—is a better argument if you are doing file processing of some of the
larger files (e.g. Item Ledger, Value Entry, etc.). But NAV's filtering capabilities are so
strong that you should relatively easily be able to carve out manageable size test data
groups with which to work.

"There's no data that's useful"—might be true. But it would be just as true for a test
database, probably even more so, unless it were created expressly for this set of tests.
By definition, whatever data is in a copy of the production database is what you
will encounter when you eventually implement the enhancements on which you are
working. If you build useful test data within the context of a copy of the production
database, your tests will be much more realistic and therefore of better quality.
In addition, the act of building workable test data will help to define what will be
needed to set up the production system to utilize the new enhancements.

"Production data will get in the way"—may be true. If this is especially true, then
perhaps the database must be preprocessed in some way to begin testing or testing
must begin with some other database, Cronus or a special testing-only mockup.
But, as stated earlier, the production database must be dealt with when you put the

Chapter 11

[435]

enhancements into production. Therefore, it makes good sense for you to test in that
environment. The meeting and overcoming of challenges will prepare you for doing
a better job at the critical time of going live with the newly modified objects.

"We need to test repeatedly from the same baseline" or "We must do regression
testing"—both are good points, but don't have much to do with what type of
database you're using for the testing. Both cases are addressed by properly managing
the setup of your test data and keeping incremental backups of your pre-test and
post-test data at every step of the way. Disk space is not a valid excuse for not
making every possible useful intermediate stage backup. Staying organized and
making lots of backups may be time consuming, but done well and done correctly, it
is less expensive to restore from a backup than to recover from being disorganized or
having to redo the job. Most of all, doing the testing job well is much less expensive
than implementing a buggy modification.

Testing Techniques
Since you are an experienced developer, you are already familiar with good testing
practice. Even so, it never hurts to be reminded about some of the more critical habits
to maintain.

First, any modification greater than trivial should be tested on one form or another
by at least two people. The people assigned should not be a part of the team who
created the design or code of the modification. It would be best if one of the testers
is a sharp user because users seem to have a knack (for obvious reasons) of relating
how the modification acts compared to how the rest of the system operates relative
to the realities of the day-to-day work.

One of the testing goals is to supply unexpected data and make sure that the
modification can deal with it properly. Unfortunately, those who were involved
in creating the design will have a very difficult time being creative in supplying
the unexpected. Users often enter data the designer or programmer didn’t expect.
For that reason, testing by experienced users is good. Another goal this approach
addresses is that of obtaining meaningful feedback on the user interface before
stepping into production.

Second, after you cover the mainstream issues (whatever it is that the modification
is intended to accomplish) you need to plan your testing to cover all boundary
conditions. Boundary conditions are the data items that are exactly equal to the
maximum or minimum or other range limit. More specifically, boundaries are the
points at which input data values change from valid to invalid. Boundary condition
checking in the code is where programmer logic often goes astray. Testing at these
points is often very effective for uncovering data-related errors.

Design to Succeed

[436]

Deliverables
Create useful documentation and keep good records of the complete testing. Retain
these records for future reference. Identify the purpose of the modifications from
a business point of view. Add a brief, but complete, technical explanation of what
must be done from a functional design and coding point of view to accomplish the
business purpose. Record briefly the testing that was done. The scope of the record
keeping should be directly proportional to the business value of the modification
being made and the potential cost of not having good records. All such investments
are a form of insurance and preventative medicine. You hope they won't be needed
but you have to allow for the possibility they will be needed.

More complex modifications will be delivered and installed by experienced
implementers, maybe even by the developers themselves. With NAV, small
modifications may even be transmitted electronically to the customer site for
installation by a skilled super-user. Any time this is done, all the proper and normal
actions must occur, including those actions regarding backup before importing
changes, user instruction (preferably written) on what to expect from the change, and
written instruction on how to correctly apply the change. As a responsible developer,
whenever you supply objects for installation by others, you must make sure that you
always supply .fobs (compiled objects), not text objects. This is because the import
process for text objects simply does not have the same safeguards as does the import
process for compiled objects.

Get It Done
Bring projects to conclusion, don't let them drag on through inaction and
inattention—open issues get forgotten and then don't get addressed. Get it done,
wrap it up, and then review what went well and what didn't, both for remediation
and for application to future projects. Set up ongoing support services as appropriate
and move on to the next project.

Plan for Upgrading
The ability to upgrade a customized system is a very important feature of NAV. Most
complex corporate systems are very difficult to customize at the database-structure
and process-flow levels. NAV readily offers that capability. This is a significant
differentiation between NAV and the competitive products in the market.

Beyond the ability to customize is the ability to upgrade a customized system. While
not a trivial task, at least it is possible with NAV. For other such systems, the only
reasonable path to an upgrade is often to discard the old version and re-implement
with the new version, recreating all customizations.

Chapter 11

[437]

You may say, "That's nice. But I'm a developer. Why do I care about upgrades?"
There are at least two good reasons you should care about upgrades. First, because
how you design and code your modifications can have a considerable impact on the
amount of effort require to upgrade a system. Second, because as a skilled developer
doing NAV customizations, you might well be asked to be involved in an upgrade
project. Since the ability to upgrade is important and because you are likely to be
involved one way or another, we will review a number of factors that relate
to upgrades.

Benefits of Upgrading
Just so we are on common ground about why upgrading is important to both
the client and the MBS Partner, the following is a brief list of some of the benefits
available when a system is upgraded:

Easier support of a more current version
Access to new features and capabilities
Continued access to fixes and regulatory updates
Improvements in speed, security, reliability, and user interface
Assured continuation of support availability
Compatibility with necessary infrastructure changes
Opportunity to do needed training, data cleaning, and process improvement
Opportunity to resolve old problems, to do postponed "housekeeping",
create a known system reference point

This list is representative, not complete. Obviously, not every possible benefit will be
realized in any one situation.

Coding Considerations
The toughest part of an upgrade is porting code and data modifications from the older
version of a system to the new version. Sometimes the challenges inherent in that
processes cannot be avoided. When the new version has major design or data structure
changes in an area that you have customized, it is quite likely that your modification
structure will have to be re-designed and perhaps even be re-coded from scratch.

On the other hand, a large portion of the changes that appear in a new version of a
product such as NAV are relatively modest in terms of their effect on existing code,
at least on the base logic. That means, if done properly, it is not too difficult to port
well designed code from the older version into the new version. By applying what
some refer to as "low-impact coding" techniques, you can make the upgrade job
easier and thereby less costly.

•
•
•
•
•
•
•
•

Design to Succeed

[438]

Good Documentation
In earlier chapters, we discussed some documentation practices that are good
to follow when making C/AL modifications. The following is a brief list of few
practices that should be used:

Identify every project with its own unique project tag.
Use the project tag in all documentation relating to the modification.
Include a brief but complete description of the purpose of the modification in
a related Documentation() trigger.
Include a description of the related modifications to each object in the
Documentation() trigger of that object, including changes to properties,
Global and Local variables, functions, etc.
Add the project tag to the version code of all modified objects.
Bracket all C/AL code changes with in-line comments so that they can be
easily identified.
Retain all replaced code within comments, using // or { }.
Identify all new table fields with the project tag.

Low-Impact Coding
We have already discussed most of these practices in other chapters. Nevertheless,
it is useful to review them relative to our focus here on coding to make it easier to
upgrade. You won't be able to follow each and every one of these, but will have to
choose the degree to which you can implement low-impact code and which options
to choose.

As much as feasible, separate, and isolate new code.
Create functions for significant amounts of new code, using single code line
function calls.
Either add independent Codeunits as repositories of modification functions
or, if that is overkill, place the modification functions within the
modified objects.
If possible, add new data fields, don't change the usage of existing fields.
When the functionality is new, add new tables rather than modifying
existing tables.
For minor changes, modify the existing forms, else copy and change the clone.
Create and modify copies of reports, dataports and XMLports rather than
modifying the original versions in place.
Don't change field names in objects, just change captions and labels if necessary.

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

Chapter 11

[439]

In any modification, you will have conflicting priorities regarding doing today's job
in the easiest, least expensive way versus doing the best you can do to plan for the
future. The right decision is never a black and white choice, but must be guided by
subjective guidelines as to which choice is really in the customer's best interest.

The Upgrade Process
We won't dwell here on the actual process of doing an upgrade except to describe the
process at the highest level and the executables-only option.

Upgrade Executables Only
The executables are the programs that run under the operating system. They are
individually visible in a disk directory and include .exe and .dll files. Since the
Navision Windows product was first shipped in 1995, the executables delivered
with each new version of NAV (or Navision) have been backward compatible with
the previous versions of the objects. In other words, you could run any version
of the database and objects under any subsequent version of the server and client
executables.

This backward compatibility allows the option of upgrading only the executables
for a client. This is a relatively simple process, which provides access to enhanced
compatibility with infrastructure software (e.g. Windows desktop and server
software, etc.), provides access to added features relating to communications or
interfacing, and often provides faster and more reliable processing. Upgrading
the executables will also provide access to the C/AL features and user-accessible
features that are part of the new version. Some folks use the term "Technical
Upgrade" for the act of upgrading the executables.

The process of upgrading the executables just requires replacing all the files related
to the executables on the server and clients, typically through doing a standard
installation from the distribution CD. This will include the server software, the client
software, the executables, and libraries for auxiliary tools such as the Application
Server, N/ODBC, and C/FRONT. Then convert the database to be compatible
with the new version (preferably through a backup and restore into a new,
empty database).

Remember, upgrading the executables is a one-way process.

Once done, it cannot be undone. So, like any other change to the production system
that affects the data, it should be thoroughly tested before implementing in production.

Design to Succeed

[440]

Full Upgrade
A full upgrade includes the aforesaid executables upgrade, but that is the simplest
part of the process. The full upgrade process consists of a clearly defined multi-step
project, which is best handled by developers who are specifically experienced in the
upgrade process. It is critical to keep in mind that the customer's business may be at
stake based on how well and how smoothly an upgrade is carried out.

The following list is a summary of the steps involved in a full upgrade of an
NAV system:

Identify all modifications, enhancements, and add-ons by comparing the full
production set of objects against an unmodified set of the same version of
the objects as distributed by Microsoft. This is always done by exporting the
objects to be compared with text, then importing the resulting text files into a
comparison tool. The comparison tools that are specifically designed to work
with C/AL provide capabilities that general-purpose programmer editors
don't have, though these can also be used. C/AL-oriented tools include
the Developer's Toolkit from Microsoft or the Merge Tool found at
www.mergetool.com.
Plan the upgrade based on what customizations need to be ported, which
ones should be discarded because they have been superseded or made
obsolete, which ones will need to be re-developed, what special data
conversions and new setups and user training will be required, and what
upgraded add-ons must be obtained, and identify any license issues.
Beginning with a current copy of the production database and a distribution
of the new version, create a set of new version objects containing all the
customizations, enhancements and add-ons (as previously planned) that
were contained in the old version.
Create modifications to the standard data conversion routines as necessary.
Convert a full set of (backup) production data, then combine it with the
upgraded objects to create a Testing Database.
Work with experienced customer super-users to set up, then test the
upgraded system, identify any flaws, and resolve them. In parallel, address
any training requirements.
Continue testing until the system is certified ready to use by both client and
Partner test team members.
Do a final production data conversion, using the final upgraded object set to
create a new production database for go-live use.

•

•

•

•

•

•

•

•

Chapter 11

[441]

A typical upgrade will take two or three weeks, a lightly customized system may take a
couple of months, and a highly customized system will take more than that. If multiple
sites are involved, then it will significantly add to the complexity of the upgrade
process, particularly those parts of the process where users are directly involved.

Tips for Small Successes
The following are some tips for success:

Cache Settings for Development
Go to the Tools menu and click on the Options menu button. Select Option, and you
will get the from in the following screenshot:

You can learn more about these Option fields through Help, but at least one or two
of them are important to utilize. The first entry (Object Cache (KB)) controls the
amount of memory on the client system that is allocated to hold objects in cache
memory. A good figure to set is 40000. This will allocate 40 MB to the Object Cache
and provide you with quicker responsiveness during your development testing.

In the special case of an environment where multiple developers are working within
the same database, a useful technique is to set the parameter to zero. That way, every
time an object is read, it is read directly from the database rather than from the
cache. This ensures that each time a developer reads an object, they are getting the
latest version.

Design to Succeed

[442]

The second entry (DBMS Cache (KB)) only appears on the Options screen if:

The database in use is the NAV C/SIDE database.
The database connection is local (i.e. single user).

If both are true, then you should set this value to something in the range of 400000
to 800000 (400 MB to 800 MB) to maximize the speed of data processing. The largest
figure that can be used is currently 1000000 (1 GB). You will notice the effect of this
setting when you are processing large data volumes in a test. Some operating system
configurations will cause NAV to crash with a DBMS Cache set above 800 MB.

Two Monitors
Often when you are doing development work, you will be accessing two sets of
information in a back-and-forth fashion. The two sets of information could be any of
the following:

A set of code plus a reference manual or Help screen or
documentation document
A set of code plus a Word document where you are creating documentation
Two or more sets of data being examined either in forms or by Running
the tables
Source or reference code plus a set of code in which you are actively working
Two sets of code (e.g. old version and new version) that you are comparing

Undoubtedly you can think of many more examples. One way to be much more
efficient and effective at such tasks is to use two independent monitors both
connected to your system, sitting side by side on your desk. Since you won't have
to flip back-and-forth between screens, this setup will allow you to work faster and
more accurately. Such a setup will only cost $250 to $500 US (or even less). You
can expect to get a good return on that investment within a few weeks in terms of
increased productivity.

Simple System Administration
Some basic information and simple system administration can be accessed from
File | Database | Information option. This will lead you to the form in the
following screenshot:

•

•

•

•

•

•

•

Chapter 11

[443]

The Database tab obviously provides information about the status of the database.
The Connection tab (next screenshot) shows you what you are connected to. In this
instance, the connection is to a Local test database. If, in development or training,
you are switching back-and-forth between Local and Server instances of a database,
it is very important to check the tab in the following screenshot to confirm which
database is active. The tab only shows for a C/SIDE database, not for a SQL
Server database.

Design to Succeed

[444]

Finally, the Sessions tab (next) shows you how many user sessions are connected
and how many are available in the currently active system license. A system
administrator might use the tab in the following screenshot to drill down on the
Current Sessions entry where they could see the user names of all the active logins.

At the bottom of this form is the Tables button. Clicking on Tables will take you to
the from shown in the following screenshot:

Chapter 11

[445]

This is the C/SIDE database version; in the SQL Server version the Keys button at
the bottom and the Optimization column at the right is missing. What you can get
from this form is information about the relative size of various tables, in terms of
physical size, number of records, and key information relative to the base data.
You can also invoke the Optimize function from this form, which will clean
zero-value records out of the SIFT data, freeing up the space and making processing
more efficient. You can also use the Test function to check any or all of the tables for
errors in structure. See the Help function for more information.

Careful Naming
Most programming languages have Reserved Words. These are the words or phrases
that are reserved for use by the system, generally because they are used by the
compiler to reference predefined functions or system-maintained values. C/AL
is no exception to this general rule. But, no list of C/AL Reserved Words has
been published.

If you choose a variable name which is the same as a C/AL Reserved Word, the
compiler will generally recognize that fact. If, under some circumstance it does not,
then it will provide unintended results. Such a possibility is slim, but it is relatively
easy to avoid by prefacing all variable names with a two or three character string
that will clearly identify the variable as part of your modification. You must be
careful with this technique when naming variables to be used in conjunction with
Automation Controllers. C/SIDE creates some of its own Automation Controller
related variables by combining your variable names with suffixes. The combined
names are then truncated to 30 characters, the maximum limit allowed for a C/
SIDE variable name. If the names you have created are too long, this suffixing plus
truncating process may result in some duplicate names.

Confusion can also result in the case of global and local variables with the same
name or working storage and table variables of the same name. Two actions can
minimize the possibility. First, minimize the instances where two variables have
the same name. Second, whenever there is a possibility of name confusion, variable
names should be fully qualified with the table name or the object name.

Tools
There are several special use tools available from Microsoft. You should review them
to know what they do and when to use them.

Design to Succeed

[446]

Code Coverage
The Code Coverage tool provides lists in both summary and detail format showing
what code has been executed. Code Coverage is accessed from Tools | Debugger |
Code Coverage. The next screenshots shows a summary example first, followed by a
detail example:

Chapter 11

[447]

You could think of Code Coverage as the instant replay version of the Debugger,
because you get to see where your program has been after the fact rather than
stepping through it in the midst of processing. It is very useful to use the two tools
together. Use Code Coverage to see all the code that is processed. Determine what
you want to examine in detail by looking at the variables in process and set the
Debugger break points. Then use the Debugger for a dynamic look at the execution.

Client Monitor
Client Monitor is a performance analysis tool. It can be very effectively used in
combination with Code Coverage to identify what is happening, in what sequence,
specifically how it is happening and how long it is taking. Before you start Client
Monitor, there are several settings you can adjust to control its behavior, some
specific to the SQL Server environment.

Client Monitor is accessed from Tools | Client Monitor. The Client Monitor output
looks similar to the following screenshot:

In both the database environments, Client Monitor helps you to identify the code
that is taking the major share of the processing time so that you can focus on your
code design optimization efforts. In the SQL Server environment, Client Monitor will
help you to see what calls are being made by SQL Server and will clearly identify
problems with improperly defined or chosen indexes and filters.

Design to Succeed

[448]

If you have knowledge about SQL Server calls, the Client Monitor output will be
even more meaningful to you. In fact, you may decide to combine these tools with
the SQL Server Error Log for an even more in-depth analysis of either speed or
locking problems. Look at the Performance Troubleshooting Guide from Microsoft
for additional information and guidance. This manual also contains instructions on
how to use Excel pivot tables for analyzing the output from Client Monitor.

Creating Help for Modifications
There's no tutorial available, just the reference. The official documentation for
creating new online Help files for modifications suggests the use of the RoboHelp
product. There is a manual titled "Online Help Guide for Microsoft Business
Solutions". Another alternative is available as freeware on the download section at
www.mibuso.com or at www.mergetool.com. This solution, part of Per Mogensen's
Mergetool, does not require the use of a commercial product to create or compile
NAV Help files.

Implementation Tool
One of the time-consuming and moderately complex tasks, a part of implementing a
new system, is the gathering and loading of data into the system. Generally master
tables such as Customers, Vendors, and Items must be loaded before you can even
begin serious system testing and training. Mostly, this data is loaded for testing and
training and at final cutover for the production use.

In order to assist in this process, Microsoft provides a set of tools called the Rapid
Implementation Methodology (RIM). The documentation for RIM is in the manual
"Dynamics NAV Rapid Implementation Methodology Toolkit Users Guide".

Basically RIM consists of a set of questionnaires, some industry-specific data
templates, and the associated Import and Export routines. The recommended process
has initial data entry occurring in Excel spreadsheets, then exported to XML files and
imported into NAV for use. You should review these tools. Even if you find the
tools aren't the right answer for your situation, you will learn some useful techniques
by studying them.

Other Reference Material
With every NAV system distribution there is an included set of reference guides.
These are highly recommended. There are also a number of other guides available,
but sometimes you have to search for them. Most of them are readily available to
Partner development personnel, though that may be more by force of habit than
as a policy.

Chapter 11

[449]

In nearly every case you will find these documents a very good starting place, but
you will be required to go beyond what is documented, experimenting, and figuring
out what is useful for you. If you are working with a single system, you are likely to
narrow in on a few things. If you are working with different systems from time to
time, then you may find yourself working with one aspect of one tool this month and
something entirely different next month.

Here is a list of some documentation you will be interested in (when you look for
those with "Navision", they might have been changed to "Dynamics NAV"). A
number of filenames are included, especially when they are not easy to interpret. For
example, names starting with w1 are from Worldwide product distribution.

Application Designer's Guide (the C/AL "bible")—part of the system
distribution—w1w1adg.pdf

Terminology Handbook—part of the system distribution—w1w1term.pdf

Installation & System Management of Application Server for Microsoft
Dynamics™ NAV—part of the system distribution——part of the system distribution—w1w1atas.pdf

Installation & System Management of C/SIDE Database Server for Microsoft
Dynamics™ NAV—part of the system distribution——part of the system distribution—w1w1ism.pdf

Installation & System Management of SQL Server Option for the C/SIDE
Client—part of the system distribution——part of the system distribution—w1w1sql.pdf

Microsoft Dynamics™ NAV ODBC Driver 5.0 Guide—part of the system—part of the system
distribution—w1w1nocbc.pdf

Making Database Backups in Microsoft Dynamics™ NAV—part of systemMicrosoft Dynamics™ NAV—part of system—part of system
distribution—w1w1bkup.pdf

C/FRONT Reference Guide—part of the system distribution—
w1w1cfront.pdf

Navision Developer's Toolkit
NAV Tools CD

Microsoft Business Solutions—Navision SQL Server Option
Resource Kit—whitepaper
Performance Troubleshooting Guide for Microsoft Business
Solutions—Navision—w1w1perftguide.pdf

Security Hardening Guide 5.00
Application Benchmark Toolkit
User Rights Setup
Online Help Guide for Microsoft Business
Solutions—Navision—NOHG.pdf

•

•

•

•

•

•

•

•

•

•

°

°

°

°

°

°

Design to Succeed

[450]

Dynamics NAV Rapid Implementation Methodology Users Guide 2.0
Microsoft Dynamics™ NAV Training Manuals and Videos (various topics) Training Manuals and Videos (various topics)
Many whitepapers on specific NAV (Navision) application and technical
topics (even the old ones are useful)

There are other documentations possibilities that you will find valuable as you move
into specialized or advanced areas. But many of the preceding will be quite broadly
and frequently helpful.

Last, but definitely not least, become a regular visitor to websites for more
information and advice on C/AL, NAV, and many more related and unrelated
topics. The following websites are especially comprehensive and well attended.
Other, smaller or more specialized sites exist as well.

dynamicsuser.net

www.mibuso.com

Summary
We have covered a lot of topics with the goal of helping you to become productive
in C/AL development much quicker than if you had not read this book. Your
concluding assignments are to continue learning, to enjoy NAV, C/SIDE, and C/AL
and to do your best in all things.

Imagine all the people living life in peace. You may say I'm a dreamer, but I'm not
the only one. I hope someday you'll join us, and the world will be as one.
—John Lennon

•

•

•

Index
A
application

activity tracking tables, adding 61, 62
keys 60
reference table, adding 63-67
SumIndexFields 68-72
tables, creating 53
tables, modifying 53

application design
all forms 27
card forms 23
card forms, creating 27-30
forms 22
list form, creating 31-34
list format report, creating 35-37
main/sub forms 24
matrix forms 25
reports 34
tables 19
tables, creating 20-22
tables, designing 19, 20
tabular forms 24
Trendscape forms 26

Automation
about 111
OCX 111

Automation Controller
about 419
uses 420

B
backups 41
BEGIN-END function 274

C
C/AL

about 12
C/AL Symbol Menu 292
Codeunit, objects 15
data conversion functions 301
Dataport, objects 15
DATE functions 302
filtering functions 315
flow control 306
FlowField 304
Form, objects 15
functions 264
INPUT functions 312
InterObject communication 319
naming conventions 244
objects 15
SumIndexFields 304
syntax 258
Table, objects 15
validation utility functions 296
XMLport, objects 15

C/AL functions
BEGIN-END function 274
code, indenting 275
CONFIRM function 267
ERROR function 266
FIND-NEXT function 272
GET function 271
IF-THEN-ELSE function 274
MESSAGE function 265
SETCURRENTKEY function 270
SETRANGE function 270
STRMENU function 269

[452]

C/AL Symbol Menu
about 292
Global symbols 293
Local symbols 293

C/AL syntax
about 258
arithmatic operators 262
assignment 258
boolean operators 263
expressions 260
operators 260-262
precedence of operators 264
punctuation 258
relational operators 263, 264
wild card character 259, 260

C/ANDL
developing 320-332
member card, creating 164, 165
member forms, updating 161
member list, creating 161, 162, 163
tables creating, form designer used 157-159

C/FRONT 13, 421
C/OCX 13, 421
C/SIDE

about 12
accessing 13
data definitions 242
Object Designer 228
object designer tools 14
programming 249
versus SQL Server 426

cache settings for development 441
callable functions

about 336
codeunit 359 337
codeunit 365 339
codeunit 396 340
codeunit 397 341
codeunit 408 342
codeunit 412 342

careful naming 445
Client/Application Language. See C/AL
Client/Server Integrated Development Envi-

ronment. See C/SIDE
code coverage tool 363
code indenting 275

code modifications
report enhancing, by adding code 280-288
table validation coding-option 277-279
validation, adding to table 276, 277

codeunit
about 38
advantages 38

codeunit 228
about 344
test reports, printing 344

codeunit 229
about 345
documents, printing 345

codeunit 359
about 337

codeunit 365
about 339
address, formatting 339

codeunit 396
about 340
unique identifying number 340

codeunit 397
about 341
mails, managing 341

codeunit 408
about 342
dimentions, managing 342

codeunit 412
about 342
Common Dialog, managing 342

complex data type
about 100, 104
Automation 111
data item 104
data structure 110
DateFormula 104-110
Input/Output 111
objects 111
references 112

components, Dataports
about 394
Dataport properties 395-397
Dataport triggers 397

components, XMLport
about 407
attribute 417, 418

[453]

data lines 410-413
element 417, 418
line properties 414-416
line triggers 418
properties 408, 409
triggers 410

CONFIRM function 267
constant 100
Content Modifiable Tables

about 82
system 82

control properties
about 153
experimenting with 155
tips 156, 157

controls 16
Control Triggers 151

D
database

about 16
logical database 16
physical database 16

data conversion functions
EVALUATE 302
FORMAT 301

data focused design, new functionality
about 373
data sources, defining 375-377
data views, defining 377
end goals, defining 373
required data, defining 375
sample project 374
small goals, defining 374

data item
about 104, 398
properties 398, 399
triggers 400

data item sections
report wizard generated sections 195
run time formatting 194
section properties 198
section triggers 199

Dataport fields
about 401
properties 405

triggers 406
Dataports

about 39, 394
components 394
Data Item 398
Dataport fields 401

data structure
about 110
examples 99
file 110
record 110

data type
about 99
KeyRef 112
RecordID 112
RecordRef 112
TableFilter 112
usage 112
Variant 112

data type of field
changing 96

DateFormula 104
DATE functions

CALCDATE 303
DATE2DMY 302
DATE2DWY 302
DMY2DATE 303
DWY2DATE 303

deadlock 425
debugger 362
designing for efficiency

about 424
C/SIDE 426
disk I/O 424
disk I/O attributes 424
locking 424
locking problems, avoiding 425
SQL Server 426
SQL Server I/O commands 428

designing for updating
about 430
project recommendations, customizing 430

Developer’s Toolkit
about 349
object relations 351
source access 352
table relations 350

[454]

testing 354-356
Where Used 352

development tips
cache settings for development 441, 442
careful naming 445
simple system administration 442-445
two monitors 442

development tools
Client Monitor 447
Code Coverage 446, 447
help files, creating 448
implementation tool 448
reference material 448, 449

dialog form 139
dialog fucntion debugging

about 364
CONFIRM statements 364
DIALOG fucntion 364
ERROR fucntion 365
MESSAGE statements 364
text output 365

documentation
about 41
Documentation trigger 294
internal documentation 294

document reports 177

E
ERROR function 266
external interfaces

Dataports 394
interface tools 419
MenuSuites 385
XMLports 406

F
FieldClass

filter type 116
Flowfield 114
Flowfield type 115
Flowfilter 117, 118
normal 114

field numbering
about 94
data type, changing 96, 97
renumbering 95, 96

field properties
about 87
accessing 88
data type properties 88
Option data type 92, 93
related to numeric content 90
text field properties 89

fields
about 16, 87
data structures 99
numbering 94-98
properties 87-93
triggers 98

field triggers 98
filtering

about 12, 118
CLEARMARKS function 318
COPYFILTER function 317
COPYFILTERS function 317
experimenting with 123-131
filter syntax, defining 119, 123
filter values, defining 119, 123
functions 315
GETFILTER function 317
MARKEDONLY function 318
MARK function 318
RESET function 318
SETFILTER function 316
SETRANGE function 316

FIND-NEXT function 272
Flow control

BREAK function 311
CASE - ELSE statement 307
EXIT function 311
QUIT function 310
REPEAT - UNTIL control structure 306
SHOWOUTPUT function 311
SKIP function 311
WHILE - DO control structure 307
WITH - DO statement 309

FlowField functions
CALCFIELDS 305
CALCSUMS 305

form
about 133
bound 134
components 141

[455]

control properties 153
controls 134, 145
Control Triggers 151
dialog form 139
header/detail form 137
list form 136
main/sub form 137
names 140
properties 143-145
request form 139, 203
tabular form 136
testing 167
Trendscape form 137
types 136
unbound 134

form, testing
about 167
creative plagiarism 168
designing hints 168

form controls
about 145
experimenting with 149-151
explore 146-148
inheritance 149

form designer
accessing 141
Align option 172
Bring to Front 172
color tool 169
Field Menu 170
Format menu 171
form tool 169
Grid option 171
RGB Color Model 170
Ruler option 171
Send to Back 172
Snap to Grid option 171

form types
dialog form 139
form names 140
header/detail form 137
list form 136
main/sub form 137
request form 139
tabular form 136
Trendscape form 137

functional area
advantages 371
creating 370
data focused design 373
enhancing 372

functions
about 250
Codeunits with functions 251
creating 252-257
DATE2DMY 250
designing 253
GET 250
INSERT 250
integrating 256, 257
MESSAGE 250
new functions, need for 251
STRPOS 250
trigger 250

fundamental data type
about 99
numeric data 101
numeric data types 101
string data 102
time data 102, 103

G
generated report, revising

first design, revising 208
second design, revising 211, 212

GET function 271
global variables

about 245
global functions 245
global text constants 245

H
header/detail form 137

I
IF-THEN-ELSE statement 274
Input/Output

dialog 111
InStream 111
OutStream 111

[456]

integration tools
about 40
automation 40
C/FRONT 40
C/OCX 40
N/ODBC 40

interface tools
about 419
Automation Controller 419
C/FRONT 421
C/OCX 421
Linked Server Data Sources 420
NAV Application Server 422
NAV Communication Component 420
NAV ODBC 421

InterObject
via data 319
via function parameters 319

K
keys

about 49
adding 60
attributes 51

L
license 17
line properties, XMLport

about 414
SourceType as Field 416
SourceType as Table 415
SourceType as Text 414

line triggers, XMLport
DataTypes as Field 419
DataTypes as Table 418
DataTypes as Text 418

Linked Server Data Sources 420
list form 136
list reports 177
local variables

about 245
function local variables 245
trigger local variables 246

locking
about 424
avoiding 425

deadlock 425

M
main/sub form 137
management codeunits 345
MenuSuites

about 39, 385
advantages 386
developing 389, 390, 391, 392, 393
GUID number 387
internal structure 388
levels 386
menus before V4.0 393
MenuSuite Designer 389
structure 387

MESSAGE function 265
Microsoft Dynamics NAV. See NAV
modifications

documenting 346
multi-currency 348
multi-language

about 347
features 347

N
NAV

about 11
advanced development 335
as ERP 348
development time allocation 373
development with C/AL 291
form 134
modifications, documenting 346, 347
processing flow 378
terminology 12, 16

NAV application functionality
data design sequence 383
data tables, defining 382
data validation, designing 382
designing 381
posting processes, designing 383
support processes, designing 383, 384
user data access interface, defining 382

NAV Application Server 422
NAV Communication Component 420

[457]

NAV enhancement project
creating 367

Navigate tool
about 358
modifying 361, 362
testing with 359-361

NAV modifications
designing 368-370
functional area, creating 370, 371

NAV ODBC 421
NAV processing flow

about 378
additional data testing 380
data, accessing 381
data, preparing 379
journal batch, posting 380
maintenance 381
transactions, entering 379, 380

numeric data
about 101
BigIntegers 102
binary 102
boolean 102
char 102
decimal 101
integer 101
option 101

O
object and field numbers

about 17
ranges 17

Object Designer
about 228
compiling 242-244
designer navigation pointers 236, 237
new object, starting 229-235
objects, exporting 237, 238
objects, importing 238-240
saving 242-244
text objects 240

object desinger. See C/SIDE
object numbers 240
objects 111
operators

arithmatic operators 262

boolean operators 263
precedence of operators 264
relational operators 263, 264

output issues
HTML formatted output, printing 224
PDF files, printing 224
printing, impact printer to 225

P
posting reports 181
programming, C/SIDE 249
project recommendations, customizing

about 430
code design 432
Cronus based testing 432
deliverables 436
fucntional design 432
one at a time 431
system design 432
testing database, using 434
testing in production 433
testing techniques 435

properties 16

R
Read-Only Tables

about 83
virtual 83

records 16
report components

overview 182
report description 183

report data flow
about 183
data item 184
events 183

report elements
about 186
control properties 202
controls 200
data item properties 190-193
data items 189
data item sections 194
data item triggers 193, 194
inheritance 203
report properties 186, 187

[458]

report triggers 188
report wizard generated sections 195
run time formatting 194
section properties 198
section triggers 199

reports
about 175
components 182
controls 200
creating 213-222
creative report plagiarism 223
data flow 183
elements 186
generated report, revising 207, 208
list reports 177
naming 182
output issues 223
posting reports 181
processing only reports 206
test reports 179
transaction reports 179
types 177

request form
about 139, 203
controls 205
control triggers 206
properties 205
triggers 205

S
SETCURRENTKEY function 270
SETRANGE function 270
SIFT 12, 52
simple system administration 442-445
SQL Server

commands 428
FINDFIRST function 428
FINDLAST function 429
FINDSET function 429
versus C/SIDE 426

storage variables
arrays 247
initialization 248
system defined variables 249
temporary tables 246, 247

string data
about 102
code 102
text 102

STRMENU function 269
Sum Index Field Technology. See SIFT

T
table 330

currency conversion functions 345
tables

about 44
advantages 44
Content Modifiable Tables 82
creating 53-59
keys 49, 51
modifying 53-59
naming conventions 45
numbering 45
overview 43
properties 45, 46, 47
Read-Only Tables 83
reference table, adding 63
SumIndexFields 52
system, embedding 44
Totally Modifiable Tables 72
triggers 47, 48
types 72

tabular form 136
TagType as Attribute 417
TagType as Element 417
terminology, NAV

C/AL 12
C/FRONT 13
C/OCX 13
C/SIDE 12
controls 16
database 16
field numbers 17
fields 16
filtering 12
license 17
object numbers 17
properties 16
records 16

[459]

SIFT 12
triggers 16
work date 18

testing
about 432
Cronus based testing 432
deliverables 436
in production 433
techniques 435
testing database, using 434, 435

test reports 179
time data

about 102
date 102

tools, NAV
code analysis tools 348
code coverage tool 363
debugger 362
debugging tools 348
Developer’s Toolkit 349
dialog fucntion debugging 364
exported text code, working with 356-358
Navigate 358

Totally Modifiable Tables
about 72
ledger 75
master tables 72
posted document 79
reference 77
register 79
setup 81
template 74
temporary 81

transaction reports 179
Trendscape form

about 137
Form 490 138
Form 492 138
Form 5983 139
Form 5984 139

triggers
about 16
documentation triggers 16, 47
event triggers 16
function triggers 17

two monitors 442

U
upgrading plan

about 436
advantages 437
executables, upgrading 439
full upgrade 440
good documentation 438
low impact coding 438
process 439

V
validity utility functions

about 296
CURRENTDATETIME 300
FIELDERROR 297
ROUND 299
TESTFIELD 296
TIME 300
TODAY 300
VALIDATE 298
WORKDATE 300

variable
about 100, 245
arrays 247
global variables 245
initialization 248
local variables 245
naming 100
storage variables 246
system defined variables 249
temporary tables 246, 247

W
work date 18

X
XMLports

about 40, 406
components 407

	Programming Microsoft Dynamics NAV
	Table of Contents
	Preface
	Chapter 1: The Basic Ingredients
	Some Unique NAV Terms Defined
	The C/SIDE Integrated Development Environment
	Object Designer Tool Icons

	Seven Kinds of NAV Objects
	More Definitions (Related to NAV)
	NAV Functional Terminology
	Getting Started with Application Design
	Tables
	Example: Table Design
	Example: Table Creation

	Forms
	Card Forms
	Tabular Forms
	Main/Sub Forms
	Matrix Forms
	Trendscape Forms
	All Forms
	Creating a Card Form
	Creating a List Form

	Reports
	Creating a List Format Report

	Codeunits
	MenuSuites
	Dataports
	XMLports
	Integration Tools
	Backups and Documentation
	Summary

	Chapter 2: Tables
	Overview of Tables
	What Makes Up a Table?
	Table Naming
	Table Numbering
	Table Properties
	Table Triggers
	Keys
	SumIndexFields

	Expanding Our Sample Application
	Table Creation and Modification
	Keys
	Adding Some Activity-Tracking Tables
	New Tables
	Keys and SumIndexFields in Our Examples

	Types of Tables
	Totally Modifiable Tables
	Content-Modifiable Tables
	Read-Only Tables

	Summary

	Chapter 3: Fields
	Fields
	Field Properties
	Field Numbering
	Renumbering a Field
	Changing the Data Type of a Field

	Field Triggers
	Some Data Structure Examples

	More Definitions
	Variable Naming
	Data Types
	Fundamental Data Types
	Numeric Data
	String Data
	Time Data

	Complex Data Types
	Data Item
	DateFormula
	Data Structure
	Objects
	Automation
	Input/Output
	References and Other

	Data Type Usage

	FieldClasses
	Filtering
	Defining Filter Syntax and Values
	Experimenting with Filters

	Summary

	Chapter 4: Forms
	What Is a Form?
	Controls
	Bound and Unbound

	NAV Form Look and Feel
	Types of Forms
	Accessing the Form Designer
	What Makes Up a Form?
	Form Properties

	Forms Controls
	Explore
	Inheritance
	Experimenting with Controls

	Control Triggers
	Control Properties
	Experimenting with Control Properties
	Some Control Property Tips

	More Illumination with C/ANDL
	Update the Member Forms

	Testing Forms
	Creative Plagiarism
	Form Design Hints

	A Quick Tour of the Form Designer

	Keys to Learning NAV
	Summary

	Chapter 5: Reports
	What is a Report?
	NAV Report Look and Feel
	NAV Report Types
	Report Types Summarized

	Report Naming
	Report Components Overview
	The Components of a Report Description

	Report Data Flow
	The Elements of a Report
	Report Properties
	Report Triggers
	Data Items
	Data Item Properties
	Data Item Triggers
	Data Item Sections
	Run-Time Formatting
	Report Wizard-Generated Sections
	Report Section Descriptions
	More Run-Time Formatting
	Section Properties
	Section Triggers

	Controls for Reports
	Control Properties
	Inheritance

	Request Form
	Request Form Properties
	Request Form Triggers
	Request Form Controls
	Request Form Control Triggers

	Processing-Only Reports
	Revising a Generated Report
	Revision—First Design
	Revision—Second Design

	Creating a Report from Scratch
	Creative Report Plagiarism

	Special Output Issues
	Printing PDF Files
	Printing HTML Formatted Output
	Printing to an Impact Printer

	Summary

	Chapter 6: Introduction to C/SIDE and C/AL
	Essential Navigation
	Object Designer
	Starting a New Object
	Some Designer Navigation Pointers
	Exporting Objects
	Importing Objects
	Text Objects

	Object Numbers
	Some Useful Practices
	Changing Data Definitions
	Saving and Compiling
	Some C/AL Naming Conventions
	Variables
	Global Variables
	Local Variables
	Special Working Storage Variables

	A Definition of Programming in C/SIDE
	Functions
	Basic C/AL Syntax
	Assignment and Punctuation
	Wild Cards
	Expressions
	Operators

	Some Basic C/AL
	MESSAGE, ERROR, CONFIRM, and STRMENU Functions
	SETCURRENTKEY Function
	SETRANGE Function
	GET Function
	FIND–NEXT Functions
	BEGIN–END Compound Statement
	IF–THEN–ELSE Statement
	Indenting Code

	Some Simple Coding Modifications
	Adding a Validation to a Table
	Adding Code to Enhance a Report

	Summary

	Chapter 7: Intermediate C/AL
	Development
	C/AL Symbol Menu
	Internal Documentation

	Computation—Validation Utility Functions
	TESTFIELD
	FIELDERROR
	VALIDATE
	ROUND
	TODAY, TIME, and CURRENTDATETIME Function
	WORKDATE Function

	Data Conversion Functions
	FORMAT Function
	EVALUATE Function

	DATE Functions
	DATE2DMY Function
	DATE2DWY Function
	DMY2DATE and DWY2DATE Functions
	CALCDATE Function

	FlowField-SumIndex Functions
	CALCFIELDS Function
	CALCSUMS Function

	Flow Control
	REPEAT–UNTIL Control Structure
	WHILE–DO Control Structure
	CASE–ELSE Statement
	WITH–DO Statement
	QUIT, BREAK, EXIT, SKIP, and SHOWOUTPUT Functions
	QUIT Function
	BREAK Function
	EXIT Function
	SKIP Function
	SHOWOUTPUT Function

	Input and Output Functions
	NEXT Function (with FIND)
	INSERT Function
	MODIFY Function
	Rec and xRec

	DELETE Function
	MODIFYALL Function
	DELETEALL Function

	Filtering
	SETRANGE Function
	SETFILTER Function
	COPYFILTER and COPYFILTERS Functions
	GETFILTER and GETFILTERS Functions
	MARK Function
	CLEARMARKS Function
	MARKEDONLY Function
	RESET Function

	InterObject Communication
	Via Data
	Via Function Parameters
	Via Object Calls

	Use the New Knowledge
	A Development Challenge for You
	Phase 1
	Phase 2
	Phase 3

	A Sample Approach to the Challenge
	Phase 1
	Phase 2
	Phase 3

	Summary

	Chapter 8: Advanced NAV Development
	Callable Functions
	Codeunit – 358 Date Filter-Calc
	Codeunit 359 – Period Form Management
	Codeunit 365 – Format Address
	Codeunit 396 – NoSeriesManagement
	Codeunit 397 – Mail
	Codeunit 408 – Dimension Management
	Codeunit 412 – Common Dialog Management

	Sampling of Function Models to Review
	Codeunit 228 – Test Report-Print
	Codeunit 229 – Print Documents
	Some other Objects to Review
	Management Codeunits

	Documenting Modifications
	Multi-Language
	Multi-Currency
	Code Analysis and Debugging Tools
	Developer's Toolkit
	Relations to Tables
	Relations from Objects
	Source Access
	Where Used
	Try it Out

	Working in Exported Text Code
	Using Navigate
	Testing with Navigate

	The Debugger
	The Code Coverage Tool
	Dialog Function Debugging Techniques
	Debugging with MESSAGE
	Debugging with CONFIRM
	Debugging with DIALOG
	Debugging with Text Output
	Debugging with ERROR

	Summary

	Chapter 9: Designing NAV Modifications
	Starting a New NAV Enhancement Project
	Design of NAV Modifications
	Knowledge is Key

	Creating a New Functional Area
	Advantages of Designing New Functionality

	Enhancing an Existing Functional Area
	NAV Development Time Allocation
	Data-Focused Design for New Functionality
	Define the Big Picture: The End Goals
	A Simple Sample Project

	Then Define the Little Pictures
	Sample Project Continued—1

	Define What Data is Required to Create the Pictures
	Sample Project Continued—2

	Define the Sources for the Data
	Sample Project Continued—3

	Define the Data "Views"
	Sample Project Continued—4

	Other Factors Must Always be Considered

	NAV Processing Flow
	Data Preparation
	Enter Transactions
	Provide for Additional Data Testing
	Post the Journal Batch
	Access the Data
	Continuing Maintenance

	Designing a New NAV Application Functionality
	Define the Data Tables
	Design the User Data Access Interface
	Design the Data Validation
	Appropriate Data Design Sequence
	Design Posting Processes
	Design Support Processes
	Double-Check Everything

	Summary

	Chapter 10: External Interfaces
	MenuSuites
	MenuSuite Levels
	MenuSuite Structure
	MenuSuite Internal Structure
	MenuSuite Development
	NAV Menus before V4.0

	Dataports
	Dataport Components
	Dataport Properties
	Dataport Triggers

	Data Item
	Data Item Properties
	Data Item Triggers

	Dataport Fields
	Dataport Field Properties
	Dataport Field Triggers

	XMLports
	XMLport Components
	XMLport Properties
	XMLport Triggers
	XMLport Data Lines
	XMLport Line Properties
	Element or Attribute
	XMLport Line Triggers

	Advanced Interface Tools
	Automation Controller
	NAV Communication Component
	Linked Server Data Sources
	NAV ODBC
	C/OCX
	C/FRONT
	NAV Application Server (NAS)

	Summary

	Chapter 11: Design to Succeed
	Design for Efficiency
	Disk I/O
	Locking
	C/SIDE versus SQL Server Databases
	SQL Server I/O Commands
	FINDFIRST Function
	FINDLAST Function
	FINDSET Function

	Design for Updating
	Customization Project Recommendations
	One at a Time
	Design, Design, Design
	Test, Test, Test

	Plan for Upgrading
	Benefits of Upgrading
	Coding Considerations
	Good Documentation
	Low-Impact Coding

	The Upgrade Process
	Upgrade Executables Only
	Full Upgrade

	Tips for Small Successes
	Cache Settings for Development
	Two Monitors
	Simple System Administration
	Careful Naming

	Tools
	Code Coverage
	Client Monitor
	Creating Help for Modifications
	Implementation Tool
	Other Reference Material

	Summary

	Index

