
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 03/04/2014 Page i

PROFESSIONAL
APPLICATION LIFECYCLE MANAGEMENT
WITH VISUAL STUDIO® 2013

INTRODUCTION . xxix

CHAPTER 1 Introduction to Application Lifecycle Management
with Visual Studio 2013 . 1

 ▸ PART I TEAM FOUNDATION SERVER

CHAPTER 2 Introduction to Team Foundation Server . 11

CHAPTER 3 Using Centralized Team Foundation Version Control 37

CHAPTER 4 Distributed Version Control with Git and
Team Foundation Server . 77

CHAPTER 5 Team Foundation Build . 93

CHAPTER 6 Release Management . 127

CHAPTER 7 Common Team Foundation Server Customizations 153

 ▸ PART II BUILDING THE RIGHT SOFTWARE

CHAPTER 8 Introduction to Building the Right Software 167

CHAPTER 9 Storyboarding . 177

CHAPTER 10 Capturing Stakeholder Feedback . 193

 ▸ PART III PROJECT MANAGEMENT

CHAPTER 11 Introduction to Project Management . 203

CHAPTER 12 Agile Planning and Tracking . 233

CHAPTER 13 Using Reports, Portals, and Dashboards . 257

Continues

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 03/04/2014 Page ii

 ▸ PART IV ARCHITECTURE

CHAPTER 14 Introduction to Software Architecture . 277

CHAPTER 15 Top-Down Design with Use Case, Activity, Sequence,
Component, and Class Diagrams . 289

CHAPTER 16 Analyzing Applications Using Architecture Explorer,
Dependency Graphs, and Code Maps . 317

CHAPTER 17 Using Layer Diagrams to Model and
Enforce Application Architecture . 343

 ▸ PART V SOFTWARE DEVELOPMENT

CHAPTER 18 Introduction to Software Development . 357

CHAPTER 19 Unit Testing . 369

CHAPTER 20 Code Analysis, Code Metrics, Code Clone Analysis,
and CodeLens . 397

CHAPTER 21 Profi ling and Performance . 425

CHAPTER 22 Debugging with IntelliTrace . 465

 ▸ PART VI TESTING

CHAPTER 23 Introduction to Software Testing . 489

CHAPTER 24 Manual Testing . 505

CHAPTER 25 Coded User Interface Testing . 537

CHAPTER 26 Web Performance and Load Testing . 563

CHAPTER 27 Lab Management . 609

INDEX . 633

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 03/04/2014 Page iii

PROFESSIONAL

Application Lifecycle Management
with Visual Studio® 2013

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 03/04/2014 Page v

PROFESSIONAL

Application Lifecycle Management
with Visual Studio® 2013

Mickey Gousset
Martin Hinshelwood

Brian A. Randell
Brian Keller

Martin Woodward

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 03/04/2014 Page vi

Professional Application Lifecycle Management with Visual Studio® 2013

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-83658-3
ISBN: 978-1-118-83636-1 (ebk)
ISBN: 978-1-118-83659-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred
to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013958303

Trademarks: Wiley, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may not be used
without written permission. Visual Studio is a registered trademark of Microsoft Corporation. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in
this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

ffi rs.indd 03/04/2014 Page vii

To Amye, Emma, and Meg, the girls in my life.
I love you!

—Mickey Gousset

To Evangelina and Kaiden. Without whom I would be

lost at this time of great change.

—Martin Hinshelwood

To Juliane, Brent, and Nicole. I love you.

—Brian Randell

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 03/04/2014 Page viii

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 03/04/2014 Page ix

ABOUT THE AUTHORS

MICKEY GOUSSET is a Principal Consultant for Infront Consulting Group, a consult-
ing company focused on the Microsoft System Center family of products. He is one
of the original Microsoft Application Lifecycle Management MVPs, and co-author of
several books about ALM, including Professional Team Foundation Server (Wrox,
2006), Professional Application Lifecycle Management with Visual Studio 2010

(Wrox, 2010), and Professional Application Lifecycle Management with Visual Studio 2012 (Wrox,
2012). Gousset runs ALM Rocks! (www.almrocks.com), where he writes about Visual Studio, TFS,
and ALM in general. He speaks around the world on ALM and System Center topics. When not
writing or working with computers, Mickey enjoys a range of hobbies, from playing on Xbox Live
(Gamer Tag: HereBDragons) to participating in local community theatre. But nothing beats his
favorite pastime: spending time with Amye, Emma, Meg, and their four dogs, two cats, and one fi sh.

MARTIN HINSHELWOOD is the Principal Consultant for naked ALM Consulting, a
technical and management consultancy based in Scotland that focuses on Visual
Studio ALM, TFS, and Scrum. He has been a Visual Studio ALM MVP for six years
running and was even ALM MVP of the Year in 2011. As well as working with the
Visual Studio ALM Rangers and being an ALM Ranger Champion in 2011, Martin

participates in the lean-agile community. Martin has been a Professional Scrum Trainer with
Scrum.org since early 2010. He regularly teaches Scrum courses around the world and works as an
Engagement Manager for Agility Path. Somehow he also fi nds time to maintain his blog
(http://nkdalm.net/MrHinshBlog) and a YouTube Channel, and even speaks at many events around
the world (http://nkdalm.net/MrHinshEvents.) In his spare time Martin can be found on excur-
sions with his favourite people (Evangelina and Kaiden) and occasionally on Xbox
(http://nkdalm.net/MrHinshOnXbox).

BRIAN RANDELL is a Partner with MCW Technologies LLC. For more than 20 years
he has been building software solutions. He educates teams on Microsoft technolo-
gies via writing and training—both in-person and on demand. He speaks regularly
at shows small and large including Microsoft’s TechEd and PDC in the United States,
Europe, Africa, Australia, and New Zealand. He’s also a consultant for companies

small and large, worldwide, including Fortune 100 companies like Microsoft. Brian is a passionate
software craftsman who still enjoys coding as he helps teams to improve their processes from idea
to shipping, and to production management and monitoring. As a long time virtualization junkie,
Brian’s an expert in Hyper-V and Lab Management. In addition, he’s become obsessed over the last
few years with natural user interfaces and how to create compelling user experiences regardless of
platform. In early 2010, he toured the world hitting most of the continents (sadly no penguins were
trained) prepping Microsoft employees and Microsoft partners for the Microsoft Visual Studio 2010
launch. In 2012, he and his team built some of the fi rst training content and demos for Microsoft
using Visual Studio 2012, Team Foundation Server 2012, and Windows 8. For the 2013 release, he
continued building new ALM content for use worldwide by Microsoft and its partners. He’s been a

http://www.almrocks.com
http://nkdalm.net/MrHinshBlog
http://nkdalm.net/MrHinshEvents
http://nkdalm.net/MrHinshOnXbox

ffi rs.indd 03/04/2014 Page x

Microsoft MVP in developer related technologies for more than 10 years and is currently a Visual
Studio ALM MVP. When not working, Brian enjoys spending time with his wife and two children
who enjoy making him look bad on the Xbox One (with and without Kinect).

BRIAN KELLER is a Director for Microsoft, specializing in Visual Studio and applica-
tion lifecycle management. He has been with Microsoft since 2002 and has presented
at conferences around the world, including TechEd, PDC, and Build. Outside of work
he enjoys spending time with his lovely wife Elisa and their awesome son Paxton.

MARTIN WOODWARD is a Senior Program Manager on the Team Foundation Server
team at Microsoft. Previously, Woodward was also Team System Most Valuable
Professional (MVP) of the year. Not only does he bring unique insight into the inner
workings of Team Foundation Server, he brings a cross-platform perspective that he is
always happy to share through his writings, on his blog at www. woodwardweb.com, or

when speaking at events internationally. Martin also co-authored Professional Application Lifecycle
Management with Visual Studio 2010 (Wrox, 2010), Professional Team Foundation Server 2010
(Wrox, 2011), Professional Application Lifecycle Management with Visual Studio 2012 (Wrox,
2012), and Professional Team Foundation Server 2012 (Wrox, 2013).

http://www.woodwardweb.com

ffi rs.indd 03/04/2014 Page xi

EXECUTIVE EDITOR
Robert Elliott

PROJECT EDITOR
Tom Dinse

TECHNICAL EDITOR
Michael Fourie

TECHNICAL PROOFREADER
Anthony Borton

PRODUCTION EDITOR
Daniel Scribner

COPY EDITOR
Kezia Endsley

MANAGER OF CONTENT DEVELOPMENT
AND ASSEMBLY
Mary Beth Wakefi eld

DIRECTOR OF COMMUNITY MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

VICE PRESIDENT AND EXECUTIVE
GROUP PUBLISHER
Richard Swadley

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Todd Klemme

PROOFREADER
Sarah Kaikini, Word One

INDEXER
Johnna van Hoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
©iStockphoto.com/IS_ImageSource

CREDITS

ffi rs.indd 03/04/2014 Page xii

ffi rs.indd 03/04/2014 Page xiii

ACKNOWLEDGMENTS

I’M FORTUNATE TO BE SURROUNDED by ALM MVPs who make my life much easier. Brian Randell
and Martin Hinshelwood, thank you for taking this journey with me. You both have created some
amazing content in this book, and it is much better for it. And we are even closer friends because
of it. Mike Fourie, I just don’t know what to say. You are the most amazing technical editor I have
had. You have the ability to point out all the things I missed, without making me look bad. And
your depth of knowledge is astounding. Anthony Borton, thank you for all your help and assistance
with the book. To our editors Bob Elliot and especially Tom Dinse, thank you so much for keeping
us on track and schedule, and working with us when “stuff” happens. Tom, you are an amazing edi-
tor that I would write a book with anytime. And fi nally, to Amye, Emma (14), and Meg (10), thank
you for putting up with my schedule and my late hours in getting this project completed. I could not
have done it without your love and support.

—Mickey Gousset

WITH THE MANY CHANGES IN THE LAST SIX MONTHS I don’t know where to start or why I agreed to
write a book of all things. I want to thank my parents Anne and John for helping me settle back into
Scotland (it was quite a shock after three years in Seattle), without you guys I would not have been
able to start my own business. My wonderful kids Evangelina (6) and Kaiden (4) for their patience
and distraction from the world around us, you make it all worth it. Finally I want to thank Mickey
Gousset and Brian Randell for putting up with my newbie questions and issues, and Mike Fourie for
taking it easy with the technical editing.

—Martin Hinshelwood

FIRST, TO MY DEAR FRIEND MICKEY for asking me to join him. We keep fi nding new ways to have
fun. To Mr. Hinsh, I’ve enjoyed getting to know you better and look forward to many more friendly
exchanges; exchanges only friends have. Mr. Keller, I still think fondly about fi rst working with
you when you were a Product Manager and the fun we had on your fi rst tour of duty outside the
Unites States speaking. Congratulations on being a husband and father, it suites you. And to Mr.
Woodward, what can I say mate? I only wish Ballycastle were up the road for me too. That said,
every visit we have is warm and wonderful no matter what part of the globe we’re at. All four of you
made this book better and I thank you for having me on the journey. Thank you to everyone at Wrox
especially Bob Elliot, Tom Dinse, and Kezia Endsley. Your editorial guidance and continued pokes
as well as catching all the little things, got this book done in fi ne shape. Thank you. To our techni-
cal editor Mike Fourie, you continue to amaze me with your work ethic and I know the book is 100

ffi rs.indd 03/04/2014 Page xiv

times better due to your keen eye. And I can’t leave out my dear Aussie friend Anthony Borton, who
took on the job of “one more read” before we published to make sure we didn’t write something stu-
pid. Thank you. Of course, any errors are those of myself and my co-authors. Throw stones our way.

Beyond those who were directly involved in the project, I have a few people I must mention who
have infl uenced my writing and general geekiness. To my business partner Ken Getz—you’ve done
more for me than you’ll ever know. I’m a better human because of you. Thank you. To Dave and
Barbara Brady who gave me my fi rst “computer” job. You gave me more than a job. You put me on
the path to a career I love. Thank you. To Ian Griffi ths, you’re an inspiration to work with but a
better friend to break bread with—I look forward to more fun in the future. To Matt Nunn, from
our fi rst fun in Australia to the wonderful solutions we’ve built, it’s been great working on the “art
of the possible.” To Jon Flanders, I know at your wedding you said you still didn't like me. That's
OK. I'll take what I can get. And to Mr. Brian Harry. It started with Visual SourceSafe. You wrote
that automation interface one summer and I was lucky to work with you. Your work ethic inspires
as does your dedication to customer and craft. Thank you for always being there.

To my fi rst set of co-authors on my fi rst published book: Dr. Joe Hummel, Justin Gehtland, Jason
Masterman, and Ted Pattison. Gents, there are times in your life that you wonder what you were
thinking. That book hurt, but everything has a purpose. I said never again but I did and the lessons
learned helped. Beyond that book however, all of our teaching together, the Guerilla events, and all
the other “fun” continues to warm my heart with great memories when I think of each of you.

All the things I know about Visual Studio and TFS come from hard work and having a cadre of
wonderful people to answer questions. This includes two special groups to me: Microsoft employ-
ees in DevDiv and the Microsoft ALM MVPs. Over the years countless e-mails, IM conversations,
and phone calls have been exchanged as well as many wonderful face-to-face conversations (even
the ones that were loud). Thank you. I can’t thank you all individually, but I do want to highlight
a few in particular from Microsoft working on ALM and TFS, including Doug Seven, David Starr,
Larry Guger, Grant Holliday, William Bartholomew, Rob Caron, Chuck Sterling, Chris Patterson,
Peter Provost, Buck Hodges, Aaron Bjork, Justin Marks, Jamie Cool, Jeff Behler, Ed Holloway, Ed
Blankenship, Ewald Hofman, Matthew Mitrik, Philip Kelley, Chad Boles, Sean McBreen, Tracy
Trewin, Will Smythe, Ravi Shanker, Vijay Machiraju, and Subrahmanyam Veera Mandavilli. To my
fellow MVPs, you’re all wonderful, I’m lucky to have you as peers and thank all of you for your help
but in particular want to call out Jeff Levinson, Neno Loje, Richard Hundhausen, Adam Cogan,
Ben Day, David V. Corbin, Ognjen Bajic, Thomas Schissler, Jesse Houwing, Dylan Smith, Richard
Banks, and Jason Stangroome. Anyone not mentioned directly and forgotten, I’m sorry.

Finally, I need to thank my dear, lovely wife. You are my best friend. Even though you told me not
to write the book, you supported me when I did. Our house is a home because of you and I am a
lucky man to fi nd you here every time I come home from a trip. I see you in the eyes of our children
and that brings more joy than I would have ever imagined over twenty years ago when we fi rst met.

—Brian Randell

ftoc.indd 03/05/2014 Page xv

CONTENTS

INTRODUCTION xxix

CHAPTER 1: INTRODUCTION TO APPLICATION LIFECYCLE
MANAGEMENT WITH VISUAL STUDIO 2013 1

Application Lifecycle Management 2
Visual Studio 2013 Product Lineup 3
Application Lifecycle Management Challenges 4
Enter Visual Studio 2013 5
Application Lifecycle Management in Action 6

Requirements 6
System Design and Modeling 7
Code Generation 7
Testing 7
Feedback 8
Operations 8
Putting It into Context 8

Summary 8

PART I: TEAM FOUNDATION SERVER

CHAPTER 2: INTRODUCTION TO TEAM FOUNDATION SERVER 11

What Is Team Foundation Server? 12
Acquiring Team Foundation Server 13

Hosted Team Foundation Server 13
On-Premises Installation 15

Team Foundation Server Core Concepts 15
Team Foundation Server 16
Team Project Collection 16
Team Project 17
Teams 20
Process Templates 21
Work Item Tracking 22
Version Control 23
Team Build 25

xvi

CONTENTS

ftoc.indd 03/05/2014 Page xvi

Accessing Team Foundation Server 26
Accessing Team Foundation Server from Visual Studio 27
Accessing Team Foundation Server Through a Web Browser 29
Using Team Foundation Server in Microsoft Excel 30
Using Team Foundation Server in Microsoft Project 31
Command-Line Tools for Team Foundation Server 31
Accessing Team Foundation Server from Eclipse 31
Windows Explorer Integration with Team Foundation Server 32
Access to Team Foundation Server via Other Third-Party Integrations 32

What’s New in Team Foundation Server 2013 33
Version Control 33
Web Access 33
Agile Portfolio Management 33
Release Management 34
The Cloud 34

Adopting Team Foundation Server 34
Summary 36

CHAPTER 3: USING CENTRALIZED TEAM FOUNDATION
VERSION CONTROL 37

Team Foundation Version Control and
Visual SourceSafe (VSS) 2005 39
Setting Up Version Control 40
Using Source Control Explorer 41

Setting Up Your Workspace 42
Getting Existing Code 43
Sharing Projects in Version Control 45

Check-In Pending Changes 48
Checking In an Item 50
Creating and Administering Check-In Policies 54
Viewing History 57
Labeling Files 58

Shelving 59
Workspaces 61
Server Workspaces 64
Local Workspaces 65

Command-Line Tools 66
Branching and Merging 67

Branching Demystifi ed 67
Common Branching Strategies 70

Summary 75

xvii

CONTENTS

ftoc.indd 03/05/2014 Page xvii

CHAPTER 4: DISTRIBUTED VERSION CONTROL
WITH GIT AND TEAM FOUNDATION SERVER 77

Fundamentals of Distributed Version Control
with Git 78
Getting Started with the Visual Studio Tools for Git 79

Clone 80
Commit 83
Push, Pull, and Fetch 86

Merging Changes with Git and Visual Studio 88
Branch Creation 88

Summary 91

CHAPTER 5: TEAM FOUNDATION BUILD 93

Team Foundation Build 94
What’s New in Team Foundation Build 2013 95

Support for Git-based Repositories 96
Simplifi ed Building and Testing of Windows Store Apps 97
MSTest Support Removed 99
Enhanced Hosted Build Services 99
Build Output Changes 99
Simplifi ed Process Template 100
Built-in Support for Calling Scripts 100

Team Foundation Build Architecture 100
Working with Builds 101

Team Explorer 102
Build Explorer 102
Build Details View 103
Creating a Build Defi nition 104
Queuing a Build 114
Build Notifi cations 116

Team Build Process 118
Default Template Process 119
Build Process Parameters 119

Summary 125

CHAPTER 6: RELEASE MANAGEMENT 127

What Is Release Management? 127
Continuous Software Delivery 129
Defi ning a Release Pipeline 132

xviii

CONTENTS

ftoc.indd 03/05/2014 Page xviii

Confi guring for First Use 133
Introduction to Actions 135
Introduction to Release Paths 137
Creating Release Templates 142
Creating Releases 148
Approvals 149

Summary 151

CHAPTER 7: COMMON TEAM FOUNDATION SERVER
CUSTOMIZATIONS 153

Object Models 154
Client Object Model 155
Server Object Model 155
Build Process Object Model 155
Simple Object Model Example 155
Java SDK for TFS 157

Customizing Team Foundation Build 157
Creating Custom Build Process Templates 157
Creating Custom Build Workfl ow Activities 159

Customizing Team Foundation Version Control 160
Custom Check-in Policies 160

Team Foundation Server Event Service 161
Customizing Work Item Tracking 162

Modifying Work Item Type Defi nitions 162
Creating Custom Work Item Controls 163

Summary 163

PART II: BUILDING THE RIGHT SOFTWARE

CHAPTER 8: INTRODUCTION TO BUILDING THE RIGHT SOFTWARE 167

Stakeholders 169
Storyboarding 170
Capturing Stakeholder Feedback 171
Work Item Only View 172
Third-Party Requirements Management Solutions 173

TeamCompanion 173
TeamSpec 174
inteGREAT 174

Summary 176

xix

CONTENTS

ftoc.indd 03/05/2014 Page xix

CHAPTER 9: STORYBOARDING 177

Why Storyboarding? 177
PowerPoint Storyboarding 179

Storyboard Shapes 180
Layouts 181
Screenshots 182
My Shapes 185
Animations 187
Hyperlinks 188
Storyboard Links 189

Summary 190

CHAPTER 10: CAPTURING STAKEHOLDER FEEDBACK 193

Requesting Feedback 194
Providing Feedback 195

Voluntary Feedback 199
Summary 199

PART III: PROJECT MANAGEMENT

CHAPTER 11: INTRODUCTION TO PROJECT MANAGEMENT 203

Project Management Enhancements in
Team Foundation Server 2013 204

Rich Work Item Relationships 204
Agile Planning Tools 205
Test Case Management 207
Feedback Management 207
Enhanced Reporting 208
SharePoint Server Dashboards 208

Work Items 209
Work Item Types 209
Areas and Iterations 211

Process Templates 214
MSF for Agile Software Development 215
MSF for CMMI Process Improvement 217
Visual Studio Scrum 221
Third-party Process Templates 222
Custom Process Templates 223

xx

CONTENTS

ftoc.indd 03/05/2014 Page xx

Managing Work Items 223
Using Visual Studio 223
Using Microsoft Excel 228
Using Microsoft Project 230
Using Team Web Access 230

Project Server Integration 231
Summary 232

CHAPTER 12: AGILE PLANNING AND TRACKING 233

Defi ning a Team 234
Managing Portfolio Backlogs 240
Maintaining Product Backlogs 244
Planning Iterations 248
Tracking Work 251
Customization Options 253
Summary 255

CHAPTER 13: USING REPORTS, PORTALS, AND DASHBOARDS 257

Team Foundation Server Reporting 258
Working with Team Foundation Server Reports 260

Tools to Create Reports 261
Working with Microsoft Excel Reports 262
Working with RDL Reports 273

Summary 274

PART IV: ARCHITECTURE

CHAPTER 14: INTRODUCTION TO SOFTWARE ARCHITECTURE 277

Designing Visually 277
Microsoft’s Modeling Strategy 279

Understanding Model-Driven Development 279
Understanding Domain-Specifi c Languages 280
The “Code Understanding” Experience 281

The Architecture Tools in Visual Studio Ultimate 2013 281
Use Case Diagrams 282
Activity Diagrams 283
Sequence Diagrams 283
Component Diagrams 284
Class Diagrams 284

xxi

CONTENTS

ftoc.indd 03/05/2014 Page xxi

Layer Diagrams 286
Architecture Explorer 286

What’s New with Architecture Tools in
Visual Studio Ultimate 2013 287

Code Maps 287
Visual Studio Visualization and Modeling SDK 288

Summary 288

CHAPTER 15: TOP-DOWN DESIGN WITH USE CASE, ACTIVITY,
SEQUENCE, COMPONENT, AND CLASS DIAGRAMS 289

Use Case Diagrams 290
Creating a Use Case Diagram 290
Use Case Diagram Toolbox 294

Activity Diagrams 295
Creating an Activity Diagram 295
Activity Diagram Toolbox 298
Adding an Activity Diagram to a Use Case Diagram 300

Sequence Diagrams 300
Creating a Sequence Diagram 300
Sequence Diagram Toolbox 303

Component Diagrams 304
Creating a Component Diagram 304
Component Diagram Toolbox 308

Class Diagrams 310
Creating a Class Diagram 311
Class Diagram Toolbox 312
Generating Code from a UML Class Diagram 314

Summary 315

CHAPTER 16: ANALYZING APPLICATIONS USING ARCHITECTURE
EXPLORER, DEPENDENCY GRAPHS, AND CODE MAPS 317

Understanding the Code Base 318
Architecture Explorer Basics 319

Understanding the Architecture Explorer Window 320
Architecture Explorer Options 320
Navigating Through Architecture Explorer 321
Exploring Options for Namespaces 323
Exploring Options for Classes 325
Exploring Options for Members 326

xxii

CONTENTS

ftoc.indd 03/05/2014 Page xxii

Dependency Graphs 328
Creating the First Dependency Graph 328
Creating a Dependency Graph Without Architecture Explorer 329
Navigating Through Your Dependency Graph 331
Dependency Graph Legend 334
Dependency Graph Toolbar 335
The Code Index 336

Code Maps 337
Summary 341

CHAPTER 17: USING LAYER DIAGRAMS TO MODEL
AND ENFORCE APPLICATION ARCHITECTURE 343

Creating a Layer Diagram 344
Defi ning Layers on a Layer Diagram 345

Creating a Layer for a Single Artifact 347
Adding Multiple Objects to a Layer Diagram 347
The Layer Explorer 347

Defi ning Dependencies 349
Validating the Layer Diagram 351
Layer Diagrams and the Build Process 353
Summary 354

PART V: SOFTWARE DEVELOPMENT

CHAPTER 18: INTRODUCTION TO
SOFTWARE DEVELOPMENT 357

What’s New for Developers in Visual Studio 2013 358
Unit Testing 358
Code Analysis 359
CodeLens 359
Profi ler 359
Advanced Debugging with IntelliTrace 360
Lightweight Code Commenting 361

My Work 362
Suspend and Resume 363
Code Review 364

Summary 367

xxiii

CONTENTS

ftoc.indd 03/05/2014 Page xxiii

CHAPTER 19: UNIT TESTING 369

Unit Testing Concepts 370
Benefi ts of Unit Testing 370
Writing Effective Unit Tests 371
Third-Party Tools 372

Visual Studio Unit Testing 372
Creating Your First Unit Test 373
Managing and Running Unit Tests 376
Debugging Unit Tests 377

Programming with the Unit Test Framework 377
Initialization and Cleanup of Unit Tests 377
Using the Assert Methods 380
Using the CollectionAssert class 383
Using the StringAssert Class 385
Expecting Exceptions 386
Defi ning Custom Unit Test Properties 386
TestContext Class 387

Introduction to Microsoft Fakes 387
Choosing Between Stubs and Shims 388
Using Stubs 389
Using Shims 391

Using Test Adapters 393
Summary 394

CHAPTER 20: CODE ANALYSIS, CODE METRICS,
CODE CLONE ANALYSIS, AND CODELENS 397

The Need for Analysis Tools 398
What’s New for Code Analysis in Visual Studio 2013 398

Using Code Analysis 399
Built-in Code Analysis Rules 400
Code Analysis Rule Sets 401
Enabling Code Analysis 402
Executing Code Analysis 404
Working with Rule Violations 407

Using the Command-Line Analysis Tool 410
FxCopCmd Options 410
FxCopCmd Project Files 413
Build Process Code Analysis Integration 414

xxiv

CONTENTS

ftoc.indd 03/05/2014 Page xxiv

Creating Code Analysis Rules 414
Code Metrics 414
Code Clone Analysis 417

Finding Code Clones 417
Reviewing the Code Clone Analysis Results 418
How Code Clone Analysis Works 418
Excluding Items from Code Clone Analysis 419

Using CodeLens 420
Summary 423

CHAPTER 21: PROFILING AND PERFORMANCE 425

Introduction to Performance Analysis 426
Types of Profi lers 426
Visual Studio Profi ling 427

What’s New in Profi ling with Visual Studio 2013 427
Using the Profi ler 428

Creating a Sample Application 429
Creating a Performance Session 430
Adding a Blank Performance Session 434
Using the Performance Explorer 434
Confi guring a Sampling Session 444
Confi guring an Instrumentation Session 445
Confi guring a .NET Memory Allocation Session 446
Confi guring a Concurrency Profi ling Session 446
Executing a Performance Session 446
Managing Session Reports 447
Reading and Interpreting Session Reports 450

Command-Line Profi ling Utilities 459
Just My Code 460
Profi ling JavaScript 460

Common Profi ling Issues 462
Debugging Symbols 462
Instrumentation and Code Coverage 462

Summary 463

CHAPTER 22: DEBUGGING WITH INTELLITRACE 465

IntelliTrace Basics 466
IntelliTrace — An Example 466
Navigating the IntelliTrace Events View 468
Collecting Method Call Information 469

xxv

CONTENTS

ftoc.indd 03/05/2014 Page xxv

Collecting Detailed Information 472
Saving Your IntelliTrace Session 473
IntelliTrace Options 478

IntelliTrace in Production 480
Installing the IntelliTrace Standalone Collector 481
Confi guring IntelliTrace PowerShell Commandlets 482
Collecting Execution Information 483

Summary 484

PART VI: TESTING

CHAPTER 23: INTRODUCTION TO SOFTWARE TESTING 489

Role-Based Testing Tools 490
Types of Tests 490
Diagnostic Data Adapters 491
Microsoft Test Manager 493
Managing Automated Tests with Visual Studio 494

Test Project Types 495
Test Explorer 496
Code Coverage 499
Using Ordered Tests 499
Test Settings 501

Summary 503

CHAPTER 24: MANUAL TESTING 505

What’s New in Visual Studio 2013 506
Microsoft Test Manager 507
Using Test Plans 510

Confi guring Test Settings 512
Using Builds 513
Analyzing Impacted Tests 515
Defi ning Test Confi gurations 515
Plan Contents 517

Running Tests and Tracking Results 523
Using Test Runner 525
Supported Technologies for Action Recordings 529
Filing Bugs and Saving Test Results 530

Exploratory Testing 531
Running Automated Tests 535
Summary 535

xxvi

CONTENTS

ftoc.indd 03/05/2014 Page xxvi

CHAPTER 25: CODED USER INTERFACE TESTING 537

What’s New in Visual Studio 2013 538
Creating Coded UI Tests Using the Coded UI Test Builder 542

Setting Up the Sample Application 542
Create a Test Project 543
Coded UI Test Builder 544
Generated Code 549
Running Your Test 551
Creating a Data-Driven Test 552
Failing Tests 554
Taking Screenshots 555
UI Map Editor 556

Creating Coded UI Tests Using Action Recordings 558
Supported Technologies 562
Summary 562

CHAPTER 26: WEB PERFORMANCE AND LOAD TESTING 563

Web Performance Tests 564
Web Performance Tests versus Coded UI Tests 564
Creating a Sample Web Application 565
Creating Users for the Site 565
Creating and Confi guring Web Tests 566
Recording a Web Performance Test 568
Confi guring Web Performance Test Run Settings 569
Parameterizing the Web Server 570
Test Settings 571
Running a Web Performance Test 574
Observing Test Execution and Results 574
Editing a Web Performance Test 575
Data-Driven Web Performance Tests 580
Coded Web Performance Tests 582

Load Tests 585
Creating and Confi guring Load Tests 585
Editing Load Tests 595
Executing Load Tests 598
Viewing and Interpreting Load Test Results 598

Distributed Load Tests 601
Installing Controllers and Agents 601
Confi guring Controllers 602

xxvii

CONTENTS

ftoc.indd 03/05/2014 Page xxvii

Confi guring Agents 603
Running a Distributed Load Test 603

Cloud-Based Load Testing with Visual Studio Online 603
Running a Load Test in the Cloud 604

Summary 607

CHAPTER 27: LAB MANAGEMENT 609

Lab Management Infrastructure 610
Golden Images 611
Agents 611

SCVMM Environments 612
Testing with Environments 619

Create New Test Settings 619
Run Manual Tests with an Environment 622

Automated Build-Deploy-Test with Environments 626
Standard Environments 630
Summary 631

INDEX 633

www.allitebooks.com

http://www.allitebooks.org

fl ast.indd 03/04/2014 Page xxix

INTRODUCTION

OVER THE LAST 15 YEARS, Microsoft’s software development tooling has matured to address not
only the needs of the lone programmer, but the needs of an entire software development team. This
includes business analysts, project managers, architects, testers, programmers, managers, stakehold-
ers, and even operations personnel who deploy and maintain applications. This book was written to
help teams understand and adopt these tools with the end goal of making them more cohesive and
productive, and ultimately to produce higher-quality software on time and on budget.

Whether you already own Visual Studio 2013, or are considering purchasing it, this book will help
you evaluate and adopt the right tools for your project. This book considers all of the roles that
make up a modern software development project. The tools and technologies that are relevant to
each role are examined in detail, including walk-throughs, which will help you learn and apply each
tool within your team.

WHO THIS BOOK IS FOR

This book primarily targets teams of professionals in the fi eld of commercial or enterprise software
development — in other words, intermediate to advanced users. You are likely to fi nd this book use-
ful if you are any of the following:

 ➤ A developer, tester, or architect who wants to learn how the Visual Studio 2013 family of
products can help you perform your job

 ➤ A project manager who must manage a software development project

This book is not designed for the absolute beginner. The focus is on practical application of the
tools, code samples, and hands-on scenarios. The book’s organization makes it easy to use as
a step-by-step guide and as a reference for modeling, designing, testing, and coordinating enterprise
solutions at every level.

Visual Studio 2013 is designed for software teams of all sizes. So, whether you have a team of 5
or 2,000 members, this book includes useful information for you related to Visual Studio 2013
and application lifecycle management. Unlike most Wrox books, this book targets all roles in the
software development organization — architects, developers, testers, project leads, and manage-
ment — not just developers.

xxx

INTRODUCTION

fl ast.indd 03/04/2014 Page xxx

WHAT THIS BOOK COVERS

This book includes a complete overview of the application lifecycle management capabilities of
Visual Studio 2013. The book is divided into six main parts, based around the different aspects
of application lifecycle management:

 ➤ Part I: Team Foundation Server

 ➤ Part II: Building the Right Software

 ➤ Part III: Project Management

 ➤ Part IV: Architecture

 ➤ Part V: Software Development

 ➤ Part VI: Testing

Part I: Team Foundation Server
Because Team Foundation Server is at the heart of Microsoft’s application lifecycle management
solution, this book starts with an examination of its capabilities. It discusses the architecture of
Team Foundation Server 2013, and then delves into the version control system and some best prac-
tices surrounding branching and merging using Team Foundation Server. There is an in-depth look
at the automated build process — Team Foundation Build — followed by a detailed look at how
release management works in Team Foundation Server. Finally, you are presented with some exam-
ples of common customizations you can make to Team Foundation Server.

Part II: Building the Right Software
Microsoft’s application lifecycle management offerings in Visual Studio 2013 have expanded to
recognize the role that stakeholders play in the software development process. Stakeholders could
be future end users of an application, the decision makers who are authorizing payment for an appli-
cation, lawyers who need to approve applications for regulatory requirements, or any number of
people external to the development team who have a vested interest in the outcome of a particular
development project. In this section of the book, you fi nd out about new tools available to engage
with stakeholders early and often throughout the development process. These tools can lead to
higher-quality software that is more likely to meet expectations and deliver continuous value while
minimizing the amount of rework required.

Part III: Project Management
This section of the book deals with the project and process management functionality of Visual
Studio 2013 and Team Foundation Server 2013. This section examines the process templates that
ship with the product, and it covers the web-based agile planning and tracking capabilities. Part
III also discusses the reports that ship with Team Foundation Server. Whether you are practicing
a lightweight development methodology such as Scrum, or a more formal, rigorous development

xxxi

INTRODUCTION

fl ast.indd 03/04/2014 Page xxxi

process, you will discover that Team Foundation Server will provide you with the tooling you need
to manage your projects.

Part IV: Architecture
This section of the book examines the tools available in Visual Studio 2013 for defi ning and ana-
lyzing application architecture. After a brief introduction to architecture concepts, the discussion
dives into all the new UML tools available, including use case diagrams, activity diagrams, sequence
diagrams, class diagrams, and component diagrams. You then learn about the Architecture Explorer
and how you can use it to understand the architecture of your application. Finally, this section
wraps up with a discussion of layer diagrams.

Part V: Software Development
This section of the book covers topics of most interest to a software developer using Visual Studio
2013. The topics selected for this section of the book pertain most to building either complex
applications or working with teams. For example, the section explains how unit testing, static code
analysis, profi ling, code coverage, and code clone analysis features are ways to improve your appli-
cation’s overall quality and maintainability. Part V also discusses the built-in code review capability
and how you can use it to collaborate with other developers. You fi nd out how the ability to suspend
and resume work in progress makes it easier to deal with interruptions. Finally, this section pro-
vides in-depth coverage of debugging applications with IntelliTrace, including a new way of using
IntelliTrace for debugging applications in a production environment.

Part VI: Testing
Visual Studio 2013 has numerous tools available for testers to use. The examination starts with a
look at the manual testing functionality available in Microsoft Test Manager, as well as the ability
to automate user interface tests with coded user interface tests. Web performance testing and load
testing enable you to create tests that can help you ensure that users of your website will experience
the best possible performance, even under heavy load. You’ll learn about the new cloud-based load
testing features. The section concludes with a look at the improved lab management capabilities of
Visual Studio 2013, which enable you to make use of physical or virtual environments that you can
use to automate build-deploy-test workfl ows.

TEAM FOUNDATION SERVER ADMINISTRATORS

If you are the person on your team who is responsible for administering your Team Foundation Server
deployment, you should consider purchasing this book as well as its sister book — Professional Team
Foundation Server 2013 by Steven St. Jean, Damian Brady, Ed Blankenship, Martin Woodward, and
Grant Holliday (Wrox, 2014. ISBN 978-1-118-83634-7) — which dives deeper into setup, confi gu-
ration, and administration of Team Foundation Server 2013. You fi nd out more about the possible
deployment topologies you can choose from, how to make changes to process templates, advanced secu-
rity settings, considerations for disaster recovery and geographically distributed teams, and much more.

xxxii

INTRODUCTION

fl ast.indd 03/04/2014 Page xxxii

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, and tricks are offset and placed in italics like this.

SIDEBAR

Asides to the current discussion are offset like this.

As for styles in the text:

 ➤ We italicize new terms and important words when we introduce them.

➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi le names, URLs, and code within the text like so: persistence.properties.

➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use boldface to emphasize code that is particularly important in the
present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at www.wrox.com/go/proalm3ed. You can also search for the book
at www.wrox.com. When you’re at the site, simply locate the book’s title (either by using the Search
box, or by using one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book.

http://www.wrox.com/go/proalm3ed
http://www.wrox.com

xxxiii

INTRODUCTION

fl ast.indd 03/04/2014 Page xxxiii

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-118-83658-3.

Alternatively, you can go to the main Wrox code download page at www.wrox.com/dynamic/
books/download.aspx to see the code available for this book and all other Wrox books. After you
download the code, just decompress it with your favorite compression tool.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, such as a spelling mistake
or a faulty piece of code, we would be very grateful for your feedback. By sending in errata, you
may save another reader hours of frustration, and you will be helping us provide even higher quality
information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors.

NOTE A complete book list including links to errata is also available at
www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact
/techsupport.shtml and complete the form to alert us to the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem
in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies, and to
interact with other readers and technology users. The forums offer a subscription feature to email
you topics of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

http://www.wrox.com/dynamic
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact
http://p2p.wrox.com

xxxiv

INTRODUCTION

fl ast.indd 03/04/2014 Page xxxiv

At http://p2p.wrox.com, you can fi nd several forums that will help you not only as you read the
book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you want to
provide, and click Submit.

 4. You will receive an email message with information describing how to verify your account
and complete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages,
you must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://p2p.wrox.com
http://p2p.wrox.com

c01.indd 02/27/2014 Page 1

Introduction to Application
Lifecycle Management with
Visual Studio 2013

WHAT’S IN THIS CHAPTER?

 ➤ Defi ning application lifecycle management

 ➤ Learning about the Visual Studio 2013 product family

 ➤ Seeing ALM in action using Visual Studio Ultimate 2013

In June of 1999, Microsoft started to re-evaluate how Visual Studio was being used as part
of the software development process. Microsoft was continuing to serve the needs of an
individual programmer through the highly productive “code-focused rapid-application-devel-
opment” features of Visual Studio, but wasn’t doing much to help programmers work together
as a team. And what about software architects—how should they be working with the pro-
gramming team? And what about testers and project managers?

Many teams had begun to set up their own solutions using a mixture of third-party, in-house,
and vendor-provided tools to address such challenges as version control, bug tracking, and
team communications. But this mishmash of tools can be tricky to set up and maintain, and
even more diffi cult to integrate and report across. Microsoft sought to address this challenge
by providing an integrated set of tools designed to address the needs of the entire software
development team. Thus, Visual Studio Team System was born, and was fi rst released with the
Visual Studio 2005 product line.

At the heart of Team System, Team Foundation Server was created to provide a hub for all
members of the development team to collaborate. Team Foundation Server is uniquely posi-
tioned from its predecessors across the industry by being the fi rst tool of its kind built from
the ground up to provide an integrated solution for many capabilities that had historically

1

2 ❘ CHAPTER 1 INTRODUCTION TO APPLICATION LIFECYCLE MANAGEMENT WITH VISUAL STUDIO 2013

c01.indd 02/27/2014 Page 2

been offered as standalone tools. Team Foundation Server provides a unifi ed solution for storing
source code (along with a history of changes), work item tracking (which can include bugs, require-
ments, and so on), and automated builds. By providing a single solution with all of these capabilities,
Microsoft delivered the ability to link all these artifacts for end-to-end traceability, reporting, pro-
cess enforcement, and project management.

Team System also included “client” functionality, which surfaced in the various editions of Visual
Studio development tools. Visual Studio seamlessly integrated with Team Foundation Server, but
much of this tooling could also be used independently or with third-party source control solutions.
Visual Studio Team System also introduced role-specifi c tooling that lived outside of the core Visual
Studio development environment by recognizing that team members such as project managers are
oftentimes more comfortable using tools such as Excel or Project, both of which could be used to
manage and track work that lived in Team Foundation Server.

Team System was built from a foundation of tools and technologies that Microsoft had been using
internally for many years to build some of the most complex software projects ever undertaken.
Team System appealed not only to programmers, but to all members of the development team—
architects, application developers, database developers, and project managers.

Three years later, Visual Studio Team System 2008 evolved from the previous version to include
even more tools and functionality for all members of the project team to use. Two years after that,
Visual Studio 2010 added even more functionality, including an entirely new set of tools for general-
ist testers (also referred to as manual testers), bringing a new audience of prospective users into the
same set of tooling used by the rest of the team.

APPLICATION LIFECYCLE MANAGEMENT

Along with the release of Visual Studio 2010, Microsoft also stopped using the sub-brand “Team
System” to describe these capabilities. Instead, Microsoft started referring to these tools as the
application lifecycle management (also referred to as ALM) capabilities of Visual Studio.
Application lifecycle management is a term that has gained momentum in the development industry
to describe the way an application is managed from its conception, through its creation and deploy-
ment, to its eventual retirement.

It is important to note that application lifecycle management is a more comprehensive concept than
its popular predecessor, software development lifecycle (SDLC). SDLC is primarily focused on the
core coding activities that comprise the creation of an application’s life, beginning with a require-
ment for an application and ending when that application is built and delivered. Application lifecycle
management recognizes that requirements aren’t simply born out of thin air. They evolve based on
business needs, or ideas for new opportunities, and stakeholders who are considered external to the
development team may still play a role during the development of an application in helping to refi ne
requirements and provide feedback on implementations. Application lifecycle management also
recognizes that a development team’s job isn’t done the moment they hand off a “fi nished” applica-
tion. The development team will likely be called upon to help troubleshoot the application when
things go wrong in the deployed environment, or to create subsequent versions of the applica-
tion based on feedback from users or analytics from the operations team. Visual Studio itself has

Visual Studio 2013 Product Lineup ❘ 3

c01.indd 02/27/2014 Page 3

matured over time to grow from being a tool targeted squarely at programmers during the software
development lifecycle to becoming a true solution for end-to-end application lifecycle management.

VISUAL STUDIO 2013 PRODUCT LINEUP

Table 1-1 outlines the product lineup for Visual Studio 2013.

TABLE 1-1: Visual Studio 2013 Product Lineup

PRODUCT NAME DESCRIPTION

Microsoft Visual Studio
Ultimate 2013 with
MSDN

The comprehensive suite of application lifecycle management tools
for software teams to help ensure quality results from design to
deployment.

Microsoft Visual Studio
Premium 2013 with
MSDN

A complete toolset to help developers deliver scalable, high-quality
applications.

Microsoft Visual Studio
Professional 2013 with
MSDN

The essential tool for basic development tasks to assist developers in
implementing their ideas easily.

Microsoft Visual Studio
Test Professional 2013
with MSDN

The primary tool for manual and generalist testers who need to
defi ne and manage test cases, execute test runs, and fi le bugs.

Microsoft Visual Studio
Express 2013 for Web

A free version of Visual Studio 2013 that provides the core tools for
creating web applications and services.

Microsoft Visual Studio
Express 2013 for
Windows

A free version of Visual Studio 2013 that provides the core tools for
creating Windows Store apps.

Microsoft Visual Studio
Express 2013 for
Windows Desktop

A free version of Visual Studio 2013 that enables the creation of
desktop applications in C#, Visual Basic, and C++.

Microsoft Visual Studio
Team Foundation Server
2013

The server component for team development, version control, work
item tracking, build automation, project management, lab manage-
ment, and reporting.

Microsoft Visual Studio
Team Foundation Server
Express 2013

A free edition of Team Foundation Server that provides most of the
same capabilities (including version control, work item tracking, and
build automation), with some limitations, for a team of up to fi ve
users.

4 ❘ CHAPTER 1 INTRODUCTION TO APPLICATION LIFECYCLE MANAGEMENT WITH VISUAL STUDIO 2013

c01.indd 02/27/2014 Page 4

Visual Studio Premium contains all the functionality of Visual Studio Professional, and Visual
Studio Ultimate contains all the functionality of Visual Studio Premium. Visual Studio Premium and
Ultimate also include all of the functionality available in Visual Studio Test Professional.

There are a few additional standalone tools and technologies that comprise the Visual Studio 2013
family that are not listed. For example, in Chapter 10 you learn about the new Microsoft Feedback
Client, which stakeholders use to provide rich feedback about an application that is stored in Team
Foundation Server. In Chapter 3, you learn about Team Explorer Everywhere, which Eclipse devel-
opers use to work with Team Foundation Server. You learn about these additional tools throughout
this book, but Table 1-1 showcases the primary products that Microsoft markets as part of the
Visual Studio 2013 product family.

For a detailed breakdown of the functionality available in each product, a comparison chart is avail-
able at www.visualstudio.com.

NOTE Software licensing is potentially a complex topic. It is important to
ensure that the members of your team are adequately licensed to use Visual
Studio and the related technologies that make up your development and testing
environments. The Visual Studio Licensing whitepaper attempts to synthesize
all of the licensing requirements for Visual Studio, Team Foundation Server, and
related technologies into an easy-to-read format. You can fi nd the latest ver-
sion of the Visual Studio Licensing whitepaper at http://www.microsoft.com/
visualstudio/licensing.

APPLICATION LIFECYCLE MANAGEMENT CHALLENGES

Software developers share common challenges, regardless of the size of their teams. Businesses
require a high degree of accountability—software must be developed in the least amount of time,
and there is no room for failure.

Some of these challenges include the following:

 ➤ Tool integration problems—Most tools commonly used by software development teams
come from third-party vendors. Integrating with those tools can pose a major challenge—in
many cases, it requires duplicating or copying data into multiple systems. Each application
has a learning curve, and transmitting information from one application to another (incom-
patible) application can be frustrating and time consuming.

 ➤ Geographically distributed teams—Many development and management tools don’t scale
for geographically distributed teams. Getting accurate reporting can be diffi cult, and there is
often poor support for communication and collaborative tools. As a result, requirements and
specifi cations might be captured incorrectly, causing delays and introducing errors. Global
teams require solid design, process, and software confi guration management to be integrated
into one package. There aren’t many software packages that can deliver all these features,
and those that do exist tend to be incredibly expensive.

http://www.visualstudio.com
http://www.microsoft.com/visualstudio/licensing

Enter Visual Studio 2013 ❘ 5

c01.indd 02/27/2014 Page 5

 ➤ Segmentation of roles—Specialization can be a huge problem on a team. Experts can assume
that other departments are aware of information that doesn’t end up in the status reports but
that may greatly affect the project as a whole. Interdepartmental communication is a huge
and prevalent challenge. These barriers exist between developers and testers, developers and
stakeholders, developers and operations, and even developers and other developers.

 ➤ Bad reporting—This is an offshoot of the segmentation problem. In most cases, reports must
be generated manually by each team, which results in a lack of productivity. There aren’t any
effective tools that can aggregate all the data from multiple sources. As a result, the project
lead lacks the essential data to make effective decisions.

 ➤ Lack of process guidance—Ad hoc programming styles simply don’t scale. If you introduce
an off-cycle change to the code, it can cascade into a serious problem requiring hours and
days of work. Today’s software has a high level of dependencies. Unfortunately, most tools
don’t incorporate or enforce process guidance. This can result in an impedance mismatch
between tools and process.

 ➤ Testing as a second-class citizen—Shorter cycles and lack of testing can introduce code
defects late in the process. Additionally, poor collaboration between developers and testers
often results in wasted back-and-forth effort and software defects.

 ➤ Communication problems—Most companies use a variety of communication methods (such
as email, instant messaging, memos, and sticky notes) to send information to team members.
You can easily lose a piece of paper, or delete an important email message, if you are not
careful. There aren’t many centralized systems for managing team communications. Frequent
and time-consuming status meetings are required to keep the team on track, and many man-
ual processes are introduced (such as sending email, as well as cutting and pasting reports).

Companies introduce methodologies and practices to simplify and organize the software design
process, but these methodologies must be balanced. The goal is to make the process predictable
because, in a predictable environment, methodologies keep projects on track. It is often said that
predictability reduces complexity. Conversely, methodologies add tasks to the process (such as gen-
erating reports). If your developers spend too much time doing these tasks, they’ll be less productive,
and your company won’t be able to react competitively.

ENTER VISUAL STUDIO 2013

There are three founding principles behind the application lifecycle management capabilities of
Visual Studio 2013: productivity, integration, and extensibility.

Productivity is increased in the following ways:

 ➤ Collaboration—Team Foundation Server centralizes all team collaboration. Bugs, require-
ments, tasks, test cases, feedback, code reviews, source code, and builds are all managed
via Team Foundation Server 2013. All reporting is also centralized, which makes it easy for
project leads to track the overall progress of the project, regardless of where the metrics are
coming from.

6 ❘ CHAPTER 1 INTRODUCTION TO APPLICATION LIFECYCLE MANAGEMENT WITH VISUAL STUDIO 2013

c01.indd 02/27/2014 Page 6

 ➤ Manage complexity—Software development projects are more complex than ever, and are
getting more complex year by year. Team Foundation Server helps to manage this complexity
by centrally tracking your entire software development process, ensuring that the entire team
can see the state and workfl ow of the project at any given time.

Integration is improved in the following ways:

 ➤ Integrated tools—These facilitate communication between departments. More importantly,
they remove information gaps. With the Visual Studio 2013 family of products, integration
isn’t an afterthought—it’s a core design consideration for the toolset.

 ➤ Role-specifi c tools—Instead of asking every member of an extended development team to
conform to using the same tool, such as Visual Studio, Microsoft recognizes that many
members of a team already have a preferred tool that they use every day. Correspondingly,
Microsoft has integrated into those tools directly to provide comfortable interfaces back to
Team Foundation Server—whether it’s Visual Studio, Eclipse, Excel, Project, Project Server,
or simply a web browser.

 ➤ Visibility—Visual Studio and Team Foundation Server increase the visibility of a project.
Project leads can easily view metrics related to the project and can proactively address prob-
lems by identifying patterns and trends.

Extensibility is provided in the following ways:

 ➤ Team Foundation Core Services API—Most of the platform is exposed to the developer,
providing many opportunities for extensibility and the creation of custom tools that integrate
with Team Foundation Server.

 ➤ IDE—The Visual Studio integrated development environment (IDE) itself is extensible,
allowing third parties and end users to add everything from additional tool capabilities to
new language compilers to the development environment.

APPLICATION LIFECYCLE MANAGEMENT IN ACTION

To best demonstrate how Visual Studio 2013 can help in the process of application lifecycle man-
agement, let’s run through a typical scenario with a fi ctional software development company called
eMockSoft. eMockSoft has recently signed a partnership with a distributor to release its catalog of
products. The distributor has requested a secure website to manage inventory and pricing informa-
tion for internal and external partner organizations.

Let’s look at the scenario as it applies to application lifecycle management and the Visual Studio
2013 tools.

Requirements
The business analyst meets with the project sponsor and other stakeholders to obtain requirements
for the project. During this discussion, the business analyst and an application designer use the
PowerPoint Storyboarding capabilities of Visual Studio 2013 to build a storyboard that visually
models the application they believe their stakeholders are asking for. They share this storyboard

Application Lifecycle Management in Action ❘ 7

c01.indd 02/27/2014 Page 7

with the stakeholders to review the proposed user interface, workfl ows, and transitions. The stake-
holders provide valuable feedback that helps to refi ne the design, even before a single line of code is
written.

The storyboard then becomes the basis of new requirements that inform the development team
about what the project sponsor expects the software to deliver. The project manager uses the new
web-based Agile planning tools to store these requirements in Team Foundation Server. She then
works with the development team to decompose these requirements into tasks that the team will
implement on an iterative basis. She also uses Microsoft Project to create a more detailed project
schedule based on this work by importing work items.

The infrastructure architect can now begin the system design.

System Design and Modeling
Based on the client specifi cations, the infrastructure architect can use the UML tools in Visual
Studio 2013 to defi ne the architecture for the website. These designs help to inform the program-
ming team about what to implement. As the architecture evolves, the infrastructure architect will
use the dependency graph generation tools to analyze the application’s architecture and propose
architectural changes that can improve code maintainability and quality.

Code Generation
The developer receives work assignments and reviews the UML diagrams that were designed by
the architect. The developer writes the necessary code, and does some preliminary testing, using
the static code analysis and unit testing tools built into Visual Studio. Throughout the day, the
developer checks the code and tests into Team Foundation Server 2013. As work is completed, the
developer uses the new web-based task board provided with Team Foundation Server to track the
progress of his work and keep the rest of the team updated about his status.

When necessary, the developer uses the built-in code review tooling to invite peer developers to
view and comment on the code he is writing. This entire conversation is preserved within Team
Foundation Server, making it possible to later conduct audits to discover why certain decisions were
made about implementation choices.

Testing
The tester checks the progress of the development team by monitoring the nightly builds and auto-
mated tests. Using the lab management capabilities of Team Foundation Server 2013, each nightly
build triggers the automatic creation of a virtual environment that is ready each morning for the
tester to use. The tester uses Visual Studio Test Professional to author, manage, and execute a suite
of manual test cases each day to surface potential bugs for the development team. The tester fi les
bugs in Team Foundation Server that are assigned to the development team to fi x.

All bug reports are stored in Team Foundation Server, and provide team members and project stake-
holders with full visibility into the progress of the project. The bugs automatically contain a rich set
of information for the developer, including a video of the test case being run by the tester, screen-
shots, an event log from the time the test was being run, and a pointer to a snapshot of the virtual

8 ❘ CHAPTER 1 INTRODUCTION TO APPLICATION LIFECYCLE MANAGEMENT WITH VISUAL STUDIO 2013

c01.indd 02/27/2014 Page 8

environment where it was uncovered. The developer uses all this information to quickly diagnose
and fi x the bug.

Feedback
When the development team has fi nished an initial version of the website, they decide to ask the
original stakeholders to review their progress to ensure that they are on the right track. The business
analyst uses Team Foundation Server 2013 to request feedback from the appropriate stakeholders
on the areas of the application that are ready for review. Each stakeholder receives an email along
with an invitation to provide feedback. The stakeholders use the new Microsoft Feedback Client
to capture their feedback as they are using the new application. The Feedback Client enables each
stakeholder to capture a video recording of the application as they are using it, along with notes,
screenshots, and audio annotations describing what they like and what they would like to see
changed. This feedback is rich and timely, helping the development team refi ne their implementation
before the iteration is fi nished.

Operations
After the application has been built and signed off by the testing team, it’s ready to be deployed in
the on-premises datacenter. eMockSoft uses System Center 2012 R2 to monitor the production
servers, so the testing team is quickly alerted in the event that the application breaks or begins
performing slowly. Using System Center Operations Manager, an operations engineer can choose
to assign the issue to engineering, which automatically creates a bug in Team Foundation Server,
including rich diagnostics from the Operations Manager’s application performance monitoring
capabilities. If a developer needs even more information to diagnose an issue, she can ask the opera-
tions team to capture an IntelliTrace fi le from the running application, which she can use to review
everything that happened during the application’s execution and look for clues about how to resolve
such an issue. By using these types of tools, the company can ensure better collaboration between
the development and operations team than had been achieved in the past.

Putting It into Context
This is a simple example that examines just a few of the ways in which Visual Studio 2013 can assist
with application lifecycle management. Throughout this book, you discover other examples that can
help your team become a more cohesive unit and ship better software.

SUMMARY

 In this chapter you learned about the overall Visual Studio 2013 product family and how it has been
designed to help you address the entire application lifecycle management of your development projects.
The rest of this book dives more deeply into how you can apply these tools to your own team.

c02.indd 03/03/2014 Page 9

PART I
Team Foundation Server

 ▸ CHAPTER 2: Introduction to Team Foundation Server

 ▸ CHAPTER 3: Using Centralized Team Foundation Version Control

 ▸ CHAPTER 4: Distributed Version Control with Git and Team
Foundation Server

 ▸ CHAPTER 5: Team Foundation Build

 ▸ CHAPTER 6: Release Management

 ▸ CHAPTER 7: Common Team Foundation Server Customizations

c02.indd 03/03/2014 Page 11

Introduction to Team
Foundation Server

WHAT’S IN THIS CHAPTER?

 ➤ Understanding Team Foundation Server

 ➤ Learning the core concepts central to Team Foundation Server

 ➤ Getting access to Team Foundation Server and connecting to it for
the fi rst time

 ➤ Learning about what’s new in Team Foundation Server 2013

 ➤ Planning your Team Foundation Server adoption

Because Team Foundation Server is so fundamental to the Application Lifecycle Management
offering from Microsoft, later chapters go into more depth about utilizing different aspects
of the product, such as how to use it to plan your work, how to use version control when
developing software, and how to use the build automation capabilities. In each case, the use
of Team Foundation Server is explained within the context of the task you are doing — but
before we can do that you need to know what Team Foundation Server is, what it provides,
and how to get it.

Although a full treatment of Team Foundation Server is necessary in a book about Microsoft’s
Application Lifecycle Management solution, this book deliberately focuses on how to use
Team Foundation Server to develop software and effectively organize your teams. Team
Foundation Server is highly customizable and extensible by an administrator. The book
Professional Team Foundation Server 2013 (Wrox, 2014) is targeted at administrators of
Team Foundation Server and individuals who want to customize their instance heavily,
although Chapter 7 of this book gives you a small taste of the customizations that are possible
and provides a starting point to learn more.

2

12 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 12

WHAT IS TEAM FOUNDATION SERVER?

Developing software is diffi cult, a fact that is repeatedly proven by how many projects fail.
Developing software is a creative endeavor, not a manufacturing process. Consequently, an essential
factor in the success of any software development team is how well the members of the team com-
municate with each other and with the people who wanted the software developed in the fi rst place.

Microsoft Visual Studio Team Foundation Server 2013 provides the core collaboration functionality
for your software development teams in a very tightly integrated product. The functionality pro-
vided by Team Foundation Server includes the following:

 ➤ Project management and planning

 ➤ Work item tracking (WIT)

 ➤ Version control

 ➤ Test case management

 ➤ Build automation

 ➤ Reporting

 ➤ Virtual lab management

Team Foundation Server is separate from Visual Studio. Logically, Team Foundation Server is made
up of the following two tiers, which can be physically deployed across one or many machines, physi-
cal or virtual:

 ➤ Application tier — The application tier primarily consists of a set of web services with which
the client machines communicate by using a highly optimized web service–based protocol.

 ➤ Data tier — The data tier is made up of two or more SQL Server databases containing
the database logic of the Team Foundation Server application, along with the data for
your Team Foundation Server instance. The data stored in the databases is used by Team
Foundation Server’s reporting functionality. All the data stored in Team Foundation Server is
stored in these SQL Server databases, thus making it easier to back up.

Team Foundation Server was designed with extensibility in mind. There are comprehensive APIs in
.NET and Java for integrating with Team Foundation Server, and a set of events that enables outside
tools to integrate with Team Foundation Server as fi rst-class citizens. The same APIs and event sys-
tem are used by Microsoft itself in the construction of Team Foundation Server, as well as the client
integrations into Visual Studio, Microsoft Offi ce, and Eclipse.

Team Foundation Server has competitors, including other enterprise Application Lifecycle
Management suites and purpose-specifi c solutions (such as source control, a build server, or a work
tracking system). As discussed in Chapter 1, the main benefi t of having all these capabilities in
one product is the tight integration that Microsoft has been able to achieve between the tools that
you use to develop software and the tools that you use to communicate with your team and your
stakeholders.

Acquiring Team Foundation Server ❘ 13

c02.indd 03/03/2014 Page 13

ACQUIRING TEAM FOUNDATION SERVER

Team Foundation Server is a server-side product that must be acquired, installed, and confi gured.
There are several options available for purchasing access to a server for your team. To begin with,
you should decide if you want to run the Team Foundation Server inside your own fi rewall or if you
want to explore a hosted Team Foundation Server offering.

Hosted Team Foundation Server
The easiest way to acquire Team Foundation Server is to rent it from a provider and access it over
the Internet. Trial options are available, which means you can get started with no cost, and there is
no need to wait for hardware to be purchased. When it comes to hosted options, there are two main
routes: hosting from Microsoft or hosting from a third-party provider.

However, hosting is not suitable for everyone. Some organizations have a legal obligation to keep
the data that they would store inside Team Foundation Server inside the fi rewall; others may require
the tight user identity integration provided by Team Foundation Server’s Active Directory integra-
tion. Others are just not comfortable making their source code, work items, and build accessible
from any machine over the Internet. For these types of organizations, a hosted solution probably
isn’t the answer.

Visual Studio Online
Microsoft makes available a massive cloud-hosted instance of Team Foundation Server, part of
Visual Studio Online at http://www.visualstudio.com. This is new commercial branding for the
service that is in a preview at http://tfspreview.com.

As of the end of 2013, this is now a full commercial service available for customers who want to
purchase Team Foundation services for their team at a low, predictable cost. Depending upon how
you license Visual Studio (if at all), you’ll fi nd a variety of plans, including free, that provide access
to the rich features of Team Foundation Server, but in a purpose-built cloud implementation.

Visual Studio Online is hosted on Windows Azure and makes use of all the services provided by
Microsoft’s cloud operating system to ensure high availability, resiliency, and a full backup of your
data. However, because the system is scaled to support the thousands of users who access it over the
Internet—and because it is just the basic core Team Foundation services that are available—Visual
Studio Online comes with some limitations compared with a full on-premises installation. For
example, currently there is no integration with SharePoint for a project portal and document library.
There are also limited reporting features currently available and restrictions to the amount of cus-
tomization that you can do to the server instance.

However, Visual Studio Online provides all the version control, work item tracking, build automa-
tion, and project management capabilities of Team Foundation Server. Being available over the
Internet makes it very easy to use when your team is distributed globally, and it is easy to get started
on using the service. All you need to do is visit www.visualstudio.com, create an account, and your
team can be up and running before you have fi nished reading this chapter. Access to Visual Studio

http://www.visualstudio.com
http://tfspreview.com
http://www.visualstudio.com

14 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 14

Online is controlled by federated Internet-based credentials; at the time of writing you need to have
a free Microsoft Account from to authenticate with the service.

Because Visual Studio Online is maintained by the Team Foundation Server team at Microsoft, it
is always running the very latest version of the server software during their development process.
Therefore, new features will show up on Visual Studio Online before they are made available in the
standard retail installation of Team Foundation Server via an update or a new major release. For
this reason, you may notice some differences between some of the screens displayed in the fi gures of
this book and the appearance of Visual Studio Online at the time of reading.

NOTE This cloud-hosted version of Team Foundation Server from Microsoft is
the same in many ways as the Team Foundation Server available elsewhere and
installed on your own servers, but there are some ways in which it operates dif-
ferently (such as with regard to authentication). Throughout the rest of the book,
we distinguish between the “hosted service” behavior and the regular (that is,
“on-premises”) behavior when it is important to do so — however, the major-
ity of this book describes the behavior of Team Foundation Server in general,
regardless of where it is installed.

Third Party–Hosted Team Foundation Server Providers
Many commercial companies can host your Team Foundation Server for you over the Internet for a
small charge. They have the advantage that they have all the Team Foundation Server administrative
knowledge in-house and have a great deal of experience running their servers for many customers.
As these companies are dealing on a different scale than that of Microsoft’s hosted service, they can
often be much more fl exible in the capabilities they provide (at a cost). Depending on the hosting
provider, you may also be able to purchase SharePoint portal capabilities, along with a full report-
ing instance, and get the same capabilities as if you were running Team Foundation Server in-house
without having to go through the up-front costs of acquiring the hardware to run Team Foundation
Server or purchasing the software licenses in full, before use.

The version of Team Foundation Server used by the third-party hosted providers is exactly the
same as the version you would get if you installed it on premises. The only difference is that Team
Foundation Server is running in their data centers or private clouds and your team accesses it over
the Internet. In this book, behavior categorized as on-premises refers to the behavior you would
expect to see from your third party–hosted Team Foundation Server provider as opposed to the
hosted service behavior provided by Microsoft’s hosted offering (www.visualstudio.com).

NOTE Microsoft provides a list of companies offering commercial hosting
services for Team Foundation Server at http://aka.ms/tfshosting.

As mentioned previously, in some organizations, using a third party to host such important data as
your company’s source code is not acceptable, and some other companies may actually be required
by law to keep such data within the bounds of the corporate fi rewall. In those instances an on-
premises option is the only one available.

www.allitebooks.com

http://www.visualstudio.com
http://aka.ms/tfshosting
http://www.visualstudio.com
http://www.visualstudio.com
http://www.allitebooks.org

Team Foundation Server Core Concepts ❘ 15

c02.indd 03/03/2014 Page 15

On-Premises Installation
The way that the vast majority of customers enjoy the features of Team Foundation Server is by
locally installing a version of the software inside the fi rewall. Trial versions of Team Foundation
Server are available for you to download and install locally so you can get up and running quickly.
You can also download a prebuilt virtual machine from Microsoft with all the software necessary to
help you evaluate the product.

NOTE You can fi nd the latest version of the virtual machine at http://aka.
ms/VS11ALMVM or you can download the Express or Trial version of Team
Foundation Server to install locally at http://aka.ms/tfs2013.

To purchase Team Foundation Server to run locally, you can acquire the software in retail or via a
MSDN Subscription, a Volume Licensing purchase, or through a Microsoft Partnership agreement.

Also available, fi rst introduced in the 2012 release, is a version called Team Foundation Server
Express. This includes the core developer features — such as version control, work item tracking,
and build automation — all of which is available free of charge for individuals and teams of up to
fi ve users. The Express edition comes with a few limitations, namely: no support for SharePoint inte-
gration, limited to fi ve named users, supports only SQL Express (so no reporting and a maximum
database size of 10GB), and no sprint/backlog planning or feedback management.

You can upgrade from a Trial or Express edition of Team Foundation Server to a full edition at any
time without losing any data. In addition you can purchase additional Client Access Licenses (CALs)
if you require more than the fi ve named users that come with the Express edition.

NOTE For more information about installing or administrating a Team
Foundation Server instance, see Professional Team Foundation Server 2013 by
Steven St. Jean, Damian Brady, Ed Blankenship, Martin Woodward, and Grant
Holliday (Wrox, 2014).

TEAM FOUNDATION SERVER CORE CONCEPTS

Let’s take a look at some of the core concepts that are critical to understanding Team Foundation
Server. If you have been using previous versions of Team Foundation Server for a while (especially
the previous Team Foundation Server 2012 release), then you might want to skip to the “What’s
New in Team Foundation Server 2013” section later in this chapter.

Figure 2-1 provides an overview of the Team Foundation Server components, which are explained in
the following sections.

In addition to the components shown in Figure 2-1, understanding the concepts of teams and team
builds is necessary for a complete understanding of Team Foundation Server. Those concepts are
also covered in the following sections.

http://aka
http://aka.ms/tfs2013

16 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 16

Team Foundation Server

Team Project Collection

Team Project

Process Template

Version
Control

Work Item
Tracking

FIGURE 2-1

Team Foundation Server
A Team Foundation Server instance can be physically split into many different machines. The
application tier refers to the running web application that is handling all requests for data from
client machines running Visual Studio. The data in a Team Foundation Server instance is stored
in a data tier, which is essentially a SQL Server installation being accessed by the application tier.
Although the application tier and the data tier are logically separate, you can have both installed on
a single physical machine. As the application tier is the level at which you access a Team Foundation
Server instance, the application tier machine name is often referred to as simply the Team
Foundation Server. You refer to your Team Foundation Server by name or URL (that is, tfsserver
or http://tfsserver:8080/tfs) when Team Foundation Server is installed in the default virtual
directory in IIS on the default port. When talking to a Team Foundation Server hosted over the
Internet, you most often use the full URL, such as https://proalm.visualstudio.com.

Team Foundation Server can scale to support a very large number of active users, depending on the
hardware supporting it. Therefore, for most organizations, Team Foundation Server instances tend
to be scoped according to who pays for the installation and operation of the instance, not by scaling
limitations of the server.

Team Project Collection
The team project collection concept was fi rst introduced in Team Foundation Server 2010. This is a
container for team projects. Each server has one or many team project collections, and a project col-
lection can have zero or more team projects.

The team project collection is the main level of isolation between instances on a server. In a hosted
Team Foundation Server, the collection is what is provided as your account. Global security groups
take effect at the project collection level. The identifi ers for work items and for changesets in version
control are all numbered with sequential IDs that are unique at the project collection level.

A team project collection has a one-to-one relationship with a database instance in SQL Server.
Therefore, you can back up and restore at the project collection level. You can move project

http://tfsserver:8080/tfs
https://proalm.visualstudio.com

Team Foundation Server Core Concepts ❘ 17

c02.indd 03/03/2014 Page 17

collections between Team Foundation Servers, and you can split the project collection to break up
the distribution of team projects between the resulting collections. Using this process, you can move
a team project into a new collection by cloning the existing project collection and then deleting the
appropriate team projects from each of the cloned project collections.

Each Team Foundation Server instance has a default project collection, usually called
DefaultCollection. As project collections were not introduced until the 2010 release, older clients
that were created for Team Foundation Server 2008 will only be able to see this default collection.

Team Project
A team project is a collection of work items, code, tests, or builds that encompass all the separate
tools that are used in the lifecycle of a software development project. A team project can contain
any number of Visual Studio solutions or projects, or, indeed, projects from other development
environments. A team project is usually a fairly long-running thing with multiple areas and itera-
tions of work.

You need at least one team project to start working with Team Foundation Server. When the team
project is created, the following are also created by default:

 ➤ Path in version control (if using Team Foundation Version Control)

 ➤ Default work item queries

 ➤ Default areas and iterations

 ➤ Default team

If you’re using a Team Foundation Server instance that is also attached to a SharePoint and SQL
Server Reporting Services instance, then the following are also created:

 ➤ Team project website

 ➤ Document library

 ➤ Stock reports

WARNING It is not possible to rename a team project after it’s been created.
Also, the number of team projects in the team project collection has a perfor-
mance effect on the system, so you do not want to have more than around 250
teams per project collection. Therefore, you want to think carefully before creat-
ing a new team project.
It is often useful to experiment with Team Foundation Server features in a
sandboxed test instance of Team Foundation Server. Many people download
the Team Foundation Server Trial virtual machine image from Microsoft for
this purpose or get an account for a Microsoft-hosted Team Foundation Service
instance at http://www.visualstudio.com, but some organizations have enter-
prise-wide test instances of Team Foundation Server for people to experiment in.

The granularity that you choose for your team project has important implications for how you
structure your work and when you move from one team project to another.

http://www.visualstudio.com

18 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 18

Team projects are intended to represent the largest unit of work in your organization. For example,
in Microsoft Developer Division, the whole of a Visual Studio release lives in a single team project
with Team Foundation Server as an area of that project.

A team project has a single process template, and changes made to the process template of a running
team project affect that team project only. The default reports and work item queries are all scoped
by team project, making it easy to track and fi nd work for that team project as an entity.

The following are also linked to the team project that they belong to and, in general, are diffi cult to
move between team projects:

 ➤ Work Items — Each work item is attached to the team project and uses the process template
assigned to it. For this reason, it is not possible to move a work item from one team project
to another, although you may copy the work item between projects in the same project col-
lection and include a link to the source work item for reference.

 ➤ Document Libraries — The team project optionally refers to a project website based on
SharePoint Foundation or SharePoint Server. The document libraries in this website are
linked to this project, and all the documents, projects plans, process guidance, or other non-
deliverable assets contained in the document library therefore correspond to the team project.

 ➤ Reports — All the reports created as part of one of the stock process templates are scoped
to the team project level, making it easy to determine the progress of work inside that team
project.

 ➤ Builds — Each build defi nition is tied to a team project, as are the build controllers and build
agents performing the builds.

 ➤ Version Control — All items stored in version control are either under a team project node
in the repository or in a Git repository. All settings for version control are controlled at the
team project level.

 ➤ Classifi cations — A team project is typically broken into areas and iterations. An area is
typically a functional area of the code that may have a subset of the whole team typically
working on it. For example, a particular application may be broken into tiers: the web tier,
application tier, and database tier. It is common that a feature or requirement may affect all
tiers of the application, but a task or bug may just affect a small area of the code. Therefore,
areas are organized hierarchically so that a feature can be assigned to the whole application
in the team project, but an ASP.NET form development task may be assigned to a child area.
Iterations are similarly organized. For Version 1 of the application, you may split develop-
ment into several phases and, in each phase, have several short iterations (or sprints). These
can be organized hierarchically in the iterations section.

SCOPE OF A TEAM PROJECT

In general, a team project is “bigger than you think.” A good way of thinking about
what needs to be grouped into a single team project is to think about the effect of
a typical requirement for your software development project. If the requirement
would affect the ASP.NET front end, Java middleware, and SQL database reposi-
tory, then all these projects and teams of developers probably want to be working in
the same team project.

Team Foundation Server Core Concepts ❘ 19

c02.indd 03/03/2014 Page 19

Following are three general areas that are used when scoping a team project, but
every organization is different, and yours might need to combine these aspects
when deciding on your approach:

 ➤ Application

 ➤ Release

 ➤ Team

For some organizations, it makes sense to have only a single team project in a single
project collection. Others may have more than 100.

Team Project per Application
The Team Project per Application model is a common approach, as requirements
are generally addressed by the entire application, and a group of people is assigned
to work on it. The applications typically have a long lifecycle, going from the incep-
tion phase, through active development and support, and fi nally to the end-of-life
phase. However, a common mistake is for a single team responsible for several
applications to have those applications split into team projects. This makes it dif-
fi cult to manage the priorities of work across those projects. The Team Project per
Application model is more suited to large applications that have a dedicated team
or teams working on the application throughout the application’s lifecycle.

Team Project per Release
This is the methodology adopted by Microsoft Developer Division as they develop
Visual Studio. It is useful for very large teams working on long-running projects.
After every major release (such as Visual Studio 2013), you create a new team proj-
ect. At this point in time, you can carry out changes that might have come about
from your post-release review. You might take the opportunity to reorganize your
version control tree, improve process templates, and copy over work items from the
previous release that didn’t make it.

This methodology tends to be suited to large independent software vendors (ISVs)
working with products with a very long lifetime. In these cases, it is generally
safer to start as a Team Project per Application and then move to a Team Project
per Release if required to make reporting easier. It is very rare that this type of
team project model is applicable to everyday business development. For that, Team
Project per Team is usually more common.

continues

20 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 20

Team Project per Team
For smaller teams (fewer than 50 people), where the size and responsibilities of the
team tend to stay fairly consistent but the applications they work on are in a con-
stant state of fl ux, the Team Project per Team approach is often the most suitable.
If your team members are often working on more than one application at a time,
the same team or a subset of the team works together on those projects over time,
or the project lifecycle is measured in months rather than years, then you should
consider this approach as a starting point.

Teams
Starting with Team Foundation Server 2012, teams are modeled as a core concept within Team
Foundation Server. When you create a new team project, a new team is created for you by default
with the name of that project. For example, if you create a team project called AdventureWorks,
then a team called AdventureWorks Team is automatically created. The team initially contains just
one member (who is also an Administrator), the person who created the team project, but you can
easily add members to the team using their domain credentials in an on-premises install or by email
address for the hosted service.

As well as membership and administrators, a team has the following items associated with it:

 ➤ Description of the team, for example, what they are responsible for.

 ➤ Security permissions in Team Foundation Server given to members of the team.

 ➤ Areas that the team is responsible for.

 ➤ Iterations that the team will be taking part in. The iterations have a start date and end date
that control which iteration is the “current” one.

 ➤ A backlog of work associated with that team (that is, work items in that team’s area).

 ➤ A board of backlog items, showing for each product backlog item or story what associated
tasks there are for that work item. Team members can easily drag and drop them into other
states, such as In Progress or Done.

 ➤ Alert events, for example sending an email notifi cation when a build fails or a work item is
associated with a team member.

 ➤ Favorites, such as work item queries, source control paths, or build defi nitions that may be
important to that team.

For many smaller team projects, the concepts of team and team project merge. But for larger team
projects, you may want to create additional teams, which is why it is important to call out what
belongs to the team and what belongs to the team project.

Any areas, iterations, work items, work item queries, builds, and most actual Team Foundation
Server artifacts that you create are created at the team project level. By default, other teams can see

continued

Team Foundation Server Core Concepts ❘ 21

c02.indd 03/03/2014 Page 21

them and interact with them. You can think of the team as a fi lter on the team project data to show
which information is most relevant to that team, and therefore to you as a member of one or more
teams.

Under the covers in Team Foundation Server, a team is actually just a Team Foundation Server secu-
rity group with some additional properties and metadata associated with it.

Process Templates
An important fact about software development projects is that there is no single process that is suit-
able for delivering all types of solutions to all types of businesses with all types of teams. Therefore,
Team Foundation Server was designed from the ground up to be fl exible in how you want your
teams to work.

The process template is a set of fi les, both XML confi guration fi les and supporting template fi les
like SQL Server Reporting Services RDL fi les, that provide the details of how you want your process
to work. Microsoft provides the following three process templates with the default installation of
Team Foundation Server:

 ➤ Microsoft Visual Studio Scrum 2013 — Available previously as an optional add-on and made
the default in Team Foundation Server 2012, the Scrum process template is not only installed
by default but is the default process template used when creating new projects. It is a template
designed for teams that want to base their software development on the highly popular Scrum
methodology (at the time of writing the most popular of the formal Agile development method-
ologies). Users’ needs are tracked by product backlog item work items, which are broken down
into task work items. There are also work items for bugs, impediments, and test cases. The
work items’ states follow those recommended by the Scrum software development practice.

NOTE For more information on the Scrum software development process in
general, visit http://scrum.org.

 ➤ MSF for Agile Software Development 2013 — This is a lightweight template designed for
teams following a delivery process based on general Agile software development practices.
User needs are tracked by user story work items, as well as types for bugs, issues, tasks, and
test cases. In general, the work items have a simple state progression from active to resolved
to closed. It is also an excellent starting point for people who want to customize a process to
fi t with their development organization.

 ➤ MSF for CMMI Process Improvement 2013 — This is a more detailed template, designed for
teams with more traditional process requirements — that is, those that typically have longer
lifecycles and possible governmental requirements that the process template would help ful-
fi ll. Note that if your organization is striving for CMMI compliance you should not consider
this template as your only choice; you should still evaluate the possibilities offered by the
MSF for the Agile Software Development template, among others.

In addition to the templates installed by default, more are available to download online. If you have
an existing process in your organization, it is possible to create a custom process template to match
the process.

http://scrum.org

22 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 22

After you have created a team project with a process template, it is possible to modify nearly all
aspects of it while the project is in fl ight, including work item types, fi elds, states, and so on. This
was another critical design decision taken by Microsoft in designing Team Foundation Server
because Microsoft recognized that the best teams are those that continually improve and adapt
their processes, and that, as the project continues, more is learned about the domain, as well as the
strengths and weaknesses of the team.

Work Item Tracking
Work items in Team Foundation Server are things such as requirements, bugs, issues, and test cases.
In other words, these are the items of work that your organization needs to track to manage the
delivery of a software development project.

The work item tracking system is highly extensible. You can control which fi elds are presented to the
users, which fi elds are rolled up into the reporting data warehouse, how the work item looks, what
states the work item can be in, and how to transition from one state to the next.

All work items share certain common fi elds such as ID, state, and title, as shown in Figure 2-2. They
have a full history of changes recorded to every fi eld in the work item and by whom. You can also
link work items, fi les, web pages, or other elements in Team Foundation Server.

FIGURE 2-2

The work item type defi nitions are all confi gurable at the team project level. The work item types
are created from the process template defi nition during project creation, but they can be modifi ed

Team Foundation Server Core Concepts ❘ 23

c02.indd 03/03/2014 Page 23

as the team project is in fl ight. Changing the work item types for one team project in fl ight does
not affect those in another team project, even if they were created using the same original process
template.

All data about the work item is stored in the Team Foundation Server database. Any fi le attach-
ments are also stored in the database.

NOTE You learn more about work items in Chapters 23 through 27, all of
which are included in Part VI of this book.

Version Control
Team Foundation Server includes a full enterprise-class, centralized version control system that has
been designed from the ground up to work well in environments that are spread across a wide geo-
graphical area over high-latency, low-bandwidth connections.

TEAM FOUNDATION SERVER AND VSS

There’s an important misconception to get out of the way: Although Team
Foundation Server provides version control capabilities, it is in no way related to
Microsoft’s previous version control system, called Visual SourceSafe (VSS). In
terms of core concepts, it actually shares more in common with the version control
system that was previously used internally in Microsoft, a product with the code
name “Source Depot.” Team Foundation Server is actually based on an entirely
new code base and contains features not found in either product.

The basic model of version control in Team Foundation Server will feel very familiar if you have
used Visual SourceSafe (VSS), Polytron Version Control System (PVCS), Perforce, or Subversion,
but is different from Distributed Version Control Systems, such as Git or Mercurial. There have
been very signifi cant improvements in Team Foundation Server 2013 in the version control system
(read more details about them in Chapter 3). In addition, you can now choose an alternative version
control repository, one based on Git (read more about this in the “What’s New in Team Foundation
Server 2013” section later in this chapter and in Chapter 4). There are now two modes of operation
for version control; one is used with server workspaces, which will be familiar to users of older ver-
sions of Team Foundation Server. With a server workspace, all fi les are read-only in the local fi le
system until you check out a fi le to edit it.

The new mode of operation (and the default for new installations) is local workspaces, which will
be much more familiar to users of tools such as Subversion or CVS. With local workspaces, fi les
are read/write–enabled locally, and no checkout is required before you can edit the fi le. This makes
working offl ine and working outside of Visual Studio signifi cantly easier. However, the cost of this
convenience is that you have to check which fi les have been changed before updating those fi les (or
“checking them in”) to the server. Also, as no server call is made before a fi le is updated, you receive

24 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 24

no warning if another team member is working on a fi le at the same time as you until you go to
perform a check-in. However, for most teams with a regular-sized code base (that is, fewer than
100,000 fi les) the reduction in friction in editing the fi les outside of Visual Studio or when offl ine
from Team Foundation Server means that local workspaces are a sensible default starting point.

As is common with centralized version control systems, all check-in operations are performed
against the server; you cannot check in locally.

The project collection administrator can confi gure which modes of operation are available and can,
for example, force server workspaces if a more controlled environment is preferred.

In either mode, by default, Team Foundation Server allows multiple people to edit the same text-
based fi les at the same time. This is particularly useful for .sln, .vbproj, and .csproj fi les in a
Visual Studio project. When you go to check the fi le in to the server, if the latest version of that fi le
is newer than the one you checked out, you are prompted to merge your changes with the changes
made by your colleagues.

NOTE Chapter 3 provides more in-depth information about version control.

Team Foundation Server version control contains the following features:

 ➤ Atomic check-ins — Changes you make to the fi les are batched into a changeset. When you
check in the fi les in a changeset, they are taken as a single atomic transaction. If a single fi le
cannot be checked in (for example, because of a merge confl ict) then the whole changeset is
not committed. Only after the whole changeset has been successfully applied do any of the
fi les become the latest version. This way, you can ensure the consistency of your code base.

 ➤ Associate check-ins with work items — When you perform a check-in, you may associate that
changeset with one or more work items. In this way, you can get full traceability of require-
ments from the initial feature desired by the user, to the tasks required to create it, to the
check-ins into version control that were required to implement the feature. This information
is surfaced in the work item that you linked to, as well as being shown in the build report
and also passed into the reporting system in Team Foundation Server.

 ➤ Branching and merging — Team Foundation Server supports a full path space branching
model. If you desire parallel development on a code base, then you can create a branch of the
code in two separate places in the version control repository, and then merge changes that
have been applied to one branch into the other.

 ➤ Shelving — This includes the capability to store fi les on the server without committing them
to the main version control repository. This is useful in a couple of different scenarios. You
may want to back up changes made on your local machine to the server if you are going to
be working on the fi les for more than a few hours or if you need to work on a different task
temporarily and resume later. Another scenario is when you want to copy changes from one
machine to another without checking them in (for example, a shelveset is used during a code
review, to have a colleague verify your changes).

Team Foundation Server Core Concepts ❘ 25

c02.indd 03/03/2014 Page 25

NOTE Chapter 18 provides more information on performing a code review with
Visual Studio 2013.

 ➤ Labeling — In Team Foundation Server, you can tag a set of fi les at a particular version with
a textual label. This is useful for indicating which fi les were included in a certain build or
which fi les are ready to move to your quality assurance (QA) process. Note that in Team
Foundation Server, labels are always editable. Provided you have permission, you may add or
remove fi les from that label at any time.

 ➤ Concurrent check-outs — Also known as the Edit-Merge-Commit model, by default, multiple
people may edit a fi le at the same time. If a fi le were modifi ed while you were working on it,
then you would be prompted to merge the changes with the latest version of the fi le.

 ➤ Follow history — If you rename or branch a fi le then you can view the history of that fi le
before it was renamed or branched. You can also follow the history of a fi le from before it
was branched or merged.

 ➤ Check-in policies — When performing a check-in, Team Foundation Server provides the
capability for the client to run code to validate that the check-in should be allowed. This
includes performing actions, such as checking that the change is associated with a work item,
checking that the code passes static code analysis rules, and so on. Check-in policies are also
an extension point in Team Foundation Server so that you can create your own, should you
want to do so.

 ➤ Check-in notes — In some organizations, it is necessary to capture metadata about a check-in
(such as the code reviewer, or a reference to a third-party system). In other version control
systems, this is frequently accomplished by requiring that the check-in comment follow cer-
tain unenforced conventions. Team Foundation Server provides check-in note functionality to
capture this metadata. A team project administrator may add or remove check-in notes at the
team project level, as well as make a particular check-in note mandatory.

 ➤ Team Foundation Server proxy — Frequently, organizations have regional development
centers separated from the main development offi ces or the data center hosting the Team
Foundation Server environment. When a get is performed from version control, fi les are
downloaded to the client machine. In the remote offi ce environment, this often means that
the same fi les are downloaded over the wide area network (WAN) to every client machine
involved in the development. Team Foundation Server provides an optional proxy server
that may be installed in these remote offi ces. In those scenarios, the clients may be confi gured
to perform the download via the proxy so that the proxy can cache the downloaded fi les at
the remote location. In that way, the majority of the developers in the remote offi ce will be
downloading fi les from the proxy server local to them, thus removing traffi c from the WAN
and improving performance.

Team Build
Team Foundation Server provides a fully-featured build-automation server to enable you to stan-
dardize the build infrastructure for your team. Team builds are set up in the system as a build

26 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 26

defi nition. You provide the build defi nition with information as to what you want to build — that
is, the folders or fi les in Team Foundation Server version control that contain the sources to be built,
and the projects or solutions in those folders to build. You also specify when to perform the build
using a trigger, such as building on every single check-in (continuous integration), building on a
schedule, or validating that your changes pass the build process before check-in (known as a gated
check-in).

NOTE Chapter 5 provides more information on the build-automation
capabilities.

ACCESSING TEAM FOUNDATION SERVER

There are many ways for a team member to interact with the core services in Team Foundation
Server, including the following:

 ➤ Web browser

 ➤ Visual Studio

 ➤ Eclipse-based development environments

 ➤ Microsoft Test Manager

 ➤ Team Foundation Server Administration Console

 ➤ Microsoft Excel

 ➤ Microsoft Project

 ➤ Command-line tools

 ➤ Third-party integrations

The following sections examine each of these, including the functionality they provide and
basic usage.

TEAM FOUNDATION SERVER LICENSING

You must ensure that you are licensed to connect to an on-premises Team
Foundation Server. In general, for Team Foundation Server, this means that you
need to have a Client Access License (CAL), which is typically included with the
MSDN subscription. People without MSDN can purchase it separately. It is your
responsibility to ensure that you have the correct licenses required to cover your on-
premises usage of Team Foundation Server. If you’re in doubt, contact your Team
Foundation Server administrator. If your organization needs help understanding
its licensing needs then contact your local Microsoft representative for licensing
assistance.

Accessing Team Foundation Server ❘ 27

c02.indd 03/03/2014 Page 27

Accessing Team Foundation Server from Visual Studio
Team Foundation Server functionality is installed as a standard part of the install of a Visual Studio
edition (including the Express editions).

Assuming that you have an account, connect to your Team Foundation Server by clicking the
Connect to Team Foundation Server link on the Visual Studio Start Page or in Team Explorer
(View ➪ Team Explorer).

If your desired server is not available in the Servers drop-down, click the Servers button and then
click the Add button to connect to your Team Foundation Server. As shown in Figure 2-3, you
can enter the server name or provide the full URL given to you by your Team Foundation Server
administrator.

FIGURE 2-3

After you have added the server, select the project collection that contains your team projects and
select the team project or projects that you want to work on.

Your selected team project displays in the Team Explorer window. The Team Explorer window will
come as the fi rst big surprise for users of an older version of Visual Studio. In Visual Studio 2013,
the Team Explorer experience has been refi ned some more from the major 2012 update, which had
the goal of removing clutter to provide a more focused experience. The home page that displays
when you fi rst connect to a team project is shown in Figure 2-4.

The sections that appear in the page depend on the version of Visual Studio that you have installed
and the capabilities confi gured with your Team Foundation Server. For example, the My Work
section is only displayed in Premium and Ultimate versions of Visual Studio when connected to a
Team Project using Team Foundation Version Control. The Documents section displays when the
team project is connected to a SharePoint portal, and the Reports section displays when the proj-
ect has an associated reporting service site. If you’re using a Team Project with Team Foundation
Version Control, you’ll see Pending Changes and Source Control Explorer options. If you’re using
a Team Project with a Git-based repository, you’ll see Changes, Branches, and Unsynced Commits.
However, all versions of Team Explorer display Work Items, Builds, and Settings. Clicking each sec-
tion takes you to that page, which contains other sections. For example, clicking Work Items takes
you to a page that contains your favorite work item queries and a tree of the available work item
queries on the server (see Figure 2-5).

28 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 28

FIGURE 2-4

To change pages or projects or to connect to a different project, click the page header. A drop-down
menu displays that enables you to change pages or connect to a different team or project (see
Figure 2-6).

NOTE If you have additional sections for each team project then you probably
have the Team Foundation Server power tools installed on your machine. This
excellent set of tools is provided by the team at Microsoft to further enhance
your Team Foundation Server experience. The Team Explorer, like most parts of
Team Foundation Server, is extensible, so you can install extensions, or create
your own, that take advantage of this.

FIGURE 2-5

Accessing Team Foundation Server ❘ 29

c02.indd 03/03/2014 Page 29

FIGURE 2-6

Accessing Team Foundation Server Through a Web Browser
In Team Foundation Server 2012, Microsoft invested heavily in the web-based view of the server
(often called Web Access). For the 2013 release, they continued to enhance it. You can view your
server by navigating to its URL in a browser or by clicking the Web Access link in the Team
Explorer. For example, if your server internally is called tfs2013, then by default you would navi-
gate to http://tfs2013:8080/tfs. If your machine is accessed over the Internet, then a URL such
as https://proalm.visualstudio.com is probably used.

Web Access (Figure 2-7) is ideal for users who do not want to install a dedicated Team Foundation
Server client on their machines. At a high level, “when fully licensed,” it offers the following func-
tionality from the browser:

 ➤ Backlog and iteration planning

 ➤ Task board

 ➤ Create and edit work items and work item queries

 ➤ Manage areas and iterations

 ➤ Administer permissions and team membership

http://tfs2013:8080/tfs
https://proalm.visualstudio.com

30 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 30

 ➤ Read-only access to version control

 ➤ Queue and manage build defi nitions

FIGURE 2-7

Using Team Foundation Server in Microsoft Excel
As part of the Visual Studio Team Explorer installation, integration into Microsoft Excel is provided
by default and a Team tab is available on the ribbon in Excel. This enables you to add and edit work
items directly from Excel spreadsheets, as shown in Figure 2-8, as well as create Excel-based reports
using data directly from Team Foundation Server.

FIGURE 2-8

Accessing Team Foundation Server ❘ 31

c02.indd 03/03/2014 Page 31

Using Team Foundation Server in Microsoft Project
Integration into Microsoft Project is also provided as part of the Team Explorer installation. This
enables you to add and edit work items directly from Microsoft Project and to view data about the
progress of these work items.

NOTE Chapter 11 describes this integration in more detail.

Command-Line Tools for Team Foundation Server
Team Foundation Server includes a set of command-line tools as part of the Team Explorer instal-
lation. The main command-line tool to be aware of as a user is tf.exe, which is available from a
Visual Studio 2013 command prompt. You can also install it separately on non Windows–based
systems such as Mac OS X, Linux, and many other UNIX fl avors.

The tf command provides full access to Team Foundation Server version control functionality,
including features in Team Foundation Server version control that are not exposed via the graphical
clients.

NOTE For more information and full reference information on the com-
mand-line tools available for Team Foundation Server, see http://aka.ms/
tfsCommands.

Accessing Team Foundation Server from Eclipse
For members of the team who are using Eclipse-based IDEs (including IBM Rational Application
Developer or one of the many other Eclipse-based environments), full access to the Team
Foundation Server capabilities are available from Microsoft using the TFS plug-in for Eclipse as part
of Team Explorer Everywhere.

As you can see in Figure 2-9, at a high level, the Eclipse integration provides all the same functional-
ity that a developer inside Visual Studio would utilize, including the following:

 ➤ Full version control integration (check-out, check-in, history, branch, merge, label, synchro-
nize, and so on)

 ➤ Full work item tracking (create and edit work items and work item queries)

 ➤ Full team build integration (create, edit, and manage builds and build defi nitions)

 ➤ Access to team reports and documents

http://aka.ms

32 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 32

FIGURE 2-9

NOTE Check-in policies for the cross-platform and Eclipse clients must be sepa-
rately confi gured inside that client. Also, the Java build extensions power tool
available at http://aka.ms/tfpt is required on the build server to integrate
with the Ant or Maven build processes that are common in Java environments.

Windows Explorer Integration with Team Foundation Server
As part of the Team Foundation Server power tools available at http://aka.ms/tfpt, a Windows
Explorer shell extension is available as an optional installation. This provides access to the basic ver-
sion control functionality of Team Foundation Server from a standard Windows Explorer window
and is most useful when working with Team Foundation Server version control outside of Visual
Studio or Eclipse.

Access to Team Foundation Server via Other Third-Party
Integrations

Team Foundation Server supports a rich and vibrant third-party ecosystem. As discussed previously,
the same .NET and Java object models used by Microsoft to talk to Team Foundation Server are
also available for developers in third-party companies to integrate with. Integrations are available

http://aka.ms/tfpt
http://aka.ms/tfpt

What’s New in Team Foundation Server 2013 ❘ 33

c02.indd 03/03/2014 Page 33

into other parts of the Microsoft Offi ce suite (such as Word and Outlook). In addition, many devel-
opment tools now integrate with Team Foundation Server using the extensibility hooks provided by
Microsoft.

For older development tools that support the Microsoft Source Code Control Interface (MSSCCI,
pronounced “miss-key”) plug-in model for version control, Microsoft has a MSSCCI provider for
Team Foundation Server as part of the power tools.

NOTE For more information on the Team Foundation Server power tools, visit
http://aka.ms/tfpt.

WHAT’S NEW IN TEAM FOUNDATION SERVER 2013

In the 2013 release, there have been a number of changes that continue on the work started with
the 2012 release — some more dramatic than others. There have been four major changes in Team
Foundation Server 2013: Git support in version control, Agile portfolio management planning,
release management tools, and the commercial release of the Windows Azure-based Visual Studio
Online. Team Foundation Server 2013 keeps the same core architectural building blocks introduced
in the 2010 release, but with new sets of features built on top of it. Although many of these features
are explained throughout this book, if you have used a previous version of Team Foundation Server
then the features described in the following sections will be new to you.

Version Control
Whereas Team Foundation Server 2012 included in the biggest fundamental change to Team
Foundation Version Control since the original release in 2005, Team Foundation Server 2013 takes
things to the next level by letting you choose a completely different type of repository — a Git-based
one with full support for distributed version control. This is explained in detail in Chapter 4.

Web Access
The most visible change to Team Foundation Server 2012 was the completely rewritten web inter-
face. In Team Foundation Server 2013, Microsoft continued to invest. The latest version supports
Kanban boards for managing your workfl ow. The new team rooms provide a tracked conversa-
tion portal for your teams to discuss project-related items as well as to track system events. The
website also saw Microsoft bring web-based test case management by adding a full-featured Test
hub. The home page is more customizable for each team and by the time you read this, there will
be support for pinning work item charts to home pages. All of the new features are discussed
throughout the book.

Agile Portfolio Management
In Team Foundation Server 2013, you have the option to do Agile portfolio management, some-
times colloquially referred to as “enterprise Agile” by Microsoft. By default, each team project is

http://aka.ms/tfpt

34 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 34

confi gured with one level of portfolio backlog using the Feature work item type. In addition, you
can confi gure up to four additional levels of portfolio backlogs. This can provide you with seven lev-
els, from the top-level items to backlog items to tasks.

If you’re upgrading from Team Foundation Server 2012, you must confi gure your existing projects
using the Confi gure Features wizard if you want portfolio backlogs from an upgraded team project.
In addition there’s additional licensing issues. This feature is covered in detail in Chapter 12.

Release Management
One of the missing features from earlier releases of Team Foundation Server are tools to make it
easier to get your software from the development team to production and to your customers. In
mid-2013, Microsoft acquired a partner solution called InRelease which provided a set of release
management capabilities for use with Team Foundation Server. This technology was rebranded as
Release Management for Visual Studio 2013 and is now developed and supported by Microsoft.
Rather than customize your build defi nitions to try automated deployment, you now have a fi rst
class tool to manage your release pipeline. The feature provides a rich Windows client to defi ne your
deployment environments and confi gure the deployment via Windows Workfl ow, including a rich
set of built-in deployment tasks. There’s a web-based approval tool to manage a deployment as it
moves between environments, including notifi cations. Finally, there’s a deployer agent (that must be
licensed per server) to get your bits confi gured on your machines — physical or virtual. Chapter 6
covers this feature in detail.

The Cloud
By making available a hosted Team Foundation Service in the cloud at http://www
.visualstudio.com, Microsoft has removed the barrier of entry for teams that want to use the
Application Lifecycle Management features of Visual Studio but do not want to run their own Team
Foundation Server. The effect of making Team Foundation Server available over the Internet has
also brought about changes to many aspects of the system — for example, you can now authenti-
cate with this hosted service using a browser-based federated authentication mechanism rather than
being forced to use a Windows-based login. The Team Foundation Build service now uses a polling-
based model to detect when a new build is requested rather than the old push model, which makes
using a build server in a different domain or outside the fi rewall much easier for on-premises instal-
lations of Team Foundation Server.

ADOPTING TEAM FOUNDATION SERVER

The value of Team Foundation Server is realized when it is utilized in a team. Therefore, ensuring a
successful Team Foundation Server adoption requires cooperation from many people in your organi-
zation. This section should help you avoid some common pitfalls and provide you with some sugges-
tions on where to start with what may seem like a large and daunting product.

http://www

Adopting Team Foundation Server ❘ 35

c02.indd 03/03/2014 Page 35

When introducing any new tooling into a large organization, it is important that you address the
key pain points fi rst. For many companies, traceability of work through the development lifecycle
is often an area that is being poorly addressed by existing tooling. For others, the version control
system being used may be out of date and performing poorly. It is, therefore, usually the work
item tracking or version control components that people fi rst start using when adopting Team
Foundation Server.

Luckily, Team Foundation Server is fl exible enough that you can still get value from the product
when using only one or two components of the system. When you have adopted both version con-
trol and work item tracking, the next area to tackle to gain the most benefi t is likely to be Team
Foundation Build. By automating your build system and increasing the frequency of integrations,
you reduce the amount of pain that always occurs when integrating components to form a product.

The key is to gradually remove the unknown and unpredictable elements from the software delivery
process, all the time looking for wasted effort that can be cut out.

Automating the builds not only means that the build and packaging process becomes less error
prone, it also means that the feedback loop of requirements traceability is completed. You can now
track work from the time that it is captured, all the way through to a change to the source code of
the product, and into the build that contains those changes.

After a period of time, you will have built up a repository of historical data in your Team
Foundation Server data warehouse, and you can start to make use of the reporting features to pre-
dict if you will be fi nished when you expect (that is, whether the amount of estimated work remain-
ing on the system is reducing at the required rate). You can also drill into areas that you might want
to improve — for example, which parts of the code are causing the most bugs.

It is after a period of getting used to the tooling that you want to look at your process templates and
ensure that all the necessary data is being captured — but, equally, that all the work item types and
transitions are required. If there are unnecessary steps, then consider removing them. If you notice
problems because of a particular issue, consider modifying the process to add a safety net.

It is important to adjust the process not only to fi t the team and organization, but also to ensure that
you adjust your processes only when you need to, and not just because you can.

Check-in policies represent a key area where Team Foundation Server administrators have a temp-
tation to go overboard at fi rst. Check-in policies prevent checking in of code that doesn’t meet the
requirements programmatically defi ned in the check-in policy. However, each policy has a per-
formance penalty for the whole team, not only in running the policy on each check-in, but also in
ensuring that the policy will pass before checking in the code.

A problem with developers who are not checking in code in small iterative changes cannot be easily
remedied by introducing a check-in policy — the policy alone will provide some discouragement for
checking in. Therefore, check-in policies should be introduced over time and when the need is identi-
fi ed by the whole team.

36 ❘ CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

c02.indd 03/03/2014 Page 36

SUMMARY

This chapter introduced Team Foundation Server and discussed its role in bringing the team
together when developing an application. You learned about some of the core concepts at the heart
of Team Foundation Server, different ways to access the data in your organization’s server, and what
is new in the 2013 release of the product. Finally, you learned about some points that you should
bear in mind when planning your Team Foundation Server deployment.

Chapter 3 looks in detail at using the version control features of Team Foundation Server and dis-
cusses the important new changes found in this latest release.

c03.indd 02/28/2014 Page 37

Using Centralized Team
Foundation Version Control

WHAT’S IN THIS CHAPTER?

 ➤ Understanding Team Foundation version control

 ➤ Setting up version control

 ➤ Using Source Control Explorer

 ➤ Understanding basic version-control operations

 ➤ Understanding check-in policies

 ➤ Viewing the history of fi les and folders

 ➤ Understanding labels

 ➤ Understanding shelvesets

 ➤ Understanding workspaces

 ➤ Getting to know the command-line tool

 ➤ Understanding branching terminology and concepts

 ➤ Getting to know common branching strategies

If you are a developer you live in a world of source code. When you have more than one
person working on a project, versioning becomes an issue. If two developers work on the
same item, how do you merge their code? How do you prevent accidentally overwriting fi les?
Incredibly, although the practice is rapidly declining, many organizations still just use fi le
shares to store source code. If you are unfamiliar with version control, you can think of it as a
fi le system with an extra dimension—time. You can share the current state of any fi le or folder

3

38 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 38

with your team members, and you can go back in time to see what other versions have existed and
what the source code looked like at any point in the history of the source code repository.

One of the key reasons you are likely to have chosen Visual Studio Team Foundation Server 2013
is its version control management system. It offers a number of features, including the capability
to branch, merge, and shelve your source code, and atomic check-ins, policies, and security—all
the features you expect from an enterprise version control solution. The core engine for this tool is
Microsoft SQL Server. You can rely on the resilience of this proven database engine for the integrity
of the data stored in it, the procedures and processes to back it up, and the scalability solutions that
it provides.

NOTE Notice that the title of the chapter is “Using Centralized Team
Foundation Version Control.” However, when you start using the feature, a
lot of the tools and windows say “source control,” such as in “Source Control
Explorer.” The version control title is there to indicate that the product can
handle much more than source code. You can upload images, test data, work
products, build fi les—anything you want, really. In addition, the 2013 release
of Team Foundation Server brings a new decentralized version control option.
Thus it’s important to be aware of the type of version control you’re using, since
a Team Foundation Server installation can support both types.

As well as the built-in integration to Team Foundation Server provided as part of the Visual Studio
2013 installation experience, the Team Foundation Server command line (tf.exe) is also installed
to enable you to perform version control operations from a command line if you prefer. There is a
Windows Explorer shell extension available as a Team Foundation Server Power Tool. You can also
access Team Foundation Server from Eclipse using the free Team Explorer Everywhere plug-in. Team
Explorer Everywhere is also where you’ll fi nd a version of the Team Foundation Server command-line
client for non-Windows systems such as Mac OS X, Linux, Solaris, and other fl avors of UNIX.

Team Foundation Server provides a centralized version control system—that is, there is a single
master repository on which you back up, manage, maintain, and control permissions. The server has
a highly fl exible path-based permission system, with access protected by the same Active Directory
login used to authenticate with Windows.

Team Foundation Server 2012 introduced a new mode of working—a concept known as local
workspaces. In previous versions of TFS, server workspaces (where the state about which fi les are
checked out and so on is stored on the server) were the only option, but the introduction of local
workspaces stores the state of the fi les in the workspace on the local fi le system, meaning that you
do not have to be connected to TFS to edit a fi le. Local workspaces are the default workspace type
in Team Foundation Server 2013, so this chapter begins with the assumption that you are working
with a local workspace. Later on the chapter discusses both local and server workspaces, including
the differences between them, and which type is suitable for which method of working. In Team

Team Foundation Version Control and Visual SourceSafe (VSS) 2005 ❘ 39

c03.indd 02/28/2014 Page 39

Foundation Server 2012, there were many other improvements in version control to make the expe-
rience more transparent for developers and to reduce friction for developers doing everyday work.
The user experience for version control was dramatically changed from previous versions—making
use of a new unifi ed Team Explorer view for the majority of common version control operations.
That said, if you’re upgrading to Team Foundation Server 2013 with Visual Studio 2013, most of
the changes are cosmetic. You’ll fi nd refi nements in the Team Explorer window, including the ability
to “pop out” the window so that it fl oats separately from the rest of Visual Studio, as well as a new
Switch to List View option when viewing pending changes.

In this chapter, you fi nd out about the main features of Team Foundation version control, such as
checking in and checking out code, setting check-in policies, and temporarily shelving your code for
easy access at a later date. The Team Foundation version control system also supports a number of
other features, such as atomic check-ins, workspaces, and changesets, all of which are covered in
this chapter. In addition, you’ll fi nd coverage of how you work with branches and how you merge
code between them.

NOTE One of the common misconceptions about Team Foundation version
control is that it is a new version of Microsoft Visual SourceSafe (VSS). This is
completely untrue—Team Foundation version control was written from scratch.
And, unlike SourceSafe, it has been designed to scale well to a large number of
developers (more than 2,000). The two are completely different products.

TEAM FOUNDATION VERSION CONTROL AND VISUAL
SOURCESAFE (VSS) 2005

Visual SourceSafe (VSS) 2005 reached the end of mainstream support in 2012 and extended support
will end in 2017. No new versions of the product will be released. With the 2012 release of Team
Foundation Server, Microsoft made several changes to both the product and its licensing to make it
suitable for all sizes of development teams.

Team Foundation version control is part of a greater Software Confi guration Management (SCM)
solution. Unlike VSS, Team Foundation version control is designed to scale to large development
teams and can support distributed and outsourced teams in remote locations. Plus, you can avoid
problems such as the occasional corruption of your source code fi les (because the data is written to a
real database, rather than fl at fi les).

Like VSS before it, Team Foundation Server is now available in all MSDN subscriptions, including
Visual Studio. Team Foundation Server is available for signifi cantly less than VSS, yet it is a much
more modern, full-featured product with a healthy community and signifi cant on-going invest-
ment from Microsoft. Therefore, it is now time to move away from any existing VSS databases
toward Team Foundation Server. Fortunately, Microsoft has made it even easier to upgrade a VSS

40 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 40

repository into Team Foundation Server by providing a new wizard-based solution for performing a
VSS migration (with history if required). For more information on using the new Visual SourceSafe
upgrade wizard with Team Foundation Server 2013, see http://aka.ms/vssUpgrade.

SETTING UP VERSION CONTROL

Assuming that you’ve never used a version control system, where do you start? Even if you have used
other version control systems, they all work in slightly different ways and have different models for
working with fi les. So how do you effectively set up and use Team Foundation version control? Let’s
walk through the process step-by-step.

After you have connected to your Team Foundation Server project collection, you can create a
new team project by clicking File ➪ New ➪ Team Project. This is typically done by your Team
Foundation Server administrator, but at this point you are offered a series of options. You no longer
get the old option to branch during Team Project creation. Instead you get to choose between Team
Foundation version control or Git, as shown in Figure 3-1.

FIGURE 3-1

This new page presents a choice that cannot be changed. Once you create a Team Project, the ver-
sion control repository format you choose—Team Foundation or Git—is there for the life of the

http://aka.ms/vssUpgrade

Using Source Control Explorer ❘ 41

c03.indd 02/28/2014 Page 41

Team Project. In addition, it replaces the old version, which allowed you to either create a new trunk
or to branch based on an existing team project, something that was generally discouraged. If you
miss this old option, you’ll need to branch after team project creation.

USING SOURCE CONTROL EXPLORER

Source Control Explorer is similar to other explorers in Visual Studio. It enables you to browse and
manage the entire version control repository, as well as view projects, branches, and individual
folders. You can add and delete fi les; check in, check out, and view any of your pending changes;
and view the status of your local code compared to the code in Team Foundation version control
and much more. Think of it as your master control area for all tasks related to version management.
Following are some of the important tasks it enables you to do:

 ➤ Map folders

 ➤ Add fi les

 ➤ Get fi les

 ➤ Check in changes

 ➤ Rollback

 ➤ Create shelvesets

 ➤ View historical data

 ➤ Branch and merge

 ➤ Compare fi les and folders

 ➤ Label your fi les and folders

 ➤ Change security settings for fi les and folders

NOTE As you learn later in this chapter, a shelveset is a collection of changes
stored in a “shelf,” or area, to temporarily store your source code without com-
mitting it to the repository.

Many of these topics are examined later in this chapter. To access the Source Control Explorer,
simply click View ➪ Other Windows ➪ Source Control Explorer. Alternatively there is a shortcut
link to Source Control Explorer on the Team Explorer Home page.

Another way you can open a solution from version control in Visual Studio is by clicking File ➪
Source Control ➪ Open from Source Control. Visual Studio prompts you to connect to the Team
Foundation Server and select the source code repository of your choice if you are not connected.

42 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 42

Figure 3-2 shows the Source Control Explorer interface. It is divided into three main areas: the
source tree view on the left (which enables you to navigate and select source folders from your proj-
ect), the details view on the right, and the source location bar and version control toolbar at the top.

FIGURE 3-2

The Source location shows the server path of the currently selected folder in Source Control
Explorer. In Team Foundation Server version control, server paths are given in the format
$/TeamProjectName/FolderPath/File.txt, where the path separators are a forward slash (/) and the
root of the repository is represented by the dollar symbol ($).

Setting Up Your Workspace
Your workspace represents the local working copy of fi les on your fi le system. You can think of a
workspace as your personal sandbox to work on source code; it is the bridge between code on the
server and your client machine. A workspace has one or many folders mapped in Team Foundation
version control with your local fi le system. Whenever you get fi les, they are downloaded from the
repository in Team Foundation Server and placed into your workspace for you to work on them.
To get your changes back into the server repository you check in (commit) the changes. Workspaces
provide isolation; they enable you to work on your code to make up your application without affect-
ing any changes the rest of your team might be making.

Using Source Control Explorer ❘ 43

c03.indd 02/28/2014 Page 43

The workspace itself is bound to a machine and owner. If you move to a different machine you have
to create a new workspace. Files that you have edited in your workspace live only on the associated
machine. This is an important difference to keep in mind with some other version control systems.

NOTE Working folder mappings provide a wealth of features that you can use
to perform sophisticated operations and mappings locally. However, to begin
with, stick to one local folder mapped to a single folder (usually the branch you
are working on in the version control system).

In Team Foundation Server 2013, when you fi rst attempt to access version control operations on
the server (such as using Source Control Explorer to browse the contents of the server repository), a
local workspace is created that is automatically ready for you to begin mapping folders and getting
fi les. By default the workspace name is the same as your computer name. However, you can have
multiple workspaces belonging to the same user on the same machine and you can swap between
them using the Workspace drop-down in the version control toolbar in Source Control Explorer
(refer to Figure 3-2).

Getting Existing Code
If you are connecting to a repository that already has code in it, the fi rst thing that you probably
want to do is map a folder to your local fi le system and download the code. Browse to the folder that
you want to map (such as the $/BlueYonder/Main/ folder shown in Figure 3-2). At the top of the
details pane on the right side you can see that the Local Path is Not Mapped, and that Not Mapped
is underlined. Click the Not Mapped link to open the Map dialog and point it at a directory on your
local fi le system, as shown in Figure 3-3. Note that the local path (or indeed the server path) does
not need to exist. If the local folder entered into the dialog does not exist then Team Foundation
Server attempts to create it for you when you download (or get) the fi les for the fi rst time.

FIGURE 3-3

44 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 44

Whenever you create or change your working folder mappings, Team Foundation Server prompts
you if you would like to perform a get so that the fi les on the server are downloaded locally, as
shown in Figure 3-4. Select Yes in the dialog, and the latest version of the Main folder is downloaded
into the directory specifi ed.

FIGURE 3-4

The Local Path in the details pane of Source Control Explorer now shows the path that you are
currently viewing, and clicking the path link opens that directory in the local fi le system. Depending
on the theme you’ve chosen for Visual Studio, the fi les in Source Control Explorer are shown in
different colors or shades to indicate whether you have a local copy. In addition the Latest column
reads Yes.

LOCAL FOLDER MAPPINGS AND THE 260-CHARACTER PATH LIMIT

Note that on Windows-based systems, certain APIs only support a path length of
260 Unicode characters. Therefore, .NET imposes a path length restriction to local
paths of 260 characters for a combined directory and fi le name, 248 Unicode char-
acters for a directory. On the server, a single fi le or folder can’t exceed 259 Unicode
characters while a combined directory and fi le name mustn’t exceed 399 Unicode
characters. When mapping fi les into your local workspace you should generally try
to map to a folder that is fairly close to the root of your drive or fi le system to give
you a lot of spare characters to grow into. This is particularly important when pro-
gramming in languages such as Java. On Windows, Visual Studio by default uses
the C:\Users\Username\Documents\Visual Studio 2012\Projects folder to
store new projects, and it is tempting to map your Team Foundation Server projects
in there. However, using a folder such as C:\Source at the root of your drive gives
you another 40 or so characters from the 260-character path limit and also enables
you to keep your working folder mappings simple. You can get more information
on this and other restrictions related to naming at http://aka.ms
/vsnames.

http://aka.ms

Using Source Control Explorer ❘ 45

c03.indd 02/28/2014 Page 45

Sharing Projects in Version Control
If you are sharing new code with your team using Team Foundation Server for the fi rst time then
you can import the associated source fi les into the repository in a number of ways. The process of
sharing code in Team Foundation Server is called checking in.

Sharing a Solution in Visual Studio
To share a solution in Visual Studio, right-click the solution in Solution Explorer and select Add
Solution to Source Control. If you are not already connected to a Team Foundation Server proj-
ect collection, you select the server and project collection that you want to connect to. Then you
select the location in the central version control repository that you want to use for sharing your
source code.

If the path you selected is not under a locally mapped folder, you’ll be prompted to specify which
type of version control you want to use—either Team Foundation version control or Git—as shown
in Figure 3-5.

FIGURE 3-5

If you are sharing code into a new Team Project then a good practice is to create a folder called Main
(with possible additional subfolders like src for source code, docs, tools, and so on) under your
Team Project and share the solution into it, as shown in Figure 3-6.

After you have set the location you want to use for sharing your fi les, click the OK button on the
Add Solution to Source Control dialog window. The solution displays in Solution Explorer with a
plus symbol to the left of it (see Figure 3-7). The plus sign indicates that the fi le is pending addition
into version control.

46 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 46

FIGURE 3-6

FIGURE 3-7

Using Source Control Explorer ❘ 47

c03.indd 02/28/2014 Page 47

In general, you don’t want to see the dialog shown in Figure 3-6. This dialog appears when the local
path you’ve selected is not a known folder to version control. If you’ve already created a workspace
mapping for a team project and you pick a folder under one of your mapped folders, Figure 3-6 will
not appear. Figure 3-6 typically appears when you create a new Visual Studio project and accept the
default folder, which defaults to your profi le directory’s documents folder.

This solution at this point is not yet shared with Team Foundation Server. TFS version control
works using a two-phased process. You fi rst build up a list of changes that you want to make in
version control and then you commit the changes in a single transaction called a changeset.

To check the fi les into version control, go to the Pending Changes page in Team Explorer by right-
clicking on the solution in Solution Explorer and selecting Check In. Alternatively you can go to the
Team Explorer view and then select the Pending Changes page. A third alternative is to go to View
➪ Other Windows ➪ Pending Changes.

The next section reviews the pending changes page. You commit your changes from there.

Sharing a Project in Eclipse
Microsoft provides an Eclipse plug-in as part of Team Explorer Everywhere. After you have the
TFS plug-in for Eclipse installed, you may share a project in Eclipse easily. Right-click the project
in Package Explorer and select Team ➪ Share Project. The Share Project wizard shows the installed
team providers in your Eclipse instance (see Figure 3-8).

FIGURE 3-8

Select Team Foundation Server and then choose the project collection that you want to connect to (if
you have not already connected). Then select the desired TFS workspace. (You can also press Next
to select the default TFS workspace, which is usually correct.) The Share Location page of the Share
Project Wizard displays, as shown in Figure 3-9. From here you select a path in version control to
share the fi les. As previously discussed you want to add your fi les into a folder called Main, so you

48 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 48

simply enter the full server path into the Project folder path textbox that you want to share at. As
mentioned earlier in the chapter, it does not matter that the Main folder does not exist yet; it is auto-
matically created on the server when you perform the check-in.

FIGURE 3-9

Pressing Finish creates pending adds for all the fi les in the project into version control. The fi le icons
are annotated in the Package Explorer with a small check mark to
indicate that they are pending adds to version control (see Figure 3-10).
Note, just as with Visual Studio, these fi les are not yet stored on the
server; you must fi rst check them in. To get the pending changes view
in Eclipse, go to Windows ➪ Show View ➪ Other Windows ➪ Team
Foundation Server ➪ Team Explorer and click the Pending
Changes page.

In the next section, you fi nd out how to work with the pending changes
view to check in code to the source repository. You also fi nd out about
changesets and how to confi gure team check-in policies.

CHECK-IN PENDING CHANGES

Frequent check-ins and gets are an essential part of a developer’s workfl ow. You need to check in the
code so that it is shared with the rest of your team, and you need to frequently Get Latest so that
you are developing and testing against the very latest version of the source code that makes up your
application.

FIGURE 3-10

Check-In Pending Changes ❘ 49

c03.indd 02/28/2014 Page 49

When making changes in your local workspaces, Team Foundation Server maintains a list of the
fi les that are being changed and their change types (that is, add, edit, rename, delete) in the pending
changes window.

This is one area where the experience in Team Foundation Server 2012 and 2013 is very different
from previous versions. Rather than have another view active in Visual Studio or Eclipse, Microsoft
moved the pending changes experience into Team Explorer (see Figure 3-11) to allow more space
in the development environment for the code editing window as well as centralize version control
operations. The pending changes experience was also changed from a horizontal view to a vertical
one as part of the move to the new Team Explorer. This was refl ective of the fact that most develop-
ers now use monitors with a widescreen aspect ratio, so space on the sides of the code being edited is
usually available.

FIGURE 3-11

That said, there are two changes that are specifi c to Visual Studio 2013 that will make it easier for
you if you upgrade from a version prior to 2012. The fi rst is the option to “pop out” the Pending
Changes page from Team Explorer so you can move it to another monitor or location inside Visual

50 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 50

Studio. The other is the new option, called Switch to List View, which you’ll fi nd under the View
Options drop-down located in the Included Changes and Exclude Changes section of the Pending
Changes page. When they’re used together, you can make the Pending Changes windows simulate
the look of the previous version just a bit (see Figure 3-12).

FIGURE 3-12

Checking In an Item
A changeset contains all of the information related to a check-in, such as work item links, fi le revi-
sions, notes, policies, and owner and date/time details. Team Foundation version control bundles
all the information into this logical container. A changeset is created after you check code into the
repository, and, as a container, it refl ects only the changes you checked in. You can also view it
as the state of the repository at a particular moment in time of the repository. The usefulness of a
changeset comes from the fact that you can, on a very atomic level, return to any moment of change
and troubleshoot your code.

NOTE Team Foundation Server contains four main types of artifacts related
to source code: work items, changesets, fi les, and builds. For example, you can
associate a work item to a source code fi le. You can also link builds to work
items if you want. This is a really powerful concept. Imagine that you are hav-
ing trouble with a build. You can automatically call up the changeset with the
problem code. You can also generate a work item to get a developer to fi x the
problem. The integration possibilities are endless.

The Pending Changes page, shown in Figure 3-11, enables you to view all of the fi les in your work-
space that Team Foundation Server considers changed from the latest version that you copied into

Check-In Pending Changes ❘ 51

c03.indd 02/28/2014 Page 51

your workspace from the server. You can access this list at any time via Team Explorer or via the
View ➪ Other Windows ➪ Pending Changes menu option.

The Pending Changes view shown in Figure 3-11 highlights most of the key areas. In addition to the
areas shown, there is also a notifi cation area at the top of the page that is used to inform you when
you have successfully checked in changes, so that you know that they are stored on the server. It also
gives you a quick reference to the changeset ID that was created.

At the top of the page you see any policy warnings that are currently being given. Check-in policies
are covered later in this chapter, but in simple terms you can think of them as code that runs on the
client to validate whether a check-in is valid.

Next there is an area to provide a comment. Best practice is that you should provide a short but
meaningful comment with every check-in, ideally explaining why you made the changes you are
making—not what you changed. To see what you changed, any authorized user can simply look at
those changeset details and compare (or diff, as it is sometimes called) the fi les inside the chang-
eset. However, a changeset comment explaining why you changed those fi les is very useful to help
others understand why things happened the way they did.

Files listed in the Included Changes section are the fi les that you want to make up your next chang-
eset. These are the fi les that you are modifying, creating, or deleting as part of the change. For users
of older versions of Team Foundation Server, this is equivalent to checking the box next to the fi le in
the old Pending Changes view, except that the inclusion or exclusion of a fi le in the Pending Changes
list is now persisted. That means you’ll no longer accidentally include a fi le that you thought you
had excluded.

Files that are in the Excluded Changes section are those that you have positively modifi ed as part
of your changes but you have told Team Foundation Server that you do not want to check them in.
Perhaps you have modifi ed a web.config fi le to enable local debugging or you are still working on
some changes and you do not want to check them in yet. If you fi nd that you are frequently having
fi les in the excluded changes window just because you haven’t fi nished working with them then you
should consider making use of the shelvesets feature of Team Foundation Server, which is discussed
in the “Shelving” section later in this chapter.

Finally, the Notes section lists the check-in notes that have been confi gured for the team project.
Check-in notes are covered in the “Shelving” section later in this chapter. In simple terms, check-in
notes are additional string-based metadata that you can confi gure in your repository. The check-in
notes can also optionally be specifi ed as mandatory (such as the Code Reviewer example in
Figure 3-11).

In the next section you fi nd out how to associate work items with a particular check-in, which many
teams fi nd a good practice to ensure that every change is associated with a particular work item
(either a bug or a task). As a result you can have end-to-end requirements traceability (from the ini-
tial story, requirement, or product backlog item through to the task to implement it, through to the
check-in that provided that feature, and fi nally to the build in which the feature was included).

52 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 52

Candidate Changes
Before moving from the Pending Changes view, it is worth discussing Candidate Changes, which is a
feature unique to a Local Workspace in Team Foundation Server 2012 and later.

Inside the Excluded Changes section is a Detected Changes link. Clicking it shows any candidate
changes that Team Foundation Server has detected (see Figure 3-13). If you have made changes in
the fi le system, such as adding or deleting a fi le outside of Visual Studio, then these changes are not
automatically pended by Team Foundation Server. They are fl agged as changes that you might want
to add into your pending changeset. The example in Figure 3-13 shows fi ve candidate changes.

FIGURE 3-13

In this case, the ui-icons image fi le was deleted by the developer from Windows Explorer as she
realized that the fi le was no longer needed in the website. The developer renamed bullet.png to
wingding.png while she had no network connection to Team Foundation Server and was working
offl ine. The developer added testdata.txt in Windows Explorer as a data fi le to be used during
testing, but she did not specifi cally add it to the solution, which is why Visual Studio did not explic-
itly pend an add against it. And fi nally testrun.dat was automatically created in the source tree as
part of a unit test run, and the developer wants to make sure that she and her colleagues never acci-
dentally check in this fi le.

As the developer renamed the bullet.png fi le inside Windows Explorer, Team Foundation Server
has no way to automatically detect that this was a rename operation. It sees the changes as an add
and a delete. If the change had been made inside of Visual Studio from Source Control Explorer
or Solution Explorer then the rename would have been automatically detected and pended as such,
which would have preserved the history of the fi le under the new name. The developer would like
to preserve that this was a rename operation. She selects both bullet.png and wingding.png (by
holding down Ctrl while making the selection) and then selects the Promote as Rename option, as

Check-In Pending Changes ❘ 53

c03.indd 02/28/2014 Page 53

shown in Figure 3-14. This creates a new pending change on wingding.png specifying that it was
renamed from bullet.png.

FIGURE 3-14

Next the developer wants to ensure that no one ever accidentally checks in the fi le testrun.dat as
this is generated as part of a unit test run and doesn’t make up the code of the application. She right-
clicks the fi le and selects Ignore This Local Item (see Figure 3-13). This creates a fi le in the folder
called .tfIgnore that tells TFS to ignore this fi le from ever being added to version control. Note
that the developer could have ignored all fi les with a .dat extension, or fi les called testrun.dat
regardless of where they appear below the folder containing the .tfIgnore fi le. She even could have
ignored the whole HelloWorldMVC.Tests folder. After the .tfIgnore fi le is checked in to version
control, other developers will also ignore that fi le.

.TFIGNORE SYNTAX

The .tfIgnore fi le has a rich syntax of patterns that can be supported when
ignoring fi les from version control. When a .tfIgnore fi le is created by Team
Foundation Server it is created with a set of comments detailing the syntax.
Wildcards (such as * and ?) are supported. For example a line containing Test*
.txt would exclude any fi les in that directory or children of that directory match-
ing the pattern. In addition, prefi xing a line with a ! means that you are specifi cally
including that pattern. For example !\libs*.dll would positively include DLL
fi les in the libs folder (perhaps because they are binary dependencies for your proj-
ect) when DLL fi les are typically excluded from being added to version control.

The developer is left with two candidate changes (see Figure 3-15) that are both checked. She clicks
the Promote button as she wants to make sure that those candidate changes are included in the next
changeset.

54 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 54

FIGURE 3-15

Performing the Check-in
Figure 3-16 shows that you now have the changes and how you want them recorded. There is a
changeset comment, and a work item associated with the check-in will be marked as resolved when
you perform the check-in. Click the Check In button. The changes are then committed to TFS in a
single atomic transaction and given a changeset ID.

Note that if TFS could not have performed the check-in for some reason (perhaps another developer
had checked in a confl icting change to the HomeController.cs fi le while you were editing your ver-
sion) then none of the changes would have been checked in. You would have been notifi ed about the
confl ict and given options to resolve the confl ict before you were allowed to complete the check-in.
Only when all the fi les included in the changeset can be committed to the repository is the changeset
created and given the next incremented changeset ID for that project collection.

Note that as well as checking in from the Pending Changes view, there are a number of other actions
on the drop-down menus next to the Check In button. You can shelve or unshelve code, fi nd shelves-
ets, resolve confl icts, undo all changes, and, if you have an appropriate version of Visual Studio, you
can request a code review using the Code Review feature.

NOTE For more information on Code Review see Chapter 18.

Creating and Administering Check-In Policies
Check-in policies provide a way for the team and individuals to effectively manage quality and the
workfl ow around version control used by the team. Check-in policies are implemented as plug-ins

Check-In Pending Changes ❘ 55

c03.indd 02/28/2014 Page 55

that are run on the client before each check-in to determine if the check-in should be allowed.
Because the code is run on the client, check-in policies are confi gured separately for the .NET-based
clients (such as Visual Studio, the Windows Shell Extensions, or the Team Foundation command
line on Windows) and the Java-based clients provided by Team Explorer Everywhere (such as the
TFS plug-in for Eclipse or the cross-platform command-line client).

FIGURE 3-16

As a team project administrator, to confi gure the check-in policies for Visual Studio users, select
your Team Foundation project in Team Explorer. Then, open the drop-down menu and choose
Settings. On the Settings page, select Source Control under the Team Project section. In the Source
Control Settings dialog, under the Check-in Policy tab (see Figure 3-17), you fi nd several options for
modifying the check-in policies.

56 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 56

FIGURE 3-17

If you click the Add button in the Source Control Settings dialog box (see Figure 3-17), you are
prompted to select a check-in policy type. The list in Figure 3-17 shows the types provided out of
the box in Visual Studio 2013 (note that the Changesets Comments policy is now in the box as of
the 2012 release, but the Testing Policy is no longer shipped by default). More check-in policies are
provided by the Team Foundation Server power tools (which you can see in Figure 3-17), and your
administrator may have installed further custom check-in policies for your organization. Selecting
each of the check-in policies provides more information about it.

After the check-in policy has been created, try checking in code without complying with the new
policies. The policy failure warning is displayed in the pending changes view, as shown in Figure
3-11. When you get a check-in policy failure warning, you can override it and perform the check-in
anyway.

NOTE You should override the check-in policy only when absolutely necessary;
otherwise, it starts to negate the reason for introducing the policy in the fi rst
place. The check-in policy overrides are reported into the data warehouse so
that these can be acted on by the team; you can also confi gure alerts so that an
email is sent out every time a check-in is performed with a policy override. If it
is found that a particular check-in policy is frequently overridden then you might
want to question why it is enabled in the fi rst place. If a particular individual or
group of individuals is found to be frequently overriding a check-in policy, then
you may want to consult with them to help them understand the reason that the
policy is in place.

To set the check-in policies for your Team Explorer Everywhere users, a team project administra-
tor should connect to the team project in Eclipse, view the Settings page in Team Explorer, select

Check-In Pending Changes ❘ 57

c03.indd 02/28/2014 Page 57

Check-In Policies, and then enable the desired check-in policies as provided by Team Explorer
Everywhere. See Figure 3-18.

FIGURE 3-18

Viewing History
To view the history of a fi le or folder, in Source Control Explorer, right-click the fi le or folder and
select View History from the context menu. The View History menu option is usually available via
a context menu from many other places where the fi le is shown, such as when you right-click the fi le
itself in the code editor, from Solution Explorer, in the Pending Changes view, and more. Viewing
history on a fi le opens a new document tab, as shown in Figure 3-19.

FIGURE 3-19

The History window is a tabbed document window in Visual Studio and Eclipse. This enables you
to open multiple History windows for research. Notice that the window in Visual Studio has two
sub-tabs: Changesets and Labels. The History window now gives you a view of the changesets
associated with the fi le or folder, as well as any labels. Notice that the changeset IDs for a fi le are
not sequential. The changeset IDs are incremented globally to represent a point in time of the entire
repository for the project collection. The changeset IDs for the fi le show the changesets in which
that fi le was modifi ed. This is a different versioning mechanism than with systems such as VSS in

58 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 58

which individual fi les have version numbers; in Team Foundation Server the only version number
that matters is the changeset ID.

You have several options from the Changeset sub-tab. You can select a changeset and click the View
button to view the fi le version for that particular changeset. You can click the Changeset Details
button to view the details for a particular changeset, including all the fi les that make up the chang-
eset and any associated work items. You can compare two different versions of a fi le or folder to
see the differences. When viewing the history of a fi le, clicking the Annotate button enables you
to see, line by line, who made what changes to a particular fi le. Selecting Rollback reverts all the
changes made in that particular changeset. You can track the changeset across branches to see if
those changes have made it into the other trees of your source code, and you can also request a code
review if you have an appropriate version of Visual Studio.

Finally, you can select a changeset and click the Get This Version button. This replaces the current
version of this fi le in your workspace with the selected version, enabling you to easily return to an
earlier version of a fi le.

When viewing the history of a single fi le, the History window also enables you to expand the history
of that fi le prior to a rename or a merge from another branch.

Labeling Files
A label is a marker or a tag that can be attached to fi les and folders in Team Foundation version
control. This marker allows all the fi les and folders labeled together to be retrieved as one collective
unit. Although labels are often generated by things like an automated build, in Team Foundation
Server labels are editable by users with the appropriate security permissions. They are not designed
to provide auditable points of reference, for that you should make note of the changeset ID as that
represents an exact point in time of the source code repository.

To create a new label, in Source Control Explorer, right-click the fi le or folder you want to label, and
select Advanced ➪ Apply Label from the context menu. The New Label window displays.

In this window, you can enter the label name and a comment. You can also select the version that
you want to label. You can choose to label by changeset, date, label, latest version, or workspace
version. Click the Create button to create the label.

Notice next that the Create button is a drop-down arrow. Clicking the arrow provides you with
two options. You can create the label as is, or you can create the label and then edit it. If you select
Create and Edit, the label is created, and you are presented a new tab, as shown in Figure 3-20.

This tab enables you to make multiple changes to the label. You can add new fi les to the label. You
can change the version of a fi le that the label is currently applied to. And you can remove fi les from
the label. All of this is made easily accessible by using the Tree View control.

Shelving ❘ 59

c03.indd 02/28/2014 Page 59

FIGURE 3-20

SHELVING

There are times when you won’t be ready to commit your source code into the core repository. For
example, maybe you need to go home for the evening but haven’t been able to check in and you want
to make sure you have a backup of your work. Or say that you are working on solving a bug and
you want to share the changes you have made with a colleague to get his assistance on a particular
issue. Shelving enables you to quickly and easily store fi les on the server without committing them
to the main code base. The collections of stored pending changes that haven’t been committed are
called shelvesets.

WARNING The security settings for a shelveset are determined by the item per-
missions. You must have read pending change permission for the item changes
you want to unshelve.

The process of creating a shelveset is fast and easy. From the Pending Changes page in Team
Explorer, click the Shelve link. Enter a name for your shelveset in the box that displays (see Figure
3-21) and choose among the options to preserve the pending changes locally as well as to evaluate
the check-in policies and check-in notes before shelving.

60 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 60

FIGURE 3-21

Shelvesets contain the same level of information as a changeset, including associated work items,
comments, and check-in notes. Team Foundation Server can store other metadata alongside a shel-
veset as properties, which are used by the Code Review functionality detailed in Chapter 18. Keep
in mind that, unlike with a changeset, the changes are not versioned. Shelvesets can be permanently
deleted (which is something you can’t do with changesets). You can’t link directly to a shelveset from
a work item. You can override the data stored in one of your shelvesets at any time by creating a
new one with the same name as one created previously.

Unshelving source fi les is as easy as shelving them. First,
bring up the Pending Changes page of Team Explorer and
then, from the Actions drop-down, select Find Shelvesets.
By default your own shelvesets are shown as in
Figure 3-22; however, you can also search for the shelves-
ets of a team member by entering her username or display
name, or use * as a wild card, and pressing Enter.

FIGURE 3-22

Shelving ❘ 61

c03.indd 02/28/2014 Page 61

From the shelveset results you can view the shelveset details, unshelve those changes into your
workspace, delete the shelveset completely from the server, or, in certain versions of Visual Studio,
request a code review on the contents of the shelveset.

A feature, originally added in Team Foundation Server 2012, detects and handles confl icts as part of
the unshelve process. In previous versions if you had a confl icting change already in your workspace
then you would not be able to unshelve the contents of the shelveset. In Visual Studio 2013 and
Team Explorer Everywhere 2013, unshelving confl icts are shown in the confl icts editor just like any
other merge confl ict. In addition, due to the new auto-merge capabilities in this previous release, the
likelihood of getting a confl ict on unshelve is much lower (for example, two changes to the same fi le
in different places would be automatically merged when you did the unshelve and would not result
in a confl ict).

KEEP YOUR SHELVE(SET)S TIDY

Although it is easy to fi lter shelvesets in the Find Shelvesets page, having lots of old
and out-of-date shelvesets can make it harder to fi nd the code you are looking for.
They also take up a small amount of resources on the server (as the server has to
store a copy of every fi le in the shelveset). Therefore, it is good practice to delete a
shelveset when you no longer need it, just as you tidy away the contents of shelves
at home from time to time.

Workspaces
As discussed earlier, the majority of this chapter has dealt with using Team Foundation Server ver-
sion control via a local workspace, which is the default option. However, this is a different work-
space type than was available previously with Team Foundation Server. Table 3-1 describes the
two workspace types, how they differ, how your use of TFS version control changes, and when you
would select one workspace type over another.

TABLE 3-1: Local and Server Workspaces Compared

LOCAL SERVER

Description Files are read-write locally on get, no
explicit check-out operation required,
workspace data stored on the local
machine in a hidden $tf folder at the root
of the workspace.

Files are read-only locally on
get, explicit check-out opera-
tion is required, workspace data
stored on the server.

Advantages Easier to work with fi les outside of Visual
Studio or Eclipse.

Offl ine working much improved as no
explicit check-out is required and develop-
ers can work with fi les without needing a
connection to server.

Scales to huge (multi-gigabyte)
workspace sizes.

continues

62 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 62

LOCAL SERVER

Advantages Only fi les that are different from the origi-
nal workspace version are shown in the
Pending Changes view.

More familiar to users of version control
systems such as Subversion.

Optionally allows the ability to
specify exclusive check-outs
(only one person can work on a
fi le at the same time).

Enables optionally setting Visual
Studio to automatically get the
latest version of a fi le before a
check-out is performed.

Notifi cations presented if you
begin editing a fi le that is cur-
rently checked out by another
user.

More familiar to users of version
control systems such as VSS.

Disadvantages Performance of local workspaces degrades
with more fi les in the workspace and the
speed of the hard drive also has an impor-
tant infl uence. Not recommended for
workspaces with more than 100,000 fi les.

Requires the server to be
informed of all changes to
the local fi le system, including
deletes, edits, and so on.

Note that a Team Project Collection administrator can defi ne which workspace type is the default
for projects within that collection by using Team ➪ Team Project Collection Settings ➪ Source
Control and selecting the Workspace Settings tab as shown in Figure 3-23. In addition the server
administrator can enable asynchronous check-outs for server workspaces where an explicit check-
out operation is required. Checking the option enables Visual Studio to check out the fi le automati-
cally in the background without blocking the user because enabling that feature disables features
that may prevent that check-out from succeeding.

Users can convert their local workspace to a server workspace or vice-versa simply from the Manage
Workspaces dialog by going to File ➪ Source Control ➪ Advanced ➪ Workspaces. Select the work-
space and press Edit to get to the Edit Workspace dialog. Then press the >> Advanced button to see
all the properties, as shown in Figure 3-24.

TABLE 3-1 (continued)

Shelving ❘ 63

c03.indd 02/28/2014 Page 63

FIGURE 3-23

FIGURE 3-24

64 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 64

To convert between a local and a server workspace, change the drop-down for the Location
property.

There are other advanced options worth noting at this point. As introduced in Team Foundation
Server 2010, a user can adjust the permissions on the workspace. Table 3-2 shows the different per-
mission features.

TABLE 3-2: Permission Features

PERMISSION DESCRIPTION

Private workspace A private workspace can be used only by its owner.

Public workspace
(limited)

A limited public workspace can be used by any valid user, but only the
workspace owner can check in or administer the workspace.

Public workspace A fully public workspace can be used, checked in, and administered by
any valid user.

Public workspaces make it easier for teams to collaborate when sharing a single machine. One spe-
cifi c example would be merging bug fi xes into a mainline branch. By utilizing a public workspace,
multiple team members can work together on a common machine to resolve merge confl icts, thereby
making the merge process run faster and smoother.

The File Time setting was added in Team Foundation Server 2012. In previous versions of TFS, the
timestamp of the fi le in the local fi le system is the time at which that fi le was downloaded to the
local machine (that is, the last time a get was performed on it that involved a modifi cation to the
fi le). If desired, you can set the File Time option to Check In, which means that the timestamp of the
fi le in the local fi le system is the time at which the fi le was originally checked in to Team Foundation
Server. This makes it easier to work with certain legacy tools or build/deployment processes that rely
on the fi le modifi cation date to determine if an action should be performed on it.

Server Workspaces
In a server workspace, when a get is performed to download the fi le to the local fi le system, the
server tracks which version of the fi le is on the local machine and the fi le is set to read-only. This
way the server is aware of exactly which fi le versions you have locally. Consequently, when you tell
the server you would like to Get Latest, the server can simply send you the latest versions of all the
fi les that you don’t have yet because it is aware of exactly what you have. When you want to edit
the fi le you must perform an explicit check-out operation (however, this is frequently automated for
you by the IDE integration in Visual Studio or Eclipse). If you can check out the fi le (that is, nobody
has an exclusive lock of the fi le) then the fi le is set to read-write in the local fi le system, and you may
perform edits.

Files are listed in your Pending Changes view the moment that they are checked out. For example,
if you start to edit a fi le in Visual Studio, undo your changes, and save the fi le again then it is still
shown with an edit pending. However, if you check in a fi le that has not been modifi ed then the
server removes it from the changeset before it is committed.

www.allitebooks.com

http://www.allitebooks.org

Shelving ❘ 65

c03.indd 02/28/2014 Page 65

Because an explicit check-out operation is performed, the server can notify users (via the console
window) if they are editing a fi le that another user has also checked out. This allows for early col-
laboration between developers when they discover they are working on the same fi le.

However, the user must inform the server about any operation they are performing to their local
fi les. If the server is not aware that a local fi le has been modifi ed or deleted (for example if that
was done outside of Visual Studio) then it does not know to resend that fi le when a Get Latest is
performed. This is the most frequent source of complaints with older versions of Team Foundation
Server that sometimes “get didn’t get” when the user was expecting it to. The requirement to force
a check-out before editing also made it harder for the user to work with tools outside of the source
code management environment.

In addition, as the server needs to be informed explicitly before a fi le is edited, a server workspace
works best when there is a permanent online connection to the server. The offl ine behavior of server
workspaces has been improved with each version of TFS and has been improved further still in the
latest release. (For example, many of the tool windows now work asynchronously so that they do
not lock up the user experience. If they suddenly fi nd that they are waiting a long time for a server
call to return when unknown to the UI, it is because the network connection to the server has been
terminated.) However, server workspaces, by design, work best when an online connection is avail-
able so the experience for frequently disconnected users is not good.

Local Workspaces
With a local workspace, the metadata about the versions of fi les in the workspace are stored in a
hidden folder at the root of the workspace. This hidden folder is called $tf on Windows fi le systems
and .tf on UNIX fi le systems. This allows for edit, add, rename, delete, undo, and some compare
operations to be carried out locally without any communication with a server. The $tf folder con-
tains a copy of the last version of the fi le that was downloaded into the workspace along with some
additional metadata. This allows for edits to be performed on the local fi le system without requiring
an explicit check-out operation to the server, meaning that the fi les in the local workspace can be
read/write on get.

Making the fi les read/write on get dramatically reduces the friction when editing with other tools
outside the source code management environment (such as Notepad on Windows or Xcode on
OS X). The lack of an explicit check-out operation also means that working offl ine is much improved.

Another advantage of local workspaces is that as changes are detected by the disk scanner, it is
easy to determine when you have deleted fi les on disk and so performing a get on those fi les allows
them to be downloaded again. In addition, a fi le is only shown as pending edit (that is, checked out)
when the contents of it are different than the last version downloaded from the server. Therefore, if
you edit a fi le, save it, and then undo the changes and save it, the fi le does not show in the Pending
Changes list as there are no changes to submit.

However, to enable all these great features, the workspace contents have to be scanned and com-
pared with the last copy downloaded into the workspace. Therefore, the larger the number of fi les
in the workspace, the slower this disk-scan operation can become. That said, modern computers
and hard disks are very fast, and users with fewer than 100,000 fi les in their workspaces should not
notice much of a slowdown. Even when they do, it is a linear reduction in performance. The number

66 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 66

of fi les in the local workspace before a slowdown becomes a problem is increased using faster 10K
hard drives or is improved even more when using SSD devices and so on.

One concern that is not mitigated by faster hard drives is if you’re storing large fi les in version con-
trol that are typically outside the domain of a developer, like image fi les, videos, and so on. Your
local workspace folder can become double the size of your most recent versions for all of the fi les
and folders downloaded due to the use of the hidden tracking folder. If disk space is a concern, you
might want to consider a server workspace since only a single copy of each fi le is downloaded.

Because of the reduced friction to developers in using local workspaces, they are the default option
out the box with Team Foundation Server 2013 when using Team Foundation version control.
However, some organizations, especially those requiring a high degree of control, may value the
features provided by server workspaces, in which case the default can set to Server using the dialog
shown in Figure 3-23.

COMMAND-LINE TOOLS

You can manipulate any part of the version control system using the Team Foundation command-
line tool. The tool is called tf.exe (short for Team Foundation) and is installed with Visual
Studio. For UNIX-based systems (such as Mac OS X, Linux, Solaris, and so on), a cross-platform
command-line client (simply tf) is available as part of Team Explorer Everywhere, which is a free
download.

For example, to create a new workspace, simply type the following command:

> tf workspace -new MobileExplorerProject
 -collection:http://tfsServer:8080/tfs/
 YourProjectCollection

In the preceding example, a new workspace is created, called MobileExplorerProject. You can
exercise a great deal of control over the version control system using the tool. For example, you
can manipulate workspaces, add working folders, set permissions, and view changesets, labels, and
much more. The command-line tool has the most functionality available of all the version control
clients for Team Foundation Server. Features are exposed via the command line that are not avail-
able from the user interface in Visual Studio or Eclipse.

You can also use the command-line tool to view the changes in your workspace by simply typing the
following inside the workspace:

> tf status

To view a list of all possible commands using the command-line tool, run the following command:

> tf help

To get more help on a particular command, such as checkin, simply type:

> tf help checkin

http://tfsServer:8080/tfs

Branching and Merging ❘ 67

c03.indd 02/28/2014 Page 67

This provides a list of all options, along with some additional help information. You can also refer
to the MSDN online documentation for more information.

BRANCHING AND MERGING

The use of branching in version control can open up a whole world of possibilities for improving
development productivity through parallelization. Yet, for many developers, branching and merging
are slightly scary and full of uncertainty. Because of a lack of good tooling in the past, many devel-
opers still shy away from branching and merging, despite the good support in Team Foundation
Server. At the other extreme, some people—who see the great branch and merge functionality now
available—can go a little crazy with their newly found power. Overuse of branches can affect devel-
oper productivity and reduce the maintainability of their repository as a result.

No matter which side of the spectrum you fi nd yourself on, the rest of this section explains the fun-
damental principles behind the important branching and merging strategies and provides some key
guiding principles to help you apply them to your organization’s needs. This chapter highlights the
branching and merging tooling available with Team Foundation Server 2013, and then concludes by
walking you through the application of this tooling with some example scenarios.

Branching Demystifi ed
There are lots of terms and concepts peculiar to the world of branching and merging. The following
sections provide some defi nitions and context for those basic terms and concepts.

Branch
A branch is a copy of a set of fi les in a different part of the repository that allows two or more
teams of people to work on the same part of a project in parallel. In Team Foundation Server 2013,
branching is a lightweight server-side operation; when you perform the branch, it doesn’t actually
create new copies of all those fi les on the server. It just creates a record pointing to them and does
not take up any signifi cant extra storage—one of the reasons why creating a new branch containing
thousands or even millions of fi les can be done quickly.

Merge
A merge is the process of taking code in two branches and combining it back into one code base.
For example, if you have two teams of developers working on two branches, and you want to bring
the changes together, then you merge them. If the changes consist simply of edits to different fi les
in the branches, then the merge is simple—but it can get more complicated, depending on what was
edited in both branches.

For example, if the same line of the same fi le has been edited in both branches, the person perform-
ing the merge must make a decision as to which change should take precedence. In some circum-
stances, this results in a hybrid merge, where the combination of the intent behind the two changes

68 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 68

requires a different result than simply the text in those versions being combined. When you branch,
Team Foundation Server keeps track of the relationship between branches, as shown in Figure 3-25.

$/TeamProject/main;C73

base

$/TeamProject/releases/V1.0;L

source
$/TeamProject/main;L

target
merge

FIGURE 3-25

The branch containing the changes that you want to merge is called the source branch. The branch
that you want to push the changes into is the target branch. The common ancestor, that is to say
the changeset that indicates the version from which these branches are derived, is called the base
version. When you merge, you can select a range of changes in the source branch to merge into the
target branch.

Confl ict
If the same fi le has been edited in both the source and target branches and the confl ict can’t be
resolved automatically, Team Foundation Server will fl ag this as a confl ict. For certain changes (such
as a fi le that was edited in two different places), Team Foundation Server can make a good guess
about what should happen (that is, you want to see a fi le containing the changes from both places).
This is called an auto merge. Team Foundation Server 2012 introduced signifi cant improvements
to the auto merge capabilities and the occasions in which they are available. A best practice is to let
the tool perform an auto merge, but you should then validate the merge results afterward to ensure
the correct intent of the two changes has occurred. For example, if two different bugs were fi xed,
you probably want both changes. However, if the two changes were just fi xing the same bug in two
different ways, perhaps a different solution is in order. In most cases, where the development team
has good communication, the changes are a result of different changes being made to the fi le. Auto
merge usually does a great job of merging them together, making it easy for the developer to simply
validate the changes.

There can also be many cases where the actual outcome is unclear, so auto merging is not available.
For example, if you deleted the fi le in one branch and edited it in another, do you want to keep the
fi le with the changes or remove it? The person performing the merge is responsible for deciding the
correct confl ict resolution based on an understanding of the code, and communicating with the
team members who made the confl icting changes to understand their intent.

As with life in general, confl ict is never good in version control. Making the decision about the cor-
rect confl ict resolution in version control can be a complex and time-consuming process. Therefore,
it is best to adopt a branching strategy that minimizes the likelihood of confl icts occurring.

Branching and Merging ❘ 69

c03.indd 02/28/2014 Page 69

However, confl icts will occur, and Team Foundation Server provides the tooling to deal with them,
so confl icts should not be feared.

Branch Relationships
When you branch a folder, the connections between those branches form a standard hierarchical
relationship. The source of the branch is the parent, and the target of the branch is the child, as
shown in Figure 3-26. Children who have the same parent are called sibling branches.

Main
Parent

Branch A
Child

Branch C
Child

Reverse
Integration

Forward
Integration

Baseless merge
siblings

Branch A1
Branch B1

Branch B

Branch B2

FIGURE 3-26

Baseless Merge
A baseless merge is a merging of two arbitrary branches in version control without reference to a
base version. This is sometimes necessary if the source code was originally imported in a fl at struc-
ture without the branch relationship being in place, or if you want to merge between one branch and
another that is not a direct parent or child (for example, Branch A1 and Branch B1 in Figure 3-26).

Because no base version is being used to compare against, the probability of the server detecting
confl icts occurring between the two branches is much higher. For example, if a fi le is renamed in
one branch and edited in the other, it shows up as a fi le delete confl icting with the fi le edit, and
then a fi le add that gives no hint as to which fi le it is related to, or that there is an edit intended
for this fi le in the other branch. For this reason, baseless merges are discouraged. Your branching
model should attempt to constrain most merges between parent and child branches to minimize the
amount of baseless merging required.

70 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 70

Forward/Reverse Integration
Forward integration (FI) occurs when you merge code from a parent branch to the child branch.
Reverse integration (RI) occurs when you merge code from a child branch up to the parent branch.
The terms FI and RI can often fl y around quite freely during a branching debate, so it is important
to understand what they mean. If you are doing feature development in branches, it is common to
use FI at various points during the feature development cycle, and then to use RI at the end. See the
“Feature Branching” section later in this chapter for more information.

Common Branching Strategies
Depending on the organization of your team, and the software that you need to develop, there are
numerous branching strategies that you can adopt, all with various pros and cons. However, just as
every strategy in chess is made up of simple moves, every branching strategy uses one or more com-
binations of some basic techniques. This section details some of the basic techniques, how they are
used, and why.

When developing your own branching strategy, you should take into account the needs of your
organization. In all likelihood, you may adopt a strategy that combines one or many of the basic
techniques described here.

When looking at any strategy for branching and merging, you should keep in mind the following
important rules:

 ➤ Choose simplicity over control.

 ➤ Branch only when you really need to. (You can branch after the fact if you fi nd you need to.)

 ➤ If you ever want to merge two branches, keep the time between merges to a minimum.

 ➤ Ensure that your branch hierarchy matches the path you intend your merges to follow.

NOTE For additional guidance on branching and merging with Team
Foundation Server, see the “Visual Studio TFS Branching Guide” project on
CodePlex at http://vsarbranchingguide.codeplex.com/. This guidance
is created by a community of Visual Studio ALM Rangers, and combines the
knowledge of Microsoft people with Microsoft Most Valued Professionals
(MVPs) and other technical specialists in the community. The guidance also
includes hands-on labs, along with a set of diagrams that can be a useful starting
point when creating your own branching plan.

No Branching
It may be counterintuitive, but the simplest branching technique is to not branch at all. This should
always be your default position. Do not branch unless you know you need to. Remember that you
are using a version control tool that tracks changes over time. You can branch at any point in the
future from any point in the past. This gives you the luxury of not having to create a branch “just in
case”—only create branches when you know you need them.

http://vsarbranchingguide.codeplex.com
http://vsarbranchingguide.codeplex.com
http://vsarbranchingguide.codeplex.com

Branching and Merging ❘ 71

c03.indd 02/28/2014 Page 71

However, there are things you can do to prepare yourself to make branching easier in the future if
you decide you need a branch.

Figure 3-27 illustrates the most important thing that you should do
if you think you might possibly need to branch in the future. When
you fi rst create your team project in Team Foundation Server, cre-
ate a folder called Main and check it in. Then, right-click the folder
in Source Control Explorer and select Branching and Merging ➪
Convert to Branch to get to the screen shown in Figure 3-28.

FIGURE 3-28

With no branching, you only have one code line to work in for all teams. This technique works great
when you have small teams working on the same code base, developing features for the same ver-
sion of the application, and supporting only one version of the application at a time. At some point,
no matter how complex your branching strategy evolves to support your business needs, you need
at least one stable area that is your main (or mainline) code. This is a stable version of the code that
will be used for the build that you will create, test, and deploy.

However, during stabilization and test periods, while you are getting ready to release, it may be nec-
essary for the team to not check in any new code into the code base (that is, undergo a code freeze).
With smaller teams working on a single version, this does not affect productivity because the people
who would be checking in code are busy testing to ensure that the application works, as well as
getting ready for deployment.

FIGURE 3-27

72 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 72

With this technique there is no way to start work on something new before the fi nal build of the cur-
rent version has been performed. The code freeze period can, therefore, be very disruptive because
there is no way to start work on the next version until the current one has shipped. It’s these times
when other strategies become useful for teams of any size, even a team of one.

Branch Per Release
After no branching, the second most common branching technique is branch per release. With this
technique, the branches contain the code for a particular release version, as shown in Figure 3-29.

V1.0

V1.0 V1.1

V2.0

Reverse
integrations

$/TeamProject/Main

$/TeamProject/Releases/V1

$/TeamProject/Releases/V2V2.0

FIGURE 3-29

Development starts in the Main branch. After a period of time, when the software is considered
ready, a branch is made to the V1 branch, and the fi nal builds are performed from it. It is then
released into production (with the code in the fi nal production build getting a label to indicate which
versions of which fi les were in that version). Meanwhile, development of new features for version 2
(V2) continues on the Main branch.

Let’s say that some bugs are discovered in production that must be addressed, and a small change
is necessary to refl ect how the business needs something to work. However, the development group
does not want to include all the work for V2 that has been going on in the Main branch. Therefore,
these changes are made in the V1 branch, and builds are taken from it. Any bug fi xes or changes
that must also be included in the next version (to ensure the bug is still fi xed in that next release) are
merged back (that is, reverse-integrated) into the Main branch. If a bug fi x was already in the Main
branch, but needed to go into V1, then it might simply be merged (that is, forward-integrated) into it.
At a certain point, the build is determined to be good, and a new V1.1 build is performed from the
V1 branch and deployed to production.

During this time, development on the next version can continue uninterrupted without the risk of
features being added into the code accidentally and making their way into the V1.X set of releases.
At a certain point, let’s say that it is decided that V2.0 is ready to go out the door, the mainline of
code is branched again to the V2 branch, and the V2.0 build is created from it. Work can continue
on the next release on the Main branch, but it is now easy to support and release new builds to cus-
tomers running on any version that you want to keep supporting.

Branch per release is very easy to understand and allows many versions to be supported at a time. It
can be extended to multiple supported releases very easily, and makes it trivial to view and compare

Branching and Merging ❘ 73

c03.indd 02/28/2014 Page 73

the code that was included in a particular version of the application. Branch per release is well-
suited to organizations that must support multiple versions of the code in parallel—such as a typical
software vendor.

However, for a particular release, there is still no more parallelism of development than in a stan-
dard “no branching” strategy. Also, if the organization must only support two or three versions
at a time (that is, the latest version, the previous version, and, perhaps, the version currently being
tested by the business) then this model can lead to a number of stale branches. Although having lots
of old, stale branches doesn’t affect the performance of Team Foundation Server, or even cause any
signifi cant additional storage requirements, it can clutter the repository and make it diffi cult to fi nd
the versions you are interested in—especially if the organization releases new versions frequently. If
this is the case, you may want to move old branches into an Archive folder, and only have the active
branches (that is, the versions that the development team are currently supporting) in the Releases
folder.

Code-promotion Branching
An alternative to the branch per release technique is code-promotion branching (or promotion-level
branching). This technique involves splitting the branches into different promotion levels, as shown
in Figure 3-30.

V1.0

V1.0 V1.1

V1.1

merge

$/TeamProject/Main

$/TeamProject/Releases/Test

$/TeamProject/Releases/ProdV1.1V1.0

FIGURE 3-30

As before, development starts with just the Main branch. When the development team is ready to
test the application with the business, it pushes the code to the Test branch (also often called the
QA branch). While the code is being tested, work on the next development version is carried out in
the Main branch. If any fi xes are required during testing, they can be developed on the Test branch
and merged back into the Main branch for inclusion in the next release. When the code is ready to
release, it is branched again from Test to Prod. When the next release cycle comes along, the same
is done again. Changes are merged from Main to Test and then Test to Prod.

Code-promotion branching works well in environments that have a single version running in pro-
duction, but have long test-validation cycles that do not involve all of the development team. This
allows development to continue on the next version in Main while test and stabilization of the build
occurs in the Test branch. It also makes it trivial for the development team to look at the code cur-
rently on each system. Finally, the branch structure makes it easy to create an automated build and

74 ❘ CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c03.indd 02/28/2014 Page 74

deployment system using Team Foundation Build that can automatically update the QA/Test envi-
ronment as code is pushed to the QA branch.

NOTE For more information on the build capabilities of Team Foundation
Server, see Chapter 5.

Feature Branching
The previous branching strategies involve a single team working on the system in its entirety as they
work toward a release. All features for that release are developed in parallel, and the build can be
deployed only when all features in fl ight have been completed and tested. However, in large sys-
tems, or systems that require very frequent deployment (such as a large commercial website), feature
branching (or branch per feature), as shown in Figure 3-31, can be useful.

F1

F3

F2

F4 $/TeamProject/Feature/F4

$/TeamProject/Feature/F1

$/TeamProject/Main

$/TeamProject/Feature/F3

$/TeamProject/Feature/F2

FIGURE 3-31

Feature branching is used when a project requires multiple teams to be working on the same code
base in parallel. In Figure 3-31, you see four feature teams working in separate branches (F1, F2, F3,
and F4). Note that in a real branching structure, the feature branches themselves would likely have
meaningful names such as FlightSelling, InsuranceExcess, or whatever shorthand is used by
the project to refer to the feature under development. The Main branch is considered “gold code,”
which means that no active development goes on directly in this branch. However, a feature must be
reverse-integrated into this branch for it to appear in the fi nal release build and for other teams to
pick it up.

Initially, F1 is started with a branch from Main. But, while F1 is being developed, second and third
teams start F2 and F3, respectively. At the end of development of the feature, F1 is merged back into
the Main branch, and the F1 branch is deleted. Then that team starts on feature F4. The next feature
to fi nish is F3, followed by F2. At each point, after the feature is merged into the Main branch, a new
version of the software is released to the public website, but only one version is supported at any time.

Feature branching allows for a large amount of parallel development. However, this comes at the
cost of delaying the pain of integrating each team’s changes together until the feature is complete
and you are merging the feature branch back into the Main branch. For example, in Figure 3-31,

Summary ❘ 75

c03.indd 02/28/2014 Page 75

when merging the F2 branch, all changes and inevitable confl icts introduced by features F1, F2, F3,
and F4 must be analyzed and resolved.

The longer a period of time that code is separated into branches, the more independent changes
occur, and, therefore, the greater the likelihood of merge confl icts. To minimize confl icts, and to
reduce the amount of integration debt building up, you should do the following:

 ➤ Keep the life of a feature short—The time taken to develop features should be as short as
possible, and should be merged back into the Main branch as soon as possible.

 ➤ Take integrations from the Main branch regularly—In the example shown in Figure 3-31,
when F1 is merged back into Main, the feature teams still working on their features should
merge those changes into their feature branches at the earliest possible convenient point.

 ➤ Organize features into discrete areas in the code base—Having the code related to a particu-
lar feature in one area will reduce the amount of common code that is being edited in mul-
tiple branches, and, therefore, reduce the risk of making confl icting changes during feature
development. Often, the number of teams that can be working in parallel is defi ned by the
number of discrete areas of code in the repository.

When using feature branching, the whole team doesn’t necessarily have to be involved. For example,
one or two developers might split off from the rest of the team to go work on a well-isolated feature
when there is a risk of the move not being possible (that is, they are working on a proof of con-
cept), or when it is decided that the current release should not wait for that particular feature to be
implemented.

SUMMARY

 In this chapter, you examined the core features of Team Foundation version control and how to use
it for day-to-day development.

You found out how to use Source Control Explorer and how to check in code, showing you the
concepts of workspaces, changesets, and shelvesets. You learned how to view the history of fi les and
apply labels. The chapter also covered advanced concepts, such as workspaces and the differences
between local and server workspaces.

Version control is the most important tool you can use to help you manage your development pro-
cess; it provides an effective way of organizing your source code. The branch and merge capabilities
of Team Foundation Server not only allow for some complex software confi guration management
scenarios, but they also provide the tooling to help understand what is happening with changes in
your version control repository. Chapter 4, which covers Git in Team Foundation Server, shows a
different style of version control and branching.

Finally, Part V of this book talks more about software development in general and provides guid-
ance about how to make sure the code that you are checking in is good code.

c04.indd 02/28/2014 Page 77

Distributed Version Control
with Git and Team Foundation
Server

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the fundamentals of Distributed Version Control
with Git

 ➤ Getting started with the Visual Studio Tools for Git

 ➤ Merging Changes with Git and Visual Studio

Since the fi rst release of Team Foundation Server there’s only been one choice when it comes
to version control. While other parts of the system—most notably work item tracking—pro-
vided choice, version control is a single-choice endeavor. But the world of software develop-
ment keeps changing, and for some folks, centralized Team Foundation Version Control as it
stands today isn’t working out.

Yet it turns out even other products weren’t cutting it for people out in the larger software
development community back when Team Foundation Server was just getting going. Just less
than a year before Team Foundation Server 2005’s fi nal release, Linus Torvalds, the father of
Linux, sprang Git on the software development community. Over the years, Git has become
one of the most popular products for managing source code. It’s blindingly fast, provides com-
plete local history, and isn’t dependent on a centralized server. In fact, Git is known as
a distributed version control system.

4

78 ❘ CHAPTER 4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c04.indd 02/28/2014 Page 78

NOTE This chapter is focused on using Git with Visual Studio and Team
Foundation Server. If you want to dig into Git further, there are a number of
great resources on the Internet, including “the” Git book, Pro Git by Scott
Chacon (Apress, 2009). It’s available in print and online at http://git-scm
.com/book.

FUNDAMENTALS OF DISTRIBUTED VERSION CONTROL
WITH GIT

Git isn’t your traditional version control product. In fact, Linus didn’t set out necessarily to write
one. Yet Git has become such a force in the software development community that it’s mentioned on
commercial television news broadcast and convinced Microsoft they were better off embracing it,
rather than writing their own.

NOTE When questioned early on about his plans to handle renames, Linus
had an interesting reply. He wrote: “You can represent renames on top of
git — git itself really doesn’t care. In many ways you can just see git as a fi lesys-
tem — it’s content-addressable, and it has a notion of versioning, but I
really really designed it coming at the problem from the viewpoint of a _fi lesys-
tem_ person (hey, kernels is what I do), and I actually have absolutely
zero interest in creating a traditional SCM system.” From http://marc
.info/?l=linux-kernel&m=111314792424707.

When you approach Git for the fi rst time, it’s important to leave your assumptions at the door. In
particular, while you may be very comfortable with other tools, including Team Foundation Version
Control, Git has surprises for just about everyone. Search the Internet or popular social services like
Twitter for “git hurts” or “git pain” and you’ll fi nd no lack of fodder. If it hurts so bad, then why is
it so popular?

Git is a part of new generation of distributed version control systems. By not relying upon a central
server, they provide immense power and fl exibility for the developer. With Git, you start by defi n-
ing a repository—this can be local or on a server. If it’s not local, you bring a copy local through
a process known as cloning. From there you work on your source fi les, making changes as you see
fi t. When you reach an interesting point, you can commit your changes to your local “repo” includ-
ing comments. You can do this over and over. If you decide you’re ready to share, you can share
your changes. How you do this depends upon a number of things but needless to say once you do,
someone else can clone the repo. When they do they get all of your commits locally on their system.
You never have to worry about something not being there with Git. It’s all or nothing. And just like
other version control systems, Git supports branches. However, they’re much lighter weight and can
be private forever to a particular repo—you don’t have to share if you don’t want to. It’s this type
of fl exibility that has won over the hearts and minds of developers worldwide. And did we mention

http://git-scm
http://marc

Getting Started with the Visual Studio Tools for Git ❘ 79

c04.indd 02/28/2014 Page 79

it’s fast? Because there’s no network involved when you do a commit, Git doesn’t get in your way
encouraging you to commit and branch whenever you want.

That said, when you pick a version control technology, you have to consider the team and the orga-
nization. The good news is you can mix and match Team Foundation Version Control and Git in the
same project collection.

GETTING STARTED WITH THE VISUAL STUDIO TOOLS FOR GIT

If you want to use Git with Visual Studio and Team Foundation Server, you’ll want to be on the
2013 release. While Microsoft has released client support for Git in the form of a download package
for Visual Studio 2012, they’re no longer investing in it and it has limitations. In addition, every-
thing discussed in this chapter works on-premises and in the cloud with Visual Studio Online. That
said, while the 2013 features set is very rich, it’s not complete relative to the number of things you
can do with Git clients. There are times you might need to jump down to the command prompt.
Visit http://aka.ms/gitcmd for a nice list of operations and how-to information. That said,
Microsoft is promising to update the tooling on both the server and client regularly, quite possibly
by the time this book is in print.

As mentioned earlier, you can get started using Git directly on the client without a server or start
with a server-hosted repo. We’ll talk about both but start with a remote repository created when you
create a Team Project. When you run the New Team Project wizard from Visual Studio 2013, you’ll
now have an option to specify which version control repository type you want, as shown in
Figure 4-1.

FIGURE 4-1

http://aka.ms/gitcmd

80 ❘ CHAPTER 4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c04.indd 02/28/2014 Page 80

Once you complete the wizard and Team Foundation Server has created your Team Project, you’ll
be ready to start with Git. A common question that comes up is if you can mix Team Foundation
Version Control and Git in the same team project. The answer as this chapter is being written is no.
However, like other items on Microsoft’s backlog, you never know if the answer will remain no.
You can vote for this feature and anything else you want by visiting the Visual Studio User Voice site
at http://aka.ms/vsuservoice.

Clone
Once you’ve created the team project from Visual Studio, the Team Explorer window will encourage
you to clone your new repository, similar to Figure 4-2.

FIGURE 4-2

When you click the link provided, Team Explorer replaces the message with textboxes that are
auto-populated with the remote repository location and the location on your local hard drive where
it should clone the repository (see Figure 4-3).

You can accept the path or adjust it as you see fi t and then click the Clone button. When you’re
cloning a remote repo that is empty and new, it’s near instantaneous. However, if the remote reposi-
tory has been in use for a while (it’s possible it could be quite large if more than just source fi les are

http://aka.ms/vsuservoice

Getting Started with the Visual Studio Tools for Git ❘ 81

c04.indd 02/28/2014 Page 81

stored and the repo is in active use), Visual Studio needs to copy down all of the fi les in the reposi-
tory as well as all of the changes. This is a signifi cant difference from doing a traditional “get latest”
with Team Foundation Version Control. You’ll receive a message once the clone process is done in
Team Explorer. At this point you’re ready to work with your copy of the repository.

FIGURE 4-3

NOTE Because you’re bringing down everything when you clone a repository,
you may need to adjust your thinking when using Git. Typically you’ll want to
have more repositories — something supported in Team Foundation Server —
that are specialized around a small set of solutions and projects instead of a giant
repo. In addition, while you can commit binary fi les to a Git repo, the raison
d’être for Git is managing source fi les and you won’t have Team Foundation
Version Control’s cloak feature to exclude large folders or fi les and their history
when you clone.

However, if this is your fi rst time using the Git integration, you might want to adjust a couple of
settings. Git identifi es every commit with information about who did the commit. This identity

82 ❘ CHAPTER 4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c04.indd 02/28/2014 Page 82

information is in the form of a display name and an email address. From the Home page of Team
Explorer, you’ll want to click the Settings button. On the Settings page, near the bottom, you’ll fi nd
a section entitled Git with two options (see Figure 4-4).

FIGURE 4-4

If you select the Git Settings option, you’ll get a page to provide your preferred display name, email
address, and if desired an author image (see Figure 4-5). If your organization has your email address
stored in Active Directory, Team Explorer will use it. You can change it if desired. In addition,
you can specify your preferred default local repo location when you clone repositories. In addition,
Team Foundation Server supports author images so you more easily see the author of each commit.
When using Team Foundation Server-based repositories, your image will be pulled from your profi le
(adjustable via the Web Portal). The Enable Download option is there in case you’re using remote
repositories on locations like GitHub.

The other interesting option on the Settings page under the Git section is an option to install third-
party tools. This option can also appear at the top of your Team Explorer window with the wording

Getting Started with the Visual Studio Tools for Git ❘ 83

c04.indd 02/28/2014 Page 83

“Install 3rd-Party Git Command Prompt Tools.” If you choose this option, Visual Studio launches
the Web Platform Installer to download and run the Git for Windows installer from http://
msysgit.github.io/. While this installer is convenient, it silently installs the tools with less than
optimal settings at the time this chapter was written. If you download the tools individually, you’ll
fi nd you have more control over settings like desktop icons. Visit http://aka.ms/gitcmdline for
a step-by-step post on how to install the tools. Regardless of how you install them, you’ll fi nd these
tools are worth having installed as your experience with Git increases.

FIGURE 4-5

Commit
Once you’ve created a Git-enabled team project and cloned the empty repository, you’re ready to
write some code and start committing. This part starts out in a very familiar fashion. Create a new
Visual Studio project, set the location to the directory that you cloned the local repo to, check the
Add to Source Control option, and click OK, as shown in Figure 4-6.

http://msysgit.github.io
http://msysgit.github.io
http://aka.ms/gitcmdline
http://msysgit.github.io
http://msysgit.github.io
http://msysgit.github.io
http://msysgit.github.io

84 ❘ CHAPTER 4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c04.indd 02/28/2014 Page 84

FIGURE 4-6

Visual Studio creates your project. Just like with a project you’ve put under Team Foundation
Version Control, you’ll get glyphs on your items in the Solution Explorer window. At this point,
you might do some work like renaming the fi les or even writing some code. When you’re ready, go
to Team Explorer and from the Home page click the Changes button. You can also right-click the
Solution node in Solution Explorer and select the Commit option from the context menu. Regardless
of which option you choose, you’re taken to the Changes page in Team Explorer, shown in
Figure 4-7.

You need to add a comment, known as a commit message. You can associate a work item, and then
specify which fi les are included or not, as well as evaluate any candidate changes, which are listed
under the Untracked Files section. They indicate changes that Visual Studio detected but isn’t sure
should be included.

Currently, the My Work concept that’s available when using Team Foundation Version Control from
Visual Studio Premium or Ultimate is not available when working with Git-based team projects.
Thus to associate a work item with a commit, you need to know the work item’s ID. You have the
choice of using the Add Work Item by ID option (available only if you have a connection to your
Team Foundation Server) or adding a # symbol plus the work item ID to your commit message.

Getting Started with the Visual Studio Tools for Git ❘ 85

c04.indd 02/28/2014 Page 85

The Queries option, which also works only if you have a connection to your Team Foundation
Server, will let you run a query stored in your My Queries folder. When you store the work item ID
in the commit message, Team Foundation Server can link work items to commits once the changes
make their way to your Team Foundation Server’s repo. However, at this stage you’re just com-
mitting to your local repo. Once you have the page adjusted properly, click Commit to save your
changes locally. You continue to do this until you’re ready to share your work with your team.

FIGURE 4-7

Once the commit is complete, Team Explorer displays a message letting you know your change was
saved locally. Git uses object identifi ers based on a hash function for your commits. You can click
the link and view the details of your commit. You can commit as much as you want and see your
changes at any time. You can do this by going to the Unsynced Commits page, which will display
your outgoing commits (see Figure 4-8). You can use the View History command from the Actions
menu to get a full list of changes. From there, you can access the commit details by double-clicking
an item or pressing Enter. In addition, View History is available on the content menu when you
right-click an item in the Solution Explorer.

86 ❘ CHAPTER 4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c04.indd 02/28/2014 Page 86

FIGURE 4-8

Push, Pull, and Fetch
Once you’re ready to share with your team, you need to synchronize your repo with Team
Foundation Server by pushing your changes from your local repository to the server. From the
Unsynced Commits page you have the option of only sending your changes to the server. In addi-
tion, you can pull any changes that have been committed to the team project repository by your
team. You preview those incoming changes by using the fetch command. If you use the Sync
button, Team Explorer will pull and push at the same time. Assuming no confl icts, Team Explorer
displays a message like the one in Figure 4-9 telling you it successfully synchronized the incoming
and outgoing commits.

Sometimes you want to make a change and get it pushed up to your team right away. When you’re
on the Changes page and you’ve entered a commit message, you can expand the Commit button’s

Getting Started with the Visual Studio Tools for Git ❘ 87

c04.indd 02/28/2014 Page 87

menu to see two additional options. As you can see in Figure 4-10, you can commit and push or
commit and sync in one step.

FIGURE 4-9

FIGURE 4-10

88 ❘ CHAPTER 4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c04.indd 02/28/2014 Page 88

MERGING CHANGES WITH GIT AND VISUAL STUDIO

Working with a distributed version control product means two team members can change the same
source fi le, and then you’ll need to merge the changes. As mentioned earlier, you can use the fetch
command to see if anyone’s made changes to your team’s repository. You can bring the changes
down using the pull command as long as you don’t have any uncommitted changes to fi les affected
by the pull (see Figure 4-11).

FIGURE 4-11

When you perform a pull (or a sync), and there are confl icts, Team Explorer displays a message (see
Figure 4-12) letting you know and providing a link to use to resolve the confl ict. When you start the
resolving process, you get a list of all the confl icts. You then can select a confl ict and decide what
to do — you can merge using a tool like Visual Studio’s built-in merge tool; take the remote fi le; or
keep your local changes (see Figure 4-13).

FIGURE 4-12

As you resolve the changes, you’ll see them added to the list in the Resolve Confl icts page (see
Figure 4-14). Once you’re done, you need to commit your merge using the Commit Merge button.
Once you do that, you’ll be taken to the Changes page where you commit the merge to your local
repo and, if ready, push the merge to your team.

Branch Creation
Many times you’ll want to work on a section of code without having to deal with changes from
other team members. Maybe you need to write a new algorithm and you want to try a couple
scenarios. Branches provide a way to work in isolation. Unlike Team Foundation Version Control
branches, Git branches are lightweight and easy to use locally on their own or shared with your
team. Branches have their own commit history, making them very fl exible and powerful.

Merging Changes with Git and Visual Studio ❘ 89

c04.indd 02/28/2014 Page 89

A key concept in working with branches in Git is that you branch in version space, not path space.
In other words, in Git, your repo has only one folder structure. When you switch branches, fi les and
folders are manipulated under the covers to match the branch you’re working with. In comparison,
when you branch in Team Foundation Version Control, each branch is an object that you see relative
to other branches and folders.

FIGURE 4-13

FIGURE 4-14

To create a branch, you click the Branches button on the Home page. From there you select the New
Branch command, which causes Team Explorer to open up a page, where you provide a name and

90 ❘ CHAPTER 4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c04.indd 02/28/2014 Page 90

specify the source branch (see Figure 4-15). If you check out the branch at creation time, Visual
Studio will switch to that branch once it has created it.

FIGURE 4-15

Once the branch is created, you can make changes to your code, and commit as much as you want.
You never have to share it if you don’t want to. However, sometimes you do want to share your
work with others. You can do this by publishing the branch. Once you use the Publish command
from the Branches page, other team members can get a copy by using the New Branch command
and selecting your branch from the list (see Figure 4-16).

FIGURE 4-16

At any point you can merge changes from one branch to another by using the Merge command. This
command lets you pick the direction of the merge (see Figure 4-17).

Once you click Merge, your local repo will be updated with the changes. If there are confl icts, you’ll
need to resolve them and then commit. Finally, just like before, you need to push the changes, if
desired, to your team’s repo using a push.

Summary ❘ 91

c04.indd 02/28/2014 Page 91

FIGURE 4-17

SUMMAR Y

Git brings industry-leading version control features to Team Foundation Server. Microsoft
surprised the industry by fully embracing Git rather than creating their own distributed version
control system.

This chapter provided an overview of how to use Git with Visual Studio and Team Foundation
Server. But it’s a very deep and rich product, both on the Git side and in Microsoft’s implementation.

In Chapter 5, you’ll learn how Team Build helps teams take the pulse of their project to see if they’re
ready to ship. You’ll learn how Team Build works with both Team Foundation Version Control and
Git-based repositories and how to customize your build proces s.

c05.indd 03/03/2014 Page 93

Team Foundation Build
WHAT’S IN THIS CHAPTER?

 ➤ Getting to know build automation

 ➤ Introducing Team Foundation Build

 ➤ Looking at what’s new in Team Foundation Server 2013

 ➤ Understanding the Team Foundation Build architecture

 ➤ Working with builds

 ➤ Understanding the Team Build process

This chapter examines the build automation capabilities of Team Foundation Server—what
is provided out of the box, how to use it, and how to customize it to suit your organizational
requirements. But fi rst, let’s take a quick look at build automation in general.

After version control, automating the build is the second most important thing you can do to
improve the quality of your software.

Only after the parts of your application come together can you tell if your application works
and does what it is supposed to. Assembling the parts of an application is often a complex,
time-consuming, and error-prone process. There are so many parts to building the application
that without an automated build, the activity usually falls to one or two individuals on the
team who know the secret. Without an automated build, even they sometimes get it wrong,
with show-stopping consequences that are often discovered very late, making any mistakes
expensive to fi x.

Imagine having to recall an entire manufacturing run of a DVD because you missed an impor-
tant fi le. Worse still, imagine accidentally including the source code for your application in a
web distribution, or leaving embarrassing test data in the application when it was deployed
to production. All these things make headlines when they happen to organizations that build
software, yet they can easily be avoided.

5

94 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 94

Integration of software components is the diffi cult part. Teams work on their features in isolation,
making various assumptions about how other parts of the system function. Only after the parts are
assembled are the assumptions tested. If you integrate early and often, the integrations are tested
as soon as possible in the development process—therefore reducing the cost of fi xing the inevitable
issues.

It should be trivial for everyone involved in the project to run a copy of the latest build. Only then
can you tell if your software works and does what it is supposed to. Only then can you tell if you are
going to have your product ready on time. A regular, automated build is the heartbeat of your team.

In Visual Studio 2013, developers are usually able to run their application by pressing the infa-
mous F5 key to run the code in debug mode. This assembles the code on the local workstation and
executes it. This makes it trivial for developers to test part of the code base. But what it doesn’t do is
ensure that the code works with all the latest changes committed by other members of the team. In
addition, pressing the F5 key simply compiles the code that’s ready for manual testing. As part of an
automated build, you can also run a full suite of automated tests, giving you a high degree of confi -
dence that no changes that have been introduced have broken something elsewhere.

Pressing the F5 key is easy for a developer. You want your automated build to make it just as easy
to run your application—if not easier.

TEAM FOUNDATION BUILD

Build automation is so important to the quality of the software development process that Team
Foundation Server 2013 provides build services as part of the core platform.

NOTE Chapter 2 provides more information on the other services offered by
Team Foundation Server (including version control, work item tracking, and
reporting).

The build services provided by Team Foundation Server offer an enterprise-class, distributed build
platform. Utilization of the build services is done inside the development environment in which the
code is being created (either in Visual Studio or Eclipse). Information on the build services is tightly
integrated with the version control, work item tracking, and the testing features provided by Team
Foundation Server.

In addition, data obtained from the build system is fed into the Team Foundation Server data ware-
house, thus allowing for the analysis of historical reports and trends. The build services provide
notifi cations on build events using the standard Team Foundation Server event publication mecha-
nisms, which means for example that email alerts can easily be sent to the team regarding build
status. As part of the standard installation in Visual Studio 2013, the Build Notifi cations tool is
installed alongside Visual Studio, which can provide the capability for additional build notifi cations
via the application that runs in the system notifi cation area.

Team Foundation Server provides a number of ways to trigger the build. Builds may be started by a
manual request, automatically triggered by a check-in to Team Foundation Server version control,

What’s New in Team Foundation Build 2013 ❘ 95

c05.indd 03/03/2014 Page 95

or run on a specifi ed schedule. Team Foundation Server also has a concept called gated check-ins.
A gated check-in means that a developer’s changes must successfully build on the build server when
merged with the latest code from version control before the code is then checked in on behalf of the
user, thus preventing “broken” code from ever being checked in.

Team Foundation Build also has a full API in .NET or Java. These are the same APIs used by the
Visual Studio and Eclipse integrations as well as the build notifi cation tool. They provide you with
deep integration into the build services. Combined with the build events, there is a highly extensible
platform to integrate any additional systems that you can imagine.

BRIAN THE BUILD BUNNY

Some integrations with Team Foundation Server are more imaginative than others.
A popular way of encouraging the team to pay attention to the current state of the
build is to create creative and eye-catching build status notifi cation mechanisms.
Although wall displays, lava lamps, or even integrations with Microsoft Kinect are
a popular way of communicating this information to the team, one of the authors
of this book has even gone so far as to connect a talking, moving robot rabbit into
Team Foundation Server. For more information on this project (including a prize-
winning YouTube video and full source code), see http://aka.ms/BuildBunny.

WHAT’S NEW IN TEAM FOUNDATION BUILD 2013

The build services offered by Team Foundation Server have changed signifi cantly since the initial
version in Team Foundation Server 2005.

In the fi rst version, Team Foundation Build was based heavily on MSBuild, along with a build server
machine called the build agent. All confi guration of the build was done by editing fi les stored in
version control.

In the 2008 release, build management was greatly improved with the capability to trigger builds
automatically, queue builds, and manage builds. This second version introduced the Build Defi nition
as a Team Foundation Server entity in its own right that contained various confi guration data about
the build (such as the build name, workspace defi nition, default build agent, drop location, and
build trigger). The fi le describing how to do the build (the TFSBuild.proj fi le) was still based on
MSBuild.

The 2010 release continued much of the work done in 2008, with some notable changes that
included the following:

 ➤ Windows Workfl ow 4.0

 ➤ Gated check-ins

 ➤ Private builds

 ➤ Build notifi cations

http://aka.ms/BuildBunny

96 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 96

 ➤ Build controller

 ➤ Properties exposed for common customizations

 ➤ Integration with symbol and source server

 ➤ Enhanced build deletion options

By the 2010 release, Team Build’s capabilities had matured signifi cantly since the original release;
therefore, the 2012 release was more evolutionary than revolutionary. However, there were a few
signifi cant changes worth noting:

 ➤ Hosted build services

 ➤ Drop to version control

 ➤ Batched gated check-in

 ➤ Changes to the Build Service protocol

 ➤ Updated build report

For the 2013 release, Microsoft continued the evolutionary approach by changing the way things
work and removing support for older features. Some of the changes are signifi cant and hint about
the future, while other changes are minor like moving to Windows Workfl ow 4.5. Some of the big-
ger changes include:

 ➤ Support for Git-based repositories

 ➤ Simplifi ed building and testing of Windows Store apps

 ➤ MSTest support removed

 ➤ Enhanced hosted build services

 ➤ Build output changes

 ➤ Simplifi ed process template

 ➤ Built-in support for calling scripts

Support for Git-based Repositories
As with version control, the addition of Git support to Team Foundation Server means Team Build
needed to add support as well. For a majority of the features of Team Build, it just works. This
means compiling your bits, testing them, dropping output and publishing symbols, and build
notifi cations all work as expected. However, due to the signifi cant differences between Team
Foundation version control and Git, there are differences in the way Team Build works. The major
differences are:

 ➤ No support for gated check-in

 ➤ Source settings support both Team Foundation Git repositories as well as remote repositories

 ➤ Sources aren’t tagged as part of the build (Builds with Team Foundation Version Control
label by default. The semantics are not the same for Git.)

What’s New in Team Foundation Build 2013 ❘ 97

c05.indd 03/03/2014 Page 97

Beyond that, most things work the same. The Build hub in Team Explorer has the same options
regardless of which type of version control you’re using. Thus, when you create a new build, the
Build Defi nition editor opens up just as before. You will note there is a Git-specifi c template now
like what’s shown in Figure 5-1. Later in the chapter, the process of creating a build is discussed and
any Git-specifi c subtleties are called out there as well as later when the build process is covered.

FIGURE 5-1

Simplifi ed Building and Testing of Windows Store Apps
With the release of Windows 8, Microsoft introduced a new type of application optimized for touch
screens and tablets but that is also good for desktop computers. These apps were originally known
as Metro apps, but as of this writing are known as Windows Store apps. Building and testing these
apps using the 2012 Team Build release wasn’t generally straightforward. The good news is that
with the release of Windows 8.1 and Windows Server 2012 R2 and Team Foundation Server 2013,
things are a lot easier. That said, you’ll still generally want a dedicated build agent for this par-
ticular type of build. In addition, you’ll need a dedicated account that can run interactively on the
build agent. You can of course use a real person’s account, but we recommend you create a special
account just for building Windows Store apps so you can lock it down for traceability, and so on.

In order to successfully build and test your Windows Store apps, you’ll need a build agent running
Windows 8.1 or Windows Server 2012 R2. You’ll then need to install Visual Studio 2013. Next
you’ll need to install the Team Foundation Build agent software. Then you confi gure your build
agent to run interactively using the account you created earlier. In addition, if you want to run unit

98 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 98

tests, you’ll need to acquire a Developer License (which requires a valid Microsoft account) and
either install your trusted publishing certifi cate for the Windows Store or generate a temporary one.
You’ll note that you need to update the Developer License every 30 days. Finally, you’ll want to cre-
ate a tag for this agent, which you’ll then use (and which is discussed later) when you defi ne your
builds. Figure 5-2 shows a completed Build Service Properties dialog, where you confi gure all of
these settings.

FIGURE 5-2

BUILDING, TESTING, AND SHIPPING WINDOWS 8 STORE APPS

There’s a lot more to building, testing, and shipping Windows 8 Store apps. The
documentation at http://aka.ms/buildwin81 and the following article http:
//aka.ms/buildwin80 provide additional insights. In addition, there are a num-
ber of books on the market including Windows 8.1 Apps with XAML and C#
Unleashed by Adam Nathan (Sams Publishing, 2013) and Building Windows 8
Apps with JavaScript by Chris Sells, Brandon Satrom, and Don Box (Addison
Wesley Professional, 2012).

http://aka.ms/buildwin81

What’s New in Team Foundation Build 2013 ❘ 99

c05.indd 03/03/2014 Page 99

MSTest Support Removed
In Visual Studio 2012, Microsoft introduced a new test runner that was modern, fast, and open.
In doing so, it put MSTest on notice that its days were numbered. Starting with Team Foundation
Server 2013, new builds that are created using the new templates no longer support MSTest. Your
existing builds from 2012 and earlier will continue to run but only with the pre-2013 templates.
While the Team Foundation Server installation installs the MSTest assemblies, you must install
Visual Studio 2013 on build machines for running tests including legacy MSTest ones.

Enhanced Hosted Build Services
Visual Studio Online, the hosted version of Team Foundation Server (www.visualstudio
.com), not only provides a hosted Team Foundation Server instance for version control and work
item tracking but also provides virtualized hosted build infrastructure. By default, every project col-
lection in the hosted service also has a Hosted Build Controller available that you can use for your
builds. When a build is queued, the hosted service creates a new virtual machine, attaches it to your
project collection, executes the build, and then returns the machine into the pool ready for the next
account that wants to perform a build. Because the build virtual machines are created from a fresh
image for each invocation, incremental builds are not currently supported. In addition, if your build
requires any dependencies that are not pre-installed in the standard hosted image, then you need to
have those checked in to version control and confi gure those as part of the build, or use Nuget. As of
this writing, Microsoft continues an active update process to the service about every three weeks.

Build Output Changes
One long-time issue with the way Team Build outputs binaries to the drop share is that it would
just dump everything into one folder. To fi x this, you often had to resort to customizing your build
process or in Team Build 2012 using .NET 4.5 using a bunch of MSBuild arguments. In Team Build
2013, you can now use the Output location to control how Team Build lays out your fi les.

There are three choices:

 ➤ SingleFolder maintains the same behavior as prior releases of Team Build, where all the out-
put is copied into a single drop folder.

 ➤ PerProject copies output into subfolders based on the solutions or code projects that you’re
building. The key thing to understand is that you get only one folder per item specifi ed in the
projects option. If you only specify a single solution, then a folder with the name of the solu-
tion is created and all the fi les are put inside it. This option makes sense if you’re building
more than one solution or you’re going to specify Visual Studio projects individually.

 ➤ AsConfi gured, when used on its own, will not copy any fi les to the drop folder. To use this
option, you need to customize your build defi nition so that it copies the fi les you want from
the compilation folders on the agent to the drop share using a folder structure of your
own design.

http://www.visualstudio.com
http://www.visualstudio.com

100 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 100

Simplifi ed Process Template
When Microsoft changed the orchestration engine in Team Build 2010 from MSBuild to Windows
Workfl ow, they provided a very powerful execution mechanism. However, with great power came a
bit of complexity. To make things easier, Microsoft consolidated the number of items exposed in the
build workfl ow and internalized many of the lower-level operations. This means when you do need
to work with the XAML fi le in the editor, it loads faster and there’s less noise. This is covered in
more detail later in this chapter in the “Team Build Process” section.

Built-in Support for Calling Scripts
Related to making the build template less complicated, Microsoft wanted to make it easier to
customize your build process without resorting to customizing the XAML or writing a custom
workfl ow activity. To do this, they introduced four points where you can have PowerShell scripts
executed by the build process. The new default template provides you with four call points to
execute a batch fi le, a command script, or a PowerShell script, as well as pass arguments. You can
have your script called before and after your code is compiled as well as before and after the engine
runs your build’s tests. This is covered in more detail later in the chapter also in the “Team Build
Process” section.

TEAM FOUNDATION BUILD ARCHITECTURE

As shown in Figure 5-3, several logical components are used as part of the Team Foundation Build
services.

Queues

Application
Tier

Build
Controller

Executes

Archives

Build

Build
Agent

Selects

Publishes

Symbol
Server

Drop
Server

FIGURE 5-3

When a build is triggered, the application tier sends a notifi cation to a server called the build con-
troller using a communication channel established by the build service and queues the build. The
controller then downloads the build’s Windows Workfl ow-based process and executes it. By default,
this is then allocated to the next available build agent in the controller’s pool of agents.

Working with Builds ❘ 101

c05.indd 03/03/2014 Page 101

The build agent is the machine that actually executes the main portion of the build process as coded
in the build’s workfl ow—including calling MSBuild to perform the compilation step. Then, if con-
fi gured, the build agent archives the build results (that is, your executable binaries or your website)
to the location known as the drop location, and publishes symbols to the symbol server (if confi g-
ured). Note that when you’re using the hosted build services, the symbol server capabilities are
not available.

For an on-premises installation, the build controller and the build agent services are provided by the
Visual Studio Team Foundation Build service host installed from the Team Foundation Server instal-
lation media. The build controller and build agent are confi gured using the Team Foundation Server
Administration tool.

NOTE For information on how to install and confi gure the Team Foundation
Server Build service, see the Team Foundation Server Installation Guide. The
guide is included in the install media for Team Foundation Server. However, the
latest version is published at http://aka.ms/tfsInstallGuide. Microsoft con-
tinues to update the guide download to include extra guidance or any new issues
that surface. Therefore, it is always worth working from the latest downloaded
version.

After you download the installation guide, you cannot view its contents unless
you right-click the .chm fi le, click Properties, and then click Unblock. As an
alternative, you can double-click the .chm fi le to open the Open File-Security
Warning dialog box, clear the Always Ask Before Opening this File checkbox,
and then click Open.

The build controller and build agent may live on the same machine as the Team Foundation Server
application tier. However, because a build is typically very CPU- and disk I/O-intensive, the build
agent should at least be located on a separate server to avoid affecting the performance of the main
Team Foundation Server application. If you run the build agent on the same machine as Team
Foundation Server, this may cause some performance issues if certain intensive diagnostic data col-
lectors are used as part of the build.

The actual details of the build (such as the build name, what to build, when to build it, how to build
it, and what to do with the results) are all confi gured in the build defi nition. The results of individ-
ual builds are called the build details.

WORKING WITH BUILDS

This section examines working with team builds in Visual Studio. Figure 5-4 shows the key
windows that you need to use:

 ➤ Team Explorer

 ➤ Build Explorer

 ➤ Build Details

http://aka.ms/tfsInstallGuide

102 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 102

FIGURE 5-4

Team Explorer
You should already be familiar with the Team Explorer view (accessed in Visual Studio through
View ➪ Team Explorer). Team Explorer contains a Builds page that provides you with access to all
the functionality you need to interact with the build services in Team Foundation Server. The New
Build Defi nition link at the top of the page enables you to create a build defi nition. There is also an
Actions link that provides you with additional functionality, such as being able to manage the Build
Controller settings, set Build Qualities, and confi gure security permissions.

Under My Builds you fi nd your most recently executed builds (that is to say, builds that you have
triggered manually or by checking into a version control folder that is being monitored by a con-
tinuous integration, rolling, or gated trigger). My Favorite Build Defi nitions displays a summary of
the build defi nitions that you have marked as a personal favorite in Visual Studio, Web Access, or
Eclipse. Finally, under All Build Defi nitions, you fi nd all the defi ned builds for that team project and
a search box that enables you to quickly fi nd a particular build defi nition from that list. Double-
clicking one of these or clicking the build in Favorites opens the Build Explorer for that build
defi nition.

Build Explorer
The Build Explorer view enables you to see all the builds that are currently executing (or awaiting
execution) in the Queued tab, and those that have run in the Completed tab.

Working with Builds ❘ 103

c05.indd 03/03/2014 Page 103

Queued Builds
From the Queued tab of the Build Explorer, you can pause or change the priority of builds that are
currently awaiting execution. You can also cancel paused builds or stop builds that are currently
executing.

Completed Builds
From the Completed tab of the Build Explorer, you can view the build details, delete the build, or
set the quality of the build.

The build quality is a text string assigned to particular builds to denote the quality of that particu-
lar build (that is, “Released,” “Ready for Test,” and so on). In addition, you may mark the build
with Retain Indefi nitely to exclude it from any automatic retention policies on the build defi nition.
You also have the option to Reconcile Workspace with the build, which is useful for a gated or pri-
vate build because it removes any pending changes that you may still have that were checked in on
your behalf as part of the build.

Build Details View
When you double-click a build in the Build Explorer, you see a report of the build details, as shown
in Figure 5-5.

While the build is queuing, details are given about the build’s position in the queue and the mean
time that builds have been queued. After the build is executing, summary data about the execu-
tion time compared to previous builds is displayed. Clicking the Build Details link shows you more
information about the build in progress and is automatically refreshed to show you the current build
log data. A small bar chart in the top-left corner displays the currently executing build time against
previous builds, which can give you an indication of how long the build might run.

When the build has completed, you see the build summary view showing all the projects, compila-
tions, and tests runs, as well as any unit test results, code coverage, or test impact data. You also
see information regarding the changesets included in the build since the last successful build of
that build defi nition, along with any work items associated with those changesets when they were
checked in.

In this way, you can start to see how full requirements traceability is obtained in Team Foundation
Server, from the requirement being logged as a work item through to the development task to imple-
ment the requirement, to the change in source code to implement that task, and then, fi nally, the
build of the software that includes that check-in. All the data is passed into the Team Foundation
Server data warehouse to allow historical trend analysis and reporting.

From the build details view, you can open the drop folder in Windows Explorer to access the out-
puts of your build. If you’ve chosen the new option to copy build output to your server, you’ll be
taken to a web page where you can download a zipped copy of your build’s output. You may modify
the build quality assigned to that build, mark it to be retained indefi nitely, or delete the build and

104 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 104

associated results. You may also view the logs in the drop location (either in the drop network share
or in version control) and perform many other additional activities from under the Actions link.

FIGURE 5-5

Creating a Build Defi nition
A build defi nition describes how, what, when, and where to perform your build. You create a new
team build defi nition by clicking the New Build Defi nition link at the top of the Builds page in Team
Explorer. Alternatively, from Visual Studio you can go to Build ➪ New Build Defi nition.

You see a new build defi nition form inside Visual Studio. The form is split into two parts — a set
of areas on the left side that basically function like tabs, and the main area for that section on the

Working with Builds ❘ 105

c05.indd 03/03/2014 Page 105

right side. Notice that, when you fi rst open the dialog, a number of the sections on the left side have
warnings associated with them; this is completely normal. The purpose of these warnings is to high-
light areas that need information before the defi nition can be saved.

You can save the defi nition by using the usual mechanisms (File ➪ Save, or Ctrl+S, and so on). When
saved, the defi nition is stored in Team Foundation Server and appears in the Builds page for all team
members. You can mark your build defi nition as a personal favorite to make it easier to fi nd later by
right-clicking the created build defi nition and selecting Add to Favorites.

General Section
On the Builds page in Build Explorer, click General in the left-side pane to bring up the General
section. Then you must give the build defi nition a name, and, optionally, a description, as shown in
Figure 5-6.

FIGURE 5-6

As you can easily search by name in the Builds page in Team Explorer, it may be useful to develop
a naming convention for your builds to make them easier to fi nd when fi ltering. A convention such
as “Team: Project (Trigger)” is useful for large team projects. For example, the BizApps team might
have two build defi nitions defi ned for their framework, one that is a CI build triggered on every
check-in to give quick feedback on the state of the build, and another scheduled build that not only

106 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 106

does a full build but packages the latest version and generates documentation, making it easy to
consume by other teams. They might call these builds “BizApps: Framework (CI)” and “BizApps:
Framework (Nightly).”

For the description of your build, you should provide a short, one-line summary of what the build
is for, and contact details about the owner or “build master” of the build. The fi rst three lines of
the build description are displayed in other dialogs in Team Foundation Server before scrolling is
required. Therefore, this important information should be placed at the top so that people working
with the builds can see what the build is for and who to contact for questions.

When creating a new build defi nition, you should set the Queue Processing to Enabled, as this
allows builds to be triggered as soon as the build defi nition is saved. However, it might be useful to
adjust the Queue Processing setting when performing maintenance to the build defi nition or build
controllers. For example, if you are customizing the build process you can mark the build as Paused.
New builds are queued if they get triggered as a continuous integration build or a gated build.
However, they do not run until the build is enabled or a build administrator forces the build by
right-clicking the queued build request in Build Explorer and selecting Start Now. This enables you
to safely test that your changes to the build customization are working before re-enabling the build
defi nition for use by the team. After the build is re-enabled, queued jobs are processed according to
priority level and the order that they were submitted.

Trigger Section
Located in the Trigger section, the build trigger tells Team Foundation Server when to perform a
build. As shown in Figure 5-7, there are a number of triggers available, including the following:

 ➤ Manual

 ➤ Continuous Integration

 ➤ Rolling Builds

 ➤ Gated Check-in

 ➤ Schedule

Manual
When you confi gure a build for a Manual trigger, the build runs only when explicitly queued. You
can queue it by using the user interface, by using the command line (that is, tfsbuild.exe), by
using the Team Foundation Server .NET object model, or by using the TFS SDK for Java.

Continuous Integration
In Team Foundation Server, the Continuous Integration trigger queues a build for every check-in
performed on the areas of code that you defi ne as related to your build. (The “Source Settings” sec-
tion, later in this chapter, provides more information on defi ning those areas.)

Check-ins to Team Foundation Server are discrete, atomic transactions represented by a changeset.
By rebuilding the system for every changeset, you can easily determine which change broke the build
(as well as who checked in that change). The downside to this is that there are, obviously, a lot of
builds performed. Therefore, it is essential that build times are kept short to ensure rapid and fre-
quent feedback to the development team as to the status of the current code base.

Working with Builds ❘ 107

c05.indd 03/03/2014 Page 107

FIGURE 5-7

MARTIN FOWLER ON CONTINUOUS INTEGRATION

The term continuous integration (CI) emerged from agile software development
methodologies such as Extreme Programming (XP) at the turn of the millennium.
Martin Fowler’s paper on continuous integration from 2000 is still worth reading
today at www.martinfowler.com/articles/continuousIntegration.html.

Note that, as originally described, the term refers to increasing the speed and qual-
ity of software delivery by decreasing the integration times, and not simply the
practice of performing a build for every check-in. Many of the practices expounded
by Fowler’s paper are supported by tooling in Team Foundation Server — not sim-
ply this one small feature of the build services. However, the term “continuous inte-
gration” has come to be synonymous with building after a check-in has occurred
and is, therefore, used by Team Foundation Server as the name for this type of
trigger.

http://www.martinfowler.com/articles/continuousIntegration.html

108 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 108

Rolling Builds
Rolling builds are similar to the Continuous Integration trigger in that a check-in will trigger a
build. However, rather than building on every check-in, rolling builds batch several check-ins
together to ensure that the build server never becomes backlogged—and optionally setting a mini-
mum time interval between which a new build may be triggered. This type of trigger might be famil-
iar to those who have experience with build servers that support multiple version control tools such
as CruiseControl, CruiseControl.NET, or Hudson/Jenkins.

Performing rolling builds has the advantage of reducing the number of builds performed, which
helps to reduce the number of builds queued at peak times (and, therefore, the time before the
results of an individual developer’s check-ins are known). However, it has the disadvantage of group-
ing changes together, therefore making it more diffi cult to determine the check-in responsible for the
build failure. For this reason, many people stick with the Continuous Integration trigger and instead
focus efforts on increasing the speed of the build or the number of build agents available to perform
the build.

Gated Check-in
A Gated Check-in trigger means that check-ins to the areas of version control covered by the build
are not allowed by the server until a build has been performed and passed successfully. You should
note that this option is available only when using Team Foundation version control. When users
attempt to check in a fi le, they are presented with the dialog shown in Figure 5-8.

FIGURE 5-8

The changes are stored as a shelveset in version control. The build server takes the shelved changes
and merges them with the latest version of code from version control before performing the build.
In the event of a successful build, the changes are then checked into the build server, and users
are notifi ed via the build notifi cation tool in the system notifi cation area. At this point, users can

Working with Builds ❘ 109

c05.indd 03/03/2014 Page 109

“reconcile” their workspaces to remove the pending changes that were committed as part of the
build from the current pending changes list.

Because of the automatic merge process that is performed by the build server, it is important to real-
ize that the actual code committed by the gated check-in may differ from the code submitted as part
of the shelveset.

If you have two build defi nitions with overlapping workspace mappings that both have Gated
Check-in triggers, the user gets to pick which one is built to verify her changes at the time of check-
in. In addition, even though Team Foundation Server 2013 has build agent pooling features, only
one build of a gated check-in may be executed at a time to prevent confl icting merges from being
submitted.

Schedule
Builds may be triggered by a particular schedule—that is, a daily or nightly build. Note that a single
time may be specifi ed for each build defi nition for the chosen days of the week—repeated weekly.
Also note that, in the case of a nightly build, the build time should be set outside of any backup or
other regular maintenance jobs.

SCHEDULING BUILDS MORE FREQUENTLY

Sometimes, the standard scheduling triggers provided by Team Foundation Server
are not suffi cient — perhaps you want to automatically build twice a day, or maybe
every three weeks.

The Build Defi nition trigger has no way to set this; however, it is possible to trig-
ger a build as a scheduled task—it's a bit old but still applies (see http://aka.ms/
scheduledTaskBuilds for more information on how to do this). However, this
makes the confi guration of the trigger happen outside the user interface provided
by Team Foundation Server, so it should be used only when absolutely necessary.

The time for a scheduled build is actually converted into the time zone for the application tier when
the build defi nition is saved. But this is always displayed in the time zone of the user’s machine when
editing the build defi nition in Visual Studio. For this reason, there can be some slight confusion as
to the actual build time during periods where Daylight Savings Time is in operation in one of the
time zones and not the other.

Source Settings
The Source Setting section (called Workspace in previous releases) enables you to defi ne the work-
ing folder mappings that should be used for your build. These working folder mappings not only
determine where on disk the fi les should be located but also which fi les on the server are considered
relevant to the build.

http://aka.ms

110 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 110

The default working folder mapping for a new build defi nition is given as mapping the root of the
team project (for example, $/Demo) to the sources directory represented by the environment variable
($(SourceDir)). In addition, you’ll now see an entry for a folder called Drops in your Team Project
that is cloaked (for example $/Demo/Drops). This Drops folder mapping is primarily designed for
folks using Visual Studio Online and can be safely removed if you’re only using the on-premises
version of Team Foundation Server. That said, these default settings are almost always too broad
for your build, and include too many fi les, which not only slows down the build (because more fi les
must be downloaded from version control), but also means that some check-ins to the project risk
triggering a build even though they do not affect the results of the build.

Therefore, you should always modify the server path of the build to only include the fi les you need,
as shown in Figure 5-9. You may also make use of cloaked working folder mappings to exclude cer-
tain subfolders or fi les from a working folder mapping that do not affect the build (such as a folder
containing the source PSD image fi les used in a website).

NOTE Chapter 3 provides more information on working with folder mappings
in Team Foundation Server version control.

Build Defaults
On the Build Defaults section shown in Figure 5-10, you specify which build controller you would
like to use for the defi nition and where to copy the outputs from your build.

FIGURE 5-9

Working with Builds ❘ 111

c05.indd 03/03/2014 Page 111

FIGURE 5-10

In Team Foundation Server 2013, build controllers and build agents are responsible for notifying the
Team Foundation Server application tier of their existence as they are installed. If you have no build
controllers available in the controller drop-down, then your Team Foundation Server administrator
must install a build controller (and build agent) using the Team Foundation Server Setup media and
confi gure it to point to your project collection. The description fi eld displays the description given
to the build controller, and it is not editable from this dialog. Note that when using Visual Studio
Online at http:// visualstudio.com, a Hosted Build Controller is present for every project collec-
tion that allows builds to be performed using a build controller in the cloud.

You now have more choice when it comes to your staging location. For regular builds, the drop
folder location must be a Windows fi le share on the network to which the user running the build
agent services has access. There is a limit (inherited from the .NET base class libraries) of 260 char-
acters for the full path of all fi les copied to the drop folder location, so you should ensure that your
server and share names are as short as possible, leaving you with the maximum space for your out-
put. That being said, you should put your builds in directories corresponding to the build defi nition
inside your drop folder location to help keep them organized. Note that the build defi nition name is
appended to the path specifi ed, so there is no need to specify it in the dialog.

For CI builds, you often only care about the correctness of the build. Therefore, the option to not
copy build output to a drop folder can decrease build time and reduce management of the output.
You can use the new option to copy the build output to your Team Foundation Server.

When talking to the hosted service, you also have the option to store fi les in version control.
Traditional network shares are not easily accessible over the Internet. Therefore, a new option was

http://visualstudio.com

112 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 112

created in the 2012 release that is only enabled for hosted builds to enable results of the build to be
copied to version control. Note that when builds are deleted (either by the retention policy settings
or manually) and deletion of build drops has been requested, the results of the builds are not only
deleted from version control but destroyed. This means that they no longer occupy space within the
version control system in Team Foundation Server. This reduces the amount of space consumed by
your project collection.

Process
When talking to a Team Foundation Server 2013 server, you are required to select which pro-
cess should be used to perform the build, as shown in Figure 5-11. These processes are Windows
Workfl ow 4.5-based processes. The initial list of processes are defi ned by the process template you
used, and can then be added to from the Process section. Each process has a number of easily cus-
tomizable properties that are designed to be used to alter the behavior of that process. Processes
with mandatory inputs are marked with a warning triangle when the build defi nition is created.

FIGURE 5-11

From this section, you can edit and customize the build process parameters. (For more information
on this, see the section “Team Build Process,” later in this chapter.)

For the creation of a basic team build using the Default Template, the only property that you must
initially confi gure is which solution or project to build. Simply click the Projects to Build property
and click the ellipsis (…) button to add your solution or project to the list. By default, if you have
a version-controlled solution open in Visual Studio when you create a new build defi nition, Visual

Working with Builds ❘ 113

c05.indd 03/03/2014 Page 113

Studio will automatically set your current solution as the one to build. You’ll of course need to make
sure that the solution’s fi les are available via the workspace mappings that you confi gure using the
Source Settings option.

Retention Policy
After you start automating builds, you quickly end up with a lot of build results in your archive.
Finding the build you need can get complicated—not to mention a large amount of disk space may
be required to store all the build results. Team Foundation Server has automatic retention policies to
help with this, as displayed in the Retention Policy section shown in Figure 5-12.

The retention policies determine, for each build result type, how many of those results you want to
keep by default. Note that, at any time, you can mark a build with the Retain Indefi nitely retention
policy from the build details context menu in the Build Explorer view. Marking a build as Retain
Indefi nitely means that it will be excluded from these automatic retention policies.

There are separate retention policies to control the team builds that are triggered or manually
queued from the private builds of individual developers. Changing the private build retention policy
affects all the developers performing private builds on that build defi nition—not just the developer
editing the setting.

FIGURE 5-12

If you’re storing build output in version control using the hosted service, when the build binaries are
deleted they are destroyed in version control to allow the disk space to be recovered.

114 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 114

Queuing a Build
Whenever you create a new build defi nition or make signifi cant changes to it, you should manually
queue the build the fi rst time to ensure that it is working as desired. The fi rst successful build for a
build defi nition also acts as the baseline for that build. Every build from that point on records the
changesets included since the last successful build for that defi nition. This information is stored in
the build detail for each build, and reports into the Team Foundation Server data warehouse, thus
allowing for historical trends over time.

A build can be manually invoked from the Builds node in Team Explorer by using the TFSBuild
.exe command-line tool, or by using the Team Foundation Server API. Alternatively, the build
might be triggered using one of the triggers defi ned earlier in this chapter (such as on a check-in into
version control or on a specifi ed schedule).

NOTE Microsoft Team Explorer installs a number of command-line tools, one
of which is the TFSBuild command. The TFSBuild command can be used to
perform a limited number of Team Foundation Build tasks and is also useful in
scripting scenarios where full access to the Team Foundation Server API is not
required. For more information on the TFSBuild command, open a Developer
Command Prompt and type TFSBuild help, or visit http://aka.ms/
tfsBuildexe. While the URL points to the 2010 documentation, this is the most
current version from Microsoft.

To manually queue a build in Visual Studio, right-click the build defi nition in Team Explorer and
select Queue New Build. You are presented with the Queue Build dialog, as shown in Figure 5-13.
The build defi nition is preselected in the build defi nition drop-down at the top of the dialog, and its
description is displayed underneath.

When you manually queue a build, you have options of selecting an alternative build controller (if
one is available), adjusting the priority of the build, and modifying the drop folder location to be
different from the default. Based on the selected queue priority, you are also given an indication of
the current position in the queue that your build would get if it were submitted.

On the Parameters tab you fi nd all the customizable properties defi ned for the process, so you can
alter the value of that property for this single invocation of the build.

NOTE As of the writing of this chapter, in the release version of Visual Studio
2013, the build process parameters are not rendered properly. In addition, you
won’t be able to specify a shelveset for a private build (discussed later in this
chapter). This bug affects Visual Studio 2012 RTM connected to either Team
Foundation Server 2013 or the hosted service at http://visualstudio.com.
About a month after the release of Visual Studio 2013 RTM, Microsoft did
release a hot fi x that you can fi nd at http://aka.ms/buildparmaskb . In addi-
tion, the fi x is included in Visual Studio 2013 Update 1, which shipped at the
end of January, 2014.

http://aka.ms
http://visualstudio.com
http://aka.ms/buildparmaskb

Working with Builds ❘ 115

c05.indd 03/03/2014 Page 115

FIGURE 5-13

Private Builds
You can adjust what you want to build from the General tab in the Queue Build dialog (Figure 5-14).
You can either build from the latest version in source control at the time that the build is submitted
to the queue, or you can take the latest version and apply a specifi ed shelveset to the build before it
is performed.

If you decide to perform a build that includes a shelveset of your changes not yet checked in to ver-
sion control, this is called a private build, which sometimes is referred to as a buddy build.

Private builds are useful when you want to check that you are including all the changes necessary
to successfully perform the build on a different machine before you commit your changes to version
control. Another use for them is when you may not have all the dependencies to perform that par-
ticular build defi nition on your local machine (such as a code signing certifi cate installed), but you
want to test that your code functions correctly when built with those dependencies.

In many ways, a private build is similar to a gated check-in, apart from the fact that your changes
are not automatically checked in to version control after a successful build, but you can choose to
have them checked in if you want.

Private builds do not follow the same build numbering mechanism defi ned for the regular team
builds, and have separate retention policies. The build results for a private build are displayed to the
developer who is invoking the private build, not to the whole team.

116 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 116

Build Notifi cations
Team Foundation Server exposes a powerful eventing model and both .NET- and Java-based APIs
that allow for custom integrations of any imaginable application or device for notifi cation of build
results—from standard email alerts to lava lamps, confetti-fi lled leaf blowers, and even talking
robot rabbits. However, two main notifi cation systems are exposed to the developer out of the
box—the build notifi cation tool and email alerts.

FIGURE 5-14

Build Notifi cation Tool
The build notifi cation tool is a separate application installed with Visual Studio. As shown in
Figure 5-15, it is a small application that runs in the system notifi cation area of Windows and noti-
fi es the end user of build events via an Outlook-style pop-up message in the bottom-right corner of
the screen.

FIGURE 5-15

Working with Builds ❘ 117

c05.indd 03/03/2014 Page 117

This tool can be confi gured to automatically start when you log in to Windows. However, it always
runs during a gated check-in process so that the developers are aware of the status of the build con-
taining their changes. If the build is a success, the developers can easily reconcile their workspaces
to remove any pending changes that were included in the gated check-in shelveset from their local
workspace.

To confi gure the build notifi cation tool, while the tool is running right-click the icon and select
Options. To quit the application entirely, right-click the icon and select Exit.

Email Alerts
Basic and custom email alerts can be confi gured from the web. To quickly view the appropriate
web page from Visual Studio, go to the Team ➪ Project Alerts menu. Using the interface shown in
Figure 5-16, you can enable basic email alerts when a build quality changes, when any build com-
pletes, or when builds are initiated by the developer. For a more powerful alerts editor, click the
Custom Alerts link. (In previous versions of Team Foundation Server, this level of control over alerts
required use of power tools or the command line.)

FIGURE 5-16

As shown in Figure 5-16, a link is also provided on the My Alerts page to confi gure advanced alerts
that are applicable to the whole team. Clicking the link takes you into the administrative confi gura-
tion web portal for your team project.

Emails can be sent to any email address, including team aliases, provided the Team Foundation
Server application tier is confi gured with the correct SMTP server details to send the messages.

On the Team Foundation Server application tier machine, the BisSubscribe.exe command is avail-
able in the Team Foundation Server 12.0\Tools folder, and can be used to script the creation of
project alerts.

118 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 118

TEAM BUILD PROCESS

The process controlling the end-to-end build process in Team Foundation Server is described in a
Windows Workfl ow 4.5 XAML fi le. The build process templates are created as part of the project
creation process and are defi ned in the process template. The process templates provided will be dif-
ferent depending upon if you choose traditional Team Foundation Server version control or Git.

In the Scrum, MSF Agile, and MSF CMMI processes, the following build processes are included:

 ➤ Default template—This is the default template to be used for most new builds created for
Team Foundation Server. This template is the primary focus of discussion in the remainder of
this chapter.

 ➤ Upgrade template—This is the default template for builds upgraded from Team Foundation
Server 2008, or newer builds that make heavy use of MSBuild rather than Windows
Workfl ow. Basically, it performs some housekeeping, and then just wraps the call to the
TFSBuild.proj fi le for an MSBuild-based build confi guration. Java builds created by Team
Explorer Everywhere make use of the Upgrade template to provide a thin wrapper around
Ant or Maven. This allows all the confi guration fi les to be edited by a simple text editor and
does not require knowledge of Windows Workfl ow—but it pushes the majority of the build
logic down into the Ant or Maven build script that is invoked. This template is not available
in Team Projects created with a Git repository.

In addition, the LabDefaultTemplate build process template is installed for the Lab Management
functionality by the Lab section of the MSF processes.

NOTE Chapter 27 provides more information on Lab Management functional-
ity in Visual Studio 2013.

Unlike previous releases of Team Foundation Server, all of the build process templates are stored
inside the databases on your data tier. If you want to examine them you need to download them
locally to your machine. Once you’ve done that you can view one and if desired extend it. At that
point, you’ll want to practice good customization practices and check it into a version control
repository.

The majority of the remainder of this chapter focuses on the Default template—how it works, how
to use it, and how to modify it.

Team Build Process ❘ 119

c05.indd 03/03/2014 Page 119

Default Template Process
The Default template is used for most new, un-customized build defi nitions. Compared to the 2010
and 2012 versions of the template, Microsoft has dramatically simplifi ed the process. You can
explore it in detail by opening the correct XAML fi le: TfvcTemplate.12.xaml when using a Team
Foundation version control-enabled Team Project; or GitTemplate.12.xaml when using a Git-
enabled Team Project. As mentioned earlier, in order to examine the fi le, you’ll need to download it
from Team Foundation Server and save it to a local fi le. Once you’ve done this, you can explore the
template and modify it if needed. The only differences between the two fi les are the specifi c features
related to retrieving fi les from version control.

On the build controller, the build number is calculated and the drop location for the build is created
if necessary. Then the build agent is determined, and the majority of the rest of the process is per-
formed on the selected agent from the controller’s build agent pool.

The working directory for the build is calculated by using the build agent working directory set-
ting as defi ned in the Build Agent Properties dialog. Then the local work area (workspace for Team
Foundation version control; local repository for Git) is created, and source is downloaded from
version control. The version that is downloaded is usually the changeset that represented the latest
version in the project collection at the time the build was triggered. If a subsequent change has been
made while the build was queued, this change is not included. If the build is for source you’ve stored
inside a Team Foundation version control repository, the build process labels the fi les that were
downloaded with the build number. As of the writing of this book, this feature does not carry over
for builds that are pulling source from Git.

Next, the process calls MSBuild to perform the actual compilation of the desired project fi les for the
confi guration, and then any specifi ed automated tests are executed. The build agent then looks at
the changesets included since the last successful build of the build defi nition, and records any work
items that were associated with those check-ins. For work items that were marked as resolved during
check-in, the Fixed-In Build fi eld for the work item is updated with the current build number.

From the fi les changed since the last successful build, the build agent then calculates which tests
have been affected, and records them. The source code is then indexed and linked with the symbols
that are published to the symbol server (if provided). Finally, on the build agent, the output from the
build is copied over to the drop folder location previously created by the controller.

The process then moves back to the controller for the fi nal step, which, for a build with a Gated
Check-in trigger, is to check in the shelveset that contained the modifi ed fi les included in the build.

Build Process Parameters
The build process templates are confi gured to make a number of parameters visible in the user inter-
face in either the Build Defi nition editor or the Queue Build dialog (or both). These parameters (see
Figure 5-17) are provided to control the behavior of the selected build process.

120 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 120

FIGURE 5-17

When you create the build defi nition, you set one of these parameters, Items to Build, to be the
solution fi le that you want to build. However, there are many other parameters provided for you to
adjust the behavior of the template. If you select one of the parameters, additional information is
displayed about the parameter in the comments box at the bottom of the process parameter table.

Team Build Process ❘ 121

c05.indd 03/03/2014 Page 121

In the default process templates, these parameters are broken down into fi ve categories: Version
Control, Build, Test, Publish Symbols, and Advanced. Some of these parameters are worth calling
out in this chapter, and are examined in the following discussions. However, it is worth familiariz-
ing yourself with all the parameters and what they do.

Confi gurations to Build
The default Visual Studio build confi guration to use is the default build confi guration for your solu-
tion. To modify the confi guration, use the Confi gurations dialog that is available when you press the
ellipsis (…) button in the Confi gurations to Build parameter under Required, Items to Build.

SOLUTION CONFIGURATIONS

Team Foundation Build typically deals with solution confi gurations. These enable
you to specify a named collection of project-level platforms and confi gurations that
should be built. For more information on solution confi gurations, see the blog post
from Aaron Hallberg of the Team Foundation Build team at Microsoft, available at
http://aka.ms/slnConfigs.

Logging Verbosity
In previous releases, you controlled how much log data Team Build generated. While in theory this
could make your build run faster, when you had a problem, you had to change the setting, rerun
the build, and hope the error occurred the same way. In 2013, Microsoft revamped how logging is
handled and the build process always generates a detailed log that goes to a fi le and is put on your
drop share as well as stored in the server. Because Microsoft removed a bunch of database I/O, you
shouldn’t see any negative performance impact to your build times.

Clean Workspace
The Clean Workspace parameter, only available in Team Foundation version control builds,
changed in 2013 from being a three-value item to simply a True/False option. By default, the Clean
Workspace parameter is set to True, meaning that all existing build outputs and sources for that
build defi nition are deleted for every build. Although this is the safest option, it is also the slowest,
because all the fi les must be downloaded from version control, and everything is rebuilt for every
build, regardless of what has changed.

If you set the value of the parameter to False, then neither the sources nor the build outputs are
deleted at the start of a build. Only the fi les that have changed in version control are downloaded
each time, and only the things that have changed are recompiled as part of the build. Because not
a lot of things usually change between builds, this normally gives your builds a signifi cant per-
formance boost by taking much less time to complete. It is also often useful for things such as
ASP.NET-based websites, where you might want to subsequently only publish the items that have
changed to your public website to minimize the upgrade effect for new versions.

However, if you have customized your build process and you make any of the source fi les writable
for some reason (for example, to modify the AssemblyInfo fi les to contain your version number),

http://aka.ms/slnConfigs

122 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 122

or if your customized build process assumes a clean output directory, then you may run into issues
with altering the default value of the Clean Workspace. So, use with caution.

Note that on the hosted service at http://visualstudio.com, all build agents are created from
a fresh image each time a build is executed so there is no persistence of the workspace in between
builds. Therefore, altering this setting has no effect when using a hosted build agent.

Get Version
Builds are usually performed with the latest sources from version control. However, occasionally
you may want to perform a build of the source at a particular date, changeset, or label. In those cir-
cumstances, you can modify the Get Version process parameter, only available in Team Foundation
version control builds, which is in the TF Version Control section. This is usually done as you queue
the build by clicking the Parameters tab. The value provided should be a valid version specifi cation
such as C1234 for changeset 1234, D2008-04-22T17:37 for a date/time, or LmyLabel for a label
called myLabel.

NOTE For more information on the TFS version specifi cation formats to use
when specifying changesets, labels, or dates to use as the Get version, see the
Version Specs section in MSDN’s “Command-Line Syntax (Version Control)”
documentation available at http://aka.ms/tfsVersionSpecs.

Automated Tests
In the Test category of process parameters, you can confi gure automated tests that should run as
part of the build using the Automated Tests parameter. By default, a new build runs all unit tests in
assemblies matching the pattern *test*.dll and *test*.appx. This means that, if you have cre-
ated some unit tests in a companion test project called HelloWorldTests, for example, then they
will be run automatically.

Pressing the ellipsis (…) button opens the Automated Tests dialog shown in Figure 5-18, where you
can add additional tests to run, or you can edit the test confi guration.

If you select the existing test confi guration and click Edit, the Add/Edit Test dialog shown in Figure
5-19 is displayed, enabling you to edit aspects of your test run. For example, you can confi gure it
to fail the build on test failure, modify the test case fi lter criteria, specify the test runner, or enable
code coverage data collection.

http://visualstudio.com
http://aka.ms/tfsVersionSpecs

Team Build Process ❘ 123

c05.indd 03/03/2014 Page 123

FIGURE 5-18

FIGURE 5-19

124 ❘ CHAPTER 5 TEAM FOUNDATION BUILD

c05.indd 03/03/2014 Page 124

Path to Publish Symbols
The Default Template in Team Foundation Server includes a step to index source code and publish
symbols to a symbol server in the organization. As mentioned earlier in this chapter, a symbol server
is simply a fi le share that is used to store the symbols for your executable binaries. Visual Studio
can then be confi gured with details of this server. From then on, when debugging code live, or when
using the advanced historical debugging features, Visual Studio can take you directly to the version
of the source code from which the binary was generated, regardless of which version of the code you
have on your local system at that time.

The confi guration of the symbol server is performed by adding the UNC fi le path of the share to
be used as the symbol sever in the Path to Publish Symbols process parameter under the Publish
Symbols Server Settings. Unfortunately, this feature doesn’t work with hosted builds on
www.visualstudio.com.

Agent Settings
Agent settings can be found in the Advanced category of parameters. As well as limits for how long
a build can run or wait for an available build agent, the Agent Settings group of process parameters
includes the Name Filter and Tags Filter. Together, these are used to determine on which build agent
the build will be executed. If multiple build agents match the agent requirements, then the agent
with the least number of builds running executes the build.

Specifying the name of a build agent enables you to force it to run on a particular machine. You can
also adopt a naming convention for your build agents, and then use wildcards in the Name Filter
setting to assign builds to a pool containing a subset of all the build agents for the project collection
(for example, ProjectX* for all build agents assigned to ProjectX).

A more fl exible way you can limit which build agents are used for a build is to make use of the tag-
ging feature for build agents. From the build agent properties dialog, you can assign tags (which are
sets of text strings) to an agent to denote certain features. For example, you could use CodeSign if
you have the project’s code signing certifi cate installed on the machine, Datacenter1 if it is located
in your main data center, or Ireland if the build server is located in your remote offi ce in Ireland.
You can then fi lter on which tags are required for your build agent by using the Tags Filter in the
agent’s requirements; only agents with that tag will be used.

To edit the tags applied to a particular agent, you can use the Team Foundation Server
Administration Console on the build agent machine itself, or you can select the Actions ➪ Manage
Build Controllers menu item in the Builds page in Team Explorer. You then select your build agent
and click the Properties button. You are presented with the Build Agent Properties dialog, and, pro-
vided you have suffi cient permissions, you can edit the assigned tags.

Build Number Format
By default, Team Foundation Server numbers the builds in the format $(BuildDefi nitionName)_$
(Date:yyyyMMdd)$(Rev:.r). For example, in HelloWorld_20090927.5, the 5 is the fi fth build
executed for that build defi nition on that day. Build numbers must be unique across a team project,
and this format serves as a good default. However, it is often not the format that people want.

Thankfully, starting in Team Foundation Server 2010, editing the build number is very easy using
the Build Number Format parameter. When you edit the Build Number Format parameter, you are

http://www.visualstudio.com

Summary ❘ 125

c05.indd 03/03/2014 Page 125

presented with a dialog, similar to Figure 5-20, that gives you the format string, a preview of what
a build number of that format will look like when generated, and a set of macro strings that can be
used in the format. Clicking each macro gives you more information about its behavior in the com-
mand section at the bottom of the dialog.

A common number format to use is $(BuildDefi nitionName)_V1.0.0$(Rev:.r), where you are
currently working on version 1.0.0 of the product, and the $(Rev:.r) macro translates to an incre-
menting number that makes the build number unique.

FIGURE 5-20

SUMMA RY

In this chapter, you examined the build services provided by Team Foundation Server 2013 and how
they have been enhanced from previous versions.

You learned how to create build defi nitions, trigger builds, and view and manage build results. You
also learned how the new Windows Workfl ow-based build process works and how to perform com-
mon customizations by editing the process parameters.

In Chapter 6, you’ll learn about the new Release Management feature. This new part of Team
Foundation Server allows you to take the output from your builds and deploy to test staging, pro-
duction, or wherever your Team Foundation Server and Release Management tools can reach.

Then, in Chapter 7, you’ll learn about common Team Foundation Server customizations, including
how to edit the process template used by your builds to include new logic and parameters that do
not ship in the default build process es.

c06.indd 02/27/2014 Page 127

Release Management
WHAT’S IN THIS CHAPTER?

 ➤ Developing good practices around release management, including
binary releases

 ➤ Understanding why and when to use continuous delivery and what
value you get from releasing more frequently

 ➤ Using and creating release paths, environments, and servers along
with release templates and components to successfully deploy your
software

In Chapter 5 you looked at how Visual Studio 2013 supports continuous integration as part of
its application lifecycle management. You learned how the build process produces the
binaries that are stored either on a network share or inside the server. In this chapter, you
learn how to create a binary promotion model to transition those versioned binaries through
your environments. After reading this chapter, you will have a better understanding of how to
use the release management tools in combination with automated build. This will enable you
to get your software from development to production so that you can get quick, actionable,
and timely feedback from testers, users, and the business.

WHAT IS RELEASE MANAGEMENT?

A release is the process by which you create a working instance of your development efforts to
date and subject it to a series of checks before releasing it for consumption by your customers.

While some organizations are still trying, and as often failing, to implement a code promotion
release model, many companies have switched to a binary promotion model. In a code
promotion model, you create a version of your software on a development code line, deploy
versioned output to an environment, and then approve it. Once approved, the development

6

128 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 128

code line is then merged with the next level up, likely quality assurance (QA), and another version
of your application is created from this new code line. In a code promotion model you can end up
with untested code in production and thus a much greater likelihood of bugs. In Figure 6-1 you can
see that a bug was found and fi xed in production. The resultant ChangeSet was then reverse-inte-
grated into the main code line. When the development team reverse-integrates their changes into the
main code line, there is a change that impacts their code. Although it might not confl ict directly, it
does mean that all of their regression tests need to be run again to make sure that nothing has
been broken.

CI

CI

CI

CIDEV

Main/trunk

PROD

FIGURE 6-1

However, the reality in many organizations is that this nuance is ignored and someone picks and
chooses a few tests to run and calls it good. In all likelihood, the programmers don’t have the cover-
age that they need in order to know that the code is good, so they guess. Whoever makes this deci-
sion is then taking on the risk to the company and its reputation if there’s a fault that is not picked
up until production.

NOTE The software that you produce is your organization’s asset and so its
value should be represented on your company’s balance sheet. As such, any
decisions to cut quality are in strict ownership (often legally) of your executive
management.

In most modern organizations, a more stable binary promotion model tends to be used as it avoids
unnecessary retesting. In a binary promotion model, you have a single code line that moves through
the states of development, stabilization, and release. When you create a version of your application,
it is deployed to your development environment. Once it’s approved the same output, with confi g-
uration-only changes, is deployed to the QA environment. This means that all of the functional
checks that you ran in your development environment do not need to be rerun for QA as the results
are still valid as you are using the same binaries. You may need to run cursory checks that validate
your confi guration changes, however.

Continuous Software Delivery ❘ 129

c06.indd 02/27/2014 Page 129

In Figure 6-2 you can see a forward-only model in action. This is commonly called a staircase
branching model. You can take a build from the R1 code line at any time and get incremental
binaries.

R1

DEV

DEV

STABLE

STABLE

PROD

PROD

R2

FIGURE 6-2

This will create an incremental model of consecutive builds. Now that you have that you can then
choose to create a release from any one of your build outputs and push it through a set of stages or
gates until it gets to production. A failure at any of the stages would result in feedback to the devel-
opment team and may result in a new build and potentially a new release.

NOTE The process that your release goes through between when the code is
checked in and its getting into production is often called a release pipeline.

CONTINUOUS SOFTWARE DELIVERY

The nirvana that any modern organization should be striving toward is the ability to get a change
into production as quickly as possible. The quicker you get your product through the pipeline, the
quicker you can get its value, which has already started to depreciate, to your customers. There are
of course trade-offs between cost and effort. Although many companies would like to be able to
deliver to production many times a day, it might not be fi nancially viable. However, all companies
should be able to deliver working software frequently, from a couple of weeks to a couple of months,
preferably on the shorter timescale.

In Figure 6-3, you can see the lifecycle of any application as a repeating process of ‘releasing’ to pro-
duction. An agile team would typically take 30 days or less to loop around the lifecycle proving an
opportunity to inspect and adapt every iteration. A two-year project that ships once a year takes 365
days to get around the lifecycle once, so there would be only two opportunities for feedback in total.
If you are in a very long release process, you might want to try moving to multiple 30-day iterations
between releases. The goal is to release every 30 days, at least.

130 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 130

FIGURE 6-3

There are really only four main phases to any software delivery cycle. The diagram shows the rela-
tionships between them and indeed many teams break each area up into even smaller time slots:

 ➤ Requirements—Ultimately there is always a list of requirements somewhere. Some require-
ments are formal and some are more fl uid. If you are building for life-critical systems, you
need more detail; if you are building a dating site, you need maybe a little less detail.

 ➤ Construct—At some point your teams get busy building something.

 ➤ Release—Each time your teams create a working increment, you release it to get feedback.

 ➤ Operate—You will have folks that monitor your release and support it, all the while provid-
ing feedback to your development teams.

With these phases we can model any software delivery.

NOTE In most countries there are nuances of tax law that your accountants
can leverage to the advantage of your organization. You need to understand how
your development process can help them make the most of your organization’s
money. Almost universally true is that you can amortize the capital expenditure
on your software only once it has been delivered to production. Until then the
value is speculative and thus a risk for your business. If you are on a two-year
release cycle then that can be many millions of dollars of risk. If, however, you
ship every 30 days then business risk is minimized.

Continuous Software Delivery ❘ 131

c06.indd 02/27/2014 Page 131

The key to being able to deliver to production more quickly is to have working software at all times,
fewer branches (preferably one), and better automation. Just because you deliver to production every
30 days or more, does not mean that you can’t deliver quarterly or even yearly marketing releases.
This tends to be achieved by using feature fl ippers (or feature toggles), which are fl ags or confi gura-
tion options in your code that allow you to turn features on and off based on criteria like time or
users. Advanced feature fl ippers can be found in many systems that allow two users to run different
versions of the same function or algorithm at runtime.

NOTE Feature fl ippers are often achieved with the use of dependency-injection
frameworks like Ninject. These frameworks allow you to replace code at runtime
for different results. See http://aka.ms/Ninject for more information.

If you use the feature fl ipper methods, then you can push your latest code, and any bug fi xes, to
production more frequently. You can then save up a viable set of features for a big marketing push,
secure in the knowledge that the risk of failures is low. The code that you are turning on has likely
been in production for many months and has passed user acceptance testing from your delegated
early adopters. While there is often added conditional complexity in using feature fl ippers, there is a
lot to gain from implementing them.

If you have a complicated branching model, you are going to fi nd it diffi cult to move toward con-
tinuous delivery. Branch integration is where most failures and regressions occur and you must mini-
mize your branches to something more like Figure 6-2. Ideally, you should move toward a single
branch line with feature fl ippers. This setup gives you the same capabilities if not more than branch-
ing. Traditionally we in the software industry have used branches as a crutch in order to avoid plan-
ning. We fi nd ourselves, as our teams grow, stepping on each other’s toes and thinking, “If only
we could separate one group’s work from another’s.” Using branching as a solution to this problem
results in a plethora of diffi cult-to-merge branches. Teams often leave things undone too long and
end up with “big bang” merges or (shudder) have to “cherry-pick” the merge.

There is still a place for branching and it can be phenomenally useful. However, always ask yourself,
when creating a branch, if there is another, cheaper way.

After you have fewer branches, with feature fl ippers doing the heavy lifting and good automation
in place, it is time to create your release pipeline. If you do not have these things then you will likely
fi nd it incredibly diffi cult to achieve an automated pipeline. If you are struggling to achieve continu-
ous delivery, the best way forward is to start taking steps to minimize branching, enable feature fl ip-
pers, and create automation scripts.

NOTE Continuous delivery is an enormous subject and can’t be covered in
depth here. I recommend reading Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation by Jez Humble and
David Farley (Addison-Wesley Professional, 2010).

http://aka.ms/Ninject

132 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 132

DEFINING A RELEASE PIPELINE

A release pipeline is a defi ned workfl ow or process that your binaries pass through to get to produc-
tion. Ideally, every step along your release pipeline should be automated, although in the beginning
some may not be automated, and others may never be. For example, maybe you have a change board
that must approve deployment to production. In this case, you have a queue of releases waiting to
go and the board is responsible for manually approving them prior to release. Everything else should
be automated so that when the board clicks the Approve button, your software is automatically
deployed.

NOTE In order to test your release pipeline you can create something called a
null build. Immediately after you have completed a release, you create a new
build from the same version of the code, and push it through the pipeline. This
will let you know not only how costly your process is, but also your mini-
mum lead time to getting into production. Features and bug fi xes should all go
through the same process.

When you’re creating a release pipeline from the ground up, you may not have all of your processes
automated yet. You need a tool that can grow with you and provide that automation on demand.
There are a number of good release management tools out there.

NOTE I have used and recommended both InRelease and Octopus Deploy in
the past. To fi nd out more about Octopus Deploy, read “Release Management
with Team Foundation Server 2012,” which is still relevant in 2013, at http:
//aka.ms/RelManOctopus.

In mid-2013 Microsoft purchased one of these leading release management tools for Team
Foundation Server, called InRelease. They brought it up to Microsoft standards and released it with
Visual Studio 2013 under the Release Management moniker.

There are three components to Microsoft’s new release management tools:

 ➤ Release Management Client for Visual Studio 2013

 ➤ Microsoft Deployment Agent 2013

 ➤ Release Management Server for Team Foundation Server 2013

The Release Management Server for Team Foundation Server 2013 component provides the back-
ground processing that orchestrates the release in an automated fashion. It has a web interface
to allow actioning of tasks without the need to install a client. A database is added to your Team

Defi ning a Release Pipeline ❘ 133

c06.indd 02/27/2014 Page 133

Foundation Server data tier to maintain all of its data. The Release Management Client for Visual
Studio 2013 has rich features that allow you to confi gure, create, and customize your deployment
orchestration for any number of applications. The Microsoft Deployment Agent 2013 installs onto
the servers that you want to deploy applications to. It handles the silent execution of the processes
you have confi gured that need to be run for a deployment. You can fi nd out more at http://aka
.ms/RelMgmtVS.

Confi guring for First Use
The very fi rst thing you have to do is connect your release management instance to your Team
Foundation Server collection. You can connect many collections across many Team Foundation
Server instances, which gives you the ability to run a central release pipeline even if your organiza-
tion has multiple TFS servers. In Figure 6-4 you can see the details from your TFS server that you
need to enter and the additional credentials. These credentials must have the appropriate permis-
sions on the server. For more details of the required permissions, reference the release management
manual at http://aka.ms/RelManOctopus.

FIGURE 6-4

You can confi gure release management to send notifi cation emails by confi guring the SMTP settings
shown in Figure 6-5. This will allow the system to send out emails to approval gates that require
manual approval detailing what needs approved. The users can then accept, reject, or reassign the
required approval. This gives you massive fl exibility and latitude for approvals, as the approver does
not need to install the client or have a license to respond to approval requests.

http://aka
http://aka.ms/RelManOctopus

134 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 134

FIGURE 6-5

You can manage what your release path gates are called from the Manage Pick Lists tab. You can
manage the pick-lists for both Stage Type and Technology Type. You will get the most use out of
the Stage Type list, as it generates the heading for each of the gates in your process. The pick-list
items are just simple strings, but they will be used later in the chapter. If you add entries to the
Administration ➪ Manage Pick-Lists ➪ Technology Type pick-list, you can select them as being
available on servers, which is explained in the “Introduction to Release Paths” section later in this
chapter.

You can also manage the groups and users who have permission to interact with the release man-
agement process. Not only can you select individual users, you can also import whole groups of
users and have them synchronized with Active Directory on an ongoing basis. To add an Active
Directory group, go to Administration ➪ Manage Groups ➪ New ➪ New from AD, after which you
can select an AD group using the familiar Active Directory dialog shown in Figure 6-6. If you are
on the Manage Users screen, you can manually add a single user as well as see all of the users who
are synchronized from the added groups. There are three role options for users. None is depicted
by a blank Role column and refl ects that the specifi ed user is simply a user with no special permis-
sions. These users can only action approvals that have been assigned to them. Service User is used to
designate service accounts that should not appear in selection pick-lists as it is used for a Deployer
account or Web Service Application Pool Identities. The last designation is the Release Manager
role, which gives the specifi ed user the ability to manage and customize the deployment processes. If
you are not in this category, you will not see very much in the UI and should instead log in with an
account that has been designated as a release manager.

Defi ning a Release Pipeline ❘ 135

c06.indd 02/27/2014 Page 135

FIGURE 6-6

NOTE It would be good practice to create Active Directory groups for each of
the stages in your process and secure your workfl ow with those groups. This
will give you the greatest fl exibility and broaden the scope of management of the
groups.

The last tab on the left of the UI allows you to edit your own profi le. It allows you, for example, to
edit your language and email preferences.

Introduction to Actio ns
Actions are the activities that you perform as part of the sequence of your deployment. They are
available in the toolbox you use to create your deployment workfl ow within the client tool. In the
Release Management for Visual Studio 2013 client, you get a comprehensive menu of options for
building your workfl ows. However, you may fi nd that you have some custom action, or
a third-party action, that is not yet listed or included in the product.

Figure 6-7 shows the components that make up an action. This particular action starts an existing
virtual machine in Azure. One of the general options is to select the tool that will be used. I will talk
about tools later on, but for now the tool in this case, Azure VM Manager, is a PowerShell script
called ControlAzureVM.ps1. This tool has two parameters that are defi ned and a third “command”

136 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 136

parameter that has been hard-coded for this action. When you drop this action onto a release work-
fl ow (discussed later in this chapter in “Creating Release Templates”), you get to specify the two
parameters that might be different, depending on the environment you are deploying to. In this case,
you have ServiceName, which is the name that you give your Azure service, and Name, which speci-
fi ed the individual virtual machine within that service that you want to start. With this model you
can create any number of custom actions for any particular tool.

FIGURE 6-7

Tools are things that are uploaded into the release management server and stored in the database for
later use. They are deployed automatically to the servers that have deployment agents just in time
for the execution of the workfl ow that contains them. Figure 6-8 shows the tool associated with the
actions discussed previously. This tool, called Azure VM Manager, has a number of resources that
are deployed to the deployment agent environment as part of the execution process. You do not have
to install all of the tools, or deploy them, to the individual servers.

Creating custom actions may require you to fi rst create a custom tool and upload that tool into the
release management server as a resource. To deploy a simple website and database, you should fi nd
the out-of-the-box tools to be suffi cient. For example, there are actions for creating and removing
IIS components like websites and application pools, as well as actions for moving fi les around. This
is discussed in the “Creating Release Templates” section later in this chapter; you can fi nd out more
about creating custom actions in the release management manual on http://aka.ms/RelMgmtMan.

http://aka.ms/RelMgmtMan

Defi ning a Release Pipeline ❘ 137

c06.indd 02/27/2014 Page 137

FIGURE 6-8

Introduction to Release Paths
Now that you have an idea which actions you need, you need to create a release path. A release
path is made up of servers, environments, and a little bit of deployment workfl ow that allows you
to orchestrate the approval process. At this point, you should not be concerned with the minutia of
how you will be deploying your application, but instead about the fl ow of your deployments. In this
section, you look at whether you want pre- or post-approval, or both, as well as who will be approv-
ing. In addition, you will set the order and number of environments you will deploy to.

Environments are not the same as servers. You can have many environments on the same server, or
indeed an environment that spans servers. You can even have many environments of the same appli-
cation that span a single set of servers. In this case, you look at a web application that is deployed to
three environments that exist on the same server.

NOTE All of the screenshots are from a Virtual Machine provided by Microsoft
with a walk-through of the process built-in. This gives you a chance to follow
along and try things out on your own. Download the VM from http://aka.ms
/ALMVMs.

http://aka.ms

138 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 138

You fi rst need to confi gure the list of servers. Your servers need to have Microsoft Deployment
Agent 2013 installed. You can fi nd out how to install the release management deployment agent in
the release management manual on http://aka.ms/RelMgmtMan.

Figure 6-9 shows an agent added to the Release Management client for Visual Studio 2013 and the
options you can confi gure. If you have correctly installed the deployment agent, you can simply
select Confi guration Paths ➪ Servers ➪ New ➪ Scan for New to list all of the installed agents that
have not been added to your instance. All of the details are auto-detected, so you only need to con-
fi gure the Drop Location Access at the bottom of the screen according to your network topology. If
the servers that you are deploying to have direct UNC access to your drop locations, then you can
leave it as the default. However, if the server that you are deploying to exists on another network or
domain and does not have direct UNC access to the drop location, then you must confi gure it for
HTTP by selecting the Through Release Management Server over HTTPS option. When this option
is enabled, the agent must have access to the Release Management Server over HTTPS and the
release management server must have access to the drop folder over UNC. The Release Management
Server will then proxy the fi les from the drop location to the agent.

FIGURE 6-9

In addition, if you have confi gured the pick-list for technology types in Administration ➪ Manage
Pick-Lists ➪ Technology Type, then you will see a list of check boxes on the tab marked Supported
Technology Types. From there, you can check the technologies that are available. These technology
types work just like the tags that you apply to your build agents and can be used to specify what
is available on that server. This allows you to, for example, tag all of the servers that have Java

http://aka.ms/RelMgmtMan

Defi ning a Release Pipeline ❘ 139

c06.indd 02/27/2014 Page 139

installed with the “Java” technology type. This can be immensely valuable when you’re trying to
deploy applications to environments as you can gain more insight into what has been installed or is
available.

Once your server is confi gured as a deployment target you can confi gure your environments.
Initially, you are going to deploy only one application—the Fabrikam Fiber Support site. This site
is for users internal to the organization to track support tickets and is fairly straightforward for
illustrative purposes. Figure 6-10 shows a simple development environment, entitled Int-Dev, that
represents the deployment location for a web application for internal applications. Here, you simply
enter a Name, Owner, and Description to help you remember what this was confi gured for. You
have three additional tabs for confi guration. The fi rst allows you to specify the servers that are
involved in this environment. If you select more than one server, you will have more than one server
as a deployment target for your environment. You do not even need the same number of servers in
each of your environments. You may only have a single server in your development environment,
but then have two in the QA environment. This allows you to minimize the cost in development and
then scale out for other environments, like production. You can add an existing server with the Link
Existing button or create a new server. Creating a new server takes you through to the previous sec-
tions’ screens for servers. In addition, you can also use the Supported Technology Types option to
add metadata to the environment. At this point you can select which stages, which you confi gured
in the Stage Type pick-list, have permission to use this environment. You can add any of your stages
and select the Can Use box to make it available to that stage. The default confi guration is to make
the environment available to any stage. Changing this setting as shown in Figure 6-11 will restrict
the environments that are available for stages in the Confi gure Apps ➪ Release Templates section.

FIGURE 6-10

140 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 140

FIGURE 6-11

Now that you have both your servers and environments confi gured, you can look at creating the
release path for our application. The release path describes how your application moves, at a high
level, from one state to another. It also describes who is responsible for approval of each stage. In
Figure 6-12 you can see a simple movement of stages from Dev ➪ QA ➪ Prod. These values are the
ones that you entered for the pick-list in Administration ➪ Manage Pick-Lists ➪ Stage Type. You
can now order them however you want for this specifi c application or platform. At this time, you are
not specifying the components of the application that you are deploying as you will do that as part
of creating your release templates later in this chapter. For now, you are solely focused on the high-
level fl ow of the release. To model your current organization’s fl ow, you have a few simple tools. You
can create columns that represent a combination of stage type and environment. You can use a stage
only once, and although you can have many stages I would recommend that you try to minimize,
if only for simplicity.

Once you have created your columns like you see in Figure 6-12, you can select the environment
that you want to use for this stage. After that, you get to confi gure the four steps—the Acceptance
step, the Deployment step, the Validation step, and the Approval step. They each have their own
meaning and nuance:

 ➤ Acceptance—At this step in the process you have not done anything. You must select an
approver but you can choose whether you need physical approval or if this is an automated
step. As you tend to get to this fi rst stage as the result of an automated build, this is often
confi gured as an automated step (see Figure 6-12). If you do not check the box marked

Defi ning a Release Pipeline ❘ 141

c06.indd 02/27/2014 Page 141

Automated, the individual or group selected will be required to use either the web or client
approval process for the process to continue. If you have email confi gured, the system will
send instructions to the participants via email. After this step has been completed, the deploy-
ment step will execute.

 ➤ Deployment—This step is always automated but you still need to select an owner. The owner
will be notifi ed if there are any issues with the process, either on a poll basis (they have to
manually check the application or site) or via email.

 ➤ Validation—In Figure 6-12 this is confi gured as an automated step. However, if you need to
do any confi guration (which you will hopefully automate) or validate that the environment is
working before you pass it to the Approval step, you can uncheck the automation box. The
process will stop until the “validator” validates the deployment.

 ➤ Approval—This is the most confi gurable step, as it allows you to select multiple approvers
who must all approve before you can move to the next stage. At this point, the approver(s)
are determining whether the current stage was successful and if you should now move to the
next stage.

FIGURE 6-12

Now that you have looked at the fl ow through a single stage, you can see how the overall fl ow
through multiple stages allows you to deploy your applications from environment to environment
while maintaining your audit and traceability trail. As you build your list of applications, as in
Figure 6-13, you can make use of the dynamic search functions to fi nd what you want more easily.

142 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 142

FIGURE 6-13

You just learned how and why to confi gure release path(s) to allow you to create an orchestration
fl ow for your overall application deployment to one or more servers that exist within one or more
environments. Next you see how the software is deployed to those servers.

Creating Release Templates
In order to get started with release templates, your release path confi guration must be complete. The
servers, environments, and release paths that you just looked at are integral to the creation of release
templates. In addition, before you can create your fi rst release template, you need to specify the
components you are going to deploy as part of that release.

In Figure 6-14 you can see the basic options for confi guring a new component. On this screen are
a number of options that you need to fi ll in, as well as then a number of optional fi elds to help you
with more complicated deployments. First are the usual title and description to help identify your
component. You will select the title on other screens, so try to make it concise enough to be easily
understandable. Figure 6-14 shows the Source tab. This tab specifi es where you get the component.
There are three important options:

 ➤ Builds with application—As you learn later in this chapter, a release template can be associ-
ated with a build so that it is triggered from that build’s successful completion. With this
option selected, you only need to enter the last part of the package locations. For example,
if you have a web application then it will automatically end up in a folder of the same name
as your web application in Visual Studio under the _PublishedWebsites folder. The source
fi les that will be used for this component will be loaded dynamically from this folder.

Defi ning a Release Pipeline ❘ 143

c06.indd 02/27/2014 Page 143

 ➤ Builds independently—If you have an independent build for this component that is not
related to the release template, then you can select it here. You can select both the team proj-
ect and the build defi nition that should be used. Specify the folder as explained previously.
This will then grab the correct output from the latest successful build.

 ➤ Builds externally—If your component is not built by Team Foundation Build, then you can
just specify the full UNC path from which the output will be loaded. This could be from a
Maven build from another team or from a library of legacy components that you no longer
compile regularly.

NOTE If you want applications other than web applications to end up in their
own folder, you can use the _PublishedApplications extension available on
Nuget. This gives your non-web projects the ability to be put into a published
folder, and it supports most application formats. You can download it from
http://aka.ms/NugetPubApp or right-click your solution and select Manage
Nuget Packages in Visual Studio 2013.

FIGURE 6-14

The Deployment tab provides a way to specify a set of default deployment instructions. Confi guring
the Deployment tab is very similar to the actions described later. In this case you are doing a simple
Xcopy of your fi les using the Xcopy Deployer tools, as you can see in Figure 6-15, and a single

http://aka.ms/NugetPubApp

144 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 144

parameter of the path. You may perform other tasks before or after this and they will be confi gured
in the release template.

FIGURE 6-15

Although you have no need to confi gure variables for this particular deployment, you can add addi-
tional variables, as shown in Figure 6-16. These variables can be used at different points depend-
ing on the confi guration. Each variable has a title that identifi es it and can be set to Standard or
Encrypted mode. If you have to store sensitive information it would make a lot of sense to store
it as an encrypted string in case your database falls into unscrupulous hands. You can have many
variables of both formats. The Variable Replacement Mode determines when the variable token, for
example __My variable__, will be replaced with their values. If you have a confi guration fi le, you
can put the variable token in place of the actual value and the deployment system will automatically
insert the correct value. The available modes specify when this happens and include a number of
options:

 ➤ Only in Command—If this mode is selected then the variables will be replaced only in the
execution command string and you don’t need to specify any additional options.

 ➤ Before Installation—With this option selected not only will the values be replaced within
the installation command, but also the variable token will be opened and replaced in any
fi le specifi ed before the execution takes place. If you have text-based confi guration fi les
that are used as part of the installation then this is a good option so that the variables are
prepopulated.

 ➤ After Installation—If you only have the fi les that you need to replace the variable token in
after the installation, for example from an MSI installation, then you need to do the replace-
ment after.

Defi ning a Release Pipeline ❘ 145

c06.indd 02/27/2014 Page 145

 ➤ Before and After Installation—If you have a bit of both—some confi guration fi les available
before and used as part of the installation as well as some confi guration fi les as a result of the
command execution—then you will want to replace the variable tokens both before and after
the execution of the command.

FIGURE 6-16

If you select Before, After, or Before and After, you will be required to enter a fi le fi lter expression.
This will tell the system which fi les to do the replacement in. You can still specify all fi les with *.*
or you can speed up the process if there is a large number of fi les by restricting the replacement
to only confi guration fi les with *.config. You can even specify a comma-delimited list of fi lter
options.

The fi nal tab on the component defi nition gives you a view into which and how many release tem-
plates use this component. You may have a component that is used in many applications or deploy-
ments and you want to keep track of the implications of changes to the variables or command. If
you make such changes then you would need to update all of the release templates that use this
component.

Now that you have created the component, you can create a release template for your release. When
you create a new release template, as in Figure 6-17, you are fi rst asked for some metadata. Again
you have a simple name and description, and you then have to specify the all-important release path.
You learned how to confi gure release paths earlier and the release template is really defi ning what
happens at the Deployment step; see Figure 6-12. You can also select a build at this point. If you are
going to create a continuous release process, then you should trigger this process from the comple-
tion of a build defi nition. You can also add security around the process to restrict who can view,
edit, or even create a release using this release template.

146 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 146

FIGURE 6-17

Selecting the correct release path in Figure 6-17 will give you the correct set of release path steps
along the top of the workfl ow, as you can see in Figure 6-18. In Figure 6-18, the ability to trigger the
release from a build is enabled. This will automate the process of creating the release but to do this
you need to add some custom attributes to the build template.

FIGURE 6-18

Defi ning a Release Pipeline ❘ 147

c06.indd 02/27/2014 Page 147

With the properties complete, you can start to build the actual deployment process to use for each
of the stages. You can use exactly the same process; however, there could also be many differences
as the server names and variables differ between environments. You may even have one server to
deploy to in the Dev Stage while deploying to a hundred servers in the Prod Stage. This will invari-
ably require differences in the workfl ow. To that end you can confi gure a different workfl ow for
each of the stages, which you can see in Figure 6-19. On the left side of the Release Template edit
view, you can see the actions, components, and servers that you confi gured previously. There are
also a set of control fl ow elements, common to workfl ow, that allow you to create sequential, paral-
lel, and manual fl ows within the workfl ow.

FIGURE 6-19

You can create the workfl ow to perform deployments by simply dragging the things that you want
from the left to the design surface provided. You can, for example, drag a parallel activity across
from the Control Flow section and, if you have two servers, deploy and confi gure them in parallel to
improve the speed of the deployment.

In this way, you can build up the mechanics of your deployment, even allowing for failures. You
can add rollback elements and the system will execute all rollback elements that have already been
passed as well as the next one. In this way, you can create many checkpoints at which the deploy-
ment can fail gracefully. On each activity the variables that are confi gured, either in the action or
the component, will be shown and you can set them to different values depending on the stage that
is executing. You can see at the bottom of Figure 6-19 that there is only one variable to be confi g-
ured, from the command you looked at earlier. This is the deployment location to which the website
fi les are deployed. If you confi gured other variables then they would also show up here.

148 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 148

To switch between the stages, you can click the title of the stage at the top of the screen and con-
fi gure additional workfl ow elements for each of them. For more information on how to confi gure
release templates, refer to the release management manual at http://aka.ms/RelMgmtMan.

Now that you have a release template, you can create releases that use it to deploy your application.

Creating Releases
With everything else confi gured, you can now create your release. Choose Releases ➪ Releases and
create a new release, as shown in Figure 6-20. Here you specify a release template which, because
you selected a build template as part of confi guring the release template, will ask which build you
want to use. This example uses Latest and has picked that build. You can also select a target stage
based on the permissions that you set when you created the stage. If you are a test manager you may
want to create a release of a specifi c version, such as for verifying that a regression exists in an older
version of the software.

FIGURE 6-20

The release can also be generated from the execution of an automated build. This will result in the
same process, except the name will begin with Build Triggered with a date following it. This type of

http://aka.ms/RelMgmtMan

Defi ning a Release Pipeline ❘ 149

c06.indd 02/27/2014 Page 149

build is pushed through the system and will stop on any of the manual processes, as in Figure 6-21.
In Figure 6-21 you can see that the deployment process to the Dev stage has been completed and
that the process is now waiting for my approval. This is the fi rst non-automated step and represents
the post-deployment approval discussed earlier in the chapter.

FIGURE 6-21

Approvals
There are two ways that you can action approvals. The fi rst is through the Release Management
client for Visual Studio 2013 and consists of a list of approvals that are assigned to you, such as in
Figure 6-22. In this version, you can look at the sequence, which shows which stage the release is at,
and see a read-only view of the workfl ows for each of the stages. You can also view a log of previous
activities and see the properties that were used to call the release.

The other way is a much simpler web interface that shows a subset of the information available in
the client tool. The advantage here is that you do not need to have anything additional installed to
action the approval. Figure 6-23 shows the web interface and the options that are available. You can
click the “stage” icon on the right to see the parts of the stage. The blue indicator shows the stages
that have been completed.

150 ❘ CHAPTER 6 RELEASE MANAGEMENT

c06.indd 02/27/2014 Page 150

FIGURE 6-22

FIGURE 6-23

In both of these interfaces, you can approve or reject the request. The web interface also allows the
user to reassign a task to another user.

Summary ❘ 151

c06.indd 02/27/2014 Page 151

This is a capable release management system that will rise to meet your needs. Regardless of
whether you have a complex deployment process, you can confi gure Release Management in Visual
Studio 2013 to support it .

SUMMARY

In this chapter, you learned about how software release management can help reduce delay and
increase time to market. You learned about continuous delivery and release pipelines and about how
Microsoft has provided tools to confi gure your own pipeline specifi c to your software.

The next chapter discusses some of the common customizations and advanced customization points
that are available in Team Foundation Se rver 2013.

c07.indd 03/03/2014 Page 153

Common Team Foundation
Server Customizations

WHAT’S IN THIS CHAPTER?

 ➤ Examining the Team Foundation Server Object Model

 ➤ Customizing Team Foundation Build

 ➤ Customizing Team Foundation Version Control

 ➤ Customizing Work Item Tracking

 ➤ Customizing the TFS Eventing Model

One of Microsoft’s goals when Team Foundation Server (TFS) 2005 was fi rst released was to
make the platform extensible. Although Microsoft’s intention was to provide a set of tools and
guidance for conducting application lifecycle management using TFS, the company also knew
that people and organizations already have their own methodologies. And although people
may want to use TFS for their tooling, they still want to follow their own software develop-
ment process.

So Microsoft provided several extensibility points within TFS to extend different aspects of the
system as needed. It also provided an API that developers can use for creating custom applications
to access and utilize different systems in TFS, such as work item tracking and version control.

As you’ve seen in previous chapters, TFS itself is made up of a variety of web services, so you
might think that you could just write custom applications to utilize those web services. And
you could, but that would not be considered best practice. Instead, you should make use of the
APIs (which interact with the web services). This ensures that any customizations or exten-
sions you create should be forward compatible with future versions of TFS.

This chapter is about some of the common ways you can customize Team Foundation Server.
It’s designed to be a high-level overview — to whet your appetite for the types of things you
can do. As such, there are not many step-by-step examples of the customizations.

7

154 ❘ CHAPTER 7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

c07.indd 03/03/2014 Page 154

NOTE For more detailed information on customizing and extending Team
Foundation Server, read Professional Team Foundation Server 2013 by Steven
St. Jean, Damian Brady, Ed Blankenship, Martin Woodward, and Grant
Holliday (Wrox, 2014).

OBJECT MODELS

To begin, let’s look at the available object models in Team Foundation Server. Although TFS is com-
posed of several different web services, in general, you do not want to interact with the web services
directly when building customizations to TFS. Instead, you want to use the different object models
(that is, APIs) that are available to you to provide a level of abstraction between yourself and the
TFS web services, as shown in Figure 7-1.

Application

Application

Client Object
Model

Build Process
Object Model

Build Service

Client Object
Model

Client Tier Build Tier

Application Tier

Data Tier

Data

Team Foundation
Web Services

Server Object
Model

FIGURE 7-1

This ensures that as the web services in future versions of TFS are updated, so any code you write
should continue to function as expected.

There are three main object models: client, server, and build process.

Object Models ❘ 155

c07.indd 03/03/2014 Page 155

Client Object Model
You use the client object model for developing custom applications or extensions that will mostly
run from a client-side perspective—for example, creating a custom work item control for the work
item tracking system, or creating a custom application for accessing the version control system.

Some of the things you can do with the client object model include accessing Team Foundation
Server and viewing team project and project collection information. You can also access all the dif-
ferent TFS subsystems, such as work item tracking, version control, and build. You can also use this
object model to extend team projects, add new functionality, and extend Team Explorer.

Server Object Model
You use the server object model to develop applications that must run on the application tier. Typically,
this is used to integrate other tools or data from other applications with Team Foundation Server.

For example, you can use the server object model to create a custom data warehouse adapter, to
store custom data in the TFS data warehouse. Or you can use the server object model to custom-
ize the event notifi cation service in Team Foundation Server (more on this in the section “Team
Foundation Server Event Service” later in this chapter).

Build Process Object Model
You use the build process object model to customize the Team Foundation build process. In most
cases, you use this object model to help build custom build workfl ow activities. You learn more
about build customization later in this chapter.

Simple Object Model Example
This section demonstrates a simple example of connecting to Team Foundation Server and listing
the project collection information it contains. This example shows you the basics of using the client
object model, and you can use it as a basis for future customizations.

In Visual Studio, create a new C# console application and name it Chapter7Example. First, you
need to add a reference to the Microsoft.TeamFoundation.Common and Microsoft
.TeamFoundation.Client assemblies. In Solution Explorer, right-click the References folder and
select Add Reference. With the Assemblies group selected on the left, search for the two assemblies
listed earlier using the Search Assemblies textbox in the upper right. You’ll want to pick the version
12.0.0.0 assemblies if more than one version exists on your machine. Place a check next to each and
click OK to fi nish the process.

NOTE To make this code run, you need to change the string tfsUrl that is set
to http://mde06tfs:8080/tfs to be the URL for your TFS installation.

Add the following using statements to Program.cs:

using System.Collections.ObjectModel;
using Microsoft.TeamFoundation.Client;

http://mde06tfs:8080/tfs

156 ❘ CHAPTER 7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

c07.indd 03/03/2014 Page 156

using Microsoft.TeamFoundation.Framework.Common;
using Microsoft.TeamFoundation.Framework.Client;

Next, add the following code snippet into the Main method:

// Connect to Team Foundation Server
string tfsUrl = "http://mde06tfs:8080/tfs";
Uri tfsUri = new Uri(tfsUrl);

TfsConfigurationServer tfsServer =
 TfsConfigurationServerFactory.GetConfigurationServer(tfsUri);

// Get team project collections
ReadOnlyCollection<CatalogNode> tpCollections = tfsServer.CatalogNode.QueryChildren(
 new[] { CatalogResourceTypes.ProjectCollection },
 false, CatalogQueryOptions.None);

// write out the team project collections
foreach (CatalogNode node in tpCollections)
{

 Guid nodeId = new Guid(node.Resource.Properties["InstanceId"]);
 TfsTeamProjectCollection tpCollection =
 tfsServer.GetTeamProjectCollection(nodeId);

Console.WriteLine("");
Console.WriteLine("TFS: " + tfsUri);
Console.WriteLine("");
Console.WriteLine("Collection: " + tpCollection.Name);
}

Build and run this console application and you should see output similar to Figure 7-2. You will be
able to build on the preceding code to create your own extensions and customizations.

FIGURE 7-2

http://mde06tfs:8080/tfs
http://mde06tfs:8080/tfs
http://mde06tfs:8080/tfs

Customizing Team Foundation Build ❘ 157

c07.indd 03/03/2014 Page 157

Java SDK for TFS
From its beginnings with Team Foundation Server 2005, TFS was designed with extensibility in
mind. As such, Microsoft provided a .NET library (see the previous section for more details) for
interacting with and extending TFS.

Microsoft has extended this into the Java space, with the addition of the Team Foundation Server
SDK for Java. This SDK enables you to extend TFS using Java just as easily as you can using .NET.
One of the nice features of this is that it enables users of Team Explorer Everywhere to fully custom-
ize their development environments, either in or out of Eclipse. This enables you to create the same
TFS extensions for both the .NET and Java developers in your organization.

The TFS Java SDK includes the following information:

 ➤ A redistributable JAR fi le containing the TFS APIs and the native code libraries used by the
TFS API

 ➤ Full API documentation in Javadoc format

 ➤ Code samples

From a licensing perspective, you can use the SDK in your own applications, redistributing the fi les
at no charge. And you can create applications that run on any of the operating systems supported by
the API.

NOTE You can fi nd more information on the Team Foundation Server SDK for
Java at http://aka.ms/TFSJavaSDK.

CUSTOMIZING TEAM FOUNDATION BUILD

In Chapter 5 you learned about Team Foundation Build, the build process and build process tem-
plates. The “out of the box” options for Team Foundation Build probably work for most people, at
least initially. At some point though, you are going to want to modify the build process. This section
discusses a couple of common ways for customizing Team Foundation Build. That said, before you
consider this, make sure you’ve fully explored the new PowerShell options discussed in Chapter 5.
When it comes to DevOps integration, PowerShell is Microsoft’s “go to” mechanism.

Creating Custom Build Process Templates
In Chapter 5 you learned about the Default Template build process template, and how its preconfi g-
ured properties enable you to perform common build scenarios. However, to perform more complex
build activities, such as being able to parallelize parts of the build across multiple build agents, cre-
ate MSI installers, or customize ClickOnce packages, you have to customize the build process. To do
this, you need to create a custom build process template.

To create a new build process template, you start by creating or editing a build defi nition. In the
Process section of the dialog, click the Show details button to expand the screen, as in Figure 7-3.

http://aka.ms/TFSJavaSDK

158 ❘ CHAPTER 7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

c07.indd 03/03/2014 Page 158

FIGURE 7-3

Select the build defi nition you want to use as your base, then click the Download link. This allows
you to save the fi le to your local hard drive. You’ll want to rename the fi le and add it to version
control. Once you’ve done this, you can click the New button near the top of the screen. This opens
the Browse dialog, where you specify the Team Project and the path in version control where you’ve
placed the fi le shown in Figure 7-4.

FIGURE 7-4

In the dialog, select the Team Project where you checked in your XAML fi le. Then use the Browse
button to locate the fi le — in this case, let’s use Chapter7buildDef.xaml. Click OK and the tem-
plate will be available for use in your builds. You can now start using this template when creating
build defi nitions. And if you want to modify it, you can also double-click the fi le from within Source
Control Explorer to open it for editing (see Figure 7-5).

Team Foundation Server ships with a set of additional workfl ow activities related to the build pro-
cess in the assembly Microsoft.TeamFoundation.Build.Workflow. This includes all the build-
related activities called by the build process templates that ship with the product, along with several
other activities that are useful when performing common build customizations.

Customizing Team Foundation Build ❘ 159

c07.indd 03/03/2014 Page 159

FIGURE 7-5

If you look at Figure 7-5, you can see that a WriteBuildMessage activity has been added to the
top of the build. You can see the properties for this activity in the properties window at the bottom
right. The DisplayName has been set to Log Welcome Message, and a message has been included to
write to the build log.

NOTE For more information on creating custom build process templates, you’ll
fi nd a link right in the Build Defi nition dialog after you click the Show Details
button.

Creating Custom Build Workfl ow Activities
As you saw in the previous section, it is possible to edit the build process template to build increased
functionality. Sometimes, however, you may want to collect common workfl ow activities in a cus-
tom, reusable workfl ow activity library. Also, sometimes you might not want to simply build activi-
ties out of other activities, but also execute your own .NET code.

Team Foundation Build allows for this, enabling you to create your own Windows workfl ow activ-
ity libraries in .NET 4.5, build them as a compiled assembly containing your activities, and then use
them in your build process. The Team Build workfl ow activities are provided in this way.

There are four main ways to author a new activity:

 ➤ Write a new CodeActivity

 ➤ Write a new NativeActivity

160 ❘ CHAPTER 7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

c07.indd 03/03/2014 Page 160

 ➤ Compose your custom activity in XAML

 ➤ Compose your custom activity in code

The fi rst two ways involve creating code using the Windows workfl ow libraries. Although not
incredibly complicated, it does require some exposure and knowledge of Windows workfl ow
programming.

The last two ways involve creating a new activity from existing activities. This is the best approach
to take, when possible, for a few reasons. It reuses well-tested code. The activities created are auto-
matically cancelable by the workfl ow runtime, meaning that a build created with your activity can
be stopped cleanly. They can be easily tracked as they execute. And fi nally, the process is compara-
bly easy.

NOTE For more information on building custom workfl ow activities for Team
Foundation Build, see http://aka.ms/CustomWorkflowActivities.

CUSTOMIZING TEAM FOUNDATION VERSION CONTROL

Team Foundation Version Control is a very powerful tool that works very well out of the box. It
integrates well with Visual Studio and provides some enterprise-level features, such as branching
and merging, and shelvesets. In addition to accessing Team Foundation Version Control from within
Visual Studio, you can also access it from the command line, using the tf.exe tool.

One of the more common ways for customizing version control includes building custom check-in
policies. You can also use the client object model to create your own custom applications for access-
ing the version control system.

NOTE For more information on using the client object model with Team
Foundation version control, see http://aka.ms/ExtendingVersionControl.

Custom Check-in Policies
As you learned in Chapter 3, check-in policies provide a way for the team and individuals to effec-
tively manage quality and workfl ow to the source management process used by the team. Check-in
policies run on the actual client, and are confi gured at the team project level in Team Foundation
Server.

You get several check-in policies out of the box with Team Foundation Server, and more can be
added by installing the Team Foundation Power Tools. You also have the capability to create your
own custom policy, using the client object model.

First, you have to build a custom policy class that derives from the PolicyBase base class in the
Microsoft.TeamFoundation.VersionControl.Client namespace. When the policy is created, it needs

http://aka.ms/CustomWorkflowActivities
http://aka.ms/ExtendingVersionControl

Team Foundation Server Event Service ❘ 161

c07.indd 03/03/2014 Page 161

to be installed on any machine that will be checking in code that will be affected by the check-in policy.
Remember, check-in policies execute on the client side; as such, they must be present on the machine try-
ing to execute the policy, or code cannot be checked in without overriding the policy.

Finally, after the policy has been deployed, it needs to be added to the team project. This ensures
that the policy is evaluated each time a developer checks in a fi le to this team project.

NOTE For more information on building custom check-in policies, see http://
aka.ms/CustomCheckinPolicies.

TEAM FOUNDATION SERVER EVENT SERVICE

The EventService service in Team Foundation Server exposes a set of events that, when fi red by
TFS, can trigger other actions, such as sending an email, or making a web service call to another
application. The following events are registered by default for publishing within the service:

 ➤ BuildCompletionEvent

 ➤ BuildStatusChangedEvent

 ➤ BranchMovedEvent

 ➤ NodeCreatedEvent

 ➤ NodePropertiesChangedEvent

 ➤ NodeRenamedEvent

 ➤ NodesDeletedEvent

 ➤ ProjectCreatedEvent

 ➤ ProjectDeletedEvent

 ➤ CheckinEvent

 ➤ WorkItemChanged

You can make use of BisSubscribe.exe, a TFS command-line tool, to subscribe to the events in
the preceding list. When you subscribe to an event, you can either trigger a web service or send an
email. This enables you to receive notifi cations when certain events occur, or trigger other func-
tionality to execute based on the event. The BisSubscribe.exe tool has fi ltering options available,
which enables you to control exactly what types of events trigger what functionality.

You can also make use of the EventService service to create your own custom events that can be
subscribed to. To do this, you need to create a class library that contains a class that represents the
new event. After this class library has been built, you need to create an .xsd fi le that represents the
event class. This is an XML schema fi le representing the event class that can be generated from the
class library. This .xsd fi le will be placed on TFS, which then enables users to subscribe to the new
event.

http://aka.ms/CustomCheckinPolicies
http://aka.ms/CustomCheckinPolicies

162 ❘ CHAPTER 7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

c07.indd 03/03/2014 Page 162

NOTE You can fi nd more information on how to use and customize the Team
Foundation Server Event Service at http://aka.ms/TFSEventService.

CUSTOMIZING WORK ITEM TRACKING

You fi nd out about the work item tracking system in Chapter 11. This system is used to help plan
and track your software development projects. Out of all the areas in TFS, it is probably the one
that is the most heavily customized; it helps to control the process and workfl ows you will use to
develop your applications. You can do things such as make fi elds required or read-only, or change
the workfl ow from moving from one state to the next.

The two main ways for customizing the work item tracking system are modifying the work item
type defi nitions to follow your custom process, and creating custom work item controls for use on
the work item form.

Modifying Work Item Type Defi nitions
A work item type defi nition is simply an XML fi le. This XML fi le is stored in Team Foundation
Server as part of a process template, and defi nes the fi elds, workfl ows, and form layout for a par-
ticular type of work item, such as a task or a bug. There will be times when you want to customize a
work item type, such as the Task work item, to contain custom fi elds, or to follow a workfl ow other
than the default workfl ow.

There are two main tools you can use for modifying work item type defi nitions: the witadmin com-
mand-line tool and the Team Foundation Power Tools Process Template Editor.

You can use the witadmin command-line tool to export a work item type defi nition from Team
Foundation Server into an XML text fi le. You can then open this XML fi le using your favor-
ite XML/text editor and make your customizations. Keep in mind this is an XML fi le, so if you
mistype something or violate the XML schema, the changes will not load back into TFS. After you
have fi nished your changes, you can use the witadmin tool to load the new work item type back into
TFS, where it takes effect.

For those who want a more graphical interface for working with work item type defi nitions, you
can use the Process Template Editor that is available with the Team Foundation Power Tools. The
Process Template Editor provides a complete GUI for working with all aspects of a process template,
including work item type defi nitions.

NOTE The Team Foundation Power Tools are utilities released by the TFS
team outside of the product release cycle/time frame. For more information, see
http://aka.ms/TFPowerTools.
For more information on work item type customizations, see http://aka.ms/
WITCustomizations.

http://aka.ms/TFSEventService
http://aka.ms/TFPowerTools
http://aka.ms

Summary ❘ 163

c07.indd 03/03/2014 Page 163

Creating Custom Work Item Controls
You can also extend the work item tracking system to allow for custom user controls. These controls
enable you to enhance the user interface and extend the workfl ow capabilities. You can bind custom
controls to fi elds within a work item type, which enables users to view and edit data as needed. The
controls can also read and write from external data sources, enabling you to query databases or web
services for data to pull back and provide in the form.

Some examples of custom controls include a timesheet control for tracking time on a work item, or a
web browser control for hosting a web page or passing values to that web page.

Custom controls act like any other control on a work item form. You can place them on the form,
using the default design layout constraints, and you can use their values as part of a state change
workfl ow.

There are some restrictions to be aware of when dealing with custom controls:

 ➤ Multiple value fi elds are not directly supported.

 ➤ You can’t extend existing work item controls.

 ➤ The binaries for each custom control must be installed on the client computer.

 ➤ Custom controls not confi gured correctly or not installed must not cause the client to crash
when accessing a work item type that uses that control.

One of the most important things to remember is that the custom controls must be deployed to
individual client machines. Remember, the work item type defi nition is stored in Team Foundation
Server. However, when you open a work item type that contains a custom user control, it tries to
access the control assembly information on the local client machine. As such, the assembly that
defi nes the custom user control must exist on the client machine.

For detailed information on building custom work item tracking controls, see the post “Work Item
Tracking Custom Controls” by Gregg Boer at http://aka.ms/WITCustomControls.

NOTE For some prebuilt custom work item controls, as well as the source code
associated with them, see the Custom Controls for TFS Work Item Tracking
project at codeplex.com: http://witcustomcontrols.codeplex.com/.

SUMMARY

 In this chapter, you gained a high-level understanding of the different ways that Team Foundation
Server can be extended and customized.

You learned about the different object models available within Team Foundation Server, and when
to use them. You also saw a step-by-step example of using the client object model to connect to
Team Foundation Server and list the project collections contained within.

http://aka.ms/WITCustomControls
http://witcustomcontrols.codeplex.com
http://witcustomcontrols.codeplex.com
http://witcustomcontrols.codeplex.com

164 ❘ CHAPTER 7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

c07.indd 03/03/2014 Page 164

You learned how to customize Team Foundation Build, including the creation of custom build pro-
cess templates, and custom build workfl ow activities. And you learned how to customize the version
control process using custom check-in policies.

Finally, you saw how the event notifi cation service in TFS works, and how you can customize it, as
well as how you can modify the work item tracking system by using custom work item type defi ni-
tions and custom work item controls.

In Chapter 8, you learn about the importance of engaging early and frequently with your software
development project’s stakeholders. You also learn about the tools that Microsoft and its partners
have built to facilitate requirements management and collaboration among project stakeholders.

c08.indd 02/27/2014 Page 165

PART II
Building the Right Software

 ▸ CHAPTER 8: Introduction to Building the Right Software

 ▸ CHAPTER 9: Storyboarding

 ▸ CHAPTER 10: Capturing Stakeholder Feedback

c08.indd 02/27/2014 Page 167

Introduction to Building the
Right Software

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the importance of engaging stakeholders through-
out the software development process

 ➤ Learning how Microsoft has extended its ALM toolset to incorpo-
rate stakeholders

 ➤ Discovering other ways of integrating stakeholder feedback with
Team Foundation Server 2013

Every successful software development project begins with requirements. These require-
ments may be stated explicitly, such as the need for a payroll system to initiate direct deposits
twice each month so that employees can get paid, taking into account the salary rate for each
employee, minus any deductions for taxes and other withholdings. Or requirements may be
more implicit, even abstract, such as the need for a video game to be fun and enjoyable.

In any software development project, there should be an explicit recognition that requirements
will likely change and evolve over time, even during the lifespan of a single software develop-
ment project. Business opportunities present themselves, competition forces innovation, new
regulations and compliance policies are introduced, and even the introduction of new tech-
nologies makes some requirements obsolete while enabling other solutions. Requirements can
even evolve as your software users start to use early builds of your software; this may cause
them to change their opinions about their original requirements, or could inspire entirely new
requirements.

8

168 ❘ CHAPTER 8 INTRODUCTION TO BUILDING THE RIGHT SOFTWARE

c08.indd 02/27/2014 Page 168

The Agile Manifesto (www.agilemanifesto.org) says this about software requirements:

Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

In 2010, the FBI had wasted 1.2 billion dollars over eight years trying to deliver to production a
waterfall project with hundreds of engineers. In 2011, they started over with a small dedicated
Scrum team in the basement of the Hoover Building and delivered production the following year.

Indeed the United States Department of Defense recently updated its procurement rules to require
an iterative lean-agile approach to all projects undertaken for them, regardless of the size. This is in
response to the continued and escalating non-delivery of projects delivered under waterfall.

Regardless of the software development approach you take, it is vital to understand the require-
ments you are attempting to fulfi ll with your software. Arguably, the only software mistake more
expensive than a bug is that of building the wrong software in the fi rst place. At least bugs can be
fi xed whereas building the wrong software may cause you to need to scrap the effort entirely. This
is such a serious problem in the software industry that we have invented a unique term for it: shelf-
ware. Software that is either too hard to implement or doesn’t meet the necessary requirements is
doomed to sit on the shelf unused.

So how do you ensure that you adequately understand the requirements your software must fulfi ll?
How do you account for changes to those requirements over time? How should you prioritize the
requirements that you work on? A big part of the answer is to engage early and often with your soft-
ware development project’s stakeholders.

NOTE “The process wars are over and, happily, Agile has won.”

—Sam Guckenheimer, Product
Owner for Visual Studio ALM

Although you can still easily use a non-agile approach to software development
with Visual Studio ALM, Microsoft is actively building tools that primarily
support lean-agile teams. Although every software development process is dif-
ferent, it is now universally accepted that waterfall is less likely to result in suc-
cesses and rarely lets you build the correct software. Indeed, an agile project is
three times more likely to succeed than a waterfall one (http://aka.ms
/ChaosManifesto13), even with the most pessimistic of outlooks.

Many projects undertaken in companies that are still stuck in the past even
employ an approach that blends waterfall and agile techniques. This process
is necessary as they transition to a greater understanding of lean-agile. Dave
West, of TaskTop, commonly refers to this as water-scrum-fall. Microsoft built
Team Foundation Server and the accompanying ALM tools with this fl exibility
in mind, which enables teams to customize the tools even if that means blending
seemingly competing processes.

http://www.agilemanifesto.org
http://aka.ms/ChaosManifesto13
http://aka.ms/ChaosManifesto13

Stakeholders ❘ 169

c08.indd 02/27/2014 Page 169

STAKEHOLDERS

A stakeholder can be anybody outside of the development team who has a vested interest in the out-
come of a software development project. For example, the end users of the software are certainly
stakeholders and are perhaps the fi rst group who comes to mind when you think of stakeholders.
Another stakeholder may be the person who is funding a particular project. After all, end users may
want an application to have a key piece of functionality, but if the person paying for the project
believes that it is too expensive to implement then that’s important for the software development
team to know before they start writing code. A lawyer may also be a stakeholder because some appli-
cations may need to undergo scrutiny to ensure that certain compliance and regulatory requirements
are met. If you are in the business of selling software then your product’s marketing team will likely
have a seat at the table. You can probably think of other stakeholders for your software as well.

Whoever the stakeholders are for your project, they are a vital part of your extended development
team. Stakeholders can play a role in some or all of the following activities:

 ➤ Requirements elicitation—This is the process of gathering requirements from stakehold-
ers through brainstorming, focus groups, role playing, prototyping, and other techniques
designed to capture what a stakeholder may need your software to do today and in the
future. These requirements usually end up on a backlog, which is updated and changed
throughout the development process.

 ➤ Requirements refi nement—Requirements do not normally come with all of the informa-
tion needed to deliver them. Sometimes they start life as short notes and the details emerge
over time. There is an expression, “refi ned to action,” where the requirements are discussed
and refi ned up until the point at which the development team commits to delivering them.
Throughout the life of the requirements, the team works with the stakeholders to gather
additional details as they are needed. As the software development team begins to capture
and analyze requirements, they often turn these requirements into written specifi cations,
use case models, visual storyboards, or other such artifacts, which attempt to capture what
they heard from stakeholders during the requirements elicitation and refi nement activities.
This is an important point in time for stakeholders to provide feedback about the intended
implementation.

 ➤ Requirements ordering—As requirements are refi ned, they need to be ordered. It is important
to determine the most optimal order of your requirements in order to successfully deliver the
highest value requirements for any individual incremental delivery. There are many things
that can infl uence ordering, including but not limited to business priority, technical limita-
tions, and strategic direction.

 ➤ Feedback—As working code begins to take shape, it may be possible to further refi ne require-
ments by asking stakeholders to use interim builds of your software and provide feedback.
When this step is implemented early enough, it can help uncover disconnects between the
stakeholder’s expectations and the development team’s implementation in time to affect that
upcoming release milestone.

170 ❘ CHAPTER 8 INTRODUCTION TO BUILDING THE RIGHT SOFTWARE

c08.indd 02/27/2014 Page 170

The activities described in the preceding list are typically referred to collectively as requirements
management. Like other aspects of software development, requirements management is both an art
and science, and it has been covered extensively by other books (Dean Leffi ngwell and Karl Weigers
have both written great books on software requirements). For the purposes of this book, we are
focusing on the tooling that is provided as part of Visual Studio for working with requirements.
In this section, you learn about the PowerPoint Storyboarding add-in, as well as the Microsoft
Feedback Client. In this chapter, you also learn about a few of Microsoft’s partners who offer
complementary products in the requirements management space. In Chapter 12, you learn how
Team Foundation Server enables teams to prioritize the order in which your team will implement
requirements.

NOTE Henry Ford is quoted as having said that if he would have asked custom-
ers what they wanted they would have replied, “A faster horse.” Instead, Ford
invented the Model T, which ushered in the automobile era, rendering even the
fastest horses obsolete. The implication is that customers don’t always know
what they want, so it’s sometimes up to the developers to deliver what they need
before they realize they need it. But be careful not to be lured into a false conclu-
sion that you no longer need to learn about your customers’ wants and needs.
The reality is that you may need to get to know your customers even better
than they know themselves in order to map observed needs to solutions you can
deliver.

STORYBOARDING

Storyboarding is a technique that was pioneered by the cartoon and fi lm industry to help visualize
sequences before the expensive process of fi lming or animating had begun. Because storyboards are
composed of simple sketches, they are quick to create and easy to re-create if needed based on feed-
back, fi lming constraints, script changes, and so on. After the director is satisfi ed with the overall
fl ow represented by the storyboard, the expensive processes of designing sets, confi guring shots,
fi lming, editing, and so on can begin.

Storyboards have since found their way into software user interface design. A series of storyboard
panels could show the way in which a user interacts with a website when researching and ordering
a new coffee table. The storyboard can then be shared with prospective users, market research-
ers, information architects, and other stakeholders and experts whose opinions help to shape the
storyboard into the best possible design for the software development team to implement. The
storyboard then becomes an artifact that the software development team can use to help plan their
implementation.

With Visual Studio 2012, Microsoft released a new tool for creating and sharing storyboards
and it has stayed pretty much the same in Visual Studio 2013. This tool is known as PowerPoint
Storyboarding, and, as the name implies, it is based on Microsoft PowerPoint. In Chapter 9, you

Capturing Stakeholder Feedback ❘ 171

c08.indd 02/27/2014 Page 171

learn about the capabilities of this tool and how to use it to effi ciently and cheaply iterate on user
interface design with your project’s stakeholders prior to writing a single line of code.

CAPTURING STAKEHOLDER FEEDBACK

Wouldn’t it be great if you could talk to your stakeholders about what they want the software to do,
go off for a few weeks to build it, and then give it to them and smile while they congratulate you on
building exactly what they wanted? Unfortunately this rarely happens in the software development
world. The very nature of software development is highly complex. There are technical challenges to
overcome; complex business rules and other requirements must be captured and implemented pre-
cisely; and different machine environments must be considered, such as which web browser the users
prefer, what languages they speak, what accessibility constraints they have, and so on. And if all
that isn’t challenging enough, you have to account for the users’ taste and style preferences. We have
all been in this situation: You are demonstrating your software; it works fl awlessly; everything is
going well; and then somebody complains that they hate the font you chose for the user interface. It
makes you wonder if Leonardo da Vinci ever received complaints about the frames his masterpieces
went into.

But “the customer is always right,” and it is up to the software development team to listen to their
feedback and respond to the best of their ability to create the best possible deliverables. The Agile
Manifesto pays credence to this idea throughout, such as in the fi rst principle:

“Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.”

Many agile teams even go so far as to treat the customer as an integral part of the software develop-
ment team. An end user or other stakeholder may attend weekly progress reviews or even participate
in discussions about possible implementations. When this type of face-to-face interaction is possible,
it can be invaluable for ensuring that the vision of the software development team is closely aligned
with that of the stakeholders. But how can you achieve this type of cooperation when your stake-
holders are geographically dispersed, time shifted, or too numerous to practically incorporate into
the regular cadence of development team meetings?

NOTE The term customer from the Agile Manifesto is synonymous with the
earlier discussion of the term stakeholder. Stakeholder is sometimes preferred to
customer because the latter implies an exchange of goods or services for money,
whereas the former recognizes that money isn’t always an underlying consider-
ation when defi ning a person’s interest or involvement in a project’s outcome.

Microsoft has another tool, introduced in Visual Studio 2012, that’s designed to facilitate this type
of interaction. The Microsoft Feedback Client captures rich data about the interactions of a stake-
holder with your software, as well as their reactions. The development team can start by initiating

172 ❘ CHAPTER 8 INTRODUCTION TO BUILDING THE RIGHT SOFTWARE

c08.indd 02/27/2014 Page 172

a request for a stakeholder to provide feedback about a user story or requirement that has been
implemented. The stakeholder can then run the Microsoft Feedback Client while they are using
the interim build of the software. Along the way, that stakeholder can choose to capture video and
audio recordings, notes, and screenshots that refl ect things that they like or dislike about your soft-
ware. All of this data is centrally stored in Team Foundation Server so that the development team
can analyze and react to it. You learn how to use the Microsoft Feedback Client in Chapter 10.

WORK ITEM ONLY VIEW

Although you should always use the Feedback tool for customer feedback, there is another way of
collecting input from your stakeholders. You can allow them to fi le bugs or enhancement requests
directly to Team Foundation Server. This centralizes feedback in one repository that the develop-
ment team can then react to and track over time. Microsoft does this for a wide range of Microsoft
products via their Microsoft Connect website (http://connect.microsoft.com). Product groups
at Microsoft synchronize data from Connect directly into their own Team Foundation Server work
item databases, and any responses about the customer’s request are returned to the user via the pub-
lic website.

You can use Team Foundation Server for this purpose as well. But for most organizations, obtaining
a Team Foundation Server client access license (CAL) for every possible stakeholder can be cost pro-
hibitive. In recognition of this, Microsoft created a licensing exemption for stakeholders who may
fi le bugs or enhancement requests. From the Visual Studio licensing whitepaper:

A Team Foundation Server CAL is not required in the following scenarios:
Entering work items through any interface, and viewing and editing work items
you created. This enables users to enter and edit their own work items of any type.

NOTE The latest version of the Visual Studio Licensing White Paper can be
found at www.microsoft.com/visualstudio/licensing. This whitepaper
attempts to synthesize all of the licensing requirements for Visual Studio, Team
Foundation Server, and related technologies into an easy-to-read format.

Because stakeholders are not likely to have Visual Studio installed, the most common way of asking
them to provide feedback in this manner is via Team Web Access, which is covered in Chapter 10.
Stakeholders who don’t already have access to Team Foundation Server can be added to the Limited
license group in Team Foundation Server. This is also referred to as Work Item Only View. Users
who are members of this group are only permitted to create and update work items they create,
per the terms of the aforementioned licensing clause. If a stakeholder requires more comprehensive
access to Team Foundation Server, she needs to be licensed and permissioned appropriately.

NOTE Detailed steps for adding users to the Limited license group can be found
at http://aka.ms/MSWIOV13.

http://connect.microsoft.com
http://www.microsoft.com/visualstudio/licensing
http://aka.ms/MSWIOV13

Third-Party Requirements Management Solutions ❘ 173

c08.indd 02/27/2014 Page 173

THIRD-PARTY REQUIREMENTS MANAGEMENT SOLUTIONS

There are a number of approaches and solutions to requirements management and stakeholder
engagement employed by software development teams. Although Microsoft has made forays into
requirements management with the Visual Studio 2012 release, and expanded on it in Visual Studio
2013, by introducing the aforementioned tools, it continues to rely on this broad ecosystem of
partners to provide complementary requirements management solutions that integrate with Team
Foundation Server. Three popular examples of these partner solutions are covered next.

TeamCompanion
The single most popular work item management system on the planet is email. Your program and
project managers likely live in their email, as do many of your stakeholders. It would be awesome if
you could integrate your work items directly into Microsoft Outlook. TeamCompanion from
Ekobit allows you to do just that. In Figure 8-1 you can see the integration with Outlook in action.
Not only does it build agile planning tools right into Microsoft Outlook, but it also has tools for
creating work items from emails and vice versa. Indeed, it will automatically detect if there is a
work item associated with an email thread and keep it up to date. If your customer emails you
about a bug or enhancement, you can easily turn it into work items in Team Foundation Server for
the development team to triage and react to. Conversely, you can use TeamCompanion to gener-
ate emails from work items in Team Foundation Server—such as to provide the latest status of an
enhancement-request work item to an important customer.

FIGURE 8-1

174 ❘ CHAPTER 8 INTRODUCTION TO BUILDING THE RIGHT SOFTWARE

c08.indd 02/27/2014 Page 174

You can learn more about TeamCompanion at www.teamcompanion.com.

TeamSpec
One of the most widely used requirements management “tools” on the planet is Microsoft Word.
Microsoft Word is popular, easy to use, and facilitates sharing and collaboration via tracked
changes and comments. It’s no wonder then that many software requirements live their lives as
specifi cations in Word documents. TeamSolutions, a Microsoft partner, recognized the popularity
of Microsoft Word in the requirements management space and saw an opportunity to keep require-
ments documents relevant by integrating Word and Team Foundation Server. They created a solu-
tion called TeamSpec to bring Microsoft Word-based requirements into a company’s ALM process,
and it has become popular among teams who use Team Foundation Server.

TeamSpec, shown in Figure 8-2, maintains a link between requirements in your document and
pertinent work items in Team Foundation Server. One feature enables teams to compose require-
ments using customizable templates in Microsoft Word. The templates defi ne fi elds that represent
the elements of the requirement that will be mapped to Team Foundation Server. For example, the
template for a user story may defi ne fi elds for a title, a description, and the person on the develop-
ment team responsible for that user story. The requirements document in Word can then be shared
with project stakeholders for validation. The stakeholders can make proposed edits or comments
to send it back to the development team just like they would with any other Word document. After
the stakeholders have signed off on a requirements document, it can be synchronized with Team
Foundation Server as a work item or group of work items. TeamSpec is responsible for providing
this synchronization by examining the contents of each fi eld in the document template and pushing
it into a corresponding work item fi eld.

Another capability of TeamSpec is that it can be used in the other direction to generate Word
documents from work items in Team Foundation Server. This feature is especially useful when the
software development team has made changes to a requirement that must be communicated to the
stakeholders. In this way, TeamSpec recognizes that requirements often evolve over time and that
keeping the requirements in-sync, for all stakeholders, is imperative. You can learn more about
TeamSpec at www.teamsystemsolutions.com.

inteGREAT
inteGREAT, by eDevTECH (www.edevtech.com), is a requirements lifecycle management platform
that integrates bidirectionally with Team Foundation Server 2013, with Team Foundation Server
providing the centralized application and database store for inteGREAT. This also works with older
versions of Team Foundation Server as well.

http://www.teamcompanion.com
http://www.teamsystemsolutions.com
http://www.edevtech.com

Third-Party Requirements Management Solutions ❘ 175

c08.indd 02/27/2014 Page 175

FIGURE 8-2

inteGREAT, shown in Figure 8-3, enables users to elicit, analyze, validate, review, and manage
requirements. inteGREAT also offers bidirectional integration with Microsoft Excel and Word,
allowing business users to author requirements in tools that are familiar to them. It embeds Visio
controls within the tool to facilitate the creation of many types of diagrams. It also integrates with
Microsoft Project, publishes documents and an HTML knowledge base to SharePoint, and produces
XAML code from its screen mock-up functionality. It even integrates third-party solutions such as
CA ERwin and HP Quality Center.

If you are seeking a requirements defi nition and management solution that allows you to baseline
projects and provides a more formal and comprehensive approach than that currently offered by
Microsoft, then you should consider evaluating inteGREAT.

176 ❘ CHAPTER 8 INTRODUCTION TO BUILDING THE RIGHT SOFTWARE

c08.indd 02/27/2014 Page 176

Business Stakeholder

Visio Word

Excel

Project

Team Foundation
Server

SQL Server Reporting
and Analysis Services

SharePoint Server

Application Services

Business / System
Analyst

Eclipse / Java

Data Persistence

OLTP
Database

Relational
Warehouse

OLAP
CUBE Developer and

Tester
Project Manager

FIGURE 8-3

SUMMARY

 In this chapter, you learned about the importance of engaging early and frequently with your soft-
ware development project’s stakeholders. During this process you capture and refi ne the require-
ments your software needs to implement before you begin coding. Then, as your software evolves,
you learned about getting additional feedback from stakeholders, which can infl uence the ongoing
implementation to ensure that the development team is building the right software. Microsoft and
its partners have built several tools to facilitate requirements management and collaboration with
your project’s stakeholders. These tools integrate with Team Foundation Server alongside the rest of
your software development project’s artifacts.

In Chapter 9 you learn more about PowerPoint Storyboarding.

c09.indd 02/27/2014 Page 177

Storyboarding
WHAT’S IN THIS CHAPTER?

 ➤ Using the PowerPoint Storyboarding add-in to create storyboards

 ➤ Using layouts, custom shapes, and animations to create and main-
tain storyboards to capture requirements from your stakeholders

 ➤ Linking storyboards with Team Foundation Server work items

In Chapter 8 you discovered that, with Visual Studio 2012, Microsoft extended its application
lifecycle management tooling to better address the needs and feedback of project stakeholders
throughout the lifecycle. This functionality remains unchanged in Visual Studio 2013. In this
chapter, you learn more about one of these tools, PowerPoint Storyboarding, which adds a
form of lightweight requirements elicitation to Microsoft’s offerings. After reading this chap-
ter you will have a better understanding of how to use these new tools to create user interface
designs and workfl ows that you can socialize with your project stakeholders to collect feed-
back and sign off early in the process.

WHY STORYBOARDING?

Chapter 8 explained that storyboarding is a technique that has its roots in the cartoon and
fi lm industry. Disney is credited with inventing and refi ning the technique in the early twen-
tieth century for animation, and the technique quickly found its way into fi lm and eventually
software development. Figure 9-1 shows an example of a storyboard used for a fi lm. A story-
board for a fi lm is created and refi ned by a team of creative professionals, including writers,
directors, and storyboard artists. During this process, storyboards typically undergo several
iterative changes before fi lming begins. The fi nished storyboard then becomes a design artifact
that helps to inform set designers, camera crews, actors, editors, and others who are respon-
sible for ultimately converting the creative and artistic direction into a fi nished fi lm.

9

178 ❘ CHAPTER 9 STORYBOARDING

c09.indd 02/27/2014 Page 178

FIGURE 9-1

Creating a storyboard is similar to sketching an idea on a whiteboard or the back of a napkin, and
these activities all share a collection of common benefi ts that make them popular:

 ➤ Storyboards are visual, and humans are visual creatures. The saying, “a picture is worth a
thousand words” is especially true when you consider the additional level of detail that can
be quickly conveyed through a picture or a series of pictures that might otherwise be incredi-
bly time consuming or error-prone to communicate over, say, a telephone discussion or email
exchange. In this way, you can say that a good storyboard is worth a thousand-page spec.

 ➤ Storyboards are cheap to create. “Pixel-perfect” precision is rarely expected during the story-
boarding phase, and anybody with a pencil and paper can create a storyboard.

 ➤ Storyboards convey motion. By sequencing together multiple panels of a storyboard, you can
convey the fl ow expected as you move from one state to the next. In fi lm, this can convey
action or plot; in software, you might use this to represent a workfl ow, such as an accountant
interacting with tax fi ling software to calculate an income tax return.

 ➤ More importantly, storyboards are quick and easy to iterate on. Chapter 8 covers the impor-
tance of being able to respond quickly to stakeholder feedback in order to best ensure that
your team delivers great software. Unfortunately, software is relatively slow to change, and it
only gets slower and more expensive to change the more complex it becomes. Consequently,
any time you can spend up front proposing a storyboard design, listening to your stakehold-
ers give you feedback, and reacting to that feedback before you start writing code is ulti-
mately going to help you create better software with less time and effort.

By Sam Garland, used with permission.

PowerPoint Storyboarding ❘ 179

c09.indd 02/27/2014 Page 179

It’s clear that a storyboard can help immensely with the task of creating a great user interface for a
software project. Just as a storyboard for a fi lm can help inform the set designer and camera crew, a
storyboard for a software project can help graphic designers and user interface programmers collab-
orate to turn ideas into reality. Software testers can use them to begin to author test cases to validate
what a piece of software should (and shouldn’t) do. Documentation teams can begin to outline their
help topics. Even the marketing team can use storyboards to convey to a set of prospective custom-
ers what your software will do when fi nished, even before the team has written a single line of code.

Microsoft’s PowerPoint Storyboarding tool was built to make it easy for software development
teams to quickly create and iterate on storyboard designs. Whiteboards and napkins may work well
for simple designs that need to be collaborated on by team members who are all in the same loca-
tion. But with project stakeholders often located around the world in different time zones, and soft-
ware becoming increasingly more complicated with branching workfl ows, the art of storyboarding
has needed to evolve beyond whiteboards and napkins.

There are other storyboarding tools on the market already, such as Balsamiq. Microsoft even has
two other tools that many teams already use for storyboarding: Microsoft Visio and Microsoft
Expression SketchFlow. So why do you need yet another storyboarding solution? As the name
indicates, PowerPoint Storyboarding is based on Microsoft PowerPoint. In their research for
Visual Studio 2012, Microsoft observed that an overwhelming number of software developers and
the stakeholders they serve already own PowerPoint and know how to use it for creating at least
basic presentations. As it turns out, many of the features needed to create storyboards are already
included in PowerPoint (such as 2D graphics, animations, layouts, linking, and collaboration fea-
tures such as notes and review comments). Hence, Microsoft concluded that a storyboarding tool
built on PowerPoint would be comfortable and familiar to the set of users who care most about sto-
ryboarding. In the rest of this chapter you learn how to use PowerPoint Storyboarding to create rich
storyboards.

POWERPOINT STORYBOARDING

To work with PowerPoint Storyboarding, you need to fi rst install Visual Studio Test Professional
2013, Visual Studio Premium 2013, or Visual Studio Ultimate 2013. PowerPoint Storyboarding is
compatible with Microsoft PowerPoint 2007, 2010, and 2013, and is expected to remain compatible
with future versions of PowerPoint as well. Screenshots and instructions in this chapter are based on
PowerPoint 2013 but are similar in other versions.

NOTE You can share PowerPoint Storyboards with stakeholders who have an
appropriate version of PowerPoint or the free PowerPoint Viewer installed, even
if they don’t own a Visual Studio license. Those users won’t, however, get access
to the unique capabilities provided by the PowerPoint Storyboarding add-in,
which you learn about in this chapter.

To Launch PowerPoint Storyboarding you need to fi rst open PowerPoint by clicking Start ➪ typ-
ing ‘powerpoint’ ➪ launching PowerPoint 2013 and going to the “Storyboarding tab.” You can

180 ❘ CHAPTER 9 STORYBOARDING

c09.indd 02/27/2014 Page 180

also launch PowerPoint from the Offi ce menu or by opening an existing PowerPoint fi le. Because
PowerPoint Storyboarding is just an add-in for PowerPoint, you can work with this functionality
any time you are using PowerPoint.

The PowerPoint Storyboarding add-in introduces a new tab to your PowerPoint ribbon (see Figure
9-2). Several of the buttons exposed on this tab are existing capabilities you may already be familiar
with in PowerPoint, such as the Align button that enables you to easily align shapes. These capabili-
ties are generally useful when working with storyboards, and appear on the Storyboarding ribbon
tab for convenience. Some other capabilities, such as the Storyboard Shapes and Storyboard Links
buttons, are new with the add-in. You learn about them in this chapter.

FIGURE 9-2

Storyboard Shapes
Much of the value in the PowerPoint Storyboarding add-in is found in the rich set of shapes avail-
able for easily modeling Windows applications, web applications, and phone and tablet applications.
The Storyboard Shapes pane pictured in Figure 9-3 shows just a few of these shapes. If Storyboard
Shapes is not open, you can click the Storyboard Shapes button from the Storyboarding ribbon tab.
Spend a few minutes exploring the shapes you can work with.

Notice that there are backgrounds that provide templates for representing the class of application
you are developing, such as tablet, web, phone, traditional desktop apps, SharePoint applications,
and so on. Annotations such as sticky notes and callouts enable you to convey additional meaning
about a storyboard to stakeholders. The Storyboarding add-in includes a large collection of icons

PowerPoint Storyboarding ❘ 181

c09.indd 02/27/2014 Page 181

and all of the standard controls you expect for applications, such as buttons, lists, drop-downs, dia-
logs, media controls, and so on.

Some shapes, such as the Click shape, are animated by default, but you can add animations to any
shape. The Search box can be helpful for quickly fi nding a shape you are looking for. Finally, the
My Shapes category is a place for you to store your own custom shapes. You learn how to work
within the “My Shapes” section later in this chapter.

Spend some time familiarizing yourself with some shapes by dragging them from the Storyboard
Shapes pane onto an empty PowerPoint slide. Notice that these shapes are not simply images; many
are complex shapes consisting of several sub-elements. For example, try adding a Calendar control
to your storyboard. You can click the individual elements to customize the month, day, and selected
date. Most of the time you won’t need to do this in your storyboards, but the fl exibility is there if
you need it.

FIGURE 9-3

Layouts
Working with layouts is a core capability of PowerPoint and is very valuable when storyboarding.
Layouts provide a hierarchical manner of defi ning templates from which each of the slides in your
storyboard can inherit. By embedding common elements in your layout, you save yourself time later
when you need to create a new storyboard that uses that layout. You also save time in maintaining

182 ❘ CHAPTER 9 STORYBOARDING

c09.indd 02/27/2014 Page 182

your storyboard if you need to update core elements, such as your company’s logo in the header or a
copyright date in the footer.

If you added shapes to your blank slide in the previous section, clean up that slide by deleting those
shapes. From the Storyboarding Shapes pane, fi nd the Web Browser shape under the Backgrounds
category and drop it onto your empty slide. Position it so that the corners of the shape match the
corners of your slide. In the address box of the Web Browser shape, type the base URL for your web
application, such as http://www.fabrikam.com. This is the template that you will use for multiple
slides in your storyboard, so you should turn it into a layout.

From the Storyboarding ribbon tab, click Create Layout. Provide a name for this layout, such as
Fabrikam Fiber Intranet. Open the Slide Master view, pictured in Figure 9-4, by clicking on Edit
Layout. Your new layout, Fabrikam Fiber Intranet, is represented as the second child node in this
hierarchy. The fi rst child node is an empty slide, which can be useful if you need to create a story-
boarding slide that should not use your new layout.

FIGURE 9-4

Screenshots
Many applications use common elements across multiple pages or screens in the application, such
as a common masthead, footer, and menus. If this is a greenfi eld (brand new) application, you can
use the Storyboard Shapes and other graphical tools (such as Photoshop) to create a look and feel for
your application. Often, you’ll be creating a storyboard to represent new functionality that you want
to add to an existing application. The Screenshot capability of PowerPoint makes it easy to import
these existing visual elements into your storyboard.

http://www.fabrikam.com

PowerPoint Storyboarding ❘ 183

c09.indd 02/27/2014 Page 183

In a web browser, open an existing web application that you want to import design elements from.
This can be any web application for now, such as Microsoft.com. Maximize the window for your
web browser and position it so that you can see the visual elements that you want to import. Now
switch back to PowerPoint and click the Storyboarding ribbon tab. Click the Screenshot button.

The Screenshot button expands to display thumbnails that represent the other windows you have
open, including the web browser you just opened. You can import the entire window, but doing so
also includes the chrome from the browser (menus, address bar, and so on). Instead, you can click
Screen Clipping to briefl y minimize PowerPoint and click and drag a rectangle that captures the sec-
tion of the web application that you want to import. Figure 9-5 shows the screen clipping capability
being used to select the masthead from the existing Fabrikam Fiber web application.

NOTE When using the Screen Clipping capability, it is necessary to ensure that
the last window you had open prior to switching back into PowerPoint is the
window that you want to capture a screen clipping from. If you try to switch to
a new window by clicking the running application on the task bar, the screen
clipping capability instead assumes that you are trying to capture a screen clip-
ping from the task bar.

FIGURE 9-5

184 ❘ CHAPTER 9 STORYBOARDING

c09.indd 02/27/2014 Page 184

After you’ve imported an image, you can select it and use the Format ribbon tab to crop it or make
other adjustments. For example, you may want to use the Color button to set the saturation to 0 per-
cent. This makes the shape plain grayscale, which is sometimes a useful technique for getting stake-
holders to focus on providing feedback on the functionality of an application, instead of focusing on
design elements such as color selection. You can always revisit the Color button later to restore the
image to its original saturation.

You can now add any other common elements, such as sidebars or footers. When you are fi nished
building your layout, click the Slide Master ribbon tab and click Close Master View. You have just
created your fi rst layout, which you can apply to any slide in your storyboard, as shown in Figure
9-6. To select a layout for a slide, you can right-click that slide and select the Layouts fl y-out menu,
or use the Layout pull-down menu from the Storyboarding ribbon tab. You can repeat this process
to create as many layouts as you wish.

FIGURE 9-6

Note that outside of the Slide Master view you cannot edit any of the shapes you added to this lay-
out, so if you need to edit them again you need to visit the Storyboarding ribbon tab and click Edit
Layout to return to the Slide Master. Be thoughtful about what you put in your layouts. When used
correctly, they can save you a lot of time. For example, if a logo changes you can easily update it in
the layout and the change is automatically inherited by all slides that use that layout.

You can now use a combination of Storyboard Shapes, screen clippings, and other sources available
from the Insert ribbon tab to construct the fi rst web page you want to model in your storyboard.

PowerPoint Storyboarding ❘ 185

c09.indd 02/27/2014 Page 185

Figure 9-7 shows an example of a fi nished page that you might want to present to your users. In this
way you can continue to create new slides for each page or dialog in your application that you want
to storyboard.

FIGURE 9-7

NOTE You might notice in Figure 9-7 that the URL in the address bar is
http://www.fabrikam.com/home.aspx, but if you try to manipulate the address
fi eld of a slide that inherits the address fi eld from a layout you aren’t able to edit
it. This effect was achieved by simply adding a new textbox (Insert ➪ Textbox)
immediately after the existing URL and typing /home.aspx into it. This atten-
tion to detail can help your stakeholders understand where they are within your
application.

My Shapes
The My Shapes category of the Storyboard Shapes pane makes it possible to create your own pri-
vate library of shapes that you might want to reuse. An illustration of how My Shapes works can
be achieved by creating a stylized button. Add a button from the Storyboard Shapes pane to your
storyboard slide. Right-click this button and click Format Shape to access advanced properties that

http://www.fabrikam.com/home.aspx

186 ❘ CHAPTER 9 STORYBOARDING

c09.indd 02/27/2014 Page 186

enable you to adjust the visual style of this button. Try changing the fi ll color and adding a shadow.
Click OK when fi nished. Change the default text for the button and set a custom color for the text
using the Font Color button in the Storyboarding ribbon tab (the Font Color selector is represented
by the icon of the letter A with a colored bar underneath it).

The exact customizations you make to this button are not important. The point is that sometimes
you may invest in styling shapes to meet requirements you have for the look and feel of your applica-
tion, but individually making these customizations from scratch takes time. Instead, you can use the
My Shapes category to store your customized shapes for future reuse. Select your fi nished shape and
click Add to My Shapes from the Storyboarding ribbon tab. This adds your shape to the My Shapes
category of the Storyboard Shapes pane, as shown in Figure 9-8. You can give your shape a mean-
ingful name, such as the Fabrikam Button in this example. Now, when you drag this shape back
onto the slide, you have a copy of the button that already includes your custom style applied to it.

FIGURE 9-8

This was a simple example, but you can apply the same technique to advanced composite shapes you
might create, such as a menu bar or a panel consisting of multiple controls. Just select the group of
shapes you want to include in your custom shape and then click Add to My Shapes.

Finally, you can share your custom shapes with others by using the Import Shapes and Export My
Shapes buttons on the Storyboarding ribbon tab.

PowerPoint Storyboarding ❘ 187

c09.indd 02/27/2014 Page 187

Animations
Programming animations in PowerPoint is another capability that’s incredibly useful when working
with storyboards. You can use animations to make your storyboard come to life for a stakeholder by
illustrating the way users are expected to interact with an application.

Two of the most useful animations you can add to a storyboard are to show mouse movement and
text entry. To see how this works, start by adding a Click shape from the Storyboard Shapes pane.
The Click shape is programmed with a custom animation. You can press F5 (or Shift+F5 to start on
the current slide) to start presentation mode and see this animation in action. Press the spacebar or
click your mouse button to trigger the animation. When you are fi nished, press the Escape key to
return to the PowerPoint editor.

To understand how this default animation was programmed for the Click shape, click the
Animations ribbon tab and enable the Animation pane. From here, you can see that this is a Custom
Path animation triggered to start with a mouse click (which means that the animation starts when-
ever the presenter clicks the mouse or presses most keys on the keyboard, such as the spacebar). You
can change the timing to be faster or slower, or you can simply click the endpoints of the animation
path to change the start and end locations.

You can select another shape and click Add Animation to apply a new animation for that shape.
Notice that in the Animation pane, you can change the order in which animations should be trig-
gered, timed, and so on.

Animations in PowerPoint are fairly powerful, and you can use them to model almost any set of user
interactions you can im agine for your storyboard. For full details on working with animations, con-
sult the PowerPoint documentation. Figure 9-9 shows a bit of what is possible when using anima-
tions with a storyboard. This example animates in the following sequence:

 1. The text in each of the textboxes appears via a Wipe animation, simulating the user typing
text into these fi elds.

 2. Next, the mouse cursor moves to illustrate how the user clicks the calendar icon to open the
full calendar.

 3. The mouse moves to illustrate how the user is clicking the March 8 date, and March 8 then
displays in the Service Date textbox.

 4. The mouse moves to show the user clicking the Create button.

 5. After this animation sequence is fi nished, a keypress or mouse click advances the presentation
to the next slide in the storyboard or ends the presentation if there are no more slides.

In this manner you can easily string together multiple slides and animation sequences to represent a
full end-to-end interaction that users might have with your application.

188 ❘ CHAPTER 9 STORYBOARDING

c09.indd 02/27/2014 Page 188

FIGURE 9-9

Hyperlinks
You might decide that you want to allow your stakeholders to click through your storyboard in a
non-linear fashion to access various pieces of functionality you are designing. Hyperlinks provide a
way for you to do that. For example, in Figure 9-9 you might want to allow the stakeholder who is
viewing this storyboard to click the Reports link in the menu to see the storyboard for your report-
ing capabilities. To program this, simply select a shape and use the Hyperlink button. You can then
select another slide by clicking Place In This Document, or you can hyperlink to external resources,
such as a detailed spec or a working prototype on a staging server.

Another use for hyperlinks is to create a table of contents slide at the beginning of the presentation,
to allow stakeholders to select individual requirements they want to view. For example, the User
Story that describes how a user signs up for a new account might be represented by slides 5 through
8, whereas the section of your storyboard that describes how a user pays with a credit card is rep-
resented on slides 28 through 34. Hyperlinks enable you to make it easy for stakeholders to jump
directly to the section of the storyboard document they are most interested in reviewing. At the end
of each section, you can then direct them back to the original table of contents.

PowerPoint Storyboarding ❘ 189

c09.indd 02/27/2014 Page 189

Storyboard Links
None of the capabilities mentioned in this chapter to this point require Team Foundation Server.
You can create and share storyboards with stakeholders by using traditional mechanisms such as
email, SharePoint, or fi le shares. But if you are using Team Foundation Server to manage your appli-
cation development, you might want to link the storyboard artifacts you are creating to a work item
in Team Foundation Server that represents the functionality being storyboarded.

To achieve this, you fi rst need to save your storyboard fi le on either a network share (such as
\\MyTeamServer\Fabrikam\Storyboards) or a SharePoint document library. This should be a
location that is accessible by the stakeholders whom you plan to interact with as you create and get
feedback on this storyboard. Ideally, this location is also backed up on a regular basis so that you
don’t accidentally lose your work.

After you have saved the document to one of these valid locations, select Storyboard Links from
the Storyboarding ribbon tab. If this is your fi rst time opening this dialog, you may need to click
Connect to specify the location of the Team Foundation Server instance you are using. Next, click
Link To and fi nd the work item or work items you want to link to. Usually this is a User Story or a
Requirement work item, but it can really be any work item you want to link to. The dialog shown in
Figure 9-10 shows a storyboard being linked to a work item from the Product Backlog query.

FIGURE 9-10

190 ❘ CHAPTER 9 STORYBOARDING

c09.indd 02/27/2014 Page 190

After it is linked, it can be opened from the work item as shown in Figure 9-11. This helps to ensure
that you get full end-to-end traceability across all of the artifacts that go into defi ning, developing,
and testing your software.

FIGURE 9-11

NOTE Certain work items—such as Product Backlog Items in the Scrum pro-
cess template or User Stories in the MSF for Agile process template—have a
Storyboards tab on the work item that lists all linked storyboards. If you decide
to link to another work item type that doesn’t have the Storyboarding tab, such
as a bug, you can always fi nd linked storyboards from the Links tab.

SUMMA RY

In this chapter, you learned how storyboarding can be a valuable part of the requirements elicitation
phase of your software project’s lifecycle. You learned about Microsoft’s PowerPoint Storyboarding
add-in, which enables you to quickly create storyboards, seek feedback, and iterate on them before
giving the storyboards to the designers and programmers, who turn them into working software.

Summary ❘ 191

c09.indd 02/27/2014 Page 191

The next chapter discusses how the Microsoft Feedback Client enables development teams to con-
tinue to get feedback from stakeholders about the working software being developed. By continu-
ously seeking stakeholder feedback throughout the development process, you can again ensure that
the stakeholders’ wants and needs are adequately represented in the high-quality software you are
deliveri ng.

c10.indd 02/27/2014 Page 193

Capturing Stakeholder
Feedback

WHAT’S IN THIS CHAPTER?

 ➤ Discovering how the development team can request feedback
from stakeholders on specifi c features or requirements

 ➤ Learning how project stakeholders can use the Microsoft Feedback
Client to provide rich feedback about your software

So far in this section you have learned about the importance of engaging with your software
development project’s stakeholders to ensure that you have a clear understanding of what
they want you to build before you start implementing it. But regardless of how much time you
spend up front during this requirements-elicitation phase, the fi rst iteration of software you
create is rarely going to meet all of their expectations.

There are a variety of reasons for this. Technical challenges might get in the way of the originally
planned implementation; business requirements may evolve from the time when you fi rst capture
them to the time that you implement the fi rst working code; the opinions of users can be fi ckle,
and may even be infl uenced by seeing the software in action for the fi rst time; you may not have
truly understood what your stakeholders were asking for when you were capturing their require-
ments; or you may not have had time to implement all the requirements in the initial release.

These possibilities will be anticipated by any lean-agile software development team who
embraces the fact that software development is something of an art form, requiring iterative
cycles of requirements gathering, implementation, and feedback, which in turn informs an addi-
tional round of requirements and changes that must be implemented. But the challenge for any
team is fi nding a way to effectively capture feedback from their stakeholders in a manner that
can be analyzed, synthesized, and acted upon. This problem is made harder when stakeholders
are time-shifted or geography-shifted away from the software development team. Even when the

10

194 ❘ CHAPTER 10 CAPTURING STAKEHOLDER FEEDBACK

c10.indd 02/27/2014 Page 194

development team shares a common location with their stakeholders, fi nding a systematic way of
gathering feedback from all of their stakeholders on a recurring basis can be a burdensome task.

Starting in Visual Studio 2012, Microsoft has integrated the process of collecting stakeholder
feedback directly into their application lifecycle management tooling capabilities. In this chapter
you fi nd out how to use this tool to solicit and capture feedback from your stakeholders in a rich,
actionable way.

REQUESTING FEEDBACK

The fi rst step toward getting great feedback from your stakeholders about your software is to
properly frame the question of what you are asking for feedback on. The question of whether your
software provides the right level of functionality is a very different question from whether your
software is designed properly. Functionally, a tractor can get me from my house to my offi ce in the
morning, but it’s not what I feel comfortable being seen in as I pull into the parking lot at work.
But early on in a software development iteration, the team may be focused strictly on implement-
ing the required functionality with the understanding that they can make it look nice later. Unless
you properly scope your request to the stakeholders when you ask for feedback, you may get a lot of
feedback on things that you haven’t yet started to address in the software.

With Team Foundation Server 2013, you can request specifi c feedback from your stakeholders
by visiting the Team Web Access homepage for your project. See Chapter 3 for more information
about accessing Team Foundation Server via Team Web Access. In the list of Activities, click Request
Feedback. You are presented with the dialog shown in Figure 10-1, which allows you to specify what
you are requesting feedback on and from whom.

NOTE If you don’t see Request Feedback under the list of Activities, this
indicates that your account has not been granted access to these features in
your Team Foundation Server instance. Contact your Team Foundation Server
administrator. Only users with Visual Studio Test Professional 2013, Visual
Studio Premium 2013, or Visual Studio Ultimate 2013 are permitted to request
feedback using this capability.

Follow the steps in the dialog to request feedback from your stakeholders:

 1. Specify the names of the users you want to request feedback from. These users need to have
access to your team project.

 2. Specify how users should access the functionality you are asking them to test. For a web
application, users might need to access a staging server that contains a recent build. For other
applications, users might need to remote into another machine, or install an interim build.
Use this space to give users the specifi c instructions they need in order to get started with
your software.

 3. Specify up to fi ve aspects of your software that you want feedback on.

Providing Feedback ❘ 195

c10.indd 02/27/2014 Page 195

FIGURE 10-1

When specifying what you want to collect feedback on, be as specifi c as possible. You can also use
the area below each feedback title to provide additional instructions that might help your
stakeholders access certain features or scope their feedback to what you care most about. When
applicable, you might want also to specify the things that you do not want feedback on. For exam-
ple, if you know that the staging server you are using is very slow and doesn’t refl ect the
performance of your production environment, you might want to mention this to the users so that
they don’t waste time giving you a lot of feedback on the performance of the application. If the user
interface hasn’t yet received attention from a designer (affectionately known as “programmer art”),
be sure to specify this as well so that users don’t spend time critiquing anything other than the
application’s functionality.

After you have told your users how to access your software and what you are looking for
feedback on, click Preview to see the email that your stakeholders will receive. Click Send to
deliver an email to the stakeholders you specifi ed earlier. You can also create Feedback Request
work items (up to fi ve, one for each item you added in Step 3) to track this request in Team
Foundation Server.

PROVIDING FEEDBACK

After you have requested feedback from your stakeholders, they will receive an email such as the one
shown in Figure 10-2. Before stakeholders can provide feedback, they need to install the Microsoft
Feedback Client by clicking the Install the Feedback Tool link in the email.

196 ❘ CHAPTER 10 CAPTURING STAKEHOLDER FEEDBACK

c10.indd 02/27/2014 Page 196

NOTE The Feedback Client is freely downloadable from Microsoft and does not
require a Team Foundation Server client access license. Users do, however, need
to have appropriate permissions to your Team Foundation Server instance. At
a minimum, users need to be a member of the Work Item Only View Licensing
Group and be granted the Manage Test Plans right. See http://aka.ms/
MSWIOV13 for details.

FIGURE 10-2

After the feedback tool is installed and a stakeholder is ready to give feedback, he can click the Start Your
Feedback Session link in the email to open the Feedback Client shown on the left side of Figure 10-3.
The menu at the top enables the stakeholder to dock the Feedback Client on either side of the monitor
or to fl oat the window to another monitor. The instructions provided on this fi rst page are from the
feedback request that you created earlier. After the stakeholder has installed or otherwise launched the
application for which he is providing feedback, he can click the Next button to start giving feedback.

http://aka.ms

Providing Feedback ❘ 197

c10.indd 02/27/2014 Page 197

FIGURE 10-3

Figure 10-4 shows a stakeholder in the middle of providing feedback on this web application.
The top half of the Feedback Client scopes the specifi c questions the stakeholder has been asked
to address. In this case, we asked if the right information is displayed in the summary table. The
stakeholder responded by asking if an Employee ID column can be added to this table. He then
used the Screenshot button to capture a snippet of the table, and double-clicked on that snippet so
that he could annotate it with a red rectangle showing where he would like the Employee ID
column to go.

NOTE By default, Microsoft Paint is used to edit a screen clipping any time the
user double-clicks within the Feedback Client. You can confi gure the Feedback
Client to use your own favorite image-editing tool by clicking on the gear icon at
the top of the window.

198 ❘ CHAPTER 10 CAPTURING STAKEHOLDER FEEDBACK

c10.indd 02/27/2014 Page 198

FIGURE 10-4

The Feedback Client can also be used to capture video and audio recordings while the stakeholder
is using the application. This can be the next best thing to actually being in the room watching over
the shoulder of the stakeholder as he uses the application. A video recording can be a powerful way
of truly understanding how users tend to interact with your software. Audio annotations enable a
stakeholder to provide commentary about his experience without having to take the time to type
notes. Video and audio contextualize the feedback you get from your stakeholders so that you can
better understand how to respond to it.

After a stakeholder is fi nished providing feedback on a particular feedback item, she can provide
a star rating before clicking Next. If there were other feedback items specifi ed in this request, the
stakeholder would now be prompted with each one sequentially. At the end of the feedback session
the stakeholder has an opportunity to review the feedback she has captured before submitting it to
Team Foundation Server. This creates new Feedback Response work items (one for each Feedback
Request created earlier) that include all of the artifacts captured by the Feedback Client (video
recordings, text and audio annotations, and screen clippings).

The software development team can view this feedback using the built-in Feedback Requests work
item query (see Figure 10-5). If a piece of feedback results in a new bug or new requirement, the
team can use the New Linked Work Item button to create a new work item linked to this specifi c
Feedback Response work item. By linking the feedback directly from the stakeholders to the new
work item, you can provide additional context and traceability. This can help the developer who is
assigned to implement the fi x or the new requirement specifi ed in that work item.

Summary ❘ 199

c10.indd 02/27/2014 Page 199

FIGURE 10-5

After you’ve reviewed the feedback and taken any necessary actions (such as fi xing bugs or
implementing requirements), you can transition the State fi eld of each Feedback Response to Closed.

Voluntary Feedback
Stakeholders can also provide unsolicited or voluntary feedback at any time by launching the Feedback
Client directly (Start ➪ Microsoft Visual Studio 2013 ➪ Microsoft Feedback Client) instead of from a
feedback request email. They are fi rst prompted to connect to the appropriate Team Foundation Server
instance and team project where they want to provide feedback. After doing so, they can fi le feedback
using video, audio, text, and screen clippings as they did previously. The one thing to be careful of
here is that Feedback Response work items created when using a voluntary feedback method do not
show up in the default Feedback Requests work item query. Instead, you should write a custom query
to search for all work items of type Feedback Response. Feedback that is generated by the Feedback
Client in an unsolicited manner will by default have a title that starts with Voluntary.

SUMMARY

 In this chapter, you learned how you can request scoped feedback from your stakeholders to get
actionable data that can help refi ne your application development. You learned about the new
Feedback Client, which can capture rich information—including video recordings, text and audio
annotations, and screen clippings—from your users as they give feedback about your applications.

200 ❘ CHAPTER 10 CAPTURING STAKEHOLDER FEEDBACK

c10.indd 02/27/2014 Page 200

Finally, you learned how you can use this feedback to create actionable bugs or new requirements.
Your team can use this feedback to ensure that you are building the right software to please your
stakeholders.

In the next chapter you begin to learn about the project management capabilities of Team
Foundation Server 2013.

c11.indd 02/27/2014 Page 201

PART III
Project Management

 ▸ CHAPTER 11: Introduction to Project Management

 ▸ CHAPTER 12: Agile Planning and Tracking

 ▸ CHAPTER 13: Using Reports, Portals, and Dashboards

c11.indd 02/27/2014 Page 203

Introduction to Project
Management

WHAT’S IN THIS CHAPTER?

 ➤ Getting to know the additions and enhancements to project man-
agement capabilities in Team Foundation Server 2013

 ➤ Understanding work items and process templates

 ➤ Managing and querying work items with Visual Studio, Excel,
Project, and Team Web Access

In Part I, you learned about the support that Team Foundation Server 2013 has for source
control. In Part II, you learned about the importance of engaging with your project’s stake-
holders early and often during the development cycle to ensure that you are building the right
software. In Part III, you learn about how Team Foundation Server 2013 helps you plan and
track your software development projects in an agile manner.

Project management can involve many aspects of developing software, such as tracking
remaining work and open bugs, determining how much work you can commit to with your
available resources, and even helping to enforce a standard process of interaction between
your team members. You will see that Team Foundation Server 2013 provides capabilities to
help you achieve all of these things, and more.

This chapter starts with the enhancements to project management available in this release. It
also provides an overview of work item tracking, including some ways to manage and query
work items from Visual Studio, Excel, Project, and other clients. You fi nd out about the
importance of process templates, including an overview of the process templates provided by
Microsoft for use with Team Foundation Server 2013.

11

204 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 204

In Chapter 12, you take a deeper look at the Agile Project Management tools, which you can use to
manage your backlog, plan your iterations, and track your work. Chapter 13 examines using report-
ing and SharePoint dashboards to get real-time insights into how your software development project
is going. You might also want to consider obtaining a copy of Professional Team Foundation Server
2013 (Wrox, 2013. ISBN 978-1-118-83634-7), to fi nd out how you can extend and customize the
process templates in Team Foundation Server 2013 to meet the unique needs of your team.

PROJECT MANAGEMENT ENHANCEMENTS IN TEAM
FOUNDATION SERVER 2013

Team Foundation Server 2013 continues to build upon the project management enhancements made
to Team Foundation Server 2010 and the Agile Planning Tools that were added in Team Foundation
Server 2012. Specifi cally, the Team Foundation Server 2012 enhancements were a substantial
upgrade to the project management capabilities available in prior releases. This section highlights
some of the most signifi cant improvements and additions in this release, and recaps some of the
enhancements fi rst available in Team Foundation Server 2012. If you are new to Team Foundation
Server, concepts such as work items are explained in greater detail later in this chapter.

Rich Work Item Relationships
Rich work item relationships were introduced in Team Foundation Server 2010, but this capabil-
ity is worth covering here in case you are upgrading from an older release. According to Microsoft,
the top-requested project management feature by users of Team Foundation Server releases prior to
2010 was representing rich relationships between work items. In releases of Team Foundation Server
prior to 2010, it was possible to relate work items with one another only via a simple linking mecha-
nism. But these links didn’t provide any explicit meaning, directionality, or cardinality.

For example, a common project management use case for many software development projects
is to be able to model parent/child relationships between work items, such as for modeling a fea-
ture catalog or for detailing the tasks required to implement a particular requirement. You could
link these work items using releases of Team Foundation Server prior to 2010, but the links didn’t
carry enough meaning to convey proper parent/child relationships. Without directionality, it’s not
easy to discern which work item is the parent and which one is the child in this representation.
Furthermore, without cardinality, there isn’t a mechanism for restricting that each child work item
can have only one (at most) parent work item.

With Team Foundation Server 2010, Microsoft introduced rich relational linking between work
items, allowing for rich relationships between work items using a variety of link types. These link
types can also include directionality and cardinality. The most commonly used link types available
in Team Foundation Server are the following:

 ➤ Parent/child—This is a useful link type for representing hierarchies such as feature catalogs,
or for detailing task work items (children) that are used to implement a requirement or user

Project Management Enhancements in Team Foundation Server 2013 ❘ 205

c11.indd 02/27/2014 Page 205

story (parent). Any work item can have zero or more child work items, and zero or one
parent work item.

 ➤ Tests/tested by—This link type is primarily intended to model the relationships between test
case work items and the requirements or user stories that they test. This makes it easier to
determine the quality of a given requirement or user story by examining the recent results for
its related test cases. A work item can test zero or more work items.

 ➤ Successor/predecessor—The successor/predecessor link type is used to indicate work items
that have a dependency relationship with one another. For example, designing the user inter-
face for a web page is generally a predecessor to writing the code and markup that provides
the implementation of that web page. A work item can have zero or more successor and/or
predecessor links to other work items.

 ➤ Related—The related link type is the same as the legacy linking system found in previous
releases of Team Foundation Server. These link types are not directional, and they provide
no additional context about the type of relationship. If you had linked work items in a proj-
ect that was upgraded to Team Foundation Server 2010, Team Foundation Server 2012, or
Team Foundation Server 2013, those relationships are represented by the related link type.

You will discover that rich work item relationships provide the basis for other features and enhance-
ments across the project management capabilities of Team Foundation Server, such as enhanced que-
rying and reporting. It is also possible to defi ne your own link types if you want, although for most
teams, the provided link types are suffi cient. You can fi nd more information on creating custom link
types at http://aka.ms/WICustomLinks.

NOTE Team Foundation Server does not have a mechanism for ensuring that
your links are semantically correct. For example, it’s possible to create circular
chains of successor/predecessor links, or tests/tested by relationships between
two work items that don’t involve a test case. If you notice that you have invalid
link types in your project, you can easily delete them at any time.

Agile Planning Tools
A new set of web-based tools added in Team Foundation Server 2012 provides an agile way of plan-
ning and tracking your software development project. Microsoft took the web-based features that
they added in Team Foundation Server 2012 and enhanced them over the release of 2012 with four
feature updates. In Team Foundation Server 2013, they added all new functionality for, among
other things, Portfolio Management. With the new frequent release cycle, Microsoft is fi nding it
much easier to respond to the market and add and maintain the features that you want. This tool-
ing is immediately familiar to any development team that practices Scrum, because it includes tools
for managing your product backlog, tracking velocity, planning iterations (or sprints), and viewing
a burn-down of hours remaining for a given iteration. It even includes a modern-day incarnation of

http://aka.ms/WICustomLinks

206 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 206

sticky notes on a whiteboard for tracking your project, as shown in Figure 11-1, which you can use
to track work through to completion.

In Team Foundation Server 2012 Update 1, Microsoft also introduced Kanban boards and a
cumulative fl ow report that allows teams that are following a continuous fl ow model to get better
support.

FIGURE 11-1

It is important to point out, however, that you can use this tooling regardless of whether you are
practicing a Scrum or Kanban development methodology. All of the process templates included with
Team Foundation Server 2013 work out of the box with the Agile Planning and Tracking Tools, and
you can adapt your own custom or third-party process templates to utilize this tooling as well. The
process of customizing and adapting your own process templates to use this tooling is covered in
depth in Professional Team Foundation Server 2013.

NOTE You learn more about using the web-based Agile Planning Tools in
Chapter 12.

Project Management Enhancements in Team Foundation Server 2013 ❘ 207

c11.indd 02/27/2014 Page 207

NOTE If you used Team Foundation Server 2010, you may have used the
Agile Planning Workbooks that came with the Microsoft Solutions Framework
(MSF) for Agile Software Development process template. The Agile Planning
Workbooks were a set of Excel-bound workbooks available to help you manage
your backlog, iterations, and resources. These workbooks were removed from
Team Foundation Server 2012 because the functionality they provided has been
replaced by the Agile Planning Tools you learn about in Chapter 12.

Test Case Management
Test cases began to be represented as work items in Team Foundation Server 2010. This made it
possible to create rich relationships between the code you are implementing and the results of your
quality assurance (QA) efforts.

For example, test case work items can be linked (via a tests/tested by link type) to requirements
work items. As tests are run, results can be reported on by querying a given requirement work
item, traversing to the related test cases, and viewing the results of recent test runs. Many of the
new default reports make use of this information to expose new perspectives on software quality.
In Team Foundation Server 2013, Microsoft added Test Management Tools to the web access; they
allow you to create, manage, and execute test cases in a browser.

NOTE You learn more about software testing and test case management in
Part VI.

Feedback Management
Chapter 10 covered how feedback can be requested and stored in Team Foundation Server 2013.
Two work item types were added in Team Foundation Server 2012 to support this: Feedback
Request and Feedback Response.

By storing feedback as work items in Team Foundation Server, you can link it to other work items.
For example, you might receive a Feedback Response from a stakeholder asking you to add a new
piece of functionality. This may in turn get linked to a new product backlog item that your team
plans to implement. This way when the development team wants to understand more details about
the original request, including who asked for it, they can view the original Feedback Response to
learn more.

You can also query feedback work items just like you would query any other work items in Team
Foundation Server. For example, you might query for Feedback Responses that do not have any

208 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 208

related product backlog items or bugs so that you can fi nd feedback you have received that has not
yet been decomposed to the backlog.

Enhanced Reporting
One of the primary reasons Microsoft originally designed Team Foundation Server as an integrated
solution (including source control, project management, build automation, and so on) is to enable
multidimensional views into software development projects. Effectively managing a software project
is not unlike managing other complex projects. Making smart decisions requires you to have a rich
set of information resources available, usually in real time, which can help to inform resource allo-
cations, prioritizations, cuts, schedule changes, and other important evaluations.

The rich work item relationships that were added since Team Foundation Server 2010 have enabled
Microsoft to signifi cantly enhance the types of reports available. As just one example, parent/child
relationships between product backlog items and tasks can produce a report showing the amount
of work needed to fi nish implementing any given backlog item. In Team Foundation Server 2013,
you can add parent items above product backlog items to enable higher-level portfolio views of your
features, initiatives, and goals. By further analyzing the tests/tested by links, you can get a view
into software quality for those same backlog items based on the results of your test cases. There are
countless other examples.

Along with the improvements made to Team Foundation Server 2010, Microsoft also made it much
easier to customize existing reports or create new ones, using Microsoft Excel to create reports
based on work item queries.

NOTE You learn more about reporting with Team Foundation Server 2013 in
Chapter 13.

SharePoint Server Dashboards
Most software development projects involve many stakeholders. In addition to the core program-
ming team, a team may include project managers, business analysts, testers, architects, and so on.
There may also be external stakeholders—such as end users or executive management—who have
a vested interest in monitoring the progress of your project. Most of these people don’t use Visual
Studio; so how do you effectively communicate project status to everyone?

Work Items ❘ 209

c11.indd 02/27/2014 Page 209

Microsoft has integrated Team Foundation Server with SharePoint for this reason. Whenever you
create a team project with Team Foundation Server, you can optionally create a new SharePoint site
(or use an existing one). You can use this site as a dashboard to provide everybody on your extended
team with a view into your project. Your SharePoint site provides a web-based view of reports from
your team project, along with a document repository where you can store artifacts such as specifi ca-
tions and storyboards.

NOTE In Chapter 13, you learn about how you can use these SharePoint dash-
boards and customize them for your team.

WORK ITEMS

If you’re new to Team Foundation Server, you may be wondering what exactly a work item is. A
work item is the basic building block of the project management capabilities in Team Foundation
Server. Microsoft defi nes a work item as “…a database record that Team Foundation uses to track
the assignment and progress of work.”

Work Item Types
There are many kinds of work items, known as work item types. An instance of a work item type is
a work item, in much the same way that, in object-oriented programming (OOP), an instance of a
class is an object. A work item can represent explicit work that needs to be completed (or has been
completed), such as with a Task work item type. Work items can capture details of the software you
are building, such as with the Requirement or Product Backlog Item work item types. You can use
work items to capture problems, such as the Bug work item type (which indicates a problem with
your software) or the Impediment work item type (which might describe a problem with tooling,
processes, or people who are slowing down your project, or even preventing work from happen-
ing). Team Foundation Server includes other default work item types as well, and you can customize
these or even create your own.

NOTE You can learn more about work item type customization in Professional
Team Foundation Server 2013.

210 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 210

Work items include a handful of key elements, as shown in Table 11-1.

TABLE 11-1: Work Item Elements

ELEMENT DESCRIPTION

Field Fields contain the information that can be captured as part of a work item.
Some fi elds are shared by all work item types (called system fi elds). Examples of sys-
tem fi elds include Title (a one-line description of your work item), ID (a number that is
globally unique across your team project collection), and Assigned To (which can be
a user, such as a developer, who is working on a fi x for a bug work item). Other fi elds
might be specifi c to a given work item type, such as the steps to reproduce fi eld,
which is found in the Bug work item type and describes how a bug was discovered.

Rule Rules dictate which values are allowed for given fi elds. For example, you might
decide that the Priority fi eld for bugs should be assigned a value of 0, 1, or 2 and
cannot be left blank.

Form A form describes the way work items are displayed by work item clients such as
Visual Studio. (You learn more about some of the ways to view and interact with
work items later in this chapter.)

State States indicate where in your project workfl ow a work item is. For example, a Bug
work item type in the MSF for Agile Software Development process template starts
out in an Active state when it is created. After a developer declares that the code
has been written or modifi ed to fi x a bug, the developer changes the state of the
Bug work item to the Resolved state. If a tester can verify that the bug can no longer
be reproduced, the tester changes the bug work item state to Closed. But if a tester
can still reproduce the bug, the work item needs to be reactivated (that is, the tes-
ter changes the state of the bug back to Active). This signals to the developers that
they still have work to do.

Transition Transitions are similar to rules, but they defi ne how a work item moves from one
state to another. In the previous example, a Bug work item must begin in an
Active state, and then it can move into a Resolved or Closed state. But, from a
Resolved state, it is also possible to move back to an Active state. This is all defi ned
by the transition model as part of the work item type. Additionally, transitions can
dictate that certain fi elds are required in order to move from one state to another.
For example, to move a bug from an Active to a Resolved state, a developer must
assign a reason (such as Fixed, As Designed, Cannot Reproduce, and so on).

Link Work items can include links to other work items, using any of the link types you
read about in the preceding section.

History Work items also contain a full history that includes information about all changes to
fi elds and transitions.

Work Items ❘ 211

c11.indd 02/27/2014 Page 211

Figure 11-2 shows an example of a Bug work item form that has been marked as Commited by the
development team. This screenshot is taken from a bug that was created with the Visual Studio
Scrum 2013 process template, which is the default for Team Foundation Server 2013. You learn
more about process templates later in this chapter.

FIGURE 11-2

Figure 11-3 is a state diagram showing the transitions for the default Bug work item type included
with the Visual Studio Scrum 2013 process template. State diagrams for each work item type are
included with the documentation for the process templates provided by Microsoft. They are useful
for understanding how a work item behaves.

Areas and Iterations
Most of the system fi elds available for work items (such as Title and ID) are fairly self-explanatory.
But there are two important fi elds—Area and Iteration—that warrant further discussion.

The Area fi eld is a versatile fi eld that you can use to create logical categories for your work items.
There are many ways to use areas, but a common approach is to defi ne an area for each logical part
of your application.

For example, in Figure 11-2, this bug is assigned to the FabrikamFiber\Development area to indicate
that it is part of the development work being done for the FabrikamFiber team project. The com-
plete string that is used for this designation is referred to as an area path. Other area paths might
include FabrikamFiber\Development\Database Team, FabrikamFiber\Development\Devices Team.
Area paths are, by default, tied to teams, which you will learn about later.

212 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 212

[New backlog
item]

[Reconsidered
backlog item]

New

Approved Removed

Committed

Done

[Removed from
the backlog]

[Approved by the
Product Owner]

[Removed from
the backlog]

[Work stopped]
[Committed to
by the team]

[Additional work found]
[Work finished]

FIGURE 11-3

The Iteration fi eld is useful for project planning and can indicate a time frame for when you plan to
address a work item. In Figure 11-2, this work item is assigned to FabrikamFiber\Release 2\Iteration
3, where FabrikamFiber is the name of the team project, and Release 2\Iteration 3 is the specifi c
iteration this work item is assigned to.

You can name your iterations whatever you’d like; some teams choose sequential iterations (such as
Sprint 1, Sprint 2, and so on), whereas others choose to map them to milestone releases (such as Beta
1, Beta 2, and so on). You can also create trees of iterations and employ a blend of naming strate-
gies, such as FabrikamFiber\Release 2\Iteration 3, as used in Figure 11-2.

Although you are not required to use iterations and areas to categorize your work items, they are
used by the web access system in the identifi cation of current iteration (for Sprints) and backlog area
path (for teams). When used effectively, areas and iterations can enable you to employ a single team
project for dozens or even hundreds of applications across many years of iterative releases.

A team project administrator can manage the list of valid areas and iterations by opening Team Web
Access ➪ Settings and then clicking on either the Areas or Iterations tab. Figure 11-4 and
Figure 11-5 show the dialogs for editing iterations and areas, respectively.

Work Items ❘ 213

c11.indd 02/27/2014 Page 213

FIGURE 11-4

FIGURE 11-5

214 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 214

A nice feature of area and iteration administration is that you can defi ne granular permissions for
indicating who is allowed to modify or even read work items in each part of your team project. For
example, maybe you work for a government security contractor and there are bugs of a sensitive
nature that should be viewed only by team members with a certain security clearance. Or, maybe
you are building a prototype of the next version of your application and want to restrict access to
minimize the potential for leaks that your competitors could access. These sorts of restrictions are
possible by using iteration and area security settings. To access the permissions menu, highlight an
area path or iteration path then click the small down arrow on the left side of the row.

At any time, you can return to the area and iteration settings dialogs to add, rename, move, or
delete areas and iterations. You can move nodes to be children of other nodes by simply dragging
and dropping them on top of one another. If you rename or move areas or iterations for which there
are existing work items, those work items are automatically reassigned by Team Foundation Server
using the new name or location you choose. If you delete an area or iteration for which there are
existing work items, you are prompted for the value that Team Foundation Server should use to
replace the iteration or area value in affected work items.

Starting with Team Foundation Server 2012, you can also use the iteration settings dialog to assign
start and end dates to iterations. This information is used by the Agile Planning Tools you read
about in Chapter 12 to determine which iteration is currently active. Iteration dates are also used to
help Team Foundation Server render certain reports, such as the burn-down report, which shows the
amount of work remaining for an iteration and how remaining work is trending over time.

You will discover that work items are used throughout Team Foundation Server. You can use them
to help manage your product backlog and plan your iterations, which is covered in Chapter 12.
Work items form the basis of many of the reports you read about in Chapter 13. You can link them
to changesets (which you read about in Part I) to provide more information about what changes
were made to a set of fi les and why. Project managers and team leaders can also use work items for
project planning and to help control which work team members should be focused on, and how they
should interact with other team members.

Work items, work item types, and all of the activities involving work items (editing, querying,
reporting, and so on) are usually referred to collectively as the work item tracking capability of
Team Foundation Server. Now that you understand the basics of work items, you are ready to learn
about process templates, which include the defi nitions for work item types.

PROCESS TEMPLATES

A process template defi nes the default characteristics of any new team project. Process templates are
a powerful concept in Team Foundation Server. A process template includes the default work item
types, reports, documents, process guidance, and other associated artifacts that provide you with
everything you need to get started with your software project.

Choosing the right process template is an important step in creating a new team project. You
should carefully choose the best process template for your team’s preferred work style and the type

Process Templates ❘ 215

c11.indd 02/27/2014 Page 215

of project you are working on. This section helps you understand the types of process templates
available. While you are reading this section, you should be thinking about the following types of
questions:

 ➤ How does your team work today?

 ➤ Are there ways your team works today that you’d like to change?

 ➤ Do you need a formal process, or do you work better as a more ad-hoc team?

 ➤ Are there areas of your process where you prefer to be more agile, and other areas where you
need to be more formal? (For example, maybe you want to manage your team’s iterations
in an agile manner, but decisions about requirements require formal negotiations with your
customer.)

 ➤ Do you have resources to invest in and maintain your own custom process template, or
would one provided by Microsoft or a reputable third party be a better solution?

 ➤ What other stakeholders should be involved in the decision-making process for answering
these questions?

If answering these questions proves diffi cult for you or your team, you may want to start with a
small pilot project fi rst and see how your team performs when using one of the existing process tem-
plates. You can then use the fi ndings from that pilot to determine which process template to start
with, and what changes (if any) you need to make to that process template before using it for subse-
quent projects. Process template customization is covered in Professional Team Foundation Server
2013.

Embracing the right process template can have a transformational effect on an organization by
providing everybody on the team with a predictable and repeatable process for capturing and com-
municating information, making decisions, and ensuring that you are delivering on customer expec-
tations. This, in turn, can drive up software quality and development velocity, which ultimately
delivers more value to your customers.

MSF for Agile Software Development
The MSF for Agile Software Development 2013 process template included with Team Foundation
Server 2013 is designed for teams who are following the Microsoft Solution Framework methodol-
ogy but use some agile terminology, such as User Story or Iteration. If you have a clear separation of
coders and testers and you want to triage bugs separately from the backlog, you might fi nd that this
process template meets your needs.

If you have built, or intend to build, a development methodology around the Scrum framework, you
may prefer the relatively newer Visual Studio Scrum 2013 process template described later in this
section. Visual Studio Scrum uses terminology that will immediately be familiar to any team prac-
ticing agile or lean processes. In practice, teams that practice Scrum can use both of these process
templates, but the MSF for Agile Software Development process template has specifi c limitations

216 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 216

that are not conducive to an agile approach to software development. For example, bugs are not on
the backlog and there is a clear separation between coding and testing.

NOTE MSF version 1 was introduced by Microsoft in 1993, and version 4 was
fi rst codifi ed as a set of process templates with the release of Team Foundation
Server 2005. MSF provides guidelines, role defi nitions, and other materials to
help consulting organizations deliver IT solutions, including software develop-
ment projects.

A key tenet of agile methodologies is that requirements will evolve over time, both as business needs
change and as customers begin to use interim releases of your software. For this reason, the MSF
for Agile Software Development process template assumes that teams will be frequently refi ning
requirements and reprioritizing work by maintaining a common backlog of requirements (which are
captured as user stories in this template). Periods of work are time-boxed into short lengths of time
(iterations). Prior to each iteration, the development team works with the customer to prioritize the
backlog, and the top user stories on the backlog are then addressed in that iteration. In this process,
bugs are largely ignored and are dealt with separately in Excel.

Another important aspect of agile methodologies is, as the Agile Manifesto describes it, that they
value “individuals and interactions over processes and tools.” This doesn’t mean that processes and
tools shouldn’t be used, but instead that they sometimes can get in the way of empowering people to
communicate and work together in order to make smart decisions. This principle is also refl ected in
the MSF for Agile Software Development process template, which defi nes a relatively small number
of states, fi elds, transitions, and work item types as compared with other process templates, such
as the MSF for Capability Maturity Model Integration (CMMI) Process Improvement process tem-
plate. By keeping the process simple, the goal is to prevent any unnecessary burdens from getting in
the way of people making the right decisions.

Following are the work item types available in the MSF for Agile Software Development process
template:

 ➤ Bug

 ➤ Issue

 ➤ Task

 ➤ Test Case

 ➤ User Story

Process Templates ❘ 217

c11.indd 02/27/2014 Page 217

NOTE There are a few additional work item types present in all of the
Microsoft-supplied process templates (and available to be added to custom and
third-party process templates). These cannot be created directly, but are instead
created during special situations. Code Review Request and Code Review
Response work items are used to provide the code review functionality you read
about in Chapter 3. Feedback Request and Feedback Response work item types
are created during the process of requesting feedback and providing feedback
from stakeholders, as you read about earlier in this chapter. Finally, the Shared
Steps work item type is essentially a special instance of a test case. You learn
more about Shared Steps and Test Cases in Part VI. Most team members won’t
interact with Shared Steps directly, so they are excluded from the preceding list.

NOTE You can explore the MSF for Agile Software Development 2013 pro-
cess template in depth, including more detail on each of the included work item
types, at http://aka.ms/MSFAgile13.

MSF for CMMI Process Improvement
The MSF for CMMI Process Improvement 2013 process template is designed for teams who want
to, or may have to, take a more formal approach toward developing software. This process tem-
plate is based on the Capability Maturity Model Integration (CMMI) for Development, which was
developed by the Software Engineering Institute, a part of Carnegie Mellon University. Don’t think
that if you require CMMI that this is the only template that you can use. The Visual Studio Scrum
2013 template also fulfi lls the tenants required for compliance to CMMI. CMMI not only defi nes
a framework for developing software, but also prescribes ways for an organization to constantly
improve their processes in an objective and repeatable way. An organization can even become
certifi ed by an outside appraiser who can verify whether it is performing at one of fi ve CMMI
maturity levels.

CMMI is a popular model for developing software by such organizations as systems integrators (SIs)
and software factories. There is very little subjectivity in the model, so it allows an organization to
represent its services using a standard that is well understood globally, and can be appraised and
certifi ed by a neutral third-party organization. CMMI is also used for developing many mission-
critical systems, such as by NASA or defense contractors. In fact, the Software Engineering Institute

http://aka.ms/MSFAgile13

218 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 218

at Carnegie Mellon was originally funded by the United States Department of Defense to help them
fi nd better ways of managing their projects.

NOTE The United States Department of Defense has backed away from the
more prescriptive methodologies in recent years due to systematic failures to
deliver the required software on time and on budget. You can fi nd out more
about how they have changed their procurement rules at http://aka.ms/
AgileDOD.

As you might expect, the MSF for CMMI Process Improvement process template is more complex
than its agile counterpart. The CMMI template includes the following work item types:

 ➤ Bug

 ➤ Change Request

 ➤ Issue

 ➤ Requirement

 ➤ Review

 ➤ Risk

 ➤ Task

 ➤ Test Case

NOTE The Feedback, Code Review, and Shared Steps work item types are also
omitted from this list for the same reason as mentioned previously in the
discussion of the MSF for Agile Software Development process template.

In addition to including three additional work item types, the work item types themselves are also
more complex in the CMMI process template than in the Agile process template. Compare the
screenshot of a bug work item form from the Agile process template, shown in Figure 11-2, with a
bug work item form from the CMMI process template, shown in Figure 11-6. Take note of the addi-
tional fi elds, such as Severity, Triage, and Blocked, which were not in the bug work item from the
Scrum process template. There are also additional tabs across the lower half of the Bug work item
from the CMMI process template.

The states and transitions of work item types from the CMMI process template are also more com-
plex than in the Scrum process template. Now, compare the state diagram of the Bug work item type
from the Scrum process template, shown in Figure 11-3, with the state diagram of the Bug work
item type from the CMMI process template, shown in Figure 11-7.

http://aka.ms

Process Templates ❘ 219

c11.indd 02/27/2014 Page 219

FIGURE 11-6

New

Proposed

Active

Resolved

Closed

[Investigation
Complete]

[Not fixed],
Test Failed

Verified

[Fixed], Cannot Reproduce,
Deferred, Duplicate, As

Designed, Obsolete

[Approved],
Investigate

[Rejected], Deferred,
Duplicate

[Closed in Error],
Regression

FIGURE 11-7

220 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 220

The Agile process template uses Active ➪ Resolved ➪ Closed as its state model, which is different
from the Scrum template. The key difference you should notice between the Agile and CMMI state
diagrams is that the CMMI process template has an additional Proposed state. This explicit decision
stage is required in the CMMI process template before a developer is assigned to work on a bug.
This is also fulfi lled by the New state in the Visual Studio Scrum 2013 template. This Proposed,
or New, state in the Scrum template should cause the team to ask such questions as, “Is this really
a bug, or does this represent a request to change the way certain functionality was designed? Will
fi xing this bug have unintended side effects on other parts of the software? If we choose to work on
this bug, how should it be prioritized against our other work?”

This shouldn’t imply that those aren’t important questions to be asking even if you are using the
Agile process template, and a seasoned team practicing an agile methodology will likely already be
mentally following this checklist as they triage bugs. But the CMMI and Scrum process templates
make this step explicit, which helps to ensure that this step takes place for every bug, regardless of
the experience level of the development team.

Another way of thinking of CMMI is to realize that by following the model, NASA isn’t guaran-
teed that it will never again develop a rocket that fails because of a software defect. But if NASA
is following CMMI correctly, then it can guarantee that an agreed-upon process was used to make
decisions leading up to that defect. And conversely, in the event of a defect, it can audit the process
that was used, examine the assumptions that went into the decision-making process, and learn from
those mistakes in the interest of refi ning its process and helping to ensure that the same mistake
never happens again. In Scrum, this is fulfi lled by the review and retrospective.

It is also important to point out that using a process template alone does not ensure that an organi-
zation can successfully pass a CMMI certifi cation audit. This is akin to the fact that simply having
a smoke alarm and a fi re extinguisher on hand won’t keep a family safe if they don’t know how to
properly use and maintain this equipment.

But Team Foundation Server, along with the appropriate process template, can be very useful for
helping an organization that wants to adopt CMMI as its model of development. Team Foundation
Server features such as end-to-end traceability, multidimensional reporting, rich linking (between
work items, and with other artifacts such as builds and changesets), and preservation of history are
all incredibly useful capabilities that can help an organization to prepare for and pass a CMMI audit.

NOTE You can explore the MSF for CMMI Process Improvement 2013 pro-
cess template in depth, including more detail on each of the included work item
types, at http://aka.ms/MSFCMMI13.

http://aka.ms/MSFCMMI13

Process Templates ❘ 221

c11.indd 02/27/2014 Page 221

CMMI DEVELOPMENT METHODOLOGY

There is a common misconception that CMMI dictates a waterfall, or Big Design
Up Front, development methodology. Although there is certainly a strong cor-
relation between teams practicing waterfall methodologies and those following a
CMMI model, CMMI actually does not defi ne a development methodology. You
can choose to use an agile development methodology along with CMMI if you
want to, and that is made much easier with the Visual Studio Scrum 2013 template.

Visual Studio Scrum
Although there are many development methodologies that make up the agile movement, Scrum has
established itself as the most popular and arguably the most successful. Scrum defi nes clear roles,
responsibilities, and activities that team members practicing Scrum are encouraged to follow.

Over the years, a common vocabulary has arisen around the Lean-Agile movements and the most
commonly used vocabulary is that of the Scrum framework. Teams hold a daily Scrum (a daily
meeting where team members inspect what they have done in the last 24 hours and adapt the plan
for the next 24 hours). Anything that is identifi ed as a blocker is created as an impediment and
tracked. In Scrum, the Project Manager role has been identifi ed as containing two confl icting perso-
nas, the Scrum Master, who is accountable and responsible for the process, and the Product Owner,
who is accountable and responsible for the work. If you want to know more about the Scrum pro-
cess, consult the Scrum guide (http://aka.ms/ScrumGuides).

The Visual Studio Scrum process template was introduced specifi cally to help teams that want to
practice Scrum and use Team Foundation Server; however, as the Scrum terminology is the most
commonly used by lean-agile teams, it fi ts many organizations. It was made available as a download
a few months after Team Foundation Server 2010 fi rst shipped. It became a built-in process template
in Team Foundation Server 2012 where it also became the default.

So, you might now be wondering what purpose the MSF for Agile Software Development process tem-
plate has, now that the Visual Studio Scrum process templates are available. Many teams created their
team projects before the Scrum template existed and Microsoft is still required to support it (much
like Silverlight) for at least 10 years. As the Scrum template is now the default and as most internal
teams within Microsoft use it, we expect the use cases for the other templates to ebb over time.

Instead of User Stories or Requirements, Visual Studio Scrum uses Product Backlog Item work item
types. Instead of Issues or Risks, Visual Studio Scrum uses Impediment work item types. In short,

http://aka.ms/ScrumGuides

222 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 222

if you practice any form of lean-agile or are considering practicing Scrum, the Visual Studio Scrum
process template is designed to help you do so while making the most of Team Foundation Server.

If you used the Visual Studio Scrum 1.0 process template that shipped as an add-on to Team
Foundation Server 2010, you will notice that in Team Foundation Server 2012 the Sprint work item
type was removed. The Sprint work item type was used by Visual Studio Scrum 1.0 to enable teams
to defi ne start and end dates for their iterations, and it was somewhat of a hack. The need for rep-
resenting this information in a work item disappeared once Team Foundation Server 2012 enabled
you to defi ne start and end dates for your iterations, as you discovered earlier in this chapter.

NOTE You can explore the Visual Studio Scrum 2013 process template in depth,
including more detail on each of the included work item types, at http://aka
.ms/Scrum13.

COMPROMISING WITH SCRUM

If you want to practice lean-agile, the Visual Studio Scrum process template pro-
vides a great option for doing so. But you shouldn’t feel locked into this process
template if there are other process templates you like better, such as the MSF for
Agile Software Development process template.

For example, you may prefer not to have your bugs in your backlog, where they
would be visible to everyone. There are additional reports that are available in the
MSF for Agile process template; however, these can be easily ported to the Scrum
template. Indeed you do not need to be doing Scrum to use and get value from the
Scrum template. As long as you are following one of the lean-agile approaches, this
template usually represents the best fi t. As you discover in Chapter 12, you can still
take advantage of the Agile Planning Tools for managing your product backlog,
planning your iterations, and tracking your progress in a very Scrum-like manner,
regardless of which process template you use. These tools are even available for
teams who choose the MSF for CMMI process template.

Third-party Process Templates
Several third parties provide process templates for use with Team Foundation Server. A list of some
of these third-party process templates can be found at http://aka.ms/ProcessTemplates. Process
templates from third parties are usually licensed for free use, and sometimes additional services such
as consulting or complementary products are available for purchase from the organizations building
those process templates.

There have been several great third-party process templates available over the years, but you
should carefully consider the support and road map implications of adopting a third-party process

http://aka
http://aka.ms/ProcessTemplates

Managing Work Items ❘ 223

c11.indd 02/27/2014 Page 223

template. For example, when the next version of Team Foundation Server is released, will the pro-
cess template be upgraded to take advantage of new or improved features? If so, what is the upgrade
path for migrating existing projects to the new version of the process template?

If you aren’t prepared to take over the maintenance of the process template in the event that the
third party chooses to stop investing in it, then you might want to consider one of the aforemen-
tioned process templates that are built and supported by Microsoft.

Custom Process Templates
Finally, you might decide that none of the process templates provided by Microsoft or third parties
fi t the needs of your team or your development project. Although you could certainly create your
own process template from scratch, a far more common approach is to start with an existing process
template and customize it to suit your needs. You can learn about customizing process templates in
the companion to this book, Professional Team Foundation Server 2013.

Now that you understand your options for choosing a process template, the next section introduces
you to some of the different ways you can manage your work items.

MANAGING WORK ITEMS

There are many ways of accessing your work items within Team Foundation Server 2013. Because
work items are used by many stakeholders across your team (including programmers, testers, proj-
ect managers, and so on), and some of these roles don’t use Visual Studio as their primary tool,
Microsoft provides many client options for managing work items.

In this section you are introduced to using Visual Studio, Excel, Project, and Team Web Access to
access your work items. This chapter doesn’t cover every aspect of accessing work items from each
of these clients, but it gives you a better idea of the ways each client can be used, as well as the rela-
tive benefi ts of each, and provides you with pointers to detailed documentation for each client.

The list of clients in this section isn’t exhaustive. There are also dozens of third-party clients. Testers
might use Microsoft Test Manager (discussed in Part VI). Eclipse users can utilize Team Explorer
Everywhere. You can even write your own clients using the Team Foundation Server object model if
you want to, and partner solutions are plentiful, such as Team Companion, which integrates work
items directly into Microsoft Outlook.

Using Visual Studio
In Chapter 2, you learned about using Team Explorer to access Team Foundation Server from
within Visual Studio. Team Explorer not only provides access for Visual Studio users wanting to
connect to Team Foundation Server, but it also installs the add-ins required to work with Excel
and Project. So, even if you don’t plan to use Visual Studio, if you want to use Excel or Project with
Team Foundation Server, you should install Team Explorer. Team Explorer is a free download from
Microsoft, but you need to be properly licensed with a client access license before you are permitted
to access Team Foundation Server.

224 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 224

Creating Work Items
Work items are easy to create using Visual Studio. Open the Team Explorer window of Visual
Studio 2013 (click View ➪ Team Explorer if this window is not visible) and click the Work Items
link. (If you don’t see the Work Items link, try fi rst clicking the Home icon at the top of the Team
Explorer pane.) Now, click Work Items ➪ New Work Item. The fl y-out menu reveals the work item
types that are available in your team project. Click the work item type that you want to create an
instance of. An empty work item form displays, similar to that shown in Figure 11-2.

The new work item form varies in appearance based on the work item type you chose to create. For
the most part, fi lling out the work item form is self-explanatory, but there are a few things to notice
when creating and editing work items.

The fi rst is that your work item won’t have an ID until it has been successfully saved for the fi rst
time. The ID is a number that is globally unique across your team project collection, numbered
sequentially, starting with 1. This means that the fi rst work item you save within a new team project
won’t have an ID of 1 if there are existing team projects in your team project collection that also
contain work items.

NOTE Occasionally, you may encounter work item types that you can’t edit
completely within a particular work item client. The Steps tab of the Test Case
and Shared Steps work item types exhibit this behavior; this tab cannot be edited
within Team Explorer. The Steps tab is implemented as a custom control, and
is designed to be edited by testers with Microsoft Test Manager or in Team Web
Access. (Microsoft Test Manager is discussed in greater detail in Part VI.)

For now, your work item probably says something like “New Bug 1” at the top of the form. The
number 1 isn’t your work item’s ID; it’s just a temporary number used by Visual Studio to track
unsaved work items. In fact, until it is saved, Team Foundation Server won’t know about your work
item.

Before you can successfully save this work item, you need to provide a title for it, at a minimum.
There may be other required fi elds as well, depending on the work item type you selected. An error
message at the top of the form will indicate any remaining fi elds that you must complete. Some
required fi elds may appear on other tabs.

Another thing to notice about work items is that you can’t skip states. A work item must be saved
in one state prior to moving to the next state. For example, if you refer to Figure 11-3, notice that
a bug from the Visual Studio Scrum process template generally moves from New to Approved to
Committed to Done.

But you can’t immediately create a new bug and save it in the Done state, even if you already fi xed
the bug that you found, and you’re just creating the bug work item as a record of what you did. You
must fi rst save it in a New state, change the state to Approved, and save it again.

Managing Work Items ❘ 225

c11.indd 02/27/2014 Page 225

This may seem cumbersome at fi rst, but the reason for this requirement is that the work item
type may defi ne rules that must be satisfi ed as a work item transitions from one state to another.
Additionally, the meaning of some fi elds change during a work item’s lifecycle, so each time you save
in a different state, the available choices for a fi eld may change. For example, when you create a new
bug using the Scrum process template, the Reason fi eld helps to indicate how a bug was discovered.
When you are transitioning the same bug from Committed to Done, the Reason state indicates why
you are doing so (the work was completed).

The interface for creating and editing work items with Visual Studio is very straightforward. What
can be diffi cult to master is an understanding of all of the fi elds found throughout the work item
types, their transitions, and when to use them, and so on.

For the process templates provided by Microsoft, the documentation is very thorough, and is recom-
mended reading to help you decide how to best adopt these process templates within your team. But
wholesale adoption of these templates isn’t for every team. You should feel empowered as a team to
decide which fi elds are more or less important than others. You may even decide to add to or sim-
plify the work item types to better meet your needs.

DELETING WORK ITEMS

A common complaint by people who are new to using work items with Team
Foundation Server is that work items can’t (easily) be deleted. This was a design
decision by Microsoft. Organizations do not want bugs, requirements, or other
important work items in a project to be accidentally (or maliciously) deleted, so
there isn’t an option within Visual Studio or the other clients in this chapter for
deleting work items.

But deletion of a work item is possible from a command prompt. Open a com-
mand prompt, navigate to \Program Files\Microsoft Visual Studio 11.0\
Common7\IDE, and type witadmin destroywi /? for the command-line syntax
help. This action is not reversible, so take care when using it.

Microsoft’s recommended approach is to transition work items as appropriate
instead of deleting them. For example, if you examine the state diagram in Figure
11-3, notice that in the Visual Studio Scrum process template, the Bug work item
can be transitioned to the Removed state.

Although it might be tempting to just want to delete these work items instead of
resolving them using one of these reasons, the resolution data might prove useful
later. For example, a QA lead could discover that a tester isn’t doing his job effec-
tively when fi ling erroneous bugs. It’s easy to generate a report later on showing, for
example, all of the bugs created by a tester that were later discovered to be dupli-
cates of existing bugs. But if those same work items are deleted, they won’t show up
in such a report.

226 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 226

Work Item Queries
Now that you know how to create work items, the next task you should learn about is how to fi nd
them. You can always search for work items by typing the work item ID or some other text into the
Search Work Items textbox at the top of Team Explorer. Indeed you can do very complex searches
just using this box. Find out more on http://aka.ms/SearchBoxQueries. Chances are you’ll want
to use queries most of the time.

The process template you are using probably includes some useful built-in queries already. Open
Team Explorer ➪ Work Items to reveal the My Queries and Shared Queries folders. The Shared
Queries folder is visible to everybody on the team, whereas My Queries provides a location to save
your own personal queries, which may be useful only to you. By keeping specialized queries in My
Queries, you can avoid creating too much clutter for your fellow team members. You can also use
subfolders in both of these categories to further organize your queries.

NOTE You should consider using permissions to lock down queries within the
Shared Queries node to prevent someone from accidentally overwriting a shared
query with their own, which might cause unexpected results for others. An
administrator can set security on a query or query folder within Shared Queries
by right-clicking it and selecting Security.

If you have an existing query, you can simply double-click it to run it. Your results will vary based
on the type of query you run, and the number of matching work items in your team project, but it
should look something like the query results shown in Figure 11-8.

FIGURE 11-8

http://aka.ms/SearchBoxQueries

Managing Work Items ❘ 227

c11.indd 02/27/2014 Page 227

The query results shown in Figure 11-8 are from a Tree of Work Items query. This fi gure shows a
Sprint Backlog query from a team project that was created using the Visual Studio Scrum process
template, but other tree queries look similar. Tree queries return a list of work items matching your
query, and groups them according to their parent/child relationships. In this example, there are top-
level Product Backlog Item work items that are linked to child Task work items.

Another type of query is Work Items and Direct Links. This type of query is similar to the Tree of
Work Items query, except that you are not limited to parent/child links. For example, you can spec-
ify that you want to see all user stories and their test cases as represented by a tested by link type.
You can even construct a query that shows all of your user stories that do not have linked test cases;
this is useful for spotting potential holes in your test plan.

Finally, the Flat List query type does not show any link types and is the same type of query found in
versions of Team Foundation Server prior to 2010.

From within the query results window, you can open a work item simply by double-clicking it. You
also have several options available to you from the toolbar located at the top of the query results
window. You can place your mouse over these toolbar icons to learn more about them. The avail-
able options vary slightly between query types, but all of them enable you to create new work items
(linked to any work items you have highlighted), to open your query results in Microsoft Project
or Excel (more on this later), to change which columns are displayed in your query results (and in
which order), and to edit the query you are working with.

The query editor shown in Figure 11-9 is the result of having opened the query from Figure 11-8 and
clicking Edit Query.

FIGURE 11-9

228 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 228

Even if you’ve never used queries with Team Foundation Server before, this query should be fairly
straightforward to reverse-engineer in order to learn what it does.

The fi rst row (Team Project = @Project) means that your query results should be scoped to the
team project where the query is saved. If you delete this row, your results may return work items
from the entire team project collection. @Project is a query variable. Query variables are converted
into their respective values when the query is executed. So, for this project, @Project resolves to
FabrikamFiber. By using query variables, you can write more fl exible queries. The two other query
variables available to you are @Me (which is converted into the username of the person running a
query) and @Today (which is converted into today’s date).

The next row of the query (AND Iteration Path Under FabrikamFiber\Release 1\Iteration
3) defi nes the specifi c iteration this query should look for work items in. You could change this
clause to look for work items from Sprint 4 by changing the 3 to a 4, or from the entire Release 1
path by simply removing \Iteration 3 from the end of this clause.

Clauses three, four, and fi ve are grouped (as shown by the vertical bracket on the far-left side of
the query). This means that they should be interpreted together in much the same way that math
operations within parentheses or brackets are interpreted together. These clauses, when interpreted
together, mean: only return work items with a work item type of Product Backlog Item or a work
item type of Task or a work item of type Bug.

The last clause indicates that work items with a State of Removed should not be returned. In the
“Deleting Work Items” sidebar earlier you learned that Removed is a state that is available in the
Visual Studio Scrum process template to enable you to easily remove work from your backlog with-
out formally deleting the work item.

Finally, because the query type for this query is a Tree of Work Items, there is a second grid (labeled
Filters for linked work item types), which enables you to specify any constraints on the child work
items that are returned. In this example, only task work items are returned as children.

NOTE Work item queries can be very powerful, and the options for creating
queries are endless. You can fi nd a full guide for understanding how to use que-
ries at http://aka.ms/TFSQueries.

Using Microsoft Excel
Microsoft Excel is another popular client for editing work items. If you have installed Team
Explorer on a machine with Microsoft Excel (2007 or newer), you have a Team tab available from
the Offi ce ribbon, which enables you to interface with Team Foundation Server.

There are two ways of opening work items in Excel. One option is to open query results from within
Team Explorer and then, from the query results toolbar, click Open in Microsoft Offi ce ➪ Open in
Microsoft Excel. The other approach is to start in Excel, open the Team tab from the Offi ce ribbon,
and then click New List. You are prompted to select your Team Foundation Server and team project,
along with the query for the work items you want to manage. Or, instead of a query, you can start

http://aka.ms/TFSQueries

Managing Work Items ❘ 229

c11.indd 02/27/2014 Page 229

with an empty list. This enables you to enter new work items or to select individual work items to
add to your list by clicking Get Work Items.

Managing work items in Excel is a fairly rich experience. You can create new work items, make
edits to existing work items, and even manage Trees of Work Items. Figure 11-10 shows the results
of the same query you saw earlier. Note that parent/child relationships are represented here as well.
Parent work items have their titles listed in the Title 1 column, and their children have their titles
listed in the Title 2 column. If you add a third level to the tree, grandchild work items are listed in a
column named Title 3, and so on.

FIGURE 11-10

You can make any changes you want to within your Excel grid. You can add new work items for a
Tree of Work Items query by clicking an existing work item and then choosing Add Child from the
Team tab of the ribbon. For queries of type Flat List or Work Items and Direct Links (which is also
compressed to a fl at list view in Excel), you can simply place your cursor on a new row at the bot-
tom of your grid, and start typing to begin creating a new work item.

Note, however, that none of your work is persisted to Team Foundation Server until you click
Publish from the Team tab of the ribbon. Even if you save the Excel workbook fi le, your work items
aren’t synchronized to Team Foundation Server until you publish them.

NOTE In order to access the Publish button from the Team tab, your cursor
needs to be within a cell that is a part of your work item grid. Otherwise, the
Publish button is disabled.

230 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 230

You receive an error message if the values you entered for work items in Excel do not conform to the
validation rules or state transition workfl ow for the work item type. At this point, you can even view
the offending work items using the same form view you are familiar with from Visual Studio.

NOTE Excel is a useful tool for making bulk edits of work items, for quickly
copying several work items between team projects, or for people who just prefer
working with Excel over Visual Studio for managing work items. You can read
more about using Excel as a work item client at http://aka.ms/TFSExcel.

Using Microsoft Project
Microsoft Project is one of the most popular project management tools in the world, and supports
integration with Team Foundation Server. If you have installed Team Explorer on a machine with
Microsoft Project (2007 or newer), you have a Team menu that enables you to interface with Team
Foundation Server.

As with Excel, you can either start with a query in Team Explorer (and choose Open in Microsoft
Offi ce ➪ Open in Microsoft Project), or you can open Project and use the Team menu to access a
query of work items from Team Foundation Server.

Project also displays work items according to their parent/child relationships. A major benefi t of
using Project to view your work items is that it’s easy to visualize dependency relationships (succes-
sor/predecessor) using the built-in Gantt chart visualization that Project is popular for. In Project,
it’s easy to see that some work items have dependencies on others, which can be helpful for teams
deciding how to prioritize their work.

Like Excel, changes to work items that you make within Project are not synchronized to Team
Foundation Server until you click Publish from the Team menu.

NOTE You can learn more about using Project for managing work items at
http://aka.ms/TFSProject.

Using Team Web Access
Team Web Access provides yet another way of managing your work items. You learned about how
to connect to Team Web Access in Chapter 2. Team Web Access provides a rich, web-based way of
accessing Team Foundation Server. An obvious benefi t of Team Web Access is that users do not need
to have any software other than a web browser. Figure 11-11 shows Team Web Access being used to
manage work items.

Team Web Access provides a surprising number of features for a web-based client. Team Web
Access makes an ideal work item client for users who don’t have Team Explorer installed. Some
organizations even encourage end users to fi le bugs and enhancement requests about their software

http://aka.ms/TFSExcel
http://aka.ms/TFSProject

Project Server Integration ❘ 231

c11.indd 02/27/2014 Page 231

using Team Web Access. And as you see in the next chapter, Team Web Access provides new Agile
Planning Tools to help you manage your plan and track your work.

FIGURE 11-11

NOTE You can read more about using Team Web Access as a work item client
at http://aka.ms/TFSWebAccess.

PROJECT SERVER INTEGRATION

Earlier in this chapter, you learned how you can use Microsoft Project to create project plans with
your work items in Team Foundation Server. But organizations that utilize Project Server may also
be interested in the capability of Team Foundation Server to integrate with their Project Server
(2007 or newer) deployments.

This integration allows planning and status information from your development team, using Team
Foundation Server, to fl ow through to your project management offi ce, using Project Server. This
enables the software development team to use a single tool—Team Foundation Server—for manag-
ing their work, while enabling Project Server users to easily report on and participate in project
management activities from those same projects.

In order to enable this integration, you must confi gure Team Foundation Server to integrate with
a Project Server deployment. As part of this confi guration process, you can determine which work
items in Team Foundation Server should be synchronized with work in Project Server. You can even

http://aka.ms/TFSWebAccess

232 ❘ CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

c11.indd 02/27/2014 Page 232

decide, for example, that parent user stories should be synchronized between the two systems, but
that child tasks should remain in Team Foundation Server.

The integration service can then roll up the remaining and completed work being recorded against
those tasks and synchronize that information to the User Story work item when it is updated in
Project Server. This provides near real-time information to the project management offi ce without
overwhelming them with implementation details about your development project that they may not
be interested in.

Your Team Foundation Server administrator can learn more about integrating Team Foundation
Server and Project Server in Professional Team Foundation Server 2013.

SUMM ARY

In this chapter, you learned about the project management capabilities of Team Foundation Server
2013, with a focus on work item tracking.

You fi rst learned about some of the new enhancements related to project management that have
been introduced in this release and the preceding Team Foundation Server 2012 release. You were
introduced to work items, including the key components that make up work item types. You dis-
covered the importance of process templates, which include predefi ned work item types, and you
read overviews of the three process templates included by Microsoft for use with Team Foundation
Server 2013. Finally, you were introduced to a variety of ways that you can manage your work items
with Team Foundation Server 2013, including from within Visual Studio, Excel, Project, via a web
browser, and through integration with Project Server.

In Chapter 12, you learn about the new Agile Planning Tools that you can use to help you plan and
track your software development proje cts.

c12.indd 02/27/2014 Page 233

Agile Planning and Tracking
WHAT’S IN THIS CHAPTER?

 ➤ Defi ning and managing the product backlog

 ➤ Planning an iteration while balancing resource capacity

 ➤ Tracking work using task boards

 ➤ Understanding options for customizing the agile planning and
tracking tools

The Agile Manifesto defi nes several guiding principles that have implications on the ways in
which teams manage projects. Instead of attempting to defi ne an entire project schedule up
front, as with a waterfall methodology, an agile team allows the plan to evolve over time.
Work is broken down into multiple successive iterations, each of which should last no more
than 30 days.

Teams practicing an agile development methodology tend to embark upon a journey of mutual
discovery with their customers to determine new work dynamically, based on changing busi-
ness priorities or on feedback from work completed in previous iterations. The customer, or at
least a proxy for the customer, is considered a virtual member of the team and participates in
defi ning and ordering (and often reordering) work over time.

The pursuit to embrace agile development, with dynamic schedules and evolving requirements,
has meant that many of the tools and techniques used for traditional project management are
no longer suffi cient. Agile practitioners have needed to look for different ways of capturing
work, balancing resource capacity, tracking status, and so on.

Scrum, which is by far the most popular agile development practice in use today, defi nes only
a simple framework for managing work. Scrum allows you to decide which complementary

12

234 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 234

practices you need to employ to create a methodology that works for you, your company, and your
software process. Future work is captured and ordered on a product backlog, which is refi ned con-
tinuously by the product owner using feedback from the team and stakeholders. The development
team accepts work into iterations, called sprints, and commits to their best efforts to deliver within
its timebox, usually two weeks but never more than 30 days. Each sprint has its own sprint backlog
which contains the things from the product backlog the development team has committed to, plus a
plan to complete them. This work is tracked to completion and may be visualized on a task board,
which usually takes the form of sticky notes on a whiteboard.

NOTE Projects that use Scrum as a framework to build their process for soft-
ware delivery have more than three times the rate of success as those that use
Waterfall processes (2011 Chaos Manifesto Standish Group). Find out more on
http://aka.ms/ScrumGuide.

Team Foundation Server 2012 embraced these concepts by providing a set of web-based tooling for
managing your product backlog, decomposing your work into iterations, and tracking your work
using a digital task board. Team Foundation Server 2013 adds a set of portfolio management tools
that can be used to organize higher level work. Anyone familiar with or practicing Scrum should
feel immediately at home with this set of tooling, although it cannot be understated that this same
set of tooling can be adopted by any team who wants to use it, even if they aren’t practicing Scrum
per se. One of the design principles of Team Foundation Server has always been that teams can use
any process they want to, and Team Foundation Server provides the right level of fl exibility and cus-
tomization to support such a process.

In this chapter you fi nd out about the new web-based tooling available within Team Foundation
Server 2013 to support agile project management and tracking. This book is not a true primer on
how to run a project using a Scrum (or any other) development methodology, but there are several
great books to choose from that cover this topic.

DEFINING A TEAM

Team Foundation Server 2012 introduced the notion of a team, which you can use to organize
people who are working together. This should not be confused with the concept of a team project
within Team Foundation Server, which is a large container of work, consisting of source control and
work items that all share a common process template. A team project can contain multiple teams,
and each team can have its own product backlog, iterations, and task board. A single person might
also participate in more than one team. For instance, a graphic designer might be a shared resource
responsible for contributing artwork to different teams.

http://aka.ms/ScrumGuide

Defi ning a Team ❘ 235

c12.indd 02/27/2014 Page 235

NOTE Here’s a good rule of thumb for deciding whether you should create a
team project or a team:

If you have to share resources (with resources defi ned as code, people, or
work items) then you should have a single team project with many teams for
compartmentalization.

This is in keeping with the original intent of the product but not with the per-
ceived intent. If you have many team projects you might want to consider con-
solidating them if you share resources.

To create a team, follow these steps:

 1. Open a browser and visit the Team Web Access home page for your team project. You can
access this by clicking the Web Access link in Team Explorer. The address takes the format
of http://<server>:<port>/tfs/<collection-name>/<team-project-name>.

 2. Now open the administrative context by clicking the gear icon in the upper-right corner.
If you do not have administrative privileges for your team project, you need to contact your
team project administrator to perform these steps. On this screen you should see a list of any
teams that are already confi gured for your team project.

 3. Click New Team to display the Create New Team dialog, as shown in Figure 12-1. You can
provide a name and description for your team, and specify what default permissions new
team members should inherit. From the Settings tab you can also declare any users who
should be team administrators, and you can opt to create a new area for this team.

FIGURE 12-1

236 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 236

You were introduced to the concept of areas in Chapter 11. Areas provide a way for you to
categorize your work within a team project. You can choose to create areas for each of your
teams, so that (for example) bugs that are fi led against the \Fabrikam Fiber\Customer Portal
Team area path are automatically routed to the Customer Portal Team.

NOTE If you have confi gured your team project to use a “team fi eld” instead of
an area path then you will not be asked to create an area path. Instead you need
to confi gure the team fi eld setting for the team manually. For more on how to
confi gure team fi eld, see http://aka.ms/TeamFieldMS.

 4. Click Create Team when you are fi nished to create your team and return to the list of teams
on your team project. Click your team in this list to display the team administrative dialog
shown in Figure 12-2. From here you can easily add new team members or team administra-
tors. You can also change the name of your team, the description, or even choose an image to
represent your team.

FIGURE 12-2

 5. Click the Iterations tab to select the iterations your team is participating in, as shown in
Figure 12-3. In Chapter 11 you learned how to manage iterations and assign start and end

http://aka.ms/TeamFieldMS

Defi ning a Team ❘ 237

c12.indd 02/27/2014 Page 237

dates to them. On this screen, you are indicating which iterations your team is using to struc-
ture its work. You should ensure that the iteration dates do not overlap.

FIGURE 12-3

Your iterations need to be hierarchical, consisting of at least one parent and one child. This
is required so that your backlog iteration (representing unscheduled work) can exist at the
root or parent node, and specifi c iterations (representing scheduled work) are represented
by child nodes. In Figure 12-3, Release 2 is the parent node representing the backlog itera-
tion. You can select a new backlog iteration by highlighting that iteration, clicking the small
drop-down arrow to the left of the iteration name, and then selecting Set as Team’s Backlog
Iteration. But you need to fi rst ensure that your desired backlog iteration has at least one
child iteration.

NOTE It may be necessary to create different iteration structures for each
team within your team project. For example, if your Customer Portal Team
is using the term Sprint 3 to defi ne an iteration that begins on March 1,
but your Support Portal Team thinks of Sprint 3 as beginning on April
15, then each team should have its own iteration structure. You can use any
naming convention you want for this, such as CustomerTeam\Sprint3 and
SupportTeam\Sprint3. This way each node can have its own start and end date
independently.

238 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 238

FIGURE 12-4

Similarly, click Areas to confi gure which area paths your team is using to manage its work,
as shown in Figure 12-4. You can select multiple areas, or the root area path, although if
you have many people using your team project you might want to use areas to more care-
fully segregate work.

You can use the Security tab to confi gure permissions for your team. Finally, you can use
the Alerts tab to confi gure email notifi cations for your team. For example, you might want
to automatically send an email to any team member if a work item that is assigned to that
person changes. Or you can email the entire team if a daily build fails.

 6. Close the administrative context when you are fi nished, and return to Team Web Access.
You can now access the team home page for any team you are a member of by clicking the
drop-down arrow on the fi nal item in the blue breadcrumbs bar at the top of the Web Access
view and selecting the appropriate team. For example, Figure 12-5 shows the home page for
the Customer Portal Team.

If you just created a new team then your home page won’t yet look as rich as the one shown in
Figure 12-5. The top half of this view shows information relevant to your current iteration. The
status bar on the left shows the amount of work remaining as compared with the capacity of your
team (in this example, there are 49 hours of work remaining and the team has a total capacity of
achieving 56 hours of work). The burn-down graph is a trend that shows how remaining work has
decreased (or increased) over time during your current iteration. You learn more about iteration
capacity and burn-downs later in this chapter.

The bottom half of this view shows any Team Favorites you have confi gured. These can represent
queries—such as open bugs, or in-progress tasks. They can also display graphs of recent builds, or
even recent changesets that have been checked into a particular branch. To add Team Favorites to

Defi ning a Team ❘ 239

c12.indd 02/27/2014 Page 239

this view, you should fi rst open a relevant query, branch, or build within Team Web Access. You
can then click the small drop-down arrow located to the left of the object and select Add to Team
Favorites, as shown in Figure 12-6. This adds a new tile to your team’s home page, which can make
it easy for the entire team to see the metrics you believe are most important to track.

FIGURE 12-5

FIGURE 12-6

Next, you see how to defi ne and manage your team’s portfolio backlog.

240 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 240

MANAGING PORTFOLIO BACKLOGS

A portfolio backlog is just a way of differentiating between things that are owned by the team and
those that are owned by the greater organization. If you have many teams you can use portfolio
backlogs to gain insight into the features and epics that defi ne the less granular deliveries over many
sprints or releases. Industry standard looks to be following the SAFe (Scaled Agile Framework)
model. In Team Foundation Server 2013, you have features confi gured by default but you may con-
fi gure four additional levels above each feature.

From your team’s home page, click View Backlog to display the product backlog. Once you are
there, click Features to display the Feature backlog, as shown in Figure 12-7. You can use the
“Quick Add” panel, the gray form above the list, to quickly add new features to your backlog. You
need only enter a title and press Enter (or click Add) and your new Feature will be saved to your
Feature backlog. This will automatically create a new work item in Team Foundation Server.

NOTE The screenshots in this chapter refl ect a team project that was created
with the Microsoft Visual Studio Scrum 2013 process template included with
Team Foundation Server 2013. The terminology varies slightly if you are using
either the MSF for Agile Software Development or MSF for CMMI Process
Improvement templates, but you can still take advantage of the same tooling.
You can even customize this tooling for use with your own custom or third-party
process templates. Customization options are discussed later in this chapter.

If you highlight a row within your backlog, any new work you add from the Quick Add panel is
inserted above this highlighted row. The exception to this rule is if you have highlighted the last row
in your backlog; new work is added at the end of your backlog.

You can easily reprioritize work by simply dragging and dropping it on the backlog. Changes you
make here are saved to Team Foundation Server in the background. You can also double-click an
item in this view to open the work item editor to provide additional detail or make changes.

NOTE If you have used versions prior to Team Foundation Server 2012 then
you are used to changing priority by hand-editing a fi eld within each work item.
But notice that the Priority fi eld is no longer visible within Team Web Access or
Visual Studio when viewing work items. Backlog priority is now a hidden fi eld
by default. The recommended way of setting this value is to use the Team Web
Access view to drag items up and down the backlog. Behind the scenes, Team
Web Access uses large integers to assign backlog priority values. The use of large
integer values here makes it possible to insert a work item between two items on
a backlog without needing to update the surrounding items.

Managing Portfolio Backlogs ❘ 241

c12.indd 02/27/2014 Page 241

FIGURE 12-7

Teams practicing Kanban will be familiar with cumulative fl ow, which is a way to graphically visu-
alize the fl ow of work, transitioning through defi ned states, through your process. This is hugely
valuable to help you understand where there are bottlenecks in your process and thus waste. If you
click on the small diagram on the top right of your backlog view, you will open a larger view of the
cumulative fl ow report. You can see an example in Figure 12-8. It shows the three states—New, In
Progress, and Done—that a Feature fl ows through. Clicking the cross in the top right or anywhere
not on the pop-up box closes the box.

On the portfolio backlog there are a number of features that allow you to better understand the con-
tents, including tags and views, and these are discussed more in the next section.

In addition to the ability to view and order the backlog, you can also represent the backlog as you
would with sticky notes on the wall; in a Kanban board. Figure 12-9 shows columns that represent
the same states on your Feature work items and colored cards representing each of the Features in
its corresponding column. You can click an individual card to open the work item that it represents.
Changing state now becomes as easy as dragging the card from one column to another. Indeed this
board supports Surface, iPad, and Android touch capabilities well.

242 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 242

FIGURE 12-8

FIGURE 12-9

A Kanban board would not be complete without being able to limit work in progress (WIP), or at
least understand when you are over your limits. You can see a green 3/5 in the top right of the In

Managing Portfolio Backlogs ❘ 243

c12.indd 02/27/2014 Page 243

Progress column in Figure 12-9. This signifi es that you have set a WIP limit of fi ve and currently
have three things in there. Team Web Access will not stop you from going over your limit (Team
Foundation Server is not meant to be an enforcement system), but it will turn the green numbers red
when you do. As you move cards around the board, the cumulative fl ow graph changes dynamically
to match.

You can change the number of columns available, see Figure 12-10, without changing the state
model. Although the minimum number of columns is the same as the state model, you can split any
state into multiple columns.

NOTE There is no surer way to make it diffi cult for your organization to change
than to enshrine your existing multi-state model (more than four states) in the
process used by your team project. Once you have work items in those states,
it is much more diffi cult to collapse later. If you can you should try to focus on
the default fl ow of the Microsoft Visual Studio Scrum 2013 template, which was
designed to cope with as many implementations as possible, and split the states
on the Kanban board to represent your company’s model.

There are however limitations to this, as you can’t currently report on these col-
umn customizations nor query on them. This should be a short-lived limitation,
as the product team is working hard to fi ll these gaps. One would expect to see
these issues solved before the next release of Team Foundation Server.

This is especially useful to allow you to model your current process while maintaining a simple state
model for reporting.

FIGURE 12-10

244 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 244

You do need to make sure that you have correctly mapped the state of the work items represented to
the columns you set. Here, you have only one work item type, Features, so it is a simple mapping.
This is also where you set the WIP limit that was described earlier in this section. Most agile teams
will fi nd that a value of between 5 and 10 will suit them, depending on the number of folks on the
team. In the following section, you look at one level below the Feature, the product backlog.

MAINTAINING PRODUCT BACKLOGS

A product backlog is essentially a list of work that your team has identifi ed but hasn’t yet scheduled
for implementation. The product backlog is a useful tool for collaborating with customers or other
project stakeholders. As stakeholders request new work, you can track it in a central location on the
product backlog. You can also estimate and prioritize this work, usually with input from your cus-
tomers or stakeholders, to help determine which items are most important to deliver fi rst.

From your team’s home page, click View Backlog to display your product backlog, such as the one
shown in Figure 12-11. As with the portfolio backlogs, the “Quick Add” panel at the top of this
page enables you to quickly enter new work as it is identifi ed. As the Microsoft Visual Studio Scrum
2013 template allows both product backlog items and bugs to be listed on its backlog, there is a
pick-list on the Quick Add panel that allows you to select the appropriate work item type.

FIGURE 12-11

Maintaining Product Backlogs ❘ 245

c12.indd 02/27/2014 Page 245

Just like with the portfolio backlogs, you can easily reprioritize work by simply dragging and
dropping it on the backlog, viewing the cumulative fl ow report, and splitting the columns on the
Kanban board.

There are a number of tools that were added to help you manage your backlog. The fi rst is tagging.
As you can see in Figure 12-12, you can use the fi lter logo, on the right side, just below the Forecast
button, to enable fi ltering. This will add a row of available fi lter tags that you can select. Selecting a
tag will move it to the left and fi lter the backlog to contain only the work items that have that spe-
cifi c tag. You can even compound tags to tighten your fi lter. You can turn off the tagging by clicking
the fi lter icon again or by removing the fi lter by selecting All on the left.

FIGURE 12-12

Many organizations used the tags in Team Foundation Server 2012 to create a way to visualize
features or epics so that they could understand the cross-cutting concerns of their software. With
the addition of the portfolio backlogs this is less necessary (although some people will still continue
to use it), but it still provides value in allowing more arbitrary rather than hierarchical tagging.
Displayed examples are iPhone and Windows Phone tags that allow you to fi lter your backlog to
those items regardless of the Feature that it fulfi lls. The orthogonal nature of tags enables many
scenarios and makes them eminently useful.

246 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 246

With the portfolio backlogs in place, it has become necessary to link the backlog items to the rel-
evant parent Feature to better help with reporting and visibility of where you currently are in the
development process. While product and release management teams may plan and order Features,
the owner of the backlog usually has the freedom to order his work. He has to take into account the
order of the parent Features. However, at the tactical level something else may have to be done fi rst
to even start achieving particular features.

To help the owner of the backlog maintain the mapping between his work and the Features above,
a mapping tool was added in Team Foundation Server 2013. You can toggle a view of the parent
work items, in this case, Features, on or off by clicking on the on/off link labeled Mapping in the
upper-right of this page. When enabled a pop-out panel will emerge from the right, as shown in
Figure 12-13. This panel shows a list of the parent items. You can then drag an item from your back-
log onto an item in the mapping panel to change or create a parent/child relationship between the
work items.

FIGURE 12-13

To help the backlog owner better understand the relationships with the work of product and release
management above and the Development Teams below, views were introduced. Views are available
on all of the backlogs. They switch your backlog view from a fl at orderable list to a tree structure.
You can enable and switch views by clicking View ➪ Backlog Items and selecting the view that you
want from the drop-down list. This list is context-sensitive. As you are on backlog items, you can
select to look down to the child tasks, or look up to the parent features. In Figure 12-14 you can see
that, with Backlog Items to Features selected, the view has changed to a tree view of parent to child.

Maintaining Product Backlogs ❘ 247

c12.indd 02/27/2014 Page 247

If you had more levels you would be able to, for example, select Backlog Items to Epics and see a
three-level view.

FIGURE 12-14

Teams practicing Scrum will be familiar with a concept known as velocity. Velocity is a metric used
to calculate the amount of work that a team is able to deliver for a given iteration. It is usually mea-
sured in story points on Scrum teams. Other teams may prefer to do their estimations in hours, or
days, or ideal days, and so on. Regardless of the estimation technique used by your team, you can
use the product backlog view to get a sense for when you will be able to deliver items on your back-
log. The only requirement is to be consistent with your estimation techniques. When some people on
the team are estimating in days and other people are estimating in story points, it’s diffi cult to create
consistent plans.

Toggle forecast lines on or off by clicking the on/off link in the upper-right of the page labeled
Forecast. Forecast lines display, as shown in Figure 12-11, to indicate when work is estimated to be
delivered based on your current team’s velocity. This approach requires that you have estimated your
backlog items by providing a value for effort. Do this by double-clicking each item in your backlog
to provide this additional level of detail.

The Forecasting Based on Velocity Of textbox enables you to experiment with different values to see
the effect that given values for velocity might have on delivering work. For example, you might be
able to ask for additional funding from your customer to hire new team members and speed up the
rate at which items are delivered. Or you might know that there are several upcoming holidays that

248 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 248

will affect your team’s ability to deliver. You can also click the velocity graph in the upper-right
corner of this screen to see your historical velocity for the preceding (and current) iterations.

The forecast lines are purely estimates. In order to schedule work for a given iteration, you can
drag and drop it onto either the current or future iterations listed on the left side of this view.
When you drag and drop work onto an iteration, the value in the Iteration Path column is updated
to refl ect the assigned iteration, and the Iteration fi eld is updated within the work item in Team
Foundation Server.

NOTE Even though you have assigned work to a particular iteration, it contin-
ues to show up in your product backlog. That’s true even when you have tran-
sitioned the work item to a state that represents it is in progress (different from
Team Foundation Server 2012). For the Scrum process template, work is consid-
ered to be in progress when it reaches the Committed state. By convention, most
teams typically wait until they have broken work down into child tasks before
they transition it to a Committed state. In the following section, you fi nd out
how to break work down.

PLANNING ITERATIONS

After you have identifi ed the work that you want to deliver for a given iteration, you can click an
iteration from the list on the left side of the product backlog view. This opens the iteration planning
view shown in Figure 12-15. This fi gure shows an iteration that is mid-sprint, meaning that the team
has already completed some work and is preparing to fi nish this iteration.

NOTE If you do not have any Iterations selected for your team then you will not
see any iterations listed. In Figure 12-14 you can see that there are no Iterations
shown for the “Fabrikam Fiber Leadership Team” as they should have no inter-
est in the operational management of the development team. Even the owner of
the backlog items should have limited interest. However, if you switch to another
team, it can have iterations confi gured and viewable.

When you fi rst add items (such as a product backlog item or bug) to an iteration, you are only
declaring your intention to investigate whether it will fi t within the specifi ed iteration. The next
phase of planning this work is to break it down into the individual tasks that people on your team
need to complete in order to perform the work. Click the plus (+) sign next to an item in your
iteration contents to display the dialog shown in Figure 12-16, which enables you to add a new task
work item as a child to the parent you clicked on.

Planning Iterations ❘ 249

c12.indd 02/27/2014 Page 249

FIGURE 12-15

FIGURE 12-16

250 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 250

You should provide a title for this task and, if possible, an estimate for the amount of work remain-
ing. By default, remaining work is assumed to be provided in hours, but you can also customize this
(see the section called “Customization Options” later in this chapter). You can assign this to a team
member who will complete this work, but you are not required to do so. Save this work item and
proceed to break down the rest of your work into child tasks. If you haven’t already done so, set the
state of parent work items to Committed as each item is broken down and accepted into the Sprint
by the Development Team.

NOTE A common question that many people have is about the relationship
between effort, provided earlier when defi ning an item for the backlog, and
remaining work, provided for tasks. Effort is typically a rough estimate used
to provide a quick indication about the size of work in relation to other items
on the backlog. Remaining work values in your iteration should be much more
precise, and represent the additional level of planning and estimation analysis
that has been given to considering how a given feature or user story will be
implemented. As a team gains experience they become better at providing more
realistic estimates while the product backlog is being defi ned. This process is
indicative of an empirical approach to project planning.

As you begin to create tasks with values for remaining work, you will notice that the capacity
graphs on the right side of this screen begin to render. These graphs are broken into three areas:

 ➤ Work—Shows the total amount of work remaining for this iteration, calculated as the sum of
the remaining work across all task work items.

 ➤ Work By: Activity—Enables you to categorize the amount of remaining work into cat-
egories. When creating tasks, you can use the activity fi eld to categorize tasks, such as
Documentation, or Design, and so on. If you don’t provide a value for activity, work simply
shows up as unassigned.

 ➤ Work By: Assigned To—Shows the amount of remaining work that is assigned to each
person on your team.

Click the Capacity tab to assign the capacity for each of the members of your team, as shown in
Figure 12-17. The Capacity Per Day column enables you to specify the number of hours per day that
a given resource is working on tasks. The Activity column enables you to specify the discipline of a
team member, which is necessary if you want to view capacity by activity type. Finally, you can use
Days Off to defi ne days that a team member is sick or on holiday, and you can use Team Days Off to
defi ne days that the whole team will be unavailable, such as during a holiday or company retreat.

The values you enter for this table are specifi c to this team and this iteration. So a shared resource
who works on multiple teams might have different values for Capacity Per Day or Days Off, depend-
ing on the team. Also, a resource who works fi ve hours per day on one iteration might only work
two hours per day during a subsequent iteration.

After you assign capacity values for your team, the capacity indicators on the right change to green,
if a resource is at or under capacity, or red, if there is too much work given to the planned capacity.

Tracking Work ❘ 251

c12.indd 02/27/2014 Page 251

The iteration plan is designed to be viewed on a regular basis so that you can make adjustments as
needed. For example, if a team member is sick, you might need to reschedule work that was origi-
nally planned for this iteration. You can drag and drop parent items from this list onto other itera-
tions on the left side of the page.

FIGURE 12-17

TRACKING WORK

When you are satisfi ed with the iteration plan, it’s time to start writing code, authoring documenta-
tion, designing user interfaces, and doing all the other work that’s required to develop great soft-
ware. During the course of this activity, it can be helpful to have a single location to easily determine
the status of the work that everybody is doing.

Scrum teams typically use a task board for this purpose. In its simplest form, a task board takes the
form of a whiteboard with sticky notes on it that you move from the left side of the board (work that
is not yet started) to the middle (work that is in progress) to the right (completed work). This tech-
nique works very well for teams that are collocated, especially if they share a team room, because
anybody can quickly look up at the whiteboard to determine the state of the team’s work. Of course,
this approach has its challenges for teams who work in different locations or have individual offi ces.

Team Foundation Server 2013 provides a digital task board that overcomes the limitations imposed
by traditional physical boards. Click Board at the top of the selected iteration in Team Web Access
to access the task board shown in Figure 12-18. You can view the board for any iteration by fi rst
selecting the iteration and then clicking Board.

252 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 252

FIGURE 12-18

Each row on this task board represents a parent backlog item from your current iteration. The tiles
on this task board represent the individual child tasks that you created. Each task begins in the To
Do column. When a team member is ready to begin a task, she can drag and drop it onto the In
Progress column. As she makes progress against a given task, she can click the number on the task
to update the remaining work. Or if she has fi nished the task, she drags it into the Done column to
automatically set the amount of remaining work to 0. Clicking the name of the team member for a
given task opens a drop-down menu that enables you to quickly reassign work.

Double-click a task to open it in a full editor. This is often helpful if you realize that a task is
going to take more time than originally estimated, and you need to increase the amount of
remaining work.

NOTE The task board understands the rules and limitations of the underly-
ing process template your team project is based upon. For example, consider a
scenario where you have prematurely moved a task from In Progress to Done
—perhaps by mistake, or perhaps you realized there is additional work that
needs to be fi nished. If you try to move work from the Done column back to the
In Progress column, you receive an error message indicating that work that is In
Progress cannot have a value of 0 for remaining work. To fi x this, double-click
the task to open the full editor and assign a new value for remaining work.

Customization Options ❘ 253

c12.indd 02/27/2014 Page 253

The entire interface is touch-friendly. If you have a touch screen monitor, such as in a shared
team room, you can confi gure it to display your task board and make it easy for team members to
update the status of their work whenever they walk by it. And because everything is stored in Team
Foundation Server, remote workers can access the same view in any modern web browser to see
what their colleagues are working on and provide their own statuses.

If you fi nd yourself constrained for space in this view, you can collapse fi nished backlog items by
clicking the arrow to the left of the parent work item title. You can also use your browser’s zoom
functionality (usually Ctrl + - and Ctrl + +) to fi t more work on a single screen.

You can generate a personalized view of this screen by clicking the Person: All link and selecting the
name of any team member. This highlights the work that is assigned to that team member, making
it easier to differentiate it from the rest of the team’s work.

You can also click the Team Members tab to display a view in which tasks are organized by the
team member they are assigned to, instead of by their parent work item. This is a helpful view for
team meetings, where team members might be expected to tell their peers what they worked on yes-
terday and what they are planning on working on today. This view is also helpful for seeing whether
there are any team members with too much work remaining, and whether other team members
might have capacity for picking up some of that work.

As work is fi nished, the team can transition parent backlog items to a state of Done. Open a parent
backlog item by clicking the title of the item on the left side of the screen. This state transition is not
done automatically when all of the tasks are fi nished because there may be additional checkpoints or
quality gates in place before work is considered to be truly fi nished. For example, you might want to
request feedback from your project’s stakeholders to ensure that everybody is satisfi ed with the work
as it has been implemented.

The burn-down graph in the upper-right corner of this screen displays a trend of the remaining
work over time for your iteration. This graph is updated in real time as your team completes work
(or identifi es new work) during the course of an iteration. You can display the burn-down graph as a
full screen by clicking it, as shown in Figure 12-19.

CUSTOMIZATION OPTIONS

As mentioned previously, the examples in this chapter follow the default experience you get by using
the Microsoft Visual Studio Scrum 2013 process template for a team project. If you are practicing
Scrum today, then you are likely already familiar with the types of tools available in this chapter.
Even if you aren’t practicing Scrum or using the Scrum process template, you can still benefi t from
these tools.

Depending on the process template you choose, the default terminology and views might vary. For
example, a team using the MSF for CMMI process template tracks requirements instead of product
backlog items as the parent work item type to be planned. An MSF for CMMI task board contains
four columns (Proposed, Active, Resolved, and Closed) instead of the three shown earlier for a
Scrum project (To Do, In Progress, and Done).

254 ❘ CHAPTER 12 AGILE PLANNING AND TRACKING

c12.indd 02/27/2014 Page 254

FIGURE 12-19

If you are using a team project that was created using one of the process templates provided by
Microsoft with Team Foundation Server 2013 (Microsoft Visual Studio Scrum 2013, MSF for Agile
2013, or MSF for CMMI Process Improvement 2013), then this tooling is preconfi gured automati-
cally to work with your team projects. If you are upgrading an existing team project from an earlier
release of Team Foundation Server, then you need to perform some additional steps in order to begin
using the agile planning and tracking tools mentioned in this chapter. These steps are outlined at
http://aka.ms/TeamProjectUpgrade.

There are also several ways you can customize these tools to change their appearance and behavior.
For example, you can:

 ➤ Add or remove fi elds from the “Quick Add” pane in the product backlog view. In addition to
setting a title, you might also want to specify an effort estimate with each new item.

 ➤ Add or remove columns from the backlog and iteration views.

 ➤ Change the list of activities that task work items and team members can be assigned to.

 ➤ Change the working days to be used when calculating capacity and rendering the burn-down
graph. By default, Saturday and Sunday are considered non-working days, but you can mod-
ify the days.

 ➤ Confi gure the types of work items to be used as parents and children throughout the tooling.

All of these customizations and more can be confi gured by following the steps outlined in the docu-
mentation at http://aka.ms/CustomizingProcess.

http://aka.ms/TeamProjectUpgrade
http://aka.ms/CustomizingProcess

Summary ❘ 255

c12.indd 02/27/2014 Page 255

SUMMARY

In this chapter, you discovered the new tools available with Team Foundation Server 2013 for
planning and tracking work in an agile manner. You found out how to use the portfolio and prod-
uct backlog view for defi ning and managing items that your team may schedule and implement in
the future. You learned how to visualize that work on a Kanban board. You then saw how to break
down work for an iteration into tasks and examined the remaining work for these tasks against the
capacity of your team.

Finally, you learned about using the task board to track work during the course of an iteration
so that everybody on the team can easily understand what their colleagues are working on and how
much work is left to deliver in an iteration.

In Chapter 13 you fi nd out how you can use the rich sets of reports and SharePoint dashboards
to provide even more information that can be used to better manage your software development
projects .

c13.indd 02/27/2014 Page 257

Using Reports, Portals,
and Dashboards

WHAT’S IN THIS CHAPTER?

 ➤ Understanding Team Foundation Server data stores

 ➤ Understanding the available reporting tools

 ➤ Creating and customizing reports using Excel

 ➤ Creating Report Defi nition Language (RDL) reports with Report
Designer and Business Intelligence Development Studio (BIDS)

Capturing information throughout the project is critical not only to project managers but to
all team members. Equally important is the capability to analyze the information that was
captured and understand it. With Visual Studio Team Foundation Server 2013, the mundane
tasks associated with capturing are mostly automated, and give crucial time back to the team
to focus on building software rather than capturing information associated with building it.

The agile planning tooling discussed in Chapter 12 shows ways in which you can use the real-
time data from work items to help track work and plan sprints, but Team Foundation Server
also provides powerful features used to analyze the data and understand it. All types of data
are captured about the software development process, not just work progress but data about
version control, builds, tests, and feedback. Tracking a project and monitoring it throughout
its lifecycle is made easy with Team Foundation Server reporting and the dashboards.

This chapter examines the reporting capabilities of Team Foundation Server, including working
with reports, customizing reports, and reviewing reports shipped out of the box. Dashboards serve
the purpose of providing useful information in an easy-to-consume form to all stakeholders, even
to those outside the core software development team. This chapter also shows how to customize the
team project portal as a way to keep everyone up to date with the status of the project and the team.

Let’s start with the reporting capabilities of Visual Studio Team Foundation Server 2013.

13

258 ❘ CHAPTER 13 AND DASHBOARDS

c13.indd 02/27/2014 Page 258

TEAM FOUNDATION SERVER REPORTING

Reporting is one of the most powerful features of Team Foundation Server. Right from the fi rst
release of Team Foundation Server (that is, Team Foundation Server 2005), the central repository
and the reports have been cornerstones for software development teams and the management team
alike. You can view any data stored in the Team Foundation Server repository as a report, which
enables you to view and organize project metrics very easily. This includes work item tracking, build
reports, version control stats, test results, quality indicators (performance and code coverage), and
overall project health reports. Team Foundation Server ships with a set of reports out of the box
(more on that later), but you can also create custom reports.

The reporting tools are not only useful for project managers, but also for team members in every
role. For example, a developer can look at test results and hone in on specifi c bugs. Testers can look
at a report to identify the work complete for testing, and so on.

Before looking into the details of reports, how to create custom reports, or the tools available to
create reports, let’s fi rst look at how Team Foundation Server stores data. As you see in Figure 13-1,
there are essentially three data stores that Team Foundation Server uses:

 ➤ Team Foundation Server operational store

 ➤ Team Foundation Server data warehouse

 ➤ Team Foundation Server OLAP cube

Operational Store
• Tfs_Configuration
• Tfs_Collection

Data Warehouse
• Tfs_Warehouse

Warehouse
Adapters Process

Refresh at
set intervals

OLAP Cube
• Tfs_AnalysisEvery 2 hours

RDL Reports Exel Reports

FIGURE 13-1

Team Foundation Server Operational Store
The Team Foundation Server operational store is the set of databases that stores all the data to run
the Team Foundation Server application, including source control, build reports, test results, work

Team Foundation Server Reporting ❘ 259

c13.indd 02/27/2014 Page 259

item tracking, and so on. These are the relational databases that handle all live data. Hence, they
are optimized for speed and performance. Multiple databases serve as the operational store, includ-
ing the Tfs_Configuration database and the various databases for each team project collection.
Typically, you don’t have to deal with (or understand) the structure of this set of databases. You
should never modify the data in this store directly, as you can very easily corrupt your TFS instal-
lation in doing so and render your server unsupportable by Microsoft. You will not target this
store when reporting, due to the performance impact that you could very easily have on the run-
ning Team Foundation Server application. In addition, the schema of the operation store frequently
changes between releases of Team Foundation Server (even between service pack releases), making
any reports against the operation store fragile. If you cause a performance issue by creating reports
directly against the operational store, you will be asked to remove those reports before Microsoft
will support your server.

Team Foundation Server Data Warehouse
The Team Foundation Server data warehouse is specifi cally designed for querying and reporting,
unlike the operational store, which is designed for transactions. The schema of the warehouse is
much easier to understand; it has a star schema and includes all historical data designed in a man-
ner to be used for analysis. Despite the fact that the schema of the operational store changes signifi -
cantly between releases (and so changed greatly between the 2010 and 2012 release), the relational
schema in the warehouse remains pretty much unchanged since the Team Foundation Server 2010
release. This is by design as it allows reports written against the data warehouse to have much
greater resilience when the server is upgraded. The only schema changes in the 2012 release to the
relation warehouse were the addition of start and end dates to iterations and the removal of some
fi elds in 2010 that were used for confi guration only. In the 2013 release there were no changes.

The Team Foundation Server data warehouse gets the data from the operational stores on regularly
set intervals. There are adapters for each of the databases in the operational store that take care of
pushing the data into the warehouse. In Team Foundation Server 2013, the update from the opera-
tional store to the warehouse is based on various events. When an event fi res up, the corresponding
adapter is scheduled to execute and refresh the data in the warehouse. The interval for this execu-
tion is confi gurable.

In Team Foundation Server 2013, you use the warehouse control service to change the refresh inter-
val. Go to http://<TFS Server Name:port>>/tfs/TeamFoundation/Administration/v3.0/
WarehouseControlService.asmx. You must have permission to update the warehouse setting in
order to access this service. The WarehouseControlWebService has the following operations:

 ➤ BringAnalysisProcessingOnline

 ➤ BringWarehouseProcessingOnline

 ➤ ChangeSetting

 ➤ GetJobProperties

 ➤ GetProcessingStatus

 ➤ GetSettings

 ➤ ProcessAnalysisDatabase

260 ❘ CHAPTER 13 AND DASHBOARDS

c13.indd 02/27/2014 Page 260

 ➤ ProcessDefaultDimensionsForExpandedCapacity

 ➤ ProcessWarehouse

 ➤ SetAnalysisJobEnabledState

 ➤ SetWarehouseJobEnabledState

 ➤ TakeAnalysisProcessingOffline

 ➤ TakeWarehouseProcessingOffline

In the WarehouseControllerService page, if you choose the operation GetSettings, it will
show you the various processing jobs, their default values, and their current values. As you can see,
the frequency with which the warehouse data refresh jobs are running is set to 120 seconds (or 2
minutes).

Team Foundation Server OLAP Cube
The star schema of the warehouse is suitable for analyzing the data. But as you get into reports that
require aggregated values, the warehouse may not be the best choice. The aggregation of values can
become slow, depending on the volume of the rows.

Enter the Team Foundation Server OLAP cube. This is a multi-dimensional database that aggre-
gates data for better analysis. Hence, you can correlate data based on the different metrics (that
is, work items, build, tests, and so on). Team Foundation Server OLAP cube gets the data from
the warehouse at preset intervals. By default, a scheduled job runs every two hours to refresh the
data in the cube from the warehouse. Note that a full processing of the analysis database is sched-
uled to run on a daily basis, as indicated by the interval of 86,400 seconds (or 24 hours) for the
FullProcessIntervalSeconds setting.

The data in the cube can then be used by a variety of client tools, including Microsoft Excel, and
SQL Report Designer.

The cube consists of measures and dimensions. A measure is a numeric value that can be
aggregated. Dimensions provide a way to summarize measures and categorize them based on
additional metrics.

NOTE For a more complete list of the perspectives, measure groups, dimensions,
and measures for the Team Foundation Server cube, see the MSDN documentation
at http://aka.ms/CubeMetrics.

WORKING WITH TEAM FOUNDATION SERVER REPORTS

Team Foundation Server includes two sets of reports in most process templates: Microsoft Excel
Reports and SQL Reporting Services Reports. There are about 40 reports in the three process tem-
plates that ship with Team Foundation Server. From a project management perspective, one of the
great advantages of using Team Foundation Server is that you don’t have to manually correlate data
from a host of third-party sources. The reports are readily available in a dashboard (or portal).

http://aka.ms/CubeMetrics

Working with Team Foundation Server Reports ❘ 261

c13.indd 02/27/2014 Page 261

You learn more about the reports shipped with the three process templates later in this chapter. But
fi rst, let’s start by looking at the tools you use to create Team Foundation Server reports.

Tools to Create Reports
You can use any tool that can connect to a data warehouse or an analysis database to create a
report. Following are the two primary types of reports that you create from Team Foundation
Server by connecting to either the Team Foundation Server data warehouse or the Team Foundation
Server OLAP cube:

 ➤ Excel reports

 ➤ RDL reports

NOTE You can also use the work item queries to create a Microsoft Excel
report, which is discussed in more detail later in this chapter. The work item
query data uses the Team Foundation Server Object Model to obtain the data
just like Visual Studio would display work item query results, but you are in
effect safely querying live data from the operational store.

Figure 13-2 shows a map of these two report types and shows which is appropriate against which
Team Foundation Server data store.

Team Foundation OLAP Cube

Effort

Flexibility

Team Foundation OLAP CubeWork Item Queries
(Operation Store)

Excel Reports

E
xc

el
 R

ep
o

rt
s

RDL Reports

R
D

L
R

ep
o

rt
s

Team Foundation Data
Warehouse

FIGURE 13-2

262 ❘ CHAPTER 13 AND DASHBOARDS

c13.indd 02/27/2014 Page 262

As you see, you can use the work item queries and the Team Foundation Server OLAP cube with
Microsoft Excel or use Team Foundation Server OLAP Cube and the data warehouse with the RDL
reports.

To understand this better, let’s dive in and create some reports.

NOTE To create reports, you need “read” access to the databases that make up the
warehouse and the cube. You can get access to either the warehouse or the cube, or
both. Your access depends on the data store you are using and the type of reports
you want to create. The administrator of the database can grant you read access.
Refer to the MSDN documentation at http://aka.ms/ReportPerms for informa-
tion on permissions needed to access the warehouse and the analysis database.

Working with Microsoft Excel Reports
As mentioned earlier, you can use Microsoft Excel to create reports from either the Team
Foundation Server OLAP cube, or by using work item queries. Using Excel to create reports is a very
approachable and rapid way to understand the data inside your Team Foundation Server databases,
and so the majority of the rest of this chapter focuses on explaining the various ways to use it.

Let’s fi rst look at the steps to create a Microsoft Excel report from the cube. Whichever store you are
querying data against, the key advantage with Microsoft Excel reports is the simplicity of using the
tool—regardless of whether you are connecting to a pivot table and the cube or using work item queries.

Creating Microsoft Excel Reports Using Data in the OLAP Cube
First, ensure that you have read access to the OLAP cube. Follow these steps to create a quick pivot
table report using Microsoft Excel:

 1. Open Microsoft Offi ce Excel.

 2. Select the Data tab from the ribbon.

 3. Click From Other Sources and select From Analysis Services, as shown in Figure 13-3. The
Data Connection Wizard displays.

 4. Provide the server name and credentials and then click Next. The Select Database and Table
dialog displays, as shown in Figure 13-4.

 5. From the Select the Database That Contains the Data You Want drop-down, select Tfs_
Analysis. The interesting part is the list of perspectives and cubes. As you see in Figure 13-4,
the Tfs_Analysis database has a cube named Team System. It is essentially a representation
of the entire warehouse, and contains about 15 measure groups and 23 dimensions. That is
one powerful (but complex) cube. If you have SQL Server Enterprise Edition installed (and
separately licensed) then fi ve additional perspectives are also available, which can simplify the
data access. However, because the license for SQL Server Enterprise Edition is not included
with a standard installation of TFS, we show the standard case and continue by selecting the
Team System cube then clicking Next.

http://aka.ms/ReportPerms

Working with Team Foundation Server Reports ❘ 263

c13.indd 02/27/2014 Page 263

FIGURE 13-3

 6. In the next dialog, click Finish to see the Import Data dialog. Leave the selection as
PivotTable Report and click OK.

 7. You are now in the workbook with a list of fi elds from the Team System cube. You can build
a report using any of these fi elds.

FIGURE 13-4

264 ❘ CHAPTER 13 AND DASHBOARDS

c13.indd 02/27/2014 Page 264

NOTE Perspectives are subsets of cubes that provide application- or business-
specifi c views into the cubes. In other words, perspectives provide a simpli-
fi ed view of the cube for specifi c purposes. In Tfs_Analysis with SQL Server
Enterprise Edition, there are perspectives specifi c to build, test results, work
items, code churn, and code coverage.

Next, we walk through an example that shows you how to create a report that answers the
question, “How many active product backlog items or task work items are there in my project?”
The example uses a project created using the Scrum process template.

To answer this question, you must know the number of work items of type Product Backlog Item or
Task that also have a state of New, To Do, Committed, or In Progress. You can then list this data
by the team member the work items are assigned to by showing the fi elds related to Work Item.
Then add Work Item Count to the Values area by dragging and dropping it. Add WorkItem
.System_WorkItemType and WorkItem.System_State to the Report Filter area and WorkItem
.System_AssignedTo to the Row Labels area. Figure 13-5 shows the selection in the PivotTable
Field List window.

In the pivot table itself, select the drop-down for Work Item.System_WorkItemType, check the
Select Multiple Items box, and then select both Product Backlog Item and Task, as shown in Figure
13-6. For the Work Item.System_State report fi eld, perform the same procedure to select the
desired work item states.

This results in a simple report that shows the active user story and task work items by team
members, as shown in Figure 13-7.

This is not a particularly impressive looking report, but it demonstrates the point. By choosing the
appropriate fi elds that you need for the pivot table, you can create a report in a very quick and sim-
ple manner. The focus should be on choosing the right source and then drilling down on data that
you fi nd surprising so you can understand the issue you have uncovered.

NOTE To learn more about the various perspectives and fact tables provided in
the Team Foundation Server warehouse, refer to the Team Foundation Server
help documentation at http://aka.ms/TFSReports.

http://aka.ms/TFSReports

Working with Team Foundation Server Reports ❘ 265

c13.indd 02/27/2014 Page 265

FIGURE 13-5

266 ❘ CHAPTER 13 AND DASHBOARDS

c13.indd 02/27/2014 Page 266

FIGURE 13-6

FIGURE 13-7

Customizing a Microsoft Excel Report
You don’t necessarily start with a new report every time. In many cases, you may simply modify
an existing report to get the data that you are looking for. In Team Explorer, you fi nd existing
Microsoft Excel reports in the team project under Documents ➪ Excel Reports. The example
reports you fi nd in that directory vary by process template type. To customize a report, fi rst choose
the Microsoft Excel report that you want to modify. Open the report in Microsoft Excel by double-
clicking the report fi le name in Team Explorer.

NOTE If you get a security warning in Microsoft Excel that says, “Data connec-
tions have been disabled,” click the Options button to get the Microsoft Offi ce
Security Options window. You may have to change the selection from Help
Protect Me from Unknown Content (Recommended) to Enable This Content.

Working with Team Foundation Server Reports ❘ 267

c13.indd 02/27/2014 Page 267

After you have the report open in Microsoft Excel, click the report cell to open the PivotTable Field
List window and the toolbar. You use this fi eld list to make necessary changes to the report. After
you are fi nished making changes, you can either save them locally or publish them so others can see
the updated report. You learn about the different publishing options later in this chapter.

Creating Microsoft Excel Reports Using Work Item Queries
Work item queries provide an easy way to retrieve information about work items in Team
Foundation Server. The Shared Queries folder contains queries shared by everyone in your team
project. The My Queries folder contains queries that only you can use. Chapter 11 provides more
detail on work item queries.

In Team Foundation Server, you can use these work item queries to create a Microsoft Excel report,
and do so quickly. Not only can you create Microsoft Excel reports, but you can also share them
with the team by publishing them. It provides a quick and easy way to turn work item queries into
reports. These report types are also available on a Team Foundation Server instance that does
not have Reporting Services enabled—even the hosted Visual Studio Online (http://tfs.visu-
alstudio.com), which lacks many of the other reporting features found in an on-premises Team
Foundation Server instance.

Let’s look at how to create a report in this way. In Team Explorer, go to the Work Items page. To
create a report out of a team query, expand the Shared Queries node. Right-click a work item query
to view the menu shown in Figure 13-8.

Click the Create Report in Microsoft Excel option, which then launches Excel. The fi rst thing that
happens is that Excel translates the work item query into data that it can use to generate reports.
After that, it presents a New Work Item Report window, as shown in Figure 13-9.

FIGURE 13-8

http://tfs.visu-alstudio.com
http://tfs.visu-alstudio.com
http://tfs.visu-alstudio.com

268 ❘ CHAPTER 13 AND DASHBOARDS

c13.indd 02/27/2014 Page 268

FIGURE 13-9

There are two buckets of reports—Current Reports and Trend Reports—in this example, with six
reports in each. However, the reports available depend on the type of work item query that you
select. To understand where these reports come from, let’s look at the query and the results shown
in Figure 13-10.

FIGURE 13-10

The Work In Progress query from the Scrum process template is selected in this example. The result
of this query returns the following fi elds:

 ➤ ID

 ➤ Work Item Type

 ➤ Title

Working with Team Foundation Server Reports ❘ 269

c13.indd 02/27/2014 Page 269

 ➤ Assigned To

 ➤ State

 ➤ Remaining Work

You get reports on the values that can be aggregated, such as Remaining Work, and the default
Work Item count. Each of these reports also has variations based on attributes, such as the Work
Item Type, Assigned To, and State—hence, the six reports that you see in Figure 13-10. The trend
reports are based on the work item history data.

Now, return to Microsoft Excel to generate the reports. From the New Work Item Report window
(Figure 13-9), select the reports you want to see generated, or select them all. Click Finish and
Microsoft Excel begins working on the reports. When the report generation is completed, you see an
Excel workbook with 13 worksheets—one worksheet with the table of contents (as shown in Figure
13-11), and 12 worksheets for each of the 12 reports.

Each of these reports is a pivot table report. You can customize these reports by modifying the fi elds
using the PivotTable Field List window, as shown in Figure 13-5.

FIGURE 13-11

270 ❘ CHAPTER 13 AND DASHBOARDS

c13.indd 02/27/2014 Page 270

Publishing Microsoft Excel Reports
Now that you understand the basics of creating and customizing Microsoft Excel reports that are
based on the data from Team Foundation Server OLAP cube and the work item queries, let’s look at
the options you have to publish them. Obviously, you do not have to worry about publishing if you
don’t have to share the reports you create. In that case, you can simply save them locally. But it is
highly likely that you will be sharing reports with the rest of the team.

The publishing options for Microsoft Excel reports depend on whether you have SharePoint
Enterprise running your dashboard/portals, or SharePoint Standard/Foundation for your portals.
Table 13-1 summarizes the capabilities for SharePoint Enterprise users versus SharePoint Standard/
Foundation users.

TABLE 13-1: SharePoint Server Enterprise versus SharePoint Foundation

FEATURE SHAREPOINT ENTERPRISE SHAREPOINT STANDARD/

FOUNDATION

Team site Portal with six dashboards. Portal with two dashboards.

Reports Dashboard uses Excel reports. Dashboard uses Report
Defi nition Language (RDL)
reports.

Viewing Microsoft
Excel reports

Viewable as Web parts. Open in Excel from the
document library.

Microsoft Excel reports
are available in:

Team Explorer under Documents ➪
Excel Reports.

Team Explorer under
Documents ➪ Excel Reports.

Creating new
Microsoft Excel reports

From Excel, create a new report and
publish it to Excel Services. Make it
available on the dashboard using the
New Excel Report button from the
dashboard.

From Excel, create a new
report and save it to the
document library.

Publishing Microsoft
Excel reports

Publish to Excel Services and make
the report available in the dashboard
by using the Excel Web Access Web
part.

Save the report to the
document library and view it
in Excel.

Dashboards A set of dashboards (for example,
Work Progress, Product Quality, Test
Progress, and so on) are created as
part of the Team Project setup.

Excel reports are not
available. RDL reports are
presented in Web parts.

Publishing to a Document Library
You can publish a report to the shared documents from Team Explorer, or you can use the
SharePoint Portal and upload the document.

Working with Team Foundation Server Reports ❘ 271

c13.indd 02/27/2014 Page 271

To upload it from Team Explorer, navigate to the folder you want to upload the new report to. This
example uploads a new report called “Current Work Item count by state.” To do that, fi rst fi nd the
Excel Reports folder under Team Explorer ➪ Documents ➪ Excel Reports. Then, right-click the
Excel Reports folder and select Upload Document from the menu.

You can then select the Excel report that you have saved locally and upload it. After you have done
so, refresh Team Explorer and the new report appears in the Documents page.

You can also upload the Excel report from outside Team Explorer. To do that, open the Team
Project portal. When you’re in the project portal, click the Excel Reports link on the right naviga-
tion bar and upload the report to this folder.

Publishing to Excel Services
A project portal is a SharePoint site. If you are running SharePoint Server 2010\2013 Enterprise,
then you have access to Excel Services. You can publish Excel reports to Excel Services. Doing so
provides the option to display the Excel report using the Excel Web Access Web part in the dash-
board. This enables you to easily and quickly create Excel reports and share them broadly with the
team using dashboards.

First, start with an Excel report. Create an Excel report following the steps described earlier in this
chapter, or open an existing report.

Click File ➪ Save & Send ➪ Save to SharePoint, to open the familiar dialog that enables you to Save
As on the server. Verify that the path information is correctly set to the team’s portal path. If not,
change it to the correct path. Then, click the Publish Options button.

Now you are in the Publish Options dialog, as shown in Figure 13-12.

In this window, there are two tabs: Show and Parameters. You are only using the Show tab here. The
Parameters tab is used to specify cells that you can provide value to while viewing the Excel report.

FIGURE 13-12

272 ❘ CHAPTER 13 AND DASHBOARDS

c13.indd 02/27/2014 Page 272

In the drop-down, select Items in the Workbook because you want to publish the Excel report to
Excel Services and have the chart show up in the dashboard using the Excel Web Access part. You
don’t want the entire spreadsheet to show up in the dashboard; you just want the short version.
Selecting Items in the Workbook in the drop-down changes the view in the box below the drop-
down. Now you have the capability to select all charts or individual charts, as well as all pivot tables
or individual pivot tables. In this example, you have only one chart and one pivot table. Select the
1.2 Assigned To chart, as shown in Figure 13-12.

Click OK in this window and then click Save to publish the report. Now you are fi nished with the
publishing.

The next step is to add the report to the dashboard. To launch the dashboard, in the Team Explorer
Documents page, click the Show Project Portal link to open the project portal in the browser. Select
Excel Reports from the left navigation to see the list of Microsoft Excel reports, including the new
report you just published.

You now want to get this report onto the dashboard. From the Dashboards list, select the dashboard
to which you want to add this report. You can choose between My Dashboard and the Project
Dashboard. In this example, select the Project Dashboard.

To add the new report to this dashboard, click Site Actions on the top-right corner and select Edit
Page.

If you have worked with SharePoint sites and Web parts, then the next few steps will be very famil-
iar to you. You add a new Web part to this page by clicking the Add Web Part button in the Footer
section.

The Add Web Parts to Footer window displays. Select the Excel Web Access Web part and click
Add.

The Excel Web Access Web part is added to the dashboard page. Select a workbook that you want
to display in this Web part. You do that by specifying the details in the tool pane. There is obviously
lots of information that you can provide in this tool pane. The following are the two fi elds that you
will update here:

 ➤ Workbook

 ➤ Title

Click OK on the tool pane window and exit the edit mode to see this report displayed in the
dashboard.

Microsoft Excel reports make it truly easy for team members to get the data and metrics that they
want from Team Foundation Server, and for the team to keep their project portal up to date with
the most useful information to them. The capability to create a report from a work item query
is a great addition to the reporting capability in Team Foundation Server. Couple that with the
Microsoft Excel services and dashboards, and no one will be able to complain about not having the
right information at the right time.

Working with Team Foundation Server Reports ❘ 273

c13.indd 02/27/2014 Page 273

Working with RDL Reports
This section briefl y examines the tools available to create and customize Report Defi nition
Language (RDL) reports. Team Foundation Server 2013 includes a set of RDL reports out of the
box, and the reports vary by the type of process template you choose to use for your project.

There are two main tools available to work with RDL reports:

 ➤ SQL Server Report Builder

 ➤ SQL Server Business Intelligence Development Studio (BIDS)

SQL Server Report Builder
The Report Builder tool has full support for SQL Reporting Services and provides a Microsoft
Offi ce-like-report-authoring environment. SQL Server 2012 SP1 includes Report Builder 3.0. This
version includes many improvements over previous versions that make it a compelling choice for
report authors. It’s designed for business analysts and developers who want to create custom reports
quickly and easily. You can download the tool from http://aka.ms/sql2012rb. With this tool,
you can work with RDL fi les, make necessary changes, and save it as an RDL fi le. This fi le can then
be accessed, for example, using the Report Designer.

After you have the tool installed, launch the Report Builder and start by connecting the report
server. (For example, http://<<Server instance name/reportserver>>.) It is probably easier to
start with an existing report and customize it than it is to create one from scratch.

To edit an existing report, select the reports folder in the report server, then the team project collec-
tion, followed by the actual team project. The folders with the reports display, and you can choose
the report you want from one of these folders.

The report data pane has the parameters, data set, and the built-in fi elds that you work with to
modify the report.

NOTE The SQL Server Developer Center on TechNet has several how-to top-
ics on Report Builder. For more information, see “Getting Started with Report
Builder” at http://aka.ms/sqlrbstart.

SQL Server Business Intelligence Development Studio
Business Intelligence Development Studio (BIDS) is an integrated environment for developing cubes,
data sources, and reports. It is a much more complex tool than Report Builder, but it gives you the
ability to create highly complex and rich reports. To install BIDS, run the setup program for SQL
Server, and select the Client Components check box when you specify the components to install.

http://aka.ms/sql2012rb
http://aka.ms/sqlrbstart

274 ❘ CHAPTER 13 AND DASHBOARDS

c13.indd 02/27/2014 Page 274

BIDS is actually an add-on to Visual Studio 2010; therefore, if you don’t already have this older ver-
sion of Visual Studio installed on your machine, then BIDS installs a Visual Studio 2010 shell just
for the BIDS tooling. This can live happily alongside your Visual Studio 2013 installation. For help,
refer to “Create a Report Server Project for Visual Studio ALM” on http://aka.ms/reportstfs.

SUMMAR Y

In this chapter, you read about the various data stores in Team Foundation Server that provide the
data for the various reports. You also learned about the tools that are available to create reports.
This chapter examined how to create and customize Microsoft Excel reports, and the tools available
to create and customize RDL reports (that is, Report Builder and BIDS), as well as the options avail-
able for publishing reports.

Reporting is a powerful feature in Team Foundation Server. It breaks down the usual barrier within
teams caused by a lack of information. Team Foundation Server provides a powerful set of reports
out of the box and provides the capability to add reports based on your needs. All this is coupled
with the capability to quickly share the information using dashboards and portals.

Chapter 14 looks at how to understand the architecture of the software that you are building,
what Microsoft’s approach is to software architecture, and the tooling that’s available in the Visual
Studio 2013 releas e .

http://aka.ms/reportstfs

c14.indd 02/27/2014 Page 275

PART IV
Architecture

 ▸ CHAPTER 14: Introduction to Software Architecture

 ▸ CHAPTER 15: Top-Down Design with Use Case, Activity, Sequence,
Component, and Class Diagrams

 ▸ CHAPTER 16: Analyzing Existing Applications Using Architecture
Explorer, Dependency Graphs, and Code Maps

 ▸ CHAPTER 17: Using Layer Diagrams to Model and Enforce
Application Architecture

c14.indd 02/27/2014 Page 277

Introduction to Software
Architecture

WHAT’S IN THIS CHAPTER?

 ➤ Designing visually is important

 ➤ Understanding Microsoft’s approach to a modeling strategy

 ➤ Using the modeling tools in Visual Studio Ultimate 2013

In this introductory chapter, you learn about some main themes around software architecture
and design—domain-specifi c languages (DSLs), model-driven development (MDD), and the
Unifi ed Modeling Language (UML)—and how they apply to Visual Studio Ultimate 2013.

This chapter then gives a brief overview of the architecture tools in Visual Studio Ultimate
2013, including the support for the most common UML diagrams. Many of these tools are
expounded on in later chapters of this part of the book.

Finally, this chapter wraps up with a brief glimpse at some of the changes and new features
added to the architecture tools in Visual Studio Ultimate 2013. Specifi cally, code maps are a
new type of dependency graph that you can use to help understand and debug your code base.

Let’s begin by fi rst establishing the case for undertaking visual modeling—or visual design—
in the fi rst place.

DESIGNING VISUALLY

Two elementary questions immediately come to mind. Why design at all, rather than just
code? Why design visually?

To answer the fi rst question, consider the common analogy of building complex physical struc-
tures, such as bridges. Crossing a small stream requires only a plank of wood—no architect,

14

278 ❘ CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

c14.indd 02/27/2014 Page 278

no workers, and no plans. Building a bridge across a wide river requires a lot more—a set of plans
drawn up by an architect so that you can order the right materials, planning the work, communicat-
ing the details of the complex structure to the builders, and getting a safety certifi cate from the local
authority. It’s the same with software. You can write a small program by diving straight into code,
but building a complex software system requires some forethought. You must plan it, communicate
it, and document it to gain approval.

Therefore, the four aims of visual design are as follows:

 ➤ To help you visualize a system you want

 ➤ To enable you to specify the structure or behavior of a system

 ➤ To provide you with a template that guides you in constructing a system

 ➤ To document the decisions you have made

Traditionally, design processes such as the Rational Unifi ed Process have treated design and pro-
gramming as separate disciplines, at least in terms of tool support. You use a visual modeling tool
for design, and a separate integrated development environment (IDE) for coding. This makes sense
if you treat software development like bridge building, and assume that the cost of fi xing problems
during implementation is much higher than the cost of fi xing those problems during design.

For bridges, that is undoubtedly true. But in the realm of software development, is it really more
costly to change a line of code than it is to change a design diagram? Moreover, just as bridge
designers may want to prototype aspects of their design using real materials, so may software
designers want to prototype certain aspects of their design in real code.

For these reasons, for several years now the trend has been toward tools that enable visual design
and coding within the same environment, with easy switching between the two representations, thus
treating design and coding as essentially two views of the same activity. The precedent was set origi-
nally in the Java space by tools such as Together-J and, more recently, in the .NET space by IBM-
Rational XDE. Microsoft embraced this approach fully with Visual Studio Ultimate 2010, and has
continued to enhance the experience with Visual Studio Ultimate 2013.

Now, let’s tackle the second question. If the pictorial design view and the code view are alternative,
but equivalent, representations, then why design visually at all? The answer to that question is sim-
ple: A picture is worth a thousand words. To test that theory, just look at the fi gures in this chapter
and imagine what the same information would look like in code. Then imagine trying to explain the
information to someone else using nothing but a code listing.

Many people think modeling tools are for use only on large-scale projects that make use of the
waterfall software development lifecycle. That is not the case at all. Agile development is very popu-
lar now, and several different agile methods, including Kanban and Scrum, are used for all sorts of
development projects, small to large. The modeling tools in Visual Studio Ultimate 2013, including
the UML diagrams, dependency diagrams, and Architecture Explorer, can be used just as effectively
by a team following an agile methodology. Remember, just because you are “agile” doesn’t mean
you don’t need to understand your code base and what you are trying to build. “Agile” doesn’t mean
“undocumented.” It just means that you only document enough so that everyone understands what
they have to do. The modeling tools and diagrams in Visual Studio Ultimate 2013 help you do that.

Microsoft’s Modeling Strategy ❘ 279

c14.indd 02/27/2014 Page 279

MICROSOFT’S MODELING STRATEGY

Microsoft’s Visual Studio Ultimate 2013 modeling strategy is based on a three ideas:

 ➤ Model-driven development (MDD)

 ➤ Domain-specifi c languages (DSLs)

 ➤ The “code understanding” experience

Together these topics comprise Microsoft’s vision for how to add value to the software development
process through visual modeling.

Understanding Model-Driven Development
As a software designer, you may be familiar with the “code-generation” features provided by UML
tools such as Rational Rose and IBM-Rational XDE. These tools typically do not generate code at
all, but merely create “skeleton code” for the classes you devise. So, all you get is one or more source
fi les containing classes populated with the attributes and operation signatures that you specifi ed in
the model.

NOTE The words “attribute” and “operation” are UML terminology. In the
.NET world, these are often referred to as “fi eld” and “method,” respectively.

The methods that are generated for each class by UML code-generation tools typically have com-
plete signatures but empty bodies. This seems reasonable enough because, after all, the tool is not
psychic. How would it know how you intend to implement those methods? Well, actually, it could
know.

UML practitioners spend hours constructing dynamic models such as state charts and sequence dia-
grams that show how objects react (to method invocations) and interact (invoke methods on other
objects). Yet, that information, which could be incorporated into the empty method bodies, is lost
completely during code generation.

NOTE Note that not all tools lose this kind of information during code genera-
tion, but most of the popular ones do. In addition, in some cases, UML tools
do generate code within method bodies—for example, when you apply patterns
using IBM-Rational XDE—but, in general, the point is valid.

Why do UML tools generally not take account of the full set of models during code generation? In
part, it’s because software designers do not provide information on the other models with suffi cient
precision to be as useful as auto-generated method bodies. The main reason for that is because the
notation (UML) and tools simply do not allow for the required level of precision.

280 ❘ CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

c14.indd 02/27/2014 Page 280

What does this have to do with MDD? Well, MDD is all about getting maximum value out of the
modeling effort by taking as much information as possible from the various models right through to
implementation.

Although the example of UML dynamic modeling information fi nding its way into implemented
method bodies was useful in setting the scene, don’t assume that MDD is only (or necessarily) about
dynamic modeling. If you’ve ever constructed a UML deployment model and then tried to do some-
thing useful with it—such as generate a deployment script or evaluate your deployment against the
proposed logical infrastructure—you will have seen how wasted that effort has been, other than to
generate some documentation.

So, what’s the bottom line? Because models are regarded as fi rst-class development artifacts, devel-
opers write less conventional code, and development is, therefore, more productive and agile. In
addition, it shows all the participants—developers, designers, analysts, architects, and operations
staff—that modeling actually adds value to their efforts.

Understanding Domain-Specifi c Languages
UML fails to provide the kind of high-fi delity domain-specifi c modeling capabilities required by
automated development. In other words, if you want to automate the mundane aspects of software
development, a one-size-fi ts-all generic visual modeling notation will not suffi ce. What you need is
one or more Domain-Specifi c Languages (DSLs) (or notations) highly tuned for the task at hand—
whether that task is the defi nition of web services, the modeling of a hosting environment, or tradi-
tional object design.

WARNING A DSL is a modeling language that meets certain criteria. For exam-
ple, a modeling language for developing web services should contain concepts
such as web methods and protocols. The modeling language should also use
meaningful names for concepts, such as fi elds and methods (for C#), rather than
attributes and operations. The names should be drawn from the natural vocabu-
lary of the domain.

The DSL idea is not new, and you may already be using a DSL for database manipulation (it’s called
SQL) or XML schema defi nition (it’s called XSD).

Visual Studio Ultimate 2013 embraces this idea by providing the capability to create DSLs for spe-
cifi c tasks. DSLs enable visual models to be used not only for creating design documentation, but
also for capturing information in a precise form that can be processed easily, raising the prospect of
compiling models into code.

NOTE The only DSL that Visual Studio Ultimate 2013 provides “out of the
box” is the UML support. Users have the capability to create their own DSLs
using the DSL toolkit.

The Architecture Tools in Visual Studio Ultimate 2013 ❘ 281

c14.indd 02/27/2014 Page 281

In that context, “your own problem domain” need not be technology-focused (such as how to model
web services or deployment infrastructures) but may instead be business-focused. You could devise a
DSL that is highly tuned for describing banking systems or industrial processes.

The “Code Understanding” Experience
Modeling is not just about building diagrams that help you understand requirements, architecture,
and high-level design. It can also be about helping you gather a better understanding of the details
of your code base. In Visual Studio Ultimate 2013, a majority of the work done on the architecture
tools has been to enhance what is called the “code understanding” experience.

Think of the code understanding experience as the ability to understand both the new code you
need to write, as well as the existing code you need to support. As a developer, you may need a
better understanding of your code, how it fi ts into the wider system, and the frameworks that it is
using, so that your team can more easily create tests, debug code, and add new features. The UML
diagrams within Visual Studio Ultimate 2013 can provide that information. Layer diagrams can
show you the different layers of your application and help you to enforce code rules.

You may run into the situation where you need to understand why a certain module has a depen-
dency on another module. Dependency graphs are a great way to see how the different assemblies
and modules in your solution interact and depend on each other. Understanding these dependencies
can make it easier to refactor code to remove dependencies on deprecated features. Code maps are a
new feature; they allow you to easily understand a specifi c section of your code while you are work-
ing on it. They also allow you to visualize your debugging process.

So, when thinking about modeling and visualization, don’t just assume those tools are for making
pretty pictures of your requirements. You can also use these tools to drill down into your code base
to help you solve problems.

THE ARCHITECTURE TOOLS IN VISUAL STUDIO ULTIMATE 2013

By and large, the modeling diagrams and tools that you used in Visual Studio Ultimate 2012 work
the same in 2013. All of these diagrams and tools can be used to help you more fully understand
the software system being built. These tools enable you to create models at different levels of detail,
depending on your need.

This section provides a very brief overview of each of the modeling diagrams. The chapters that fol-
low in the book provide an in-depth look into each diagram type.

As mentioned previously, Visual Studio Ultimate 2013 fully supports UML, specifi cally UML 2.1.2.
Only fi ve UML diagrams are supported out of the box:

 ➤ Use case diagrams

 ➤ Activity diagrams

 ➤ Sequence diagrams

 ➤ Component diagrams

 ➤ Class diagrams

282 ❘ CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

c14.indd 02/27/2014 Page 282

There are other tools and diagrams, not related to UML, that are included with Visual Studio
Ultimate 2013. The Architecture Explorer can be used to understand the architecture of existing
code, or of managed assemblies. Dependency graphs are used to provide a graphical view of the
information from Architecture Explorer, as well as directly from your solution. Layer diagrams can
be used to describe the logical architecture of your system and can even be used during the build
process to enforce architecture considerations on the code base. Code maps can help you understand
a specifi c section of your code, and help you visualize the debugging process.

Use Case Diagrams
A use case diagram is a summary of who uses your application and what they can do with it. It
describes the relationships among requirements, users, and the major components of the system, and
provides an overall view of how the system is used.

Figure 14-1 shows an example of a use case diagram.

FIGURE 14-1

The Architecture Tools in Visual Studio Ultimate 2013 ❘ 283

c14.indd 02/27/2014 Page 283

Activity Diagrams
Use case diagrams can be broken down into activity diagrams. An activity diagram shows the soft-
ware process as the fl ow of work through a series of actions. It can be a useful exercise to draw an
activity diagram showing the major tasks that a user will perform with the software application.
Figure 14-2 shows an example of an activity diagram.

FIGURE 14-2

Sequence Diagrams
Sequence diagrams display interactions between different objects. This interaction usually takes
place as a series of messages between the different objects. Sequence diagrams can be considered an
alternate view to the activity diagram. A sequence diagram can show a clear view of the steps in a
use case. Figure 14-3 shows an example of a sequence diagram.

284 ❘ CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

c14.indd 02/27/2014 Page 284

FIGURE 14-3

Component Diagrams
Component diagrams help visualize the high-level structure of the software system. They show the
major parts of a system and how those parts interact and depend on each other. One nice feature of
component diagrams is that they show how the different parts of the design interact with each other,
regardless of how those individual parts are actually implemented. Figure 14-4 shows an example of
a component diagram.

Class Diagrams
Class diagrams describe the objects in the application system. They do this without referencing any
particular implementation of the system itself. This type of UML modeling diagram is also referred
to as a conceptual class diagram. Figure 14-5 shows an example of a class diagram.

The Architecture Tools in Visual Studio Ultimate 2013 ❘ 285

c14.indd 02/27/2014 Page 285

FIGURE 14-4

FIGURE 14-5

286 ❘ CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

c14.indd 02/27/2014 Page 286

Layer Diagrams
Layer diagrams are used to describe the logical architecture of your system. A layer diagram orga-
nizes the objects in your code into different groups (or layers) that describe the different tasks those
objects perform. Layers can also be composed of sub-layers, which you can use to describe smaller,
discrete tasks in the parent layer. In addition, you can use layer diagrams to show dependencies
between different aspects of your code. Figure 14-6 shows an example of a layer diagram.

FIGURE 14-6

Architecture Explorer
The Architecture Explorer tool provided by Visual Studio Ultimate 2013 helps in understanding the
existing architecture of a code base. This tool enables you to drill down into an existing code base,
or even into compiled managed code, to help you understand how the application works, without
having to open a single code fi le.

The Architecture Explorer can also lead into the world of dependency graphs, which are a type of
view in Visual Studio Ultimate 2013 that makes it easy to understand code that is new or unfamil-
iar. Dependency graphs make use of the Directed Graph Markup Language (DGML) to show the
relationships between different areas of code in an easy-to-understand, graphical fashion.

NOTE The Architecture Explorer is not the only way to create dependency
graphs. Chapter 16 also shows other ways you can create them.

What’s New with Architecture Tools in Visual Studio Ultimate 2013 ❘ 287

c14.indd 02/27/2014 Page 287

WHAT’S NEW WITH ARCHITECTURE TOOLS IN VISUAL STUDIO
ULTIMATE 2013

Although the previous section may make you think that there is nothing new about the architecture
tools, that is not the case. In addition to the UML modeling diagrams and the Architecture Explorer
that you had access to in Visual Studio Ultimate 2012, Visual Studio Ultimate 2013 provides a new
tool to help with your architecture needs—code maps.

Code Maps
Code maps are a new feature in Visual Studio Ultimate 2013, and at fi rst glance, they appear very
similar to dependency graphs. They make use of the same visualization options as dependency
graphs, allowing you to visualize your code relationships. However, the fi rst major difference you
will notice is that the code map appears alongside your code, in a separate tab, which allows you to
quickly and easily visualize just a specifi c section of your code.

The second major difference is that code maps can be used to visualize the call stack while you are
debugging your application, adding one more tool to your bug-fi xing arsenal. You can graphically
see the call stack, and this view will be dynamically updated as you step through your code. You
can even save your code maps from your debugging session for later review. Figure 14-7 shows an
example of a code map generated as part of the debugging process.

FIGURE 14-7

288 ❘ CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

c14.indd 02/27/2014 Page 288

Visual Studio Visualization and Modeling SDK
You can use the Visual Studio Visualization and Modeling SDK (VMSDK) to create model-based
development tools that can integrate into Visual Studio. You can use this toolset to create domain-
specifi c languages as well as to extend the UML models and diagrams within Visual Studio 2013.
One of the new features available in the toolset is a code index SDK, which enables you to create a
tool that can bulk index assemblies into the code index, thereby speeding up dependency graph gen-
eration. The SDK also contains Team Build tasks that can index assemblies during the build process.
More information on the SDK can be found at http://aka.ms/VS13VMSDK.

SUMMARY

This chapter began by establishing the case for doing design—specifi cally visual design—in the fi rst
place. The discussion highlighted the three pillars that support that vision—namely, MDD, DSLs,
and the code understanding experience.

This chapter concluded with a brief look at some of the UML diagrams that are available in Visual
Studio Ultimate 2013, as well as some of the new architecture tool features, such as code maps. It
is worth noting that even though the artifacts discussed in this chapter are only creatable using the
Ultimate edition of Visual Studio, they can be viewed by some of the lower SKUs.

Chapter 15 looks at how these UML diagrams are used and implemented in Visual Studio Ultimate
2013. These diagrams are extremely useful from a modeling perspective, especially for communicat-
ing what the project is trying to accomplish, and how the different systems will interact .

http://aka.ms/VS13VMSDK

c15.indd 03/05/2014 Page 289

Top-Down Design with Use
Case, Activity, Sequence,
Component, and Class
Diagrams

WHAT’S IN THIS CHAPTER?

 ➤ Creating and using use case and activity diagrams

 ➤ Creating and using sequence and component diagrams

 ➤ Generating code from a class diagram

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/proalm3ed
on the Download Code tab. The fi les are in the Chapter 15 download folder and individually
named as shown throughout this chapter.

Chapter 14 introduced you to architecture and modeling in the software space, and hinted
at all the architectural goodness available in Visual Studio Ultimate 2013. This chapter dives
deeper into several aspects of that, looking at use case, activity, sequence, component, and
class diagrams.

One advantage of modeling tools is that they enable you to design the architecture of the appli-
cation. Part of that design process is defi ning common terms around the problem domain, and
then ensuring that everyone on the team understands those concepts. Using the use case, activ-
ity, and sequence diagrams, you can model your application, while ensuring that everyone on
the team understands exactly what is being built.

15

http://www.wrox.com/go/proalm3ed

290 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 290

This chapter is divided into fi ve main sections:

 ➤ Use case diagrams

 ➤ Activity diagrams

 ➤ Sequence diagrams

 ➤ Component diagrams

 ➤ Class diagrams

Each section begins with a walk-through of how to build a diagram, as well as a diagram explana-
tion. After that, the discussion looks at all the objects available when building a particular diagram.

USE CASE DIAGRAMS

A use case diagram provides a graphical overview of the functionality of a system. It shows who is
using the system and what they can do with it.

A use case diagram does not show details of use cases themselves; instead it provides a summary
view of use cases, actors, and systems. Details (such as the order in which steps must be performed
to accomplish the use case) can be described in other diagrams and documents, and then linked to
the related use case. Use cases (and, by extension, use case diagrams) deal only with the functional
requirements of a system. The architecture and any internal details are described elsewhere, using
other diagrams described in this chapter, as well as Chapters 16 and 17.

Creating a Use Case Diagram
The following steps walk you through the process of creating a use case diagram. You are going to
create a use case diagram of a customer interacting with an online bookstore system. The customer
should be able to view the books offered and order a book. The bookstore should be able to update
the list of available books, as well as deliver ordered books to the customer.

 1. Open Visual Studio Ultimate 2013, and create a new modeling project by selecting File ➪
New ➪ Project to open the New Project window. Select the Modeling Projects template, give
the project a name and location, and click OK. A new modeling project opens in Solution
Explorer.

 2. Right-click the project in Solution Explorer and select Add ➪ New Item from the context
menu.

 3. Select the UML Use Case Diagram template and name it OrderBook.usecasediagram. Click
the Add button to create this diagram. A blank use case diagram named OrderBook.use-
casediagram is created in the modeling project and opened as a tab in Visual Studio.

 4. From the toolbox on the left side of Visual Studio, drag a subsystem boundary onto the use
case diagram.

 5. In the Properties window, change the Name property for the subsystem to be
OnlineBookstore. This subsystem can be used to represent either an entire system or

Use Case Diagrams ❘ 291

c15.indd 03/05/2014 Page 291

its major components. Any use cases that the subsystem supports are drawn inside the
subsystem.

 6. Add the actors to the use case diagram. The actors represent classes of users, organizations,
and external systems that interact with the system being built. By default, the Actor object
is represented as a person icon. A different image can be used by modifying the Image Path
property of the object.

Drop two Actor objects onto the use case diagram, one on either side of the
OnlineBookstore subsystem.

 7. In the Properties window, name the left actor Customer and the right actor Bookstore. The
use case diagram should appear similar to Figure 15-1.

NOTE To add multiple objects of the same type from the toolbox, double-
click the toolbox object. Then, click multiple times on the diagram to add the
objects. When fi nished, press the Escape key to return the cursor to its regular
functionality.

FIGURE 15-1

292 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 292

 8. When the actors are in place, drop the appropriate use cases onto the diagram. The use cases
represent the activities that actors can perform, and appear as oval-shaped objects on the
diagram.

Drop two use cases inside the Online Bookstore subsystem, and rename them Provide
Book List and Order Book. Add one use case outside and below the subsystem and name
it Deliver Book. The Provide Book List and Order Book use cases are part of the
OnlineBookstore application, so they are drawn inside the subsystem. The Deliver Book
use case is outside the scope of the application, so it is drawn external to the subsystem.

 9. Finally, to fi nish this simple use case, use the Association object to show how each actor is
related to each use case. An association indicates that an actor can take part in a particular
use case. For example, the Customer actor can view a list of books at the online bookstore.

Double-click the Association object in the toolbox to select it. Click and hold the
Customer actor and drag a line to the Provide Book List use case. An association is cre-
ated between the actor and the use case. Do the same to the Order Book and Deliver Book
use cases. Create associations the same way between the Bookstore actor and the Provide
Book List and Deliver Book use cases.

When fi nished, the use case diagram should appear similar to Figure 15-2.

FIGURE 15-2

Use Case Diagrams ❘ 293

c15.indd 03/05/2014 Page 293

Although Figure 15-2 is a very simple use case diagram, it is still very informative. You can also
have more complex use case diagrams, with multiple subsystems, actors, and use cases. A best prac-
tice is to start off describing the system with a few major use case diagrams. Each of those diagrams
should defi ne a major goal of the system. After those goals have been defi ned, use some of the other
objects from the use case diagram toolbox to defi ne the system in more detail.

Let’s break the Order Book use case down in more detail. Figure 15-3 shows a use case diagram
that does this by using the Include relationship.

FIGURE 15-3

The Include relationship shows that a use case uses all the behavior of the included use case. To
differentiate it from a regular association, the Include relationship is represented as a dotted line
with an arrow on the end (per the UML 2.1.2 specifi cation, available at http://aka.ms/UML212).
The arrow should always point to the more detailed use case. The Include relationship is also
labeled with the keyword <<include>>. Each of the included use cases is a step that the actor may
have to take in order to complete the main use case. In this example, in order for the customer to
order a book at the online bookstore, the customer must choose a book and then pay for the book.

A use case diagram does not specify in what order the particular use cases should happen, or when
a particular use case is necessary. To make that information clear, attach an Artifact object to

http://aka.ms/UML212

294 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 294

the general use case by dropping an Artifact object onto the use case diagram and then dragging
a Dependency relationship between the Artifact element and the general use case. An Artifact
element enables you to attach a separate document to the use case (for example, a text fi le that
describes the steps to take) or reference another diagram.

Use Case Diagram Toolbox
Figure 15-4 shows the different elements and associations available for use case diagrams.

FIGURE 15-4

Table 15-1 describes the different elements and associations.

TABLE 15-1: Use Case Diagram Toolbox Objects

NAME DESCRIPTION

Pointer Turns the mouse back into a regular mouse pointer.

Actor Adds a user or external system that interacts with a system.

Use Case Adds a specifi cation of actions that are performed in pursuit of a specifi c
goal.

Activity Diagrams ❘ 295

c15.indd 03/05/2014 Page 295

NAME DESCRIPTION

Comment Adds a comment for more details.

Subsystem Adds a system component. Places the use cases inside the subsystems
that support it.

Artifact Adds a reference to a diagram or document.

Association Links an actor with a use case.

Dependency Specifi es that the defi nition of one element depends on the defi nition of
another.

Include Specifi es that one use case invokes another use case.

Extend Specifi es that one use case extends the defi nition of another in specifi c
conditions.

Generalization Specifi es that one element is a specialized version of another, inheriting
its features and constraints.

Comment Link Connects a comment to a diagram element.

ACTIVITY DIAGRAMS

An activity diagram is used to show a business or software process as a workfl ow through a series
of actions. These actions could be performed by any number of objects, including people, software,
or computers. Activity diagrams can be used to model the logic captured in a particular use case or
to model detailed business logic. One easy way to think of activity diagrams is to think of them as a
fl owchart.

An activity diagram always has a starting node, a series of activities, and a fi nal node that indicates
the end of the activity.

Creating an Activity Diagram
The following steps outline the process of creating an activity diagram that shows the sequence of
activities for ordering a book from the online bookstore. A customer fi rst chooses a book to order.
After a book is chosen, the customer makes a decision whether to order more books or confi rm the
order. After the customer is fi nished selecting books, the customer confi rms the book order and then
pays for the order.

 1. Using the same modeling project created earlier in the “Creating a Use Case Diagram” sec-
tion, right-click the project in Solution Explorer and select Add ➪ New Item from the context
menu.

 2. Select the UML Activity Diagram template and name it OrderBook.activitydiagram.
Click the Add button to create this diagram. A blank activity diagram named OrderBook
.activitydiagram is created in the modeling project and opened in a tab in Visual Studio.

296 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 296

 3. From the toolbox, drag an Initial Node element onto the left of the diagram. This indi-
cates the starting point for this activity. Every activity diagram requires this element.

 4. Drag three Action elements onto the diagram to the right of the Initial Node element.
Using the properties of the elements, name these items Choose A Book, Confirm Order, and
Pay For Book. The action element represents a step in the activity that either the user or sys-
tem performs.

 5. From the toolbox, drag a Merge Node above the Choose A Book action. This node is used to
merge multiple branches, usually split by a decision node (described shortly). A Merge Node
requires two or more inputs and has a single output.

 6. Drag and drop a Decision Node between the Choose A Book and Confirm Order actions.
This node is used to create branching fl ows in the activity. For this activity diagram, after a
book is chosen, the customer has a choice of confi rming the order or selecting more books. A
Decision Node has a single input and two or more outputs.

 7. Drag an Activity Final Node to the right of the Pay For Book action. This indicates the
end of the activity.

Next, you must add the connectors to show the fl ow of activity through this activity diagram.
Double-click the Connector element to select it. On the activity diagram, drag a line between the
Initial Node element and the Merge Node. Continue connecting the other elements on the dia-
gram as follows:

 1. Connect the Merge Node to the Choose A Book action.

 2. Connect the Choose A Book action with the Decision Node.

 3. Connect the Decision Node with the Confirm Order action.

 4. Connect the Decision Node with the Merge Node.

 5. Connect the Confirm Order action with the Pay For Book action.

 6. Connect the Pay For Book action with the Activity Final Node.

 7. Modify the Guard property of the Connector elements on the Decision Node, leaving the
Decision Node to specify the reasons for the different pathways. On the Connector to
the Confirm Order action, add the guard Finished Ordering. On the Connector to the
Merge Node, add the guard Wants To Order Multiple Books.

When it’s fi nished, the diagram should appear similar to Figure 15-5.

Concurrent Flow in an Activity Diagram
Activity diagrams can also be used to describe a sequence of actions that execute at the same time.
This sequence of actions is known as a concurrent fl ow. Figure 15-6 shows an example of a concur-
rent fl ow activity diagram related to ordering a book online.

Activity Diagrams ❘ 297

c15.indd 03/05/2014 Page 297

FIGURE 15-5

At the start of this activity diagram, an order is created. After an order is created, two different
branch processes are started. The black bar that the Create Book Order action leads into is called
a Fork Node, and is used to divide a single fl ow into concurrent fl ows. In this case, one fl ow leads to
the Ship Book action. The other leads to the Send Book Invoice element.

The Send Book Invoice element is not a regular action element. It is a Send Signal Action ele-
ment. This indicates an action that sends a message to another activity for something to happen.
The Receive Book Payment is an Accept Event Action element. It is an action that waits for a
message before the fl ow can continue. In the case of Figure 15-6, a book invoice will be sent, poten-
tially to a payment system. The fl ow in the activity diagram waits until a response is received back,
indicating that the book has been paid for. Both the Ship Book and the Receive Book Payment
actions are then merged back into a single process using a Join Node. The activity ends with the
closing of the order.

NOTE You can set Fork Node and/or Join Node to a vertical orientation if you
want.

298 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 298

FIGURE 15-6

Activity Diagram Toolbox
Figure 15-7 shows the different elements and associations available for activity diagrams.

Table 15-2 describes the different elements and associations.

TABLE 15-2: Activity Diagram Toolbox Objects

NAME DESCRIPTION

Pointer Turns the mouse back into a regular mouse pointer.

Initial Node Adds the start of the activity.

Activity Final Node Adds an end to the activity.

Action Adds a single step that occurs in the activity.

Object Node Adds a node that can transmit, buffer, fi lter, and transform objects.

Comment Adds a comment for more details.

Decision Node Divides a single incoming fl ow into a choice between alternate outgo-
ing fl ows.

Merge Node Combines incoming alternate fl ows into a single outgoing fl ow.

Activity Diagrams ❘ 299

c15.indd 03/05/2014 Page 299

NAME DESCRIPTION

Fork Node Divides a single incoming fl ow into concurrent outgoing fl ows.

Join Node Combines incoming concurrent fl ows into a single outgoing fl ow.

Send Signal Action Adds an action that sends a signal to another system or activity.

Accept Event Action Adds an action that waits for a signal or event.

Call Behavior

Action
An action that is defi ned in more detail on another activity diagram.

Call Operation

Action
An action that calls an operation on an instance of a class.

Input Pin Represents data that an action requires. It allows data to fl ow into an
action.

Output Pin Represents data that an action produces. It allows data to fl ow out of
an action.

Activity Parameter

Node
Creates a parameter that conveys data into or out of the activity.

Connector Adds a connection or fl ow between elements on the diagram.

FIGURE 15-7

300 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 300

Adding an Activity Diagram to a Use Case Diagram
Earlier in this chapter when creating use case diagrams, you saw an Artifact element attached to a
use case (see Figure 15-3). One available option with Artifact elements is the capability to associ-
ate them with an activity diagram (and, as an extension, any physical document).

To do this, drag an Artifact element onto the OrderBook.usecasediagram you created earlier in
this chapter. In the properties window for the Artifact element, select the Hyperlink property,
and click the ellipse button. This will open the Link to URL or File dialog box, allowing you to
select a diagram, document, or other fi le to associate with the Artifact element on the use case
diagram.

NOTE To ensure that the fi le path remains valid on a team member’s computer,
only select fi les contained in the Visual Studio solution. Also, be aware that ref-
erencing Visual Studio UML diagrams outside the current project will not work
properly.

SEQUENCE DIAGRAMS

A sequence diagram is used to show the sequence of interactions among classes, components, sub-
systems, or actors. A sequence diagram is read from top to bottom, indicating the fl ow of time
through the system. From left to right, the diagram itself shows the fl ow of control from one element
to the next.

Creating a Sequence Diagram
The following steps walk you through creating a sequence diagram that shows the sequence of fl ow
for ordering a book from the online bookstore. A customer fi rst has the desire to purchase a book.
At that point, the customer adds a book to a shopping cart. The order system checks the availability
of the book and performs some internal processing. The availability of the book is returned to the
ordering system. The payment system is represented by a separate sequence diagram, so a reference
placeholder is inserted into this diagram. Finally, a message is sent to an unknown (or unspecifi ed)
system at the end of the process.

 1. Using the same modeling project you have been using throughout this chapter, right-click the
project in Solution Explorer, and, from the context menu, select Add ➪ New Item.

 2. Select the UML Sequence Diagram template and name it OrderBookSequenceDiagram
.sequencediagram. Click the Add button to create this diagram. A blank sequence diagram
named OrderBookSequenceDiagram.sequencediagram is created in the modeling project
and opened in a tab in Visual Studio.

 3. From the toolbox, drag a Lifeline element onto the left of the diagram. This vertical line
element represents participants in the described interaction. Time progresses down the life-
line, from top to bottom.

Sequence Diagrams ❘ 301

c15.indd 03/05/2014 Page 301

 4. Using the Properties window, change the Type property to be Customer and set the Actor
property equal to True. Notice the Customer lifeline has a symbol representing a person
above it. This symbol is called an actor and indicates that this lifeline represents a participant
external to the system being developed.

 5. Drag two more Lifeline elements onto the diagram and set the Type properties to Order
and Book System, respectively.

The gray vertical shaded rectangles on each lifeline are called execution occurrences. These
represent a period when the participant is executing an operation. Execution usually begins
when the participant receives a message. From within an execution block, other messages
can be sent to other participants, or even back to the execution block itself.

NOTE The box at the top of a lifeline has rounded corners to indicate that it has
been generated from program code and is shown as a regular rectangle if it has
been drawn by hand.

This sequence diagram is started with a message from an unknown source. This is repre-
sented with an asynchronous message.

 6. Select the Asynchronous element in the toolbox, select a blank space to the left of the
Customer lifeline, and draw a line to the Customer lifeline. This creates the starting point
into the sequence diagram, indicated by a black dot. This initial message is known as a found
message. Change the Name property to Want A Book.

 7. A create message must be sent to create a participant. If a participant receives a create mes-
sage, it should be the fi rst message he receives. Click the Create element in the toolbox. On
the Customer lifeline, click the gray execution box area and drag a line to the Order lifeline.
A dotted line is created between the two lifelines, and a gray execution box appears on the
Order lifeline.

To start the ordering process, the customer must add an item that she wants to buy. This is
represented using an Asynchronous message call. An Asynchronous element represents an
interaction where the sender can continue immediately without waiting for the receiver.

 8. In the toolbox, select the Asynchronous element. Click the Customer lifeline and drag a
line to the Order lifeline. A solid line is created between the Customer and Order lifelines.
Change the name of the element to Add A Book.

 9. After a book is added, the book availability must be determined. This is done using a
Synchronous message call. A Synchronous element represents an interaction where the
sender waits for the receiver to return a response.

In the toolbox, select the Synchronous element. Click on the execution block on the Order
lifeline and drag a line to the Book System lifeline. A solid arrow is created between the
Order and Book lifelines. In addition, a dotted arrow is created from the Book System life-
line to the Order lifeline. This indicates control is to be returned to the sender—in this case,
the Order lifeline.

 10. Change the name of the element to Check Book Availability.

302 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 302

 11. A participant can also send a message to itself—for example, if it were triggering internal
methods for doing work. These messages are called self messages.

Select the Asynchronous element from the toolbox. On the Book System lifeline, click the
Check Book Availability execution block. Drag a line farther down in the same block
and release. This creates a solid arrow from the Check Book Availability execution
block back onto the same execution block.

 12. There is a complete payment system sequence that is not represented on this particular
sequence diagram, but instead is shown on a separate diagram. To represent the contents of
that separate diagram, use the Interaction Use element.

Click the Interaction Use element in the toolbox. Drag a box across all three lifelines, as
all three are included in this reference. Change the name of the element to Payment System.

 13. You can represent a message to an unknown or unspecifi ed participant. This is known as a
lost message.

Select the Asynchronous element from the toolbox. At the bottom of the Book System life-
line, drag a line from the lifeline to a blank area on the diagram. An arrow is created from
the lifeline to a created black dot, indicating this message goes to an unknown participant.

When fi nished, the diagram should appear similar to Figure 15-8.

FIGURE 15-8

Sequence Diagrams ❘ 303

c15.indd 03/05/2014 Page 303

Sequence Diagram Toolbox
Figure 15-9 shows a screenshot of the different elements available for sequence diagrams.

FIGURE 15-9

Table 15-3 describes the different elements and associations.

TABLE 15-3: Sequence Diagram Toolbox Objects

NAME DESCRIPTION

Pointer Turns the mouse back into a regular mouse pointer.

Lifeline Adds a participant (such as a class or object) to an interaction sequence.

Synchronous Adds a message that calls an operation and expects a response.

Asynchronous Adds a message that calls an operation but does not expect a response.

continues

304 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 304

NAME DESCRIPTION

Create Adds a message that calls an operation that creates an instance of the
target.

Comment Adds a comment for more details.

Comment Link Connects a comment to a diagram element.

Interaction Use Adds an interaction use to create a reusable sequence or to reference
another sequence.

COMPONENT DIAGRAMS

A sequence diagram enables you to model and visualize the messages of a system. With the com-
ponent diagram, you can visualize the components of the system that implement the system func-
tionality, as well as other puzzle pieces of the system (such as web services, user interfaces, COM
components, and so on). A component diagram depicts the relationships between various compo-
nents of your application or system.

A component diagram shows the parts of a design for a software system. These components could
be executables, DLLs, or even entire systems. At this level, you aren’t necessarily trying to decide
exactly how things are being built. Rather, you are just trying to break down the architecture into
something more manageable and understandable. You can use a component diagram to visualize the
high-level structure of the system and the service behavior that the components both provide and
consume.

Think of a component as a modular unit that is replaceable. You don’t know how the internals
of the component work. Instead, you know what interfaces a component provides or consumes.
Components on a component diagram have interfaces, either required interfaces or provided inter-
faces. An interface can be anything, from a website to a web service. A required interface indicates
functionality that a component expects to consume. A provided interface indicates functionality
that a component provides for other components to consume. Each required interface on a compo-
nent diagram should be linked to a provided interface.

Creating component diagrams has a couple of nice benefi ts. It can help the development team under-
stand an existing design and see potential ways to improve it. More importantly, thinking of the
system as a collection of components with well-defi ned interfaces improves the separation between
components, which can make the design easier to change as the requirements change.

Creating a Component Diagram
Use the following steps to create a component diagram that represents the different components of
the online bookstore system. The different components include a web browser, the bookstore’s web-
site (both the web application and the back-end database), the bookstore’s payment system, and a
way to process credit cards.

TABLE 15-3 (continued)

Component Diagrams ❘ 305

c15.indd 03/05/2014 Page 305

 1. Using the same modeling project as used in previous sections, right-click the project in
Solution Explorer and select Add ➪ New Item from the context menu.

 2. Select the UML Component Diagram template and name it BookComponents.component-
diagram. Click the Add button to create this diagram. A blank component diagram named
BookComponents.componentdiagram is created in the modeling project and opened in a tab
in Visual Studio.

 3. There are two options for adding components to the diagram:

 ➤ Using the toolbox, click the Component element, then click a blank area of the dia-
gram. An empty Component element appears on the diagram. This is useful for creat-
ing new components.

 ➤ You can also add existing components from other diagrams in the same modeling
project to the diagram. Either open the existing diagram or open the UML Model
Explorer window (by selecting View ➪ Other Windows ➪ UML Model Explorer).
Right-click the component to add to the component diagram and then select Copy.
Right-click a blank area of the component diagram and select Paste Reference to cre-
ate a copy of the component on the new diagram.

NOTE You can also just drag the component from the Model Explorer onto the
diagram.

 4. From the Toolbox window, click the Component element and click a blank area on the dia-
gram to create a new Component element. Select the component and change its name to Web
Browser. Using this same method, add the following components to the component diagram:

 ➤ Book Web Application

 ➤ Book Web App Database

 ➤ External Credit Card Processor Gateway

 ➤ Book Payment System

 ➤ Book Payment System Database

After you’ve added these components, the component diagram should resemble
Figure 15-10.

 5. From the Toolbox window, click the Provided Interface element and then click the
Book Web Application component. The provided interface symbol (or lollipop) attaches
itself to the Book Web Application component with a default name of Interface1. This
component is going to represent the website used for ordering books. Select the Provided
Interface element, and, in the Properties window, rename it Book Web Site.

 6. Add another Provided Interface element to the Book Payment System component, and
name it IBookPaymentService. This element exposes a web service for interacting with

306 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 306

the payment system. Finally, add a Provided Interface element to the External Credit
Card Processor Gateway component and name it ICreditCardProcessingGateway. This
element exposes a web service for interacting with the external credit card processor.

FIGURE 15-10

 7. Add the required interfaces. A required interface represents behavior that a component
consumes through an interface. As with adding components to the diagram, there are two
options for adding interfaces (both required and provided interfaces) to the diagram. You can
add a new interface from the Toolbox window, or, using the UML Model Explorer, you can
drag an existing interface onto the diagram.

 8. You must show that the Web Browser component utilizes the book website interface exposed
by the Book Web Application component.

From the toolbox, click the Required Interface element and then click the Web Browser
component on the diagram. Rename the interface to Book Web Site.

NOTE The interface elements can be easily repositioned on a component by
dragging them to the appropriate location.

Component Diagrams ❘ 307

c15.indd 03/05/2014 Page 307

 9. Add a required interface to the Book Web Application by using the UML Model Explorer.
If the UML Model Explorer window is not visible, open it by going to View ➪ Other
Windows ➪ UML Model Explorer in Visual Studio.

 10. The UML Model Explorer shows all the elements that have been added to the central model.
In the UML Model Explorer, click and drag the IBookPaymentService interface to the Book
Web Application component. This creates another instance of the IBookPaymentService
provided interface.

 11. You need this interface to be a required interface. To change the interface type, select the
IBookPaymentService provided interface on the Book Web Application component. Click
the smart tag that appears near the element and select Convert to Required Interface. The
interface type changes from Provided to Required.

NOTE You can also select the smart tag for a required interface and change it
into a provided interface.

 12. Select the Required Interface element in the Toolbox window and click the Book
Payment System component to create a required interface on that component. Rename the
interface to be ICreditCardProcessingGateway. The component diagram should now
resemble Figure 15-11.

FIGURE 15-11

308 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 308

 13. Next you need to show which provided interfaces satisfy which required interfaces by using
the Dependency element. A Dependency element always connects a required interface (or
hook) to a provided interface (or lollipop).

In the Toolbox window, select the Dependency element. On the component diagram, select
the Book Web Site required interface on the Web Browser component and then select the
Book Web Site provided interface on the Book Web Application component. A dotted
arrow is created from the required interface to the provided interface, indicating that the
provided interface satisfi es the required interface. On the component diagram, select the
dependency dotted arrow that was just created. In the Properties window, change the name
to be HTTP. This provides a visual indicator on the component diagram that this is an HTTP
connection between the two components.

 14. In the Toolbox window, select the Dependency element again. On the component diagram,
select the IBookPaymentService required interface on the Book Web Application com-
ponent. Then select the IBookPaymentService provided interface on the Book Payment
System component. Finally, select the Dependency element from the toolbox and connect the
ICreditCardProcessingGateway required interface on the Book Payment System compo-
nent to the ICreditCardProcessingGateway provided interface on the External Credit
Card Processor Gateway.

 15. Create the dependency relationship between the Book Web Application and the Book
Web App Database components by selecting the Dependency element from the Toolbox
window, clicking the Book Web Application component, and then clicking the Book Web
App Database component. A dotted arrow is drawn between the two, indicating the depen-
dency of the web application on the database. Do the same thing between the Book Payment
System component and the Book Payment System Database component. The component
diagram is now complete, as shown in Figure 15-12.

NOTE To show how a larger component is comprised of smaller components,
a component can also be placed inside other components on a component
diagram.

Component Diagram Toolbox
Figure 15-13 shows the different elements and associations available for component diagrams.

Component Diagrams ❘ 309

c15.indd 03/05/2014 Page 309

FIGURE 15-12

FIGURE 15-13

310 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 310

Table 15-4 describes the different elements and associations.

TABLE 15-4: Component Diagram Toolbox Objects

NAME DESCRIPTION

Pointer Turns the mouse back into a regular mouse pointer.

Component Adds a component that defi nes a reusable unit of system functionality.

Dependency Defi nes how an element depends on another element. Begins the rela-
tionship from the dependent element.

Delegation Designates behavior between a port on an outer component and an
interface on an inner component.

Provided Interface Adds an interface that a component provides to other components.

Required Interface Adds an interface that a component requires from other components.

Comment Adds a comment for more details.

Generalization Defi nes how a component derives from another component. Begins
the relationship from the derived component.

Connector Creates a default relationship between shapes based on the types of
shapes being connected.

Part Assembly Specifi es a connection between parts in a component. Connects a
required interface on one part to a provided interface on another part.

CLASS DIAGRAMS

Class diagrams depict the classes within an application or system and the relationship that exists
between them. Different symbols represent the varying relationships that may exist (such as inheri-
tance or association). This information is described independent of any reference to a particular
implementation of the class. The purpose of the class diagram is to focus on the logical aspects of
the classes instead of how they are implemented.

NOTE This chapter discusses UML class diagrams, or logical class diagrams.
There is another type of class diagram, called a .NET class diagram, used to
visualize program code. That is not discussed in this book. More information on
this type of diagram can be found at http://aka.ms/vs13classdiagram.

In a class diagram, a type is a class, interface, or enumeration. Class and interface objects can
have attributes defi ned. An attribute is a value that can be attached to an instance of a class or an

http://aka.ms/vs13classdiagram

Class Diagrams ❘ 311

c15.indd 03/05/2014 Page 311

interface. Classes and interfaces can also have operations defi ned. An operation is a method or func-
tion that can be performed by an instance of a class or interface.

On a class diagram, you can draw associations between any pairs of types. An association indicates
that the system being developed stores links between the instances of the associated types. An asso-
ciation is a diagrammatic method of showing an attribute or pair of attributes. For example, if you
have a class BookStore that has an attribute of type Book, you can state that defi nition by drawing
an association between Bookstore and Book.

Using the UML Model Explorer, you can locate interfaces you have defi ned on the component dia-
gram and drag those directly onto the class diagram to create them.

Creating a Class Diagram
Use the following steps to create a class diagram that shows the relationship between a Store class,
a BookStore class, and a Books class. A bookstore is a more specifi c version of a store, and a book-
store contains multiple books.

 1. Using the same modeling project from before, right-click the project in Solution Explorer,
and, from the context menu, select Add ➪ New Item.

 2. Select the UML Class Diagram template and name it BooksClassDiagram.classdia-
gram. Click the Add button to create this diagram. A blank UML class diagram named
BooksClassDiagram is created in the modeling project and opened in a Visual Studio tab.

 3. In the Toolbox tab, click the Class element and then click a blank space on the UML class
diagram. This creates a class object on the diagram. In the properties for the class, change the
name to be Store. This is going to be a generic store class that the bookstore object inherits
from. Set the Is Abstract property of the Store class to True, to indicate it is an abstract
class.

NOTE Notice how, when setting the class to be abstract, the font of the title
changes to italic.

 4. The Store class has a couple of generic attributes that apply to all stores, such as location
and store hours.

Right-click the Store class and select Add ➪ Attribute to create a new attribute. Name the
attribute Location. Select the Location attribute, and, in the Properties window, set the
Type property to be String. Add a second attribute named StoreHours and set its type to
be String as well.

 5. Create the bookstore class. The bookstore class inherits from the Store class created earlier,
as it is a specialized type of store.

Using the Toolbox window, add another Class object to the diagram, under the Store
object, and name it BookStore. Select the Inheritance element in the Toolbox window.
Click the BookStore class and then click the Store class. A solid arrow appears that points

312 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 312

from the BookStore class to the Store class, indicating that the BookStore inherits from
the Store.

The inherited operations and attributes are not typically shown on specialized types, which
is why the Store class attributes are not displayed on the BookStore class. However, you
can use the smart tag on the inheritance arrow to add inherited operations to the specialized
class. Simply click the smart tag and select Override Operations. Then select which opera-
tions to show on the specialized class.

 6. Now create a class for the books. Add another class object to the class diagram, below
the BookStore class, and rename it Book. Add two attributes to the Book class: Price
of type Integer and NumberOfPages of type Integer. Select the Association element
from the Toolbox window, click the BookStore class, and then click on the Book class. An
Association element is used to represent any kind of linkage between two elements, regard-
less of how the linkage is actually implemented in the code itself.

 7. A BookStore can have multiple books in it, so you must modify the Multiplicity property
for the Book class.

Select the Association linking the BookStore and Book classes. In the Properties window,
click the arrow next to the Second Role property to expand it. Change the Multiplicity
value to be *, indicating the BookStore can contain multiple books.

 8. Add an operation for ordering books to the BookStore class. Right-click the class and select
Add ➪ Operation. Name the operation OrderBook.

 9. You must set the parameters and the return type for this operation by selecting the
OrderBook operation and going to the Properties window. In the Properties window, set the
Return Type to be Boolean. Click the ellipsis in the Parameters fi eld to open the Operation
Parameter Collection Editor window.

In the Parameter Collection Editor window, click the Add button to create a new parameter.
Set the name of the parameter to be Item, and the type to be Book. Click the Add button
again to create a second parameter named Quantity with a type of Integer. Click the OK
button to close the Operation Parameter Collection Editor window.

Figure 15-14 shows the fi nal result of the class diagram.

Class Diagram Toolbox
Figure 15-15 shows the different elements and associations available for class diagrams.

Table 15-5 describes the different elements and associations.

Class Diagrams ❘ 313

c15.indd 03/05/2014 Page 313

FIGURE 15-14

TABLE 15-5: Class Diagram Toolbox Objects

NAME DESCRIPTION

Pointer Turns the mouse back into a regular mouse pointer.

Class Adds a type that defi nes a class.

Interface Adds an interface to specify the attributes and operations that classes
require to realize this interface.

Enumeration Adds a type that defi nes a list of specifi c values.

Package Adds a package to organize types according to their namespaces.

Comment Adds a comment for more details.

Association Defi nes how an element interacts with another element. Begins the relation-
ship from the referencing type.

FIGURE 15-15

continues

314 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 314

NAME DESCRIPTION

Aggregation Specifi es that the source type refers to parts of the target type. The parts
can be shared with another owner.

Composition Specifi es that the source type has parts of the target type. The parts cannot
be shared with another owner.

Dependency Defi nes how a type depends on another type. Begins the relationship from
the dependent type.

Inheritance Defi nes how a type inherits or realizes the members of another type.

Package Import Defi nes how a package imports types defi ned in another package. Begins
the relationship from the package that uses another package.

Connector This connection tool creates a default relationship between shapes, based
on the types of shapes being connected.

Generating Code from a UML Class Diagram
Visual Studio Ultimate 2013 allows you to generate code from a UML class diagram. Using the class
diagram as a base, you can generate skeleton code from the class diagram elements. You can also
create UML class diagrams from your code base.

To generate code from a class diagram, right-click the class diagram and select Generate Code from
the context menu. By default, executing this command generates a C# type for each type on the
UML class diagram. The following are the default results for generating code:

 ➤ A C# type is produced for each type on the UML model. Each type is placed in a separate
code fi le.

 ➤ A C# property is generated for each attribute of a UML class.

 ➤ A C# method is generated for each operation of a UML class.

 ➤ A C# fi eld is generated for each navigable association in which the class participates.

 ➤ If the UML type is contained in a package, the generated C# type is placed inside a
namespace, and the fi le is generated in a folder with the same name as the namespace.

However, you can customize this behavior—including the language generated as well as the differ-
ent outputs—by modifying the text templates that are used for generating the code.

NOTE For more information on customizing the Generate Code command, see
“Customizing the Generate Code Command” in the MSDN Library: http://
msdn.microsoft.com/en-us/library/ff657795.aspx#custom.

TABLE 15-5 (continued)

http://msdn.microsoft.com/en-us/library/ff657795.aspx#custom
http://msdn.microsoft.com/en-us/library/ff657795.aspx#custom

Summary ❘ 315

c15.indd 03/05/2014 Page 315

Figure 15-16 shows the BookStore.cs C# class that was generated by running the Generate Code
command against the BooksClassDiagram.classdiagram class diagram created earlier in this sec-
tion. A new class named BookStore that inherits from the Store class was created. Also, a stub
method for the operation OrderBook was created.

FIGURE 15-16

SUMMARY

 This chapter examined the capabilities of use case, activity, sequence, component, and class dia-
grams. You looked at how to create a use case diagram, and learned about its different components.
Next, you learned about activity diagrams, where, in addition to examining an example of how to
build a diagram, you also learned how to link an activity diagram back to a use case diagram. You
then examined sequence diagrams, their components, and how to create them.

You learned the purpose behind component diagrams, how to create them, and the different ele-
ments available to component diagrams. Finally, you learned about class diagrams and how they are
used. You learned about the different elements that are available for class diagrams and concluded
the chapter with a look at how to generate code from a class diagram.

316 ❘ CHAPTER 15 TOP-DOWN DESIGN

c15.indd 03/05/2014 Page 316

Chapter 16 discusses how you can use the Architecture Explorer to drill down into the existing
project, which helps you to understand the different aspects of the project. The information in the
Architecture Explorer can then be turned into a graphical view by creating a dependency graph.
Finally, you will learn about code maps, a new feature in Visual Studio Ultimate 2013 to help you
better understand your code base.

c16.indd 02/27/2014 Page 317

Analyzing Applications
Using Architecture Explorer,
Dependency Graphs,
and Code Maps

WHAT’S IN THIS CHAPTER?

 ➤ Exploring Architecture Explorer

 ➤ Using Architecture Explorer to understand existing code

 ➤ Visualizing existing code using dependency graphs

 ➤ Visualizing existing code using code maps

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/proalm3ed
on the Download Code tab. The fi les are in the Chapter 16 download folder and individually
named as shown throughout this chapter.

Every software developer has been in the following situation at some point in time: You have
just started a new job with a new company, and you’re expecting to write a new, fancy appli-
cation. You are up to speed on some of the latest coding technologies, methodologies, and
languages. You arrive for work ready to sit down and use everything you know to crank out
some code to help the company succeed.

And then it happens. There is a legacy system that was built several years ago that must be
updated. You are the lucky developer who has been assigned to make that update — never
mind that you have no idea or concept of how the application works, the inner workings of the
calls between different objects, or how it interacts with other third-party add-ins.

16

http://www.wrox.com/go/proalm3ed

318 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 318

Before Visual Studio Ultimate 2010, the only solution to this problem was to get your hands dirty
in the code. You had to open the code fi les and start tracing (as best you could) how the logic fl ows
between the different classes and components that make up the application. Maybe you would even
try (as best you could) to diagram the logic fl ow on a piece of scratch paper.

Visual Studio Ultimate 2010 changed all that with the introduction of the Architecture Explorer
tool, and Visual Studio Ultimate 2013 has added even more functionality to make exploring your
application easier. Using Architecture Explorer, you can quickly learn more about your current
application by visualizing the organization and relationships among the various parts. By using
Architecture Explorer in conjunction with dependency graphs, you can analyze an existing system
and more quickly understand it. Code maps, new to Visual Studio Ultimate 2013, provide another
visualization option for your code. These tools also enable you to fi nd areas in the application that
should be improved or modifi ed.

This chapter examines Architecture Explorer, dependency graphs, and code maps. The chapter
begins with a discussion about the Architecture Explorer tool, including what it is, and how it was
designed to be used. From there, you learn about using Architecture Explorer and how you can use
it to drill down into your existing application.

After that, you learn how to take the information from Architecture Explorer and make it graphical
by turning it into a dependency diagram. Dependency diagrams are a nice way to graphically view
your code, as well as code contained in other managed DLLs (such as the .NET Framework). In
Visual Studio Ultimate 2013, dependency graphs can visualize code without the use of Architecture
Explorer. In this chapter, you fi nd out how to utilize those features and learn about the Code Index,
a back-end database for dependency graphs that helps speed the visualization process. You’ll also
learn about code maps, and how you can use them to understand your project code.

UNDERSTANDING THE CODE BASE

Although the example used throughout this chapter is rather simplistic, it works well to introduce
the different capabilities of Architecture Explorer, dependency diagrams, and code maps. So, let’s
take a look at the code base used throughout this chapter so that later sections will make more sense.

Figure 16-1 shows the projects and code fi les that make up the sample solution.

This solution is made up of two project fi les:

 ➤ FirstProject—This project contains two class fi les, FirstClass.cs and SecondClass
.cs. The FirstClass.cs class fi le contains two methods, Method1 and Method2. The
SecondClass.cs class fi le contains one method, Method3.

 ➤ SecondProject—This project contains one class fi le, ThirdClass.cs. The ThirdClass.cs
class fi le contains three methods: Method4, Method5, and Method6.

Getting confused yet? Let’s add to it a little more:

 ➤ Method1 calls Method3 and Method2.

 ➤ Method2 calls Method1.

Architecture Explorer Basics ❘ 319

c16.indd 02/27/2014 Page 319

 ➤ Method3 doesn’t call any other methods.

 ➤ Method4 calls Method1.

 ➤ Method5 calls Method3.

 ➤ Method6 doesn’t call any other methods.

FIGURE 16-1

Whew! All of that sounds just a little bit confusing, and this is only a contrived solution with two
projects and three classes. Imagine what it would seem like with a real software solution, with
hundreds of projects, and thousands of classes and methods. As you are about to learn, though,
Architecture Explorer, dependency graphs, and code maps are going to help with the understanding
of any project, both small and large.

ARCHITECTURE EXPLORER BASICS

In Visual Studio Ultimate 2013, you use Architecture Explorer to drill down into your existing
code, which enables you to select the code you want to visualize using a dependency graph. You can
use Architecture Explorer to browse existing source code open in Visual Studio Ultimate 2013, as
well as browse compiled managed code located in .dll or .exe fi les. You can extend Architecture
Explorer with third-party tools, which allow you to browse other domains of code or other items.
After you have drilled down into your code and selected the items you are interested in, you can
turn that information into a dependency graph.

NOTE Architecture Explorer is available only in Visual Studio Ultimate 2013,
and will work on any managed code from .NET 2.0 onward.

c

320 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 320

Understanding the Architecture Explorer Window
To open Architecture Explorer, open Visual Studio Ultimate 2013. From the main menu of Visual
Studio, select View ➪ Architecture Explorer. Alternatively, from the main menu of Visual Studio,
you can select Architecture ➪ Windows ➪ Architecture Explorer.

NOTE The shortcut keys for opening Architecture Explorer are Ctrl+/ and
Ctrl+R.

Figure 16-2 shows an initial view of Architecture Explorer.

FIGURE 16-2

Architecture Explorer represents structures as nodes and relationships as links. As you browse
through your code base using Architecture Explorer, nodes are displayed in successive columns to
the right. The fi rst column in Figure 16-2 shows the initial domains and views that are available for
browsing. Selecting a domain or view causes a new node to appear to the right with the results of
that selection.

NOTE You can browse all the way to the level of statements for Visual C# and
Visual Basic projects. For other languages, you can browse to the procedure
level.

When you select a node in a column, the next column shows node information that is logically
related to the selection made in the initial column. For example, selecting a class in a column shows
the members of that class in the following column. You have the capability to select multiple nodes
in multiple columns and then display that information as a dependency graph.

Architecture Explorer Options
As you can see in Figure 16-2, there are four options (represented as icons) available on the left side
of the Architecture Explorer window.

Architecture Explorer Basics ❘ 321

c16.indd 02/27/2014 Page 321

The fi rst option enables you to create a new dependency graph document from all the nodes
currently selected in Architecture Explorer. To include only the nodes in the current column,
you can press and hold the Ctrl key before clicking this option.

The second option enables you to add the selected nodes from Architecture Explorer to an existing
dependency graph that is currently visible in Visual Studio. As with the fi rst option, to include only
the nodes that are in the current column, press and hold the Ctrl key before clicking this option.

The third option enables you to export the information from Architecture Explorer into a .dgml
fi le. A Directed Graph Markup Language (DGML) fi le is the XML schema used to defi ne a
dependency graph. Selecting this option exports all the information open, in all of the columns, into
a .dgml fi le that you can view at a later date.

The fourth option resets Architecture Explorer to its initial state, cleaning up the window and
enabling you to start from the beginning.

Navigating Through Architecture Explorer
To begin navigating through Architecture Explorer, select one of the rows in the fi rst column. You
have several options.

Under the Visual Studio column heading you can choose to view the information in your solution
either by classes or through a solution view, which enables you to view the different fi les in your
solution. If you don’t want to drill down through all the fi les in a solution, you can click the Select
Files option and open only the fi les you are interested in.

For this example, let’s navigate through the code using the Class View options. In Architecture
Explorer, select Class View under Visual Studio <My Solution>. This opens a new column to the
right of the selected column, displaying a list of all the different namespaces in the solution, as
shown in Figure 16-3.

FIGURE 16-3

In Figure 16-3, you see that the two namespaces currently in the solution (FirstProject and
SecondProject) are displayed on the right of the screen.

Obviously, for a large project, you could have many namespaces, which could result in a large scroll-
ing list in this column. The listbox at the top of the column enables you to fi lter the information
in this column. For example, if you only wanted to see namespaces that began with “Second” you

322 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 322

could type Second in the listbox, press Enter, and the contents of the column would be fi ltered, as
shown in Figure 16-4.

FIGURE 16-4

Notice the differences between Figure 16-3 and Figure 16-4. Figure 16-3 displays all the namespaces
in the solution. Figure 16-4 displays only the namespaces that match the fi lter expression. Also,
notice the fi lter icon that is added in the lower-right of the column, giving a visual indication that
the column is currently being fi ltered.

NOTE When you type a fi lter, a substring search is performed. For example,
if you enter c for the fi lter statement, it matches on both FirstProject and
SecondProject.

To clear the fi ltering on a column, simply delete the fi lter statement and press Enter. This removes
the fi lter and displays the entire contents of the column.

From the namespace column, you can navigate into the different classes contained in a particular
namespace. Selecting the FirstProject namespace opens a new column to the right, containing
the classes in the FirstProject namespace — in this case, FirstClass and SecondClass. As men-
tioned previously, you can fi lter on this column by entering your fi lter criteria into the listbox at the
top of the column. You can also fi lter based on different categories and properties.

Click the fi lter button located to the left of the fi lter listbox at the top of the column. This displays
all the possible categories and properties that can be fi ltered on, as shown in Figure 16-5.

FIGURE 16-5

Architecture Explorer Basics ❘ 323

c16.indd 02/27/2014 Page 323

For this particular column on classes, you have the following fi lter options:

 ➤ Class

 ➤ Is Abstract

 ➤ Is Final

 ➤ Is Public

 ➤ Icon

You have the option of selecting one or multiple fi lter options, allowing you to drill down into the
information contained in the column in a variety of ways.

Exploring Options for Namespaces
In addition to the fi ltering options mentioned previously, you have another option for controlling
what is displayed in a column. In Figure 16-5, just to the left of the column containing the classes,
there is a collapsed column labeled Types. Clicking that collapsed column expands it, as shown in
Figure 16-6.

FIGURE 16-6

This column provides a variety of options for determining what is initially displayed in the column.
The fi rst section is the Node Navigation section. By default, the Types node is selected, which shows

324 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 324

all the different available types — in this case, FirstClass and SecondClass. You can select the
following nodes for display:

 ➤ Classes

 ➤ Delegates

 ➤ Enums

 ➤ Interfaces

 ➤ Members

 ➤ Modules

 ➤ Namespaces

 ➤ Structs

 ➤ Typedefs

 ➤ Types

 ➤ Unions

 ➤ Aliases

You can select multiple nodes by holding down the Ctrl key while you select the nodes. Each time
you select a node, the column to the right recalculates with the new data to display.

You have the capability to organize the link types into two categories: outbound and inbound.
These categories describe the direction of the link in relation to the currently selected node.

An outbound link points from the currently selected node to the next related node. For example, say
that you have currently selected the FirstProject namespace. If you select All Outbound under
Outbound Navigation, the two classes, FirstClass and SecondClass, are displayed. FirstClass
and SecondClass exist in the FirstProject namespace, and, as such, are the next related nodes
beneath the FirstProject namespace.

You have the following options for Outbound Navigation:

 ➤ All Outbound

 ➤ Contains

An inbound link points from a previously related node to the currently selected node. For example,
say that you have currently selected the FirstProject namespace. If you select All Inbound under
Inbound Navigation, the solution fi le MySolution is displayed in the next column. MySolution
exists above the FirstProject namespace from a hierarchical perspective.

The following options exist for Inbound Navigation:

 ➤ All Inbound

 ➤ Contained By

 ➤ Namespace Reference Source

Architecture Explorer Basics ❘ 325

c16.indd 02/27/2014 Page 325

You also have the capability to perform Analysis and Grouping options. Using the Analysis options,
you can look for circular references or hubs (for example, classes) that are not being called or used.
The Grouping options also enable you to group by container or properties.

The following options exist for Analysis:

 ➤ Circular References

 ➤ Find Hubs

 ➤ Unreferenced Nodes

The following options exist for Grouping:

 ➤ Group by Containers

 ➤ Group by Properties

Exploring Options for Classes
Previously, you learned about some of the Node Navigation options from a namespace perspective.
Let’s continue the example by selecting the FirstClass class in Architecture Explorer to see what
Node Navigation options are from a class perspective. Figure 16-7 shows Architecture Explorer
after the FirstClass class has been selected.

FIGURE 16-7

By default, Node Navigation defaults to Members. As you can see in Figure 16-7, FirstClass has
only two members: two methods named Method1 and Method2. As you might expect, the fi ltering
options at the top of the column work the same as they have in previous columns. However, now
that you are working on a class level as opposed to a namespace level, you have different navigation
options.

From the Node Navigation options, you can view any of the following information about the
selected class:

 ➤ Classes

 ➤ Delegates

 ➤ Enums

326 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 326

 ➤ Generic Arguments

 ➤ Generic Parameters

 ➤ Interfaces

 ➤ Members

 ➤ Structs

 ➤ Types

Outbound Navigation has several more options available to it, as you would expect. Classes
can inherit from other classes, implement interfaces, and have attributes. The following are the
Outbound Navigation options:

 ➤ All Outbound

 ➤ Contains

 ➤ Generic Arguments

 ➤ Generic Parameters

 ➤ Implements

 ➤ Inherits From

 ➤ Uses Attribute

Inbound Navigation also has more options, including the following:

 ➤ All Inbound

 ➤ Contained By

 ➤ Inherited By

 ➤ Used By

The Analysis patterns and Grouping options are the same as before.

Exploring Options for Members
For this example, drill down one more level to look at some of the Node Navigation options available
at a member level. In Architecture Explorer, select the Method1 method, as shown in Figure 16-8.

FIGURE 16-8

Architecture Explorer Basics ❘ 327

c16.indd 02/27/2014 Page 327

As you would expect, the Node Navigation options have changed again. By default, when you select
a method, the resulting column in Architecture Explorer shows all the outbound calls that method
makes (that is, all the methods that the selected method uses).

From a Node Navigation perspective, you can view any of the following information about the
selected method:

 ➤ Block Expressions

 ➤ Classes

 ➤ Fields

 ➤ Generic Arguments

 ➤ Generic Parameters

 ➤ Methods

 ➤ Parameters

 ➤ Types

Outbound Navigation has several more options available to it, as you would expect. The following
are the Outbound Navigation options:

 ➤ All Outbound

 ➤ Calls

 ➤ Contains

 ➤ Function Pointers

 ➤ Generic Arguments

 ➤ Generic Parameters

 ➤ Parameters

 ➤ Reads Fields

 ➤ Return Types

 ➤ Uses Attribute

 ➤ Writes Fields

Inbound Navigation also has more options, including the following:

 ➤ All Inbound

 ➤ Called By

 ➤ Contained By

 ➤ Function Pointers

 ➤ Property Gets

328 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 328

 ➤ Property Sets

 ➤ Referenced By

The Analysis patterns and Grouping options are the same as before.

DEPENDENCY GRAPHS

They say a picture is worth a thousand words, and dependency graphs prove that saying.
Architecture Explorer is invaluable for its capability to drill down into the code base, but it can
also present so much information that it can be a bit overwhelming as well. Given its capability to
continuously scroll to the right, you could become confused after doing an intense, deep drill-down.
Wouldn’t it be nice to be able to visualize the information from Architecture Explorer? Dependency
graphs enable you to do just that.

You can use a dependency graph to explore the relationships and organization of an existing code
base. These graphs make it easy to understand code that is new or unfamiliar to you. The relation-
ships on the graph make it readily apparent how different areas of code relate to one another and
can show you how a change to one area of code could cause potential issues for other areas of the
code. You have multiple ways to view your dependency graph information.

NOTE A dependency graph shows only those dependencies in code that have
gone through a successful build. Any code that did not build successfully does
not appear on the dependency graph.

NOTE Dependency graphs are also referred to as directed graphs. The two
terms are used interchangeably.

Creating the First Dependency Graph
You actually have several different options for creating a dependency graph. Because the fi rst half of
this chapter deals with Architecture Explorer, let’s continue that thread so you can see how you can
create dependency graphs from Architecture Explorer. Later, you learn how you can create depen-
dency graphs, without using Architecture Explorer, to get a quick overview of your source code or
compiled code.

Previously, using Architecture Explorer, you learned how to drill down into your source code. You
saw how to select the FirstProject namespace, the FirstClass class, and the Method1 method.
From here, let’s select Method2 and Method3 in Architecture Explorer.

Dependency Graphs ❘ 329

c16.indd 02/27/2014 Page 329

To display this information as a dependency graph, simply click the Create a New Graph Document
button on the Architecture Explorer window. This takes all the information selected in Architecture
Explorer and displays it as a dependency graph, as shown in Figure 16-9.

FIGURE 16-9

As you can see, this graph provides an easy-to-understand graphical overview of the information
contained in Architecture Explorer. You can see that the FirstProject namespace contains the
FirstClass class. The FirstClass class contains two methods: Method1 and Method2. Method1
makes references to both Method2 and Method3. Also, you can see that Method2 makes reference to
Method1.

If you want to view the code fi le for a particular node, that is easy to do from the dependency graph.
You simply right-click the node and select Go To Defi nition from the context menu to open the code
fi le associated with the selected node.

You can easily add more nodes to an existing dependency graph. Let’s say you create an initial
dependency graph using Architecture Explorer. Now, let’s say that you want to add more nodes to
the graph to make it more detailed. Select the nodes you want to add in Architecture Explorer and
then click the Add Selected Nodes to Existing Graph button on the left side of the Architecture
Explorer window. This adds the selected nodes to the existing graph.

Creating a Dependency Graph Without Architecture Explorer
You can also create a dependency graph without even opening Architecture Explorer. This can be
very handy when you want to analyze the entire code base of your code without having to worry
about drilling down through particular elements using Architecture Explorer. For example, you can
drag and drop a .NET assembly onto a blank diagram and it automatically decomposes the assem-
bly for you.

330 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 330

From the main menu of Visual Studio Ultimate 2013, select Architecture ➪ Generate Dependency
Graph. This provides you with two options for generating your dependency graph:

 ➤ For Solution—This option generates a dependency graph based on the current open
solution.

 ➤ For Include File—This option generates a dependency graph based on a C++ include fi le.

Figure 16-10 shows an example of a dependency graph generated using the For Solution option. You
will need to click Legend to see the legend shown in Figure 16-10.

FIGURE 16-10

Each project generates its own assemblies, which, in the example project, would be FirstProject
.exe and SecondProject.exe. In addition, there is a reference to an Externals assembly, which
includes the references and calls into the .NET Framework. Although the black-and-white picture
might not show it well, the legend is color-coded to help you easily understand the different aspects
of your dependency graph.

Dependency Graphs ❘ 331

c16.indd 02/27/2014 Page 331

Navigating Through Your Dependency Graph
You may be thinking that the information shown in Figure 16-10 is nice, but it is not that helpful.
It sure would be nice if you could drill down into the dependency graph in a manner similar to how
you drill down into information in Architecture Explorer. Well, guess what? You can!

By clicking the arrow icon located at the top-left of a node, you can expand the node to view the
detailed information in that node, as shown in Figure 16-11. The arrow icon will become visible
when you mouse over the node.

FIGURE 16-11

FirstProject.exe is comprised of the FirstProject namespace. The namespace contains three
classes: FirstClass, SecondClass, and Class1. FirstClass contains two methods: Method1 and
Method2. SecondClass contains one method: Method3.

The dependency graph shows the interactions between the different methods. It also shows that the
SecondProject.exe assembly makes calls to Method3 in the SecondClass class. To view exactly
which object is making this call, you can expand the information for that assembly on the depen-
dency graph.

332 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 332

NOTE The information displayed in Figure 16-11 is the same information dis-
played in Figure 16-9, just in a different format. You can format a dependency
graph using a variety of different options.

The next question you might have is whether you can drill down into that external node. The
answer is, yes! Using a dependency graph, you can drill down into external assemblies (such as the
.NET Framework). This is an incredibly powerful tool. You now have the capability to delve into
the .NET Framework and map how all the objects and methods interact with each other, enabling
you to come to a much better and deeper understanding of how the .NET Framework works.
Figure 16-12 shows an example of this.

FIGURE 16-12

You also have the capability to interact with your dependency graph by right-clicking the graph
and selecting from a variety of context menu options. You will recognize many of the options from
Architecture Explorer. The exact options depend on what is selected on the dependency graph.

Dependency Graphs ❘ 333

c16.indd 02/27/2014 Page 333

You can select a specifi c node on a graph and then choose the Advanced ➪ Select menu option from
the context menu. This enables you to do the following:

 ➤ Select all incoming links to the selected node

 ➤ Select all outgoing links from the selected node

 ➤ Select both incoming and outgoing links from the selected node

 ➤ Select all connected nodes to the selected node

 ➤ Select all children of the selected node

You have the capability to add groups and categories to the graph, enabling you to organize the
graph in a more readable fashion.

Refer to Figure 16-11 to see another nice feature of dependency graphs, which is the capability to
apply different analyzers to the information on the graph. You saw these analyzers before when you
worked with Architecture Explorer, but they make even more sense when you see them in conjunc-
tion with the dependency graph.

From the Legend, click the Add button (it looks like a plus sign), select Analyzer, and then select
Circular References. This analyzer looks for circular references, or infi nite loops, in your graph.
When those references are found, it highlights them (in red) on the dependency graph, instantly
bringing them to your attention, as shown in Figure 16-13.

FIGURE 16-13

334 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 334

The Find Hubs analyzer is also available. It shows which hubs are a Node Property in the top
25 percent of high-connected nodes. This is a quick-and-easy way to see which hubs are involved
with a majority of the work in the application.

The Unreferenced Nodes analyzer is also available. It highlights any nodes that are not referenced by
any other nodes. They are orphans. This is a good way to fi nd areas of the code that are not being
used either because of oversight or because they are no longer needed.

Dependency Graph Legend
In the upper-right corner of each dependency graph is the legend (see Figure 16-11). You can use
the legend to help you understand all the different components that make up the dependency
graph. One nice feature of the legend is that it is completely customizable, which means you can
control the shapes and colors that are used on the graph, thus enabling you to customize the graph
to your needs.

For the dependency graph shown in Figure 16-11, if you were to click the Add button on the legend
(the plus icon), you would have the following four options that could be added to the graph:

 ➤ Node Property

 ➤ Node Category

 ➤ Link Property

 ➤ Link Category

Each of these options has sub-options underneath it that you can add to the legend. To see these
sub-options, you will need to expand the nodes in the diagram. For Node Property, the options are
the following:

 ➤ Is Abstract

 ➤ Is Final

 ➤ Is Private

 ➤ Is Public

 ➤ Is Static

 ➤ StrongName

 ➤ Error

 ➤ File Path

 ➤ Group

 ➤ Circular References

For Node Category, the options are the following:

 ➤ Assembly

 ➤ Class

Dependency Graphs ❘ 335

c16.indd 02/27/2014 Page 335

 ➤ Method

 ➤ Namespace

 ➤ Externals

 ➤ FileSystem.Category.FileOfType.exe

For Link Property, the options are the following:

 ➤ Circular Link

 ➤ Weight

And, fi nally, for Link Category, the option is the following:

 ➤ Calls

 ➤ User Attribute

 ➤ Inherits From

 ➤ References

When you have added a new item to the legend, you can customize its appearance. You can click the
icon in the legend and select from the following four customization options:

 ➤ Background—This lets you select a color for the background of the node.

 ➤ Stroke—This selects the color that outlines the node.

 ➤ Foreground—This sets the text color in the node.

 ➤ Icons—This enables you to select from a variety of icons to add into the node itself.

Dependency Graph Toolbar
You can use the dependency graph toolbar to modify the look and feel of a dependency graph. At the
far left of the toolbar are the Undo/Redo buttons, allowing you to undo a change or reapply a previ-
ously undone change. The Show Related drop-down allows you to see any assemblies that reference,
or are referenced, by a selected item on the graph. The Layout drop-down allows you to specify
the directional fl ow of the dependency graph. Options here include Left-to-Right, Right-to-Left,
Top-to-Bottom, Bottom-to-Top, and Quick Clusters. Top-to-Bottom is the default view. The Quick
Clusters view shows the nodes as clusters or hubs. In this view, the graph is arranged with the most
dependent nodes near the center, and the least dependent nodes at the outer edges of the clusters of
hubs. Figure 16-14 shows the dependency graph toolbar.

Clicking the magnifying glass opens a search window, so you can search the dependency graph for
specifi c information. The Share drop-down allows you to copy the dependency graph image to the
clipboard, email the image, or save it as a portable XPS document.

Finally, there are the zoom controls. As you can imagine, a dependency graph can grow to be quite
large. These tools enable you to zoom into and out of areas of the graph that you are interested
in. You can use the drop-down listbox to fi t the graph to the page or to select pre-specifi ed zoom

336 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 336

options. You can also use the scroll wheel on the mouse to zoom in and out of the graph, as well as
a button to fi t the diagram to the screen.

FIGURE 16-14

The Code Index
One of the things you will notice about dependency graphs is that they are very responsive. When you
generated a dependency graph for the entire solution, you probably saw the window in Figure 16-15.

FIGURE 16-15

When you generate a dependency graph, the fi rst thing that happens is the solution is built. Next,
the assemblies are indexed and stored in a SQL Server localdb database. This database is referred
to as the Code Index. Then, the graph is built using the indexed information from the Code Index.
Although this means the initial visualization of the graph takes longer to generate, after you start
working with the graph you can very quickly drill down into elements or add new elements to the
graph.

Zooming in and out of a dependency graph is a fast, pleasant experience. In Visual Studio Ultimate
2013, through the use of the Code Index, only the portion of the graph that is being utilized at the
time is brought into memory, making it much more responsive.

As just mentioned, the Code Index is created when the dependency graph is initially generated. It is
possible to prepopulate the index during the automated build process, using build tasks. To do this,
you need to make use of the Visual Studio Visualization and Modeling SDK, which is freely avail-
able from Microsoft.

NOTE For more information on the Visual Studio Visualization and Modeling
SDK, see the MSDN information available at http://archive.msdn
.microsoft.com/vsvmsdk.

You can view the contents of the Code Index using Server Explorer in Visual Studio Ultimate
2013. Open the Server Explorer window in Visual Studio Ultimate 2013. Right-click the Data

http://archive.msdn

Code Maps ❘ 337

c16.indd 02/27/2014 Page 337

Connections icon and select Add Connection from the context menu. This opens the Choose Data
Source window. Select Microsoft SQL Server, then click the Continue button. This opens the Add
Connection window, shown in Figure 16-16.

FIGURE 16-16

In the Server Name fi eld, enter (localdb)\v11.0. Select the database named Repository. This is the
Code Index database. Click OK to close the window and connect to the Code Index. Figure 16-17
shows a list of tables from the Code Index. At this point, you can open the tables to view the data
collected by the indexing.

CODE MAPS

Code maps are a new feature in Visual Studio Ultimate 2013 that, in some ways, are very similar to
dependency graphs. Code maps allow you to visualize your code relationships. However, one of the
main differences is that code maps appear alongside your code, allowing you to see where you are in
the hierarchy of the code while you are working on the code itself.

338 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 338

FIGURE 16-17

In Visual Studio, in your current working solution, open the FirstClass.cs fi le. Right-click
Method1 and select Show on Code Map from the context menu. This opens a new tab, named
CodeMap1.dgml, next to your code, and adds a single node for Method1, as shown in Figure 16-18.

The green arrow next to the node indicates that your cursor is currently in this method. In Visual
Studio you can select Method2 to see the cursor disappear on the code map. Select the Method1 node
on the code map, and look at the code window. Notice that all the places where the method is called
are highlighted in the code fi le. This makes it easy to fi nd all instances of a called object within a
section of code.

Let’s take this one step farther, and say you want to fi nd all the methods that call Method1. You
can right-click Method1 in the code map, and select Find All References. You can also right-click
Method1 in your code, and select Find All References on Code Map. This will fi nd all the references
to Method1 in your code base, and add them to the code map, shown in Figure 16-19.

Code Maps ❘ 339

c16.indd 02/27/2014 Page 339

FIGURE 16-18

FIGURE 16-19

340 ❘ CHAPTER 16 ANALYZING APPLICATIONS

c16.indd 02/27/2014 Page 340

The latest nodes added to the map are shown in green, making it easy to fi nd them. As you can
imagine, code maps can grow rather large. You can use the toolbar at the top of the code map tab
(the same toolbar used for dependency graphs) to resize the diagram as well as change its orienta-
tion. You can also right-click a node to change its colors. You can add comments to a code map by
right-clicking the code map and selecting New Comment from the context menu. This allows you to
provide annotations that other team members might fi nd helpful.

Each item in the code map has a recycle icon located in its top-left corner. This is the Refetch
Children button. Clicking this button will fetch any children of the associated item, and add them to
the code map.

Another nice feature of code maps is its ability to view the call stack visually while debugging. This
also allows you to make notes on the map to track what the code is doing, while you are trying to
fi nd and fi x bugs. You can create code maps in C#, Visual Basic, C++, and JavaScript. To try this
out, open the FirstClass.cs fi le in Visual Studio, and set a breakpoint on the SecondClass
.Method3(); line. Press F5 to start debugging the application. Visual Studio
will break at the selected line, and enter debug mode. In the debugger tool-
bar at the top of Visual Studio, select the Code Map button, shown in
Figure 16-20.

This opens the current call stack (shown in orange) in a code map window next to the code base.
Now what’s nice about this code map is that it will be automatically updated as you move through
your code. Figure 16-21 shows the code map after stepping through the code.

FIGURE 16-21

FIGURE 16-20

Summary ❘ 341

c16.indd 02/27/2014 Page 341

Notice how the code map shows where the breakpoints have been set in your code. The yellow
arrow shows your current location in the code, while the squares above it show how you arrived in
your current position. Not all calls will appear in the code map. By default, only the code you
created will appear. To see external code, turn it on in the Call Stack window or turn off Enable
Just My Code in the Visual Studio debugging options. When you are done debugging, the code map
will be preserved. This allows you to save it if desired and keep a map of the debugging experience.
You can then save the code map as an XPS fi le or send it to your teammates as an email.

SUMMARY

This chapter examined Architecture Explorer, dependency graphs, and code maps. The chapter
started off discussing Architecture Explorer, including why you would want to use it, and how to
use it. From there, you walked through an example of using Architecture Explorer so you could
become familiar with many of its features.

The discussion then moved on to dependency graphs. You learned how dependency graphs can be
created with information from Architecture Explorer, as well as directly from solutions. You also
learned about dependency graphs in depth and how to use all the options available. You also learned
how the Code Index speeds the performance of dependency graphs. Finally, you learned about code
maps and how they can be used as part of the debugging process.

Chapter 17 is the fi nal chapter on the architecture tools available in Visual Studio Ultimate
2013. Chapter 17 looks at layer diagrams, how they are built, and how they are useful in dividing
your code base into understandable sections, as well as how they can be used as a validation tool
during the build process.

c17.indd 02/27/2014 Page 343

Using Layer Diagrams to
Model and Enforce Application
Architecture

WHAT’S IN THIS CHAPTER?

 ➤ Understanding a layer diagram

 ➤ Creating a layer diagram

 ➤ Defi ning dependencies on a layer diagram

In the other chapters in this section of the book, you learned about some of the different mod-
eling diagrams available in Visual Studio Ultimate 2013. This chapter examines the fi nal dia-
gram—the layer diagram.

Layer diagrams are used to describe the structure of an application at a high level. You can
also use these diagrams to verify that the developed code conforms to the high-level design
laid out in the layer diagram. One nice feature about layer diagrams is their capability to
validate application design architecture against the code base, ensuring that the code and
architecture continue to match during the development process.

In a way similar to a traditional architecture diagram, a layer diagram shows the major com-
ponents of the architecture design. Dependencies between the components are also laid out
on the diagram. A diagram consists of one or more nodes, referred to as layers. A layer can
represent any sort of logical group—for example, a namespace or a class fi le. Dependencies
on a layer diagram can be defi ned explicitly based on your proposed architecture, or you can
have the tool discover them from the existing relationships in the code. You can also incorpo-
rate layer diagrams into the automated build process, which enables you to verify that code
changes adhere to the architectural design.

17

344 ❘ CHAPTER 17 USING LAYER DIAGRAMS TO MODEL AND ENFORCE APPLICATION ARCHITECTURE

c17.indd 02/27/2014 Page 344

This chapter examines layer diagrams in detail. You fi rst learn how a layer diagram is created. Next,
you fi nd out how to add layers to a diagram, both by using the toolbox and by building layers from
an existing code base. You see how you can use the Layer Explorer to provide a detailed look at
which artifacts are contained within a layer. The chapter wraps up by looking at layer validation,
and how to include layer validation in the build process.

CREATING A LAYER DIAGRAM

To use a layer diagram, you must add a new one to the solution with which you are currently work-
ing. Creating a new blank layer diagram requires the use of either an existing modeling project, or
the creation of a new modeling project in the current solution. Because layer diagrams are simply
another type of diagram in Visual Studio, they must have a modeling project to be stored in.

WARNING For this chapter, you use the sample solution from Chapter 16,
which is available from this book’s web page on www.wrox.com.

To create a new blank layer diagram in the solution, select Architecture from the Visual Studio
main menu, and then select New Diagram. This opens the Add New Diagram window, as shown in
Figure 17-1.

FIGURE 17-1

http://www.wrox.com

Defi ning Layers on a Layer Diagram ❘ 345

c17.indd 02/27/2014 Page 345

In the Add New Diagram window, select the Layer Diagram. In the Name fi eld, enter the name of
your layer diagram. All layer diagrams end in .layerdiagram.

If the solution contains an existing modeling project, you can select it in the Add to Modeling
Project drop-down box. If the current solution does not contain a modeling project, then select
Create a New Modeling Project in the drop-down box, and the Add New Diagram window prompts
you to create a new modeling project.

After you have selected the layer diagram model type, given a name to the model, and selected the
appropriate option from the Modeling Project drop-down box, click the OK button. If a new model-
ing project is being created, the Create New Modeling Project window opens.

Modeling Project is the only option available for creating a new modeling project, although you
can control the .NET Framework support for the modeling project by selecting the appropriate ver-
sion for the framework at the top of the window. Enter a name for the modeling project and the
location to store the project and then click OK. The modeling project is created; a new blank layer
diagram is created inside the modeling project; and the new blank layer diagram opens in a tab in
Visual Studio.

WARNING Although a layer diagram is located in a modeling project, it can
link to any artifact in the current Visual Studio solution.

DEFINING LAYERS ON A LAYER DIAGRAM

The next step is to defi ne the different layers on the layer diagram. Each layer on a layer diagram
appears as a rectangle. Different layers can be nested inside each other, which is called grouping.
The different layers in a layer diagram are used to defi ne logical groups of artifacts, including
methods, classes, and namespaces.

You can defi ne layers on the layer diagram by dragging objects from the layer diagram toolbox,
dragging objects from Solution Explorer, or dragging objects from the Architecture Explorer. The
easiest way is to use the layer diagram toolbox. Use the objects in the layer diagram toolbox to
defi ne a layer diagram with three sections.

 1. Drag a layer object from the toolbox onto the blank diagram. A rectangle appears on the dia-
gram with the default name Layer 1. Double-click the layer and change the name to
UI Layer.

 2. Drag another layer object from the toolbox and place it directly below the UI Layer object.
Double-click this object and rename it Business Logic Layer.

 3. Drag a third layer object onto the diagram below the other two and rename it Data Access
Layer. Figure 17-2 shows what the layer diagram should look like at this point.

346 ❘ CHAPTER 17 USING LAYER DIAGRAMS TO MODEL AND ENFORCE APPLICATION ARCHITECTURE

c17.indd 02/27/2014 Page 346

FIGURE 17-2

For each layer, you can specify certain properties by selecting the layer object, and referring to the
Properties window in Visual Studio:

 ➤ Forbidden Namespaces—Use this property to specify that artifacts associated with a layer
must not belong to the specifi ed namespaces. Separate each namespace with a semicolon (;).

 ➤ Forbidden Namespace Dependencies—Use this property to specify that artifacts associated
with a layer cannot depend on the specifi ed namespaces. Separate each namespace with a
semicolon (;).

 ➤ Required Namespaces—Use this property to specify that artifacts associated with a
layer must belong to one of the specifi ed namespaces. Separate each namespace with a
semicolon (;).

At this point, you have created three “unlinked” layers. The layers are referred to as unlinked
because currently no code fi les are associated with them. This is useful to help represent different
parts of an application that have not yet been developed. You continue to build off this layer dia-
gram later in this chapter. But, for now, let’s continue to look at the different ways layers can be
added to a layer diagram.

Defi ning Layers on a Layer Diagram ❘ 347

c17.indd 02/27/2014 Page 347

Creating a Layer for a Single Artifact
As mentioned previously, a layer represents a logical grouping of artifacts. There may be times when
a single artifact (such as a project, or even a single code fi le) must be represented as its own layer.
This is easy to do with a layer diagram. In fact, you can use any of the following sources to add lay-
ers to a layer diagram:

 ➤ Solution Explorer—From within Solution Explorer, you can drag and drop any fi le or project
contained in the Solution Explorer onto the layer diagram surface. A new layer is created
with the name of that fi le or project, and it contains a link to the fi le or project.

 ➤ Architecture Explorer—Using the Architecture Explorer, you can drill down to the informa-
tion you are interested in (such as namespaces) and drag and drop those namespaces onto the
surface. Those namespaces appear as layers on the diagram, again with the layer linked to the
information that was dropped onto the diagram.

 ➤ Dependency Graphs—You also have the capability to drop dependency graph information
directly onto a layer diagram to create layers.

Adding Multiple Objects to a Layer Diagram
When you drag and drop multiple items to a layer diagram at the same time, the default action is
to create a single layer on the diagram, with all the objects contained within that layer. To create a
separate layer for each artifact dropped as a group, simply hold down the Shift key while dropping
the artifacts onto the layer diagram. A layer for each artifact appears on the diagram, and each layer
is linked to its appropriate artifact.

To add an artifact to an existing layer, simply drop the artifact onto an existing layer on the layer
diagram. A link is established between the layer and the artifact.

NOTE As a general rule, you should always place artifacts in the same layer
if they have some sort of close interdependence. Artifacts that can be easily
updated separately (or, for example, are used in separate applications) should be
in different layers.

The Layer Explorer
To understand how links are added to a layer diagram and how to view the linked information
between a particular layer on a layer diagram and its linked artifacts, let’s continue to build off the
layer diagram from Figure 17-2.

From Solution Explorer, click FirstClass.cs and drag and drop it onto the UI Layer of the layer
diagram. Visually, the only thing that changes on the diagram is that the number 1 appears in the

348 ❘ CHAPTER 17 USING LAYER DIAGRAMS TO MODEL AND ENFORCE APPLICATION ARCHITECTURE

c17.indd 02/27/2014 Page 348

top-right corner of the UI Layer. This number indicates the number of artifacts that have been
linked to this particular layer. Now, drag the SecondClass.cs object from the Solution Explorer
onto the Business Logic Layer. You should see the number 1 appear on that layer. Finally, drag the
ThirdClass.cs object from the Solution Explorer to the Data Access Layer. The layer diagram
should now resemble Figure 17-3.

FIGURE 17-3

In Figure 17-3, you see three layers, with each layer containing one artifact. But how do you go
about viewing which artifacts are contained within which layers? That is where the Layer Explorer
comes in.

You use the Layer Explorer to view artifacts that are linked to a particular layer and to move arti-
facts between layers. To open the Layer Explorer, right-click a layer in the layer diagram and select
View Links. By default, the Layer Explorer opens on the right side of Visual Studio, usually as a tab
in the same window as the Solution Explorer, as shown in Figure 17-4.

The Layer Explorer displays all the artifacts that are linked to a particular layer. As shown in Figure
17-4, the Layer Explorer contains a series of columns that display different properties about the
linked artifacts:

 ➤ The Name column displays the name of the linked artifact.

 ➤ The Categories column displays information about the type of artifact. This could be class,
namespace, or project fi le, just to name a few.

Defi ning Dependencies ❘ 349

c17.indd 02/27/2014 Page 349

 ➤ The Layer column displays the layer that the artifact belongs to.

 ➤ The Supports Validation column indicates whether the linked artifact participates in the
layer-validation process. If this column is set to False, the linked artifact does not partici-
pate. If this column is set to True, the linked artifact does participate, and the layer-valida-
tion process can verify that the project conforms to dependencies to or from this element.

 ➤ The Identifi er column is used to provide a reference to the linked column.

FIGURE 17-4

To display all the artifacts on a layer diagram, click anywhere on the white space area of the layer
diagram. This deselects any layers that have been selected, which, in turn, displays all the artifacts
linked to different layers in the Layer Explorer.

To delete an artifact from the layer diagram, select the artifact in the Layer Explorer, right-click
the artifact, and select Delete. This deletes the artifact from both the Layer Explorer and the layer
diagram.

To move an artifact from one layer to another, you have a couple of options. In the Layer Explorer,
you can right-click the artifact in question and select Cut. Then, in the layer diagram, right-click the
appropriate layer and select Paste. Also, you can simply drag the artifact from the Layer Explorer
onto a layer on the layer diagram. The artifact is removed from its initial layer and added to the
new layer.

An artifact can be a member of multiple layers. One way to add an artifact to multiple layers is to
drag the object onto the multiple layers from Solution Explorer. A second option is to right-click the
artifact in the Layer Explorer, select Copy, and then right-click the layer in the layer diagram and
select Paste. In either event, a second instance of the artifact appears in the Layer Explorer, but it’s
linked to a different layer.

DEFINING DEPENDENCIES

After you have defi ned the layers in the layer diagram, the next step is to identify the dependen-
cies between the different layers. A dependency between two layers exists whenever an artifact
that exists in one layer references or uses an artifact that exists in another layer. For example, a

350 ❘ CHAPTER 17 USING LAYER DIAGRAMS TO MODEL AND ENFORCE APPLICATION ARCHITECTURE

c17.indd 02/27/2014 Page 350

dependency exists between the Business Logic Layer and the Data Access Layer when a class in the
Business Logic Layer calls or makes reference to a class in the Data Access Layer.

Depending on how the layer diagram was built, you may want to have the dependencies discovered
for you automatically, or you may want to defi ne them by hand. More than likely, you will use a
combination of the two options.

If the layer diagram was created by dragging existing code artifacts onto the diagram (such as fi les
from a project in Solution Explorer or Architecture Explorer), then the dependencies between the
different layers in which those objects exist can be found automatically. If you right-click the layer
diagram surface and select Generate Dependencies, Visual Studio analyzes the artifacts that exist in
each layer, identifi es all the dependencies between the different artifacts, and then represents those
dependencies on the layer diagram as a series of arrows connecting one layer to another.

A dependency can be a uni-directional dependency, meaning that Layer 1 is dependent on objects in
Layer 2, but Layer 2 is not dependent on any objects in Layer 1. Dependencies can also be bi-direc-
tional, meaning that, just as there are objects in Layer 1 that depend on Layer 2, there are objects in
Layer 2 that depend on Layer 1.

Dependencies on a layer diagram can also be defi ned by hand. This is helpful especially when you
are creating the layer diagram as part of the design phase. In that phase, you don’t know the specifi c
code artifacts that you will be creating. But you do know the different high-level areas of your appli-
cation, and you want to defi ne how they will interact or depend on each other.

Let’s use the layer diagram from Figure 17-3 and add some dependencies between the different lay-
ers. In the layer diagram, you have three different layers: the UI Layer, the Business Logic Layer, and
the Data Access Layer.

The UI Layer is dependent on artifacts in the Business Logic Layer. Without the Business Logic
Layer, there is no information for the UI Layer to display. This dependency is represented by using a
Dependency object from the layer diagram area of the Visual Studio toolbox. Click the Dependency
object in the layer diagram area of the Visual Studio toolbox. Then, on the layer diagram, click
the UI Layer followed by the Business Logic Layer. A dependency arrow connects the two layers,
stretching from the UI Layer to the Business Logic Layer, as shown in Figure 17-5.

A Dependency object has properties, just like any other object in Visual Studio. The property win-
dow in Visual Studio displays the properties available. You can defi ne a name and include a descrip-
tion of the dependency. You can also control the direction of the dependency arrow here. If you need
to reverse the direction, select Backward in the Direction property. You can also turn the depen-
dency into a bi-directional dependency by selecting Bi-Directional in the Direction property.

You also have a dependency between the Business Logic Layer and the Data Access Layer. The
Business Logic Layer cannot perform its functions, or provide information to the UI Layer, without
information from the Data Access Layer. Using the same method described previously, you can cre-
ate a dependency between the two layers (you select the Dependency object and connect the Business
Logic Layer and the Data Access Layer).

Validating the Layer Diagram ❘ 351

c17.indd 02/27/2014 Page 351

Dependencies cannot be generated for certain types of artifacts in a layer diagram. For example,
if you add a text fi le to a layer in a layer diagram, there are no dependencies generated either to
or from that particular layer around that text fi le. To determine if an artifact is going to generate
dependencies, select the layer that contains the artifact and open the Layer Explorer by right-click-
ing the layer and selecting View Links. In the Layer Explorer, if the value in the Supports Validation
column is set to False, then the artifact does not generate any dependencies for that layer.

FIGURE 17-5

VALIDATING THE LAYER DIAGRAM

At this point, you may be saying to yourself, “Okay, layer diagrams are great and all, but what is the
actual benefi t to me? Why do I want to go to all this effort of creating different layers and linking
my code artifacts to these different layers?” The answers to these questions lie in the capability to
validate the architecture.

Validation enables you to confi rm that all the dependencies defi ned between all the different layers
are being respected. This provides the capability to enforce rules and dependencies between different

352 ❘ CHAPTER 17 USING LAYER DIAGRAMS TO MODEL AND ENFORCE APPLICATION ARCHITECTURE

c17.indd 02/27/2014 Page 352

layers. For example, you may have segregated your code base where different namespaces are not
supposed to interact. You can defi ne that segregation using a layer diagram and dependencies, and
then add your code artifacts to their appropriate layers. If a developer miscodes something (such as
accessing a namespace she is not supposed to access), it may not be readily apparent by just looking
at the code. However, by using the validation features of a layer diagram, an error is immediately
thrown, pinpointing the problem area, so that you can quickly and easily resolve it.

To validate a layer diagram, right-click anywhere on the layer diagram and select Validate
Architecture from the context menu. Visual Studio analyzes the layer diagram, as well as all the
artifacts associated with the layer diagram. It follows all the dependencies to ensure that there are
no violations.

If no problems are found, a message is displayed in the output window that the architecture valida-
tion has succeeded. If problems are discovered in the layer diagram validation, they are displayed in
the Error List window in Visual Studio.

Using the layer diagram from Figure 17-5, let’s look at an example of validating the diagram. To
validate the layer diagram as it exists in Figure 17-5, right-click the layer diagram and select Validate
Architecture. Visual Studio goes through the validation process, including compiling the code, and
then verifi es any dependencies that exist on the diagram. Figure 17-6 shows the results from the
Output window in Visual Studio.

FIGURE 17-6

There are two validation errors in the layer diagram. The errors indicate that a dependency on the
layer diagram has not been satisfi ed. In the layer diagram shown in Figure 17-5, the UI Layer con-
tains the class named FirstClass, the Business Logic Layer contains the class named SecondClass,
and the Data Access Layer contains the class named ThirdClass. ThirdClass has a dependency on
both FirstClass and SecondClass, so, therefore, the Data Access Layer has a dependency on the
Business Logic Layer and the UI Layer. However, as you can see from the diagram in Figure 17-5,
that is not what is defi ned. Instead, the only dependency defi ned is between the Business Logic Layer
and the UI Layer.

Because the dependencies listed in the diagram do not match the actual dependencies in the code, an
error is thrown when the diagram is validated. At this point, the error needs to be resolved before
you move forward. There are several different options for resolving the error.

The fi rst option is to change the dependency information on the layer diagram—in this case, add-
ing dependency links between the Data Access Layer and the other two layers. A second option is
to modify the links of the different layer diagrams. For example, move all the classes into the same

Layer Diagrams and the Build Process ❘ 353

c17.indd 02/27/2014 Page 353

layer. A third option is to modify the code base to remove the dependency in the code and satisfy the
dependency defi ned in the layer diagram.

If for some reason you don’t want to change the code base or modify the dependency information in
the layer diagram, you can suppress the validation error. Right-click the error message in the Error
List window, select Manage Validation Errors, and then select Suppress Errors. This suppresses this
error message and prevents this specifi c error from being thrown again the next time the layer dia-
gram is validated.

NOTE If you right-click the error message and select Go To, you can easily
navigate to the code that is causing the dependency violation.

More than likely, the fi rst time validation is run against a layer diagram there will be confl icts.
At that point, you need to update the code base until the confl icts no longer exist. As new code is
developed and existing code is refactored, there may be the occasion to add new artifacts to the
layer diagram. This might not be necessary, depending on how the initial layer diagram was created.
Regardless, this is an iterative process, so be patient, and be sure to make the correct design deci-
sions as related to what you want to build.

LAYER DIAGRAMS AND THE BUILD PROCESS

You can use layer diagrams (and, in fact, almost any diagram contained within a modeling project)
to help validate your project or solution during the build process. In this context, “build process”
means pressing F5 in Visual Studio to compile and run your code locally, as well as to incorporate
your modeling diagrams as part of an automated build using Team Foundation Build.

To ensure that an individual diagram is included in the build process, the Build Action property of
the diagram must be set to Validate. To do this, select the appropriate diagram in the modeling
project in Solution Explorer. In the Properties window for that diagram, you see the Build Action
property. In the drop-down box for this property, select Validate to ensure that this diagram is vali-
dated as part of the build process.

To ensure that the architecture of all diagrams included in the modeling project is validated during
the build process, the Validate Architecture property of the modeling project must be set to True. To
do this, select the modeling project in Solution Explorer. In the Properties window for the modeling
project, you see a property named Validate Architecture. Set this property equal to True to enforce
(during a build) validation of all the diagrams contained within the modeling project.

Finally, to ensure that any code changes made by anyone on the team conform to the architecture
defi ned on the layer diagram, layer validation can be added to the automated build process. This
way, any time a build is run on the solution, all team member contributions are taken into consider-
ation, and any differences or exceptions to the architecture are reported as a build error on the
build report.

354 ❘ CHAPTER 17 USING LAYER DIAGRAMS TO MODEL AND ENFORCE APPLICATION ARCHITECTURE

c17.indd 02/27/2014 Page 354

To automate layer diagram validation during the build process, right-click the build defi nition and
select Edit Defi nition in Team Explorer and then click Process. Under Build Process Parameters,
expand Build, Advanced, and then enter the following MSBuild parameter:

/p:ValidateArchitecture=true

SUMMARY

 Layer diagrams provide a nice architectural way of structuring the design of the application and
confi rming that the code being developed matches the original architectural design.

This chapter looked at how to create layer diagrams and how to add layers to the diagram. You saw
how to create blank layers, how to create layers on the diagram, and how those layers can be vali-
dated against the code base to ensure no design or architecture decisions have been violated.

This ends this section of the book on the architecture tools in Visual Studio Ultimate 2013. Chapter
18 starts the next section of the book, which focuses on the different tools available to developers
to help write better code. In Chapter 18, you learn about some of the features in Visual Studio 2013
that are of most interest to developers.

c18.indd 02/27/2014 Page 355

PART V
Software Development

 ▸ CHAPTER 18: Introduction to Software Development

 ▸ CHAPTER 19: Unit Testing

 ▸ CHAPTER 20: Code Analysis, Code Metrics, Code Clone Analysis,
and CodeLens

 ▸ CHAPTER 21: Profi ling and Performance

 ▸ CHAPTER 22: Debugging with IntelliTrace

c18.indd 02/27/2014 Page 357

Introduction to Software
Development

WHAT’S IN THIS CHAPTER?

 ➤ Learning about application lifecycle management features of most
interest to developers in Visual Studio 2013

 ➤ Learning how My Work surfaces the most important items

 ➤ Managing interruptions using suspend and resume

 ➤ Seeking peer feedback on code using new code review capabilities

Visual Studio originally came into popularity in the 1990s by providing individual developers
with the tools they needed to build great software. Most applications in that timeframe were
created by individuals or relatively small teams working at a common location. However, over
the course of many years, organizations developed increasingly larger and more complex code
bases. The code is typically edited by a number of developers from all over the world, and
teams must embrace rapidly changing requirements in order to keep up with the pace of busi-
ness opportunities.

Simply having the tools at your disposal to create applications as an individual developer is no
longer enough. You need tools to analyze large code bases, and to identify hot spots that might
be causing you problems. You need tools that will provide you with the confi dence that the
application will still work after making your changes and will be more effi cient, and the qual-
ity of the code will improve as your team matures. This is where Visual Studio 2013 comes in.

Visual Studio 2013 is also very useful for new “green fi eld” development, on the occasion that
you are starting a project from scratch. From day one you can use the same tools that help you
work with large code bases to ensure that all newly created code maintains the same standards

18

358 ❘ CHAPTER 18 INTRODUCTION TO SOFTWARE DEVELOPMENT

c18.indd 02/27/2014 Page 358

you envisioned during the project kick-off meeting. As the code base grows, and more developers
come onto the project, you can ensure that you are not spending time prematurely optimizing code,
but rather easily identifying new performance bottlenecks as they occur.

Visual Studio 2013 provides developers of both managed and unmanaged code with a set of
advanced tools for identifying ineffi cient, insecure, or poorly written code. You can specify coding
best practices, and ensure that those are checked with every build, as well as ensuring that the code
is fully tested every time.

With Visual Studio 2013, Microsoft also recognizes that the transition to Agile planning comes at
a price with regard to helping developers stay “in the zone” writing code. A developer who is agile
might be frequently changing context from one priority to the next. In this chapter you learn about
the new suspend and resume capabilities, which can help developers more effi ciently manage their
development workspaces during the transitions.

You also learn about how Visual Studio 2013 and Team Foundation Server 2013 introduce code
review tooling that facilitates peer review of source code in a transparent, traceable manner.

The chapters in this part of the book dive deeper into the additional functionality provided by
Visual Studio 2013 for the developer.

WHAT’S NEW FOR DEVELOPERS IN VISUAL STUDIO 2013

Visual Studio 2013 introduces hundreds of new and improved features for developers. Across Visual
Studio you will fi nd improvements to languages, frameworks, project types, usability, performance,
extensibility, documentation — the list goes on and on. This book is by no means comprehensive
across all of these categories. However, there are several categories of new and improved application
lifecycle management capabilities that relate directly to developing complex software in team
environments, which are covered in this section, including the following:

 ➤ Unit testing experience

 ➤ Code analysis, code metrics, and code clone analysis

 ➤ CodeLens

 ➤ Profi ling and performance

 ➤ Advanced debugging with IntelliTrace

 ➤ Lightweight code commenting

 ➤ My Work view, which includes suspending and resuming work and facilitating code reviews

Unit Testing
Unit testing is a popular approach for improving code quality by writing small tests that validate
small blocks of code. Unit tests are especially important in complex or evolving code bases, where

What’s New for Developers in Visual Studio 2013 ❘ 359

c18.indd 02/27/2014 Page 359

one small change may have cascading consequences on functionality elsewhere in the code base. By
writing and maintaining a suite of unit tests, developers can quickly be alerted that a change they
just made affected a piece of functionality that was previously working correctly.

Visual Studio 2013 includes a few new features around unit testing. You can now create and save a
list of tests that you want to run or view as a group. This list of tests is called a playlist. When you
select a playlist, the tests in the list are displayed in the Test Explorer window. You can add a test
to more than one playlist, and all tests in your project are available when you choose the default All
Tests playlist. The Test Explorer window also provides enhanced fi ltering and grouping options to
make it easier to organize and execute unit tests.

Also, the new CodeLens feature (discussed in Chapter 20), allows you to fi nd unit tests and their
status without leaving the editor. This feature allows you to review and run unit tests for specifi c
code sections, as well as see the change history for a specifi c unit test defi nition.

The overall experience for viewing, running, and debugging tests has also been improved. You learn
all about the improvements to unit testing with Visual Studio 2013 in Chapter 19.

Code Analysis
Code analysis warnings now appear in their own tool window, the Code Analysis window. This
window makes it easy to view, manage, and resolve any code analysis warnings related to your code.
Visual Studio 2013 also added categories for the native code analysis rules, and exposes the exist-
ing managed code analysis categories in the Code Analysis window. This allows you to group your
warnings in a more fi ne-grained way, and can be helpful when dealing with a large list of warnings.
Chapter 20 focuses on code analysis.

CodeLens
CodeLens is a new feature of Visual Studio 2013 that shows you information about your code
directly in the code editor. Using CodeLens, you can see references, linked Team Foundation Server
Items, and unit test information, all within the context of your code. Chapter 20 gives you a detailed
look at the features of CodeLens.

Profi ler
The Visual Studio 2013 profi ler enables you to pinpoint possible performance bottlenecks within
your application. You can use the profi ler while running your application or while running tests.
You can even capture performance baselines to help you easily determine if performance is getting
better or worse as you check in new code. Visual Studio 2013 introduces the Performance
and Diagnostic Hub, which provides a single launch point for all your profi ling needs. Chapter 21
covers the use of the Visual Studio 2013 profi ler in more detail. In Figure 18-1, Figure 18-2, and
Figure 18-3, you can see examples of some of the new profi ling reports. Figure 18-1 contains the
HTML UI Responsiveness report; Figure 18-2 contains the Energy Consumption report; and
Figure 18-3 contains the JavaScript Memory report.

360 ❘ CHAPTER 18 INTRODUCTION TO SOFTWARE DEVELOPMENT

c18.indd 02/27/2014 Page 360

FIGURE 18-1

FIGURE 18-2

Advanced Debugging with IntelliTrace
IntelliTrace is an advanced debugging capability introduced in Visual Studio 2010 that enables you
to capture a full historical stack trace of an application’s execution. It’s very helpful to “rewind” the
debugger and understand the historical state of your application. Developers could use IntelliTrace
whenever they debugged a local application, or testers could enable IntelliTrace in test environments

What’s New for Developers in Visual Studio 2013 ❘ 361

c18.indd 02/27/2014 Page 361

so that an IntelliTrace fi le could be attached to a bug — which further aided the developer to under-
stand exactly what took place when diagnosing the issue.

With Visual Studio 2013, Microsoft has extended the usefulness of IntelliTrace by enabling orga-
nizations to capture traces from applications running in production environments. This provides
developers with greater insights into bugs coming from production environments and enables teams
to again improve the overall health and quality of their code. This functionality is provided through
the use of a new tool, the Microsoft Monitoring Agent.

IntelliTrace is covered in depth in Chapter 22.

FIGURE 18-3

Lightweight Code Commenting
Lightweight code commenting is a new feature in Team Foundation Server 2013 that allows you
to add comments to a specifi c fi le in version control, using only a web browser. To get started with
lightweight code comments, open a web browser and navigate to the Team Web Access site of
your team project. Once there, click the Code tab at the top of the page, then select the Changesets
subtab. This allows you to see the different changesets checked into Team Foundation Server.
Selecting a changeset displays detailed information about the changeset, including all the fi les
contained in it, and the details of what was changed within each fi le.

You have the capability to leave a comment for the entire changeset by selecting the changeset, then
clicking the Comment button on the toolbar. Users can click a reply link in the comment to respond
to it, allowing a chained conversation to begin. It’s similar to a message board.

You can also comment on a specifi c fi le. To do this, select the fi le in the changeset. Move your
mouse over the line of the fi le that you want to comment on. You will see a Comment button appear

362 ❘ CHAPTER 18 INTRODUCTION TO SOFTWARE DEVELOPMENT

c18.indd 02/27/2014 Page 362

to the left of the line number. Clicking this button opens a new comment, tied to that specifi c fi le
and line of code. Figure 18-4 shows a screenshot of lightweight code comments.

FIGURE 18-4

MY WORK

In previous chapters you worked with Team Explorer, which is the interface within Visual Studio
that provides developers with access to Team Foundation Server (source control, work items, builds,
reports, and so on). You may have noticed an area of Team Explorer titled My Work. My Work
provides developers with a personalized view into the work that matters most to them.

To open My Work, open Visual Studio ➪ Team Explorer. If Team Explorer is not visible, click View
➪ Team Explorer. Click the Home icon if you are not already at the Team Explorer home page.
Click My Work to see a view similar to that shown in Figure 18-5.

My Work shows a personalized view for each developer. Using My Work, a developer can:

 ➤ See work in progress, including pending changes

 ➤ Suspend and resume work (more on this later in this chapter)

 ➤ View any work items that are currently assigned to him

 ➤ Request code reviews and respond to code review requests from others (more on this later in
this chapter)

My Work ❘ 363

c18.indd 02/27/2014 Page 363

FIGURE 18-5

NOTE You can add your own queries to the My Queries category and display
them in the My Work pane. You do this by clicking the drop-down arrow next
to the currently selected query under the Available Work Items category, then
selecting your personal query.

Suspend and Resume
With Visual Studio 2013, Microsoft provides an easy way for developers to suspend their
in-progress work if they get interrupted. An interruption might be an important bug fi x that a
developer needs to make, or it could simply be that the developer is shutting down her machine for
the evening.

364 ❘ CHAPTER 18 INTRODUCTION TO SOFTWARE DEVELOPMENT

c18.indd 02/27/2014 Page 364

Interruptions have historically been very costly for developers. Team Foundation Server has always
made it easy to quickly shelve fi le edits for later, but for a developer to be productive it often means
setting breakpoints, declaring watch variables, and opening several specialized tool windows from
within Visual Studio. Thankfully, the new suspend and resume capabilities are designed to help
developers preserve all of this state information and then quickly get back in the zone when they are
ready to resume this work.

Refer to the top of the My Work pane in Figure 18-5; note that there are two work items in progress.
If this developer gets interrupted, he can quickly press Suspend & Shelve to back up all the pending
changes as a shelveset on Team Foundation Server 2013 and take note of the Visual Studio 2013
environment. The suspended work appears in the Suspended & Shelved Work section of the My
Work page. When the developer is ready to work on this again, he can simply click Resume. Visual
Studio unshelves the pending fi le edits, resets any breakpoints, and opens all the same fi les and tool
windows (even across multiple monitors). This can be a very valuable tool for developers to quickly
switch context with minimal overhead.

NOTE If a developer moves to a different machine, her suspended environment
does not follow her. She is still able to resume work and unshelve any pending
fi le edits from Team Foundation Server, but the overall state of her environment
(breakpoints, tool windows, and so on) is not restored onto the other machine.

Code Review
Most seasoned developers have grown to appreciate the value of peer reviews of source code. Code
reviews are quite simply a process whereby developers inspect each other’s changes to look for possi-
ble bugs or missed optimizations prior to committing those changes to the repository. Code reviews
are also a great way to teach junior developers, and it provides a way to educate more people on
your team about sections of your code base that they may not otherwise be exposed to.

Code reviews have now been built into Visual Studio 2013 and Team Foundation Server 2013 to
facilitate this process. One advantage of using these tools to facilitate code reviews is that they
become traceable and reportable — a team can audit a code change later on to discover whether it
was properly reviewed before being committed. By managing code reviews with Team Foundation
Server, it also means that team members who are geographically distributed can easily participate in
code reviews without the need to meet in person or on a teleconference.

To initiate a code review, click Request Review within the My Work pane of Team Explorer. You
are presented with a dialog similar to what’s shown in Figure 18-6. You can specify one or more
team members who should be asked to review this code, along with a title and description for the
code review. Any related work items that were in progress from your My Work view are automati-
cally associated with this code review request as well, which can provide additional context for the
reviewers into the intended edits. Click Submit Request when you are fi nished. You return to the My
Work view, and a new Code Review Request work item appears in your Code Review & Requests
category of this view. You can monitor this Code Review Request work item to see its status.

My Work ❘ 365

c18.indd 02/27/2014 Page 365

FIGURE 18-6

Likewise, your team members see your Code Review Request work item in their My Work view.
When they open this code review request, they see a dialog similar to Figure 18-7.

This dialog includes several pieces of functionality:

 ➤ Send Comments enables you to save your in-progress comments for this code review. This is
primarily intended to be used when you want to have a dialogue with the person who sub-
mitted the code review request, such as to ask clarifying questions before you continue your
review.

 ➤ The Accept and Decline links enable you to indicate to others whether you will work on this
request. For quick code reviews, there is no need to formally click Accept for a code review,
but doing so is helpful to signal to others that you are working on a longer code review or
you plan to work on it later.

 ➤ Send & Finish submits your code review and removes it from your list of pending code
reviews. Use this when you are fi nished with your code review.

 ➤ Add Reviewer enables you to add other people from the team to this request. Use this when
you are unable to complete a code review request or when you know that another team
member has expertise for a specifi c type of code change.

366 ❘ CHAPTER 18 INTRODUCTION TO SOFTWARE DEVELOPMENT

c18.indd 02/27/2014 Page 366

 ➤ There are three levels of comments that you can leave as part of a code review. Overall com-
ments are meant to capture impressions of the overall set of changes being reviewed. You can
leave fi le-level comments by right-clicking any given fi le and clicking Add File Comments.
You can also open any fi le, select some text, right-click the text, and select Add Comment to
leave line-level comments. These three levels of comments enable you as a reviewer to be very
specifi c with the type of feedback you are giving to the originator. The check boxes next to
each fi le also provide you with an easy way to ensure that you have reviewed each fi le in the
Code Review Request.

FIGURE 18-7

After you have submitted your response, the originator sees the response in his My Work pane.
Figure 18-8 shows the result of this response. The originator can choose to reply to any specifi c
comments, which is useful if this code review is audited later on. He can also continue to add or
remove reviewers until he is satisfi ed that the code has received an adequate level of review. Finally,
clicking Close Review closes the Code Review Request work item. When these changes are checked
in, the Code Review Request work item is automatically included in the changeset, along with any
linked code review responses.

Summary ❘ 367

c18.indd 02/27/2014 Page 367

FIGURE 18-8

NOTE If developers want to be notifi ed via email about any new or updated
code reviews, they can subscribe to alerts using Team ➪ Project Alerts. This
is sometimes helpful because updates to the My Work view must be refreshed
manually. Your Team Foundation Server 2013 instance needs to be confi gured
to support alerts. Contact your Team Foundation Server administrator if this
option is unavailable.

SUMMAR Y

This chapter provided a quick look at the areas of Visual Studio 2013 that will be of most interest to
developers and provided a preview of what to look forward to in this next section of the book.

Chapter 19 focuses in detail on the unit testing, including why you should care about it as a devel-
oper, and what tools Visual Studio provides to help you create and run unit test s.

c19.indd 02/27/2014 Page 369

Unit Testing
WHAT’S IN THIS CHAPTER?

 ➤ Learning the common concepts and benefi ts of unit testing

 ➤ Creating a unit test using the Visual Studio unit testing framework

 ➤ Executing, managing, and viewing the results of unit tests

 ➤ Using Microsoft Fakes

 ➤ Retrieving and installing test adapters

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/proalm3ed
on the Download Code tab. The fi les are in the Chapter 19 download folder and individually
named as shown throughout this chapter.

Programmatic unit testing involves writing code to verify a system at a lower and more granu-
lar level than with other types of testing. It is used by programmers for programmers, and
is quickly becoming standard practice at many organizations. All editions of Visual Studio
include unit testing features that are fully integrated with the IDE and with other features
(such as reporting and source control). Developers no longer need to rely on third-party
utilities (such as NUnit) to perform their unit testing, although they still have the option to use
them and, in fact, can integrate them into Visual Studio using the test adapter framework.

This chapter describes the concepts behind unit testing, why it is important, and how to
create effective unit test suites. You learn about the syntax of writing unit tests, and you see
how to work with Visual Studio’s integrated features for executing and analyzing those tests.
The discussion then goes into more detail about the classes available to you when writing your
unit tests, including the core Assert class and many important attributes.

19

http://www.wrox.com/go/proalm3ed

370 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 370

You fi nd out how Visual Studio enables the generation of unit tests from existing code, as well as
the generation of member structures when writing unit tests. And you delve into Microsoft Fakes,
a technology in Visual Studio 2013 that enables you to shim and stub your code for easier testing.
Finally, you take a brief look at the test adapter framework in Visual Studio 2013 and how you can
use that framework to utilize third-party testing frameworks in your testing process.

UNIT TESTING CONCEPTS

You’ve likely encountered a number of traditional forms of testing. Your quality assurance staff may
run automated or manual tests to validate behavior and appearance. Load tests may be run to estab-
lish that performance metrics are acceptable. Your product group might run user acceptance tests to
validate that systems do what the customers expect. Unit testing takes another view. Unit tests are
written to ensure that code performs as the programmer expects.

Unit tests are generally focused at a lower level than other testing, establishing that underlying
features work as expected. For example, an acceptance test might walk a user through an entire pur-
chase. A unit test might verify that a ShoppingCart class correctly defends against adding an item
with a negative quantity.

Unit testing is an example of white box testing, where knowledge of internal structures is used to
identify the best ways to test the system. This is a complementary approach to black box testing,
where the focus is not on implementation details but rather on overall functionality compared to
specifi cations. You should leverage both approaches to effectively test your applications.

Unit testing as a concept has been around for decades. However, in recent times, the process of per-
forming unit tests by writing code to execute those tests has become popular. This form of
programmatic unit testing is now what many people refer to as a “unit test” — and sometimes
people use the term “unit test” to cover all forms of testing conducted using the programmatic unit
testing frameworks, even if those tests are actually not tests of the unit of code, but are actually full
integration tests.

Benefi ts of Unit Testing
A common reaction to unit testing is to resist the approach because the tests seemingly make more
work for a developer. However, unit testing offers many benefi ts that may not be obvious at fi rst.

The act of writing tests often uncovers design or implementation problems. The unit tests serve
as the fi rst users of your system, and they frequently identify design issues or functionality that is
lacking. The act of thinking about tests causes the developer to question the requirements of the
application, and, therefore, seek clarifi cation from the business very early in the lifecycle of the soft-
ware development project. This makes things easy and inexpensive to rectify as the clarifi cation is
received.

After a unit test is written, it serves as a form of living documentation for the use of the target sys-
tem. Other developers can look to an assembly’s unit tests to see example calls into various classes
and members. An important benefi t of unit tests for framework APIs is that the tests introduce a
dependency at compile time, making it trivial to determine if any code changes have affected the
contract represented by the API.

Unit Testing Concepts ❘ 371

c19.indd 02/27/2014 Page 371

Perhaps one of the most important benefi ts is that a well-written test suite provides the original
developer with the freedom to pass the system off to other developers for maintenance and further
enhancement, knowing that their intentions of how the code would be used are fully covered by
tests. Should those developers introduce a bug in the original functionality, there is a strong likeli-
hood that those unit tests can detect that failure and help diagnose the issue. In addition, because
there is a full set of unit tests making up the regression tests, it is a simple task for the maintenance
team to introduce a new test that demonstrates the bug fi rst, and then confi rm that it is correctly
fi xed by the code modifi cation. Meanwhile, the original developer can focus on current tasks.

It takes the typical developer time and practice to become comfortable with unit testing. After a
developer has saved enough time by using unit tests, he latches on to them as an indispensable part
of the development process.

Unit testing does require more explicit coding, but this cost will be recovered, and typically
exceeded, when you spend much less time debugging your application. In addition, some of this cost
is typically already hidden in the form of a test console or Windows-based applications that a devel-
oper might have previously used as a test harness. Unlike these informal testing applications, which
are frequently discarded after initial verifi cation, unit tests become a permanent part of the project,
and ideally run each time a change is made to help ensure that the system still functions as expected.
Tests are stored in source control as part of the same solution with the code they verify and are
maintained along with the code under test, making it easier to keep them synchronized.

NOTE Unit tests are an essential element of regression testing. Regression test-
ing involves retesting a piece of software after new features have been added to
make sure errors or bugs are not introduced. Regression testing also provides an
essential quality check when you introduce bug fi xes in your product.

It is diffi cult to overstate the importance of comprehensive unit test suites. They enable developers
to hand off a system to other developers with confi dence that any changes they make should not
introduce undetected side effects. However, because unit testing provides only one view of a system’s
behavior, no amount of unit testing should ever replace integration, acceptance, and load testing.

Writing Effective Unit Tests
Because unit tests are themselves code, you are generally unlimited in the approaches you can take
when writing them. However, you should follow some general guidelines:

 ➤ Always separate your unit test assemblies from the code you are testing. This separation
enables you to deploy your application code without unit tests, which serve no purpose in a
production environment.

 ➤ Avoid altering the code you are testing solely to allow easier unit testing. A common mis-
take is to open accessibility to class members to allow unit tests direct access. This compro-
mises design, reduces encapsulation, and broadens interaction surfaces. You will see later in
this chapter that Visual Studio offers features to help address this issue. However, be open

372 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 372

minded to the idea that often what makes code easy to test in isolation makes that code more
maintainable.

 ➤ Each test should verify a small slice of functionality. Do not write long sequential unit tests
that verify a large number of items. Although creating focused tests results in more tests, the
overall suite of tests is easier to maintain. In addition, identifying the cause of a problem is
much easier when you can quickly look at a small failed unit test, immediately understand
what it was testing, and know where to search for the bug.

 ➤ All tests should be autonomous and isolated. Avoid creating tests that rely on other tests
to be run beforehand. Tests should be executable in any combination and in any order. To
verify that your tests are correct, try changing their execution order and running them in
isolation.

 ➤ Test both expected behavior (normal workfl ows) and error conditions (exceptions and
invalid operations). This often means that you have multiple unit tests for the same method,
but remember that developers always fi nd ways to call your objects that you did not
intend. Expect the unexpected, code defensively, and test to ensure that your code reacts
appropriately.

The fi nal proof of your unit testing’s effectiveness is when it saves you more time during develop-
ment and maintenance than you spent creating the tests. Experience has shown that you will realize
this savings many times over.

Third-Party Tools
Unit testing is not a new concept. Before Visual Studio introduced integrated unit testing, developers
needed to rely on third-party frameworks. The de facto standard for .NET unit testing has been an
Open Source package called NUnit. NUnit has its roots as a .NET port of the Java-based JUnit unit
testing framework. JUnit is itself a member of the extended xUnit family.

There are many similarities between NUnit and the unit testing framework in Visual Studio. The
structure and syntax of tests and the execution architecture are conveniently similar. If you have
existing suites of NUnit-based tests, it is generally easy to convert them for use with Visual Studio.

Visual Studio’s implementation of unit testing is not merely a port of NUnit. Microsoft has added a
number of features including IDE integration, code generation, new attributes, and enhancements
to the Assert class. The implementation is part of a broader testing platform across both Visual
Studio and Team Foundation Server. For example, these tests can be run through the test controller/
agent system, associated with test case work items, and queued with automated tests to run from
Microsoft Test Manager.

VISUAL STUDIO UNIT TESTING

Unit testing is a feature available in all editions of Visual Studio. Unit tests can be written against all
types of applications, from console applications to Windows Store apps. This section describes how
to create, execute, and manage unit tests.

Visual Studio Unit Testing ❘ 373

c19.indd 02/27/2014 Page 373

Unit tests are normal code, identifi ed as unit tests through the use of attributes. Like NUnit 2.0 and
later, Visual Studio uses .NET refl ection to inspect assemblies to fi nd unit tests.

NOTE Refl ection is a mechanism by which details about .NET objects can be
discovered at execution time. The System.Reflection assembly contains mem-
bers that help you identify classes, properties, and methods of any .NET assem-
bly. Refl ection even enables you to call methods and access properties of classes.

You also use attributes to identify other structures used in your tests and to indicate desired
behaviors.

Creating Your First Unit Test
This section takes a slower approach to creating a unit test than you will in your normal work. This
gives you a chance to examine details you could miss using only the built-in features that make unit
testing easier. Later in this chapter, you look at the faster approaches.

In order to have something to test, create a new C# class library project named ExtendedMath.
Rename the default Class1.cs to Functions.cs. You will add code to compute the Fibonacci
Sequence for a given number. The Fibonacci Sequence, as you may recall, is a series of numbers
where each term is the sum of the prior two terms. The fi rst six terms, starting with an input factor
of 1, are 1, 1, 2, 3, 5, and 8.

Open Functions.cs and insert the following code:

 namespace ExtendedMath
{
 public static class Functions
 {
 public static int Fibonacci(int factor)
 {
 if (factor < 2)
 {
 return (factor);
 }

 int x = Fibonacci(--factor);
 int y = Fibonacci(--factor);

 return x + y;
 }
 }
}

You are now ready to create unit tests to verify the Fibonacci implementation. Unit tests are
recognized as tests only if they are contained in separate projects called test projects. Test proj-
ects can contain any of the test types supported in Visual Studio. Add a test project named
ExtendedMathTesting to your solution by adding a new project and selecting the Unit Test Project

374 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 374

template. If the test project includes any sample tests for you (such as UnitTest1.cs) then you
can safely delete them. Because you will be calling objects in your ExtendedMath project, make a
reference to that class library project from the test project. You may notice that a reference to the
Microsoft.VisualStudio.QualityTools.UnitTestFramework.dll assembly has already been
made for you. This assembly contains many helpful classes for creating units tests. You’ll use many
of these throughout this chapter.

After you have created a new test project, add a new class fi le (not a unit test; that fi le type is cov-
ered later) called FunctionsTest.cs. You use this class to contain the unit tests for the Functions
class. You use objects from the ExtendedMath project and the UnitTestFramework assembly men-
tioned earlier, so add using statements at the top so that the class members do not need to be fully
qualifi ed:

 using Microsoft.VisualStudio.TestTools.UnitTesting;

Identifying Unit Test Classes
To enable Visual Studio to identify a class as potentially containing unit tests, you must assign the
TestClass attribute. If you forget to add the TestClass attribute, the unit tests methods in your
class are not recognized. Unit tests are required to be hosted within public classes, so don’t forget to
include the public descriptor for the class.

To indicate that the FunctionsTest class contains unit tests, add the TestClass attribute to its
declaration:

namespace ExtendedMath
{

 [TestClass]
 public class FunctionsTest
 {
 }
}

Note also that the parentheses after an attribute are optional if you are not passing parameters to
the attribute. For example, [TestClass()] and [TestClass] are equivalent.

Identifying Unit Tests
Having identifi ed the class as a container of unit tests, you’re ready to add your fi rst unit test. A
unit test method must be public, nonstatic, accept no parameters, and have no return value. To dif-
ferentiate unit test methods from ordinary methods, they must be decorated with the TestMethod
attribute.

Add the following code inside the FunctionsTest class:

 [TestMethod]
public void FibonacciTest()
{
}

Visual Studio Unit Testing ❘ 375

c19.indd 02/27/2014 Page 375

Unit Test Success and Failure
You have the shell of a unit test, but how do you test? A unit test indicates failure to Visual Studio
by throwing an exception. Any test that does not throw an exception is considered to have passed,
except in the case of the ExpectedException attribute, which is described later.

The unit testing framework defi nes the Assert object. This object exposes many members, which
are central to creating unit tests. You learn more about Assert later in the chapter.

Add the following code to the FibonacciTest:

[TestMethod]
public void FibonacciTest()
{

 const int FACTOR = 8;
 const int EXPECTED = 21;

 int actual = ExtendedMath.Functions.Fibonacci(FACTOR);

 Assert.AreEqual(EXPECTED, actual);
}

This uses the Assert.AreEqual method to compare two values, the value you expect and the value
generated by calling the Fibonacci method. If they do not match, an exception is thrown, causing
the test to fail.

When you run these tests, you see the Test Explorer window. Success is indicated with a green
check mark and failure with a red X. A special inconclusive result (described later in this chapter in
the section “Using the Assert Methods”) is represented by a question mark.

To see a failing test, change the EXPECTED constant from 21 to 22 and rerun the test. The Test
Explorer window shows the test as failed. The error message section at the bottom of the window
provides details about the failure. In this case, the error message shows the following:

Assert.AreEqual failed. Expected:<22>, Actual:<21>

This indicates that either the expected value is wrong, or the implementation of the Fibonacci
algorithm is wrong. Fortunately, because unit tests verify a small amount of code, the job of fi nding
the source of bugs is made easier.

REMEMBER THE THREE AS

When writing a unit test method, it is useful to remember the “Three As” pattern
for your method — Arrange, Act, Assert. First, you arrange your test by setting up
the variables, and then you invoke the code under test, and fi nally you assert that
the invoked code has passed the expectations. Use paragraphs of code (with empty
lines between) for each of the As.

Using this pattern makes it easy to look at test code written by others, and to deter-
mine exactly what is being done. In addition, it encourages you to test only one
thing per test method.

376 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 376

Managing and Running Unit Tests
After you have created a unit test and rebuilt your project, Visual Studio automatically inspects
your projects for unit tests. All unit tests that are found are displayed in the Test Explorer window,
shown in Figure 19-1. This window is used for managing and running tests. From this window you
have multiple options, such as running all your unit tests, running only tests that have not been run
yet, and viewing unit test run results.

FIGURE 19-1

NOTE For more detailed information on the Test Explorer window, see
Chapter 23.

Programming with the Unit Test Framework ❘ 377

c19.indd 02/27/2014 Page 377

Running Tests Directly from Code
You also have the capability to run a unit test directly from code. To do that, open the unit test and
navigate to the method. Right-click the unit test method in the code and, from the context menu,
select Run Tests. The selected test method will execute.

Debugging Unit Tests
Because unit tests are simply methods with special attributes applied to them, they can be debugged
just like other code.

You can set breakpoints anywhere in your code, not just in your unit tests. For example, the
FibonacciTest calls into the ExtendedMath.Fibonacci method. You could set a breakpoint in
either method and have execution pause when that line of code is reached.

However, setting program execution does not pause at your breakpoints unless you run your unit test in
debugging mode. The Test Explorer window enables you to right-click a test and select Debug Selected
Tests. The selected unit tests are run in debug mode, pausing execution at any enabled breakpoints and
giving you a chance to evaluate and debug your unit test or implementation code as necessary.

PROGRAMMING WITH THE UNIT TEST FRAMEWORK

This section describes in detail the attributes and methods available for creating unit tests. You
can fi nd all the classes and attributes mentioned in this section in the Microsoft.VisualStudio
.TestTools.UnitTesting namespace.

Initialization and Cleanup of Unit Tests
Often, you need to confi gure a resource that is shared among your tests. Examples might be a data-
base connection, a log fi le, or a shared object in a known default state. You might also need ways to
clean up from the actions of your tests, such as closing a shared stream or rolling back a transaction.

The unit test framework offers attributes to identify such methods. They are grouped into three lev-
els: Test, Class, and Assembly. The levels determine the scope and timing of execution for the meth-
ods they decorate. Table 19-1 describes these attributes.

TABLE 19-1: Unit Test Framework Attributes

ATTRIBUTES FREQUENCY AND SCOPE

TestInitialize, TestCleanup Executed before (Initialize) or after (Cleanup) any
of the class’s unit tests are run

ClassInitialize, ClassCleanup Executed a single time before or after any of the tests
in the current class are run

AssemblyInitialize,
AssemblyCleanup

Executed a single time before or after any number of
tests in any of the assembly’s classes are run

378 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 378

Having methods with these attributes is optional, but do not defi ne more than one of each attribute
in the same context. Also, keep in mind that you cannot guarantee the order in which your unit tests
will be run, and that should govern what functionality you place in each of these methods.

TestInitialize and TestCleanup Attributes
Use the TestInitialize attribute to create a method that is executed one time before every unit
test method in the current class. Similarly, TestCleanup marks a method that is always run immedi-
ately after each test. Like unit tests, methods with these attributes must be public, nonstatic, accept
no parameters, and have no return values.

Following is an example test for a simplistic shopping cart class. It contains two tests and defi nes the
TestInitialize and TestCleanup methods:

using Microsoft.VisualStudio.TestTools.UnitTesting;

[TestClass]
 public class ShoppingCartTest
{
 private ShoppingCart cart;

 [TestInitialize]
 public void TestInitialize()
 {
 cart = new SomeClass();
 cart.Add(new Item("Test"));
 }

 [TestCleanup]
 public void TestCleanup()
 {
 // Not required - here for illustration
 cart.Dispose();
 }

 [TestMethod]
 public void TestCountAfterAdd()
 {
 int expected = cart.Count + 1;
 cart.Add(new Item("New Item"));
 Assert.AreEqual(expected, cart.Count);
 }

 [TestMethod]
 public void TestCountAfterRemove()
 {
 int expected = cart.Count - 1;
 cart.Remove(0);
 Assert.AreEqual(expected, cart.Count);
 }
}

Programming with the Unit Test Framework ❘ 379

c19.indd 02/27/2014 Page 379

When you run both tests, TestInitialize and TestCleanup are both executed twice.
TestInitialize is run immediately before each unit test and TestCleanup immediately after.

ClassInitialize and ClassCleanup Attributes
The ClassInitialize and ClassCleanup attributes are used very similarly to TestInitialize
and TestCleanup. The difference is that these methods are guaranteed to run once and only once
no matter how many unit tests are executed from the current class. Unlike TestInitialize and
TestCleanup, these methods are marked static and accept a TestContext instance as a parameter.

The importance of the TestContext instance is described later in this chapter.

The following code demonstrates how you might manage a shared logging target using class-level
initialization and cleanup with a logging fi le:

 private System.IO.File logFile;

[ClassInitialize]
 public static void ClassInitialize(TestContext context)
 { // Code to open the logFile object }

[ClassCleanup]
 public static void ClassCleanup(TestContext context)
 { // Code to close the logFile object }

You could now reference the logFile object from any of your unit tests in this class, knowing that
it will automatically be opened before any unit test is executed and closed after the fi nal test in the
class has completed.

NOTE This approach to logging is simply for illustration. You see later how the
TestContext object passed into these methods enables you to more effectively
log details from your unit tests.

The following code shows the fl ow of execution if you run both tests again:

ClassInitialize
 TestInitialize
 TestCountAfterAdd
 TestCleanup
 TestInitialize
 TestCountAfterRemove
 TestCleanup
ClassCleanup

AssemblyInitialize and AssemblyCleanup Attributes
Where you might use ClassInitialize and ClassCleanup to control operations at a class level,
use the AssemblyInitialize and AssemblyCleanup attributes for an entire assembly. For example,

380 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 380

a method decorated with AssemblyInitialize is executed once before any test in that current
assembly, not just those in the current class. As with the class-level initialize and cleanup methods,
these must be static and accept a TestContext parameter:

[AssemblyInitialize]
 public static void AssemblyInitialize(TestContext context)
 { // Assembly-wide initialization code }

[AssemblyCleanup]
 public static void AssemblyCleanup(TestContext context)
 { // Assembly-wide cleanup code }

Consider using AssemblyInitialize and AssemblyCleanup in cases where you have common
operations spanning multiple classes. Instead of having many per-class initialize and cleanup meth-
ods, you can refactor these to single assembly-level methods.

Using the Assert Methods
The most common way to determine success in unit tests is to compare an expected result against an
actual result. The Assert class features many methods that enable you to make these comparisons
quickly.

Assert.AreEqual and Assert.AreNotEqual
Of the various Assert methods, you will likely fi nd the most use for AreEqual and AreNotEqual.
As their names imply, you are comparing an expected value to a supplied value. If the operands are
not value-equivalent (or are equivalent for AreNotEqual) then the current test fails.

A third, optional argument can be supplied: a string that will be displayed along with your unit
test results, which you can use to describe the failure. Additionally, you can supply parameters to
be replaced in the string, just as the String.Format method supports. The string message should
be used to explain why failing that Assert is an error. If you have multiple Asserts in a single test
method, then it is very useful to provide a failure message string on every Assert so that you can
very quickly identify which Assert failed:

 [TestMethod]
public void IsPrimeTest()
{
 const int FACTOR = 5;
 const bool EXPECTED = true;

 bool actual = CustomMath.IsPrime(FACTOR);

 Assert.AreEqual(EXPECTED, actual, "The number {0} should have been computed as
 prime, but was not.", FACTOR);
}

Assert.AreEqual and AreNotEqual have many parameter overloads, accepting types such as
string, double, int, float, object, and generic types. Take the time to review the overloads in
the Object Browser.

Programming with the Unit Test Framework ❘ 381

c19.indd 02/27/2014 Page 381

When using these methods with two string arguments, one of the overrides allows you to optionally
supply a third argument. This is a boolean, called ignoreCase, that indicates whether the compari-
son should be case-insensitive. The default comparison is case-sensitive.

Working with fl oating-point numbers involves a degree of imprecision. You can supply an argument
that defi nes a delta by which two numbers can differ yet still pass a test — for example, say you’re
computing square roots and decide that a “drift” of plus or minus 0.0001 is acceptable:

[TestMethod]
public void SquareRootTest()
{
 const double EXPECTED = 3.1622;

 const double DELTA = 0.0001;
 double actual = CustomMath.SquareRoot(10);

 Assert.AreEqual(EXPECTED, actual, DELTA, "Root not within acceptable range");
}

NOTE When asserting that two instances of a complex type are equal, you
are actually testing the behavior of the Equals() operator on that class. This is
important to bear in mind if you are ever overriding the Equals() operator in
your own classes.

Assert.AreSame and Assert.AreNotSame
AreSame and AreNotSame function in much the same manner as AreEqual and AreNotEqual.
The important difference is that these methods compare the references of the supplied arguments.
For example, if two arguments point to the same object instance, then AreSame passes. Even
when the arguments are exactly equivalent in terms of their state, AreSame fails if they are not, in
fact, the same object. This is the same concept that differentiates object.Equals from object
.ReferenceEquals.

A common use for these methods is to ensure that properties return expected instances, or that col-
lections handle references correctly. The following example adds an item to a collection and ensures
that what you get back from the collection’s indexer is a reference to the same item instance:

[TestMethod]
public void CollectionTest()
{
 CustomCollection cc = new CustomCollection();
 Item original = new Item("Expected");
 cc.Add(original);
 Item actual = cc[0];

 Assert.AreSame(original, actual);
}

382 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 382

Assert.IsTrue and Assert.IsFalse
As you can probably guess, IsTrue and IsFalse are used simply to ensure that the supplied expres-
sion is true or false as expected. Returning to the IsPrimeNumberTest example, you can restate it as
follows:

[TestMethod]
public void IsPrimeNumberTest()
{
 const int FACTOR = 5;

 Assert.IsTrue(CustomMath.IsPrime(FACTOR), "The number {0} should have been
 computed as prime, but was not.", FACTOR);
}

Assert.IsNull and Assert.IsNotNull
Similar to IsTrue and IsFalse, these methods verify that a given object type is either null or not
null. Revising the collection example, this ensures that the item returned by the indexer is not null:

[TestMethod]
public void CollectionTest()
{
 CustomCollection cc = new CustomCollection();
 cc.Add(new Item("Added"));
 Item item = cc[0];

 Assert.IsNotNull(item);
}

Assert.IsInstanceOfType and Assert.IsNotInstanceOfType
IsInstanceOfType simply ensures that a given object is an instance of an expected type. For exam-
ple, suppose you have a collection that accepts entries of any type. You want to ensure that an entry
you’re retrieving is of the expected type, as shown here:

[TestMethod]
public void CollectionTest()
{
 UntypedCollection untyped = new UntypedCollection();
 untyped.Add(new Item("Added"));
 untyped.Add(new Person("Rachel"));
 untyped.Add(new Item("Another"));

 object entry = untyped[1];

 Assert.IsInstanceOfType(entry, typeof(Person));
}

Programming with the Unit Test Framework ❘ 383

c19.indd 02/27/2014 Page 383

As you can no doubt guess, IsNotInstanceOfType tests to ensure that an object is not of the speci-
fi ed type.

Assert.Fail and Assert.Inconclusive
Use Assert.Fail to immediately fail a test. For example, you may have a conditional case that
should never occur. If it does, call Assert.Fail and an AssertFailedException is thrown, caus-
ing the test to abort with failure. You may fi nd Assert.Fail useful when defi ning your own custom
Assert methods.

Assert.Inconclusive enables you to indicate that the test result cannot be verifi ed as a pass or
fail. This is typically a temporary measure until a unit test (or the related implementation) has been
completed. Assert.Inconclusive can also be used to indicate that more work is needed to com-
plete a unit test.

NOTE There is no Assert.Succeed because success is indicated by comple-
tion of a unit test method without a thrown exception. Use a return statement
if you want to cause this result from some point in your test. Assert.Fail and
Assert.Inconclusive both support a string argument and optional arguments,
which are inserted into the string in the same manner as String.Format. Use
this string to supply a detailed message back to the Test Results window, describ-
ing the reasons for the non-passing result.

Using the CollectionAssert class
The Microsoft.VisualStudio.TestTools.UnitTesting namespace includes a class, called
CollectionAssert, that contains useful methods for testing the contents and behavior of collection
types.

Table 19-2 describes the methods supported by CollectionAssert.

TABLE 19-2: CollectionAssert Methods

METHOD DESCRIPTION

AllItemsAreInstancesOfType Ensures that all elements are of an expected type

AllItemsAreNotNull Ensures that no items in the collection are null

AllItemsAreUnique Searches a collection, failing if a duplicate member is found

AreEqual Ensures that two collections have reference-equivalent
members

AreNotEqual Ensures that two collections do not have reference-equiva-
lent members

continues

384 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 384

METHOD DESCRIPTION

AreEquivalent Ensures that two collections have value-equivalent members

AreNotEquivalent Ensures that two collections do not have value-equivalent
members

Contains Searches a collection, failing if the given object is not found

DoesNotContain Searches a collection, failing if a given object is found

IsNotSubsetOf Ensures that the fi rst collection has members not found in
the second

IsSubsetOf Ensures that all elements in the fi rst collection are found in
the second

ReferenceEquals Determines whether the specifi ed System.Object instances
are the same instance

The following example uses some of these methods to verify various behaviors of a collection type,
CustomCollection. When this example is run, none of the assertions fails, and the test results in
success. Note that proper unit testing would spread these checks across multiple smaller tests:

 [TestMethod]
public void CollectionTests()
{
 CustomCollection list1 = new CustomCollection();
 list1.Add("alpha");
 list1.Add("beta");
 list1.Add("delta");
 list1.Add("delta");

 CollectionAssert.AllItemsAreInstancesOfType(list1, typeof(string));
 CollectionAssert.AllItemsAreNotNull(list1);

 CustomCollection list2 = (CustomCollection)list1.Clone();

 CollectionAssert.AreEqual(list1, list2);
 CollectionAssert.AreEquivalent(list1, list2);

 CustomCollection list3 = new CustomCollection();
 list3.Add("beta");
 list3.Add("delta");

 CollectionAssert.AreNotEquivalent(list3, list1);
 CollectionAssert.IsSubsetOf(list3, list1);

TABLE 19-2 (continued)

Programming with the Unit Test Framework ❘ 385

c19.indd 02/27/2014 Page 385

 CollectionAssert.DoesNotContain(list3, "alpha");
 CollectionAssert.AllItemsAreUnique(list3);
}

The fi nal assertion, AllItemsAreUnique(list3), would have failed if tested against list1 because
that collection has two entries of the string "delta".

Using the StringAssert Class
Similar to CollectionAssert, the StringAssert class contains methods that enable you to easily
make assertions based on common text operations. Table 19-3 describes the methods supported by
StringAssert.

TABLE 19-3: StringAssert Methods

METHOD DESCRIPTION

Contains Searches a string for a substring and fails if not found

DoesNotMatch Applies a regular expression to a string and fails if any matches are found

EndsWith Fails if the string does not end with a given substring

Matches Applies a regular expression to a string and fails if no matches are found

StartsWith Fails if the string does not begin with a given substring

Equals Determines whether the specifi ed object instances are considered equal

ReferenceEquals Determines whether the specifi ed System.Object instances are in the
same instance

Following are some simple examples of these methods. Each of these assertions will pass:

 [TestMethod]
public void TextTests()
{
 StringAssert.Contains("This is the searched text", "searched");

 StringAssert.EndsWith("String which ends with searched",
 "ends with searched");

 StringAssert.Matches("Search this string for whitespace",
 new System.Text.RegularExpressions.Regex(@"\s+"));

 StringAssert.DoesNotMatch("Doesnotcontainwhitespace",
 new System.Text.RegularExpressions.Regex(@"\s+"));

 StringAssert.StartsWith("Starts with correct text", "Starts with");
}

386 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 386

Matches and DoesNotMatch accept a string and an instance of System.Text.RegularExpressions
.Regex. In the preceding example, a simple regular expression that looks for at least one whitespace
character was used. Matches fi nds whitespace and DoesNotMatch does not fi nd whitespace, so
both pass.

Expecting Exceptions
Normally, a unit test that throws an exception is considered to have failed. However, you’ll often
want to verify that a class behaves correctly by throwing an exception. For example, you might pro-
vide invalid arguments to a method to verify that it properly throws an exception.

The ExpectedException attribute indicates that a test succeeds only if the indicated exception
is thrown. Not throwing an exception or throwing an exception of a different type results in test
failure.

The following unit test expects that an ObjectDisposedException will be thrown:

[TestMethod]

 [ExpectedException(typeof(ObjectDisposedException))]
public void ReadAfterDispose()
{
 CustomFileReader cfr = new CustomFileReader("target.txt");
 cfr.Dispose();
 string contents = cfr.Read(); // Should throw ObjectDisposedException
}

The ExpectedException attribute supports a second, optional string argument. The Message prop-
erty of the thrown exception must match this string or the test fails. This enables you to differentiate
between two different instances of the same exception type.

For example, suppose you are calling a method that throws a FileNotFoundException for several
different fi les. To ensure that it cannot fi nd one specifi c fi le in your testing scenario, supply the mes-
sage you expect as the second argument to ExpectedException. If the exception thrown is not
FileNotFoundException and its Message property does not match that text, the test fails.

Defi ning Custom Unit Test Properties
You may defi ne custom properties for your unit tests. For example, you may want to specify the
author of each test and be able to view that property from the Test List Editor.

Use the TestProperty attribute to decorate a unit test, supplying the name of the property and a
value:

[TestMethod]

 [TestProperty("Author", "Deborah")]
public void ExampleTest()
{
 // Test logic
}

Introduction to Microsoft Fakes ❘ 387

c19.indd 02/27/2014 Page 387

Now, when you view the properties of that test, you see a new entry, Author, with the value
Deborah. If you change that value from the Properties window, the attribute in your code is auto-
matically updated.

TestContext Class
Unit tests normally have a reference to a TestContext instance. This object provides runtime fea-
tures that might be useful to tests, such as details of the test itself, the various directories in use, and
several methods to supplement the details stored with the test’s results. TestContext is also very
important for data-driven unit tests, as you see later.

Several methods are especially useful to all unit tests. The fi rst, WriteLine, enables you to insert
text into the results of your unit test. This can be useful for supplying additional information about
the test, such as parameters, environment details, and other debugging data that would normally be
excluded from test results.

Here is a simple example of a unit test that accesses the TestContext to send a string containing the
test’s name to the results:

[TestClass]
public class TestClass
{
 private TestContext testContextInstance;

 public TestContext TestContext
 {
 get { return testContextInstance; }
 set { testContextInstance = value; }
 }

 [TestMethod]
 public void TestMethod1()
 {
 TestContext.WriteLine("This is test {0}", TestContext.TestName);
 }

The AddResultFile method enables you to add a fi le, at runtime, to the results of the test run. The
fi le you specify is copied to the results directory alongside other results content. For example, this
may be useful if your unit test is validating an object that creates or alters a fi le, and you would like
that fi le to be included with the results for analysis.

Finally, the BeginTimer and EndTimer methods enable you to create one or more named timers
within your unit tests. The results of these timers are stored in the test run’s results.

INTRODUCTION TO MICROSOFT FAKES

One of the many features people have asked for from Visual Studio is for it to ship with a mocking
framework. A mocking framework enables you to provide a fake implementation of a type or object,
along with logic that verifi es how calls were made to the mocked object. There are several good

388 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 388

mocking frameworks currently available in the community, including Moq, Rhino, and NMock.
Although these tools have strong followings and a good reputation, there was still a need to provide
a mocking framework to customers who may be unable to utilize open source or third-party tools.
Hence, the Microsoft Fakes framework in Visual Studio 2013.

Developers often need to test individual components of their code in isolation from other compo-
nents. Commonly, this is performed using dummy implementations of code that are not currently
being tested. In reality, it can be very diffi cult to implement this dummy code because the actual
code being tested is expecting real code on the other end. The Fakes framework helps developers
create, maintain, and inject dummy implementation of components into the developer’s unit test,
making it quick and easy to isolate specifi c unit tests from the actual environment.

NOTE The Fakes framework is derived from the Moles project by Microsoft
Research. The Fakes framework is not backward-compatible with Moles, but the
migration is straightforward.

Currently, the Fakes framework focuses on two kinds of test fakes for .NET programming: stubs
and shims.

Stubs are concrete implementations of interfaces and abstract classes that can be passed into the
system being tested. A developer provides method implementations via .NET delegates or lambdas.
A stub is realized by a distinct type that is generated by the Fakes framework. As such, all stubs are
strongly typed. You cannot use stubs for static or non-overridable methods. Instead, you should use
shims in those instances.

Shims are runtime method interceptors. They enable you to provide your own implementation for
almost any method available to your code in .NET, including types and methods from the .NET
base class libraries.

NOTE The Visual Studio Rangers have put together some great guidance on
better unit testing using Microsoft Fakes. You can fi nd it here: https://vsart-
esttoolingguide.codeplex.com/releases/view/102290.

Choosing Between Stubs and Shims
Stub types and shim types are built on different underlying technologies. As such, they have differ-
ent requirements, properties, and use cases. Table 19-4 provides a list of the different aspects to con-
sider when choosing between a stub and a shim.

https://vsart-esttoolingguide.codeplex.com/releases/view/102290
https://vsart-esttoolingguide.codeplex.com/releases/view/102290
https://vsart-esttoolingguide.codeplex.com/releases/view/102290

Introduction to Microsoft Fakes ❘ 389

c19.indd 02/27/2014 Page 389

TABLE 19-4: Stubs versus Shims

ASPECT STUB/SHIM REASON

Performance Stub The runtime code-rewriting used by shims introduces some
performance issues at runtime. Stubs do not do this.

Static Methods Shim Stub can only infl uence overridable methods. They cannot
be used for static, non-virtual, and sealed virtual methods.

Internal Types Stub/Shim Both stubs and shims can be used with internal types made
accessible through the InternalsVisibleToAttribute
attribute.

Private Methods Shim Shim types can replace private methods if all the types on
the method signature are visible.

Interfaces/
Abstract Methods

Stub Stubs implement interfaces and abstract methods that can
be used for testing. Shims can’t do this because they don’t
have method bodies.

The general recommendation is to use stubs to isolate dependencies within your code base by hiding
components behind interfaces. You should use shims to isolate third-party components that don’t
provide a testing API.

Using Stubs
Stubs are a part of the Fakes framework that enables you to easily isolate unit tests from the envi-
ronment. You do this by generating a Fakes assembly, based on an actual target assembly. When the
Fakes assembly is generated, a stub type is created for each non-sealed class and interface in the tar-
get assembly that contains virtual or abstract methods, properties, or events. The stub type provides
a default implementation of each virtual member and adds a delegate property that you can custom-
ize to provide specifi c behavior.

For this example, you are going to make a list of books. To get started, create a new C# class library
project named FakesUsingStubs. Rename the Class1.cs fi le to be Book.cs. Add the following
code to the Book.cs fi le to create a Book class:

 public class Book
{
 public int Isbn {get;set;}
 public int ListItemId {get;set;}

 public Book (int isbn, int listItemId)
 {
 Isbn = isbn;

390 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 390

 ListItemId = listItemId;
 }
}

Now add the following class, BookListToStub. This class contains a list of books and has a
method, AddBookToList, for adding a new book to the list:

 public class BookListToStub
{
 public int ListId {get;set;}
 public int CustomerId {get;set;}
 private List<Book> _books = new List<Book>();
 public ReadOnlyCollection<Book> Books {get; set;}
 private IListSave _listSave;

 public BookListToStub(int listId, int customerId, IListSave listSave)
 {
 ListId = listId;
 CustomerId = customerId;
 _listSave = listSave;
 Books = new ReadOnlyCollection<Book>(_books);
 }

 public void AddBookToList(int isbn)
 {
 var bookItemId = _listSave.SaveListItem(ListId, isbn);
 _books.Add(new Book(isbn, bookItemId));
 }
}

The saving functionality is implemented using a class called ListSave that implements the interface
IListSave. Add this class to your project:

 public interface IListSave
{
 int SaveListItem(int listId, int isbn);
}

public class ListSave : IListSave
{
 public int SaveListItem(int listId, int isbn)
 {
 throw new NotImplementedException("Forgot to add SQL Code");
 }
}

As you can see from the preceding snippet of code, the actual code to perform the save has not been
implemented yet. Normally, that would make testing the save functionality diffi cult. Microsoft
Fakes enables you to stub out the saving functionality so that you can test the rest of the code even
though the saving functionality does not currently exist.

Right-click your solution and add a new C# unit test project to the solution, named
FakesUsingStubs.Tests. Rename the default unit test fi le to BookListToStubTests.cs. Add

Introduction to Microsoft Fakes ❘ 391

c19.indd 02/27/2014 Page 391

a reference to the FakesUsingStubs project by right-clicking the References folder, selecting Add
Reference from the context menu, and then selecting the FakesUsingStubs assembly. To create
your shims and stubs, right-click the FakesUsingStubs assembly reference, and select Add Fakes
Assembly (only available with Visual Studio Ultimate 2013 and Visual Studio Premium 2013. When
you do this, several things happen behind the scenes:

 ➤ A fi le named .fakes is created in the Fakes folder within your project. This fi le controls how
your fakes are generated.

 ➤ The target assembly is scanned, and fakes (both stubs and shims) are created for the types
found. These types are named StubX and ShimX based on the type they target.

 ➤ These fake types are added to a new assembly created in a sub-folder called
FakeAssemblies.

To complete your testing, you need to mock out the database call to isolate the logic in the
AddBookToList method. Open the BookListToStubTests.cs fi le, and add the following test
method:

 [TestMethod]
public void AddBook_BookShouldBeAddedToList()
{
 int bookItemId = 77;
 int listId = 1;
 int customerId = 25;
 int isbn = 12345;

 //Stub IListSave
 var listSave = new Fakes.StubIListSave();
 listSave.SaveListItemInt32Int32 = (l,i) => bookItemId;

 var list = new BookListToStub(listId, customerId, listSave);
 list.AddBookToList(isbn);

 var book = list.Books[0];
 Assert.AreEqual(isbn, book.Isbn);
}

When you created the Fakes assembly, you created a stub method for the IListSave interface that
can be overridden using a delegate. In this case, you have created a delegate that returns the book-
ItemId, which is what you would expect from the save functionality that is not implemented. If you
execute the unit test, it executes with no errors.

Using Shims
Shims are runtime method interceptors. They enable you to provide your own implementation for
almost any method available to your code in .NET, including types and methods from the .NET
base class libraries.

For this example, you are again going to make a list of books, but with some changes to the code.
Instead of implementing an interface, you are going to implement a static class for the data access

392 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 392

layer. To get started, created a new C# class library project named FakesUsingShims. Rename the
Class1.cs fi le to be Book.cs. Add the following code to the Book.cs fi le, to create a Book class:

 public class Book
{
 public int Isbn {get;set;}
 public int ListItemId {get;set;}

 public Book (int isbn, int listItemId)
 {
 Isbn = isbn;
 ListItemId = listItemId;
 }
}

Now add the following class, BookListToShim. This class contains a list of books and has a
method, AddBookToList, for adding a new book to the list. Notice this method now makes use of a
new class, DAL, which contains the saving functionality:

 public class BookListToShim
{
 public int ListId {get;set;}
 public int CustomerId {get;set;}
 private List<Book> _books = new List<Book>();
 public ReadOnlyCollection<Book> Books {get; set;}

 public BookListToShim(int listId, int customerId)
 {
 ListId = listId;
 CustomerId = customerId;
 Books = new ReadOnlyCollection<Book>(_books);
 }

 public void AddBookToList(int isbn)
 {
 var bookItemId = DAL.SaveListItem(ListId, isbn);
 _books.Add(new Book(isbn, bookItemId));
 }
}

Create a new C# class fi le named DAL.cs. Add the following code to implement the saving
functionality:

 public static class DAL
{
 public static int SaveListItem(int listId, int isbn)
 {
 throw new NotImplementedException("Forgot to add SQL Code");
 }
}

As before, the actual code to perform the save has not been implemented yet. Microsoft Fakes
allows you to shim out the saving functionality, enabling you to test the rest of the code even though
the saving functionality does not currently exist.

Using Test Adapters ❘ 393

c19.indd 02/27/2014 Page 393

Right-click your solution and add a new C# unit test project to the solution, named
FakesUsingShims.Tests. Rename the default unit test fi le to BookListToShimTests.cs. Add a
reference to the FakesUsingShims project by right-clicking the References folder, selecting Add
Reference from the context menu, and then selecting the FakesUsingShims assembly reference.
Right-click the FakesUsingShims assembly reference and select Add Fakes Assembly to generate the
shim and stub code.

To complete your testing, you need to mock out the database call to isolate the logic in the
AddBookToList method. Open the BookListToShimTests.cs fi le, and add the following test
method:

 [TestMethod]
public void AddBook_BookShouldBeAddedToList()
{
 int bookItemId = 77;
 int listId = 1;
 int customerId = 25;
 int isbn = 12345;

 using (ShimsContext.Create())
 {

 Fakes.ShimDAL.SaveListItemInt32Int32 = (l,i) => bookItemId;

 var list = new BookListToShim(listId, customerId);
 list.AddBookToList(isbn);

 var book = list.Books[0];
 Assert.AreEqual(isbn, book.Isbn);
 }
}

In the test method, you create a ShimsContext, which enables you to scope the amount of shimming
you are implementing. The rest of the code is very similar to the stubs example, and works in the
same way, with a delegate being used to override the SaveListItem method.

USING TEST ADAPTERS

The unit testing framework in Visual Studio 2013 is extensible. This allows third-party unit testing
frameworks, such as NUnit or XUnit, to create test adapters for Visual Studio unit testing. Now a
developer can use any testing framework that provides an adapter for unit test creation.

You can download most third-party unit testing frameworks using the Visual Studio Extension
Manager inside of Visual Studio, or you can get them directly from the Visual Studio Gallery on the
MSDN website.

To download a third-party test framework adapter using the Visual Studio Extension Manager,
open Visual Studio and select Tools ➪ Extensions and Updates. The Extension and Updates dialog
box opens. In the dialog box, select Online ➪ Visual Studio Gallery ➪ Tools ➪ Testing, as shown in
Figure 19-2.

394 ❘ CHAPTER 19 UNIT TESTING

c19.indd 02/27/2014 Page 394

FIGURE 19-2

Select the Unit Test framework to install, and click the Download button. If you already have a
testing framework installed, you see a green check mark instead of a download button. Clicking the
Download button automatically downloads and installs the testing framework. You need to restart
Visual Studio 2013 before you can start using the testing framework.

After you have restarted Visual Studio, you can start creating unit tests using the new test frame-
work, and you can execute those unit tests inside of Visual Studio 2013.

There are a couple of limitations with using test adapters. For example, even though you can run
them using the Agile Test Runner as part of the Team Foundation Build process, you can’t associate
the automation with a test case. This means that you can’t use them as part of your test controller/
agent infrastructure.

SUMMARY

Microsoft has brought the advantages of unit testing to the developer by fully integrating features
with the Visual Studio development environment. If you’re new to unit testing, this chapter has
provided an overview of what unit testing is, and how you can create effective unit tests. This chap-
ter examined the creation and management of unit tests and detailed the methods and attributes

Summary ❘ 395

c19.indd 02/27/2014 Page 395

available in the unit test framework. You should be familiar with attributes for identifying your
tests, as well as many of the options that the Asse rt class offers for testing behavior of code.

You also learned about the Microsoft Fakes framework, and how you can use shims and stubs
to help you test your code more effectively while isolating different systems in your environment.
Finally, the chapter covered test adapters, how test adapters enable you to utilize third-party testing
frameworks, and how you can install test adapters.

You should become familiar with the benefi ts of unit testing, keeping in mind that unit tests are not
a replacement for other forms of testing, but they are a very strong supplement.

Obviously, testing is an important aspect to prove that your code is ready to be deployed into pro-
duction. However, just because the code passes all the unit tests doesn’t mean that it is necessarily
ready to ship.

Chapter 20 examines the code analysis tools in Visual Studio 2013 that help you quickly look for
common mistakes, security issues, or even violations of standards. You also fi nd out how to use
code metrics to identify parts of the systems that may prove diffi cult to maintain, how code cloning
can help you fi nd duplicate code to refactor in your solution, and how the new CodeLens feature
provides detailed information directly in the code edito r.

c20.indd 02/27/2014 Page 397

Code Analysis, Code Metrics,
Code Clone Analysis, and
CodeLens

WHAT’S IN THIS CHAPTER?

 ➤ Enabling and running code analysis in Visual Studio 2013

 ➤ Correcting code analysis rule violations

 ➤ Understanding code metrics and how to use them

 ➤ Using Code Clone Analysis to fi nd similar code fragments in the
code base

 ➤ Using CodeLens to better understand the code base

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/proalm3ed
on the Download Code tab. The fi les are in the Chapter 20 download folder and individually
named as shown throughout this chapter.

This chapter describes the code analysis, code metrics, code clone analysis, and CodeLens
features included with the Visual Studio 2013. Code analysis is available in Visual Studio
2013 Professional and higher SKUs. Code metrics and code clone analysis are available in
Visual Studio 2013 Premium and higher SKUs. And CodeLens is available in Visual Studio
2013 Ultimate. These tools can quickly and easily inspect your code to fi nd common mistakes,
make suggestions for improvements, and even indicate violations of standards.

The discussion begins by examining the origins of the Code Analysis tool. You fi nd out about
Microsoft’s .NET “Design Guidelines for Class Library Developers” and how it is related to
the tools. You also take a brief look at what is new with these tools in Visual Studio 2013.

20

http://www.wrox.com/go/proalm3ed

398 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 398

Then you explore the code analysis a bit and learn how to take advantage of its full integration with
Visual Studio 2013. This includes enabling code analysis review for your projects, selecting rules to
apply, and working with the results of the analysis.

However, using the IDE is not always an option, and sometimes you need additional fl exibility. The
Code Analysis tool is available to you from the command line. You fi nd out how to use the com-
mand line for code analysis and how to include code analysis with your automated builds.

Next, you look at code metrics, a tool in Visual Studio that can provide insight into how maintain-
able your code is. Each code metric is examined in detail, and you learn how to understand what
code metrics are trying to tell you. After that, you learn about code clone analysis, and how it
enables you to fi nd fragments of similar code throughout your code base, making it easier to apply
changes or refactor your code.

The chapter wraps up with a look at a new feature in Visual Studio 2013: CodeLens. CodeLens
enables you to see information about your code directly in the code editor, such as method refer-
ences and code changes, without having to navigate through multiple windows in Visual Studio.

THE NEED FOR ANALYSIS TOOLS
Ensuring that developers follow best practices and write consistent code is a major challenge in
today’s software development projects. The act of documenting standards and practices is often
skipped or overlooked. However, even in projects for which standards have been established, getting
developers to read and follow those practices is another major challenge.

One of the best resources available for .NET developers is Microsoft’s .NET Framework
“Framework Design Guidelines.” These guidelines document Microsoft’s best practices for using the
.NET Framework, and are freely available at http://msdn.microsoft.com/en-us/library
/ms229042.aspx.

The guidelines cover a range of subjects, including naming conventions, usage guidelines, and
performance and security considerations. When you put them into practice, they help ensure that
your approach is consistent with that of other developers. In addition, they have evolved over a num-
ber of years to refl ect a considerable amount of knowledge, best practices, and lessons learned.

As useful as the design guidelines are, the reality of software creation is that many developers are
not familiar with their contents. Most times, this is not a fault of the developer, but rather the pro-
cess that the developer must follow. For some companies, design guidelines are not as important as
simply getting the project fi nished, regardless of the long-term benefi t that following those guidelines
will have. The desire to automate the process of evaluating code for compliance with these guide-
lines led to the creation of FxCop, a tool that was used internally at Microsoft and later evolved into
the Code Analysis tool in Visual Studio.

What’s New for Code Analysis in Visual Studio 2013
For Visual Studio 2013, the focus was on fi xing bugs in response to user feedback. That did not stop
the team, however, from adding a couple of new improvements to the user experience.

Visual Studio 2013 has added categories for the native code analysis rules, and now exposes the
existing managed code analysis categories in the user interface. These categories provide a more

http://msdn.microsoft.com/en-us/library

Using Code Analysis ❘ 399

c20.indd 02/27/2014 Page 399

fi ne-grained grouping of defects to indicate, for example, if a defect is related to a logic error or a
syntax error. Categories can also be helpful when dealing with a large list of warnings, allowing you
to focus on the more relevant categories.

Another new user interface feature allows you to sort the code analysis results by various properties,
including Rule ID and Category. Support has been added for sorting the defect list by six common
properties.

USING CODE ANALYSIS

An example project that demonstrates the use of managed code analysis is presented throughout
this chapter. To begin the project, create a new C# class library project and name it SampleLibrary.
Rename the Class1.cs fi le to PayCalculator.cs and insert the following code, which fails to meet
several code analysis guidelines:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace SampleLibrary
{
 public class PayCalculator
 {
 public enum Pay_Level
 {
 EntryLevel = 20,
 Normal = 35,
 Senior = 50
 }

 public static int MaximumHours;
 public const double BONUS = 0.10;

 static PayCalculator()
 {
 MaximumHours = 100;
 }

 public static double ComputePayment(int hours, Pay_Level level)
 {
 if (hours > MaximumHours)
 {
 throw new ArgumentOutOfRangeException("Employee works too much");
 }

 return ((int)level * hours);
 }
 }
}

400 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 400

While this code compiles and runs as expected, you can make several improvements to it, and the
Code Analysis tool helps you fi nd them. These improvements help make your code easier to under-
stand, and possibly catch potential runtime errors (such as buffer overfl ows).

Built-in Code Analysis Rules
As mentioned earlier, Visual Studio ships with nearly 200 rules for managed code analysis, as well
as more than 300 rules for native code, each of which helps to enforce the practices documented in
the .NET Framework Design Guidelines, as well as other practices recommended by Microsoft. This
section briefl y describes each of the 12 rule groups to help you understand when you might apply
them to your projects.

Table 20-1 describes the groups of rules included with Visual Studio 2013.

TABLE 20-1: Groups of Rules

RULE GROUP

(NUMBER OF

RULES)

DESCRIPTION

Design (67) Typically focused on the interfaces and structure of code, this group enforces
proper implementation of common concepts such as classes, events, collec-
tions, namespaces, and parameters. These rules revolve around the Microsoft
.NET Framework Design Guidelines.

Globalization
(11)

This group includes practices to support the internationalization of code. This
can include avoiding strings of literal text, correct use of CultureInfo, and
formatting.

Interoperability
(16)

This group is focused on the correct use of COM Interop. Included are rules
for proper use of PInvoke, the ComVisible attribute, and marshalling.

Maintainability
(6)

These are rules to help make your code easier to maintain. This group identi-
fi es potential problems such as complexity and overuse of inheritance.

Mobility (2) These are rules to help detect code that will not run effectively in mobile or
disconnected environments.

Naming (24) This group enforces naming standards as described in the Design Guidelines.
Using these rules verifi es that names of items such as assemblies, classes,
members, and variables conform to standards. Some rules even help to
detect misspellings in your assigned names.

Performance (16) These rules help to detect places in your code that may be optimized for per-
formance. They detect a variety of wasteful or extraneous code.

Portability (3) These are rules to fi nd code that might not be easily portable between oper-
ating environments.

Using Code Analysis ❘ 401

c20.indd 02/27/2014 Page 401

RULE GROUP

(NUMBER OF

RULES)

DESCRIPTION

Reliability (6) The rules in this group help detect problems with your code that may lead
to intermittent failures, including failure to dispose of objects, improper use
of the garbage collector, bad threading use, and more. These rules can be
extremely useful because intermittent errors are frequently the most diffi cult
to identify and correct.

Security (44) These rules help to identify insuffi cient or incorrect security practices. Rules
exist to fi nd missing attributes, improper use of permissions, and opportuni-
ties for SQL injection attacks.

Usage (42) These rules cover a broad spectrum of recommended practices. Whereas
the design group rules typically involve API structure, these rules govern the
methodologies of code. Practices include proper exception management,
handling of arithmetic overfl ow, serialization, and inheritance.

Native (362) These rules cover information related to C/C++ source code, including buffer
overruns, uninitialized memory, null pointer dereferences, and memory and
resource leaks.

Of course, the rules that ship with Visual Studio are only a starting point. Microsoft and others will
certainly make additional rules available, and you can add your own custom rules and rule groups
as well.

Code Analysis Rule Sets
With Visual Studio 2013, you can group code analysis rules into rule sets, making it easy for
everyone to get started using code analysis. The code analysis rules that ship by default are already
grouped into specifi ed rule sets, but you have the capability to create your own custom rule sets as
needed.

Table 20-2 shows the rule sets included with Visual Studio 2013.

TABLE 20-2: Rule Sets

RULE SET DESCRIPTION

Microsoft All Rules This rule set contains all code analysis rules.

Microsoft Basic
Correctness Rules

This rule set focuses on logic errors and common mistakes made
when using the .NET Framework APIs.

Microsoft Basic Design
Guideline Rules

This rule set focuses on enforcing best practices to make code easy
to understand and use.

continues

402 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 402

RULE SET DESCRIPTION

Microsoft Extended
Correctness Rules

This rule set expands on the basic correctness rules to maximize the
reported logic and framework usage errors.

Microsoft Extended
Design Guideline Rules

This rule set expands on the basic design guideline rules to maximize
the number of reported usability and maintainability issues.

Microsoft Globalization
Rules

This rule set focuses on problems that may occur if your application
has not been properly localized.

Microsoft Managed
Minimum Rules

This rule set focuses on the most critical problems in your code for
which code analysis is most accurate. It contains a small number of
rules and is intended for use in Visual Studio Express editions.

Microsoft Managed
Recommended Rules

This rule set focuses on the most critical problems in your code,
including security holes and application crashes. This is the default
rule set applied to newly created projects and is recommended for
inclusion in any custom rule set you create.

Microsoft Security Rules This rule set contains all Microsoft security rules.

Microsoft Mixed (C++/
CLR) Minimum Rules

This rule set focuses on the most critical problems in C++ projects,
including security holes and application crashes.

Microsoft Mixed (C++/
CLR) Recommended
Rules

This rule set focuses on the most common and critical problems
in C++ projects, including security holes, application crashes, and
important logic and design errors. It is designed for use in Visual
Studio Professional and higher.

To create a new rule set, in Visual Studio, select File ➪ New ➪ File, and then select Code Analysis
Rule Set under the General tab. Using this new rule set, you can use the Add or Remove child rule
set buttons to add existing rule sets to your custom one.

Enabling Code Analysis
By default, code analysis is disabled for projects in Visual Studio. To enable analysis, open your
project’s Properties window and select Code Analysis from the left-side tabs. You see a drop-down
of the different rule sets available for use with code analysis, as shown in Figure 20-1.

WARNING To enable and confi gure Code Analysis for ASP.NET applica-
tions, from the main menu in Visual Studio, select Website ➪ Code Analysis
Confi guration. You can also enable (but not confi gure) Code Analysis from the
Build page of the ASP.NET project’s Property Pages.

TABLE 20-2 (continued)

Using Code Analysis ❘ 403

c20.indd 02/27/2014 Page 403

FIGURE 20-1

To enable code analysis upon build, select the Enable Code Analysis on Build check box. Select the
desired rule set in the drop-down listbox, or choose multiple rule sets. Save your settings via Save
Selected Items on the File menu, or by pressing Ctrl+S.

To view the rules contained in an individual rule set, select the rule set in the drop-down listbox and
then click the Open button. The individual rules that comprise that rule set open. You can disable
rules or entire groups of rules by deselecting their check boxes.

In addition, you can set each rule in a rule set to one of the following:

 ➤ Warning (the default)—Warnings serve as an advisory that something may need to be cor-
rected, but they do not prevent the project’s build from succeeding.

 ➤ Error—Errors prevent a build when those rules are violated, so you may want to set certain
rules or groups of rules to Error if they are critically important.

 ➤ Inherit—Inherit means this rule uses the same indicator that the group it is contained in
uses.

 ➤ None—This means no setting.

Use the drop-down list in the Action column to choose among Warning, Error, None, or Inherit. As
with enabling rules, you can set these actions for specifi c rules or for entire groups of rules.

Figure 20-2 illustrates how to enable and disable specifi c rules and how each can be set to Warning
or Error as necessary.

404 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 404

FIGURE 20-2

Finally, you can specify different sets of code analysis properties for each confi guration. By default,
settings apply to the Active build confi guration, but you can be more specifi c. For example, you
might want to treat certain critical rules as Errors in your Release builds, but treat those same rules
as Warnings in Debug. You might instead decide to disable code analysis entirely for your Release
builds. Simply choose a build type from the Confi guration drop-down menu and then review your
settings. To make changes that affect all build confi gurations, select the All Confi gurations option
and then modify and save your settings.

Executing Code Analysis
After you have enabled code analysis and confi gured the rules to refl ect your development stan-
dards, code analysis is performed each time you build your project. Go ahead and build your sample
project now.

NOTE You can also execute code analysis on your project by choosing
Build ➪ Run Code Analysis on [Project Name] or by right-clicking the desired
project within Solution Explorer and selecting Analyze ➪ Run Code Analysis.

The output window includes details about your build, including results from calling code analysis.
After the build, the Code Analysis window may appear. If you do not see the Code Analysis win-
dow, choose Analyze ➪ Windows ➪ Code Analysis. By default this window appears as a tab in the
Solution Explorer.

Using Code Analysis ❘ 405

c20.indd 02/27/2014 Page 405

By default, the Microsoft Minimum Recommended Rules rule set is selected, and thus, no warn-
ings are generated. For the purpose of this example, return to the rule set selection and choose the
Microsoft All Rules rule set.

Figure 20-3 shows the Code Analysis window displaying code analysis results for the
SampleLibrary assembly.

FIGURE 20-3

The Code Analysis window provides some nice features for working with code analysis results.
There is a search box at the top of the window that enables you to search for specifi c results. The
Analyze drop-down box enables you to rerun code analysis for the entire solution or for specifi c fi les
in the solution. The Settings button enables you to change the rule set used by a particular project in
the solution. The Sort drop-down box is a new feature, allowing you to sort the results by one of six
different options:

 ➤ By Rule ID

 ➤ By Rule Name

 ➤ By File Path

 ➤ By File Name

 ➤ By Line Number

 ➤ By Category

You also have the ability to then sort in ascending or descending order by clicking a small arrow on
the menu.

406 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 406

Directly below the search box are two drop-down fi lter boxes. The fi rst enables you to fi lter the
results based on the project name. The second enables you to fi lter based on the rule category, such
as Design or Performance.

Analysis of the SampleLibrary code indicates nine potential rule violations. Selecting an item in the
list displays the full description of the violation indicating how your code is in violation of a rule.
It also displays the fi le and line number indicating (when appropriate) specifi c source fi les and code
related to each warning, as well as navigates you to the offending line of code in the code editor.

Some warnings do not relate to specifi c code, but perhaps to a lack of an attribute or security set-
ting. Other warnings may refer directly to problem code, perhaps naming violations or performance
issues.

Each time you run code analysis, the results are stored in an XML fi le. This fi le is named <Project
Name>.CodeAnalysisLog.xml, and is located in your project’s build output directory (that is,
\bin\Debug or \bin\Release). For the SampleLibrary project, the fi le is SampleLibrary.dll
.CodeAnalysisLog.xml.

If you open the fi le from within the IDE, you see the raw, unformatted XML. However, the XML
has an associated XSL template that formats the data into HTML, similar to what is shown in
Figure 20-4.

FIGURE 20-4

To see this view, open the XML fi le with Internet Explorer. To customize rendering, you can supply
your own XSL templates. If you choose to do this, you should make a copy of the included template
and modify the copy to suit your needs. The base template is in your Visual Studio installation
directory as \Team Tools\Static Analysis Tools\FxCop\Xml\CodeAnalysisReport.xsl.

Using Code Analysis ❘ 407

c20.indd 02/27/2014 Page 407

Working with Rule Violations
Several issues should be addressed in the sample PayCalculator class. For each warning or error,
you must determine whether the rule actually applies to your project or a specifi c section of code.

If it does, you must modify the project to address the issue; otherwise, you may choose to ignore
the rule. This section describes how to act on identifi ed issues and how to ignore, or suppress,
a given rule.

As part of this discussion, you immediately go into the code and make corrections as necessary, but
your organization or project may require the use of work items to track any changes. Or perhaps
you don’t have time to immediately address an identifi ed problem but would like to use a work item
as a reminder. Fortunately, you can easily create work items directly from Code Analysis rule viola-
tions. Simply right-click the warning or error and choose Create Work Item from the menu. Choose
the type of work item you want to create, and the New Work Item dialog displays. Make any neces-
sary changes and save your new work item.

Correcting Problems
Looking through the Error List shown in Figure 20-3, you should see item CA1810, with a descrip-
tion of Initialize reference type static fields inline PayCalculator.cs (Line 22).

Click the error number (CA1810) to display the documentation for the rule that triggered this warn-
ing, including suggestions for resolving the issue. You are currently assigning the value of 100 to
MaximumHours inside the static constructor of PayCalculator. The rule’s Help text states that your
code may perform more effi ciently if you make that assignment when the variable is defi ned.

To address this issue, click this warning to see the static constructor of the PayCalculator class.
Change the code to assign the value in the declaration as follo ws:

public static int MaximumHours = 100;

Next, delete the static PayCalculator constructor entirely. Build the project and look at the Code
Analysis window. The specifi c warning should no longer be in the list.

There is another easy problem to correct. Many of the code analysis rules relate to standard nam-
ing conventions. Find the warning CA1707 Identifiers should not contain underscores
PayCalculator.cs (Line 11) and double-click. The rule helps to enforce the naming convention
that underscores should not be used in type names. Use the built-in refactoring support to rename
it. Right-click the Pay_Level enumeration and choose Refactor ➪ Rename. Change the name to
PayLevel, click OK, and then Apply.

Mark the PayCalculator class defi nition static as follows:

public static class PayCalculator

Rules can also help ensure that you’re using the framework correctly. You can see from
the following warning that the rule has detected that you might not be creating the
ArgumentOutOfRangeException correctly; CA 2208 Instantiate argument exceptions
correctly PayCalculator.cs (Line 26). Replace this argument with one of the method’s

408 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 408

parameter names. Note that the provided parameter name should have the exact casing as declared
on the method. To fi x this, change the line that throws the exception to the following:

 if (hours > MaximumHours)
 {

 throw new ArgumentOutOfRangeException("hours", "Employee works too much");
}

One of the remaining warnings, CA1014 Mark assemblies with CLSCompliantAttribute
(Global) is a fairly common suggestion. Consider addressing this when creating a reusable library
assembly that might be consumed by code of more than one .NET language. Common Language
Specifi cation (CLS) compliance specifi es that your assembly must meet the common structure and
syntax supported by all .NET languages as defi ned in the CLS. Keep in mind that there may be
times when CLS compliance is not possible, such as when exposing unsigned types.

To address this warning, open AssemblyInfo.cs and add the following line:

[assembly: System.CLSCompliant(true)]

The assembly: notation is used because the attribute applies to the entire assembly, and not to a
specifi c class or member. You can fi nd other assembly-level attributes in the AssemblyInfo.cs fi le.

Now, build the project. The violations you corrected should no longer generate messages in the
Error List. The remaining four warnings are addressed shortly.

Suppressing Messages
Visual Studio 2013 ships with many rules, and not all of them are appropriate for every project.
There is a chance that some rules trigger warnings that simply don’t apply to certain parts of your
project. To prevent these irrelevant messages from recurring, right-click the rule violation and
choose Suppress Message ➪ In Source.

When you suppress a message, Visual Studio automatically adds an attribute to your code to indi-
cate that a rule should not apply. You can apply the SuppressMessage attribute to a code construct,
such as a fi eld, method, or class, and to an entire assembly.

WARNING Suppressing a message is not the same as disabling a rule.
Suppression prevents the specifi c violation of a rule from recurring, but other
violations of the same rule are still identifi ed. You should disable a rule only if
you’re certain it could never be meaningfully applied to any part of your project.

Let’s continue with the SampleLibrary example and use message suppression to clean up more of
the code analysis violation messages.

The warnings for CA1709 states, Identifiers should be cased correctly PayCalculator
.cs (Line 19). Assume that your organization has different naming conventions for constants,
and you know that this rule does not apply to this BONUS constant. Right-click the message and
choose Suppress Message ➪ In Source. The message is crossed out in the Code Analysis window,

Using Code Analysis ❘ 409

c20.indd 02/27/2014 Page 409

and the PayCalculator class is modifi ed to include the following attribute immediately before the
declaration of BONUS:

[System.Diagnostics.CodeAnalysis.SuppressMessage(
 "Microsoft.Naming",
 "CA1709: IdentifiersShouldBeCasedCorrectly", MessageId = "BONUS")]

The next time Code Analysis is run, the engine recognizes this attribute. Moreover, even when the
CA1709 rule is violated at this point, no message is created. Messages for any other violations of this
rule elsewhere in the code are still reported as normal.

Two more messages don’t apply to the project. CA2211 Non-constant fields should not be
visible PayCalculator.cs (Line 18) reminds you that external users of the class could change
the value of PaymentCalculator.MaximumHours. This is the behavior you want, so right-click the
message and choose Suppress Message ➪ In Source. The message CA1008 Enums should have zero
value PayCalculator.cs (Line 11) also does not apply, as all employees are required to have an
employee level, so there is no reason to set a zero value for PaymentCalculator.PayLevel. Suppress
this message in source as well.

As you can see, suppressing messages can quickly add a number of attributes to your code. If you
fi nd that you always suppress a given message, it is probably better to exclude the rule altogether;
then your code does not require the additional SuppressMessage attributes. However, as noted pre-
viously, use caution when doing this, because you could unintentionally be missing valid violations
that should be addressed.

The warning CA2210 Assemblies should have valid strong names (Global) applies to the
overall assembly. If you know that you’ll never use this assembly in the Global Assembly Cache
(GAC), and will have no other need for strong names, you can suppress this message. Right-click the
warning and select Suppress Message ➪ In Suppression File. Do this for all the remaining warnings.
However, because there is no specifi c code to which the SuppressMessage attribute can be applied,
a new fi le, GlobalSuppressions.cs, is added to the project with the following code:

[assembly: System.Diagnostics.CodeAnalysis.SuppressMessage(
 "Microsoft.Design",
 "CA2210:AssembliesShouldHaveValidStrongNames")]

Now build the project, and you should now see an empty Code Analysis window. This indicates all
enabled code analysis rules have either been passed or suppressed.

NOTE The effect of assembly-level suppression is basically the same as if you
had excluded the rule altogether. The advantage of the attribute-based approach
is that it is easy to see which rules have been suppressed project-wide by viewing
the GlobalSuppressions.cs fi le. In addition, you could add comments to that
fi le to indicate the reason for suppressing the rule to other developers. Excluding
a rule by not selecting it in the Code Analysis section of the project’s properties
has the same effect but does not offer a way to document why certain exclusions
were made.

410 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 410

USING THE COMMAND-LINE ANALYSIS TOOL

A command-line interface is available for code analysis. You can fi nd this tool, called FxCopCmd
.exe, in your Visual Studio 2013 installation directory under Team Tools\Static Analysis
Tools\FxCop.

FxCopCmd can perform any of the code analysis functions that are available to you in the Visual
Studio IDE. In fact, the IDE uses FxCopCmd under the covers to execute analysis and generate
reports.

FxCopCmd Options
Table 20-3 shows some of the options that FxCopCmd.exe supports.

TABLE 20-3: FxCopCmd Options

OPTION DESCRIPTION

/f[ile]: <directory/file> Assembly fi le(s) or directory(ies) to analyze. If a
directory is used without a fi le name, code analysis
tries to analyze all fi les in that directory with .dll or
.exe extensions. You can specify this option more
than once. It is required, unless you specify a proj-
ect fi le with the /project option.

/r[ule]: <directory/file> A rule assembly fi le or a directory to browse for rule
assemblies. If a directory without a fi le name is sup-
plied, Code Analysis looks for rules in any fi les with
a .dll extension. You can specify this option more
than once.

/r[ule]id:<[+|-] Enables or disables a specifi c rule, supplying its
Category and Category#CheckId> values — for
example, /rid: +!Microsoft.Usage#CA2225.

/ruleset:<<+|-|=>file> Specifi es the rule set to be used for the analysis.

/rulesetdirectory:<directory> Specifi es a directory to search for rule set fi les spec-
ifi ed by the /ruleset switch.

/o[ut]:<file> Names a fi le in which the results of the analysis are
stored in XML form. Required, unless the /console
option is used.

/p[roject]:<file> Loads a project fi le that contains the settings for
FxCopCmd to use (discussed shortly). Required if
you do not use both the /file and /rules options.

Using the Command-Line Analysis Tool ❘ 411

c20.indd 02/27/2014 Page 411

OPTION DESCRIPTION

/t[ypes]:<type list> Used to constrain analysis to only the specifi ed
type(s). Supply a list of comma-delimited type
names. Wildcards can be used to specify multiple
types. (Optional)

/i[mport]:<directory/file> Loads analysis reports or project fi les to exclude
items from the current test that appear as excluded
in the imported fi le. You may specify a fi le or a
directory. If a directory is specifi ed, Code Analysis
attempts to load all fi les with an .xml extension.
(Optional)

/s[ummary] Displays a summary after analysis. (Optional)

/v[erbose] Gives more detailed status output. (Optional)

/q[uiet] Suppresses output of status details. (Optional)

/u[pdate] Saves the results of the current analysis to the speci-
fi ed project fi le. Ignored if you do not supply the
/project option. (Optional)

/c[onsole] Uses the console to display the analysis results.
This is required unless you have specifi ed the /out
option.

/c[onsole]xsl:<file> Applies an XSL fi le to transform XML output before
displaying.

/plat[form]:<directory> Location of platform assemblies. (Optional)

/d[irectory]: <directory> Location to search for assembly dependencies.
(Optional)

/help (or) /? Help about command-line options.

/fo[rceoutput] Write output XML and project fi les, even in the case
where no violations occurred.

/dic[tionary]:<file> Use a custom dictionary fi le.

/ignoreinvalidtargets [Short form:

/iit]
Silently ignore invalid target fi les.

/asp[net] Analyze only ASP.NET generated binaries, and
honor global suppressions in App_Code.dll for all
assemblies under analysis.

continues

412 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 412

OPTION DESCRIPTION

/searchgac [Short form: /gac] Search Global Assembly Cache for missing
references.

/successfile [Short form: /sf] Create .lastcodeanalysissucceeded fi le in out-
put report directory if no build-breaking messages
occur during analysis.

/timeout:<seconds> [Short form:

/to:<seconds>]
Override time-out for analysis deadlock detection.
Analysis is aborted when analysis of a single item by
a single rule exceeds the specifi ed amount of time.
Specify a value of 0 to disable deadlock detection.

/savemessagestoreport:

<Active|Excluded|Absent

(default: Active)> [Short form:

/smr:<Active|Excluded|Absent

(default: Active)>]

Save messages of specifi ed kind to output report.

/ignoregeneratedcode [Short form:

/igc]
Suppress analysis results against generated code.

/overriderulevisibilities [Short

form: /orv]
Run all overridable rules against all targets.

/failonmissingrules [Short form:

/fmr]
Treat missing rules or rule sets as an error, and halt
execution.

/cul[ture] Culture for spelling rules.

/outxsl:<file> [Short form:

/oxsl:<file>]
Reference the specifi ed XSL in the XML report fi le;
use /outxsl:none to generate an XML report with
no XSL stylesheet.

/applyoutxsl [Short form: /axsl] Apply the XSL stylesheet to the output.

/reference:<file> [Short form:

/ref:<file>]
Reference assemblies required for analysis.

Notice that most of the commands have long and short forms available. For example, /summary and
/s are equivalent. Arguments support the use of wildcards (*) to specify multiple items. Arguments
with spaces in them must be surrounded with double quotes.

For example, to conduct analysis of a single assembly CustomLibrary.dll, use the following
command:

FxCopCmd /f:SampleLibrary.dll /o:"FxCop Results.xml" /s

TABLE 20-3 (continued)

Using the Command-Line Analysis Tool ❘ 413

c20.indd 02/27/2014 Page 413

The /f (or /file) argument indicates which assembly to analyze, and the /o (or /output) option
indicates that analysis output should be stored as XML in FxCop Results.xml. Finally, the /s (or
/summary) option displays a short summary of the results of the analysis.

FxCopCmd Project Files
FxCopCmd’s command-line options offer a good deal of fl exibility, but to fi ne-tune your analysis
you should consider using a project fi le. A project fi le enables you to set options such as targets and
rule assemblies, exclusions, and output preferences. You can then simply use the /project option to
tell FxCopCmd to use those settings, instead of supplying a detailed list of arguments.

You should create a default FxCopCmd project fi le that you can copy and customize for each proj-
ect. Create a new fi le named EmptyCodeAnalysisProject.fxcop and enter the following:

<?xml version="1.0" encoding="UTF-8"?>
<FxCopProject Version="1.36" Name="Temporary FxCop Project">
 <ProjectOptions>
 </ProjectOptions>
 <Targets>
 <Target Name="$(TargetFile)" Analyze="True" AnalyzeAllChildren="True" />
 </Targets>
 <RuleFiles>
 </RuleFiles>
 <FxCopReport Version="1.36" LastAnalysis="2004-04-20 22:08:53Z">
 </FxCopReport>
</FxCopProject>

Copy this to a new fi le and add your project’s settings. The rules and fi les specifi ed in your project
fi le serve as the basis for FxCopCmd execution. You can specify additional rules and target fi les on
the command line with the /rules and /file options.

For example, here is a simple project fi le that specifi es a target assembly, SampleLibrary.dll, and
includes one rule assembly, the default Code Analysis naming conventions assembly:

<?xml version="1.0" encoding="UTF-8"?>
<FxCopProject Version="1.36" Name="Sample Library Code Analysis Project">
 <ProjectOptions>
 </ProjectOptions>
 <Targets>

 <Target Name="C:\SampleLibrary\bin\Debug\SampleLibrary.dll"
 Analyze="True"
 AnalyzeAllChildren="True" />
 </Targets>
 <RuleFiles>
 <RuleFile Name="$(FxCopDir)\Rules\NamingRules.dll" Enabled="True"
 AllRulesEnabled="True" />
 </RuleFiles>
 <FxCopReport Version="1.36" LastAnalysis="2004-04-20 22:08:53Z">
 </FxCopReport>
</FxCopProject>

414 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 414

Save this to a fi le named SampleLibrary.fxcop. To execute Code Analysis for SampleLibrary
using this project fi le, use the following command:

FxCopCmd /p:SampleLibrary.fxcop /o:"FxCop Results.xml" /s

Build Process Code Analysis Integration
You have now seen how to use FxCopCmd from the command line to analyze your code and report
potential defects. However, with the full integration of code analysis with the Visual Studio IDE,
why would you need to use FxCopCmd?

A common use of FxCopCmd is to enable automated code analysis from a build process. You can do
this with Team Foundation Build, Visual Studio 2013’s MSBuild, or one of many other build auto-
mation packages available (such as NAnt).

By integrating Code Analysis with your builds, you can ensure that your entire team’s work is being
evaluated against a consistent set of rules. You quickly discover when a developer has added non-
standard code. Developers quickly learn those rules and practices, because they don’t want to be the
person responsible for “breaking” the build.

CREATING CODE ANALYSIS RULES

Visual Studio 2013 includes many code analysis rules, but no matter how comprehensive the rules
from Microsoft are, they can never fully cover the specifi c requirements of your own projects.
Perhaps you have specifi c naming conventions, or a standard way to load database connection
strings. In many cases, you can create a custom code analysis rule to help diagnose the issue and
help developers take corrective action.

NOTE Creating custom code analysis rules is not for the faint of heart and
is beyond the scope of this book. For more information on creating custom
code analysis rules, including a step-by-step example, refer to the Microsoft
Code Analysis Team Blog at http://blogs.msdn.com/b/codeanalysis/
archive/2010/03/26/how-to-write-custom-static-code-analysis-rules-
and-integrate-them-into-visual-studio-2010.aspx.

CODE METRICS

The Code Metrics tool is a set of software metrics that provide insight into the code that is being
developed. Code metrics provide a quick-and-easy way to determine the complexity of the code and
to isolate code areas that may be diffi cult to maintain in the future. This can be especially help-
ful when maintaining a large or complex code base. Code metric information is calculated at the
method level, and then rolled up all the way to the assembly level. Visual Studio 2013 calculates fi ve
different code metrics:

http://blogs.msdn.com/b/codeanalysis

Code Metrics ❘ 415

c20.indd 02/27/2014 Page 415

 ➤ Cyclomatic Complexity—This measures the structural complexity of the code. It is created
by calculating the number of different code paths through the code, including if statements,
switch statements, and so on. A high number for Cyclomatic Complexity indicates that the
code may be too complex and should be refactored.

 ➤ Depth of Inheritance—This indicates the number of class defi nitions that extend to the root
of the class hierarchy. Although inheritance in itself is not bad, having a lengthy inheri-
tance level can make the code diffi cult to understand and troubleshoot. As with Cyclomatic
Complexity, you want to have a low number for Depth of Inheritance.

 ➤ Class Coupling—This indicates the total number of dependencies that a class has on other
classes, based on parameters, local variables, return types, method calls, base classes, inter-
face implementations, fi elds defi ned on external types, and attribute decoration. This calcu-
lation does not include primitive or built-in types. A high level of Class Coupling indicates
that changes in other classes could affect a specifi c class. You want a low number for Class
Coupling.

 ➤ Lines of Code—This indicates the number of executable lines of code in a method. This is
an approximate count, based off the IL code, and only includes executable lines of code.
Comments, braces, and whitespace are excluded. For Lines of Code, a low value is good, and
a high value is bad.

 ➤ The Maintainability Index—This is a combination of several metrics, including Cyclomatic
Complexity, average Lines of Code, as well as computational complexity. This metric is cal-
culated using the following formula:

MAX(0,(171-5.2 * ln(Halstead Volume) - 0.23 * (Cyclomatic Complexity) - 16.2 * ln(Lines of
Code)) * 100/171)

The Maintainability Index is a value between 1 and 100. Unlike the previous four metrics,
for Maintainability Index, the higher the value, the easier the code is to maintain. Table
20-4 shows the Maintainability Index ranges and what they indicate.

TABLE 20-4: Maintainability Index Ranges

COLOR LEVEL RANGE

Green High Maintainability Between 20 and 100

Yellow Moderate Maintainability Between 10 and 20

Red Low Maintainability Between 0 and 9

Some tools and compilers generate code that is automatically added to a project. Many times the
developer is not aware of this code or shouldn’t make changes to the generated code. For the most
part, code metrics ignore generated code when it calculates values. This is important, because it
enables the results to refl ect only the code the developer can see and change.

416 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 416

NOTE Code generated by Windows forms is not ignored, because that is code a
developer can see and change.

You have the ability to generate code metrics for your entire solution, or for a selected project.
To generate code metrics against the entire solution, do one of the following:

 ➤ Click the Analyze menu option and then select Calculate Code Metrics For Solution.

 ➤ Right-click the solution in Solution Explorer and select Calculate Code Metrics.

To generate code metrics for one or more projects in a solution, fi rst select all the projects to be
involved and then do one of the following:

 ➤ Click the Analyze menu option and then select Calculate Code Metrics For Selected
Project(s).

 ➤ Right-click the solution in Solution Explorer and select Calculate Code Metrics.

The Code Metrics Results window displays with the results, as shown in Figure 20-5.

FIGURE 20-5

You can drill down into the results using the triangle controls located to left of the Hierarchy col-
umn. You can fi lter the results using the toolbar at the top of the window. The Filter drop-down box
contains the names of all the results columns. Select a column in the drop-down box and then enter
a minimum number value. The results are then fi ltered accordingly. The drop-down box keeps track
of the last ten fi lters that you defi ned.

You can copy a row of results to the clipboard as a text string by right-clicking a row in the results
window and selecting Copy. This copies both the name and value of each column on the selected
row. You can also right-click a row and select Open Selection in Microsoft Excel. This takes all the

Code Clone Analysis ❘ 417

c20.indd 02/27/2014 Page 417

information from that row, and all rows nested underneath that row, and opens them in a work-
book in Microsoft Excel.

Finally, you can create a Team Foundation work item based off a row of results in the Code Metrics
Results window. Right-click a row of results, select Create Work Item, and then select the appropri-
ate work item type, such as Task. This creates a new work item, with the title set to the hierarchy
name of the row selected, and copies the code metric data for that line into the history tab.

CODE CLONE ANALYSIS

As developers, we are often guilty of copying blocks of code from a class or project to another class
or project if it provides all or most of the functionality that we need. When these separate fragments
of code are very similar, they’re referred to as code clones. Code clones can make it diffi cult to make
application updates because you have to fi nd and make the same or similar changes in multiple
areas of your code base. Many times it makes sense to refactor the code clones into a single location.
However, it can be very diffi cult to isolate all the areas where code clones exist, especially in older
code bases.

This is where code clone analysis (also referred to as code clone detection) comes into play. Code
clone analysis enables you to look across your entire solution for blocks of code that are similar in
structure and composition. One nice feature is that the blocks of code do not have to be identical.
Code clone analysis is adept at fi nding blocks of code that are similar but not necessarily exact. For
example, blocks of code that are similar but have different variable names or parameters — or have
statements in a different order — can be detected through analysis.

NOTE Code clone analysis only works for Visual C# and Visual Basic projects
in Visual Studio 2013.

Finding Code Clones
There are two main ways for using code clone analysis: analyzing the entire solution for all potential
code clones or fi nding instances of a selected code fragment through the solution.

Analyzing the entire solution searches through all the projects in the solution, looking for instances
of code clones. This can be particularly useful during code reviews. It is important to note that code
clones of fewer than ten statements are not discovered when the entire solution is being analyzed.
To analyze the entire solution, select Analyze ➪ Analyze Solution for Code Clones from the main
menu in Visual Studio 2013. Figure 20-6 shows the results of the analysis, shown in the Code Clone
Analysis Results window.

418 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 418

FIGURE 20-6

By default the results are grouped and sorted based on the strength of the match. Exact matches
are shown fi rst, followed by matches that are close (i.e., strong), but not necessarily exact.
In Figure 20-6, you have one strong match. There are two other match terms for describing
matches — Medium and Weak — each denoting a code clone that is less exact.

You can also use code clone analysis to fi nd a particular code fragment in a solution. Unlike an anal-
ysis of the entire solution that was shown earlier, this type of search can fi nd code clones less than
ten lines in length. To search for a specifi c fragment of code, highlight the code fragment, right-click
it, and select Find Matching Clones in Solution from the context menu. The solution searches for a
match to the code fragment and displays the results in the Code Clone Analysis Results window.

Reviewing the Code Clone Analysis Results
You have a couple of different options for analyzing the results provided by code clone analysis. In
the Code Clone Analysis Results window, you can hover your mouse over a specifi c line to show the
matching code in a pop-up window. This provides you a way to quickly see the code for that par-
ticular match. You can also double-click a line in the results window to automatically open the fi le
containing the code clone; then you can navigate to its location within the fi le. Opening the fi le in
this way automatically color-codes the code clone, to make it easy to fi nd.

You also have the ability to compare two fi les using the same tool that is used to compare versions
in source control in Team Foundation Server. To do this, select two fi les listed in the Code Clone
Analysis Results window, right-click the selection, and choose Compare from the context menu.
This opens the comparison tool in Visual Studio 2013 so you can view the two code clones side
by side.

How Code Clone Analysis Works
Code clone analysis fi nds both exact copies of code and similar code that is not exact. Code clones
usually result from developers copying a chunk of code and then making modifi cations to the code
based on its new requirements. You can make the following modifi cations, and the clone will still be
recognized:

 ➤ Rename identifi ers

 ➤ Add new statements

Code Clone Analysis ❘ 419

c20.indd 02/27/2014 Page 419

 ➤ Delete statements

 ➤ Rearrange statements

Even if you can make any of these modifi cations to a code clone, the clone is still fl agged during
analysis. There are rules for what is not found as well, including the following:

 ➤ Two classes with similar sets of fi eld declarations (type declarations are not compared; only
statements in methods and property defi nitions are compared)

 ➤ Fragments with more than 40-percent changed tokens

 ➤ Code elements that have been specifi cally excluded from code clone analysis via a
.codeclonesettings fi le

 ➤ Certain generated code, including .designer.cs fi les, .designer.vb fi les, and
InitializeComponent methods

Excluding Items from Code Clone Analysis
At the project level you can exclude items from code clone analysis by using a .codeclonesettings
fi le. This is an XML fi le that must exist in the top-level directory of the project. You can use this fi le
to exclude specifi c fi les or specifi c methods from analysis.

The base elements of the exclusion fi le consists of a CodeCloneSettings element with an
Exclusions child:

<CodeCloneSettings>
 <Exclusions>
 .
 .
 .
 </Exclusions>
 </CodeCloneSettings>

Within the Exclusions element, you list the different exclusions, including File, Namespace, Type,
and FunctionName:

<CodeCloneSettings>
 <Exclusions>

 <File>MyFile.cs</File>
 <File>MyTemplates*.cs</File>

 <Namespace>MyCompany.MyProject</Namespace>
 <Namespace>*.AProject</Namespace>

 <Type>MyCompany.MyProject.MyClass</Type>
 <Type>*.AClass*</Type>

 <FunctionName>MyCompany.MyProject.MyClass.MyMethod</FunctionName>
 <FunctionName>MyProject.*.AMethod</FunctionName>

 </Exclusions>
</CodeCloneSettings>

As you can see, you can either use absolute names or names containing wildcards.

420 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 420

USING CODELENS

CodeLens is a new feature in Visual Studio 2013 that shows you information about your code,
directly in the code editor. Before, you had to dig through several different windows to retrieve
information such as method references, tests associated with a method, how many times a line of
code has been changed, and when it was last changed. Researching this information pulls you away
from actually writing code, and can impact productivity. With CodeLens, this information is liter-
ally at your fi ngertips.

CodeLens is turned on by default in Visual Studio 2013. You can control the information that will
be displayed in the code editor through the Visual Studio options menu. In Visual Studio, select
Tools ➪ Options to open the Options window (shown in Figure 20-7), then select Text Editor ➪ All
Languages ➪ CodeLens to modify what information is shown. By default, CodeLens will show the
following:

 ➤ Test Status

 ➤ References

 ➤ Tested By

 ➤ Authors

 ➤ Changes

 ➤ Bugs

 ➤ Work Items

 ➤ Code Reviews

FIGURE 20-7

Using CodeLens ❘ 421

c20.indd 02/27/2014 Page 421

Figure 20-8 shows a code fi le with CodeLens information displayed. The CodeLens informa-
tion appears in light grey above each method. In Figure 20-8 you can see that the public class
CustomersController has three references, has been recently edited by Brian Keller, as well as two
other people, and has been included in four changesets. To see where this class is referenced, click
the 3 References link. A pop-up window (Figure 20-9) will open, showing the references to
this class.

FIGURE 20-8

FIGURE 20-9

In Figure 20-8, clicking the Brian Keller + 2 or the 4 Changes links displays a list of informa-
tion, including the changeset ID, the changeset description, the changeset author, and when the

422 ❘ CHAPTER 20 CODE ANALYSIS, CODE METRICS, CODE CLONE ANALYSIS, AND CODELENS

c20.indd 02/27/2014 Page 422

changesets were created. From within this window (shown in Figure 20-10), you can right-click
a row and view changeset detail information, and view the diff information for the changeset. You
also have presence information for the author of the changeset, and can contact her via email.

FIGURE 20-10

Another CodeLens indicator is the Tested By indicator, which shows the tests available that test a
particular method. To enable this data, you need to fi rst open the Test Explorer window. You can
do this by selecting Test ➪ Windows ➪ Test Explorer. Once the Test Explorer window is open, a
new indicator will be added to the CodeLens information, showing information on the tests associ-
ated with the method. In Figure 20-11, you can see there are two tests associated with this method,
and that neither test has been executed yet. To execute the tests, simply click the Run All link. The
CodeLens information will then be updated with the pass/fail results of the tests.

FIGURE 20-11

Summary ❘ 423

c20.indd 02/27/2014 Page 423

SUMMA RY

This chapter demonstrated the need for static analysis tools and introduced you to the .NET
Framework “Framework Design Guidelines.” These guidelines are a very important resource that
Microsoft has made freely available, and they’re the basis for Visual Studio 2013’s included code
analysis rules.

You also learned about the Code Analysis tool, including how it integrates with Visual Studio 2013
and enables rule analysis to be performed with a simple build. You learned how to confi gure and
execute analysis, and how to work with the resulting rule violation messages.

To support projects using a repeatable build process, or those that need additional fl exibility, you
learned how to use the command-line Managed Code Analysis tool, and how to create FxCopCmd
project fi les to store settings.

Next, you were introduced to code metrics. The fi ve different code metric values were explained,
and you saw how easy it was to run and view the results of the code metrics calculation.

You also learned about Code Clone Analysis, and how you can use this tool to fi nd code clones, or
similar fragments of code, throughout your solution.

Finally, you learned about CodeLens, a new feature that enables you to see information about your
code, directly in the code editor, such as method references and code changes, without having to
navigate through multiple windows in Visual Studio.

Chapter 21 looks at the code-profi ling capabilities of Visual Studio 2013, and how you can use them
to fi nd and fi x performance problems in your code.

c21.indd 02/27/2014 Page 425

Profi ling and Performance
WHAT’S IN THIS CHAPTER?

 ➤ Understanding the profi ling features in Visual Studio 2013

 ➤ Understanding available profi ling types

 ➤ Using Performance Explorer to confi gure profi ling sessions

 ➤ Profi ling reports and available views

 ➤ Profi ling JavaScript

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/proalm3ed
on the Download Code tab. The fi les are in the Chapter 21 download folder and individually
named as shown throughout this chapter.

One of the more diffi cult tasks in software development is determining why an application
performs slowly or ineffi ciently. Before Visual Studio 2005, developers were forced to turn to
external tools to effectively analyze performance. Now, however, Visual Studio includes profi l-
ing tools that are fully integrated with both the IDE and other Visual Studio features.

This chapter introduces Visual Studio 2013’s profi ling tools. Note that the profi ling features
discussed in this chapter are available in Visual Studio Professional 2013 or higher.

You fi nd out how to use the profi ler to identify problems such as ineffi cient code, overalloca-
tion of memory, and bottlenecks. You learn about the new Performance and Diagnostics hub,
which provides a single launch point for all your profi ling needs. You learn about the two
main profi ling options — sampling and instrumentation — including how to use each, and
when each should be applied. In Visual Studio 2013, there are two sampling options: one for
CPU sampling and the other for memory allocation sampling. This chapter examines both

21

http://www.wrox.com/go/proalm3ed

426 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 426

options. This chapter also briefl y reviews the profi ling method, introduced in Visual Studio 2010, to
see thread contentions using concurrency profi ling.

You will also learn about some of the new profi ling analyzers in Visual Studio 2013, including the
Energy Consumption tool, XAML and HTML UI Responsiveness tools, and JavaScript analyzers.

After learning how to run profi ling analyzers, you fi nd out how to use the detailed reporting fea-
tures that enable you to view performance metrics in a number of ways, including results by func-
tion, caller/callee inspection, call tree details, and other views.

Not all scenarios can be supported when using the Visual Studio 2013 IDE. For times when you
need additional fl exibility, you can use the command-line options for profi ling applications, which
are covered in this chapter. This enables you to integrate profi ling with your build process and to
use some advanced profi ling options.

INTRODUCTION TO PERFORMANCE ANALYSIS

Profi ling is the process of observing and recording metrics about the behavior of an application.
Profi lers are tools used to help identify application performance issues. Issues typically stem from
code that performs slowly or causes excessive use of system memory. A profi ler helps you to more
easily identify these issues so that they can be corrected.

Sometimes, an application may be functionally correct and seem complete, but users quickly begin
to complain that it seems “slow.” Or, perhaps you’re only receiving complaints from one customer
who fi nds a particular feature takes “forever” to complete. Fortunately, Visual Studio 2013 profi ling
tools can help in these situations.

A common use of profi ling is to identify hotspots, sections of code that execute frequently, or for a
long duration, as an application runs. Identifying hotspots enables you to turn your attention to
the code that provides the largest benefi t from optimization. For example, halving the execution
time of a critical method that runs 20 percent of the time can improve your application’s overall
performance by 10 percent.

Types of Profi lers
Most profi ling tools fall into one (or both) of two types: sampling and instrumentation.

A sampling profi ler takes periodic snapshots (called samples) of a running application, recording the
status of the application at each interval, including which line of code is executing. Sampling profi l-
ers typically do not modify the code of the system under test, favoring an outside-in perspective.

Think of a sampling profi ler as being like a sonar system. It periodically sends out sound waves
to detect information, collecting data about how the sound refracts. From that data, the system
displays the locations of detected objects.

The other type, an instrumentation profi ler, takes a more invasive approach. Before running analy-
sis, the profi ler adds tracing markers (sometimes called probes) at the start and end of each function.

What’s New in Profi ling with Visual Studio 2013 ❘ 427

c21.indd 02/27/2014 Page 427

This process is called instrumenting an application. Instrumentation can be performed in source
code or, in the case of Visual Studio, by directly modifying an existing assembly. When the profi ler
is run, those probes are activated as the program execution fl ows in and out of instrumented func-
tions. The profi ler records data about the application and which probes were hit during execution,
generating a comprehensive summary of what the program did.

Think of an instrumentation profi ler as the traffi c data recorders you sometimes see while driving.
The tubes lie across the road and record whenever a vehicle passes over. By collecting the results
from a variety of locations over time, an approximation of traffi c fl ow can be inferred.

A key difference between sampling and instrumentation is that sampling profi lers observe your
applications while running any code, including calls to external libraries (such as the .NET
Framework). Instrumentation profi lers gather data only for the code that you have specifi cally
instrumented.

Visual Studio Profi ling
Visual Studio 2013 offers powerful profi ling tools that you can use to analyze and improve your
applications. The profi ling tools offer both sampling and instrumented approaches. Like many Visual
Studio features, profi ling is fully integrated with the Visual Studio IDE and other Visual Studio
features, such as work item tracking, the build system, version control check-in policies, and more.

NOTE The profi ling tools in Visual Studio can be used with both managed and
unmanaged applications, but the object allocation tracking features work only
when profi ling managed code.

The profi ling tools in Visual Studio are based on two tools that have been used for years internally
at Microsoft. The sampling system is based on the Call Attributed Provider (CAP) tool, and the
instrumentation system is based on the Low-Overhead Profi ler (LOP) tool. Microsoft did not simply
repackage existing internal tools and call it a day. They invested considerable development effort to
add new capabilities and to fully integrate them with other Visual Studio features.

WHAT’S NEW IN PROFILING WITH VISUAL STUDIO 2013

The biggest change in profi ling with Visual Studio 2013 is the addition of the Performance and
Diagnostic hub. In Visual Studio 2012, you have multiple entry points to enable profi ling. With
Visual Studio 2013, and with the addition of new profi ling options, Microsoft made the decision
to create a centralized location from which you can confi gure and run profi ling. This location is
referred to as the Performance and Diagnostic hub.

In addition to the centralized hub, new profi ling targets and options have been added. When
you open the Performance and Diagnostic hub (by either pressing Alt+F2 or selecting it from the

428 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 428

Performance and Diagnostic menu) with a current solution opened in Visual Studio, the hub will
pick the startup project to use when profi ling by default. However you can change the target for
analysis by clicking the Change Target button. This button allows you to choose one of the follow-
ing targets:

 ➤ Startup Project—Use the startup project for the open solution

 ➤ Running App—Attach to a running Windows Store App

 ➤ Installed App—Launch an installed Windows Store App

 ➤ Executable—Launch an executable (.exe)

 ➤ ASP.NET—Launch an ASP.NET application running IIS

The hub will also show you the available profi ling tools, based on the analysis target selected. In
addition to the standard Performance Wizard (which was available in Visual Studio 2012), you have
other profi ling options available to you, depending on your profi ling target. These include:

 ➤ CPU Sampling—Examine which native and managed functions are using the CPU most
frequently

 ➤ HTML UI Responsiveness—Examine where time is spent in your website or application

 ➤ JavaScript Memory—Investigate the JavaScript heap to help fi nd issues such as memory leaks

 ➤ Energy Consumption—Examine where energy is consumed in your application

 ➤ JavaScript Function Timing—Examine where time is spent in your JavaScript code

 ➤ XAML UI Responsiveness—Examine where time is spent in your application

The remainder of this chapter focuses on using the Performance Wizard and JavaScript Function
Timing profi ling options. For screenshots of the other profi ling options, refer to Chapter 18.

USING THE PROFILER

The Visual Studio developers have done a good job making the profi ler easy to use. You follow four
basic steps to profi le your application:

 1. Create a performance session, by selecting a profi ling method (CPU sampling, instrumentation,
memory sampling, or concurrency) and its target(s).

 2. Use the Performance Explorer to view and set the session’s properties.

 3. Launch the session, executing the application and profi ler.

 4. Stop the application, allowing the profi ler to report on the collected data.

 5. Review the collected data as presented in performance reports.

Each step is described in the following sections.

Using the Profi ler ❘ 429

c21.indd 02/27/2014 Page 429

Creating a Sample Application
Before this section describes how to profi le an application, you need to create a sample application
that you can use to work through the content of this chapter. Of course, this is only for demonstra-
tion, and you can certainly use an existing application instead.

Create a new C# console application and name it DemoConsole. This application demonstrates some
differences between using a simple class and a structure.

First, add a new class fi le called WidgetClass.cs with the following class defi nition:

namespace DemoConsole
{
 public class WidgetClass
 {
 private string _name;
 private int _id;

 public int ID
 {
 get { return _id; }
 set { _id = value; }
 }

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }

 public WidgetClass(int id, string name)
 {
 _id = id;
 _name = name;
 }
 }
}

Also, add the System.Collections namespace to the fi le. Now, slightly modify that class to make
it a value type. Make a copy of the WidgetClass.cs fi le named WidgetValueType.cs and open it.
To make WidgetClass into a structure, change the word class to struct. Now, rename the two
places you see WidgetClass to WidgetValueType and save the fi le.

You should have a Program.cs already created for you by Visual Studio. Open that fi le and add the
following lines in the Main method:

System.Threading.Thread.Sleep(10000);
ProcessClasses(2000000);
ProcessValueTypes(2000000);

430 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 430

Add the following code to this fi le as well:

 public static void ProcessClasses(int count)
 {
 ArrayList widgets = new ArrayList();
 for (int i = 0; i < count; i++)
 widgets.Add(new WidgetClass(i, "Test"));
 string[] names = new string[count];
 for (int i = 0; i < count; i++)
 names[i] = ((WidgetClass)widgets[i]).Name;
 }
 public static void ProcessValueTypes(int count)
 {
 ArrayList widgets = new ArrayList();
 for (int i = 0; i < count; i++)
 widgets.Add(new WidgetValueType(i, "Test"));
 string[] names = new string[count];
 for (int i = 0; i < count; i++)
 names[i] = ((WidgetValueType)widgets[i]).Name;
 }
 }
}

You now have a simple application that performs many identical operations on a class and a simi-
lar structure. First, it creates an ArrayList and adds two million copies of both WidgetClass and
WidgetValueType. It then reads through the ArrayList, reading the Name property of each copy
and storing that name in a string array. You’ll see how the seemingly minor differences between the
class and structure affect the speed of the application, the amount of memory used, and its effect on
the .NET garbage collection process.

Creating a Performance Session
To begin profi ling an application, you must fi rst create a performance session. This is normally done
using the Performance and Diagnostic hub, the new starting point for all the Visual Studio 2013
profi ling tools. You may also create a blank performance session or base a new performance session
on a unit test result. Each of these methods is described in the following sections.

Using the Performance and Diagnostic Hub
The easiest way to create a new performance session is to use the Performance and Diagnostic
hub. In Visual Studio 2013, there is a menu item called Analyze, which is where the Performance
and Diagnostic hub and other profi ler menu items are located. Select Analyze ➪ Performance and
Diagnostics. This opens a performance hub, as shown in Figure 21-1.

Based on the current open solution, the hub will pick the startup project to use when profi ling by
default. However you can change the target for analysis by clicking the Change Target button. This
button allows you to choose one of the following targets:

 ➤ Startup Project—Use the startup project for the open solution

 ➤ Running App—Attach to a running Windows Store App

Using the Profi ler ❘ 431

c21.indd 02/27/2014 Page 431

 ➤ Installed App—Launch an installed Windows Store App

 ➤ Executable—Launch an executable (.exe)

 ➤ ASP.NET—Launch an ASP.NET application running IIS

FIGURE 21-1

The hub will also show you the available profi ling tools, based on the analysis target selected. In
Figure 21-1, you want to profi le the command-line application created earlier, so the only available
profi ling tool is the Performance Wizard (which is similar to the Visual Studio 2012 Performance
Wizard). However, you can see the other profi ling options available to you in Visual Studio 2013,
depending on your profi ling target. These include:

 ➤ CPU Sampling—Examine which native and managed functions are using the CPU most
frequently

 ➤ HTML UI Responsiveness—Examine where time is spent in your website or application

 ➤ JavaScript Memory—Investigate the JavaScript heap to help fi nd issues such as memory leaks

 ➤ Energy Consumption—Examine where energy is consumed in your application

 ➤ JavaScript Function Timing—Examine where time is spent in your JavaScript code

 ➤ XAML UI Responsiveness—Examine where time is spent in your application

Once you have selected the appropriate tool, click the Start button at the bottom of the screen to
either start the profi ling session, or to run a Confi guration Wizard before the profi ling session
starts. In this example, a three-step wizard guides you through the creation of your session.

432 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 432

The fi rst step, shown in Figure 21-2, is to select the profi ling method.

FIGURE 21-2

As mentioned earlier, Visual Studio 2013 has the following four profi ling options:

 ➤ CPU Sampling

 ➤ Instrumentation

 ➤ .NET Memory Allocation (sampling)

 ➤ Resource contention data (concurrency)

CPU Sampling is the recommended method to get started, and is chosen by default, as you see in
Figure 21-2.

The second step, shown in Figure 21-3, is to select the application you are profi ling. In this case, you
are profi ling the recently created DemoConsole application. You should see the DemoConsole appli-
cation listed under One or More Available Projects. If there are multiple applications listed there,
you can select more than one to profi le.

As you see in Figure 21-3, with Visual Studio 2013 you can also profi le an executable (or .exe fi le)
or an ASP.NET/JavaScript application. If you choose to profi le an executable then you must provide
the path for the executable with any command-line arguments and the startup directory. If you
choose to profi le an ASP.NET application then you must supply the URL for the web application.
Select the DemoConsole application as the target for profi ling.

The fi nal step in the wizard summarizes the selections in Step 1 and Step 2. Note that, in Visual
Studio 2013, the profi ling session is set to start after the wizard is fi nished. This is because the Launch

Using the Profi ler ❘ 433

c21.indd 02/27/2014 Page 433

profi ling after the wizard fi nishes checkbox is enabled by default, as shown in Figure 21-4. To just
save the settings and start a profi ling session at a later time, disable this checkbox and click Finish.

FIGURE 21-3

FIGURE 21-4

434 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 434

Although you can now run your performance session, you may want to change some settings. These
settings are described later in this chapter in the “Setting General Session Properties” section.

Adding a Blank Performance Session
There may be times (for example, when you’re profi ling a Windows Service) when manually specify-
ing all of the properties of your session would be useful or necessary. In those cases, you can skip
the Performance and Diagnostic hub and manually create a performance session.

Create a blank performance session by selecting Analyze ➪ Profi ler ➪ New Performance Session.
You see a new performance session, named Performance1, in the Performance Explorer window.
This window is described in detail later in this chapter in the section “Using the Performance
Explorer.”

After creating the blank performance session, you must manually specify the profi ling mode,
target(s), and settings for the session. As mentioned previously, performance session settings are
described later in this chapter in the section “Setting General Session Properties.”

Creating a Performance Session from a Unit Test
The third option for creating a new performance session is from a unit test. Refer to Chapter 19 for
a full description of the unit testing features in Visual Studio 2013.

There may be times when you have a test that verifi es the processing speed (perhaps relative to
another method or a timer) of a target method. Perhaps a test is failing because of system memory
issues. In such cases, you might want to use the profi ler to determine what code is causing problems.

To create a profi ling session from a unit test, fi rst run the unit test. Then, in the Test Results win-
dow, right-click the test and choose Create Performance Session from the context menu. Visual
Studio 2013 then creates a new performance session with the selected unit test automatically
assigned as the session’s target. When you run this performance session, the unit test is executed as
normal, but the profi ler is activated and collects metrics on its performance.

Using the Performance Explorer
After you have created your performance session, you can view it using the Performance Explorer.
The Performance Explorer, shown in Figure 21-5, is used to confi gure and execute performance ses-
sions and to view the results from the performance sessions.

The Performance Explorer features two folders for each session: Targets and Reports. Targets speci-
fi es which application(s) are profi led when the session is launched. Reports lists the results from each
of the current session’s runs. These reports are described in detail later in this chapter.

Performance Explorer also supports multiple sessions. For example, you might have one session
confi gured for sampling and another for instrumentation. You should rename them from the default
PerformanceX names for easier identifi cation.

Using the Profi ler ❘ 435

c21.indd 02/27/2014 Page 435

If you accidentally close a session in Performance Explorer, you can reopen it by using the Open
option of the File menu. You are likely to fi nd the session fi le (ending with .psess) in your solution’s
folder.

FIGURE 21-5

Setting General Session Properties
Whether you used the Performance Wizard to create your session or added a blank one, you might
want to review and modify the session’s settings. Right-click the session name — for example,
DemoConsole4(Sampling) — and choose Properties. You see the Property Pages dialog for the
session. It features several sections, described next.

NOTE This discussion focuses on the property pages that are applicable to all
types of profi ling sessions. These include the General, Launch, Tier Interactions,
CPU Counters, Windows Events, and Windows Counters pages. The other
pages each apply only to a particular type of profi ling. The Sampling page is
described later in this chapter in the section “Confi guring a Sampling Session,”
and the Binaries, Instrumentation, and Advanced pages are described in the
“Confi guring an Instrumentation Session” section later in this chapter.

436 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 436

General Property Page
Figure 21-6 shows the General page of the Property Pages dialog.

FIGURE 21-6

The Profi ling Collection panel of this dialog refl ects your chosen profi ling type (that is, Sampling,
Instrumentation, or Concurrency).

The .NET Memory Profi ling Collection panel enables the tracking of managed types. When the fi rst
option, Collect .NET Object Allocation Information, is enabled, the profi ling system collects details
about the managed types that are created during the application’s execution. The profi ler tracks the
number of instances, the amount of memory used by those instances, and which members created
the instances. If the fi rst option is selected, then you can choose to include the second option, Also
Collect .NET Object Lifetime Information. If selected, additional details about the amount of time
each managed type instance remains in memory is collected. This enables you to view further effects
of your application, such as its effect on the .NET garbage collector.

Using the Profi ler ❘ 437

c21.indd 02/27/2014 Page 437

The options in the .NET Memory Profi ling Collection panel are off by default. Turning them on
adds substantial overhead and causes both the profi ling and report-generation processes to take
additional time to complete. When the fi rst option is selected, the Allocation view of the session’s
report is available for review. The second option enables display of the Objects Lifetime view. These
reports are described later in this chapter in the section “Reading and Interpreting Session Reports.”

Finally, you can use the Report panel to set the name and location for the reports that are generated
after each profi ling session. By default, a timestamp is used after the report name so that you can
easily see the date of the session run. Another default appends a number after each subsequent run
of that session on a given day. (You can see the effect of these settings in Figure 21-16 later in this
chapter, where multiple report sessions were run on the same day.)

For example, the settings in Figure 21-6 run a sampling profi le without managed type allocation
profi ling, and the data collection control is launched. If run on January 1, 2013, it produces a
report named DemoConsole130101.vsp. Another run on the same day produces a report named
DemoConsole130101(1).vsp.

Launch Property Page
Although the sample application has only one binary to execute and analyze, your projects might
have multiple targets. In those cases, use the Launch property page to specify which targets should
be executed when the profi ling session is started or “launched.” You can set the order in which tar-
gets will be executed using the Move Up and Move Down arrow buttons.

Targets are described later in this chapter in the section “Confi guring Session Targets.”

Tier Interaction Property Page
Tier Interaction profi ling captures additional information about the execution times of functions
that interact with the database.

Multi-tier architecture is commonly used in many applications, with tiers for presentation, business,
and database. With Tier Interaction profi ling, you can get a sense of the interaction between the
application tier and the data tier, including how many calls were made and the time of execution.

Tier Interaction profi ling only supports the capturing of execution times for synchronous calls using
ADO.NET. It does not support native or asynchronous calls.

To start collecting tier interaction data, select the Enable Tier Interaction Profi ling checkbox, as
shown in Figure 21-7.

After you run the profi ling with this selection turned on, you are presented with the profi ling report.
Select the Tier Interactions view from the Current View drop-down list, shown in Figure 21-8. This
example shows the results of running the profi ling on the Fabrikam Fiber sample application. This
application is available in the demo virtual machine for Visual Studio 2013, available for download
from Microsoft.

438 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 438

FIGURE 21-7

FIGURE 21-8

Using the Profi ler ❘ 439

c21.indd 02/27/2014 Page 439

This view shows the associated database connections, and how many queries were called from the
web application. For example, six queries were made to the FrabrikamFiber-Express database.

The bottom window shows the details of the queries that were called, and the number of times each
of these queries was called. This view also includes information on the timing of these queries. You
can quickly see that the information captured about the interaction between the application tier and
data tier can come in handy in debugging performance and bottleneck issues associated with the
interaction between these two tiers.

CPU Counters Property Page
The CPU Counters property page (shown in Figure 21-9) is used to enable the collecting of CPU-
related performance counters as your profi ling sessions run. Enable the counters by checking the
Collect CPU Counters checkbox. Then, select the counters you want to track from the Available
Counters list, and click the right-pointing arrow button to add them to the Selected Counters list.

FIGURE 21-9

Windows Events Property Page
The Windows Events property page enables you to collect additional trace information from a vari-
ety of event providers. This can include items from Windows itself, such as disk and fi le I/O, as well

440 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 440

as the .NET CLR. If you’re profi ling an ASP.NET application, for example, you can collect informa-
tion from IIS and ASP.NET.

Windows Counters Property Page
The Windows Counters property page (shown in Figure 21-10) is used to enable the collection
of Windows counters. These are performance counters that can be collected at regular intervals.
Enable the counters by checking the Collect Windows Counters box. Then, select the Counter
Category you want to choose from. Select the counters from the list, and click the right-pointing
arrow button to add them to the list on the right.

FIGURE 21-10

Confi guring Session Targets
If you used the Performance Wizard to create your session, you already have a target specifi ed. You
can modify your session’s targets with the Performance Explorer. Simply right-click the Targets
folder and choose Add Target Binary. Or, if you have a valid candidate project in your current

Using the Profi ler ❘ 441

c21.indd 02/27/2014 Page 441

solution, choose Add Target Project. You can also add an ASP.NET website target by selecting Add
Existing Web Site.

Each session target can be confi gured independently. Right-click any target and you see a context
menu like the one shown in Figure 21-11.

NOTE The properties of a target are different from those of the overall session,
so be careful to right-click a target, not the performance session’s root node.

FIGURE 21-11

If the session’s mode is instrumentation, an Instrument option is available instead of the Collect
Samples option. This indicates that when you run this session, that target will be included and
observed.

The other option is Set as Launch. When you have multiple targets in a session, you should
indicate which of the targets will be started when the session is launched. For example, you could
have several assembly targets, each with launch disabled (deselected), but one application .exe that
uses those assemblies. In that case, you mark the application’s target with the Set as Launch prop-
erty. When this session is launched, the application is run, and data is collected from the application
and the other target assemblies.

442 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 442

If you select the Properties option, you see a Property Pages dialog for the selected target (shown in
Figure 21-12). Remember that these properties only affect the currently selected target, not the over-
all session.

FIGURE 21-12

If you choose Override Project Settings, you can manually specify the path and name of an execut-
able to launch. You can provide additional arguments to the executable and specify the working
directory for that executable as well.

NOTE If the selected target is an ASP.NET application, this page instead
contains a URL to the Launch fi eld.

The Tier Interactions property page shows up here if you have chosen the tier interaction for the
performance session.

The Instrumentation property page (shown in Figure 21-13) has options to run executables or scripts
before and/or after the instrumentation process occurs for the current target. You may exclude the
specifi ed executable from instrumentation as well.

Using the Profi ler ❘ 443

c21.indd 02/27/2014 Page 443

FIGURE 21-13

NOTE Because the instrumentation of an assembly changes it, when you instru-
ment-sign assemblies it breaks them because the assembly no longer matches
the signature originally generated. To work with signed assemblies, you must
add a post-instrument event, which calls to the strong-naming tool, sn.exe. In
the command-line fi eld, call sn.exe, supplying the assembly to sign and the key
fi le to use for signing. You must also check the Exclude from Instrumentation
option. Adding this step signs those assemblies again, allowing them to be used
as expected.

The Advanced property page is identical to the one under the General project settings. It is used to
supply further command-line options to VSInstr.exe, the utility used by Visual Studio to instru-
ment assemblies when running an instrumentation profi ling session.

444 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 444

The Advanced property page is where you specify the .NET Framework run time to profi le, as shown
in Figure 21-14. As you see in the fi gure, the machine being used for demonstration purposes here
has .NET 2.0 and .NET 4.0 installed; hence, those two options can be seen in the drop-down list.

FIGURE 21-14

Confi guring a Sampling Session
Sampling is a very lightweight method of investigating an application’s performance characteristics.
Sampling causes the profi ler to periodically interrupt the execution of the target application, not-
ing which code is executing and taking a snapshot of the call stack. When sampling completes, the
report includes data such as function call counts. You can use this information to determine which
functions might be bottlenecks or critical paths for your application, and then create an instrumen-
tation session targeting those areas.

Because you are taking periodic snapshots of your application, the resulting view might be inac-
curate if the duration of your sampling session is too short. For development purposes, you could
set the sampling frequency very high, enabling you to obtain an acceptable view in a shorter time.
However, if you are sampling against an application running in a production environment, you
might want to minimize the sampling frequency to reduce the effect of profi ling on the performance
of your system. Of course, doing so requires a longer profi ling session run to obtain accurate results.

Using the Profi ler ❘ 445

c21.indd 02/27/2014 Page 445

By default, a sampling session interrupts the target application every 10 million clock cycles. If you
open the session property pages and click the Sampling page, you can use the Sampling Interval
fi eld to adjust the number of clock cycles between snapshots. Again, you might want a higher value
(resulting in less frequent sampling) when profi ling an application running in production, or a lower
value for more frequent snapshots in a development environment. The exact value you use will vary
depending on your specifi c hardware and the performance of the application you are profi ling.

If you have an application that is memory-intensive, you may try a session based on page faults. This
causes sampling to occur when memory pressure triggers a page fault. From this, you can get a good
idea of what code is causing those memory allocations.

You can also sample based on system calls. In these cases, samples are taken after the specifi ed
number of system calls (as opposed to normal user-mode calls) has been made. You may also sample
based on a specifi c CPU performance counter (such as misdirected branches or cache misses).

NOTE These alternative sampling methods are used to identify very specifi c
conditions; sampling based on clock cycles is what you need most of the time.

The stronger security model in Windows 8 does impact how sampling profi ling works on those sys-
tems. Microsoft moved to using Event Tracing for Windows (ETW), instead of CPU sampling. This
move required a complete rewrite of the collection and analysis components for sampling, but due to
time constraints not all the existing sampling functionality from previous versions made it into the
current version. This has the following impact:

 ➤ Tier interaction profi ling data cannot be collected in conjunction with CPU sampling data.

 ➤ The “Sampling” performance session properties cannot be confi gured. Instead, you see the
message “These settings are not supported for CPU sampling on this version of Windows” on
the property page.

 ➤ Windows performance counters cannot be collected while CPU sampling.

Confi guring an Instrumentation Session
Instrumentation is the act of inserting probes or markers in a target binary, which, when hit during
normal program fl ow, cause the logging of data about the application at that point. This is a more
invasive way of profi ling an application, but because you are not relying on periodic snapshots, it is
also more accurate.

NOTE Instrumentation can quickly generate a large amount of data, so you
should begin by sampling an application to fi nd potential problem areas, or
hotspots. Then, based on those results, instrument specifi c areas of code that
require further analysis.

446 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 446

When you’re confi guring an instrumentation session (refer to Figure 21-3 for the profi ling method
options), three additional property pages can be of use: Instrumentation, Binaries, and Advanced.
The Instrumentation tab is identical to the Instrumentation property page that is available on a
per-target basis, as shown in Figure 21-13. The difference is that the target settings are specifi c to
a single target, whereas the session’s settings specify executables to run before/after all targets have
been instrumented.

NOTE You probably notice the Profi le JavaScript option in Figure 21-13. That
option is examined a little later in this chapter.

The Binaries property page is used to manage the location of your instrumented binaries. By check-
ing Relocate Instrumented Binaries and specifying a folder, Visual Studio takes the original target
binaries, instruments them, and places them in the specifi ed folder.

For instrumentation-profi ling runs, Visual Studio automatically calls the VSInstr.exe utility to
instrument your binaries. Use the Advanced property page to supply additional options and argu-
ments (such as /VERBOSE) to that utility.

Confi guring a .NET Memory Allocation Session
The .NET memory allocation profi ling method interrupts the processor for every allocation of
managed objects. The profi ler collects details about the managed types that are created during the
application’s execution. (See Figure 21-2 for the profi ling method options.) The profi ler tracks the
number of instances, the amount of memory used by those instances, and which members created
the instances.

When you check the Also Collect .NET Object Lifetime Information option in the General proper-
ties page (Figure 21-6), additional details about the amount of time each managed type instance
remains in memory is collected. This enables you to view further effects of your application, such as
its effect on the .NET garbage collector.

Confi guring a Concurrency Profi ling Session
Concurrency profi ling is used to collect the following two types of concurrency data:

 ➤ Resource contention — This captures information every time a function in the application is
waiting for a resource because of a synchronous event.

 ➤ Thread execution — This captures information on thread contention, processor utilization,
execution delays, and other system events.

Executing a Performance Session
After you have confi gured your performance session and assigned targets, you can execute (or
launch) that session. In the Performance Explorer window (Figure 21-5), right-click a specifi c
session, and choose Start Profi ling.

Using the Profi ler ❘ 447

c21.indd 02/27/2014 Page 447

NOTE Before you launch your performance session, ensure that your project
and any dependent assemblies have been generated in Release Confi guration
mode. Profi ling a Debug build is not as accurate because such builds are not
optimized for performance and have additional overhead.

Because Performance Explorer can hold more than one session, you designate one of those sessions
as the current session. By default, the fi rst session is marked as current. You can invoke the current
session by selecting the Actions ➪ Start Profi ling menu command.

You may also run a performance session from the command line. For details, see the
“Command-Line Profi ling Utilities” section later in this chapter.

When a session is launched, you can monitor its status via the output window. You see the output
from each of the utilities invoked for you. If the target application is interactive, you can use the
application as normal. When the application completes, the profi ler shuts down and generates
a report.

When profi ling an ASP.NET application, an instance of Internet Explorer is launched, with a tar-
get URL as specifi ed in the target’s URL to Launch setting. Use the application as normal through
this browser instance, and Visual Studio monitors the application’s performance. After the Internet
Explorer window is closed, Visual Studio stops collecting data and generates the profi ling report.

NOTE You are not required to use the browser for interaction with the ASP
.NET application. If you have other forms of testing for that application (such
as the web and load tests described in Chapter 26), simply minimize the Internet
Explorer window and execute those tests. When you’re fi nished, return to the
browser window and close it. The profi ling report is then generated and includes
usage data resulting from those web and load tests.

Managing Session Reports
When a session run is complete, a new session report is added to the Reports folder for the executed
session. The “Setting General Session Properties” section earlier in this chapter (as well as
Figure 21-6) provides more details about how to modify the report name, location, and other addi-
tional properties in the General property page description.

As shown in Figure 21-15, the Reports folder holds all of the reports for the executions of that
session.

Double-click a report fi le to generate and view the report. Or, you can right-click a report and select
Open to view the report within Visual Studio (as shown in Figure 21-15).

In Visual Studio 2013, you can also compare two performance reports. With this capability, you
can compare the results from a profi ling session against a baseline. This will help, for example, in

448 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 448

tracking the results from profi ling sessions from one build to the next. To compare reports, right-
click a report name and select Compare Performance Reports.

FIGURE 21-15

This opens a dialog in which you can select the baseline report and the comparison report, as shown
in Figure 21-16.

FIGURE 21-16

Choose the Baseline File and the Comparison File and then click OK. This generates an analysis that
shows the delta between the two reports, and an indicator showing the directional move of the data
between these two reports (Figure 21-17). This gives you a clear sense of how the application profi le
is changing between two runs.

Another useful option to consider when you right-click a report is Export Report Data. When you
select this option, it displays the Export Report dialog box shown in Figure 21-18. You can then

Using the Profi ler ❘ 449

c21.indd 02/27/2014 Page 449

select one or more sections of the report to send a target fi le in XML or comma-delimited format.
This can be useful if you have another tool that parses this data, or for transforming via XSL into a
custom report view.

FIGURE 21-17

FIGURE 21-18

450 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 450

Reading and Interpreting Session Reports
A performance session report is composed of a number of different views. These views offer dif-
ferent ways to inspect the large amount of data collected during the profi ling process. The data
in many views are interrelated, and you see that entries in one view can lead to further detail in
another view. Note that some views have content only if you have enabled optional settings before
running the session.

The amount and kinds of data collected and displayed by a performance session report can be dif-
fi cult to understand and interpret at fi rst. The following sections examine each section of a report,
describing its meaning and how to interpret the results.

In any of the tabular report views, you can select which columns appear (and their order) by right-
clicking in the report and selecting Choose Columns. Select the columns you want to see, and how
you want to order them, by using the move buttons.

Report Information and Views
The specifi c information displayed by each view depends on the settings used to generate the perfor-
mance session. Sampling and instrumentation produce different contents for most views, and includ-
ing .NET memory profi ling options affects the display as well. Before exploring the individual views
that make up a report, it is important to understand some key terms.

Elapsed time includes all of the time spent between the beginning and end of a given function.
Application time is an estimate of the actual time spent executing your code, subtracting system
events. Should your application be interrupted by another during a profi ling session, elapsed time
includes the time spent executing that other application, but application time excludes it.

Inclusive time combines the time spent in the current function with time spent in any other func-
tions that it may call. Exclusive time removes the time spent in other functions called from the cur-
rent function.

NOTE If you forget these defi nitions, hover your mouse pointer over the column
headers and a tooltip gives you a brief description of the column.

Summary View
When you view a report, Summary view is displayed by default. There are two types of summary
reports, depending on whether you ran a sampling or instrumented profi le. Figure 21-19 shows a
Summary view from a sampling profi le of the DemoConsole application.

The Summary view in Visual Studio 2013 has three data sections (on the left of the screen), one
Notifi cations section (in the top-right portion of the screen), and a Report section (in the lower-right
portion of the screen), as shown in Figure 21-19.

The fi rst data section you see in the Summary view is the chart at the top showing the percentage of
CPU usage. This chart provides a quick visual cue into any spikes you have in CPU usage. You can

Using the Profi ler ❘ 451

c21.indd 02/27/2014 Page 451

select a section of the chart (for example, a spike in the chart), and then you can either zoom in by
selecting the Zoom by Selection link to the right of the chart, or you can fi lter the data by selecting
the Filter by Selection link, also to the right of the chart.

FIGURE 21-19

The second section in the Summary view is the hot path. This shows the most expensive call paths.
(They are highlighted with a fl ame icon next to the function name.) It’s not a surprise that the call
to ProcessClasses and to ProcessValueTypes were the expensive calls in this trivial example.

The third data section shows a list of functions doing most individual work. A large number of
exclusive samples here indicate that a large amount of time was spent on that particular function.

NOTE Notice that several of the functions aren’t function names, but names
of DLLs — for example, [clr.dll]. This occurs when debugging samples are
not available for a function sampled. This frequently happens when running
sampling profi les, and occasionally with instrumented profi les. The “Common
Profi ling Issues” section later in the chapter describes this issue and how to cor-
rect it.

For the DemoConsole application, this view isn’t showing a lot of interesting data. At this point,
you would normally investigate the other views. For example, you can click one of the methods in
the hot path to take you to the function details page, but because the DemoConsole application is
trivial, sampling to fi nd hotspots is not as useful as the information you can gather using instrumen-
tation. Let’s change the profi ling type to instrumentation and see what information is revealed.

452 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 452

In Performance Explorer, right-click the DemoConsole profi le and select Properties. Change the
Profi ling Collection option to Instrumentation, and click OK to close the properties window. Right-
click the DemoConsole profi le and select Start Profi ling to start profi ling, this time using instru-
mentation. Note that instrumentation profi ling takes longer to run. When profi ling and report
generation are complete, you see a Summary view similar to that shown in Figure 21-20.

FIGURE 21-20

The Summary view of an instrumented session has three sections similar to the Summary view of a
sampling session.

You can also get to the Call Tree view (which is examined shortly) or Functions view using the
shortcut link provided below the hot path information.

The Summary view has an alternate layout that is used when the .NET Memory Profi ling Collection
options are enabled on the General page of the session properties. Figure 21-21 shows this view.

Notice that the three main sections in this view are different. The fi rst section, Functions Allocating
Most Memory, shows the functions in terms of bytes allocated. The second section, Types with
Most Memory Allocated, shows the types by bytes allocated, without regard to the functions
involved. Finally, Types with Most Instances shows the types in terms of number of instances, with-
out regard to the size of those instances.

Also note the Notifi cations section and the Report section to the right of the CPU usage chart. If
you click the View Guidance link in the Notifi cations section, you are shown any available errors,
warnings, or informational messages. In this case, as shown in Figure 21-22, there are several
information messages. You learn what these mean later in this chapter in the “Objects Lifetime
View” section.

Using the Profi ler ❘ 453

c21.indd 02/27/2014 Page 453

FIGURE 21-21

FIGURE 21-22

Using the Summary view, you can quickly get a sense of the most highly used functions and types
within your application. In the following discussions, you see how to use the other views to get
further detail.

454 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 454

Functions View and Functions Details View
Let’s switch to the Functions view. You do that by selecting Functions from the Current View drop-
down at the top of the report. In this view, you can begin to see some interesting results.

The Functions view shown in Figure 21-23 lists all functions sampled or instrumented during the
session. For instrumentation, this is functions in targets that were instrumented and called during
the session. For sampling, this includes any other members/assemblies accessed by the application.

FIGURE 21-23

Note that ArrayList.Add and ArrayList.get_Item were each called four million times. This
makes sense, because ProcessValueTypes and ProcessClasses (which use that method) were
each called two million times. However, if you look at the hot path information in the Summary
views, there is a noticeable difference in the amount of time spent in ProcessingValueTypes over
ProcessClasses. Remember that the code for each is basically the same — the only difference is
that one works with structures, and the other with classes. You can use the other views to investi-
gate further.

From the Functions view, right-click any function, and you can go to that function’s source, see it in
module view, see the function details, or see the function in Caller/Callee view (discussed in detail
shortly). You can double-click any function to switch to the Functions Details view. You can also
select one or more functions, right-click, and choose Copy to add the function name and associated
data to the clipboard for use in other documents.

Using the Profi ler ❘ 455

c21.indd 02/27/2014 Page 455

As with most of the views, you can click a column heading to sort by that column. This is especially
useful for the four Time columns shown in Figure 21-23. Right-clicking in the Functions view and
selecting the Show in Modules view shows the functions grouped under their containing binary.

In this view, you can see the performance differences between functions, which could help you to
focus on an issue.

Double-clicking a function from the Functions view loads the Function Details view. Figure 21-24
shows the section of this view that is a clickable map with the calling function, the called functions,
and the associated values.

FIGURE 21-24

The Caller/Callee view presents this data in a tabular fashion.

Caller/Callee View
As shown in Figure 21-25, the Caller/Callee view displays a particular function in the middle,
with the function(s) that call into it in the section above it, and any functions that it calls in the
bottom section.

This is particularly useful for pinpointing the execution fl ow of your application, helping to iden-
tify hotspots. In Figure 21-26, the ProcessClasses method is in focus and shows that the only
caller is the Main method. You can also see that ProcessClasses directly calls four functions.

456 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 456

The sum of times in the caller list matches the time shown for the set function. For example, select
the ArrayList.get_Item accessor by double-clicking or right-clicking it and then choosing Set
Function. The resulting window then displays a table similar to what is shown in Figure 21-26.

FIGURE 21-25

FIGURE 21-26

Using the Profi ler ❘ 457

c21.indd 02/27/2014 Page 457

You saw ArrayList.get_Item in the main Functions view, but couldn’t tell how much of that time
resulted from calls by ProcessValueTypes or ProcessClasses. Caller/Callee view enables you to
see this detail.

Notice that there are two callers for this function, and that the sum of their time equals the time of
the function itself. In this table, you can see how much time that the ArrayList.get_Item method
actually took to process the two million requests from ProcessValueTypes versus those from
ProcessClasses. This enables you to analyze the processing time differences, and, if it is substan-
tially different, to drill down on the differences to fi nd out what could be causing the performance
difference.

Call Tree View
The Call Tree view shows a hierarchical view of the calls executed by your application. The concept
is somewhat similar to the Caller/Callee view, but in this view, a given function may appear twice
if it is called by independent functions. If that same method were viewed in Caller/Callee view, it
would appear once, with both parent functions listed at the top.

By default, the view has a root (the function at the top of the list) of the entry point of the instru-
mented application. To quickly expand the details for any node, right-click and choose Expand
All. Any function with dependent calls can be set as the new root for the view by right-clicking and
choosing Set Root. This modifi es the view to show that function at the top, followed by any func-
tions that were called directly or indirectly by that function. To revert the view to the default, right-
click and choose Reset Root.

Another handy option in the context menu is Expand Hot Path. This command expands the tree to
show the hot paths with the fl ame icon. This is a very helpful shortcut to jump right into the func-
tions that are potential bottlenecks.

Allocation View
If you confi gured your session for managed allocation profi ling by choosing Collect .NET Object
Allocation Information on the General property page for your session (Figure 21-6), you have access
to the Allocation view. This view displays the managed types that were created during the execution
of the profi led application.

You can quickly see how many instances, the total bytes of memory used by those instances, and the
percentage of overall bytes consumed by the instances of each managed type.

Expand any type to see the functions that caused the instantiations of that type. You see the break-
down of instances by function as well, so, if more than one function created instances of that type,
you can determine which created the most. This view is most useful when sorted by Total Bytes
Allocated or Percent of Total Bytes. This tells you which types are consuming the most memory
when your application runs.

458 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 458

NOTE An instrumented profi ling session tracks and reports only the types allo-
cated directly by the instrumented code. A sampling session may show other
types of objects. This is because samples can be taken at any time, even while
processing system functions (such as security). Try comparing the allocations
from sampling and instrumentation sessions for the same project. You will likely
notice more object types in the sampling session.

As with the other report views, you can also right-click any function to switch to an alternative
view, such as source code, Functions view, or Caller/Callee view.

Objects Lifetime View
The Objects Lifetime view is available only if you have selected the Also Collect .NET Object Lifetime
Information option of the General properties for your session (refer to Figure 21-6). This option is
only available if you have also selected the Collect .NET Object Allocation Information option.

NOTE The information in this view becomes more accurate the longer the appli-
cation is run. If you are concerned about the results you see, increase the dura-
tion of your session run to help ensure that the trend is accurate.

Several of the columns are identical to those in the Allocation view table, including Instances, Total
Bytes Allocated, and Percent of Total Bytes. However, in this view, you can’t break down the types
to show which functions created them. The value in this view lies in the details about how long the
managed type instances existed and their effect on garbage collection.

The columns in this view include the number of instances of each type that were collected during
specifi c generations of the garbage collector. With COM, objects were immediately destroyed, and
memory freed, when the count of references to that instance became zero. However, .NET relies on
a process called garbage collection to periodically inspect all object instances to determine whether
the memory they consume can be released.

Objects are placed into groups, called generations, according to how long each instance has
remained referenced. Generation zero contains new instances, generation-one instances are older,
and generation two contains the oldest instances. New objects are more likely to be temporary or
shorter in scope than objects that have survived previous collections. So, having objects organized
into generations enables .NET to more effi ciently fi nd objects to release when additional memory
is needed.

The view includes Instances Alive at End and Instances. The latter is the total count of instances of
that type over the life of the profi ling session. The former indicates how many instances of that type
were still in memory when the profi ling session terminated. This might be because the references to

Command-Line Profi ling Utilities ❘ 459

c21.indd 02/27/2014 Page 459

those instances were held by other objects. It might also occur if the instances were released right
before the session ended, before the garbage collector acted to remove them. Having values in this
column does not necessarily indicate a problem; it is simply another data item to consider as you
evaluate your system.

Having a large number of generation-zero instances collected is normal, fewer in generation one,
and the fewest in generation two. Anything else indicates there might be an opportunity to optimize
the scope of some variables. For example, a class fi eld that is used from only one of that class’s meth-
ods could be changed to a variable inside that method. This would reduce the scope of that variable
to live only while that method is executing.

Like the data shown in the other report views, you should use the data in this view not as defi nitive
indicators of problems, but as pointers to places where improvements might be realized. Also, keep
in mind that, with small or quickly executing programs, allocation tracking might not have enough
data to provide truly meaningful results.

COMMAND-LINE PROFILING UTILITIES

Visual Studio abstracts the process of calling several utilities to conduct profi ling. You can use these
utilities directly if you need more control, or if you need to integrate your profi ling with an auto-
mated batch process (such as your nightly build). The general fl ow is as follows:

 1. Confi gure the target (if necessary) and environment.

 2. Start the data logging engine.

 3. Run the target application.

 4. When the application has completed, stop the data logging engine.

 5. Generate the session report.

These utilities can be found in your Visual Studio installation directory under \Team Tools\
Performance Tools. For help with any of the utilities, supply a /? argument after the utility name.

Table 21-1 lists the performance utilities that are available as of this writing.

TABLE 21-1: Performance Tools

UTILITY NAME DESCRIPTION

Vsinstr.exe Used to instrument a binary

Vsperfcmd.exe Used to launch a profi ling session

Vsperfmon.exe Starts the monitor for the profi ling sessions

Vsperfreport.exe Used to generate a report after a profi ling session is completed

VsperfCLREnv.exe Used to set environment variables required to profi le a .NET application

460 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 460

NOTE Refer to MSDN documentation at http://msdn.microsoft.com/
en-us/library/bb385768(v=vs.120).aspx for more information on the com-
mand-line profi ling tools.

Just My Code
When you run a sampling session, the report includes profi ling data from all the code in the project.
In most cases, you are only interested in the performance information of your code. For example,
you don’t need to have the performance data of .NET Framework libraries, and, even if you have it,
there is not a lot you can do with that data. In the Summary view of the profi ling report, you can
now toggle between viewing data for all code, or just the application code. The setting for that is in
the Notifi cations section in the Summary view, as shown in Figure 21-27.

FIGURE 21-27

Profi ling JavaScript
In Visual Studio 2013, you can profi le JavaScript. With this option, you can collect performance
data for JavaScript code. To do that, you start by setting up an instrumentation session. Then, in the
Instrumentation property page, select the Profi le JavaScript option, as shown in Figure 21-28.

When you run this profi ling session, the profi ler includes performance information on JavaScript
functions, along with function calls in the application. This example again uses the Fabrikam Fiber
application. Figure 21-29 shows the Function Details view with the called functions and the elapsed
times. It also shows the associated JavaScript code in the bottom pane, and that helps in identify-
ing any potential issues with the script. This feature is very helpful to assess the performance of
JavaScript functions and identifi es any issues with the scripts.

http://msdn.microsoft.com

Command-Line Profi ling Utilities ❘ 461

c21.indd 02/27/2014 Page 461

FIGURE 21-28

FIGURE 21-29

462 ❘ CHAPTER 21 PROFILING AND PERFORMANCE

c21.indd 02/27/2014 Page 462

COMMON PROFILING ISSUES

Profi ling is a complex topic, and it’s not without a few pitfalls to catch the unwary. This section
documents a number of common issues you might encounter as you profi le your applications.

Debugging Symbols
When you review your profi ling reports, you might notice that some function calls resolve to
unhelpful entries such as [ntdll.dll]. This occurs because the application has used code for which
it cannot fi nd debugging symbols. So, instead of the function name, you get the name of the con-
taining binary.

Debugging symbols, fi les with the .pdb extension (for “program database”), include the details that
debuggers and profi lers use to discover information about executing code. Microsoft Symbol Server
enables you to use a web connection to dynamically obtain symbol fi les for binaries as needed.

You can direct Visual Studio to use this server by choosing Tools ➪ Options. Expand the
Debugging section and choose Symbols. Check the box next to the Microsoft Symbol Servers loca-
tion. Now, close and reopen a report; the new symbols are used to resolve function names.

NOTE The fi rst time you render a report with symbols set to download from
Microsoft Symbol Server, it takes signifi cantly longer to complete than it will on
subsequent times.

If your profi ling system does not have Internet access — perhaps because of security restrictions
— you can download and install the symbol packages for Windows from the Windows Hardware
Developer Center. As of this writing, this is http://msdn.microsoft.com/en-us/windows/
hardware/gg463028. Select the package appropriate for your processor and operating system and
install the symbols.

Instrumentation and Code Coverage
When you’re running an instrumentation profi le, be certain that you are not profi ling a target for
which you have previously enabled code coverage. Code coverage, described in Chapter 8, uses
another form of instrumentation that observes which lines of code are accessed as tests are executed.
Unfortunately, this instrumentation can interfere with the instrumentation required by the profi ler.

If your solution has a test project and you have previously used code coverage, open your Test Run
Confi guration under Test ➪ Edit Test Run Confi gurations, and select the Code Coverage page.
Ensure that the binaries you are profi ling do not have code coverage enabled. If they do, uncheck
them and rebuild your solution. You should then be able to use instrumentation profi ling without
confl ict.

http://msdn.microsoft.com/en-us/windows

Summary ❘ 463

c21.indd 02/27/2014 Page 463

SUMMARY

In this chapter, you learned about the value of using profi ling to identify problem areas in your code.
This chapter examined the differences between sampling and instrumentation, when each should
be applied, and how to confi gure the profi ler to execute each type. You learned about the different
profi ling methods. You saw the Performance Explorer in action, and learned how to create and con-
fi gure performance sessions and their targets.

You then learned how to invoke a profi ling session, and how to work with the reports that are
generated after each run. You looked at each of the available report types, including Summary,
Function, Call Tree, and Caller/Callee.

Although Visual Studio 2013 offers a great deal of fl exibility in your profi ling, you might fi nd you
must specify further options or profi le applications from a batch application or build system. You
learned about the available command-line tools. Profi ling is a great tool that you can use to ensure
the quality of your application.

In Chapter 22, you learn about a great feature in Visual Studio 2013 called IntelliTrace, as well as
some other nifty debugging capabilities (including data tips and breakpoints) .

c22.indd 02/27/2014 Page 465

Debugging with IntelliTrace
WHAT’S IN THIS CHAPTER?

 ➤ Exploring how to run IntelliTrace

 ➤ Confi guring IntelliTrace options

 ➤ Running IntelliTrace in a production environment

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/proalm3ed
on the Download Code tab. The fi les are in the Chapter 22 download folder and individually
named as shown throughout this chapter.

Many developers resent the fact that debugging has become one of the key components in
software development. They have been known to spend a considerable amount of time simply
on debugging. Adding salt to the wound are programming bugs for which the behavior is not
reproducible. In many instances, developers may wish there was a way to travel back in time
to capture what happened and then be able to wave a magic wand to debug the issue. That
wish has now come true in Visual Studio Ultimate 2013. (Not the magic wand part — that
feature did not make the cut.)

This chapter examines the IntelliTrace feature, which debuted in Visual Studio 2010 Ultimate
and has been enhanced in Visual Studio Ultimate 2013. In this chapter, you fi nd out how to
use this feature to aid in your debugging effort, and how you can use it in a production envi-
ronment to help debug production applications.

22

http://www.wrox.com/go/proalm3ed

466 ❘ CHAPTER 22 DEBUGGING WITH INTELLITRACE

c22.indd 02/27/2014 Page 466

INTELLITRACE BASICS

In many cases, as a developer, you have discovered that debugging is a regular activity. It is also a
task that can become monotonous. For example, at some point a tester might have passed on a bug
to you that you could not reproduce. You may also have experienced the agony of stepping through
one step past the point where the issue occurs, only to discover that it is time to start all over again.
These are just a couple of common occurrences, and there are no doubt plenty more.

Visual Studio Ultimate 2013 includes capabilities to address issues such as the famous “no repro”
bug status. A key feature in this capability is the IntelliTrace feature. The key tactics used to address
the nonreproducible bug are to capture as much information as possible when the bug is encoun-
tered, and to use the capability to leverage this information while debugging. The one feature that
could top this would be for the bug to automatically resolve itself.

Now it’s time to take a deeper look at this debugging feature through an example.

IntelliTrace — An Example
The following steps walk you through an example of using IntelliTrace to debug an application:

 1. To get started, open the Chapter22SampleApp in Visual Studio 2013. Press F5 to compile
and run the application.

The application runs, and a window with three buttons opens, as shown Figure 22-1.
By pressing F5 to run the application, you are running it in Debug mode. Notice the
IntelliTrace window on the right side of Visual Studio. Currently nothing is shown in
the window. IntelliTrace gathers data behind the scenes while the application is executing,
but you must break the execution of the application before the IntelliTrace information can
be viewed. Let’s walk the application through its paces and look at the IntelliTrace results.

FIGURE 22-1

IntelliTrace Basics ❘ 467

c22.indd 02/27/2014 Page 467

 2. Click the Ex1: Generate Random Number button on the application form to generate a ran-
dom number and display it in a message box. Click the OK button to close the message box.

 3. Click the Ex2: File Access button. The application attempts to read from a text fi le and dis-
plays the results in the textbox. You should see results displayed there.

 4. Click the Ex3: File Access button. The application attempts to read and display the con-
tents of a different text fi le. Notice, however, that the application did not display anything.
Something must be wrong with the application. However, the application did not throw an
error or display any other signs that something is wrong.

At this point, before IntelliTrace, you would have had to go back into the code and look at the func-
tionality around the application to try to determine where something might be wrong. Maybe you
would have gone back in to add a lot of breakpoints, and then started stepping slowly through your
code. Regardless, you had to go back and run the same tests again. With IntelliTrace, you don’t have
to do that.

The application did not perform as expected when you clicked the Ex3: File Access button. Use
IntelliTrace to fi gure out why. In the IntelliTrace window in Visual Studio, click the Break All link.
This breaks into the debugging session and displays the IntelliTrace information collected so far, as
shown in Figure 22-2.

FIGURE 22-2

468 ❘ CHAPTER 22 DEBUGGING WITH INTELLITRACE

c22.indd 02/27/2014 Page 468

By default, IntelliTrace is confi gured only to capture IntelliTrace event information, so that is what
is displayed initially in the window. Selecting a particular event in the window displays detailed
information about the event, as well as navigates you to the code responsible for the event. For
example, if you click the Gesture: Clicked “Ex1: Generate Random Number” event, the window
displays detailed information related to the event and navigates to the Form1.cs tab and to the
btnEx1_Click method that caused the event to fi re. As a result, you can easily fi nd the code related
to the different IntelliTrace messages you may receive.

Looking through the IntelliTrace captured events, you can see two exception events. Select the
Exception: Thrown event as shown in Figure 22-3.

FIGURE 22-3

Selecting the exception event displays detailed information about the event. In this case, you see
that a File Not Found exception was thrown and that the application could not fi nd the fi le named
test2.txt. At the same time, in the Form1.cs tab, Visual Studio navigates to the AccessFile2
method and to the offending line of code. From this, you are able to determine that the test2.txt
fi le does not exist, which must be causing the application problem. You are able to determine all this
during the same initial test run without having to restart the application or rerun any tests.

Navigating the IntelliTrace Events View
As you can imagine, for a long-running test or debugging session, the IntelliTrace events view could
contain a large number of events. The IntelliTrace window has several options to make it easier to
navigate the event information.

There are two drop-down boxes at the top of the IntelliTrace window. The one on the right is
the Threads drop-down box. This enables you to view all the application threads for which the

IntelliTrace Basics ❘ 469

c22.indd 02/27/2014 Page 469

IntelliTrace event information was captured, and you can select only the specifi c threads you want
to view in the window. The second drop-down box (on the left) displays all the different event cate-
gories for which IntelliTrace was confi gured to monitor for the particular test run. You can uncheck
specifi c categories to remove those events from the window.

Finally, there is a search box underneath the two drop-down boxes, which you can use to search
for particular words or phrases for the displayed events. For example, if you only want to display
the Exception events, you can enter the word Exception in the search box and click the magnifying
glass search icon. The contents of the window are fi ltered to only show events that contain the word
Exception.

Collecting Method Call Information
As mentioned earlier, by default, IntelliTrace only collects specifi ed event information. You can also
confi gure IntelliTrace to collect method call information. Think of this as another way to navigate
through the call stack, but you can see details around the call information. To set this, in Visual
Studio, select Tools ➪ Options. The Visual Studio Options window opens. Select the IntelliTrace
setting’s General tab, shown in Figure 22-4.

FIGURE 22-4

On this tab, you can turn IntelliTrace on or off for debugging sessions by selecting or deselecting the
Enable IntelliTrace checkbox. You can also control what information IntelliTrace collects. As men-
tioned earlier, by default IntelliTrace only collects event information, which has a minimal effect on
application performance. However, you can confi gure IntelliTrace to gather both event and method
call information by selecting the IntelliTrace Events and Call Information radio button.

You should consider some things before selecting this option, though. This option collects detailed
method call information, which leads to some application performance degradation. Also, the Edit

470 ❘ CHAPTER 22 DEBUGGING WITH INTELLITRACE

c22.indd 02/27/2014 Page 470

and Continue features of the debugger are disabled as call information is collected. Finally, this
change does not take effect until the next debugging session, so if you have made this change while
in the middle of debugging, call information is not collected unless you restart your session.

To continue the example, select the IntelliTrace Events and Call Information radio button and then
click OK to close the options window. If you are currently in a debugging session in Visual Studio,
stop the debugging session. Press F5 to compile and run the same application again. Click through
all three buttons, as before, and then click the Break All link in the IntelliTrace window to break
into the debugging session.

Select the User Prompt: Displayed ″″ (MessageBox) event in the IntelliTrace window to display
the event details. Click the Switch to IntelliTrace Calls View link to switch the context of the
IntelliTrace view from events to call stack information (see Figure 22-5).

FIGURE 22-5

You can use this view to navigate the call stack and view some variable information. Double-click
the Chapter22SampleApp.Form1.btnEx1_Click call to navigate to its call information. Then
double-click the Chapter22SampleApp.Form1.GetRandomNumber call. You are navigated to the
GetRandomNumber method in Form1.cs, as shown in Figure 22-6.

IntelliTrace Basics ❘ 471

c22.indd 02/27/2014 Page 471

FIGURE 22-6

Figure 22-6 shows you more of the power of IntelliTrace when you’re collecting method call infor-
mation. IntelliTrace automatically collects all the input-parameter information for a method, as well
as the method’s return value. In the case of Figure 22-6, by looking in the locals window in the bot-
tom left, you can see that the minValue was set to 0, the maxValue was set to 100, and the random
number returned was 82. Again, it is worth pointing out that you are able to view all this informa-
tion without having to remember to set specifi c breakpoints, or rerun the debugging process.

Having this data collection at the method entry and exit points enables you to treat the method as
a black box, and can make it easier for you to determine why the method is providing the incorrect
information or causing some other error.

When you are viewing IntelliTrace information in the call view, a navigation bar appears in the
code window. You can see this navigation bar in Figure 22-6. You can use the navigation bar to
walk through the call stack instead of clicking on call information in the IntelliTrace window. The
navigation bar contains fi ve icons that have the following associated actions. (This list is ordered to
match the order of the icons in the navigation bar.)

 ➤ Return to Call Site

 ➤ Go to Previous Call or IntelliTrace Event

 ➤ Step In

 ➤ Go to Next Call or IntelliTrace Event

 ➤ Go to Live Mode

472 ❘ CHAPTER 22 DEBUGGING WITH INTELLITRACE

c22.indd 02/27/2014 Page 472

Collecting Detailed Information
Try this. Assuming you are still in Visual Studio — in debugging mode and in the GetRandomNumber
method from the last section — right-click the randomnumber variable in that method and select
Add Watch from the context menu. This adds the variable randomnumber to the watch window.
You might expect its value to be the same as the return value from the method (in this example, 83).
However, as Figure 22-7 shows, the variable displays the message [Available IntelliTrace data
is shown in the Locals window]. Wait, what? This is the variable that contains the value being
returned by the function, so how could the value not be collected?

FIGURE 22-7

Although IntelliTrace collects a lot of valuable debugging information for you, it doesn’t collect
every little bit of information. Collecting all the information would lead to an extremely large col-
lection fi le, which could ultimately be diffi cult to use. One of the places that IntelliTrace makes a
trade off is with local variables. By default, local variable information is not captured via
IntelliTrace collection. However, you can work around this by setting debugging breakpoints or
tracepoints in your code. Setting a breakpoint or a tracepoint forces IntelliTrace to collect the local
variable information at that break. Take a look at an example of this:

 1. If you are still in debugging mode in Visual Studio, select Debug ➪ Stop Debugging to halt
the debugging process. Double-click Form1.cs to open the fi le in Visual Studio. Navigate

IntelliTrace Basics ❘ 473

c22.indd 02/27/2014 Page 473

to the GetRandomNumber method and add a breakpoint on each of the following three
lines:

Random random = new Random();
randomnumber = random.Next(minValue, maxValue);
return randomnumber;

 2. Press F5 to run the application. Click the Ex1: Generate Random Number button. Visual
Studio breaks into the application at the fi rst breakpoint. Notice that you can make full use
of IntelliTrace to move backward through the call stack, as well as view IntelliTrace event
information. Click the Continue button on the Visual Studio toolbar to continue debugging.

Visual Studio now breaks at the second statement. Hover the mouse over the randomnumber
variable, and a data tip displays to show the current value of randomnumber. You can also
see the value of randomnumber by looking in the Locals tab in Visual Studio. You see that
the randomnumber value is currently equal to zero. This is because the debugger stopped the
application before the line of code has executed.

 3. Click the Continue button on the Visual Studio toolbar to move to the return statement.

At this point, the random number has been generated and stored in the randomnumber vari-
able. You can see this by either viewing the variable in the Locals window or by hovering
your mouse over the variable name in the method.

Saving Your IntelliTrace Session
By default, when you exit your debugging session in Visual Studio, your IntelliTrace information
is automatically deleted. It is not saved. If you want to save your IntelliTrace information to later
review and use, you need to explicitly save the results to a fi le. Saving the results to a fi le enables
you to pass them on to another developer, who could then review your debugging session to try to
resolve any exceptions that occurred.

To do so, in Visual Studio, select Debug ➪ IntelliTrace ➪ Save IntelliTrace Session. This opens
a Save As window, where you can choose to save your IntelliTrace session as an .iTrace fi le. By
default, the fi le includes a timestamp.

Now generate a new IntelliTrace session, save the IntelliTrace session to a fi le, and then view the fi le:

 1. If you are still in debugging mode in Visual Studio, select Debug ➪ Stop Debugging to halt
the debugging process. Make sure you have added the three breakpoints specifi ed in the pre-
vious session and then press F5 to start debugging the application. Click through each of the
buttons in the application to execute its functionality. When the breakpoints are triggered,
simply click Continue on the Visual Studio toolbar to continue executing the application
logic.

 2. After you have clicked all three buttons on the app, click the Break All link in the IntelliTrace
window to break into the debugging session. From within the IntelliTrace window, you can

474 ❘ CHAPTER 22 DEBUGGING WITH INTELLITRACE

c22.indd 02/27/2014 Page 474

click the Save icon to save the session information, or select Debug ➪ IntelliTrace ➪ Save
IntelliTrace Session.

 3. Save the session to your Documents folder, and take the default name. This saves the
IntelliTrace session information to the .iTrace fi le.

 4. Select Debug ➪ Stop Debugging to stop the debugging process, and close Visual Studio.

 5. Open Windows Explorer and navigate to your Documents folder. You see a fi le similar to
Figure 22-8. The important takeaway from this is how big the IntelliTrace session fi le is,
even for the small amount of debugging that you performed. In this example, it is almost
14MB. Depending on the length of your debugging session, how much event information you
are collecting, and how many breakpoints you have set to capture local variable information,
this fi le can grow quite large.

FIGURE 22-8

You might expect the IntelliTrace fi le to be a simple XML fi le that you can open and view in a text
editor, but that is not the case. Because of the amount of information gathered by IntelliTrace, the
data is stored in a proprietary format to make it easier for Visual Studio to work with.

To open the IntelliTrace session fi le, simply double-click the session fi le, and it opens in Visual
Studio (see Figure 22-9).

IntelliTrace Basics ❘ 475

c22.indd 02/27/2014 Page 475

FIGURE 22-9

When you open an IntelliTrace session fi le, it initially displays the IntelliTrace summary screen. This
summary screen can contain a good bit of initial information to help you understand the debugging
session. In the following sections, you examine these sections.

Threads List
The Threads List section displays detailed information about the threads, including their thread
IDs, thread names, and the start and end time of each thread.

Modules
The Modules section shows you all the different modules (DLLs, executables, and so on) for which
data was collected during the IntelliTrace collection process. Information displayed here includes the
module name, the module path, and the module ID.

NOTE Later in this chapter, in the “IntelliTrace Options” section, you learn how
to include or exclude specifi c modules during the IntelliTrace collection process by
modifying the IntelliTrace Collection settings.

System Info
The System Info section contains detailed system information about the machine on which the
IntelliTrace information was collected, as shown in Figure 22-10.

476 ❘ CHAPTER 22 DEBUGGING WITH INTELLITRACE

c22.indd 02/27/2014 Page 476

FIGURE 22-10

Information collected includes total system memory, type of operating system, and processor infor-
mation, just to name a few values. Having this machine information at your fi ngertips can make it
easier to understand why the application might be having issues on a particular type of machine.

Exception Data
If any exceptions were triggered during the IntelliTrace collection process, that information is dis-
played here, as shown in Figure 22-11.

Select the System.IO.FileNotFoundException. The call stack for the exception is displayed, which
shows you, in this case, that the Chapter22SampleApp.Form1.AccessFile2 method was triggered,
and then several System.IO.File methods were triggered.

What is really interesting is that, when you select the exception, the Debug Newest Exception
in Group button becomes enabled. Clicking this button actually puts Visual Studio into debug
mode, navigates the IntelliTrace window to where the exception occurred, opens the code fi le
associated with the exception, and navigates to the line of the fi le where the exception occurred
(see Figure 22-12).

Notice that you are in full debugging mode, using the IntelliTrace fi le as the source information.
As such, you only have access to the information that IntelliTrace collected. You can do anything
that you would normally do when working with collected information, including view event infor-
mation, navigate the call stack, and view variable information that was collected. Also, remember
that the full solution has not been opened for you at this point, just the specifi c code fi le. This is to

IntelliTrace Basics ❘ 477

c22.indd 02/27/2014 Page 477

aid you in determining the root cause of the problem. After this is found, you should still open the
entire solution before making the appropriate changes.

FIGURE 22-11

FIGURE 22-12

478 ❘ CHAPTER 22 DEBUGGING WITH INTELLITRACE

c22.indd 02/27/2014 Page 478

IntelliTrace Options
There are multiple options you can confi gure around IntelliTrace. Open the IntelliTrace settings
window by clicking Debug ➪ IntelliTrace ➪ Open IntelliTrace Settings. The Visual Studio Options
window displays, as shown in Figure 22-4.

You should notice the following four confi guration sections within the IntelliTrace option node:

 ➤ General

 ➤ Advanced

 ➤ IntelliTrace Events

 ➤ Modules

Let’s look at the confi gurations available in each of these sections.

General
You already learned about this section earlier in this chapter, but it’s worth reviewing here. In the
General section, you can enable IntelliTrace by clicking the Enable IntelliTrace checkbox. With this
checkbox you can enable (check) or disable (uncheck) IntelliTrace. In this window, you can also
choose between the options to record events only or collect additional information that includes
events, diagnostics, calls, and method level tracing. Of course, collecting more information means
that a larger log fi le is generated. As you can see in the Options window shown in Figure 22-4, col-
lecting more information has more of an impact on performance than merely collecting events.

Also, note that the Edit and Continue option is disabled with the latter option. The Options dialog
prompts you with this warning when you change the setting.

Advanced
The Advanced option provides several settings. As shown in Figure 22-13, you can set the location
to store the generated log fi le, and specify the maximum size that the log fi le should be. Remember,
this is important, as the IntelliTrace log fi les can grow to a very large size.

In addition, there are three checkboxes at the bottom of the screen:

 ➤ Display the Navigation Gutter while in Debug Mode

 ➤ Enable Team Foundation Server Symbol Path Lookup

 ➤ Prompt to Enable Source Server Support

IntelliTrace Events
As shown in Figure 22-14, the IntelliTrace Events section lists all the diagnostic events that are col-
lected while debugging an application. The list of events is broken down by framework categories.
Here, you can select (that is, choose to collect) or deselect (choose not to collect) the diagnostic
events shown on this list. This enables you to target your event collection to only the specifi c tech-
nologies you care about. By default, only a certain subset of events are collected.

IntelliTrace Basics ❘ 479

c22.indd 02/27/2014 Page 479

FIGURE 22-13

NOTE The more event information you collect, the larger the IntelliTrace collec-
tion fi le is, so take this into consideration if you decide to collect a large number
of events.

FIGURE 22-14

480 ❘ CHAPTER 22 DEBUGGING WITH INTELLITRACE

c22.indd 02/27/2014 Page 480

Modules
As shown in Figure 22-15, this section enables you to manage the list of modules for which data is
collected during debugging.

FIGURE 22-15

Here you can add new assemblies to collect debugging information, as well as exclude and remove
assemblies for which you don’t want to collect debugging information.

INTELLITRACE IN PRODUCTION

With Visual Studio 2012, Microsoft released a set of IntelliTrace standalone collection utilities that
you could use to create IntelliTrace logs and gather other debugging information about produc-
tion applications. You didn’t need Visual Studio 2012 installed on the machine being tested and the
utilities themselves didn’t alter the computer they were on, and removing the utilities is as simple as
deleting a folder. This made it easy to install and use these utilities on production web servers, as
well as other computers.

With Visual Studio 2013, things have change slightly. You can still use IntelliTrace to gather
information about production applications. However, now you do this by installing the Microsoft
Monitoring Agent (MMA).

MMA is used to monitor the health of your applications as well as your computer infrastructure.
It can be installed and used as a standalone tool, gathering IntelliTrace information, or it can be
connected to System Center Operations Manager (SCOM) to calculate the health states of the

IntelliTrace in Production ❘ 481

c22.indd 02/27/2014 Page 481

computer and objects, and report that information back to the SCOM management server for
analysis and reporting. When used as a SCOM agent, you can start to reap the benefi ts of SCOM
Application Performance Monitoring (APM). With APM, SCOM can monitor your web applica-
tions. When issues arise, you can use the SCOM console to automatically start an IntelliTrace ses-
sion, to gather debugging information. There is integration between SCOM APM and TFS, such
that alerts in SCOM can be turned into work items in TFS. And this integration allows you to take
the IntelliTrace log that was generated using SCOM APM, and attach it to the associated work item
in TFS. This allows IT pros to work in their environment (the SCOM console) while developers can
stay in their environment (Visual Studio and TFS), but still easily communicate and share artifacts
to aid in solving problems quickly.

NOTE This integration between SCOM and TFS can be referred to using the
term “DevOps,” which is a general movement toward better integration and
interoperability between developers and IT professionals. For more information
on this integration, and why it is important, see Chapter 2.

When used as a standalone tool, the MMA can collect IntelliTrace application traces locally. It
can be used to monitor IIS-hosted ASP.NET web applications, as well as Microsoft SharePoint
2010/2013 applications. PowerShell commands are used to start and stop the monitoring process, as
well as collect IntelliTrace log fi les, which can then be examined using Visual Studio Ultimate 2013.

NOTE Although Visual Studio 2013 does not have to be installed to collect
the information, the IntelliTrace log fi le can only be read using Visual Studio
Ultimate 2013.

Installing the IntelliTrace Standalone Collector
To get started collecting IntelliTrace information in a production environment, you fi rst need to
download and install the Microsoft Monitoring Agent on the machine in question. You can
download the installation fi le from http://www.microsoft.com/en-us/download/details
.aspx?id=40316.

Make sure that your web server has .NET Framework 3.5, 4.0, or 4.5 installed on it. Ideally your
web server also needs to have Windows PowerShell 3.0 or later installed. The MMA will work with
Windows PowerShell 2.0, but you will have to import the MMA PowerShell commandlets every
time you want to use it and run PowerShell.

The installation is very straightforward. At one step in the installation, you can confi gure the agent
setup options, as shown in Figure 22-16.

http://www.microsoft.com/en-us/download/details

482 ❘ CHAPTER 22 DEBUGGING WITH INTELLITRACE

c22.indd 02/27/2014 Page 482

FIGURE 22-16

Here, you can specify the setup options for the installation of the MMA. By default, the fi rst two
options are selected and greyed out, which doesn’t allow you to change them. Those two options
allow for the local collection of IntelliTrace logs, and allow use of the Active Directory to confi gure
the agent based on centrally administered settings. The last option allows you to connect the agent
back to your System Center Operations Manager environment, if you have one. This allows the
MMA to act as a full SCOM agent and monitor your computer for various items, as well as gather
IntelliTrace data.

As part of the installation, a control panel applet named Microsoft Monitoring Agent is installed in
the computer’s Control Panel application. This applet displays property information related to the
agent, as well as allows you to confi gure the SCOM management groups to which it can report.

Once you are fi nished installing MMA, you need to create a folder to store your IntelliTrace logs
in, for example C:\IntelliTraceLogs. Make sure to create this folder before you start collecting
IntelliTrace data. To avoid slowing down your application too much, consider choosing a loca-
tion for this folder on a local high-speed disk that is not very active. Remember, to run detailed,
function-level monitoring or to monitor SharePoint applications, you will need to give the applica-
tion pool that hosts your web application or SharePoint application read/write permission to the
IntelliTracelogs directory.

NOTE The IntelliTrace logs you collect may contain private or sensitive data. As
such, you should restrict access to only those who need to work with the log fi les.

Confi guring IntelliTrace PowerShell Commandlets
To collect IntelliTrace data in a production environment, you need to run a PowerShell command-
let (or cmdlet) on the machine. You need to open a PowerShell window as the administrator (hold

IntelliTrace in Production ❘ 483

c22.indd 02/27/2014 Page 483

down the Shift key, right-click the PowerShell icon, and select Run As Administrator from the
context menu).

NOTE On 64-bit operating systems, make sure you are using the 64-bit
PowerShell command prompt.

After running this command, you can run the following command to see the list of available
IntelliTrace commands:

Get-Help *WebApplicationMonitoring*

There are four cmdlets available:

 ➤ Checkpoint-WebApplicationMonitoring—Creates a checkpoint (think snapshot) of an
active IntelliTrace log fi le for an Internet Information Services (IIS) web application.

 ➤ Get-WebApplicationMonitoringStatus—Gets the monitoring status of all monitored web
applications.

 ➤ Start-WebApplicationMonitoring—Starts IntelliTrace collection on an IIS web
application.

 ➤ Stop-WebApplicationMonitoring—Stops IntelliTrace collection on an IIS web
application.

Collecting Execution Information
To start collecting IntelliTrace information on a web application, use the following syntax in the
PowerShell window:

Start-WebApplicationMonitoring AppName MonitoringMode
 OutputPath UInt32 collectionPlanPathAndFileName

Where:

 ➤ AppName—Specifi es the path to the website and the web application name in IIS.

 ➤ MonitoringMode—Specifi es the monitoring mode. Monitor uses the default collection plan,
and records minimal details about exception events and performance events. Trace collects
function-level details or monitors SharePoint 2010/2013 applications, using a specifi ed collec-
tion plan.

 ➤ OutputPath—Specifi es the full directory path to store the IntelliTrace logs.

 ➤ UInt32—Specifi es the maximum size for the IntelliTrace log. The default maximum size is
250MB. When the log reaches this limit, the agent overwrites the earliest entries to make
space for more entries.

 ➤ CollectionPlanPathAndFileName—Specifi es the full path or relative path and the fi le name of
the collection plan. This plan is an .xml fi le that confi gures settings for the agent.

484 ❘ CHAPTER 22 DEBUGGING WITH INTELLITRACE

c22.indd 02/27/2014 Page 484

The MMA contains two collection plan fi les:

 ➤ collection_plan.ASP.NET.default.xml—Collects only events, such as exceptions, per-
formance events, database calls, and web server requests.

 ➤ collection_plan.ASP.NET.trace.xml—Collects function-level calls, plus all the data in
the default collection plan. This plan is good to use for detailed analysis, but may slow down
your application.

NOTE To modify the information that’s collected, you must modify these
XML fi les by hand. Be very careful! Typing something incorrectly breaks the
IntelliTrace collection. For more information, see http://blogs.msdn.com/b
/visualstudioalm/archive/2011/09/15/modifying-an-intellitrace-
collection-plan-for-the-stand-alone-collector.aspx.

After executing the preceding command, IntelliTrace is now running, gathering information
about the web application. To fi nd the current collection status, you can run the
Get-IntelliTraceCollectionStatus WebApplicationStatus PowerShell cmdlet.

As a best practice, you shouldn’t leave IntelliTrace running any longer than is necessary. There is
an overhead cost on the system being collected against, depending on the detail of information col-
lected. However, if you want to examine the data that has been captured so far, without stopping
the collection process, run the Checkpoint-WebApplicationMonitoring cmdlet. This makes a
copy of the .iTrace fi le at that particular point in time. You can then open this fi le and analyze it in
Visual Studio while IntelliTrace continues to gather information. When you are ready to stop gather-
ing data, simply run the Stop-WebApplicationMonitoring cmdlet.

NOTE For detailed information on how to optimize IntelliTrace collection on
production servers, go to http://blogs.msdn.com/b/visualstudioalm
/archive/2012/05/18/optimizing-intellitrace-collection-on
-production-server.aspx.

When you have the IntelliTrace .iTrace log fi le from the production system, you can open it in
Visual Studio Ultimate 2013 and begin your analysis, as described earlier in this chapter.

SUMMARY

This chapter introduced you to IntelliTrace and showed you how its debugging features can be used
to “step back in time” while you’re debugging an application. You learned how to utilize IntelliTrace
at a basic level to examine events that are thrown during the debugging process. You saw how
IntelliTrace lets you step forward and backward through the debugging process — with the ability
to view variable and parameter information — without having to rerun your tests.

http://blogs.msdn.com/b
http://blogs.msdn.com/b/visualstudioalm

Summary ❘ 485

c22.indd 02/27/2014 Page 485

You found out how to confi gure IntelliTrace, to capture just event information or both event and
method call information. You walked through the different confi guration options, such as where to
store IntelliTrace log fi les, and how to exclude certain assemblies from collection.

Finally, you read about a new feature of IntelliTrace in Visual Studio 2013: the ability to collect
IntelliTrace data in a production environment using the Microsoft Monitoring Agent. Using MMA,
you can collect IntelliTrace log fi les against production web applications, making it much easier to
debug production errors.

In Chapter 23, you are introduced to the testing capabilities in Visual Studio 2013. You fi nd out
about the various test types, diagnostic test adapters, and tools for working with tests. You also
learn about working with test results, ordered tests, and the test sett ings.

c23.indd 02/27/2014 Page 487

PART VI
Testing

 ▸ CHAPTER 23: Introduction to Software Testing

 ▸ CHAPTER 24: Manual Testing

 ▸ CHAPTER 25: Coded User Interface Testing

 ▸ CHAPTER 26: Web Performance and Load Testing

 ▸ CHAPTER 27: Lab Management

c23.indd 02/27/2014 Page 489

Introduction to Software
Testing

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the different types of tests supported by Visual
Studio 2013

 ➤ Learning how to create and run tests within Visual Studio 2013

The next several chapters introduce the testing functionality supported by Visual Studio 2013.
Visual Studio provides support for authoring a range of tests, all designed to help you identify
bugs in your software before your users do.

One of the most substantial investments Microsoft made in Visual Studio 2010 was improved
support for software testing, and they have continued to enhance that functionality with
Visual Studio 2013. Microsoft has also focused considerably on better integration of those
testing activities into the rest of the software development lifecycle, such as the handoff of
detailed bug reports from the tester to the developer.

Perhaps the most notable addition to Visual Studio 2010 was the completely revamped sup-
port for authoring, executing, and managing manual tests. Manual testing — essentially just a
form of testing that requires human input and validation — is usually performed by generalist
testers, and is by far the most common type of testing conducted in the software development
industry. Hence it became a natural extension of the Visual Studio family of products to sup-
port the generalist tester with better tools and testing frameworks. Manual testing is covered
in detail in Chapter 24.

Visual Studio 2010 also introduced support for managing virtualized testing environments.
This functionality — known as lab management — makes it possible to automatically spin
up virtual machines for testing your software under a variety of confi gurations, known as
a build-deploy-test workfl ow. With Visual Studio 2013, Microsoft has focused on mak-
ing it easier to set up and confi gure these test lab environments and has also extended the

23

490 ❘ CHAPTER 23 INTRODUCTION TO SOFTWARE TESTING

c23.indd 02/27/2014 Page 490

out-of-the-box support to provide these workfl ows for physical (non-virtual) machines and third-
party virtualization stacks. Lab management is covered in greater detail in Chapter 27.

There are a host of other fi t-and-fi nish improvements Microsoft has made to the software testing
capabilities of Visual Studio 2013, many of which are covered in this chapter.

ROLE-BASED TESTING TOOLS

The testing tools in Visual Studio 2013 are tailored for different testing-oriented roles generally
found within software development and testing teams. Some individuals may perform more than
one role, in which case a team member may use multiple tools.

 ➤ Visual Studio Test Professional 2013—The Test Professional product is primarily targeted at
generalist testers who will be authoring, executing, and managing manual tests. It includes
the Microsoft Test Manager and Test Runner tools. These tools are introduced in more detail
later in this chapter, and covered extensively in Chapter 24.

 ➤ Visual Studio Premium 2013 and Visual Studio Ultimate 2013—The Premium and Ultimate
editions of Visual Studio 2013 include functionality that is designed for specialist testers.
A specialist tester is usually a software developer who focuses on writing software that
is responsible for testing other software. Examples of duties that this role might perform
include authoring tests that simulate large-scale load against a web application, or converting
manual test cases into automated tests that can be run without requiring human intervention.
Visual Studio Premium 2013 includes the capabilities to write coded user interface (UI) tests.
Visual Studio Ultimate 2013 includes all of the functionality from Premium, in addition to
the capability to author web performance tests and load tests. Both Premium and Ultimate
also include the functionality found in Visual Studio Test Professional 2013.

You learn about the aforementioned test types next. For now, it is just important to know that
testers who focus on manual testing can likely purchase the less expensive Test Professional prod-
uct, whereas testers responsible for developing automated tests should look into either Premium
or Ultimate. Team members responsible for managing and monitoring test plans (for example, test
leads) may also use the Test Professional product to do so.

Note that Visual Studio Professional, Premium, and Ultimate include the capability to author unit
tests (see Chapter 19), as well as generic tests and ordered tests (covered later in this chapter). For
more information on the overall Visual Studio 2013 family of products, see Chapter 1.

TYPES OF TESTS

Visual Studio 2013 provides support for authoring and executing a variety of test types, each with
its own purpose for testing your applications. A successful test plan likely includes a mix of multiple
types of tests from the following list:

 ➤ Manual test—A manual test simply requires a human to interact with an application, verify
some expected result, and report on whether a test was successful. As you see in Chapter 24,
a manual test is the only type of test that is represented as a Visual Studio Team Foundation
Server 2013 work item (a test case), instead of as a source code fi le. Manual tests are covered
in detail in Chapter 24.

Diagnostic Data Adapters ❘ 491

c23.indd 02/27/2014 Page 491

 ➤ Coded UI test—A coded UI test provides the capability to author tests that automatically
interact with the user interface of an application, verify some expected result, and fi le bugs
if an error is encountered. Because this whole process is automatic, it can be run very fre-
quently, and without human interaction, but it is typically more expensive to author and
maintain than a manual test would be. Coded UI tests are detailed in Chapter 25.

 ➤ Unit tests—These are low-level tests verifying that target application code functions as the
developer expects. Unit tests are essentially composed of code that tests other code. Unit
testing is described in detail in Chapter 19.

 ➤ Web performance test—A web performance test is used, in conjunction with load testing, to
verify the performance of a web application. For example, you may create a web performance
test to verify that a user can create a new account on your site. This web performance test could
be one of a suite of web performance tests that you run periodically to verify that your website
is working as you expect. For more information on web performance tests, see Chapter 26.

 ➤ Load tests—These tests verify that a target application performs and scales as necessary.
A target system is stressed by repeatedly executing a variety of tests. Visual Studio records
details of the target system’s performance and automatically generates reports from the data.
Load tests are frequently based on sets of web performance tests. However, even non-web
applications can be tested by selecting a number of unit tests to execute. For more informa-
tion, see Chapter 26.

 ➤ Generic tests—These tests enable calling of alternative external testing systems, such as an
existing suite of tests leveraging a third-party testing package. Results of those tests can be
automatically parsed to determine success. This could range from something as simple as
the result code from a console application to parsing the XML document exported from an
external testing package. You can fi nd more information on working with generic tests in the
product documentation at http://aka.ms/GenericTests.

 ➤ Ordered tests—Essentially containers of other tests, these tests establish a specifi c order in
which tests are executed, and enable the same test to be included more than once. For details,
see the section “Using Ordered Tests” later in this chapter.

Sometimes, you can use more than one test to verify that a given piece of an application is behav-
ing correctly. For example, both coded UI tests and web performance tests can be used to verify the
functionality of a web application. But, as you become more familiar with coded UI tests versus
web performance tests, you will see that the former is better suited for validating functionality and
UI layout, whereas the latter is better suited for checking performance and scalability (when used
within a load test). You get a better sense of which test to use in different situations in the detailed
chapters for each test type.

DIAGNOSTIC DATA ADAPTERS

A key challenge with software testing is that of providing developers with enough information about
a failing test so that they can adequately debug and fi x the problem. How often have you seen bugs
get resolved as No Repro because a developer wasn’t able to reproduce a bug discovered by a tester?
Unfortunately, the phrase “It works on my machine” has become an all-too-common part of the
software development pop culture.

http://aka.ms/GenericTests

492 ❘ CHAPTER 23 INTRODUCTION TO SOFTWARE TESTING

c23.indd 02/27/2014 Page 492

One of the major ways in which Microsoft is attempting to eliminate the No Repro problem in
Visual Studio is with diagnostic data adapters. A diagnostic data adapter is responsible for collect-
ing information about one or more machines under test. You can attach the information
collected from these diagnostic data adapters to a bug, providing the developer with a rich amount
of information with which to diagnose a problem.

Visual Studio 2013 ships with several diagnostic data adapters that can be enabled during test runs,
including the following:

 ➤ Action log—This adapter is useful for manual tests. It can capture a log of exactly what steps
testers took when they encountered a bug. For example, a developer studying the action log
can determine that a tester clicked the Username textbox, typed “Brian,” and then pressed
the Enter key. A developer no longer has to guess about what testers were doing when they
encountered a bug. Action logs can also be used as action recordings, which testers can use to
fast-forward pieces of a manual test during subsequent test runs (see Chapter 24). The action
recordings can even be used to automate a manual test by turning it into a coded UI test (see
Chapter 25).

 ➤ ASP.NET Profi ler—This data adapter can be used on remote machines when conducting a
load test. It provides granular profi ling information about an ASP.NET application, which
can be used to more accurately diagnose performance bottlenecks. This data diagnostic
adapter is available for use only with ASP.NET load tests.

 ➤ Code coverage—Code-coverage information can be used to determine which code paths
are executed during an automated test. This can be analyzed later to determine if there are
sections of code that are not being touched by your test plan, possibly indicating that addi-
tional test coverage is necessary. Code coverage is available only for automated tests, not for
manual tests.

 ➤ IntelliTrace—IntelliTrace is a powerful way of capturing granular debugging information
about a .NET application being tested. This information can then be loaded into Visual
Studio Ultimate 2013 by a developer to analyze exactly what was happening when a bug was
encountered. For more information about working with IntelliTrace, see Chapter 22.

 ➤ Event log—This adapter can capture events that were written to the Windows event log
while a test was executing.

 ➤ System information—This adapter gathers system information and attaches it to a bug. Now
a developer no longer has to guess about the operating system version, 32- versus 64-bit, how
much RAM, what version of browser, or other such helpful information about the machines
involved in a test run.

 ➤ Test impact—Test impact analysis analyzes which blocks of code are exercised by your tests.
You can later use this data to help determine which tests need to be rerun based on which
blocks of code were changed in your application since the last time those tests were run. Test
impact analysis can, therefore, help your generalist testers focus on running the most impor-
tant tests, based on which pieces of your application are churning. You explore the benefi ts
of test impact analysis with manual testing in Chapter 24.

Microsoft Test Manager ❘ 493

c23.indd 02/27/2014 Page 493

 ➤ Video recorder—The video recorder data adapter captures a recording of the tester interact-
ing with an application under test. This recording can help a developer diagnose problems
with an application’s UI and can be used with both manual and automated tests (such as
a coded UI test). Starting with Visual Studio 2012, audio can also be enabled with video
recordings. Audio can be enabled for automated tests, but it is most useful for manual tests
so that testers can dictate comments while they are testing applications.

NOTE Visual Studio 2010 provided developers with the ability to use test
impact analysis data from within the development environment to choose to run
only automated tests that were affected by recent code changes. However, this
feature was seldom used by developers, and Microsoft removed it from the devel-
opment environment in Visual Studio 2012. It is still available, however, for
generalist testers to use when determining which manual and automated tests to
rerun based on code changes. This is detailed in Chapter 24.

You can also use a diagnostic data adapter to impact a machine during a test. Visual Studio 2013
ships with one such adapter:

 ➤ Network emulation—The network emulation data adapter doesn’t collect any data. Instead
you can use it to force a machine into behaving as if it had a slower network connection. For
example, you may want to simulate the experience that users in remote locations have when
connecting to your corporate network over a 56K modem link. The Network emulation
diagnostic data adapter is only applicable to Visual Studio test settings. It is not used for test
settings in Microsoft Test Manager.

You can also create your own custom diagnostic data adapters. For example, you might be inter-
ested in capturing inbound network traffi c on a given port that may be relevant to the behavior of
your application. Or, you might want to author a custom adapter that impacts a machine, such as by
rapidly reading from and writing to the hard disk in order to simulate heavy hard disk activity dur-
ing a test. For information on creating a custom diagnostic data adapter, see the product documen-
tation topic “Creating a Diagnostic Data Adapter to Collect Custom Data or Impact a Test System”
at http://aka.ms/VS13CustomDDA.

Using the right set of adapters can dramatically reduce the amount of time required to diagnose
and solve a failing test and can also reduce the back-and-forth communication required between a
developer and a tester. You discover how to confi gure diagnostic data adapters for manual tests in
Chapter 24. Confi guring diagnostic data adapters for automated tests within Visual Studio is cov-
ered later in this chapter, in the section titled “Test Settings.”

MICROSOFT TEST MANAGER

Microsoft Test Manager provides a single environment from which to author and manage test cases,
manage test plans, and defi ne and manage your physical and virtual test environments (if you’re
using Lab Management). Figure 23-1 shows a typical view within Microsoft Test Manager.

http://aka.ms/VS13CustomDDA

494 ❘ CHAPTER 23 INTRODUCTION TO SOFTWARE TESTING

c23.indd 02/27/2014 Page 494

FIGURE 23-1

You become familiar with using Microsoft Test Manager in Chapters 24 and 27.

NOTE Even if you aren’t using the manual testing or lab management capa-
bilities of Visual Studio 2013, you might want to use Microsoft Test Manager
to create and manage your test plans. As you see in Chapter 24, test plans can
include automated tests (unit tests, coded UI tests, and so on), in addition to
manual tests. Organizing automated tests into test plans is an effective way of
tracking the overall status of your testing efforts.

MANAGING AUTOMATED TESTS WITH VISUAL STUDIO

With the exception of manual tests (which are represented as work items within Team Foundation
Server), all other test types within Visual Studio are stored as source code fi les. These tests are usu-
ally authored with Visual Studio, stored within source control (such as Team Foundation Server,
although this is not a requirement), and tracked as essential artifacts of your development proj-
ect. As your project grows, so should the suite of tests you write, which can help you verify the
expanded functionality of your software.

Managing Automated Tests with Visual Studio ❘ 495

c23.indd 02/27/2014 Page 495

Because these tests are so critical to project success, it is not uncommon for projects to have dozens,
sometimes even hundreds or thousands, of tests.

In the rest of this chapter, you begin by learning about test projects, a special project type that you
can use to contain your automated tests. You learn about the creation of test projects and test set-
tings fi les.

Then, you discover the Test Explorer window, how to organize and run your tests, and how to view
the results. Finally, you’re introduced to an additional test type called an ordered test. Ordered tests
are essentially containers of other tests, offering a convenient way to group and execute tests in a
specifi ed order.

NOTE Test categories and test lists have also been removed from Visual Studio.
Instead, the focus for this release is on a cleaner, more simplifi ed view of test-
ing. Additionally, signifi cant work has gone into performance to make tests run
faster — even if you have hundreds or thousands of tests in your solution.

If you are accustomed to accessing properties for tests to confi gure settings such
as individual test time-out values, test owners, and data bindings, you now need
to hand-edit the source code for your tests to make these changes. These attri-
butes are documented at http://aka.ms/VS13UTNamespace.

Test Project Types
Visual Studio 2013 provides test project templates for the type of test you want to work with.
However, even if you select one type of test project you can add other types of tests to this project
later on. You can even delete the original tests provided with each template to create, in essence, an
empty test project.

Creating a Test Project
To create a new test project within Visual Studio you can right-click an existing solution and choose
Add ➪ New Project. You may also use the File menu by selecting Add ➪ New Project. You see the
New Project dialog, as shown in Figure 23-2.

Under Installed Templates, choose the Test category under the language you want to use for your
tests (Visual Basic, Visual C#, or C++). Select the type of test project you want to create. Your list
of available test project types will vary based on the edition of Visual Studio 2013 you have, as dis-
cussed earlier in this chapter. If you do not already have a solution, you can create one here.

When your test project is created, Visual Studio creates a default test within the project folder. You
can add new tests to this project by right-clicking your project, selecting Add, and then selecting the
type of test you want to add.

http://aka.ms/VS13UTNamespace

496 ❘ CHAPTER 23 INTRODUCTION TO SOFTWARE TESTING

c23.indd 02/27/2014 Page 496

FIGURE 23-2

Test Explorer
Test Explorer is the primary window in Visual Studio 2013 for viewing and running tests, and
analyzing test results. Open Test Explorer in Visual Studio by clicking Test ➪ Windows ➪ Test
Explorer. Tests are displayed here only after you have built your solution for the fi rst time after
opening Visual Studio.

If you have tests within your solution, click Build ➪ Build Solution. Visual Studio builds your solu-
tion and looks for any tests that it understands how to run. If you have third-party test types within
your solution (such as nUnit or xUnit.net), you need to have the appropriate test adapter installed
in order for those tests to show up in this list.

NOTE You can download additional unit testing adapters in the Visual Studio
gallery at http://visualstudiogallery.msdn.microsoft.com.

Figure 23-3 shows a list of tests in Test Explorer. The ! icon indicates that these tests have not yet
been run. There are a few ways to run tests:

 ➤ You can click the Run All button to run all of the tests in this list.

 ➤ You can select individual tests (Ctrl+click, or select a range of tests by holding Shift and
clicking the beginning and end of the range of tests). After you have selected the tests you
want to run, right-click a test within this range and select Run Selected Tests.

http://visualstudiogallery.msdn.microsoft.com

Managing Automated Tests with Visual Studio ❘ 497

c23.indd 02/27/2014 Page 497

 ➤ You can run tests with the debugger enabled by right-clicking a test (or a range of tests) and
selecting Debug Selected Tests. This runs your tests in a debugging mode, which enables you
to set breakpoints in your tests or break execution if there is a problem with your test code.

 ➤ You can click the Run button to select additional options, such as running only the tests that
failed the last time they were run.

 ➤ You can create playlists, which are groups of tests, and execute a specifi c playlist of tests.

FIGURE 23-3

You can also confi gure your tests to run automatically after most builds by enabling the upper-left
button in Test Explorer (the play icon with a curved arrow pointing at it). This runs your tests after
almost every build of your solution. Certain cases, like starting your project with or without debug-
ging, do not trigger your tests to run automatically.

After you run your tests you see your test results in the same window, as shown in Figure 23-4. If
any tests have failed, you can get additional details about the failure in the lower portion of this
window. This enables you to click into the code for your test and for the application being tested.

You can right-click a failing test from within Test Explorer and select Copy to copy the results for
this test to your clipboard. This can be helpful if you want to create a bug from this information.
If you are fi ling a bug, you may also want to attach the results of any diagnostic data adapters you
have enabled within your test settings. You can fi nd these by right-clicking your solution within

498 ❘ CHAPTER 23 INTRODUCTION TO SOFTWARE TESTING

c23.indd 02/27/2014 Page 498

Solution Explorer and clicking Open Folder in Windows Explorer. The output of your test settings is
in the TestResults folder.

FIGURE 23-4

You can also use the Search box within Test Explorer to narrow down the list of tests you want to
run. This is especially helpful if you have a lot of tests in your solution.

You can search by test name or use special search operators:

 ➤ FilePath—Enables you to search for tests based on a specifi c fi le path. For example,
FilePath:FabrikamFiber.Extranet.Web returns tests in the \FabrikamFiber.Extranet
.Web folder within your solution.

 ➤ FullName—Enables you to scope based on the fully qualifi ed name of a test. For example,
FullName:FabrikamFiber.Extranet.Web.Controllers returns just test methods in that
class.

 ➤ Result—Enables you to scope your results by the status of your tests. For example,
Result:Failed returns only tests that failed the last time they were run.

 ➤ You can also use multiple operators, such as FilePath:FabirkamFiber.Extranet.Web
Result:Failed, which returns only failing tests in this folder.

Managing Automated Tests with Visual Studio ❘ 499

c23.indd 02/27/2014 Page 499

After you run a search you can click Run All to run just the tests in that search result.

Code Coverage
Code coverage is a technique that enables a developer to see exactly which lines are run when auto-
mated tests are run. This can be a helpful technique when determining whether or not your suite of
automated tests is fully exercising your code.

To view code coverage data, click Test ➪ Analyze Code Coverage ➪ All Tests. The Code Coverage
Results view shown in Figure 23-5 enables you to view your solution’s binaries based on the
percentage of code that was covered by your tests. You can expand a binary (such as a DLL) to view
namespaces, classes, and function calls. Double-click a function to view the relevant code in the
editor. You can click Show Code Coverage Coloring within the toolbar of the Code Coverage
Results view to colorize the code within your solution. Red coloring indicates code that was not
exercised by your tests and that you might want to consider writing additional tests for.

FIGURE 23-5

Using Ordered Tests
Sometimes you need to control the order in which tests run. Another type of test that Visual Studio
supports is the ordered test. An ordered test is simply composed of other logically related tests. You
can add one or more tests as members of an ordered test. You can also arrange those tests to execute
in a specifi c sequence. In addition, you can add the same test to an ordered test multiple times.

500 ❘ CHAPTER 23 INTRODUCTION TO SOFTWARE TESTING

c23.indd 02/27/2014 Page 500

NOTE Don’t feel constrained by the term “test” when creating your test suites.
There may be perfectly valid cases when a “test” doesn’t actually test anything.
Perhaps you’ve created a utility method that erases your customer table. Create
a unit test to call this method and add it to your ordered test wherever you need
that table reset.

Being able to specify the order of test execution (as well as including a test more than once) has
a variety of uses. For example, you may have a Create User test that, after execution, adds a new
user to your database. Your next test, Log User In, may rely on the existence of that new user. By
ordering your tests, you ensure that the fi rst test successfully creates the user before the second test
attempts to log in that user.

Creating an Ordered Test
An ordered test is simply another type of test, so you create ordered tests much the same way as
other tests. Right-click your test project and select Add ➪ Ordered Test. You see the Ordered Test
Editor, as shown in Figure 23-6.

FIGURE 23-6

Using the right and left arrow buttons, add one or more of the tests to the ordered test. The list of
tests includes the tests from all projects in the current solution. You can add multiple tests at the
same time by holding the Ctrl key while clicking each test. As mentioned before, the same test can
be added more than once.

Managing Automated Tests with Visual Studio ❘ 501

c23.indd 02/27/2014 Page 501

NOTE You are only able to add tests that are created with a Microsoft test type
to an ordered test. Third-party test types, such as nUnit and xUnit.net, do not
show up in the list of available tests.

You may order the execution of the contained tests by adjusting their positions with the up and
down arrow buttons. The test at the top of the list is executed fi rst, proceeding sequentially down
the list.

One of the key features of an ordered test is that tests run one at a time in a specifi ed sequence.
Using the Continue After Failure checkbox, you can indicate whether the ordered test continues to
process remaining tests if a test fails. By default, this is unchecked, indicating that the ordered test
aborts when any test fails. Check the box to cause the ordered test to always execute all contained
tests, regardless of success.

An ordered test is executed just like other tests. You can run an ordered test from the Test Explorer
window.

When you execute an ordered test, the Test Explorer window activates, displaying progress as the
test is executing and results when the test is complete.

Test Settings
Test settings provide a way of defi ning how tests are executed within Visual Studio. Such settings
include time-out values, remote execution settings, and the diagnostic data adapters you want to
enable (see the section, “Diagnostic Data Adapters,” earlier in this chapter).

Depending on the type of test project you created, you may also have a default test settings fi le
added to your solution under the Solution Items folder. Test settings fi les have an extension of
.testsettings. You can double-click these fi les to display those settings.

By default, most test projects do not have a test settings fi le. Only the web performance and load
test project templates include test settings fi les by default. If you created another test type that did
not include a test settings fi le, you can choose to add one by right-clicking the solution and selecting
Add ➪ New Item ➪ Test Settings.

You can maintain multiple test settings fi les and switch among them based on the type of testing
you want to conduct. Click Test ➪ Test Settings to set the test setting that you want to use. The fi rst
time you add a test settings fi le to your solution, you need to click Test ➪ Test Settings ➪ Select Test
Settings File to add it to this list.

You can edit test settings fi les by double-clicking them in Solution Explorer. This opens the Test
Settings editor shown in Figure 23-7. The Data and Diagnostics tab enables you to declare which

502 ❘ CHAPTER 23 INTRODUCTION TO SOFTWARE TESTING

c23.indd 02/27/2014 Page 502

diagnostics data adapters should be enabled. You can use the Confi gure button to set advanced
properties for some of the adapters.

FIGURE 23-7

You can also confi gure test settings to collect data from remote machines that are part of your test
environment. For example, you might be running a test locally that makes a call to an application
running on a remote web server. You can confi gure Visual Studio to collect data from both the local
and remote machines by installing a test agent on the remote machine(s), and connecting these to a
test controller. Then, use the Roles tab within the Test Settings editor. You learn more about confi g-
uring test controllers and test agents in Chapter 26.

Take some time to explore the rest of the tabs within the Test Settings editor. There are several
settings in here that can affect the ways in which your tests run, such as setup and cleanup scripts
(which can run before and after your test runs) and time-out values, which can be used to control
what happens if your tests are taking too long to run.

Summary ❘ 503

c23.indd 02/27/2014 Page 503

SUMMARY

This chapter covered details about testing in Visual Studio 2013. You learned about the various
types of tests, diagnostic data adapters, and tools for working with tests. You learned about test
projects and how to add other tests and test settings fi les to test projects.

You then learned about the Test Explorer window and how to organize, run, and troubleshoot tests
using this view. You discovered how code coverage data can be used to analyze which lines of code
were exercised by your automated tests.

You learned about how to use ordered tests to group other tests together to be run as a unit.
Contained tests are executed in a specifi ed order, and you can optionally indicate that you want the
test to abort when any test fails.

You found out about the important role that test settings play in determining how tests are run, and
which data gets collected during test runs.

The details covered in this chapter should prepare you to effectively manage and orchestrate the test-
ing of your Visual Studio projects. Whether your project has just a few or many hundreds of tests,
using the tools and techniques described in this chapter will help you to achieve success.

In Chapter 24, you learn how generalist testers can benefi t by using Microsoft Test Manager to
work with test plans; to author, organize, and run test cases; and to fi le rich, actionable bugs that
developers can use to quickly understand the root cause of issues.

c24.indd 02/27/2014 Page 505

Manual Testing
WHAT’S IN THIS CHAPTER?

 ➤ Using Microsoft Test Manager to create and manage test plans

 ➤ Running test cases and publishing the results

 ➤ Conducting exploratory testing

 ➤ Taking advantage of fast forward for manual testing to speed up
test runs

Across the software development industry, manual testing still makes up about 70 percent of
the testing efforts as compared to creating automated tests, or specialized testing efforts such
as performance and scale testing. Yet, manual testing has historically been overlooked by most
software development tool vendors. Starting with Visual Studio 2010, Microsoft set about to
fi x that disparity by building an entirely new set of tools targeted specifi cally at the generalist
tester. A generalist tester is a person who tests software manually by directly interacting with
the software in the way a user might, and fi ling bugs when the tester encounters broken func-
tionality or unexpected behavior. Microsoft has continued to improve that experience with
Visual Studio 2013.

In this chapter, you learn how Visual Studio 2013 can make generalist testers more effi cient
at authoring, managing, and executing manual test cases. You begin to understand how the
testing framework in Visual Studio 2013 bridges the gap between testers and developers by
capturing rich diagnostics during test runs, which can then be analyzed by developers to help
them diagnose and resolve bugs. You fi nd out how to use exploratory testing, which works
in tandem with the formal testing approach fi rst introduced in Visual Studio 2010. You also
learn about some of the fi t-and-fi nish work, and new features, that have gone into this release
since Visual Studio 2012.

24

506 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 506

WHAT’S NEW IN VISUAL STUDIO 2013

If you are already familiar with the manual testing tools in Visual Studio 2012, this section will
update you on the new features available in Visual Studio 2013.

The biggest change with manual testing is the inclusion of test functionality in Team Web Access.
This allows you to perform lightweight browser-based test management, including the ability to:

 ➤ Create test plans

 ➤ Manage test suites

 ➤ Create test cases including shared steps and parameter support

 ➤ Bulk entry/edit of test cases using a grid view

 ➤ Copy test cases from Excel to grid view

 ➤ Copy test cases from grid view to Excel

 ➤ Run tests

 ➤ Edit test cases while running tests

 ➤ Test Windows Store apps running on a remote device using manual tests

To get started with planning your tests, connect to your team project using Team Explorer, then
open Team Web Access by clicking the Web Access link. In Web Access, click the Test menu option
at the top of the page to go to the test hub, shown in Figure 24-1.

FIGURE 24-1

The browser will work in a similar manner to what you are used to with Microsoft Test Manager.
You create test plans, test suites to go in the plans, and test cases to go in the suites. You have

Microsoft Test Manager ❘ 507

c24.indd 02/27/2014 Page 507

available to you all the options from Microsoft Test Manager, including the ability to make require-
ments-based test suites, as well as create test cases with shared steps and parameter support.

One of the nice features provided by this browser-based functionality is the ability to make bulk
edits to test cases. By default, test cases are displayed in a list. By clicking the View List link on the
right side of the page, you can change the view to a grid view. This enables you to see all the test
cases and their steps in an easy-to-edit grid. From here you can edit existing test cases, as well as
add new cases, in a quick and effi cient manner, as shown in Figure 24-2.

FIGURE 24-2

You can run your manual tests and record the test results using a web-based version of Microsoft Test
Runner. If you fi nd an issue while you are testing, you can use Test Runner to create a bug, which will
automatically include test steps, screenshots, and comments. One of the nice features of this is that
your app doesn’t need to run on the same machine as the test runner. You simply use Test Runner to
record whether the test steps passed or failed as you run the test manually. For example, you might
run Test Runner on a desktop machine, while running your Windows 8 store app on a tablet.

To execute a test, simply select the test in Web Access, and click the Run button. You will be given
the option of executing the test using the lightweight Test Runner, or executing the test using the
full Windows Test Runner application. Figure 24-3 shows an example of the lightweight Test
Runner testing a web application.

For those of you who are new to manual testing in Visual Studio, the previous section might not
have made much sense. Read on to get a more detailed understanding of how manual testing works
in Visual Studio 2013.

MICROSOFT TEST MANAGER

Microsoft Test Manager is a tool designed specifi cally for generalist testing teams. With Test
Manager, you can create and manage test plans and test cases, author and execute manual tests,

508 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 508

and fi le rich bugs. In Chapter 27, you also see how you can use Test Manager to create and manage
physical and virtual test environments.

FIGURE 24-3

NOTE Microsoft Test Manager is available to customers who purchase Visual
Studio 2013 Premium, Ultimate, or Test Professional. Most generalist testers
purchase Visual Studio 2013 Test Professional unless they also have a need to
write code. It is sometimes confusing to think of Visual Studio as providing
functionality for manual testers because Visual Studio has historically been
focused on software programmers, but this is all part of Microsoft’s vision to
create application lifecycle management tools for the entire team—not just for
programmers.

Test Manager requires a connection to Team Foundation Server. Team Foundation Server stores all
testing artifacts used by Test Manager, such as test plans, test cases, bugs, and the results of test
runs. Test Manager also encourages the use of Team Foundation Build for building the software
that you are testing and reporting on the results of each build, although it is possible to use Test
Manager even if you don’t use Team Foundation Build.

The fi rst time you start Microsoft Test Manager, you are prompted to connect to Team Foundation
Server, as shown in Figure 24-4. Type in the name of your server as provided by your Team
Foundation Server administrator. If your Team Foundation Server is confi gured for a nonstandard
port, type the server name as servername:portnumber. If your Team Foundation Server instance
has been confi gured for a nonstandard virtual application directory, you may need to supply the full
URI path. Consult with your Team Foundation Server administrator for assistance. Click Add when
you are fi nished.

Microsoft Test Manager ❘ 509

c24.indd 02/27/2014 Page 509

FIGURE 24-4

Next, you are prompted to connect to a team project, as shown in Figure 24-5. Select your team
project and click Connect Now.

FIGURE 24-5

510 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 510

USING TEST PLANS

A test plan is used within Test Manager to manage your entire testing effort for a given iteration.
This includes your test cases, test results, the confi gurations you plan to test (for example, different
operating systems and web browsers), and several other settings that are covered in this chapter.

You will usually have different test plans for different iterations of your application’s development
lifecycle. For example, early test plans may focus on testing core functionality, whereas future test
plans may be targeted at fi t-and-fi nish work (such as layout, rendering, spelling, and so on).

If your team project doesn’t already include a test plan, you need to create one, as shown in Figure
24-6. Click Add to create a new plan. After the plan has been created, select the plan and click
Select Plan.

FIGURE 24-6

You are now ready to begin working with your test plan. If at any time you want to switch to a dif-
ferent test plan or Team Foundation Server instance, you can click on the name of your test plan in
the upper-right corner of Test Manager.

You should spend a few minutes familiarizing yourself with the navigation menu at the top of Test
Manager. Test Manager is divided into two activity centers, the Testing Center and the Lab Center,
which can be toggled by clicking the text for Testing Center. This chapter focuses on the Testing
Center. (You learn more about the Lab Center in Chapter 27.)

Each activity center consists of several activities. You can access activities by clicking the headings
for each activity center and then clicking the subheadings underneath those headings. The Testing
Center is divided into the following four main areas of activities:

 ➤ Plan—The Plan area is used to manage your overall test plan. This includes the plan’s prop-
erties, as well as the individual test suites and test cases that make up your plan. Your plan’s
results are also available here, which shows several graphs related to the progress of your
testing efforts.

Using Test Plans ❘ 511

c24.indd 02/27/2014 Page 511

 ➤ Test—The Test area is used to view the list of test cases that are ready to be run. From
here, you can launch test runs to execute test cases and save the results, fi le bugs, and so on.
You can also start conducting exploratory testing from here, which is discussed later in this
chapter.

 ➤ Track—The Track area enables you to change the build that you are currently testing. This
tab also helps testers discover which tests might be most important to run based on the build
in use.

 ➤ Organize—The Organize area provides an easy way of accessing and modifying all your test
cases, test confi gurations, and other test plans.

You read more about these areas in the remainder of this chapter.

For now, focus on confi guring the properties of your test plan. Click Plan and then click Properties.
Test Manager displays the test plan properties activity for your test plan, as shown in Figure 24-7.

FIGURE 24-7

The upper portion of your test plan’s properties includes metadata that you can use to describe the
plan (such as name, description, and owner). This metadata can be useful for planning purposes,
but it doesn’t actually affect the functionality of your test plan. For example, setting your plan’s
State to Inactive or the Iteration Start Date to occur in the future doesn’t prevent this plan from
being used by testers. It’s only useful for describing your plan.

512 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 512

Now take a look at the rest of the properties you can set for your test plan.

Confi guring Test Settings
Test settings defi ne which data diagnostic adapters will be used when conducting your test runs.
Data diagnostic adapters were introduced in Chapter 23. Data diagnostic adapters can collect data
from the machines being tested or affect the machines being tested (such as by emulating a slower
network connection). This data can be very useful for developers when they receive a bug by provid-
ing rich data about how the bug was encountered and even the state of the application at various
points in time leading up to the bug discovery.

From within your plan properties, you can select the default test settings, which should be used for
both manual and automated test runs. You can also create a new test setting entry, or modify exist-
ing test settings. You learn more about test settings for automated runs in Chapter 27 when you
learn about confi guring test environments.

Figure 24-8 shows an example of test settings for manual runs. The Data and Diagnostics tab
enables you to confi gure which data diagnostic adapters should be enabled when this test setting is
used. Note that some data diagnostic adapters have additional options that can be confi gured (such
as the frame rate and bit rate to use when capturing video recordings).

NOTE You can confi gure test settings for multiple machines within a test envi-
ronment. For example, you can collect an event log from a database server,
IntelliTrace from a web server, and a video recording of the tester’s actions on
a web client machine. To confi gure data collection from multiple machines
within an environment, you need to confi gure test agents and a test controller.
Consult the product information for details on confi guring such an environment
at http://aka.ms/VS13TestEnvironments. Note that data diagnostic adapt-
ers have varying amounts of overhead, including startup time, CPU usage, and
storage space for the various artifacts that will be included with test results. The
product documentation includes a matrix that explains this in greater detail.

It is a good practice for the testing team to work with the development team in defi ning which data
diagnostic adapters should be enabled for each machine within the environment. This helps ensure
that developers have everything they need to diagnose a problem when they receive a bug, along
with attachments from the test run.

NOTE The data you capture based on your test settings is added as attachments
to your test runs, as well as to any bugs you fi le. All of this information is stored
in Team Foundation Server. Because this information can require a very large
amount of storage space, Microsoft released the Test Attachments Cleaner as
part of the Team Foundation Server Power Tools. The Test Attachments Cleaner
enables you to easily clean up attachments from old test runs and bugs. You
can download the Team Foundation Server Power Tools from http://aka.ms/
TFPowerTools.

http://aka.ms/VS13TestEnvironments
http://aka.ms

Using Test Plans ❘ 513

c24.indd 02/27/2014 Page 513

FIGURE 24-8

Using Builds
As your testing progresses, you will periodically select new builds to test. From your test plan’s
properties, you can fi rst confi gure the fi lter for your builds to match the build defi nition (as defi ned
in Team Foundation Build) and, optionally, the build quality to use as a fi lter from among all avail-
able builds.

For example, it is common to have a tester scout a build before the rest of the team tries the build.
Scouting usually involves installing the software and running some initial tests to ensure that it’s
worth using by the rest of the team. After a build is scouted, you can change the status of that build
to indicate that it’s a suitable build candidate to be used by the rest of the team.

After you confi gure a build defi nition and fi lter, you can click Modify to view the Assign Build dia-
log shown in Figure 24-9. Start by choosing which build to begin testing and click Assign to Plan.

After you choose your initial build, you can view newer builds by using the Available Builds drop-
down. When examining a newer build, any work items (such as requirements or bugs) that have
been changed since your currently selected build are displayed in the lower portion of the dialog.
This is determined by compiling a list of work items that are linked to changesets from all builds
between the current build and the build you are considering.

514 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 514

FIGURE 24-9

NOTE Part I provides more information on changesets.

This information can help you decide whether to continue testing with your existing build or to
switch to a newer build (by clicking Assign to Plan). Remember, the test results from test runs are
recorded against the selected build by default, although it is possible for testers to override this value
by clicking Run with Options when starting a test run.

NOTE Assigning a new build to a test plan affects the entire team working on
that test plan. Also note that you can’t assign builds older than the one you have
already selected. For these reasons, carefully consider which newer builds to
assign to your test plan.

You can also access the Assign Build activity by clicking Track ➪ Assign Build.

Using Test Plans ❘ 515

c24.indd 02/27/2014 Page 515

Analyzing Impacted Tests
Test impact analysis is a powerful feature that can help improve the productivity of testers by
enabling them to quickly identify tests to rerun based on changes to code. You can enable test
impact analysis to run in the background while tests are being executed. This feature records which
sections of code are executed while each test executes. Test impact analysis works with managed
code (that is, code based on the .NET Framework 2.0 and above).

NOTE To utilize test impact analysis, you should ensure that Test Impact is
enabled in your test settings while running your tests. Test settings were dis-
cussed earlier in this chapter.

To use test impact analysis, click Track ➪ Recommended Tests to get to the Recommended Tests
activity. Here, you can see a list of test cases that may have been affected by recent changes to source
code. Test impact analysis works by comparing your newly assigned build to the previously assigned
build. Test impact analysis compiles a list of the test cases that passed the last time they were run. It
then analyzes the blocks of code that were executed the last time those tests were run and compares
that result with the list of code changes in the new build you are selecting. Using this technique, test
impact analysis provides a recommended list of tests that appear to have the highest risk of failing
based on those code changes.

Use the Recommended Tests activity to quickly compile a list of tests that might be useful to rerun.
To mark a test to be rerun, click that test (or select a range of tests) and then click the Reset to
Active button. This causes that test case to appear as Active from the Run Tests activity (which you
learn about later in this chapter; see “Running Tests and Tracking Results”).

NOTE You should be careful not to rely too heavily on test impact analysis
because there are certain factors that may affect the tests not captured by test
impact analysis. This includes changes to test data (which may result in different
paths through a code base), and changes to other libraries or applications with
which your test application interacts, but which aren’t being analyzed by test
impact analysis. For this reason, you should examine your test plan from multi-
ple angles (including test impact analysis, changes to work items, and so on) and
routinely consider rerunning all your tests, regardless of whether they are known
to have been affected.

Defi ning Test Confi gurations
Often, your software must be supported on a variety of hardware and software confi gurations.
Correspondingly, your test plan should account for these confi gurations if they have the potential
to affect the functionality or behavior of the application you are testing. Test Manager enables

516 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 516

you to defi ne test confi gurations to represent the matrix of environments that you want to test and
tracks the pass/fail status separately for each assigned confi guration.

The Test Plan Properties page enables you to select the default test confi gurations that should be
applied to tests in your plan. You can override these defaults for an individual test case or test suite,
but, by default, if you want all your tests to be run on Windows 7 with Internet Explorer 9 and
Windows 8 with Internet Explorer 10, you must specify that in your test plan properties.

Figure 24-10 shows the Test Confi guration Manager that is used to build the matrix of test confi gu-
rations you might want to include in your test plan. Creating a new test confi guration enables you to
select one or more confi guration variables (such as operating system and browser) and their assigned
values.

FIGURE 24-10

Confi guration variables for operating system and browser are provided to you by default. But you
might want to create your own confi guration variables, or modify the existing variables to include
additional browser and operating system choices. You can do this by clicking Manage Confi guration
Variables. You can create confi guration variables for anything that you want to track for your test-
ing efforts. For example, maybe it’s important to test with different operating system languages,

Using Test Plans ❘ 517

c24.indd 02/27/2014 Page 517

service pack levels, database versions, or even keyboard layouts. All these changes in the environ-
ment can be represented using confi guration variables.

After you have created your confi guration variables in Test Confi guration Manager, click New to
assign variables and their values to a test confi guration. You can then add these test confi gurations
to your test plan from within the Test Plan Properties activity.

In Chapter 27, you learn how you can use the Lab Management feature of Visual Studio 2013 to
help you run tests in a variety of environments to quickly address a wide range of test confi gura-
tions. For now, you will be running all of your tests locally.

Plan Contents
If you click Plan ➪ Contents, you can use the Contents planning activity to create and organize the
test cases that make up your test plan. A test case is simply a set of interactions with a software
application that are designed to validate application functionality or behavior. For example, you
might have a test case that confi rms that a new user can create an account within your application.
Test cases are represented as work items in Team Foundation Server, and, correspondingly, in Test
Manager. In this chapter, you learn how to author test cases and manage them within your test
plan. Figure 24-11 shows the Contents planning activity.

FIGURE 24-11

518 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 518

Test cases are organized into one of the following three types of test suites:

 ➤ Requirements-based test suite—This includes any test cases that are linked to requirement
work items via a “Tests” relationship. For any given iteration of an application’s develop-
ment, you usually want to start by adding all the requirements that are being implemented in
that iteration. This way, you can create and execute test cases that verify an application is on
track to deliver the promised functionality. Click Add Requirements to add a requirements-
based test suite to your plan. You are prompted to select the requirement work items for
which you want to create test suites.

The work item types used here vary based on the process template you’re using for your
team project. For example, for a team project created with the MSF for Agile process tem-
plate, the default requirement work item type is a user story; for a team project created
with the Visual Studio Scrum process template, the default work item type is a product
backlog item.

 ➤ Query-based test suite—This enables you to specify a dynamic work item query for selecting
test cases. For example, you might want to include all test cases with a priority of 1, even if
they are for requirements that were fi nished in earlier iterations. This can help ensure that
critical functionality that used to work doesn’t break (or regress) as the application pro-
gresses. Click New ➪ Query-based suite to add this to your plan. You will be prompted to
create the work item query to which to bind this suite. The sort order of the query will defi ne
the test order of the suite.

 ➤ Static test suite—This is simply a list of test cases that can be added manually to the suite.
A static test suite can also be used as a container for other test suites, giving you a hierarchi-
cal option for organizing your tests. Click New ➪ Suite to add a static test suite to your plan.

You can also copy suites from other plans by clicking the blue arrow. For example, when you create
your Beta 2 test plan, you might want to carry forward some of the Beta 1 test suites.

If you highlight a test suite, you see all of that test suite’s test cases to the right. You learn how to
work with test cases next. For now, note that you can change the State of a test suite by clicking the
State drop-down. Test suites can have one of the following three valid states:

 ➤ In planning—This state indicates that you are still authoring your test cases and that they
aren’t yet ready to run.

 ➤ In progress—This state means that test cases in this suite should be run by the testing team.
Only test suites that are “in progress” show up in the Test activity for testers to run. This is
the default state for new test suites.

 ➤ Completed—This state should be used when you no longer want to run the test cases that
make up this suite. For example, if all of the test cases that make up this suite are passing for
current builds, then you may deem it unnecessary to continue to run those tests.

Authoring Test Cases
You can add a test case to a requirements-based test suite or a static test suite by fi rst highlighting
that suite, and then clicking New or Add on the right side of the activity window. Click New to cre-
ate a new test case, or Add to browse for an existing test case. When you are adding test cases to

Using Test Plans ❘ 519

c24.indd 02/27/2014 Page 519

a requirements-based test case, a Tests/Tested By link is made between your test case work item and
the requirement work item.

Clicking New displays a new test case form. Figure 24-12 shows a test case that has already been
authored.

FIGURE 24-12

The top portion of this form should look familiar if you’ve worked with any other work items in
Team Foundation Server. But the Steps tab is where the test case form gets interesting because this is
where you can author the steps that a generalist tester should take when running this test case.

You can start by simply typing the actions that you want the tester to perform during the test case.
Each step should go on a new row. You can add rich text within test steps to help improve readabil-
ity for your testers. For example, you might choose to make any text that a tester needs to type bold
to make it easier to read.

You can place your cursor on a new row and begin typing, or press Enter when you are ready to
type a new row. You can also use the toolbar to manage the insertion/deletion of steps or to move
steps up or down in the list of test steps.

The Expected Result column is used to tell the tester what he should be verifying as the tester runs
the test case. For example, after creating a new account, the tester should see a message indicating

520 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 520

that the account creation was successful. Specifying an expected result changes the test step to be
a validation step. The tester is expected to report on the status of each validation step to indicate
whether that test step was successful.

You can also add attachments (such as an image) to a test step to provide further instructions to a
tester about what to do or what the tester should be verifying. To add an attachment, right-click a
test step and click Manage Test Step Attachments. You are prompted to upload the fi les that you
want to attach to this test step.

Finally, you can use parameters to provide different values for a test step. For example, you might
want to test the process of creating a new user account by trying different values for username, pass-
word, and so on. Instead of writing a new test case for each set of values you want to test, you can
simply parameterize a single test case with multiple values. Each row of data you specify results in
a separate iteration of the test case during a test run. To create a new parameter, use the @ symbol
within a test step preceding a variable name, as shown here:

Type @username and @password and click OK

This creates two parameters, username and password, in the Parameter Values table at the bot-
tom of the test case. You can then supply values for these parameters within the table. These values
will be used later when you run the test. Each row of your Parameter Values table corresponds to a
unique iteration when running this test case.

NOTE Parameter values can also be used by coded UI tests, as you see in
Chapter 25.

Using Shared Steps
There may be times when you have steps within your test plan that are repeated across multiple test
cases. A good example of this is the process of creating an account, or signing into a website, before
completing other steps within a test case. Instead of authoring (and maintaining) these common
steps within each test case, you can utilize shared steps.

Shared steps enable you to author and maintain common test steps within a unique container. Like
test cases, shared steps are also persisted as work items within Team Foundation Server. Shared
steps are most valuable for protecting your test cases in the event that these common test steps
change, such as if you modify the process of creating an account or signing into the application.
Instead of needing to change these steps within multiple test cases, you can simply update the shared
steps work item. Test cases that include those shared steps are updated automatically. Action record-
ings, which you learn about later, are also stored within shared steps. This means that you can
update the action recordings for a set of shared steps in a single location, instead of needing to re-
create the action recording for each test case that includes those shared steps.

To create shared test steps from within a test case, highlight the fi rst step in the series of common
steps that you want to convert into shared steps. While pressing the Shift key, click the last step in

Using Test Plans ❘ 521

c24.indd 02/27/2014 Page 521

the list of steps that you want to convert into shared steps and then right-click this range of steps
and select Create Shared Steps, as shown in Figure 24-13.

FIGURE 24-13

You are prompted to give your shared steps a name. Afterward, the common steps in your test case
are collapsed into a single, bolded test step, as shown in Figure 24-14. You can open and edit shared
steps by right-clicking them and selecting Open Shared Steps. You can also reuse other shared steps
by right-clicking and choosing Insert Shared Steps.

FIGURE 24-14

522 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 522

Assigning Confi gurations
In the “Defi ning Test Confi gurations” section of this chapter, you learned how you can assign test
confi gurations to a test plan. This defi nes the default test confi gurations that all test cases in this test
plan should utilize. However, you can also override your test plan’s test confi gurations setting for
individual test cases, or for an individual test suite.

To override the test confi guration for an individual test case, fi rst select a test suite from within the
Contents planning activity. Then select one or more test cases from the right pane of the activity.
Click Confi gurations to display the Select Test Confi gurations activity shown in Figure 24-15. Click
All Confi gurations to display the full list of confi gurations available. From here, you can select the
test confi gurations that should be assigned to this test case.

FIGURE 24-15

To apply new test confi gurations to an entire test suite, right-click the test suite and choose Select
Test Confi gurations for All Tests.

Running Tests and Tracking Results ❘ 523

c24.indd 02/27/2014 Page 523

Assigning Testers
You can assign test cases to the testers who should run them. Do this by selecting a test suite and
then clicking Assign from within the Contents planning activity. The Assign Testers activity dis-
plays, which enables you to assign test cases to individual testers.

NOTE Assigning testers to test cases is used only as a guide to help the test team
divide work. Test Manager doesn’t prevent a tester from running test cases that
are assigned to another tester. Also note that the Testers value is different from
the Assigned To fi eld in the test case work items. The Testers value is used to
indicate which tester(s) will execute the test case, whereas the Assigned To fi eld
is usually meant to indicate who is responsible for authoring and maintaining the
test case.

Now that you know how to work with test plans, it’s time to learn how to run test cases and track
their results using Test Manager.

RUNNING TESTS AND TRACKING RESULTS

Open the Run Tests activity (click Test ➪ Run Tests) to see a view of your test suites and test cases
like the one shown in Figure 24-16. The Run Tests activity helps you select which tests to run and
track the status of previous test runs.

FIGURE 24-16

Any test suites that are set to a status of “in progress” are shown along the left side of the activity pane.
Along the right side of the activity pane you see the test cases within the currently selected test suite.

524 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 524

Note that each test case may be listed multiple times if there are multiple test confi gurations
assigned to that test case. You can use the Filter button to choose which test confi gurations you
are ready to test. This way, you can show just the test confi gurations that you can support on the
machine confi guration you are currently testing with.

This view also shows you the status of each test case from the last time it was run (passed, failed,
or active for tests that have not yet been run). Tests that are not ready to be run are marked with a
blocked icon. You might want to block certain test cases if they are not yet implemented in the cur-
rent build you are using, or if you know that they will fail because they depend on other test cases
that are failing. For example, a test case that relies on logging in as a new user account could fail
if the test case for creating a new account is failing. You can toggle which test cases are blocked by
using the Block Test and Reset Test to Active buttons on the right side of the activity pane.

You can learn more about previous runs for a test case by selecting that test case and clicking
View Results. You can also use the Analyze Test Runs activity (click Test ➪ Analyze Test Runs)
to view a list of test runs, as shown in Figure 24-17. A test run is a continuous testing session during
which one or more test cases are executed, or can represent an exploratory testing session
as well (which you learn about later).

FIGURE 24-17

The Verify Bugs activity (click Test ➪ Verify Bugs) can provide a list of bugs that were either created
by you or assigned to you, as shown in Figure 24-18. Click Assigned to Me or Created by Me to
toggle between these views. If a developer has fi xed a bug, she usually assigns it back to the
tester to confi rm that the bug can be closed. You can use this activity to determine if any bugs are
ready to be verifi ed before being closed. The Integration Build column shows you which build the
bug fi x has been checked in to so that you can ensure that you are testing with that build (or newer)

Running Tests and Tracking Results ❘ 525

c24.indd 02/27/2014 Page 525

before attempting to verify a fi x. Selecting a bug and clicking Verify launches a new test run for the
test case that was originally used to discover that bug.

FIGURE 24-18

You can also click Custom to construct a custom query from this view, such as to build a query
composed of the bugs belonging to all of the members of your team.

Using Test Runner
Test Runner is used to exercise test runs. To start a test run, return to the Run Tests activity
(Test ➪ Run Tests) and select a test case that you want to run. You can also select a range of test cases
to run by pressing Shift+click or Ctrl+click. Click Run above the list of test cases to begin a test run.

NOTE You can also run all the active tests within a test suite by clicking the Run
icon located above the list of test suites. Click the down arrow next to the
Run icon and choose Run with Options if you want to override the test plan’s
default test settings, build, or test environment for your test run. For example,
you may decide to perform most of your testing with a test setting that has a
minimum number of data diagnostic adapters enabled. This can minimize system
overhead and speed your test runs. Then, if you fi nd a bug, you can rerun the test
with a test setting that is confi gured to capture more information (for example, a
video recording or IntelliTrace fi le), which can help the developer diagnose and fi x
the bug.

526 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 526

Test Runner launches as shown in Figure 24-19. Test Runner is now ready to help you run the test
cases that you selected for this run.

FIGURE 24-19

Test Runner enables you to record an action recording that you can use to “fast forward” through
test steps during future test runs. This feature is known as fast forward for manual testing. Playing
back an action recording can dramatically speed a manual test run by performing actions far faster
than a human can perform them. Action recordings also make a generalist tester’s job less mundane
by enabling the tester to focus on examining an application for bugs instead of following a mindless
script of clicking and typing repeatedly. You can even use action recordings as the basis for creating
fully automated coded UI tests, as you see in Chapter 25.

To create an action recording, select Create Action Recording and click Start Test.

Test Runner opens a list of test steps for the test case you are currently running, as shown in
Figure 24-20. If a step has an Expected Result value, it is shown here as well to help guide the tester
about what he should be validating.

Running Tests and Tracking Results ❘ 527

c24.indd 02/27/2014 Page 527

FIGURE 24-20

If you choose to create an action recording then every interaction you have with the applications you are
testing are captured. To gather a clean recording, you should be careful not to perform steps that are
not part of your test case. This includes launching other applications or interacting with the desktop.
Interactions with the Test Runner user interface are excluded from your action recording by default, so
you don’t have to worry about these polluting your recording. You can exclude other applications (such
as an instant messaging application) by confi guring the test settings for the Action Log, as shown in
Figure 24-8. You can also use the Pause button on the Test Runner toolbar to pause the action record-
ing, which enables you to interact with other applications before returning to your test run.

NOTE The capability for Test Runner to capture action recordings is limited to
the type of application being tested. See the “Supported Technologies for Action
Recordings” section later in this chapter for more information.

As you are running a test case, you can report on whether each test step passes or fails. Do this by
clicking the drop-down to the right of each test step or by using the keyboard shortcuts. By default,

 +Shift+P passes a test step, and +Shift+F fails a test step.

You are required to report only on the status of validation steps, those that are marked with a check
mark icon. Failing to indicate whether or not a validation step has passed causes the test case to
default to a failed state.

If you are capturing an action recording, you should report on the status of each test step as you
perform it. This makes it possible for the action recording log to correlate individual test steps with

528 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 528

the actions that they are composed of. This is important for playing back individual test steps later
on, and produces more maintainable code when using the action recording to create coded UI tests.

If your test has parameter values, they are automatically copied to your clipboard as they are
encountered in your test case. This way, you can simply place your cursor where these values should
be entered and press Ctrl+V to paste them. If you are capturing an action recording, Test Runner
remembers the fi eld that you pasted those values into and binds that fi eld to the parameter. The
binding is used later during playback. Figure 24-20 shows a test step with parameter values being
bound to fi elds on a web application.

After you have fi nished running your test case iteration, click End Iteration. If your test run includes
multiple test cases, or multiple iterations for a given test case, then you can select the next test case
or iteration to run from the drop-down menu, as shown in Figure 24-21. A test case can consist of
multiple iterations if you are using parameter values. Each row of your parameter values generates a
unique iteration.

FIGURE 24-21

If an action recording is available for the test case you are running, you see the text “Action
Recording Available” at the bottom of Test Runner. This means that you can use this action record-
ing to play back one or more test steps.

Running Tests and Tracking Results ❘ 529

c24.indd 02/27/2014 Page 529

To play back an action recording, select the fi rst step that you want to play back and then press Shift
and click the last step that you want to play back. Now, click Play, as shown in Figure 24-22.

FIGURE 24-22

Test Runner begins playing back the actions that you recorded earlier. This includes launching appli-
cations, clicking windows and controls, and entering values. It is important that you don’t use your
mouse or keyboard while this is being played back, or else you might interfere with the playback.

You can use action recordings to play back an entire test case or just sections of a test case. You can
also launch playback multiple times within a test case, selecting a new range of test steps each time.
Launching multiple times is helpful to give you a chance to inspect the application and verify that it’s
behaving properly. You may also choose to play back steps of the recording that you know work, and
manually perform actions that may not match the last recording (such as if the user interface for the
application you are testing changed for a given set of steps). Depending on the type of user interface
change, it may eventually become necessary to re-record the action recording for a test case.

Supported Technologies for Action Recordings
Fast-forward for manual testing requires that your application is built using one of several supported
technologies. The testing framework requires that it understands the underlying technology so that

530 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 530

it can interact with the application being tested. The list of supported technologies is expected to
grow over time, and Visual Studio 2013 offers an extensibility framework to allow third parties to
build their own testing providers. However, if your application uses a technology for which there is
not a testing provider available, you are unable to benefi t from fast-forward for manual testing. You
can still benefi t from the other capabilities of Microsoft Test Manager.

NOTE For a complete list of supported technologies and caveats, con-
sult the Visual Studio 2013 product documentation at http://aka.ms/
VS13TestAutomation.

Filing Bugs and Saving Test Results
You can use Test Runner at any time during a test run to fi le bugs by clicking the Create Bug icon.
If you are adding new information to an existing bug, click the down arrow next to the Create Bug
icon and choose Update an Existing Bug to add your new test attachments and test run information
to the existing bugs. When you fi le a bug with Test Runner, all of the attachments from your active
test run iteration are included with the bug, making it easier for the developers to understand how
your bug was discovered, and providing them with richer information that may be helpful for resolv-
ing the bug later. For example, if you opted to capture an IntelliTrace fi le, it is included here. When
the developer opens this bug, she can use this data to help diagnose and fi x the bug more quickly.

When you are fi nished with a test run, you should publish the results to Team Foundation Server
by clicking Save and Close to save your test run results. You can alternatively abandon a test run
by clicking on the X to close Test Runner. These test results can be viewed later from within Test
Manager, as shown in Figure 24-23.

FIGURE 24-23

http://aka.ms

Exploratory Testing ❘ 531

c24.indd 02/27/2014 Page 531

Depending on the test settings you are using, and whether you are capturing an action recording,
you may have a variety of attachments included with your test runs. This might include a video
recording, action recordings, system information, or any other artifacts that are captured by the
data diagnostic adapters you have confi gured in your test settings. You can also capture additional
information (such as screenshots or comments) by using the toolbar above the list of test steps
within Test Runner. Some test settings, such as IntelliTrace, include attachments only if a test fails.
This is helpful in reducing the amount of storage space required for your test runs.

NOTE Saving the results of a failed test run does not automatically fi le a bug.
If you don’t fi le a bug for a failed test then the developer may never learn that
there is a problem. However, you can fi le a bug later from a test run by click-
ing Test ➪ Analyze Test Runs, opening a test run, selecting a test, and clicking
Create Bug.

EXPLORATORY TESTING

The process outlined earlier is sometimes referred to as formal test case management. With formal
test case management, a test team starts with a list of requirements that a development team is plan-
ning and they write a series of test cases designed to validate that the requirements are implemented
correctly.

Consider a requirement that a customer can pay for an order with a credit card, which might result
in several test cases. One of those test cases should validate that an order is successful when a cus-
tomer enters a valid credit card number. Another one of those test cases should validate that an error
message is displayed if the user attempts to provide an invalid credit card number. Any good test
plan captures those test cases and runs tests to validate that each case is successful.

Oftentimes, though, a seasoned tester has other ideas for fi nding bugs based on applying creative
reasoning and experience from fi nding other software bugs in the past. What happens if the bill-
ing address is too big for the textbox provided on the payment page? What if a user presses the web
browser’s Back key after submitting a payment and then submits it again—is the customer charged
twice for the same order? What if a user is very sensitive about privacy when paying for an order
online—is it clear from every page in the process where to fi nd a link to the privacy policy?

One could argue that all of the example cases are legitimate test conditions and that an organiza-
tion should author and run test cases for each of them. And some organizations take this approach.
But taking this approach for every single requirement in the system could result in test plans that
become cumbersome to author and maintain.

With exploratory testing, also referred to as agile testing, an organization puts their trust in tes-
ters to spend time applying their experience and creativity to trying to fi nd these types of bugs.
Oftentimes a tester who is unhindered by a scripted test case can fi nd a multitude of bugs very
quickly by attempting to break the application from a variety of angles. The tester might spend an
hour or two at a time just trying to break the application in different ways and could fi le several

532 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 532

bugs along the way; these bugs are often ones for which nobody thought to write a formal test case.
This is the promise of exploratory testing and why it has grown in popularity in recent years.

However, exploratory testing has its critics. The following reasons are often used to argue against
an exploratory testing approach:

 ➤ Exploratory testing can generate poor bugs because a tester doesn’t always remember exactly
what they were doing in the moments leading up to fi ling a bug.

 ➤ Management has poor visibility into what testers are doing during exploratory testing ses-
sions. How do you know when you are “done” with exploratory testing unless you have a
good record of what you tested?

 ➤ If a bug is discovered during an exploratory testing approach, how can you ensure that after
the bug is fi xed it won’t be regressed in the future? This assumes that a subsequent testing
session also happens to take this same approach, and the very nature of exploratory testing
means that this isn’t guaranteed.

These are all valid criticisms of traditional exploratory testing approaches. However with Visual
Studio 2013, Microsoft has addressed these criticisms by building fi rst-class support for exploratory
testing directly into Microsoft Test Manager:

 ➤ Testers can capture rich data based on their test settings (discussed earlier in this chap-
ter), which can provide contextual, actionable information about test runs if bugs are
encountered.

 ➤ Exploratory testing session results can be stored in Team Foundation Server and analyzed to
determine who conducted exploratory testing, what approaches they used, how many bugs
they uncovered, and so on. This can give management the metrics they need to understand
the effect of exploratory testing and to help understand when you are “done” testing an
application.

 ➤ If a bug is encountered, a test case can be created at the same time to help determine if bugs
are regressed in the future.

To understand this approach it may be useful to take a look at an exploratory testing session
being run with Microsoft Test Manager. To get started with an exploratory testing session, click
Test ➪ Do Exploratory Testing. You see a screen similar to that of Figure 24-24.

From this screen you can either click Explore to start an ad hoc exploratory testing session, or you
can click one or more work items in the list below then click Explore Work Item. By default this list
of work items includes the requirements for your test plan iteration, but you can click Unfi ltered to
edit this query.

If you selected a work item for your exploratory testing session, your test results are automatically
linked to that work item. This enables you to report on a given work item later to see if a tester has
spent time testing it with an exploratory testing approach. It also means that any bugs you fi le dur-
ing this exploratory testing session by default are linked to that work item, although you can modify
this before fi ling the bug if desired.

Exploratory Testing ❘ 533

c24.indd 02/27/2014 Page 533

FIGURE 24-24

NOTE James Whittaker, who has led software testing teams at both Microsoft
and Google, has written multiple books on the topic of exploratory testing. In
his books he discusses the ideas of exploratory testing tours. A tour helps to
guide a tester along a specifi c theme during an exploratory testing session. One
tour might ask the tester to assume the role of a malicious user trying to hack
an application, or another tour might ask the tester to assume the role of a new
user who might be looking for documentation on unfamiliar features. You might
choose to create a standard list of tours as work items in Team Foundation
Server and use them when launching your exploratory testing sessions. In this
way you can report later to see which tours have received testing coverage and
which ones still need to be run, or which tours have historically resulted in the
most bugs.

After you have started your exploratory testing session, Test Runner launches and you can begin
testing your application. Test Runner begins collecting data based on your test settings. The main
difference is that Test Runner does not provide a list of test steps because you are not running a spe-
cifi c test case. At this point you can begin testing your application in an exploratory fashion using
whatever approach you want to look for bugs.

If and when you fi nd a bug, you can use Test Runner to capture notes and screenshots, and then fi le
a bug as you normally would. When fi ling a bug from an exploratory testing session, however, the

534 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 534

bug looks slightly different from a bug created with a test case. Figure 24-25 shows a bug that was
created from an exploratory testing session.

FIGURE 24-25

Notice that all of the steps you took since starting the exploratory testing session are listed in the
bug by default, assuming that the application you are testing is supported for action recordings as
discussed earlier in this chapter. And notice that each step includes a screenshot of exactly where
you clicked or interacted with the screen, making it easy to follow the steps. But with an exploratory
testing session, you might be testing multiple aspects of the application before you run across a valid
bug. Including all of these actions might cause confusion for a developer who is looking at this bug
trying to understand what the root cause was.

You can click Change Steps if you want to scope your actions down to the steps you believe are most
relevant for the bug you have found. Use the Change Steps dialog (also shown in Figure 24-25) to
select the range of test steps you believe are relevant to the bug. When in doubt, you should err on
the side of including additional steps. The root cause of the bug might be because of some action
you performed during a preceding action. When you change the steps for your bug, the action log is
scoped accordingly.

You can choose to save this bug at this point, but you can also create a test case from this bug as
well by clicking Save and Create Test. Creating a test case based on this bug helps to ensure that it
becomes a part of your formal test plan in the future. That way after the bug is fi xed, you ensure
that your team tests this functionality in future builds to verify that it doesn’t regress.

Your test case is prepopulated with all the steps you selected earlier. You can modify this list of test
steps before saving it. For example, if the bug you discovered was on a customer details page several
levels deep in your application, you might need to add some preliminary steps that instruct the tester
on how to get to that particular page.

Summary ❘ 535

c24.indd 02/27/2014 Page 535

RUNNING AUTOMATED TESTS

Over time, you may decide to add automated tests to your test plan. Automated tests are more
expensive to author and maintain, but they have the benefi t of being capable of running without
manual interaction, making them suitable for quickly catching bugs caused by changes to source
code. In Chapter 23, you learned how you can use Visual Studio to manage automated tests (such as
unit tests, coded UI tests, and web performance tests). But you can also manage automated tests
as part of the same test plans that you use within Test Manager.

Automated tests can be run as part of your automated builds, and the status of those tests can be
published along with the rest of the tests within your test plan. The main advantage of managing
your automated tests along with your manual tests is that you can gain a consolidated view across
your entire test plan of how your application’s quality is trending. Automated tests can also be trig-
gered automatically as part of a build-deploy-test workfl ow, which you learn about in Chapter 27.

To utilize automated tests within Test Manager, you must fi rst create an automated test in Visual
Studio and check it in as part of your Team Foundation Server source control. Next, from within
Visual Studio, open the work item corresponding to the test case that you want to automate. Click
the Associated Automation tab in the work item. Use the ellipsis (…) to the right of the Automated
Test Name fi eld to browse for the automated test you want to use when running this test case. After
you’ve selected it, the rest of the fi elds on this form are populated for you. Save the work item.

Now, when you run this test from within Test Manager, it runs automatically without requiring
user intervention. Additionally, if you confi gure Team Foundation Build to run this test as part of an
automated build (see Chapter 5), then the status of this test is automatically reported back to your
test plan, so there is no need to run this test from within Test Manager unless you want to repro-
duce a test run.

You learn how to create a coded UI test in Chapter 25. After creating a coded UI test, you may want
to revisit this topic to wire up your coded UI test as associated automation for an existing test case.

NOTE Before you can run automated tests within Test Manager for the fi rst
time, you must defi ne an automated test environment and automated test set-
tings for your test plan. Test settings within Test Manager were fi rst introduced
in this chapter; automated test settings and test environments are covered in
greater detail in Chapter 27.

SU MMARY

This chapter provided you with a basic understanding of how Microsoft Test Manager can help
testers author, manage, and execute manual test plans. You learned how features such as test impact
analysis can help you determine which test cases to run next.

You learned how Test Runner guides a generalist tester through the steps that make up a test case,
and how it allows for granular reporting of whether each test step passed or failed. You saw how

536 ❘ CHAPTER 24 MANUAL TESTING

c24.indd 02/27/2014 Page 536

action recordings can make generalist testers more effi cient by helping them “fast forward” through
ranges of test steps. You also learned how you can run tests in an exploratory fashion, and how you
can discover and create new test cases as required during this approach.

You also learned how Microsoft Test Manager combined with Team Foundation Server 2013 can
improve communications between testers and developers by automatically capturing rich informa-
tion about test runs. This information can help developers understand how bugs were encountered,
and can even provide them with information to help them more quickly resolve those bugs.

In Chapter 25, you discover how you can convert manual test cases into fully automated UI tests by
starting with the action recordings you captured using Test Ru nner.

c25.indd 02/27/2014 Page 537

Coded User Interface Testing
WHAT’S IN THIS CHAPTER?

 ➤ Understanding how you can use coded UI tests to create auto-
mated functional tests

 ➤ Learning how to create a coded UI test from scratch, or from exist-
ing action recordings

 ➤ Learning techniques for making coded UI tests more robust

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/proalm3ed
on the Download Code tab. The fi les are in the Chapter 25 download folder and individually
named as shown throughout this chapter.

In Chapter 24, you learned about the support that Visual Studio 2013 has for manual testing.
Manual tests are relatively cheap to author, which makes them well-suited for testing your
application while it’s undergoing regular changes. As the user interface (UI) undergoes churn
(perhaps because of usability feedback, or additional features being implemented), it’s easy to
update manual test cases to refl ect those changes. After all, a manual test is essentially just a
textual list of steps.

The downside of manual tests is that, by defi nition, they require human intervention to
execute and validate. As an application grows, it may become cost-prohibitive to run every
manual test for every build you’re testing. The desire is to use automated tests that can be
run routinely to help ensure application integrity, without requiring ongoing human testing
resources. Visual Studio 2013 enables you to create coded UI tests, which are designed for
functional UI testing.

A coded UI test provides a mechanism to automatically execute and validate a test case. Unlike
most other automated tests (such as unit tests), a coded UI test operates at the user interface

25

http://www.wrox.com/go/proalm3ed

538 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 538

layer and “drives” the application in much the same manner as a human sitting in front of a mouse
and keyboard would. You can program a coded UI test to validate elements of the UI at various
points during the test to confi rm that the application is behaving properly. For example, is the check-
out total accurately refl ected in the correct location on a form after adding a given number of items
to the shopping cart?

You can author coded UI tests in C# or Visual Basic, and Visual Studio provides tools to help auto-
generate much of this required code. Note that coded UI tests require that the application being
tested was built using one of the supported technologies—for example, Windows Presentation
Foundation (WPF), Windows Forms, HTML/AJAX, and so on. See the “Supported Technologies”
section later in this chapter for more information.

In this chapter, you learn how to work with coded UI tests. You start by creating a simple coded UI
test using the Coded UI Test Builder and adding some validation logic. Next, you parameterize this
test to run multiple times using different sets of input data. Lastly, you discover how you can create
coded UI tests using action recordings, which can be generated while running manual tests.

WHAT’S NEW IN VISUAL STUDIO 2013

This section discusses the new features available for coded UI testing in Visual Studio 2013. If you
are not familiar with coded UI testing, read the remainder of this chapter and then come back to
this section for the new functionality in Visual Studio 2013.

The main piece of new functionality is the ability to test Windows Store apps using coded UI tests.
This allows you to make use of all the features of coded UI testing to test XAML-based Windows
Store apps.

To get started creating coded UI tests for XAML-based Windows Store apps, you need a Coded UI
Test Project specifi cally for those apps. Select File ➪ New ➪ Project, which displays the New Project
dialog shown in Figure 25-1. Select Visual C# ➪ Windows Store ➪ Coded UI Test Project (Windows
Store apps). Name the project TestWindows8Calculator and click OK.

After the new project is created, you see the familiar Generate Code window, shown in Figure 25-2.
There are a couple of differences from the standard dialog. There are no options related to record-
ing. Recording action steps is not supported for Windows Store apps. As you would expect, you
can’t create an action recording for Store apps using Microsoft Test Manager and use that to build
your coded UI tests. You can continue to use the crosshair tool to build the UI map and generate
code for controls. However, you will need to manually write code to perform actions on those con-
trols. Also notice that the option to manually edit the test is provided directly, allowing you to skip
the CUIT Builder and start handwriting your test.

Coded UI tests already provide specialized classes for testing WinForm, WPF, and web applications.
Visual Studio 2013 provides a new set of specialized classes for Windows Store app testing. All of
these classes are available under Microsoft.VisualStudio.TestTools.UITesting
.WindowsRuntimeControls, and all controls contain a Xaml prefi x, such as XamlButton.

What’s New in Visual Studio 2013 ❘ 539

c25.indd 02/27/2014 Page 539

FIGURE 25-1

FIGURE 25-2

NOTE Windows 8 controls such as the Settings charm or the tiles on the start
screen are not XAML controls. To access those controls, use classes located
in the Microsoft.VisualStudio.TestTools.UITesting.DirectUIControls
namespace.

540 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 540

All touch gestures are supported, and you can use the Microsoft.VisualStudio.TestTools
.UITesting.Gesture class to create touch actions that interact with controls. One nice feature of
this is that a touch screen monitor is not required to run the tests that use gestures.

Before you can run your coded UI tests for XAML-based Windows Store apps, you need to set a
unique automation identifi er that identifi es each control. This is an option you can set in Visual
Studio, under Tools ➪ Options ➪ Test Editor ➪ XAML ➪ Miscellaneous, as shown in Figure 25-3.
Check the box next to Automatically Name Interactive Elements on Creation, then click OK to close
the window.

FIGURE 25-3

To get started, you need the Automation ID of the calculator app, so you can trigger it to run
programmatically. The easiest way to get that is with the Coded UI Test Builder. First, navigate
to the list of apps in Windows 8. Next, select the crosshairs tool, drag it over the Calculator tile,
and select the tile. This will open the Add Assertions window, where one of the parameters is the
AutomationId (Figure 25-4). Copy and paste the AutomationId value somewhere so you can refer-
ence it later, then close the Add Assertions window.

Now you need to gather some information about the Calculator app. Click the Calculator app tile
to open the application. First, you need to add the buttons on the app to the UI control map of the
test. Do that by dragging the crosshair tool over the appropriate control, and then choosing the Add
Control to UI control Map button in the Test Builder toolbar. Do this for the numbers 2 and 8,
as well as for the addition symbol, +, the equals symbol, =, and the results display. Now click the
Generate Code button in the Test Builder, and then click Generate. This will create the new UI con-
trol map, based on the controls you have selected.

Once you have added the controls, use the calculator to add the numbers 2 and 8. You should get
10 in the results window. You can add an assert for this. Drag the crosshairs tool over the results

What’s New in Visual Studio 2013 ❘ 541

c25.indd 02/27/2014 Page 541

window. Select the DisplayText property and click Add Assertion. Add the message “Addition Was
Incorrect” and click OK. Now click the Generate Code button on the Test Builder window and click
Add and Generate. This will take you back into Visual Studio.

FIGURE 25-4

You will notice that there is one line of code added to the CodedUITestMethod1() method:

this.UIMap.AssertMethod1();

This is the assert method that you just generated. But because the Test Builder application can’t
record your actions for Windows 8 Store apps, you have to write the code yourself for testing the
app. Add the following code above the assert method. Your CodedUITestMethod1 should now
look like this:

XamlWindow calcWindow = XamlWindow.Launch("Microsoft
 .WindowsCalculator_8wekyb3d8bbwe!App");

//2+8
Gesture.Tap(this.UIMap.UICalculatorWindow.UITwoButton);
Gesture.Tap(this.UIMap.UICalculatorWindow.UIPlusButton);
Gesture.Tap(this.UIMap.UICalculatorWindow.UIEightButton);
Gesture.Tap(this.UIMap.UICalculatorWindow.UIEqualsButton);

this.UIMap.AssertMethod1();

The fi rst step in the test is to launch the calculator application. This is done by using the
XamlWindow.Launch method, and using the AutomationId value from Figure 25-4. Next, you use
the new Gesture.Tap method to click/tap on each of the buttons in the test. These are the buttons

542 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 542

that you added to the UI map. To execute the test, right-click the CodedUITestMethod1() method
and select Run Tests. Your tests should pass successfully.

For more information on testing Windows Store apps with coded UI tests, refer to http://msdn
.microsoft.com/en-us/library/vstudio/dn305948.aspx.

CREATING CODED UI TESTS USING THE CODED UI TEST
BUILDER

One way to record a coded UI test is to use the Coded UI Test Builder. By using the Test Builder,
you can record a given path through an application, usually by emulating a scenario that you expect
a user to perform. Along the way, you can add validation logic to ensure that the application is
behaving correctly. The Test Builder is responsible for generating source code (in C# or Visual Basic)
that represents the coded UI test. You can then customize this source code, such as to parameterize
inputs and expected outputs for creating a data-driven test.

Setting Up the Sample Application
The tutorial presented here utilizes a very simple WPF-based calculator. You can download this
sample from this book’s website at www.wrox.com. A version of the calculator written using
Windows Forms is also available for you to try, although the source code and screenshots in this
chapter match the WPF version.

Begin by opening the project for the SimpleWPFCalculator application. Press F5 to launch the appli-
cation. This is a very primitive application, but it serves as a good example for learning how to work
with coded UI tests. To use the application, simply enter an integer into each textbox and click the
buttons corresponding to each math operation to generate the respective results, as shown in
Figure 25-5. (In this example, the Subtract button was clicked.)

FIGURE 25-5

http://msdn
http://www.wrox.com

Creating Coded UI Tests Using the Coded UI Test Builder ❘ 543

c25.indd 02/27/2014 Page 543

Create a desktop shortcut for your application to make it easier to launch when you are creating
your tests. From within Windows Explorer, browse to the project directory where you unzipped
the sample application. Open the SimpleWPFCalculator\bin\Debug folder and right-click the
SimpleWPFCalculator.exe fi le. Choose Create Shortcut and then drag the shortcut that is gener-
ated onto your computer’s desktop. Confi rm that double-clicking this shortcut launches the WPF
calculator application.

Create a Test Project
Next, you need a test project in which to house your coded UI tests. Click File ➪ New ➪ Project,
which displays the New Project dialog shown in Figure 25-6. Select Visual C# ➪ Test ➪ Coded UI
Test Project. Name your project CodedUITestProject and click OK when fi nished.

NOTE You may also choose Visual Basic as the language for your test project,
but the sample code in this chapter shows a C# test project.

FIGURE 25-6

544 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 544

Your fi rst coded UI test, CodedUITest1.cs, is created as part of your new project. The dialog
shown in Figure 25-7 displays, providing you with options for generating your test.

FIGURE 25-7

This fi rst option, Record Actions, Edit UI Map or Add Assertions, launches the Coded UI Test
Builder. This enables you to record a coded UI test from scratch by navigating through the applica-
tion in the same manner that a user might. In the “Creating Coded UI Tests Using Action
Recordings” section later in this chapter, you fi nd out how to convert existing manual test cases into
coded UI tests by selecting the second option in this dialog.

For now, choose the fi rst option and click OK. Visual Studio minimizes to make room for you to
begin recording your test.

Coded UI Test Builder
The Coded UI Test Builder now appears in the lower-right of your
screen, as shown in Figure 25-8. The Test Builder is, as the name
implies, a tool that can help you construct your coded UI tests. It is
responsible for recording actions you perform (for example, clicking
buttons, typing text, and so on), and for identifying controls and their
properties that you want to validate.

Minimize any open applications so that you can clearly see your desktop and the shortcut to the
WPF calculator application that you created earlier. However, don’t launch the shortcut yet. Click
the Record button (the circle inside of a square on the left end of the toolbar) of the Test Builder
when you are ready to begin recording your test.

The Test Builder should now resemble Figure 25-9, which indicates that
it is recording your actions. At any time, you can click Pause (the left-
most button) to instruct Test Builder to stop recording your actions, and
click the Record button again when you are ready to resume.

FIGURE 25-8

FIGURE 25-9

Creating Coded UI Tests Using the Coded UI Test Builder ❘ 545

c25.indd 02/27/2014 Page 545

NOTE When you begin recording, Test Builder captures any and all actions
you perform, even if they aren’t part of the application you are trying to test.
For example, if you are recording a test and you respond to an instant message,
or click the Start menu to launch an unrelated application, these actions are
captured. This might result in unnecessary playback steps when executing your
coded UI tests and could even cause your tests to fail unexpectedly. For this rea-
son, you should take care to close unrelated applications prior to recording your
tests so you can make clean recordings. You can also pause the Test Builder if
you must perform unrelated actions during a test. Just be sure you do not inter-
act with the application being tested while the Test Builder is paused. Doing so
could cause the application you are testing to get into a state other than what
it was in when you paused the Test Builder, and, hence, subsequent steps you
record might fail on playback.

You are now ready to begin recording the coded UI test by using the application in the same manner
you would expect a user to. Launch the WPF calculator application by double-clicking the desktop
shortcut you created earlier. Type 20 in the fi rst textbox, then type 10 in the second textbox, and
click the Add button.

You can visually inspect the actions that the Test
Builder has captured by clicking Show Recorded Steps
(the second button from the left) in the Test Builder.
The window shown in Figure 25-10 appears, showing
you an easy-to-read list of the steps you have per-
formed while recording your test. Note that you can
pin this window if you’d like to have it remain visible
while you are recording. You can also right-click and
delete any unwanted actions that you may have
recorded accidentally.

At this point in your test, you are ready to add some vali-
dation logic to confi rm that the result of your addition
operation is correct. But, before you add an assertion, you
should convert the steps you have performed so far into
source code. Do so by clicking Generate Code (the right-
most button) in the Test Builder.

The dialog shown in Figure 25-11 prompts you for the
name of the method you want to create within your coded
UI test. You should use descriptive method names, with
no spaces, to make it easier to understand your generated
code. Type EnterDataAndClickAdd; optionally you can

FIGURE 25-10

FIGURE 25-11

546 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 546

provide a description, which will be added as a comment to the source code that you generate. Click
Add and Generate when you are ready to resume building your coded UI test. The Test Builder con-
verts your recorded steps into source code, which is added to your Visual Studio project. You will
inspect this code later.

You can now add assertion logic to validate the properties of one or more controls. The Test Builder
enables you to easily select the control you want to validate. Do so by clicking and dragging the
crosshair icon from the Test Builder onto the bottom-most textbox of the calculator. As you hover
over controls and windows of your desktop and applications, notice that they become highlighted to
indicate which control you are selecting. After you have selected the bottom-most textbox of the cal-
culator, release your mouse button.

The properties for the textAnswer textbox you have
selected are displayed, as shown in Figure 25-12.

You can use the up/down/left/right arrows of this dialog
to navigate through the control hierarchy. You don’t need
to do so for this test, but this is helpful for controls that are
diffi cult to select using the crosshairs, or invisible controls
(such as a panel that may be used as a container for other
controls).

For some controls, such as context menus, you may notice
that they are diffi cult to select. For example, a context menu
might disappear once you drag it over the control. In these
cases, you can simply hover your mouse pointer over the
control you are trying to capture, then press Ctrl+I. This
will highlight the selected control and show its properties in
the Coded UI Test Builder.

For this test, you want to confi rm that the number 30 (the sum of 20 plus 10) is properly displayed
in the textbox. In the list of properties for this control, you see that the Text property of the
UITextAnswerEdit control in your UI map currently has a value
of 30. Highlight this row, then click Add an Assertion (the second
button from the left on the toolbar). The dialog box in Figure
25-13 displays, enabling you to defi ne the behavior of your asser-
tion. Click the Comparator drop-down to examine your assertion
choices. Accept the default value (AreEqual) for Comparator and
the current value (30) for Comparison Value. You should also add
a value for the message that is displayed if the assertion fails. This
is very helpful when you are diagnosing failed tests later on, espe-
cially if you have many assertions in your tests. Click OK when
fi nished. The Test Builder displays a message indicating that your
assertion has been added.

You can examine all the controls that have been captured as part of your coded UI test by clicking
Show UI Control Map (the leftmost button on the toolbar). The UI Control Map is built by the Test

FIGURE 25-12

FIGURE 25-13

Creating Coded UI Tests Using the Coded UI Test Builder ❘ 547

c25.indd 02/27/2014 Page 547

Builder. It contains information about all of the controls necessary to interact with and validate the
application you are testing. Figure 25-14 shows the controls that you have added so far.

FIGURE 25-14

The Test Builder assigns names to your controls based on the type of control and its control name.
For example, the textAnswer control is to be named UITextAnswerEdit.

NOTE If you don’t see meaningful names for your controls, or you can’t locate
the controls at all, it might be due to one or more of the following factors.
The fi rst might be because the application you are testing was built using an
unsupported technology, or a mixture of technologies (some of which are unsup-
ported). For example, if you are testing a web application that has an embedded
Flash object, you will be able to identify controls on the web page but not within
the Flash object. See “Supported Technologies” later in this chapter for more
information. If you are fi nding unique controls but the names are not mean-
ingful (such as textbox1, button1, and so on) then this likely indicates that the
developers building the application you are testing haven’t taken the time to pro-
vide meaningful names to the controls. You should consider having a discussion
with them to explain why it might be helpful to have consistent naming conven-
tions for the controls within the application, which can in turn improve the
readability and maintainability of the tests you are writing. Finally, if you are
testing a web application, some controls might simply not have any names at
all since you are not always required to name a control using HTML. This is
another reason for your application developers to start assigning unique, mean-
ingful names to the controls within your application.

The controls in the UI Control Map are organized hierarchically; for this application, notice that
UIDemoCalculatorWPFWindow is a parent control of the rest of the controls in this application.
You can click any control in this tree to examine its properties. These properties, along with the

548 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 548

relative location of a control within the control hierarchy, are used by your coded UI test to fi nd the
correct control to use during test playback.

Click Generate Code from within the Test Builder (the rightmost button) to codify the assertion
you just added. The dialog shown in Figure 25-15 displays, prompting you to name the method that
corresponds to your assertion. Name the method AssertAdd, optionally provide a meaningful com-
ment, and click Add and Generate. The Test Builder now converts the assertion you defi ned into C#
and inserts this into your test project.

FIGURE 25-15

NOTE The dialog you encountered in Figure 25-13 may at fi rst appear to be
duplicative of the dialog you encountered in Figure 25-15. The difference is
subtle, and one which will become clearer as you work with more coded UI
tests. Essentially, Figure 25-15 asks you to defi ne a method in your code that is
responsible for validating all of the assertions you added earlier. In this example,
you are adding only one assertion (to confi rm that the textAnswer control has a
text value equal to 30). But you could have added control properties to validate
by repeating the process you went through with Figure 25-13. For example, you
might have wanted to also validate that the textAnswer control has its ReadOnly
value set to True.

Now, click the Record button (leftmost button) in the Test Builder again to resume recording your
test case. Click the Subtract button in the calculator, and then click Generate Code (the rightmost
button) in the Test Builder. Name this method ClickSubtract and click Add and Generate.

Now, add another assertion by following the same steps you followed earlier. After dragging the
crosshair onto the bottom-most textbox in the calculator, you see the expanded UI Control Map.
The UITextAnswerEdit control should be highlighted. Select the Text property and add an asser-
tion stating that this property should now be equal to 10. Click Generate Code and name the
assertion AssertSubtract.

Repeat these steps for the multiplication and division functions. Name the methods for clicking
those buttons ClickMultiply and ClickDivide, respectively. Name the corresponding asser-
tions AssertMultiply and AssertDivide. When you are fi nished, close the Test Builder, which
returns you to Visual Studio. You can always return to the Test Builder in the future by clicking
Test ➪ Generate Code for Coded UI Test.

Creating Coded UI Tests Using the Coded UI Test Builder ❘ 549

c25.indd 02/27/2014 Page 549

Generated Code
From within Visual Studio, you can now examine the code that was generated by the Test Builder
while you were recording your test actions and assertions. The CodedUITestMethod1() method
within the CodedUITest1.cs fi le is the main execution harness for your test, and calls all of the
action and assertion methods you defi ned earlier, as shown here:

 [TestMethod]
public void CodedUITestMethod1()
{
 this.UIMap.EnterDataAndClickAdd();
 this.UIMap.AssertAdd();
 this.UIMap.ClickSubtract();
 this.UIMap.AssertSubtract();
 this.UIMap.ClickMultiply();
 this.UIMap.AssertMultiply();
 this.UIMap.ClickDivide();
 this.UIMap.AssertDivide();
}

To better understand what each underlying method is actually doing, you can examine the partial
class fi le named UIMap.Designer.cs. Right-click the EnterDataAndClickAdd method call and
select Go to Defi nition. This method is defi ned as follows (some comments have been removed in the
following text):

public void EnterDataAndClickAdd()
{
 WpfEdit uITextInput1Edit = this.UIDemoCalculatorWPFWindow.UITextInput1Edit;
 WpfEdit uITextInput2Edit = this.UIDemoCalculatorWPFWindow.UITextInput2Edit;
 WpfButton uIAddButton = this.UIDemoCalculatorWPFWindow.UIAddButton;

 uITextInput1Edit.Text = this.EnterDataAndClickAddParams.UITextInput1EditText;

 uITextInput2Edit.Text = this.EnterDataAndClickAddParams.UITextInput2EditText;

 Mouse.Click(uIAddButton, new Point(50, 16));
}

You need to modify this method to start the application. To do that, add the following line of code
after the uIAddButton declaration:

ApplicationUnderTest uIDemoCalculatorWPFWindow = ApplicationUnderTest.Launch(
this.EnterDataAndClickAddParams.UIDemoCalculatorWPFWindowExePath,
this.EnterDataAndClickAddParams.UIDemoCalculatorWPFWindowAlternateExePath);

This method is responsible for performing four distinct actions, as defi ned by the actions you
recorded earlier. This method will fi rst launch the application, then enter values into two textboxes,
and then click the Add button. Notice, however, that the parameters for this method are defi ned
elsewhere in this fi le. Scroll down to the class named EnterDataAndClickAddParams (not the vir-
tual class of the same name):

/// <summary>
 /// Parameters to be passed into 'EnterDataAndClickAdd'
 /// </summary>
 [GeneratedCode("Coded UITest Builder", "12.0.21005.1")]

550 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 550

 public class EnterDataAndClickAddParams
 {

 #region Fields
 /// <summary>
 /// Type '20' in 'textInput1' text box
 /// </summary>
 public string UITextInput1EditText = "20";

 /// <summary>
 /// Type '10' in 'textInput2' text box
 /// </summary>
 public string UITextInput2EditText = "10";
 #endregion
 }

The reason that the parameters are separated from the actual method doing the work is that this makes
it easier to override the parameters with new values. This is very important when creating data-driven
tests that will run multiple times, using different values each time. You do this later in this chapter.

Notice that there are two slightly different values defi ned to describe from where the
application under test will be launched, UIDemoCalculatorWPFWindowExePath and
UIDemoCalculatorWPFWindowAlternateExePath. Whenever possible, Visual Studio looks for
ways to make your tests more robust so that they are less prone to accidental failure resulting from
changes to your application or test environment. The actual values you have for your test vary,
based on where you stored your application. But, for this example, notice that Visual Studio stored
both the absolute path to the executable and the relative path based on the %USERPROFILE%
environment variable. This makes your tests more fault-tolerant in the event that your executable
changes locations later.

Also, notice that the Test Builder interpreted your test actions as launching an application execut-
able, instead of double-clicking that application’s shortcut on your desktop. This is also a way of
making your test more fault-tolerant. In the future, you might decide to delete or move the shortcut
to the executable, but you are less likely to move the actual executable itself. Recording tests can be
a relatively expensive investment, so Visual Studio uses tricks like this to make it less likely that you
must re-record your tests later.

NOTE You should refrain from making changes directly to the UIMap
.Designer.cs fi le. Because this is a designer-generated fi le, any changes you
make here might be overwritten later as you refi ne your test. Instead, Visual
Studio provides a UI Map Editor, which you learn about later in this chapter.

Notice also that in the EnterDataAndClickAdd() method there is a Mouse.Click call, which passes
a Point(X,Y) value as an argument. This sometimes confuses people who are new to coded UI tests
because they assume that coded UI tests are driven by fi xed x and y coordinates. They further won-
der whether resizing a form or moving controls later on will cause their tests to break. But in fact,
coded UI tests use the properties of controls from your UI map to locate controls, not their x and y
coordinates.

Creating Coded UI Tests Using the Coded UI Test Builder ❘ 551

c25.indd 02/27/2014 Page 551

The Point(X,Y) value is used by the Mouse.Click method to control the position within a control
that a mouse click is made. For most controls (such as the WPF Button being used in this applica-
tion) it doesn’t matter where a click is registered—the end result is the same. There are only a few
controls where the position of a click makes a difference. One such example is a SplitButton con-
trol, such as the one you click when you are going to shut down or sleep your Windows PC. But for
most controls, this value does not affect your test. In most cases you can feel free to resize or move
controls around your forms or web pages without worrying about breaking your tests.

NOTE For a deeper explanation of how coded UI tests use search and fi lter
properties to locate controls, see http://tinyurl.com/SearchAndFilter.

Running Your Test
You are now ready to run your test and confi rm that everything was properly recorded.
Do so by returning to the CodedUITest1.cs fi le and right-clicking anywhere within the
CodedUITestMethod1() code block. Select Run Tests. Avoid using your mouse or keyboard while
the test runs. If you have recorded your test properly, the calculator will launch, the values 20 and
10 are inserted into the textboxes, and each of the four operation buttons is exercised. When fi n-
ished, the test results are displayed in the Test Explorer window (Test ➪ Windows ➪ Test Explorer),
as shown in Figure 25-16.

FIGURE 25-16

http://tinyurl.com/SearchAndFilter

552 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 552

Congratulations! You have now authored your fi rst coded UI test. But what if you want to test val-
ues other than 20 and 10? One approach would be to author new tests, each with their own values.
But this would be very time-consuming. A better solution is to create a data-driven test by binding
the values for this test case to a database, or to a CSV or XML fi le.

Creating a Data-Driven Test
The process of creating a data-driven coded UI test is very similar to that of creating a data-driven
unit test. You can use a database, CSV fi le, or XML fi le to drive your coded UI tests with different
values. For each row of data, your coded UI tests are run once.

The sample application for this chapter includes an XML data set named CalcData.xml. The con-
tents of this fi le are as follows:

<?xml version="1.0" encoding="utf-8"?>
<DataContextData>
 <DataContextRow InputValue1 ="10"
 InputValue2 ="2"
 ExpectedAddAnswer ="14"
 ExpectedSubtractAnswer="8"
 ExpectedMultiplyAnswer="20"
 ExpectedDivideAnswer="5"/>
 <DataContextRow InputValue1 ="20"
 InputValue2 ="10"
 ExpectedAddAnswer ="30"
 ExpectedSubtractAnswer="10"
 ExpectedMultiplyAnswer="200"
 ExpectedDivideAnswer="2"/>
</DataContextData>

Start by adding the CalcData.xml fi le to your project. Right-click your CodedUITestProject from
within Solution Explorer and select Add ➪ Existing Item. You may need to change the fi le fi lter to
show All Files (*.*). Browse to the CalcData.xml fi le and click
Add to add it to your project.

Next, you need to make this fi le a deployment item. Change the properties for this fi le in Solution
Explorer. Set Build Action to Content, and set Copy to Output Directory to Copy if Newer. This
ensures that the XML fi le is available alongside the DLL for your test.

Next you need to add DataSource and DeploymentItem attributes to your coded UI test method.
Change the [TestMethod] attribute preceding the CodedUITestMethod1() method to the
following:

[DataSource("Microsoft.VisualStudio.TestTools.DataSource.XML", "|DataDirectory|\\
CalcData.xml", "DataContextRow", DataAccessMethod.Sequential),
DeploymentItem("CalcData.xml"), TestMethod]

This line specifi es the name and relative path of the fi le, the type of data source (such as CSV or
XML), and how the rows of data should be accessed (Sequential or Random).

Creating Coded UI Tests Using the Coded UI Test Builder ❘ 553

c25.indd 02/27/2014 Page 553

NOTE Previous releases of Visual Studio featured a Data Source wizard that
simplifi ed the process of creating the DataSource and DeploymentItem attri-
butes. Unfortunately, this functionality was removed in Visual Studio 2012
when Microsoft overhauled the testing framework. Microsoft has indicated that
it would like to re-implement this functionality in a future version of Visual
Studio, but at the time of writing there are no specifi c roadmap details available
for this functionality.
If you have access to an older version of Visual Studio, you might want to use
it to generate DataSource and DeploymentItem defi nitions that you can learn
from and apply to your testing projects in Visual Studio 2013. For more infor-
mation on these and other attributes that you can use to confi gure and extend
your tests, see http://aka.ms/VS13UTNamespace.

You can now begin overriding the parameters that you recorded earlier by data-binding them to
your XML data source. The architecture of coded UI tests makes it easy to do this from within one
central location—the CodedUITest1.cs fi le. Modify the CodedUITestMethod1 method by inserting
the following highlighted lines:

this.UIMap.EnterDataAndClickAddParams.UITextInput1EditText =
TestContext.DataRow["InputValue1"].ToString();
this.UIMap.EnterDataAndClickAddParams.UITextInput2EditText =
TestContext.DataRow["InputValue2"].ToString();

this.UIMap.EnterDataAndClickAdd();
this.UIMap.AssertAddExpectedValues.UITextAnswerEditText =
TestContext.DataRow["ExpectedAddAnswer"].ToString();
this.UIMap.AssertAdd();

this.UIMap.ClickSubtract();
this.UIMap.AssertSubtractExpectedValues.UITextAnswerEditText =
TestContext.DataRow["ExpectedSubtractAnswer"].ToString();
this.UIMap.AssertSubtract();

this.UIMap.ClickMultiply();
this.UIMap.AssertMultiplyExpectedValues.UITextAnswerEditText =
TestContext.DataRow["ExpectedMultiplyAnswer"].ToString();
this.UIMap.AssertMultiply();

this.UIMap.ClickDivide();
this.UIMap.AssertDivideExpectedValues.UITextAnswerEditText =
TestContext.DataRow["ExpectedDivideAnswer"].ToString();
this.UIMap.AssertDivide();

The code you added now overrides the values from each of the respective ExpectedValues methods
within the UIMap.Designer.cs fi le by data binding the values to the corresponding columns within
your XML data source.

http://aka.ms/VS13UTNamespace

554 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 554

Run your test again by right-clicking within your test method and selecting Run Tests. Your coded
UI test now executes twice—once for each row of the XML data source. When fi nished, the test
results panel of the Test Explorer window should indicate that 3/3 tests have passed successfully.
This includes each data row, as well as the overall test, as shown in Figure 25-17.

FIGURE 25-17

You can now maintain the CalcData.xml fi le within your test project to add new rows of data.
These rows will be used during future test runs, thus providing you with an easy way to grow your
test coverage. Any time you make changes to CalcData.xml, you need to rebuild your solution
(Build ➪ Build Solution) in order to deploy the updated fi le.

Failing Tests
You can force your test to fail by changing the values in the CalcData.xml fi le. Try changing the
value for the fi rst instance of ExpectedAddAnswer from 12 to 14. Click Build ➪ Build Solution and
then run your test again. The test fails, as shown in Figure 25-18.

FIGURE 25-18

Creating Coded UI Tests Using the Coded UI Test Builder ❘ 555

c25.indd 02/27/2014 Page 555

For coded UI tests with multiple assertions, it can be useful to know more about exactly which
assertion caused the test to fail. If you entered a message as shown in Figure 25-13 when you defi ned
your assertion then it displays here, providing you with more information about why the test failed.
If you didn’t provide additional details in Figure 25-13 then you would only know that the expected
value of 14 does not match the actual value of 12, and you might need to spend time investigating
what those values represent in your application’s UI.

Because your test ran with multiple iterations of data (from your XML fi le) only the fi rst iteration
failed. The second iteration passed as expected.

NOTE Note that a test iteration fails and aborts immediately after the fi rst
assertion within a given test iteration has failed. For example, if you see a mes-
sage that the AssertAdd() assertion failed, you still won’t know whether the
subtraction/multiplication/division operations are working properly. If you
require more granular reporting of your test runs, it is advisable to create mul-
tiple coded UI tests, each verifying one unit of functionality.

Finally, if you click the Output link for a test result you see any test attachments that were added
during the test run. By default, the coded UI test runner automatically takes a screenshot of your
desktop and attaches that to your test results if a test fails. This can be helpful for reviewing failed
tests later to inspect the state of the application at the time of the test failure.

Taking Screenshots
You can also programmatically capture screenshots that can be saved to your test results. This can
be useful even if a coded UI test passes because you can examine it later to see if there was anything
that appeared incorrectly in the user interface for which you didn’t explicitly code assertions.

The following code takes a screenshot of your WPF calculator application. It saves it to your test
result as a fi le named AddResult.bmp. Add this immediately before the call to AssertAdd() in your
test method:

Image pic = this.UIMap.UIDemoCalculatorWPFWindow.CaptureImage();
pic.Save(@"c:\AddResult.bmp");
TestContext.AddResultFile(@"c:\AddResult.bmp");

Alternatively, you can capture a screenshot of the entire desktop by replacing the fi rst line in the pre-
ceding code with the following line:

Image pic = UITestControl.Desktop.CaptureImage();

Taking a screenshot of the entire desktop can be helpful if you are testing applications that utilize
multiple windows at once. These screenshots are accessible by clicking the Output link from within
the test results view of Test Explorer.

556 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 556

NOTE You can conduct image comparisons within coded UI tests by following
the steps outlined at http://tinyurl.com/ImageCompare. These steps utilize a
free set of testing libraries known as TestApi, available at http://testapi
.codeplex.com. TestApi provides several helpful libraries and tools, many of
which you can access directly from your coded UI tests.

UI Map Editor
Earlier in this chapter you read about the UI map, which is generated by the Test Builder, and you
looked at the UIMap.Designer.cs partial class fi le where most of the logic for your coded UI test is
written. But you also discovered that you should not make changes directly to that fi le because it
is meant to be maintained by the Visual Studio designers, including the Test Builder, and any
changes you make by hand might be overwritten later by the designer.

Visual Studio 2013 includes a built-in UI Map Editor that you can run by simply double-clicking
the UIMap.uitest fi le from within Solution Explorer. The UI Map Editor opens, as shown in
Figure 25-19.

FIGURE 25-19

The panel on the left is the UI Actions panel and contains all the methods you created when you
clicked Generate Code from within the Test Builder. These are listed in alphabetical order only and

http://tinyurl.com/ImageCompare
http://testapi

Creating Coded UI Tests Using the Coded UI Test Builder ❘ 557

c25.indd 02/27/2014 Page 557

do not necessarily refl ect the order in which they will be executed (if at all). The order in which these
might be called is defi ned by your CodedUITestMethod1() method.

The UI Actions panel provides you with a few useful capabilities for maintaining your coded UI
tests. You can delete entire methods or individual actions by selecting them and pressing Delete. For
example, maybe when you were recording your test you accidentally clicked a control or typed some
text that you didn’t mean to type. You can come back to this view to clean up your extra actions.

Another common use of the UI Actions panel is to split methods into smaller methods. For example,
you might want to split the EnterDataAndClickAdd() method into three different methods—one to
launch the application, another to enter some data, and a third to click the Add button. This gives
you more fl exibility when programming your test methods. To do this, you need to place your cur-
sor on a row within the EnterDataAndClickAdd() method and then click Split into a New Method
in the toolbar. Visual Studio alerts you that if you split this method, you need to manually update
your test code within the CodedUITestMethod1() to call the new methods. You can also use the
UI Actions panel to rename the new split methods to refl ect what they do (such as LaunchApp(),
EnterData(), and ClickAdd()).

You can insert delays between steps from here as well. By default, the coded UI test playback engine
attempts to run tests as quickly as possible by examining the UI thread to determine if controls are
ready to be interacted with. However, you may know that your application automatically refreshes
some number of seconds after a form is initially loaded. To test the post-refresh status of the page,
you might want to use the Insert Delay Before button on the toolbar.

You can also use the Properties window (View ➪ Properties Window) in Visual Studio to inspect
additional parameters for any of the actions in the UI Actions panel. The available properties vary
based on the type of action you have selected. For example, the action Type '20' in
'testInput1' text box enables you to override the value 20 with a different value by entering it
into the property grid. However, if you have databound your test by following the instructions pro-
vided earlier in this chapter, then this value is overridden by the values from your XML fi le.

Another useful property available on all actions is Continue on Error. By default, this is set to False
for all actions—meaning that if an action fails, the test fails and execution for that test iteration is
stopped. But sometimes you might want a test to try to keep executing even if a specifi c action fails.
A good example of this is when the application you are testing occasionally presents additional
dialogs that do not affect the end result of your test run. Your application might randomly present
a dialog asking if you want to complete a customer satisfaction survey. In this case, you probably
want an action in your test logic that clicks No and continues, but unless you enable Continue on
Error for that action then your test might fail if it doesn’t fi nd the relevant No button to click in sub-
sequent test runs.

The UI Control Map on the right side of the UI Map Editor is the same one you saw earlier in
Figure 25-10. As you highlight various actions within the UI Actions panel, notice that the relevant
controls within the UI Control Map hierarchy are highlighted. You can also edit properties for these
controls by accessing the Properties window within Visual Studio.

The actual properties available to you for a given control vary based on the type of control, and
the type of application. For example, web applications use both search and fi lter properties to
locate controls, whereas rich client applications such as WPF or Windows Forms only use search

558 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 558

properties. Most of the time you probably don’t need to change the properties for controls in your
UI map, although occasionally if the names of controls or their positions within your control hierar-
chy change, you may need to examine these properties.

Now that you know how to create a coded UI test from scratch by using the Test Builder, it’s time to
examine an approach of creating a coded UI test from an existing manual test.

CREATING CODED UI TESTS USING ACTION RECORDINGS

Creating a coded UI test from an existing manual test can be less time-consuming than recording a
coded UI test from scratch. If your team is already creating manual test cases and associated action
recordings, you can benefi t from these artifacts when creating your coded UI tests.

For this section, it is assumed that you know how to create manual tests and their associated action
recordings. For more information about manual testing, see Chapter 24.

Start by creating a test like the one shown in Figure 25-20. For simplicity, this test only validates
that the addition and subtraction functions of the calculator work properly. You can easily extend
this test to support multiplication and division if you want. Also note that this test uses parameter-
ized values for the inputs and expected results.

FIGURE 25-20

Now, run this manual test and create an action recording for it. Be sure to mark each test step as
Pass while you are recording so that your actions are properly associated with each test step.

Now that the manual test has been created, along with an associated action recording, you are ready
to convert this into a coded UI test. Create a new test project (or you can use the one you created

Creating Coded UI Tests Using Action Recordings ❘ 559

c25.indd 02/27/2014 Page 559

earlier in this chapter). Right-click the project and add a coded UI test. The dialog shown in
Figure 25-7 displays again. This time, select Use an Existing Action Recording.

The Work Items Picker shown in Figure 25-21 enables you to select the test case work item from
which you want to create a coded UI test. Find and select the work item you created earlier for your
manual test case and then click OK.

FIGURE 25-21

NOTE The test case work item has a fi eld called Automation Status. You
might want to instruct your test team to set this value to Planned when manual
test cases are ready for a developer to convert into a coded UI test. You can
then create a query to use from the Work Items Picker to fi nd test cases whose
Automation Status is equal to Planned.

Visual Studio converts the action recording from your manual test into a coded UI test. The struc-
ture of this coded UI test resembles that of the one you created from scratch earlier, but there are a
few key differences. Here is the code for CodedUITestMethod1:

[DataSource("Microsoft.VisualStudio.TestTools.DataSource.TestCase",
"http://vsalm:8080/tfs/defaultcollection;FabrikamFiber", "97",
DataAccessMethod.Sequential), TestMethod]
public void CodedUITestMethod1()
{

http://vsalm:8080/tfs/defaultcollection

560 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 560

 this.UIMap.Opencalculator();
 this.UIMap.Addparam1andparam2intotextboxesParams.UITextInput1EditText =
TestContext.DataRow["param1"].ToString();
 this.UIMap.Addparam1andparam2intotextboxesParams.UITextInput2EditText =
TestContext.DataRow["param2"].ToString();
 this.UIMap.Addparam1andparam2intotextboxes();
 this.UIMap.ClickAdd();
 this.UIMap.ClickSubtract1();
}

NOTE The path to your Team Foundation Server instance in the [DataSource]
attribute varies from that listed here. Additionally, the ClickSubtract1 method
is named simply ClickSubtract if you are using a new test project instead of
adding this coded UI test to the existing project you created earlier in this chap-
ter (which already contains a ClickSubtract method).

First, notice the attribute on this test method that is data-binding it to the parameter values stored
in the test case work item you created. This means that you can update the test parameters centrally
from within the work item without needing to maintain a separate database or XML fi le as you
did earlier. This makes it easy for generalist testers (who may not work with source control within
Visual Studio) to update test case data.

Next, notice that the names of the method calls in this test method match the text that was used for
each test step in the manual test. This can make for cumbersome method names if you have verbose
test steps, but it also makes it possible to see exactly which method call corresponds to each part of
the test execution.

Finally, you may notice that this coded UI test doesn’t contain any assertions yet. Manual tests rely
on human beings to perform validation of the intended UI behavior, so, in order to automate valida-
tion steps, you must program the appropriate test logic.

Add a new line after the ClickAdd() method call. Right-click this empty line and select Generate
Code for Coded UI Test ➪ Use Coded UI Test Builder. Alternatively, you can access this menu via
the Test menu.

The Coded UI Test Builder displays again as shown earlier in Figure 25-8. Open the calculator
application and use the crosshair to select the bottom-most textbox, as you did earlier. Add an asser-
tion on the Text property of the UITextAnswerEdit textbox. The assertion should be AreEqual
and the comparison value is empty (you override this value programmatically). Optionally, you can
provide a meaningful value for Message on Assertion Failure if you want. After you have added this,
click Generate Code and name your assertion method AssertAdd2. Click Add and Generate.

Creating Coded UI Tests Using Action Recordings ❘ 561

c25.indd 02/27/2014 Page 561

NOTE The reason you are naming this method AssertAdd2 (as opposed to
simply AssertAdd) is to avoid naming confl icts with the assertion method you
created earlier in this chapter. If you are using a new test project, then this nam-
ing distinction is not necessary.

Add another assertion on the same control/property, but this time, name it AssertSubtract2. Close
the Coded UI Test Builder when you are fi nished. Visual Studio opens again, and you will notice
that two assert method calls have been added to your coded UI test method. Rearrange the method
calls so that the assertions appear after their respective action method calls. When fi nished, your
test method should contain the following lines:

this.UIMap.ClickAdd();
this.UIMap.AssertAdd2();
this.UIMap.ClickSubtract1();
this.UIMap.AssertSubtract2();

You now need to data-bind the parameters used by the assertions to the parameters stored within
your test case. Add the following highlighted lines to your test method:

this.UIMap.ClickAdd();
this.UIMap.AssertAdd2ExpectedValues.UITextAnswerEditText =
TestContext.DataRow["sum"].ToString();
this.UIMap.AssertAdd2();

this.UIMap.AssertSubtract2ExpectedValues.UITextAnswerEditText =
TestContext.DataRow["difference"].ToString();
this.UIMap.ClickSubtract1();
this.UIMap.AssertSubtract2();

You can run your test by right-clicking within the test method and clicking Run Tests. Your test
should run once for each data row within your test case’s parameter value table. Try manipulat-
ing the parameters in your test case and run your coded UI test again to see the data-binding
relationship.

If this were a real testing project, you might also want to spend some time refactoring the code in
the duplicative Add and Subtract method calls into common methods for easier long-term
maintenance. You can use the UI Map Editor to delete duplicate methods and then hand-edit the
appropriate code UI test methods to call the correct methods. Many of the same best practices you
know from maintaining complex applications apply when maintaining complex test projects.

You can also add your coded UI test as associated automation for the original manual test case.
By associating the test case with the automated test, the automated test can be run as part of your
test plan, and tracked along with the rest of your test cases. Chapter 24 provides more details on
how to create this association.

562 ❘ CHAPTER 25 CODED USER INTERFACE TESTING

c25.indd 02/27/2014 Page 562

SUPPORTED TECHNOLOGIES

Coded UI tests require that your application be built using one of several supported technologies.
The coded UI testing framework requires that it understands the underlying technology so that it
can interact with the application being tested. The list of supported technologies is expected to grow
over time, and Visual Studio 2013 offers an extensibility framework to allow third parties to build
their own testing providers. However, if your application uses a technology for which there is not a
testing provider available, you are unable to author coded UI tests for it.

NOTE For a complete list of supported technologies and caveats, consult
the Visual Studio 2013 product documentation at http://aka.ms
/VS13TestAutomation.

SUMMARY

Coded UI tests provide a powerful way of crafting automated tests for functional UI testing of your
applications. In this chapter, you saw how you can either create a coded UI test from scratch, by
interacting with an application the way you expect a user would, or from an existing action record-
ing from a manual test, thus leveraging some of the work already done by your testing team.

You also found out how you can enhance your coded UI tests by data-binding them to create mul-
tiple test runs out of the same set of test steps.

In Chapter 26, you see how you can use web performance tests to help speed up your web applica-
tions. You also fi nd out how to simulate the results of hundreds (or even thousands) of users
interacting with your web application by using Visual Studio’s load-testing cap abilities.

http://aka.ms

c26.indd 02/27/2014 Page 563

Web Performance and
Load Testing

WHAT’S IN THIS CHAPTER?

 ➤ Learning how to use web performance tests to simulate user activ-
ity on your website

 ➤ Testing the capability of your website to accommodate multiple
simultaneous users with load testing

 ➤ Understanding how to analyze the results of your web perfor-
mance tests and load tests to identify performance and scalability
bottlenecks

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/proalm3ed
on the Download Code tab. The fi les are in the Chapter 26 download folder and individually
named as shown throughout this chapter.

This chapter continues coverage of the testing features of Visual Studio 2013 by describing
web performance and load tests.

With web performance testing, you can easily build a suite of repeatable tests that can help
you analyze the performance of your web applications and identify potential bottlenecks.
Visual Studio enables you to easily create a web performance test by recording your actions as
you use your web application. In this chapter, you fi nd out how to create, edit, and run web
performance tests, and how to execute and analyze the results.

Sometimes you need more fl exibility than a recorded web performance test can offer. In this
chapter, you see how to use coded web performance tests to create fl exible and powerful

26

http://www.wrox.com/go/proalm3ed

564 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 564

web performance tests using Visual Basic or C# and how to leverage the web performance testing
framework.

Verifying that an application is ready for production involves additional analysis. How will your
application behave when many people begin using it concurrently? The load-testing features of
Visual Studio enable you to execute one or more tests repeatedly, tracking the performance of the
target system. The second half of this chapter examines how to load test with the Load Test wizard,
and how to use the information Visual Studio collects to identify problems before users do.

Finally, because a single machine may not be able to generate enough load to simulate the number
of users an application will have in production, you fi nd out how to confi gure your environment to
run distributed load tests. A distributed load test enables you to spread the work of creating user
load across multiple machines, called agents. Details from each agent are collected by a controller
machine, enabling you to see the overall performance of your application under stress.

WEB PERFORMANCE TESTS

Web performance tests enable verifi cation that a web application’s behavior is correct. They issue
an ordered series of HTTP/HTTPS requests against a target web application, and analyze each
response for expected behaviors. You can use the integrated Web Test Recorder to create a test
by observing your interaction with a target website through a browser window. After the test is
recorded, you can use that web performance test to consistently repeat those recorded actions
against the target web application.

Web performance tests offer automatic processing of redirects, dependent requests, and hidden
fi elds, including ViewState. In addition, coded web performance tests can be written in Visual Basic
or C#, enabling you to take full advantage of the power and fl exibility of these languages.

WARNING Although you can use web performance tests with ASP.NET web
applications, you are not required to do so. In fact, although some features are
specifi c to testing ASP.NET applications, any web application can be tested via a
web performance test, including applications based on classic ASP, services built
with WCF, or even non-Microsoft technologies.

Later in this chapter, you see how to add your web performance tests to load tests to ensure that a
web application behaves as expected when many users access it concurrently.

Web Performance Tests versus Coded UI Tests
At fi rst glance, the capabilities of web performance tests may appear similar to those of coded user
interface (UI) tests (see Chapter 25). But although some capabilities do overlap (such as record and
playback, and response validation), the two types of tests are designed to achieve different testing
goals and should be applied appropriately. Web performance tests should be used primarily for
performance testing, and you can use them as the basis for generating load tests. You should use
coded UI tests for ensuring proper UI behavior and layout, but they cannot be easily used to conduct

Web Performance Tests ❘ 565

c26.indd 02/27/2014 Page 565

load testing. Conversely, whereas web performance tests can be programmed to perform simple vali-
dation of responses, coded UI tests are much better suited for this task.

Creating a Sample Web Application
Before creating a web performance test, you need a web application to test. Although you could cre-
ate a web performance test by interacting with any live website such as Microsoft.com, Facebook,
or YouTube, those sites will change and will likely not be the same by the time you read this chapter.
Therefore, the remainder of this chapter is based on a website created with the Personal Web Site
Starter Kit.

The Personal Web Site Starter Kit is a sample ASP.NET application provided by Microsoft. The
Personal Web Site Starter Kit fi rst shipped with Visual Studio 2005 and ASP.NET 2.0, but there is
a version that is compatible with Visual Studio 2013 at the website for this title. If you intend to fol-
low along with the sample provided in this chapter, fi rst visit this book’s page at www.wrox.com to
download and open the Personal Web Site Starter Kit project template, following the instructions
contained in the Readme.txt fi le.

This site will become the basis of some recorded web performance tests. Later, you will assemble
these web performance tests into a load test in order to put stress on this site to determine how well
it will perform when hundreds of friends and family members converge simultaneously to view your
photos.

Creating Users for the Site
Before you create tests for your website, you must create a few users for the site. You do this using
the Web Site Administration Tool. This tool was available directly in Visual Studio 2012, but was
removed from Visual Studio 2013 due to the removal of the Visual Studio Development Server from
the product. However, you can still access the tool from the command line.

To open the Web Site Administration Tool, complete the following steps:

 1. Open a Command Prompt.

 2. Navigate to the folder where IIS Express is installed on your machine (with Visual Studio
2013, this will be C:\Program Files\IIS Express).

 3. Start an IIS Express site using the following command: iisexpress.exe /path:c:
\Windows\Microsoft.NET\Framework\v4.0.30319\ASP.NETWebAdminFiles

/port:[port] /clr:4.0 /ntlm.

 4. Open Internet Explorer and navigate to http://localhost:8082/asp.netwebadminfiles
/default.aspx?applicationPhysicalPath=[apppath]&applicationUrl=/, where
[apppath] is the absolute path to the Visual Studio Project folder with the solution fi le in it.

 5. On the resulting page, select Security, and then select Create or Manage Roles. Enter
Administrators as the role name and then click Add Role. Repeat this process to add a role
named Friends.

You now have two roles into which users can be placed. Click the Security tab again, and then click
Create User. You see the window shown in Figure 26-1.

http://www.wrox.com
http://localhost:8082/asp.netwebadminfiles

566 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 566

FIGURE 26-1

Your tests assume the following users have been created:

 ➤ Admin—In the Administrator role

 ➤ Sue—In the Friends role

 ➤ Daniel—In the Friends role

 ➤ Andrew—In the Friends role

For purposes of this example, enter @qwerty@ for the password of each user, and any values you
want for the E-mail and Security Question fi elds.

Creating and Confi guring Web Tests
There are three main methods for creating web performance tests. The fi rst (and, by far, the most
common) is to use the Web Test Recorder. This is the recommended way of getting started with web
performance testing and is the approach discussed in this chapter. The second method is to create
a test manually, using the Web Test Editor to add each step. Using this approach is time-consuming
and error-prone, but may be desired for fi ne-tuning web performance tests. Finally, you can create a
coded web performance test that specifi es each action via code and offers a great deal of customiza-
tion. You can also generate a coded web performance test from an existing web performance test.
Coded web performance tests are described in the “Coded Web Performance Tests” section later in
this chapter.

To create a new web performance test, you should create a new test project and add it to your solu-
tion. Right-click your solution and select Add ➪ New Project. You see the Add New Project dialog,

Web Performance Tests ❘ 567

c26.indd 02/27/2014 Page 567

as shown in Figure 26-2. Expand either Visual C# or Visual Basic and then highlight the Test node.
Choose Web Performance and Load Test Project and name your project SampleWebTestProject.
Click OK.

FIGURE 26-2

NOTE You can create your test project using either Visual Basic or Visual C#,
but the examples in this chapter use Visual C#.

After clicking OK, your test project is created along with your fi rst test, named WebTest1.webtest.
A Local.testsettings fi le is also created in your Solution Items folder, which you take a closer
look at later.

NOTE After you have a test project, you can quickly create other web per-
formance tests by right-clicking your test project and selecting Add ➪ Web
Performance Test. This automatically creates a new web performance test with
default settings, named WebTest2.webtest (incrementing the number if that
name already exists), and launches the Web Test Recorder within your browser.

568 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 568

Recording a Web Performance Test
The ASP.NET Development Server must also be running before you can navigate to your site and
record your test. If it isn’t already running (as indicated by an icon in the taskbar notifi cation area),
you can start it by selecting your Personal Web Site project in Visual Studio and pressing Ctrl+F5,
which builds and launches your Personal Web Site project in a new browser instance. Take note
of the URL being used, including the port number. You may close this new browser instance (the
Development Server continues running) and return to Visual Studio.

Open your empty test, WebTest1.webtest. You can use the Web Test Recorder to add web requests
to this test. Click the Add Recording button (an icon of a circle within a square) within the toolbar
of the web test to launch an instance of Internet Explorer with the integrated Web Test Recorder
docked window. Begin by typing the URL of the application you want to test. For the Personal Web
Site application on a local machine, this is something like http://localhost:5000/default.aspx.
Be sure to include the default.aspx portion of the URL, along with the dynamic port number
(which you learned in the previous paragraph).

NOTE If you don’t see the Web Test Recorder within Internet Explorer at this
time, then you might be encountering one of the known issues documented at
Mike Taute’s blog. See http://tinyurl.com/9okwqp for a list of troubleshoot-
ing steps and possible fi xes.

Recording a web performance test is straightforward. Using your web browser, simply use the web
application as if you were a normal user. Visual Studio automatically records your actions, saving
them to the web performance test.

First, log in as the Admin user with the password of @qwerty@ you created earlier (but do not check
the Remember Me Next Time option). The browser should refresh, showing a “Welcome Admin!”
greeting. This is only a short test, so click Logout at the upper-right corner.

Your browser should now appear as shown in Figure 26-3. The steps have been expanded so you
can see the details of the Form Post Parameters that were recorded automatically for you. You fi nd
out more about these later in this chapter, but for now, notice that the second request automatically
includes ViewState, as well as the Username and Password form fi elds you used to log in.

NOTE The Web Test Recorder captures any HTTP/HTTPS traffi c sent or
received by your instance of Internet Explorer as soon as it is launched. This
includes your browser’s home page and might include certain browser add-ins
and toolbars that send data. For pristine recordings, you should set your Internet
Explorer home page to be blank and disable any add-ins or toolbars that could
generate excess noise.

http://localhost:5000/default.aspx
http://tinyurl.com/9okwqp

Web Performance Tests ❘ 569

c26.indd 02/27/2014 Page 569

FIGURE 26-3

The Web Test Recorder provides several options that may be useful while recording. The Pause but-
ton in the upper-left corner temporarily suspends recording and timing of your interaction with the
browser, enabling you to use the application or get a cup of coffee without affecting your web per-
formance test. You read more about the importance of timing of your web performance test later, as
this can affect playback conditions. Click the X button if you want to clear your recorded list. The
other button, Add a Comment, enables you to add documentation to your web performance test,
perhaps at a complex step. These comments are very useful when you convert a web performance
test to a coded web performance test, as you see later.

NOTE Calls to web pages are normally composed of a main request followed by
a number of dependent requests. These dependent requests are sent separately
to obtain items such as graphics, script sources, and stylesheets. The Web Test
Recorder does not display these dependent requests explicitly while recording.
You see later that all dependent requests are determined and processed automat-
ically when the web test is run.

Confi guring Web Performance Test Run Settings
When you’re fi nished recording your web performance test, click Stop and the browser closes to dis-
play the Web Test Editor with your recorded web performance test, as shown in Figure 26-4.

570 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 570

FIGURE 26-4

The Web Test Editor displays your test as a series of requests to be sent to the web application. The
fi rst request is the initial page being loaded. The second request is the login request being sent.
And the third request is the logout request.

Frequently, you’ll need to use the Web Test Editor to change settings or add features to the tests you
record. This may include adding validation, extracting data from web responses, and reading data
from a source. These topics are covered later in this chapter, but for now, you use this test as recorded.

Parameterizing the Web Server
You may recall from the earlier section “Confi guring the Sample Application for Testing,” that using
the ASP.NET Development Server is convenient, but it poses a slight challenge because the port it
uses is selected randomly with each run. Although you could set your website to use a static port,
there is a better solution.

Using the Web Test Editor, click the Parameterize Web Servers toolbar button. (You can hover your
mouse cursor over each icon to see the name of each command.) You could also right-click the web
test name and choose Parameterize Web Servers. In the resulting dialog, click the Change button.
You see the Change Web Server dialog, shown in Figure 26-5.

Use this dialog to confi gure your web performance test to target a standard web application ser-
vice (such as IIS), or to use the ASP.NET Development Server. In this example, you are using the
Development Server, so choose that option and browse to the path where you extracted the Personal
Web Site project at the beginning of this chapter. Click OK twice.

Web Performance Tests ❘ 571

c26.indd 02/27/2014 Page 571

Notice the Web Test Editor has automatically updated all request entries, replacing the static web
address with a reference to this context parameter, using the syntax {{WebServer1}}. In addition,
the context parameter WebServer1 has been added at the bottom of the web performance test under
Context Parameters. (You see later in this chapter the effect of this on the sample web performance
test in Figure 26-10.)

FIGURE 26-5

NOTE Context parameters (which are named variables that are available to
each step in a web performance test) are described in the section “Extraction
Rules and Context Parameters,” later in this chapter.

Now, when you run the web performance test, Visual Studio automatically fi nds and connects to
the address and dynamic port being used by the ASP.NET Development Server. If the ASP.NET
Development Server is not started, it launches automatically. If you have more than one target server
or application, you can repeat this process as many times as necessary, creating additional context
parameters.

Test Settings
Before you run a web performance test, you may want to review the settings that will be used for
the test’s runs. First select an active test settings fi le by clicking Test ➪ Test Settings ➪ Select
Test Settings File. Browse to the local.testsettings fi le that was created when you added your
test project to this solution. Now double-click this fi le within Solution Explorer to open it in the
editor. Select the Web Test entry from the list on the left side and you see the options shown in
Figure 26-6.

572 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 572

FIGURE 26-6

The Fixed Run Count option enables you to specify the specifi c number of times your web perfor-
mance tests will be executed when included in a test run. Running your test a few times (for example,
three to ten times) can help eliminate errant performance timings caused by system issues on the cli-
ent or server and can help you derive a better estimate for how your website is actually performing.
Note that you should not enter a large number here to simulate load through your web
performance test. Instead, you should create a load test (discussed later in this chapter) referencing
your web performance test. Also, if you assign a data source to your web performance test, you may
instead choose to run the web performance test one time per entry in the selected data source. Data-
driven web performance tests are examined in detail later in this chapter.

The Browser Type setting enables you to simulate using one of a number of browsers as your web
performance test’s client. This automatically sets the user agent fi eld for requests sent to the
web performance test to simulate the selected browser. By default, this is Internet Explorer, but you
may select other browsers (such as Chrome or a smartphone).

Web Performance Tests ❘ 573

c26.indd 02/27/2014 Page 573

NOTE Changing the browser type does not help you determine if your web
application will render as desired in a given browser type because web perfor-
mance tests only examine HTTP/HTTPS responses and not the actual rendering
of pages. Changing the browser type is important only if the web application
being tested is confi gured to respond differently based on the user agent sent by
the requesting client. For example, a web application may send a more light-
weight user interface to a mobile device than it would to a desktop computer.

NOTE If you want to test more than one browser type, you need to run your
web performance test multiple times, selecting a different browser each time.
However, you can also add your web performance test to a load test and choose
your desired browser distributions. This causes each selected type to be simu-
lated automatically. You see how to do this later in this chapter in the section
“Load Tests.”

The Simulate Think Times option enables the use of delays in your web performance test to simulate
the normal time taken by users to read content, modify values, and decide on actions. When you
recorded your web performance test, the time it took for you to submit each request was recorded
as the “think time” property of each step. If you turn this option on, that same delay occurs
between the requests sent by the web performance test to the web application. Think times are dis-
abled by default, causing all requests to be sent as quickly as possible to the web server, resulting in
a faster test. Later in this chapter, you see that think times serve an important role in load tests.

The fi nal option in this dialog determines how cookies sent as part of a request should be retained
and used for subsequent requests. Visual Studio also enables you to emulate different network
speeds for your tests. From within Test Settings, select Data and Diagnostics on the left. Enable the
Network Emulation adapter and click Confi gure. From here you can select a variety of network
speeds to examine the effect that slower connection speeds have on your web application.

NOTE Note that these settings affect every run of this web performance test, but
are ignored when performing a load test. Later in this chapter, you discover that
load tests have their own mechanism for confi guring settings such as browser
type, network speed, and the number of times a test should be run.

NOTE For more information on how test settings affect your web performance
tests, see http://aka.ms/VS13AutomatedTestSettings.

http://aka.ms/VS13AutomatedTestSettings

574 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 574

Running a Web Performance Test
To run a web performance test, click the Run button (the leftmost button on the Web Test Editor
toolbar, as shown in Figure 26-4). The Test Results window (View ➪ Other Windows ➪ Test
Results) displays the result of your test run.

Observing Test Execution and Results
When the test run is started, a window specifi c to that web performance test execution displays.
If you are executing your web performance test from the Web Test Editor window, you must click
the Run button in this window to launch the test. The results are automatically displayed, as shown
in Figure 26-7. You can also open the test results for a specifi c test by double-clicking the web per-
formance test from within the Test Results window.

FIGURE 26-7

You may also choose to step through the web performance test, one request at a time, by choosing
Run Test (Pause Before Starting), which is available via the drop-down arrow attached to the Run
button.

This window displays the results of all interactions with the web application. A toolbar, the overall
test status, and two hyperlinked options are shown at the top. The fi rst option reruns the web per-
formance test and the second option enables you to change the browser type via the Web Test Run
Settings dialog.

Web Performance Tests ❘ 575

c26.indd 02/27/2014 Page 575

NOTE Changes made in this dialog only affect the next run of the web per-
formance test and are not saved for later runs. To make permanent changes,
modify the test settings by double-clicking your .testsettings fi le from within
Solution Explorer.

Below that, each of the requests sent to the application are shown. You can expand each top-level
request to see its dependent requests. These are automatically handled by the web performance test
system and can include calls to retrieve graphics, script sources, cascading style sheets, and more.

Each item in this list shows the request target, as well as the response’s status, time, and size.
A green check mark indicates a successful request and response, whereas a red icon indicates failure.

If your test encountered any errors, you can click the Find Previous Error and Find Next Error icons
in the toolbar to navigate through the errors in your test run.

The lower half of the window enables you to see full details for each request. The fi rst tab, Web
Browser, shows you the rendered version of the response. As you can see in Figure 26-7, the response
includes “Welcome Admin!” text, indicating that you successfully logged in as the Admin account.

The Request tab shows the details of what was supplied to the web application, including all headers
and any request body, such as might be present when an HTTP POST is made.

Similarly, the Response tab shows all headers and the body of the response sent back from the web
application. Unlike the Web Browser tab, this detail is shown textually, even when binary data (such
as an image) is returned.

The Context tab lists all of the context parameters and their values at the time of the selected
request. Finally, the Details tab shows the status of any assigned validation and extraction rules.
This tab also shows details about any exception thrown during that request. Context parameters
and rules are described later in this chapter.

Editing a Web Performance Test
You’ll often fi nd that a recorded web performance test is not suffi cient to fully test your application’s
functionality. You can use the Web Test Editor, as shown in Figure 26-4, to further customize a web
performance test, adding comments, extraction rules, data sources, and other properties.

WARNING It is recommended that you run a recorded web performance test
once before attempting to edit it. This verifi es that the test was recorded cor-
rectly. If you don’t do this, you might not know whether a test is failing because
it wasn’t recorded correctly or because you introduced a bug through changes in
the Web Test Editor.

576 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 576

Setting Request Properties
From within the Web Test Editor, right-click a request and choose Properties. If the Properties win-
dow is already displayed, simply selecting a request shows its properties. You can modify settings
such as cache control, target URL, and whether the request automatically follows redirects.

The Properties window also offers a chance to modify the think time of each request. For example,
perhaps a coworker dropped by with a question while you were recording your web performance
test and you forgot to pause the recording. Use the Think Time property to adjust the delay to a
more realistic value.

Adding Comments
Comments are useful for identifying the actions of a particular section of a web performance test.
In addition, when converting your web performance test to a coded web performance test, your
comments are preserved in code.

Because the requests in this example refer to the same page, it is helpful to add comments to help
distinguish them. Add a comment by right-clicking the fi rst request and choosing Insert Comment.
Enter Initial site request. Insert a comment for the second request as Login and for the third
request as Logout.

Adding Transactions
A transaction is used to monitor a group of logically connected steps in your web performance
test. A transaction can be tracked as a unit, giving details such as number of times invoked, request
time, and total elapsed time.

NOTE Don’t confuse web performance test transactions with database transac-
tions. Although both are used for grouping actions, database transactions offer
additional features beyond those of web performance test transactions.

To create a transaction, right-click a request and select Insert Transaction. You are prompted to
name the transaction and to select the start and end request from drop-down lists.

Transactions are primarily used when running web performance tests under load with a load test.
Read more about viewing transaction details in the section “Viewing and Interpreting Load
Test Results,” later in this chapter.

Extraction Rules and Context Parameters
Extraction rules are used to retrieve specifi c data from a web response. This data is stored in con-
text parameters, which live for the duration of the web performance test. Context parameters can
be read from and written to by any request in a web performance test. For example, you could use
an extraction rule to retrieve an order confi rmation number, storing that in a context parameter.

Web Performance Tests ❘ 577

c26.indd 02/27/2014 Page 577

Then, subsequent steps in the test could access that order number, using it for verifi cation or supply-
ing it with later web requests.

NOTE Context parameters are similar in concept to the HttpContext.Items
collection from ASP.NET. In both cases, you can add names and values that
can be accessed by any subsequent step. Whereas HttpContext.Items entries
are valid for the duration of a single page request, web performance test context
parameters are accessible through a single web performance test run.

Referring to Figure 26-4, notice that the fi rst request has an Extract Hidden Fields entry under
Extraction Rules. This was added automatically when you recorded the web performance test
because the system recognized hidden fi elds in the fi rst form you accessed. Those hidden fi elds are
now available to subsequent requests via context parameters.

A number of context parameters are set automatically when you run a web performance test, includ-
ing the following:

 ➤ $TestDir—The working directory of the web performance test.

 ➤ $WebTestIteration—The current run number. For example, this would be useful if you
selected more than one run in the Test Settings and needed to differentiate the test runs.

 ➤ $ControllerName and $AgentName—Machine identifi ers used when remotely executing web
performance tests. You read more about this topic later in this chapter.

To add an extraction rule to a web performance test, right-click any request and select Add
Extraction Rule. The dialog shown in Figure 26-8 displays.

The built-in extraction rules can be used to extract any attribute, HTTP header, or response text. Use
Extract Regular Expression to retrieve data that matches the supplied expression. Use Extract Hidden
Fields to easily fi nd and return a value contained in a hidden form fi eld of a response. Extracted val-
ues are stored in context parameters whose names you defi ne in the properties of each rule.

You can add your own custom extraction rules by creating classes that derive from the
ExtractionRule class found in the Microsoft.VisualStudio.TestTools.WebTesting
namespace.

Validation Rules
Generally, checking for valid web application behavior involves more than just getting a response
from the server. You must ensure that the content and behavior of that response is correct.
Validation rules offer a way to verify that those requirements are met. For example, you may want
to verify that specifi c text appears on a page after an action, such as adding an item to a shopping
cart. Validation rules are attached to a specifi c request, and cause that request to show as failed if
the requirement is not satisfi ed.

578 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 578

FIGURE 26-8

Add a validation rule to the test to ensure that the welcome message is displayed after you log in. Right-
click the second request and choose Add Validation Rule. You see the dialog shown in Figure 26-9.

FIGURE 26-9

Web Performance Tests ❘ 579

c26.indd 02/27/2014 Page 579

As with extraction rules, you can also create your own custom validation rules by inheriting from
the base ValidationRule class, found in the WebTestFramework assembly, and have them appear
in this dialog. Choose the Find Text rule and set the Find Text value to Welcome Admin. Set Ignore
Case to False, and Pass If Text Found to True. This rule searches the web application’s response for
a case-sensitive match on that text and passes if found. Click OK. The web performance test should
appear as shown in Figure 26-10.

FIGURE 26-10

Verify that this works by running or stepping through the web performance test. You should see
that this test actually does not work as expected. You can use the details from the web performance
test’s results to fi nd out why.

View the Details tab for the second request. You’ll see that the Find Text validation rule failed
to fi nd a match. Notice that the text of the response on the Response tab shows that instead of
“Welcome Admin” being returned, there is a tab instead of a space between the words. You need to
modify the validation rule to match this text.

To fi x this, you could simply replace the space in the Find Text parameter with a tab. However, you
could use a regular expression as well. First, change the Find Text parameter to Welcome\s+admin.
This indicates you expect any whitespace characters between the words, not just a space character.
To enable that property to behave as a regular expression, set the Use Regular Expression parameter
to True.

Save your web performance test and rerun it. The web performance test should now pass.

580 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 580

NOTE Bear in mind that the validation logic available within web performance
tests is not as sophisticated as that of coded UI tests (see Chapter 25). With
coded UI tests, it is easier to confi rm that a given string appears in the right loca-
tion of a web page, whereas with web performance test validation rules, you
are generally just checking to confi rm that the string appears somewhere in the
response.

The functionality that extraction and validation rules provide comes at the expense of performance.
If you want to call your web performance test from a load test, you might want to simulate more
load at the expense of ignoring a number of extraction or validation rules.

Each rule has an associated property called Level. This can be set to Low, Medium, or High. When
you create a load test, you can similarly specify a validation level of Low, Medium, or High. This
setting specifi es the minimum level of rule that is executed when a load test runs. For example,
a validation level of Medium runs rules with a level of Medium or High, but excludes rules marked
as Low.

Data-Driven Web Performance Tests
You can satisfy many testing scenarios using the techniques described so far, but you can go beyond
those techniques to easily create data-driven web performance tests. A data-driven web perfor-
mance test connects to a data source and retrieves a set of data. Pieces of that data can be used in
place of static settings for each request.

For example, in your web performance test, you may want to ensure that the login and logout pro-
cesses work equally well for all of the confi gured users. You fi nd out how to do this next.

Confi guring a Data Source
You can confi gure your web performance test to connect to a database (for example, SQL Server or
Oracle), a comma-separated value (CSV) fi le, or an XML fi le. For this example, a CSV fi le will suf-
fi ce. Using Notepad, create a new fi le and insert the following data:

Username,Password
Admin,@qwerty@
Sue,@qwerty@
Daniel,@qwerty@
Andrew,@qwerty@

Save this fi le as Credentials.csv.

The next step in creating a data-driven web performance test is to specify your data source. Using
the Web Test Editor, you can either right-click the top node of your web performance test and select
Add Data Source, or click the Add Data Source button on the toolbar.

In the New Test Data Source wizard, select CSV File and click Next. Browse to the Credentials
.csv fi le you just created and click Next. You see a preview of the data contained in this fi le. Note
that the fi rst row of your fi le was converted to the appropriate column headers for your data table.

Web Performance Tests ❘ 581

c26.indd 02/27/2014 Page 581

Click Finish. You are prompted to make the CSV fi le a part of your test project. Click Yes to con-
tinue. When the data source is added, you see it at the bottom of your web performance test in the
Web Test Editor, and the Credentials.csv fi le is added to the Solution Explorer.

Expand the data source to see that there is a new table named Credentials in your Web Test
Editor. Click this table and view the Properties window. Notice that one of the settings is Access
Method. This has three valid settings:

 ➤ Sequential—Reads each record in fi rst-to-last order from the source. This loops back to the
fi rst record and continues reading if the test uses more iterations than the source has records.

 ➤ Random—Reads each record randomly from the source and, like sequential access, continues
reading as long as necessary.

 ➤ Unique—Reads each record in fi rst-to-last order, but does so only once.

Use this setting to determine how the data source feeds rows to the web performance test. For this
test, choose Sequential.

Binding to a Source
Several types of values can be bound to a data source, including form post and URL query param-
eters’ names and values, HTTP headers, and fi le upload fi eld names. Expand the second request in
the Web Test Editor (which you earlier labeled as Login), expand Form Post Parameters, click the
parameter for UserName, and view the Properties window. Click the down arrow that appears in
the Value box.

You see the data-binding selector, as shown in Figure 26-11.

FIGURE 26-11

582 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 582

Expand your data source, choose the Credentials table, and then click the Username column to bind
to the value of this parameter. A database icon appears in that property, indicating that it is a bound
value. You can select the Unbind entry to remove any established data binding. Repeat this process
for the Password parameter.

NOTE When binding to a database you may choose to bind to values from
either a table or a view. Binding to the results of stored procedures is not sup-
ported for web performance tests.

Before you run your web performance test, you must indicate that you want to run the test one time
per row of data in the data source. Refer to the earlier section “Test Settings” and Figure 26-6.
In the Web Tests section of your test settings, choose the One Run per Data Source Row option.

The next time you run your web performance test, it automatically reads from the target data
source, supplying the bound fi elds with data. The test repeats one time for each row of data in the
source. Your test should now fail, however, because you are still looking for the text “Welcome
Admin” to appear after the login request is sent.

To fi x this, you must modify your validation rule to look for welcome text corresponding to the user
being authenticated. Select the Find Text validation rule and view the Properties window. Change
the Find Text value to Welcome\s+{{DataSource1.Credentials#csv.Username}} and rerun your
test. Your test should now pass again.

Coded Web Performance Tests
As fl exible as web performance tests are, there may be times when you need more control over the
actions that are taken. Web performance tests are stored as XML fi les with .webtest extensions.
Visual Studio uses this XML to generate the code that is executed when the web performance test
is run. You can tap into this process by creating a coded web performance test, enabling you to
execute a test from code instead of from XML.

Coded web performance tests enable you to perform actions not possible with a standard web per-
formance test. For example, you can perform branching based on the responses received during a
web performance test or based on the values of a data-bound test. A coded web performance test is
limited only by your ability to write code. The language of the generated code is determined by the
language of the test project that contains the source web performance test.

A coded web performance test is a class that inherits from either a base WebTest class for C#
tests, or from a ThreadedWebTest base for Visual Basic tests. You can fi nd these classes in the
Microsoft.VisualStudio.TestTools.WebTesting namespace. All the features available to web
performance tests that you create via the IDE are implemented in classes and methods contained in
that namespace.

Web Performance Tests ❘ 583

c26.indd 02/27/2014 Page 583

NOTE Although you always have the option to create a coded web performance
test by hand, the most common (and the recommended) method is to generate
a coded web performance test from a web performance test that was recorded
with the Web Test Recorder and then customize the code as needed.

You should familiarize yourself with coded web performance tests by creating a number of different
sample web performance tests through the IDE and generating coded web performance tests from
them to learn how various web performance test actions are accomplished with code.

Using the example web performance test, click the Generate Code button on the Web Test Editor
toolbar. You are prompted to name the generated fi le. Open the generated fi le and review the gener-
ated code.

Here is a segment of the C# code that was generated from the example web performance test (some
calls have been removed for simplicity):

public override IEnumerator<WebTestRequest> GetRequestEnumerator()
{
 ...
 // Initial site request
 ...

 yield return request1;
 ...

 // Login
 ...
 WebTestRequest request2 = new
 WebTestRequest((this.Context["WebServer1"].ToString() +
 "/SampleWeb/default.aspx"));
 ...

 Request2.ThinkTime = 14;
 Request2.Method = "POST";
 FormPostHttpBody request2Body = new FormPostHttpBody();
 ...
 Request2Body.FormPostParameters.Add(
 "ctl00$Main$LoginArea$Login1$UserName",
 this.Context["DataSource1.Credentials#csv.Username"].ToString());

 request2Body.FormPostParameters.Add(
 "ctl00$Main$LoginArea$Login1$Password",
 this.Context["DataSource1.Credentials#csv.Password"].ToString());
 ...

 if ((this.Context.ValidationLevel >=
 Microsoft.VisualStudio.TestTools.WebTesting.ValidationLevel.High))
 {

584 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 584

 ValidationRuleFindText validationRule3 = new ValidationRuleFindText();
 validationRule3.FindText = ("Welcome\\s+" +
 this.Context["DataSource1.Credentials#csv.Username"].ToString());
 validationRule3.IgnoreCase = false;
 validationRule3.UseRegularExpression = true;
 validationRule3.PassIfTextFound = true;
 }
 ...
 yield return request2;
 ...

 // Logout
 ...
 WebTestRequest request3 = new
 WebTestRequest((this.Context["WebServer1"].ToString() +
 "/SampleWeb/default.aspx"));
 Request3.Method = "POST";
 ...
 yield return request3;
 ...
}

This GetRequestEnumerator method uses the yield statement to provide WebTestRequest
instances, one per HTTP request, back to the web test system.

Notice that the methods and properties are very similar to what you have already seen when creat-
ing and editing web performance tests in the Web Test Editor. Also notice that the comments you
added in the Web Test Editor appear as comments in the code, making it easy to identify where each
request begins.

Taking a closer look, you see that the Find Text validation rule you added earlier is now specifi ed
with code. First, the code checks the ValidationLevel context parameter to verify that you’re
including rules marked with a level of High. If so, the ValidationRuleFindText class is instanti-
ated and the parameters you specifi ed in the IDE are now set as properties of that instance. Finally,
the instance’s Validate method is registered with the request’s ValidateResponse event, ensuring
that the validator executes at the appropriate time.

You can make any changes you want and simply save the code fi le and rebuild.

NOTE Another advantage of coded web performance tests is protocol support.
Although normal web performance tests can support both HTTP and HTTPS,
they cannot use alternative protocols. A coded web performance test can be used
for other protocols, such as FTP.

NOTE For detailed descriptions of the classes and members available to you in
the WebTesting namespace, see http://aka.ms/VS13WTNamespace.

http://aka.ms/VS13WTNamespace

Load Tests ❘ 585

c26.indd 02/27/2014 Page 585

LOAD TESTS

Load tests are used to verify that your application performs as expected while under the stress of
multiple concurrent users. You confi gure the levels and types of load you want to simulate and then
execute the load test. A series of requests is generated against the target application, and Visual
Studio monitors the system under test to determine how well it performs.

Load testing is most commonly used with web performance tests to conduct smoke, load, and stress
testing of web applications. However, you are certainly not limited to this. Load tests are essentially
lists of pointers to other tests, and they can include any other test type except for manual tests.

NOTE You can use load tests with coded UI tests, but doing so requires that
you confi gure a physical or virtual machine with a test agent for each concurrent
user you want to simulate. This is because a coded UI test assumes that it has
exclusive “virtual” control over the mouse and keyboard for a machine. You can
fi nd details on using coded UI tests with load tests at http://aka.ms/CUITLoad.

NOTE You cannot use load tests with third-party test adapters, such as NUnit
or xUnit.net.

For example, you could create a load test that includes a suite of unit tests. You could stress-test lay-
ers of business logic and database access code to determine how that code will behave when many
users are accessing it concurrently, regardless of which application uses those layers.

As another example, you can use ordered tests to group a number of tests and defi ne a specifi c order
in which they will run. Because tests added to a load test are executed in a randomly selected order,
you may fi nd it useful to fi rst group them with an ordered test, and then include that ordered test in
the load test. You can fi nd more information on ordered tests in Chapter 23.

Creating and Confi guring Load Tests
This section describes how to create a load test using the New Load Test wizard. You examine many
options that you can use to customize the behavior of your load tests.

As described earlier in this chapter in the section “Web Performance Tests,” you use a test project to
contain your tests, and, like web performance tests, load tests are placed in test projects. Right-click
your existing test project and choose Add ➪ Load Test.

When you add a new load test, the New Load Test wizard starts. This wizard guides you through
the many confi guration options available for a load test.

http://aka.ms/CUITLoad

586 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 586

Scenarios and Think Times
A load test is composed of one or more scenarios. A scenario is a grouping of web performance
and/or unit tests, along with a variety of preferences for user, browser, network, and other settings.
Scenarios are used to group similar tests or usage environments. For example, you might want to
create a scenario for simulating the creation and submission of an expense report by your employ-
ees, whereby your users have LAN connectivity and all use Internet Explorer 9.

When the New Load Test wizard is launched, the fi rst screen describes the load test creation pro-
cess. Click Next and you are prompted to assign a name to your load test’s fi rst scenario, as shown
in Figure 26-12.

FIGURE 26-12

Note that the New Load Test wizard only supports the creation of a single scenario in your load
test, but you can easily add more scenarios with the Load Test Editor after you complete the wizard.

The second option on this page is to confi gure think times. You may recall from the earlier section
“Web Performance Tests” that think time is a delay between each request, which can be used to
approximate how long a user will pause to read, consider options, and enter data on a particular
page. These times are stored with each of a web performance test’s requests and can be hand-edited
by examining the properties for each web request. The think time profi le panel enables you to turn
these off or on.

If you enable think times, you can either use them as is, or apply a normal distribution that
is centered around your recorded think times as a mean. The normal distribution is generally

Load Tests ❘ 587

c26.indd 02/27/2014 Page 587

recommended if you want to simulate the most realistic user load, based on what you expect the
average user to do. You can also confi gure the think time between test iterations to model a user
who pauses after completing a task before moving to the next task.

You can click any step on the left side to jump to that page of the wizard or click Next to navigate
through sequential pages.

Load Patterns
The next step is to defi ne the load pattern for the scenario. The Load Pattern tab, shown in
Figure 25-13, enables simulation of different types of user load.

FIGURE 26-13

In the wizard, you have two load pattern options: Constant and Step. A constant load enables you
to defi ne a number of users that will remain unchanged throughout the duration of the test.
Use a constant load to analyze the performance of your application under a steady load of users.
For example, you may specify a baseline test with 100 users. This load test can be executed prior to
release to ensure that your established performance criteria remain satisfi ed.

A step load defi nes a starting and maximum user count. You also assign a step duration and a step
user count. Every time the number of seconds specifi ed in your step duration elapses, the number
of users is incremented by the step count, unless the maximum number of users has been reached.
Step loads are very useful for stress-testing your application, fi nding the maximum number of users
your application will support before serious issues arise.

588 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 588

NOTE A third type of load profi le pattern, called “Goal Based,” is available
only through the Load Test Editor. See the section “Editing Load Tests,” later in
this chapter, for more details.

You should begin with a load test that has a small, constant user load and a relatively short execu-
tion time. After you have verifi ed that the load test is confi gured and working correctly, increase the
load and duration as you require.

Test Mix Model
The Test Mix Model (shown in Figure 26-14) determines the frequency at which tests within your
load test are selected from among other tests within your load test.

FIGURE 26-14

The test mix model provides several options for realistically modeling user load. The options for test
mix model are as follows:

 ➤ Based on the total number of tests—This model enables you to assign a percentage to each
test that dictates how many times it should be run. Each virtual user runs each test corre-
sponding to the percentage assigned to that test. An example of where this might be useful
is if you know that the average visitor views three photos on your website for every one

Load Tests ❘ 589

c26.indd 02/27/2014 Page 589

comment that they leave on a photo. To model that scenario, you would create a test for
viewing photos and a test for leaving comments, and assign them percentages of 75 percent
and 25 percent, respectively.

 ➤ Based on the number of virtual users—This model enables you to assign a percentage of
virtual users who should run each test. This model might be useful if you know that, at any
given time, 80 percent of your visitors are browsing the catalog of your e-commerce website,
5 percent are registering for new accounts, and 15 percent are checking out.

 ➤ Based on user pace—This model executes each test a specifi ed number of times per virtual-
user per hour. An example of a scenario where this might be useful is if you know that the
average user checks email fi ve times per hour, and looks at a stock portfolio once an hour.
When using this test mix model, the think time between iterations–value from the Scenario
page of the wizard is ignored.

 ➤ Based on sequential test order—If you know that your users generally perform steps in a spe-
cifi c order (for example, logging in, then fi nding an item to purchase, then checking out), you
can use this test mix model to simulate a sequential test behavior for all virtual users. This
option is functionally equivalent to structuring your tests as ordered tests.

NOTE Don’t worry if you are having a diffi cult time choosing a test mix model
right now. You can always experiment with different test mix models later as
you learn more about the expected behavior of your application’s users. You
may also discover that your application exhibits different usage patterns at dif-
ferent times of the day, during marketing promotions, or during some other
seasonality.

The option you select on this dialog affects the options available to you on the next page of the
wizard.

Test Mix
Now, select the tests to include in your scenario, along with the relative frequency with which they
should run. Click the Add button and you see the Add Tests dialog shown in Figure 26-15.

By default, all the tests (except manual tests and coded UI tests) in your solution are displayed. You
can constrain these to a specifi c test project with the Select Project to View Tests drop-down. Select
one or more tests and click OK. To keep this example simple, only add the web performance test
you created earlier in this chapter.

Next, you return to the test mix step. Remember that this page varies based on the test mix model
you selected in the previous step. Figure 26-16 assumes that you selected Based on the Total Number
of Tests as your test mix model.

590 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 590

FIGURE 26-15

FIGURE 26-16

Load Tests ❘ 591

c26.indd 02/27/2014 Page 591

Use the sliders to assign the chance (in percentage) that a virtual user will select that test to execute.
You may also type a number directly into the numeric fi elds. Use the lock check box in the far-right
column to freeze tests at a certain number, and use the sliders to adjust the remaining “unlocked”
test distributions. The Distribute button resets the percentages evenly between all tests. But, because
you only have a single test in your test mix right now, there is nothing else to confi gure on this page,
and the slider is disabled.

Network Mix
You can specify the kinds of network connectivity you expect your users to have (such as LAN,
Cable-DSL, and Dial-up). This step is shown in Figure 26-17.

FIGURE 26-17

Like the test mix step described earlier, you can use sliders to adjust the percentages, lock a particu-
lar percent, or click the Distribute button to reset to an even distribution.

As with the test mix settings, each virtual user selects a browser type at random according to the
percentages you set. A new browser type is selected each time a test is chosen for execution.
This also applies to the browser mix described next.

Browser Mix
The next step (applicable only when web performance tests are part of the load test) is to defi ne the
distribution of browser types that you want to simulate. Visual Studio then adjusts the headers sent
to the target application according to the selected browser for that user.

592 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 592

As shown in Figure 26-18, you may add one or more browser types, and then assign a percent distri-
bution for their use.

FIGURE 26-18

Performance Counter Sets
A vital part of load testing is the tracking of performance counters. You can confi gure your load test
to observe and record the values of performance counters, even on remote machines. For example,
your target application is probably hosted on a different machine from the one on which you’re run-
ning the test. In addition, that machine may be calling to other machines for required services (such
as databases or web services). Counters from all of these machines can be collected and stored by
Visual Studio.

A counter set is a group of related performance counters. All of the contained performance counters
are collected and recorded on the target machine when the load test is executed.

Select machines and counter sets using the wizard step shown in Figure 26-19. Note that this step is
optional. By default, performance counters are automatically collected and recorded for the machine
running the load test. If no other machines are involved, simply click Next.

Load Tests ❘ 593

c26.indd 02/27/2014 Page 593

FIGURE 26-19

NOTE After the wizard is complete, you can use the editor to create your own
counter sets by right-clicking Counter Sets and selecting Add Custom Counter
Set. Right-click the new counter set and choose Add Counters. Use the resulting
dialog box to select the counters and instances you want to include.

To add a machine to the list, click Add Computer and enter the name of the target machine. Then,
check any counter sets you want to track to enable collection of the associated performance counters
from the target machine.

NOTE If you encounter errors when trying to collect performance counters
from remote machines, be sure to visit Ed Glas’s blog post on troubleshooting
these problems at http://tinyurl.com/bp39hj.

http://tinyurl.com/bp39hj

594 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 594

Run Settings
The fi nal step in the New Load Test wizard is to specify the test’s run settings, as shown in Figure
26-20. A load test may have more than one run setting, but the New Load Test wizard creates only
one. In addition, run settings include more details than are visible through the wizard. These aspects
of run settings are covered later in the section “Editing Load Tests.”

FIGURE 26-20

First, select the timing details for the test. Warm-up Duration specifi es a window of time dur-
ing which (although the test is running) no information from the test is tracked. This gives the
target application a chance to complete actions such as just-in-time (JIT) compilation or caching
of resources. After the warm-up period ends, data collection begins and continues until the Run
Duration value has been reached.

The Sampling Rate determines how often performance counters are collected and recorded.
A higher frequency (lower number) produces more detail, but at the cost of a larger test result set
and slightly higher strain on the target machines.

Any description you enter is stored for the current run setting. Save Log on Test Failure specifi es
whether a load test log should be saved in the event that tests fail. Often, you do not want to save a
log on test failure because broken tests skew the results for actual test performance.

Finally, the Validation Level setting indicates which web performance test validation rules should be
executed. This is important, because the execution of validation rules is achieved at the expense of

Load Tests ❘ 595

c26.indd 02/27/2014 Page 595

performance. In a stress test, you may be more interested in raw performance than you are that a set
of validation rules pass. There are three options for validation level:

 ➤ Low—Only validation rules marked with Low level are executed.

 ➤ Medium—Validation rules marked Low or Medium level are executed.

 ➤ High—All validation rules are executed.

Click Finish to complete the wizard and create the load test.

Editing Load Tests
After completing the New Load Test wizard (or whenever you open an existing load test), you see
the Load Test Editor shown in Figure 26-21.

FIGURE 26-21

The Load Test Editor displays all of the settings you specifi ed in the New Load Test wizard. It
provides access to more properties and options than the wizard, including the capability to add sce-
narios, create new run settings, confi gure SQL tracing, and much more.

Adding Scenarios
As you’ve already seen, scenarios are groups of tests and user profi les. They are a good way to defi ne
a large load test composed of smaller, more specifi c testing objectives.

For example, you might create a load test with two scenarios. The fi rst might include tests of the
administrative functions of your site, including ten users with the corporate-mandated Internet
Explorer 9.0 on a LAN. The other scenario might test the core features of your site, running with

596 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 596

90 users who have a variety of other browsers and who are connecting from their phones or home
VPN network connections. Running these scenarios together under one load test enables you to
more effectively gauge the overall behavior of your site under realistic usage.

The New Load Test wizard generates load tests with a single scenario, but you can easily add more
using the Load Test Editor. Right-click the Scenarios node and choose Add Scenario. You are then
prompted to walk through the Add Scenario wizard, which is simply a subset of the New Load Test
wizard that you’ve already seen.

Run Settings
Run settings, as shown on the right side of Figure 26-21, specify such things as duration of the test
run, where and if results data is stored, SQL tracing, and performance counter mappings.

A load test can have more than one run setting, but as with scenarios, the New Load Test wizard
only supports the creation of one. You might want multiple run settings to enable you to easily
switch between different types of runs. For example, you could switch between a long-running test
that runs all validation rules, and another shorter test that runs only those marked as Low level.

To add a new run setting, right-click the Run Settings node (or the load test’s root node) and choose
Add Run Setting. You can then modify any property or add counter set mappings to this new run
setting node.

SQL Tracing
You can gather tracing information from a target SQL Server instance through SQL Tracing. Enable
SQL Tracing through the run settings of your load test. As shown in Figure 26-21, the SQL Tracing
group has several settings.

First, set the SQL Tracing Enabled setting to True. Then click the SQL Tracking Connect String
setting to make the ellipsis button appear. Click that button and confi gure the connection to the
database you want to trace.

Use the SQL Tracing Directory setting to specify the path or Universal Naming Convention (UNC)
to the directory in which you want the SQL Trace details stored.

Finally, you can specify a minimum threshold for logging of SQL operations. The Minimum
Duration of Traced SQL Operations setting specifi es the minimum time (in milliseconds) that an
operation must take in order for it to be recorded in the tracing fi le.

Goal-Based Load Profi les
As you saw in the New Load Test wizard, you had two options for load profi le patterns: Constant
and Step. A third option, Goal Based, is only available through the Load Test Editor.

The goal-based pattern is used to raise or lower the user load over time until a specifi c performance
counter range has been reached. This is an invaluable option when you want to determine the peak
loads your application can withstand.

To access the load profi le options, open your load test in the Load Test Editor and click your current
load profi le, which is either Constant Load Profi le or Step Load Profi le. In the Properties window,
change the Pattern value to Goal Based. You should now see a window similar to Figure 26-22.

Load Tests ❘ 597

c26.indd 02/27/2014 Page 597

FIGURE 26-22

First, notice the User Count Limits section. This is similar to the step pattern in that you specify an
initial and maximum user count, but you also specify a maximum user count increment and decre-
ment and minimum user count. The load test dynamically adjusts the current user count according
to these settings in order to reach the goal performance counter threshold.

By default, the pattern is confi gured against the % Processor Time performance counter. To change
this, enter the category (for example, Memory, System, and so on), the computer from which it is
collected (leave this blank for the current machine), and the counter name and instance — which
is applicable if you have multiple processors.

You must then tell the test about the performance counter you selected. First, identify the range
you’re trying to reach using the High-End and Low-End properties. Set the Lower Values Imply
Higher Resource Utilization option if a lower counter value indicates system stress. For example,
you would set this to True when using the system group’s Available MBytes counter. Finally, you
can tell the load test to remain at the current user load level when the goal is reached with the Stop
Adjusting User Count When Goal Achieved option.

Storing Load Test Run Data
A load test run can collect a large amount of data. This includes performance counter information
from one or more machines, details about which test passed, and durations of various actions.
You may choose to store this information in a SQL Server database.

To select a results store, you must modify the load test’s run settings. Refer to Figure 26-21.
The local run settings have been selected in the Load Test Editor. In the Results section of the
Properties window is a setting called Storage Type, which you can either set to None or Database.

598 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 598

You can use your database to store data from load tests running on the local machine or even
remote machines. Running remote load tests is described later in this chapter in the “Distributed
Load Tests” section.

Executing Load Tests
In the Load Test Editor, click the Run button at the upper-left corner, or right-click any load test
setting node and select Run Load Test. You see the status of your test in the Test Results window, as
shown in Figure 26-23.

FIGURE 26-23

Viewing and Interpreting Load Test Results
After the status of your test is In Progress or Complete, you can double-click to see the Load Test
Monitor window, shown in Figure 26-24. You may also right-click and choose View Test Results
Details. When a load test is run from the Load Test Editor, the Test Results window is bypassed,
immediately displaying the Load Test Monitor.

FIGURE 26-24

Load Tests ❘ 599

c26.indd 02/27/2014 Page 599

You can observe the progress of your test and then continue to use the same window to review
results after the test has completed.

At the top of the screen, just under the fi le tabs, is a toolbar with several view options. First, if you
are viewing detailed information from a results store, you have a Summary view that displays key
information about your load test. The next two buttons enable you to select between Graphs and
Tables views. The Details (available if you are viewing detailed information from a results store)
provides a graphical view of virtual users over time. The Show Counters Panel and Graph Options
buttons are used to change the way these components are displayed.

Graphs View
The most obvious feature of the Load Test Monitor is the set of four graphs, which is selected by
default. These graphs plot a number of selected performance counters over the duration of the test.

The tree in the left (Counter) pane shows a list of all available performance counters, grouped into
a variety of sets — for example, by machine. Expand the nodes to reveal the tracked performance
counters. Hover over a counter to see a plot of its values in the graph. Double-click the counter to
add it to the graph and legend.

NOTE Selecting performance counters and knowing what they represent can
require experience. With so many available counters, it can be a daunting task to
know when your application isn’t performing at its best. Fortunately, Microsoft
has applied its practices and recommendations to predefi ne threshold values for
each performance counter to help indicate that something might be wrong.

As the load test runs, the graph is updated at each snapshot interval. In addition, you may notice
that some of the nodes in the Counters pane are marked with a red error or yellow warning icon.
This indicates that the value of a performance counter has exceeded a predefi ned threshold and
should be reviewed. You also see small warning icons in the graph itself at the points where the vio-
lations occurred. You use the Thresholds view to review these in a moment.

The list at the bottom of the screen is a legend that shows details of the selected counters. Those that
are checked appear in the graph with the indicated color. If you select a counter, it is displayed with
a bold line.

Tables View
When you click the Tables button, the main panel of the load test results window changes to show a
drop-down list with a table. Use the drop-down list to view each of the available tables for the load
test run. Each of these tables is described in the following sections.

Tests Table
This table goes beyond the detail of the Summary pane, listing all tests in your load test and pro-
viding summary statistics for each. Tests are listed by name and containing scenario for easy

600 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 600

identifi cation. You see the total count of runs, pass/fail details, as well as tests per second and sec-
onds per test metrics.

Pages Table
The Pages table shows all of the pages accessed during the load test. Included with each page are
details of the containing scenario and web performance test, along with performance metrics. The
Total column shows the number of times that page was rendered during the test. The Page Time
column refl ects the average response time for each page. Page Time Goal and % Meeting Goal are
used when a target response time was specifi ed for that page. Finally, the Last Page Time shows the
response time from the most recent request to that page.

Transactions Table
A transaction is a defi ned subset of steps tracked together in a web performance test. For example,
you can wrap the requests from the start to the end of your checkout process in a transaction named
Checkout for easy tracking. For more details, see the section “Adding Transactions,” earlier in this
chapter.

In this table, you see any defi ned transactions listed, along with the names of the containing sce-
nario and web performance test. Details include the count, response time, and elapsed time for each
transaction.

SQL Trace Table
The SQL Trace table is enabled only if you previously confi gured SQL Tracing for your load test.
You can fi nd details for doing that in the “SQL Tracing” section earlier in this chapter.

This table shows the slowest SQL operations that occurred on the machine specifi ed in your SQL
Tracing settings. Note that only those operations that take longer than the Minimum Duration of
Traced SQL Operations appear.

By default, the operations are sorted with the slowest at the top of the list. You can view many
details for each operation, including duration, start and end time, CPU, login name, and others.

Thresholds Table
If there were any threshold violations during your test run they will be listed here. Each violation is
listed according to the sampling time at which it occurred. You can see details about which counter
on which machine failed, as well as a description of what the violating and threshold values were.

Errors Table
As with threshold violations, if your test encountered any errors, you will see a message such as
“4 errors.” Click this text or the Errors table button to see a summary list of the errors, which
includes the error type (such as Total or Exception) and the error’s subtype. SubType contains the
specifi c exception type encountered — for example, FileNotFoundException. Also shown are
the count of each particular error and the message returned from the last occurrence of that error.

If you confi gured a database to store the load test results data, you can right-click any entry and
choose Errors to display the Load Test Errors window. This table displays each instance of the error,

Distributed Load Tests ❘ 601

c26.indd 02/27/2014 Page 601

including stack and details (if available), according to the time at which they occurred. Other infor-
mation (such as the containing test, scenario, and web request) is displayed when available.

Excel Reports
If you have Excel (2007 or newer) installed, you can create a detailed Excel report from a load test
run by clicking the Create Excel Report button from the toolbar. This launches a wizard in Excel
that enables you to choose from a variety of reports, including reports that compare multiple load
test runs against one another. This can be useful when you’re examining, for example, performance
regressions between one build of your application and another.

DISTRIBUTED LOAD TESTS

In larger-scale efforts, a single machine may not have enough power to simulate the number of users
you need to generate the required stress on your application. Visual Studio 2013 also has a licens-
ing restriction that limits you to simulating at most 250 users from your development environment.
Fortunately, Visual Studio enables you to scale load generation across a distributed collection of
machines.

There are a number of roles that the machines play in this scenario. Client machines are typically
developer machines on which the load tests are created and selected for execution. The controller
is the “headquarters” of the distributed load test, coordinating the actions of one or more agent
machines. The controller also collects the test results from each associated agent machine. The agent
machines actually execute the load tests and provide details to the controller. The controller and
agents are collectively referred to as a test rig.

There are no requirements for the location of the application under test. Generally, the application is
installed either on one or more machines either outside the rig or locally on the agent machines, but
the architecture of distributed testing is fl exible.

Installing Controllers and Agents
Before using controllers and agents, you must install the required Windows services on each
machine. The Visual Studio 2013 Agents package includes setup utilities for these services.
This setup utility enables you to install the test controller and test agent.

Installing the test controller installs a Windows service for the controller, and prompts you to assign
a Windows account under which that service runs. Refrain from registering your test controller with
a team project collection if you want to run load tests from Visual Studio. Enable the Confi gure for
Load Testing option and select a SQL Server or SQL Server Express instance where you want to
store your load test results.

NOTE Install your controller and verify that the Visual Studio Test Controller
Windows service is running before confi guring your agent machines.

602 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 602

After the controller service has been installed, run the Test Agent setup on each agent machine,
specifying a user under whom the service should run and the name of the controller machine.

You can later confi gure your test controller and test agents using the respective entries on the Start
Menu under Programs ➪ Microsoft Visual Studio 2013. For additional instructions on confi guring
test controllers or test agents, consult the product documentation at http://aka.ms
/VS13LoadTestRig.

Confi guring Controllers
After you have run the installation packages on the controller and agent machine(s), confi gure
the controller by fi rst opening your .testsettings fi le from within Solution Explorer. Switch
to the Roles tab, then change the Test execution method to Remote Execution. Now select
Controllers ➪ Manage Test Controllers to open the dialog shown in Figure 26-25.

FIGURE 26-25

Type the name of a machine in the Controller fi eld and press Enter. Ensure that the machine you
specify has had the required controller services installed. The Agents panel then lists any currently
confi gured agents for that controller, along with each agent’s status.

Load Test Results Store points to the repository you are using to store load test data. Click the ellip-
sis (…) button to select and test a connection to your repository.

The Agents panel shows any test agents that have been registered with your test controller. You can
temporarily suspend an agent from the rig by clicking the Offl ine button. Restart the agent services
on a target machine with the Restart button.

http://aka.ms

Cloud-Based Load Testing with Visual Studio Online ❘ 603

c26.indd 02/27/2014 Page 603

You also have options for clearing temporary log data and directories, as well as restarting the
entire rig.

Confi guring Agents
Using the Manage Test Controller dialog just described, select an agent and click the Properties but-
ton. You can modify several settings, described in the following sections.

Weighting
When running a distributed load test, the load test being executed by the controller has a specifi c
user load profi le. This user load is then distributed to the agent machines according to their indi-
vidual weightings.

For example, suppose two agents are running under a controller that is executing a load test with
ten users. If the agents’ weights are each 50, then 5 users are sent to each agent.

IP Switching
This indicates the range of IP addresses to be used for calls from this agent to the target web
application.

Attributes
You may assign name-value attributes to each agent in order to later restrict which agent machines
are selected to run tests. There are no restrictions on the names and values you can set. You can then
use the Roles tab of the Test Settings editor to confi gure your test runs to use specifi c agents.

Running a Distributed Load Test
Now that you have installed and confi gured your rig (a controller and at least one agent machine)
and modifi ed your test run confi guration to target the controller, you may execute the load test.
Execute the test using any one of the options described in the earlier section “Executing Load
Tests,” ensuring that the correct test settings have been selected (Test ➪ Test Settings).

The controller is then signaled to begin the test. The controller contacts the (qualifying) agent
machines and distributes tests and loads to each. As each test completes, the controller collects test
run details from each agent. When all agents have completed, the controller fi nalizes the test and the
test run ends, displaying your test results.

CLOUD-BASED LOAD TESTING WITH VISUAL STUDIO ONLINE

The previous section walked you through how to set up and confi gure your internal infrastructure
to support large-scale load testing. As you can imagine, it can take signifi cant time and investment
to create and maintain this environment, from setting up the initial machines to managing the
actual environment over time.

604 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 604

Microsoft recognized this as a potential issue, and has introduced a new feature as part of Team
Foundation Service, which is the hosted version of Team Foundation Server found at Visual Studio
Online (www.visualstudio.com). This new feature is called cloud-based load testing. Think of it
as a load-testing service available in the cloud. The service will take care of setting up the agents,
deploying your tests, and running your test automatically, so you can focus on what matters most:
fi nding and fi xing those performance-related issues with your application.

NOTE To use cloud-based load testing, your website must be publically avail-
able on the Internet for Visual Studio Online to access it.

There are three key features to the cloud-based load-testing service:

 ➤ Simple to use—All you need is a Team Foundation Service account and Visual Studio
Ultimate.

 ➤ On-demand capacity—In order for load testing to be effective, you need to generate different
types of load, to simulate the real world. This service is dynamic, and makes it easy to queue
and run with both a small or large number of virtual users.

 ➤ Test reuse—The tests you have created for on-premises load testing (such as the ones you
learned about earlier in this chapter) will also work with cloud-based load testing.

Depending on your account type with Visual Studio Online, you get a certain number of virtual
user minutes per month that can be used for load testing. You always have the option to purchase
more minutes if required. Refer to your account subscription information for more information on
your Visual Studio Online load-testing resources.

Running a Load Test in the Cloud
For this example, you are going to use the LoadTestInTheCloud sample project code for this chap-
ter, which you can download from the Wrox website. This project is a simple test project that
contains one web test, called TestALMRocks.webtest, and one load test, called
LoadTestALMRocks.loadtest. TestALMRocks.webtest simply navigates to www.almrocks.com,
and clicks through a couple of links on the site. The LoadTestALMRocks.loadtest uses the previ-
ous web test to test the website, using a step-load pattern. It starts with 10 users, and then adds 10
more users every 30 seconds, until it gets to 50 users. The load test will run for fi ve minutes. All of
that should have made sense to you if you’ve read the previous sections in this chapter.

Confi guring your load test to run in the cloud is easy. Double-click the Local.testsettings fi le in
Solution Explorer to open the Test Setting window. On the General tab, at the bottom, is a test run
location section with two radio buttons, shown in Figure 26-26.

The fi rst radio button, Run Tests Using Local Computer or a Test Controller, is the default value.
This is what your test settings fi le needs to be set to in order to run load tests from your local
machine, or using your internal distributed load-testing environment. Selecting the other radio but-
ton, Run Tests Using Visual Studio Team Foundation Service, allows you to execute your load test
in the cloud. Notice the tabs on the left change depending on whether you are executing your
test locally or in the cloud.

http://www.visualstudio.com
http://www.almrocks.com

Cloud-Based Load Testing with Visual Studio Online ❘ 605

c26.indd 02/27/2014 Page 605

FIGURE 26-26

The Deployment tab allows you to specify any directories or fi les that need to be deployed to assist
with the tests. The Setup and Cleanup Scripts tab allows you to specify appropriate setup and tear-
down scripts. Finally, the Additional Settings tab allows you to run the tests in a 32-bit or 64-bit
process.

To execute the load test, click the Run Load Test button in the load test toolbar, just like you would
a regular load test. Visual Studio will use the existing connection to a Team Foundation Service
account to automatically connect and run your tests on the service. The agent is automatically cre-
ated and the load test executes. A new tab will open in Visual Studio, allowing you to track the
progress of the load test while it runs. This is shown in Figure 26-27.

When the load test has fi nished executing, the title of the tab in Figure 26-27 will change to contain
the word “Completed.” You can download the load test report by clicking the Download Report
link that now appears on the tab. Once the report has been downloaded, click the View Report link
to open it. This provides a load test results report, similar to Figure 26-24.

You can also use the Load Test Manager window to view the results of your load test at any time.
From the main menu in Visual Studio, select Load Test ➪ Load Test Manager to open the Load Test
Manager window, shown in Figure 26-28. This window allows you to view the results of any load
test runs, started by any member of your team, whether performed on-premises or in the cloud.
You can also fi lter the test runs by state, date, or by user who created the test run.

606 ❘ CHAPTER 26 WEB PERFORMANCE AND LOAD TESTING

c26.indd 02/27/2014 Page 606

FIGURE 26-27

FIGURE 26-28

Summary ❘ 607

c26.indd 02/27/2014 Page 607

SUMMARY

This chapter described web performance and load tests in detail. You fi rst learned how to use the
Web Test Recorder to easily record a new web performance test. You then learned how to use
the Web Test Editor to fi nely tune the web performance test, adding features such as validation and
extraction rules. You also looked at coded web performance tests, which enable you to create very
fl exible tests.

The next section introduced load tests, which can be composed of any automated testing type, such
as web performance and unit tests. You learned how to use the Load Test wizard to create an initial
load test. You then used the Load Test Editor to add scenarios, SQL tracing, and other options not
available through the wizard.

You then saw the power of the Load Test Monitor, used to graphically view performance counter
details as well as errors, transactions, SQL operations, and more.

Finally, you learned how to run load tests in a distributed environment. You now know how to
install and confi gure the controller and agent machines, and how to use the controller to parcel out
load to the agent machines, collecting results in the test repository. You also learned about load
testing in the cloud, and how Visual Studio Online makes it very easy to perform distributed load
testing.

In Chapter 27, you fi nd out how you can use the lab management capabilities of Visual Studio 2013
to help you establish physical and virtual test labs. Test labs are a powerful way of managing mul-
tiple environments with which to stage builds of your software, run automated and manual tests,
and help developers reproduce and diagnose bugs.

c27.indd 03/03/2014 Page 609

Lab Management
WHAT’S IN THIS CHAPTER?

 ➤ Understanding the lab management capabilities of Visual Studio
2013

 ➤ Using lab management to run tests, capture bugs, and share
snapshots

 ➤ Confi guring end-to-end build-deploy-test workfl ows

As software development projects become more complex, so do the environments in which
that software will run. Such an environment could consist of multiple machines, specifi c fi re-
wall (and other security) settings, databases, and a variety of other confi gurations that could
affect the way in which your software behaves.

To effectively test software, teams must create a test environment that simulates the pro-
duction environment. Traditionally, this could require securing several dedicated physical
machines and developing a potentially labor-intensive process for staging those machines on
a regular basis with new builds of your software. And, given the variety of possible confi gura-
tions, it’s usually necessary to have multiple test environments in order to fi nd problems that
may arise when you ship your software to customers running different environments, each
with their own unique confi gurations.

With the rising popularity and availability of virtualization technology, many testing teams
have begun to turn to virtualization to make better use of hardware and to more effi ciently
stage testing environments. But, despite the advances in virtualization, there are still several
challenges related to the process of managing a virtual test lab, which can make this an expen-
sive and time-consuming endeavor.

27

610 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 610

The lab management capabilities of Visual Studio 2013 address the challenge of working with such
virtual test lab environments. Lab management capabilities are built into Team Foundation Server
2013 and provide the following capabilities:

 ➤ Creation, management, and teardown of environments consisting of one or more virtual
machines (VMs) from templates or stored virtual machines.

 ➤ Automated deployment of builds into virtual environments.

 ➤ Execution of manual and automated tests across virtual environments.

 ➤ Automated collection of rich diagnostics across virtual environments during test runs, allow-
ing for more actionable bugs to be fi led as an outcome of failed tests.

 ➤ Use of snapshots (also known as checkpoints) to enable environments to be quickly restored
to a given state (such as immediately after a new build of software is deployed or when a new
bug is discovered). Testers and developers can share snapshots to help diagnose and fi x bugs.

 ➤ Network isolation of virtualized environments, allowing clones of environments without fear
of IP address collisions or naming confl icts with other machines on your network.

To achieve all of these capabilities, you need to be using virtual environments that are running
Hyper-V on host machines managed by System Center Virtual Machine Manager (2008 R2, 2012,
or 2012 R2). These environments are known as SCVMM environments. You should note that while
TFS 2013 supports using SCVMM 2008 R2, it is not recommended, given the number of fi xes and
enhancements that Microsoft has put in to both SCVMM and its use with TFS. In addition, if you
want to use the latest Hyper-V features available with Windows Server 2012 R2 and Hyper-V Server
2012 R2, you’ll need to use SCVMM 2012 R2.

Team Foundation Server 2012 introduced improved support for achieving some of these capabilities
when using physical (non-virtual) environments, or third-party virtualization technologies other
than Hyper-V. These are known as standard environments. Standard environments do not have the
same dependency on System Center Virtual Machine Manager that SCVMM environments have, so
they are quite a bit easier to get started with if you don’t already have System Center deployed. But
there are a few limitations of standard environments as compared with SCVMM environments that
are discussed in the “Standard Environments” section later in this chapter.

LAB MANAGEMENT INFRASTRUCTURE

Lab management is a core capability of Team Foundation Server 2013. In order to work with SCVMM
environments, your Team Foundation Server needs to be confi gured to integrate with an SCVMM
server. Confi guration and administration of lab management is covered extensively in the product
documentation and isn’t covered in detail in this book, but a few key concepts are introduced here.

NOTE Team Foundation Server 2013 includes a license for SCVMM that you
may use for development and testing purposes. For more information on licens-
ing, see the Visual Studio Licensing Whitepaper at http://www.microsoft.
com/visualstudio/licensing.

http://www.microsoft

Lab Management Infrastructure ❘ 611

c27.indd 03/03/2014 Page 611

SCVMM uses a library server to store saved copies of VMs, which can then later be deployed to a
VM host group (made up of one or more VM hosts). A library server is essentially a fi le server that
SCVMM is aware of and has read/write access to. Each library server can contain one or more
library shares, which is basically a shared folder.

A library server can contain VM templates that enable you to customize a VM at the time of deploy-
ment. This enables you to specify such settings as machine name, domain or workgroup member-
ship, and product key. VM templates are powerful tools for building out your test lab because they
provide the most control over how VMs are deployed.

In order to confi gure and test with lab management environments, users need to be licensed for
Microsoft Test Manager (included with Visual Studio Test Professional, Premium, and Ultimate).

Golden Images
While setting up your test lab, you need to consider the VM confi gurations on which you need to
test your software. For example, maybe your software needs to be tested to run in environments
containing machines running Windows 7, Windows 8, Windows 8.1, Windows Server 2008,
Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2. You should also
consider which other prerequisite software must be installed, such as Internet Information Server
(IIS) or database engines such as SQL Server.

The product documentation for lab management refers to the concept of using golden images for
populating your library server. A golden image is a VM or VM template that contains all of the pre-
requisites necessary for testing your software. In the previous example, you might confi gure a golden
image for each operating system version that will eventually be involved in your test environments.

Agents
You can install test agents into environments to provide additional capabilities that are helpful in
deployment, testing, and network isolation with your virtual environments. The test agent is respon-
sible for the following functions:

 ➤ Allowing an environment to participate in Team Foundation Build workfl ows. This includes
the capability to deploy new builds and other deployment artifacts to your environments.

 ➤ Enabling manual or automated tests (such as unit tests, coded UI tests, or web performance
tests) to be executed in your environments, including the collection of test run information
from diagnostic data adapters.

 ➤ Network isolation capabilities for an SCVMM environment. With network isolation enabled,
you don’t have to worry about VMs in your test lab confl icting (computer name or IP
address) with other machines on your network. This makes it possible to have multiple vir-
tual environments with the same IP address and/or machine name without needing to set up
dedicated networks for each one.

612 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 612

NOTE The previous version of lab management included with Team
Foundation Server 2010 included three agents: a build agent, a test agent, and
a lab agent. All these capabilities are included in a single test agent with Team
Foundation Server 2013 (something Microsoft did with the 2012 release). Team
Foundation Server 2013 also automatically installs and confi gures test agents
into your environments as required, which can save you a lot of preparation time
as compared with the 2010 version of lab management.

The preceding descriptions should provide you with a basic understanding of what is necessary to
confi gure the infrastructure required for taking advantage of lab management. But it is by no means
a substitute for the detailed product documentation. Your test lab administrator should carefully
consult the product documentation for instructions on confi guring and optimizing your lab manage-
ment infrastructure. Once confi gured, you can benefi t by using lab management as detailed in the
remainder of this chapter.

NOTE You can fi nd the product documentation for lab management at http://
aka.ms/LabManagement2013.

SCVMM ENVIRONMENTS

An SCVMM environment consists of one or more VMs that can be deployed and managed together.
An environment usually contains all the VMs necessary to run a set of test cases. For example, an
environment could consist of a database server and a web server, each running Windows Server
2012 R2. A separate virtual environment might also contain similarly confi gured database and web
servers, but use Windows Server 2008 R2 to offer expanded test coverage. In addition, you might
want specialized versions that have operating system- or product-specifi c service packs.

The fi rst step in creating an SCVMM environment is to defi ne the VMs or VM templates that will
make up your environment. You use Microsoft Test Manager, introduced in Chapter 23, to do this.
Before completing this step, you must have one or more golden images (VMs or templates) stored in
your SCVMM library.

From the Start screen, select the Microsoft Test Manager 2013 icon or start typing Microsoft
Test Manager until the correct icon appears and then click it. If this is your fi rst time launching
Microsoft Test Manager, you may need to defi ne which Team Foundation Server instance and team
project you are connecting to. When connected, open the Lab Center and click Library ➪ Virtual

http://aka.ms/LabManagement2013
http://aka.ms/LabManagement2013

SCVMM Environments ❘ 613

c27.indd 03/03/2014 Page 613

Machines and Templates. The Virtual Machines and Templates activity appears, as shown in
Figure 27-1.

FIGURE 27-1

From here, you can manage all the VMs and templates that are available to the team project you are
connected to. To add a new VM or template, click the Import button in the upper-left area of the
screen.

Begin by defi ning the path to your new VM or VM template. This path defi nes the location within
the SCVMM library server where your VM or template is stored. Use the Browse button to explore
the library server path(s) defi ned in SCVMM.

Next, provide a name for your VM or template. You can optionally provide a description (useful for
describing what’s installed on a particular VM or VM template), along with a default role (discussed
later in this chapter).

The Machine Properties tab enables you to specify default parameters that will be used when your
VM is deployed (such as the amount of RAM that should be assigned to your VM when deployed).
If you are using a VM template, then the OS Profi le tab is available, enabling you to defi ne addi-
tional parameters (such as the machine name, domain or workgroup membership, and product key).
You can use the Machine Tags tab to construct advanced deployment workfl ows.

Clicking Next displays a summary of your actions. Click Finish and your VM or template is listed in
the Virtual Machines and Templates activity within Test Manager.

614 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 614

NOTE You can repeat this process for defi ning as many VMs and VM tem-
plates as you want. You can even use the same VM template from your SCVMM
library as the basis for multiple VMs or templates within Test Manager (such as
to specify various default parameters).

After you have confi gured one or more VMs or templates, you are ready to defi ne an environment.
Click Library ➪ Environments. From the Environments activity shown in Figure 27-2, you can
assemble one or more VMs or templates into an environment that you can later deploy to a VM host
group.

FIGURE 27-2

Click New to create a new virtual environment. Start by indicating whether you are confi guring an
SCVMM environment or a standard environment (described later in this chapter). You can provide
a name and description for your environment. You can also specify the location on the SCVMM
library server where the environment defi nition should be stored, along with environment tags that
you can use for defi ning advanced build workfl ows.

The Machines tab shown in Figure 27-3 is where you can begin constructing your virtual environ-
ment based on the VMs or templates you defi ned earlier. To do this, fi rst select a VM or template
from the list of VMs and templates on the right side of the screen. Next, select Add to Environment.
This adds the VM to the environment on the left side of the screen. You can add the same template
multiple times, if desired. You can even add a VM multiple times. However, if you try to do it with
a VM, Microsoft Test Manager will display a warning about possible confl icts. Make sure you fully
understand the composition of each VM before you add it.

SCVMM Environments ❘ 615

c27.indd 03/03/2014 Page 615

FIGURE 27-3

After adding one or more VMs or templates to your environment, you can specify which role these
machines play in your environment (such as a web server or database server). Roles are used by test
settings and build workfl ows, as you see later. You can also specify the name that lab management
uses to refer to the VM within the environment. Note that this name does not need to be the same
as the computer name. If you plan to defi ne several environments, you might want to put some time
into a useful naming convention to make it easier for testers and developers to differentiate environ-
ments from one another.

The Machine Properties tab shown in Figure 27-4 allows you to defi ne the parameters that should
be assigned to each of the VMs within your environment. This screen looks similar to the Machine
Properties tab you encountered when defi ning a VM or template, except that it also includes the
capability for you to select different VMs in your environment by clicking the role icons across the
top of the screen. Any machine properties you defi ned earlier are shown here as default values and
you can override them in this step if they were defi ned via Microsoft Test Manager. However, if
you imported a VM or template from SCVMM 2012 or later, you can only change these settings in
SCVMM.

The Advanced tab enables you to defi ne how test agents should be confi gured on the VMs within
your environment. This includes the test controller that is used to orchestrate tests and collect diag-
nostics data; and whether or not you want to utilize network isolation. You’ll also fi nd a disabled
option that you use if you plan on running coded UI tests in your environment. When enabled, this
allows you to set the user account that should execute the Coded UI tests as an interactive process.
You confi gure the Coded UI tests’ settings after the environment is created and running.

The Summary tab describes your selections. Click Finish to fi nalize your environment defi nition.

616 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 616

FIGURE 27-4

After you have defi ned your virtual environment, it shows up in the list of available environments
in your library, as shown in Figure 27-2. When your virtual environment is defi ned, it is ready to
deploy. You select the environment within your library and click the Deploy button in the upper-left
of the screen. If you attempt to deploy an environment that you’ve composed with one or more VMs
(as opposed to one with all templates) without using network isolation, Microsoft Test Manager
will display a warning dialog that the environment could cause network confl icts and prevent other
environments from functioning. This is another reminder that you need to either have a very good
understanding of your VMs’ confi guration or work closely with someone who does. If you don’t
receive the warning or you choose to continue, Microsoft Test Manager then displays the Deploy
Environment dialog shown in Figure 27-5.

FIGURE 27-5

SCVMM Environments ❘ 617

c27.indd 03/03/2014 Page 617

From this dialog, you can provide a name and a description for what will become a running instance
of your virtual environment. You can also specify the SCVMM VM host group to where you want
to deploy your environment. Click Deploy Environment to begin the virtual environment deploy-
ment process.

From the Lab ➪ Environments activity, you can monitor the status of your virtual environment
as it is deployed, as shown in Figure 27-6. Deploying a virtual environment can be a long-running
operation that can potentially take an hour or more to complete. Various factors (including the size
of your VMs, whether or not template customization is required, and the network speed between
your SCVMM library server and VM hosts) affect the amount of time it takes to deploy your
environment.

FIGURE 27-6

After it’s deployed, you can manage your virtual environment from the Lab ➪ Environments activ-
ity. This includes starting, stopping, and pausing the virtual environment. Figure 27-7 shows an
environment that has been deployed and is currently running. Any errors related to the VMs within
your environment are displayed here as well, along with more information describing the error.

You can select a running virtual environment and click Connect to open the Environment Viewer
shown in Figure 27-8. The Environment Viewer enables you to interact with the VMs running
within your environment.

618 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 618

FIGURE 27-7

FIGURE 27-8

From the Environment Viewer you can also stop, start, and pause the running environment, and
mark an environment as In Use (upper-right corner). This signals to other members of your team
that you are using the environment and they should not attempt to connect to it.

The System Information button enables you to view properties of the running VMs (such as the fully
qualifi ed machine name). This information can be useful for connecting to the VM from outside of

Testing with Environments ❘ 619

c27.indd 03/03/2014 Page 619

the environment (such as when using a web browser on
a client machine to connect to a website running within your
virtual environment).

You can also manage snapshots for your environment from
here by clicking the Snapshots tab on the left side of the screen,
as shown in Figure 27-9. Snapshots enable you to save the state
of the entire environment at any point in time, and likewise
to restore the state of an environment by restoring a snapshot.
If you have multiple machines in your environment, all of the
machines in this environment will be snapshotted and restored
together as a cohesive unit.

Snapshots have the following useful applications:

 ➤ A snapshot can provide a clean “baseline” state that you can use prior to installing or
deploying each new build.

 ➤ You can create snapshots after installing a new build, providing a way to always restore to a
known state prior to any tests being executed that may potentially “dirty” an environment.
This includes rolling back to a known good baseline data set used for testing as well.

 ➤ Snapshots can be created by testers when they fi nd a bug. These snapshots can then be shared
with the development team to help them diagnose the bug and deliver a fi x.

You should note that Hyper-V limits the number of snapshots a virtual machine can have. You’ll
want to refer to the documentation for your particular version of Hyper-V. However, as of this writ-
ing, the limit for all compatible versions is 50.

From the Snapshots tab you can create new snapshots, rename them, delete them, or restore your
environment to an existing snapshot.

Now that you understand the basics of creating, deploying, and working with running environ-
ments, it’s time to explore software testing with environments.

TESTING WITH ENVIRONMENTS

When you have a running environment, you can use it to run your tests.

Create New Test Settings
In Chapter 24, you confi gured test settings to defi ne which diagnostics data to collect as you run
your tests (such as video, IntelliTrace fi les, and action logs). But now that you are going to run tests
with an environment, you may want to create a new test setting that specifi es how the tests should
collect data from each machine within your environment. This step is optional, but it can provide
valuable diagnostics data to your developers when bugs are discovered.

From within Test Manager, click Testing Center ➪ Plan ➪ Properties. Your test plan properties dis-
play, as shown in Figure 27-10.

FIGURE 27-9

620 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 620

NOTE The discussion in this section assumes that you have already confi gured
your fi rst test plan as described in Chapter 24.

FIGURE 27-10

From within your test plan properties, create a new test settings defi nition (Manual Runs ➪ Test
Settings ➪ New). Provide a name and (optionally) a description for your new test settings. Click
Next.

The Roles tab shown in Figure 27-11 enables you to select the environment for which you want to
defi ne test settings. When defi ning test settings for automated tests, you can also select the role from
where automated tests are run. When confi guring manual tests, the tests are always run from the
local machine where Test Manager is running. After selecting your environment, click Next.

The Data and Diagnostics tab shown in Figure 27-12 enables you to defi ne the individual diagnos-
tics data adapters that are used for each machine within your virtual environment. Data diagnostics
adapters were covered in detail in Chapter 23. From here, you can confi gure the adapters for each
machine within your environment. For example, you might want to capture an event log from a
database server, IntelliTrace from a web server, and a video recording from a machine which is run-
ning coded UI tests.

Testing with Environments ❘ 621

c27.indd 03/03/2014 Page 621

FIGURE 27-11

FIGURE 27-12

622 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 622

Run Manual Tests with an Environment
Run a test case as you normally would by clicking Test ➪ Run Tests activity.

NOTE You can enable action logs and recordings only on the local machine
where Test Manager is running. Therefore, if you are testing a web-based appli-
cation, it may helpful to use your local browser to perform the tests and use
the fully qualifi ed DNS URL for the web role machine in your lab management
environment. You can fi nd that URL by clicking the System Information button
as previously discussed in this chapter.

NOTE The discussion in this section assumes that you have already created one
or more test cases, as defi ned in Chapter 24.

Select a test case that you want to run with your environment and click Run ➪ Run with Options.

The Run Options dialog shown in Figure 27-13 appears, enabling you to select the test settings and
the environment with which you want to run your test. If your manual test has associated auto-
mated tests (such as a coded UI test) and your test plan is associated with a build defi nition, then
you can also opt to run this test as an automated test. For now, if your test has associated automated
tests, just select the Run All the Tests Manually check box.

FIGURE 27-13

If you defi ned new test settings for collecting data from your environment, select it here. Also, select
your running environment from the Environment drop-down. Click Run to launch your test run
and Microsoft Test Runner.

When Microsoft Test Runner is open, you can select the Connect to Environment option (shown in
Figure 27-14) to open the Environment Viewer for your environment.

Testing with Environments ❘ 623

c27.indd 03/03/2014 Page 623

FIGURE 27-14

When the Environment Viewer is open, you can then begin running your test just like you would
run any other manual test. You might want to use the Snapshots tab to restore the environment to
a known state (such as immediately after a given build was deployed). You can even switch among
multiple machines within your environment if your test case requires it. Figure 27-15 shows a test
case being run with an environment.

FIGURE 27-15

If you discover a bug while you are testing, you might want to create an environment snapshot that
you can share with the development team to help them diagnose the problem. Even though you
could do this directly from within the Environment Viewer, a better way is to do it from within

624 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 624

Microsoft Test Runner. This automatically attaches a pointer to the environment snapshot to the
test results and any bug reports that are created.

To create an environment snapshot with Microsoft Test Runner, click the rightmost icon along the
Microsoft Test Runner toolbar (shown in the upper-right corner of Figure 27-16). This creates a new
snapshot of the environment and saves an .lvr fi le to your test results. The .lvr fi le is a pointer to
the environment snapshot that you can open later to restore your environment to this snapshot.

FIGURE 27-16

Click the Create Bug icon within Microsoft Test Runner to create a new bug along with your test
results (hover your mouse over the toolbar icons to discover the Create Bug icon). Figure 27-17
shows the new bug creation form, along with a reference to the .lvr fi le created earlier.

When reviewing this bug later, a developer who has Test Manager installed can open the .lvr fi le
simply by clicking it from within the bug work item. The dialog shown in Figure 27-18 displays
when an .lvr fi le is opened. This dialog gives you the option of connecting to the running environ-
ment as is, or restoring the environment to the state it was in when the snapshot was created.

Testing with Environments ❘ 625

c27.indd 03/03/2014 Page 625

FIGURE 27-17

FIGURE 27-18

626 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 626

NOTE You may want to create copies of your running environment so that mul-
tiple people can be working with their own copies of a virtual environment. This
is especially helpful when a tester fi nds a bug and wants to create a snapshot for
the development team to use in diagnosing the problem. You will need to create
your environments using Network Isolation.

To do this, the tester should shut down the environment after creating a bug
with a snapshot. From the Lab Center ➪ Lab ➪ Environments activity, right-
click the virtual environment and select Store in Library. Depending on the per-
formance of your SCVMM hosts and the size of your environment, this may be a
long-running operation.

When a copy of the environment has been stored in the SCVMM library, Figure
27-18 includes an option for the developer to connect to a copy of the environ-
ment from where the .lvr fi le was created.

You have now seen how you can take advantage of an environment when running manual tests.
You can use a similar process for running manual tests that have associated automation (such as
coded UI tests and unit tests). You can also run such tests as part of an automated end-to-end build-
deploy-test workfl ow. You fi nd out how to confi gure this next.

AUTOMATED BUILD-DEPLOY-TEST WITH ENVIRONMENTS

The true power of lab management comes to life when combined with the automated build, deploy-
ment, and testing capabilities of Team Foundation Server. As the development team produces new
builds, they can be automatically deployed into one or more environments. You can create a snap-
shot from an SCVMM environment, thus providing the testing team with a baseline for running
any manual tests against an environment with that build. Then, you can automatically run any
automated tests, thus providing valuable data about any possible regressions in your test plan. This
entire workfl ow can take place without any manual intervention.

Team Foundation Build is covered in detail in Chapter 5, but this discussion provides an overview
of the settings used when confi guring Team Foundation Build for use with lab management. Certain
steps within the Team Foundation Build confi guration are omitted because they are covered in
Chapter 5. This example assumes that you have an environment preconfi gured.

The fi rst step in creating a build defi nition for use with lab management is to select
LabDefaultTemplate.11.xaml as the build process template. You confi gure this on the Process tab
of your build defi nition. Selecting this template changes the build process parameters to those shown
in Figure 27-19. Next, you defi ne the Lab Process Settings parameters by clicking the ellipsis on the
right side of that row.

Automated Build-Deploy-Test with Environments ❘ 627

c27.indd 03/03/2014 Page 627

As shown in Figure 27-20, the fi rst page of the Lab Workfl ow Parameters wizard enables you to
defi ne which environment should be used as part of your build workfl ow.

FIGURE 27-19

If this is an SCVMM environment, you can also choose to restore it to an environment snapshot
prior to proceeding with the workfl ow. This is useful for establishing a clean baseline for your lab
environment before attempting to install a new build or run any tests.

The Build page of the Lab Workfl ow Parameters wizard defi nes which build of your software should
be used. You can rely on another build defi nition to create a new build, or you can select an existing
build that was generated by another build defi nition. You can also point to a specifi c location where
your software build resides, even if it wasn’t created using Team Foundation Build.

As shown in Figure 27-21, the Deploy page of the Lab Workfl ow Parameters wizard enables you to
specify how a build should be deployed within one or more machines running in an environment.

628 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 628

FIGURE 27-20

The grid enables you to defi ne a sequence of workfl ow steps that should be executed in order during
the build deployment phase. The fi rst column specifi es the name of the machine within the environ-
ment that defi nes where the given deployment step should be run. Note that this is not the computer
name; it’s the name of the machine that was provided when you confi gured the environment.

The second column specifi es the command that should be run as part of that workfl ow step. This
might include copying fi les to a web server directory, running an .msi fi le, or even running a batch
fi le. You can use the following built-in variable (also known as a token) names here to parameterize
your commands.

 ➤ $(BuildLocation)—This resolves to the location that your build is initially copied to by
Team Foundation Build.

 ➤ $(InternalComputerName_MachineName)—This resolves to the hostname of the machine
within the environment. For example, this macro would return mywebserver for a machine
with a fully qualifi ed domain name (FQDN) of mywebserver.contoso.com. To use this
command, replace MachineName with the name of the machine as defi ned within your

Automated Build-Deploy-Test with Environments ❘ 629

c27.indd 03/03/2014 Page 629

environment. This variable is especially useful when you don’t always know the machine
name of the machines in your environment, but your deployment scripts rely on those names.
As an example, you might need to update a confi guration fi le in your web application to use
the machine name of the database server in your environment.

 ➤ $(ComputerName_MachineName)—This returns the FQDN of the machine within the envi-
ronment. To use this command, replace MachineName with the name of the machine, as
defi ned within your environment. Typically, the FQDN of a machine is a concatenation of its
hostname and its domain suffi x. As an example, the FQDN for a machine with a hostname
of mywebserver in the contoso.com domain is mywebserver.contoso.com. Note that
when using network isolation, $(InternalComputerName_MachineName) is the same for a
VM in each copy of a given SCVMM environment but its FQDN is different. As an example,
for a VM with hostname mywebserver in a network isolated environment, this macro
returns VSLM_<uid>.contoso.com, where <uid> is a unique alphanumeric identifi er. This
value can be important when using network isolation, where the InternalComputerName is
the same on each copy of a given SCVMM environment.

FIGURE 27-21

630 ❘ CHAPTER 27 LAB MANAGEMENT

c27.indd 03/03/2014 Page 630

Finally, after deploying a build, you can create a new snapshot of an SCVMM environment by
enabling the bottom check box and providing a name with which to preface such snapshot names.
This then creates new snapshots with names based on the build name and build number, such as
those in Figure 27-20.

The Tests page of the Lab Workfl ow Parameters wizard enables you to run any automated tests that
you may have in your test plan. Your test cases need to have associated automation (such as coded
UI tests or unit tests). After builds are deployed, these tests run automatically, and the test results
are published to your test plan. You also need to specify automated test settings as defi ned earlier.

STANDARD ENVIRONMENTS

As mentioned earlier, a standard environment is a type of environment (introduced in Team
Foundation Server 2012) that enables you to take advantage of lab management capabilities without
a dependency on Hyper-V or System Center Virtual Machine Manager. With a standard environ-
ment, your machines can be physical machines or virtual machines. The virtualization technology
you use is also irrelevant, so although you can use Hyper-V, you can also use any other third-party
virtualization technology as well.

The two primary limitations of standard environments are that you are unable to utilize network
isolation, and you are unable to access virtualized snapshots (either automatically from build-
deploy-test workfl ows, or manually from within Microsoft Test Manager). If you are using a virtual-
ization technology that supports snapshotting (or an equivalent technique), you can manually work
with snapshots using the traditional management interface for that virtualization stack.

The implication of not being able to use snapshots within your build-deploy-test workfl ows means
that, if you utilize a standard environment, you need to design your deployment scripts in such a
way that you address situations where you might need to uninstall previous builds in order to install
a new one. It may also be possible for you to extend the build-deploy-test workfl ow to programmati-
cally restore your environment to a baseline snapshot prior to deployment, but this approach varies
based on the virtualization technology you are utilizing and may require extensive customizations to
the build process template.

You then run tests by specifying an environment like you did earlier in this chapter with an
SCVMM environment. You can connect to your physical environments by using the Environment
Viewer like you did with tests running in an SCVMM environment, but you can’t see icons for func-
tions such as snapshotting and powering the environment on and off.

Standard environments are a great way to get started with the lab management capabilities with-
out the upfront time and effort required to install and confi gure System Center Virtual Machine
Manager. But you can always choose to upgrade to System Center Virtual Machine Manager later
if you want to take advantage of the additional capabilities offered by SCVMM environments.
Standard environments are also ideal if the software you are testing needs to run in physical (non-
virtual) environments, such as when special hardware—which might not be accessible when using
virtualization—is required.

Summary ❘ 631

c27.indd 03/03/2014 Page 631

SU MMARY

In this chapter, you have seen how you can use lab management to help create and manage environ-
ments that you can use to test builds of your software in a variety of confi gurations. You learned
how to create new environments and defi ne which diagnostic data should be collected on various
machines as tests are run on those environments. You learned the benefi ts of snapshots and how to
work with them and share them among team members.

You also found out how you can establish an end-to-end workfl ow to automatically build and
deploy your software, and then run automated tests within those environments. You also learned
how standard environments, introduced in this release, provide an easy alternative to SCVMM
environ ments.

633

bindex.indd 03/06/2014 Page 633

INDEX

A

Accept and Decline option (My Work), 365
Accept Event Action (Activity diagram toolbox),

299
acceptance step, release management and,

139–140
Action (Activity diagram toolbox), 298
action recording

coded UI tests, 558–561
Test Runner, 526, 529–530

actions, 135–137
activities, workfl ow, 158–159

custom, 159–160
WriteBuildMessage, 159

activity centers (Test Manager)
Lab Center, 510
Testing Center, 510

activity diagrams
adding to use case diagram, 300
concurrent fl ow, 296–298
creating, 295–299
software development, 283
toolbox, 298–299

Activity Final Node (Activity diagram toolbox),
298

Activity Parameter Node (Activity diagram
toolbox), 299

Actor tool (Use Case diagram toolbox), 294
Add Reviewer option (My Work), 365
Add Tests dialog, 589–590
Aggregation tool (class diagram toolbox), 314
agile development, 278

cumulative fl ow, 241
customization, 253–254

development team, 234
forecast lines, 247–248
iterations, 233, 236–237

planning, 248–251
mapping tool, 246
methodologies, requirements evolution, 216
planning tools, 205–207
portfolio backlogs, 240–244
product backlog, 234, 244–248
product owner, 234
scrum, 233–234
sprints, 234
story points, 247
task board, 234
timebox, 234
tracking and, task board, 251–252
velocity, 247

Agile Manifesto
process templates, 216
software requirements, 168

agile testing, 531. See also exploratory testing
AllItemsAreInstancesOfType method, 383
AllItemsAreNotNull method, 383
AllItemsAreUnique method, 383
ALM (application lifecycle management), 2–3

challenges
communication, 5
process guidance, 5
reporting, 5
role segmentation, 5
team distribution, 4
testing, 5
tool integration, 4

code generation, 7
feedback, 8

634

ALM – branching

bindex.indd 03/06/2014 Page 634

ALM (continued)
modeling, 7
operations, 8
requirements, 6–7
system design, 7
testing, 7–8
Visual Studio 2013 and, 5–6

animations, storyboarding, 187–188
APM (Application Performance Monitoring), 481
Architecture Explorer, 282, 286

Class View, 321
classes, 325–326
code base, 318–319
code maps, 337–341
dependency graphs, 286, 328–329

analyzers, 333
legends, 334–335
navigating, 331–334
toolbar, 335–336

fi lters, 321–323
layer diagrams and, 347
links, 320
members, 326–328
namespaces, 323–325
navigation, 321–323
nodes, 320

inbound links, 324
outbound links, 324

options, 320–321
architecture tools, Visual Studio Ultimate 2013,

287–288
Area fi eld (work items), 211
areas, 236
AreEqual method, 383
AreEquivalent method, 384
AreNotEqual method, 383
AreNotEquivalent method, 384
Artifact element, 300
Artifact tool (Use Case diagram toolbox), 295
artifacts, layer for single, 347
ASP.NET Development Server, recording web

performance tests, 568
ASP.NET Profi ler, testing and, 492
AssemblyCleanup attribute, 377, 379–380

AssemblyInitialize attribute, 379–380
Assert class, unit testing and, 372
Assert.AreEqual method, 375, 380–381
Assert.AreNotEqual method, 380–381
Assert.AreNotSame method, 381
Assert.AreSame method, 381
Assert.Fail method, 383
Assert.Inconclusive method, 383
Assert.IsFalse method, 382
Assert.IsInstanceOfType method, 382–383
Assert.IsNotInstanceOfType method, 382–

383
Assert.IsNotNull method, 382
Assert.IsNull method, 382
Assert.IsTrue method, 382
Association tool

class diagram toolbox, 313
Use Case diagram toolbox, 295

Asynchronous tool (sequence diagram toolbox),
303

automated tests, 494–495, 535
code coverage, 499
ordered tests, 499–501
Test Explorer, 496–499
test project types, 495–496
test settings, 501–502

Automated Tests dialog, 122–123
Automated Tests parameter, 122–123
Azure VM Manager, 136

B

base version, 68
baseless merging, 69
bi-directional dependencies, 350
BIDS (Business Intelligence Development Studio),

reports, 273–274
binary promotion model, 128
branch per feature, 74–75
branch per release, 72–73
branching

base version, 68
branch per release, 72–73
child, 69

635

breakpoints – changeset

bindex.indd 03/06/2014 Page 635

code-promotion branching, 73–74
confl ict, 68–69
feature branching, 74–75
FI (forward integration), 70
Git and, 88–91
New Branch command, 90
none, 70–72
parent, 69
promotion-level, 73–74
relationships, 69
RI (reverse integration), 70
sibling, 69
source branch, 68
staircase branching model, 129
version control and, 67

breakpoints (IntelliTrace), information collection
and, 472–473

buddy builds, 115
Build Agent Properties dialog, 119
Build Defaults section (Builds page), 110–112
Build Defi nition editor, 119
Build Defi nition trigger, 109
Build Explorer view, 102–103

completed builds, 103
queued builds, 103

Build Number Format parameter, 124–125
build process

code analysis, 414
layer diagrams and, 353–354
templates, custom, 157–159

build process object model, Team Foundation
Server, 155

Build Service Properties dialog, 98
build-deploy-test, 489–490

automated, 626–630
builds, 18, 94–95

Agent settings, 124
Automated Tests parameter, 122–123
buddy builds, 115
Build Defi nition editor, 119
Build Number Format parameter, 124–125
Clean Workspace parameter, 121–122
Confi gurations dialog, 121
Default template, 119

Get Version parameter, 122
logging verbosity, 121
notifi cations, 116

build notifi cation tool, 116–117
email alerts, 117

Path to Publish Symbols, 124
private, 115
process, 118
quality, 103
Queue Build dialog, 119
queuing, 114–116
templates, 118
Test Manager, 513–514
Windows Store apps, 97–98
workfl ow activities, custom, 159–160

Builds node (Team Explorer), invoking builds,
114–115

Builds page (Team Foundation Build)
Build Defaults section, 110–112
General section, 105–106

Queue Processing, 106
New Build defi nition, 104–105
Process section, 112–113
Retention Policy section, 113
Source Setting section, 109–110
Trigger section

Continuous Integration, 106–107
Gated Check-in, 108–109
Manual, 106
Rolling builds, 108
schedule, 109

Business Logic Layer, 350

C

Calculator app, coded UI testing, 540–541
Call Behavior Action (Activity diagram toolbox),

299
Call Operation Action (Activity diagram toolbox),

299
candidate changes, check-ins, 52–54
changeset, 47

creation, 50
lightweight code commenting, 361–362

636

check-ins – code clone analysis

bindex.indd 03/06/2014 Page 636

check-ins (version control), 45–48
candidate changes, 52–54
custom policies, 160–161
gated, 95
labeling fi les, 58–59
pending changes, 48–59
policies, 54–57
viewing history, 57–58

child branches, 69
class diagrams

code generation, 315
creating, 310–314
software development, 284–285
toolbox, 313–314

Class tool (class diagram toolbox), 313
ClassCleanup attribute, 377, 379
classes

Architecture Explorer, 325–326
FunctionsTest, 374
TestContext, 387
unit testing, 374

classifi cations, 18
ClassInitialize attribute, 377, 379
Clean Workspace parameter, 121–122
client object model, Team Foundation Server, 155
cloning

Git and, 78
repositories (Git), 80–83

cloud-based load testing, 603–606
CMMI (Capability Maturity Model Integration)

process template, 216
code

downloads, version control, 43–44
lightweight comment, 361–362
unit testing from, 377

code analysis, 359, 399–400
build process, 414
Code Analysis window, 359
code clone analysis, 417–418

excluding items, 419
process, 418–419
results, 418

enabling, 402–404
executing, 404–406

FxCopCmd

options, 410–413
project fi les, 413–414

rule creation, 414
rule sets

Microsoft All Rules, 401
Microsoft Basic Correctness Rules, 401
Microsoft Basic Design Guideline Rules,

401
Microsoft Extended Correctness Rules,

402
Microsoft Extended Design Guideline

Rules, 402
Microsoft Globalization Rules, 402
Microsoft Managed Minimum Rules, 402
Microsoft Managed Recommended Rules,

402
Microsoft Mixed (C++/CLR) Minimum

Rules, 402
Microsoft Mixed (C++/CLR)

Recommended Rules, 402
Microsoft Security Rules, 402

rule violations
corrections, 407–408
message suppression, 408–409

rules
Design group, 400
Globalization group, 400
Interoperability group, 400
Maintainability group, 400
Mobility group, 400
Naming group, 400
Native group, 401
Performance group, 400
Portability group, 400
Reliability group, 401
Security group, 401
Usage group, 401

tools, need for, 398
Code Analysis window, 405
code base, Architecture Explorer, 318–319
code clone analysis

excluding items, 419
locating clones, 417–418

637

code coverage – comments

bindex.indd 03/06/2014 Page 637

process, 418–419
results, 418

code coverage, 499
profi ling and, 461
testing and, 492

code generation, 7
class diagrams, 315

Code Index, dependency graphs, 336–337
code maps, 287, 337–341
Code Metrics, 414

Class Coupling, 415
Cyclomatic Complexity, 415
Depth of Inheritance, 415
Lines of Code, 415
Maintainability Index, 415

Code Metrics Results window, 416
code promotion model, 127–128
code review, My Work, 364–367
code understanding experience, software

development and, 281
Coded UI Test Builder

assertion logic, 546
code generation, 548
CodedUITestMethod1(), 549
controls, 546
data-driven tests, 552–554
DataSource attribute, 552
DeploymentItem attriute, 552
EnterDataAndClickAdd() method, 550
EnterDataAndClickAdd method, 549
failing tests, 554–555
generated code, 549–551
launching, 544
location, 544–545
recording, 545
running tests, 551–552
sample application, 542–543
screenshots, 555–556
test project, 543–544
UI Control Map, 546–547
UI Map Editor, 556–558

coded UI tests, 491, 537–538
action recordings and, 558–561
classes, Windows Store app, 538–540

CodedUITestMethod1() method, 541
new features, 538–542
supported technologies, 562
web performancetests, 564–565
Windows Store apps

Calculator app, 540–541
XamlWindow.Launch method,

541–542
coded web performance tests, 582–584
CodedUITestMethod1() method, 541, 549
CodeLens, 359, 420–422
code-promotion branching, 73–74
collaboration, 5
CollectionAssert class
AllItemsAreInstancesOfType method, 383
AllItemsAreNotNull method, 383
AllItemsAreUnique method, 383
AreEqual method, 383
AreEquivalent method, 384
AreNotEqual method, 383
AreNotEquivalent method, 384
Contains method, 384
DoesNotContain method, 384
IsNotSubsetOf method, 384
IsSubsetOf method, 384
ReferenceEquals method, 384

command line, tf.exe, 38
commandlets (PowerShell), 481
command-line tools, 66–67

profi ling, 459–461
witadmin, 162

Comment (Activity diagram toolbox), 298
Comment button, 361–362
Comment Link tool

sequence diagram toolbox, 304
Use Case diagram toolbox, 295

Comment tool
class diagram toolbox, 313
component diagram toolbox, 310
sequence diagram toolbox, 304
Use Case diagram toolbox, 295

comments
commit message, 84
lightweight code commenting, 361–362

638

committing – DGML

bindex.indd 03/06/2014 Page 638

committing, Git, 83–86
communication challenges, 5
completed builds, 103
component diagrams, 304

creating, 304–310
interfaces, 304
toolbox, 308–310

Component tool (component diagram toolbox),
310

Composition tool (class diagram toolbox), 314
concurrency profi ling session, 446
concurrent fl ow

Activity diagrams, 296–298
resource contention, 446
thread execution, 446

Confi gurations dialog, 121
confl ict in branching, 68–69
Connector (Activity diagram toolbox), 299
Connector tool

class diagram toolbox, 314
component diagram toolbox, 310

constant load, 587
Contains method, 384, 385
Continuous Integration (Builds page), 106–107
continuous software delivery, 129–131
controls, work item, 163
Create New Team dialog, 235
Create tool (sequence diagram toolbox), 304
CSV fi les, data-driven web performance tests,

580–581
cumulative fl ow, 241
Current Reports (Excel), 268

D

daily Scrum, 221
dashboards, 257

SharePoint Server, project management, 208–
209

Data Access Layer, 350
Data Connection Wizard, 262–263
data driven web performance tests

binding to source, 581–582
data source confi guration, 580–581

data warehouse, 259–260
databases

operational store and, 258–259
Tfs_Analysis, 262–263
Tfs_Configuration, 259

data-driven tests, 552–554
DataSource attribute, 552
debugging

IntelliTrace
example, 466–468
stopping session, 473–474

IntelliTrace and, 360–361
unit tests, 377
Verify Bugs activity (Test Manager), 524–525

Decision Node (Activity diagram toolbox), 298
Default template process, 119
Delegation tool (component diagram toolbox), 310
delivery, continuous delivery, 129–131
dependencies, layers and, 349–351

validation, 352–353
dependency graphs, 286

Architecture Explorer, 328–329
analyzers, 333
legends, 334–335
navigating, 331–334
toolbar, 335–336

Code Index, 336–337
creating without Architecture Explorer, 329–330
layer diagrams and, 347

Dependency tool
class diagram toolbox, 314
component diagram toolbox, 310
Use Case diagram toolbox, 295

Deployment Agent, release paths and, 138
DeploymentItem attribute, 552
design

IDE, 278
Rational Unifi ed Process, 278
visual, 277–278

Developer License, Windows Store app
development, 98

development team, 234
DGML (Directed Graph Markup Language), 286

Architecture Explorer information, 321

639

diagnostic data adapters – ExpectedException attribute

bindex.indd 03/06/2014 Page 639

diagnostic data adapters
ASP.NET Profi ler, 492
code coverage, 492
event log, 492
IntelliTrace, 492
network emulation, 493
system information, 492
test impact, 492
Test Manager, 512–513
video recorder, 493

dialogs
Add Tests, 589–590
Automated Tests, 122–123
Build Agent Properties, 119
Build Service Properties, 98
Confi gurations, 121
Create New Team, 235
Edit Workspace, 62–63
Import Data, 263
Manage Test Controller, 602–603
Manage Workspaces, 62–63
Property Pages, 442
Queue Build, 115
Run Options, 622–623
Source Control, 56

dimensions, OLAP cube, 260
distributed load tests, 564

agents, 601
confi guration, 603
installation, 601–602

client machines, 601
controllers, 601

confi guration, 602–603
installation, 601–602

running tests, 603
test rig, 601

distributed version control. See Git
document libraries, 18
DoesNotContain method, 384
DoesNotMatch method, 385
downloads, version control,

43–44
DSLs (domain-specifi c languages), software

modeling, 280–281

E

Eclipse, project sharing and, 47–48
Edit Workspace dialog, 62–63
editing tests, Web Test Editor

Comments, 576
context parameters, 576–577
extraction rules, 576–577
Properties, 576
transactions, 576
validation rules, 577–580

email, build notifi cations, 117
EndsWith method, 385
EnterDataAndClickAdd() method, 549, 550
Enumeration tool (class diagram toolbox), 313
Equals method, 385
ETW (Event Tracing for Windows), 445
event log, testing and, 492
events

IntelliTrace, 468
Team Foundation Server, 161–162

events view (IntelliTrace), 468–469
Excel

load test results, 601
TFS and, 31
work items, 228–230

Excel Reports, 260
Current Reports, 268
customizing, 266–267
OLAP cube data, 262–266
PivotTable Report, 263
publishing, 270

to document library, 270–271
to Excel Services, 271–272

SharePoint Enterprise and, 270
SharePoint Foundation and, 270
Trend Reports, 268
Work Items, queries, 267–269

Excel Services, publishing reports to, 271–272
exceptions

IntelliTrace, 468
Unit Test framework, 386
unit testing, 375

ExpectedException attribute, 375, 386

640

exploratory testing – IDE

bindex.indd 03/06/2014 Page 640

exploratory testing, 531
Test Manager, 532
Test Runner, 533–534

Extend tool (Use Case diagram toolbox), 295
extensibility

IDE and, 6
Team Foundation Core Services API and, 6

F

failing tests (Test Builder), 554–555
Fakes framework, 388–393
feature branching, 74–75
feature fl ippers/toggles, 131
feedback, 8

stakeholders
providing, 195–199
requesting, 194–195
voluntary, 195–199

Feedback Client, 195–198
Feedback Request, 207–208
Feedback Response, 207–208
fetching, Git, 86–87
FI (forward integration) in merging, 70
Fibonacci sequence, unit testing and, 373–374
fi les, labeling, version control, 58–59
fi ling bugs (Test Runner), 530–531
fi lters, Architecture Explorer, 321–323
folders, mapping, version control, 43–44
Forbidden Namespace Dependencies (layer

diagrams), 346
Forbidden Namespaces (layer diagrams), 346
forecast lines, 247–248
Fork Node (Activity diagram toolbox), 299
formal test case management, 531
Fowler, Martin, continuous integration, 107
FunctionsTest class, 374
FxCopCmd.exe

options, 410–413
project fi les, 413–414

G

garbage collection, 458
gated check-ins, 95

Builds page, 108–109

General section (Builds page), 105–106
Queue Processing, 106

generalist testers, 489, 505
Generalization tool

component diagram toolbox, 310
Use Case diagram toolbox, 295

Generate Code window, 538–539
generic tests, 491
Get Version parameter, 122
GetRequestEnumerator method, 584
Git, 77

branches and, 88–91
changes, merging, 88–91
cloning and, 78
committing, 83–86
download package, 79
fetching, 86–87
My Work, 84
New Team Project wizard and, 79
pulling, 86–87
pushing, 86–87
Queries option, 85
repositories

cloning, 80–83
defi ning, 78
Team Foundation Build, 96–97

third-party tools installation, 82–83
Globalization group, analysis rules, 400
grouping, layers, 345

H

history, version control, 57–58
History window, 57
Hosted Build Controller, 99
hotspots, profi ling and, 426
hybrid merges, 67–68
hyperlinks, storyboarding, 188
Hyper-V virtual environment, 610

I

IDE (integrated development environment)
design and, 278
extensibility and, 6

641

Import Data dialog – lab management

bindex.indd 03/06/2014 Page 641

Import Data dialog, 263
inbound links, nodes, 324
Include relationship, 293
Include tool (Use Case diagram toolbox), 295
Inheritance tool (class diagram toolbox), 314
Initial Node (Activity diagram toolbox), 298
Input Pin (Activity diagram toolbox), 299
instrumentation profi lers, 426–427

session confi guration, 445–446
instrumenting applications (profi ling), 427
integration

tools and, 6
visibility and, 6

IntelliTrace, 360–361
Advanced section, 478
breakpoints, information collection and,

472–473
debugging, stopping, 473–474
events, 468
events view, 468–469
example, 466–468
Exception Data, 476–477
Exception events, 468
execution information collection, 483–484
General section, 478
information collection, 472–473
IntelliTrace Events section, 478–479
method calls, 469–472
MMA (Microsoft Monitoring Agent), 480–481

installation, 481–482
SCOM (System Center Operations

Manager), 480–482
Modules section, 475, 480
PowerShell, commandlet confi guration, 482–483
Save As window, 473–474
sessions, saving, 473–477
System Info section, 475–476
testing and, 492
Threads drop-down box, 468–469
Threads list, 475
tracepoints, information collection and, 472–473

Interaction Use element, 302
Interaction Use tool (sequence diagram toolbox),

304
Interface tool (class diagram toolbox), 313

interfaces
component diagrams, 304
provided, 304
required, 304

Interoperability group, analysis rules, 400
IsNotSubsetOf method, 384
IsSubsetOf method, 384
Iteration fi eld (work items), 212

14
iterations, agile development, 233, 236–237

planning, 248–251

JK

Java, TFS Java SDK, 157
Join Node (Activity diagram toolbox), 299
Just My Code, 460

Kanban, cumulative fl ow, 241

L

Lab Center (Test Manager), 510
agent confi guration, 615
Environment Viewer, 617–618
Environments activity, 617
machine properties, 615
snapshots, 619
System Information, 618–619
Virtual Machines and Templates, 613–614

lab management
Lab Center

agent confi guration, 615
Environment Viewer, 617–618
Environments activity, 617
machine properties, 615
snapshots, 619
System Information, 618–619
Virtual Machines and Templates,

613–614
SCVMM and, 610–611

environments, 612–619
testing, 489
virtual environments, 610

manual testing, 622–626
testing, 619–621

642

Lab Workfl ow Parameters wizard – merging

bindex.indd 03/06/2014 Page 642

Lab Workfl ow Parameters wizard, 627–628
labeling, fi les, version control, 58–59
layer diagrams, 343–344

Architecture Explorer and, 347
artifacts, single, 347
build process and, 353–354
creating, 344–345
defi ning layers, 345–346
dependencies, defi ning, 349–351
dependency graphs and, 347
Forbidden Namespace Dependencies, 346
Forbidden Namespaces, 346
grouping layers, 345
multiple objects, 347
Required Namespace, 346
software development, 286
Solution Explorer and, 347

Layer Explorer, 347–349
sources, 347
UI Layer, 350–351
unlinked layers, 346
validation, 351–352

Layer Explorer, 347–349
legends, dependency graphs, 334–335
libraries, document libraries, 18
Lifeline tool (sequence diagram toolbox), 303
lightweight code commenting, 361–362
links

Architecture Explorer, 320
storyboarding, 189–190

load tests, 491
browser mix, 591–592
cloud-based, 603–606
constant load, 587
distributed

agent confi guration, 603
agent installation, 601–602
agents, 601
client machines, 601
controller confi guration, 602–603
controller installation, 601–602
controllers, 601
running, 603
test rig, 601

load patterns, 587–588
Load Test Editor

data storage, 597–598
executing tests, 598
profi les, 596–597
run settings, 596
scenarios, 595–596
SQL Tracing, 596

network mix, 591
New Load Test wizard, 585–595
performance counters, 592–593
results, 598–599

Graphs view, 599
Tables view, 599–601

run settings, 594–595
scenarios, 586–587
step load, 587
test mix, 589–591
Test Mix Model, 588–589

local workspaces, 38–39, 61–62, 65–66
converting to server, 64

M

Maintainability group, analysis rules, 400
Manage Test Controller dialog, 602–603
Manage Workspaces dialog, 62–63
manual testing, 489, 490. See also Test Manager

virtual environments, 622–626
Manual triggers (Builds page), 106
mapping

agile development, 246
folders, version control, 43–44

Matches method, 385
MDD (model-driven development), 279–280
measures, OLAP cube, 260
members, Architecture Explorer, 326–328
Merge Node (Activity diagram toolbox), 298
merging

auto merge, 68–69
baseless, 69
FI (forward integration), 70
Git and, 88–91
RI (reverse integration), 70
version control and, 67–68

643

bindex.indd 03/06/2014 Page 643

Mero apps – MSF for CMMI Process Improvement process template

Mero apps. See Windows Store apps
method calls (IntelliTrace), 469–472
methods
Assert.AreEqual, 375, 380–381
Assert.AreNotEqual, 380–381
Assert.AreNotSame, 381
Assert.AreSame, 381
Assert.Fail, 383
Assert.Inconclusive, 383
Assert.IsFalse, 382
Assert.IsInstanceOfType, 382–383
Assert.IsNotInstanceOfType, 382–383
Assert.IsNotNull, 382
Assert.IsNull, 382
Assert.IsTrue, 382
CodedUITestMethod1(), 541, 549
CollectionAssert class

AllItemsAreInstancesOfType, 383
AllItemsAreNotNull, 383
AllItemsAreUnique, 383
AreEqual, 383
AreEquivalent, 384
AreNotEqual, 383
AreNotEquivalent, 384
Contains, 384
DoesNotContain, 384
IsNotSubsetOf, 384
IsSubsetOf, 384
ReferenceEquals, 384

EnterDataAndClickAdd, 549
EnterDataAndClickAdd(), 550
GetRequestEnumerator, 584
StringAssert class

Contains method, 385
DoesNotMatch method, 385
EndsWith method, 385
Equals method, 385
Matches method, 385
ReferenceEquals method, 385
StartsWith method, 385

XamlWindow.Launch, 541–542
Microsoft All Rules, 401
Microsoft Basic Correctness Rules, 401
Microsoft Basic Design Guideline Rules, 401

Microsoft Excel. See Excel
Microsoft Extended Correctness Rules, 402
Microsoft Extended Design Guideline Rules, 402
Microsoft Globalization Rules, 402
Microsoft Managed Minimum Rules, 402
Microsoft Managed Recommended Rules, 402
Microsoft Mixed (C++/CLR) Minimum Rules,

402
Microsoft Mixed (C++/CLR) Recommended

Rules, 402
Microsoft Security Rules, 402
Microsoft Test Manager. See Test Manager
Microsoft Test Runner, 622–626
MMA (Microsoft Monitoring Agent),

480–481
installation in IntelliTrace, 481–482
PowerShell, commandlets, 481
SCOM (System Center Operations Manager),

480–481
connection, 482

Mobility group, analysis rules, 400
mocking frameworks, 387–388

Fakes, 388–393
Moq, 388
NMock, 388
Rhino, 388

modeling, 7
modeling diagrams

activity diagrams, 282
creating, 295–299

class diagrams, 284–285
creating, 310–314

component diagrams, 304–310
layer diagrams, 286, 343–353
sequence diagrams, 283–284

creating, 300–304
use case diagrams, 282

creating, 290–294
Visual Studio Ultimate 2013, 281–286

Moq mocking framework, 388
MSF for Agile Software Development process

template, 21, 215–217
MSF for CMMI Process Improvement process

template, 21, 217–221

644

My Work – Performance Explorer

bindex.indd 03/06/2014 Page 644

My Work, 362–363
code review, 364–367
Git-based team projects, 84
Resume, 364
Suspend & Shelve, 363–364

N

namespaces, Architecture Explorer, 323–325
Naming group, analysis rules, 400
Native group, analysis rules, 401
network emulation, testing and, 493
New Build Defi nition, 104–105
New Load Test Wizard, 585–595
New Team Project Wizard, 79
New Test Data Wizard, 580–581
NMock mocking framework, 388
nodes, Architecture Explorer, 320

inbound links, 324
outbound links, 324

notifi cations
build notifi cation tool, 116–117
email alerts, 117

Nuget, 99
NUnit, 372

O

object models, Team Foundation Server, 154
build process object model, 155
client object model, 155
example, 155–156
server object model, 155

Object Node (Activity diagram toolbox), 298
OLAP cube

dimensions, 260
Excel Reports from data, 262–266
measures, 260

operational store, Team Foundation Server,
258–259

operations, 8
Ordered Test Editor, 500
ordered tests, 491, 499–501
Organize area (Testing Center), 511

outbound links, nodes, 324
output, Team Foundation Build, 99
Output Pin (Activity diagram toolbox), 299

P

Package Import tool (class diagram toolbox), 314
Package tool (class diagram toolbox), 313
Parameterize Web Servers option, 570–571
parent branches, 69
parent/child links in work items, 204–205
Part Assembly tool (component diagram toolbox),

310
Path to Publish Symbols, 124
patterns, load tests, 587–588
Pending Changes page, 50–51
performance

counters, load tests, 592–593
profi ler, 359–360

performance analysis, profi ling, 426
ASP.NET, 428, 431
blank performance session, 434
CPU Sampling, 428, 431
Energy Consumption, 428, 431
Executable, 428, 431
HTML UI Responsiveness, 428, 431
Installed App, 428, 431
instrumentation profi lers, 426–427
instrumenting applications, 427
JavaScript Function Timing, 428, 431
JavaScript Memory, 428, 431
performance session creation, 430–434
probes, 426
Running App, 428, 430
sample application creation, 429–430
sampling profi lers, 426
Startup Project, 428, 430
tracing markers, 426
XAML UI Responsiveness, 428, 431

Performance and Diagnostic Hub, 359–360
performance session creation, 430–434

Performance Explorer
Allocation view, 457–458
Call Tree view, 457

645

Performance group – profi ling

bindex.indd 03/06/2014 Page 645

Caller/Callee view, 455–457
Functions Details view, 454–455
Functions view, 454–455
Objects Lifetime view, 458–459
Property Pages dialog, 442
Reports folder, 434, 447–449

application time, 450
elapsed time, 450
exclusive time, 450
inclusive time, 450

sampling session, 444–445
session properties

Advanced page, 443–444
CPU Counters page, 439
General page, 436–437
Instrumentation page, 442–443
Launch page, 437
Tier Interaction page, 437–439, 442
Windows Counters page, 440
Windows Events page, 439–440

session targets, 440–444
sessions, 434
Summary view, 450–453
Targets folder, 434

Performance group, analysis rules, 400
Performance Wizard, 440–441
permissions, workspaces, 64
Personal Web Site Starter Kit, 565
perspectives, 264
physical environments, 630

standard environments, 610
PivotTable Report, 263
Plan area (Testing Center), 510
playlist for testing, 358–359

Test Explorer, 497
Pointer tool

Activity diagram toolbox, 298
class diagram toolbox, 313
component diagram toolbox, 310
sequence diagram toolbox, 303
Use Case diagram toolbox, 294

policies, version control, 54–57
Portability group, analysis rules, 400
portals, 257

portfolio backlog, 240–244
PowerPoint storyboarding, 179–180

animations, 187–188
hyperlinks, 188
launching, 179–180
layouts, 181–182
links, 189–190
screenshots, 182–185
shapes, 180–181

My Shapes, 185–186
PowerShell, commandlets

confi guration, 482–483
MMA, 481

private builds, 115
probes (profi ling), 426
process guidance, challenges, 5
Process section (Builds page), 112–113
process templates, 21–22, 214–215

Agile Manifesto, 216
CMMI (Capability Maturity Model Integration),

216
custom, 223
MSF for Agile Software Development,

215–217
MSF for CMMI Process Improvement, 217–221
third-party, 222–223
Visual Studio Scrum, 221–222

product backlog, 234, 244–248
product owner, 234
productivity

collaboration and, 5
complexity and, 6

profi ler, 359–360
profi ling, 426

ASP.NET, 428, 431
code coverage and, 462
command-line utilities, 459–461
concurrency profi ling session, 446
CPU Sampling, 428, 431
debugging symbols, 462
Energy Consumption, 428, 431
Executable, 428, 431
hotspots and, 426
HTML UI Responsiveness, 428, 431

646

profi ling – releases

bindex.indd 03/06/2014 Page 646

profi ling (continued)
Installed App, 428, 431
instrumentation profi lers, 426–427

session confi guration, 445–446
instrumenting applications, 427
JavaScript Function Timing, 428, 431
JavaScript Memory, 428, 431
Just My Code, 460
Load Test Editor, 596–597
.NET memory allocation session, 446
performance session

blank, 434
Performance and Diagnostic hub, 430–434
from unit test, 434

probes, 426
Profi le JavaScript, 460–461
Running App, 428, 430
sample application creation, 429–430
sampling profi lers, 426

session confi guration, 444–445
session execution, 446–447
session reports, 447–449
Startup Project, 428, 430
tracing markers, 426
XAML UI Responsiveness, 428, 431

Project
TFS and, 31
work items, 230

project management, 203–204
Team Foundation Server

Agile planning tools, 205–207
Feedback Request, 207–208
Feedback Response, 207–208
reports, 208
SharePoint Server dashboards, 208–209
Test Management Tools, 207
work item relationships, 204–205

Project Server, integration, 231–232
projects, test projects, 495–496
promotion-level branching, 73–74
properties, unit tests, custom, 386–387
Property Pages dialog, 442
Provided Interface element, 305
Provided Interface tool (component diagram

toolbox), 310

provided interfaces, 304
publishing, reports, Excel, 270–272
pulling, Git, 86–87
pushing, Git, 86–87

Q

queries, work items, Excel Reports, 267–269
query-based test suite, 518
Queue Build dialog, 115, 119
Queue Processing (builds), 106
queued builds, 103

R

Rational Unifi ed Process, 278
RDL (Report Defi nition Language), 273–274
ReferenceEquals method, 384, 385
related links in work items, 205
relationships, branching, 69
release management, 127–129

acceptance step, 140–141
approval, 141
continuous software delivery, 129–131
deployment, 141
templates

builds externally, 143
builds independently, 143
builds with application, 142

tools, 136
validation, 141
Variable Replacement Mode, 144–145

Release Management, approvals, 149–151
Release Management Client for Visual Studio

2013, 133
Release Management Server for Team Foundation

Server, 132–133
release pipeline, 132–133

actions, 135–137
confi guration, 133–135
Release Management Client, 133
Release Management Server, 132–133
release paths, 137–142

releases, 127
creating, 148–149

647

Reliability group – scripts

bindex.indd 03/06/2014 Page 647

Reliability group, analysis rules, 401
reporting, 18, 257

BIDS (Business Intelligence Development Studio),
273–274

challenges, 5
Performance Explorer session reports, 447–449

application time, 450
elapsed time, 450
exclusive time, 450
inclusive time, 450

project management, 208
Team Foundation Server, 258

creating reports, 261
data warehouse, 259–260
Excel Reports, 260, 262–272
OLAP cube, 260
operational store, 258–259
RDL (Report Defi nition Language),

273–274
SQL Reporting Services Reports, 260

Reports folder (Performance Explorer), 434
repositories (Git)

cloning, 80–83
Team Foundation Build, 96–97

Required Interface tool (component diagram
toolbox), 310

required interfaces, 304
Required Namespace (layer diagrams), 346
requirements, 167–168
requirements management, stakeholders, 169–170
requirements-based test suite, 518
Resolve Confl icts page, 88
resource contention, 446
Resume (My Work), 364
Retention Policy section (Builds page), 113
Rhino mocking framework, 388
RI (reverse integration) in merging, 70
role-based testing tools, 490
rolling builds (Builds page), 108
rule sets, code analysis

Microsoft All Rules, 401
Microsoft Basic Correctness Rules, 401
Microsoft Basic Design Guideline Rules, 401
Microsoft Extended Correctness Rules, 402
Microsoft Extended Design Guideline Rules, 402

Microsoft Globalization Rules, 402
Microsoft Managed Minimum Rules, 402
Microsoft Managed Recommended Rules, 402
Microsoft Mixed (C++/CLR) Minimum Rules, 402
Microsoft Mixed (C++/CLR) Recommended

Rules, 402
Microsoft Security Rules, 402

rule violations
corrections, 407–408
message suppression, 408–409

rules, code analysis, 400–401
Globalization group, 400
Interoperability group, 400
Maintainability group, 400
Mobility group, 400
Naming group, 400
Native group, 401
Performance group, 400
Portability group, 400
Reliability group, 401
rule creation, 414
Security group, 401
Usage group, 401

Run Options dialog, 622–623
Run Tests activity (Test Manager), 523–524

S

SAFe (Scaled Agile Framework), portfolio backlog,
240–244

sampling profi lers, 426–427
session confi guration, 444–445

scenarios, load tests, 586–587
scheduled builds (Builds page), 109
SCM (Software Confi guration Management),

39–40
SCOM (System Center Operations Manager),

480–481
APM (Application Performance Monitoring), 481
MMA connection, 482

scope, team projects, 19
screenshots

PowerPoint storyboarding, 182–185
Test Builder, 555–556

scripts, Team Foundation Build, 100

648

Scrum – stakeholders

bindex.indd 03/06/2014 Page 648

Scrum, 21, 233–234. See Visual Studio Scrum
process template

velocity, 247
SCVMM (System Center Virtual Machine

Manager), 610
library server, 611
standard environments, 630

SCVMM environments, 610, 612–619
SDLC (software development lifecycle), 2–3
Security group, analysis rules, 401
self messages, 302
Send & Finish option (My Work), 365
Send Comments option (My Work), 365
Send Signal Action (Activity diagram toolbox),

299
sequence diagrams

creating, 300–302
software development, 283–284
toolbox, 303–304

server object model, Team Foundation Server, 155
server workspaces, 61–62, 64–65

converting to local, 64
Share Project Wizard, 47–48
shared steps, test suites, 520–521
SharePoint Enterprise, Excel reports and, 270
SharePoint Server, dashboards, project

management and, 208–209
SharePoint Standard/Foundation, Excel reports

and, 270
shelvesets, 61
shelving, 59–61
shims (Fakes framework), 391–393
sibling branches, 69
snapshots (Lab Center), 619
software delivery cycle, phases

construct, 130
operate, 130
release, 130
requirements, 130

software design, visual, 277–278
software development

activity diagrams, 283
class diagrams, 284–285
code analysis, 359
code understanding experience, 281

CodeLens, 359
debugging, IntelliTrace, 360–361
layer diagrams, 286
lightweight code commenting, 361–362
modeling

DSLs (domain-specifi c languages), 280–281
UML and, 279–280

profi ler, 359–360
sequence diagrams, 283–284
unit testing, 358–359

benefi ts, 370–371
debugging, 377
exceptions, 375
managing tests, 376–377
mocking frameworks, 388–393
test adapters, 393–394
test creation, 373–375
test projects, 373–374
third-party tools, 372
white box testing, 370
writing guidelines, 371–372

use case diagrams, 282
Visual Studio Ultimate, Architecture Explorer, 282

solution confi gurations, 121
Solution Explorer, layer diagrams and, 347

Layer Explorer, 347–349
Source Control dialog, 56
Source Control Explorer, version control and, 41–42

code download, 43–44
workspace setup, 42–43

Source Setting section (Builds page), 109–110
sprints, 234
SQL (Structured Query Language), BIDS (Business

Intelligence Development Studio), 273–274
SQL Reporting Services Reports, 260

RDL (Report Defi nition Language), 273
SQL Tracing, Load Test Editor, 596
staircase branching model, 129
stakeholders, 169–170

feedback
capturing, 171–172, 193–194
providing, 195–199
requesting, 194–195
voluntary, 195–199

Work Item Only View, 172

649

standard environments – Team Foundation Version Control

bindex.indd 03/06/2014 Page 649

standard environments, 610, 630
StartsWith method, 385
static test suite, 518
step load, 587
story points, 247
storyboarding, 170–171, 177–179

PowerPoint, 179–180
animations, 187–188
hyperlinks, 188
launching, 179–180
layouts, 181–182
links, 189–190
My Shapes, 185–186
screenshots, 182–185
shapes, 180–181

StringAssert class
Contains method, 385
DoesNotMatch method, 385
EndsWith method, 385
Equals method, 385
Matches method, 385
ReferenceEquals method, 385
StartsWith method, 385

stubs (Fakes framework), 389–391
Subsystem tool (Use Case diagram toolbox), 295
successor/predecessor links in work items, 205
Summary view (Performance Explorer),

450–453
Suspend & Shelve (My Work), 363–364
Synchronous tool (sequence diagram toolbox), 303
system design, 7
system information, testing and, 492

T

Tables view (Load Test Editor)
Errors table, 600
Excel reports, 601
Pages table, 600
SQL Trace table, 600
Tests table, 599–600
Thresholds table, 600
Transactions table, 600

tagging, product backlog, 245
Targets folder (Performance Explorer), 434

task board, 234
agile tracking, 251–252

TeamCompanion, 173–174
Team Explorer view, 102

Builds node, invoking builds, 114–115
My Work, 362–363

Team Foundation Build
architecture, 100–101
build agent, 101
build controller, 100
build defi nition, 101

Queue Processing, 106
build details, 101
Build Explorer, build details view, 103–104
Build Explorer view, 102

completed builds, 103
queued builds, 103

build process templates, custom, 157–159
build quality, 103
build services, hosted, 99
builds, 94–95
Builds page

Build Defaults section, 110–112
General section, 105–106
New Build Defi nition, 104–105
Process section, 112–113
Retention Policy section, 113
Source Setting section, 109–110
Trigger section, 106–109

drop location, 101
Hosted Build Controller, 99
hosted build services, 99
MSTest support, 99
new features, 95–96
Output location, 99
process template, 100
repositories, Git-based, 96–97
scripts, calling, 100
solution confi gurations, 121
Team Explorer view, 102
Windows Store apps, 97–98

Team Foundation Core Services API, 6
Team Foundation Server. See TFS (Team

Foundation Server)
Team Foundation Version Control, check-in

policies, custom, 160–161

650

team projects – test plans

bindex.indd 03/06/2014 Page 650

team projects (TFS), 17–20
Team Web Access, 506

stakeholder feedback, 194–195
work items, 230–231

teams
challenges, 4–5
Team Foundation Server, 234–239

templates
Activity diagram, 295–296
build process, 118

custom, 157–159
process templates, 21–22, 214–215

Agile Manifesto, 216
CMMI (Capability Maturity Model

Integration), 216
custom, 223
MSF for Agile Software Development,

215–217
MSF for CMMI Process Improvement,

217–221
third-party, 222–223
Visual Studio Scrum, 221–222

release and
builds externally, 143
builds independently, 143
builds with application, 142

Unit Test Project template, 373–374
Use Case, 290

Test area (Testing Center), 511
Test Builder. See Coded UI Test Builder
Test Confi guration Manager, 516
Test Explorer, 358–359, 496–497

search operators
FilePath, 498
FullName, 498
multiple, 498
Result, 498

test impact, 492
test impact analysis, 515
Test Management Tools, project management, 207
Test Manager, 493–494, 506–509

action recordings, 526, 529–530
activity centers, 510
exploratory testing, 532

Lab Center, 510
agent confi guration, 615
Environment Viewer, 617–618
Environments activity, 617
machine properties, 615
snapshots, 619
System Information, 618–619
Virtual Machines and Templates, 613–614

Recommended Tests, 515
Run Tests activity, 523–524
Team Foundation Server and, 508
test plans, 510–512

builds, 513–514
Contents, 517–521
settings confi guration, 512–513
test confi gurations, 515–517
test impact analysis, 515
Test Plan Properties, 516
test suites, 517–521

Test Runner, 525–529
fi ling bugs, 530–531

Testing Center, 510
Organize area, 511
Plan area, 510
Test area, 511
Track area, 511

Verify Bugs activity, 524–525
test mix (load tests), 589–591
Test Mix Model, 588–589
test plans (Test Manager), 510–512

builds, 513–514
Contents, 517–521
settings, 512–513
test confi gurations, 515–517
test impact analysis, 515
test suites

assigning testers, 523
confi guration assignment, 522
query-based, 518
requirements-based, 518
shared steps, 520–521
states, 518
static, 518
test case authoring, 518–520

651

Test Professional – testing

bindex.indd 03/06/2014 Page 651

Test Professional, 490
test projects, 373–374
Test Runner, 525–529

exploratory testing, 533–534
fi ling bugs, 530–531

test suites
assigning testers, 523
confi guration assignment, 522
query-based, 518
requirements-based, 518
shared steps, 520–521
states, 518
static, 518
test case authoring, 518–520

TestClass attribute, 374
TestCleanup attribute, 377, 378–379
TestContext class, 387
testing, 7–8

agile testing, 531
automated tests, 494–495, 535

code coverage, 499
ordered tests, 499–501
settings, 501–502
Test Explorer, 496–499
test project types, 495–496

build-deploy-test, 489–490
challenges, 5
coded UI tests, 491, 537–538
data-driven tests, 552–554
diagnostic data adapters

action log, 492
ASP.NET Profi ler, 492
code coverage, 492
event log, 492
IntelliTrace, 492
network emulation, 493
system information, 492
test impact, 492
video recorder, 493

distributed load tests, 564
exploratory, 531
formal test case management, 531
generalist testers, 489, 505
generic tests, 491

lab management, 489
load tests, 491, 585

browser mix, 591–592
cloud-based, 603–606
constant load, 587
distributed load tests, 601–603
editing, 595–598
executing tests, 598
load patterns, 587–588
network mix, 591
New Load Test wizard, 585–586
performance counters, 592–593
results, 598–601
run settings, 594–595
scenarios, 586–587
step load, 587
test mix, 589–591
Test Mix Model, 588–589

manual, 489, 490
virtual environments, 622–626

Microsoft Test Manager, 493–494
Microsoft Test Runner, 622–626
ordered tests, 491
playlist, 358–359
role-based tools, 490
Test Manager, 506–509
Trace and Test Impact, 502
unit testing, 358–359, 491

benefi ts, 370–371
classes, 374
debugging, 377
direct from code, 377
exceptions, 375
managing tests, 376–377
running tests, 376–377
test creation, 373–375
test projects, 373–374
third-party tools, 372
Unit Test framework, 377–387
unit test identifi cation, 374
white box testing, 370
writing guidelines, 371–372

virtual environments, 619–621
manual tests, 622–626

652

testing – TFS

bindex.indd 03/06/2014 Page 652

testing (continued)
Visual Studio Premium 2013, 490
Web performance tests, 491
Windows Store apps, 97–98

Testing Center (Test Manager), 510
Organize area, 511
Plan area, 510
Test area, 511
Track area, 511

TestInitialize attribute, 377, 378–379
TestMethod attribute, 374
tests/tested by links in work items, 205
tf.exe, 38
.tfIgnore fi le, 53
TFS (Team Foundation Server), 1–2, 11

access
from Eclipse, 31–32
third-party integrations, 32–33
from Visual Stuio, 27–29
web browser, 29–30

adoption, 34–35
Agile portfolio management, 33–34
application tier, 12, 16
areas, 236
build, 25–26
build process, 118

Default template, 119
cloud computing, 34
command line (tf.exe), 38
command-line tool, 31, 66–67
data tier, 12, 16
events, 161–162
Excel and, 30
gated check-ins, 95
hosted

third-party providers, 14
Visual Studio Online, 13–14

installation, 15
Java SDK, 157
licensing, 26
local workspaces, 38–39
Microsoft Project, 31
object models, 154

build process object model, 155
client object model, 155

example, 155–156
server object model, 155

overview, 12
project management

Agile planning tools, 205–207
Feedback Request, 207–208
Feedback Response, 207–208
reports, 208
SharePoint Server dashboards, 208–209
Test Management Tools, 207
work item relationships, 204–205

release management, 34
Release Management Server, 132–133
reporting, 258

creating reports, 261
data warehouse, 259–260
Excel Reports, 260, 262–272
OLAP cube, 260
operational store, 258–259
RDL (Report Defi nition Language),

273–274
SQL Reporting Services Reports, 260

team project collection, 16–17
Team Project per Application, 19
Team Project per Release, 19
Team Project per Team, 20
team projects, 17–20

builds, 18
classifi cations, 18
document libraries, 18
reports, 18
scope, 18–19
version control, 18, 23–25
work items, 18, 22–23

teams, 20–21, 234–239
templates, process templates, 21–22
Test Manager connection, 508
version control, 23, 37–39

associate check-ins, 24
atomic check-ins, 24
branching, 24
changeset, 47
check-in notes, 25
check-in policies, 25
checking in, 45–48

653

Tfs_Analysis database – unit testing

bindex.indd 03/06/2014 Page 653

checking in pending changes, 48–59
concurrent check-outs, 25
follow history, 25
labeling, 25
local workspaces, 23
merging, 24
new features, 33
project sharing, 45–48
setup, 40–41
shelving, 24
TFS proxy, 25
VSS and, 39–40

web access, 33
Windows Explorer integration, 32
workspaces, 61–62

Tfs_Analysis database, 262–263
Tfs_Configuration database, 259
third-party process templates, 222–223
third-party tools, unit testing, 372
thread execution, 446
timebox, 234
tools

dependency graphs, 335–336
integration and, 6
integration problems, 4
release management, 136

Trace and Test Impact setting, 502
tracepoints (IntelliTrace), information collection

and, 472–473
tracing markers (profi ling), 426
Track area (Testing Center), 511
tracking, agile development, task board, 251–252
transactions, web performance tests, 576
Trend Reports (Excel), 268
Trigger section (Builds page)

Continuous Integration, 106–107
Gated Check-in, 108–109
Manual, 106
Rolling builds, 108
schedule, 109

U

UI Control Map, 546–547
UI Layer, 350–351

UI Map Editor, 556–558
UI tests. See coded UI tests
UML, software modeling and, 279–280
uni-directional dependencies, 350
Unit Test framework
AssemblyCleanup attribute, 377, 379–380
AssemblyInitialize attribute, 379–380
Assert.AreEqual method, 380–381
Assert.AreNotEqual method, 380–381
Assert.AreNotSame method, 381
Assert.AreSame method, 381
Assert.Fail method, 383
Assert.Inconclusive method, 383
Assert.IsFalse method, 382
Assert.IsInstanceOfType method,

382–383
Assert.IsNotInstanceOfType method,

382–383
Assert.IsNotNull method, 382
Assert.IsNull method, 382
Assert.IsTrue method, 382
ClassCleanup attribute, 377, 379
ClassInitialize attribute, 377, 379
CollectionAssert class, 383–385
ExpectedException attribute, 386
properties, custom, 386–387
StringAssert class, 385–386
TestCleanup attribute, 377, 378–379
TestContext class, 387
TestInitialize attribute, 377, 378–379

Unit Test Project template, 373–374
unit testing, 358–359, 491

benefi ts, 370–371
classes, 374
debugging, 377
direct from code, 377
exceptions, 375
FunctionsTest class, 374
identifying tests, 374
managing tests, 376–377
mocking frameworks, 387–388

Fakes, 388–393
Moq, 388
NMock, 388
Rhino, 388

654

unit testing – Visual Studio Online

bindex.indd 03/06/2014 Page 654

unit testing (continued)
performance session from, 434
properties, custom, 386–387
running tests, 376–377
test adapters, 393–394
test creation, 373–374
test projects, 373–374
TestClass attribute, 374
TestMethod attribute, 374
third-party tools, 372
Unit Test framework, 377–387
white box testing, 370
writing guidelines, 371–372

Usage group, analysis rules, 401
use case diagrams

adding activity diagram, 300
creating, 290–294
Include relationship, 293
software development, 282
toolbox, 294–295

Use Case tool (Use Case diagram toolbox), 294

V

Validate Architecture option, 352
validation

layer diagrams, 351–352
test case authoring, 520
web performance tests, 577–580

velocity, 247
Verify Bugs activity (Test Manager),

524–525
version control, 18, 37–38. See Git

base version, 68
branching, 67
candidate changes, 52–54
labeling fi les, 58–59
merging, 67–68
policies, 54–57
setup, 40–41
shelving, 59–61
Source Control Explorer and, 41–42

code download, 43–44
workspace setup, 42–43

TFS (Team Foundation Server), 23, 37–39
associate check-ins, 24
atomic check-ins, 24
branching, 24
changeset, 47
check-in notes, 25
check-in policies, 25
checking in, 45–48, 95
checking in pending changes, 48–59
concurrent check-outs, 25
follow history, 25
labeling, 25
local workspaces, 23
merging, 24
project sharing, 45–48
shelving, 24
TFS proxy, 25
VSS and, 39–40

viewing history, 57–58
video recorder, testing and, 493
virtual environments. See also standard

environments
build-deploy-test, automated, 626–630
golden images, 611
Hyper-V virtual environment, 610
lab management, 610
SCVMM environments, 610
test agents, 611–612
testing, 619–621

manual tests, 622–626
VM templates, 611

visual design, 277–278
Visual Studio 2013

ALM and, 5–6
product lineup, 3
work items, 223

creating, 224–225
queries, 226–228

Visual Studio Express 2013 for Windows, 3
Visual Studio Express 2013 for Windows

Desktop, 3
Visual Studio Online

load testing, 603–606
TFS and, 13–14

655

Visual Studio Premium 2013 – Web Test Recorder

bindex.indd 03/06/2014 Page 655

Visual Studio Premium 2013, testing and, 490
Visual Studio Premium 2013 with MSDN, 3
Visual Studio Professional 2013 with MSDN, 3
Visual Studio Scrum process template, 221–222

daily Scrum, 221
Impediment work item types, 221–222
impediments, 221
Product Backlog Item work item types, 221
Product Owner, 221
Scrum Master, 221

Visual Studio Team Foundation Server
2013, 3

Visual Studio Team Foundation Server Express
2013, 3

Visual Studio Test Professional 2013, 490
PowerPoint storyboarding and, 179

Visual Studio Test Professional 2013 with MSDN,
3

Visual Studio Ultimate 2013
Architecture Explorer, 282, 286
architecture tools, 287–288
modeling diagrams, 281–286
testing and, 490

Visual Studio Ultimate 2013 with MSDN, 3
VM. See also virtual environments
VM host groups, 611
VM templates, 611
VMSDK (Visual Studio Visualization and

Modeling SDK), 288
VSS (Visual SourceSafe)

migration, 40
version control and, 39–40

W

WarehouseControlWebService, operations,
259–260

web performance tests, 491
ASP.NET Development Server and, 568
coded, 582–584
coded UI test comparison, 564–565
confi guring tests, 566–567
creating tests, 566–567
data driven

binding to source, 581–582
data source confi guration, 580–581

editing tests, 575
Comments, 576
context parameters, 576–577
extraction rules, 576–577
Properties, 576
transactions, 576
validation rules, 577–580

Personal Web Site Starter Kit, 565
recording, 568–569
Run button, 574
run settings, 569–570
sample web application, 565

users, 565–566
settings, 571–573
Test Results window, 574–575
Web Site Administration Tool, 565–566
Web Test Editor, 566–567

Parameterize Web Servers option, 5
70–571

run settings, 569–570
Test Results window, 574–575

Web Test Recorder, 564
confi guring web tests, 566–567
creating web tests, 566–567
HTTP/HTTPS traffi c, 568
recording options, 569

Web Site Administration Tool, 565–566
Web Test Editor, 566–567

editing tests
Comments, 576
context parameters, 576–577
extraction rules, 576–577
Properties, 576
transactions, 576
validation rules, 577–580

edting tests, 575–580
Parameterize Web Servers option, 570–571
run settings, 569–570
Test Results window, 574–575

Web Test Recorder, 564
confi guring web tests, 566–567
creating web tests, 566–567

656

Web Test Recorder – XML

bindex.indd 03/06/2014 Page 656

Web Test Recorder (continued)
HTTP/HTTPS traffi c, 568
recording options, 569

white box testing, 370
windows, History, 57
Windows Explorer, TFS and, 32
Windows Store apps

building, 97–98
coded UI tests, 538–540

Calculator app, 540–541
XamlWindow.Launch method,

541–542
testing, 97–98

witadmin command-line tool, 162
wizards

Data Connection Wizard, 262–263
Lab Workfl ow Parameters, 627–628
New Load Test, 585–595
New Team Project, 79
New Test Data, 580–581
Performance Wizard, 440–441
Share Project Wizard, 47–48

Work Item Only View, 172
work items, 18

creating, Visual Studio, 224–225
custom controls, 163
deleting, 225
inteGREAT, 174–175
management

Excel, 228–230
Project, 230
Team Web Access, 230–231
Visual Studio and, 223–228

queries
Excel Reports, 267–269
Visual Studio, 226–228

relationships, 204–205
link types, 204–205

TeamCompanion, 173–174
TeamSpec, 174
tracking, 22–23
tracking, type defi nitions, 162
types, 209–211

Area fi eld, 211
Iteration fi eld, 212, 214
MSF for Agile Software Development

process template, 216
workfl ow activities, 158–159

custom, 159–160
WriteBuildMessage, 159

workspaces
Clean Workspace parameter, 121–122
Edit Workspace dialog, 62–63
local, 38–39, 61–62, 65–66

converting to/from server, 64
Manage Workspaces dialog, 62–63
permissions, 64
server, 61–62, 64–65

converting to/from local, 64
setup, 42–43

WriteBuildMessage activity, 159

XYZ

XamlWindow.Launc h method, 541–542
XML, work item type defi nitions, 162

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!

Visit: www.safaribooksonline.com/wrox

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari
To Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

*Discount applies to new Safari Library subscribers only

and is valid for the fi rst 6 consecutive monthly billing

cycles. Safari Library is not available in all countries.

http://www.safaribooksonline.com/wrox

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Chapter 1 Introduction to Application Lifecycle Management with Visual Studio 2013���
	Application Lifecycle Management���������������������������������������
	Visual Studio 2013 Product Lineup��
	Application Lifecycle Management Challenges��
	Enter Visual Studio 2013�������������������������������
	Application Lifecycle Management in Action���
	Requirements�������������������
	System Design and Modeling���������������������������������
	Code Generation����������������������
	Testing��������������
	Feedback���������������
	Operations�����������������
	Putting It into Context������������������������������
	Summary��������������

	Part I Team Foundation Server������������������������������������
	Chapter 2 Introduction to Team Foundation Server���
	What Is Team Foundation Server?��������������������������������������
	Acquiring Team Foundation Server���������������������������������������
	Hosted Team Foundation Server������������������������������������
	On-Premises Installation�������������������������������

	Team Foundation Server Core Concepts���
	Team Foundation Server�����������������������������
	Team Project Collection������������������������������
	Team Project�������������������
	Teams������������
	Process Templates������������������������
	Work Item Tracking�������������������������
	Version Control����������������������
	Team Build�����������������

	Accessing Team Foundation Server���������������������������������������
	Accessing Team Foundation Server from Visual Studio��
	Accessing Team Foundation Server Through a Web Browser���
	Using Team Foundation Server in Microsoft Excel��
	Using Team Foundation Server in Microsoft Project��
	Command-Line Tools for Team Foundation Server��
	Accessing Team Foundation Server from Eclipse��
	Windows Explorer Integration with Team Foundation Server���
	Access to Team Foundation Server via Other Third-Party Integrations��

	What’s New in Team Foundation Server 2013��
	Version Control����������������������
	Web Access�����������������
	Agile Portfolio Management���������������������������������
	Release Management�������������������������
	The Cloud����������������

	Adopting Team Foundation Server��������������������������������������
	Summary��������������

	Chapter 3 Using Centralized Team Foundation Version Control��
	Team Foundation Version Control and Visual SourceSafe (VSS) 2005���
	Setting Up Version Control���������������������������������
	Using Source Control Explorer������������������������������������
	Setting Up Your Workspace��������������������������������
	Getting Existing Code����������������������������
	Sharing Projects in Version Control��

	Check-In Pending Changes�������������������������������
	Checking In an Item��������������������������
	Creating and Administering Check-In Policies���
	Viewing History����������������������
	Labeling Files���������������������

	Shelving���������������
	Workspaces�����������������
	Server Workspaces������������������������
	Local Workspaces�����������������������

	Command-Line Tools�������������������������
	Branching and Merging����������������������������
	Branching Demystified����������������������������
	Common Branching Strategies����������������������������������

	Summary��������������

	Chapter 4 Distributed Version Control with Git and Team Foundation Server��
	Fundamentals of Distributed Version Control with GIT
	Getting Started with the Visual Studio Tools for GIT
	Clone������������
	Commit�������������
	Push, Pull, and Fetch����������������������������

	Merging Changes with GIT and Visual Studio
	Branch Creation����������������������

	Summary��������������

	Chapter 5 Team Foundation Build��������������������������������������
	Team Foundation Build����������������������������
	What’s New in Team Foundation Build 2013���
	Support for Git-based Repositories���
	Simplified Building and Testing of Windows Store Apps��
	MSTest Support Removed�����������������������������
	Enhanced Hosted Build Services�������������������������������������
	Build Output Changes���������������������������
	Simplified Process Template����������������������������������
	Built-in Support for Calling Scripts���

	Team Foundation Build Architecture���
	Working with Builds��������������������������
	Team Explorer��������������������
	Build Explorer���������������������
	Build Details View�������������������������
	Creating a Build Definition����������������������������������
	Queuing a Build����������������������
	Build Notifications��������������������������

	Team Build Process�������������������������
	Default Template Process�������������������������������
	Build Process Parameters�������������������������������

	Summary��������������

	Chapter 6 Release Management�����������������������������������
	What Is Release Management?����������������������������������
	Continuous Software Delivery�����������������������������������
	Defining a Release Pipeline����������������������������������
	Configuring for First Use��������������������������������
	Introduction to Actions������������������������������
	Introduction to Release Paths������������������������������������
	Creating Release Templates���������������������������������
	Creating Releases������������������������
	Approvals����������������

	Summary��������������

	Chapter 7 Common Team Foundation Server Customizations���
	Object Models��������������������
	Client Object Model��������������������������
	Server Object Model��������������������������
	Build Process Object Model���������������������������������
	Simple Object Model Example����������������������������������
	Java SDK for TFS�����������������������

	Customizing Team Foundation Build��
	Creating Custom Build Process Templates��
	Creating Custom Build Workflow Activities��

	Customizing Team Foundation Version Control��
	Custom Check-in Policies�������������������������������

	Team Foundation Server Event Service���
	Customizing Work Item Tracking�������������������������������������
	Modifying Work Item Type Definitions���
	Creating Custom Work Item Controls���

	Summary��������������

	Part II Building the Right Software��
	Chapter 8 Introduction to Building the Right Software��
	Stakeholders�������������������
	Storyboarding��������������������
	Capturing Stakeholder Feedback�������������������������������������
	Work Item Only View��������������������������
	Third-Party Requirements Management Solutions��
	TeamCompanion��������������������
	TeamSpec���������������
	inteGREAT����������������

	Summary��������������

	Chapter 9 Storyboarding������������������������������
	Why Storyboarding?�������������������������
	PowerPoint Storyboarding�������������������������������
	Storyboard Shapes������������������������
	Layouts��������������
	Screenshots������������������
	My Shapes����������������
	Animations�����������������
	Hyperlinks�����������������
	Storyboard Links�����������������������

	Summary��������������

	Chapter 10 Capturing Stakeholder Feedback��
	Requesting Feedback��������������������������
	Providing Feedback�������������������������
	Voluntary Feedback�������������������������

	Summary��������������

	Part III Project Management����������������������������������
	Chapter 11 Introduction to Project Management��
	Project Management Enhancements in Team Foundation Server 2013���
	Rich Work Item Relationships�����������������������������������
	Agile Planning Tools���������������������������
	Test Case Management���������������������������
	Feedback Management��������������������������
	Enhanced Reporting�������������������������
	SharePoint Server Dashboards�����������������������������������

	Work Items�����������������
	Work Item Types����������������������
	Areas and Iterations���������������������������

	Process Templates������������������������
	MSF for Agile Software Development���
	MSF for CMMI Process Improvement���������������������������������������
	Visual Studio Scrum��������������������������
	Third-party Process Templates������������������������������������
	Custom Process Templates�������������������������������

	Managing Work Items��������������������������
	Using Visual Studio��������������������������
	Using Microsoft Excel����������������������������
	Using Microsoft Project������������������������������
	Using Team Web Access����������������������������

	Project Server Integration���������������������������������
	Summary��������������

	Chapter 12 Agile Planning and Tracking���
	Defining a Team����������������������
	Managing Portfolio Backlogs����������������������������������
	Maintaining Product Backlogs�����������������������������������
	Planning Iterations��������������������������
	Tracking Work��������������������
	Customization Options����������������������������
	Summary��������������

	Chapter 13 Using Reports, Portals, and Dashboards��
	Team Foundation Server Reporting���������������������������������������
	Working with Team Foundation Server Reports��
	Tools to Create Reports������������������������������
	Working with Microsoft Excel Reports���
	Working with RDL Reports�������������������������������

	Summary��������������

	Part IV Architecture���������������������������
	Chapter 14 Introduction to Software Architecture���
	Designing Visually�������������������������
	Microsoft’s Modeling Strategy������������������������������������
	Understanding Model-Driven Development���
	Understanding Domain-Specific Languages��
	The “Code Understanding” Experience��

	The Architecture Tools in Visual Studio Ultimate 2013��
	Use Case Diagrams������������������������
	Activity Diagrams������������������������
	Sequence Diagrams������������������������
	Component Diagrams�������������������������
	Class Diagrams���������������������
	Layer Diagrams���������������������
	Architecture Explorer����������������������������

	What’s New with Architecture Tools in Visual Studio Ultimate 2013��
	Code Maps����������������
	Visual Studio Visualization and Modeling SDK���

	Summary��������������

	Chapter 15 Top-Down Design with Use Case, Activity, Sequence, Component, and Class Diagrams��
	Use Case Diagrams������������������������
	Creating a Use Case Diagram����������������������������������
	Use Case Diagram Toolbox�������������������������������

	Activity Diagrams������������������������
	Creating an Activity Diagram�����������������������������������
	Activity Diagram Toolbox�������������������������������
	Adding an Activity Diagram to a Use Case Diagram���

	Sequence Diagrams������������������������
	Creating a Sequence Diagram����������������������������������
	Sequence Diagram Toolbox�������������������������������

	Component Diagrams�������������������������
	Creating a Component Diagram�����������������������������������
	Component Diagram Toolbox��������������������������������

	Class Diagrams���������������������
	Creating a Class Diagram�������������������������������
	Class Diagram Toolbox����������������������������
	Generating Code from a UML Class Diagram���

	Summary��������������

	Chapter 16 Analyzing Applications Using Architecture Explorer, Dependency Graphs, and Code Maps��
	Understanding the Code Base����������������������������������
	Architecture Explorer Basics�����������������������������������
	Understanding the Architecture Explorer Window���
	Architecture Explorer Options������������������������������������
	Navigating Through Architecture Explorer���
	Exploring Options for Namespaces���������������������������������������
	Exploring Options for Classes������������������������������������
	Exploring Options for Members������������������������������������

	Dependency Graphs������������������������
	Creating the First Dependency Graph��
	Creating a Dependency Graph Without Architecture Explorer��
	Navigating Through Your Dependency Graph���
	Dependency Graph Legend������������������������������
	Dependency Graph Toolbar�������������������������������
	The Code Index���������������������

	Code Maps����������������
	Summary��������������

	Chapter 17 Using Layer Diagrams to Model and Enforce Application Architecture��
	Creating a Layer Diagram�������������������������������
	Defining Layers on a Layer Diagram���
	Creating a Layer for a Single Artifact���
	Adding Multiple Objects to a Layer Diagram���
	The Layer Explorer�������������������������

	Defining Dependencies����������������������������
	Validating the Layer Diagram�����������������������������������
	Layer Diagrams and the Build Process���
	Summary��������������

	Part V Software Development����������������������������������
	Chapter 18 Introduction to Software Development��
	What’s New for Developers in Visual Studio 2013��
	Unit Testing�������������������
	Code Analysis��������������������
	CodeLens���������������
	Profiler���������������
	Advanced Debugging with IntelliTrace���
	Lightweight Code Commenting����������������������������������

	My Work��������������
	Suspend and Resume�������������������������
	Code Review������������������

	Summary��������������

	Chapter 19 Unit Testing������������������������������
	Unit Testing Concepts����������������������������
	Benefits of Unit Testing�������������������������������
	Writing Effective Unit Tests�����������������������������������
	Third-Party Tools������������������������

	Visual Studio Unit Testing���������������������������������
	Creating Your First Unit Test������������������������������������
	Managing and Running Unit Tests��������������������������������������
	Debugging Unit Tests���������������������������

	Programming with the Unit Test Framework���
	Initialization and Cleanup of Unit Tests���
	Using the Assert Methods�������������������������������
	Using the CollectionAssert class���������������������������������������
	Using the StringAssert Class�����������������������������������
	Expecting Exceptions���������������������������
	Defining Custom Unit Test Properties���
	TestContext Class������������������������

	Introduction to Microsoft Fakes��������������������������������������
	Choosing Between Stubs and Shims���������������������������������������
	Using Stubs������������������
	Using Shims������������������

	Using Test Adapters��������������������������
	Summary��������������

	Chapter 20 Code Analysis, Code Metrics, Code Clone Analysis, and CodeLens��
	The Need for Analysis Tools����������������������������������
	What’s New for Code Analysis in Visual Studio 2013���

	Using Code Analysis��������������������������
	Built-in Code Analysis Rules�����������������������������������
	Code Analysis Rule Sets������������������������������
	Enabling Code Analysis�����������������������������
	Executing Code Analysis������������������������������
	Working with Rule Violations�����������������������������������

	Using the Command-Line Analysis Tool���
	FxCopCmd Options�����������������������
	FxCopCmd Project Files�����������������������������
	Build Process Code Analysis Integration��

	Creating Code Analysis Rules�����������������������������������
	Code Metrics�������������������
	Code Clone Analysis��������������������������
	Finding Code Clones��������������������������
	Reviewing the Code Clone Analysis Results��
	How Code Clone Analysis Works������������������������������������
	Excluding Items from Code Clone Analysis���

	Using CodeLens���������������������
	Summary��������������

	Chapter 21 Profiling and Performance���
	Introduction to Performance Analysis���
	Types of Profilers�������������������������
	Visual Studio Profiling������������������������������

	What’s New in Profiling with Visual Studio 2013��
	Using the Profiler�������������������������
	Creating a Sample Application������������������������������������
	Creating a Performance Session�������������������������������������
	Adding a Blank Performance Session���
	Using the Performance Explorer�������������������������������������
	Configuring a Sampling Session�������������������������������������
	Configuring an Instrumentation Session���
	Configuring a .NET Memory Allocation Session���
	Configuring a Concurrency Profiling Session��
	Executing a Performance Session��������������������������������������
	Managing Session Reports�������������������������������
	Reading and Interpreting Session Reports���

	Command-Line Profiling Utilities���������������������������������������
	Just My Code�������������������
	Profiling JavaScript���������������������������

	Common Profiling Issues������������������������������
	Debugging Symbols������������������������
	Instrumentation and Code Coverage��

	Summary��������������

	Chapter 22 Debugging with IntelliTrace���
	IntelliTrace Basics��������������������������
	IntelliTrace?—?An Example��������������������������������
	Navigating the IntelliTrace Events View��
	Collecting Method Call Information���
	Collecting Detailed Information��������������������������������������
	Saving Your IntelliTrace Session���������������������������������������
	IntelliTrace Options���������������������������

	IntelliTrace in Production���������������������������������
	Installing the IntelliTrace Standalone Collector���
	Configuring IntelliTrace PowerShell Commandlets��
	Collecting Execution Information���������������������������������������

	Summary��������������

	Part VI Testing����������������������
	Chapter 23 Introduction to Software Testing��
	Role-Based Testing Tools�������������������������������
	Types of Tests���������������������
	Diagnostic Data Adapters�������������������������������
	Microsoft Test Manager�����������������������������
	Managing Automated Tests with Visual Studio��
	Test Project Types�������������������������
	Test Explorer��������������������
	Code Coverage��������������������
	Using Ordered Tests��������������������������
	Test Settings��������������������

	Summary��������������

	Chapter 24 Manual Testing��������������������������������
	What’s New in Visual Studio 2013���������������������������������������
	Microsoft Test Manager�����������������������������
	Using Test Plans�����������������������
	Configuring Test Settings��������������������������������
	Using Builds�������������������
	Analyzing Impacted Tests�������������������������������
	Defining Test Configurations�����������������������������������
	Plan Contents��������������������

	Running Tests and Tracking Results���
	Using Test Runner������������������������
	Supported Technologies for Action Recordings���
	Filing Bugs and Saving Test Results��

	Exploratory Testing��������������������������
	Running Automated Tests������������������������������
	Summary��������������

	Chapter 25 Coded User Interface Testing��
	What’s New in Visual Studio 2013���������������������������������������
	Creating Coded UI Tests Using the Coded UI Test Builder��
	Setting Up the Sample Application��
	Create a Test Project����������������������������
	Coded UI Test Builder����������������������������
	Generated Code���������������������
	Running Your Test������������������������
	Creating a Data-Driven Test����������������������������������
	Failing Tests��������������������
	Taking Screenshots�������������������������
	UI Map Editor��������������������

	Creating Coded UI Tests Using Action Recordings��
	Supported Technologies�����������������������������
	Summary��������������

	Chapter 26 Web Performance and Load Testing��
	Web Performance Tests����������������������������
	Web Performance Tests versus Coded UI Tests��
	Creating a Sample Web Application��
	Creating Users for the Site����������������������������������
	Creating and Configuring Web Tests���
	Recording a Web Performance Test���������������������������������������
	Configuring Web Performance Test Run Settings��
	Parameterizing the Web Server������������������������������������
	Test Settings��������������������
	Running a Web Performance Test�������������������������������������
	Observing Test Execution and Results���
	Editing a Web Performance Test�������������������������������������
	Data-Driven Web Performance Tests��
	Coded Web Performance Tests����������������������������������

	Load Tests�����������������
	Creating and Configuring Load Tests��
	Editing Load Tests�������������������������
	Executing Load Tests���������������������������
	Viewing and Interpreting Load Test Results���

	Distributed Load Tests�����������������������������
	Installing Controllers and Agents��
	Configuring Controllers������������������������������
	Configuring Agents�������������������������
	Running a Distributed Load Test��������������������������������������

	Cloud-Based Load Testing with Visual Studio Online���
	Running a Load Test in the Cloud���������������������������������������

	Summary��������������

	Chapter 27 Lab Management��������������������������������
	Lab Management Infrastructure������������������������������������
	Golden Images��������������������
	Agents�������������

	SCVMM Environments�������������������������
	Testing with Environments��������������������������������
	Create New Test Settings�������������������������������
	Run Manual Tests with an Environment���

	Automated Build-Deploy-Test with Environments��
	Standard Environments����������������������������
	Summary��������������

	Index������������
	Advertisement

