Professional

Application Lifecycle
Management

with Visual Studio® 2013

Mickey Gousset, Martin Hinshelwood, Brian A. Randell, Brian Keller, Martin Woodward

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

PROFESSIONAL
APPLICATION LIFECYCLE MANAGEMENT
WITH VISUAL STUDIO® 2013

INTRODUCTION . .. i i i e it i i it it i XXix

CHAPTER 1

» PARTI
CHAPTER 2
CHAPTER 3
CHAPTER 4

CHAPTER 5
CHAPTER 6
CHAPTER 7

» PART Il
CHAPTER 8
CHAPTER 9
CHAPTER 10

» PART Il
CHAPTER 11
CHAPTER 12
CHAPTER 13

Introduction to Application Lifecycle Management
with Visual Studio 2013 1

TEAM FOUNDATION SERVER
Introduction to Team Foundation Server 1"
Using Centralized Team Foundation Version Control 37

Distributed Version Control with Git and

Team Foundation Server i 77
Team FoundationBuild 93
Release Management 127
Common Team Foundation Server Customizations............ 153

BUILDING THE RIGHT SOFTWARE

Introduction to Building the Right Software. 167
Storyboarding 177
Capturing Stakeholder Feedback 193

PROJECT MANAGEMENT

Introduction to Project Management....................... 203
Agile Planningand Tracking i .. 233
Using Reports, Portals, and Dashboards 257

Continues

vww.allitebooks.cond

http://www.allitebooks.org

» PART IV
CHAPTER 14
CHAPTER 15

CHAPTER 16

CHAPTER 17

» PARTV
CHAPTER 18
CHAPTER 19
CHAPTER 20

CHAPTER 21
CHAPTER 22

» PART VI
CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26
CHAPTER 27

ARCHITECTURE
Introduction to Software Architecture 277

Top-Down Design with Use Case, Activity, Sequence,

Component, and Class Diagramst 289
Analyzing Applications Using Architecture Explorer,

Dependency Graphs,and Code mapsoute. 317
Using Layer Diagrams to Model and

Enforce Application Architecture 343
SOFTWARE DEVELOPMENT

Introduction to Software Development 357
UnitTesting ... 369
Code Analysis, Code Metrics, Code Clone Analysis,

andCodelens i 397
Profiling and Performance. 425
Debugging with IntelliTrace 465
TESTING

Introduction to Software Testing 489
Manual Testing.ot e 505
Coded User Interface Testingo, 537
Web Performance and Load Testing. 563
Lab Management. i 609
... 633

vww.allitebooks.cond

http://www.allitebooks.org

PROFESSIONAL

Application Lifecycle Management
with Visual Studio® 2013

vww.allitebooks.cond

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

PROFESSIONAL

Application Lifecycle Management
with Visual Studio® 2013

Mickey Gousset
Martin Hinshelwood
Brian A. Randell
Brian Keller
Martin Woodward

A

WFrox

A Wiley Brand

vww.allitebooks.cond

http://www.allitebooks.org

Professional Application Lifecycle Management with Visual Studio® 2013

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-83658-3
ISBN: 978-1-118-83636-1 (ebk)
ISBN: 978-1-118-83659-0 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred
to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or reccommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013958303

Trademarks: Wiley, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. Visual Studio is a registered trademark of Microsoft Corporation. All other trademarks are the

property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in
this book.

vww.allitebooks.cond

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

To Amye, Emma, and Meg, the girls in my life.
I love you!

—MICKEY GOUSSET

To Evangelina and Kaiden. Without whom I would be
lost at this time of great change.

—MARTIN HINSHELWOOD
To Juliane, Brent, and Nicole. I love you.

—BRIAN RANDELL

vww.allitebooks.cond

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

ABOUT THE AUTHORS

MICKEY GOUSSET is a Principal Consultant for Infront Consulting Group, a consult-
ing company focused on the Microsoft System Center family of products. He is one
of the original Microsoft Application Lifecycle Management MVPs, and co-author of
several books about ALM, including Professional Team Foundation Server (Wrox,
2006), Professional Application Lifecycle Management with Visual Studio 2010
(Wrox, 2010), and Professional Application Lifecycle Management with Visual Studio 2012 (Wrox,
2012). Gousset runs ALM Rocks! (www.almrocks.com), where he writes about Visual Studio, TFS,
and ALM in general. He speaks around the world on ALM and System Center topics. When not
writing or working with computers, Mickey enjoys a range of hobbies, from playing on Xbox Live
(Gamer Tag: HereBDragons) to participating in local community theatre. But nothing beats his
favorite pastime: spending time with Amye, Emma, Meg, and their four dogs, two cats, and one fish.

MARTIN HINSHELWOOD is the Principal Consultant for naked ALM Consulting, a

technical and management consultancy based in Scotland that focuses on Visual

Studio ALM, TFS, and Scrum. He has been a Visual Studio ALM MVP for six years

running and was even ALM MVP of the Year in 2011. As well as working with the

Visual Studio ALM Rangers and being an ALM Ranger Champion in 2011, Martin
participates in the lean-agile community. Martin has been a Professional Scrum Trainer with
Scrum.org since early 2010. He regularly teaches Scrum courses around the world and works as an
Engagement Manager for Agility Path. Somehow he also finds time to maintain his blog
(http://nkdalm.net /MrHinshBlog) and a YouTube Channel, and even speaks at many events around
the world (http://nkdalm.net/MrHinshEvents.) In his spare time Martin can be found on excur-
sions with his favourite people (Evangelina and Kaiden) and occasionally on Xbox
(http://nkdalm.net/MrHinshOnxbox).

BRIAN RANDELL is a Partner with MCW Technologies LLC. For more than 20 years
he has been building software solutions. He educates teams on Microsoft technolo-
gies via writing and training—both in-person and on demand. He speaks regularly
at shows small and large including Microsoft’s TechEd and PDC in the United States,
Europe, Africa, Australia, and New Zealand. He’s also a consultant for companies
small and large, worldwide, including Fortune 100 companies like Microsoft. Brian is a passionate
software craftsman who still enjoys coding as he helps teams to improve their processes from idea
to shipping, and to production management and monitoring. As a long time virtualization junkie,
Brian’s an expert in Hyper-V and Lab Management. In addition, he’s become obsessed over the last
few years with natural user interfaces and how to create compelling user experiences regardless of
platform. In early 2010, he toured the world hitting most of the continents (sadly no penguins were
trained) prepping Microsoft employees and Microsoft partners for the Microsoft Visual Studio 2010
launch. In 2012, he and his team built some of the first training content and demos for Microsoft
using Visual Studio 2012, Team Foundation Server 2012, and Windows 8. For the 2013 release, he
continued building new ALM content for use worldwide by Microsoft and its partners. He’s been a

http://www.almrocks.com
http://nkdalm.net/MrHinshBlog
http://nkdalm.net/MrHinshEvents
http://nkdalm.net/MrHinshOnXbox

Microsoft MVP in developer related technologies for more than 10 years and is currently a Visual
Studio ALM MVP. When not working, Brian enjoys spending time with his wife and two children
who enjoy making him look bad on the Xbox One (with and without Kinect).

BRIAN KELLER is a Director for Microsoft, specializing in Visual Studio and applica-
tion lifecycle management. He has been with Microsoft since 2002 and has presented
at conferences around the world, including TechEd, PDC, and Build. Outside of work
he enjoys spending time with his lovely wife Elisa and their awesome son Paxton.

MARTIN WOODWARD is a Senior Program Manager on the Team Foundation Server
= team at Microsoft. Previously, Woodward was also Team System Most Valuable
Professional (MVP) of the year. Not only does he bring unique insight into the inner
workings of Team Foundation Server, he brings a cross-platform perspective that he is
always happy to share through his writings, on his blog at www. woodwardweb . com, or
when speaking at events internationally. Martin also co-authored Professional Application Lifecycle
Management with Visual Studio 2010 (Wrox, 2010), Professional Team Foundation Server 2010
(Wrox, 2011), Professional Application Lifecycle Management with Visual Studio 2012 (Wrox,
2012), and Professional Team Foundation Server 2012 (Wrox, 2013).

http://www.woodwardweb.com

CREDITS

EXECUTIVE EDITOR
Robert Elliott

PROJECT EDITOR
Tom Dinse

TECHNICAL EDITOR
Michael Fourie

TECHNICAL PROOFREADER
Anthony Borton

PRODUCTION EDITOR
Daniel Scribner

COPY EDITOR
Kezia Endsley

MANAGER OF CONTENT DEVELOPMENT
AND ASSEMBLY
Mary Beth Wakefield

DIRECTOR OF COMMUNITY MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

VICE PRESIDENT AND EXECUTIVE
GROUP PUBLISHER
Richard Swadley

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Todd Klemme

PROOFREADER
Sarah Kaikini, Word One

INDEXER
Johnna van Hoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE

©iStockphoto.com/IS_ImageSource

ACKNOWLEDGMENTS

I’'M FORTUNATE TO BE SURROUNDED by ALM MVPs who make my life much easier. Brian Randell
and Martin Hinshelwood, thank you for taking this journey with me. You both have created some
amazing content in this book, and it is much better for it. And we are even closer friends because

of it. Mike Fourie, I just don’t know what to say. You are the most amazing technical editor I have
had. You have the ability to point out all the things I missed, without making me look bad. And
your depth of knowledge is astounding. Anthony Borton, thank you for all your help and assistance
with the book. To our editors Bob Elliot and especially Tom Dinse, thank you so much for keeping
us on track and schedule, and working with us when “stuff” happens. Tom, you are an amazing edi-
tor that I would write a book with anytime. And finally, to Amye, Emma (14), and Meg (10), thank
you for putting up with my schedule and my late hours in getting this project completed. I could not
have done it without your love and support.

—MICKEY GOUSSET

WITH THE MANY CHANGES IN THE LAST SIX MONTHS I don’t know where to start or why I agreed to
write a book of all things. I want to thank my parents Anne and John for helping me settle back into
Scotland (it was quite a shock after three years in Seattle), without you guys I would not have been
able to start my own business. My wonderful kids Evangelina (6) and Kaiden (4) for their patience
and distraction from the world around us, you make it all worth it. Finally I want to thank Mickey
Gousset and Brian Randell for putting up with my newbie questions and issues, and Mike Fourie for
taking it easy with the technical editing.

—MARTIN HINSHELWOOD

FIRST, TO MY DEAR FRIEND MICKEY for asking me to join him. We keep finding new ways to have
fun. To Mr. Hinsh, I’ve enjoyed getting to know you better and look forward to many more friendly
exchanges; exchanges only friends have. Mr. Keller, I still think fondly about first working with

you when you were a Product Manager and the fun we had on your first tour of duty outside the
Unites States speaking. Congratulations on being a husband and father, it suites you. And to Mr.
Woodward, what can I say mate? I only wish Ballycastle were up the road for me too. That said,
every visit we have is warm and wonderful no matter what part of the globe we’re at. All four of you
made this book better and I thank you for having me on the journey. Thank you to everyone at Wrox
especially Bob Elliot, Tom Dinse, and Kezia Endsley. Your editorial guidance and continued pokes
as well as catching all the little things, got this book done in fine shape. Thank you. To our techni-
cal editor Mike Fourie, you continue to amaze me with your work ethic and I know the book is 100

times better due to your keen eye. And I can’t leave out my dear Aussie friend Anthony Borton, who
took on the job of “one more read” before we published to make sure we didn’t write something stu-
pid. Thank you. Of course, any errors are those of myself and my co-authors. Throw stones our way.

Beyond those who were directly involved in the project, I have a few people I must mention who
have influenced my writing and general geekiness. To my business partner Ken Getz—you’ve done
more for me than you’ll ever know. I’'m a better human because of you. Thank you. To Dave and
Barbara Brady who gave me my first “computer” job. You gave me more than a job. You put me on
the path to a career I love. Thank you. To Ian Griffiths, you’re an inspiration to work with but a
better friend to break bread with—I look forward to more fun in the future. To Matt Nunn, from
our first fun in Australia to the wonderful solutions we’ve built, it’s been great working on the “art
of the possible.” To Jon Flanders, I know at your wedding you said you still didn't like me. That's
OK. I'll take what I can get. And to Mr. Brian Harry. It started with Visual SourceSafe. You wrote
that automation interface one summer and I was lucky to work with you. Your work ethic inspires
as does your dedication to customer and craft. Thank you for always being there.

To my first set of co-authors on my first published book: Dr. Joe Hummel, Justin Gehtland, Jason
Masterman, and Ted Pattison. Gents, there are times in your life that you wonder what you were
thinking. That book hurt, but everything has a purpose. I said never again but I did and the lessons
learned helped. Beyond that book however, all of our teaching together, the Guerilla events, and all
the other “fun” continues to warm my heart with great memories when I think of each of you.

All the things I know about Visual Studio and TFS come from hard work and having a cadre of
wonderful people to answer questions. This includes two special groups to me: Microsoft employ-
ees in DevDiv and the Microsoft ALM MVPs. Over the years countless e-mails, IM conversations,
and phone calls have been exchanged as well as many wonderful face-to-face conversations (even
the ones that were loud). Thank you. I can’t thank you all individually, but I do want to highlight

a few in particular from Microsoft working on ALM and TFS, including Doug Seven, David Starr,
Larry Guger, Grant Holliday, William Bartholomew, Rob Caron, Chuck Sterling, Chris Patterson,
Peter Provost, Buck Hodges, Aaron Bjork, Justin Marks, Jamie Cool, Jeff Behler, Ed Holloway, Ed
Blankenship, Ewald Hofman, Matthew Mitrik, Philip Kelley, Chad Boles, Sean McBreen, Tracy
Trewin, Will Smythe, Ravi Shanker, Vijay Machiraju, and Subrahmanyam Veera Mandavilli. To my
fellow MVPs, you’re all wonderful, ’'m lucky to have you as peers and thank all of you for your help
but in particular want to call out Jeff Levinson, Neno Loje, Richard Hundhausen, Adam Cogan,
Ben Day, David V. Corbin, Ognjen Bajic, Thomas Schissler, Jesse Houwing, Dylan Smith, Richard
Banks, and Jason Stangroome. Anyone not mentioned directly and forgotten, ’'m sorry.

Finally, I need to thank my dear, lovely wife. You are my best friend. Even though you told me not
to write the book, you supported me when I did. Our house is a home because of you and I am a
lucky man to find you here every time I come home from a trip. I see you in the eyes of our children
and that brings more joy than I would have ever imagined over twenty years ago when we first met.

—BRIAN RANDELL

CONTENTS

INTRODUCTION XXiX

CHAPTER 1: INTRODUCTION TO APPLICATION LIFECYCLE

MANAGEMENT WITH VISUAL STUDIO 2013 1
Application Lifecycle Management 2
Visual Studio 2013 Product Lineup 3
Application Lifecycle Management Challenges 4
Enter Visual Studio 2013 5
Application Lifecycle Management in Action 6

Requirements 6
System Design and Modeling 7
Code Generation 7
Testing 7
Feedback 8
Operations 8
Putting It into Context 8
Summary 8

CHAPTER 2: INTRODUCTION TO TEAM FOUNDATION SERVER 1"
What Is Team Foundation Server? 12
Acquiring Team Foundation Server 13

Hosted Team Foundation Server 13
On-Premises Installation 15
Team Foundation Server Core Concepts 15
Team Foundation Server 16
Team Project Collection 16
Team Project 17
Teams 20
Process Templates 21
Work Item Tracking 22
Version Control 23

Team Build 25

CONTENTS

XVi

Accessing Team Foundation Server 26
Accessing Team Foundation Server from Visual Studio 27
Accessing Team Foundation Server Through a Web Browser 29
Using Team Foundation Server in Microsoft Excel 30
Using Team Foundation Server in Microsoft Project 31
Command-Line Tools for Team Foundation Server 31
Accessing Team Foundation Server from Eclipse 31
Windows Explorer Integration with Team Foundation Server 32
Access to Team Foundation Server via Other Third-Party Integrations 32

What’s New in Team Foundation Server 2013 33
Version Control 33
Web Access 33
Agile Portfolio Management 33
Release Management 34
The Cloud 34

Adopting Team Foundation Server 34

Summary 36

CHAPTER 3: USING CENTRALIZED TEAM FOUNDATION
VERSION CONTROL 37

Team Foundation Version Control and

Visual SourceSafe (VSS) 2005 39

Setting Up Version Control 40

Using Source Control Explorer 41
Setting Up Your Workspace 42
Getting Existing Code 43
Sharing Projects in Version Control 45

Check-In Pending Changes 48
Checking In an ltem 50
Creating and Administering Check-In Policies 54
Viewing History 57
Labeling Files 58

Shelving 59
Workspaces 61
Server Workspaces 64
Local Workspaces 65

Command-Line Tools 66

Branching and Merging 67
Branching Demystified 67
Common Branching Strategies 70

Summary 75

CONTENTS

CHAPTER 4: DISTRIBUTED VERSION CONTROL

WITH GIT AND TEAM FOUNDATION SERVER 77
Fundamentals of Distributed Version Control
with Git 78
Getting Started with the Visual Studio Tools for Git 79
Clone 80
Commit 83
Push, Pull, and Fetch 86
Merging Changes with Git and Visual Studio 88
Branch Creation 88
Summary 91
CHAPTER 5: TEAM FOUNDATION BUILD 93
Team Foundation Build 94
What's New in Team Foundation Build 2013 95
Support for Git-based Repositories 96
Simplified Building and Testing of Windows Store Apps 97
MSTest Support Removed 99
Enhanced Hosted Build Services 99
Build Output Changes 99
Simplified Process Template 100
Built-in Support for Calling Scripts 100
Team Foundation Build Architecture 100
Working with Builds 101
Team Explorer 102
Build Explorer 102
Build Details View 103
Creating a Build Definition 104
Queuing a Build 114
Build Notifications 116
Team Build Process 118
Default Template Process 119
Build Process Parameters 119
Summary 125
CHAPTER 6: RELEASE MANAGEMENT 127
What Is Release Management? 127
Continuous Software Delivery 129
Defining a Release Pipeline 132

Xvii

CONTENTS

xviii

Configuring for First Use 133
Introduction to Actions 135
Introduction to Release Paths 137
Creating Release Templates 142
Creating Releases 148
Approvals 149
Summary 151
CHAPTER 7: COMMON TEAM FOUNDATION SERVER
CUSTOMIZATIONS 153
Object Models 154
Client Object Model 155
Server Object Model 155
Build Process Object Model 155
Simple Object Model Example 155
Java SDK for TFS 157
Customizing Team Foundation Build 157
Creating Custom Build Process Templates 157
Creating Custom Build Workflow Activities 159
Customizing Team Foundation Version Control 160
Custom Check-in Policies 160
Team Foundation Server Event Service 161
Customizing Work Item Tracking 162
Modifying Work Item Type Definitions 162
Creating Custom Work Item Controls 163
Summary 163
CHAPTER 8: INTRODUCTION TO BUILDING THE RIGHT SOFTWARE 167
Stakeholders 169
Storyboarding 170
Capturing Stakeholder Feedback 171
Work Item Only View 172
Third-Party Requirements Management Solutions 173
TeamCompanion 173
TeamSpec 174
inteGREAT 174
Summary 176

CONTENTS

CHAPTER 9: STORYBOARDING 177
Why Storyboarding? 177
PowerPoint Storyboarding 179

Storyboard Shapes 180
Layouts 181
Screenshots 182
My Shapes 185
Animations 187
Hyperlinks 188
Storyboard Links 189
Summary 190

CHAPTER 10: CAPTURING STAKEHOLDER FEEDBACK 193
Requesting Feedback 194
Providing Feedback 195

Voluntary Feedback 199
Summary 199

CHAPTER 11: INTRODUCTION TO PROJECT MANAGEMENT 203
Project Management Enhancements in
Team Foundation Server 2013 204

Rich Work Item Relationships 204
Agile Planning Tools 205
Test Case Management 207
Feedback Management 207
Enhanced Reporting 208
SharePoint Server Dashboards 208
Work Items 209
Work Item Types 209
Areas and Iterations 21
Process Templates 214
MSF for Agile Software Development 215
MSF for CMMI Process Improvement 217
Visual Studio Scrum 221
Third-party Process Templates 222

Custom Process Templates 223

XiX

CONTENTS

Managing Work Items 223
Using Visual Studio 223
Using Microsoft Excel 228
Using Microsoft Project 230
Using Team Web Access 230

Project Server Integration 231

Summary 232

CHAPTER 12: AGILE PLANNING AND TRACKING 233

Defining a Team 234

Managing Portfolio Backlogs 240

Maintaining Product Backlogs 244

Planning Iterations 248

Tracking Work 251

Customization Options 253

Summary 255

CHAPTER 13: USING REPORTS, PORTALS, AND DASHBOARDS 257

Team Foundation Server Reporting 258

Working with Team Foundation Server Reports 260
Tools to Create Reports 261
Working with Microsoft Excel Reports 262
Working with RDL Reports 273

Summary 274

CHAPTER 14: INTRODUCTION TO SOFTWARE ARCHITECTURE 277

Designing Visually 277

Microsoft’'s Modeling Strategy 279
Understanding Model-Driven Development 279
Understanding Domain-Specific Languages 280
The “Code Understanding” Experience 281

The Architecture Tools in Visual Studio Ultimate 2013 281
Use Case Diagrams 282
Activity Diagrams 283
Sequence Diagrams 283
Component Diagrams 284
Class Diagrams 284

XX

CONTENTS

Layer Diagrams 286
Architecture Explorer 286
What's New with Architecture Tools in
Visual Studio Ultimate 2013 287
Code Maps 287
Visual Studio Visualization and Modeling SDK 288
Summary 288
CHAPTER 15: TOP-DOWN DESIGN WITH USE CASE, ACTIVITY,
SEQUENCE, COMPONENT, AND CLASS DIAGRAMS 289
Use Case Diagrams 290
Creating a Use Case Diagram 290
Use Case Diagram Toolbox 294
Activity Diagrams 295
Creating an Activity Diagram 295
Activity Diagram Toolbox 298
Adding an Activity Diagram to a Use Case Diagram 300
Sequence Diagrams 300
Creating a Sequence Diagram 300
Sequence Diagram Toolbox 303
Component Diagrams 304
Creating a Component Diagram 304
Component Diagram Toolbox 308
Class Diagrams 310
Creating a Class Diagram 31
Class Diagram Toolbox 312
Generating Code from a UML Class Diagram 314
Summary 315
CHAPTER 16: ANALYZING APPLICATIONS USING ARCHITECTURE
EXPLORER, DEPENDENCY GRAPHS, AND CODE MAPS 317
Understanding the Code Base 318
Architecture Explorer Basics 319
Understanding the Architecture Explorer Window 320
Architecture Explorer Options 320
Navigating Through Architecture Explorer 321
Exploring Options for Namespaces 323
Exploring Options for Classes 325
Exploring Options for Members 326

XXi

CONTENTS

Dependency Graphs 328
Creating the First Dependency Graph 328
Creating a Dependency Graph Without Architecture Explorer 329
Navigating Through Your Dependency Graph 331
Dependency Graph Legend 334
Dependency Graph Toolbar 335
The Code Index 336

Code Maps 337

Summary 341

CHAPTER 17: USING LAYER DIAGRAMS TO MODEL
AND ENFORCE APPLICATION ARCHITECTURE 343

Creating a Layer Diagram 344

Defining Layers on a Layer Diagram 345
Creating a Layer for a Single Artifact 347
Adding Multiple Objects to a Layer Diagram 347
The Layer Explorer 347

Defining Dependencies 349

Validating the Layer Diagram 351

Layer Diagrams and the Build Process 353

Summary 354

CHAPTER 18: INTRODUCTION TO
SOFTWARE DEVELOPMENT 357

What's New for Developers in Visual Studio 2013 358
Unit Testing 358
Code Analysis 359
Codelens 359
Profiler 359
Advanced Debugging with IntelliTrace 360
Lightweight Code Commenting 361

My Work 362
Suspend and Resume 363
Code Review 364

Summary 367

XXii

CONTENTS

CHAPTER 19: UNIT TESTING 369
Unit Testing Concepts 370
Benefits of Unit Testing 370
Writing Effective Unit Tests 371
Third-Party Tools 372
Visual Studio Unit Testing 372
Creating Your First Unit Test 373
Managing and Running Unit Tests 376
Debugging Unit Tests 377
Programming with the Unit Test Framework 377
Initialization and Cleanup of Unit Tests 377
Using the Assert Methods 380
Using the CollectionAssert class 383
Using the StringAssert Class 385
Expecting Exceptions 386
Defining Custom Unit Test Properties 386
TestContext Class 387
Introduction to Microsoft Fakes 387
Choosing Between Stubs and Shims 388
Using Stubs 389
Using Shims 391
Using Test Adapters 393
Summary 394
CHAPTER 20: CODE ANALYSIS, CODE METRICS,
CODE CLONE ANALYSIS, AND CODELENS 397
The Need for Analysis Tools 398
What's New for Code Analysis in Visual Studio 2013 398
Using Code Analysis 399
Built-in Code Analysis Rules 400
Code Analysis Rule Sets 401
Enabling Code Analysis 402
Executing Code Analysis 404
Working with Rule Violations 407
Using the Command-Line Analysis Tool 410
FxCopCmd Options 410
FxCopCmd Project Files 413
Build Process Code Analysis Integration 414

xXiii

CONTENTS

Creating Code Analysis Rules 414
Code Metrics 414
Code Clone Analysis 417
Finding Code Clones 417
Reviewing the Code Clone Analysis Results 418
How Code Clone Analysis Works 418
Excluding Items from Code Clone Analysis 419
Using Codelens 420
Summary 423
CHAPTER 21: PROFILING AND PERFORMANCE 425
Introduction to Performance Analysis 426
Types of Profilers 426
Visual Studio Profiling 427
What's New in Profiling with Visual Studio 2013 427
Using the Profiler 428
Creating a Sample Application 429
Creating a Performance Session 430
Adding a Blank Performance Session 434
Using the Performance Explorer 434
Configuring a Sampling Session 444
Configuring an Instrumentation Session 445
Configuring a .NET Memory Allocation Session 446
Configuring a Concurrency Profiling Session 446
Executing a Performance Session 446
Managing Session Reports 447
Reading and Interpreting Session Reports 450
Command-Line Profiling Utilities 459
Just My Code 460
Profiling JavaScript 460
Common Profiling Issues 462
Debugging Symbols 462
Instrumentation and Code Coverage 462
Summary 463
CHAPTER 22: DEBUGGING WITH INTELLITRACE 465
IntelliTrace Basics 466
IntelliTrace — An Example 466
Navigating the IntelliTrace Events View 468
Collecting Method Call Information 469

XXiV

CONTENTS

Collecting Detailed Information 472
Saving Your IntelliTrace Session 473
IntelliTrace Options 478
IntelliTrace in Production 480
Installing the IntelliTrace Standalone Collector 481
Configuring IntelliTrace PowerShell Commandlets 482
Collecting Execution Information 483
Summary 484
CHAPTER 23: INTRODUCTION TO SOFTWARE TESTING 489
Role-Based Testing Tools 490
Types of Tests 490
Diagnostic Data Adapters 491
Microsoft Test Manager 493
Managing Automated Tests with Visual Studio 494
Test Project Types 495
Test Explorer 496
Code Coverage 499
Using Ordered Tests 499
Test Settings 501
Summary 503
CHAPTER 24: MANUAL TESTING 505
What’s New in Visual Studio 2013 506
Microsoft Test Manager 507
Using Test Plans 510
Configuring Test Settings 512
Using Builds 513
Analyzing Impacted Tests 515
Defining Test Configurations 515
Plan Contents 517
Running Tests and Tracking Results 523
Using Test Runner 525
Supported Technologies for Action Recordings 529
Filing Bugs and Saving Test Results 530
Exploratory Testing 531
Running Automated Tests 535

Summary 535

XXV

CONTENTS

CHAPTER 25: CODED USER INTERFACE TESTING 537
What's New in Visual Studio 2013 538
Creating Coded Ul Tests Using the Coded Ul Test Builder 542

Setting Up the Sample Application 542
Create a Test Project 543
Coded Ul Test Builder 544
Generated Code 549
Running Your Test 551
Creating a Data-Driven Test 552
Failing Tests 554
Taking Screenshots 555
Ul Map Editor 556
Creating Coded Ul Tests Using Action Recordings 558
Supported Technologies 562
Summary 562

CHAPTER 26: WEB PERFORMANCE AND LOAD TESTING 563

Web Performance Tests 564
Web Performance Tests versus Coded Ul Tests 564
Creating a Sample Web Application 565
Creating Users for the Site 565
Creating and Configuring Web Tests 566
Recording a Web Performance Test 568
Configuring Web Performance Test Run Settings 569
Parameterizing the Web Server 570
Test Settings 571
Running a Web Performance Test 574
Observing Test Execution and Results 574
Editing a Web Performance Test 575
Data-Driven Web Performance Tests 580
Coded Web Performance Tests 582

Load Tests 585
Creating and Configuring Load Tests 585
Editing Load Tests 595
Executing Load Tests 598
Viewing and Interpreting Load Test Results 598

Distributed Load Tests 601
Installing Controllers and Agents 601
Configuring Controllers 602

XXVi

CONTENTS

Configuring Agents 603
Running a Distributed Load Test 603
Cloud-Based Load Testing with Visual Studio Online 603
Running a Load Test in the Cloud 604
Summary 607
CHAPTER 27: LAB MANAGEMENT 609
Lab Management Infrastructure 610
Golden Images 611
Agents 611
SCVMM Environments 612
Testing with Environments 619
Create New Test Settings 619

Run Manual Tests with an Environment 622
Automated Build-Deploy-Test with Environments 626
Standard Environments 630
Summary 631
INDEX 633

XXVii

vww.allitebooks.cond

http://www.allitebooks.org

INTRODUCTION

OVER THE LAST 15 YEARS, Microsoft’s software development tooling has matured to address not
only the needs of the lone programmer, but the needs of an entire software development team. This
includes business analysts, project managers, architects, testers, programmers, managers, stakehold-
ers, and even operations personnel who deploy and maintain applications. This book was written to
help teams understand and adopt these tools with the end goal of making them more cohesive and
productive, and ultimately to produce higher-quality software on time and on budget.

Whether you already own Visual Studio 2013, or are considering purchasing it, this book will help
you evaluate and adopt the right tools for your project. This book considers all of the roles that
make up a modern software development project. The tools and technologies that are relevant to
each role are examined in detail, including walk-throughs, which will help you learn and apply each
tool within your team.

WHO THIS BOOK IS FOR

This book primarily targets teams of professionals in the field of commercial or enterprise software
development — in other words, intermediate to advanced users. You are likely to find this book use-
ful if you are any of the following:

> A developer, tester, or architect who wants to learn how the Visual Studio 2013 family of
products can help you perform your job

> A project manager who must manage a software development project

This book is not designed for the absolute beginner. The focus is on practical application of the
tools, code samples, and hands-on scenarios. The book’s organization makes it easy to use as

a step-by-step guide and as a reference for modeling, designing, testing, and coordinating enterprise
solutions at every level.

Visual Studio 2013 is designed for software teams of all sizes. So, whether you have a team of §
or 2,000 members, this book includes useful information for you related to Visual Studio 2013
and application lifecycle management. Unlike most Wrox books, this book targets all roles in the
software development organization — architects, developers, testers, project leads, and manage-
ment — not just developers.

INTRODUCTION

WHAT THIS BOOK COVERS

This book includes a complete overview of the application lifecycle management capabilities of
Visual Studio 2013. The book is divided into six main parts, based around the different aspects
of application lifecycle management:

> Part I: Team Foundation Server
Part II: Building the Right Software
Part III: Project Management

Part IV: Architecture

Part V: Software Development

Y Y ¥V VY Y

Part VI: Testing

Part I: Team Foundation Server

Because Team Foundation Server is at the heart of Microsoft’s application lifecycle management
solution, this book starts with an examination of its capabilities. It discusses the architecture of
Team Foundation Server 2013, and then delves into the version control system and some best prac-
tices surrounding branching and merging using Team Foundation Server. There is an in-depth look
at the automated build process — Team Foundation Build — followed by a detailed look at how
release management works in Team Foundation Server. Finally, you are presented with some exam-
ples of common customizations you can make to Team Foundation Server.

Part Il: Building the Right Software

Microsoft’s application lifecycle management offerings in Visual Studio 2013 have expanded to
recognize the role that stakeholders play in the software development process. Stakeholders could

be future end users of an application, the decision makers who are authorizing payment for an appli-
cation, lawyers who need to approve applications for regulatory requirements, or any number of
people external to the development team who have a vested interest in the outcome of a particular
development project. In this section of the book, you find out about new tools available to engage
with stakeholders early and often throughout the development process. These tools can lead to
higher-quality software that is more likely to meet expectations and deliver continuous value while
minimizing the amount of rework required.

Part Ill: Project Management

XXX

This section of the book deals with the project and process management functionality of Visual
Studio 2013 and Team Foundation Server 2013. This section examines the process templates that
ship with the product, and it covers the web-based agile planning and tracking capabilities. Part
I1T also discusses the reports that ship with Team Foundation Server. Whether you are practicing
a lightweight development methodology such as Scrum, or a more formal, rigorous development

INTRODUCTION

process, you will discover that Team Foundation Server will provide you with the tooling you need
to manage your projects.

Part IV: Architecture

This section of the book examines the tools available in Visual Studio 2013 for defining and ana-
lyzing application architecture. After a brief introduction to architecture concepts, the discussion
dives into all the new UML tools available, including use case diagrams, activity diagrams, sequence
diagrams, class diagrams, and component diagrams. You then learn about the Architecture Explorer
and how you can use it to understand the architecture of your application. Finally, this section
wraps up with a discussion of layer diagrams.

Part V: Software Development

This section of the book covers topics of most interest to a software developer using Visual Studio
2013. The topics selected for this section of the book pertain most to building either complex
applications or working with teams. For example, the section explains how unit testing, static code
analysis, profiling, code coverage, and code clone analysis features are ways to improve your appli-
cation’s overall quality and maintainability. Part V also discusses the built-in code review capability
and how you can use it to collaborate with other developers. You find out how the ability to suspend
and resume work in progress makes it easier to deal with interruptions. Finally, this section pro-
vides in-depth coverage of debugging applications with IntelliTrace, including a new way of using
IntelliTrace for debugging applications in a production environment.

Part VI: Testing

Visual Studio 2013 has numerous tools available for testers to use. The examination starts with a
look at the manual testing functionality available in Microsoft Test Manager, as well as the ability
to automate user interface tests with coded user interface tests. Web performance testing and load
testing enable you to create tests that can help you ensure that users of your website will experience
the best possible performance, even under heavy load. You’ll learn about the new cloud-based load
testing features. The section concludes with a look at the improved lab management capabilities of
Visual Studio 2013, which enable you to make use of physical or virtual environments that you can
use to automate build-deploy-test workflows.

TEAM FOUNDATION SERVER ADMINISTRATORS

If you are the person on your team who is responsible for administering your Team Foundation Server
deployment, you should consider purchasing this book as well as its sister book — Professional Team
Foundation Server 2013 by Steven St. Jean, Damian Brady, Ed Blankenship, Martin Woodward, and
Grant Holliday (Wrox, 2014. ISBN 978-1-118-83634-7) — which dives deeper into setup, configu-
ration, and administration of Team Foundation Server 2013. You find out more about the possible
deployment topologies you can choose from, how to make changes to process templates, advanced secu-
rity settings, considerations for disaster recovery and geographically distributed teams, and much more.

XXXi

INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, and tricks are offset and placed in italics like this.

SIDEBAR

Asides to the current discussion are offset like this.

As for styles in the text:
> We italicize new terms and important words when we introduce them.
> We show keyboard strokes like this: Ctrl+A.
» We show file names, URLs, and code within the text like so: persistence.properties.
>

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use boldface to emphasize code that is particularly important in the
present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code files that accompany the book. All the source code used in this
book is available for download at www.wrox.com/go/proalm3ed. You can also search for the book
at www . wrox . com. When you’re at the site, simply locate the book’s title (either by using the Search
box, or by using one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book.

XXXii

http://www.wrox.com/go/proalm3ed
http://www.wrox.com

INTRODUCTION

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-118-83658-3.

Alternatively, you can go to the main Wrox code download page at www.wrox.com/dynamic/
books/download.aspx to see the code available for this book and all other Wrox books. After you
download the code, just decompress it with your favorite compression tool.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or a faulty piece of code, we would be very grateful for your feedback. By sending in errata, you
may save another reader hours of frustration, and you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors.

NOTE A complete book list including links to errata is also available at
WWW . Wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact
/techsupport . shtml and complete the form to alert us to the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem
in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies, and to
interact with other readers and technology users. The forums offer a subscription feature to email
you topics of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

XXXiii

http://www.wrox.com/dynamic
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact
http://p2p.wrox.com

INTRODUCTION

At http://p2p.wrox.com, you can find several forums that will help you not only as you read the
book, but also as you develop your own applications. To join the forums, just follow these steps:

1.

Go to http://p2p.wrox.com and click the Register link.
Read the terms of use and click Agree.

Complete the required information to join, as well as any optional information you want to
provide, and click Submit.

You will receive an email message with information describing how to verify your account
and complete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages,
you must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P

and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXXiV

http://p2p.wrox.com
http://p2p.wrox.com

Introduction to Application
Lifecycle Management with

Visual Studio 2013

WHAT'S IN THIS CHAPTER?

> Defining application lifecycle management
> Learning about the Visual Studio 2013 product family
> Seeing ALM in action using Visual Studio Ultimate 2013

In June of 1999, Microsoft started to re-evaluate how Visual Studio was being used as part

of the software development process. Microsoft was continuing to serve the needs of an
individual programmer through the highly productive “code-focused rapid-application-devel-
opment” features of Visual Studio, but wasn’t doing much to help programmers work together
as a team. And what about software architects—how should they be working with the pro-
gramming team? And what about testers and project managers?

Many teams had begun to set up their own solutions using a mixture of third-party, in-house,
and vendor-provided tools to address such challenges as version control, bug tracking, and
team communications. But this mishmash of tools can be tricky to set up and maintain, and
even more difficult to integrate and report across. Microsoft sought to address this challenge
by providing an integrated set of tools designed to address the needs of the entire software
development team. Thus, Visual Studio Team System was born, and was first released with the
Visual Studio 2005 product line.

At the heart of Team System, Team Foundation Server was created to provide a hub for all
members of the development team to collaborate. Team Foundation Server is uniquely posi-
tioned from its predecessors across the industry by being the first tool of its kind built from
the ground up to provide an integrated solution for many capabilities that had historically

2 | CHAPTER 1 INTRODUCTION TO APPLICATION LIFECYCLE MANAGEMENT WITH VISUAL STUDIO 2013

been offered as standalone tools. Team Foundation Server provides a unified solution for storing
source code (along with a history of changes), work item tracking (which can include bugs, require-
ments, and so on), and automated builds. By providing a single solution with all of these capabilities,
Microsoft delivered the ability to link all these artifacts for end-to-end traceability, reporting, pro-
cess enforcement, and project management.

Team System also included “client” functionality, which surfaced in the various editions of Visual
Studio development tools. Visual Studio seamlessly integrated with Team Foundation Server, but
much of this tooling could also be used independently or with third-party source control solutions.
Visual Studio Team System also introduced role-specific tooling that lived outside of the core Visual
Studio development environment by recognizing that team members such as project managers are
oftentimes more comfortable using tools such as Excel or Project, both of which could be used to
manage and track work that lived in Team Foundation Server.

Team System was built from a foundation of tools and technologies that Microsoft had been using
internally for many years to build some of the most complex software projects ever undertaken.
Team System appealed not only to programmers, but to all members of the development team—
architects, application developers, database developers, and project managers.

Three years later, Visual Studio Team System 2008 evolved from the previous version to include
even more tools and functionality for all members of the project team to use. Two years after that,
Visual Studio 2010 added even more functionality, including an entirely new set of tools for general-
ist testers (also referred to as manual testers), bringing a new audience of prospective users into the
same set of tooling used by the rest of the team.

APPLICATION LIFECYCLE MANAGEMENT

Along with the release of Visual Studio 2010, Microsoft also stopped using the sub-brand “Team
System” to describe these capabilities. Instead, Microsoft started referring to these tools as the
application lifecycle management (also referred to as ALM) capabilities of Visual Studio.
Application lifecycle management is a term that has gained momentum in the development industry
to describe the way an application is managed from its conception, through its creation and deploy-
ment, to its eventual retirement.

It is important to note that application lifecycle management is a more comprehensive concept than
its popular predecessor, software development lifecycle (SDLC). SDLC is primarily focused on the
core coding activities that comprise the creation of an application’s life, beginning with a require-
ment for an application and ending when that application is built and delivered. Application lifecycle
management recognizes that requirements aren’t simply born out of thin air. They evolve based on
business needs, or ideas for new opportunities, and stakeholders who are considered external to the
development team may still play a role during the development of an application in helping to refine
requirements and provide feedback on implementations. Application lifecycle management also
recognizes that a development team’s job isn’t done the moment they hand off a “finished” applica-
tion. The development team will likely be called upon to help troubleshoot the application when
things go wrong in the deployed environment, or to create subsequent versions of the applica-

tion based on feedback from users or analytics from the operations team. Visual Studio itself has

Visual Studio 2013 Product Lineup | 3

matured over time to grow from being a tool targeted squarely at programmers during the software
development lifecycle to becoming a true solution for end-to-end application lifecycle management.

VISUAL STUDIO 2013 PRODUCT LINEUP

Table 1-1 outlines the product lineup for Visual Studio 2013.

TABLE 1-1: Visual Studio 2013 Product Lineup

PRODUCT NAME

Microsoft Visual Studio
Ultimate 2013 with
MSDN

Microsoft Visual Studio
Premium 2013 with
MSDN

Microsoft Visual Studio
Professional 2013 with
MSDN

Microsoft Visual Studio
Test Professional 2013
with MSDN

Microsoft Visual Studio
Express 2013 for Web

Microsoft Visual Studio
Express 2013 for
Windows

Microsoft Visual Studio
Express 2013 for
Windows Desktop

Microsoft Visual Studio
Team Foundation Server
2013

Microsoft Visual Studio
Team Foundation Server
Express 2013

DESCRIPTION

The comprehensive suite of application lifecycle management tools
for software teams to help ensure quality results from design to
deployment.

A complete toolset to help developers deliver scalable, high-quality
applications.

The essential tool for basic development tasks to assist developers in
implementing their ideas easily.

The primary tool for manual and generalist testers who need to
define and manage test cases, execute test runs, and file bugs.

A free version of Visual Studio 2013 that provides the core tools for
creating web applications and services.

A free version of Visual Studio 2013 that provides the core tools for
creating Windows Store apps.

A free version of Visual Studio 2013 that enables the creation of
desktop applications in C#, Visual Basic, and C++.

The server component for team development, version control, work
item tracking, build automation, project management, lab manage-
ment, and reporting.

A free edition of Team Foundation Server that provides most of the
same capabilities (including version control, work item tracking, and
build automation), with some limitations, for a team of up to five
users.

4 | CHAPTER1T INTRODUCTION TO APPLICATION LIFECYCLE MANAGEMENT WITH VISUAL STUDIO 2013

Visual Studio Premium contains all the functionality of Visual Studio Professional, and Visual
Studio Ultimate contains all the functionality of Visual Studio Premium. Visual Studio Premium and
Ultimate also include all of the functionality available in Visual Studio Test Professional.

There are a few additional standalone tools and technologies that comprise the Visual Studio 2013
family that are not listed. For example, in Chapter 10 you learn about the new Microsoft Feedback
Client, which stakeholders use to provide rich feedback about an application that is stored in Team
Foundation Server. In Chapter 3, you learn about Team Explorer Everywhere, which Eclipse devel-
opers use to work with Team Foundation Server. You learn about these additional tools throughout
this book, but Table 1-1 showcases the primary products that Microsoft markets as part of the
Visual Studio 2013 product family.

For a detailed breakdown of the functionality available in each product, a comparison chart is avail-
able at www.visualstudio.com.

NOTE Software licensing is potentially a complex topic. It is important to
ensure that the members of your team are adequately licensed to use Visual
Studio and the related technologies that make up your development and testing
environments. The Visual Studio Licensing whitepaper attempts to synthesize
all of the licensing requirements for Visual Studio, Team Foundation Server, and
related technologies into an easy-to-read format. You can find the latest ver-
sion of the Visual Studio Licensing whitepaper at http: //www.microsoft .com/
visualstudio/licensing.

APPLICATION LIFECYCLE MANAGEMENT CHALLENGES

Software developers share common challenges, regardless of the size of their teams. Businesses
require a high degree of accountability—software must be developed in the least amount of time,
and there is no room for failure.

Some of these challenges include the following:

> Tool integration problems—Most tools commonly used by software development teams
come from third-party vendors. Integrating with those tools can pose a major challenge—in
many cases, it requires duplicating or copying data into multiple systems. Each application
has a learning curve, and transmitting information from one application to another (incom-
patible) application can be frustrating and time consuming.

> Geographically distributed teams—Many development and management tools don’t scale
for geographically distributed teams. Getting accurate reporting can be difficult, and there is
often poor support for communication and collaborative tools. As a result, requirements and
specifications might be captured incorrectly, causing delays and introducing errors. Global
teams require solid design, process, and software configuration management to be integrated
into one package. There aren’t many software packages that can deliver all these features,
and those that do exist tend to be incredibly expensive.

http://www.visualstudio.com
http://www.microsoft.com/visualstudio/licensing

Enter Visual Studio 2013 |

5

> Segmentation of roles—Specialization can be a huge problem on a team. Experts can assume
that other departments are aware of information that doesn’t end up in the status reports but
that may greatly affect the project as a whole. Interdepartmental communication is a huge
and prevalent challenge. These barriers exist between developers and testers, developers and
stakeholders, developers and operations, and even developers and other developers.

> Bad reporting—This is an offshoot of the segmentation problem. In most cases, reports must
be generated manually by each team, which results in a lack of productivity. There aren’t any
effective tools that can aggregate all the data from multiple sources. As a result, the project
lead lacks the essential data to make effective decisions.

> Lack of process guidance—Ad hoc programming styles simply don’t scale. If you introduce
an off-cycle change to the code, it can cascade into a serious problem requiring hours and
days of work. Today’s software has a high level of dependencies. Unfortunately, most tools
don’t incorporate or enforce process guidance. This can result in an impedance mismatch
between tools and process.

> Testing as a second-class citizen—Shorter cycles and lack of testing can introduce code
defects late in the process. Additionally, poor collaboration between developers and testers
often results in wasted back-and-forth effort and software defects.

> Communication problems—Most companies use a variety of communication methods (such
as email, instant messaging, memos, and sticky notes) to send information to team members.
You can easily lose a piece of paper, or delete an important email message, if you are not
careful. There aren’t many centralized systems for managing team communications. Frequent
and time-consuming status meetings are required to keep the team on track, and many man-
ual processes are introduced (such as sending email, as well as cutting and pasting reports).

Companies introduce methodologies and practices to simplify and organize the software design
process, but these methodologies must be balanced. The goal is to make the process predictable
because, in a predictable environment, methodologies keep projects on track. It is often said that
predictability reduces complexity. Conversely, methodologies add tasks to the process (such as gen-
erating reports). If your developers spend too much time doing these tasks, they’ll be less productive,
and your company won’t be able to react competitively.

ENTER VISUAL STUDIO 2013

There are three founding principles behind the application lifecycle management capabilities of
Visual Studio 2013: productivity, integration, and extensibility.

Productivity is increased in the following ways:

> Collaboration—Team Foundation Server centralizes all team collaboration. Bugs, require-
ments, tasks, test cases, feedback, code reviews, source code, and builds are all managed
via Team Foundation Server 2013. All reporting is also centralized, which makes it easy for
project leads to track the overall progress of the project, regardless of where the metrics are
coming from.

6 | CHAPTER1 INTRODUCTION TO APPLICATION LIFECYCLE MANAGEMENT WITH VISUAL STUDIO 2013

> Manage complexity—Software development projects are more complex than ever, and are
getting more complex year by year. Team Foundation Server helps to manage this complexity
by centrally tracking your entire software development process, ensuring that the entire team
can see the state and workflow of the project at any given time.

Integration is improved in the following ways:

> Integrated tools—These facilitate communication between departments. More importantly,
they remove information gaps. With the Visual Studio 2013 family of products, integration
isn’t an afterthought—it’s a core design consideration for the toolset.

> Role-specific tools—Instead of asking every member of an extended development team to
conform to using the same tool, such as Visual Studio, Microsoft recognizes that many
members of a team already have a preferred tool that they use every day. Correspondingly,
Microsoft has integrated into those tools directly to provide comfortable interfaces back to
Team Foundation Server—whether it’s Visual Studio, Eclipse, Excel, Project, Project Server,

or simply a web browser.

> Visibility—Visual Studio and Team Foundation Server increase the visibility of a project.
Project leads can easily view metrics related to the project and can proactively address prob-
lems by identifying patterns and trends.

Extensibility is provided in the following ways:

> Team Foundation Core Services API—Most of the platform is exposed to the developer,
providing many opportunities for extensibility and the creation of custom tools that integrate
with Team Foundation Server.

> IDE—The Visual Studio integrated development environment (IDE) itself is extensible,
allowing third parties and end users to add everything from additional tool capabilities to
new language compilers to the development environment.

APPLICATION LIFECYCLE MANAGEMENT IN ACTION

To best demonstrate how Visual Studio 2013 can help in the process of application lifecycle man-
agement, let’s run through a typical scenario with a fictional software development company called
eMockSoft. eMockSoft has recently signed a partnership with a distributor to release its catalog of
products. The distributor has requested a secure website to manage inventory and pricing informa-
tion for internal and external partner organizations.

Let’s look at the scenario as it applies to application lifecycle management and the Visual Studio
2013 tools.

Requirements

The business analyst meets with the project sponsor and other stakeholders to obtain requirements
for the project. During this discussion, the business analyst and an application designer use the
PowerPoint Storyboarding capabilities of Visual Studio 2013 to build a storyboard that visually
models the application they believe their stakeholders are asking for. They share this storyboard

Application Lifecycle Management in Action | 7

with the stakeholders to review the proposed user interface, workflows, and transitions. The stake-
holders provide valuable feedback that helps to refine the design, even before a single line of code is
written.

The storyboard then becomes the basis of new requirements that inform the development team
about what the project sponsor expects the software to deliver. The project manager uses the new
web-based Agile planning tools to store these requirements in Team Foundation Server. She then
works with the development team to decompose these requirements into tasks that the team will
implement on an iterative basis. She also uses Microsoft Project to create a more detailed project
schedule based on this work by importing work items.

The infrastructure architect can now begin the system design.

System Design and Modeling

Based on the client specifications, the infrastructure architect can use the UML tools in Visual
Studio 2013 to define the architecture for the website. These designs help to inform the program-
ming team about what to implement. As the architecture evolves, the infrastructure architect will
use the dependency graph generation tools to analyze the application’s architecture and propose
architectural changes that can improve code maintainability and quality.

Code Generation

The developer receives work assignments and reviews the UML diagrams that were designed by
the architect. The developer writes the necessary code, and does some preliminary testing, using
the static code analysis and unit testing tools built into Visual Studio. Throughout the day, the
developer checks the code and tests into Team Foundation Server 2013. As work is completed, the
developer uses the new web-based task board provided with Team Foundation Server to track the
progress of his work and keep the rest of the team updated about his status.

When necessary, the developer uses the built-in code review tooling to invite peer developers to
view and comment on the code he is writing. This entire conversation is preserved within Team
Foundation Server, making it possible to later conduct audits to discover why certain decisions were
made about implementation choices.

Testing

The tester checks the progress of the development team by monitoring the nightly builds and auto-
mated tests. Using the lab management capabilities of Team Foundation Server 2013, each nightly
build triggers the automatic creation of a virtual environment that is ready each morning for the
tester to use. The tester uses Visual Studio Test Professional to author, manage, and execute a suite
of manual test cases each day to surface potential bugs for the development team. The tester files
bugs in Team Foundation Server that are assigned to the development team to fix.

All bug reports are stored in Team Foundation Server, and provide team members and project stake-
holders with full visibility into the progress of the project. The bugs automatically contain a rich set
of information for the developer, including a video of the test case being run by the tester, screen-
shots, an event log from the time the test was being run, and a pointer to a snapshot of the virtual

8 | CHAPTER 1 INTRODUCTION TO APPLICATION LIFECYCLE MANAGEMENT WITH VISUAL STUDIO 2013

environment where it was uncovered. The developer uses all this information to quickly diagnose
and fix the bug.

Feedback

When the development team has finished an initial version of the website, they decide to ask the
original stakeholders to review their progress to ensure that they are on the right track. The business
analyst uses Team Foundation Server 2013 to request feedback from the appropriate stakeholders
on the areas of the application that are ready for review. Each stakeholder receives an email along
with an invitation to provide feedback. The stakeholders use the new Microsoft Feedback Client

to capture their feedback as they are using the new application. The Feedback Client enables each
stakeholder to capture a video recording of the application as they are using it, along with notes,
screenshots, and audio annotations describing what they like and what they would like to see
changed. This feedback is rich and timely, helping the development team refine their implementation
before the iteration is finished.

Operations

After the application has been built and signed off by the testing team, it’s ready to be deployed in
the on-premises datacenter. eMockSoft uses System Center 2012 R2 to monitor the production
servers, so the testing team is quickly alerted in the event that the application breaks or begins
performing slowly. Using System Center Operations Manager, an operations engineer can choose

to assign the issue to engineering, which automatically creates a bug in Team Foundation Server,
including rich diagnostics from the Operations Manager’s application performance monitoring
capabilities. If a developer needs even more information to diagnose an issue, she can ask the opera-
tions team to capture an IntelliTrace file from the running application, which she can use to review
everything that happened during the application’s execution and look for clues about how to resolve
such an issue. By using these types of tools, the company can ensure better collaboration between
the development and operations team than had been achieved in the past.

Putting It into Context

This is a simple example that examines just a few of the ways in which Visual Studio 2013 can assist
with application lifecycle management. Throughout this book, you discover other examples that can
help your team become a more cohesive unit and ship better software.

SUMMARY

In this chapter you learned about the overall Visual Studio 2013 product family and how it has been
designed to help you address the entire application lifecycle management of your development projects.
The rest of this book dives more deeply into how you can apply these tools to your own team.

PART |

Team Foundation Server

» CHAPTER 2:

» CHAPTER 3:

» CHAPTER 4:

» CHAPTER 5:

» CHAPTER 6:

» CHAPTER 7:

Introduction to Team Foundation Server
Using Centralized Team Foundation Version Control

Distributed Version Control with Git and Team
Foundation Server

Team Foundation Build
Release Management

Common Team Foundation Server Customizations

Introduction to Team
Foundation Server

WHAT'S IN THIS CHAPTER?

> Understanding Team Foundation Server
> Learning the core concepts central to Team Foundation Server

> Getting access to Team Foundation Server and connecting to it for
the first time

> Learning about what's new in Team Foundation Server 2013
> Planning your Team Foundation Server adoption

Because Team Foundation Server is so fundamental to the Application Lifecycle Management
offering from Microsoft, later chapters go into more depth about utilizing different aspects
of the product, such as how to use it to plan your work, how to use version control when
developing software, and how to use the build automation capabilities. In each case, the use
of Team Foundation Server is explained within the context of the task you are doing — but
before we can do that you need to know what Team Foundation Server is, what it provides,
and how to get it.

Although a full treatment of Team Foundation Server is necessary in a book about Microsoft’s
Application Lifecycle Management solution, this book deliberately focuses on how to use
Team Foundation Server to develop software and effectively organize your teams. Team
Foundation Server is highly customizable and extensible by an administrator. The book
Professional Team Foundation Server 2013 (Wrox, 2014) is targeted at administrators of
Team Foundation Server and individuals who want to customize their instance heavily,
although Chapter 7 of this book gives you a small taste of the customizations that are possible
and provides a starting point to learn more.

12 | CHAPTER2 INTRODUCTION TO TEAM FOUNDATION SERVER

WHAT IS TEAM FOUNDATION SERVER?

Developing software is difficult, a fact that is repeatedly proven by how many projects fail.
Developing software is a creative endeavor, not a manufacturing process. Consequently, an essential
factor in the success of any software development team is how well the members of the team com-
municate with each other and with the people who wanted the software developed in the first place.

Microsoft Visual Studio Team Foundation Server 2013 provides the core collaboration functionality
for your software development teams in a very tightly integrated product. The functionality pro-
vided by Team Foundation Server includes the following:

> Project management and planning
Work item tracking (WIT)
Version control

Test case management

Build automation

Reporting

Y Y Y Y Y Y

Virtual lab management

Team Foundation Server is separate from Visual Studio. Logically, Team Foundation Server is made
up of the following two tiers, which can be physically deployed across one or many machines, physi-
cal or virtual:

> Application tier — The application tier primarily consists of a set of web services with which
the client machines communicate by using a highly optimized web service-based protocol.

> Data tier — The data tier is made up of two or more SQL Server databases containing
the database logic of the Team Foundation Server application, along with the data for
your Team Foundation Server instance. The data stored in the databases is used by Team
Foundation Server’s reporting functionality. All the data stored in Team Foundation Server is
stored in these SQL Server databases, thus making it easier to back up.

Team Foundation Server was designed with extensibility in mind. There are comprehensive APIs in
.NET and Java for integrating with Team Foundation Server, and a set of events that enables outside
tools to integrate with Team Foundation Server as first-class citizens. The same APIs and event sys-
tem are used by Microsoft itself in the construction of Team Foundation Server, as well as the client
integrations into Visual Studio, Microsoft Office, and Eclipse.

Team Foundation Server has competitors, including other enterprise Application Lifecycle
Management suites and purpose-specific solutions (such as source control, a build server, or a work
tracking system). As discussed in Chapter 1, the main benefit of having all these capabilities in

one product is the tight integration that Microsoft has been able to achieve between the tools that
you use to develop software and the tools that you use to communicate with your team and your
stakeholders.

Acquiring Team Foundation Server | 13

ACQUIRING TEAM FOUNDATION SERVER

Team Foundation Server is a server-side product that must be acquired, installed, and configured.
There are several options available for purchasing access to a server for your team. To begin with,
you should decide if you want to run the Team Foundation Server inside your own firewall or if you
want to explore a hosted Team Foundation Server offering.

Hosted Team Foundation Server

The easiest way to acquire Team Foundation Server is to rent it from a provider and access it over
the Internet. Trial options are available, which means you can get started with no cost, and there is
no need to wait for hardware to be purchased. When it comes to hosted options, there are two main
routes: hosting from Microsoft or hosting from a third-party provider.

However, hosting is not suitable for everyone. Some organizations have a legal obligation to keep
the data that they would store inside Team Foundation Server inside the firewall; others may require
the tight user identity integration provided by Team Foundation Server’s Active Directory integra-
tion. Others are just not comfortable making their source code, work items, and build accessible
from any machine over the Internet. For these types of organizations, a hosted solution probably
isn’t the answer.

Visual Studio Online

Microsoft makes available a massive cloud-hosted instance of Team Foundation Server, part of
Visual Studio Online at http: //www.visualstudio.com. This is new commercial branding for the
service that is in a preview at http://tfspreview.com.

As of the end of 2013, this is now a full commercial service available for customers who want to
purchase Team Foundation services for their team at a low, predictable cost. Depending upon how
you license Visual Studio (if at all), you’ll find a variety of plans, including free, that provide access
to the rich features of Team Foundation Server, but in a purpose-built cloud implementation.

Visual Studio Online is hosted on Windows Azure and makes use of all the services provided by
Microsoft’s cloud operating system to ensure high availability, resiliency, and a full backup of your
data. However, because the system is scaled to support the thousands of users who access it over the
Internet—and because it is just the basic core Team Foundation services that are available—Visual
Studio Online comes with some limitations compared with a full on-premises installation. For
example, currently there is no integration with SharePoint for a project portal and document library.
There are also limited reporting features currently available and restrictions to the amount of cus-
tomization that you can do to the server instance.

However, Visual Studio Online provides all the version control, work item tracking, build automa-
tion, and project management capabilities of Team Foundation Server. Being available over the
Internet makes it very easy to use when your team is distributed globally, and it is easy to get started
on using the service. All you need to do is visit www.visualstudio.com, create an account, and your
team can be up and running before you have finished reading this chapter. Access to Visual Studio

http://www.visualstudio.com
http://tfspreview.com
http://www.visualstudio.com

14

CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

Online is controlled by federated Internet-based credentials; at the time of writing you need to have
a free Microsoft Account from to authenticate with the service.

Because Visual Studio Online is maintained by the Team Foundation Server team at Microsoft, it

is always running the very latest version of the server software during their development process.
Therefore, new features will show up on Visual Studio Online before they are made available in the
standard retail installation of Team Foundation Server via an update or a new major release. For
this reason, you may notice some differences between some of the screens displayed in the figures of
this book and the appearance of Visual Studio Online at the time of reading.

NOTE This cloud-hosted version of Team Foundation Server from Microsoft is
the same in many ways as the Team Foundation Server available elsewhere and
installed on your own servers, but there are some ways in which it operates dif-
ferently (such as with regard to authentication). Throughout the rest of the book,
we distinguish between the “hosted service” behavior and the regular (that is,
“on-premises”) behavior when it is important to do so — however, the major-
ity of this book describes the behavior of Team Foundation Server in general,
regardless of where it is installed.

Third Party—Hosted Team Foundation Server Providers

Many commercial companies can host your Team Foundation Server for you over the Internet for a
small charge. They have the advantage that they have all the Team Foundation Server administrative
knowledge in-house and have a great deal of experience running their servers for many customers.
As these companies are dealing on a different scale than that of Microsoft’s hosted service, they can
often be much more flexible in the capabilities they provide (at a cost). Depending on the hosting
provider, you may also be able to purchase SharePoint portal capabilities, along with a full report-
ing instance, and get the same capabilities as if you were running Team Foundation Server in-house
without having to go through the up-front costs of acquiring the hardware to run Team Foundation
Server or purchasing the software licenses in full, before use.

The version of Team Foundation Server used by the third-party hosted providers is exactly the
same as the version you would get if you installed it on premises. The only difference is that Team
Foundation Server is running in their data centers or private clouds and your team accesses it over
the Internet. In this book, behavior categorized as on-premises refers to the behavior you would
expect to see from your third party—hosted Team Foundation Server provider as opposed to the
hosted service behavior provided by Microsoft’s hosted offering (www.visualstudio.com).

NOTE Microsoft provides a list of companies offering commercial hosting
services for Team Foundation Server at http://aka.ms/tfshosting.

As mentioned previously, in some organizations, using a third party to host such important data as
your company’s source code is not acceptable, and some other companies may actually be required
by law to keep such data within the bounds of the corporate firewall. In those instances an on-
premises option is the only one available.

vww.allitebooks.cond

http://www.visualstudio.com
http://aka.ms/tfshosting
http://www.visualstudio.com
http://www.visualstudio.com
http://www.allitebooks.org

Team Foundation Server Core Concepts | 15

On-Premises Installation

The way that the vast majority of customers enjoy the features of Team Foundation Server is by
locally installing a version of the software inside the firewall. Trial versions of Team Foundation
Server are available for you to download and install locally so you can get up and running quickly.
You can also download a prebuilt virtual machine from Microsoft with all the software necessary to
help you evaluate the product.

NOTE You can find the latest version of the virtual machine at http://aka.
ms/VS11ALMVM or you can download the Express or Trial version of Team
Foundation Server to install locally at http://aka.ms/tfs2013.

To purchase Team Foundation Server to run locally, you can acquire the software in retail or via a
MSDN Subscription, a Volume Licensing purchase, or through a Microsoft Partnership agreement.

Also available, first introduced in the 2012 release, is a version called Team Foundation Server
Express. This includes the core developer features — such as version control, work item tracking,
and build automation — all of which is available free of charge for individuals and teams of up to
five users. The Express edition comes with a few limitations, namely: no support for SharePoint inte-
gration, limited to five named users, supports only SQL Express (so no reporting and a maximum
database size of 10GB), and no sprint/backlog planning or feedback management.

You can upgrade from a Trial or Express edition of Team Foundation Server to a full edition at any
time without losing any data. In addition you can purchase additional Client Access Licenses (CALs)
if you require more than the five named users that come with the Express edition.

NOTE For more information about installing or administrating a Team
Foundation Server instance, see Professional Team Foundation Server 2013 by
Steven St. Jean, Damian Brady, Ed Blankenship, Martin Woodward, and Grant
Holliday (Wrox, 2014).

TEAM FOUNDATION SERVER CORE CONCEPTS

Let’s take a look at some of the core concepts that are critical to understanding Team Foundation
Server. If you have been using previous versions of Team Foundation Server for a while (especially
the previous Team Foundation Server 2012 release), then you might want to skip to the “What’s
New in Team Foundation Server 2013” section later in this chapter.

Figure 2-1 provides an overview of the Team Foundation Server components, which are explained in
the following sections.

In addition to the components shown in Figure 2-1, understanding the concepts of teams and team
builds is necessary for a complete understanding of Team Foundation Server. Those concepts are
also covered in the following sections.

http://aka
http://aka.ms/tfs2013

16

CHAPTER 2 INTRODUCTION TO TEAM FOUNDATION SERVER

Team Foundation Server

Team Project Collection u

Team Project

Process Template

Version Work Item
Control Tracking

FIGURE 2-1

Team Foundation Server

A Team Foundation Server instance can be physically split into many different machines. The
application tier refers to the running web application that is handling all requests for data from
client machines running Visual Studio. The data in a Team Foundation Server instance is stored

in a data tier, which is essentially a SQL Server installation being accessed by the application tier.
Although the application tier and the data tier are logically separate, you can have both installed on
a single physical machine. As the application tier is the level at which you access a Team Foundation
Server instance, the application tier machine name is often referred to as simply the Team
Foundation Server. You refer to your Team Foundation Server by name or URL (that is, tfsserver
or http://tfsserver:8080/tfs) when Team Foundation Server is installed in the default virtual
directory in IIS on the default port. When talking to a Team Foundation Server hosted over the
Internet, you most often use the full URL, such as https://proalm.visualstudio.com.

Team Foundation Server can scale to support a very large number of active users, depending on the
hardware supporting it. Therefore, for most organizations, Team Foundation Server instances tend
to be scoped according to who pays for the installation and operation of the instance, not by scaling
limitations of the server.

Team Project Collection

The team project collection concept was first introduced in Team Foundation Server 2010. This is a
container for team projects. Each server has one or many team project collections, and a project col-
lection can have zero or more team projects.

The team project collection is the main level of isolation between instances on a server. In a hosted
Team Foundation Server, the collection is what is provided as your account. Global security groups
take effect at the project collection level. The identifiers for work items and for changesets in version
control are all numbered with sequential IDs that are unique at the project collection level.

A team project collection has a one-to-one relationship with a database instance in SQL Server.
Therefore, you can back up and restore at the project collection level. You can move project

http://tfsserver:8080/tfs
https://proalm.visualstudio.com

Team Foundation Server Core Concepts | 17

collections between Team Foundation Servers, and you can split the project collection to break up
the distribution of team projects between the resulting collections. Using this process, you can move
a team project into a new collection by cloning the existing project collection and then deleting the
appropriate team projects from each of the cloned project collections.

Each Team Foundation Server instance has a default project collection, usually called
DefaultCollection. As project collections were not introduced until the 2010 release, older clients
that were created for Team Foundation Server 2008 will only be able to see this default collection.

Team Project

A team project is a collection of work items, code, tests, or builds that encompass all the separate
tools that are used in the lifecycle of a software development project. A team project can contain
any number of Visual Studio solutions or projects, or, indeed, projects from other development
environments. A team project is usually a fairly long-running thing with multiple areas and itera-
tions of work.

You need at least one team project to start working with Team Foundation Server. When the team
project is created, the following are also created by default:

> Path in version control (if using Team Foundation Version Control)
> Default work item queries

> Default areas and iterations

> Default team

If you’re using a Team Foundation Server instance that is also attached to a SharePoint and SQL
Server Reporting Services instance, then the following are also created:

> Team project website
> Document library

> Stock reports

WARNING [t is not possible to rename a team project after it’s been created.
Also, the number of team projects in the team project collection has a perfor-
mance effect on the system, so you do not want to have more than around 250
teams per project collection. Therefore, you want to think carefully before creat-
ing a new team project.

It is often useful to experiment with Team Foundation Server features in a
sandboxed test instance of Team Foundation Server. Many people download

the Team Foundation Server Trial virtual machine image from Microsoft for
this purpose or get an account for a Microsoft-hosted Team Foundation Service
instance at http: //www.visualstudio.com, but some organizations have enter-
prise-wide test instances of Team Foundation Server for people to experiment in.

The granularity that you choose for your team project has important implications for how you
structure your work and when you move from one team project to another.

http://www.visualstudio.com

18 | CHAPTER2 INTRODUCTION TO TEAM FOUNDATION SERVER

Team projects are intended to represent the largest unit of work in your organization. For example,
in Microsoft Developer Division, the whole of a Visual Studio release lives in a single team project
with Team Foundation Server as an area of that project.

A team project has a single process template, and changes made to the process template of a running
team project affect that team project only. The default reports and work item queries are all scoped
by team project, making it easy to track and find work for that team project as an entity.

The following are also linked to the team project that they belong to and, in general, are difficult to
move between team projects:

>

Work Items — Each work item is attached to the team project and uses the process template
assigned to it. For this reason, it is not possible to move a work item from one team project

to another, although you may copy the work item between projects in the same project col-

lection and include a link to the source work item for reference.

Document Libraries — The team project optionally refers to a project website based on
SharePoint Foundation or SharePoint Server. The document libraries in this website are
linked to this project, and all the documents, projects plans, process guidance, or other non-
deliverable assets contained in the document library therefore correspond to the team project.

Reports — All the reports created as part of one of the stock process templates are scoped
to the team project level, making it easy to determine the progress of work inside that team
project.

Builds — Each build definition is tied to a team project, as are the build controllers and build
agents performing the builds.

Version Control — All items stored in version control are either under a team project node
in the repository or in a Git repository. All settings for version control are controlled at the
team project level.

Classifications — A team project is typically broken into areas and iterations. An area is
typically a functional area of the code that may have a subset of the whole team typically
working on it. For example, a particular application may be broken into tiers: the web tier,
application tier, and database tier. It is common that a feature or requirement may affect all
tiers of the application, but a task or bug may just affect a small area of the code. Therefore,
areas are organized hierarchically so that a feature can be assigned to the whole application
in the team project, but an ASP.NET form development task may be assigned to a child area.
Iterations are similarly organized. For Version 1 of the application, you may split develop-
ment into several phases and, in each phase, have several short iterations (or sprints). These
can be organized hierarchically in the iterations section.

SCOPE OF A TEAM PROJECT

In general, a team project is “bigger than you think.” A good way of thinking about
what needs to be grouped into a single team project is to think about the effect of

a typical requirement for your software development project. If the requirement
would affect the ASP.NET front end, Java middleware, and SQL database reposi-
tory, then all these projects and teams of developers probably want to be working in
the same team project.

Team Foundation Server Core Concepts | 19

Following are three general areas that are used when scoping a team project, but
every organization is different, and yours might need to combine these aspects
when deciding on your approach:

> Application
> Release
> Team

For some organizations, it makes sense to have only a single team project in a single
project collection. Others may have more than 100.

Team Project per Application

The Team Project per Application model is a common approach, as requirements
are generally addressed by the entire application, and a group of people is assigned
to work on it. The applications typically have a long lifecycle, going from the incep-
tion phase, through active development and support, and finally to the end-of-life
phase. However, a common mistake is for a single team responsible for several
applications to have those applications split into team projects. This makes it dif-
ficult to manage the priorities of work across those projects. The Team Project per
Application model is more suited to large applications that have a dedicated team
or teams working on the application throughout the application’s lifecycle.

Team Project per Release

This is the methodology adopted by Microsoft Developer Division as they develop
Visual Studio. It is useful for very large teams working on long-running projects.
After every major release (such as Visual Studio 2013), you create a new team proj-
ect. At this point in time, you can carry out changes that might have come about
from your post-release review. You might take the opportunity to reorganize your
version control tree, improve process templates, and copy over work items from the
previous release that didn’t make it.

This methodology tends to be suited to large independent software vendors (ISVs)
working with products with a very long lifetime. In these cases, it is generally
safer to start as a Team Project per Application and then move to a Team Project
per Release if required to make reporting easier. It is very rare that this type of
team project model is applicable to everyday business development. For that, Team
Project per Team is usually more common.

continues

20 | CHAPTER2 INTRODUCTION TO TEAM FOUNDATION SERVER

continued

Team Project per Team

For smaller teams (fewer than 50 people), where the size and responsibilities of the
team tend to stay fairly consistent but the applications they work on are in a con-
stant state of flux, the Team Project per Team approach is often the most suitable.
If your team members are often working on more than one application at a time,
the same team or a subset of the team works together on those projects over time,
or the project lifecycle is measured in months rather than years, then you should
consider this approach as a starting point.

Teams

Starting with Team Foundation Server 2012, teams are modeled as a core concept within Team
Foundation Server. When you create a new team project, a new team is created for you by default
with the name of that project. For example, if you create a team project called adventureworks,
then a team called AdventureWorks Team is automatically created. The team initially contains just
one member (who is also an Administrator), the person who created the team project, but you can
easily add members to the team using their domain credentials in an on-premises install or by email
address for the hosted service.

As well as membership and administrators, a team has the following items associated with it:
> Description of the team, for example, what they are responsible for.
> Security permissions in Team Foundation Server given to members of the team.
> Areas that the team is responsible for.
>

Iterations that the team will be taking part in. The iterations have a start date and end date
that control which iteration is the “current” one.

A backlog of work associated with that team (that is, work items in that team’s area).

A board of backlog items, showing for each product backlog item or story what associated
tasks there are for that work item. Team members can easily drag and drop them into other
states, such as In Progress or Done.

> Alert events, for example sending an email notification when a build fails or a work item is
associated with a team member.

> Favorites, such as work item queries, source control paths, or build definitions that may be
important to that team.

For many smaller team projects, the concepts of team and team project merge. But for larger team
projects, you may want to create additional teams, which is why it is important to call out what
belongs to the team and what belongs to the team project.

Any areas, iterations, work items, work item queries, builds, and most actual Team Foundation
Server artifacts that you create are created at the team project level. By default, other teams can see

Team Foundation Server Core Concepts | 21

them and interact with them. You can think of the team as a filter on the team project data to show
which information is most relevant to that team, and therefore to you as a member of one or more
teams.

Under the covers in Team Foundation Server, a team is actually just a Team Foundation Server secu-
rity group with some additional properties and metadata associated with it.

Process Templates

An important fact about software development projects is that there is no single process that is suit-
able for delivering all types of solutions to all types of businesses with all types of teams. Therefore,
Team Foundation Server was designed from the ground up to be flexible in how you want your
teams to work.

The process template is a set of files, both XML configuration files and supporting template files
like SQL Server Reporting Services RDL files, that provide the details of how you want your process
to work. Microsoft provides the following three process templates with the default installation of
Team Foundation Server:

> Microsoft Visual Studio Scrum 2013 — Available previously as an optional add-on and made
the default in Team Foundation Server 2012, the Scrum process template is not only installed
by default but is the default process template used when creating new projects. It is a template
designed for teams that want to base their software development on the highly popular Scrum
methodology (at the time of writing the most popular of the formal Agile development method-
ologies). Users’ needs are tracked by product backlog item work items, which are broken down
into task work items. There are also work items for bugs, impediments, and test cases. The
work items’ states follow those recommended by the Scrum software development practice.

NOTE For more information on the Scrum software development process in
general, visit http://scrum.org.

> MSF for Agile Software Development 2013 — This is a lightweight template designed for
teams following a delivery process based on general Agile software development practices.
User needs are tracked by user story work items, as well as types for bugs, issues, tasks, and
test cases. In general, the work items have a simple state progression from active to resolved
to closed. It is also an excellent starting point for people who want to customize a process to
fit with their development organization.

> MSF for CMMI Process Improvement 2013 — This is a more detailed template, designed for
teams with more traditional process requirements — that is, those that typically have longer
lifecycles and possible governmental requirements that the process template would help ful-
fill. Note that if your organization is striving for CMMI compliance you should not consider
this template as your only choice; you should still evaluate the possibilities offered by the
MSEF for the Agile Software Development template, among others.

In addition to the templates installed by default, more are available to download online. If you have
an existing process in your organization, it is possible to create a custom process template to match
the process.

http://scrum.org

22 | CHAPTER2 INTRODUCTION TO TEAM FOUNDATION SERVER

After you have created a team project with a process template, it is possible to modify nearly all
aspects of it while the project is in flight, including work item types, fields, states, and so on. This
was another critical design decision taken by Microsoft in designing Team Foundation Server
because Microsoft recognized that the best teams are those that continually improve and adapt

their processes, and that, as the project continues, more is learned about the domain, as well as the
strengths and weaknesses of the team.

Work Item Tracking

Work items in Team Foundation Server are things such as requirements, bugs, issues, and test cases.
In other words, these are the items of work that your organization needs to track to manage the
delivery of a software development project.

The work item tracking system is highly extensible. You can control which fields are presented to the
users, which fields are rolled up into the reporting data warehouse, how the work item looks, what
states the work item can be in, and how to transition from one state to the next.

All work items share certain common fields such as ID, state, and title, as shown in Figure 2-2. They
have a full history of changes recorded to every field in the work item and by whom. You can also
link work items, files, web pages, or other elements in Team Foundation Server.

Bug 53: Fix Title on Main Page of Site *
] S
Public % Web X Add.. ~

Fix Title on Main Page of Site

STATUS CLASSIFICATION PLANNING

Assigned To Administrator ~ Area byalagile\U! ¥ Story Points 1

State Resolved * lteration byalagile\lteration 1 ~ StackRank 6

Reason Fixed Priority 2 -
Resolved Reason Fixed Severity 3 - Medium -
REPRO STEPS SYSTEM INFO TEST CASES HISTORY ALL UNKS (1] ATTACHMENTS

Start your browser.
Notice the title has the ald branding.

New Fixed
Active Resolved
Administrator Brian Randell
4/13/2013 1/16/2014

Cancel

FIGURE 2-2

The work item type definitions are all configurable at the team project level. The work item types
are created from the process template definition during project creation, but they can be modified

Team Foundation Server Core Concepts | 23

as the team project is in flight. Changing the work item types for one team project in flight does
not affect those in another team project, even if they were created using the same original process
template.

All data about the work item is stored in the Team Foundation Server database. Any file attach-
ments are also stored in the database.

NOTE You learn more about work items in Chapters 23 through 27, all of
which are included in Part VI of this book.

Version Control

Team Foundation Server includes a full enterprise-class, centralized version control system that has
been designed from the ground up to work well in environments that are spread across a wide geo-
graphical area over high-latency, low-bandwidth connections.

TEAM FOUNDATION SERVER AND VSS

There’s an important misconception to get out of the way: Although Team
Foundation Server provides version control capabilities, it is in no way related to
Microsoft’s previous version control system, called Visual SourceSafe (VSS). In
terms of core concepts, it actually shares more in common with the version control
system that was previously used internally in Microsoft, a product with the code
name “Source Depot.” Team Foundation Server is actually based on an entirely
new code base and contains features not found in either product.

The basic model of version control in Team Foundation Server will feel very familiar if you have
used Visual SourceSafe (VSS), Polytron Version Control System (PVCS), Perforce, or Subversion,
but is different from Distributed Version Control Systems, such as Git or Mercurial. There have
been very significant improvements in Team Foundation Server 2013 in the version control system
(read more details about them in Chapter 3). In addition, you can now choose an alternative version
control repository, one based on Git (read more about this in the “What’s New in Team Foundation
Server 2013” section later in this chapter and in Chapter 4). There are now two modes of operation
for version control; one is used with server workspaces, which will be familiar to users of older ver-
sions of Team Foundation Server. With a server workspace, all files are read-only in the local file
system until you check out a file to edit it.

The new mode of operation (and the default for new installations) is local workspaces, which will
be much more familiar to users of tools such as Subversion or CVS. With local workspaces, files

are read/write—enabled locally, and no checkout is required before you can edit the file. This makes
working offline and working outside of Visual Studio significantly easier. However, the cost of this
convenience is that you have to check which files have been changed before updating those files (or
“checking them in”) to the server. Also, as no server call is made before a file is updated, you receive

24 | CHAPTER2 INTRODUCTION TO TEAM FOUNDATION SERVER

no warning if another team member is working on a file at the same time as you until you go to
perform a check-in. However, for most teams with a regular-sized code base (that is, fewer than
100,000 files) the reduction in friction in editing the files outside of Visual Studio or when offline
from Team Foundation Server means that local workspaces are a sensible default starting point.

As is common with centralized version control systems, all check-in operations are performed
against the server; you cannot check in locally.

The project collection administrator can configure which modes of operation are available and can,
for example, force server workspaces if a more controlled environment is preferred.

In either mode, by default, Team Foundation Server allows multiple people to edit the same text-
based files at the same time. This is particularly useful for .s1n, .vbproj, and .csproj files in a
Visual Studio project. When you go to check the file in to the server, if the latest version of that file
is newer than the one you checked out, you are prompted to merge your changes with the changes
made by your colleagues.

NOTE Chapter 3 provides more in-depth information about version control.

Team Foundation Server version control contains the following features:

> Atomic check-ins — Changes you make to the files are batched into a changeset. When you
check in the files in a changeset, they are taken as a single atomic transaction. If a single file
cannot be checked in (for example, because of a merge conflict) then the whole changeset is
not committed. Only after the whole changeset has been successfully applied do any of the
files become the latest version. This way, you can ensure the consistency of your code base.

> Associate check-ins with work items — When you perform a check-in, you may associate that
changeset with one or more work items. In this way, you can get full traceability of require-
ments from the initial feature desired by the user, to the tasks required to create it, to the
check-ins into version control that were required to implement the feature. This information
is surfaced in the work item that you linked to, as well as being shown in the build report
and also passed into the reporting system in Team Foundation Server.

> Branching and merging — Team Foundation Server supports a full path space branching
model. If you desire parallel development on a code base, then you can create a branch of the
code in two separate places in the version control repository, and then merge changes that
have been applied to one branch into the other.

> Shelving — This includes the capability to store files on the server without committing them
to the main version control repository. This is useful in a couple of different scenarios. You
may want to back up changes made on your local machine to the server if you are going to
be working on the files for more than a few hours or if you need to work on a different task
temporarily and resume later. Another scenario is when you want to copy changes from one
machine to another without checking them in (for example, a shelveset is used during a code
review, to have a colleague verify your changes).

Team Foundation Server Core Concepts | 25

NOTE Chapter 18 provides more information on performing a code review with
Visual Studio 2013.

> Labeling— In Team Foundation Server, you can tag a set of files at a particular version with
a textual label. This is useful for indicating which files were included in a certain build or
which files are ready to move to your quality assurance (QA) process. Note that in Team
Foundation Server, labels are always editable. Provided you have permission, you may add or
remove files from that label at any time.

> Concurrent check-outs — Also known as the Edit-Merge-Commit model, by default, multiple
people may edit a file at the same time. If a file were modified while you were working on it,
then you would be prompted to merge the changes with the latest version of the file.

> Follow history —If you rename or branch a file then you can view the history of that file
before it was renamed or branched. You can also follow the history of a file from before it
was branched or merged.

> Check-in policies — When performing a check-in, Team Foundation Server provides the
capability for the client to run code to validate that the check-in should be allowed. This
includes performing actions, such as checking that the change is associated with a work item,
checking that the code passes static code analysis rules, and so on. Check-in policies are also
an extension point in Team Foundation Server so that you can create your own, should you
want to do so.

» Check-in notes — In some organizations, it is necessary to capture metadata about a check-in
(such as the code reviewer, or a reference to a third-party system). In other version control
systems, this is frequently accomplished by requiring that the check-in comment follow cer-
tain unenforced conventions. Team Foundation Server provides check-in note functionality to
capture this metadata. A team project administrator may add or remove check-in notes at the
team project level, as well as make a particular check-in note mandatory.

» Team Foundation Server proxy — Frequently, organizations have regional development
centers separated from the main development offices or the data center hosting the Team
Foundation Server environment. When a get is performed from version control, files are
downloaded to the client machine. In the remote office environment, this often means that
the same files are downloaded over the wide area network (WAN) to every client machine
involved in the development. Team Foundation Server provides an optional proxy server
that may be installed in these remote offices. In those scenarios, the clients may be configured
to perform the download via the proxy so that the proxy can cache the downloaded files at
the remote location. In that way, the majority of the developers in the remote office will be
downloading files from the proxy server local to them, thus removing traffic from the WAN
and improving performance.

Team Build

Team Foundation Server provides a fully-featured build-automation server to enable you to stan-
dardize the build infrastructure for your team. Team builds are set up in the system as a build

26 | CHAPTER2 INTRODUCTION TO TEAM FOUNDATION SERVER

definition. You provide the build definition with information as to what you want to build — that
is, the folders or files in Team Foundation Server version control that contain the sources to be built,
and the projects or solutions in those folders to build. You also specify when to perform the build
using a trigger, such as building on every single check-in (continuous integration), building on a
schedule, or validating that your changes pass the build process before check-in (known as a gated
check-in).

NOTE Chapter 5 provides more information on the build-automation
capabilities.

ACCESSING TEAM FOUNDATION SERVER

There are many ways for a team member to interact with the core services in Team Foundation
Server, including the following:

> Web browser

Visual Studio

Eclipse-based development environments
Microsoft Test Manager

Team Foundation Server Administration Console
Microsoft Excel

Microsoft Project

Command-line tools

Y Y Y VY Y VY Y'Y

Third-party integrations

The following sections examine each of these, including the functionality they provide and
basic usage.

TEAM FOUNDATION SERVER LICENSING

You must ensure that you are licensed to connect to an on-premises Team
Foundation Server. In general, for Team Foundation Server, this means that you
need to have a Client Access License (CAL), which is typically included with the
MSDN subscription. People without MSDN can purchase it separately. It is your
responsibility to ensure that you have the correct licenses required to cover your on-
premises usage of Team Foundation Server. If you’re in doubt, contact your Team
Foundation Server administrator. If your organization needs help understanding

its licensing needs then contact your local Microsoft representative for licensing
assistance.

Accessing Team Foundation Server | 27

Accessing Team Foundation Server from Visual Studio

Team Foundation Server functionality is installed as a standard part of the install of a Visual Studio
edition (including the Express editions).

Assuming that you have an account, connect to your Team Foundation Server by clicking the
Connect to Team Foundation Server link on the Visual Studio Start Page or in Team Explorer
(View > Team Explorer).

If your desired server is not available in the Servers drop-down, click the Servers button and then
click the Add button to connect to your Team Foundation Server. As shown in Figure 2-3, you
can enter the server name or provide the full URL given to you by your Team Foundation Server
administrator.

Narme or URL of Team Foundation Server:
REE

Connection Details
Path: tfs
Port number: | 8080

Protocol: @ HTTP () HTTPS

Preview: | http://tfs2013:8080/tfs

FIGURE 2-3

After you have added the server, select the project collection that contains your team projects and
select the team project or projects that you want to work on.

Your selected team project displays in the Team Explorer window. The Team Explorer window will
come as the first big surprise for users of an older version of Visual Studio. In Visual Studio 2013,
the Team Explorer experience has been refined some more from the major 2012 update, which had
the goal of removing clutter to provide a more focused experience. The home page that displays
when you first connect to a team project is shown in Figure 2-4.

The sections that appear in the page depend on the version of Visual Studio that you have installed
and the capabilities configured with your Team Foundation Server. For example, the My Work
section is only displayed in Premium and Ultimate versions of Visual Studio when connected to a
Team Project using Team Foundation Version Control. The Documents section displays when the
team project is connected to a SharePoint portal, and the Reports section displays when the proj-
ect has an associated reporting service site. If you’re using a Team Project with Team Foundation
Version Control, you’ll see Pending Changes and Source Control Explorer options. If you’re using
a Team Project with a Git-based repository, you’ll see Changes, Branches, and Unsynced Commits.
However, all versions of Team Explorer display Work Items, Builds, and Settings. Clicking each sec-
tion takes you to that page, which contains other sections. For example, clicking Work Items takes
you to a page that contains your favorite work item queries and a tree of the available work item
queries on the server (see Figure 2-5).

28 | CHAPTER2 INTRODUCTION TO TEAM FOUNDATION SERVER

Team Explorer - Home v 1Xx Team Explorer - Work ltems v 1x
o ¥ | [¥] Search Work ltemns (Ctrl+') P~ (<] Gy ¥ |] Search Work ltems (Ctrl+') 2~
Home | AdventureWorks - Work [tems | AdventureWorks -
4 Project New Work ltem + | New Query
Configure Workspace | Web Portal |Task Board |Team Room
4 My Favorites
| l.l My Waork | @ Pending Changes Drag queries here to add them to your favorites.
= 4 Team Favorit:
| Source Control | & Work ltems ‘eam Favorites (1)
Explorer fE Workin Progress 1
| L';'L:'J Builds | & Team Members 1n Progress
| {a 4 Queries
Settings
— s My Queries
4 3% Shared Queries
4 Solutions Fl Current Sprint
You must configure your workspace mappings to open B Blocked Tasks
solutions for this project. 2 Open Impediments
% Sprint Backlog
B Test Cases
% Unfinished Work
Work in Progress
% My Feedback Requests
BB Product Backlog
4 Work ltem Templates
Cenfigure...
& Templates

Solution Explorer [EEINISCIIEY Class View

Solution Explorer QECIYSGIIEY Class View

FIGURE 2-4 FIGURE 2-5

To change pages or projects or to connect to a different project, click the page header. A drop-down
menu displays that enables you to change pages or connect to a different team or project (see
Figure 2-6).

NOTE If you have additional sections for each team project then you probably
have the Team Foundation Server power tools installed on your machine. This
excellent set of tools is provided by the team at Microsoft to further enhance
your Team Foundation Server experience. The Team Explorer, like most parts of
Team Foundation Server, is extensible, so you can install extensions, or create
your own, that take advantage of this.

Accessing Team Foundation Server | 29

Team Explorer - Home O x
<] ¥ | B | Search Work ltems (Ctrl+') P~

Home | AdventuréWorks -

v Home

sk Board | Team Room
My Work

Pending Changes Pending Changes

Source Control Explorer

Work ltems Work ltems
Bilis Team Members
Team Members

Projects and My Teams Y AdventureWorks
Settings ¥ Connectto Team Projects...
4 Solutions

Mew Team Project...

You must configure your workspace m__,
solutions for this project.

Teamn Explorer

FIGURE 2-6

Accessing Team Foundation Server Through a Web Browser

In Team Foundation Server 2012, Microsoft invested heavily in the web-based view of the server
(often called Web Access). For the 2013 release, they continued to enhance it. You can view your
server by navigating to its URL in a browser or by clicking the Web Access link in the Team
Explorer. For example, if your server internally is called t£s2013, then by default you would navi-
gate to http://t£s2013:8080/tfs. If your machine is accessed over the Internet, then a URL such
as https://proalm.visualstudio.com is probably used.

Web Access (Figure 2-7) is ideal for users who do not want to install a dedicated Team Foundation
Server client on their machines. At a high level, “when fully licensed,” it offers the following func-
tionality from the browser:

> Backlog and iteration planning

» Task board

> Create and edit work items and work item queries

> Manage areas and iterations

>

Administer permissions and team membership

http://tfs2013:8080/tfs
https://proalm.visualstudio.com

30 | CHAPTER2 INTRODUCTION TO TEAM FOUNDATION SERVER

> Read-only access to version control

> Queue and manage build definitions

o] Visual Studio Online / AdventureWorks ~ Brian Randell (MCW)
HOME CODE WORK BULD TEST T] P~
Overview
O Your account is an Early Adopter account. In 56 days your account will revert to a standard account. Learn more, x
How to x Work Createnew ~ Visual Studio
F Backlos in Vi i
Work Code Build Test o Open in Visual Studio
) o Task board Requires Visual Studio 2013
Create and manage Learn about werking Learn about builds in Leam more about Test ~ [RGHIRIN i .
your preduct backleg in with your code the cloud Manager and test M Get Visual Studio
minutes planning See Visual Studio downloads
] e © o
Sprint 1 January 15 - January 31 @ T€amM rooms Other links
AdventureWorks Team Room Request feedback
0 users in room Cenfigure schedule and iterations...
1h Configure work areas..
Backlog items: 1in progress
Pinned Items © Members Manage...
Workin Progres. || Adventurework. | Nightly . 9 nﬁ
Work items Recent changes () Completed 9 minutes ago
™

FIGURE 2-7

Using Team Foundation Server in Microsoft Excel

As part of the Visual Studio Team Explorer installation, integration into Microsoft Excel is provided
by default and a Team tab is available on the ribbon in Excel. This enables you to add and edit work
items directly from Excel spreadsheets, as shown in Figure 2-8, as well as create Excel-based reports
using data directly from Team Foundation Server.

H - @~ = Book1 - Excel TABLETOOLS ?
FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW TEAM DESIGN
Get Work Items "I~ Edit Areas and lterations [7] Add Tree Level = =& Outdent :_] @ Team Foundation Help
Mo Publish Refregh 3 Co0se Columes Lk Configure - [Add child 5 Indent : &} Team Project Process Guidance
ew Publish Refres| ew
List 0, Links and Attachments &% Open in Web Access Report @ Team Project Portal
Work ltems Tree Reports Help
H12 - A
A B C D E F G H

) Project: BlueYonder Server: alm13\dc Query: Product Backlog List type: Tree

2 B stack Rank B work item Type B vitle1 B Assigned To B story Points B state B iteration Path B Area Path [~
3 23 125000 User Story As acustomer | should be able to k Isabella Boyer (PO) 5 New \Backlog \Backlog
4 1 250000 User Story As a customer, | want to be able to Isabella Bayer (PO) 5 New \Iteration 1 \

5 38 312500 User Story As a customer, | want to easily see Isabella Boyer (PO} 8 Active \lteration 1 \

6 2 375000 User Story All customers should be automatic Isabella Boyer (PO) 5 New \Iteration 1 \

7 3 500000 User Story As a customer, | want to be able to Isabella Bayer (PO) 5 New \lteration 1 \

8 a 625000 User Story BlueYonder administrators should Isabella Boyer (PO) 5 New \lteration 1 \

g 5 750000 User Story BlueYonder administrators shauld Isabella Bayer (PO) 5 New \lteration 1 \
10 6 875000 User Story As a customer, | want to see cheap Isabella Boyer (PO) 5 New \lteration 1 \
1 7 1000000 User Story As a customer, | want to create a pi Isabella Boyer (PO) 5 New \Iteration 1 \
12 User Story As a customer, | want to be able to Isabella Boyer (PO} 10 New \

FIGURE 2-8

Accessing Team Foundation Server | 31

Using Team Foundation Server in Microsoft Project

Integration into Microsoft Project is also provided as part of the Team Explorer installation. This
enables you to add and edit work items directly from Microsoft Project and to view data about the
progress of these work items.

NOTE Chapter 11 describes this integration in more detail.

Command-Line Tools for Team Foundation Server

Team Foundation Server includes a set of command-line tools as part of the Team Explorer instal-
lation. The main command-line tool to be aware of as a user is tf.exe, which is available from a
Visual Studio 2013 command prompt. You can also install it separately on non Windows—based
systems such as Mac OS X, Linux, and many other UNIX flavors.

The tf£ command provides full access to Team Foundation Server version control functionality,
including features in Team Foundation Server version control that are not exposed via the graphical
clients.

NOTE For more information and full reference information on the com-
mand-line tools available for Team Foundation Server, see http://aka.ms/
tfsCommands.

Accessing Team Foundation Server from Eclipse

For members of the team who are using Eclipse-based IDEs (including IBM Rational Application
Developer or one of the many other Eclipse-based environments), full access to the Team
Foundation Server capabilities are available from Microsoft using the TFS plug-in for Eclipse as part
of Team Explorer Everywhere.

As you can see in Figure 2-9, at a high level, the Eclipse integration provides all the same functional-
ity that a developer inside Visual Studio would utilize, including the following:

> Full version control integration (check-out, check-in, history, branch, merge, label, synchro-
nize, and so on)

Full work item tracking (create and edit work items and work item queries)
Full team build integration (create, edit, and manage builds and build definitions)

> Access to team reports and documents

http://aka.ms

32 | CHAPTER?2

INTRODUCTION TO TEAM FOUNDATION SERVER

@ Eclipse File FEdit Navigate Search Project Run Window Help 3 M M1 [0 @ & & @ @ © ¢ <> 4 100%EF ThuJan 16 7:25AM Q =
—

1/16/14

6:42:08 AM

Field

Iteration ID

Iteration
Path

1/16/14

Edited by Brian Randell (MCW)

0Old Value New Value

36 43
1\Sprint 1

Edited (To Do to In Progress) by Brian Randell

6:41:34AM (MCW)

State
Reason

Old Value
ToDo
New task

New Value
In Progress
Work started

800 Team Server _ Task 31 - Eclipse - /Users/brianr/Documents /worl e
e O e et (Qauick Access il 7 | &YJava |1 Team Foundation Server Exploring
Source Contrel Work in Progress [Results 2] Task 31 R = B G}Team Explorer 52 [Console =0
Task 31 : Fix incorrect price displayed ety ‘ Y ‘ =
Fix incorrect price displayed Home ® AdventureWorks
Iteration | Adventureworks\Release 1\Sprint 1 Eal Search Work Items ¥
Status Details
Assigned To [Brian Randell (MCW) +| Remaining Work |1 | (D pending changes v
State [In Progress [+] Backlog Pririty _
| Source Control Explorer v
Reasan Work started Activity [[+]
Blocked [[+ Area [AdventureWarks [*] | E/' Work Items v
Times ~ || 16px B I A7 Type your comment here. | {& Settings v

FIGURE 2-9

NOTE Check-in policies for the cross-platform and Eclipse clients must be sepa-
rately configured inside that client. Also, the Java build extensions power tool
available at http: //aka.ms/tfpt is required on the build server to integrate
with the Ant or Maven build processes that are common in Java environments.

Windows Explorer Integration with Team Foundation Server

As part of the Team Foundation Server power tools available at http://aka.ms/tfpt, a Windows

Explorer shell extension is available as an optional installation. This provides access to the basic ver-

sion control functionality of Team Foundation Server from a standard Windows Explorer window
and is most useful when working with Team Foundation Server version control outside of Visual

Studio or Eclipse.

Access to Team Foundation Server via Other Third-Party

Integrations

Team Foundation Server supports a rich and vibrant third-party ecosystem. As discussed previously,
the same .NET and Java object models used by Microsoft to talk to Team Foundation Server are
also available for developers in third-party companies to integrate with. Integrations are available

http://aka.ms/tfpt
http://aka.ms/tfpt

What's New in Team Foundation Server 2013 | 33

into other parts of the Microsoft Office suite (such as Word and Outlook). In addition, many devel-
opment tools now integrate with Team Foundation Server using the extensibility hooks provided by
Microsoft.

For older development tools that support the Microsoft Source Code Control Interface (MSSCCI,
pronounced “miss-key”) plug-in model for version control, Microsoft has a MSSCCI provider for
Team Foundation Server as part of the power tools.

NOTE For more information on the Team Foundation Server power tools, visit
http://aka.ms/tfpt.

WHAT’'S NEW IN TEAM FOUNDATION SERVER 2013

In the 2013 release, there have been a number of changes that continue on the work started with
the 2012 release — some more dramatic than others. There have been four major changes in Team
Foundation Server 2013: Git support in version control, Agile portfolio management planning,
release management tools, and the commercial release of the Windows Azure-based Visual Studio
Online. Team Foundation Server 2013 keeps the same core architectural building blocks introduced
in the 2010 release, but with new sets of features built on top of it. Although many of these features
are explained throughout this book, if you have used a previous version of Team Foundation Server
then the features described in the following sections will be new to you.

Version Control

Whereas Team Foundation Server 2012 included in the biggest fundamental change to Team
Foundation Version Control since the original release in 2005, Team Foundation Server 2013 takes
things to the next level by letting you choose a completely different type of repository — a Git-based
one with full support for distributed version control. This is explained in detail in Chapter 4.

Web Access

The most visible change to Team Foundation Server 2012 was the completely rewritten web inter-
face. In Team Foundation Server 2013, Microsoft continued to invest. The latest version supports
Kanban boards for managing your workflow. The new team rooms provide a tracked conversa-
tion portal for your teams to discuss project-related items as well as to track system events. The
website also saw Microsoft bring web-based test case management by adding a full-featured Test
hub. The home page is more customizable for each team and by the time you read this, there will
be support for pinning work item charts to home pages. All of the new features are discussed
throughout the book.

Agile Portfolio Management

In Team Foundation Server 2013, you have the option to do Agile portfolio management, some-
times colloquially referred to as “enterprise Agile” by Microsoft. By default, each team project is

http://aka.ms/tfpt

34 | CHAPTER2 INTRODUCTION TO TEAM FOUNDATION SERVER

configured with one level of portfolio backlog using the Feature work item type. In addition, you
can configure up to four additional levels of portfolio backlogs. This can provide you with seven lev-
els, from the top-level items to backlog items to tasks.

If you’re upgrading from Team Foundation Server 2012, you must configure your existing projects
using the Configure Features wizard if you want portfolio backlogs from an upgraded team project.
In addition there’s additional licensing issues. This feature is covered in detail in Chapter 12.

Release Management

One of the missing features from earlier releases of Team Foundation Server are tools to make it
easier to get your software from the development team to production and to your customers. In
mid-2013, Microsoft acquired a partner solution called InRelease which provided a set of release
management capabilities for use with Team Foundation Server. This technology was rebranded as
Release Management for Visual Studio 2013 and is now developed and supported by Microsoft.
Rather than customize your build definitions to try automated deployment, you now have a first
class tool to manage your release pipeline. The feature provides a rich Windows client to define your
deployment environments and configure the deployment via Windows Workflow, including a rich
set of built-in deployment tasks. There’s a web-based approval tool to manage a deployment as it
moves between environments, including notifications. Finally, there’s a deployer agent (that must be
licensed per server) to get your bits configured on your machines — physical or virtual. Chapter 6
covers this feature in detail.

The Cloud

By making available a hosted Team Foundation Service in the cloud at http: //www
.visualstudio.com, Microsoft has removed the barrier of entry for teams that want to use the
Application Lifecycle Management features of Visual Studio but do not want to run their own Team
Foundation Server. The effect of making Team Foundation Server available over the Internet has
also brought about changes to many aspects of the system — for example, you can now authenti-
cate with this hosted service using a browser-based federated authentication mechanism rather than
being forced to use a Windows-based login. The Team Foundation Build service now uses a polling-
based model to detect when a new build is requested rather than the old push model, which makes
using a build server in a different domain or outside the firewall much easier for on-premises instal-
lations of Team Foundation Server.

ADOPTING TEAM FOUNDATION SERVER

The value of Team Foundation Server is realized when it is utilized in a team. Therefore, ensuring a
successful Team Foundation Server adoption requires cooperation from many people in your organi-
zation. This section should help you avoid some common pitfalls and provide you with some sugges-
tions on where to start with what may seem like a large and daunting product.

http://www

Adopting Team Foundation Server | 35

When introducing any new tooling into a large organization, it is important that you address the
key pain points first. For many companies, traceability of work through the development lifecycle
is often an area that is being poorly addressed by existing tooling. For others, the version control
system being used may be out of date and performing poorly. It is, therefore, usually the work
item tracking or version control components that people first start using when adopting Team
Foundation Server.

Luckily, Team Foundation Server is flexible enough that you can still get value from the product
when using only one or two components of the system. When you have adopted both version con-
trol and work item tracking, the next area to tackle to gain the most benefit is likely to be Team
Foundation Build. By automating your build system and increasing the frequency of integrations,
you reduce the amount of pain that always occurs when integrating components to form a product.

The key is to gradually remove the unknown and unpredictable elements from the software delivery
process, all the time looking for wasted effort that can be cut out.

Automating the builds not only means that the build and packaging process becomes less error
prone, it also means that the feedback loop of requirements traceability is completed. You can now
track work from the time that it is captured, all the way through to a change to the source code of
the product, and into the build that contains those changes.

After a period of time, you will have built up a repository of historical data in your Team
Foundation Server data warehouse, and you can start to make use of the reporting features to pre-
dict if you will be finished when you expect (that is, whether the amount of estimated work remain-
ing on the system is reducing at the required rate). You can also drill into areas that you might want
to improve — for example, which parts of the code are causing the most bugs.

It is after a period of getting used to the tooling that you want to look at your process templates and
ensure that all the necessary data is being captured — but, equally, that all the work item types and
transitions are required. If there are unnecessary steps, then consider removing them. If you notice
problems because of a particular issue, consider modifying the process to add a safety net.

It is important to adjust the process not only to fit the team and organization, but also to ensure that
you adjust your processes only when you need to, and not just because you can.

Check-in policies represent a key area where Team Foundation Server administrators have a temp-
tation to go overboard at first. Check-in policies prevent checking in of code that doesn’t meet the
requirements programmatically defined in the check-in policy. However, each policy has a per-
formance penalty for the whole team, not only in running the policy on each check-in, but also in
ensuring that the policy will pass before checking in the code.

A problem with developers who are not checking in code in small iterative changes cannot be easily
remedied by introducing a check-in policy — the policy alone will provide some discouragement for
checking in. Therefore, check-in policies should be introduced over time and when the need is identi-
fied by the whole team.

36 | CHAPTER2 INTRODUCTION TO TEAM FOUNDATION SERVER

SUMMARY

This chapter introduced Team Foundation Server and discussed its role in bringing the team
together when developing an application. You learned about some of the core concepts at the heart
of Team Foundation Server, different ways to access the data in your organization’s server, and what
is new in the 2013 release of the product. Finally, you learned about some points that you should
bear in mind when planning your Team Foundation Server deployment.

Chapter 3 looks in detail at using the version control features of Team Foundation Server and dis-
cusses the important new changes found in this latest release.

Using Centralized Team
Foundation Version Control

WHAT'S IN THIS CHAPTER?

> Understanding Team Foundation version control
> Setting up version control

> Using Source Control Explorer

> Understanding basic version-control operations
> Understanding check-in policies

> Viewing the history of files and folders

> Understanding labels

> Understanding shelvesets

> Understanding workspaces

> Getting to know the command-line tool

> Understanding branching terminology and concepts
>

Getting to know common branching strategies

If you are a developer you live in a world of source code. When you have more than one
person working on a project, versioning becomes an issue. If two developers work on the
same item, how do you merge their code? How do you prevent accidentally overwriting files?
Incredibly, although the practice is rapidly declining, many organizations still just use file
shares to store source code. If you are unfamiliar with version control, you can think of it as a
file system with an extra dimension—time. You can share the current state of any file or folder

38 | CHAPTER3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

with your team members, and you can go back in time to see what other versions have existed and
what the source code looked like at any point in the history of the source code repository.

One of the key reasons you are likely to have chosen Visual Studio Team Foundation Server 2013

is its version control management system. It offers a number of features, including the capability

to branch, merge, and shelve your source code, and atomic check-ins, policies, and security—all

the features you expect from an enterprise version control solution. The core engine for this tool is
Microsoft SQL Server. You can rely on the resilience of this proven database engine for the integrity
of the data stored in it, the procedures and processes to back it up, and the scalability solutions that
it provides.

NOTE Notice that the title of the chapter is “Using Centralized Team
Foundation Version Control.” However, when you start using the feature, a

lot of the tools and windows say “source control,” such as in “Source Control
Explorer.” The version control title is there to indicate that the product can
handle much more than source code. You can upload images, test data, work
products, build files—anything you want, really. In addition, the 2013 release
of Team Foundation Server brings a new decentralized version control option.
Thus it’s important to be aware of the type of version control you're using, since
a Team Foundation Server installation can support both types.

As well as the built-in integration to Team Foundation Server provided as part of the Visual Studio
2013 installation experience, the Team Foundation Server command line (tf.exe) is also installed

to enable you to perform version control operations from a command line if you prefer. There is a
Windows Explorer shell extension available as a Team Foundation Server Power Tool. You can also
access Team Foundation Server from Eclipse using the free Team Explorer Everywhere plug-in. Team
Explorer Everywhere is also where you’ll find a version of the Team Foundation Server command-line
client for non-Windows systems such as Mac OS X, Linux, Solaris, and other flavors of UNIX.

Team Foundation Server provides a centralized version control system—that is, there is a single
master repository on which you back up, manage, maintain, and control permissions. The server has
a highly flexible path-based permission system, with access protected by the same Active Directory
login used to authenticate with Windows.

Team Foundation Server 2012 introduced a new mode of working—a concept known as local
workspaces. In previous versions of TFS, server workspaces (where the state about which files are
checked out and so on is stored on the server) were the only option, but the introduction of local
workspaces stores the state of the files in the workspace on the local file system, meaning that you
do not have to be connected to TFS to edit a file. Local workspaces are the default workspace type
in Team Foundation Server 2013, so this chapter begins with the assumption that you are working
with a local workspace. Later on the chapter discusses both local and server workspaces, including
the differences between them, and which type is suitable for which method of working. In Team

Team Foundation Version Control and Visual SourceSafe (VSS) 2005 | 39

Foundation Server 2012, there were many other improvements in version control to make the expe-
rience more transparent for developers and to reduce friction for developers doing everyday work.
The user experience for version control was dramatically changed from previous versions—making
use of a new unified Team Explorer view for the majority of common version control operations.
That said, if you’re upgrading to Team Foundation Server 2013 with Visual Studio 2013, most of
the changes are cosmetic. You’ll find refinements in the Team Explorer window, including the ability
to “pop out” the window so that it floats separately from the rest of Visual Studio, as well as a new
Switch to List View option when viewing pending changes.

In this chapter, you find out about the main features of Team Foundation version control, such as
checking in and checking out code, setting check-in policies, and temporarily shelving your code for
easy access at a later date. The Team Foundation version control system also supports a number of
other features, such as atomic check-ins, workspaces, and changesets, all of which are covered in
this chapter. In addition, you’ll find coverage of how you work with branches and how you merge
code between them.

NOTE Oune of the common misconceptions about Team Foundation version
control is that it is a new version of Microsoft Visual SourceSafe (VSS). This is
completely untrue—Team Foundation version control was written from scratch.
And, unlike SourceSafe, it has been designed to scale well to a large number of
developers (more than 2,000). The two are completely different products.

TEAM FOUNDATION VERSION CONTROL AND VISUAL
SOURCESAFE (VSS) 2005

Visual SourceSafe (VSS) 2005 reached the end of mainstream support in 2012 and extended support
will end in 2017. No new versions of the product will be released. With the 2012 release of Team
Foundation Server, Microsoft made several changes to both the product and its licensing to make it
suitable for all sizes of development teams.

Team Foundation version control is part of a greater Software Configuration Management (SCM)
solution. Unlike VSS, Team Foundation version control is designed to scale to large development
teams and can support distributed and outsourced teams in remote locations. Plus, you can avoid
problems such as the occasional corruption of your source code files (because the data is written to a
real database, rather than flat files).

Like VSS before it, Team Foundation Server is now available in all MSDN subscriptions, including
Visual Studio. Team Foundation Server is available for significantly less than VSS, yet it is a much
more modern, full-featured product with a healthy community and significant on-going invest-
ment from Microsoft. Therefore, it is now time to move away from any existing VSS databases
toward Team Foundation Server. Fortunately, Microsoft has made it even easier to upgrade a VSS

40 | CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

repository into Team Foundation Server by providing a new wizard-based solution for performing a
VSS migration (with history if required). For more information on using the new Visual SourceSafe
upgrade wizard with Team Foundation Server 2013, see http://aka.ms/vssUpgrade.

SETTING UP VERSION CONTROL

Assuming that you’ve never used a version control system, where do you start? Even if you have used
other version control systems, they all work in slightly different ways and have different models for
working with files. So how do you effectively set up and use Team Foundation version control? Let’s
walk through the process step-by-step.

After you have connected to your Team Foundation Server project collection, you can create a

new team project by clicking File > New => Team Project. This is typically done by your Team
Foundation Server administrator, but at this point you are offered a series of options. You no longer
get the old option to branch during Team Project creation. Instead you get to choose between Team
Foundation version control or Git, as shown in Figure 3-1.

New Team Project on mde06tfs\dc ?
..- o
.‘ Specify Source Control Settings

F .

Choose a version control system for the new project:

Team Foundation Version Control v

Team Foundation Version Control (TFVC) uses a single, centralized server repository to track and version

files. Local changes are always checked in to the central server where other developers can get the latest

changes.

< Previous Mext = Cancel
FIGURE 3-1

This new page presents a choice that cannot be changed. Once you create a Team Project, the ver-
sion control repository format you choose—Team Foundation or Git—is there for the life of the

http://aka.ms/vssUpgrade

Using Source Control Explorer | 41

Team Project. In addition, it replaces the old version, which allowed you to either create a new trunk
or to branch based on an existing team project, something that was generally discouraged. If you
miss this old option, you’ll need to branch after team project creation.

USING SOURCE CONTROL EXPLORER

Source Control Explorer is similar to other explorers in Visual Studio. It enables you to browse and
manage the entire version control repository, as well as view projects, branches, and individual
folders. You can add and delete files; check in, check out, and view any of your pending changes;
and view the status of your local code compared to the code in Team Foundation version control
and much more. Think of it as your master control area for all tasks related to version management.
Following are some of the important tasks it enables you to do:

> Map folders

Add files

Get files

Check in changes
Rollback

Create shelvesets

View historical data
Branch and merge
Compare files and folders

Label your files and folders

Y Y Y VY Y Y VY VY VYYy

Change security settings for files and folders

NOTE As you learn later in this chapter, a shelveset is a collection of changes
stored in a “shelf,” or area, to temporarily store your source code without com-
mitting it to the repository.

Many of these topics are examined later in this chapter. To access the Source Control Explorer,
simply click View = Other Windows > Source Control Explorer. Alternatively there is a shortcut
link to Source Control Explorer on the Team Explorer Home page.

Another way you can open a solution from version control in Visual Studio is by clicking File =
Source Control & Open from Source Control. Visual Studio prompts you to connect to the Team
Foundation Server and select the source code repository of your choice if you are not connected.

42 | CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

Figure 3-2 shows the Source Control Explorer interface. It is divided into three main areas: the
source tree view on the left (which enables you to navigate and select source folders from your proj-
ect), the details view on the right, and the source location bar and version control toolbar at the top.

Source Control Explorer -+ | ST
R Ml 29| -aD&| V| Workspace: [MDECLIT]
Source location: =3 5/BlueYonder/Main .
Folders X || Local Path: Mot mapped
4 &g mde06tfs\dc Name & Pending Change = User Latest Last Check-in
. y
“ ': BlueDr’cncIEr docs Mot mapped 12/3/2013
eV
src Mot mapped 1 13
4
Em tools Mot mapped 12/3/2013
[docs
4 src
[PublicWeb
[tools
I Rel
FIGURE 3-2

The Source location shows the server path of the currently selected folder in Source Control
Explorer. In Team Foundation Server version control, server paths are given in the format
$/TeamProjectNamelFolderPath/File.txt, where the path separators are a forward slash (/) and the
root of the repository is represented by the dollar symbol ($).

Setting Up Your Workspace

Your workspace represents the local working copy of files on your file system. You can think of a
workspace as your personal sandbox to work on source code; it is the bridge between code on the
server and your client machine. A workspace has one or many folders mapped in Team Foundation
version control with your local file system. Whenever you get files, they are downloaded from the
repository in Team Foundation Server and placed into your workspace for you to work on them.

To get your changes back into the server repository you check in (commit) the changes. Workspaces
provide isolation; they enable you to work on your code to make up your application without affect-
ing any changes the rest of your team might be making.

Using Source Control Explorer | 43

The workspace itself is bound to a machine and owner. If you move to a different machine you have
to create a new workspace. Files that you have edited in your workspace live only on the associated
machine. This is an important difference to keep in mind with some other version control systems.

NOTE Working folder mappings provide a wealth of features that you can use
to perform sophisticated operations and mappings locally. However, to begin
with, stick to one local folder mapped to a single folder (usually the branch you
are working on in the version control system).

In Team Foundation Server 2013, when you first attempt to access version control operations on
the server (such as using Source Control Explorer to browse the contents of the server repository), a
local workspace is created that is automatically ready for you to begin mapping folders and getting
files. By default the workspace name is the same as your computer name. However, you can have
multiple workspaces belonging to the same user on the same machine and you can swap between
them using the Workspace drop-down in the version control toolbar in Source Control Explorer
(refer to Figure 3-2).

Getting Existing Code

If you are connecting to a repository that already has code in it, the first thing that you probably
want to do is map a folder to your local file system and download the code. Browse to the folder that
you want to map (such as the $/BlueYonder/Main/ folder shown in Figure 3-2). At the top of the
details pane on the right side you can see that the Local Path is Not Mapped, and that Not Mapped
is underlined. Click the Not Mapped link to open the Map dialog and point it at a directory on your
local file system, as shown in Figure 3-3. Note that the local path (or indeed the server path) does
not need to exist. If the local folder entered into the dialog does not exist then Team Foundation
Server attempts to create it for you when you download (or get) the files for the first time.

Map ?

Create a workspace mapping.

Current status: The server folder is not mapped.

Server folder: | 5/BlueYonder/Main

Local folder: C:\Dev\BlueYonder\Main| |

Recursive Map Cancel

FIGURE 3-3

44 | CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

Whenever you create or change your working folder mappings, Team Foundation Server prompts
you if you would like to perform a get so that the files on the server are downloaded locally, as
shown in Figure 3-4. Select Yes in the dialog, and the latest version of the Main folder is downloaded
into the directory specified.

Microsoft Visual Studio
Map

MNewly mapped items will not be downloaded until you execute a get.
Do you want to get 5/Blue¥onder/Main now?

Yes No Help

FIGURE 3-4

The Local Path in the details pane of Source Control Explorer now shows the path that you are
currently viewing, and clicking the path link opens that directory in the local file system. Depending
on the theme you’ve chosen for Visual Studio, the files in Source Control Explorer are shown in
different colors or shades to indicate whether you have a local copy. In addition the Latest column
reads Yes.

LOCAL FOLDER MAPPINGS AND THE 260-CHARACTER PATH LIMIT

Note that on Windows-based systems, certain APIs only support a path length of
260 Unicode characters. Therefore, NET imposes a path length restriction to local
paths of 260 characters for a combined directory and file name, 248 Unicode char-
acters for a directory. On the server, a single file or folder can’t exceed 259 Unicode
characters while a combined directory and file name mustn’t exceed 399 Unicode
characters. When mapping files into your local workspace you should generally try
to map to a folder that is fairly close to the root of your drive or file system to give
you a lot of spare characters to grow into. This is particularly important when pro-
gramming in languages such as Java. On Windows, Visual Studio by default uses
the C:\Users\Username\Documents\Visual Studio 2012 \Projects folder to
store new projects, and it is tempting to map your Team Foundation Server projects
in there. However, using a folder such as c: \source at the root of your drive gives
you another 40 or so characters from the 260-character path limit and also enables
you to keep your working folder mappings simple. You can get more information
on this and other restrictions related to naming at http://aka.ms

/vsnames .

http://aka.ms

Using Source Control Explorer | 45

Sharing Projects in Version Control

If you are sharing new code with your team using Team Foundation Server for the first time then
you can import the associated source files into the repository in a number of ways. The process of
sharing code in Team Foundation Server is called checking in.

Sharing a Solution in Visual Studio

To share a solution in Visual Studio, right-click the solution in Solution Explorer and select Add
Solution to Source Control. If you are not already connected to a Team Foundation Server proj-
ect collection, you select the server and project collection that you want to connect to. Then you
select the location in the central version control repository that you want to use for sharing your
source code.

If the path you selected is not under a locally mapped folder, you’ll be prompted to specify which
type of version control you want to use—either Team Foundation version control or Git—as shown
in Figure 3-5.

Choose Source Control “

Choose a source control system for the new project:

®) Team Foundation Version Control
Team Foundation Version Control uses a single centralized server repository to track and version files. Local
changes are always checked in to the central server where other developers can get the latest changes.

O Git
Git is a distributed version control system that uses a local repository to track and version files, Changes are
shared with other developers by pushing and pulling changes through a remote, shared repository.

[] Use the selected system when creating new projects in the future

oK | | Cancel

FIGURE 3-5

If you are sharing code into a new Team Project then a good practice is to create a folder called Main
(with possible additional subfolders like src for source code, docs, tools, and so on) under your
Team Project and share the solution into it, as shown in Figure 3-6.

After you have set the location you want to use for sharing your files, click the OK button on the
Add Solution to Source Control dialog window. The solution displays in Solution Explorer with a

plus symbol to the left of it (see Figure 3-7). The plus sign indicates that the file is pending addition
into version control.

46 | CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

Add Solution HelloAspNetWeb to Source Control ?

Indicate where to store your solutien and projects in the Team Foundation Server and in your
waorkspace.

Team Foundation Server Details

Server: mdeltfs\dc
Team Project Location:
4 8 BlueYonder
[> Dev
4 8§ Main

3 docs

[src
[> tools
[> Rel

Malke Mew Folder

Type a name for the solution folder:
HelloAspNetweb ‘

Solution and project files will be added to:

|UBlueYonderfMainfsrdHeIIoAspNetWeb | | Advanced... |
| ok || canca |
FIGURE 3-6
Solution Explorer > I x
Co@e-ruan| s =8
Search Solution Explorer (Ctrl+;) P~
+fa] Solution 'HelloAspNetWeb' (1 project)

HelloAspNetWeb
b + M Properties

[+ =B References
App_Data
App_Start
Content
Controllers
fonts

Models
Scripts

v v T T T v v

Views
+ [favicon.ico
+&] Global.asax
+§1 packages.config
+ .0 Project_Readme.html
+C# Startup.cs
+§_] Web.config

-

- v

Solution Explorer TGN =TIl Aol

FIGURE 3-7

Using Source Control Explorer | 47

In general, you don’t want to see the dialog shown in Figure 3-6. This dialog appears when the local
path you’ve selected is not a known folder to version control. If you’ve already created a workspace
mapping for a team project and you pick a folder under one of your mapped folders, Figure 3-6 will
not appear. Figure 3-6 typically appears when you create a new Visual Studio project and accept the
default folder, which defaults to your profile directory’s documents folder.

This solution at this point is not yet shared with Team Foundation Server. TES version control
works using a two-phased process. You first build up a list of changes that you want to make in
version control and then you commit the changes in a single transaction called a changeset.

To check the files into version control, go to the Pending Changes page in Team Explorer by right-
clicking on the solution in Solution Explorer and selecting Check In. Alternatively you can go to the
Team Explorer view and then select the Pending Changes page. A third alternative is to go to View
> Other Windows = Pending Changes.

The next section reviews the pending changes page. You commit your changes from there.

Sharing a Project in Eclipse

Microsoft provides an Eclipse plug-in as part of Team Explorer Everywhere. After you have the
TFS plug-in for Eclipse installed, you may share a project in Eclipse easily. Right-click the project
in Package Explorer and select Team = Share Project. The Share Project wizard shows the installed
team providers in your Eclipse instance (see Figure 3-8).

e Share Project I_IEI“J
Share Project o

Select the repository plug-in that will be used to share the selected project. 4:>

Select a repository type:

&
VS
U] Team Foundation Server

® < Back Mext = Finish Cancel

FIGURE 3-8

Select Team Foundation Server and then choose the project collection that you want to connect to (if
you have not already connected). Then select the desired TFS workspace. (You can also press Next
to select the default TFS workspace, which is usually correct.) The Share Location page of the Share
Project Wizard displays, as shown in Figure 3-9. From here you select a path in version control to
share the files. As previously discussed you want to add your files into a folder called Main, so you

48 | CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

simply enter the full server path into the Project folder path textbox that you want to share at. As
mentioned earlier in the chapter, it does not matter that the Main folder does not exist yet; it is auto-
matically created on the server when you perform the check-in.

e Share Project to Team Foundation Server I_Iﬂﬁ
Share Location
Select a Server Location to Share To

Select the folder for your shared projects.

Server path:
4 lig alm2012\DefaultCollection
4 l—?ﬂ AdventureWorks
s [BuildProcessTemplates
> l—?ﬁ FabrikamPFiber

Project folder path: | §/AdventureWorks/Main/HelloWorld)ava

® < Back MNext > Finish Cancel

FIGURE 3-9

Pressing Finish creates pending adds for all the files in the project into version control. The file icons

are annotated in the Package Explorer with a small check mark to {2 Package Explorer 52 = g
indicate that they are pending adds to version control (see Figure 3-10). 5g v
Note, just as with Visual Studio, these files are not yet stored on the 4 [l HelloWorldJava
server; you must first check them in. To get the pending changes view o g .
. ’ ; K K a g com.wiley.example
in Eclipse, go to Windows = Show View & Other Windows > Team + [§y +HelloWorld java
Foundation Server = Team Explorer and click the Pending 4 ftets
4 g comwiley.example

Changes page. " [§ - HelloWorldTestjava

3 . . » = JRE System Library [JavaSE-1.7]
In the next section, you find out how to work with the pending changes = Unit 4

view to check in code to the source repository. You also find out about

changesets and how to configure team check-in policies.
FIGURE 3-10

CHECK-IN PENDING CHANGES

Frequent check-ins and gets are an essential part of a developer’s workflow. You need to check in the
code so that it is shared with the rest of your team, and you need to frequently Ger Latest so that
you are developing and testing against the very latest version of the source code that makes up your
application.

Check-In Pending Changes | 49

When making changes in your local workspaces, Team Foundation Server maintains a list of the
files that are being changed and their change types (that is, add, edit, rename, delete) in the pending

changes window.

This is one area where the experience in Team Foundation Server 2012 and 2013 is very different
from previous versions. Rather than have another view active in Visual Studio or Eclipse, Microsoft
moved the pending changes experience into Team Explorer (see Figure 3-11) to allow more space

in the development environment for the code editing window as well as centralize version control
operations. The pending changes experience was also changed from a horizontal view to a vertical
one as part of the move to the new Team Explorer. This was reflective of the fact that most develop-
ers now use monitors with a widescreen aspect ratio, so space on the sides of the code being edited is

usually available.

Team Explorer - Pending Changes > I x
(] far |) Search Work ltems (Ctrl+') P~

Pending Changes | Blue¥onder v | 7

Check In Shelve v | Actions v
4 Policy Warnings (1)
Override Warnings
The following check-in pelicies were not satisfied

! Provide a comment for the check-in. Help

4 Comment
Enter a check-in comment
4 Related Work ltems
Queries v | Add Work Item by ID v
Drag work items here to link them to the check-in.
4 Included Changes (1)
Exclude All | View Options «
4 chusersibrianr.demot\documentsivisual studio 2013...

@ HomeController.cs

4 Excluded Changes (1)
Include All | View Options +

4 chusersibrianr.demot\documentsivisual studio 2013...

¥ Web.config

4 Notes (1)

Code Reviewer
Enter a value for this note <Required>

Team Explorer

FIGURE 3-11

That said, there are two changes that are specific to Visual Studio 2013 that will make it easier for
you if you upgrade from a version prior to 2012. The first is the option to “pop out” the Pending
Changes page from Team Explorer so you can move it to another monitor or location inside Visual

50 | CHAPTER3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

Studio. The other is the new option, called Switch to List View, which you’ll find under the View
Options drop-down located in the Included Changes and Exclude Changes section of the Pending
Changes page. When they’re used together, you can make the Pending Changes windows simulate
the look of the previous version just a bit (see Figure 3-12).

Pending Changes - BlueYonder > X

CheckIn Shelve v | Actions « -

b Policy Warnings (1)
b Comment
P Related Work ltems
4 Included Changes (1)
Exclude All | View Options
MName Path =
©* HomeController.cs c\userstbrianr.demo\decumentsivisual studio 2013\Projects\HelloAspMNetWeb' HelloAspNetWeb\ Controllers

4 Excluded Changes (1)
Include All | View Options v

Narne Path =

¢ Web.config chusersibrianr.demeidocuments\visual studio 2013\Projects\HelloAspMetWeb' HelloAspNetWeb
b MNotes (1) -
FIGURE 3-12

Checking In an Item

A changeset contains all of the information related to a check-in, such as work item links, file revi-
sions, notes, policies, and owner and date/time details. Team Foundation version control bundles
all the information into this logical container. A changeset is created after you check code into the
repository, and, as a container, it reflects only the changes you checked in. You can also view it

as the state of the repository at a particular moment in time of the repository. The usefulness of a
changeset comes from the fact that you can, on a very atomic level, return to any moment of change
and troubleshoot your code.

NOTE Team Foundation Server contains four main types of artifacts related
to source code: work items, changesets, files, and builds. For example, you can
associate a work item to a source code file. You can also link builds to work
items if you want. This is a really powerful concept. Imagine that you are hav-
ing trouble with a build. You can automatically call up the changeset with the
problem code. You can also generate a work item to get a developer to fix the
problem. The integration possibilities are endless.

The Pending Changes page, shown in Figure 3-11, enables you to view all of the files in your work-
space that Team Foundation Server considers changed from the latest version that you copied into

Check-In Pending Changes | 51

your workspace from the server. You can access this list at any time via Team Explorer or via the
View @ Other Windows &> Pending Changes menu option.

The Pending Changes view shown in Figure 3-11 highlights most of the key areas. In addition to the
areas shown, there is also a notification area at the top of the page that is used to inform you when
you have successfully checked in changes, so that you know that they are stored on the server. It also
gives you a quick reference to the changeset ID that was created.

At the top of the page you see any policy warnings that are currently being given. Check-in policies
are covered later in this chapter, but in simple terms you can think of them as code that runs on the
client to validate whether a check-in is valid.

Next there is an area to provide a comment. Best practice is that you should provide a short but
meaningful comment with every check-in, ideally explaining why you made the changes you are
making—not what you changed. To see what you changed, any authorized user can simply look at
those changeset details and compare (or diff, as it is sometimes called) the files inside the chang-
eset. However, a changeset comment explaining why you changed those files is very useful to help
others understand why things happened the way they did.

Files listed in the Included Changes section are the files that you want to make up your next chang-
eset. These are the files that you are modifying, creating, or deleting as part of the change. For users
of older versions of Team Foundation Server, this is equivalent to checking the box next to the file in
the old Pending Changes view, except that the inclusion or exclusion of a file in the Pending Changes
list is now persisted. That means you’ll no longer accidentally include a file that you thought you
had excluded.

Files that are in the Excluded Changes section are those that you have positively modified as part
of your changes but you have told Team Foundation Server that you do not want to check them in.
Perhaps you have modified a web.config file to enable local debugging or you are still working on
some changes and you do not want to check them in yet. If you find that you are frequently having
files in the excluded changes window just because you haven’t finished working with them then you
should consider making use of the shelvesets feature of Team Foundation Server, which is discussed
in the “Shelving” section later in this chapter.

Finally, the Notes section lists the check-in notes that have been configured for the team project.
Check-in notes are covered in the “Shelving” section later in this chapter. In simple terms, check-in
notes are additional string-based metadata that you can configure in your repository. The check-in
notes can also optionally be specified as mandatory (such as the Code Reviewer example in

Figure 3-11).

In the next section you find out how to associate work items with a particular check-in, which many
teams find a good practice to ensure that every change is associated with a particular work item
(either a bug or a task). As a result you can have end-to-end requirements traceability (from the ini-
tial story, requirement, or product backlog item through to the task to implement it, through to the
check-in that provided that feature, and finally to the build in which the feature was included).

52 | CHAPTER3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

Candidate Changes

Before moving from the Pending Changes view, it is worth discussing Candidate Changes, which is a
feature unique to a Local Workspace in Team Foundation Server 2012 and later.

Inside the Excluded Changes section is a Detected Changes link. Clicking it shows any candidate
changes that Team Foundation Server has detected (see Figure 3-13). If you have made changes in
the file system, such as adding or deleting a file outside of Visual Studio, then these changes are not
automatically pended by Team Foundation Server. They are flagged as changes that you might want
to add into your pending changeset. The example in Figure 3-13 shows five candidate changes.

Promote Candidate Ch (7=

Pending change candidates have been detected on your local disk. Select local
items to promote to full pending changes. You can combine an add and delete
candidate into a rename by selecting them and choosing rename from the
context menu.

MName Change Faolder
E ui-icons_222223 356x240.png delete chusers'\martinwo\doc.
=] bullet.png delete chusers\martinwo'doc...
Ewingding.png add chusers\martinwo'doc...
B testdata.tet add chusers\martinwo'doc...
| testrun.dat add chusersimartinmant doc
Copy
Select All

ﬂ Browse in File Explorer
E [a Ignore this local item

Ignore by extension (*.dat)

Ignore by file name (testrun.dat)
Ignore by folder (HelloWorldMVC.Tests)

X Delete from disk

FIGURE 3-13

In this case, the ui-icons image file was deleted by the developer from Windows Explorer as she
realized that the file was no longer needed in the website. The developer renamed bullet.png to
wingding.png while she had no network connection to Team Foundation Server and was working
offline. The developer added testdata.txt in Windows Explorer as a data file to be used during
testing, but she did not specifically add it to the solution, which is why Visual Studio did not explic-
itly pend an add against it. And finally testrun.dat was automatically created in the source tree as
part of a unit test run, and the developer wants to make sure that she and her colleagues never acci-
dentally check in this file.

As the developer renamed the bullet.png file inside Windows Explorer, Team Foundation Server
has no way to automatically detect that this was a rename operation. It sees the changes as an add
and a delete. If the change had been made inside of Visual Studio from Source Control Explorer
or Solution Explorer then the rename would have been automatically detected and pended as such,
which would have preserved the history of the file under the new name. The developer would like
to preserve that this was a rename operation. She selects both bullet.png and wingding.png (by
holding down Ctrl while making the selection) and then selects the Promote as Rename option, as

Check-In Pending Changes | 53

shown in Figure 3-14. This creates a new pending change on wingding.png specifying that it was
renamed from bullet .png.

Promote Candidate Ch (7 ==

Pending change candidates have been detected on your local disk. Select local
items to promote to full pending changes. You can combine an add and delete
candidate into a rename by selecting them and choosing rename from the
context menu.

Mame Change Folder
E ui-icons_222222 256x240.png delete chusers\martinwo\doc..
Ebullet.png delete chusers\martinwo\doc..

Bl testdata.t Copy usersimartinwo\doc..
| testrun.d Select All users\martinwo'doc...

Promote as Rename

[Fromote][Cancel

FIGURE 3-14

Next the developer wants to ensure that no one ever accidentally checks in the file testrun.dat as
this is generated as part of a unit test run and doesn’t make up the code of the application. She right-
clicks the file and selects Ignore This Local Item (see Figure 3-13). This creates a file in the folder
called .tfIgnore that tells TFS to ignore this file from ever being added to version control. Note
that the developer could have ignored all files with a .dat extension, or files called testrun.dat
regardless of where they appear below the folder containing the .tfIgnore file. She even could have
ignored the whole Helloworldmvc. Tests folder. After the . tfIgnore file is checked in to version
control, other developers will also ignore that file.

TFIGNORE SYNTAX

The .tfignore file has a rich syntax of patterns that can be supported when
ignoring files from version control. When a .tfIgnore file is created by Team
Foundation Server it is created with a set of comments detailing the syntax.
Wildcards (such as * and ?) are supported. For example a line containing Test*
.txt would exclude any files in that directory or children of that directory match-
ing the pattern. In addition, prefixing a line with a | means that you are specifically
including that pattern. For example !\1ibs*.d11 would positively include DLL
files in the 1ibs folder (perhaps because they are binary dependencies for your proj-
ect) when DLL files are typically excluded from being added to version control.

The developer is left with two candidate changes (see Figure 3-15) that are both checked. She clicks

the Promote button as she wants to make sure that those candidate changes are included in the next
changeset.

54 | CHAPTER3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

Candidate C|)=

Pending change candidates have been detected on your local disk. Select local
items to promote to full pending changes. You can combine an add and delete
candidate into a rename by selecting them and choosing rename from the
context menu,

Mame Change Folder

E ui-icons_222222_356x240.png delete chusers\martinwo\doc..
H testdata, bt add chusersimartinwo\doc,.,

[Promote J[Cancel

FIGURE 3-15

Performing the Check-in

Figure 3-16 shows that you now have the changes and how you want them recorded. There is a
changeset comment, and a work item associated with the check-in will be marked as resolved when
you perform the check-in. Click the Check In button. The changes are then committed to TFS in a
single atomic transaction and given a changeset ID.

Note that if TES could not have performed the check-in for some reason (perhaps another developer
had checked in a conflicting change to the HomeController.cs file while you were editing your ver-
sion) then none of the changes would have been checked in. You would have been notified about the
conflict and given options to resolve the conflict before you were allowed to complete the check-in.
Only when all the files included in the changeset can be committed to the repository is the changeset
created and given the next incremented changeset ID for that project collection.

Note that as well as checking in from the Pending Changes view, there are a number of other actions
on the drop-down menus next to the Check In button. You can shelve or unshelve code, find shelves-
ets, resolve conflicts, undo all changes, and, if you have an appropriate version of Visual Studio, you
can request a code review using the Code Review feature.

NOTE For more information on Code Review see Chapter 18.

Creating and Administering Check-In Policies

Check-in policies provide a way for the team and individuals to effectively manage quality and the
workflow around version control used by the team. Check-in policies are implemented as plug-ins

Check-In Pending Changes | 55

that are run on the client before each check-in to determine if the check-in should be allowed.
Because the code is run on the client, check-in policies are configured separately for the NET-based
clients (such as Visual Studio, the Windows Shell Extensions, or the Team Foundation command
line on Windows) and the Java-based clients provided by Team Explorer Everywhere (such as the
TFS plug-in for Eclipse or the cross-platform command-line client).

Team Explorer - Pending Changes v 1x
(<] far | [] Search Work ltems (Ctrl+') P~
Pending Changes | BlueYonder v | 7
MDECLIZT «

Check In Shelve v | Actions v
4 Comment

Added new files.

4 Related Work ltems (1)
Queries v | Add Work ltem by ID +

ﬂ 123 - Add new read me and version info Resolve =

4 Included Changes (3)
Exclude All | View Options v

Mame Path =

* HomeController.cs CA\Dev\BlueYonder\Main'sr...
Kl'j BlueYonder2012.sln CA\Dev\BlueYonder\Main\sr...
Bl ReadMe.bet [add] C\DeviBlueYonder\Main\sr..,

4 Excluded Changes (1)
Include All | View Options v| Detected: 3 add(s)

Name Path =
V'j Web.config CA\Dev\BlueYonder\Main...
4 Motes (1)

Code Reviewer
Mickey Gousset

Team Explorer

FIGURE 3-16

As a team project administrator, to configure the check-in policies for Visual Studio users, select
your Team Foundation project in Team Explorer. Then, open the drop-down menu and choose
Settings. On the Settings page, select Source Control under the Team Project section. In the Source
Control Settings dialog, under the Check-in Policy tab (see Figure 3-17), you find several options for
modifying the check-in policies.

56 | CHAPTER3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

Source Control Settings - BlueYonder ?

Check-out Settings | Check-in Pelicy | Check-in Notes

Policy Type Description Add..

Changeset Comments Policy Reminds users to add meaningful comments to their check-i...

Edit...
Remove

e

Disable Check-in policy:

Changeset Comments Policy
Code Analysis
Custom Path Policy

Forbidden Patterns Policy
Work ltem Query Policy v

Description

This policy requires that the last build was successful for each affected
continuous integration build definition.

o Conce Concel

FIGURE 3-17

If you click the Add button in the Source Control Settings dialog box (see Figure 3-17), you are
prompted to select a check-in policy type. The list in Figure 3-17 shows the types provided out of
the box in Visual Studio 2013 (note that the Changesets Comments policy is now in the box as of
the 2012 release, but the Testing Policy is no longer shipped by default). More check-in policies are
provided by the Team Foundation Server power tools (which you can see in Figure 3-17), and your
administrator may have installed further custom check-in policies for your organization. Selecting
each of the check-in policies provides more information about it.

After the check-in policy has been created, try checking in code without complying with the new
policies. The policy failure warning is displayed in the pending changes view, as shown in Figure
3-11. When you get a check-in policy failure warning, you can override it and perform the check-in
anyway.

NOTE You should override the check-in policy only when absolutely necessary;
otherwise, it starts to negate the reason for introducing the policy in the first
place. The check-in policy overrides are reported into the data warehouse so

that these can be acted on by the team; you can also configure alerts so that an
email is sent out every time a check-in is performed with a policy override. If it
is found that a particular check-in policy is frequently overridden then you might
want to question why it is enabled in the first place. If a particular individual or
group of individuals is found to be frequently overriding a check-in policy, then
you may want to consult with them to help them understand the reason that the
policy is in place.

To set the check-in policies for your Team Explorer Everywhere users, a team project administra-
tor should connect to the team project in Eclipse, view the Settings page in Team Explorer, select

Check-In Pending Changes | 57

Check-In Policies, and then enable the desired check-in policies as provided by Team Explorer
Everywhere. See Figure 3-18.

=|E| &
bick Access = | [|
— = ool
[y Team Bplorer 23 o e Add Check-in Policy
LR lE]
. Check-in policy:
Setlings ~ AdventureWorks o
Build Policy
Search Work ltems v Changeset Comments Policy
Forbidden Patterns Palicy
. Work Item Policy
~ Team Project Werk ltem Query Policy
Security e Check-in Policies - AdventureWorks L&
Group Membershi
Check-in Policies Enabl... Policy Type Description Add..
Work ltem Areas Changeset Co... Requires a non-empty comment ar
dit...
Work Item Iterations -
E— Description
Project Alerts femoy
~ Team Project Collection < > Scope...
Security
Group Membership Cancel oK Cancel

Viewing History

To view the history of a file or folder, in Source Control Explorer, right-click the file or folder and
select View History from the context menu. The View History menu option is usually available via
a context menu from many other places where the file is shown, such as when you right-click the file
itself in the code editor, from Solution Explorer, in the Pending Changes view, and more. Viewing
history on a file opens a new document tab, as shown in Figure 3-19.

Source location: c\wcadmin'byalagileiDeviDevint\src\PublicWeb'\BlueYonder. Web.Mvecd\ Contrellers\BookingController.cs v 0
&= Changesets B Labels
e @ 9=

Changeset Change User Date Path Comment
Team Leader 10/27/201312:01:19 AM $/byalagil... Added some better processing logic. **NO_CI*™*
4 3 branch Scrum Master 4/13/2013 11:32:52 PM S/byalagil... Branched from Main to Devint.
30 add Scrum Master 4/13/2013 11:29:57 PM $/byalagil.. Added main web site code.
FIGURE 3-19

The History window is a tabbed document window in Visual Studio and Eclipse. This enables you
to open multiple History windows for research. Notice that the window in Visual Studio has two
sub-tabs: Changesets and Labels. The History window now gives you a view of the changesets
associated with the file or folder, as well as any labels. Notice that the changeset IDs for a file are
not sequential. The changeset IDs are incremented globally to represent a point in time of the entire
repository for the project collection. The changeset IDs for the file show the changesets in which
that file was modified. This is a different versioning mechanism than with systems such as VSS in

58 | CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

which individual files have version numbers; in Team Foundation Server the only version number
that matters is the changeset ID.

You have several options from the Changeset sub-tab. You can select a changeset and click the View
button to view the file version for that particular changeset. You can click the Changeset Details
button to view the details for a particular changeset, including all the files that make up the chang-
eset and any associated work items. You can compare two different versions of a file or folder to

see the differences. When viewing the history of a file, clicking the Annotate button enables you

to see, line by line, who made what changes to a particular file. Selecting Rollback reverts all the
changes made in that particular changeset. You can track the changeset across branches to see if
those changes have made it into the other trees of your source code, and you can also request a code
review if you have an appropriate version of Visual Studio.

Finally, you can select a changeset and click the Get This Version button. This replaces the current
version of this file in your workspace with the selected version, enabling you to easily return to an
earlier version of a file.

When viewing the history of a single file, the History window also enables you to expand the history
of that file prior to a rename or a merge from another branch.

Labeling Files

A label is a marker or a tag that can be attached to files and folders in Team Foundation version
control. This marker allows all the files and folders labeled together to be retrieved as one collective
unit. Although labels are often generated by things like an automated build, in Team Foundation
Server labels are editable by users with the appropriate security permissions. They are not designed
to provide auditable points of reference, for that you should make note of the changeset ID as that
represents an exact point in time of the source code repository.

To create a new label, in Source Control Explorer, right-click the file or folder you want to label, and
select Advanced = Apply Label from the context menu. The New Label window displays.

In this window, you can enter the label name and a comment. You can also select the version that
you want to label. You can choose to label by changeset, date, label, latest version, or workspace
version. Click the Create button to create the label.

Notice next that the Create button is a drop-down arrow. Clicking the arrow provides you with
two options. You can create the label as is, or you can create the label and then edit it. If you select
Create and Edit, the label is created, and you are presented a new tab, as shown in Figure 3-20.

This tab enables you to make multiple changes to the label. You can add new files to the label. You
can change the version of a file that the label is currently applied to. And you can remove files from
the label. All of this is made easily accessible by using the Tree View control.

Shelving | 59

Label - PublicWeb V3 + X
Label - Publicwebvz | @ | D i & = | &
Comment:
The Public Web Site Version 3
Server folder: $/BlueYonder/Main/src/Public\Web -
4 u% mdeDftfs\dc Name & Changeset Check-in Date Additional
4 28 BlueYonder [H BlueYonder.Activity 45 12/3/2013 6:28:47 AM
4 Main BlueYonder HitpCache 45 12/3/2013 £:28:47 AM
4 cre BlueYonder.Logic 45 12/3/2013 £:28:47 AM
b PublicWeb BlueYonder Services 45 12/3/2013 6:28:47 AM
BlueYonder.Web.Mvcd 45 12/3/2013 £:28:47 AM
BlueYonder Web.Mvcd. Tests 45 12/3/2013 £:28:47 AM
packages 45 12/3/2013 €:28:47 AM
o] BlueYonder2012.sin 45 12/3/2013 €:28:47 AM
4 4
FIGURE 3-20

SHELVING

There are times when you won’t be ready to commit your source code into the core repository. For
example, maybe you need to go home for the evening but haven’t been able to check in and you want
to make sure you have a backup of your work. Or say that you are working on solving a bug and
you want to share the changes you have made with a colleague to get his assistance on a particular
issue. Shelving enables you to quickly and easily store files on the server without committing them
to the main code base. The collections of stored pending changes that haven’t been committed are
called shelvesets.

WARNING The security settings for a shelveset are determined by the item per-
missions. You must have read pending change permission for the item changes
you want to unshelve.

The process of creating a shelveset is fast and easy. From the Pending Changes page in Team
Explorer, click the Shelve link. Enter a name for your shelveset in the box that displays (see Figure
3-21) and choose among the options to preserve the pending changes locally as well as to evaluate
the check-in policies and check-in notes before shelving.

60 | CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

Team Explorer - Pending Changes > I x
e ¥ |) | Search Work lterns (Ctrl+") P~
Pending Changes | BlueYonder - | 7l

Shelve w | Actions v

Work in Progress
Preserve pending changes locally

[Evaluate policies and notes before shelving

Shelve Cancel

4 Comment

Updated welcome logic.
4 Related Work ltems

Queries v | Add Work Item by 1D v

Drag work items here to link them to the check-in.
4 Included Changes (2)

Exclude All | View Options

- chusersibrianr.demotdocumentsivisual studio 2013...
- Controllers
©* HomeController.cs
(] Web.config

4 Excluded Changes
Include All | View Options +

Drag changes here to exclude from the check-in.

4 Notes (1)

Code Reviewer
Martin

Team Explorer

FIGURE 3-21

Shelvesets contain the same level of information as a changeset, including associated work items,
comments, and check-in notes. Team Foundation Server can store other metadata alongside a shel-
veset as properties, which are used by the Code Review functionality detailed in Chapter 18. Keep
in mind that, unlike with a changeset, the changes are not versioned. Shelvesets can be permanently
deleted (which is something you can’t do with changesets). You can’t link directly to a shelveset from
a work item. You can override the data stored in one of your shelvesets at any time by creating a
new one with the same name as one created previously.

Team Explorer - Find Shelvesets * 0 x
Unshelving source files is as easy as shelving them. First, © O @ ¥ [@ sesrchWorkitems (Ctrl+) p-
bring up the Pending Changes page of Team Explorer and | Find Shelvesets | Bluevonder -
then, from the Actions drop-down, select Find Shelvesets. & Brian Randell
By default your own shelvesets are shown as in 2 Results 1)
Figure 3-22; however, you can also search for the shelves- Type here to fiter the list P
ets of a team member by entering her username or display Warkin Progress e than amikute ago
name, or use * as a wild card, and pressing Enter.

FIGURE 3-22

Shelving | 61

From the shelveset results you can view the shelveset details, unshelve those changes into your
workspace, delete the shelveset completely from the server, or, in certain versions of Visual Studio,
request a code review on the contents of the shelveset.

A feature, originally added in Team Foundation Server 2012, detects and handles conflicts as part of
the unshelve process. In previous versions if you had a conflicting change already in your workspace
then you would not be able to unshelve the contents of the shelveset. In Visual Studio 2013 and
Team Explorer Everywhere 2013, unshelving conflicts are shown in the conflicts editor just like any
other merge conflict. In addition, due to the new auto-merge capabilities in this previous release, the
likelihood of getting a conflict on unshelve is much lower (for example, two changes to the same file
in different places would be automatically merged when you did the unshelve and would not result
in a conflict).

KEEP YOUR SHELVE(SET)S TIDY

Although it is easy to filter shelvesets in the Find Shelvesets page, having lots of old
and out-of-date shelvesets can make it harder to find the code you are looking for.
They also take up a small amount of resources on the server (as the server has to
store a copy of every file in the shelveset). Therefore, it is good practice to delete a
shelveset when you no longer need it, just as you tidy away the contents of shelves
at home from time to time.

Workspaces

As discussed earlier, the majority of this chapter has dealt with using Team Foundation Server ver-
sion control via a local workspace, which is the default option. However, this is a different work-
space type than was available previously with Team Foundation Server. Table 3-1 describes the
two workspace types, how they differ, how your use of TFS version control changes, and when you
would select one workspace type over another.

TABLE 3-1: Local and Server Workspaces Compared

LOCAL SERVER

Description Files are read-write locally on get, no Files are read-only locally on
explicit check-out operation required, get, explicit check-out opera-
workspace data stored on the local tion is required, workspace data
machine in a hidden st £ folder at the root stored on the server.

of the workspace.

Advantages Easier to work with files outside of Visual Scales to huge (multi-gigabyte)
Studio or Eclipse. workspace sizes.
Offline working much improved as no
explicit check-out is required and develop-
ers can work with files without needing a
connection to server.

continues

62 | CHAPTER3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

TABLE 3-1 (continued)

LOCAL SERVER

Advantages Only files that are different from the origi- Optionally allows the ability to
nal workspace version are shown in the specify exclusive check-outs
Pending Changes view. (only one person can work on a
More familiar to users of version control file at the same time).
systems such as Subversion. Enables optionally setting Visual

Studio to automatically get the
latest version of a file before a
check-out is performed.

Notifications presented if you
begin editing a file that is cur-
rently checked out by another
user.

More familiar to users of version
control systems such as VSS.

Disadvantages Performance of local workspaces degrades Requires the server to be
with more files in the workspace and the informed of all changes to
speed of the hard drive also has an impor- the local file system, including
tant influence. Not recommended for deletes, edits, and so on.

workspaces with more than 100,000 files.

Note that a Team Project Collection administrator can define which workspace type is the default
for projects within that collection by using Team > Team Project Collection Settings = Source
Control and selecting the Workspace Settings tab as shown in Figure 3-23. In addition the server
administrator can enable asynchronous check-outs for server workspaces where an explicit check-
out operation is required. Checking the option enables Visual Studio to check out the file automati-
cally in the background without blocking the user because enabling that feature disables features
that may prevent that check-out from succeeding.

Users can convert their local workspace to a server workspace or vice-versa simply from the Manage
Workspaces dialog by going to File &> Source Control => Advanced = Workspaces. Select the work-
space and press Edit to get to the Edit Workspace dialog. Then press the >> Advanced button to see
all the properties, as shown in Figure 3-24.

Shelving | 63

File Types | Workspace Settings

Choose a default workspace type:
@ Local (recommended)

Local workspaces allow users to werk locally even if the server is unavailable.
() Server

Server workspaces require server connectivity for users to work locally. To enable features such as exclusive
check-out and get latest on check-out, server workspaces must be used.

[] Enable asynchronous checkout in server workspaces

Enabling this option will let i p perf asynch checkouts, F , it will prevent users from
taking checkout locks and the PendChange permission will no lenger be enforced for checkouts.

FIGURE 3-23
Edit Workspace MDECLIS1 ?
Name: [MDECLIg! |
Server: mdeDftis\dc |
Owner: ‘Brian Randell |
Computer: MDECLIg! |
Location: ‘ Local " |
File Time: ‘ Current o |
Permissions: ‘ Private workspace v |

A private workspace can be used only by its owner.

Comment:
~
v

Working folders:

Status Source Control Folder = Local Folder

Active §/BlueYonder/Dev/Spike/HelloAspNetWeb chusers\brianr.demotdocumentsivisual studio 20

Active §/BlueYonder/Main Ch\DeviBlueYonder\Main

Click here to enter a new working folder
£ >

Remove || << Advanced 0K | | Cancel

FIGURE 3-24

64 | CHAPTER3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

To convert between a local and a server workspace, change the drop-down for the Location
property.

There are other advanced options worth noting at this point. As introduced in Team Foundation
Server 2010, a user can adjust the permissions on the workspace. Table 3-2 shows the different per-
mission features.

TABLE 3-2: Permission Features

PERMISSION DESCRIPTION

Private workspace A private workspace can be used only by its owner.

Public workspace A limited public workspace can be used by any valid user, but only the
(limited) workspace owner can check in or administer the workspace.

Public workspace A fully public workspace can be used, checked in, and administered by

any valid user.

Public workspaces make it easier for teams to collaborate when sharing a single machine. One spe-
cific example would be merging bug fixes into a mainline branch. By utilizing a public workspace,
multiple team members can work together on a common machine to resolve merge conflicts, thereby
making the merge process run faster and smoother.

The File Time setting was added in Team Foundation Server 2012. In previous versions of TFS, the
timestamp of the file in the local file system is the time at which that file was downloaded to the
local machine (that is, the last time a get was performed on it that involved a modification to the
file). If desired, you can set the File Time option to Check In, which means that the timestamp of the
file in the local file system is the time at which the file was originally checked in to Team Foundation
Server. This makes it easier to work with certain legacy tools or build/deployment processes that rely
on the file modification date to determine if an action should be performed on it.

Server Workspaces

In a server workspace, when a get is performed to download the file to the local file system, the
server tracks which version of the file is on the local machine and the file is set to read-only. This
way the server is aware of exactly which file versions you have locally. Consequently, when you tell
the server you would like to Get Latest, the server can simply send you the latest versions of all the
files that you don’t have yet because it is aware of exactly what you have. When you want to edit
the file you must perform an explicit check-out operation (however, this is frequently automated for
you by the IDE integration in Visual Studio or Eclipse). If you can check out the file (that is, nobody
has an exclusive lock of the file) then the file is set to read-write in the local file system, and you may
perform edits.

Files are listed in your Pending Changes view the moment that they are checked out. For example,
if you start to edit a file in Visual Studio, undo your changes, and save the file again then it is still
shown with an edit pending. However, if you check in a file that has not been modified then the
server removes it from the changeset before it is committed.

vww.allitebooks.cond

http://www.allitebooks.org

Shelving | 65

Because an explicit check-out operation is performed, the server can notify users (via the console
window) if they are editing a file that another user has also checked out. This allows for early col-
laboration between developers when they discover they are working on the same file.

However, the user must inform the server about any operation they are performing to their local
files. If the server is not aware that a local file has been modified or deleted (for example if that
was done outside of Visual Studio) then it does not know to resend that file when a Get Latest is
performed. This is the most frequent source of complaints with older versions of Team Foundation
Server that sometimes “get didn’t get” when the user was expecting it to. The requirement to force
a check-out before editing also made it harder for the user to work with tools outside of the source
code management environment.

In addition, as the server needs to be informed explicitly before a file is edited, a server workspace
works best when there is a permanent online connection to the server. The offline behavior of server
workspaces has been improved with each version of TFS and has been improved further still in the
latest release. (For example, many of the tool windows now work asynchronously so that they do
not lock up the user experience. If they suddenly find that they are waiting a long time for a server
call to return when unknown to the Ul, it is because the network connection to the server has been
terminated.) However, server workspaces, by design, work best when an online connection is avail-
able so the experience for frequently disconnected users is not good.

Local Workspaces

With a local workspace, the metadata about the versions of files in the workspace are stored in a
hidden folder at the root of the workspace. This hidden folder is called $t£ on Windows file systems
and .tf on UNIX file systems. This allows for edit, add, rename, delete, undo, and some compare
operations to be carried out locally without any communication with a server. The $tf folder con-
tains a copy of the last version of the file that was downloaded into the workspace along with some
additional metadata. This allows for edits to be performed on the local file system without requiring
an explicit check-out operation to the server, meaning that the files in the local workspace can be
read/write on get.

Making the files read/write on get dramatically reduces the friction when editing with other tools
outside the source code management environment (such as Notepad on Windows or Xcode on
OS X). The lack of an explicit check-out operation also means that working offline is much improved.

Another advantage of local workspaces is that as changes are detected by the disk scanner, it is
easy to determine when you have deleted files on disk and so performing a get on those files allows
them to be downloaded again. In addition, a file is only shown as pending edit (that is, checked out)
when the contents of it are different than the last version downloaded from the server. Therefore, if
you edit a file, save it, and then undo the changes and save it, the file does not show in the Pending
Changes list as there are no changes to submit.

However, to enable all these great features, the workspace contents have to be scanned and com-
pared with the last copy downloaded into the workspace. Therefore, the larger the number of files
in the workspace, the slower this disk-scan operation can become. That said, modern computers
and hard disks are very fast, and users with fewer than 100,000 files in their workspaces should not
notice much of a slowdown. Even when they do, it is a linear reduction in performance. The number

66 | CHAPTER3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

of files in the local workspace before a slowdown becomes a problem is increased using faster 10K
hard drives or is improved even more when using SSD devices and so on.

One concern that is not mitigated by faster hard drives is if you’re storing large files in version con-
trol that are typically outside the domain of a developer, like image files, videos, and so on. Your
local workspace folder can become double the size of your most recent versions for all of the files
and folders downloaded due to the use of the hidden tracking folder. If disk space is a concern, you
might want to consider a server workspace since only a single copy of each file is downloaded.

Because of the reduced friction to developers in using local workspaces, they are the default option
out the box with Team Foundation Server 2013 when using Team Foundation version control.
However, some organizations, especially those requiring a high degree of control, may value the
features provided by server workspaces, in which case the default can set to Server using the dialog
shown in Figure 3-23.

COMMAND-LINE TOOLS

You can manipulate any part of the version control system using the Team Foundation command-
line tool. The tool is called t £ .exe (short for Team Foundation) and is installed with Visual
Studio. For UNIX-based systems (such as Mac OS X, Linux, Solaris, and so on), a cross-platform
command-line client (simply tf) is available as part of Team Explorer Everywhere, which is a free
download.

For example, to create a new workspace, simply type the following command:

> tf workspace -new MobileExplorerProject
-collection:http://tfsServer:8080/tfs/
YourProjectCollection

In the preceding example, a new workspace is created, called MobileExplorerProject. You can
exercise a great deal of control over the version control system using the tool. For example, you
can manipulate workspaces, add working folders, set permissions, and view changesets, labels, and
much more. The command-line tool has the most functionality available of all the version control
clients for Team Foundation Server. Features are exposed via the command line that are not avail-
able from the user interface in Visual Studio or Eclipse.

You can also use the command-line tool to view the changes in your workspace by simply typing the
following inside the workspace:

> tf status

To view a list of all possible commands using the command-line tool, run the following command:

> tf help

To get more help on a particular command, such as checkin, simply type:

> tf help checkin

http://tfsServer:8080/tfs

Branching and Merging | 67

This provides a list of all options, along with some additional help information. You can also refer
to the MSDN online documentation for more information.

BRANCHING AND MERGING

The use of branching in version control can open up a whole world of possibilities for improving
development productivity through parallelization. Yet, for many developers, branching and merging
are slightly scary and full of uncertainty. Because of a lack of good tooling in the past, many devel-
opers still shy away from branching and merging, despite the good support in Team Foundation
Server. At the other extreme, some people—who see the great branch and merge functionality now
available—can go a little crazy with their newly found power. Overuse of branches can affect devel-
oper productivity and reduce the maintainability of their repository as a result.

No matter which side of the spectrum you find yourself on, the rest of this section explains the fun-
damental principles behind the important branching and merging strategies and provides some key
guiding principles to help you apply them to your organization’s needs. This chapter highlights the
branching and merging tooling available with Team Foundation Server 2013, and then concludes by
walking you through the application of this tooling with some example scenarios.

Branching Demystified

There are lots of terms and concepts peculiar to the world of branching and merging. The following
sections provide some definitions and context for those basic terms and concepts.

Branch

A branch is a copy of a set of files in a different part of the repository that allows two or more
teams of people to work on the same part of a project in parallel. In Team Foundation Server 2013,
branching is a lightweight server-side operation; when you perform the branch, it doesn’t actually
create new copies of all those files on the server. It just creates a record pointing to them and does
not take up any significant extra storage—one of the reasons why creating a new branch containing
thousands or even millions of files can be done quickly.

Merge

A merge is the process of taking code in two branches and combining it back into one code base.
For example, if you have two teams of developers working on two branches, and you want to bring
the changes together, then you merge them. If the changes consist simply of edits to different files
in the branches, then the merge is simple—but it can get more complicated, depending on what was
edited in both branches.

For example, if the same line of the same file has been edited in both branches, the person perform-
ing the merge must make a decision as to which change should take precedence. In some circum-
stances, this results in a hybrid merge, where the combination of the intent behind the two changes

68 | CHAPTER3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

requires a different result than simply the text in those versions being combined. When you branch,
Team Foundation Server keeps track of the relationship between branches, as shown in Figure 3-25.

base
$/TeamProject/main;C73

e :
f]

(target

,

source 1
$/TeamProj ect/releases/Vl.O;LJ merge

Y

$/TeamProject/main;L

FIGURE 3-25

The branch containing the changes that you want to merge is called the source branch. The branch
that you want to push the changes into is the target branch. The common ancestor, that is to say
the changeset that indicates the version from which these branches are derived, is called the base
version. When you merge, you can select a range of changes in the source branch to merge into the
target branch.

Conflict

If the same file has been edited in both the source and target branches and the conflict can’t be
resolved automatically, Team Foundation Server will flag this as a conflict. For certain changes (such
as a file that was edited in two different places), Team Foundation Server can make a good guess
about what should happen (that is, you want to see a file containing the changes from both places).
This is called an auto merge. Team Foundation Server 2012 introduced significant improvements
to the auto merge capabilities and the occasions in which they are available. A best practice is to let
the tool perform an auto merge, but you should then validate the merge results afterward to ensure
the correct intent of the two changes has occurred. For example, if two different bugs were fixed,
you probably want both changes. However, if the two changes were just fixing the same bug in two
different ways, perhaps a different solution is in order. In most cases, where the development team
has good communication, the changes are a result of different changes being made to the file. Auto
merge usually does a great job of merging them together, making it easy for the developer to simply
validate the changes.

There can also be many cases where the actual outcome is unclear, so auto merging is not available.
For example, if you deleted the file in one branch and edited it in another, do you want to keep the
file with the changes or remove it? The person performing the merge is responsible for deciding the
correct conflict resolution based on an understanding of the code, and communicating with the
team members who made the conflicting changes to understand their intent.

As with life in general, conflict is never good in version control. Making the decision about the cor-
rect conflict resolution in version control can be a complex and time-consuming process. Therefore,
it is best to adopt a branching strategy that minimizes the likelihood of conflicts occurring.

Branching and Merging | 69

However, conflicts will occur, and Team Foundation Server provides the tooling to deal with them,
so conflicts should not be feared.

Branch Relationships

When you branch a folder, the connections between those branches form a standard hierarchical
relationship. The source of the branch is the parent, and the target of the branch is the child, as
shown in Figure 3-26. Children who have the same parent are called sibling branches.

Forward
Integration

Branch A Branch C
Child Eleemzn B Child
Reverse
Integration , \
:I: I
! () :
Branch A1 : :
: Branch B1 Branch B2 :
;ﬁ/ 1
ot !
------- I
Baseless merge R s /
siblings

FIGURE 3-26

Baseless Merge

A baseless merge is a merging of two arbitrary branches in version control without reference to a
base version. This is sometimes necessary if the source code was originally imported in a flat struc-
ture without the branch relationship being in place, or if you want to merge between one branch and
another that is not a direct parent or child (for example, Branch A1 and Branch B1 in Figure 3-26).

Because no base version is being used to compare against, the probability of the server detecting
conflicts occurring between the two branches is much higher. For example, if a file is renamed in
one branch and edited in the other, it shows up as a file delete conflicting with the file edit, and
then a file add that gives no hint as to which file it is related to, or that there is an edit intended

for this file in the other branch. For this reason, baseless merges are discouraged. Your branching
model should attempt to constrain most merges between parent and child branches to minimize the
amount of baseless merging required.

70 | CHAPTER3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

Forward/Reverse Integration

Forward integration (FI) occurs when you merge code from a parent branch to the child branch.
Reverse integration (RI) occurs when you merge code from a child branch up to the parent branch.
The terms FI and RI can often fly around quite freely during a branching debate, so it is important
to understand what they mean. If you are doing feature development in branches, it is common to
use FI at various points during the feature development cycle, and then to use RI at the end. See the
“Feature Branching” section later in this chapter for more information.

Common Branching Strategies

Depending on the organization of your team, and the software that you need to develop, there are
numerous branching strategies that you can adopt, all with various pros and cons. However, just as
every strategy in chess is made up of simple moves, every branching strategy uses one or more com-
binations of some basic techniques. This section details some of the basic techniques, how they are
used, and why.

When developing your own branching strategy, you should take into account the needs of your
organization. In all likelihood, you may adopt a strategy that combines one or many of the basic
techniques described here.

When looking at any strategy for branching and merging, you should keep in mind the following
important rules:

> Choose simplicity over control.

> Branch only when you really need to. (You can branch after the fact if you find you need to.)
> If you ever want to merge two branches, keep the time between merges to a minimum.
>

Ensure that your branch hierarchy matches the path you intend your merges to follow.

NOTE For additional guidance on branching and merging with Team
Foundation Server, see the “Visual Studio TES Branching Guide” project on
CodePlex at http: //vsarbranchingguide.codeplex.cow/. This guidance

is created by a community of Visual Studio ALM Rangers, and combines the
knowledge of Microsoft people with Microsoft Most Valued Professionals
(MVPs) and other technical specialists in the community. The guidance also
includes hands-on labs, along with a set of diagrams that can be a useful starting
point when creating your own branching plan.

No Branching

It may be counterintuitive, but the simplest branching technique is to not branch at all. This should
always be your default position. Do not branch unless you know you need to. Remember that you
are using a version control tool that tracks changes over time. You can branch at any point in the
future from any point in the past. This gives you the luxury of not having to create a branch “just in
case”—only create branches when you know you need them.

http://vsarbranchingguide.codeplex.com
http://vsarbranchingguide.codeplex.com
http://vsarbranchingguide.codeplex.com

Branching and Merging | 71

However, there are things you can do to prepare yourself to make branching easier in the future if
you decide you need a branch.

Figure 3-27 illustrates the most important thing that you should do 4 "'f .:;d;ifcicda
if you think you might possibly need to branch in the future. When » i Dev
you first create your team project in Team Foundation Server, cre- =] Vain
ate a folder called Main and check it in. Then, right-click the folder >

Rel
in Source Control Explorer and select Branching and Merging =
Convert to Branch to get to the screen shown in Figure 3-28. FIGURE 3-27

Convert Folder to Branch - Main ?

Branch Name:
§/BlueYonder/Main
Owner: | Brian Randell

Description:
Main Branch|

Recursively perform this conversion on all folders previously branched from this folder

FIGURE 3-28

With no branching, you only have one code line to work in for all teams. This technique works great
when you have small teams working on the same code base, developing features for the same ver-
sion of the application, and supporting only one version of the application at a time. At some point,
no matter how complex your branching strategy evolves to support your business needs, you need

at least one stable area that is your main (or mainline) code. This is a stable version of the code that
will be used for the build that you will create, test, and deploy.

However, during stabilization and test periods, while you are getting ready to release, it may be nec-
essary for the team to not check in any new code into the code base (that is, undergo a code freeze).
With smaller teams working on a single version, this does not affect productivity because the people
who would be checking in code are busy testing to ensure that the application works, as well as
getting ready for deployment.

72

CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

With this technique there is no way to start work on something new before the final build of the cur-
rent version has been performed. The code freeze period can, therefore, be very disruptive because
there is no way to start work on the next version until the current one has shipped. It’s these times
when other strategies become useful for teams of any size, even a team of one.

Branch Per Release

After no branching, the second most common branching technique is branch per release. With this
technique, the branches contain the code for a particular release version, as shown in Figure 3-29.

V1.0 V2.0 $/TeamProject/Main

Reverse
integrations

| V1.0 | | V1.1 | $/TeamProject/Releases/V1

V2.0 $/TeamProject/Releases/V2

FIGURE 3-29

Development starts in the Main branch. After a period of time, when the software is considered
ready, a branch is made to the v1 branch, and the final builds are performed from it. It is then
released into production (with the code in the final production build getting a label to indicate which
versions of which files were in that version). Meanwhile, development of new features for version 2
(v2) continues on the Main branch.

Let’s say that some bugs are discovered in production that must be addressed, and a small change

is necessary to reflect how the business needs something to work. However, the development group
does not want to include all the work for v2 that has been going on in the Main branch. Therefore,
these changes are made in the v1 branch, and builds are taken from it. Any bug fixes or changes
that must also be included in the next version (to ensure the bug is still fixed in that next release) are
merged back (that is, reverse-integrated) into the Main branch. If a bug fix was already in the Main
branch, but needed to go into v1, then it might simply be merged (that is, forward-integrated) into it.
At a certain point, the build is determined to be good, and a new v1.1 build is performed from the
v1 branch and deployed to production.

During this time, development on the next version can continue uninterrupted without the risk of
features being added into the code accidentally and making their way into the v1.x set of releases.
At a certain point, let’s say that it is decided that v2.0 is ready to go out the door, the mainline of
code is branched again to the v2 branch, and the v2.0 build is created from it. Work can continue
on the next release on the Main branch, but it is now easy to support and release new builds to cus-
tomers running on any version that you want to keep supporting.

Branch per release is very easy to understand and allows many versions to be supported at a time. It
can be extended to multiple supported releases very easily, and makes it trivial to view and compare

Branching and Merging | 73

the code that was included in a particular version of the application. Branch per release is well-
suited to organizations that must support multiple versions of the code in parallel—such as a typical
software vendor.

However, for a particular release, there is still no more parallelism of development than in a stan-
dard “no branching” strategy. Also, if the organization must only support two or three versions

at a time (that is, the latest version, the previous version, and, perhaps, the version currently being
tested by the business) then this model can lead to a number of stale branches. Although having lots
of old, stale branches doesn’t affect the performance of Team Foundation Server, or even cause any
significant additional storage requirements, it can clutter the repository and make it difficult to find
the versions you are interested in—especially if the organization releases new versions frequently. If
this is the case, you may want to move old branches into an Archive folder, and only have the active

branches (that is, the versions that the development team are currently supporting) in the Releases
folder.

Code-promotion Branching

An alternative to the branch per release technique is code-promotion branching (or promotion-level
branching). This technique involves splitting the branches into different promotion levels, as shown
in Figure 3-30.

V1.0 $/TeamProject/Main
V1.0 $/TeamProject/Releases/Test
$/TeamProject/Releases/Prod
FIGURE 3-30

As before, development starts with just the Main branch. When the development team is ready to
test the application with the business, it pushes the code to the Test branch (also often called the
QA branch). While the code is being tested, work on the next development version is carried out in
the Main branch. If any fixes are required during testing, they can be developed on the Test branch
and merged back into the Main branch for inclusion in the next release. When the code is ready to
release, it is branched again from Test to Prod. When the next release cycle comes along, the same
is done again. Changes are merged from Main to Test and then Test to Prod.

Code-promotion branching works well in environments that have a single version running in pro-
duction, but have long test-validation cycles that do not involve all of the development team. This
allows development to continue on the next version in Main while test and stabilization of the build
occurs in the Test branch. It also makes it trivial for the development team to look at the code cur-
rently on each system. Finally, the branch structure makes it easy to create an automated build and

74 | CHAPTER 3 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

deployment system using Team Foundation Build that can automatically update the Qa/Test envi-
ronment as code is pushed to the ga branch.

NOTE For more information on the build capabilities of Team Foundation
Server, see Chapter 5.

Feature Branching

The previous branching strategies involve a single team working on the system in its entirety as they
work toward a release. All features for that release are developed in parallel, and the build can be
deployed only when all features in flight have been completed and tested. However, in large sys-
tems, or systems that require very frequent deployment (such as a large commercial website), feature
branching (or branch per feature), as shown in Figure 3-31, can be useful.

$/TeamProject/Feature/F4
$/TeamProject/Feature/F1

$/TeamProject/Main

$/TeamProject/Feature/F3
$/TeamProject/Feature/F2

FIGURE 3-31

Feature branching is used when a project requires multiple teams to be working on the same code
base in parallel. In Figure 3-31, you see four feature teams working in separate branches (F1, F2, F3,
and F4). Note that in a real branching structure, the feature branches themselves would likely have
meaningful names such as F1ightSelling, InsuranceExcess, or whatever shorthand is used by
the project to refer to the feature under development. The Main branch is considered “gold code,”
which means that no active development goes on directly in this branch. However, a feature must be
reverse-integrated into this branch for it to appear in the final release build and for other teams to
pick it up.

Initially, 71 is started with a branch from Main. But, while F1 is being developed, second and third
teams start F2 and F3, respectively. At the end of development of the feature, F1 is merged back into
the Main branch, and the F1 branch is deleted. Then that team starts on feature F4. The next feature
to finish is F3, followed by F2. At each point, after the feature is merged into the Main branch, a new
version of the software is released to the public website, but only one version is supported at any time.

Feature branching allows for a large amount of parallel development. However, this comes at the
cost of delaying the pain of integrating each team’s changes together until the feature is complete
and you are merging the feature branch back into the Main branch. For example, in Figure 3-31,

Summary | 75

when merging the 72 branch, all changes and inevitable conflicts introduced by features 1, F2, F3,
and F4 must be analyzed and resolved.

The longer a period of time that code is separated into branches, the more independent changes
occur, and, therefore, the greater the likelihood of merge conflicts. To minimize conflicts, and to
reduce the amount of integration debt building up, you should do the following:

> Keep the life of a feature short—The time taken to develop features should be as short as
possible, and should be merged back into the Main branch as soon as possible.

> Take integrations from the Main branch regularly—In the example shown in Figure 3-31,
when F1 is merged back into Main, the feature teams still working on their features should
merge those changes into their feature branches at the earliest possible convenient point.

> Organize features into discrete areas in the code base—Having the code related to a particu-
lar feature in one area will reduce the amount of common code that is being edited in mul-
tiple branches, and, therefore, reduce the risk of making conflicting changes during feature
development. Often, the number of teams that can be working in parallel is defined by the
number of discrete areas of code in the repository.

When using feature branching, the whole team doesn’t necessarily have to be involved. For example,
one or two developers might split off from the rest of the team to go work on a well-isolated feature
when there is a risk of the move not being possible (that is, they are working on a proof of con-
cept), or when it is decided that the current release should not wait for that particular feature to be
implemented.

SUMMARY

In this chapter, you examined the core features of Team Foundation version control and how to use
it for day-to-day development.

You found out how to use Source Control Explorer and how to check in code, showing you the
concepts of workspaces, changesets, and shelvesets. You learned how to view the history of files and
apply labels. The chapter also covered advanced concepts, such as workspaces and the differences
between local and server workspaces.

Version control is the most important tool you can use to help you manage your development pro-
cess; it provides an effective way of organizing your source code. The branch and merge capabilities
of Team Foundation Server not only allow for some complex software configuration management
scenarios, but they also provide the tooling to help understand what is happening with changes in
your version control repository. Chapter 4, which covers Git in Team Foundation Server, shows a
different style of version control and branching.

Finally, Part V of this book talks more about software development in general and provides guid-
ance about how to make sure the code that you are checking in is good code.

Distributed Version Control
with Git and Team Foundation
Server

WHAT'S IN THIS CHAPTER?

> Understanding the fundamentals of Distributed Version Control
with Git

> Getting started with the Visual Studio Tools for Git
> Merging Changes with Git and Visual Studio

Since the first release of Team Foundation Server there’s only been one choice when it comes
to version control. While other parts of the system—most notably work item tracking—pro-
vided choice, version control is a single-choice endeavor. But the world of software develop-
ment keeps changing, and for some folks, centralized Team Foundation Version Control as it
stands today isn’t working out.

Yet it turns out even other products weren’t cutting it for people out in the larger software
development community back when Team Foundation Server was just getting going. Just less
than a year before Team Foundation Server 2005’s final release, Linus Torvalds, the father of
Linux, sprang Git on the software development community. Over the years, Git has become
one of the most popular products for managing source code. It’s blindingly fast, provides com-
plete local history, and isn’t dependent on a centralized server. In fact, Git is known as

a distributed version control system.

78 | CHAPTER4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

NOTE This chapter is focused on using Git with Visual Studio and Team
Foundation Server. If you want to dig into Git further, there are a number of
great resources on the Internet, including “the” Git book, Pro Git by Scott
Chacon (Apress, 2009). It’s available in print and online at http://git-scm
.com/book.

FUNDAMENTALS OF DISTRIBUTED VERSION CONTROL
WITH GIT

Git isn’t your traditional version control product. In fact, Linus didn’t set out necessarily to write
one. Yet Git has become such a force in the software development community that it’s mentioned on
commercial television news broadcast and convinced Microsoft they were better off embracing it,
rather than writing their own.

NOTE When questioned early on about his plans to handle renames, Linus
had an interesting reply. He wrote: “You can represent renames on top of

git — git itself really doesn’t care. In many ways you can just see git as a filesys-
tem — it’s content-addressable, and it has a notion of versioning, but 1

really really designed it coming at the problem from the viewpoint of a _filesys-
tem_ person (hey, kernels is what I do), and I actually have absolutely

zero interest in creating a traditional SCM system.” From http://marc
.info/?1l=1linux-kernel&m=111314792424707.

When you approach Git for the first time, it’s important to leave your assumptions at the door. In
particular, while you may be very comfortable with other tools, including Team Foundation Version
Control, Git has surprises for just about everyone. Search the Internet or popular social services like
Twitter for “git hurts” or “git pain” and you’ll find no lack of fodder. If it hurts so bad, then why is
it so popular?

Git is a part of new generation of distributed version control systems. By not relying upon a central
server, they provide immense power and flexibility for the developer. With Git, you start by defin-
ing a repository—this can be local or on a server. If it’s not local, you bring a copy local through

a process known as cloning. From there you work on your source files, making changes as you see
fit. When you reach an interesting point, you can commit your changes to your local “repo” includ-
ing comments. You can do this over and over. If you decide you’re ready to share, you can share
your changes. How you do this depends upon a number of things but needless to say once you do,
someone else can clone the repo. When they do they get all of your commits locally on their system.
You never have to worry about something not being there with Git. It’s all or nothing. And just like
other version control systems, Git supports branches. However, they’re much lighter weight and can
be private forever to a particular repo—you don’t have to share if you don’t want to. It’s this type
of flexibility that has won over the hearts and minds of developers worldwide. And did we mention

http://git-scm
http://marc

Getting Started with the Visual Studio Tools for Git | 79

it’s fast? Because there’s no network involved when you do a commit, Git doesn’t get in your way
encouraging you to commit and branch whenever you want.

That said, when you pick a version control technology, you have to consider the team and the orga-
nization. The good news is you can mix and match Team Foundation Version Control and Git in the
same project collection.

GETTING STARTED WITH THE VISUAL STUDIO TOOLS FOR GIT

If you want to use Git with Visual Studio and Team Foundation Server, you’ll want to be on the
2013 release. While Microsoft has released client support for Git in the form of a download package
for Visual Studio 2012, they’re no longer investing in it and it has limitations. In addition, every-
thing discussed in this chapter works on-premises and in the cloud with Visual Studio Online. That
said, while the 2013 features set is very rich, it’s not complete relative to the number of things you
can do with Git clients. There are times you might need to jump down to the command prompt.
Visit http://aka.ms/gitemd for a nice list of operations and how-to information. That said,
Microsoft is promising to update the tooling on both the server and client regularly, quite possibly
by the time this book is in print.

As mentioned earlier, you can get started using Git directly on the client without a server or start
with a server-hosted repo. We’ll talk about both but start with a remote repository created when you
create a Team Project. When you run the New Team Project wizard from Visual Studio 2013, you’ll
now have an option to specify which version control repository type you want, as shown in

Figure 4-1.

[_]
L
r.‘ Specify Source Control Settings
F .

Choose a version control system for the new project:
Git
Git is a Distributed Version Control System (DVCS) that uses a local repository to track and version files.

Changes are shared with other developers by pushing and pulling changes through a remote, shared
repository.

< Previous Finish Cancel

FIGURE 4-1

http://aka.ms/gitcmd

80 | CHAPTER4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

Once you complete the wizard and Team Foundation Server has created your Team Project, you’ll
be ready to start with Git. A common question that comes up is if you can mix Team Foundation
Version Control and Git in the same team project. The answer as this chapter is being written is no.
However, like other items on Microsoft’s backlog, you never know if the answer will remain no.
You can vote for this feature and anything else you want by visiting the Visual Studio User Voice site
at http://aka.ms/vsuservoice.

Clone

Once you’ve created the team project from Visual Studio, the Team Explorer window will encourage
you to clone your new repository, similar to Figure 4-2.

Team Explorer - Home * 0 x

¥ | [] Search Work Items (Ctrl+) o~
Home | proalmagit -
© Clone this repository to get started developing. x

Help | Don't prompt again

4 Project
Clone Repcsitcryl Web Portal | Task Board | Team Room
|® Changes |v Branches
| T¢ Unsynced Commits | & Work ltems
||:]| Builds | Reports
| % Team Members |{§ Settings

4 Solutions
You must clone the repository to open solutions for this
project.

Teamn Explorer

FIGURE 4-2

When you click the link provided, Team Explorer replaces the message with textboxes that are
auto-populated with the remote repository location and the location on your local hard drive where
it should clone the repository (see Figure 4-3).

You can accept the path or adjust it as you see fit and then click the Clone button. When you’re
cloning a remote repo that is empty and new, it’s near instantaneous. However, if the remote reposi-
tory has been in use for a while (it’s possible it could be quite large if more than just source files are

http://aka.ms/vsuservoice

Getting Started with the Visual Studio Tools for Git | 81

stored and the repo is in active use), Visual Studio needs to copy down all of the files in the reposi-
tory as well as all of the changes. This is a significant difference from doing a traditional “get latest”
with Team Foundation Version Control. You’ll receive a message once the clone process is done in
Team Explorer. At this point you’re ready to work with your copy of the repository.

Team Explorer - Home v 1x
far | [] Search Work ltems (Ctrl+') P~
Home | proalmagit -

4 Clone Repository
http://mde06tfs:2080/tfs/dc/_git/proalmgit
Ch\Users\brianr.demo'Source\Repos'proalmgit

Clone Cancel
4 Project
Clone Repository | Web Portal ‘ Task Board | Team Room
| @ Changes | v Branches
| T¢ Unsynced Commits | & Work ltems
| Lty Builds | Reports
| % Team Members | ﬁ Settings
4 Solutions
You must clone the repository to open solutions for this
project.

Team Explorer

FIGURE 4-3

NOTE Because you're bringing down everything when you clone a repository,
you may need to adjust your thinking when using Git. Typically youw’ll want to
have more repositories — something supported in Team Foundation Server —
that are specialized around a small set of solutions and projects instead of a giant
repo. In addition, while you can commit binary files to a Git repo, the raison
d’étre for Git is managing source files and you won’t have Team Foundation
Version Control’s cloak feature to exclude large folders or files and their history
when you clone.

However, if this is your first time using the Git integration, you might want to adjust a couple of
settings. Git identifies every commit with information about who did the commit. This identity

82 | CHAPTER4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

information is in the form of a display name and an email address. From the Home page of Team
Explorer, youw’ll want to click the Settings button. On the Settings page, near the bottom, you’ll find
a section entitled Git with two options (see Figure 4-4).

Team Explorer - Settings > I x
(<] ¥ | [v] Search Work Items (Ctrl+') P~
Settings | proalmgit h
4 Team Project

Security

Group Membership

Work [tem Areas

Work ltem Iterations

Portal Settings

Project Alerts

4 Team Project Collection
Security
Group Membership
Process Template Manager
4 Git
Git Settings
Install 3rd-party tools

Team Explorer

FIGURE 4-4

If you select the Git Settings option, you’ll get a page to provide your preferred display name, email
address, and if desired an author image (see Figure 4-5). If your organization has your email address
stored in Active Directory, Team Explorer will use it. You can change it if desired. In addition,

you can specify your preferred default local repo location when you clone repositories. In addition,
Team Foundation Server supports author images so you more easily see the author of each commit.
When using Team Foundation Server-based repositories, your image will be pulled from your profile
(adjustable via the Web Portal). The Enable Download option is there in case you’re using remote
repositories on locations like GitHub.

The other interesting option on the Settings page under the Git section is an option to install third-
party tools. This option can also appear at the top of your Team Explorer window with the wording

Getting Started with the Visual Studio Tools for Git | 83

“Install 3rd-Party Git Command Prompt Tools.” If you choose this option, Visual Studio launches
the Web Platform Installer to download and run the Git for Windows installer from http://
msysgit.github.io/. While this installer is convenient, it silently installs the tools with less than
optimal settings at the time this chapter was written. If you download the tools individually, you’ll
find you have more control over settings like desktop icons. Visit http://aka.ms/gitcmdline for
a step-by-step post on how to install the tools. Regardless of how you install them, you’ll find these
tools are worth having installed as your experience with Git increases.

Team Explorer - Git Settings > 1 x
(<] far | [] Search Work Items (Ctrl+") P~

-

Git Settings | proalmait
4 Global Settings

User Name
Brian Randell

Email Address

brianr@demo.local

Default Repositery Location
C:\Users\brianr.demo\Source\Repos

[Enable download of author images from 3rd party source.

Learn more

Cancel

4 Repository Settings
Ignore File

There was no .gitignore file found. | Add

Attributes File
There was no .gitattributes file found. | Add

Team Explorer

FIGURE 4-5

Commit

Once you’ve created a Git-enabled team project and cloned the empty repository, you're ready to
write some code and start committing. This part starts out in a very familiar fashion. Create a new
Visual Studio project, set the location to the directory that you cloned the local repo to, check the
Add to Source Control option, and click OK, as shown in Figure 4-6.

http://msysgit.github.io
http://msysgit.github.io
http://aka.ms/gitcmdline
http://msysgit.github.io
http://msysgit.github.io
http://msysgit.github.io
http://msysgit.github.io

84 | CHAPTER4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

b Recent [.NET Framework 4.5 | Sort by: | Default Search Installed Templates (Ctrl+E) P~
4 Installed C a .
E] Windows Forms Application Visual C# Type: Visual C#
-
4 Templates A project for creating a command-line
- . Ci i
v Visual Basic 7] wer application Visual C# application
4 Visual C# -
Ci
Windows Store Bl console Application Visual C#
Windows
cH
b Web Et:i! Class Library Visual C#
b Office/SharePoint -
cH
Cloud E’Bi! Portable Class Library Visual C#
LightSwitch *
Reporting 54 .
WPF Browser Application Visual C#
Silverlight L
Test -cy ; .
Empty Project Visual C#
WCF A
5]
X Workflow EL‘I Windows Service Visual C#
b Visual C++
b Visual F# c#
e HEH WPF Custom Centrel Library Visual C# -
SV —— -
b Online Click here to go enline and find templates.
Mame: helloGit
Location: C:ADev\brianr\proalmgit, =
Solution name: helloGit Create directory for solution
Add to source control
FIGURE 4-6

Visual Studio creates your project. Just like with a project you’ve put under Team Foundation
Version Control, you’ll get glyphs on your items in the Solution Explorer window. At this point,

you might do some work like renaming the files or even writing some code. When you’re ready, go
to Team Explorer and from the Home page click the Changes button. You can also right-click the
Solution node in Solution Explorer and select the Commit option from the context menu. Regardless
of which option you choose, you’re taken to the Changes page in Team Explorer, shown in

Figure 4-7.

You need to add a comment, known as a commit message. You can associate a work item, and then
specify which files are included or not, as well as evaluate any candidate changes, which are listed

under the Untracked Files section. They indicate changes that Visual Studio detected but isn’t sure
should be included.

Currently, the My Work concept that’s available when using Team Foundation Version Control from
Visual Studio Premium or Ultimate is not available when working with Git-based team projects.
Thus to associate a work item with a commit, you need to know the work item’s ID. You have the
choice of using the Add Work Item by ID option (available only if you have a connection to your
Team Foundation Server) or adding a # symbol plus the work item ID to your commit message.

Getting Started with the Visual Studio Tools for Git | 85

The Queries option, which also works only if you have a connection to your Team Foundation
Server, will let you run a query stored in your My Queries folder. When you store the work item ID
in the commit message, Team Foundation Server can link work items to commits once the changes
make their way to your Team Foundation Server’s repo. However, at this stage you’re just com-
mitting to your local repo. Once you have the page adjusted properly, click Commit to save your
changes locally. You continue to do this until you’re ready to share your work with your team.

Team Explorer - Changes > 1 x
(<] far | [] Search Work Items (Ctrl+") P~

Changes | proalmgit v | 7

Branch: master = | Unsynced Commits
Enter a commit message <Required>
Actions «
4 Related Work ltems
Queries v | Add Work ltem by ID +

Drag work items here to link them to the commit.

4 [ncluded Changes (5)
Exclude All | View Options
4 Ch\Devibrianr\proalmgit\helloGit
- helleGit
- Properties
C* Assemblyinfo.cs [add]
¥ App.config [add]
helloGit.csproj [add]
©* Program.cs [add]
] helloGit.sin [add]

4 Excluded Changes (2)
Include All | View Options w

4 CA\Dev\brianr\proalmgit
|| .gitattributes [add]

| .gitignore [add]

P Untracked Files

Team Explorer

FIGURE 4-7

Once the commit is complete, Team Explorer displays a message letting you know your change was
saved locally. Git uses object identifiers based on a hash function for your commits. You can click
the link and view the details of your commit. You can commit as much as you want and see your
changes at any time. You can do this by going to the Unsynced Commits page, which will display
your outgoing commits (see Figure 4-8). You can use the View History command from the Actions
menu to get a full list of changes. From there, you can access the commit details by double-clicking
an item or pressing Enter. In addition, View History is available on the content menu when you
right-click an item in the Solution Explorer.

86 | CHAPTER4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

Team Explorer - Unsynced Commits > I x
[<] Gy ¥ | [] Search Work ltems (Ctrl+') P~
Unsynced Commits | proalmgit -

Branch: master = | Changes
Sync Pull | Push | Actions +

4 Incoming Commits
Fetch | Pull

There are no incoming commits,

4 Outgoing Commits (2)
Push

Added another line of code.
§ Brian Randell less than a minute ago

Created new project.
™ Brian Randell 13 minutes ago

Team Explorer

FIGURE 4-8

Push, Pull, and Fetch

Once you’re ready to share with your team, you need to synchronize your repo with Team
Foundation Server by pushing your changes from your local repository to the server. From the
Unsynced Commits page you have the option of only sending your changes to the server. In addi-
tion, you can pull any changes that have been committed to the team project repository by your
team. You preview those incoming changes by using the fetch command. If you use the Sync
button, Team Explorer will pull and push at the same time. Assuming no conflicts, Team Explorer
displays a message like the one in Figure 4-9 telling you it successfully synchronized the incoming
and outgoing commits.

Sometimes you want to make a change and get it pushed up to your team right away. When you’re
on the Changes page and you’ve entered a commit message, you can expand the Commit button’s

Getting Started with the Visual Studio Tools for Git | 87

menu to see two additional options. As you can see in Figure 4-10, you can commit and push or
commit and sync in one step.

Team Explorer - Unsynced Commits > 1 x

[< - I |) | Search Work ltems (Ctrl+') P-

Unsynced Commits | proalmgit -
[i] Successfully synchronized incoming and ocutgoing X
commits.

Branch: master = | Changes
Sync Pull | Push | Actions v

4 Incoming Commits
Fetch | Pull

There are no incoming commits.
4 Outgoing Commits
Push

There are no outgeing commits.

SLILLYSTIMEE Team Explorer

FIGURE 4-9

Team Explorer - Changes > 1 x

(<] far | [] Search Work Items (Ctrl+") P~
Changes | proalmagit v | 7
Branch: master = | Unsynced Commits

Added a new message

Commit + | Actions =

Commit

Commit and Push

[B3 E3 [3

Commit and Sync o the commit.

FIGURE 4-10

88 | CHAPTER4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

MERGING CHANGES WITH GIT AND VISUAL STUDIO

Working with a distributed version control product means two team members can change the same
source file, and then you’ll need to merge the changes. As mentioned earlier, you can use the fetch
command to see if anyone’s made changes to your team’s repository. You can bring the changes
down using the pull command as long as you don’t have any uncommitted changes to files affected
by the pull (see Figure 4-11).

Team Explorer - Unsynced Commits > o x
(<] a ¥ |) | Search Work ltems (Ctrl+') P~
Unsynced Commits | proalmagit -

€ Cannat pull because there are uncommitted changes. x
Commit or undo your changes before pulling again, See
the Qutput window for details,

FIGURE 4-11

When you perform a pull (or a sync), and there are conflicts, Team Explorer displays a message (see
Figure 4-12) letting you know and providing a link to use to resolve the conflict. When you start the
resolving process, you get a list of all the conflicts. You then can select a conflict and decide what

to do — you can merge using a tool like Visual Studio’s built-in merge tool; take the remote file; or
keep your local changes (see Figure 4-13).

Team Explorer - Unsynced Commits * 1 X
(<] ¥ |) | Search Work ltems (Ctrl+') P~

Unsynced Commits | proalmgit -

0 Pull completed with conflicts. Resolve the conflictsand X
commit the results.

FIGURE 4-12

As you resolve the changes, you’ll see them added to the list in the Resolve Conflicts page (see
Figure 4-14). Once you’re done, you need to commit your merge using the Commit Merge button.
Once you do that, you’ll be taken to the Changes page where you commit the merge to your local
repo and, if ready, push the merge to your team.

Branch Creation

Many times you’ll want to work on a section of code without having to deal with changes from
other team members. Maybe you need to write a new algorithm and you want to try a couple
scenarios. Branches provide a way to work in isolation. Unlike Team Foundation Version Control
branches, Git branches are lightweight and easy to use locally on their own or shared with your
team. Branches have their own commit history, making them very flexible and powerful.

Merging Changes with Git and Visual Studio | 89

A key concept in working with branches in Git is that you branch in version space, not path space.
In other words, in Git, your repo has only one folder structure. When you switch branches, files and
folders are manipulated under the covers to match the branch you’re working with. In comparison,
when you branch in Team Foundation Version Control, each branch is an object that you see relative
to other branches and folders.

o helloGit - Microsoft Visual Studio G ¥ QuickLaunch (Curl-Q) P - 8 x
FILE EDIT VIEW PROJECT BULD DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP signin [
©-0 B2 | | b st - I I L =
L3 \ierge - vetmp478D..ogrem T1b%adee.cs” = X g8 Team Explorer - Resolve Conflicts
F AcceptMerge | € 1€ 31 3 [M| & -| @ - © © @ ¥ | @ |ScarchWork ems (Cirl+) P~

1 Conflicts (0 Remaining) Resolve Conflicts | prozimgit

Source: helloGit\helloGit\Pregram.cs;Remote

Target: helloGit\helloGit\Pregram.cs;Local

%, helloGit.Program Targs)

~|| " helloGit Program -[e, Targs)

BES

2N

{
Console.WriteLine("Hello, Git");
Console.WriteLine("Hello, Brian");

Console.WriteLine("Hello, Git");
Console WriteLine("Hello, Brian”);

Console.WriteLine("Hello, Mickey");

Undo Merge

4 Conflicts (1)

Name Path
©* Program.cs [both mo... helloGit\helloGit

H Console.WriteLine("Hellow, Martin”); H
1 i Merge
I i Conflicting content changes have been made,
} ¥ Compare Files
Edited on Remote | Diff | Take Remote
Edited on Local | Diff | Keep Local
| 4 Resolved
o |4 Sl » There are no resolved conflicts
Result: helloGit\helloGit\Program.cs
%, helloGit.Program EER] args)
{ -

Console.Writeline("Hello, Git");
Console.WriteLine("Hello, Brian");
Console.WriteLine(“Hello, Mickey”);
Console.Writeline(Hellow, Martin®);

Solutien Explorer [LLEINaiad Class View

FIGURE 4-13

Team Explorer - Resolve Conflicts * 0 x
(] far |) Search Work ltems (Ctrl+') P~
Resolve Conflicts | proalmagit -

Commit Merge Undo Merge

4 Conflicts
There are no remaining conflicts

4 Resolved (1)

Path
helloGit\helloGit

Mame
c#Program.cs [both mo..

FIGURE 4-14

To create a branch, you click the Branches button on the Home page. From there you select the New
Branch command, which causes Team Explorer to open up a page, where you provide a name and

90 | CHAPTER4 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

specify the source branch (see Figure 4-15). If you check out the branch at creation time, Visual
Studio will switch to that branch once it has created it.

Team Explorer - Branches > I x

(<] ¥ |) | Search Work ltems (Ctrl+') P~

-

Branches | proalmagit
Branch: BrianSpike | Changes | Unsynced Commits
Mew Branch - | Merge + | Actions =

BrianSpike|

master

Checkout branch

Create Branch = Cancel

4 Published Branches
ﬁ master | Brian Randell 4 minutes ago

FIGURE 4-15

Once the branch is created, you can make changes to your code, and commit as much as you want.
You never have to share it if you don’t want to. However, sometimes you do want to share your
work with others. You can do this by publishing the branch. Once you use the Publish command
from the Branches page, other team members can get a copy by using the New Branch command

and selecting your branch from the list (see Figure 4-16).

Team Explorer - Branches > I x
<] G ¥ | 0 | Search Work ltems (Ctrl+") L~

-

Branches | proalmgit

Branch: master = | Changes | Unsynced Commits

Mew Branch « | Merge « | Actions +

BrianSpike

| origin/BrianSpike

Checkout branch

Create Branch = Cancel

FIGURE 4-16

At any point you can merge changes from one branch to another by using the Merge command. This
command lets you pick the direction of the merge (see Figure 4-17).

Once you click Merge, your local repo will be updated with the changes. If there are conflicts, you’ll
need to resolve them and then commit. Finally, just like before, you need to push the changes, if

desired, to your team’s repo using a push.

Summary | 91

Team Explorer - Branches - 1 x
(<] a ¥ | [] Search Work ltemns (Ctrl+") o~

-

Branches | proalmgit

Branch: BrianSpike » | Changes | Unsynced Commits

New Branch v | Merge v | Actions
Choose source and target branches:

BrianSpike - ‘ master v

Merge Cancel

FIGURE 4-17

SUMMARY

Git brings industry-leading version control features to Team Foundation Server. Microsoft
surprised the industry by fully embracing Git rather than creating their own distributed version
control system.

This chapter provided an overview of how to use Git with Visual Studio and Team Foundation
Server. But it’s a very deep and rich product, both on the Git side and in Microsoft’s implementation.

In Chapter 5, you’ll learn how Team Build helps teams take the pulse of their project to see if they’re
ready to ship. You’ll learn how Team Build works with both Team Foundation Version Control and
Git-based repositories and how to customize your build process.

Team Foundation Build

WHAT'S IN THIS CHAPTER?

Getting to know build automation

Introducing Team Foundation Build

Looking at what's new in Team Foundation Server 2013
Understanding the Team Foundation Build architecture

Working with builds

Y Y Y Y Y

> Understanding the Team Build process

This chapter examines the build automation capabilities of Team Foundation Server—what
is provided out of the box, how to use it, and how to customize it to suit your organizational
requirements. But first, let’s take a quick look at build automation in general.

After version control, automating the build is the second most important thing you can do to
improve the quality of your software.

Only after the parts of your application come together can you tell if your application works
and does what it is supposed to. Assembling the parts of an application is often a complex,
time-consuming, and error-prone process. There are so many parts to building the application
that without an automated build, the activity usually falls to one or two individuals on the
team who know the secret. Without an automated build, even they sometimes get it wrong,
with show-stopping consequences that are often discovered very late, making any mistakes
expensive to fix.

Imagine having to recall an entire manufacturing run of a DVD because you missed an impor-
tant file. Worse still, imagine accidentally including the source code for your application in a
web distribution, or leaving embarrassing test data in the application when it was deployed

to production. All these things make headlines when they happen to organizations that build
software, yet they can easily be avoided.

94 | CHAPTERS5 TEAM FOUNDATION BUILD

Integration of software components is the difficult part. Teams work on their features in isolation,
making various assumptions about how other parts of the system function. Only after the parts are
assembled are the assumptions tested. If you integrate early and often, the integrations are tested
as soon as possible in the development process—therefore reducing the cost of fixing the inevitable
issues.

It should be trivial for everyone involved in the project to run a copy of the latest build. Only then
can you tell if your software works and does what it is supposed to. Only then can you tell if you are
going to have your product ready on time. A regular, automated build is the heartbeat of your team.

In Visual Studio 2013, developers are usually able to run their application by pressing the infa-
mous F5 key to run the code in debug mode. This assembles the code on the local workstation and
executes it. This makes it trivial for developers to test part of the code base. But what it doesn’t do is
ensure that the code works with all the latest changes committed by other members of the team. In
addition, pressing the F5 key simply compiles the code that’s ready for manual testing. As part of an
automated build, you can also run a full suite of automated tests, giving you a high degree of confi-
dence that no changes that have been introduced have broken something elsewhere.

Pressing the FS key is easy for a developer. You want your automated build to make it just as easy
to run your application—if not easier.

TEAM FOUNDATION BUILD

Build automation is so important to the quality of the software development process that Team
Foundation Server 2013 provides build services as part of the core platform.

NOTE Chapter 2 provides more information on the other services offered by
Team Foundation Server (including version control, work item tracking, and
reporting).

The build services provided by Team Foundation Server offer an enterprise-class, distributed build

platform. Utilization of the build services is done inside the development environment in which the

code is being created (either in Visual Studio or Eclipse). Information on the build services is tightly
integrated with the version control, work item tracking, and the testing features provided by Team

Foundation Server.

In addition, data obtained from the build system is fed into the Team Foundation Server data ware-
house, thus allowing for the analysis of historical reports and trends. The build services provide
notifications on build events using the standard Team Foundation Server event publication mecha-
nisms, which means for example that email alerts can easily be sent to the team regarding build
status. As part of the standard installation in Visual Studio 2013, the Build Notifications tool is
installed alongside Visual Studio, which can provide the capability for additional build notifications
via the application that runs in the system notification area.

Team Foundation Server provides a number of ways to trigger the build. Builds may be started by a
manual request, automatically triggered by a check-in to Team Foundation Server version control,

What's New in Team Foundation Build 2013 | 95

or run on a specified schedule. Team Foundation Server also has a concept called gated check-ins.
A gated check-in means that a developer’s changes must successfully build on the build server when
merged with the latest code from version control before the code is then checked in on behalf of the
user, thus preventing “broken” code from ever being checked in.

Team Foundation Build also has a full API in .NET or Java. These are the same APIs used by the
Visual Studio and Eclipse integrations as well as the build notification tool. They provide you with
deep integration into the build services. Combined with the build events, there is a highly extensible
platform to integrate any additional systems that you can imagine.

BRIAN THE BUILD BUNNY

Some integrations with Team Foundation Server are more imaginative than others.
A popular way of encouraging the team to pay attention to the current state of the
build is to create creative and eye-catching build status notification mechanisms.
Although wall displays, lava lamps, or even integrations with Microsoft Kinect are
a popular way of communicating this information to the team, one of the authors
of this book has even gone so far as to connect a talking, moving robot rabbit into
Team Foundation Server. For more information on this project (including a prize-
winning YouTube video and full source code), see http: //aka.ms/BuildBunny.

WHAT’'S NEW IN TEAM FOUNDATION BUILD 2013

The build services offered by Team Foundation Server have changed significantly since the initial
version in Team Foundation Server 2005.

In the first version, Team Foundation Build was based heavily on MSBuild, along with a build server
machine called the build agent. All configuration of the build was done by editing files stored in
version control.

In the 2008 release, build management was greatly improved with the capability to trigger builds
automatically, queue builds, and manage builds. This second version introduced the Build Definition
as a Team Foundation Server entity in its own right that contained various configuration data about
the build (such as the build name, workspace definition, default build agent, drop location, and
build trigger). The file describing how to do the build (the TFSBuild.proj file) was still based on
MSBuild.

The 2010 release continued much of the work done in 2008, with some notable changes that
included the following:

> Windows Workflow 4.0
> Gated check-ins

> Private builds
>

Build notifications

http://aka.ms/BuildBunny

96 | CHAPTERS5 TEAM FOUNDATION BUILD

Y VYV VY

Build controller
Properties exposed for common customizations
Integration with symbol and source server

Enhanced build deletion options

By the 2010 release, Team Build’s capabilities had matured significantly since the original release;
therefore, the 2012 release was more evolutionary than revolutionary. However, there were a few
significant changes worth noting;:

>

>
>
>
>

Hosted build services

Drop to version control

Batched gated check-in

Changes to the Build Service protocol

Updated build report

For the 2013 release, Microsoft continued the evolutionary approach by changing the way things
work and removing support for older features. Some of the changes are significant and hint about
the future, while other changes are minor like moving to Windows Workflow 4.5. Some of the big-
ger changes include:

>

Y Y VY Y Y Y

Support for Git-based repositories

Simplified building and testing of Windows Store apps
MSTest support removed

Enhanced hosted build services

Build output changes

Simplified process template

Built-in support for calling scripts

Support for Git-based Repositories

As with version control, the addition of Git support to Team Foundation Server means Team Build
needed to add support as well. For a majority of the features of Team Build, it just works. This
means compiling your bits, testing them, dropping output and publishing symbols, and build
notifications all work as expected. However, due to the significant differences between Team
Foundation version control and Git, there are differences in the way Team Build works. The major
differences are:

>

>

>

No support for gated check-in
Source settings support both Team Foundation Git repositories as well as remote repositories

Sources aren’t tagged as part of the build (Builds with Team Foundation Version Control
label by default. The semantics are not the same for Git.)

What's New in Team Foundation Build 2013 | 97

Beyond that, most things work the same. The Build hub in Team Explorer has the same options
regardless of which type of version control you’re using. Thus, when you create a new build, the
Build Definition editor opens up just as before. You will note there is a Git-specific template now
like what’s shown in Figure 5-1. Later in the chapter, the process of creating a build is discussed and
any Git-specific subtleties are called out there as well as later when the build process is covered.

== __

General Team Foundation Build uses a build process template defined by a Windows Workflow (XAML) file. The behavior of this template can be customized by
setting the build process parameters provided by the selected template.

Trigger
Source Settings Build process template:
Build Defaults Default Template + Hide details
Pi
Build process file (Windows Workflow XAML):

Retention Pelicy
Default Template (GitTemplate.12.xaml) w Mew... Refresh

Download

Learn how to customize build process templates

Build process parameters:

4 1. Git A
1. Clean repository True
2. Checkout override

4 2, Build

1. Projects \Windows\HelloGit\HelloGit.sln

2. Configuraticns

3. Clean build True

4, Qutput location AsConfigured

5. Advanced

4 3. Test

1. Automated tests 1 set(s) of tests specified.

> 2. Advanced

1. Git

FIGURE 5-1

Simplified Building and Testing of Windows Store Apps

With the release of Windows 8, Microsoft introduced a new type of application optimized for touch
screens and tablets but that is also good for desktop computers. These apps were originally known
as Metro apps, but as of this writing are known as Windows Store apps. Building and testing these
apps using the 2012 Team Build release wasn’t generally straightforward. The good news is that
with the release of Windows 8.1 and Windows Server 2012 R2 and Team Foundation Server 2013,
things are a lot easier. That said, you’ll still generally want a dedicated build agent for this par-
ticular type of build. In addition, you’ll need a dedicated account that can run interactively on the
build agent. You can of course use a real person’s account, but we recommend you create a special
account just for building Windows Store apps so you can lock it down for traceability, and so on.

In order to successfully build and test your Windows Store apps, you’ll need a build agent running
Windows 8.1 or Windows Server 2012 R2. You’ll then need to install Visual Studio 2013. Next
you’ll need to install the Team Foundation Build agent software. Then you configure your build
agent to run interactively using the account you created earlier. In addition, if you want to run unit

98

CHAPTER 5 TEAM FOUNDATION BUILD

tests, you’ll need to acquire a Developer License (which requires a valid Microsoft account) and
either install your trusted publishing certificate for the Windows Store or generate a temporary one.
You’ll note that you need to update the Developer License every 30 days. Finally, you’ll want to cre-
ate a tag for this agent, which you’ll then use (and which is discussed later) when you define your
builds. Figure 5-2 shows a completed Build Service Properties dialog, where you configure all of
these settings.

Build Service Properties [2 |

Build Service on alm13 is Stopped
to make changes

Communications:
Provide Build Services for Project Collection:

http://lacalhost:8080/ts/dc Browse...

Listen for Build Agent communication on:

http://alm13:9191/Build/v5.0/Services Change...

Run the Service as:
ALM13\tfsBuild Change...

Connect to Team Foundation Server as:
[] Use the same ide ntity as Windows Service

tisBuildWin81 Change...

Run the Service Interactively - when is this useful?

Configure to run Windows Store Unit Test:
Developer License:

Expires on 2/6/2014

Certificate:
Expires on 1/7/2015 Manage...
FIGURE 5-2

BUILDING, TESTING, AND SHIPPING WINDOWS 8 STORE APPS

There’s a lot more to building, testing, and shipping Windows 8 Store apps. The
documentation at http: //aka.ms/buildwingl and the following article http:
//aka.ms/buildwingo provide additional insights. In addition, there are a num-
ber of books on the market including Windows 8.1 Apps with XAML and C#
Unleashed by Adam Nathan (Sams Publishing, 2013) and Building Windows 8
Apps with JavaScript by Chris Sells, Brandon Satrom, and Don Box (Addison
Wesley Professional, 2012).

http://aka.ms/buildwin81

What's New in Team Foundation Build 2013 | 99

MSTest Support Removed

In Visual Studio 2012, Microsoft introduced a new test runner that was modern, fast, and open.
In doing so, it put MSTest on notice that its days were numbered. Starting with Team Foundation
Server 2013, new builds that are created using the new templates no longer support MSTest. Your
existing builds from 2012 and earlier will continue to run but only with the pre-2013 templates.
While the Team Foundation Server installation installs the MSTest assemblies, you must install
Visual Studio 2013 on build machines for running tests including legacy MSTest ones.

Enhanced Hosted Build Services

Visual Studio Online, the hosted version of Team Foundation Server (www.visualstudio

.com), not only provides a hosted Team Foundation Server instance for version control and work
item tracking but also provides virtualized hosted build infrastructure. By default, every project col-
lection in the hosted service also has a Hosted Build Controller available that you can use for your
builds. When a build is queued, the hosted service creates a new virtual machine, attaches it to your
project collection, executes the build, and then returns the machine into the pool ready for the next
account that wants to perform a build. Because the build virtual machines are created from a fresh
image for each invocation, incremental builds are not currently supported. In addition, if your build
requires any dependencies that are not pre-installed in the standard hosted image, then you need to
have those checked in to version control and configure those as part of the build, or use Nuget. As of
this writing, Microsoft continues an active update process to the service about every three weeks.

Build Output Changes

One long-time issue with the way Team Build outputs binaries to the drop share is that it would
just dump everything into one folder. To fix this, you often had to resort to customizing your build
process or in Team Build 2012 using .NET 4.5 using a bunch of MSBuild arguments. In Team Build
2013, you can now use the Output location to control how Team Build lays out your files.

There are three choices:

> SingleFolder maintains the same behavior as prior releases of Team Build, where all the out-
put is copied into a single drop folder.

> PerProject copies output into subfolders based on the solutions or code projects that you’re
building. The key thing to understand is that you get only one folder per item specified in the
projects option. If you only specify a single solution, then a folder with the name of the solu-
tion is created and all the files are put inside it. This option makes sense if you’re building
more than one solution or you’re going to specify Visual Studio projects individually.

> AsConfigured, when used on its own, will not copy any files to the drop folder. To use this
option, you need to customize your build definition so that it copies the files you want from
the compilation folders on the agent to the drop share using a folder structure of your
own design.

http://www.visualstudio.com
http://www.visualstudio.com

100 | CHAPTERS5 TEAM FOUNDATION BUILD

Simplified Process Template

When Microsoft changed the orchestration engine in Team Build 2010 from MSBuild to Windows
Workflow, they provided a very powerful execution mechanism. However, with great power came a
bit of complexity. To make things easier, Microsoft consolidated the number of items exposed in the
build workflow and internalized many of the lower-level operations. This means when you do need
to work with the XAML file in the editor, it loads faster and there’s less noise. This is covered in
more detail later in this chapter in the “Team Build Process” section.

Built-in Support for Calling Scripts

Related to making the build template less complicated, Microsoft wanted to make it easier to
customize your build process without resorting to customizing the XAML or writing a custom
workflow activity. To do this, they introduced four points where you can have PowerShell scripts
executed by the build process. The new default template provides you with four call points to
execute a batch file, a command script, or a PowerShell script, as well as pass arguments. You can
have your script called before and after your code is compiled as well as before and after the engine
runs your build’s tests. This is covered in more detail later in the chapter also in the “Team Build
Process” section.

TEAM FOUNDATION BUILD ARCHITECTURE

As shown in Figure 5-3, several logical components are used as part of the Team Foundation Build
services.

Selects

Queues

Publishes

Application Build
Tier Controller

Symbol
Server

Executes

Archives

Build Drop
Server

FIGURE 5-3

When a build is triggered, the application tier sends a notification to a server called the build con-
troller using a communication channel established by the build service and queues the build. The
controller then downloads the build’s Windows Workflow-based process and executes it. By default,
this is then allocated to the next available build agent in the controller’s pool of agents.

Working with Builds | 101

The build agent is the machine that actually executes the main portion of the build process as coded
in the build’s workflow—including calling MSBuild to perform the compilation step. Then, if con-
figured, the build agent archives the build results (that is, your executable binaries or your website)
to the location known as the drop location, and publishes symbols to the symbol server (if config-
ured). Note that when you’re using the hosted build services, the symbol server capabilities are

not available.

For an on-premises installation, the build controller and the build agent services are provided by the
Visual Studio Team Foundation Build service host installed from the Team Foundation Server instal-
lation media. The build controller and build agent are configured using the Team Foundation Server
Administration tool.

NOTE For information on how to install and configure the Team Foundation
Server Build service, see the Team Foundation Server Installation Guide. The
guide is included in the install media for Team Foundation Server. However, the
latest version is published at http://aka.ms/tfsInstallGuide. Microsoft con-
tinues to update the guide download to include extra guidance or any new issues
that surface. Therefore, it is always worth working from the latest downloaded
version.

After you download the installation guide, you cannot view its contents unless
you right-click the .chn file, click Properties, and then click Unblock. As an
alternative, you can double-click the .chn file to open the Open File-Security
Warning dialog box, clear the Always Ask Before Opening this File checkbox,
and then click Open.

The build controller and build agent may live on the same machine as the Team Foundation Server
application tier. However, because a build is typically very CPU- and disk I/O-intensive, the build
agent should at least be located on a separate server to avoid affecting the performance of the main
Team Foundation Server application. If you run the build agent on the same machine as Team
Foundation Server, this may cause some performance issues if certain intensive diagnostic data col-
lectors are used as part of the build.

The actual details of the build (such as the build name, what to build, when to build it, how to build
it, and what to do with the results) are all configured in the build definition. The results of individ-
ual builds are called the build details.

WORKING WITH BUILDS

This section examines working with team builds in Visual Studio. Figure 5-4 shows the key
windows that you need to use:

> Team Explorer
> Build Explorer
> Build Details

http://aka.ms/tfsInstallGuide

102

CHAPTER 5 TEAM FOUNDATION BUILD

> Build Explorer - bademse2e - Microsoft Visual Studio §3 Y | QuickLaunch (Cul-Q) P & x
FILE EDT VEW BULD DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP signin [
-2 H9-C | b At - O - [F. D-8%
& Build Explorer - bademse2e & X Ml Team Explorer - Builds ~ X
Bl © | setpriority - | # 8 X | % | ViewController Quee £ @& © O @ ¥ | € SearchWork hems (Curl+) p-
[l [Queucd | @ Completed Builds | bademse2e NEd
B i acfiniion: Quality filter Date filter: News Build Definiton | Actions «
Y Ubertdath-Devint-C1 ~| | <Any Build Quality> v | <Any Time> v 4 vy suites)
B (] Only show builds requested by me @ UberMath-Main-Manual_13_14.01.07.5 completed 31..,
. @ UberMath-Main-Manual_13_14.01.07.4 completed 31
&t 0 Name Build Definition Build Quality Date Completed Requested By Source Version
€3 UberMath-Main-Manual_13_14.01.072 completed 32..
& @ UberMath-Devint-CI_201312113 UberMath-Devint-CI 12/11/2013 5:20 AM Administrator changeset 70
X € UberMath-Main-Manual_13_14.01.07.1 completed 32
&) UberMath-Devint-CIL201312112 UberMath-Devint-CI 1271172013 2:27 AM Brian Randell changeset 67
& @ UberMath-Devint-CIL20131211.1 UberMath-Devint-CI 1271172013 221 AM Administrator changeset 66 4 My Favorite Build Definitions (2)
2, @ UberMath-Devint-C| 20131208.5 UberMath-Devlnt-Cl 12/9/2013 11:16 AM Brian Randell changeset 64 @ UberMath-Main-Manual_13
X completed 31 hours ago Brian Randell
&) UberMath-Devint-CI_201312094 UberMath-Devint-CI 12/9/2013 9:42 AM Brian Randell changeset 63 -
@ UberMath-Devint-C|
& €3 UberMath-Devint-CIL201312003 UberMath-Devint-CI 12/6/20139:35 AM Brian Randell changeset 62 completed 29 days ago Administrator
& @ UberMath-Devint-C_201312082 UberMath-Devint-Cl 12/9/20139:23 AM Brian Randell changeset 61
4 All Build Definitions (showing 3 of 3)
& € UberMath-Devint-CI_20131209.1 UberMath-Devint-CI 12/9/2013 9:09 AM Brian Randell changeset 60
Type here to filter the list P
UberMath-Devint-Cl
&, UberMath-Devint-Integration
UberMath-Main-Manual 13 *|
Solution Explorer LISt Class View

Team Explorer

You should already be familiar with the Team Explorer view (accessed in Visual Studio through
View ©» Team Explorer). Team Explorer contains a Builds page that provides you with access to all
the functionality you need to interact with the build services in Team Foundation Server. The New
Build Definition link at the top of the page enables you to create a build definition. There is also an
Actions link that provides you with additional functionality, such as being able to manage the Build
Controller settings, set Build Qualities, and configure security permissions.

Under My Builds you find your most recently executed builds (that is to say, builds that you have
triggered manually or by checking into a version control folder that is being monitored by a con-
tinuous integration, rolling, or gated trigger). My Favorite Build Definitions displays a summary of
the build definitions that you have marked as a personal favorite in Visual Studio, Web Access, or
Eclipse. Finally, under All Build Definitions, you find all the defined builds for that team project and
a search box that enables you to quickly find a particular build definition from that list. Double-
clicking one of these or clicking the build in Favorites opens the Build Explorer for that build
definition.

Build Explorer

The Build Explorer view enables you to see all the builds that are currently executing (or awaiting
execution) in the Queued tab, and those that have run in the Completed tab.

Working with Builds | 103

Queued Builds

From the Queued tab of the Build Explorer, you can pause or change the priority of builds that are
currently awaiting execution. You can also cancel paused builds or stop builds that are currently
executing.

Completed Builds

From the Completed tab of the Build Explorer, you can view the build details, delete the build, or
set the quality of the build.

The build quality is a text string assigned to particular builds to denote the quality of that particu-
lar build (that is, “Released,” “Ready for Test,” and so on). In addition, you may mark the build
with Retain Indefinitely to exclude it from any automatic retention policies on the build definition.
You also have the option to Reconcile Workspace with the build, which is useful for a gated or pri-
vate build because it removes any pending changes that you may still have that were checked in on
your behalf as part of the build.

Build Details View

When you double-click a build in the Build Explorer, you see a report of the build details, as shown
in Figure 5-5.

While the build is queuing, details are given about the build’s position in the queue and the mean
time that builds have been queued. After the build is executing, summary data about the execu-

tion time compared to previous builds is displayed. Clicking the Build Details link shows you more
information about the build in progress and is automatically refreshed to show you the current build
log data. A small bar chart in the top-left corner displays the currently executing build time against
previous builds, which can give you an indication of how long the build might run.

When the build has completed, you see the build summary view showing all the projects, compila-
tions, and tests runs, as well as any unit test results, code coverage, or test impact data. You also
see information regarding the changesets included in the build since the last successful build of

that build definition, along with any work items associated with those changesets when they were
checked in.

In this way, you can start to see how full requirements traceability is obtained in Team Foundation
Server, from the requirement being logged as a work item through to the development task to imple-
ment the requirement, to the change in source code to implement that task, and then, finally, the
build of the software that includes that check-in. All the data is passed into the Team Foundation
Server data warehouse to allow historical trend analysis and reporting.

From the build details view, you can open the drop folder in Windows Explorer to access the out-
puts of your build. If you’ve chosen the new option to copy build output to your server, you’ll be
taken to a web page where you can download a zipped copy of your build’s output. You may modify
the build quality assigned to that build, mark it to be retained indefinitely, or delete the build and

104 | CHAPTERS5 TEAM FOUNDATION BUILD

associated results. You may also view the logs in the drop location (either in the drop network share
or in version control) and perform many other additional activities from under the Actions link.

@) UberMath-Devint-CI_20131211.3 - Build succeeded

View Summary |\-"iew Log - Open Drop FD|dE'| Diagnostics + ‘ <No Quality Assigned> + |ActiDn5 -

Administrator triggered UberMath-Devint-Cl (bademseZ2e) for changeset 70
Ran fer 13 seconds (mde07build - Controller), completed 29 days ago

Latest Activity

Build last modified by TFS Build 29 days ago.

Request Summary

Request 18, requested by Administrator 28 days ago, Completed

Summary

Debug | Any CPU

0 error(s), 0 warning(s)
I §/bademsede/Dev/Devint/src/UberMath/UberMath.sin compiled
P 1 test run completed - 100% pass rate

MNe Code Coverage Results
Release | Any CPU

0 error(s), 0 warning(s)
I §/bademse2e/Dev/Devint/src/UberMath/UberMath.sln compiled
[» 1 test run completed - 100% pass rate

Mo Code Coverage Results

Associated Changesets

Changeset 70, Checked in by Administrator
Updated to check for ¥ being zero.

Associated Work ltems

Code Review Request 117, Updated to check for ¥ being zero.
Current state is Closed. Currently not assigned to anyone

Product Backlog [tem 107, Write Basic Calc Engine
Current state is Committed. Currently assigned to Administrator

Task 116, Updated Divide method to check for pessible divide by zero errors
Current state is Done. Currently assigned to Administrator

Impacted Tests

Mo tests were impacted -

FIGURE 5-5

Creating a Build Definition

A build definition describes how, what, when, and where to perform your build. You create a new
team build definition by clicking the New Build Definition link at the top of the Builds page in Team
Explorer. Alternatively, from Visual Studio you can go to Build => New Build Definition.

You see a new build definition form inside Visual Studio. The form is split into two parts — a set
of areas on the left side that basically function like tabs, and the main area for that section on the

Working with Builds | 105

right side. Notice that, when you first open the dialog, a number of the sections on the left side have
warnings associated with them; this is completely normal. The purpose of these warnings is to high-
light areas that need information before the definition can be saved.

You can save the definition by using the usual mechanisms (File = Save, or Ctrl+S, and so on). When
saved, the definition is stored in Team Foundation Server and appears in the Builds page for all team
members. You can mark your build definition as a personal favorite to make it easier to find later by
right-clicking the created build definition and selecting Add to Favorites.

General Section

On the Builds page in Build Explorer, click General in the left-side pane to bring up the General
section. Then you must give the build definition a name, and, optionally, a description, as shown in
Figure 5-6.

Oberhath-ain-Mancal_13- = |
Build definition name:

Trigger UberMath-Main-Manual_12
Source Settings
Build Defaults

Description (optional):

Main Project: UberhMath
Process Branch: Main

Trigger: On Demand
Owner: Brian Randell
Alias: brianr

Contact: 425.555.1212

Retention Policy

Queue processing:
(® Enabled
Requests queued by users or triggered by the system will be added to the queue and be started in priority order,
(") Paused

Requests queued by users or triggered by the system will be added to the queue but will not start unless the build
administrator forces them to start.

) Disabled

Mo requests will be queued or started. This definition will alse not participate in triggered builds like Continuous
Integration or Gated.

FIGURE 5-6

As you can easily search by name in the Builds page in Team Explorer, it may be useful to develop
a naming convention for your builds to make them easier to find when filtering. A convention such
as “Team: Project (Trigger)” is useful for large team projects. For example, the BizApps team might
have two build definitions defined for their framework, one that is a CI build triggered on every
check-in to give quick feedback on the state of the build, and another scheduled build that not only

106 | CHAPTER5 TEAM FOUNDATION BUILD

does a full build but packages the latest version and generates documentation, making it easy to
consume by other teams. They might call these builds “BizApps: Framework (CI)” and “BizApps:
Framework (Nightly).”

For the description of your build, you should provide a short, one-line summary of what the build
is for, and contact details about the owner or “build master” of the build. The first three lines of
the build description are displayed in other dialogs in Team Foundation Server before scrolling is
required. Therefore, this important information should be placed at the top so that people working
with the builds can see what the build is for and who to contact for questions.

When creating a new build definition, you should set the Queue Processing to Enabled, as this
allows builds to be triggered as soon as the build definition is saved. However, it might be useful to
adjust the Queue Processing setting when performing maintenance to the build definition or build
controllers. For example, if you are customizing the build process you can mark the build as Paused.
New builds are queued if they get triggered as a continuous integration build or a gated build.
However, they do not run until the build is enabled or a build administrator forces the build by
right-clicking the queued build request in Build Explorer and selecting Start Now. This enables you
to safely test that your changes to the build customization are working before re-enabling the build
definition for use by the team. After the build is re-enabled, queued jobs are processed according to
priority level and the order that they were submitted.

Trigger Section

Located in the Trigger section, the build trigger tells Team Foundation Server when to perform a
build. As shown in Figure 5-7, there are a number of triggers available, including the following:

» Manual

> Continuous Integration
> Rolling Builds
> Gated Check-in
> Schedule
Manual

When you configure a build for a Manual trigger, the build runs only when explicitly queued. You
can queue it by using the user interface, by using the command line (that is, t£sbuild.exe), by
using the Team Foundation Server .NET object model, or by using the TFS SDK for Java.

Continuous Integration

In Team Foundation Server, the Continuous Integration trigger queues a build for every check-in
performed on the areas of code that you define as related to your build. (The “Source Settings” sec-
tion, later in this chapter, provides more information on defining those areas.)

Check-ins to Team Foundation Server are discrete, atomic transactions represented by a changeset.
By rebuilding the system for every changeset, you can easily determine which change broke the build
(as well as who checked in that change). The downside to this is that there are, obviously, a lot of
builds performed. Therefore, it is essential that build times are kept short to ensure rapid and fre-
quent feedback to the development team as to the status of the current code base.

Working with Builds | 107

UberMiath-Main-Manual_13* = > |

General Select one of the following triggers:

(®) Manual - Check-ins do not trigger a new build

Source Settings
Build Defaults

() Continuous Integration - Build each check-in

Process O Rolling builds - accumulate check-ins until the prior build finishes
Retention Policy

() Gated Check-in - accept check-ins only if the submitted changes merge and build successfully

() Schedule - build every week on the following days

o o d o L

3:00 AM

FIGURE 5-7

MARTIN FOWLER ON CONTINUOUS INTEGRATION

The term continuous integration (Cl) emerged from agile software development
methodologies such as Extreme Programming (XP) at the turn of the millennium.
Martin Fowler’s paper on continuous integration from 2000 is still worth reading
today at www.martinfowler.com/articles/continuousIntegration.html.

Note that, as originally described, the term refers to increasing the speed and qual-
ity of software delivery by decreasing the integration times, and not simply the
practice of performing a build for every check-in. Many of the practices expounded
by Fowler’s paper are supported by tooling in Team Foundation Server — not sim-
ply this one small feature of the build services. However, the term “continuous inte-
gration” has come to be synonymous with building after a check-in has occurred
and is, therefore, used by Team Foundation Server as the name for this type of
trigger.

http://www.martinfowler.com/articles/continuousIntegration.html

108

| CHAPTERS5 TEAM FOUNDATION BUILD

Rolling Builds

Rolling builds are similar to the Continuous Integration trigger in that a check-in will trigger a
build. However, rather than building on every check-in, rolling builds batch several check-ins
together to ensure that the build server never becomes backlogged—and optionally setting a mini-
mum time interval between which a new build may be triggered. This type of trigger might be famil-
iar to those who have experience with build servers that support multiple version control tools such
as CruiseControl, CruiseControl. NET, or Hudson/Jenkins.

Performing rolling builds has the advantage of reducing the number of builds performed, which
helps to reduce the number of builds queued at peak times (and, therefore, the time before the
results of an individual developer’s check-ins are known). However, it has the disadvantage of group-
ing changes together, therefore making it more difficult to determine the check-in responsible for the
build failure. For this reason, many people stick with the Continuous Integration trigger and instead
focus efforts on increasing the speed of the build or the number of build agents available to perform

the build.

Gated Check-in

A Gated Check-in trigger means that check-ins to the areas of version control covered by the build
are not allowed by the server until a build has been performed and passed successfully. You should
note that this option is available only when using Team Foundation version control. When users
attempt to check in a file, they are presented with the dialog shown in Figure 5-8.

Gated Check-in ?

You need to build your changes for validation before they can
be committed to the Team Foundation Server

Your changes have been shelved and will be built as follows:

Shelveset: (Gated_2014-01-09_01.12.06.6988
Build definition: UberMath-Main-Manual_13 (bademse2e)

@ Hide options | Build Changes ‘ | Cancel

Preserve my pending changes locally

Bypass validation build and check in my changes directly (requires permissions)

If your changes build successfully, they will be checked in automatically on your behalf,

FIGURE 5-8

The changes are stored as a shelveset in version control. The build server takes the shelved changes
and merges them with the latest version of code from version control before performing the build.
In the event of a successful build, the changes are then checked into the build server, and users

are notified via the build notification tool in the system notification area. At this point, users can

Working with Builds | 109

“reconcile” their workspaces to remove the pending changes that were committed as part of the
build from the current pending changes list.

Because of the automatic merge process that is performed by the build server, it is important to real-
ize that the actual code committed by the gated check-in may differ from the code submitted as part
of the shelveset.

If you have two build definitions with overlapping workspace mappings that both have Gated
Check-in triggers, the user gets to pick which one is built to verify her changes at the time of check-
in. In addition, even though Team Foundation Server 2013 has build agent pooling features, only
one build of a gated check-in may be executed at a time to prevent conflicting merges from being
submitted.

Schedule

Builds may be triggered by a particular schedule—that is, a daily or nightly build. Note that a single
time may be specified for each build definition for the chosen days of the week—repeated weekly.
Also note that, in the case of a nightly build, the build time should be set outside of any backup or
other regular maintenance jobs.

SCHEDULING BUILDS MORE FREQUENTLY

Sometimes, the standard scheduling triggers provided by Team Foundation Server
are not sufficient — perhaps you want to automatically build twice a day, or maybe
every three weeks.

The Build Definition trigger has no way to set this; however, it is possible to trig-
ger a build as a scheduled task—it's a bit old but still applies (see http://aka.ms/
scheduledTaskBuilds for more information on how to do this). However, this
makes the configuration of the trigger happen outside the user interface provided
by Team Foundation Server, so it should be used only when absolutely necessary.

The time for a scheduled build is actually converted into the time zone for the application tier when
the build definition is saved. But this is always displayed in the time zone of the user’s machine when
editing the build definition in Visual Studio. For this reason, there can be some slight confusion as
to the actual build time during periods where Daylight Savings Time is in operation in one of the
time zones and not the other.

Source Settings

The Source Setting section (called Workspace in previous releases) enables you to define the work-
ing folder mappings that should be used for your build. These working folder mappings not only
determine where on disk the files should be located but also which files on the server are considered
relevant to the build.

http://aka.ms

110 | CHAPTERS5 TEAM FOUNDATION BUILD

The default working folder mapping for a new build definition is given as mapping the root of the
team project (for example, $/Demo) to the sources directory represented by the environment variable
($ (SourceDir)). In addition, you’ll now see an entry for a folder called Drops in your Team Project
that is cloaked (for example $/Demo/Drops). This Drops folder mapping is primarily designed for
folks using Visual Studio Online and can be safely removed if you’re only using the on-premises
version of Team Foundation Server. That said, these default settings are almost always too broad
for your build, and include too many files, which not only slows down the build (because more files
must be downloaded from version control), but also means that some check-ins to the project risk
triggering a build even though they do not affect the results of the build.

Therefore, you should always modify the server path of the build to only include the files you need,
as shown in Figure 5-9. You may also make use of cloaked working folder mappings to exclude cer-
tain subfolders or files from a working folder mapping that do not affect the build (such as a folder
containing the source PSD image files used in a website).

NOTE Chapter 3 provides more information on working with folder mappings
in Team Foundation Server version control.

Build Defaults

On the Build Defaults section shown in Figure 5-10, you specify which build controller you would
like to use for the definition and where to copy the outputs from your build.

Uberhaeh-in-ar)_13 = > |

General Working folders:

Trigger Status Source Control Folder Browse for Folder ?
Active $/bademse2e/BuildScripts

Build Defaults Active $/bademse2e/Main/src/UberMath Folders:

Process Click here to enter a new warking folder o 88 mdelbtfedc -

= &4 bademseZe
= BuildScripts
Dev
= = Main
art
docs

Retention Policy

src
HelloMeneVB
tools
Rel

o ®a mu e
Folder path:
$/bademse2e/Main/src/UberMath

Copy Existing Workspace.. Reset to Default Workspace

FIGURE 5-9

Working with Builds | 111

UberMath-Main-tanual_13 = < |

General Specify the build controller and staging location for this build definition. These selections may be maodified by the

R person queuing the build.
Trigger

Source Settings Build controller:

Build Defaults mdel7build - Controller v

Process Description:

Retention Policy

Staging location:
() This build does not copy output files to a drop folder
(®) Copy build output to the following drop folder (UNC path, such as \\server\share):
‘Wdel7build\Dropsibademse2e\Main

() Copy build output to the server

< >

FIGURE 5-10

In Team Foundation Server 2013, build controllers and build agents are responsible for notifying the
Team Foundation Server application tier of their existence as they are installed. If you have no build
controllers available in the controller drop-down, then your Team Foundation Server administrator
must install a build controller (and build agent) using the Team Foundation Server Setup media and
configure it to point to your project collection. The description field displays the description given

to the build controller, and it is not editable from this dialog. Note that when using Visual Studio
Online at http:// visualstudio.com, a Hosted Build Controller is present for every project collec-
tion that allows builds to be performed using a build controller in the cloud.

You now have more choice when it comes to your staging location. For regular builds, the drop
folder location must be a Windows file share on the network to which the user running the build
agent services has access. There is a limit (inherited from the .NET base class libraries) of 260 char-
acters for the full path of all files copied to the drop folder location, so you should ensure that your
server and share names are as short as possible, leaving you with the maximum space for your out-
put. That being said, you should put your builds in directories corresponding to the build definition
inside your drop folder location to help keep them organized. Note that the build definition name is
appended to the path specified, so there is no need to specify it in the dialog.

For CI builds, you often only care about the correctness of the build. Therefore, the option to not
copy build output to a drop folder can decrease build time and reduce management of the output.
You can use the new option to copy the build output to your Team Foundation Server.

When talking to the hosted service, you also have the option to store files in version control.
Traditional network shares are not easily accessible over the Internet. Therefore, a new option was

http://visualstudio.com

112

| CHAPTER5 TEAM FOUNDATION BUILD

created in the 2012 release that is only enabled for hosted builds to enable results of the build to be
copied to version control. Note that when builds are deleted (either by the retention policy settings
or manually) and deletion of build drops has been requested, the results of the builds are not only
deleted from version control but destroyed. This means that they no longer occupy space within the
version control system in Team Foundation Server. This reduces the amount of space consumed by
your project collection.

Process

When talking to a Team Foundation Server 2013 server, you are required to select which pro-

cess should be used to perform the build, as shown in Figure 5-11. These processes are Windows
Workflow 4.5-based processes. The initial list of processes are defined by the process template you
used, and can then be added to from the Process section. Each process has a number of easily cus-
tomizable properties that are designed to be used to alter the behavior of that process. Processes
with mandatory inputs are marked with a warning triangle when the build definition is created.

Oberhath-Main-Manal._13 >« |

General Team Foundation Build uses a build process template defined by a Windows Workflow (XAML) file. The behavior of this
template can be customized by setting the build process parameters provided by the selected template.

Trigger
Source Settings Build process template:
Build Defaults Default Template | Hide details

Pi
Build process file (Windows Workflow XAML):

Retenticn Policy
Default Template (TfvcTemplate.12.xaml) W Mew... Refresh

Download

Learn how to customize build process templates

Build process parameters:

4 1.TF Version Control =
1. Clean workspace True
2. Get version
3. Label Sources True
4 2. Build
1. Projects $/bademse2e/Main/src/UberMath/UberMath.sin
2. Configurations Any CPU|Debug.Any CPU|Release
3. Clean build True
4, Cutput location SingleFolder
> 5, Advanced
4 3. Test
> 1. Automated tests 1 set(s) of tests specified. v
1. Projects

Server paths to the sclution/project files you want to build.

FIGURE 5-11

From this section, you can edit and customize the build process parameters. (For more information
on this, see the section “Team Build Process,” later in this chapter.)

For the creation of a basic team build using the Default Template, the only property that you must
initially configure is which solution or project to build. Simply click the Projects to Build property
and click the ellipsis (...) button to add your solution or project to the list. By default, if you have

a version-controlled solution open in Visual Studio when you create a new build definition, Visual

Working with Builds | 113

Studio will automatically set your current solution as the one to build. You’ll of course need to make
sure that the solution’s files are available via the workspace mappings that you configure using the
Source Settings option.

Retention Policy

After you start automating builds, you quickly end up with a lot of build results in your archive.
Finding the build you need can get complicated—not to mention a large amount of disk space may
be required to store all the build results. Team Foundation Server has automatic retention policies to
help with this, as displayed in the Retention Policy section shown in Figure 5-12.

The retention policies determine, for each build result type, how many of those results you want to
keep by default. Note that, at any time, you can mark a build with the Retain Indefinitely retention
policy from the build details context menu in the Build Explorer view. Marking a build as Retain
Indefinitely means that it will be excluded from these automatic retention policies.

There are separate retention policies to control the team builds that are triggered or manually
queued from the private builds of individual developers. Changing the private build retention policy
affects all the developers performing private builds on that build definition—not just the developer
editing the setting.

OberMatn-Mein-Marual_13 =< |

General Specify how builds should be retained:

Trigger Build Qutcome Retention Policy What to Delete

Source Settings Triggered and Manual

Build Defaults a Stopped Keep Latest Only Details, Drop, Label, Symbols

Process €3 Failed Keep 10 Latest Details, Drop, Label, Symbols

!] Partially Succeeded Keep 10 Latest Details, Drop, Label, Symbols
@ Succeeded Keep 10 Latest Details, Drop, Label, Symbols
Private

o Stopped Keep Latest Only Details, Drop, Label, Symbols
€3 Failed Keep 10 Latest Details, Drop, Label, Symbols
) Partially Succeeded Keep 10 Latest Details, Drop, Label, Symbols

<Specify Count to Kee v M ERNGTE T BATL11H

Number of Builds ?

Specify the number of builds to retain:

Ca " Cel

MNote: Completed builds may be exempted from their associated retention policy in the view of builds by selecting Retain
Indefinitely from their context menu.

FIGURE 5-12

If you’re storing build output in version control using the hosted service, when the build binaries are
deleted they are destroyed in version control to allow the disk space to be recovered.

114 | CHAPTER5 TEAM FOUNDATION BUILD

Queuing a Build

Whenever you create a new build definition or make significant changes to it, you should manually
queue the build the first time to ensure that it is working as desired. The first successful build for a
build definition also acts as the baseline for that build. Every build from that point on records the
changesets included since the last successful build for that definition. This information is stored in
the build detail for each build, and reports into the Team Foundation Server data warehouse, thus
allowing for historical trends over time.

A build can be manually invoked from the Builds node in Team Explorer by using the TFSBuild
.exe command-line tool, or by using the Team Foundation Server API. Alternatively, the build
might be triggered using one of the triggers defined earlier in this chapter (such as on a check-in into
version control or on a specified schedule).

NOTE Microsoft Team Explorer installs a number of command-line tools, one
of which is the TFSBuild command. The TFSBuild command can be used to
perform a limited number of Team Foundation Build tasks and is also useful in
scripting scenarios where full access to the Team Foundation Server API is not
required. For more information on the TFSBuild command, open a Developer
Command Prompt and type TFSBuild help, or visit http://aka.ms/
tfsBuildexe. While the URL points to the 2010 documentation, this is the most
current version from Microsoft.

To manually queue a build in Visual Studio, right-click the build definition in Team Explorer and
select Queue New Build. You are presented with the Queue Build dialog, as shown in Figure 5-13.
The build definition is preselected in the build definition drop-down at the top of the dialog, and its
description is displayed underneath.

When you manually queue a build, you have options of selecting an alternative build controller (if
one is available), adjusting the priority of the build, and modifying the drop folder location to be
different from the default. Based on the selected queue priority, you are also given an indication of
the current position in the queue that your build would get if it were submitted.

On the Parameters tab you find all the customizable properties defined for the process, so you can
alter the value of that property for this single invocation of the build.

NOTE As of the writing of this chapter, in the release version of Visual Studio
2013, the build process parameters are not rendered properly. In addition, you
won’t be able to specify a shelveset for a private build (discussed later in this
chapter). This bug affects Visual Studio 2012 RTM connected to either Team
Foundation Server 2013 or the hosted service at http://visualstudio.com.
About a month after the release of Visual Studio 2013 RTM, Microsoft did
release a hot fix that you can find at http://aka.ms/buildparmaskb . In addi-
tion, the fix is included in Visual Studio 2013 Update 1, which shipped at the
end of January, 2014.

http://aka.ms
http://visualstudio.com
http://aka.ms/buildparmaskb

Working with Builds | 115

Queue Build "bademse2e” ?
General | Parameters
Build definition:
UberMath-Main-Manual_13 W
Main Project: UberMath ~
Eranch: Main
Trigger: On Demand v

What do you want to build?

Latest sources

Build controller:

mdel7build - Controller W
Priority in queue: Position:

Normal v |1

Drop folder for this build:

\imded7build\Drops\bademse2e\Main

CEHCEI

FIGURE 5-13

Private Builds

You can adjust what you want to build from the General tab in the Queue Build dialog (Figure 5-14).
You can either build from the latest version in source control at the time that the build is submitted
to the queue, or you can take the latest version and apply a specified shelveset to the build before it

is performed.

If you decide to perform a build that includes a shelveset of your changes not yet checked in to ver-
sion control, this is called a private build, which sometimes is referred to as a buddy build.

Private builds are useful when you want to check that you are including all the changes necessary
to successfully perform the build on a different machine before you commit your changes to version
control. Another use for them is when you may not have all the dependencies to perform that par-
ticular build definition on your local machine (such as a code signing certificate installed), but you
want to test that your code functions correctly when built with those dependencies.

In many ways, a private build is similar to a gated check-in, apart from the fact that your changes
are not automatically checked in to version control after a successful build, but you can choose to
have them checked in if you want.

Private builds do not follow the same build numbering mechanism defined for the regular team
builds, and have separate retention policies. The build results for a private build are displayed to the
developer who is invoking the private build, not to the whole team.

116 | CHAPTER5 TEAM FOUNDATION BUILD

Build Notifications

Team Foundation Server exposes a powerful eventing model and both .NET- and Java-based APIs
that allow for custom integrations of any imaginable application or device for notification of build
results—from standard email alerts to lava lamps, confetti-filled leaf blowers, and even talking
robot rabbits. However, two main notification systems are exposed to the developer out of the
box—the build notification tool and email alerts.

General | Parameters

Build definition:
| UberMath-Main-Manual_13

Main Project: UberMath
Branch: Main
Trigger: On Demand

What do you want to build?

| Latest sources with shelveset

Shelveset name:
|Work|n Progress 2 |E| | Create...

[] Check in changes after successful build

Build controller:

| maed7build - Controller

Priority in queue: Position:

|N0lmai v| |'I

Drop folder for this build:
|\\mde0?bui|d\Drops\badem selelMain

FIGURE 5-14

Build Notification Tool

The build notification tool is a separate application installed with Visual Studio. As shown in
Figure 5-13, it is a small application that runs in the system notification area of Windows and noti-
fies the end user of build events via an Outlook-style pop-up message in the bottom-right corner of

the screen.

Build succeeded -
o BlueYonder. PublicWeb . Main. Manual tiggered
by marlonb
o /s m
© = View Buid Details | Open Drop Location

FIGURE 5-15

Working with Builds | 117

This tool can be configured to automatically start when you log in to Windows. However, it always
runs during a gated check-in process so that the developers are aware of the status of the build con-
taining their changes. If the build is a success, the developers can easily reconcile their workspaces
to remove any pending changes that were included in the gated check-in shelveset from their local
workspace.

To configure the build notification tool, while the tool is running right-click the icon and select
Options. To quit the application entirely, right-click the icon and select Exit.

Email Alerts

Basic and custom email alerts can be configured from the web. To quickly view the appropriate

web page from Visual Studio, go to the Team = Project Alerts menu. Using the interface shown in
Figure 5-16, you can enable basic email alerts when a build quality changes, when any build com-
pletes, or when builds are initiated by the developer. For a more powerful alerts editor, click the
Custom Alerts link. (In previous versions of Team Foundation Server, this level of control over alerts
required use of power tools or the command line.)

Dq Visual Studio Team Foundation Server 2013 / bademse2e -~ BrianRandell | &% @

HOME CODE WORK BUILD TEST Search work items P~

My alerts

Send my alerts to (Edit...)
[briam@demo.local

Team alerts can be managed from the Advanced Alerts Management Page

BASIC ALERTS CUSTOM ALERTS

Send me an email alert when
My work items are changed by others
] Anything is checked in
] Any build completes
My build completes
] & build quality changes

A code review | am working on changes

FIGURE 5-16

As shown in Figure 5-16, a link is also provided on the My Alerts page to configure advanced alerts
that are applicable to the whole team. Clicking the link takes you into the administrative configura-
tion web portal for your team project.

Emails can be sent to any email address, including team aliases, provided the Team Foundation
Server application tier is configured with the correct SMTP server details to send the messages.

On the Team Foundation Server application tier machine, the BisSubscribe.exe command is avail-
able in the Team Foundation Server 12.0\Tools folder, and can be used to script the creation of
project alerts.

118 | CHAPTER5 TEAM FOUNDATION BUILD

TEAM BUILD PROCESS

The process controlling the end-to-end build process in Team Foundation Server is described in a
Windows Workflow 4.5 XAML file. The build process templates are created as part of the project
creation process and are defined in the process template. The process templates provided will be dif-
ferent depending upon if you choose traditional Team Foundation Server version control or Git.

In the Scrum, MSF Agile, and MSF CMMI processes, the following build processes are included:

> Default template—This is the default template to be used for most new builds created for
Team Foundation Server. This template is the primary focus of discussion in the remainder of
this chapter.

> Upgrade template—This is the default template for builds upgraded from Team Foundation
Server 2008, or newer builds that make heavy use of MSBuild rather than Windows
Workflow. Basically, it performs some housekeeping, and then just wraps the call to the
TFSBuild.proj file for an MSBuild-based build configuration. Java builds created by Team
Explorer Everywhere make use of the Upgrade template to provide a thin wrapper around
Ant or Maven. This allows all the configuration files to be edited by a simple text editor and
does not require knowledge of Windows Workflow—Dbut it pushes the majority of the build
logic down into the Ant or Maven build script that is invoked. This template is not available
in Team Projects created with a Git repository.

In addition, the LabDefaultTemplate build process template is installed for the Lab Management
functionality by the Lab section of the MSF processes.

NOTE Chapter 27 provides more information on Lab Management functional-
ity in Visual Studio 2013.

Unlike previous releases of Team Foundation Server, all of the build process templates are stored
inside the databases on your data tier. If you want to examine them you need to download them
locally to your machine. Once you’ve done that you can view one and if desired extend it. At that
point, you’ll want to practice good customization practices and check it into a version control
repository.

The majority of the remainder of this chapter focuses on the Default template—how it works, how
to use it, and how to modify it.

Team Build Process | 119

Default Template Process

The Default template is used for most new, un-customized build definitions. Compared to the 2010
and 2012 versions of the template, Microsoft has dramatically simplified the process. You can
explore it in detail by opening the correct XAML file: TfvcTemplate.12.xaml when using a Team
Foundation version control-enabled Team Project; or GitTemplate.12.xaml when using a Git-
enabled Team Project. As mentioned earlier, in order to examine the file, you’ll need to download it
from Team Foundation Server and save it to a local file. Once you’ve done this, you can explore the
template and modify it if needed. The only differences between the two files are the specific features
related to retrieving files from version control.

On the build controller, the build number is calculated and the drop location for the build is created
if necessary. Then the build agent is determined, and the majority of the rest of the process is per-
formed on the selected agent from the controller’s build agent pool.

The working directory for the build is calculated by using the build agent working directory set-
ting as defined in the Build Agent Properties dialog. Then the local work area (workspace for Team
Foundation version control; local repository for Git) is created, and source is downloaded from
version control. The version that is downloaded is usually the changeset that represented the latest
version in the project collection at the time the build was triggered. If a subsequent change has been
made while the build was queued, this change is not included. If the build is for source you’ve stored
inside a Team Foundation version control repository, the build process labels the files that were
downloaded with the build number. As of the writing of this book, this feature does not carry over
for builds that are pulling source from Git.

Next, the process calls MSBuild to perform the actual compilation of the desired project files for the
configuration, and then any specified automated tests are executed. The build agent then looks at
the changesets included since the last successful build of the build definition, and records any work
items that were associated with those check-ins. For work items that were marked as resolved during
check-in, the Fixed-In Build field for the work item is updated with the current build number.

From the files changed since the last successful build, the build agent then calculates which tests
have been affected, and records them. The source code is then indexed and linked with the symbols
that are published to the symbol server (if provided). Finally, on the build agent, the output from the
build is copied over to the drop folder location previously created by the controller.

The process then moves back to the controller for the final step, which, for a build with a Gated
Check-in trigger, is to check in the shelveset that contained the modified files included in the build.

Build Process Parameters

The build process templates are configured to make a number of parameters visible in the user inter-
face in either the Build Definition editor or the Queue Build dialog (or both). These parameters (see
Figure 5-17) are provided to control the behavior of the selected build process.

120 | CHAPTER5 TEAM FOUNDATION BUILD

Dd UberMath - UberMath-Main-Manual_13*
UberMath-Main-Manual_13* & X

General Team Foundaticon Build uses a build process template defined by a Windows Werkflow (XAML) file. The behavior of this template can be

. customized by setting the build process parameters provided by the selected template.
rigger

Source Settings Build process template:
Build Defaults Default Template ~ Show details

Retention Policy Build process parameters:

4 1.TF Version Control

1. Clean workspace True
2, Get versicn
3. Label Scurces True
4 2. Build
1. Projects $/bademse2e/Main/src/UberMath/UberMath.sin
2. Configuraticns Any CPU|Debug,Any CPU|Release
3. Clean build True
4. Qutput location SingleFolder

4 5, Advanced
MSBuild arguments
MSBuild platform Auto
Perform code analysis ~ AsConfigured
Post-build script argumer
Post-build script path
Pre-build script argumen
Pre-build script path $/bademse2e/BuildScripts/ApplyVersionToAssemblies.ps1

4 3.Test
4 1, Automated tests 1 set(s) of tests specified.
4 1, Test source - Run tests in test sources matching ***test*.dll; ***test*.appx, Target platform: 'X86'
Fail build on test fail. False
> Run settings Run settings

Target platform for te XB6
Test case filter
Test run name
Test sources spec “*test"dll; “**test".appx
4 2, Advanced
Analyze test impact True
Disable tests False
Post-test script argument
Post-test script path
Pre-test script arguments
Pre-test script path
4 4, Publish Symbols
Path to publish symbels \\mde07build\Sym
4 5. Advanced
4 Agent settings Use agent where Mame=" and Tags=[] (MatchExactly)
Maximum agent executic 00:00:00
Maximum agent reservati 04:00:00
Name filter *
Tag comparison operator MatchExactly
Tags filter
Build number format $(BuildDefinitionName)_$(Year:yy).${Month).3(DayOfMonth)$(Revz.r)
Create work item on failure True
Update work items with build True

Tags filter
Specify the tags used to select the build agent.

FIGURE 5-17

When you create the build definition, you set one of these parameters, Items to Build, to be the
solution file that you want to build. However, there are many other parameters provided for you to
adjust the behavior of the template. If you select one of the parameters, additional information is
displayed about the parameter in the comments box at the bottom of the process parameter table.

Team Build Process | 121

In the default process templates, these parameters are broken down into five categories: Version
Control, Build, Test, Publish Symbols, and Advanced. Some of these parameters are worth calling
out in this chapter, and are examined in the following discussions. However, it is worth familiariz-
ing yourself with all the parameters and what they do.

Configurations to Build

The default Visual Studio build configuration to use is the default build configuration for your solu-
tion. To modify the configuration, use the Configurations dialog that is available when you press the
ellipsis (...) button in the Configurations to Build parameter under Required, Items to Build.

SOLUTION CONFIGURATIONS

Team Foundation Build typically deals with solution configurations. These enable
you to specify a named collection of project-level platforms and configurations that
should be built. For more information on solution configurations, see the blog post
from Aaron Hallberg of the Team Foundation Build team at Microsoft, available at
http://aka.ms/slnConfigs.

Logging Verbosity

In previous releases, you controlled how much log data Team Build generated. While in theory this
could make your build run faster, when you had a problem, you had to change the setting, rerun
the build, and hope the error occurred the same way. In 2013, Microsoft revamped how logging is
handled and the build process always generates a detailed log that goes to a file and is put on your
drop share as well as stored in the server. Because Microsoft removed a bunch of database I/0, you
shouldn’t see any negative performance impact to your build times.

Clean Workspace

The Clean Workspace parameter, only available in Team Foundation version control builds,
changed in 2013 from being a three-value item to simply a True/False option. By default, the Clean
Workspace parameter is set to True, meaning that all existing build outputs and sources for that
build definition are deleted for every build. Although this is the safest option, it is also the slowest,
because all the files must be downloaded from version control, and everything is rebuilt for every
build, regardless of what has changed.

If you set the value of the parameter to False, then neither the sources nor the build outputs are
deleted at the start of a build. Only the files that have changed in version control are downloaded
each time, and only the things that have changed are recompiled as part of the build. Because not
a lot of things usually change between builds, this normally gives your builds a significant per-
formance boost by taking much less time to complete. It is also often useful for things such as
ASP.NET-based websites, where you might want to subsequently only publish the items that have
changed to your public website to minimize the upgrade effect for new versions.

However, if you have customized your build process and you make any of the source files writable
for some reason (for example, to modify the AssemblyInfo files to contain your version number),

http://aka.ms/slnConfigs

122

| CHAPTERS5 TEAM FOUNDATION BUILD

or if your customized build process assumes a clean output directory, then you may run into issues
with altering the default value of the Clean Workspace. So, use with caution.

Note that on the hosted service at http://visualstudio.com, all build agents are created from
a fresh image each time a build is executed so there is no persistence of the workspace in between
builds. Therefore, altering this setting has no effect when using a hosted build agent.

Get Version

Builds are usually performed with the latest sources from version control. However, occasionally
you may want to perform a build of the source at a particular date, changeset, or label. In those cir-
cumstances, you can modify the Get Version process parameter, only available in Team Foundation
version control builds, which is in the TF Version Control section. This is usually done as you queue
the build by clicking the Parameters tab. The value provided should be a valid version specification
such as c1234 for changeset 1234, D2008-04-22T17:37 for a date/time, or LmyLabel for a label
called myLabel.

NOTE For more information on the TES version specification formats to use
when specifying changesets, labels, or dates to use as the Get version, see the
Version Specs section in MSDN'’s “Command-Line Syntax (Version Control)”
documentation available at http://aka.ms/tfsVersionSpecs.

Automated Tests

In the Test category of process parameters, you can configure automated tests that should run as
part of the build using the Automated Tests parameter. By default, a new build runs all unit tests in
assemblies matching the pattern *test*.d11 and *test*.appx. This means that, if you have cre-
ated some unit tests in a companion test project called HelloWworldTests, for example, then they
will be run automatically.

Pressing the ellipsis (...) button opens the Automated Tests dialog shown in Figure 5-18, where you
can add additional tests to run, or you can edit the test configuration.

If you select the existing test configuration and click Edit, the Add/Edit Test dialog shown in Figure
5-19 is displayed, enabling you to edit aspects of your test run. For example, you can configure it

to fail the build on test failure, modify the test case filter criteria, specify the test runner, or enable
code coverage data collection.

http://visualstudio.com
http://aka.ms/tfsVersionSpecs

Team Build Process | 123

Run tests in test sources matching **test™.dll; ***test*.appx, Target
platform: "X86"

Move Up

Move Down

FIGURE 5-18

General | Criteria

MName [cpticnal):

[] Fail build on test failure

Test runner:

Visual Studio Test Runner

Test assembly file specification:

M\ testh.dll; Y test”.appx

Opticns:

MNone W

MNone

Custom

FIGURE 5-19

124 | CHAPTER5 TEAM FOUNDATION BUILD

Path to Publish Symbols

The Default Template in Team Foundation Server includes a step to index source code and publish
symbols to a symbol server in the organization. As mentioned earlier in this chapter, a symbol server
is simply a file share that is used to store the symbols for your executable binaries. Visual Studio

can then be configured with details of this server. From then on, when debugging code live, or when
using the advanced historical debugging features, Visual Studio can take you directly to the version
of the source code from which the binary was generated, regardless of which version of the code you
have on your local system at that time.

The configuration of the symbol server is performed by adding the UNC file path of the share to
be used as the symbol sever in the Path to Publish Symbols process parameter under the Publish
Symbols Server Settings. Unfortunately, this feature doesn’t work with hosted builds on
www.visualstudio.com.

Agent Settings

Agent settings can be found in the Advanced category of parameters. As well as limits for how long
a build can run or wait for an available build agent, the Agent Settings group of process parameters
includes the Name Filter and Tags Filter. Together, these are used to determine on which build agent
the build will be executed. If multiple build agents match the agent requirements, then the agent
with the least number of builds running executes the build.

Specifying the name of a build agent enables you to force it to run on a particular machine. You can
also adopt a naming convention for your build agents, and then use wildcards in the Name Filter
setting to assign builds to a pool containing a subset of all the build agents for the project collection
(for example, Projectx* for all build agents assigned to Projectx).

A more flexible way you can limit which build agents are used for a build is to make use of the tag-
ging feature for build agents. From the build agent properties dialog, you can assign tags (which are
sets of text strings) to an agent to denote certain features. For example, you could use codesign if
you have the project’s code signing certificate installed on the machine, Datacenter1 if it is located
in your main data center, or Treland if the build server is located in your remote office in Ireland.
You can then filter on which tags are required for your build agent by using the Tags Filter in the
agent’s requirements; only agents with that tag will be used.

To edit the tags applied to a particular agent, you can use the Team Foundation Server
Administration Console on the build agent machine itself, or you can select the Actions = Manage
Build Controllers menu item in the Builds page in Team Explorer. You then select your build agent
and click the Properties button. You are presented with the Build Agent Properties dialog, and, pro-
vided you have sufficient permissions, you can edit the assigned tags.

Build Number Format

By default, Team Foundation Server numbers the builds in the format $ (BuildDefinitionName) s
(Date:yyyyMMdd) $ (Rev: .r). For example, in HelloWorld 20090927.5, the 5 is the fifth build
executed for that build definition on that day. Build numbers must be unique across a team project,
and this format serves as a good default. However, it is often not the format that people want.

Thankfully, starting in Team Foundation Server 2010, editing the build number is very easy using
the Build Number Format parameter. When you edit the Build Number Format parameter, you are

http://www.visualstudio.com

Summary | 125

presented with a dialog, similar to Figure 5-20, that gives you the format string, a preview of what
a build number of that format will look like when generated, and a set of macro strings that can be
used in the format. Clicking each macro gives you more information about its behavior in the com-
mand section at the bottom of the dialog.

A common number format to use is $ (BuildDefinitionName) v1.0.0s$ (Rev:.r), where you are
currently working on version 1.0.0 of the product, and the $ (Rev: .r) macro translates to an incre-
menting number that makes the build number unique.

Format string:

| §(BuildDefinitionMName)_S(Yearyy).5(Month).5{DayOfMonth)S{Rev.r)

Preview:

|UberMath-Main-ManuaI_1 3_14.01.09.1

Token Value
S(DayOfYear) 009
S(Hours)
S(Minutes)
S(Month)
$(Rev:.rr)
S(Date:MMddyy)
S(Seconds) h

build number with at least the number of specified digits

An auto-incremented value for the numerical part of all builds that match the ‘

Macros <<

| | Cancel |

FIGURE 5-20

SUMMARY

In this chapter, you examined the build services provided by Team Foundation Server 2013 and how
they have been enhanced from previous versions.

You learned how to create build definitions, trigger builds, and view and manage build results. You
also learned how the new Windows Workflow-based build process works and how to perform com-
mon customizations by editing the process parameters.

In Chapter 6, you’ll learn about the new Release Management feature. This new part of Team
Foundation Server allows you to take the output from your builds and deploy to test staging, pro-
duction, or wherever your Team Foundation Server and Release Management tools can reach.

Then, in Chapter 7, you’ll learn about common Team Foundation Server customizations, including
how to edit the process template used by your builds to include new logic and parameters that do
not ship in the default build processes.

Release Management

WHAT'S IN THIS CHAPTER?

> Developing good practices around release management, including
binary releases

> Understanding why and when to use continuous delivery and what
value you get from releasing more frequently

> Using and creating release paths, environments, and servers along
with release templates and components to successfully deploy your
software

In Chapter 5 you looked at how Visual Studio 2013 supports continuous integration as part of
its application lifecycle management. You learned how the build process produces the

binaries that are stored either on a network share or inside the server. In this chapter, you
learn how to create a binary promotion model to transition those versioned binaries through
your environments. After reading this chapter, you will have a better understanding of how to
use the release management tools in combination with automated build. This will enable you
to get your software from development to production so that you can get quick, actionable,
and timely feedback from testers, users, and the business.

WHAT IS RELEASE MANAGEMENT?

A release is the process by which you create a working instance of your development efforts to
date and subject it to a series of checks before releasing it for consumption by your customers.

While some organizations are still trying, and as often failing, to implement a code promotion
release model, many companies have switched to a binary promotion model. In a code
promotion model, you create a version of your software on a development code line, deploy
versioned output to an environment, and then approve it. Once approved, the development

128

| CHAPTER 6 RELEASE MANAGEMENT

code line is then merged with the next level up, likely quality assurance (QA), and another version
of your application is created from this new code line. In a code promotion model you can end up
with untested code in production and thus a much greater likelihood of bugs. In Figure 6-1 you can
see that a bug was found and fixed in production. The resultant ChangeSet was then reverse-inte-
grated into the main code line. When the development team reverse-integrates their changes into the
main code line, there is a change that impacts their code. Although it might not conflict directly, it
does mean that all of their regression tests need to be run again to make sure that nothing has

been broken.

DEV

ClH—Cl

Y

Main/trunk @) Y

Y

PROD @)
&

Y

FIGURE 6-1

However, the reality in many organizations is that this nuance is ignored and someone picks and
chooses a few tests to run and calls it good. In all likelihood, the programmers don’t have the cover-
age that they need in order to know that the code is good, so they guess. Whoever makes this deci-
sion is then taking on the risk to the company and its reputation if there’s a fault that is not picked
up until production.

NOTE The software that you produce is your organization’s asset and so its
value should be represented on your company’s balance sheet. As such, any
decisions to cut quality are in strict ownership (often legally) of your executive
management.

In most modern organizations, a more stable binary promotion model tends to be used as it avoids
unnecessary retesting. In a binary promotion model, you have a single code line that moves through
the states of development, stabilization, and release. When you create a version of your application,
it is deployed to your development environment. Once it’s approved the same output, with config-
uration-only changes, is deployed to the QA environment. This means that all of the functional
checks that you ran in your development environment do not need to be rerun for QA as the results
are still valid as you are using the same binaries. You may need to run cursory checks that validate
your configuration changes, however.

Continuous Software Delivery | 129

In Figure 6-2 you can see a forward-only model in action. This is commonly called a staircase
branching model. You can take a build from the R1 code line at any time and get incremental

binaries.
DEV STABLE PROD
A A A
/ \(\(\
=" -
DEV STABLE PROD
A A A
/ Y \(\
R2

Y

FIGURE 6-2

This will create an incremental model of consecutive builds. Now that you have that you can then
choose to create a release from any one of your build outputs and push it through a set of stages or
gates until it gets to production. A failure at any of the stages would result in feedback to the devel-
opment team and may result in a new build and potentially a new release.

NOTE The process that your release goes through between when the code is
checked in and its getting into production is often called a release pipeline.

CONTINUOUS SOFTWARE DELIVERY

The nirvana that any modern organization should be striving toward is the ability to get a change
into production as quickly as possible. The quicker you get your product through the pipeline, the
quicker you can get its value, which has already started to depreciate, to your customers. There are
of course trade-offs between cost and effort. Although many companies would like to be able to
deliver to production many times a day, it might not be financially viable. However, all companies
should be able to deliver working software frequently, from a couple of weeks to a couple of months,
preferably on the shorter timescale.

In Figure 6-3, you can see the lifecycle of any application as a repeating process of ‘releasing’ to pro-
duction. An agile team would typically take 30 days or less to loop around the lifecycle proving an
opportunity to inspect and adapt every iteration. A two-year project that ships once a year takes 365
days to get around the lifecycle once, so there would be only two opportunities for feedback in total.
If you are in a very long release process, you might want to try moving to multiple 30-day iterations
between releases. The goal is to release every 30 days, at least.

130 | CHAPTER 6 RELEASE MANAGEMENT

(@) Plan — Operate

Build | Measur:m
Gy

Construct

Develop S @ Release

WORKING SOFTWARE

FIGURE 6-3

There are really only four main phases to any software delivery cycle. The diagram shows the rela-
tionships between them and indeed many teams break each area up into even smaller time slots:

> Requirements—Ultimately there is always a list of requirements somewhere. Some require-
ments are formal and some are more fluid. If you are building for life-critical systems, you
need more detail; if you are building a dating site, you need maybe a little less detail.

> Construct—At some point your teams get busy building something.
> Release—Each time your teams create a working increment, you release it to get feedback.
> Operate—You will have folks that monitor your release and support it, all the while provid-

ing feedback to your development teams.

With these phases we can model any software delivery.

NOTE In most countries there are nuances of tax law that your accountants
can leverage to the advantage of your organization. You need to understand how
your development process can help them make the most of your organization’s
money. Almost universally true is that you can amortize the capital expenditure
on your software only once it has been delivered to production. Until then the
value is speculative and thus a risk for your business. If you are on a two-year
release cycle then that can be many millions of dollars of risk. If, however, you
ship every 30 days then business risk is minimized.

Continuous Software Delivery | 131

The key to being able to deliver to production more quickly is to have working software at all times,
fewer branches (preferably one), and better automation. Just because you deliver to production every
30 days or more, does not mean that you can’t deliver quarterly or even yearly marketing releases.
This tends to be achieved by using feature flippers (or feature toggles), which are flags or configura-
tion options in your code that allow you to turn features on and off based on criteria like time or
users. Advanced feature flippers can be found in many systems that allow two users to run different
versions of the same function or algorithm at runtime.

NOTE Feature flippers are often achieved with the use of dependency-injection
frameworks like Ninject. These frameworks allow you to replace code at runtime
for different results. See nttp://aka.ms/Ninject for more information.

If you use the feature flipper methods, then you can push your latest code, and any bug fixes, to
production more frequently. You can then save up a viable set of features for a big marketing push,
secure in the knowledge that the risk of failures is low. The code that you are turning on has likely
been in production for many months and has passed user acceptance testing from your delegated
early adopters. While there is often added conditional complexity in using feature flippers, there is a
lot to gain from implementing them.

If you have a complicated branching model, you are going to find it difficult to move toward con-
tinuous delivery. Branch integration is where most failures and regressions occur and you must mini-
mize your branches to something more like Figure 6-2. Ideally, you should move toward a single
branch line with feature flippers. This setup gives you the same capabilities if not more than branch-
ing. Traditionally we in the software industry have used branches as a crutch in order to avoid plan-
ning. We find ourselves, as our teams grow, stepping on each other’s toes and thinking, “If only

we could separate one group’s work from another’s.” Using branching as a solution to this problem
results in a plethora of difficult-to-merge branches. Teams often leave things undone too long and
end up with “big bang” merges or (shudder) have to “cherry-pick” the merge.

There is still a place for branching and it can be phenomenally useful. However, always ask yourself,
when creating a branch, if there is another, cheaper way.

After you have fewer branches, with feature flippers doing the heavy lifting and good automation

in place, it is time to create your release pipeline. If you do not have these things then you will likely
find it incredibly difficult to achieve an automated pipeline. If you are struggling to achieve continu-
ous delivery, the best way forward is to start taking steps to minimize branching, enable feature flip-
pers, and create automation scripts.

NOTE Continuous delivery is an enormous subject and can’t be covered in
depth bere. I recommend reading Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation by Jez Humble and
David Farley (Addison-Wesley Professional, 2010).

http://aka.ms/Ninject

132 | CHAPTER 6 RELEASE MANAGEMENT

DEFINING A RELEASE PIPELINE

A release pipeline is a defined workflow or process that your binaries pass through to get to produc-
tion. Ideally, every step along your release pipeline should be automated, although in the beginning
some may not be automated, and others may never be. For example, maybe you have a change board
that must approve deployment to production. In this case, you have a queue of releases waiting to

go and the board is responsible for manually approving them prior to release. Everything else should
be automated so that when the board clicks the Approve button, your software is automatically
deployed.

NOTE In order to test your release pipeline you can create something called a
null build. Immediately after you have completed a release, you create a new
build from the same version of the code, and push it through the pipeline. This
will let you know not only how costly your process is, but also your mini-
mum lead time to getting into production. Features and bug fixes should all go
through the same process.

When you’re creating a release pipeline from the ground up, you may not have all of your processes
automated yet. You need a tool that can grow with you and provide that automation on demand.
There are a number of good release management tools out there.

NOTE [have used and recommended both InRelease and Octopus Deploy in
the past. To find out more about Octopus Deploy, read “Release Management
with Team Foundation Server 2012,” which is still relevant in 2013, at http:
//aka.ms/RelManOctopus.

In mid-2013 Microsoft purchased one of these leading release management tools for Team
Foundation Server, called InRelease. They brought it up to Microsoft standards and released it with
Visual Studio 2013 under the Release Management moniker.

There are three components to Microsoft’s new release management tools:
> Release Management Client for Visual Studio 2013
> Microsoft Deployment Agent 2013
> Release Management Server for Team Foundation Server 2013
The Release Management Server for Team Foundation Server 2013 component provides the back-

ground processing that orchestrates the release in an automated fashion. It has a web interface
to allow actioning of tasks without the need to install a client. A database is added to your Team

Defining a Release Pipeline | 133

Foundation Server data tier to maintain all of its data. The Release Management Client for Visual
Studio 2013 has rich features that allow you to configure, create, and customize your deployment
orchestration for any number of applications. The Microsoft Deployment Agent 2013 installs onto
the servers that you want to deploy applications to. It handles the silent execution of the processes
you have configured that need to be run for a deployment. You can find out more at http://aka
.ms/RelMgmtVs.

Configuring for First Use

The very first thing you have to do is connect your release management instance to your Team
Foundation Server collection. You can connect many collections across many Team Foundation
Server instances, which gives you the ability to run a central release pipeline even if your organiza-
tion has multiple TFS servers. In Figure 6-4 you can see the details from your TFS server that you
need to enter and the additional credentials. These credentials must have the appropriate permis-
sions on the server. For more details of the required permissions, reference the release management
manual at http://aka.ms/RelManOctopus.

Dd Release Management Configure Apps ~ Configure Paths Inventory Administration

My Profile | Manage Users | Manage Groups | Manage PickLists | Manage TFS | Settings
h 4

B TFS Connection* » {Active)

General Information

Name or URL of the TFS

Project collection name

Cennection Details Connect As
Path Accountname
Port number Password

Protocel

URL

FIGURE 6-4

You can configure release management to send notification emails by configuring the SMTP settings
shown in Figure 6-5. This will allow the system to send out emails to approval gates that require
manual approval detailing what needs approved. The users can then accept, reject, or reassign the
required approval. This gives you massive flexibility and latitude for approvals, as the approver does
not need to install the client or have a license to respond to approval requests.

http://aka
http://aka.ms/RelManOctopus

134 | CHAPTER 6 RELEASE MANAGEMENT

b Release Management s Co s Inventory Administration

My Profile | Manage Users | Manage Groups | Manage Pick Lists | Manage TFs | Seftings
h 4

B settings

System Settings ~ Deployer Settings

Release Management Server URL HTTP:ffvsalm: 1000, Edit

Maximum resource fle size for tools (2) 32768 | KB SMTP Server Configuration

Default component deployment timeout (3 Minutes server Name)

. Port 995
TF5-triggered deployment timeaut Minutes ©

_ martin@nakedalm.com
AD/TFS-based|group refresh interval (7) Minutes

RN EER IR R RREEE

System Version 120210211

Sender Address info@nakedalm.com
Database Version

File Extension Whitelist (7

FIGURE 6-5

You can manage what your release path gates are called from the Manage Pick Lists tab. You can
manage the pick-lists for both Stage Type and Technology Type. You will get the most use out of
the Stage Type list, as it generates the heading for each of the gates in your process. The pick-list
items are just simple strings, but they will be used later in the chapter. If you add entries to the
Administration &> Manage Pick-Lists @ Technology Type pick-list, you can select them as being
available on servers, which is explained in the “Introduction to Release Paths” section later in this
chapter.

You can also manage the groups and users who have permission to interact with the release man-
agement process. Not only can you select individual users, you can also import whole groups of
users and have them synchronized with Active Directory on an ongoing basis. To add an Active
Directory group, go to Administration &= Manage Groups & New = New from AD, after which you
can select an AD group using the familiar Active Directory dialog shown in Figure 6-6. If you are
on the Manage Users screen, you can manually add a single user as well as see all of the users who
are synchronized from the added groups. There are three role options for users. None is depicted

by a blank Role column and reflects that the specified user is simply a user with no special permis-
sions. These users can only action approvals that have been assigned to them. Service User is used to
designate service accounts that should not appear in selection pick-lists as it is used for a Deployer
account or Web Service Application Pool Identities. The last designation is the Release Manager
role, which gives the specified user the ability to manage and customize the deployment processes. If
you are not in this category, you will not see very much in the UI and should instead log in with an
account that has been designated as a release manager.

Defining a Release Pipeline | 135

DQ Release Management Configure Apps Configure Paths Inventory Administration

My Profile | Manage Users | Manage Groups | Manage PickLists | Manage TFS| | Settings
v

B Groups P acive [v Refresh |~ |
Name Description

Everyone Select this object type: Active
Ops Team [Groues | [[Object Types... | Active

QA Team From this location Active

Web Team [vsAm | [ocstions... | Active

Commen Queries
Name: Starts with

poectinis dyec bpe Desciption: | Stats with

[Groues | [Obiect Types...

Select Groups

Columns.

Disabled accounts Step
From this location

[vsAm

Non expiing passiword
] [Locations.. A

Days since lact logon:
Ertter the object names to select {zxamoles v .

Check Names

Search results
Advanced Name In Folder
8 HelpLibrary Updaters VSALM
2 501 Server20055QL BrowserUserSVSALM VSALM
2 TeamTestAgentService: VSALM
2, TeamTestCortrollerAdmins VSALM
2 TeamTestCortrollerlsers VSALM
£ TF5_APPTIER_SERVICE_WPG VSALM
2, WinRMRemoteWMIUsers_ VSALM

FIGURE 6-6

NOTE It would be good practice to create Active Directory groups for each of
the stages in your process and secure your workflow with those groups. This
will give you the greatest flexibility and broaden the scope of management of the
groups.

The last tab on the left of the Ul allows you to edit your own profile. It allows you, for example, to
edit your language and email preferences.

Introduction to Actions

Actions are the activities that you perform as part of the sequence of your deployment. They are
available in the toolbox you use to create your deployment workflow within the client tool. In the
Release Management for Visual Studio 2013 client, you get a comprehensive menu of options for
building your workflows. However, you may find that you have some custom action, or

a third-party action, that is not yet listed or included in the product.

Figure 6-7 shows the components that make up an action. This particular action starts an existing
virtual machine in Azure. One of the general options is to select the tool that will be used. I will talk
about tools later on, but for now the tool in this case, Azure VM Manager, is a PowerShell script
called controlazurevm.psi. This tool has two parameters that are defined and a third “command”

136 | CHAPTER 6 RELEASE MANAGEMENT

parameter that has been hard-coded for this action. When you drop this action onto a release work-
flow (discussed later in this chapter in “Creating Release Templates™), you get to specify the two
parameters that might be different, depending on the environment you are deploying to. In this case,
you have serviceName, which is the name that you give your Azure service, and Name, which speci-
fied the individual virtual machine within that service that you want to start. With this model you
can create any number of custom actions for any particular tool.

b Release Management R s Co s Inventory Administration

Actions | Tools
v

B Action » Start an Azure VM (Active) Deactivate | | Close |

General Information

Name Start an Azure VM
Description Starta VM in Azure
Categaries Azure

Execution

Gommand L @ Minutes

Argumes ommand J/ControlAzureVM ps1 -Command Start -ServiceName *_ServiceName_" -Name '_Name_"

Parameters

Name Type Description
ServiceName Standard The Azure service name

Name Standard The Azure virtual machine name to start

FIGURE 6-7

Tools are things that are uploaded into the release management server and stored in the database for
later use. They are deployed automatically to the servers that have deployment agents just in time
for the execution of the workflow that contains them. Figure 6-8 shows the tool associated with the
actions discussed previously. This tool, called Azure VM Manager, has a number of resources that
are deployed to the deployment agent environment as part of the execution process. You do not have
to install all of the tools, or deploy them, to the individual servers.

Creating custom actions may require you to first create a custom tool and upload that tool into the
release management server as a resource. To deploy a simple website and database, you should find
the out-of-the-box tools to be sufficient. For example, there are actions for creating and removing
IIS components like websites and application pools, as well as actions for moving files around. This
is discussed in the “Creating Release Templates” section later in this chapter; you can find out more
about creating custom actions in the release management manual on http://aka.ms/RelMgmtMan.

http://aka.ms/RelMgmtMan

Defining a Release Pipeline | 137

v Release Management

Actions | Tools
v

B Tool » Azure VM Manager (Active)

General Information

Name lanager

Description irtual machine in Azure

Execution

Command

Arguments cor .ps1 -Command ACTION -ServiceName *_ServiceName_' -Name *_Name_

Log File Name:

Parameters

Name Type
ServiceName Standard

Name Standard

Resources

Name
ControlAzureV/Mps1

FIGURE 6-8

Description
The Azur

Comment

ControlAzurcVM ps1

Introduction to Release Paths

Now that you have an idea which actions you need, you need to create a release path. A release
path is made up of servers, environments, and a little bit of deployment workflow that allows you

to orchestrate the approval process. At this point, you should not be concerned with the minutia of
how you will be deploying your application, but instead about the flow of your deployments. In this
section, you look at whether you want pre- or post-approval, or both, as well as who will be approv-
ing. In addition, you will set the order and number of environments you will deploy to.

Inventory Administration

Deactivate | | Close |

Version 3

Environments are not the same as servers. You can have many environments on the same server, or
indeed an environment that spans servers. You can even have many environments of the same appli-

cation that span a single set of servers. In this case, you look at a web application that is deployed to
three environments that exist on the same server.

/ALMVMs.

NOTE All of the screenshots are from a Virtual Machine provided by Microsoft
with a walk-through of the process built-in. This gives you a chance to follow
along and try things out on your own. Download the VM from http://aka.ms

http://aka.ms

138 | CHAPTER 6 RELEASE MANAGEMENT

You first need to configure the list of servers. Your servers need to have Microsoft Deployment
Agent 2013 installed. You can find out how to install the release management deployment agent in
the release management manual on http://aka.ms/RelMgmtMan.

Figure 6-9 shows an agent added to the Release Management client for Visual Studio 2013 and the
options you can configure. If you have correctly installed the deployment agent, you can simply
select Configuration Paths = Servers & New = Scan for New to list all of the installed agents that
have not been added to your instance. All of the details are auto-detected, so you only need to con-
figure the Drop Location Access at the bottom of the screen according to your network topology. If
the servers that you are deploying to have direct UNC access to your drop locations, then you can
leave it as the default. However, if the server that you are deploying to exists on another network or
domain and does not have direct UNC access to the drop location, then you must configure it for
HTTP by selecting the Through Release Management Server over HTTPS option. When this option
is enabled, the agent must have access to the Release Management Server over HTTPS and the
release management server must have access to the drop folder over UNC. The Release Management
Server will then proxy the files from the drop location to the agent.

DQ Release Management s Confi ps Configure Paths Inventory Administration

Release paths | Environments | Semvers
v

B Server » VSALM (Active) |[Deactivate | |

General Information

VSALM Cloned Server
DNS Name VSA

1eB0:1405:bdPFEL0AE20/ (IPvE) 1P Address Type (D

Martin Hinshelwood

Description Notes

Deployer | Environments | Supported Technology Types
Status.
Version

Drop Location Acc ® Directly using UNC Path Through Release Management Server over HTTP(S)

FIGURE 6-9

In addition, if you have configured the pick-list for technology types in Administration & Manage
Pick-Lists => Technology Type, then you will see a list of check boxes on the tab marked Supported
Technology Types. From there, you can check the technologies that are available. These technology
types work just like the tags that you apply to your build agents and can be used to specify what

is available on that server. This allows you to, for example, tag all of the servers that have Java

http://aka.ms/RelMgmtMan

Defining a Release Pipeline | 139

installed with the “Java” technology type. This can be immensely valuable when you’re trying to
deploy applications to environments as you can gain more insight into what has been installed or is
available.

Once your server is configured as a deployment target you can configure your environments.
Initially, you are going to deploy only one application—the Fabrikam Fiber Support site. This site

is for users internal to the organization to track support tickets and is fairly straightforward for
illustrative purposes. Figure 6-10 shows a simple development environment, entitled Int -Dev, that
represents the deployment location for a web application for internal applications. Here, you simply
enter a Name, Owner, and Description to help you remember what this was configured for. You
have three additional tabs for configuration. The first allows you to specify the servers that are
involved in this environment. If you select more than one server, you will have more than one server
as a deployment target for your environment. You do not even need the same number of servers in
each of your environments. You may only have a single server in your development environment,
but then have two in the QA environment. This allows you to minimize the cost in development and
then scale out for other environments, like production. You can add an existing server with the Link
Existing button or create a new server. Creating a new server takes you through to the previous sec-
tions’ screens for servers. In addition, you can also use the Supported Technology Types option to
add metadata to the environment. At this point you can select which stages, which you configured
in the Stage Type pick-list, have permission to use this environment. You can add any of your stages
and select the Can Use box to make it available to that stage. The default configuration is to make
the environment available to any stage. Changing this setting as shown in Figure 6-11 will restrict
the environments that are available for stages in the Configure Apps = Release Templates section.

DQ Release Management e Gonfigure Paths Inventory

Release Paths | Environments | Servers
4

[Environment » Int-Dev (Active)

General Information

Name Int-Dev
Owner Martin Hinshelwood

Description Development environment for the Web Team for internal apps

Servers | Supported Technology Types | S
[Open || create || Link Existing

Name

VSALM

FIGURE 6-10

140 | CHAPTER 6 RELEASE MANAGEMENT

DQ Release Management s Configure Apps Configure Paths Inventory Administration

Release paths | Environments | Servers
v

B Environment » Int-Dev (Active)
General Information

Name: Int-Dev

Oumer, Martin Hinshelwood

Description Development environment for the Web Team for internal apps

Servers | Supported Technology Types | Stag
[Caaa |

Can Use
All Stage Types

Dev

FIGURE 6-11

Now that you have both your servers and environments configured, you can look at creating the
release path for our application. The release path describes how your application moves, at a high
level, from one state to another. It also describes who is responsible for approval of each stage. In
Figure 6-12 you can see a simple movement of stages from Dev = QA = Prod. These values are the
ones that you entered for the pick-list in Administration > Manage Pick-Lists = Stage Type. You
can now order them however you want for this specific application or platform. At this time, you are
not specifying the components of the application that you are deploying as you will do that as part
of creating your release templates later in this chapter. For now, you are solely focused on the high-
level flow of the release. To model your current organization’s flow, you have a few simple tools. You
can create columns that represent a combination of stage type and environment. You can use a stage
only once, and although you can have many stages I would recommend that you try to minimize,

if only for simplicity.

Once you have created your columns like you see in Figure 6-12, you can select the environment
that you want to use for this stage. After that, you get to configure the four steps—the Acceptance
step, the Deployment step, the Validation step, and the Approval step. They each have their own
meaning and nuance:

> Acceptance—At this step in the process you have not done anything. You must select an
approver but you can choose whether you need physical approval or if this is an automated
step. As you tend to get to this first stage as the result of an automated build, this is often
configured as an automated step (see Figure 6-12). If you do not check the box marked

Defining a Release Pipeline | 141

Automated, the individual or group selected will be required to use either the web or client
approval process for the process to continue. If you have email configured, the system will
send instructions to the participants via email. After this step has been completed, the deploy-
ment step will execute.

Deployment—This step is always automated but you still need to select an owner. The owner
will be notified if there are any issues with the process, either on a poll basis (they have to
manually check the application or site) or via email.

> Validation—In Figure 6-12 this is configured as an automated step. However, if you need to
do any configuration (which you will hopefully automate) or validate that the environment is
working before you pass it to the Approval step, you can uncheck the automation box. The
process will stop until the “validator” validates the deployment.

Approval—This is the most configurable step, as it allows you to select multiple approvers
who must all approve before you can move to the next stage. At this point, the approver(s)
are determining whether the current stage was successful and if you should now move to the
next stage.

> Release Management Configure Apps | Configure Paths Inventory

Release Paths | Environments | Servers
A4

B Release Path » Fabrikam Call Center (Active)

General Information

Name Fabrikam Call Genter

Description Release path for the call center app

Stages Security

["Add

Stage | Dev v Stage | Prod v

Environment Int-Dev o Int-QA v En Int-Prod v
Acceptance Step <+ Automated Acceptance Step + Automated Acceptance Step Automated
Approver @ WebTeam (v & Approver @ QA Team v Approver Martin Hinshelwood || &
Deployment Step Deployment Step Deployment Step

Owner BWebTeam ¥ & Ovmer & QA Team v o Ovmer & Ops Team v &
Validation Step Automated Validation Step Automated Validation Step Automated
Validator, @ WebTeam (v Validator @ QA Team v o Validator @ Ops Team v =
Approval Step Approval Step Approval Step

1 Approver(s) 4 1 Approverls) 4 = 0 Approverls)

ApProver Martin Hinshelwood (¥ & Approver & QA Team

FIGURE 6-12

Now that you have looked at the flow through a single stage, you can see how the overall flow
through multiple stages allows you to deploy your applications from environment to environment
while maintaining your audit and traceability trail. As you build your list of applications, as in
Figure 6-13, you can make use of the dynamic search functions to find what you want more easily.

142 | CHAPTER 6 RELEASE MANAGEMENT

b Release Management

Release paths | Environments | Servers
4

B Release Paths 9 sitd

Configure Paths Inventory

| New |[Open | [Refresh

Name Description Status
Fabrikam Site Active
Tailspin Toys Site Active

FIGURE 6-13

You just learned how and why to configure release path(s) to allow you to create an orchestration
flow for your overall application deployment to one or more servers that exist within one or more
environments. Next you see how the software is deployed to those servers.

Creating Release Templates

In order to get started with release templates, your release path configuration must be complete. The
servers, environments, and release paths that you just looked at are integral to the creation of release
templates. In addition, before you can create your first release template, you need to specify the
components you are going to deploy as part of that release.

In Figure 6-14 you can see the basic options for configuring a new component. On this screen are
a number of options that you need to fill in, as well as then a number of optional fields to help you
with more complicated deployments. First are the usual title and description to help identify your
component. You will select the title on other screens, so try to make it concise enough to be easily
understandable. Figure 6-14 shows the Source tab. This tab specifies where you get the component.
There are three important options:

> Builds with application—As you learn later in this chapter, a release template can be associ-

ated with a build so that it is triggered from that build’s successful completion. With this
option selected, you only need to enter the last part of the package locations. For example,
if you have a web application then it will automatically end up in a folder of the same name
as your web application in Visual Studio under the _publishedwebsites folder. The source
files that will be used for this component will be loaded dynamically from this folder.

Defining a Release Pipeline | 143

> Builds independently—If you have an independent build for this component that is not
related to the release template, then you can select it here. You can select both the team proj-
ect and the build definition that should be used. Specify the folder as explained previously.
This will then grab the correct output from the latest successful build.

> Builds externally—If your component is not built by Team Foundation Build, then you can
just specify the full UNC path from which the output will be loaded. This could be from a
Maven build from another team or from a library of legacy components that you no longer
compile regularly.

NOTE If you want applications other than web applications to end up in their
own folder, you can use the Publishedhpplications extension available on
Nuget. This gives your non-web projects the ability to be put into a published
folder, and it supports most application formats. You can download it from
http://aka.ms/NugetPubApp or right-click your solution and select Manage
Nuget Packages in Visual Studio 2013.

DQ Release Management Configure Apps Cor s Inventory Administration

Release Templates | Components
4

[Component » Call Center Site (Active)
General Information
Name: Call Center Site

Description

Source | Deployment | Configuration Variables | Release Templates Using Component

Specify how and where to get the package

& Builds with application (?)
Build Defintion Inherited from Release Template]
Path to package [Build Drop Location] || _PublishedWebsites\FabrikamFiber Web

Builds independently (?)

Build Definition <Click Edit to Select>
Path to package [Build Drop Location] \

Builds externally (7

UNC Path to Package

FIGURE 6-14

The Deployment tab provides a way to specify a set of default deployment instructions. Configuring
the Deployment tab is very similar to the actions described later. In this case you are doing a simple
Xcopy of your files using the Xcopy Deployer tools, as you can see in Figure 6-15, and a single

http://aka.ms/NugetPubApp

144 | CHAPTER6 RELEASE MANAGEMENT

parameter of the path. You may perform other tasks before or after this and they will be configured
in the release template.

DQ Release Management Configure Apps Cor s Inventory

Release Templates | Components
v

B Component* » Call Center Site (Active) |[Deactivate | [Save || Save & Close |[Close |
General Information
Name Call Center Site

Description

Source | Deployment |~ Configuration Variables | Release Templates Using Component

Tool XCopy Deployer v Timeout (3) 5
Command

Arguments #*_Installation Path_~

Parameters

Name Type Description
Installation Path Standard The destination of the copy

FIGURE 6-15

Although you have no need to configure variables for this particular deployment, you can add addi-
tional variables, as shown in Figure 6-16. These variables can be used at different points depend-
ing on the configuration. Each variable has a title that identifies it and can be set to Standard or
Encrypted mode. If you have to store sensitive information it would make a lot of sense to store

it as an encrypted string in case your database falls into unscrupulous hands. You can have many
variables of both formats. The Variable Replacement Mode determines when the variable token, for
example My variable_ , will be replaced with their values. If you have a configuration file, you
can put the variable token in place of the actual value and the deployment system will automatically
insert the correct value. The available modes specify when this happens and include a number of
options:

> Only in Command—If this mode is selected then the variables will be replaced only in the
execution command string and you don’t need to specify any additional options.

> Before Installation—With this option selected not only will the values be replaced within
the installation command, but also the variable token will be opened and replaced in any
file specified before the execution takes place. If you have text-based configuration files
that are used as part of the installation then this is a good option so that the variables are
prepopulated.

> After Installation—If you only have the files that you need to replace the variable token in
after the installation, for example from an MSI installation, then you need to do the replace-
ment after.

Defining a Release Pipeline | 145

> Before and After Installation—If you have a bit of both—some configuration files available
before and used as part of the installation as well as some configuration files as a result of the
command execution—then you will want to replace the variable tokens both before and after
the execution of the command.

DQ Release Management Configure Apps | Configure Paths Inventory Administration

Release Templates | Components
A 4

B Component* » Call Center Site (Active) Deactivate | [Save || Save &GClose | Close
P

General Information

Name Call Center Site

Description

Source | Deployment | Configuration Variables Release Templates Using Component

Variable Replacement Mode Only in Command v
|
Before Installation
After Installation
Before and After Installation

FIGURE 6-16

If you select Before, After, or Before and After, you will be required to enter a file filter expression.
This will tell the system which files to do the replacement in. You can still specify all files with * .
or you can speed up the process if there is a large number of files by restricting the replacement

to only configuration files with *.config. You can even specify a comma-delimited list of filter
options.

The final tab on the component definition gives you a view into which and how many release tem-
plates use this component. You may have a component that is used in many applications or deploy-
ments and you want to keep track of the implications of changes to the variables or command. If
you make such changes then you would need to update all of the release templates that use this
component.

Now that you have created the component, you can create a release template for your release. When
you create a new release template, as in Figure 6-17, you are first asked for some metadata. Again
you have a simple name and description, and you then have to specify the all-important release path.
You learned how to configure release paths earlier and the release template is really defining what
happens at the Deployment step; see Figure 6-12. You can also select a build at this point. If you are
going to create a continuous release process, then you should trigger this process from the comple-
tion of a build definition. You can also add security around the process to restrict who can view,
edit, or even create a release using this release template.

146 | CHAPTER6 RELEASE MANAGEMENT

b Release Management

Canfigure Apps

Release Templates
v

| Gomponents

B Release Template* » New Release Template 1 (Active)
|
Toolbox

Properties

General Information

e Template 1

Description

«Click Edit to Select

Can Trigger a Release from a Build?

urity will only take effect when users restart their application.

Description View Edit CanRelease Manage Security

Everyone v | v v v

Create || Cancel

FIGURE 6-17

Configure Paths Inventory Administration

Selecting the correct release path in Figure 6-17 will give you the correct set of release path steps
along the top of the workflow, as you can see in Figure 6-18. In Figure 6-18, the ability to trigger the
release from a build is enabled. This will automate the process of creating the release but to do this

you need to add some custom attributes to the build template.

b Release Management Canfigure Apps

Release Templates | Gomponents

v
B Release Template » Fabriakam Call Center (Active)
|

Toolbox Dev o

Deployment Sequ MM SAEE
General Information

[Fabriakam Call Center

Call Center

Fabrikam Call Center
Build Definition, http: ly Fabrikam (Dev)

' Can Trigger a Release from a

Security

|[create |[Link g |

e effect when users restart their application.
View Edit
Everyone v | v 7 v

Can Release Manage Security,

FIGURE 6-18

Configure Paths

Inventory Administration

Expand All Collapse All

Defining a Release Pipeline | 147

With the properties complete, you can start to build the actual deployment process to use for each
of the stages. You can use exactly the same process; however, there could also be many differences
as the server names and variables differ between environments. You may even have one server to
deploy to in the Dev Stage while deploying to a hundred servers in the Prod Stage. This will invari-
ably require differences in the workflow. To that end you can configure a different workflow for
each of the stages, which you can see in Figure 6-19. On the left side of the Release Template edit
view, you can see the actions, components, and servers that you configured previously. There are
also a set of control flow elements, common to workflow, that allow you to create sequential, paral-
lel, and manual flows within the workflow.

DQ Release Management Gonfigure Apps Configure Paths Inventory Administration

Release Templates | Components
v

B Release Template » Fabriakam Call Center (Active)

Prop ity
Toolbox
4 Control Flow Deployment Sequence Expand All Collapse All
Parallel
Sequence
Rollback
Rollback Always
Manual Interventi
. SEN;:"E R + Remove Web Site
VSALM
4 Components
Call Center Site
b Azure
blIs
B INI File . Copy File or Folder
b MS-SQL
b Windows OS Configuration Variables:
b Windaws Services SourcefileFolder cAFabrikamRM\WebSite\DEV
DestinationFileFolder c:\FabrikamRM\Backup\DEV

Configuration Variables:

SiteName FabrikamDey

Jp Call Center Site

Configuration Variables:
Installation Path c:\FabrikamRM\WebSite\DEV

Configuration Variables

FIGURE 6-19

You can create the workflow to perform deployments by simply dragging the things that you want
from the left to the design surface provided. You can, for example, drag a parallel activity across
from the Control Flow section and, if you have two servers, deploy and configure them in parallel to
improve the speed of the deployment.

In this way, you can build up the mechanics of your deployment, even allowing for failures. You
can add rollback elements and the system will execute all rollback elements that have already been
passed as well as the next one. In this way, you can create many checkpoints at which the deploy-
ment can fail gracefully. On each activity the variables that are configured, either in the action or
the component, will be shown and you can set them to different values depending on the stage that
is executing. You can see at the bottom of Figure 6-19 that there is only one variable to be config-
ured, from the command you looked at earlier. This is the deployment location to which the website
files are deployed. If you configured other variables then they would also show up here.

148 | CHAPTER 6 RELEASE MANAGEMENT

To switch between the stages, you can click the title of the stage at the top of the screen and con-
figure additional workflow elements for each of them. For more information on how to configure
release templates, refer to the release management manual at http://aka.ms/RelMgmtMan.

Now that you have a release template, you can create releases that use it to deploy your application.

Creating Releases

With everything else configured, you can now create your release. Choose Releases &> Releases and
create a new release, as shown in Figure 6-20. Here you specify a release template which, because
you selected a build template as part of configuring the release template, will ask which build you
want to use. This example uses Latest and has picked that build. You can also select a target stage
based on the permissions that you set when you created the stage. If you are a test manager you may
want to create a release of a specific version, such as for verifying that a regression exists in an older
version of the software.

b Release Management 5 c Confi s Administration

Traffic Overview | Releases | My Approval Reguests
B Release® , My Manual Release (Draft)

Properties
QA General Information
Deployment Sequence Name My Manual Releasd Expand All Collapse All
Categorization

Template | Fabriakam Call Center v | Target Stage | Des

Nightly Fabrikam {Dev)_20120515.9

| start || create nDratt || Cancel |

FIGURE 6-20

The release can also be generated from the execution of an automated build. This will result in the
same process, except the name will begin with Build Triggered with a date following it. This type of

http://aka.ms/RelMgmtMan

Defining a Release Pipeline | 149

build is pushed through the system and will stop on any of the manual processes, as in Figure 6-21.
In Figure 6-21 you can see that the deployment process to the Dev stage has been completed and
that the process is now waiting for my approval. This is the first non-automated step and represents
the post-deployment approval discussed earlier in the chapter.

vq Release Management Configure Apps Configure Paths Inventory Administration

Traffic Overview, | Releases | My Approval Reguests
h 4

[Release , Build Triggered: 7/11/2013 10:24:11 AM (In Progress) |[Cstop |

Nightly Fabrikam (Dev)
Step Attempt® Owner ApproverComments Is Automated Detils
Approve Release 1 Martin Hinshelwood
Validate Deployment 1 Web Team v
Deploy 1 Web Team v
/1172013 10:24:13 AM Accept Deployment 1 Web Team %

Include Future Steps
Configuration Variables Companents

FIGURE 6-21

Approvals

There are two ways that you can action approvals. The first is through the Release Management
client for Visual Studio 2013 and consists of a list of approvals that are assigned to you, such as in
Figure 6-22. In this version, you can look at the sequence, which shows which stage the release is at,
and see a read-only view of the workflows for each of the stages. You can also view a log of previous
activities and see the properties that were used to call the release.

The other way is a much simpler web interface that shows a subset of the information available in
the client tool. The advantage here is that you do not need to have anything additional installed to
action the approval. Figure 6-23 shows the web interface and the options that are available. You can
click the “stage” icon on the right to see the parts of the stage. The blue indicator shows the stages
that have been completed.

150 | CHAPTER 6 RELEASE MANAGEMENT

Dd Release Management Releases Configure Apps Configure Paths Inventory Administration

Traffic Overview. | Releases | My Approval Requests
v

B Release , Build Triggered: 7/11/2013 10:24:11 AM (In Progress) =

J[Close |
My Approval Requests Nightly Fabrikam (Dev)_20130711.1
[Approve || Reject |

ease Releose Template Siage Envionment Action Details Date Greated
riggered: 7/11/2013 10:24:11 AM Fabriokam Call Center Dev Int-Dev. 7/11/2013 102426 AM Pending

Configuration Variables Components

FIGURE 6-22

VSALM\Brian

Release Explorer To approve

Releases

Approve | | Reject | | Reassign

Releases
To approve N e A Build Triggered: 7/11/2013 10:24:11... Martin Hinshe.. Dev
oty approved EN (1) [t

FIGURE 6-23

In both of these interfaces, you can approve or reject the request. The web interface also allows the
user to reassign a task to another user.

Summary | 151

This is a capable release management system that will rise to meet your needs. Regardless of
whether you have a complex deployment process, you can configure Release Management in Visual
Studio 2013 to support it.

SUMMARY

In this chapter, you learned about how software release management can help reduce delay and
increase time to market. You learned about continuous delivery and release pipelines and about how
Microsoft has provided tools to configure your own pipeline specific to your software.

The next chapter discusses some of the common customizations and advanced customization points
that are available in Team Foundation Server 2013.

Common Team Foundation
Server Customizations

WHAT'S IN THIS CHAPTER?

> Examining the Team Foundation Server Object Model
Customizing Team Foundation Build
Customizing Team Foundation Version Control

>
>
> Customizing Work Item Tracking
>

Customizing the TFS Eventing Model

One of Microsoft’s goals when Team Foundation Server (TFS) 2005 was first released was to
make the platform extensible. Although Microsoft’s intention was to provide a set of tools and
guidance for conducting application lifecycle management using TFS, the company also knew
that people and organizations already have their own methodologies. And although people
may want to use TFS for their tooling, they still want to follow their own software develop-
ment process.

So Microsoft provided several extensibility points within TFS to extend different aspects of the
system as needed. It also provided an API that developers can use for creating custom applications
to access and utilize different systems in TFS, such as work item tracking and version control.

As you’ve seen in previous chapters, TFS itself is made up of a variety of web services, so you
might think that you could just write custom applications to utilize those web services. And
you could, but that would not be considered best practice. Instead, you should make use of the
APIs (which interact with the web services). This ensures that any customizations or exten-
sions you create should be forward compatible with future versions of TFS.

This chapter is about some of the common ways you can customize Team Foundation Server.
It’s designed to be a high-level overview — to whet your appetite for the types of things you
can do. As such, there are not many step-by-step examples of the customizations.

154 | CHAPTER7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

NOTE For more detailed information on customizing and extending Team
Foundation Server, read Professional Team Foundation Server 2013 by Steven
St. Jean, Damian Brady, Ed Blankenship, Martin Woodward, and Grant
Holliday (Wrox, 2014).

OBJECT MODELS

To begin, let’s look at the available object models in Team Foundation Server. Although TFS is com-
posed of several different web services, in general, you do not want to interact with the web services
directly when building customizations to TFS. Instead, you want to use the different object models
(that is, APIs) that are available to you to provide a level of abstraction between yourself and the
TFS web services, as shown in Figure 7-1.

Client Tier

Application

>

Client Object
Model

FIGURE 7-1

Application

Build Tier
Build Process . .
Object Model l«— Build Service
Client Object
Model

Tier

Team Foundation
1 Web Services [€

+_1

Server Object

Model <

Application

Data Tier

1

Data

This ensures that as the web services in future versions of TFS are updated, so any code you write
should continue to function as expected.

There are three main object models: client, server, and build process.

Object Models | 155

Client Object Model

You use the client object model for developing custom applications or extensions that will mostly
run from a client-side perspective—for example, creating a custom work item control for the work
item tracking system, or creating a custom application for accessing the version control system.

Some of the things you can do with the client object model include accessing Team Foundation
Server and viewing team project and project collection information. You can also access all the dif-
ferent TFS subsystems, such as work item tracking, version control, and build. You can also use this
object model to extend team projects, add new functionality, and extend Team Explorer.

Server Object Model

You use the server object model to develop applications that must run on the application tier. Typically,
this is used to integrate other tools or data from other applications with Team Foundation Server.

For example, you can use the server object model to create a custom data warehouse adapter, to
store custom data in the TFS data warehouse. Or you can use the server object model to custom-
ize the event notification service in Team Foundation Server (more on this in the section “Team
Foundation Server Event Service” later in this chapter).

Build Process Object Model

You use the build process object model to customize the Team Foundation build process. In most
cases, you use this object model to help build custom build workflow activities. You learn more
about build customization later in this chapter.

Simple Object Model Example

This section demonstrates a simple example of connecting to Team Foundation Server and listing
the project collection information it contains. This example shows you the basics of using the client
object model, and you can use it as a basis for future customizations.

In Visual Studio, create a new C# console application and name it Chapter7Example. First, you
need to add a reference to the Microsoft . TeamFoundation.Common and Microsoft
.TeamFoundation.Client assemblies. In Solution Explorer, right-click the References folder and
select Add Reference. With the Assemblies group selected on the left, search for the two assemblies
listed earlier using the Search Assemblies textbox in the upper right. You’ll want to pick the version
12.0.0.0 assemblies if more than one version exists on your machine. Place a check next to each and
click OK to finish the process.

NOTE To make this code run, you need to change the string t£surl that is set
o http://mde06tfs:8080/tfs to be the URL for your TES installation.

Add the following using statements to Program.cs:

using System.Collections.ObjectModel;
using Microsoft.TeamFoundation.Client;

http://mde06tfs:8080/tfs

156 CHAPTER7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

using Microsoft.TeamFoundation.Framework.Common;
using Microsoft.TeamFoundation.Framework.Client;

Next, add the following code snippet into the Main method:

// Connect to Team Foundation Server
string tfsUrl = "http://mde06tfs:8080/tfs";
Uri tfsUri = new Uri (tfsUrl);

TfsConfigurationServer tfsServer =
TfsConfigurationServerFactory.GetConfigurationServer (tfsUri) ;

// Get team project collections

ReadOnlyCollection<CatalogNode> tpCollections = tfsServer.CatalogNode.QueryChildren (
new[] { CatalogResourceTypes.ProjectCollection },
false, CatalogQueryOptions.None) ;

// write out the team project collections
foreach (CatalogNode node in tpCollections)

{

Guid nodeId = new Guid(node.Resource.Properties["InstancelId"]) ;
TfsTeamProjectCollection tpCollection =
tfsServer.GetTeamProjectCollection (nodelId) ;

Console.WriteLine("") ;

(
Console.WriteLine ("TFS: " + tfsUri);
Console.WriteLine("") ;
Console.WriteLine("Collection: " + tpCollection.Name) ;

}

Build and run this console application and you should see output similar to Figure 7-2. You will be
able to build on the preceding code to create your own extensions and customizations.

oo | CA\Windows\system32\cmd.exe = = “

FIGURE 7-2

http://mde06tfs:8080/tfs
http://mde06tfs:8080/tfs
http://mde06tfs:8080/tfs

Customizing Team Foundation Build | 157

Java SDK for TFS

From its beginnings with Team Foundation Server 2005, TFS was designed with extensibility in
mind. As such, Microsoft provided a .NET library (see the previous section for more details) for
interacting with and extending TFS.

Microsoft has extended this into the Java space, with the addition of the Team Foundation Server
SDK for Java. This SDK enables you to extend TFS using Java just as easily as you can using .NET.
One of the nice features of this is that it enables users of Team Explorer Everywhere to fully custom-
ize their development environments, either in or out of Eclipse. This enables you to create the same
TFS extensions for both the .NET and Java developers in your organization.

The TFS Java SDK includes the following information:

> A redistributable JAR file containing the TFS APIs and the native code libraries used by the
TFES API

Full API documentation in Javadoc format
Code samples

From a licensing perspective, you can use the SDK in your own applications, redistributing the files
at no charge. And you can create applications that run on any of the operating systems supported by
the API.

NOTE You can find more information on the Team Foundation Server SDK for
Java at http://aka.ms/TFSJavaSDK.

CUSTOMIZING TEAM FOUNDATION BUILD

In Chapter 5 you learned about Team Foundation Build, the build process and build process tem-
plates. The “out of the box™ options for Team Foundation Build probably work for most people, at
least initially. At some point though, you are going to want to modify the build process. This section
discusses a couple of common ways for customizing Team Foundation Build. That said, before you
consider this, make sure you’ve fully explored the new PowerShell options discussed in Chapter 5.

.«

When it comes to DevOps integration, PowerShell is Microsoft’s “go to” mechanism.

Creating Custom Build Process Templates

In Chapter 5 you learned about the Default Template build process template, and how its preconfig-
ured properties enable you to perform common build scenarios. However, to perform more complex
build activities, such as being able to parallelize parts of the build across multiple build agents, cre-
ate MSI installers, or customize ClickOnce packages, you have to customize the build process. To do
this, you need to create a custom build process template.

To create a new build process template, you start by creating or editing a build definition. In the
Process section of the dialog, click the Show details button to expand the screen, as in Figure 7-3.

http://aka.ms/TFSJavaSDK

158

CHAPTER7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

Build process template:

Default Template () Hide details
Build process file (Windows Workflow XAML):

Default Template (TfvcTemplate.12.xaml) w Mew... Refresh

Download

Learn how to customize build process templates

FIGURE 7-3

Select the build definition you want to use as your base, then click the Download link. This allows
you to save the file to your local hard drive. You’ll want to rename the file and add it to version
control. Once you’ve done this, you can click the New button near the top of the screen. This opens
the Browse dialog, where you specify the Team Project and the path in version control where you’ve
placed the file shown in Figure 7-4.

Select the team project that contains your build process template.
Team project:

chapter?

Version control path:

§/chapter?/CustomerBuildTemplates/Chapter7buildDef xaml

FIGURE 7-4

In the dialog, select the Team Project where you checked in your XAML file. Then use the Browse
button to locate the file — in this case, let’s use Chapter7buildbef .xaml. Click OK and the tem-
plate will be available for use in your builds. You can now start using this template when creating
build definitions. And if you want to modify it, you can also double-click the file from within Source
Control Explorer to open it for editing (see Figure 7-5).

Team Foundation Server ships with a set of additional workflow activities related to the build pro-
cess in the assembly Microsoft . TeamFoundation.Build.Workflow. This includes all the build-
related activities called by the build process templates that ship with the product, along with several
other activities that are useful when performing common build customizations.

Customizing Team Foundation Build | 159

N c\proalm\dc\chapter?\CustomerBuildTemplates\Chapter7buildDefxaml* - Microsoft Visual Studio [0 ¥ Quick Launch (Ctrl+Q) P - B x
FLE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP signin [F
@2 @D -] b amach. s O - |sim-a%

x | cAproalm\dcichapt...pter7buildDefxami* + X Source (

~ | Solution Explorer
Search Toolbox P -l Process Expand All Collapse All Q‘ -2dl| s =
SetBuildNumber
SetBuildProperties

% Overall build process | 5earch Solution Explorer (Ctrl+) p-
{31 Solution ‘Solution?" (0 projects)
SharedResourceScope
S e Lo Wecometesage
TGet

TfGetSources
TfQueryConflicts
TfResolve

TShelve

TfUndo

TfUnshelve
Thworkfold

TfsBuild i Initialize environment W
UpdateBuildNumber

WitQueryWorkltems Properties TR X
WriteBuildError 1y Get sources from Team Fou Microsoft. TeamFoundation.Build Workflow.Activi...
WriteBuildinformation=<T>
WriteBuildMessage
\WriteBuildTestError i Associate the changesets th

4 Update build number

71 Run on agent A

Clear

B Misc

DisplayName Log Welcome Mes:

WriteBuildWarnin
N Importance MicrosoftTea [

WriteCustomSummarylnformation
m Foundation LabManagement Activities o Ty & ‘Custom Buik [. |

Pointer

7 3 Ee B Fe Ee Ee Be [Ee Be 0 0 O 0 O O Be O O Be 83 Be Ee

CreatelabEnvironment Ty

Deletel abEnvironment v

Varizbles Arguments Imports W oo - B E

FIGURE 7-5

If you look at Figure 7-5, you can see that a WriteBuildMessage activity has been added to the

top of the build. You can see the properties for this activity in the properties window at the bottom
right. The DisplayName has been set to Log Welcome Message, and a message has been included to
write to the build log.

NOTE For more information on creating custom build process templates, you’ll
find a link right in the Build Definition dialog after you click the Show Details
button.

Creating Custom Build Workflow Activities

As you saw in the previous section, it is possible to edit the build process template to build increased
functionality. Sometimes, however, you may want to collect common workflow activities in a cus-
tom, reusable workflow activity library. Also, sometimes you might not want to simply build activi-
ties out of other activities, but also execute your own .NET code.

Team Foundation Build allows for this, enabling you to create your own Windows workflow activ-
ity libraries in .NET 4.5, build them as a compiled assembly containing your activities, and then use
them in your build process. The Team Build workflow activities are provided in this way.

There are four main ways to author a new activity:
» Write a new CodeActivity

» Write a new NativeActivity

160 | CHAPTER7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

> Compose your custom activity in XAML
> Compose your custom activity in code

The first two ways involve creating code using the Windows workflow libraries. Although not
incredibly complicated, it does require some exposure and knowledge of Windows workflow
programming.

The last two ways involve creating a new activity from existing activities. This is the best approach
to take, when possible, for a few reasons. It reuses well-tested code. The activities created are auto-
matically cancelable by the workflow runtime, meaning that a build created with your activity can
be stopped cleanly. They can be easily tracked as they execute. And finally, the process is compara-
bly easy.

NOTE For more information on building custom workflow activities for Team
Foundation Build, see http://aka.ms/CustomWorkflowActivities.

CUSTOMIZING TEAM FOUNDATION VERSION CONTROL

Team Foundation Version Control is a very powerful tool that works very well out of the box. It
integrates well with Visual Studio and provides some enterprise-level features, such as branching
and merging, and shelvesets. In addition to accessing Team Foundation Version Control from within
Visual Studio, you can also access it from the command line, using the t f . exe tool.

One of the more common ways for customizing version control includes building custom check-in
policies. You can also use the client object model to create your own custom applications for access-
ing the version control system.

NOTE For more information on using the client object model with Team
Foundation version control, see http://aka.ms/ExtendingVersionControl.

Custom Check-in Policies

As you learned in Chapter 3, check-in policies provide a way for the team and individuals to effec-
tively manage quality and workflow to the source management process used by the team. Check-in
policies run on the actual client, and are configured at the team project level in Team Foundation
Server.

You get several check-in policies out of the box with Team Foundation Server, and more can be
added by installing the Team Foundation Power Tools. You also have the capability to create your
own custom policy, using the client object model.

First, you have to build a custom policy class that derives from the PolicyBase base class in the
Microsoft .TeamFoundation.VersionControl.Client namespace. When the policy is created, it needs

http://aka.ms/CustomWorkflowActivities
http://aka.ms/ExtendingVersionControl

Team Foundation Server Event Service | 161

to be installed on any machine that will be checking in code that will be affected by the check-in policy.
Remember, check-in policies execute on the client side; as such, they must be present on the machine try-
ing to execute the policy, or code cannot be checked in without overriding the policy.

Finally, after the policy has been deployed, it needs to be added to the team project. This ensures
that the policy is evaluated each time a developer checks in a file to this team project.

NOTE For more information on building custom check-in policies, see http://
aka.ms/CustomCheckinPolicies.

TEAM FOUNDATION SERVER EVENT SERVICE

The EventService service in Team Foundation Server exposes a set of events that, when fired by
TFS, can trigger other actions, such as sending an email, or making a web service call to another
application. The following events are registered by default for publishing within the service:

> BuildCompletionEvent
BuildStatusChangedEvent
BranchMovedEvent
NodeCreatedEvent
NodePropertiesChangedEvent
NodeRenamedEvent
NodesDeletedEvent
ProjectCreatedEvent
ProjectDeletedEvent

CheckinEvent

Y Y Y Y Y Y VY VY VY'Y

WorkItemChanged

You can make use of BisSubscribe.exe, a TFS command-line tool, to subscribe to the events in
the preceding list. When you subscribe to an event, you can either trigger a web service or send an
email. This enables you to receive notifications when certain events occur, or trigger other func-
tionality to execute based on the event. The BisSubscribe.exe tool has filtering options available,
which enables you to control exactly what types of events trigger what functionality.

You can also make use of the Eventservice service to create your own custom events that can be
subscribed to. To do this, you need to create a class library that contains a class that represents the
new event. After this class library has been built, you need to create an .xsd file that represents the
event class. This is an XML schema file representing the event class that can be generated from the
class library. This .xsd file will be placed on TFS, which then enables users to subscribe to the new
event.

http://aka.ms/CustomCheckinPolicies
http://aka.ms/CustomCheckinPolicies

162 | CHAPTER7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

NOTE You can find more information on how to use and customize the Team
Foundation Server Event Service at http://aka.ms/TFSEventService.

CUSTOMIZING WORK ITEM TRACKING

You find out about the work item tracking system in Chapter 11. This system is used to help plan
and track your software development projects. Out of all the areas in TFES, it is probably the one
that is the most heavily customized; it helps to control the process and workflows you will use to
develop your applications. You can do things such as make fields required or read-only, or change
the workflow from moving from one state to the next.

The two main ways for customizing the work item tracking system are modifying the work item
type definitions to follow your custom process, and creating custom work item controls for use on
the work item form.

Modifying Work Item Type Definitions

A work item type definition is simply an XML file. This XML file is stored in Team Foundation
Server as part of a process template, and defines the fields, workflows, and form layout for a par-
ticular type of work item, such as a task or a bug. There will be times when you want to customize a
work item type, such as the Task work item, to contain custom fields, or to follow a workflow other
than the default workflow.

There are two main tools you can use for modifying work item type definitions: the witadmin com-
mand-line tool and the Team Foundation Power Tools Process Template Editor.

You can use the witadmin command-line tool to export a work item type definition from Team
Foundation Server into an XML text file. You can then open this XML file using your favor-

ite XML/text editor and make your customizations. Keep in mind this is an XML file, so if you
mistype something or violate the XML schema, the changes will not load back into TFS. After you
have finished your changes, you can use the witadmin tool to load the new work item type back into
TFS, where it takes effect.

For those who want a more graphical interface for working with work item type definitions, you
can use the Process Template Editor that is available with the Team Foundation Power Tools. The
Process Template Editor provides a complete GUI for working with all aspects of a process template,
including work item type definitions.

NOTE The Team Foundation Power Tools are utilities released by the TES
team outside of the product release cycle/time frame. For more information, see
http://aka.ms/TFPowerTools.

For more information on work item type customizations, see http://aka.ms/
WITCustomizations.

http://aka.ms/TFSEventService
http://aka.ms/TFPowerTools
http://aka.ms

Summary | 163

Creating Custom Work Item Controls

You can also extend the work item tracking system to allow for custom user controls. These controls
enable you to enhance the user interface and extend the workflow capabilities. You can bind custom
controls to fields within a work item type, which enables users to view and edit data as needed. The

controls can also read and write from external data sources, enabling you to query databases or web
services for data to pull back and provide in the form.

Some examples of custom controls include a timesheet control for tracking time on a work item, or a
web browser control for hosting a web page or passing values to that web page.

Custom controls act like any other control on a work item form. You can place them on the form,
using the default design layout constraints, and you can use their values as part of a state change
workflow.

There are some restrictions to be aware of when dealing with custom controls:
> Multiple value fields are not directly supported.
> You can’t extend existing work item controls.
> The binaries for each custom control must be installed on the client computer.
>

Custom controls not configured correctly or not installed must not cause the client to crash
when accessing a work item type that uses that control.

One of the most important things to remember is that the custom controls must be deployed to
individual client machines. Remember, the work item type definition is stored in Team Foundation
Server. However, when you open a work item type that contains a custom user control, it tries to
access the control assembly information on the local client machine. As such, the assembly that
defines the custom user control must exist on the client machine.

For detailed information on building custom work item tracking controls, see the post “Work Item
Tracking Custom Controls” by Gregg Boer at http://aka.ms/WITCustomControls.

NOTE For some prebuilt custom work item controls, as well as the source code
associated with them, see the Custom Controls for TES Work Item Tracking
project at codeplex.com: http://witcustomcontrols.codeplex.com/.

SUMMARY

In this chapter, you gained a high-level understanding of the different ways that Team Foundation
Server can be extended and customized.

You learned about the different object models available within Team Foundation Server, and when
to use them. You also saw a step-by-step example of using the client object model to connect to
Team Foundation Server and list the project collections contained within.

http://aka.ms/WITCustomControls
http://witcustomcontrols.codeplex.com
http://witcustomcontrols.codeplex.com
http://witcustomcontrols.codeplex.com

164 | CHAPTER7 COMMON TEAM FOUNDATION SERVER CUSTOMIZATIONS

You learned how to customize Team Foundation Build, including the creation of custom build pro-
cess templates, and custom build workflow activities. And you learned how to customize the version
control process using custom check-in policies.

Finally, you saw how the event notification service in TFS works, and how you can customize it, as
well as how you can modify the work item tracking system by using custom work item type defini-
tions and custom work item controls.

In Chapter 8, you learn about the importance of engaging early and frequently with your software
development project’s stakeholders. You also learn about the tools that Microsoft and its partners
have built to facilitate requirements management and collaboration among project stakeholders.

PART Il
Building the Right Software

» CHAPTER 8: Introduction to Building the Right Software
» CHAPTER 9: Storyboarding

» CHAPTER 10: Capturing Stakeholder Feedback

Introduction to Building the
Right Software

WHAT'S IN THIS CHAPTER?

> Understanding the importance of engaging stakeholders through-
out the software development process

> Learning how Microsoft has extended its ALM toolset to incorpo-
rate stakeholders

> Discovering other ways of integrating stakeholder feedback with
Team Foundation Server 2013

Every successful software development project begins with requirements. These require-
ments may be stated explicitly, such as the need for a payroll system to initiate direct deposits
twice each month so that employees can get paid, taking into account the salary rate for each
employee, minus any deductions for taxes and other withholdings. Or requirements may be
more implicit, even abstract, such as the need for a video game to be fun and enjoyable.

In any software development project, there should be an explicit recognition that requirements
will likely change and evolve over time, even during the lifespan of a single software develop-
ment project. Business opportunities present themselves, competition forces innovation, new
regulations and compliance policies are introduced, and even the introduction of new tech-
nologies makes some requirements obsolete while enabling other solutions. Requirements can
even evolve as your software users start to use early builds of your software; this may cause
them to change their opinions about their original requirements, or could inspire entirely new
requirements.

168

| CHAPTER8 INTRODUCTION TO BUILDING THE RIGHT SOFTWARE

The Agile Manifesto (www.agilemanifesto.org) says this about software requirements:

Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

In 2010, the FBI had wasted 1.2 billion dollars over eight years trying to deliver to production a
waterfall project with hundreds of engineers. In 2011, they started over with a small dedicated
Scrum team in the basement of the Hoover Building and delivered production the following year.

Indeed the United States Department of Defense recently updated its procurement rules to require
an iterative lean-agile approach to all projects undertaken for them, regardless of the size. This is in
response to the continued and escalating non-delivery of projects delivered under waterfall.

Regardless of the software development approach you take, it is vital to understand the require-
ments you are attempting to fulfill with your software. Arguably, the only software mistake more
expensive than a bug is that of building the wrong software in the first place. At least bugs can be
fixed whereas building the wrong software may cause you to need to scrap the effort entirely. This
is such a serious problem in the software industry that we have invented a unique term for it: shelf-
ware. Software that is either too hard to implement or doesn’t meet the necessary requirements is
doomed to sit on the shelf unused.

So how do you ensure that you adequately understand the requirements your software must fulfill?
How do you account for changes to those requirements over time? How should you prioritize the
requirements that you work on? A big part of the answer is to engage early and often with your soft-
ware development project’s stakeholders.

NOTE “The process wars are over and, happily, Agile has won.”

—Sam Guckenheimer, Product
Owner for Visual Studio ALM

Although you can still easily use a non-agile approach to software development
with Visual Studio ALM, Microsoft is actively building tools that primarily
support lean-agile teams. Although every software development process is dif-
ferent, it is now universally accepted that waterfall is less likely to result in suc-
cesses and rarely lets you build the correct software. Indeed, an agile project is
three times more likely to succeed than a waterfall one (http://aka.ms
/ChaosManifestoll), even with the most pessimistic of outlooks.

Many projects undertaken in companies that are still stuck in the past even
employ an approach that blends waterfall and agile techniques. This process

is necessary as they transition to a greater understanding of lean-agile. Dave
West, of TaskTop, commonly refers to this as water-scrum-fall. Microsoft built
Team Foundation Server and the accompanying ALM tools with this flexibility
in mind, which enables teams to customize the tools even if that means blending
seemingly competing processes.

http://www.agilemanifesto.org
http://aka.ms/ChaosManifesto13
http://aka.ms/ChaosManifesto13

Stakeholders | 169

STAKEHOLDERS

A stakeholder can be anybody outside of the development team who has a vested interest in the out-
come of a software development project. For example, the end users of the software are certainly
stakeholders and are perhaps the first group who comes to mind when you think of stakeholders.
Another stakeholder may be the person who is funding a particular project. After all, end users may
want an application to have a key piece of functionality, but if the person paying for the project
believes that it is too expensive to implement then that’s important for the software development
team to know before they start writing code. A lawyer may also be a stakeholder because some appli-
cations may need to undergo scrutiny to ensure that certain compliance and regulatory requirements
are met. If you are in the business of selling software then your product’s marketing team will likely
have a seat at the table. You can probably think of other stakeholders for your software as well.

Whoever the stakeholders are for your project, they are a vital part of your extended development
team. Stakeholders can play a role in some or all of the following activities:

> Requirements elicitation—This is the process of gathering requirements from stakehold-
ers through brainstorming, focus groups, role playing, prototyping, and other techniques
designed to capture what a stakeholder may need your software to do today and in the
future. These requirements usually end up on a backlog, which is updated and changed
throughout the development process.

> Requirements refinement—Requirements do not normally come with all of the informa-
tion needed to deliver them. Sometimes they start life as short notes and the details emerge
over time. There is an expression, “refined to action,” where the requirements are discussed
and refined up until the point at which the development team commits to delivering them.
Throughout the life of the requirements, the team works with the stakeholders to gather
additional details as they are needed. As the software development team begins to capture
and analyze requirements, they often turn these requirements into written specifications,
use case models, visual storyboards, or other such artifacts, which attempt to capture what
they heard from stakeholders during the requirements elicitation and refinement activities.
This is an important point in time for stakeholders to provide feedback about the intended
implementation.

> Requirements ordering—As requirements are refined, they need to be ordered. It is important
to determine the most optimal order of your requirements in order to successfully deliver the
highest value requirements for any individual incremental delivery. There are many things
that can influence ordering, including but not limited to business priority, technical limita-
tions, and strategic direction.

» Feedback—As working code begins to take shape, it may be possible to further refine require-
ments by asking stakeholders to use interim builds of your software and provide feedback.
When this step is implemented early enough, it can help uncover disconnects between the
stakeholder’s expectations and the development team’s implementation in time to affect that
upcoming release milestone.

170

| CHAPTER8 INTRODUCTION TO BUILDING THE RIGHT SOFTWARE

The activities described in the preceding list are typically referred to collectively as requirements
management. Like other aspects of software development, requirements management is both an art
and science, and it has been covered extensively by other books (Dean Leffingwell and Karl Weigers
have both written great books on software requirements). For the purposes of this book, we are
focusing on the tooling that is provided as part of Visual Studio for working with requirements.

In this section, you learn about the PowerPoint Storyboarding add-in, as well as the Microsoft
Feedback Client. In this chapter, you also learn about a few of Microsoft’s partners who offer
complementary products in the requirements management space. In Chapter 12, you learn how
Team Foundation Server enables teams to prioritize the order in which your team will implement
requirements.

NOTE Henry Ford is quoted as having said that if he would have asked custom-
ers what they wanted they would have replied, “A faster horse.” Instead, Ford
invented the Model T, which ushered in the automobile era, rendering even the
fastest horses obsolete. The implication is that customers don’t always know
what they want, so it’s sometimes up to the developers to deliver what they need
before they realize they need it. But be careful not to be lured into a false conclu-
sion that you no longer need to learn about your customers’ wants and needs.
The reality is that you may need to get to know your customers even better

than they know themselves in order to map observed needs to solutions you can
deliver.

STORYBOARDING

Storyboarding is a technique that was pioneered by the cartoon and film industry to help visualize
sequences before the expensive process of filming or animating had begun. Because storyboards are
composed of simple sketches, they are quick to create and easy to re-create if needed based on feed-
back, filming constraints, script changes, and so on. After the director is satisfied with the overall
flow represented by the storyboard, the expensive processes of designing sets, configuring shots,
filming, editing, and so on can begin.

Storyboards have since found their way into software user interface design. A series of storyboard
panels could show the way in which a user interacts with a website when researching and ordering
a new coffee table. The storyboard can then be shared with prospective users, market research-
ers, information architects, and other stakeholders and experts whose opinions help to shape the
storyboard into the best possible design for the software development team to implement. The
storyboard then becomes an artifact that the software development team can use to help plan their
implementation.

With Visual Studio 2012, Microsoft released a new tool for creating and sharing storyboards
and it has stayed pretty much the same in Visual Studio 2013. This tool is known as PowerPoint
Storyboarding, and, as the name implies, it is based on Microsoft PowerPoint. In Chapter 9, you

Capturing Stakeholder Feedback | 171

learn about the capabilities of this tool and how to use it to efficiently and cheaply iterate on user
interface design with your project’s stakeholders prior to writing a single line of code.

CAPTURING STAKEHOLDER FEEDBACK

Wouldn’t it be great if you could talk to your stakeholders about what they want the software to do,
go off for a few weeks to build it, and then give it to them and smile while they congratulate you on
building exactly what they wanted? Unfortunately this rarely happens in the software development
world. The very nature of software development is highly complex. There are technical challenges to
overcome; complex business rules and other requirements must be captured and implemented pre-
cisely; and different machine environments must be considered, such as which web browser the users
prefer, what languages they speak, what accessibility constraints they have, and so on. And if all
that isn’t challenging enough, you have to account for the users’ taste and style preferences. We have
all been in this situation: You are demonstrating your software; it works flawlessly; everything is
going well; and then somebody complains that they hate the font you chose for the user interface. It
makes you wonder if Leonardo da Vinci ever received complaints about the frames his masterpieces
went into.

But “the customer is always right,” and it is up to the software development team to listen to their
feedback and respond to the best of their ability to create the best possible deliverables. The Agile
Manifesto pays credence to this idea throughout, such as in the first principle:

“Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.”

Many agile teams even go so far as to treat the customer as an integral part of the software develop-
ment team. An end user or other stakeholder may attend weekly progress reviews or even participate
in discussions about possible implementations. When this type of face-to-face interaction is possible,
it can be invaluable for ensuring that the vision of the software development team is closely aligned
with that of the stakeholders. But how can you achieve this type of cooperation when your stake-
holders are geographically dispersed, time shifted, or too numerous to practically incorporate into
the regular cadence of development team meetings?

NOTE The term customer from the Agile Manifesto is synonymous with the
earlier discussion of the term stakeholder. Stakeholder is sometimes preferred to
customer because the latter implies an exchange of goods or services for money,
whereas the former recognizes that money isn’t always an underlying consider-
ation when defining a person’s interest or involvement in a project’s outcome.

Microsoft has another tool, introduced in Visual Studio 2012, that’s designed to facilitate this type
of interaction. The Microsoft Feedback Client captures rich data about the interactions of a stake-
holder with your software, as well as their reactions. The development team can start by initiating

172

CHAPTER 8 INTRODUCTION TO BUILDING THE RIGHT SOFTWARE

a request for a stakeholder to provide feedback about a user story or requirement that has been
implemented. The stakeholder can then run the Microsoft Feedback Client while they are using
the interim build of the software. Along the way, that stakeholder can choose to capture video and
audio recordings, notes, and screenshots that reflect things that they like or dislike about your soft-
ware. All of this data is centrally stored in Team Foundation Server so that the development team
can analyze and react to it. You learn how to use the Microsoft Feedback Client in Chapter 10.

WORK ITEM ONLY VIEW

Although you should always use the Feedback tool for customer feedback, there is another way of
collecting input from your stakeholders. You can allow them to file bugs or enhancement requests
directly to Team Foundation Server. This centralizes feedback in one repository that the develop-
ment team can then react to and track over time. Microsoft does this for a wide range of Microsoft
products via their Microsoft Connect website (http://connect.microsoft.com). Product groups
at Microsoft synchronize data from Connect directly into their own Team Foundation Server work
item databases, and any responses about the customer’s request are returned to the user via the pub-
lic website.

You can use Team Foundation Server for this purpose as well. But for most organizations, obtaining
a Team Foundation Server client access license (CAL) for every possible stakeholder can be cost pro-
hibitive. In recognition of this, Microsoft created a licensing exemption for stakeholders who may
file bugs or enhancement requests. From the Visual Studio licensing whitepaper:

A Team Foundation Server CAL is not required in the following scenarios:
Entering work items through any interface, and viewing and editing work items
you created. This enables users to enter and edit their own work items of any type.

NOTE The latest version of the Visual Studio Licensing White Paper can be
found at www.microsoft.com/visualstudio/licensing. This whitepaper
attempts to synthesize all of the licensing requirements for Visual Studio, Team
Foundation Server, and related technologies into an easy-to-read format.

Because stakeholders are not likely to have Visual Studio installed, the most common way of asking
them to provide feedback in this manner is via Team Web Access, which is covered in Chapter 10.
Stakeholders who don’t already have access to Team Foundation Server can be added to the Limited
license group in Team Foundation Server. This is also referred to as Work Item Only View. Users
who are members of this group are only permitted to create and update work items they create,

per the terms of the aforementioned licensing clause. If a stakeholder requires more comprehensive
access to Team Foundation Server, she needs to be licensed and permissioned appropriately.

NOTE Detailed steps for adding users to the Limited license group can be found
at http://aka.ms/MSWIOV13.

http://connect.microsoft.com
http://www.microsoft.com/visualstudio/licensing
http://aka.ms/MSWIOV13

Third-Party Requirements Management Solutions | 173

THIRD-PARTY REQUIREMENTS MANAGEMENT SOLUTIONS

There are a number of approaches and solutions to requirements management and stakeholder
engagement employed by software development teams. Although Microsoft has made forays into
requirements management with the Visual Studio 2012 release, and expanded on it in Visual Studio
2013, by introducing the aforementioned tools, it continues to rely on this broad ecosystem of
partners to provide complementary requirements management solutions that integrate with Team
Foundation Server. Three popular examples of these partner solutions are covered next.

TeamCompanion

The single most popular work item management system on the planet is email. Your program and
project managers likely live in their email, as do many of your stakeholders. It would be awesome if
you could integrate your work items directly into Microsoft Outlook. TeamCompanion from
Ekobit allows you to do just that. In Figure 8-1 you can see the integration with Outlook in action.
Not only does it build agile planning tools right into Microsoft Outlook, but it also has tools for
creating work items from emails and vice versa. Indeed, it will automatically detect if there is a
work item associated with an email thread and keep it up to date. If your customer emails you
about a bug or enhancement, you can easily turn it into work items in Team Foundation Server for
the development team to triage and react to. Conversely, you can use TeamCompanion to gener-
ate emails from work items in Team Foundation Server—such as to provide the latest status of an
enhancement-request work item to an important customer.

File Home Send / Receive Folder View TeamCompanion Waork Item(s]) / Query Plan and Prioritize Conferencing [e
ol 98 9 Wy = % il ﬂ ﬂ {0 FabrikamFiber\sprint 1 [FabrikamFiberSprint 4
* + - = g
2 —J ' ' FabrikamFiber\Sprint 2 abrikamFiber\Sprint 5
Refresh Configure ' Expand Collapse | Undo Save Manage ' |FabrikamFiber| Backlog | =
All Teams Web | plan It FabrikamFiber\3print 3 | = FabrikamFiber\Sprint 6
Query Wiork Item(s) Teams Backlog
4 Favorites & <
e 1 Team | B Capacity Burndown @ Velodty
4] Inbox

[} sent tems Iteration: FabrikamFiber\Sprint 3
@ Deleted tems
Product Backlog

print Backlog

%S Completed tasks

lan and Prioritize

43 FabrikamFiber

& |~ Remaining effork

4 | — Ideal burndown
1> Outlook Data File 3 2 Remaining tasks
. o T T T T T o
4 TeamCompanion
RS ¥ A
,&'\. ,LQ'\- ,LQ'\- ,LQ'\-
{a] Deleted Items ot U al ggﬁ \\5\ q\x‘J‘l
L2 Search Folders -
al . o = —
':{h Server: vsalm\DefaultCe fiE - B R i Prioritiz - — Members »

[[Documents lteration: FabrikamFiber\Sprint 3 Ssp 5- Sgp 76 Team capacity: (40/42) [N Assigned To g
> i Reports) | (unassigned)
4 Work Items it ol 8§
My Queries Remaining Work: A 3
H Annie Herriman
> gy Shared Queries ID |WorkI.. |E... |Title State Assigned To |R... - m
{11 Product 8 & Technidan can send GPS location from Committed Brian Keller i £
61 Task Review new feature with technidan early InProgress Julia Iiyviana 2 = Brlan Ll
|63 Task Write code to get GPS location and resolve InProgress Peter 5
|64 Task Design implementation of feature. InProgress BrianKeller 5
._51 m B3 R - 12 Bug 5 [> Customers with Canadian addresses not Committed Brian Keller -

FIGURE 8-1

174 | CHAPTER 8 INTRODUCTION TO BUILDING THE RIGHT SOFTWARE

You can learn more about TeamCompanion at www. teamcompanion.com.

TeamSpec

One of the most widely used requirements management “tools” on the planet is Microsoft Word.
Microsoft Word is popular, easy to use, and facilitates sharing and collaboration via tracked
changes and comments. It’s no wonder then that many software requirements live their lives as
specifications in Word documents. TeamSolutions, a Microsoft partner, recognized the popularity
of Microsoft Word in the requirements management space and saw an opportunity to keep require-
ments documents relevant by integrating Word and Team Foundation Server. They created a solu-
tion called TeamSpec to bring Microsoft Word-based requirements into a company’s ALM process,
and it has become popular among teams who use Team Foundation Server.

TeamSpec, shown in Figure 8-2, maintains a link between requirements in your document and
pertinent work items in Team Foundation Server. One feature enables teams to compose require-
ments using customizable templates in Microsoft Word. The templates define fields that represent
the elements of the requirement that will be mapped to Team Foundation Server. For example, the
template for a user story may define fields for a title, a description, and the person on the develop-
ment team responsible for that user story. The requirements document in Word can then be shared
with project stakeholders for validation. The stakeholders can make proposed edits or comments
to send it back to the development team just like they would with any other Word document. After
the stakeholders have signed off on a requirements document, it can be synchronized with Team
Foundation Server as a work item or group of work items. TeamSpec is responsible for providing
this synchronization by examining the contents of each field in the document template and pushing
it into a corresponding work item field.

Another capability of TeamSpec is that it can be used in the other direction to generate Word
documents from work items in Team Foundation Server. This feature is especially useful when the
software development team has made changes to a requirement that must be communicated to the
stakeholders. In this way, TeamSpec recognizes that requirements often evolve over time and that
keeping the requirements in-sync, for all stakeholders, is imperative. You can learn more about
TeamSpec at www.teamsystemsolutions.com.

inteGREAT

inteGREAT, by eDevIECH (www.edevtech.com), is a requirements lifecycle management platform
that integrates bidirectionally with Team Foundation Server 2013, with Team Foundation Server
providing the centralized application and database store for inteGREAT. This also works with older
versions of Team Foundation Server as well.

http://www.teamcompanion.com
http://www.teamsystemsolutions.com
http://www.edevtech.com

Third-Party Requirements Management Solutions | 175

Maintaining a TeamSpec Document.do

Home Insert References

Page Layout Mailings Review View

77 Add TFS Connection é

Server. | tfspsdemo\DefaultCo.. - ., Work Item Queries
New Work

Project: Tailspin Toys - Tem -

| -
Description
Etiam sodales dolorvel milaoreet congue. Utsed nulla at dui vulputate pharetra. Etiam dui enim,

volutpat pharetra malesuada non, aliguam eu magna. Nam augue quam, adipiscing a faucibus non,
interdum sit amet enim. Aliquam erat volutpat.

Features

i New Work Ftem - User Story - Title |
ﬁ New User Story

" puUser will navigate to the home page and then need to create a new account

“* Dan Bacon

An Existing Work Item Formatted by a Custom Skin
Creating your own skin is easy!
Andrea Dunker

Work Item to Import from a Search
™ Itis easy to bring multiple work items into your document. Just find the items with a search
and import them with a skin.
® Dan Bacon

Work Item with which I Will Create a New Skin
By formatting this information, | outline the structure of my new skin.
™ Cesar Garcia

Work item from which we will create a new skin
“* Dragging and dropping this info into a specific arrangement in our document will designate the
organization that will define our new skin.

FIGURE 8-2

(? ?Ta

Preferences Help

Index |Ca|was| Associatel
)4 tspsdemo\DefaultCollection
= Talspin Toys
8] Task
=] User Story

&0 - A requirement that will be found with a search and brou
Title

Description

Assigned To

- Arequirement that will be found with a search and brou
Title

Description

Assigned To

- A requirement that will be found with a search and brou
Title

Description

Assigned To

B3 - A requirement that wil be found with & search and brou
@ Tile

@ Description

- @ Assigned To

Mew Work ftem -

- Title

- @ Description

[Assigned To

inteGREAT, shown in Figure 8-3, enables users to elicit, analyze, validate, review, and manage
requirements. inteGREAT also offers bidirectional integration with Microsoft Excel and Word,
allowing business users to author requirements in tools that are familiar to them. It embeds Visio
controls within the tool to facilitate the creation of many types of diagrams. It also integrates with
Microsoft Project, publishes documents and an HTML knowledge base to SharePoint, and produces
XAML code from its screen mock-up functionality. It even integrates third-party solutions such as
CA ERwin and HP Quality Center.

If you are seeking a requirements definition and management solution that allows you to baseline
projects and provides a more formal and comprehensive approach than that currently offered by
Microsoft, then you should consider evaluating inte GREAT.

176 | CHAPTER8 INTRODUCTION TO BUILDING THE RIGHT SOFTWARE

pe

Business Stakeholder = Business / System
Analyst

RogReat |
SGinents WE
[| —

== 9’ E\E/I)icrosoft“ Blend

el ressionbien:

Visio Word P SketchFlow

a
SinfeGREAT

Simply Comprehensie

\ < =
.

et
SharePoint

SQL Server Reporting Eclipse / Java

and Analysis Services Visual Studio

]
‘—_' Team Foundation
Server
Project _
S Application Services

‘ SharePoint Server

——

“ L — S
-— OLTP RS Relational [RSEESS OLAP
Project Manager Database \Warehousel CUBE Developer and

Tester

Data Persistence

FIGURE 8-3

SUMMARY

In this chapter, you learned about the importance of engaging early and frequently with your soft-
ware development project’s stakeholders. During this process you capture and refine the require-
ments your software needs to implement before you begin coding. Then, as your software evolves,
you learned about getting additional feedback from stakeholders, which can influence the ongoing
implementation to ensure that the development team is building the right software. Microsoft and
its partners have built several tools to facilitate requirements management and collaboration with
your project’s stakeholders. These tools integrate with Team Foundation Server alongside the rest of
your software development project’s artifacts.

In Chapter 9 you learn more about PowerPoint Storyboarding.

Storyboarding

WHAT'S IN THIS CHAPTER?

> Using the PowerPoint Storyboarding add-in to create storyboards

> Using layouts, custom shapes, and animations to create and main-
tain storyboards to capture requirements from your stakeholders

> Linking storyboards with Team Foundation Server work items

In Chapter 8 you discovered that, with Visual Studio 2012, Microsoft extended its application
lifecycle management tooling to better address the needs and feedback of project stakeholders
throughout the lifecycle. This functionality remains unchanged in Visual Studio 2013. In this
chapter, you learn more about one of these tools, PowerPoint Storyboarding, which adds a
form of lightweight requirements elicitation to Microsoft’s offerings. After reading this chap-
ter you will have a better understanding of how to use these new tools to create user interface
designs and workflows that you can socialize with your project stakeholders to collect feed-
back and sign off early in the process.

WHY STORYBOARDING?

Chapter 8 explained that storyboarding is a technique that has its roots in the cartoon and
film industry. Disney is credited with inventing and refining the technique in the early twen-
tieth century for animation, and the technique quickly found its way into film and eventually
software development. Figure 9-1 shows an example of a storyboard used for a film. A story-
board for a film is created and refined by a team of creative professionals, including writers,
directors, and storyboard artists. During this process, storyboards typically undergo several
iterative changes before filming begins. The finished storyboard then becomes a design artifact
that helps to inform set designers, camera crews, actors, editors, and others who are respon-
sible for ultimately converting the creative and artistic direction into a finished film.

178 | CHAPTER9 STORYBOARDING

) M, 0TS = Tim boude Mishen (D) 5~ Moghns_reale Bl € s - #ok iy s

_flder _

By SAM GARLAND, USED WITH PERMISSION.

FIGURE 9-1

Creating a storyboard is similar to sketching an idea on a whiteboard or the back of a napkin, and
these activities all share a collection of common benefits that make them popular:

> Storyboards are visual, and humans are visual creatures. The saying, “a picture is worth a
thousand words” is especially true when you consider the additional level of detail that can
be quickly conveyed through a picture or a series of pictures that might otherwise be incredi-
bly time consuming or error-prone to communicate over, say, a telephone discussion or email
exchange. In this way, you can say that a good storyboard is worth a thousand-page spec.

> Storyboards are cheap to create. “Pixel-perfect” precision is rarely expected during the story-
boarding phase, and anybody with a pencil and paper can create a storyboard.

> Storyboards convey motion. By sequencing together multiple panels of a storyboard, you can
convey the flow expected as you move from one state to the next. In film, this can convey
action or plot; in software, you might use this to represent a workflow, such as an accountant
interacting with tax filing software to calculate an income tax return.

> More importantly, storyboards are quick and easy to iterate on. Chapter 8 covers the impor-
tance of being able to respond quickly to stakeholder feedback in order to best ensure that
your team delivers great software. Unfortunately, software is relatively slow to change, and it
only gets slower and more expensive to change the more complex it becomes. Consequently,
any time you can spend up front proposing a storyboard design, listening to your stakehold-
ers give you feedback, and reacting to that feedback before you start writing code is ulti-
mately going to help you create better software with less time and effort.

PowerPoint Storyboarding | 179

It’s clear that a storyboard can help immensely with the task of creating a great user interface for a

software project. Just as a storyboard for a film can help inform the set designer and camera crew, a
storyboard for a software project can help graphic designers and user interface programmers collab-
orate to turn ideas into reality. Software testers can use them to begin to author test cases to validate
what a piece of software should (and shouldn’t) do. Documentation teams can begin to outline their
help topics. Even the marketing team can use storyboards to convey to a set of prospective custom-

ers what your software will do when finished, even before the team has written a single line of code.

Microsoft’s PowerPoint Storyboarding tool was built to make it easy for software development
teams to quickly create and iterate on storyboard designs. Whiteboards and napkins may work well
for simple designs that need to be collaborated on by team members who are all in the same loca-
tion. But with project stakeholders often located around the world in different time zones, and soft-
ware becoming increasingly more complicated with branching workflows, the art of storyboarding
has needed to evolve beyond whiteboards and napkins.

There are other storyboarding tools on the market already, such as Balsamiq. Microsoft even has
two other tools that many teams already use for storyboarding: Microsoft Visio and Microsoft
Expression SketchFlow. So why do you need yet another storyboarding solution? As the name
indicates, PowerPoint Storyboarding is based on Microsoft PowerPoint. In their research for

Visual Studio 2012, Microsoft observed that an overwhelming number of software developers and
the stakeholders they serve already own PowerPoint and know how to use it for creating at least
basic presentations. As it turns out, many of the features needed to create storyboards are already
included in PowerPoint (such as 2D graphics, animations, layouts, linking, and collaboration fea-
tures such as notes and review comments). Hence, Microsoft concluded that a storyboarding tool
built on PowerPoint would be comfortable and familiar to the set of users who care most about sto-
ryboarding. In the rest of this chapter you learn how to use PowerPoint Storyboarding to create rich
storyboards.

POWERPOINT STORYBOARDING

To work with PowerPoint Storyboarding, you need to first install Visual Studio Test Professional
2013, Visual Studio Premium 2013, or Visual Studio Ultimate 2013. PowerPoint Storyboarding is
compatible with Microsoft PowerPoint 2007, 2010, and 2013, and is expected to remain compatible
with future versions of PowerPoint as well. Screenshots and instructions in this chapter are based on
PowerPoint 2013 but are similar in other versions.

NOTE You can share PowerPoint Storyboards with stakebolders who have an
appropriate version of PowerPoint or the free PowerPoint Viewer installed, even
if they don’t own a Visual Studio license. Those users won’t, however, get access
to the unique capabilities provided by the PowerPoint Storyboarding add-in,
which you learn about in this chapter.

To Launch PowerPoint Storyboarding you need to first open PowerPoint by clicking Start = typ-
ing ‘powerpoint’ = launching PowerPoint 2013 and going to the “Storyboarding tab.” You can

180 | CHAPTER9 STORYBOARDING

also launch PowerPoint from the Office menu or by opening an existing PowerPoint file. Because
PowerPoint Storyboarding is just an add-in for PowerPoint, you can work with this functionality
any time you are using PowerPoint.

The PowerPoint Storyboarding add-in introduces a new tab to your PowerPoint ribbon (see Figure
9-2). Several of the buttons exposed on this tab are existing capabilities you may already be familiar
with in PowerPoint, such as the Align button that enables you to easily align shapes. These capabili-
ties are generally useful when working with storyboards, and appear on the Storyboarding ribbon
tab for convenience. Some other capabilities, such as the Storyboard Shapes and Storyboard Links
buttons, are new with the add-in. You learn about them in this chapter.

BHS 03- Presentation] - PowerPoint 7T E - 8 X
HOME INSERT ~ DESIGN TRANSITIONS ANIMATIONS ~ SLIDESHOW REVEW VIEW STORVBOARDING Sign in
\:I 13] Create Layout - £ Update My Shape) = I_'h‘ 0
LS / =
[<> B B
[Edit Layout & 3 mport Shapes O @+ o

New Layout Storyboard Add to My
Side~ - = Add Shapes Shapes Shapes B3 Export My Shapes

Slides Layouts Shapes Insert Text Amange Team Help ~

Pictures Screenshot Shapes Hyperlink B I U Align Text Bring Send Align Group Storyboard Storyboarding
- - Forward - Backward =~ Links Help ~

1

Click to add title

* Click to add text

supe2oF2 (2 = NOTES Bl COMMENTS B =

FIGURE 9-2

Storyboard Shapes

Much of the value in the PowerPoint Storyboarding add-in is found in the rich set of shapes avail-
able for easily modeling Windows applications, web applications, and phone and tablet applications.
The Storyboard Shapes pane pictured in Figure 9-3 shows just a few of these shapes. If Storyboard
Shapes is not open, you can click the Storyboard Shapes button from the Storyboarding ribbon tab.
Spend a few minutes exploring the shapes you can work with.

Notice that there are backgrounds that provide templates for representing the class of application
you are developing, such as tablet, web, phone, traditional desktop apps, SharePoint applications,
and so on. Annotations such as sticky notes and callouts enable you to convey additional meaning
about a storyboard to stakeholders. The Storyboarding add-in includes a large collection of icons

PowerPoint Storyboarding | 181

and all of the standard controls you expect for applications, such as buttons, lists, drop-downs, dia-
logs, media controls, and so on.

Some shapes, such as the Click shape, are animated by default, but you can add animations to any
shape. The Search box can be helpful for quickly finding a shape you are looking for. Finally, the
My Shapes category is a place for you to store your own custom shapes. You learn how to work
within the “My Shapes” section later in this chapter.

Spend some time familiarizing yourself with some shapes by dragging them from the Storyboard
Shapes pane onto an empty PowerPoint slide. Notice that these shapes are not simply images; many
are complex shapes consisting of several sub-elements. For example, try adding a Calendar control
to your storyboard. You can click the individual elements to customize the month, day, and selected
date. Most of the time you won’t need to do this in your storyboards, but the flexibility is there if
you need it.

Storyboard Shapes

- . @5
Desktop Taskbar) R bb_on . g SharePoint
E— Application -

Start
i Start Menu Start Screen E;‘)@ g Web Browser
8 = I

-
Web Browser - -
e m -] (Windows 8) Window D Windows Phone

‘Windows Phone

(landscape)
4 Common
#——# Breadcrumb | — |Button
Checkbox Checkbox N -
W] — — o
(checked) {unchecked) b Click E

D:_:i Data Grid [/ 7117 Date picker I:L Drag Selection

9 Find more Storyboard Shapes online

FIGURE 9-3

Layouts

Working with layouts is a core capability of PowerPoint and is very valuable when storyboarding.
Layouts provide a hierarchical manner of defining templates from which each of the slides in your
storyboard can inherit. By embedding common elements in your layout, you save yourself time later
when you need to create a new storyboard that uses that layout. You also save time in maintaining

182 | CHAPTER9 STORYBOARDING

your storyboard if you need to update core elements, such as your company’s logo in the header or a
copyright date in the footer.

If you added shapes to your blank slide in the previous section, clean up that slide by deleting those
shapes. From the Storyboarding Shapes pane, find the Web Browser shape under the Backgrounds
category and drop it onto your empty slide. Position it so that the corners of the shape match the
corners of your slide. In the address box of the Web Browser shape, type the base URL for your web
application, such as http://www. fabrikam.com. This is the template that you will use for multiple
slides in your storyboard, so you should turn it into a layout.

From the Storyboarding ribbon tab, click Create Layout. Provide a name for this layout, such as
Fabrikam Fiber Intranet. Open the Slide Master view, pictured in Figure 9-4, by clicking on Edit
Layout. Your new layout, Fabrikam Fiber Intranet, is represented as the second child node in this
hierarchy. The first child node is an empty slide, which can be useful if you need to create a story-
boarding slide that should not use your new layout.

BEH S B = Presentation1 - PowerPoint T E - 7 X
SLIDEMASTER ~ HOME INSERT ~ TRANSTIONS ~ ANIMATIONS ~ REVIEW VIEW STORYBOARDING Sign in
Create Layout 3 Update My Shape r‘\'\ = -
4 A A A € =
[Edit Layout % [import Shapes O & O
New X Storyboard Add to My Pictures Screenshot Shapes Hyperink B T U Align Text Bing Send Align Group Storyboard Storyboarding
Slide ~ Add Shapes Shapes Shapes B3 Bxport My Shapes - . Forward - Backward ~ + Links Help~
Slides Layouts Shapes Insert Text Arrange Team Help ~
=
V= Storyboard Shapes Ve
| Search Storyboard Shapes (Ctri+Alt+G p
4 My Shapes ~
Fabiikam Fiber Support —=x
(N hpiwvnsfabrikam.com P-0O = L} e) To add a shape, select it and choose "Add to My Shapes”

from the Storyboarding ribbon tab, o the context menu,

b Annotation
4 Backgrounds

Riboen
© = =p—— E Start Menu
== 8=
Start
N Start Screen Web Erowser
3
3

Web Browser .
[T, E Window

Windows Phane Windows Phone
(landscape)

4 Common

& Find mare Staryboard Shepes online

SLIDE MASTER [[%

FIGURE 9-4

Screenshots

Many applications use common elements across multiple pages or screens in the application, such

as a common masthead, footer, and menus. If this is a greenfield (brand new) application, you can
use the Storyboard Shapes and other graphical tools (such as Photoshop) to create a look and feel for
your application. Often, you’ll be creating a storyboard to represent new functionality that you want
to add to an existing application. The Screenshot capability of PowerPoint makes it easy to import
these existing visual elements into your storyboard.

http://www.fabrikam.com

PowerPoint Storyboarding | 183

In a web browser, open an existing web application that you want to import design elements from.
This can be any web application for now, such as Microsoft.com. Maximize the window for your
web browser and position it so that you can see the visual elements that you want to import. Now
switch back to PowerPoint and click the Storyboarding ribbon tab. Click the Screenshot button.

The Screenshot button expands to display thumbnails that represent the other windows you have
open, including the web browser you just opened. You can import the entire window, but doing so
also includes the chrome from the browser (menus, address bar, and so on). Instead, you can click
Screen Clipping to briefly minimize PowerPoint and click and drag a rectangle that captures the sec-
tion of the web application that you want to import. Figure 9-5 shows the screen clipping capability
being used to select the masthead from the existing Fabrikam Fiber web application.

NOTE When using the Screen Clipping capability, it is necessary to ensure that
the last window you had open prior to switching back into PowerPoint is the
window that you want to capture a screen clipping from. If you try to switch to
a new window by clicking the running application on the task bar, the screen
clipping capability instead assumes that you are trying to capture a screen clip-
ping from the task bar.

localhost Home Page

TFS Web Access TFS FF Web Access TFS TT Web Access FF DEV FFQA FFPROD

vy

FABRIKAM FIBER
Support

Dashboard Tickets Customers Employees Reports

g Snipping Tool
%uew - @’umw i Options
Drag the cursor around the area @
tto capture. . -
~ Ref e Assigned To Time Open
A A
Drew Robbins

Alerts: 5

Tickets: 3

FIGURE 9-5

184 | CHAPTER9 STORYBOARDING

After you’ve imported an image, you can select it and use the Format ribbon tab to crop it or make
other adjustments. For example, you may want to use the Color button to set the saturation to 0 per-
cent. This makes the shape plain grayscale, which is sometimes a useful technique for getting stake-
holders to focus on providing feedback on the functionality of an application, instead of focusing on
design elements such as color selection. You can always revisit the Color button later to restore the
image to its original saturation.

You can now add any other common elements, such as sidebars or footers. When you are finished
building your layout, click the Slide Master ribbon tab and click Close Master View. You have just
created your first layout, which you can apply to any slide in your storyboard, as shown in Figure
9-6. To select a layout for a slide, you can right-click that slide and select the Layouts fly-out menu,
or use the Layout pull-down menu from the Storyboarding ribbon tab. You can repeat this process
to create as many layouts as you wish.

BHS B s Presentation1 - PowerPoint 7 ®m - 8 X
HOME ~ INSERT DESIGN TRANSITIONS ~ ANIMATIONS ~ SLDESHOW REVIEW VIEW STORYEOARDING Sign in
“D % (5] Dltaourr w &Nt = e s Tt Diecion B~ NO00 | O 2y Shape Fil #Find
. By - N 2] Reset Align Text AL Loldo N £ Shape Outine 22 Replace ~
aste ew be AV - Aa —| Amange Quick
N Sider ‘Section- B I U 8 e ‘ n Convert to Smartart - || % YA) 5[0 Styles - CF Shape Effects | I} Select -
Clipboard Slides Font Paragraph Drawing Editing ~
1 Storyboard Shapes vx
Search Storyb apes (Ctri+Alt+G p
4 My sh: ~
= Eaikam Fber Suppart —=x Y e
e
SN tpivmfbricem.com P~ O x o To add a shape, select it and choose "Add to My Shapes”
from the Steryboarding ribbon tab, or the context menu.
X Cut 1
BB Copy FABRIKAM FIBER ? Annotation
il Paste Options: Support 4 Backgrounds
o o Dastbowd Ticksts Customers Empioyess Reports
b= I Desitop Taskoar Ribban
£ New Side Application
i3 Duplicate Slide —
ER Delete Slide g SharePoint lg Start Menu
=
B Add Section =1 -
ES Publish Slides Start
Start Screen
E Layout » | Office Theme
Web Browser
e .
] ResetSlide — em -] Windows 8 E Window
5] Format Background
Title Slide Title and Content Windows Phane Windows Phone
Bl HideSlide (landscape)
Storyboarding » - |4 Common
+ v
¥
& Find mare Staryboard Shepes online

supezoFz [x

FIGURE 9-6

= NOTES

B COMMENTS.

Note that outside of the Slide Master view you cannot edit any of the shapes you added to this lay-

out, so if you need to edit them again you need to visit the Storyboarding ribbon tab and click Edit

Layout to return to the Slide Master. Be thoughtful about what you put in your layouts. When used
correctly, they can save you a lot of time. For example, if a logo changes you can easily update it in

the layout and the change is automatically inherited by all slides that use that layout.

You can now use a combination of Storyboard Shapes, screen clippings, and other sources available
from the Insert ribbon tab to construct the first web page you want to model in your storyboard.

PowerPoint Storyboarding | 185

Figure 9-7 shows an example of a finished page that you might want to present to your users. In this
way you can continue to create new slides for each page or dialog in your application that you want

to storyboard.

EHS OT3- Presentation1 - PowerPoint 7 @ - x
HOME | INSERT ~ DESIGN TRANSITIONS ~ ANIMATIONS — SLDESHOW REVIEW VIEW STORYBOARDING Signin H
-“D X, 77] [Layout ~ = P = |[{ Text Direction snOooa-| g ¥ Shape Fill b Find
E £ Reset *] Align Text ALLS Do U @ e outine 2 Replace ~
. u g n . p o
aste ew AV a —| Arrange Quick
TR S Sige. ‘Bection- | B T U S ax@-fac A) Convertto Smartart- || % YL € 3 gy[7] M Styles - CF Shape Effects = | [y Select -
Clipboard Slides Font Paragraph Drawing Editing ~
1 Fabrikam Fiber Support o~ B8
@ e) http://www.fabrikam,com/Home aspx O+ 0O x "
Support
Dashboard Tickets Customers Employees Reports
Profile Dashboard
Ref Status. Escalation Title Assigned To Time Open
AD14101 Assigned Lavel 1 Modem keeps resetting itself Drew Robbins 1 Days
AD14102 Closed Level 2 Internet Upload speed slow fro. Brian Keller Closed
AD14103 Open Level 1 FabFiber is the worst EVERIN Nene 3 Hours.
By i AD14104 Assigned Level 1 changing channel by it self Drew Robbins, 1Days
AD14105 Assigned Level2 Viewing Recorded Programs Brian Keller 1Days
Alerts: 5
Ty 2 ADI4106 Assigned Level 1 Issues with service Jonathan Carter 3 Hours.
AD14107 Assigned Level 1 Poor Picture Quality Jonathan Carter 1Days
QEacies ADI4108 Assigned Level2 Channels gonel Biwn Kllor T
2 uy pronie -
e AD14109 Assigned Level 1 Not getting all my channels Brian Keller 3 Hours s
¥

SLIDE 2 OF 2

0]

FIGURE 9-7

= NOTES

W COMMENTS

E

application.

NOTE You might notice in Figure 9-7 that the URL in the address bar is
http://www.fabrikam.com/home .aspx, but if you try to manipulate the address
field of a slide that inberits the address field from a layout you aren’t able to edit
it. This effect was achieved by simply adding a new textbox (Insert = Textbox)
immediately after the existing URL and typing /home.aspx into it. This atten-
tion to detail can help your stakeholders understand where they are within your

My Shapes

The My Shapes category of the Storyboard Shapes pane makes it possible to create your own pri-
vate library of shapes that you might want to reuse. An illustration of how My Shapes works can
be achieved by creating a stylized button. Add a button from the Storyboard Shapes pane to your
storyboard slide. Right-click this button and click Format Shape to access advanced properties that

http://www.fabrikam.com/home.aspx

186 | CHAPTER9 STORYBOARDING

enable you to adjust the visual style of this button. Try changing the fill color and adding a shadow.
Click OK when finished. Change the default text for the button and set a custom color for the text
using the Font Color button in the Storyboarding ribbon tab (the Font Color selector is represented
by the icon of the letter A with a colored bar underneath it).

The exact customizations you make to this button are not important. The point is that sometimes
you may invest in styling shapes to meet requirements you have for the look and feel of your applica-
tion, but individually making these customizations from scratch takes time. Instead, you can use the
My Shapes category to store your customized shapes for future reuse. Select your finished shape and
click Add to My Shapes from the Storyboarding ribbon tab. This adds your shape to the My Shapes
category of the Storyboard Shapes pane, as shown in Figure 9-8. You can give your shape a mean-
ingful name, such as the Fabrikam Button in this example. Now, when you drag this shape back
onto the slide, you have a copy of the button that already includes your custom style applied to it.

EHS O3+ Presentation] - PowerPoint DRAWING TOOLS T H - & X
HOME INSERT ~ DESIGN TRANSITIONS ~ ANIMATIONS ~ SLDESHOW REVIEW VIEW STORYBOARDING FORMAT Sign in
13] Create Layout - £ Update My Shape DA L. e = A
\:I =g LS O @+ FO’ & A A- === o] O e B
[E7] Edit Layout [& Import Shapes = A N
New Layout Storyboard Add to M Pictures Screenshot Shapes Hyperlink B I U [E]AlignText~ Brin Send Align Group Storyboard Storyboardin:
yout , ! y pes Hyp] alig g 9 P Story ! g
Slide ~ ~ Ji= Add Shapes Shapes Shapes B3 Export My Shapes - N Forward - Backward ~ + Links Help -
Slides Layouts Shapes Insert Text Amange Team Help ~
1 Storyboard Shapes vx
o - Search Storyboard Shapes (Crl+Alt+G] p
p/fwren fabrikam.com/Home. aspx O~ O x
P 4 My Shapes ~
—
4 FABRIKAM FIBER Fabrikam Button
Support
Dashbosrd Tickets Customers Employees [- &- [/~ ' Annotation
= —
N Style Fill Outline | Backgrounds
Profile Dashboard w peston Testonr Ribbon
X% Cut Application
ERy Copy
Ret Stetus Escolotion Title AssigedTo Time O = .
" [Paste Options: SharePoint Start Menu
AVON Assigned Level1 Modem keep resatting tsel Drew Robbins 1 Days P |
2 2w lA
AOVEI02 Closed Levol2 ternst Upload speed siow o, Biian Koo Closed
AD18103 Open Level 1 FabFiber is the worst EVERII None 3 Hours Edit Text Start Screen
-
Drew Robbins ADMIOS Masgned Leve1 changing chanael by it el Dowrottios 10aps o EdiLPoints =l
ADI4105 Assigned Level2 Wiewing Recorded Frograms Brian Kofler 10ays 2
Alerts: 5 - Ve Browser Wine
ot A0S Aosiped Lol osuen i sonce JonsthanCator 3toun T BringtoFront | v NN o LS ncow
ADIA107 Assigned Level 1 Poor Picturs Quality Jonathan Cater 1Days 20 Send to Back 4
® hey ke ADI4108 Assigned Level2 Channels ganel Brian Keller 10ay: B Hyperlink.. ll Windows Phone
& vy protie ‘Windows Phane (ancscan
© scheauie AD14109 Assigned Level 1 Not gatting all my channels. Brian Kefler 3 Houry Save as Picture. ';_*a Add to My Shapes
Setas Defoult Shape |53 Update My Shape
%[Size and Position... i&] Create Layout -
& Format Shape... [Edit Layout
supe2oF2 [8 B0 Storyboarding » |3 Add Shapesto Layout +

FIGURE 9-8

This was a simple example, but you can apply the same technique to advanced composite shapes you
might create, such as a menu bar or a panel consisting of multiple controls. Just select the group of
shapes you want to include in your custom shape and then click Add to My Shapes.

Finally, you can share your custom shapes with others by using the Import Shapes and Export My
Shapes buttons on the Storyboarding ribbon tab.

PowerPoint Storyboarding | 187

Animations

Programming animations in PowerPoint is another capability that’s incredibly useful when working
with storyboards. You can use animations to make your storyboard come to life for a stakeholder by
illustrating the way users are expected to interact with an application.

Two of the most useful animations you can add to a storyboard are to show mouse movement and
text entry. To see how this works, start by adding a Click shape from the Storyboard Shapes pane.
The Click shape is programmed with a custom animation. You can press F5 (or Shift+F5 to start on
the current slide) to start presentation mode and see this animation in action. Press the spacebar or
click your mouse button to trigger the animation. When you are finished, press the Escape key to
return to the PowerPoint editor.

To understand how this default animation was programmed for the Click shape, click the
Animations ribbon tab and enable the Animation pane. From here, you can see that this is a Custom
Path animation triggered to start with a mouse click (which means that the animation starts when-
ever the presenter clicks the mouse or presses most keys on the keyboard, such as the spacebar). You
can change the timing to be faster or slower, or you can simply click the endpoints of the animation
path to change the start and end locations.

You can select another shape and click Add Animation to apply a new animation for that shape.
Notice that in the Animation pane, you can change the order in which animations should be trig-
gered, timed, and so on.

Animations in PowerPoint are fairly powerful, and you can use them to model almost any set of user
interactions you can imagine for your storyboard. For full details on working with animations, con-
sult the PowerPoint documentation. Figure 9-9 shows a bit of what is possible when using anima-
tions with a storyboard. This example animates in the following sequence:

1. The text in each of the textboxes appears via a Wipe animation, simulating the user typing
text into these fields.

2. Next, the mouse cursor moves to illustrate how the user clicks the calendar icon to open the
full calendar.

3. The mouse moves to illustrate how the user is clicking the March 8 date, and March 8 then
displays in the Service Date textbox.

4. The mouse moves to show the user clicking the Create button.

5. After this animation sequence is finished, a keypress or mouse click advances the presentation
to the next slide in the storyboard or ends the presentation if there are no more slides.

In this manner you can easily string together multiple slides and animation sequences to represent a
full end-to-end interaction that users might have with your application.

188 | CHAPTER9 STORYBOARDING

EHS O 3:- CreateNewTicket - PowerPoint T = - x
HOME ~ INSERT DESIGN TRAMSITIONS | ANIMATIONS — SLDESHOW REVIEW VIEW STORVEOARDING Sign in
* &4 Animation Pane Start: | On Click Reorder Animation
® Trigger o Duration: 4 Move Earlier
Preview Effect Add
- Options - | Animation - 7% Animation Painter | ® Delay: * Move Later
Preview Animation Advanced Animation Timing ~
S
1 Animation Pane ~*
Fabrikam Fiber Support
(2] | e o omjermetsec e D G
1} MouseClick [l
2 * MouseClick |
- = FABRIKAM FIBER 2% Colendar [
&E:E Support
Dashboard Tickets ;
Create Ticket 'H
5
i 17 19 20 21 22 23
First Name Service Date o B mH B
[Brian] [8r10/2m4] [3 fae s
Last Name Find /
[randal] [Mickey Gousset | Check
Street _ L
ke
City
Country
Postcode
S
M | IE; Seconds~ < [0] © 2|

supe3oF3 [2 = NOTES Bl COMMENTS B

FIGURE 9-9

Hyperlinks

You might decide that you want to allow your stakeholders to click through your storyboard in a
non-linear fashion to access various pieces of functionality you are designing. Hyperlinks provide a
way for you to do that. For example, in Figure 9-9 you might want to allow the stakeholder who is
viewing this storyboard to click the Reports link in the menu to see the storyboard for your report-
ing capabilities. To program this, simply select a shape and use the Hyperlink button. You can then
select another slide by clicking Place In This Document, or you can hyperlink to external resources,
such as a detailed spec or a working prototype on a staging server.

Another use for hyperlinks is to create a table of contents slide at the beginning of the presentation,
to allow stakeholders to select individual requirements they want to view. For example, the User
Story that describes how a user signs up for a new account might be represented by slides 5 through
8, whereas the section of your storyboard that describes how a user pays with a credit card is rep-
resented on slides 28 through 34. Hyperlinks enable you to make it easy for stakeholders to jump
directly to the section of the storyboard document they are most interested in reviewing. At the end
of each section, you can then direct them back to the original table of contents.

PowerPoint Storyboarding | 189

Storyboard Links

None of the capabilities mentioned in this chapter to this point require Team Foundation Server.
You can create and share storyboards with stakeholders by using traditional mechanisms such as
email, SharePoint, or file shares. But if you are using Team Foundation Server to manage your appli-
cation development, you might want to link the storyboard artifacts you are creating to a work item
in Team Foundation Server that represents the functionality being storyboarded.

To achieve this, you first need to save your storyboard file on either a network share (such as
\\MyTeamServer\Fabrikam\Storyboards) or a SharePoint document library. This should be a
location that is accessible by the stakeholders whom you plan to interact with as you create and get
feedback on this storyboard. Ideally, this location is also backed up on a regular basis so that you
don’t accidentally lose your work.

After you have saved the document to one of these valid locations, select Storyboard Links from

the Storyboarding ribbon tab. If this is your first time opening this dialog, you may need to click
Connect to specify the location of the Team Foundation Server instance you are using. Next, click
Link To and find the work item or work items you want to link to. Usually this is a User Story or a
Requirement work item, but it can really be any work item you want to link to. The dialog shown in
Figure 9-10 shows a storyboard being linked to a work item from the Product Backlog query.

EHS O -
HOME INSERT ~ DESIGN TRANSITIONS ~ ANIMATIONS ~ SUDESHOW REVIEW VIEW STORYBOARDING Signin
j (i3] Create Layout [.53 Update My Shape =]

2

Align Text Br - & n| Storyboard ftoryboarding
For the selected storyboard, you can view, add, or change links made to work items. orward - Backward Links Help -

" Lavaut =] Edit Layq Storyboard Links in project FabrikamFiber at server vsalm\FabrikamFi... \L‘L‘
ew Layou
Slide~ - /Add Shy

slides Layouts

Arrange Team Help ~
B Link to Jiaeeies—s

1 Title

T ok iterne linked tothe ctondacard

Choose Linked Work Items

\SE‘E((one of the following methods to find available work items:

2
= Saved query: abrikamFiber/Shared Queries/Product Backlor v
A query: | FabrikamFiber/Shared Queries/Product Backlog
2 O s oot
O Title contains:
H————————|
x| g O andtype: [All Work Item Types
=
= = Select items to add to the woricitem list:
D ~ Work ltem... Backlog Priority =~ Title
Oz Bug Customers with Canadian addresses not displaying properly
BT Product Ba Customer can find the nearest Fabrikam Fiber location.
V|

Product Ba...

5 work item(s) found.

Create

‘ Select All ‘ | Unselect All ‘

SUDE3OF3 [R =notes Wcomments B I2

FIGURE 9-10

190 | CHAPTER9 STORYBOARDING

After it is linked, it can be opened from the work item as shown in Figure 9-11. This helps to ensure

that you get full end-to-end traceability across all of the artifacts that go into defining, developing,
and testing your software.

Dd Visual Studio Team Foundation Server 2013 / FabrikamFiber ~

Biankeler | % @
HOME CODE WORK BUILD TEST 242 P~
Overview

Product Backlog Item 242: Technician can send GPS location from iPhone.
4 ~
+ Product B
B o 92 m o
Fafiam 3 Tags iPhone X Add.. ~
July 1 - July 12
echnician can send GPS location from iPhone
49 of 56 h lteation FabrikamFiber\Release 2\lteration 3 -
Backlogitems:dm oo DETAILS.
Team favoritd Assigned To. Brian Keller ~ Effort 4
State New ~ Business Value
Reason New backlog item Area FabrikamFiber\Development\Devices Team -
Backlog Priority
DESCRIPTION ~ STORYBOARDS (1) TEST CASES TASKS (1) ACCEPTANCE CRITERIA HISTORY LINKS (3) ATTACHMENTS
Start storyboarding &
recent chang] Title Comn
Sprint Backlog < Storybeard (1)
3 3 Storyboard: Wocalhost\ffdrops\CreateNewTicket pptx v
Save || Saveandclose || Camcel
workted 4
Rooms v

NOTE Certain work items—such as Product Backlog Items in the Scrum pro-
cess template or User Stories in the MSF for Agile process template—have a
Storyboards tab on the work item that lists all linked storyboards. If you decide
to link to another work item type that doesn’t have the Storyboarding tab, such
as a bug, you can always find linked storyboards from the Links tab.

SUMMARY

In this chapter, you learned how storyboarding can be a valuable part of the requirements elicitation
phase of your software project’s lifecycle. You learned about Microsoft’s PowerPoint Storyboarding
add-in, which enables you to quickly create storyboards, seek feedback, and iterate on them before
giving the storyboards to the designers and programmers, who turn them into working software.

Summary | 191

The next chapter discusses how the Microsoft Feedback Client enables development teams to con-
tinue to get feedback from stakeholders about the working software being developed. By continu-
ously seeking stakeholder feedback throughout the development process, you can again ensure that
the stakeholders’ wants and needs are adequately represented in the high-quality software you are
delivering.

10

Capturing Stakeholder
Feedback

WHAT'S IN THIS CHAPTER?

> Discovering how the development team can request feedback
from stakeholders on specific features or requirements

> Learning how project stakeholders can use the Microsoft Feedback
Client to provide rich feedback about your software

So far in this section you have learned about the importance of engaging with your software
development project’s stakeholders to ensure that you have a clear understanding of what
they want you to build before you start implementing it. But regardless of how much time you
spend up front during this requirements-elicitation phase, the first iteration of software you
create is rarely going to meet all of their expectations.

There are a variety of reasons for this. Technical challenges might get in the way of the originally
planned implementation; business requirements may evolve from the time when you first capture
them to the time that you implement the first working code; the opinions of users can be fickle,
and may even be influenced by seeing the software in action for the first time; you may not have
truly understood what your stakeholders were asking for when you were capturing their require-
ments; or you may not have had time to implement all the requirements in the initial release.

These possibilities will be anticipated by any lean-agile software development team who
embraces the fact that software development is something of an art form, requiring iterative
cycles of requirements gathering, implementation, and feedback, which in turn informs an addi-
tional round of requirements and changes that must be implemented. But the challenge for any
team is finding a way to effectively capture feedback from their stakeholders in a manner that
can be analyzed, synthesized, and acted upon. This problem is made harder when stakeholders
are time-shifted or geography-shifted away from the software development team. Even when the

194 | CHAPTER 10 CAPTURING STAKEHOLDER FEEDBACK

development team shares a common location with their stakeholders, finding a systematic way of
gathering feedback from all of their stakeholders on a recurring basis can be a burdensome task.

Starting in Visual Studio 2012, Microsoft has integrated the process of collecting stakeholder
feedback directly into their application lifecycle management tooling capabilities. In this chapter
you find out how to use this tool to solicit and capture feedback from your stakeholders in a rich,
actionable way.

REQUESTING FEEDBACK

The first step toward getting great feedback from your stakeholders about your software is to
properly frame the question of what you are asking for feedback on. The question of whether your
software provides the right level of functionality is a very different question from whether your
software is designed properly. Functionally, a tractor can get me from my house to my office in the
morning, but it’s not what I feel comfortable being seen in as I pull into the parking lot at work.

But early on in a software development iteration, the team may be focused strictly on implement-
ing the required functionality with the understanding that they can make it look nice later. Unless
you properly scope your request to the stakeholders when you ask for feedback, you may get a lot of
feedback on things that you haven’t yet started to address in the software.

With Team Foundation Server 2013, you can request specific feedback from your stakeholders

by visiting the Team Web Access homepage for your project. See Chapter 3 for more information
about accessing Team Foundation Server via Team Web Access. In the list of Activities, click Request
Feedback. You are presented with the dialog shown in Figure 10-1, which allows you to specify what
you are requesting feedback on and from whom.

NOTE If you don’t see Request Feedback under the list of Activities, this
indicates that your account has not been granted access to these features in
your Team Foundation Server instance. Contact your Team Foundation Server
administrator. Only users with Visual Studio Test Professional 2013, Visual
Studio Premium 2013, or Visual Studio Ultimate 2013 are permitted to request
feedback using this capability.

Follow the steps in the dialog to request feedback from your stakeholders:

1. Specify the names of the users you want to request feedback from. These users need to have
access to your team project.

2. Specify how users should access the functionality you are asking them to test. For a web
application, users might need to access a staging server that contains a recent build. For other
applications, users might need to remote into another machine, or install an interim build.
Use this space to give users the specific instructions they need in order to get started with
your software.

3. Specify up to five aspects of your software that you want feedback on.

Providing Feedback | 195

/ [Z] Microsoft Team Foundatic % | =8| x
« C' | [caprica.env.nakedalm.com:8080/tfs/FabrikamFiberCollection/FabrikamFiber 2| =
¢ Visual Studio Team Foundation Server 20 [iIoU3FZ31IdN x Martin Hinshetwood | % @
HOME CODE WORK BULD TEST | Request stakeholders to provide feedback on an application that your team has built or plans to build. See the Privacy Statement for more 1~ Search work items o
information.
Overview
| Select Stakeholders =
@ + Product Backlog Item +1 The people you select will receive an email request that includes a link to launch Microsoft Feedback Client, the tool stakeholders use
| to provide feedback,
B Martin Hinshelwood X
Iteration 4 ~| Browse | Check name
July 15 - July 26
Tell Stakeholders How to Access the Application
O Microseft Feedback Client will display a link to launch the specified application and yeur exact instructions, which might include
cf0h login credentials, specific navigations steps to follow, or general centext of the application to review,

@ wWeb Application O Remote Machine© Client Application

Team favorites fwwwfabrikamfiber.com

Click on the Employee tsb of the application
Nightly Fabrika

Partially succeeded 7/9)

b

recent changes

Tell Stakeholders How to Focus Their Feedback
Scope the feedback request to only the areas of the product you care about, You can request feedback on one to five items.

Item: 1 Does the Employes edit page provide the right level of functionality

Feedback

0

Sprint Backlog

33

work items

Does this meet your requirements for creating and editing employee records?
Is all of the right information displayed in the summary?
work items. o

Rooms Preview | Send

FIGURE 10-1

When specifying what you want to collect feedback on, be as specific as possible. You can also use
the area below each feedback title to provide additional instructions that might help your
stakeholders access certain features or scope their feedback to what you care most about. When
applicable, you might want also to specify the things that you do not want feedback on. For exam-
ple, if you know that the staging server you are using is very slow and doesn’t reflect the
performance of your production environment, you might want to mention this to the users so that
they don’t waste time giving you a lot of feedback on the performance of the application. If the user
interface hasn’t yet received attention from a designer (affectionately known as “programmer art”),
be sure to specify this as well so that users don’t spend time critiquing anything other than the
application’s functionality.

After you have told your users how to access your software and what you are looking for
feedback on, click Preview to see the email that your stakeholders will receive. Click Send to
deliver an email to the stakeholders you specified earlier. You can also create Feedback Request
work items (up to five, one for each item you added in Step 3) to track this request in Team
Foundation Server.

PROVIDING FEEDBACK

After you have requested feedback from your stakeholders, they will receive an email such as the one
shown in Figure 10-2. Before stakeholders can provide feedback, they need to install the Microsoft
Feedback Client by clicking the Install the Feedback Tool link in the email.

196 | CHAPTER 10 CAPTURING STAKEHOLDER FEEDBACK

NOTE The Feedback Client is freely downloadable from Microsoft and does not
require a Team Foundation Server client access license. Users do, however, need
to have appropriate permissions to your Team Foundation Server instance. At

a minimum, users need to be a member of the Work Item Only View Licensing
Group and be granted the Manage Test Plans right. See http://aka.ns/
MSWIOV13 for details.

=] LI Martin Hinshelwood (nkd ALM) is inviting you to provide feedback on team project Applications - Message (HTML) ? E - 0 %X
MESSAGE | gSyncit

B Ignore x E‘ﬁ (f) E"‘a ELMeeting [¥7 nakedALM - ma... &3 To Manager Yo Rules~ = |b ;%’6 % Find Q @
€ =2 a5 7 Team Email €2 Reply & Delete W OneNote [2) Related -
Move Mark Follow Translate Zoom Addto

[P Actions ™ nread Up~ - b select~ Evernote 5
Delete Respond Quick Steps o Moue Tags Editing Zoom Evernote ~

Delete Reply Reply Forward
Al [More - # Create New

&5 Junk~

Tue 12/11/2013 22:27
admin@visualstudio.com
Martin Hinshelwood (nkd ALM) is inviting you to provide feedback on team project Applications
To I Brian Randel (MCW Technologies);
Cc [martin@hinshehwood com

We want your feedback for the following items:

1. Does the Employee edit page provide the right level of functionality
Start vour feedback session
If the feedback tool is not already installed on your machine, install the feedback tool.

Thanks,
Martin Hinshelwood (nkd ALM)

If clicking the "Start your feedback session” link fails to launch the feedback session, copy the following URL (mfbclients:/; com/DefaultColl - 71id=4558) and pasie it

nto a browser address bar to start the session.

FIGURE 10-2

After the feedback tool is installed and a stakeholder is ready to give feedback, he can click the Start Your
Feedback Session link in the email to open the Feedback Client shown on the left side of Figure 10-3.

The menu at the top enables the stakeholder to dock the Feedback Client on either side of the monitor
or to float the window to another monitor. The instructions provided on this first page are from the
feedback request that you created earlier. After the stakeholder has installed or otherwise launched the
application for which he is providing feedback, he can click the Next button to start giving feedback.

http://aka.ms

Providing Feedback | 197

s o' (= | e
Provide Submit @@‘ﬂ http://localhost:666/ P~ c:” £ Home Page x ‘ ‘ ok
LAUNCH N
Follow the instructions below to launch the I
application to provide feedback on.
FABRIKAM FIBER
APPLICATION Support

@ http://staging.fabrikam.com
Dashboard Tickets Customers Employees Reports

Profile Dashboard

INSTRUCTIONS
Click on the Employee tab of the application

Ref Status Escalation Title Assigned To Time Open
AD14101 Assigned Level 1 Modem keeps resetting tself Drew Robbins 127 Days
AO014102 Closed Level2 Internet Upload speed slow o Brian Keller Closed
A014103 Open Level 1 FabFiber is the worst EVERN! None 126 Days
Drew Robbins AO14104 Assigned Level 1 changing channel by it self Drew Robbins 127 Days
Click Next after you have launched the application. AD14105 Assigned Level2 Viewing Recorded Programs Brian Keller 127 Days
s 3
TETE O AO14106 Assigned Level 1 Issues with service Jonathan Carler 126 Days
AO14107 Assigned Level 1 Poor Picture Quality Jonathan Carter 127 Days
@ My tickets AM14106 Assigned Level2 Channels gonel Brian Keller 127 Days
L wmy profile
. AO14109 Assigned Level 1 Not getting all my channels Brian Keller 126 Days

FIGURE 10-3

Figure 10-4 shows a stakeholder in the middle of providing feedback on this web application.

The top half of the Feedback Client scopes the specific questions the stakeholder has been asked
to address. In this case, we asked if the right information is displayed in the summary table. The
stakeholder responded by asking if an Employee ID column can be added to this table. He then
used the Screenshot button to capture a snippet of the table, and double-clicked on that snippet so
that he could annotate it with a red rectangle showing where he would like the Employee 1D
column to go.

NOTE By default, Microsoft Paint is used to edit a screen clipping any time the
user double-clicks within the Feedback Client. You can configure the Feedback
Client to use your own favorite image-editing tool by clicking on the gear icon at
the top of the window.

198

| CHAPTER 10 CAPTURING STAKEHOLDER FEEDBACK

#t @vMOv @ -a] x
Start Submit ow\cﬂﬁ hitp://localhost666/Employees D - ¢ Memployees ‘ ‘ INEARTH
ITEM: v A~
Does the Employee edit page provide the right level
of functionaltty FABRIKAM FIBER
Does this meet your requirements for creating and Support
ediing employee records?
Is all ofthe: right information displayed in the summary Dashboard Tickets Customers Employees Reports

table?
Profile Employees m

Actions First Name Last Name Address Phone Service Areas

& B & 1

Sereen with Voice Sereensnot Attach file
Voice anly

o Edit | Details | Delete Jonathan Carter 123 Standard Street
B I = Y Edit | Details | Delete Drew Robbins 45 Greenbel Way
This looks awesome! ~ Edit | Details | Delete ~ Brian Keller 361 North Avenue
Howevercan we have the employee ID
on the table? Maybe after the A?.'Dk"S:.. Drew Robbins Edit | Details | Delete James Conard 9342 2nd Street
Alerts: 5
Tickets: 3
v
< - = @ My tickets
Rate this item: 77 St
X My profile
Next @ Schedule v
< >

FIGURE 10-4

The Feedback Client can also be used to capture video and audio recordings while the stakeholder
is using the application. This can be the next best thing to actually being in the room watching over
the shoulder of the stakeholder as he uses the application. A video recording can be a powerful way
of truly understanding how users tend to interact with your software. Audio annotations enable a
stakeholder to provide commentary about his experience without having to take the time to type
notes. Video and audio contextualize the feedback you get from your stakeholders so that you can
better understand how to respond to it.

After a stakeholder is finished providing feedback on a particular feedback item, she can provide

a star rating before clicking Next. If there were other feedback items specified in this request, the
stakeholder would now be prompted with each one sequentially. At the end of the feedback session
the stakeholder has an opportunity to review the feedback she has captured before submitting it to
Team Foundation Server. This creates new Feedback Response work items (one for each Feedback
Request created earlier) that include all of the artifacts captured by the Feedback Client (video
recordings, text and audio annotations, and screen clippings).

The software development team can view this feedback using the built-in Feedback Requests work
item query (see Figure 10-5). If a piece of feedback results in a new bug or new requirement, the
team can use the New Linked Work Item button to create a new work item linked to this specific
Feedback Response work item. By linking the feedback directly from the stakeholders to the new
work item, you can provide additional context and traceability. This can help the developer who is
assigned to implement the fix or the new requirement specified in that work item.

Summary | 199

& @‘E] P s ollection/ o 5% a=edithid=2508uriage ~ @ & || [Feedback Response 4559°: . | ‘ & 18
0 Visual Studio Team Foundation Server 2013/ FabrikamFiber +- Martin Hinshelwood {akd...
HOME CODE WORK BULD" TEST® Search work items FoRd
Backiogs Queries
<
New~] Feedback Response 4559*: Feedback Response from MrHinsh for Does the Employee edit page provide the right level of funcationlity 4 of 4
Assigned to me W 9 oo *
Unsaved work items (1)
Tags Add
4 Recent work items
Feedback Response 4359 [Feedback Response from MrHinsh for Does the Employee edit page provide the right level of functionality] X
4 My favorites
Drag queries here to add them to.. NOTES STORIES SYSTEM INFO ALLLINKS(2) ATTACHMENTS HISTORY STATUS
4 Team favorites Stakeholder Comments Created By Martin Hinshelwood
Assigned To Martin Hinshelwood (nkd ALM) -
All Bugs .
This looks awesome! State Active -
Feedback * However can we have the employee ID on the table? Maybe after the Actions? Rating 4-Very Good .

My Code Reviews. CLASSIFICATION

Product Backlog Area FabrikamFiber\Development =

Sprint Backlog Iteration FabrikamFiber\Release 2\lteration 4 ¥
» My Queries
b Shared Queries

FIGURE 10-5

After you’ve reviewed the feedback and taken any necessary actions (such as fixing bugs or
implementing requirements), you can transition the State field of each Feedback Response to Closed.

Voluntary Feedback

Stakeholders can also provide unsolicited or voluntary feedback at any time by launching the Feedback
Client directly (Start & Microsoft Visual Studio 2013 = Microsoft Feedback Client) instead of from a
feedback request email. They are first prompted to connect to the appropriate Team Foundation Server
instance and team project where they want to provide feedback. After doing so, they can file feedback
using video, audio, text, and screen clippings as they did previously. The one thing to be careful of

here is that Feedback Response work items created when using a voluntary feedback method do not
show up in the default Feedback Requests work item query. Instead, you should write a custom query
to search for all work items of type Feedback Response. Feedback that is generated by the Feedback
Client in an unsolicited manner will by default have a title that starts with voluntary.

SUMMARY

In this chapter, you learned how you can request scoped feedback from your stakeholders to get
actionable data that can help refine your application development. You learned about the new
Feedback Client, which can capture rich information—including video recordings, text and audio
annotations, and screen clippings—from your users as they give feedback about your applications.

200 | CHAPTER 10 CAPTURING STAKEHOLDER FEEDBACK

Finally, you learned how you can use this feedback to create actionable bugs or new requirements.
Your team can use this feedback to ensure that you are building the right software to please your
stakeholders.

In the next chapter you begin to learn about the project management capabilities of Team
Foundation Server 2013.

PART IlI
Project Management

» CHAPTER 11: Introduction to Project Management
» CHAPTER 12: Agile Planning and Tracking

» CHAPTER 13: Using Reports, Portals, and Dashboards

11

Introduction to Project
Management

WHAT'S IN THIS CHAPTER?

> Getting to know the additions and enhancements to project man-
agement capabilities in Team Foundation Server 2013

> Understanding work items and process templates

> Managing and querying work items with Visual Studio, Excel,
Project, and Team Web Access

In Part I, you learned about the support that Team Foundation Server 2013 has for source
control. In Part I1, you learned about the importance of engaging with your project’s stake-
holders early and often during the development cycle to ensure that you are building the right
software. In Part III, you learn about how Team Foundation Server 2013 helps you plan and
track your software development projects in an agile manner.

Project management can involve many aspects of developing software, such as tracking
remaining work and open bugs, determining how much work you can commit to with your
available resources, and even helping to enforce a standard process of interaction between
your team members. You will see that Team Foundation Server 2013 provides capabilities to
help you achieve all of these things, and more.

This chapter starts with the enhancements to project management available in this release. It
also provides an overview of work item tracking, including some ways to manage and query
work items from Visual Studio, Excel, Project, and other clients. You find out about the
importance of process templates, including an overview of the process templates provided by
Microsoft for use with Team Foundation Server 2013.

204 | CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

In Chapter 12, you take a deeper look at the Agile Project Management tools, which you can use to
manage your backlog, plan your iterations, and track your work. Chapter 13 examines using report-
ing and SharePoint dashboards to get real-time insights into how your software development project
is going. You might also want to consider obtaining a copy of Professional Team Foundation Server
2013 (Wrox, 2013. ISBN 978-1-118-83634-7), to find out how you can extend and customize the
process templates in Team Foundation Server 2013 to meet the unique needs of your team.

PROJECT MANAGEMENT ENHANCEMENTS IN TEAM
FOUNDATION SERVER 2013

Team Foundation Server 2013 continues to build upon the project management enhancements made
to Team Foundation Server 2010 and the Agile Planning Tools that were added in Team Foundation
Server 2012. Specifically, the Team Foundation Server 2012 enhancements were a substantial
upgrade to the project management capabilities available in prior releases. This section highlights
some of the most significant improvements and additions in this release, and recaps some of the
enhancements first available in Team Foundation Server 2012. If you are new to Team Foundation
Server, concepts such as work items are explained in greater detail later in this chapter.

Rich Work Item Relationships

Rich work item relationships were introduced in Team Foundation Server 2010, but this capabil-

ity is worth covering here in case you are upgrading from an older release. According to Microsoft,
the top-requested project management feature by users of Team Foundation Server releases prior to
2010 was representing rich relationships between work items. In releases of Team Foundation Server
prior to 2010, it was possible to relate work items with one another only via a simple linking mecha-
nism. But these links didn’t provide any explicit meaning, directionality, or cardinality.

For example, a common project management use case for many software development projects

is to be able to model parent/child relationships between work items, such as for modeling a fea-
ture catalog or for detailing the tasks required to implement a particular requirement. You could
link these work items using releases of Team Foundation Server prior to 2010, but the links didn’t
carry enough meaning to convey proper parent/child relationships. Without directionality, it’s not
easy to discern which work item is the parent and which one is the child in this representation.
Furthermore, without cardinality, there isn’t a mechanism for restricting that each child work item
can have only one (at most) parent work item.

With Team Foundation Server 2010, Microsoft introduced rich relational linking between work
items, allowing for rich relationships between work items using a variety of link types. These link
types can also include directionality and cardinality. The most commonly used link types available
in Team Foundation Server are the following:

> Parent/child—This is a useful link type for representing hierarchies such as feature catalogs,
or for detailing task work items (children) that are used to implement a requirement or user

Project Management Enhancements in Team Foundation Server 2013 | 205

story (parent). Any work item can have zero or more child work items, and zero or one
parent work item.

> Tests/tested by—This link type is primarily intended to model the relationships between test
case work items and the requirements or user stories that they test. This makes it easier to
determine the quality of a given requirement or user story by examining the recent results for
its related test cases. A work item can test zero or more work items.

> Successorlpredecessor—The successor/predecessor link type is used to indicate work items
that have a dependency relationship with one another. For example, designing the user inter-
face for a web page is generally a predecessor to writing the code and markup that provides
the implementation of that web page. A work item can have zero or more successor and/or
predecessor links to other work items.

> Related—The related link type is the same as the legacy linking system found in previous
releases of Team Foundation Server. These link types are not directional, and they provide
no additional context about the type of relationship. If you had linked work items in a proj-
ect that was upgraded to Team Foundation Server 2010, Team Foundation Server 2012, or
Team Foundation Server 2013, those relationships are represented by the related link type.

You will discover that rich work item relationships provide the basis for other features and enhance-
ments across the project management capabilities of Team Foundation Server, such as enhanced que-
rying and reporting. It is also possible to define your own link types if you want, although for most
teams, the provided link types are sufficient. You can find more information on creating custom link
types at http://aka.ms/WICustomLinks.

NOTE Team Foundation Server does not have a mechanism for ensuring that
your links are semantically correct. For example, it’s possible to create circular
chains of successor/predecessor links, or tests/tested by relationships between
two work items that don’t involve a test case. If you notice that you have invalid
link types in your project, you can easily delete them at any time.

Agile Planning Tools

A new set of web-based tools added in Team Foundation Server 2012 provides an agile way of plan-
ning and tracking your software development project. Microsoft took the web-based features that
they added in Team Foundation Server 2012 and enhanced them over the release of 2012 with four
feature updates. In Team Foundation Server 2013, they added all new functionality for, among
other things, Portfolio Management. With the new frequent release cycle, Microsoft is finding it
much easier to respond to the market and add and maintain the features that you want. This tool-
ing is immediately familiar to any development team that practices Scrum, because it includes tools
for managing your product backlog, tracking velocity, planning iterations (or sprints), and viewing
a burn-down of hours remaining for a given iteration. It even includes a modern-day incarnation of

http://aka.ms/WICustomLinks

206 | CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

sticky notes on a whiteboard for tracking your project, as shown in Figure 11-1, which you can use
to track work through to completion.

In Team Foundation Server 2012 Update 1, Microsoft also introduced Kanban boards and a
cumulative flow report that allows teams that are following a continuous flow model to get better

support.
&« @\E{I http://caprica 20804/ FabrikamFiberCollection FabrikamFiber/_backlogs/ TaskBoard/heration%:203 O = & || [Fabrikem Fiber Team lterati.. % | |
¢ Visual Studio Team Foundation Server 2013/ FabrikamFiber ~
HOME CODE WORK BULD TEST Search
Backlogs Queries
< July
Features Fabrikam Fiber Team Iteration 3 .
Backlog items
Backlog Board Capacity Group by B
4 Past
lteration 1 TODC 45h IN PROGRESS 4 h DONE
lteration 2 v Technician can see service tickets on Windows Phone.
Iteration 3 . i
v Technician can report busy/late on Windows Phone.
4 Current
Iteration 4 4 Technician can send Design Review new feature Creat]
GPS location from implementation of with technician early featul
Windows Phone, 4 | feature. atspEs
2h 2} Brian Julia
1 i
Write code to get
0.5 GPS location and
025 resolve to address.
0 Brian Harry
4 Technician can edit Creste Ul for looking | Create database Design Review
customer contact up customer details. tables and sprocs to implementation of implementation with
details on Windows look up customers. feature. privacy policy team.
Phone. + 4 Amnie | § Brian Harry 2 Brian Julia
11h
4 Customer can find Create database for Design Review design of
the nearest Fabrikam branch office implementaticn of feature.
Fiber location. 4 | location lookup. feature.

It is important to point out, however, that you can use this tooling regardless of whether you are
practicing a Scrum or Kanban development methodology. All of the process templates included with
Team Foundation Server 2013 work out of the box with the Agile Planning and Tracking Tools, and
you can adapt your own custom or third-party process templates to utilize this tooling as well. The
process of customizing and adapting your own process templates to use this tooling is covered in
depth in Professional Team Foundation Server 2013.

NOTE You learn more about using the web-based Agile Planning Tools in
Chapter 12.

Project Management Enhancements in Team Foundation Server 2013 | 207

NOTE If you used Team Foundation Server 2010, you may have used the

Agile Planning Workbooks that came with the Microsoft Solutions Framework
(MSF) for Agile Software Development process template. The Agile Planning
Workbooks were a set of Excel-bound workbooks available to help you manage
your backlog, iterations, and resources. These workbooks were removed from
Team Foundation Server 2012 because the functionality they provided has been
replaced by the Agile Planning Tools you learn about in Chapter 12.

Test Case Management

Test cases began to be represented as work items in Team Foundation Server 2010. This made it
possible to create rich relationships between the code you are implementing and the results of your
quality assurance (QA) efforts.

For example, test case work items can be linked (via a tests/tested by link type) to requirements
work items. As tests are run, results can be reported on by querying a given requirement work
item, traversing to the related test cases, and viewing the results of recent test runs. Many of the
new default reports make use of this information to expose new perspectives on software quality.
In Team Foundation Server 2013, Microsoft added Test Management Tools to the web access; they
allow you to create, manage, and execute test cases in a browser.

NOTE You learn more about software testing and test case management in
Part VI.

Feedback Management

Chapter 10 covered how feedback can be requested and stored in Team Foundation Server 2013.
Two work item types were added in Team Foundation Server 2012 to support this: Feedback
Request and Feedback Response.

By storing feedback as work items in Team Foundation Server, you can link it to other work items.
For example, you might receive a Feedback Response from a stakeholder asking you to add a new
piece of functionality. This may in turn get linked to a new product backlog item that your team
plans to implement. This way when the development team wants to understand more details about
the original request, including who asked for it, they can view the original Feedback Response to
learn more.

You can also query feedback work items just like you would query any other work items in Team
Foundation Server. For example, you might query for Feedback Responses that do not have any

208 | CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

related product backlog items or bugs so that you can find feedback you have received that has not
yet been decomposed to the backlog.

Enhanced Reporting

One of the primary reasons Microsoft originally designed Team Foundation Server as an integrated
solution (including source control, project management, build automation, and so on) is to enable
multidimensional views into software development projects. Effectively managing a software project
is not unlike managing other complex projects. Making smart decisions requires you to have a rich
set of information resources available, usually in real time, which can help to inform resource allo-
cations, prioritizations, cuts, schedule changes, and other important evaluations.

The rich work item relationships that were added since Team Foundation Server 2010 have enabled
Microsoft to significantly enhance the types of reports available. As just one example, parent/child
relationships between product backlog items and tasks can produce a report showing the amount
of work needed to finish implementing any given backlog item. In Team Foundation Server 2013,
you can add parent items above product backlog items to enable higher-level portfolio views of your
features, initiatives, and goals. By further analyzing the tests/tested by links, you can get a view
into software quality for those same backlog items based on the results of your test cases. There are
countless other examples.

Along with the improvements made to Team Foundation Server 2010, Microsoft also made it much
easier to customize existing reports or create new ones, using Microsoft Excel to create reports
based on work item queries.

NOTE You learn more about reporting with Team Foundation Server 2013 in
Chapter 13.

SharePoint Server Dashboards

Most software development projects involve many stakeholders. In addition to the core program-
ming team, a team may include project managers, business analysts, testers, architects, and so on.
There may also be external stakeholders—such as end users or executive management—who have
a vested interest in monitoring the progress of your project. Most of these people don’t use Visual
Studio; so how do you effectively communicate project status to everyone?

Work Items | 209

Microsoft has integrated Team Foundation Server with SharePoint for this reason. Whenever you
create a team project with Team Foundation Server, you can optionally create a new SharePoint site
(or use an existing one). You can use this site as a dashboard to provide everybody on your extended
team with a view into your project. Your SharePoint site provides a web-based view of reports from
your team project, along with a document repository where you can store artifacts such as specifica-
tions and storyboards.

NOTE In Chapter 13, you learn about how you can use these SharePoint dash-
boards and customize them for your team.

WORK ITEMS

If you’re new to Team Foundation Server, you may be wondering what exactly a work item is. A
work item is the basic building block of the project management capabilities in Team Foundation
Server. Microsoft defines a work item as “...a database record that Team Foundation uses to track
the assignment and progress of work.”

Work Item Types

There are many kinds of work items, known as work item types. An instance of a work item type is
a work item, in much the same way that, in object-oriented programming (OOP), an instance of a
class is an object. A work item can represent explicit work that needs to be completed (or has been
completed), such as with a Task work item type. Work items can capture details of the software you
are building, such as with the Requirement or Product Backlog Item work item types. You can use
work items to capture problems, such as the Bug work item type (which indicates a problem with
your software) or the Impediment work item type (which might describe a problem with tooling,
processes, or people who are slowing down your project, or even preventing work from happen-
ing). Team Foundation Server includes other default work item types as well, and you can customize
these or even create your own.

NOTE You can learn more about work item type customization in Professional
Team Foundation Server 2013.

210 | CHAPTER 11

INTRODUCTION TO PROJECT MANAGEMENT

Work items include a handful of key elements, as shown in Table 11-1.

TABLE 11-1: Work Item Elements

ELEMENT

Field

Rule

Form

State

Transition

Link

History

DESCRIPTION

Fields contain the information that can be captured as part of a work item.

Some fields are shared by all work item types (called system fields). Examples of sys-
tem fields include Title (a one-line description of your work item), ID (a number that is
globally unique across your team project collection), and Assigned To (which can be
a user, such as a developer, who is working on a fix for a bug work item). Other fields
might be specific to a given work item type, such as the steps to reproduce field,
which is found in the Bug work item type and describes how a bug was discovered.

Rules dictate which values are allowed for given fields. For example, you might
decide that the Priority field for bugs should be assigned a value of 0, 1, or 2 and
cannot be left blank.

A form describes the way work items are displayed by work item clients such as
Visual Studio. (You learn more about some of the ways to view and interact with
work items later in this chapter.)

States indicate where in your project workflow a work item is. For example, a Bug
work item type in the MSF for Agile Software Development process template starts
out in an Active state when it is created. After a developer declares that the code
has been written or modified to fix a bug, the developer changes the state of the
Bug work item to the Resolved state. If a tester can verify that the bug can no longer
be reproduced, the tester changes the bug work item state to Closed. But if a tester
can still reproduce the bug, the work item needs to be reactivated (that is, the tes-
ter changes the state of the bug back to Active). This signals to the developers that
they still have work to do.

Transitions are similar to rules, but they define how a work item moves from one
state to another. In the previous example, a Bug work item must begin in an

Active state, and then it can move into a Resolved or Closed state. But, from a
Resolved state, it is also possible to move back to an Active state. This is all defined
by the transition model as part of the work item type. Additionally, transitions can
dictate that certain fields are required in order to move from one state to another.
For example, to move a bug from an Active to a Resolved state, a developer must
assign a reason (such as Fixed, As Designed, Cannot Reproduce, and so on).

Work items can include links to other work items, using any of the link types you
read about in the preceding section.

Work items also contain a full history that includes information about all changes to
fields and transitions.

Work Items | 211

Figure 11-2 shows an example of a Bug work item form that has been marked as Commited by the
development team. This screenshot is taken from a bug that was created with the Visual Studio
Scrum 2013 process template, which is the default for Team Foundation Server 2013. You learn
more about process templates later in this chapter.

& @‘m hitp://caprica:3080/tfs/ ollection/! 7 backlogs/|

¢ Visual Studio Team Foundation Server 2013/ FabrikamFiber ~

HOME CODE SMORMBUIILD L TEST. i o~

Baddogs Quel Bug 231: Customers with Canadian addresses not displaying properly. *
Features R 9 m g i
Backlog items

Tags Add.. ~
» Past

Current Customers with Canadian addresses not displaying properly.

Iteration 4

lteration FabrikamFiber\Release 2\lteration 3
STATUS DETAILS
Assigned To Brian ~ Effort 5

ner ez
5f Fab

State Committed Severity 3 - Medium ~ | pnFac

Reason Commitment made by the team Area FabriksmFiber\Development -

Backlog Pricrity 714285

ner cz
STEPSTO REPRODUCE SYSTEM TEST CASES TASKS (2)

ACCEPTANCE CRITERIA HISTORY LINKS (2} ATTACHMENTS Windc
A
3/18/2010 8:22:16 AM Bug filed on "Entering Canadian address.”
mer ce
] - dule
Step Result Title Video links
ptmen
no.
1 MNome Open http:/fabriksmfiber.com/dev
mer cz
Cancel | Eecepy
— it
I Brian 5 I Brian
| -
<

FIGURE 11-2

Figure 11-3 is a state diagram showing the transitions for the default Bug work item type included
with the Visual Studio Scrum 2013 process template. State diagrams for each work item type are

included with the documentation for the process templates provided by Microsoft. They are useful
for understanding how a work item behaves.

Areas and lterations

Most of the system fields available for work items (such as Title and ID) are fairly self-explanatory.
But there are two important fields—Area and Iteration—that warrant further discussion.

The Area field is a versatile field that you can use to create logical categories for your work items.

There are many ways to use areas, but a common approach is to define an area for each logical part
of your application.

For example, in Figure 11-2, this bug is assigned to the FabrikamFiber\Development area to indicate
that it is part of the development work being done for the FabrikamFiber team project. The com-
plete string that is used for this designation is referred to as an area path. Other area paths might
include FabrikamFiber\Development\Database Team, FabrikamFiber\Development\Devices Team.
Area paths are, by default, tied to teams, which you will learn about later.

212

| CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

[New backlog
item]

[Reconsidered

[Approved by the backlog item]

Product Owner]

[Removed from
the backlog]

Approved Removed

[Removed from
the backlog]

[Committed to
by the team] [Work stopped]

[Work finished] [Additional work found]

FIGURE 11-3

The Iteration field is useful for project planning and can indicate a time frame for when you plan to
address a work item. In Figure 11-2, this work item is assigned to FabrikamFiber\Release 2\Iteration
3, where FabrikamFiber is the name of the team project, and Release 2\Iteration 3 is the specific
iteration this work item is assigned to.

You can name your iterations whatever you’d like; some teams choose sequential iterations (such as
Sprint 1, Sprint 2, and so on), whereas others choose to map them to milestone releases (such as Beta
1, Beta 2, and so on). You can also create trees of iterations and employ a blend of naming strate-
gies, such as FabrikamFiber\Release 2\Iteration 3, as used in Figure 11-2.

Although you are not required to use iterations and areas to categorize your work items, they are
used by the web access system in the identification of current iteration (for Sprints) and backlog area
path (for teams). When used effectively, areas and iterations can enable you to employ a single team
project for dozens or even hundreds of applications across many years of iterative releases.

A team project administrator can manage the list of valid areas and iterations by opening Team Web
Access @ Settings and then clicking on either the Areas or Iterations tab. Figure 11-4 and
Figure 11-5 show the dialogs for editing iterations and areas, respectively.

Work ltems | 213

Control panel > FabrikamFiberCollection > FabrikamFiber Martin Hinshely
Overview lterations Areas Security Version Control

Iterations

Iterations

Show Expand all

Select the iterations you want to use for iteration planning (sprint planning). Selected
iterations will appear in your backlog view as iterations available for planning.

New New chil

Iterations Start Date End Date
4 FabrikamFiber 6/3/2013 12/31/2013
4 Release 2 6/3/2013 8/31/2013 for this team
] lteration 1 6/2/2012 6/14/2012
] Iteration 2 6/17/2013 6/28/2012
] lieration 3 712013 71272013
- lteration 4 TA15/2013 7/26/2013
T New
T New child
@ Open
X Delete
O Security

O Set as team's backlog iteration

FIGURE 11-4

L e S T - nAs

Control panel > FabrikamFiberCollection > FabrikamFiber Martin Hinshel
Overview lterations Security Version Control

Areas

Areas

Show Expand all

Select the areas your team owns. Selected areas will determine what shows up on
your team's backlog and what work items your team is responsible for.

New New child

Areas
[« FabrikamFiber
¥ 4 Development default area sub-areas are included
[m] Database Team
[m] Devices Team
-0d Web Team Set default
‘D New
‘D New child
 open
X Delete
0 Ssccurity

O Set as default area for team

0 Include sub-areas

FIGURE 11-5

214 | CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

A nice feature of area and iteration administration is that you can define granular permissions for
indicating who is allowed to modify or even read work items in each part of your team project. For
example, maybe you work for a government security contractor and there are bugs of a sensitive
nature that should be viewed only by team members with a certain security clearance. Or, maybe
you are building a prototype of the next version of your application and want to restrict access to
minimize the potential for leaks that your competitors could access. These sorts of restrictions are
possible by using iteration and area security settings. To access the permissions menu, highlight an
area path or iteration path then click the small down arrow on the left side of the row.

At any time, you can return to the area and iteration settings dialogs to add, rename, move, or
delete areas and iterations. You can move nodes to be children of other nodes by simply dragging
and dropping them on top of one another. If you rename or move areas or iterations for which there
are existing work items, those work items are automatically reassigned by Team Foundation Server
using the new name or location you choose. If you delete an area or iteration for which there are
existing work items, you are prompted for the value that Team Foundation Server should use to
replace the iteration or area value in affected work items.

Starting with Team Foundation Server 2012, you can also use the iteration settings dialog to assign
start and end dates to iterations. This information is used by the Agile Planning Tools you read
about in Chapter 12 to determine which iteration is currently active. Iteration dates are also used to
help Team Foundation Server render certain reports, such as the burn-down report, which shows the
amount of work remaining for an iteration and how remaining work is trending over time.

You will discover that work items are used throughout Team Foundation Server. You can use them
to help manage your product backlog and plan your iterations, which is covered in Chapter 12.
Work items form the basis of many of the reports you read about in Chapter 13. You can link them
to changesets (which you read about in Part I) to provide more information about what changes
were made to a set of files and why. Project managers and team leaders can also use work items for
project planning and to help control which work team members should be focused on, and how they
should interact with other team members.

Work items, work item types, and all of the activities involving work items (editing, querying,
reporting, and so on) are usually referred to collectively as the work item tracking capability of
Team Foundation Server. Now that you understand the basics of work items, you are ready to learn
about process templates, which include the definitions for work item types.

PROCESS TEMPLATES

A process template defines the default characteristics of any new team project. Process templates are
a powerful concept in Team Foundation Server. A process template includes the default work item
types, reports, documents, process guidance, and other associated artifacts that provide you with
everything you need to get started with your software project.

Choosing the right process template is an important step in creating a new team project. You
should carefully choose the best process template for your team’s preferred work style and the type

Process Templates | 215

of project you are working on. This section helps you understand the types of process templates
available. While you are reading this section, you should be thinking about the following types of
questions:

> How does your team work today?

> Are there ways your team works today that you’d like to change?

> Do you need a formal process, or do you work better as a more ad-hoc team?
>

Are there areas of your process where you prefer to be more agile, and other areas where you
need to be more formal? (For example, maybe you want to manage your team’s iterations

in an agile manner, but decisions about requirements require formal negotiations with your
customer.)

> Do you have resources to invest in and maintain your own custom process template, or
would one provided by Microsoft or a reputable third party be a better solution?

> What other stakeholders should be involved in the decision-making process for answering
these questions?

If answering these questions proves difficult for you or your team, you may want to start with a
small pilot project first and see how your team performs when using one of the existing process tem-
plates. You can then use the findings from that pilot to determine which process template to start
with, and what changes (if any) you need to make to that process template before using it for subse-
quent projects. Process template customization is covered in Professional Team Foundation Server
2013.

Embracing the right process template can have a transformational effect on an organization by
providing everybody on the team with a predictable and repeatable process for capturing and com-
municating information, making decisions, and ensuring that you are delivering on customer expec-
tations. This, in turn, can drive up software quality and development velocity, which ultimately
delivers more value to your customers.

MSF for Agile Software Development

The MSF for Agile Software Development 2013 process template included with Team Foundation
Server 2013 is designed for teams who are following the Microsoft Solution Framework methodol-
ogy but use some agile terminology, such as User Story or Iteration. If you have a clear separation of
coders and testers and you want to triage bugs separately from the backlog, you might find that this
process template meets your needs.

If you have built, or intend to build, a development methodology around the Scrum framework, you
may prefer the relatively newer Visual Studio Scrum 2013 process template described later in this
section. Visual Studio Scrum uses terminology that will immediately be familiar to any team prac-
ticing agile or lean processes. In practice, teams that practice Scrum can use both of these process
templates, but the MSF for Agile Software Development process template has specific limitations

216 | CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

that are not conducive to an agile approach to software development. For example, bugs are not on
the backlog and there is a clear separation between coding and testing.

NOTE MSF version 1 was introduced by Microsoft in 1993, and version 4 was
first codified as a set of process templates with the release of Team Foundation
Server 2005. MSF provides guidelines, role definitions, and other materials to

belp consulting organizations deliver IT solutions, including software develop-
ment projects.

A key tenet of agile methodologies is that requirements will evolve over time, both as business needs
change and as customers begin to use interim releases of your software. For this reason, the MSF
for Agile Software Development process template assumes that teams will be frequently refining
requirements and reprioritizing work by maintaining a common backlog of requirements (which are
captured as user stories in this template). Periods of work are time-boxed into short lengths of time
(iterations). Prior to each iteration, the development team works with the customer to prioritize the
backlog, and the top user stories on the backlog are then addressed in that iteration. In this process,
bugs are largely ignored and are dealt with separately in Excel.

Another important aspect of agile methodologies is, as the Agile Manifesto describes it, that they
value “individuals and interactions over processes and tools.” This doesn’t mean that processes and
tools shouldn’t be used, but instead that they sometimes can get in the way of empowering people to
communicate and work together in order to make smart decisions. This principle is also reflected in
the MSF for Agile Software Development process template, which defines a relatively small number
of states, fields, transitions, and work item types as compared with other process templates, such

as the MSF for Capability Maturity Model Integration (CMMI) Process Improvement process tem-
plate. By keeping the process simple, the goal is to prevent any unnecessary burdens from getting in
the way of people making the right decisions.

Following are the work item types available in the MSF for Agile Software Development process

template:
> Bug
> Issue
> Task
> Test Case
>

User Story

Process Templates | 217

NOTE There are a few additional work item types present in all of the
Microsoft-supplied process templates (and available to be added to custom and
third-party process templates). These cannot be created directly, but are instead
created during special situations. Code Review Request and Code Review
Response work items are used to provide the code review functionality you read
about in Chapter 3. Feedback Request and Feedback Response work item types
are created during the process of requesting feedback and providing feedback
from stakebolders, as you read about earlier in this chapter. Finally, the Shared
Steps work item type is essentially a special instance of a test case. You learn
more about Shared Steps and Test Cases in Part VI. Most team members won’t
interact with Shared Steps directly, so they are excluded from the preceding list.

NOTE You can explore the MSF for Agile Software Development 2013 pro-
cess template in depth, including more detail on each of the included work item
types, at http://aka.ms/MSFAgilel3.

MSF for CMMI Process Improvement

The MSF for CMMI Process Improvement 2013 process template is designed for teams who want
to, or may have to, take a more formal approach toward developing software. This process tem-
plate is based on the Capability Maturity Model Integration (CMMI) for Development, which was
developed by the Software Engineering Institute, a part of Carnegie Mellon University. Don’t think
that if you require CMMI that this is the only template that you can use. The Visual Studio Scrum
2013 template also fulfills the tenants required for compliance to CMMI. CMMI not only defines
a framework for developing software, but also prescribes ways for an organization to constantly
improve their processes in an objective and repeatable way. An organization can even become
certified by an outside appraiser who can verify whether it is performing at one of five CMMI
maturity levels.

CMMI is a popular model for developing software by such organizations as systems integrators (SIs)
and software factories. There is very little subjectivity in the model, so it allows an organization to
represent its services using a standard that is well understood globally, and can be appraised and
certified by a neutral third-party organization. CMMI is also used for developing many mission-
critical systems, such as by NASA or defense contractors. In fact, the Software Engineering Institute

http://aka.ms/MSFAgile13

218 | CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

at Carnegie Mellon was originally funded by the United States Department of Defense to help them
find better ways of managing their projects.

NOTE The United States Department of Defense has backed away from the
more prescriptive methodologies in recent years due to systematic failures to
deliver the required software on time and on budget. You can find out more
about how they have changed their procurement rules at http://aka.ms/
AgileDOD.

As you might expect, the MSF for CMMI Process Improvement process template is more complex
than its agile counterpart. The CMMI template includes the following work item types:

> Bug

Change Request
Issue
Requirement
Review

Risk

Task

Test Case

Y Y Y VY Y VY Y

NOTE The Feedback, Code Review, and Shared Steps work item types are also
omitted from this list for the same reason as mentioned previously in the
discussion of the MSF for Agile Software Development process template.

In addition to including three additional work item types, the work item types themselves are also
more complex in the CMMI process template than in the Agile process template. Compare the
screenshot of a bug work item form from the Agile process template, shown in Figure 11-2, with a
bug work item form from the CMMI process template, shown in Figure 11-6. Take note of the addi-
tional fields, such as Severity, Triage, and Blocked, which were not in the bug work item from the
Scrum process template. There are also additional tabs across the lower half of the Bug work item
from the CMMI process template.

The states and transitions of work item types from the CMMI process template are also more com-
plex than in the Scrum process template. Now, compare the state diagram of the Bug work item type
from the Scrum process template, shown in Figure 11-3, with the state diagram of the Bug work
item type from the CMMI process template, shown in Figure 11-7.

http://aka.ms

Process Templates | 219

L3 ()| B hetp://caprica:2080/tfs/ Default Collection/CMMI £ = & || [F] Microsoft Team Foundatio... = | (5]

I
Studio Team Foundation Server 2013 cMMI ~

HOME CODE WORK BULD TEST

Search work items P~

Overview
— New Bug 1: Field Title’ cannot be empty.

o+ Reqrens

© 2 1 [CopytemplateURL

Iteration 0 Tags Add..

Omoh ‘

Requirements: 1 nol STATUS

Assigned To Martin Hinshelwood
State Proposed

Reason New

Team favorites

Additemstoyo| ~ REPROSTEPS SYMPTOM SYSTEMINFO FIX
You can add wa & € 3

favorites.

Rooms

CMMI Team R

PLANNING

Priority 2
Severity 3 - Medium
Triage Pending
Blocked No

TESTCASES QTHER

CLASSIFICATION
v | Area CMMI

“

fteration CMMN\teration 0
~ RootCause Unknown
HISTORY ATTACHMENTS ALL LINKS

& <3

Save Saveand close

Cancel

In the room

FIGURE 11-6

New

!

Proposed

A
[Approved],
Investigate

[Investigation
Complete]

[Rejected)], Deferred,
Duplicate

A

[Fixed], Cannot Reproduce,
Deferred, Duplicate, As
Designed, Obsolete

[Not fixed],
Test Failed

Resolved

Verified

[Closed in Error],
Regression

Closed

A

FIGURE 11-7

220 | CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

The Agile process template uses Active = Resolved = Closed as its state model, which is different
from the Scrum template. The key difference you should notice between the Agile and CMMI state
diagrams is that the CMMI process template has an additional Proposed state. This explicit decision
stage is required in the CMMI process template before a developer is assigned to work on a bug.
This is also fulfilled by the New state in the Visual Studio Scrum 2013 template. This Proposed,

or New, state in the Scrum template should cause the team to ask such questions as, “Is this really

a bug, or does this represent a request to change the way certain functionality was designed? Will
fixing this bug have unintended side effects on other parts of the software? If we choose to work on
this bug, how should it be prioritized against our other work?”

This shouldn’t imply that those aren’t important questions to be asking even if you are using the
Agile process template, and a seasoned team practicing an agile methodology will likely already be
mentally following this checklist as they triage bugs. But the CMMI and Scrum process templates
make this step explicit, which helps to ensure that this step takes place for every bug, regardless of
the experience level of the development team.

Another way of thinking of CMMI is to realize that by following the model, NASA isn’t guaran-
teed that it will never again develop a rocket that fails because of a software defect. But if NASA

is following CMMI correctly, then it can guarantee that an agreed-upon process was used to make
decisions leading up to that defect. And conversely, in the event of a defect, it can audit the process
that was used, examine the assumptions that went into the decision-making process, and learn from
those mistakes in the interest of refining its process and helping to ensure that the same mistake
never happens again. In Scrum, this is fulfilled by the review and retrospective.

It is also important to point out that using a process template alone does not ensure that an organi-
zation can successfully pass a CMMI certification audit. This is akin to the fact that simply having
a smoke alarm and a fire extinguisher on hand won’t keep a family safe if they don’t know how to
properly use and maintain this equipment.

But Team Foundation Server, along with the appropriate process template, can be very useful for
helping an organization that wants to adopt CMMI as its model of development. Team Foundation
Server features such as end-to-end traceability, multidimensional reporting, rich linking (between
work items, and with other artifacts such as builds and changesets), and preservation of history are
all incredibly useful capabilities that can help an organization to prepare for and pass a CMMI audit.

NOTE You can explore the MSF for CMMI Process Improvement 2013 pro-
cess template in depth, including more detail on each of the included work item
types, at http://aka.ms/MSFCMMI13.

http://aka.ms/MSFCMMI13

Process Templates | 221

CMMI DEVELOPMENT METHODOLOGY

There is a common misconception that CMMI dictates a waterfall, or Big Design
Up Front, development methodology. Although there is certainly a strong cor-
relation between teams practicing waterfall methodologies and those following a
CMMI model, CMMI actually does not define a development methodology. You
can choose to use an agile development methodology along with CMMI if you
want to, and that is made much easier with the Visual Studio Scrum 2013 template.

Visual Studio Scrum

Although there are many development methodologies that make up the agile movement, Scrum has
established itself as the most popular and arguably the most successful. Scrum defines clear roles,
responsibilities, and activities that team members practicing Scrum are encouraged to follow.

Over the years, a common vocabulary has arisen around the Lean-Agile movements and the most
commonly used vocabulary is that of the Scrum framework. Teams hold a daily Scrum (a daily
meeting where team members inspect what they have done in the last 24 hours and adapt the plan
for the next 24 hours). Anything that is identified as a blocker is created as an impediment and
tracked. In Scrum, the Project Manager role has been identified as containing two conflicting perso-
nas, the Scrum Master, who is accountable and responsible for the process, and the Product Owner,
who is accountable and responsible for the work. If you want to know more about the Scrum pro-
cess, consult the Scrum guide (http://aka.ms/ScrumGuides).

The Visual Studio Scrum process template was introduced specifically to help teams that want to
practice Scrum and use Team Foundation Server; however, as the Scrum terminology is the most
commonly used by lean-agile teams, it fits many organizations. It was made available as a download
a few months after Team Foundation Server 2010 first shipped. It became a built-in process template
in Team Foundation Server 2012 where it also became the default.

So, you might now be wondering what purpose the MSF for Agile Software Development process tem-
plate has, now that the Visual Studio Scrum process templates are available. Many teams created their
team projects before the Scrum template existed and Microsoft is still required to support it (much
like Silverlight) for at least 10 years. As the Scrum template is now the default and as most internal
teams within Microsoft use it, we expect the use cases for the other templates to ebb over time.

Instead of User Stories or Requirements, Visual Studio Scrum uses Product Backlog Item work item
types. Instead of Issues or Risks, Visual Studio Scrum uses Impediment work item types. In short,

http://aka.ms/ScrumGuides

222 | CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

if you practice any form of lean-agile or are considering practicing Scrum, the Visual Studio Scrum
process template is designed to help you do so while making the most of Team Foundation Server.

If you used the Visual Studio Scrum 1.0 process template that shipped as an add-on to Team
Foundation Server 2010, you will notice that in Team Foundation Server 2012 the Sprint work item
type was removed. The Sprint work item type was used by Visual Studio Scrum 1.0 to enable teams
to define start and end dates for their iterations, and it was somewhat of a hack. The need for rep-
resenting this information in a work item disappeared once Team Foundation Server 2012 enabled
you to define start and end dates for your iterations, as you discovered earlier in this chapter.

NOTE You can explore the Visual Studio Scrum 2013 process template in depth,
including more detail on each of the included work item types, at http: //aka
.ms/Scruml3.

COMPROMISING WITH SCRUM

If you want to practice lean-agile, the Visual Studio Scrum process template pro-
vides a great option for doing so. But you shouldn’t feel locked into this process
template if there are other process templates you like better, such as the MSF for
Agile Software Development process template.

For example, you may prefer not to have your bugs in your backlog, where they
would be visible to everyone. There are additional reports that are available in the
MSF for Agile process template; however, these can be easily ported to the Scrum
template. Indeed you do not need to be doing Scrum to use and get value from the
Scrum template. As long as you are following one of the lean-agile approaches, this
template usually represents the best fit. As you discover in Chapter 12, you can still
take advantage of the Agile Planning Tools for managing your product backlog,
planning your iterations, and tracking your progress in a very Scrum-like manner,
regardless of which process template you use. These tools are even available for
teams who choose the MSF for CMMI process template.

Third-party Process Templates

Several third parties provide process templates for use with Team Foundation Server. A list of some
of these third-party process templates can be found at http://aka.ms/ProcessTemplates. Process
templates from third parties are usually licensed for free use, and sometimes additional services such
as consulting or complementary products are available for purchase from the organizations building
those process templates.

There have been several great third-party process templates available over the years, but you
should carefully consider the support and road map implications of adopting a third-party process

http://aka
http://aka.ms/ProcessTemplates

Managing Work Items | 223

template. For example, when the next version of Team Foundation Server is released, will the pro-
cess template be upgraded to take advantage of new or improved features? If so, what is the upgrade
path for migrating existing projects to the new version of the process template?

If you aren’t prepared to take over the maintenance of the process template in the event that the
third party chooses to stop investing in it, then you might want to consider one of the aforemen-
tioned process templates that are built and supported by Microsoft.

Custom Process Templates

Finally, you might decide that none of the process templates provided by Microsoft or third parties
fit the needs of your team or your development project. Although you could certainly create your
own process template from scratch, a far more common approach is to start with an existing process
template and customize it to suit your needs. You can learn about customizing process templates in
the companion to this book, Professional Team Foundation Server 2013.

Now that you understand your options for choosing a process template, the next section introduces
you to some of the different ways you can manage your work items.

MANAGING WORK ITEMS

There are many ways of accessing your work items within Team Foundation Server 2013. Because
work items are used by many stakeholders across your team (including programmers, testers, proj-
ect managers, and so on), and some of these roles don’t use Visual Studio as their primary tool,
Microsoft provides many client options for managing work items.

In this section you are introduced to using Visual Studio, Excel, Project, and Team Web Access to
access your work items. This chapter doesn’t cover every aspect of accessing work items from each
of these clients, but it gives you a better idea of the ways each client can be used, as well as the rela-
tive benefits of each, and provides you with pointers to detailed documentation for each client.

The list of clients in this section isn’t exhaustive. There are also dozens of third-party clients. Testers
might use Microsoft Test Manager (discussed in Part VI). Eclipse users can utilize Team Explorer
Everywhere. You can even write your own clients using the Team Foundation Server object model if
you want to, and partner solutions are plentiful, such as Team Companion, which integrates work
items directly into Microsoft Outlook.

Using Visual Studio

In Chapter 2, you learned about using Team Explorer to access Team Foundation Server from
within Visual Studio. Team Explorer not only provides access for Visual Studio users wanting to
connect to Team Foundation Server, but it also installs the add-ins required to work with Excel

and Project. So, even if you don’t plan to use Visual Studio, if you want to use Excel or Project with
Team Foundation Server, you should install Team Explorer. Team Explorer is a free download from
Microsoft, but you need to be properly licensed with a client access license before you are permitted
to access Team Foundation Server.

224

| CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

Creating Work ltems

Work items are easy to create using Visual Studio. Open the Team Explorer window of Visual
Studio 2013 (click View @ Team Explorer if this window is not visible) and click the Work Items
link. (If you don’t see the Work Items link, try first clicking the Home icon at the top of the Team
Explorer pane.) Now, click Work Items &> New Work Item. The fly-out menu reveals the work item
types that are available in your team project. Click the work item type that you want to create an
instance of. An empty work item form displays, similar to that shown in Figure 11-2.

The new work item form varies in appearance based on the work item type you chose to create. For
the most part, filling out the work item form is self-explanatory, but there are a few things to notice
when creating and editing work items.

The first is that your work item won’t have an ID until it has been successfully saved for the first
time. The ID is a number that is globally unique across your team project collection, numbered
sequentially, starting with 1. This means that the first work item you save within a new team project
won’t have an ID of 1 if there are existing team projects in your team project collection that also
contain work items.

NOTE Occasionally, you may encounter work item types that you can’t edit
completely within a particular work item client. The Steps tab of the Test Case
and Shared Steps work item types exhibit this behavior; this tab cannot be edited
within Team Explorer. The Steps tab is implemented as a custom control, and

is designed to be edited by testers with Microsoft Test Manager or in Team Web
Access. (Microsoft Test Manager is discussed in greater detail in Part V1.)

For now, your work item probably says something like “New Bug 1” at the top of the form. The
number 1 isn’t your work item’s IDj; it’s just a temporary number used by Visual Studio to track
unsaved work items. In fact, until it is saved, Team Foundation Server won’t know about your work
item.

Before you can successfully save this work item, you need to provide a title for it, at a minimum.
There may be other required fields as well, depending on the work item type you selected. An error
message at the top of the form will indicate any remaining fields that you must complete. Some
required fields may appear on other tabs.

Another thing to notice about work items is that you can’t skip states. A work item must be saved
in one state prior to moving to the next state. For example, if you refer to Figure 11-3, notice that
a bug from the Visual Studio Scrum process template generally moves from New to Approved to
Committed to Done.

But you can’t immediately create a new bug and save it in the Done state, even if you already fixed
the bug that you found, and you’re just creating the bug work item as a record of what you did. You
must first save it in a New state, change the state to Approved, and save it again.

Managing Work Items | 225

This may seem cumbersome at first, but the reason for this requirement is that the work item

type may define rules that must be satisfied as a work item transitions from one state to another.
Additionally, the meaning of some fields change during a work item’s lifecycle, so each time you save
in a different state, the available choices for a field may change. For example, when you create a new
bug using the Scrum process template, the Reason field helps to indicate how a bug was discovered.
When you are transitioning the same bug from Committed to Done, the Reason state indicates why
you are doing so (the work was completed).

The interface for creating and editing work items with Visual Studio is very straightforward. What
can be difficult to master is an understanding of all of the fields found throughout the work item
types, their transitions, and when to use them, and so on.

For the process templates provided by Microsoft, the documentation is very thorough, and is recom-
mended reading to help you decide how to best adopt these process templates within your team. But
wholesale adoption of these templates isn’t for every team. You should feel empowered as a team to
decide which fields are more or less important than others. You may even decide to add to or sim-
plify the work item types to better meet your needs.

DELETING WORK ITEMS

A common complaint by people who are new to using work items with Team
Foundation Server is that work items can’t (easily) be deleted. This was a design
decision by Microsoft. Organizations do not want bugs, requirements, or other
important work items in a project to be accidentally (or maliciously) deleted, so
there isn’t an option within Visual Studio or the other clients in this chapter for
deleting work items.

But deletion of a work item is possible from a command prompt. Open a com-
mand prompt, navigate to \Program Files\Microsoft Visual Studio 11.0\
Common7\IDE, and type witadmin destroywi /? for the command-line syntax
help. This action is not reversible, so take care when using it.

Microsoft’s recommended approach is to transition work items as appropriate
instead of deleting them. For example, if you examine the state diagram in Figure
11-3, notice that in the Visual Studio Scrum process template, the Bug work item
can be transitioned to the Removed state.

Although it might be tempting to just want to delete these work items instead of
resolving them using one of these reasons, the resolution data might prove useful
later. For example, a QA lead could discover that a tester isn’t doing his job effec-
tively when filing erroneous bugs. It’s easy to generate a report later on showing, for
example, all of the bugs created by a tester that were later discovered to be dupli-
cates of existing bugs. But if those same work items are deleted, they won’t show up
in such a report.

226 | CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

Work Item Queries

Now that you know how to create work items, the next task you should learn about is how to find
them. You can always search for work items by typing the work item ID or some other text into the
Search Work Items textbox at the top of Team Explorer. Indeed you can do very complex searches
just using this box. Find out more on http://aka.ms/SearchBoxQueries. Chances are you’ll want
to use queries most of the time.

The process template you are using probably includes some useful built-in queries already. Open
Team Explorer & Work Items to reveal the My Queries and Shared Queries folders. The Shared
Queries folder is visible to everybody on the team, whereas My Queries provides a location to save
your own personal queries, which may be useful only to you. By keeping specialized queries in My
Queries, you can avoid creating too much clutter for your fellow team members. You can also use
subfolders in both of these categories to further organize your queries.

NOTE You should consider using permissions to lock down queries within the
Shared Queries node to prevent someone from accidentally overwriting a shared
query with their own, which might cause unexpected results for others. An
administrator can set security on a query or query folder within Shared Queries
by right-clicking it and selecting Security.

If you have an existing query, you can simply double-click it to run it. Your results will vary based
on the type of query you run, and the number of matching work items in your team project, but it
should look something like the query results shown in Figure 11-8.

o Sprint Backlog [Results] - Microsoft Visual Studio 03 ¥ | QuickLaunch (Cul+Q) P & x
FLE EDT VIEW DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP Martin Hinshelwood (nkdALM) - i
[[l P Attach... = A_iD-BNL-.
4l Sprint Backiog [P ~ Team Explorer - Work Items > ax
i Save Results Save Query 0 i & @ @ @ =€ 3= [Openin Microsoft Office ~ #5 Edit Query 4§ Column Options [<] ¥ @ Search Work ftems (Ctr+) P
Z Quey Results: 33 tems found (3 top level, 23 nked tems, T curtentlyselcted). Work Items | Fabriomfiber .
% smlD o Title Backlog Priority | Assigned ... | State Remainin.. | Blocked 4
Bl Technician can see service tickets on Windows Phone. 0 Brian Approved New Work ltem ~ | New Query
5 212 Review application design with technicians, Julie Done 4 My Favorites
8
213 Design application workflow. Brian Done Drag queries here to add them to your favorites
214 Create W 7 app.
reate Windows Phone 7 app Brian InProgress 1 s
215 Submit application to Marketplace., Annie Done
[. & My Queries
216 4 Technician can report busy/late on Windows Phone. 142857 Brian Committed S
a
217 Review feature with technician early adopters, Julia Dene e Shared Buenes
4 1 Current Sprint
212 Implement feature in app and wire up to back-end database. Brian Harry Done 5 Blocked Tasks
219 Create Ul forfesture, Annie Done = Open Impediments
220 Design implementation of festure. Brian InProgress 1 % Sprint Backlog
2 4 Technician can send GPS lcation from Windows Phone. 285714 Brian Committed 5 Test Cases
22 Review new feature with technician carly adopters. Julie Done % Unfinished Work
223 Create Ul for new feature. Annie Done 5 Workin Progress
24 Wite code to get GPS location and resolve to address. Brian Harry Done Ba
25 Design implementation of feature. Brian ToDo 2 E ’:" Z:E‘k
226 4 Technician can edit customer contact details on Windows Phone. 228571 Brian Committed eechac
. B My Code Reviews
227 Review implementation with privacy policy team. Julia Done o Product Backiog
28 Create Ul for looking up customer details. Annie ToDeo 4
29 Design implementation of feature., Brian InProgress 2 4 Work Item Templates
20 Create database tables and sprocs to look up customers. Brian Harry Te De 5 Configure.
EEn} 4 Customer can find the nearest Fabrikam Fiber location 571428 Brian New & Templates
235 Create database for branch office location lookup Brian Harry To De 4
236 Design implementation of festure. Brian ToDo 1
‘ ’ »
_ MEEE Froperties Solution Explorer | Team Explorer | Class View
Output

FIGURE 11-8

http://aka.ms/SearchBoxQueries

Managing Work Items | 227

The query results shown in Figure 11-8 are from a Tree of Work Items query. This figure shows a
Sprint Backlog query from a team project that was created using the Visual Studio Scrum process
template, but other tree queries look similar. Tree queries return a list of work items matching your
query, and groups them according to their parent/child relationships. In this example, there are top-
level Product Backlog Item work items that are linked to child Task work items.

Another type of query is Work Items and Direct Links. This type of query is similar to the Tree of
Work Items query, except that you are not limited to parent/child links. For example, you can spec-
ify that you want to see all user stories and their test cases as represented by a tested by link type.
You can even construct a query that shows all of your user stories that do not have linked test cases;
this is useful for spotting potential holes in your test plan.

Finally, the Flat List query type does not show any link types and is the same type of query found in
versions of Team Foundation Server prior to 2010.

From within the query results window, you can open a work item simply by double-clicking it. You
also have several options available to you from the toolbar located at the top of the query results
window. You can place your mouse over these toolbar icons to learn more about them. The avail-
able options vary slightly between query types, but all of them enable you to create new work items
(linked to any work items you have highlighted), to open your query results in Microsoft Project

or Excel (more on this later), to change which columns are displayed in your query results (and in
which order), and to edit the query you are working with.

The query editor shown in Figure 11-9 is the result of having opened the query from Figure 11-8 and
clicking Edit Query.

Dd Sprint Backlog [Editor] - Microsoft Visual Studio C3 Y | Quick Launch (Ctrl+Q) P - 8 x
FLE EDIT VIEW DEBUG TEAM TOOLS TEST ARCHITECTURE ANALVZE WINDOW HELP Martin Hinshelwoed (nkdALM) - BB
e-- H-t W » Attach.. - A.D-wRd-
f T T MR sprint Backiog [Resuts] ~ Team Explorer - Work ltems -1 x
& Save Query P Run % Tree of Work ltems - @) View Results g Column Options [<] @ ¥ @ Search Work ltems (Ctrl+) P~
£ And/Or Field Operator Value Work Items | FabrikemFiber <
I Teom Project | = @Project New Work ltem + | New Query
E And Work ltem Type | In Group Microsoft.RequirementCategory 4 My Favorites
- And teration Path | Under @Project Drag queries here to add them to your favorites
And State In New, Approved, Committed, Done 4 Queries
And Area Path Under @Project & My Queries
* Click here to add a clause 4 &% Shared Queries
4] Current Sprint
Filters for linked work items 5 Blocked Tasks
o o o . . 5 Open Impediments
And/Or eld perator Value % Sprint Backiog
3 Work ltem Type | In Group Microsoft TaskCategory I8 Test Cases
And teration Path Under FabriksmFiber\Release 2\lteration 3 8 Unfinished Work
S Workin Progress
And State In To Do, In Progress, Done = al
And Area Path Under @Project 5 AllBugs
N 5 Feedback
or Work ftem Type | In Group Microsoft RequirementCategory B My Code Reviews
And Iteration Path | Under FabrikamFiber\Release 2\lteration 3 % Product Backlog
And State In New, Approved, Commitied, Done || 4 Work tem Templates
4 Linking Filters Configure..
Match top-level work items first Type of Tree: Parent/Child & Templates
Match linked work items first
_ [Properties Solution Explorer | Team Explorer | Class View
Output

FIGURE 11-9

228

| CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

Even if you’ve never used queries with Team Foundation Server before, this query should be fairly
straightforward to reverse-engineer in order to learn what it does.

The first row (Team Project = @Project) means that your query results should be scoped to the
team project where the query is saved. If you delete this row, your results may return work items
from the entire team project collection. @Project is a query variable. Query variables are converted
into their respective values when the query is executed. So, for this project, @Project resolves to
FabrikamFiber. By using query variables, you can write more flexible queries. The two other query
variables available to you are eve (which is converted into the username of the person running a
query) and @Today (which is converted into today’s date).

The next row of the query (AND Iteration Path Under FabrikamFiber\Release 1\Iteration
3) defines the specific iteration this query should look for work items in. You could change this
clause to look for work items from Sprint 4 by changing the 3 to a 4, or from the entire Release 1
path by simply removing \Iteration 3 from the end of this clause.

Clauses three, four, and five are grouped (as shown by the vertical bracket on the far-left side of
the query). This means that they should be interpreted together in much the same way that math
operations within parentheses or brackets are interpreted together. These clauses, when interpreted
together, mean: only return work items with a work item type of Product Backlog Item or a work
item type of Task or a work item of type Bug.

The last clause indicates that work items with a State of Removed should not be returned. In the
“Deleting Work Items” sidebar earlier you learned that Removed is a state that is available in the
Visual Studio Scrum process template to enable you to easily remove work from your backlog with-
out formally deleting the work item.

Finally, because the query type for this query is a Tree of Work Items, there is a second grid (labeled
Filters for linked work item types), which enables you to specify any constraints on the child work
items that are returned. In this example, only task work items are returned as children.

NOTE Work item queries can be very powerful, and the options for creating
queries are endless. You can find a full guide for understanding how to use que-
ries at http://aka.ms/TFSQueries.

Using Microsoft Excel

Microsoft Excel is another popular client for editing work items. If you have installed Team
Explorer on a machine with Microsoft Excel (2007 or newer), you have a Team tab available from
the Office ribbon, which enables you to interface with Team Foundation Server.

There are two ways of opening work items in Excel. One option is to open query results from within
Team Explorer and then, from the query results toolbar, click Open in Microsoft Office & Open in
Microsoft Excel. The other approach is to start in Excel, open the Team tab from the Office ribbon,
and then click New List. You are prompted to select your Team Foundation Server and team project,
along with the query for the work items you want to manage. Or, instead of a query, you can start

http://aka.ms/TFSQueries

Managing Work Items | 229

with an empty list. This enables you to enter new work items or to select individual work items to
add to your list by clicking Get Work Items.

Managing work items in Excel is a fairly rich experience. You can create new work items, make
edits to existing work items, and even manage Trees of Work Items. Figure 11-10 shows the results
of the same query you saw earlier. Note that parent/child relationships are represented here as well.
Parent work items have their titles listed in the Title 1 column, and their children have their titles
listed in the Title 2 column. If you add a third level to the tree, grandchild work items are listed in a
column named Title 3, and so on.

H - < Book! - Excel TABLETOOLS T EH - &8 %
HOME INSERT ~ PAGELAYOUT ~ FORMULAS ~ DATA REVIEW VIEW LOADTEST | TEAM DESIGN Sign in
Get Work ltems i~ Edit Areas and terations | 7l Add Tree Level “€-Outdent =] @) Team Foundation Help
N Pubten Refreap 2 Choose Columns Lk Configure - [Add child 5 Indent N & Team Project Process Guidance
ew Publish Refres) ew
List T3 Links and Attachments &% Open in Web Access Report &P Team Project Portal
Work Items Tree Reports Help ~

B3 - fe || Technician can see service tickets on Windows Phone. v

A B c D 3 F G H | J K [=
| Project: Server: \Fabril llection Query: Sprint Backlog List type: Tree
2 Backlog Priority g B state Remaining Work Blocked Work ltem Type
3 211|Technician fan see service tickets on Windows Phone. Brian Keller Committed Product Backlog Item
4 212 Review application design with technicians. Julia llyiana Done Task
5 213 Design application workflow. Brian Keller Done Task
6 214 Create Windows Phane 7 app. Brian Keller In Progress 1 Task
7 215 Submit application to Marketplace. Annie Herriman Done Task
8 216 Technician can report busy/late on Windows Phone. Brian Keller Committed Product Backlog Item
9 217 Review feature with technician early adopters. Julia llyiana Done Task
10 218 Implement feature in app and wire up to back-end database Brian Harry Done Task
1 219 Create Ul for feature. Annie Herriman Done Task
12 220 Design implementation of feature. Brian Keller In Progress 1 Task
13 221 Technician can send GPS location from Windows Phone. Brian Keller Committed Product Backlog Item
14 222 Review new feature with technician early adopters. Julia llyiana Done Task
15 223 Create Ul for new feature. Annie Herriman Done Task
16 224 Write code to get GPS location and resalve to address. Brian Harry Done Task
17 225 Design implementation of feature, Brian Keller ToDo 2 Task
18 226 Technician can edit customer contact details on Windows Phane. Brian Keller Committed Product Backlog Item
19 27 Review implementation with privacy policy team. Julia llyiana Done Task
20 228 Create Ul for looking up customer details. Annie Herriman ToDo 4 Task
21 229 Design implementation of feature. Brian Keller In Progress 2 Task
2 230 database tables and sprocs to look up customers. Brian Harry ToDo 5 Task

Sheet1 ‘ »

READY i M -————+ 100%

FIGURE 11-10

You can make any changes you want to within your Excel grid. You can add new work items for a
Tree of Work Items query by clicking an existing work item and then choosing Add Child from the
Team tab of the ribbon. For queries of type Flat List or Work Items and Direct Links (which is also
compressed to a flat list view in Excel), you can simply place your cursor on a new row at the bot-
tom of your grid, and start typing to begin creating a new work item.

Note, however, that none of your work is persisted to Team Foundation Server until you click
Publish from the Team tab of the ribbon. Even if you save the Excel workbook file, your work items
aren’t synchronized to Team Foundation Server until you publish them.

NOTE In order to access the Publish buiton from the Team tab, your cursor
needs to be within a cell that is a part of your work item grid. Otherwise, the
Publish button is disabled.

230 | CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

You receive an error message if the values you entered for work items in Excel do not conform to the
validation rules or state transition workflow for the work item type. At this point, you can even view
the offending work items using the same form view you are familiar with from Visual Studio.

NOTE Excel is a useful tool for making bulk edits of work items, for quickly
copying several work items between team projects, or for people who just prefer
working with Excel over Visual Studio for managing work items. You can read
more about using Excel as a work item client at http://aka.ms/TFSExcel.

Using Microsoft Project

Microsoft Project is one of the most popular project management tools in the world, and supports
integration with Team Foundation Server. If you have installed Team Explorer on a machine with

Microsoft Project (2007 or newer), you have a Team menu that enables you to interface with Team
Foundation Server.

As with Excel, you can either start with a query in Team Explorer (and choose Open in Microsoft
Office & Open in Microsoft Project), or you can open Project and use the Team menu to access a
query of work items from Team Foundation Server.

Project also displays work items according to their parent/child relationships. A major benefit of
using Project to view your work items is that it’s easy to visualize dependency relationships (succes-
sor/predecessor) using the built-in Gantt chart visualization that Project is popular for. In Project,
it’s easy to see that some work items have dependencies on others, which can be helpful for teams
deciding how to prioritize their work.

Like Excel, changes to work items that you make within Project are not synchronized to Team
Foundation Server until you click Publish from the Team menu.

NOTE You can learn more about using Project for managing work items at
http://aka.ms/TFSProject.

Using Team Web Access

Team Web Access provides yet another way of managing your work items. You learned about how
to connect to Team Web Access in Chapter 2. Team Web Access provides a rich, web-based way of
accessing Team Foundation Server. An obvious benefit of Team Web Access is that users do not need
to have any software other than a web browser. Figure 11-11 shows Team Web Access being used to
manage work items.

Team Web Access provides a surprising number of features for a web-based client. Team Web
Access makes an ideal work item client for users who don’t have Team Explorer installed. Some
organizations even encourage end users to file bugs and enhancement requests about their software

http://aka.ms/TFSExcel
http://aka.ms/TFSProject

Project Server Integration | 231

using Team Web Access. And as you see in the next chapter, Team Web Access provides new Agile
Planning Tools to help you manage your plan and track your work.

€« @‘m p/ </ ollec /. s#path=Shared+Queries O = & [(7] sprint Backiog - Microsoft... | ‘ e gt
HOME ~ CODE WORK BULD TEST ST o~
Backlags ~ Queries
N -
New Y Sprint Backlag 33 work items (8 top level, 25 linked and 15
Assigned to me Results Editor Charts Work item pane Off
Unsaved werk items .
o Q ¢ L & = B | Column options Y
4 My favorites. . "
Drag queries here to odd them to.. D itle Backlog P... Assigned To State Remainin... Blocked Work ltem...
v m 4 || Technician can see service tickets on Windows Phone. 0 Brian Approved Product Ba..
4 Team favorites A
212 Review application design with technicians. Julia Done Task
All Bugs
213 Design application workfiow. Brian Done Task
Feedback
214 Create Windows Phone 7 app. Brian In Progress 1 Task
My Code Reviews
215 Subrmit applieation to Marketplace., Annie Done Task
Product Backlog
; 216 4 | Technician can report busy/late on Windews Phone. 142857 Brien Committed Product Bo..
~ | SprintBacklog
217 Review feature with technician early adopters, Julia Done Task
» My Queries
218 Implement feature in app and wire up to back-end database. Brian Harry Done Task
4 Shared Queries ,
219 Create Ul for feature. Annie Done Task
» Current Sprint
220 Design implementation of feature. 8rian InProgress 1 Task
al
221 4 | Technician can send GPS location from Windows Phone. 285714 Brien Committed Product Bo..
Al Bugs
o 2 Review new feature with technician early adopters Julia Done Task
Feedback
23 Create Ul for new feature., Annie Done Task
My Code Reviews
224 Write code to get GPS lacation and resoive to address Brian Harry Done Task
Product Backiog)
25 Design implementation of feature. Brian ToDo 2 Task
v
226 | Technician can edit customer contact details on Windows Phone. 428571 Brian Committed Product Ba..
< >

FIGURE 11-11

NOTE You can read more about using Team Web Access as a work item client
at http://aka.ms/TFSWebAccess.

PROJECT SERVER INTEGRATION

Earlier in this chapter, you learned how you can use Microsoft Project to create project plans with
your work items in Team Foundation Server. But organizations that utilize Project Server may also
be interested in the capability of Team Foundation Server to integrate with their Project Server
(2007 or newer) deployments.

This integration allows planning and status information from your development team, using Team
Foundation Server, to flow through to your project management office, using Project Server. This
enables the software development team to use a single tool—Team Foundation Server—for manag-
ing their work, while enabling Project Server users to easily report on and participate in project
management activities from those same projects.

In order to enable this integration, you must configure Team Foundation Server to integrate with
a Project Server deployment. As part of this configuration process, you can determine which work
items in Team Foundation Server should be synchronized with work in Project Server. You can even

http://aka.ms/TFSWebAccess

232

| CHAPTER 11 INTRODUCTION TO PROJECT MANAGEMENT

decide, for example, that parent user stories should be synchronized between the two systems, but
that child tasks should remain in Team Foundation Server.

The integration service can then roll up the remaining and completed work being recorded against
those tasks and synchronize that information to the User Story work item when it is updated in
Project Server. This provides near real-time information to the project management office without
overwhelming them with implementation details about your development project that they may not
be interested in.

Your Team Foundation Server administrator can learn more about integrating Team Foundation
Server and Project Server in Professional Team Foundation Server 2013.

SUMMARY

In this chapter, you learned about the project management capabilities of Team Foundation Server
2013, with a focus on work item tracking.

You first learned about some of the new enhancements related to project management that have
been introduced in this release and the preceding Team Foundation Server 2012 release. You were
introduced to work items, including the key components that make up work item types. You dis-
covered the importance of process templates, which include predefined work item types, and you
read overviews of the three process templates included by Microsoft for use with Team Foundation
Server 2013. Finally, you were introduced to a variety of ways that you can manage your work items
with Team Foundation Server 2013, including from within Visual Studio, Excel, Project, via a web
browser, and through integration with Project Server.

In Chapter 12, you learn about the new Agile Planning Tools that you can use to help you plan and
track your software development projects.

12

Agile Planning and Tracking

WHAT'S IN THIS CHAPTER?

Defining and managing the product backlog
Planning an iteration while balancing resource capacity

Tracking work using task boards

Y Y VY Y

Understanding options for customizing the agile planning and
tracking tools

The Agile Manifesto defines several guiding principles that have implications on the ways in
which teams manage projects. Instead of attempting to define an entire project schedule up
front, as with a waterfall methodology, an agile team allows the plan to evolve over time.
Work is broken down into multiple successive iterations, each of which should last no more
than 30 days.

Teams practicing an agile development methodology tend to embark upon a journey of mutual
discovery with their customers to determine new work dynamically, based on changing busi-
ness priorities or on feedback from work completed in previous iterations. The customer, or at
least a proxy for the customer, is considered a virtual member of the team and participates in
defining and ordering (and often reordering) work over time.

The pursuit to embrace agile development, with dynamic schedules and evolving requirements,
has meant that many of the tools and techniques used for traditional project management are
no longer sufficient. Agile practitioners have needed to look for different ways of capturing
work, balancing resource capacity, tracking status, and so on.

Scrum, which is by far the most popular agile development practice in use today, defines only
a simple framework for managing work. Scrum allows you to decide which complementary

234 | CHAPTER 12 AGILE PLANNING AND TRACKING

practices you need to employ to create a methodology that works for you, your company, and your
software process. Future work is captured and ordered on a product backlog, which is refined con-
tinuously by the product owner using feedback from the team and stakeholders. The development
team accepts work into iterations, called sprints, and commits to their best efforts to deliver within
its timebox, usually two weeks but never more than 30 days. Each sprint has its own sprint backlog
which contains the things from the product backlog the development team has committed to, plus a
plan to complete them. This work is tracked to completion and may be visualized on a task board,
which usually takes the form of sticky notes on a whiteboard.

NOTE Projects that use Scrum as a framework to build their process for soft-
ware delivery have more than three times the rate of success as those that use
Waterfall processes (2011 Chaos Manifesto Standish Group). Find out more on
http://aka.ms/ScrumGuide.

Team Foundation Server 2012 embraced these concepts by providing a set of web-based tooling for
managing your product backlog, decomposing your work into iterations, and tracking your work
using a digital task board. Team Foundation Server 2013 adds a set of portfolio management tools
that can be used to organize higher level work. Anyone familiar with or practicing Scrum should
feel immediately at home with this set of tooling, although it cannot be understated that this same
set of tooling can be adopted by any team who wants to use it, even if they aren’t practicing Scrum
per se. One of the design principles of Team Foundation Server has always been that teams can use
any process they want to, and Team Foundation Server provides the right level of flexibility and cus-
tomization to support such a process.

In this chapter you find out about the new web-based tooling available within Team Foundation
Server 2013 to support agile project management and tracking. This book is not a true primer on
how to run a project using a Scrum (or any other) development methodology, but there are several
great books to choose from that cover this topic.

DEFINING A TEAM

Team Foundation Server 2012 introduced the notion of a feam, which you can use to organize
people who are working together. This should not be confused with the concept of a team project
within Team Foundation Server, which is a large container of work, consisting of source control and
work items that all share a common process template. A team project can contain multiple teams,
and each team can have its own product backlog, iterations, and task board. A single person might
also participate in more than one team. For instance, a graphic designer might be a shared resource
responsible for contributing artwork to different teams.

http://aka.ms/ScrumGuide

Defining a Team | 235

NOTE Here’s a good rule of thumb for deciding whether you should create a
team project or a team:

If you have to share resources (with resources defined as code, people, or
work items) then you should have a single team project with many teams for
compartmentalization.

This is in keeping with the original intent of the product but not with the per-
ceived intent. If you have many team projects you might want to consider con-
solidating them if you share resources.

To create a team, follow these steps:

1. Open a browser and visit the Team Web Access home page for your team project. You can
access this by clicking the Web Access link in Team Explorer. The address takes the format
of http://<servers>:<port>/tfs/<collection-names>/<team-project-names.

2. Now open the administrative context by clicking the gear icon in the upper-right corner.
If you do not have administrative privileges for your team project, you need to contact your
team project administrator to perform these steps. On this screen you should see a list of any
teams that are already configured for your team project.

3. Click New Team to display the Create New Team dialog, as shown in Figure 12-1. You can
provide a name and description for your team, and specify what default permissions new
team members should inherit. From the Settings tab you can also declare any users who
should be team administrators, and you can opt to create a new area for this team.

Control panel > FabrikamFiberCollection > FabrikamFiber Brian Keller &

Iterations Areas Security o Voo oo
REATE NEW TEAM x

l

Project profile Tea
3 ve PROFILE SETTINGS i
e
= | Team name
S Fabrikam Fiber Customer Portal
Name §
D
FabrikamFiber & i
% Team for owning and managing the front office of Fabrikam Fiber
Desaription
&
ES

Permissions

You can add your team to any existing security group to automatically
inherit permissions.

[FabrikamFiber]\Contributors -

Team area

[¥ Create an area path with the name of the team.

Createtesm Cancel

FIGURE 12-1

236 | CHAPTER 12 AGILE PLANNING AND TRACKING

You were introduced to the concept of areas in Chapter 11. Areas provide a way for you to
categorize your work within a team project. You can choose to create areas for each of your
teams, so that (for example) bugs that are filed against the \Fabrikam Fiber\Customer Portal
Team area path are automatically routed to the Customer Portal Team.

NOTE If you have configured your team project to use a “team field” instead of
an area path then you will not be asked to create an area path. Instead you need
to configure the team field setting for the team manually. For more on how to
configure team field, see nttp: //aka.ms/TeamFieldMs.

4. Click Create Team when you are finished to create your team and return to the list of teams
on your team project. Click your team in this list to display the team administrative dialog
shown in Figure 12-2. From here you can easily add new team members or team administra-
tors. You can also change the name of your team, the description, or even choose an image to

represent your team.

Control panel > FabrikamFiberCollection > FabrikamFiber > Fabrikam Fiber Customer P--- Brian Keller
erations. Areas Security Alerts Version Control
Team Profile Team members
Add... ™ Q membership direct A
Display Name Username Or Scope
B Annie Herriman VSALM\Annie
Name B Brion Harry VSALM\BrianH
Fabrikam Fiber Customer Portal .
Bl rion Keller VSALM\Brian
Description
Team for owning and managing the front
office of Fabrikam Fiber
Administrators
Brian KellerX.
~ Add
v

5. Click the Iterations tab to select the iterations your team is participating in, as shown in
Figure 12-3. In Chapter 11 you learned how to manage iterations and assign start and end

http://aka.ms/TeamFieldMS

Defining a Team | 237

dates to them. On this screen, you are indicating which iterations your team is using to struc-
ture its work. You should ensure that the iteration dates do not overlap.

Control panel > FabrikamFiberCollection > FabrikamFiber > Fabrikam Fiber Customer P— Brian Keller >
Overview Iterations Security Alerts Version Control
Iterations
lterations Show Expand all
Select the iterations you want to use for iteration planning (sprint planning). Selected
iterations will appear in your backlog view as iterations available for planning.
New New child
lerations Start Date End Date
4 FabrikamFiber 6/3/2013 12/31/2013 Backlog iteration for this team
[] 4Release2 6/3/2013 &/2172012
7] Sprint 1 6/3/2013 6/14/2013
] Sprint 2 6/17/2013 6/28/2013
=] Sprint 3 712013 71272013
=] Sprintd 7/15/2013 7/26/2013
[] 4Release3 7/20/2013 11/30/2013
-9 Sprint 5 T/29/2013 8/12/2013

Your iterations need to be hierarchical, consisting of at least one parent and one child. This
is required so that your backlog iteration (representing unscheduled work) can exist at the
root or parent node, and specific iterations (representing scheduled work) are represented
by child nodes. In Figure 12-3, Release 2 is the parent node representing the backlog itera-
tion. You can select a new backlog iteration by highlighting that iteration, clicking the small
drop-down arrow to the left of the iteration name, and then selecting Set as Team’s Backlog
Iteration. But you need to first ensure that your desired backlog iteration has at least one
child iteration.

NOTE [t may be necessary to create different iteration structures for each

team within your team project. For example, if your Customer Portal Team

is using the term Sprint 3 to define an iteration that begins on March 1,

but your Support Portal Team thinks of Sprint 3 as beginning on April

15, then each team should have its own iteration structure. You can use any
naming convention you want for this, such as CustomerTeam\Sprint3 and
SupportTeam\Sprint3. This way each node can have its own start and end date
independently.

238 | CHAPTER 12 AGILE PLANNING AND TRACKING

Control panel > FabrikamFiberCollection > FabrikamFfiber > Customer Portal Team Brian Keller &

‘Overview Iterations. Security Alerts Version Control
Areas
Areas Show Expand all
Select the areas your team owns, Selected areas will determine what shows up on
your team's backlog and what work items your team is responsible for.
New New child
Areas
[] “ FabrikamFiber
O 4 Development
v & Customer Portal default area sub-areas are included
O WMabile
O Support Portal
O Operations
Developer Command Prompt for V52013 Preview

Similarly, click Areas to configure which area paths your team is using to manage its work,
as shown in Figure 12-4. You can select multiple areas, or the root area path, although if
you have many people using your team project you might want to use areas to more care-
fully segregate work.

You can use the Security tab to configure permissions for your team. Finally, you can use
the Alerts tab to configure email notifications for your team. For example, you might want
to automatically send an email to any team member if a work item that is assigned to that
person changes. Or you can email the entire team if a daily build fails.

6. Close the administrative context when you are finished, and return to Team Web Access.
You can now access the team home page for any team you are a member of by clicking the
drop-down arrow on the final item in the blue breadcrumbs bar at the top of the Web Access
view and selecting the appropriate team. For example, Figure 12-5 shows the home page for
the Customer Portal Team.

If you just created a new team then your home page won’t yet look as rich as the one shown in
Figure 12-5. The top half of this view shows information relevant to your current iteration. The
status bar on the left shows the amount of work remaining as compared with the capacity of your
team (in this example, there are 49 hours of work remaining and the team has a total capacity of
achieving 56 hours of work). The burn-down graph is a trend that shows how remaining work has
decreased (or increased) over time during your current iteration. You learn more about iteration
capacity and burn-downs later in this chapter.

The bottom half of this view shows any Team Favorites you have configured. These can represent
queries—such as open bugs, or in-progress tasks. They can also display graphs of recent builds, or
even recent changesets that have been checked into a particular branch. To add Team Favorites to

Defining a Team | 239

this view, you should first open a relevant query, branch, or build within Team Web Access. You
can then click the small drop-down arrow located to the left of the object and select Add to Team
Favorites, as shown in Figure 12-6. This adds a new tile to your team’s home page, which can make
it easy for the entire team to see the metrics you believe are most important to track.

| studio Team Foundatien Server 2013 / Fabrikamfiber / Customer Portal Team + BrianKeler | % @
HOME CODE WORK BUILD TEST Search work items Foid
Overview
Al
+ Product Backlog Item () + Task [} + Bug more + Activities
. View backiog
Sprint 3 Burndown View task board

July 1-July 12] B View queries
4Q mm— D feue sk
of 36 h g o Open new instance of Visual Studio

Backlog items: 4 not started, 4 in progress
Members (5)

Wk Adamarr
Nightly Fabrikam (Dev) Product Backlog - Annie Herriman

Partially succeeded less than a minute ago Brian Harry
4 BB sonkeler
B suictyiora

Manage all members..

Team favorites

recent changes build definition work items

Sprint Backlog Feedback
Administration

3 3 O Configure schedule and iterations...

Configure werk areas...

work items work items

p: R yld/6edb30dc-b39d-4106-93c8-632a48253..

FIGURE 12-5

¢ Visual Studio Team Foundation Server 2013/ FabrikamFiber ~ BrianKeller | &% @
HOME ~ CODE WORK BUILD TEST ST P34
Backiogs Queries
New~ I Y All Bugs 1 work items (1 selected)
Assigned to me Results Editor Charts Work item pane Bottom
Unsaved work items .
W Save quer W e = Column options Y
4 My favorites.
> Runquey T D Work ltem... Title Assigned To State
- 31 Bug 1 Customers with Canadian addresses net displaying properly. Brian Keller New
‘B Edit query
X Delete
I Rename
& Add to my favorites.
Add to team favorites
0 security..
T AllBugs Bug 231: Customers with Canadian addresses not displaying properly. 1of1
All Bugs - Database Team
. 5
All Bugs - Web Team B w 2 & O
Feedback
Tags Add.. A
Feedback - Devices Team
Feedback - Web Team Customers with Canadian addresses not displaying properly. v
My Code Reviews

FIGURE 12-6

Next, you see how to define and manage your team’s portfolio backlog.

240 | CHAPTER 12 AGILE PLANNING AND TRACKING

MANAGING PORTFOLIO BACKLOGS

A portfolio backlog is just a way of differentiating between things that are owned by the team and
those that are owned by the greater organization. If you have many teams you can use portfolio
backlogs to gain insight into the features and epics that define the less granular deliveries over many
sprints or releases. Industry standard looks to be following the SAFe (Scaled Agile Framework)
model. In Team Foundation Server 2013, you have features configured by default but you may con-
figure four additional levels above each feature.

From your team’s home page, click View Backlog to display the product backlog. Once you are
there, click Features to display the Feature backlog, as shown in Figure 12-7. You can use the
“Quick Add” panel, the gray form above the list, to quickly add new features to your backlog. You
need only enter a title and press Enter (or click Add) and your new Feature will be saved to your
Feature backlog. This will automatically create a new work item in Team Foundation Server.

NOTE The screenshots in this chapter reflect a team project that was created
with the Microsoft Visual Studio Scrum 2013 process template included with
Team Foundation Server 2013. The terminology varies slightly if you are using
either the MSF for Agile Software Development or MSF for CMMI Process
Improvement templates, but you can still take advantage of the same tooling.
You can even customize this tooling for use with your own custom or third-party
process templates. Customization options are discussed later in this chapter.

If you highlight a row within your backlog, any new work you add from the Quick Add panel is
inserted above this highlighted row. The exception to this rule is if you have highlighted the last row
in your backlog; new work is added at the end of your backlog.

You can easily reprioritize work by simply dragging and dropping it on the backlog. Changes you
make here are saved to Team Foundation Server in the background. You can also double-click an
item in this view to open the work item editor to provide additional detail or make changes.

NOTE If you have used versions prior to Team Foundation Server 2012 then
you are used to changing priority by hand-editing a field within each work item.
But notice that the Priority field is no longer visible within Team Web Access or
Visual Studio when viewing work items. Backlog priority is now a hidden field
by default. The recommended way of setting this value is to use the Team Web
Access view to drag items up and down the backlog. Behind the scenes, Team
Web Access uses large integers to assign backlog priority values. The use of large
integer values here makes it possible to insert a work item between two items on
a backlog without needing to update the surrounding items.

Managing Portfolio Backlogs | 241

] Visual Studio Team Foundation Server 2013/ FabrikamFiber / Fabrikam Fiber Web Team ~ Biankeller | % @
HOME CODE WORK BUILD TEST Search work items FeRd
Backlogs Queries
- <
Features 1 Fabrikam Fiber Web Team Features /_
Backlog items Backiog Board e Fentes
» Past
4 Current New Create query Column options i) Y
Iteration 3 Type Feature x
4 Future Title Add
Iteration 4
Order Work ltem Type ~ Title State Busin.. Target Date Tags
1 Feature [Location Finder In Progress
2 Feature [l Television Schedule Lookup In Progress
2 Feature [l Technician mobile application In Progress
FIGURE 12-7

Teams practicing Kanban will be familiar with cumulative flow, which is a way to graphically visu-
alize the flow of work, transitioning through defined states, through your process. This is hugely
valuable to help you understand where there are bottlenecks in your process and thus waste. If you
click on the small diagram on the top right of your backlog view, you will open a larger view of the
cumulative flow report. You can see an example in Figure 12-8. It shows the three states—New, In
Progress, and Done—that a Feature flows through. Clicking the cross in the top right or anywhere
not on the pop-up box closes the box.

On the portfolio backlog there are a number of features that allow you to better understand the con-
tents, including tags and views, and these are discussed more in the next section.

In addition to the ability to view and order the backlog, you can also represent the backlog as you
would with sticky notes on the wall; in a Kanban board. Figure 12-9 shows columns that represent
the same states on your Feature work items and colored cards representing each of the Features in
its corresponding column. You can click an individual card to open the work item that it represents.
Changing state now becomes as easy as dragging the card from one column to another. Indeed this
board supports Surface, iPad, and Android touch capabilities well.

242 | CHAPTER 12 AGILE PLANNING AND TRACKING

0 Visual Studio Team Foundatios

n S / FabrikamFiber / Fabrikam Fiber Web Team =

HOME CODE WORK BUILD

Backlogs Queries

Features 1

Backlog items

» Past

4 Current
Iteration 3

4 Future

Iteration 4

FIGURE 12-8

TEST

CUMULATIVE FLOW

85—

Work kem Count
IS
|

0=
7782013

New
== |n Progress
= Dor

Studio Team Foundation Server 2 / FabrikamFiber / Fabrikam Fiber Web Team ~

BianKeller | % @

Search work items F-R

\

View Features

Y

HOME CODE WORK BUILD
Backlogs Queries

Features 1

Backlog items

» Past

4 Current
Iteration 3

4 Future

Iteration 4

TEST

Fabrikam Fiber Web Team Features
Backiog Board

Customize columns

New In Progress
Location Finder Television Schedule
Lookup
Jula liyiena Julia liyiana

Technician mobile
application

BianKeler | % @

Search work items F-Re

3/5 Done

Facebook integration

Customer Login

Manage service
appointments online

Julia liyiana

Sign up for and
receive email
‘communications

Jula liyiana

FIGURE 12-9

A Kanban board would not be complete without being able to limit work in progress (WIP), or at
least understand when you are over your limits. You can see a green 3/5 in the top right of the In

Managing Portfolio Backlogs | 243

Progress column in Figure 12-9. This signifies that you have set a WIP limit of five and currently
have three things in there. Team Web Access will not stop you from going over your limit (Team
Foundation Server is not meant to be an enforcement system), but it will turn the green numbers red

when you do. As you move cards around the board, the cumulative flow graph changes dynamically
to match.

You can change the number of columns available, see Figure 12-10, without changing the state
model. Although the minimum number of columns is the same as the state model, you can split any
state into multiple columns.

NOTE There is no surer way to make it difficult for your organization to change
than to enshrine your existing multi-state model (more than four states) in the
process used by your team project. Once you have work items in those states,

it is much more difficult to collapse later. If you can you should try to focus on
the default flow of the Microsoft Visual Studio Scrum 2013 template, which was
designed to cope with as many implementations as possible, and split the states
on the Kanban board to represent your company’s model.

There are however limitations to this, as you can’t currently report on these col-
umn customizations nor query on them. This should be a short-lived limitation,
as the product team is working hard to fill these gaps. One would expect to see
these issues solved before the next release of Team Foundation Server.

This is especially useful to allow you to model your current process while maintaining a simple state
model for reporting.

°d Visual Studio Team Foundation Server 2013/ FabrikamFiber / Fabrikam Fiber Web Team ~ BrianKeller | & @

HOME CODE WORK BUILD TEST Search work items p -

Bacdogs Queries

— 7 CUSTOMIZE COLUMNS x

Features 1 /_

Feclea e —

Past -
Current WIP limit 5
Iteration 3
4 Future Backiog items e Sate 2/5 Done
lteration 4 Facebook integration
Customer Login
+ +
Manage service
appointments online
Julia llyiana
Ol Cancel
Vi Sign up for and

receive email
‘communications
Julia llyiana

FIGURE 12-10

244 | CHAPTER 12 AGILE PLANNING AND TRACKING

You do need to make sure that you have correctly mapped the state of the work items represented to
the columns you set. Here, you have only one work item type, Features, so it is a simple mapping.
This is also where you set the WIP limit that was described earlier in this section. Most agile teams
will find that a value of between 5 and 10 will suit them, depending on the number of folks on the
team. In the following section, you look at one level below the Feature, the product backlog.

MAINTAINING PRODUCT BACKLOGS

A product backlog is essentially a list of work that your team has identified but hasn’t yet scheduled
for implementation. The product backlog is a useful tool for collaborating with customers or other
project stakeholders. As stakeholders request new work, you can track it in a central location on the
product backlog. You can also estimate and prioritize this work, usually with input from your cus-
tomers or stakeholders, to help determine which items are most important to deliver first.

From your team’s home page, click View Backlog to display your product backlog, such as the one
shown in Figure 12-11. As with the portfolio backlogs, the “Quick Add” panel at the top of this
page enables you to quickly enter new work as it is identified. As the Microsoft Visual Studio Scrum
2013 template allows both product backlog items and bugs to be listed on its backlog, there is a
pick-list on the Quick Add panel that allows you to select the appropriate work item type.

0 Visual Studio Team Foundation Server 2013/ FabrikamFiber + BianKeler | % @

HOME CODE WORK BULD TEST

Search work items L~
Backlogs Queries
<

Features Leadership Team Backlog items [I I]
Backlog items 1 i

Backlog Board Forecast On Mapping OFf View Backlog items
» Past
+ Current New @& = Create query Column options. = \ 4

Sprint 3 Type Product Backlog ltem - =

4 Future Tim sl

Sprint 4

Forecasting based on velocity of 20

Forecast rder Title State Effort lteration Path

1 [Technician can see service ticksts on Windows Phone. Committed 20 FabrikamFiber\Release 2\Sprint 3
2 [Technician can report busy/late on Windows Phane. Committed 8 FabrikamFiber\Release 2\Sprint 3
3 [Technician can send GPS location from Windows Phone. Committed 0 FabrikamFiber\Release 2\Sprint 3
4 l Technician can edit customer contact details on Windows Phone, Committed 12 FabrikamFiber\Release 2\Sprint 3
5 1 Customers with Canadian addresses not displaying propery. New 5 FabrikamFiber\Release 2\Sprint 3
6 [Customer can find the nearest Fabrikam Fiber location, New 8 FabrikamFiber\Release 2\Sprint 3
Sprint 4 7 ll Web applications can get the latest television lineup schedule upd... New 15 FabrikamFiber\Release 2\Sprint 3
8 [Technician can send GPS location from iPhone. New 4 FabrikamFiber\Release 2\Sprint 3

FIGURE 12-11

Maintaining Product Backlogs | 245

Just like with the portfolio backlogs, you can easily reprioritize work by simply dragging and

dropping it on the backlog, viewing the cumulative flow report, and splitting the columns on the
Kanban board.

There are a number of tools that were added to help you manage your backlog. The first is tagging.
As you can see in Figure 12-12, you can use the filter logo, on the right side, just below the Forecast
button, to enable filtering. This will add a row of available filter tags that you can select. Selecting a
tag will move it to the left and filter the backlog to contain only the work items that have that spe-
cific tag. You can even compound tags to tighten your filter. You can turn off the tagging by clicking
the filter icon again or by removing the filter by selecting All on the left.

¢ visual Studio Team Foundation Server 2013/ FabrikamFiber ~ BrianKeller | &% @
HOME CODE 'WORK BUILD TEST Search work items p-
Baddogs Queries

Features Fabrikam Fiber Leadership Team Backlog items 1 = —]
Backlog items 1

Bacdog Board

Forecast Off Mapping Off View Backlog items

New Create query | Column options = Y
Tags All Windows Phone
Type Product Backlog Item *

Title

Order
~1

2

3

4

Title

[l Technician can see service tickets on Windaws Phone,

[l Technician can report busy/late on Windows Phone.

l Technician can send GPS lecation from Windows Phone.

[l Technician can edit customer contact details on Windows Phone.

State

Committed
Committed
Committed

Committed

lteration Path

FabrikamFiber\Release 2\lteration 3
FabriksmFiber\Release 2\lteration 3
FabrikamFiber\Release 2\lteration 3

FabriksmFiberRelease 2\lteration 3

Tags
Windows Phone

Windows Phone

Windows Phone

Windows Phone

FIGURE 12-12

Many organizations used the tags in Team Foundation Server 2012 to create a way to visualize
features or epics so that they could understand the cross-cutting concerns of their software. With
the addition of the portfolio backlogs this is less necessary (although some people will still continue
to use it), but it still provides value in allowing more arbitrary rather than hierarchical tagging.
Displayed examples are iPhone and Windows Phone tags that allow you to filter your backlog to
those items regardless of the Feature that it fulfills. The orthogonal nature of tags enables many
scenarios and makes them eminently useful.

246 | CHAPTER 12 AGILE PLANNING AND TRACKING

With the portfolio backlogs in place, it has become necessary to link the backlog items to the rel-
evant parent Feature to better help with reporting and visibility of where you currently are in the
development process. While product and release management teams may plan and order Features,
the owner of the backlog usually has the freedom to order his work. He has to take into account the
order of the parent Features. However, at the tactical level something else may have to be done first
to even start achieving particular features.

To help the owner of the backlog maintain the mapping between his work and the Features above,

a mapping tool was added in Team Foundation Server 2013. You can toggle a view of the parent
work items, in this case, Features, on or off by clicking on the on/off link labeled Mapping in the
upper-right of this page. When enabled a pop-out panel will emerge from the right, as shown in
Figure 12-13. This panel shows a list of the parent items. You can then drag an item from your back-
log onto an item in the mapping panel to change or create a parent/child relationship between the
work items.

¢ Visual Studio Team Foundation Server 2013/ FabrikamFiber ~ BrianKeller | £ @
HOME CODE WORK BUILD TEST ST P~

Backlogs Queries

Features Fabrikam Fiber Leadership Team Backlog items 4,‘ Features
Backlog items 1
Backlog Board Forecast OFf Mapping On View Backlog items Team Fabrikem Fiber Leadershi...
New = Create query Column options = Y]
Type Product Backlog ltem - * Title
Title Add J Location Finder

)| Television Schedule Lookup
rder Title State Effort lteration Path ags) !
[Technician mabile application

1 [Technician can see senvice tickets on Windows Phone. Committed 20 FabriksmFiber\Release 2iteration 3 Windc
2 [Technician can report busy/late on Windows Bhone. Committed 3 FabrikamFiber\Release 2teration 3 Winde
-3 Technician can send GPS location from Windows Phane. Committed 10 FabrikamFiber\Release 2\teration 3 Windc
4 Technician can edit customer contact details on Windows Phone. Committed 12 FabriksmFiber\Release Zlteration 3 Windc
5 1 Customers with Canadian addresses not displaying properly. New 5 FabrikamFiber\Release 2iteration 3
6 Customer can find the nearest Fabrikam Fiber location, New H FabrikamFiber\Release 2\lteration 3
7 [Web applications can get the latest television lineup schedule upd... New 15 FabrikamFiber\Release 2\lteration 3
8 [Technician can send GPS location from iPhane. New 4 FabrikamFiber\Release 2iteration 3 iPhon
< > < >

FIGURE 12-13

To help the backlog owner better understand the relationships with the work of product and release
management above and the Development Teams below, views were introduced. Views are available
on all of the backlogs. They switch your backlog view from a flat orderable list to a tree structure.
You can enable and switch views by clicking View = Backlog Items and selecting the view that you
want from the drop-down list. This list is context-sensitive. As you are on backlog items, you can
select to look down to the child tasks, or look up to the parent features. In Figure 12-14 you can see
that, with Backlog Items to Features selected, the view has changed to a tree view of parent to child.

Maintaining Product Backlogs | 247

If you had more levels you would be able to, for example, select Backlog Items to Epics and see a
three-level view.

¢ visual Studio Team Foundation Server 2013/ FabrikamFiber ~ BrianKeller | &% @

HOME CODE 'WORK BUILD TEST Search work items P~
Baddogs Queries
- <
Features 1 Fabrikam Fiber Leadership Team Backlog itemns to Features owned by any team 1 = —]
Backlog items A
Bacdog Board Mapping Off | View Backlog items to Features
| = Create query | Column options = B Bsckiog items
Title State Effort teration Path Tags N Backiog items to Features
4 || Location Finder New FabrikamFiber\Release 2 Backlog items to Tasks
1 Customer can find the nearest Fabrikam Fiber location. New g FabrikamFiber\Release 2\iteration 3
4 | Television Schedule Lookup In Progress FabrikamFiber\Release 2
[Web applications can get the Iatest television lineup schedule u.. New 15 FabrikamFiber\Relesse 2\fteration
4 | Technician mabile application In Progress FabrikamFiber\Release 2
[Technician can see service tickets on Windows Phone. Committed 20 FabrikemfiberRelease 2\lteration 3 Windows Phone
| Technician can report busy/late on Windows Phane. Committed 8 FabrikamFiber\Relesse 2\fteration 3 Windows Phone
[Technician can send GPS location from Windows Phone. Committed 10 Fabrikamfiber\Release 2\lteration 3 Windows Phone
[Technician can edit customer contact details on Windows Phone. Committed 12 FabrikamFiber\Release 2\teration 3 Windows Phone
I Technician can send GPS location from iPhane. New 4 FabrikamFiber\Release 2\lteration 3 Phone
[Customers with Canadian addresses not displaying properly. New 5 FabrikamFiber\Release 2\iteration 3

FIGURE 12-14

Teams practicing Scrum will be familiar with a concept known as velocity. Velocity is a metric used
to calculate the amount of work that a team is able to deliver for a given iteration. It is usually mea-
sured in story points on Scrum teams. Other teams may prefer to do their estimations in hours, or
days, or ideal days, and so on. Regardless of the estimation technique used by your team, you can
use the product backlog view to get a sense for when you will be able to deliver items on your back-
log. The only requirement is to be consistent with your estimation techniques. When some people on
the team are estimating in days and other people are estimating in story points, it’s difficult to create
consistent plans.

Toggle forecast lines on or off by clicking the on/off link in the upper-right of the page labeled
Forecast. Forecast lines display, as shown in Figure 12-11, to indicate when work is estimated to be
delivered based on your current team’s velocity. This approach requires that you have estimated your
backlog items by providing a value for effort. Do this by double-clicking each item in your backlog
to provide this additional level of detail.

The Forecasting Based on Velocity Of textbox enables you to experiment with different values to see
the effect that given values for velocity might have on delivering work. For example, you might be
able to ask for additional funding from your customer to hire new team members and speed up the
rate at which items are delivered. Or you might know that there are several upcoming holidays that

248 | CHAPTER 12 AGILE PLANNING AND TRACKING

will affect your team’s ability to deliver. You can also click the velocity graph in the upper-right
corner of this screen to see your historical velocity for the preceding (and current) iterations.

The forecast lines are purely estimates. In order to schedule work for a given iteration, you can
drag and drop it onto either the current or future iterations listed on the left side of this view.
When you drag and drop work onto an iteration, the value in the Iteration Path column is updated
to reflect the assigned iteration, and the Iteration field is updated within the work item in Team
Foundation Server.

NOTE Even though you have assigned work to a particular iteration, it contin-
ues to show up in your product backlog. That’s true even when you have tran-
sitioned the work item to a state that represents it is in progress (different from
Team Foundation Server 2012). For the Scrum process template, work is consid-
ered to be in progress when it reaches the Committed state. By convention, most
teams typically wait until they have broken work down into child tasks before
they transition it to a Committed state. In the following section, you find out
how to break work down.

PLANNING ITERATIONS

After you have identified the work that you want to deliver for a given iteration, you can click an
iteration from the list on the left side of the product backlog view. This opens the iteration planning
view shown in Figure 12-15. This figure shows an iteration that is mid-sprint, meaning that the team
has already completed some work and is preparing to finish this iteration.

NOTE If you do not have any Iterations selected for your team then you will not
see any iterations listed. In Figure 12-14 you can see that there are no Iterations
shown for the “Fabrikam Fiber Leadership Team” as they should have no inter-
est in the operational management of the development team. Even the owner of
the backlog items should have limited interest. However, if you switch to another
team, it can have iterations configured and viewable.

When you first add items (such as a product backlog item or bug) to an iteration, you are only
declaring your intention to investigate whether it will fit within the specified iteration. The next
phase of planning this work is to break it down into the individual tasks that people on your team
need to complete in order to perform the work. Click the plus (+) sign next to an item in your
iteration contents to display the dialog shown in Figure 12-16, which enables you to add a new task
work item as a child to the parent you clicked on.

Planning Iterations | 249

FabrikamFiber / Fabrikam Fiber Web Team ~

Brian Keller

HOME CODE

Features

Backlog items

4 Past
Sprint 1
Sprint 2

4 Current
Sprint 3

4 Future

Sprint4

Baddogs Queries

WORK BUILD TEST

Fabrikam Fiber Web Team Sprint 3

Bacdog Board Capacity

) =] Create query Column options
Effort Title State Assigned To Rema..
5 4[| Customers with Canadian addresses not displaying properly. Committed Brian Keller 5
1 Fix Ul to display Canadizn addresses. ToDo Annie Herriman 2

Update stored procedures to retum Canadian addresses. ToDo Brian Harry 3

8 4[| Customer can find the nearest Fabrikam Fiber location. Committed Brian Keller 14
Create database for branch office location lookup. ToDo Brian Harry 4
Design implementation of feature. To Do Brian Keller 1
Review design of feature. Done Julia liyiana
Create Ul for feature. ToDo Annie Herriman 9

FIGURE 12-15

Fabrikamfiber / Fabrikam Fiber Web Team ~

Search wrk items A=

Work details On
Work .
Team |
(19.0f 24 h)
Work By: Activity -
Unassigned
(19.0f 24 h)
Work By: Assigned To -

Annie Herriman

(11 of 12h)

Brian Harry
an

Brian Keller

(1ef12h)

Backlogs Queries

Features

Backlog items

4 Past
Sprint 1
Sprint2

4 Current

4 Future

Sprint 4

HOME CODE WORK BUILD TEST

Brian Keller

Search work items o~

Sprint 3]

New Task 2*: Field 'Title' cannot be empty.
@ 2 & [Copytemplate URL

Tags Add..

Iteration FabrikamFiber\Release 2\Sprint 3
STATUS

Assigned To

State ToDo

Reason New task

Blocked

DESCRIPTION

DETAILS
~ Remaining Work
Backlog Priority
Activity
v A FabrikamFiber\Development\Web Team

“

HISTORY LINKS (1) ATTACHMENTS

Saveandclose | Cancel

x

Work details On

v |Assigned To -

FIGURE 12-16

250 | CHAPTER 12 AGILE PLANNING AND TRACKING

You should provide a title for this task and, if possible, an estimate for the amount of work remain-
ing. By default, remaining work is assumed to be provided in hours, but you can also customize this
(see the section called “Customization Options” later in this chapter). You can assign this to a team
member who will complete this work, but you are not required to do so. Save this work item and
proceed to break down the rest of your work into child tasks. If you haven’t already done so, set the
state of parent work items to Committed as each item is broken down and accepted into the Sprint
by the Development Team.

NOTE A common question that many people have is about the relationship
between effort, provided earlier when defining an item for the backlog, and
remaining work, provided for tasks. Effort is typically a rough estimate used

to provide a quick indication about the size of work in relation to other items
on the backlog. Remaining work values in your iteration should be much more
precise, and represent the additional level of planning and estimation analysis
that has been given to considering how a given feature or user story will be
implemented. As a team gains experience they become better at providing more
realistic estimates while the product backlog is being defined. This process is
indicative of an empirical approach to project planning.

As you begin to create tasks with values for remaining work, you will notice that the capacity
graphs on the right side of this screen begin to render. These graphs are broken into three areas:

> Work—Shows the total amount of work remaining for this iteration, calculated as the sum of
the remaining work across all task work items.

> Work By: Activity—Enables you to categorize the amount of remaining work into cat-
egories. When creating tasks, you can use the activity field to categorize tasks, such as
Documentation, or Design, and so on. If you don’t provide a value for activity, work simply
shows up as unassigned.

> Work By: Assigned To—Shows the amount of remaining work that is assigned to each
person on your team.

Click the Capacity tab to assign the capacity for each of the members of your team, as shown in
Figure 12-17. The Capacity Per Day column enables you to specify the number of hours per day that
a given resource is working on tasks. The Activity column enables you to specify the discipline of a
team member, which is necessary if you want to view capacity by activity type. Finally, you can use
Days Off to define days that a team member is sick or on holiday, and you can use Team Days Off to
define days that the whole team will be unavailable, such as during a holiday or company retreat.

The values you enter for this table are specific to this team and this iteration. So a shared resource
who works on multiple teams might have different values for Capacity Per Day or Days Off, depend-
ing on the team. Also, a resource who works five hours per day on one iteration might only work
two hours per day during a subsequent iteration.

After you assign capacity values for your team, the capacity indicators on the right change to green,
if a resource is at or under capacity, or red, if there is too much work given to the planned capacity.

Tracking Work | 251

The iteration plan is designed to be viewed on a regular basis so that you can make adjustments as
needed. For example, if a team member is sick, you might need to reschedule work that was origi-
nally planned for this iteration. You can drag and drop parent items from this list onto other itera-
tions on the left side of the page.

¢ Visual Studio Team Foundation Server 2013 / FabrikamFiber / Fabrikam Fiber Web Team ~ Briankeler | % @
HOME CODE WORK BUILD TEST Search work items Pl
Backlogs Queries
< . . July 1- July 12
Features Fabrikam Fiber Web Team Sprint 3 1 i
Backlog items
Backlog Board Capacity Work details On
» Past -
W o9 Work
4 Current Team
St Team Member Capacity Per Day Activity Days Off |
4 Future Adam Barr 0 + Odays 4 (19.0f 24 h)
Sprint4 Annie Herriman 3 * Odays 4 Work By: Activity -
Brian Harry 0 - Odays &= Unassigned
Brian Keller 3 ~ Odays 4 |
(19.0f 24 h)
Julia liyiana 0 v Odays 4
Team Days Off 0 days Work By: Assigned To M
Annie Herriman |
(11of12h)
Brian Hary
7h)
Brian Keller |
(1ef12h)

TRACKING WORK

When you are satisfied with the iteration plan, it’s time to start writing code, authoring documenta-
tion, designing user interfaces, and doing all the other work that’s required to develop great soft-
ware. During the course of this activity, it can be helpful to have a single location to easily determine
the status of the work that everybody is doing.

Scrum teams typically use a task board for this purpose. In its simplest form, a task board takes the
form of a whiteboard with sticky notes on it that you move from the left side of the board (work that
is not yet started) to the middle (work that is in progress) to the right (completed work). This tech-
nique works very well for teams that are collocated, especially if they share a team room, because
anybody can quickly look up at the whiteboard to determine the state of the team’s work. Of course,
this approach has its challenges for teams who work in different locations or have individual offices.

Team Foundation Server 2013 provides a digital task board that overcomes the limitations imposed
by traditional physical boards. Click Board at the top of the selected iteration in Team Web Access
to access the task board shown in Figure 12-18. You can view the board for any iteration by first
selecting the iteration and then clicking Board.

252 | CHAPTER 12 AGILE PLANNING AND TRACKING

¢ Visual Studio Team Foundation Server 2013/ FabrikamFiber ~ BrianKeller | £ @
HOME CODE WORK BUILD TEST Search work items P~
Backlogs Queries
« j—
Features Fabrikam Fiber Leadership Team Sprint 3
Backlog items i
Backlog Board Capacity Group by Backleg items Perzon Al
» Past
4 Current TODO 30h IN PROGRESS 4 h DONE)
Sprint 3 4 Technician can see Create Windows Review application Design application
4 Future service tickets on Phene 7 app. design with workflow.
technicians.
sprint4 Windows Phone. 4
1h 1 Brian Keller Julia llyiana Brian Keller
Submit application
to Marketplace.
Annie Herriman
4 Technician can report Design Review feature with Implement feature in
busylate on implementation of technician early app and wire up to
Windows Phone. feature. adopters. back-end database.
1h 1 Brian Keller Julia llyiana Brian Harry
Create Ul for feature.
Annie Herriman
v
4 Technician can send Design Review new feature Create Ul for new

Each row on this task board represents a parent backlog item from your current iteration. The tiles
on this task board represent the individual child tasks that you created. Each task begins in the To
Do column. When a team member is ready to begin a task, she can drag and drop it onto the In
Progress column. As she makes progress against a given task, she can click the number on the task
to update the remaining work. Or if she has finished the task, she drags it into the Done column to
automatically set the amount of remaining work to 0. Clicking the name of the team member for a
given task opens a drop-down menu that enables you to quickly reassign work.

Double-click a task to open it in a full editor. This is often helpful if you realize that a task is
going to take more time than originally estimated, and you need to increase the amount of
remaining work.

NOTE The task board understands the rules and limitations of the underly-

ing process template your team project is based upon. For example, consider a
scenario where you have prematurely moved a task from In Progress to Done
—~perhaps by mistake, or perhaps you realized there is additional work that
needs to be finished. If you try to move work from the Done column back to the
In Progress column, you receive an error message indicating that work that is In
Progress cannot have a value of 0 for remaining work. To fix this, double-click
the task to open the full editor and assign a new value for remaining work.

Customization Options | 253

The entire interface is touch-friendly. If you have a touch screen monitor, such as in a shared

team room, you can configure it to display your task board and make it easy for team members to
update the status of their work whenever they walk by it. And because everything is stored in Team
Foundation Server, remote workers can access the same view in any modern web browser to see
what their colleagues are working on and provide their own statuses.

If you find yourself constrained for space in this view, you can collapse finished backlog items by
clicking the arrow to the left of the parent work item title. You can also use your browser’s zoom
functionality (usually Ctrl + - and Ctrl + +) to fit more work on a single screen.

You can generate a personalized view of this screen by clicking the Person: All link and selecting the
name of any team member. This highlights the work that is assigned to that team member, making
it easier to differentiate it from the rest of the team’s work.

You can also click the Team Members tab to display a view in which tasks are organized by the
team member they are assigned to, instead of by their parent work item. This is a helpful view for
team meetings, where team members might be expected to tell their peers what they worked on yes-
terday and what they are planning on working on today. This view is also helpful for seeing whether
there are any team members with too much work remaining, and whether other team members
might have capacity for picking up some of that work.

As work is finished, the team can transition parent backlog items to a state of Done. Open a parent
backlog item by clicking the title of the item on the left side of the screen. This state transition is not
done automatically when all of the tasks are finished because there may be additional checkpoints or
quality gates in place before work is considered to be truly finished. For example, you might want to
request feedback from your project’s stakeholders to ensure that everybody is satisfied with the work
as it has been implemented.

The burn-down graph in the upper-right corner of this screen displays a trend of the remaining
work over time for your iteration. This graph is updated in real time as your team completes work
(or identifies new work) during the course of an iteration. You can display the burn-down graph as a
full screen by clicking it, as shown in Figure 12-19.

CUSTOMIZATION OPTIONS

As mentioned previously, the examples in this chapter follow the default experience you get by using
the Microsoft Visual Studio Scrum 2013 process template for a team project. If you are practicing
Scrum today, then you are likely already familiar with the types of tools available in this chapter.
Even if you aren’t practicing Scrum or using the Scrum process template, you can still benefit from
these tools.

Depending on the process template you choose, the default terminology and views might vary. For
example, a team using the MSF for CMMI process template tracks requirements instead of product
backlog items as the parent work item type to be planned. An MSF for CMMI task board contains
four columns (Proposed, Active, Resolved, and Closed) instead of the three shown earlier for a
Scrum project (To Do, In Progress, and Done).

254 | CHAPTER 12 AGILE PLANNING AND TRACKING

| Studio Team Foundation S¢ 2013 / FabrikamFiber ~ BrianKeller | £ @
HOME ~CODE WORK BUILD TEST ‘Search work items Pahd
Backlogs Queries
< 12
BURNDOWN FOR: SPRINT 3 x
Features [emaining
Backlog items
100— itoday . Group by Backlogitems Person All
» Past H = Remaining Work
~
4 Current i
Sprint 3 4T Design application
4 Future § workfiow.
Sprint 4
1 = a Brian Keller
5
£
]
£
E
£
]
n
1 Implement feature in
b app and wire up to
back-end database.
1 a Brian Harry
7/1/2013 7312013 7/5/2013 7772013 7/9/2013 7/11/2013
T
Annie Herriman
5 v
4 Technician can send Design Review new feature. Create Ul for new

If you are using a team project that was created using one of the process templates provided by
Microsoft with Team Foundation Server 2013 (Microsoft Visual Studio Scrum 2013, MSF for Agile
2013, or MSF for CMMI Process Improvement 2013), then this tooling is preconfigured automati-
cally to work with your team projects. If you are upgrading an existing team project from an earlier
release of Team Foundation Server, then you need to perform some additional steps in order to begin
using the agile planning and tracking tools mentioned in this chapter. These steps are outlined at
http://aka.ms/TeamProjectUpgrade.

There are also several ways you can customize these tools to change their appearance and behavior.
For example, you can:

> Add or remove fields from the “Quick Add” pane in the product backlog view. In addition to
setting a title, you might also want to specify an effort estimate with each new item.

> Add or remove columns from the backlog and iteration views.
> Change the list of activities that task work items and team members can be assigned to.

> Change the working days to be used when calculating capacity and rendering the burn-down
graph. By default, Saturday and Sunday are considered non-working days, but you can mod-
ify the days.

> Configure the types of work items to be used as parents and children throughout the tooling.

All of these customizations and more can be configured by following the steps outlined in the docu-
mentation at http://aka.ms/CustomizingProcess.

http://aka.ms/TeamProjectUpgrade
http://aka.ms/CustomizingProcess

Summary | 255

SUMMARY

In this chapter, you discovered the new tools available with Team Foundation Server 2013 for
planning and tracking work in an agile manner. You found out how to use the portfolio and prod-
uct backlog view for defining and managing items that your team may schedule and implement in
the future. You learned how to visualize that work on a Kanban board. You then saw how to break
down work for an iteration into tasks and examined the remaining work for these tasks against the
capacity of your team.

Finally, you learned about using the task board to track work during the course of an iteration
so that everybody on the team can easily understand what their colleagues are working on and how
much work is left to deliver in an iteration.

In Chapter 13 you find out how you can use the rich sets of reports and SharePoint dashboards
to provide even more information that can be used to better manage your software development
projects.

13

Using Reports, Portals,
and Dashboards

WHAT'S IN THIS CHAPTER?

> Understanding Team Foundation Server data stores
> Understanding the available reporting tools

> Creating and customizing reports using Excel
>

Creating Report Definition Language (RDL) reports with Report
Designer and Business Intelligence Development Studio (BIDS)

Capturing information throughout the project is critical not only to project managers but to
all team members. Equally important is the capability to analyze the information that was
captured and understand it. With Visual Studio Team Foundation Server 2013, the mundane
tasks associated with capturing are mostly automated, and give crucial time back to the team
to focus on building software rather than capturing information associated with building it.

The agile planning tooling discussed in Chapter 12 shows ways in which you can use the real-
time data from work items to help track work and plan sprints, but Team Foundation Server
also provides powerful features used to analyze the data and understand it. All types of data
are captured about the software development process, not just work progress but data about
version control, builds, tests, and feedback. Tracking a project and monitoring it throughout
its lifecycle is made easy with Team Foundation Server reporting and the dashboards.

This chapter examines the reporting capabilities of Team Foundation Server, including working
with reports, customizing reports, and reviewing reports shipped out of the box. Dashboards serve
the purpose of providing useful information in an easy-to-consume form to all stakeholders, even
to those outside the core software development team. This chapter also shows how to customize the
team project portal as a way to keep everyone up to date with the status of the project and the team.

Let’s start with the reporting capabilities of Visual Studio Team Foundation Server 2013.

258 | CHAPTER 13 AND DASHBOARDS

TEAM FOUNDATION SERVER REPORTING

Reporting is one of the most powerful features of Team Foundation Server. Right from the first
release of Team Foundation Server (that is, Team Foundation Server 2005), the central repository
and the reports have been cornerstones for software development teams and the management team
alike. You can view any data stored in the Team Foundation Server repository as a report, which
enables you to view and organize project metrics very easily. This includes work item tracking, build
reports, version control stats, test results, quality indicators (performance and code coverage), and
overall project health reports. Team Foundation Server ships with a set of reports out of the box
(more on that later), but you can also create custom reports.

The reporting tools are not only useful for project managers, but also for team members in every
role. For example, a developer can look at test results and hone in on specific bugs. Testers can look
at a report to identify the work complete for testing, and so on.

Before looking into the details of reports, how to create custom reports, or the tools available to
create reports, let’s first look at how Team Foundation Server stores data. As you see in Figure 13-1,
there are essentially three data stores that Team Foundation Server uses:

» Team Foundation Server operational store
» Team Foundation Server data warehouse

» Team Foundation Server OLAP cube

Warehouse

Adapters Process

Operational Store Data Warehouse OLAP Cube

e Tfs_Configuration Refresh at e Tfs_Warehouse Every 2 hours | e Tfs_Analysis

e Tfs_Collection set intervals

RDL Reports Exel Reports

FIGURE 13-1

Team Foundation Server Operational Store

The Team Foundation Server operational store is the set of databases that stores all the data to run
the Team Foundation Server application, including source control, build reports, test results, work

Team Foundation Server Reporting | 259

item tracking, and so on. These are the relational databases that handle all live data. Hence, they
are optimized for speed and performance. Multiple databases serve as the operational store, includ-
ing the Tfs Configuration database and the various databases for each team project collection.
Typically, you don’t have to deal with (or understand) the structure of this set of databases. You
should never modify the data in this store directly, as you can very easily corrupt your TFS instal-
lation in doing so and render your server unsupportable by Microsoft. You will not target this
store when reporting, due to the performance impact that you could very easily have on the run-
ning Team Foundation Server application. In addition, the schema of the operation store frequently
changes between releases of Team Foundation Server (even between service pack releases), making
any reports against the operation store fragile. If you cause a performance issue by creating reports
directly against the operational store, you will be asked to remove those reports before Microsoft
will support your server.

Team Foundation Server Data Warehouse

The Team Foundation Server data warehouse is specifically designed for querying and reporting,
unlike the operational store, which is designed for transactions. The schema of the warehouse is
much easier to understand; it has a star schema and includes all historical data designed in a man-
ner to be used for analysis. Despite the fact that the schema of the operational store changes signifi-
cantly between releases (and so changed greatly between the 2010 and 2012 release), the relational
schema in the warehouse remains pretty much unchanged since the Team Foundation Server 2010
release. This is by design as it allows reports written against the data warehouse to have much
greater resilience when the server is upgraded. The only schema changes in the 2012 release to the
relation warehouse were the addition of start and end dates to iterations and the removal of some
fields in 2010 that were used for configuration only. In the 2013 release there were no changes.

The Team Foundation Server data warehouse gets the data from the operational stores on regularly
set intervals. There are adapters for each of the databases in the operational store that take care of
pushing the data into the warehouse. In Team Foundation Server 2013, the update from the opera-
tional store to the warehouse is based on various events. When an event fires up, the corresponding
adapter is scheduled to execute and refresh the data in the warehouse. The interval for this execu-
tion is configurable.

In Team Foundation Server 2013, you use the warehouse control service to change the refresh inter-
val. Go to http://<TFS Server Name:ports>>/tfs/TeamFoundation/Administration/v3.0/
WarehouseControlService.asmx. You must have permission to update the warehouse setting in
order to access this service. The warehouseControlWebService has the following operations:

> BringAnalysisProcessingOnline
BringWarehouseProcessingOnline
ChangeSetting

GetJobProperties
GetProcessingStatus

GetSettings

Y Y Y VY Y Y

ProcessAnalysisDatabase

260 | CHAPTER 13 AND DASHBOARDS

ProcessDefaultDimensionsForExpandedCapacity
ProcessWarehouse
SetAnalysisJobEnabledState

SetWarehouseJobEnabledState

Y VYV ¥V Y Y

TakeAnalysisProcessingOffline
> TakeWarehouseProcessingOffline

In the WarehouseControllerService page, if you choose the operation GetSettings, it will
show you the various processing jobs, their default values, and their current values. As you can see,
the frequency with which the warehouse data refresh jobs are running is set to 120 seconds (or 2
minutes).

Team Foundation Server OLAP Cube

The star schema of the warehouse is suitable for analyzing the data. But as you get into reports that
require aggregated values, the warehouse may not be the best choice. The aggregation of values can
become slow, depending on the volume of the rows.

Enter the Team Foundation Server OLAP cube. This is a multi-dimensional database that aggre-
gates data for better analysis. Hence, you can correlate data based on the different metrics (that
is, work items, build, tests, and so on). Team Foundation Server OLAP cube gets the data from
the warehouse at preset intervals. By default, a scheduled job runs every two hours to refresh the
data in the cube from the warehouse. Note that a full processing of the analysis database is sched-
uled to run on a daily basis, as indicated by the interval of 86,400 seconds (or 24 hours) for the
FullProcessIntervalSeconds setting.

The data in the cube can then be used by a variety of client tools, including Microsoft Excel, and
SQL Report Designer.

The cube consists of measures and dimensions. A measure is a numeric value that can be
aggregated. Dimensions provide a way to summarize measures and categorize them based on
additional metrics.

NOTE For a more complete list of the perspectives, measure groups, dimensions,
and measures for the Team Foundation Server cube, see the MSDN documentation
at http://aka.ms/CubeMetrics.

WORKING WITH TEAM FOUNDATION SERVER REPORTS

Team Foundation Server includes two sets of reports in most process templates: Microsoft Excel
Reports and SQL Reporting Services Reports. There are about 40 reports in the three process tem-
plates that ship with Team Foundation Server. From a project management perspective, one of the
great advantages of using Team Foundation Server is that you don’t have to manually correlate data
from a host of third-party sources. The reports are readily available in a dashboard (or portal).

http://aka.ms/CubeMetrics

Working with Team Foundation Server Reports | 261

You learn more about the reports shipped with the three process templates later in this chapter. But
first, let’s start by looking at the tools you use to create Team Foundation Server reports.

Tools to Create Reports

You can use any tool that can connect to a data warehouse or an analysis database to create a
report. Following are the two primary types of reports that you create from Team Foundation
Server by connecting to either the Team Foundation Server data warehouse or the Team Foundation

Server OLAP cube:
> Excel reports
> RDL reports

NOTE You can also use the work item queries to create a Microsoft Excel
report, which is discussed in more detail later in this chapter. The work item
query data uses the Team Foundation Server Object Model to obtain the data
just like Visual Studio would display work item query results, but you are in
effect safely querying live data from the operational store.

Figure 13-2 shows a map of these two report types and shows which is appropriate against which
Team Foundation Server data store.

Effort
A
2
S .
2 Team Foundation OLAP Cube Ve \I;\?undatlon Dl
e« arehouse
)
@
2
8
& Work 'tef“ Queries Team Foundation OLAP Cube
— (Operation Store)
]
X
w
Excel Reports RDL Reports

> Flexibility

FIGURE 13-2

262 | CHAPTER 13 AND DASHBOARDS

As you see, you can use the work item queries and the Team Foundation Server OLAP cube with
Microsoft Excel or use Team Foundation Server OLAP Cube and the data warehouse with the RDL

reports.

To understand this better, let’s dive in and create some reports.

NOTE To create reports, you need “read” access to the databases that make up the
warehouse and the cube. You can get access to either the warehouse or the cube, or
both. Your access depends on the data store you are using and the type of reports
you want to create. The administrator of the database can grant you read access.
Refer to the MSDN documentation at http://aka.ms/ReportPerms for informa-
tion on permissions needed to access the warehouse and the analysis database.

Working with Microsoft Excel Reports

As mentioned earlier, you can use Microsoft Excel to create reports from either the Team
Foundation Server OLAP cube, or by using work item queries. Using Excel to create reports is a very
approachable and rapid way to understand the data inside your Team Foundation Server databases,
and so the majority of the rest of this chapter focuses on explaining the various ways to use it.

Let’s first look at the steps to create a Microsoft Excel report from the cube. Whichever store you are
querying data against, the key advantage with Microsoft Excel reports is the simplicity of using the
tool—regardless of whether you are connecting to a pivot table and the cube or using work item queries.

Creating Microsoft Excel Reports Using Data in the OLAP Cube

First, ensure that you have read access to the OLAP cube. Follow these steps to create a quick pivot
table report using Microsoft Excel:

1.
2.
3.

Open Microsoft Office Excel.
Select the Data tab from the ribbon.

Click From Other Sources and select From Analysis Services, as shown in Figure 13-3. The
Data Connection Wizard displays.

Provide the server name and credentials and then click Next. The Select Database and Table
dialog displays, as shown in Figure 13-4.

From the Select the Database That Contains the Data You Want drop-down, select Tfs_
Analysis. The interesting part is the list of perspectives and cubes. As you see in Figure 13-4,
the Tfs_Analysis database has a cube named Team System. It is essentially a representation
of the entire warehouse, and contains about 15 measure groups and 23 dimensions. That is
one powerful (but complex) cube. If you have SQL Server Enterprise Edition installed (and
separately licensed) then five additional perspectives are also available, which can simplify the
data access. However, because the license for SQL Server Enterprise Edition is not included
with a standard installation of TFS, we show the standard case and continue by selecting the
Team System cube then clicking Next.

http://aka.ms/ReportPerms

Working with Team Foundation Server Reports | 263

@“ B9 -o-|= Bookl - Microsoft Excel

nHome Insert Page Layout Formulas Data Review WView Lod
I'_E @ Connections Al % Clear E = g
= | z i I =

= (=1 Properties = H

i\r Reapply
Get External Refresh . il Sort Filter 7 Textto Remove |
Data All» =2 Edit Links M2 Advanced | columns Duplicates iz
Connections Sort & Filter Data T
HE HHE B li #* By
é a =S5 ST = I
From From From |From Other Existing E F G H
Access Web Teut Connections
Get Ext) .= 'ﬁ From SQL Server
3 == Create a connection to a SQL Server table, Import data
into Excel as a Table or PivotTable report.

3 § From Analysis Services
5 -"i Create a connection to a SQL Server Analysis Services cube,
6 Import data into Excel as a Table or PivotTable report.

e 'ﬁ From XML Data Import
7 o

I_ﬁ Open or map a XML file into Excel,
8
9

p lq From Data Connection Wizard
I_j Import data for an unlisted format by using the Data

10 Connection Wizard and OLEDEB.
11 g 'ﬁ From Microsoft Query
12 B Import data for an unlisted format by using the Microsoft
Query Wizard and ODBC.
13
FIGURE 13-3

In the next dialog, click Finish to see the Import Data dialog. Leave the selection as

PivotTable Report and click OK.

You are now in the workbook with a list of fields from the Team System cube. You can build

a report using any of these fields.

-
Data Connection Wizard

Select Database and Table
Select the Database and Table/Cube which contains the data you want.

Select the database that contains the data you want:
Tfs_Analysis |z|
Connect to a specific cube or table:

Description Modified Created Type
2/15/2012 10:00:27 AM CUBE

FIGURE 13-4

264 | CHAPTER 13 AND DASHBOARDS

NOTE Perspectives are subsets of cubes that provide application- or business-
specific views into the cubes. In other words, perspectives provide a simpli-
fied view of the cube for specific purposes. In Tfs_Analysis with SQL Server
Enterprise Edition, there are perspectives specific to build, test results, work
items, code churn, and code coverage.

Next, we walk through an example that shows you how to create a report that answers the
question, “How many active product backlog items or task work items are there in my project?”
The example uses a project created using the Scrum process template.

To answer this question, you must know the number of work items of type Product Backlog Item or
Task that also have a state of New, To Do, Committed, or In Progress. You can then list this data

by the team member the work items are assigned to by showing the fields related to Work Item.
Then add Work Item Count to the Values area by dragging and dropping it. Add workItem
.System WorkItemType and WorkItem.System State to the Report Filter area and WorkItem
.System_AssignedTo to the Row Labels area. Figure 13-5 shows the selection in the PivotTable
Field List window.

In the pivot table itself, select the drop-down for Wwork Item.System WorkItemType, check the
Select Multiple Items box, and then select both Product Backlog Item and Task, as shown in Figure
13-6. For the work Item.System State report field, perform the same procedure to select the
desired work item states.

This results in a simple report that shows the active user story and task work items by team
members, as shown in Figure 13-7.

This is not a particularly impressive looking report, but it demonstrates the point. By choosing the
appropriate fields that you need for the pivot table, you can create a report in a very quick and sim-
ple manner. The focus should be on choosing the right source and then drilling down on data that
you find surprising so you can understand the issue you have uncovered.

NOTE To learn more about the various perspectives and fact tables provided in
the Team Foundation Server warehouse, refer to the Team Foundation Server
help documentation at http://aka.ms/TFSReports.

http://aka.ms/TFSReports

Working with Team Foundation Server Reports | 265

PivoiTable Field List v X

Show fields related to:

|Wcrk Item
H X Values -

= = Work Item
[T|Microsoft_VSTS_Common_BusinessValue

[T|Microsoft_vSTS_Scheduling_Effort
[TMicrosoft_YSTS_Scheduling_RemainingWork
[C]Revision Count

[T]5tate Change Count

[¥]Work Item Count

[pate

[5] Team Project

£} D Test Case

m

= 5] work Item
[7] System_AssignedTo
@ [[]Wark Item.Area Hierarchy
[T|work Item.Area Path
[[|Work Item.Iteration Hierarchy
[wiork Ttem.Iteration Path
[wiork Item.System_ChangedBy
[T wiork Item.System_ChangedDate
[[|Work Item.System_ChangedDate__HierarchyByMonth
[# [Wark Item.System_ChangedDate__HierarchyByWeek
[T]work Item System_CreatedBy
[T]work Item. System_CreatedDate
[# []Work Item.System_CreatedDate__HierarchyByMonth
[# []Work Item.System_CreatedDate__HierarchyByWeek
[T]work Item.System_Id
[T]work Item.System_Reason
[T]work Item System_Revision
Work Item.System_State
|| wiork Item.System_Title
Work Item.System_WorkItemType -

Drag fields between areas below:

“ ReportFilter FH column Labels

Work Item.System_WorkItemT.., ™

Work Item.System_State 7
[Row Labels % Values

System_AssignedTo - Work Item Count -
[7] Defer Layout Update Update

FIGURE 13-5

266 | CHAPTER 13 AND DASHBOARDS

A B C
1 Work Item.System_WorkltemType All A
2 |Work ltem.Sysi pE|
: Emal
4 Row Labels [JBug
5 |Annie Herrimal [Code Review Request

[Code Review Response
[]Feedback Request
[Feedback Response

8 |Ju|ia||§iana 4| Product Backlog Item

9 |Martin Woodw/| ¥ Task

6 |Brian Keller
7 |Cameron Skinn

10 Grand Total Clunknonn
11
12
13
14
15
15 Select Multiple Ttems
17
18 [OK J [Cancel
19
FIGURE 13-6
A | B

Work Item.System_WorkltemType (Multiple Items) |-T
Work ltem.System_State (Multiple ltems) |-T

1

2

3

4 Row Labels - | Work Item Count
5 |Annie Herriman

6 |Brian Keller

7 |Cameron Skinner
8 Juliallyiana

9

IMartin Woodward |
10 Grand Total

Ble v wan

FIGURE 13-7

Customizing a Microsoft Excel Report

You don’t necessarily start with a new report every time. In many cases, you may simply modify

an existing report to get the data that you are looking for. In Team Explorer, you find existing
Microsoft Excel reports in the team project under Documents = Excel Reports. The example
reports you find in that directory vary by process template type. To customize a report, first choose
the Microsoft Excel report that you want to modify. Open the report in Microsoft Excel by double-
clicking the report file name in Team Explorer.

NOTE If you get a security warning in Microsoft Excel that says, “Data connec-
tions have been disabled,” click the Options button to get the Microsoft Office
Security Options window. You may have to change the selection from Help
Protect Me from Unknown Content (Recommended) to Enable This Content.

Working with Team Foundation Server Reports | 267

After you have the report open in Microsoft Excel, click the report cell to open the PivotTable Field
List window and the toolbar. You use this field list to make necessary changes to the report. After
you are finished making changes, you can either save them locally or publish them so others can see
the updated report. You learn about the different publishing options later in this chapter.

Creating Microsoft Excel Reports Using Work Item Queries

Work item queries provide an easy way to retrieve information about work items in Team
Foundation Server. The Shared Queries folder contains queries shared by everyone in your team
project. The My Queries folder contains queries that only you can use. Chapter 11 provides more
detail on work item queries.

In Team Foundation Server, you can use these work item queries to create a Microsoft Excel report,
and do so quickly. Not only can you create Microsoft Excel reports, but you can also share them
with the team by publishing them. It provides a quick and easy way to turn work item queries into
reports. These report types are also available on a Team Foundation Server instance that does

not have Reporting Services enabled—even the hosted Visual Studio Online (http://tfs.visu-
alstudio.com), which lacks many of the other reporting features found in an on-premises Team
Foundation Server instance.

Let’s look at how to create a report in this way. In Team Explorer, go to the Work Items page. To
create a report out of a team query, expand the Shared Queries node. Right-click a work item query
to view the menu shown in Figure 13-8.

Click the Create Report in Microsoft Excel option, which then launches Excel. The first thing that
happens is that Excel translates the work item query into data that it can use to generate reports.
After that, it presents a New Work Item Report window, as shown in Figure 13-9.

4 My Favorites (1)

@] ‘iew Results fE Workin Progress 4
£ Edit Query 41n Progress
5 Mew Query Tearn Favorites (2)
Openin Microsoft Excel (Flat) B Feedback 2
P] Openin Microsoft Project 2 Active
@ Send to Microsoft Qutlook % Product Backlog
’@ Create Report in Microsoft Excel % Query not run,
X Cut Ctrl +3 Queries
Ol Copy Ctrl+C My Queries
4 &% Shared Queries
X Delete Del 4 fml Current Sprint

& Blocked Tasks

L ARenan ¢ k2 B Open Impediments
*% Add to My Favorites % Sprint Backlog
% Add to Tearn Favorites fE Test Cases
Secutity. T Unfinished Wark
B woark in Progress
B allBugs
E Feedback

FE My Code Reviews
% Product Backlog

FIGURE 13-8

http://tfs.visu-alstudio.com
http://tfs.visu-alstudio.com
http://tfs.visu-alstudio.com

268 | CHAPTER 13 AND DASHBOARDS

Meww Wiork Item Report

Select Reports to generate:

=] All Reports (12 of 12 selected)

Current Reports (6 of 6 selected)

= end R i} d)
Rernaining Work (3 of 3 selected)
| Work Itern Count (3 of 3 selected)

1warning(s) encountered during translation Wiew Warnings

| <Back |[Finish || cancel |

FIGURE 13-9

There are two buckets of reports—Current Reports and Trend Reports—in this example, with six
reports in each. However, the reports available depend on the type of work item query that you
select. To understand where these reports come from, let’s look at the query and the results shown
in Figure 13-10.

Save Query B Run B Flat List (Default) - :(-: @1 Wiew Results 5

And/Cr Field Operatar Walue
4 Team Project = @Project
And Iteration Path Under FabrikarmFiber\Release ThSprint 3
And Weork Itern Type | In Group Microsoft. TaskCategory
And State = In Progress

Click here to add a clause

—
Save Results @ * & @ F30penin Microsoft Office » & Colurnn Options
Query Results: 4 iterns found (1 currently selected),
i8] a WiorkIte., | Title Rermainin..,

ﬁ

57 Task Design irmplementation of feature, Brian Keller In Progress

5
56 Task Wirite code to get GPS location and ... Carneron Skin.. InProgress 5
54 Task Rewiew new feature with technician,., Julia llyiana In Progress 2

FIGURE 13-10

The Work In Progress query from the Scrum process template is selected in this example. The result
of this query returns the following fields:

> ID
> Work Item Type

> Title

Working with Team Foundation Server Reports | 269

> Assigned To
> State
> Remaining Work

You get reports on the values that can be aggregated, such as Remaining Work, and the default
Work Item count. Each of these reports also has variations based on attributes, such as the Work
Item Type, Assigned To, and State—hence, the six reports that you see in Figure 13-10. The trend
reports are based on the work item history data.

Now, return to Microsoft Excel to generate the reports. From the New Work Item Report window
(Figure 13-9), select the reports you want to see generated, or select them all. Click Finish and
Microsoft Excel begins working on the reports. When the report generation is completed, you see an
Excel workbook with 13 worksheets—one worksheet with the table of contents (as shown in Figure
13-11), and 12 worksheets for each of the 12 reports.

Each of these reports is a pivot table report. You can customize these reports by modifying the fields
using the PivotTable Field List window, as shown in Figure 13-5.

@l (= - |5 Bookl - Microsoft Excel = = 2
Home Insert Page Layout Farmulas Data Review Wi Team & 0 = B R
3 5{ callbri o A f EQ = General - ré Conditional Formatting = %:“Insert' h W [ﬁ
53~ E=EEEE B .ﬁFormat as Table = o Delete = @' F -
e g (B L O |- Soa- = | 9 B 3% [Cell Styles - [l Format - | 2~ P
Clipboard 1a Fant F Alignment] Mumber] Shyles Cells Editing
Q11 - fe | o
A (B © [c E F G H il K L ful Il :
1 | Title: Work in Progress
2
3 |Table of Contents
4
5 |Current Reports:
3 Remaining Work
7 Work ltem Type
8 Assigned To =
] State
10 work Item Count
11 Work [tem Type
12 Assigned To
13 State
14
15 | Trend Reports:
16 Remaining Work I
17 work Item Type
18 Assigned To
19 State
20 work Item Count
21 Work [tem Type
22 Assigned To
73 State -
4 4 » v | 1.0 Table Of Contents . 1.1 Work ltem Type 1.2 Assigned To e StatlIl 4 1l | [3 |]
Ready | [E@mm 0% =) [} (+)

FIGURE 13-11

270 |

CHAPTER 13 AND DASHBOARDS

Publishing Microsoft Excel Reports

Now that you understand the basics of creating and customizing Microsoft Excel reports that are

based on the data from Team Foundation Server OLAP cube and the work item queries, let’s look at

the options you have to publish them. Obviously, you do not have to worry about publishing if you
don’t have to share the reports you create. In that case, you can simply save them locally. But it is
highly likely that you will be sharing reports with the rest of the team.

The publishing options for Microsoft Excel reports depend on whether you have SharePoint
Enterprise running your dashboard/portals, or SharePoint Standard/Foundation for your portals.
Table 13-1 summarizes the capabilities for SharePoint Enterprise users versus SharePoint Standard/

Foundation users.

TABLE 13-1: SharePoint Server Enterprise versus SharePoint Foundation

FEATURE

Team site

Reports

Viewing Microsoft
Excel reports

Microsoft Excel reports
are available in:

Creating new
Microsoft Excel reports

Publishing Microsoft
Excel reports

Dashboards

SHAREPOINT ENTERPRISE

Portal with six dashboards.

Dashboard uses Excel reports.

Viewable as Web parts.

Team Explorer under Documents =
Excel Reports.

From Excel, create a new report and
publish it to Excel Services. Make it
available on the dashboard using the
New Excel Report button from the

dashboard.

Publish to Excel Services and make
the report available in the dashboard
by using the Excel Web Access Web
part.

A set of dashboards (for example,
Work Progress, Product Quality, Test
Progress, and so on) are created as
part of the Team Project setup.

Publishing to a Document Library

SHAREPOINT STANDARD/
FOUNDATION

Portal with two dashboards.

Dashboard uses Report
Definition Language (RDL)
reports.

Open in Excel from the
document library.

Team Explorer under
Documents &> Excel Reports.

From Excel, create a new
report and save it to the
document library.

Save the report to the
document library and view it
in Excel.

Excel reports are not
available. RDL reports are
presented in Web parts.

You can publish a report to the shared documents from Team Explorer, or you can use the
SharePoint Portal and upload the document.

Working with Team Foundation Server Reports | 271

To upload it from Team Explorer, navigate to the folder you want to upload the new report to. This
example uploads a new report called “Current Work Item count by state.” To do that, first find the
Excel Reports folder under Team Explorer &> Documents = Excel Reports. Then, right-click the
Excel Reports folder and select Upload Document from the menu.

You can then select the Excel report that you have saved locally and upload it. After you have done
so, refresh Team Explorer and the new report appears in the Documents page.

You can also upload the Excel report from outside Team Explorer. To do that, open the Team
Project portal. When you’re in the project portal, click the Excel Reports link on the right naviga-
tion bar and upload the report to this folder.

Publishing to Excel Services

A project portal is a SharePoint site. If you are running SharePoint Server 2010\2013 Enterprise,
then you have access to Excel Services. You can publish Excel reports to Excel Services. Doing so
provides the option to display the Excel report using the Excel Web Access Web part in the dash-
board. This enables you to easily and quickly create Excel reports and share them broadly with the
team using dashboards.

First, start with an Excel report. Create an Excel report following the steps described earlier in this
chapter, or open an existing report.

Click File = Save & Send = Save to SharePoint, to open the familiar dialog that enables you to Save
As on the server. Verify that the path information is correctly set to the team’s portal path. If not,
change it to the correct path. Then, click the Publish Options button.

Now you are in the Publish Options dialog, as shown in Figure 13-12.

In this window, there are two tabs: Show and Parameters. You are only using the Show tab here. The
Parameters tab is used to specify cells that you can provide value to while viewing the Excel report.

Publish Options (-7 | (]
Show | Parameters

Only the selected ikems are shown by Excel in the browser, The entire workbook is always shown in
Excel.

Entire Workbook lz‘
Entire Workbook

»

1.1 Work Item Ty
1.2 Assigned To

1.3 State

1.4 Work Item Type
1.5 assigned To
1.6 Skate

m

oK] [Cancel

FIGURE 13-12

272 | CHAPTER 13 AND DASHBOARDS

In the drop-down, select Items in the Workbook because you want to publish the Excel report to
Excel Services and have the chart show up in the dashboard using the Excel Web Access part. You
don’t want the entire spreadsheet to show up in the dashboard; you just want the short version.
Selecting Items in the Workbook in the drop-down changes the view in the box below the drop-
down. Now you have the capability to select all charts or individual charts, as well as all pivot tables
or individual pivot tables. In this example, you have only one chart and one pivot table. Select the
1.2 Assigned To chart, as shown in Figure 13-12.

Click OK in this window and then click Save to publish the report. Now you are finished with the
publishing.

The next step is to add the report to the dashboard. To launch the dashboard, in the Team Explorer
Documents page, click the Show Project Portal link to open the project portal in the browser. Select
Excel Reports from the left navigation to see the list of Microsoft Excel reports, including the new
report you just published.

You now want to get this report onto the dashboard. From the Dashboards list, select the dashboard
to which you want to add this report. You can choose between My Dashboard and the Project
Dashboard. In this example, select the Project Dashboard.

To add the new report to this dashboard, click Site Actions on the top-right corner and select Edit
Page.

If you have worked with SharePoint sites and Web parts, then the next few steps will be very famil-
iar to you. You add a new Web part to this page by clicking the Add Web Part button in the Footer
section.

The Add Web Parts to Footer window displays. Select the Excel Web Access Web part and click
Add.

The Excel Web Access Web part is added to the dashboard page. Select a workbook that you want
to display in this Web part. You do that by specifying the details in the tool pane. There is obviously
lots of information that you can provide in this tool pane. The following are the two fields that you
will update here:

> Workbook
> Title

Click OK on the tool pane window and exit the edit mode to see this report displayed in the
dashboard.

Microsoft Excel reports make it truly easy for team members to get the data and metrics that they
want from Team Foundation Server, and for the team to keep their project portal up to date with
the most useful information to them. The capability to create a report from a work item query

is a great addition to the reporting capability in Team Foundation Server. Couple that with the
Microsoft Excel services and dashboards, and no one will be able to complain about not having the
right information at the right time.

Working with Team Foundation Server Reports | 273

Working with RDL Reports

This section briefly examines the tools available to create and customize Report Definition
Language (RDL) reports. Team Foundation Server 2013 includes a set of RDL reports out of the
box, and the reports vary by the type of process template you choose to use for your project.

There are two main tools available to work with RDL reports:
> SQL Server Report Builder

> SQL Server Business Intelligence Development Studio (BIDS)

SQL Server Report Builder

The Report Builder tool has full support for SQL Reporting Services and provides a Microsoft
Office-like-report-authoring environment. SQL Server 2012 SP1 includes Report Builder 3.0. This
version includes many improvements over previous versions that make it a compelling choice for
report authors. It’s designed for business analysts and developers who want to create custom reports
quickly and easily. You can download the tool from http://aka.ms/sql2012rb. With this tool,
you can work with RDL files, make necessary changes, and save it as an RDL file. This file can then
be accessed, for example, using the Report Designer.

After you have the tool installed, launch the Report Builder and start by connecting the report
server. (For example, http://<<Server instance name/reportserverss.) It is probably easier to
start with an existing report and customize it than it is to create one from scratch.

To edit an existing report, select the reports folder in the report server, then the team project collec-
tion, followed by the actual team project. The folders with the reports display, and you can choose
the report you want from one of these folders.

The report data pane has the parameters, data set, and the built-in fields that you work with to
modify the report.

NOTE The SOL Server Developer Center on TechNet has several how-to top-
ics on Report Builder. For more information, see “Getting Started with Report
Builder” at http://aka.ms/sqglrbstart.

SQL Server Business Intelligence Development Studio

Business Intelligence Development Studio (BIDS) is an integrated environment for developing cubes,
data sources, and reports. It is a much more complex tool than Report Builder, but it gives you the
ability to create highly complex and rich reports. To install BIDS, run the setup program for SQL
Server, and select the Client Components check box when you specify the components to install.

http://aka.ms/sql2012rb
http://aka.ms/sqlrbstart

274 | CHAPTER 13 AND DASHBOARDS

BIDS is actually an add-on to Visual Studio 2010; therefore, if you don’t already have this older ver-
sion of Visual Studio installed on your machine, then BIDS installs a Visual Studio 2010 shell just
for the BIDS tooling. This can live happily alongside your Visual Studio 2013 installation. For help,
refer to “Create a Report Server Project for Visual Studio ALM” on http://aka.ms/reportstfs.

SUMMARY

In this chapter, you read about the various data stores in Team Foundation Server that provide the
data for the various reports. You also learned about the tools that are available to create reports.
This chapter examined how to create and customize Microsoft Excel reports, and the tools available
to create and customize RDL reports (that is, Report Builder and BIDS), as well as the options avail-
able for publishing reports.

Reporting is a powerful feature in Team Foundation Server. It breaks down the usual barrier within
teams caused by a lack of information. Team Foundation Server provides a powerful set of reports
out of the box and provides the capability to add reports based on your needs. All this is coupled
with the capability to quickly share the information using dashboards and portals.

Chapter 14 looks at how to understand the architecture of the software that you are building,

what Microsoft’s approach is to software architecture, and the tooling that’s available in the Visual
Studio 2013 release.

http://aka.ms/reportstfs

PART IV

Architecture

» CHAPTER 14:

» CHAPTER 15:

» CHAPTER 16:

» CHAPTER 17:

Introduction to Software Architecture

Top-Down Design with Use Case, Activity, Sequence,
Component, and Class Diagrams

Analyzing Existing Applications Using Architecture
Explorer, Dependency Graphs, and Code Maps

Using Layer Diagrams to Model and Enforce
Application Architecture

14

Introduction to Software
Architecture

WHAT'S IN THIS CHAPTER?

> Designing visually is important
> Understanding Microsoft's approach to a modeling strategy
> Using the modeling tools in Visual Studio Ultimate 2013

In this introductory chapter, you learn about some main themes around software architecture
and design—domain-specific languages (DSLs), model-driven development (MDD), and the
Unified Modeling Language (UML)—and how they apply to Visual Studio Ultimate 2013.

This chapter then gives a brief overview of the architecture tools in Visual Studio Ultimate
2013, including the support for the most common UML diagrams. Many of these tools are
expounded on in later chapters of this part of the book.

Finally, this chapter wraps up with a brief glimpse at some of the changes and new features
added to the architecture tools in Visual Studio Ultimate 2013. Specifically, code maps are a
new type of dependency graph that you can use to help understand and debug your code base.

Let’s begin by first establishing the case for undertaking visual modeling—or visual design—
in the first place.

DESIGNING VISUALLY

Two elementary questions immediately come to mind. Why design at all, rather than just
code? Why design visually?

To answer the first question, consider the common analogy of building complex physical struc-
tures, such as bridges. Crossing a small stream requires only a plank of wood—no architect,

278

| CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

no workers, and no plans. Building a bridge across a wide river requires a lot more—a set of plans
drawn up by an architect so that you can order the right materials, planning the work, communicat-
ing the details of the complex structure to the builders, and getting a safety certificate from the local
authority. It’s the same with software. You can write a small program by diving straight into code,
but building a complex software system requires some forethought. You must plan it, communicate
it, and document it to gain approval.

Therefore, the four aims of visual design are as follows:
> To help you visualize a system you want
> To enable you to specify the structure or behavior of a system
> To provide you with a template that guides you in constructing a system
> To document the decisions you have made

Traditionally, design processes such as the Rational Unified Process have treated design and pro-
gramming as separate disciplines, at least in terms of tool support. You use a visual modeling tool
for design, and a separate integrated development environment (IDE) for coding. This makes sense
if you treat software development like bridge building, and assume that the cost of fixing problems
during implementation is much higher than the cost of fixing those problems during design.

For bridges, that is undoubtedly true. But in the realm of software development, is it really more
costly to change a line of code than it is to change a design diagram? Moreover, just as bridge
designers may want to prototype aspects of their design using real materials, so may software
designers want to prototype certain aspects of their design in real code.

For these reasons, for several years now the trend has been toward tools that enable visual design
and coding within the same environment, with easy switching between the two representations, thus
treating design and coding as essentially two views of the same activity. The precedent was set origi-
nally in the Java space by tools such as Together-] and, more recently, in the .NET space by IBM-
Rational XDE. Microsoft embraced this approach fully with Visual Studio Ultimate 2010, and has
continued to enhance the experience with Visual Studio Ultimate 2013.

Now, let’s tackle the second question. If the pictorial design view and the code view are alternative,
but equivalent, representations, then why design visually at all? The answer to that question is sim-
ple: A picture is worth a thousand words. To test that theory, just look at the figures in this chapter
and imagine what the same information would look like in code. Then imagine trying to explain the
information to someone else using nothing but a code listing.

Many people think modeling tools are for use only on large-scale projects that make use of the
waterfall software development lifecycle. That is not the case at all. Agile development is very popu-
lar now, and several different agile methods, including Kanban and Scrum, are used for all sorts of
development projects, small to large. The modeling tools in Visual Studio Ultimate 2013, including
the UML diagrams, dependency diagrams, and Architecture Explorer, can be used just as effectively
by a team following an agile methodology. Remember, just because you are “agile” doesn’t mean
you don’t need to understand your code base and what you are trying to build. “Agile” doesn’t mean
“undocumented.” It just means that you only document enough so that everyone understands what
they have to do. The modeling tools and diagrams in Visual Studio Ultimate 2013 help you do that.

Microsoft's Modeling Strategy | 279

MICROSOFT'S MODELING STRATEGY

Microsoft’s Visual Studio Ultimate 2013 modeling strategy is based on a three ideas:
> Model-driven development (MDD)
> Domain-specific languages (DSLs)
> The “code understanding” experience

Together these topics comprise Microsoft’s vision for how to add value to the software development
process through visual modeling.

Understanding Model-Driven Development

As a software designer, you may be familiar with the “code-generation” features provided by UML
tools such as Rational Rose and IBM-Rational XDE. These tools typically do not generate code at
all, but merely create “skeleton code” for the classes you devise. So, all you get is one or more source
files containing classes populated with the attributes and operation signatures that you specified in
the model.

NOTE The words “attribute” and “operation” are UML terminology. In the
.NET world, these are often referred to as “field” and “method,” respectively.

The methods that are generated for each class by UML code-generation tools typically have com-

plete signatures but empty bodies. This seems reasonable enough because, after all, the tool is not
psychic. How would it know how you intend to implement those methods? Well, actually, it could
know.

UML practitioners spend hours constructing dynamic models such as state charts and sequence dia-
grams that show how objects react (to method invocations) and interact (invoke methods on other
objects). Yet, that information, which could be incorporated into the empty method bodies, is lost
completely during code generation.

NOTE Note that not all tools lose this kind of information during code genera-
tion, but most of the popular ones do. In addition, in some cases, UML tools
do generate code within method bodies—for example, when you apply patterns
using IBM-Rational XDE—but, in general, the point is valid.

Why do UML tools generally not take account of the full set of models during code generation? In
part, it’s because software designers do not provide information on the other models with sufficient
precision to be as useful as auto-generated method bodies. The main reason for that is because the
notation (UML) and tools simply do not allow for the required level of precision.

280 | CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

What does this have to do with MDD? Well, MDD is all about getting maximum value out of the
modeling effort by taking as much information as possible from the various models right through to
implementation.

Although the example of UML dynamic modeling information finding its way into implemented
method bodies was useful in setting the scene, don’t assume that MDD is only (or necessarily) about
dynamic modeling. If you’ve ever constructed a UML deployment model and then tried to do some-
thing useful with it—such as generate a deployment script or evaluate your deployment against the
proposed logical infrastructure—you will have seen how wasted that effort has been, other than to
generate some documentation.

So, what’s the bottom line? Because models are regarded as first-class development artifacts, devel-
opers write less conventional code, and development is, therefore, more productive and agile. In
addition, it shows all the participants—developers, designers, analysts, architects, and operations
staff—that modeling actually adds value to their efforts.

Understanding Domain-Specific Languages

UML fails to provide the kind of high-fidelity domain-specific modeling capabilities required by
automated development. In other words, if you want to automate the mundane aspects of software
development, a one-size-fits-all generic visual modeling notation will not suffice. What you need is
one or more Domain-Specific Languages (DSLs) (or notations) highly tuned for the task at hand—
whether that task is the definition of web services, the modeling of a hosting environment, or tradi-
tional object design.

WARNING A DSL is a modeling language that meets certain criteria. For exam-
ple, a modeling language for developing web services should contain concepts
such as web methods and protocols. The modeling language should also use
meaningful names for concepts, such as fields and methods (for C#), rather than
attributes and operations. The names should be drawn from the natural vocabu-
lary of the domain.

The DSL idea is not new, and you may already be using a DSL for database manipulation (it’s called
SQL) or XML schema definition (it’s called XSD).

Visual Studio Ultimate 2013 embraces this idea by providing the capability to create DSLs for spe-
cific tasks. DSLs enable visual models to be used not only for creating design documentation, but
also for capturing information in a precise form that can be processed easily, raising the prospect of
compiling models into code.

NOTE The only DSL that Visual Studio Ultimate 2013 provides “out of the
box” is the UML support. Users have the capability to create their own DSLs
using the DSL toolkit.

The Architecture Tools in Visual Studio Ultimate 2013 | 281

In that context, “your own problem domain” need not be technology-focused (such as how to model
web services or deployment infrastructures) but may instead be business-focused. You could devise a
DSL that is highly tuned for describing banking systems or industrial processes.

The “Code Understanding” Experience

Modeling is not just about building diagrams that help you understand requirements, architecture,
and high-level design. It can also be about helping you gather a better understanding of the details
of your code base. In Visual Studio Ultimate 2013, a majority of the work done on the architecture
tools has been to enhance what is called the “code understanding” experience.

Think of the code understanding experience as the ability to understand both the new code you
need to write, as well as the existing code you need to support. As a developer, you may need a
better understanding of your code, how it fits into the wider system, and the frameworks that it is
using, so that your team can more easily create tests, debug code, and add new features. The UML
diagrams within Visual Studio Ultimate 2013 can provide that information. Layer diagrams can
show you the different layers of your application and help you to enforce code rules.

You may run into the situation where you need to understand why a certain module has a depen-
dency on another module. Dependency graphs are a great way to see how the different assemblies
and modules in your solution interact and depend on each other. Understanding these dependencies
can make it easier to refactor code to remove dependencies on deprecated features. Code maps are a
new feature; they allow you to easily understand a specific section of your code while you are work-
ing on it. They also allow you to visualize your debugging process.

So, when thinking about modeling and visualization, don’t just assume those tools are for making
pretty pictures of your requirements. You can also use these tools to drill down into your code base
to help you solve problems.

THE ARCHITECTURE TOOLS IN VISUAL STUDIO ULTIMATE 2013

By and large, the modeling diagrams and tools that you used in Visual Studio Ultimate 2012 work
the same in 2013. All of these diagrams and tools can be used to help you more fully understand
the software system being built. These tools enable you to create models at different levels of detail,
depending on your need.

This section provides a very brief overview of each of the modeling diagrams. The chapters that fol-
low in the book provide an in-depth look into each diagram type.

As mentioned previously, Visual Studio Ultimate 2013 fully supports UML, specifically UML 2.1.2.
Only five UML diagrams are supported out of the box:

> Use case diagrams

> Activity diagrams

> Sequence diagrams

> Component diagrams
>

Class diagrams

282

| CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

There are other tools and diagrams, not related to UML, that are included with Visual Studio
Ultimate 2013. The Architecture Explorer can be used to understand the architecture of existing
code, or of managed assemblies. Dependency graphs are used to provide a graphical view of the
information from Architecture Explorer, as well as directly from your solution. Layer diagrams can
be used to describe the logical architecture of your system and can even be used during the build
process to enforce architecture considerations on the code base. Code maps can help you understand
a specific section of your code, and help you visualize the debugging process.

Use Case Diagrams

A use case diagram is a summary of who uses your application and what they can do with it. It
describes the relationships among requirements, users, and the major components of the system, and
provides an overall view of how the system is used.

Figure 14-1 shows an example of a use case diagram.

OrderBook.usecasediagram + X

uc OrderBook |/ =

PE—

OnlineBookstore
Customer™, ™ “(Provide Book List < : *

h - Bookstore
-~ /
. s
. /
~ Y
Ty A
/!
Order Book e

4 4

FIGURE 14-1

The Architecture Tools in Visual Studio Ultimate 2013 | 283

Activity Diagrams

Use case diagrams can be broken down into activity diagrams. An activity diagram shows the soft-
ware process as the flow of work through a series of actions. It can be a useful exercise to draw an
activity diagram showing the major tasks that a user will perform with the software application.
Figure 14-2 shows an example of an activity diagram.

CreateOrder.activitydiagram +

act CreateOrder } =

Create Book Order

Ship Book

Send Book Invoice
= g

"\ RecieveBook
/ Payment

|’ Close Order .“

4 »
FIGURE 14-2

Sequence Diagrams

Sequence diagrams display interactions between different objects. This interaction usually takes
place as a series of messages between the different objects. Sequence diagrams can be considered an
alternate view to the activity diagram. A sequence diagram can show a clear view of the steps in a
use case. Figure 14-3 shows an example of a sequence diagram.

284 | CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

OrderBookSequenc...sequencedisgram = < [N
sd OrderBookSequenceDiagram) »
#

Book System ‘

Customerm ‘ ‘ Order ‘

Want A Book

<<creates>

Add A Book

S

Check Book Availability

Messagel

L

<<retums>

ref
Payment System

Message2

4
FIGURE 14-3

Component Diagrams

Component diagrams help visualize the high-level structure of the software system. They show the
major parts of a system and how those parts interact and depend on each other. One nice feature of
component diagrams is that they show how the different parts of the design interact with each other,
regardless of how those individual parts are actually implemented. Figure 14-4 shows an example of

a component diagram.

Class Diagrams

Class diagrams describe the objects in the application system. They do this without referencing any
particular implementation of the system itself. This type of UML modeling diagram is also referred
to as a conceptual class diagram. Figure 14-5 shows an example of a class diagram.

The Architecture Tools in Visual Studio Ultimate 2013 | 285

BookComponents.componentciagrerm = >« |

-
cmp BookComponents
ICreditCardProcessingGateway L
RN A “components El
! gy External Credit Card Processor Gateway
A “components gl '
Book Website Web Browser :
-, . 1
[1 I
1 T I
1 I
1 I
1
1 :
HTIP ! ICreditCardProcessingGatdnay T
: [} A wcomponents E
: A o El - —l—l Book Payment System
Book Website Book Web Application l
--30 1
b - T
l' - IBookPaymentSystem :
: 1B0okPaymentSystem :
1 1
1 1
1 1
1 1
¥ L)
acomponente {l A “companents El
Book Web App Database Book Payment System Database
-
4 3

FIGURE 14-4

cd BooksClassDiagram) »

A Store

= Attributes

+ Location : String

+ StoreHours : String
= Operations

A BookStore

= Attributes
= Operations
+ OrderBook(Item : Book, Quantity : Integer): Boolean

BookStore
Book | *

[

A Book

= Attributes

+ NumberOfPages : Integer
+ Price : Integer

= Operations

1 »
FIGURE 14-5

286 | CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

Layer Diagrams

Layer diagrams are used to describe the logical architecture of your system. A layer diagram orga-
nizes the objects in your code into different groups (or layers) that describe the different tasks those
objects perform. Layers can also be composed of sub-layers, which you can use to describe smaller,
discrete tasks in the parent layer. In addition, you can use layer diagrams to show dependencies
between different aspects of your code. Figure 14-6 shows an example of a layer diagram.

LoyerDiageamtlayerciagearee = < |

-

UI Layer al

Business Logic Layer 1]

Data Access Layer 1]

4 »
FIGURE 14-6

Architecture Explorer

The Architecture Explorer tool provided by Visual Studio Ultimate 2013 helps in understanding the
existing architecture of a code base. This tool enables you to drill down into an existing code base,
or even into compiled managed code, to help you understand how the application works, without
having to open a single code file.

The Architecture Explorer can also lead into the world of dependency graphs, which are a type of
view in Visual Studio Ultimate 2013 that makes it easy to understand code that is new or unfamil-
iar. Dependency graphs make use of the Directed Graph Markup Language (DGML) to show the
relationships between different areas of code in an easy-to-understand, graphical fashion.

NOTE The Architecture Explorer is not the only way to create dependency
graphs. Chapter 16 also shows other ways you can create them.

What’'s New with Architecture Tools in Visual Studio Ultimate 2013 | 287

WHAT'S NEW WITH ARCHITECTURE TOOLS IN VISUAL STUDIO
ULTIMATE 2013

Although the previous section may make you think that there is nothing new about the architecture

tools, that is not the case. In addition to the UML modeling diagrams and the Architecture Explorer
that you had access to in Visual Studio Ultimate 2012, Visual Studio Ultimate 2013 provides a new

tool to help with your architecture needs—code maps.

Code Maps

Code maps are a new feature in Visual Studio Ultimate 2013, and at first glance, they appear very
similar to dependency graphs. They make use of the same visualization options as dependency
graphs, allowing you to visualize your code relationships. However, the first major difference you
will notice is that the code map appears alongside your code, in a separate tab, which allows you to
quickly and easily visualize just a specific section of your code.

The second major difference is that code maps can be used to visualize the call stack while you are
debugging your application, adding one more tool to your bug-fixing arsenal. You can graphically
see the call stack, and this view will be dynamically updated as you step through your code. You
can even save your code maps from your debugging session for later review. Figure 14-7 shows an
example of a code map generated as part of the debugging process.

FirstClass.cs # X X~ Callstackl.dgml™ + X ~ | IntelliTrace

#3 FirstProject.FirstClass <J@ Methodz -0 9 Undo Show Related ~ Layout~ 3 | Q | Share- = | ") B = | &3 [F]
L e - - : E3

using System.Collections.Generic; =H .. e . o _ . All Categories ~|| a1l Threads -
using System.Ling; = | A Streaming Video: Debug visually with Code Map debugger integ ™ | g H ‘
using System.Text; Search P

© Debugger: Beginning of Applic:

Snamespace FirstProject i O Debugger: Breakpoint Hit: Meth

{ - ' f O Debugger: Step Recorded: Metk

LWEHY Locals Watch 1

= public static class FirstClass

{

FirstClass.Methodl(7);

Value

FIGURE 14-7

static public veoid Methodl{ int paraml

,

Call Stack
Name Lanc

> FirstProject.exe!FirstProject. FirstClass.Method2() Line 18 c#
FirstProject.exe!FirstProject.FirstClass.Method1{int param1) L C#
FirstProject.exe!FirstProject.Class1.Main() Line 12 c#
[External Code]

(€122l Breakpoints Command Win... Immediate Win... Output

© Debugger: Step Recorded: Meth

D Debugger: Step Recorded: Metk

© Debugger: Step Recorded: Meth

{ [© Method? | > Live Event: Step Recorded: Mett

[] SecondClass.Method3(); o - e -| i
FirstClass.Method2(); A user performed a step in the
} q debugger.
9 Method3 o[© Method? |
1 : Time: 10/22/2013 8:50:05 AM
= static public veoid Method2() Thread: <No Name> [3856]

5]

Related views: Locals
Call Stack

SN Solution Ex..

Team Explo...

288 | CHAPTER 14 INTRODUCTION TO SOFTWARE ARCHITECTURE

Visual Studio Visualization and Modeling SDK

You can use the Visual Studio Visualization and Modeling SDK (VMSDK) to create model-based
development tools that can integrate into Visual Studio. You can use this toolset to create domain-
specific languages as well as to extend the UML models and diagrams within Visual Studio 2013.
One of the new features available in the toolset is a code index SDK, which enables you to create a
tool that can bulk index assemblies into the code index, thereby speeding up dependency graph gen-
eration. The SDK also contains Team Build tasks that can index assemblies during the build process.
More information on the SDK can be found at http://aka.ms/VS13VMSDK.

SUMMARY

This chapter began by establishing the case for doing design—specifically visual design—in the first
place. The discussion highlighted the three pillars that support that vision—namely, MDD, DSLs,
and the code understanding experience.

This chapter concluded with a brief look at some of the UML diagrams that are available in Visual
Studio Ultimate 2013, as well as some of the new architecture tool features, such as code maps. It
is worth noting that even though the artifacts discussed in this chapter are only creatable using the
Ultimate edition of Visual Studio, they can be viewed by some of the lower SKUs.

Chapter 15 looks at how these UML diagrams are used and implemented in Visual Studio Ultimate
2013. These diagrams are extremely useful from a modeling perspective, especially for communicat-
ing what the project is trying to accomplish, and how the different systems will interact.

http://aka.ms/VS13VMSDK

15

Top-Down Design with Use
Case, Activity, Sequence,
Component, and Class
Diagrams

WHAT'S IN THIS CHAPTER?

> Creating and using use case and activity diagrams
> Creating and using sequence and component diagrams

> Generating code from a class diagram

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/proalm3ed
on the Download Code tab. The files are in the Chapter 15 download folder and individually
named as shown throughout this chapter.

Chapter 14 introduced you to architecture and modeling in the software space, and hinted
at all the architectural goodness available in Visual Studio Ultimate 2013. This chapter dives
deeper into several aspects of that, looking at use case, activity, sequence, component, and
class diagrams.

One advantage of modeling tools is that they enable you to design the architecture of the appli-
cation. Part of that design process is defining common terms around the problem domain, and
then ensuring that everyone on the team understands those concepts. Using the use case, activ-
ity, and sequence diagrams, you can model your application, while ensuring that everyone on
the team understands exactly what is being built.

http://www.wrox.com/go/proalm3ed

290 | CHAPTER 15 TOP-DOWN DESIGN

This chapter is divided into five main sections:
> Use case diagrams
> Activity diagrams
> Sequence diagrams
> Component diagrams
> Class diagrams

Each section begins with a walk-through of how to build a diagram, as well as a diagram explana-
tion. After that, the discussion looks at all the objects available when building a particular diagram.

USE CASE DIAGRAMS

A use case diagram provides a graphical overview of the functionality of a system. It shows who is
using the system and what they can do with it.

A use case diagram does not show details of use cases themselves; instead it provides a summary
view of use cases, actors, and systems. Details (such as the order in which steps must be performed
to accomplish the use case) can be described in other diagrams and documents, and then linked to
the related use case. Use cases (and, by extension, use case diagrams) deal only with the functional
requirements of a system. The architecture and any internal details are described elsewhere, using
other diagrams described in this chapter, as well as Chapters 16 and 17.

Creating a Use Case Diagram

The following steps walk you through the process of creating a use case diagram. You are going to
create a use case diagram of a customer interacting with an online bookstore system. The customer
should be able to view the books offered and order a book. The bookstore should be able to update
the list of available books, as well as deliver ordered books to the customer.

1. Open Visual Studio Ultimate 2013, and create a new modeling project by selecting File >
New = Project to open the New Project window. Select the Modeling Projects template, give
the project a name and location, and click OK. A new modeling project opens in Solution
Explorer.

2. Right-click the project in Solution Explorer and select Add & New Item from the context
menu.

3. Select the UML Use Case Diagram template and name it orderBook .usecasediagram. Click
the Add button to create this diagram. A blank use case diagram named orderBook .use-
casediagram is created in the modeling project and opened as a tab in Visual Studio.

4. From the toolbox on the left side of Visual Studio, drag a subsystem boundary onto the use
case diagram.

5. In the Properties window, change the Name property for the subsystem to be
onlineBookstore. This subsystem can be used to represent either an entire system or

Use Case Diagrams | 291

its major components. Any use cases that the subsystem supports are drawn inside the
subsystem.

Add the actors to the use case diagram. The actors represent classes of users, organizations,
and external systems that interact with the system being built. By default, the Actor object
is represented as a person icon. A different image can be used by modifying the Image Path
property of the object.

Drop two Actor objects onto the use case diagram, one on either side of the
onlineBookstore subsystem.

In the Properties window, name the left actor customer and the right actor Bookstore. The
use case diagram should appear similar to Figure 15-1.

NOTE To add multiple objects of the same type from the toolbox, double-
click the toolbox object. Then, click multiple times on the diagram to add the
objects. When finished, press the Escape key to return the cursor to its regular
functionality.

OrderBook.usecasediagram™ + X

uc OrderBook

wsubsystams
OnlineBookstore

L\

Customer

4 »

FIGURE 15-1

292 | CHAPTER 15 TOP-DOWN DESIGN

8. When the actors are in place, drop the appropriate use cases onto the diagram. The use cases
represent the activities that actors can perform, and appear as oval-shaped objects on the
diagram.

Drop two use cases inside the online Bookstore subsystem, and rename them Provide
Book List and order Book. Add one use case outside and below the subsystem and name
it Deliver Book. The Provide Book List and Order Book use cases are part of the
onlineBookstore application, so they are drawn inside the subsystem. The beliver Book
use case is outside the scope of the application, so it is drawn external to the subsystem.

Q. Finally, to finish this simple use case, use the Association object to show how each actor is
related to each use case. An association indicates that an actor can take part in a particular
use case. For example, the customer actor can view a list of books at the online bookstore.

Double-click the Association object in the toolbox to select it. Click and hold the
Customer actor and drag a line to the Provide Book List use case. An association is cre-
ated between the actor and the use case. Do the same to the order Book and Deliver Book
use cases. Create associations the same way between the Bookstore actor and the Provide
Book List and Deliver Book use cases.

When finished, the use case diagram should appear similar to Figure 15-2.

OrderBook.usecasediagram # 3

uc OrderBook / =

«subsystems
OnlineBookstare

] /!
Order Book /

rd
Ve
S
A
e

\ Y
A v
Deliver Book

q »
FIGURE 15-2

Use Case Diagrams | 293

Although Figure 15-2 is a very simple use case diagram, it is still very informative. You can also
have more complex use case diagrams, with multiple subsystems, actors, and use cases. A best prac-
tice is to start off describing the system with a few major use case diagrams. Each of those diagrams
should define a major goal of the system. After those goals have been defined, use some of the other
objects from the use case diagram toolbox to define the system in more detail.

Let’s break the order Book use case down in more detail. Figure 15-3 shows a use case diagram
that does this by using the Include relationship.

OrderBookDetailed.usecasediagram® # X

uc OrderBookDetailed / =

Choosed
Book

\\‘

"
-
«indudes "
e

-
e
T
T 3 orderBook
Actort

sindud e»‘"‘“-.___‘

Pay For Book

!

|
“ariface 0
Order Book Activity

4 »
FIGURE 15-3

The Include relationship shows that a use case uses all the behavior of the included use case. To
differentiate it from a regular association, the Include relationship is represented as a dotted line
with an arrow on the end (per the UML 2.1.2 specification, available at http://aka.ms/UML212).
The arrow should always point to the more detailed use case. The Include relationship is also
labeled with the keyword <<includes>. Each of the included use cases is a step that the actor may
have to take in order to complete the main use case. In this example, in order for the customer to
order a book at the online bookstore, the customer must choose a book and then pay for the book.

A use case diagram does not specify in what order the particular use cases should happen, or when
a particular use case is necessary. To make that information clear, attach an Artifact object to

http://aka.ms/UML212

294 | CHAPTER 15 TOP-DOWN DESIGN

the general use case by dropping an Artifact object onto the use case diagram and then dragging
a Dependency relationship between the Artifact element and the general use case. An Artifact
element enables you to attach a separate document to the use case (for example, a text file that
describes the steps to take) or reference another diagram.

Use Case Diagram Toolbox

Figure 15-4 shows the different elements and associations available for use case diagrams.

Search Toolbox P~

I Simple Shapes

4 UML Use Case Diagram
Pointer

Actor

Use Case
Comment
Subsystem
Artifact
Association

Dependency

Wy N O E DO ”

Include
Extend

Generalization

e

* Comment Link

4 General

There are no usable controls in
this group. Drag an item onto this
text to add it to the toolbox.

Server Expl... QEElI>d UML Mod...

FIGURE 15-4

Table 15-1 describes the different elements and associations.

TABLE 15-1: Use Case Diagram Toolbox Objects

NAME DESCRIPTION

Pointer Turns the mouse back into a regular mouse pointer.

Actor Adds a user or external system that interacts with a system.

Use Case Adds a specification of actions that are performed in pursuit of a specific

goal.

Activity Diagrams | 295

NAME DESCRIPTION
Comment Adds a comment for more details.
Subsystem Adds a system component. Places the use cases inside the subsystems

that support it.

Artifact Adds a reference to a diagram or document.

Association Links an actor with a use case.

Dependency Specifies that the definition of one element depends on the definition of
another.

Include Specifies that one use case invokes another use case.

Extend Specifies that one use case extends the definition of another in specific
conditions.

Generalization Specifies that one element is a specialized version of another, inheriting

its features and constraints.

Comment Link Connects a comment to a diagram element.

ACTIVITY DIAGRAMS

An activity diagram is used to show a business or software process as a workflow through a series
of actions. These actions could be performed by any number of objects, including people, software,
or computers. Activity diagrams can be used to model the logic captured in a particular use case or
to model detailed business logic. One easy way to think of activity diagrams is to think of them as a
flowchart.

An activity diagram always has a starting node, a series of activities, and a final node that indicates
the end of the activity.

Creating an Activity Diagram

The following steps outline the process of creating an activity diagram that shows the sequence of
activities for ordering a book from the online bookstore. A customer first chooses a book to order.
After a book is chosen, the customer makes a decision whether to order more books or confirm the
order. After the customer is finished selecting books, the customer confirms the book order and then
pays for the order.

1. Using the same modeling project created earlier in the “Creating a Use Case Diagram” sec-
tion, right-click the project in Solution Explorer and select Add => New Item from the context
menu.

2. Select the UML Activity Diagram template and name it OrderBook.activitydiagram.
Click the Add button to create this diagram. A blank activity diagram named orderBook
.activitydiagram is created in the modeling project and opened in a tab in Visual Studio.

296 | CHAPTER 15 TOP-DOWN DESIGN

7.

From the toolbox, drag an Initial Node element onto the left of the diagram. This indi-
cates the starting point for this activity. Every activity diagram requires this element.

Drag three Action elements onto the diagram to the right of the Initial Node element.
Using the properties of the elements, name these items Choose A Book, Confirm Order, and
Pay For Book. The action element represents a step in the activity that either the user or sys-
tem performs.

From the toolbox, drag a Merge Node above the Choose A Book action. This node is used to
merge multiple branches, usually split by a decision node (described shortly). A Merge Node
requires two or more inputs and has a single output.

Drag and drop a Decision Node between the Choose A Book and Confirm Order actions.
This node is used to create branching flows in the activity. For this activity diagram, after a
book is chosen, the customer has a choice of confirming the order or selecting more books. A
Decision Node has a single input and two or more outputs.

Drag an Activity Final Node to the right of the Pay For Book action. This indicates the
end of the activity.

Next, you must add the connectors to show the flow of activity through this activity diagram.
Double-click the connector element to select it. On the activity diagram, drag a line between the
Initial Node element and the Merge Node. Continue connecting the other elements on the dia-
gram as follows:

1.

N U AW

Connect the Merge Node to the Choose A Book action.

Connect the Choose A Book action with the Decision Node.
Connect the Decision Node with the confirm Order action.
Connect the Decision Node with the Merge Node.

Connect the confirm Order action with the Pay For Book action.
Connect the Pay For Book action with the Activity Final Node.

Modify the cuard property of the connector elements on the Decision Node, leaving the
Decision Node to specify the reasons for the different pathways. On the connector to
the confirm Order action, add the guard Finished Ordering. On the Connector to the
Merge Node, add the guard Wants To Order Multiple Books.

When it’s finished, the diagram should appear similar to Figure 15-5.

Concurrent Flow in an Activity Diagram

Activity diagrams can also be used to describe a sequence of actions that execute at the same time.
This sequence of actions is known as a concurrent flow. Figure 15-6 shows an example of a concur-
rent flow activity diagram related to ordering a book online.

Activity Diagrams | 297

OrderBookactivitydiogram = < |
-
act OrderBook
[
ChooseA Book
[Wants To Order Multiple Books]
[Finished Ordering]
Confirm Order |
—
-
4 »
FIGURE 15-5

At the start of this activity diagram, an order is created. After an order is created, two different
branch processes are started. The black bar that the create Book order action leads into is called
a Fork Node, and is used to divide a single flow into concurrent flows. In this case, one flow leads to
the Ship Book action. The other leads to the Send Book Invoice element.

The send Book Invoice element is not a regular action element. It is a Send Signal Action ele-
ment. This indicates an action that sends a message to another activity for something to happen.
The Receive Book Payment is an Accept Event Action element. It is an action that waits for a
message before the flow can continue. In the case of Figure 15-6, a book invoice will be sent, poten-
tially to a payment system. The flow in the activity diagram waits until a response is received back,
indicating that the book has been paid for. Both the ship Book and the Receive Book Payment
actions are then merged back into a single process using a Join Node. The activity ends with the
closing of the order.

NOTE You can set Fork Node and/or Join Node to a vertical orientation if you
want.

298 | CHAPTER 15 TOP-DOWN DESIGN

CreateOrder.activitydiagram + X

act CreateOrder

Create BookOrder

Ship Book Send BookInvoice

"\, RecieveBock
Payment

‘ Close Order |

1 »
FIGURE 15-6

Activity Diagram Toolbox
Figure 15-7 shows the different elements and associations available for activity diagrams.

Table 15-2 describes the different elements and associations.

TABLE 15-2: Activity Diagram Toolbox Objects

NAME DESCRIPTION
Pointer Turns the mouse back into a regular mouse pointer.
Initial Node Adds the start of the activity.

Activity Final Node Adds an end to the activity.

Action Adds a single step that occurs in the activity.

Object Node Adds a node that can transmit, buffer, filter, and transform objects.

Comment Adds a comment for more details.

Decision Node Divides a single incoming flow into a choice between alternate outgo-
ing flows.

Merge Node Combines incoming alternate flows into a single outgoing flow.

Activity Diagrams | 299

NAME

Fork Node

Join Node

Send Signal Action
Accept Event Action

Call Behavior
Action

Call Operation
Action

Input Pin
Output Pin

Activity Parameter
Node

Connector

Toolbox > 1 x

Search Toolbox P~
I» Simple Shapes

4 UML Activity Diagram

Pointer

Initial Mode

Activity Final Node
Action

Object Node

Comment

Decision Mode

Merge Node

Fork MNode

Join Mode

Send Signal Action
Accept Event Action
Call Behavior Action
Call Operation Action
Input Pin

Qutput Pin

Activity Parameter Node

Connector

NEYiooMOWLESF~ 00RO O T

b

General

There are no usable controls in
this group. Drag an item onto this
text to add it to the toolbox.

Toolbox EUNINELTE

FIGURE 15-7

DESCRIPTION

Divides a single incoming flow into concurrent outgoing flows.
Combines incoming concurrent flows into a single outgoing flow.
Adds an action that sends a signal to another system or activity.
Adds an action that waits for a signal or event.

An action that is defined in more detail on another activity diagram.

An action that calls an operation on an instance of a class.

Represents data that an action requires. It allows data to flow into an
action.

Represents data that an action produces. It allows data to flow out of
an action.

Creates a parameter that conveys data into or out of the activity.

Adds a connection or flow between elements on the diagram.

300 | CHAPTER 15 TOP-DOWN DESIGN

Adding an Activity Diagram to a Use Case Diagram

Earlier in this chapter when creating use case diagrams, you saw an Artifact element attached to a
use case (see Figure 15-3). One available option with Artifact elements is the capability to associ-
ate them with an activity diagram (and, as an extension, any physical document).

To do this, drag an Artifact element onto the OrderBook.usecasediagram you created earlier in
this chapter. In the properties window for the Artifact element, select the Hyperlink property,
and click the ellipse button. This will open the Link to URL or File dialog box, allowing you to
select a diagram, document, or other file to associate with the Artifact element on the use case
diagram.

NOTE To ensure that the file path remains valid on a team member’s computer,
only select files contained in the Visual Studio solution. Also, be aware that ref-
erencing Visual Studio UML diagrams outside the current project will not work

properly.

SEQUENCE DIAGRAMS

A sequence diagram is used to show the sequence of interactions among classes, components, sub-
systems, or actors. A sequence diagram is read from top to bottom, indicating the flow of time
through the system. From left to right, the diagram itself shows the flow of control from one element
to the next.

Creating a Sequence Diagram

The following steps walk you through creating a sequence diagram that shows the sequence of flow
for ordering a book from the online bookstore. A customer first has the desire to purchase a book.
At that point, the customer adds a book to a shopping cart. The order system checks the availability
of the book and performs some internal processing. The availability of the book is returned to the
ordering system. The payment system is represented by a separate sequence diagram, so a reference
placeholder is inserted into this diagram. Finally, a message is sent to an unknown (or unspecified)
system at the end of the process.

1. Using the same modeling project you have been using throughout this chapter, right-click the
project in Solution Explorer, and, from the context menu, select Add & New Item.

2. Select the UML Sequence Diagram template and name it orderBookSequenceDiagram
.sequencediagram. Click the Add button to create this diagram. A blank sequence diagram
named OrderBookSequenceDiagram. sequencediagram is created in the modeling project
and opened in a tab in Visual Studio.

3. From the toolbox, drag a Lifeline element onto the left of the diagram. This vertical line
element represents participants in the described interaction. Time progresses down the life-
line, from top to bottom.

Sequence Diagrams | 301

Using the Properties window, change the Type property to be Customer and set the Actor
property equal to True. Notice the customer lifeline has a symbol representing a person
above it. This symbol is called an actor and indicates that this lifeline represents a participant
external to the system being developed.

Drag two more Lifeline elements onto the diagram and set the Type properties to Order
and Book System, respectively.

The gray vertical shaded rectangles on each lifeline are called execution occurrences. These
represent a period when the participant is executing an operation. Execution usually begins
when the participant receives a message. From within an execution block, other messages
can be sent to other participants, or even back to the execution block itself.

NOTE The box at the top of a lifeline has rounded corners to indicate that it has
been generated from program code and is shown as a regular rectangle if it has
been drawn by hand.

10.

This sequence diagram is started with a message from an unknown source. This is repre-
sented with an asynchronous message.

Select the Asynchronous element in the toolbox, select a blank space to the left of the
Customer lifeline, and draw a line to the customer lifeline. This creates the starting point
into the sequence diagram, indicated by a black dot. This initial message is known as a found
message. Change the Name property to Want A Book.

A create message must be sent to create a participant. If a participant receives a create mes-
sage, it should be the first message he receives. Click the create element in the toolbox. On
the customer lifeline, click the gray execution box area and drag a line to the order lifeline.
A dotted line is created between the two lifelines, and a gray execution box appears on the
order lifeline.

To start the ordering process, the customer must add an item that she wants to buy. This is
represented using an Asynchronous message call. An Asynchronous element represents an
interaction where the sender can continue immediately without waiting for the receiver.

In the toolbox, select the Asynchronous element. Click the customer lifeline and drag a
line to the order lifeline. A solid line is created between the customer and order lifelines.
Change the name of the element to Add A Book.

After a book is added, the book availability must be determined. This is done using a
Synchronous message call. A Synchronous element represents an interaction where the
sender waits for the receiver to return a response.

In the toolbox, select the Synchronous element. Click on the execution block on the order
lifeline and drag a line to the Book System lifeline. A solid arrow is created between the
order and Book lifelines. In addition, a dotted arrow is created from the Book System life-
line to the order lifeline. This indicates control is to be returned to the sender—in this case,
the order lifeline.

Change the name of the element to Check Book Availability.

302

CHAPTER 15 TOP-DOWN DESIGN

11.

12.

13.

A participant can also send a message to itself—for example, if it were triggering internal
methods for doing work. These messages are called self messages.

Select the Asynchronous element from the toolbox. On the Book System lifeline, click the
Check Book Availability execution block. Drag a line farther down in the same block
and release. This creates a solid arrow from the Check Book Availability execution
block back onto the same execution block.

There is a complete payment system sequence that is not represented on this particular
sequence diagram, but instead is shown on a separate diagram. To represent the contents of
that separate diagram, use the Interaction Use element.

Click the Interaction Use element in the toolbox. Drag a box across all three lifelines, as
all three are included in this reference. Change the name of the element to Payment System.

You can represent a message to an unknown or unspecified participant. This is known as a
lost message.

Select the Asynchronous element from the toolbox. At the bottom of the Book System life-
line, drag a line from the lifeline to a blank area on the diagram. An arrow is created from
the lifeline to a created black dot, indicating this message goes to an unknown participant.

When finished, the diagram should appear similar to Figure 15-8.

OrderBooksequenc...zequencediagram = >< |
. -
sd OrderBookSequenceDiagram /
L
Customerm ‘ ‘ Order ‘ Book System ‘
Want & Book
<<create=>
<<refurn>
Add A Book
Check Book Availability
Messagel
<<retum>
i
ref
Payment System
Message2
-
4 4

FIGURE 15-8

Sequence Diagrams | 303

Sequence Diagram Toolbox

Figure 15-9 shows a screenshot of the different elements available for sequence diagrams.

Toolbox
Search Toolbox

4 Sequence Diagram

k Paointer
T Lifeline
20 Synchrenous

—M Asynchronous

o Create

G Comment

, Comment Link
Interaction Use

4 General

There are no usable controls in
this group. Drag an item onto this
text to add it to the toolbox.

S SGI Toolbox IRIREET

FIGURE 15-9

Table 15-3 describes the different elements and associations.

TABLE 15-3: Sequence Diagram Toolbox Objects

NAME DESCRIPTION

Pointer Turns the mouse back into a regular mouse pointer.

Lifeline Adds a participant (such as a class or object) to an interaction sequence.
Synchronous Adds a message that calls an operation and expects a response.
Asynchronous Adds a message that calls an operation but does not expect a response.

continues

304 | CHAPTER 15 TOP-DOWN DESIGN

TABLE 15-3 (continued)

NAME DESCRIPTION

Create Adds a message that calls an operation that creates an instance of the
target.

Comment Adds a comment for more details.

Comment Link Connects a comment to a diagram element.

Interaction Use Adds an interaction use to create a reusable sequence or to reference

another sequence.

COMPONENT DIAGRAMS

A sequence diagram enables you to model and visualize the messages of a system. With the com-
ponent diagram, you can visualize the components of the system that implement the system func-
tionality, as well as other puzzle pieces of the system (such as web services, user interfaces, COM
components, and so on). A component diagram depicts the relationships between various compo-
nents of your application or system.

A component diagram shows the parts of a design for a software system. These components could
be executables, DLLs, or even entire systems. At this level, you aren’t necessarily trying to decide
exactly how things are being built. Rather, you are just trying to break down the architecture into
something more manageable and understandable. You can use a component diagram to visualize the
high-level structure of the system and the service behavior that the components both provide and
consume.

Think of a component as a modular unit that is replaceable. You don’t know how the internals

of the component work. Instead, you know what interfaces a component provides or consumes.
Components on a component diagram have interfaces, either required interfaces or provided inter-
faces. An interface can be anything, from a website to a web service. A required interface indicates
functionality that a component expects to consume. A provided interface indicates functionality
that a component provides for other components to consume. Each required interface on a compo-
nent diagram should be linked to a provided interface.

Creating component diagrams has a couple of nice benefits. It can help the development team under-
stand an existing design and see potential ways to improve it. More importantly, thinking of the
system as a collection of components with well-defined interfaces improves the separation between
components, which can make the design easier to change as the requirements change.

Creating a Component Diagram

Use the following steps to create a component diagram that represents the different components of
the online bookstore system. The different components include a web browser, the bookstore’s web-
site (both the web application and the back-end database), the bookstore’s payment system, and a
way to process credit cards.

Component Diagrams | 305

Using the same modeling project as used in previous sections, right-click the project in
Solution Explorer and select Add &> New Item from the context menu.

Select the UML Component Diagram template and name it BookComponents . component -
diagram. Click the Add button to create this diagram. A blank component diagram named
BookComponents . componentdiagram is created in the modeling project and opened in a tab
in Visual Studio.

There are two options for adding components to the diagram:

> Using the toolbox, click the component element, then click a blank area of the dia-
gram. An empty Component element appears on the diagram. This is useful for creat-
ing new components.

> You can also add existing components from other diagrams in the same modeling
project to the diagram. Either open the existing diagram or open the UML Model
Explorer window (by selecting View = Other Windows = UML Model Explorer).
Right-click the component to add to the component diagram and then select Copy.
Right-click a blank area of the component diagram and select Paste Reference to cre-
ate a copy of the component on the new diagram.

NOTE You can also just drag the component from the Model Explorer onto the
diagram.

From the Toolbox window, click the component element and click a blank area on the dia-
gram to create a new Component element. Select the component and change its name to Web
Browser. Using this same method, add the following components to the component diagram:

» Book Web Application

» Book Web App Database

> External Credit Card Processor Gateway
> Book Payment System

> Book Payment System Database

After you’ve added these components, the component diagram should resemble
Figure 15-10.

From the Toolbox window, click the Provided Interface element and then click the
Book Web Application component. The provided interface symbol (or lollipop) attaches
itself to the Book Web Application component with a default name of I1nterfacei. This
component is going to represent the website used for ordering books. Select the Provided
Interface element, and, in the Properties window, rename it Book Web Site.

Add another Provided Interface element to the Book Payment System component, and
name it IBookPaymentService. This element exposes a web service for interacting with

306 | CHAPTER 15 TOP-DOWN DESIGN

the payment system. Finally, add a Provided Interface element to the External Credit
Card Processor Gateway component and name it ICreditCardProcessingGateway. This
element exposes a web service for interacting with the external credit card processor.

BookCompenents.componentdiagrarn =< |
-
cmp BookComponents
Web Browser External Credit Card Processor Gateway
A ““Component= 2 COMpanents E'
BookWeb Application Book Payment System
A SETTIEE A “COmponents El
Book Web App Database Book Payment System Database
-
4 »
FIGURE 15-10

7. Add the required interfaces. A required interface represents behavior that a component
consumes through an interface. As with adding components to the diagram, there are two
options for adding interfaces (both required and provided interfaces) to the diagram. You can
add a new interface from the Toolbox window, or, using the UML Model Explorer, you can
drag an existing interface onto the diagram.

8. You must show that the web Browser component utilizes the book website interface exposed
by the Book Web Application component.

From the toolbox, click the Required Interface element and then click the web Browser
component on the diagram. Rename the interface to Book Web Site.

NOTE The interface elements can be easily repositioned on a component by
dragging them to the appropriate location.

Component Diagrams | 307

10.

11.

Add a required interface to the Book Web Application by using the UML Model Explorer.
If the UML Model Explorer window is not visible, open it by going to View &> Other
Windows & UML Model Explorer in Visual Studio.

The UML Model Explorer shows all the elements that have been added to the central model.
In the UML Model Explorer, click and drag the IBookPaymentService interface to the Book
Web Application component. This creates another instance of the IBookPaymentService
provided interface.

You need this interface to be a required interface. To change the interface type, select the
IBookPaymentService provided interface on the Book Web Application component. Click
the smart tag that appears near the element and select Convert to Required Interface. The
interface type changes from Provided to Required.

NOTE You can also select the smart tag for a required interface and change it
into a provided interface.

12.

Select the Required Interface element in the Toolbox window and click the Book
Payment System component to create a required interface on that component. Rename the
interface to be ICreditCardProcessingGateway. The component diagram should now
resemble Figure 15-11.

BookComponents.compenentciagram = >< |

4

-
cmp BookComponents
ICreditCardProcessingGataway J_
A “«componants El
O L External Credit Card Processor Gaty
A «components a] —
Book Website Web Browser
> f
ICreditCardProcessingGataway J_
A o gl - ~|—| Book Payment System
Book Website Book Web Application J_
o1 O
— _|, [—C T
r - 1BookPaymentystem
aE
1BookPaymentSystem
A acomponants A «companents]
Book Web App Database Book Payment System Database
=
3

FIGURE 15-11

308

CHAPTER 15 TOP-DOWN DESIGN

13.

14.

15.

Next you need to show which provided interfaces satisfy which required interfaces by using
the Dependency element. A Dependency element always connects a required interface (or
hook) to a provided interface (or lollipop).

In the Toolbox window, select the Dependency element. On the component diagram, select
the Book Web Site required interface on the web Browser component and then select the
Book Web Site provided interface on the Book Web Application component. A dotted
arrow is created from the required interface to the provided interface, indicating that the
provided interface satisfies the required interface. On the component diagram, select the
dependency dotted arrow that was just created. In the Properties window, change the name
to be HTTP. This provides a visual indicator on the component diagram that this is an HTTP
connection between the two components.

In the Toolbox window, select the Dependency element again. On the component diagram,
select the TBookPaymentService required interface on the Book Web Application com-
ponent. Then select the TBookPaymentService provided interface on the Book Payment
System component. Finally, select the Dependency element from the toolbox and connect the
ICreditCardProcessingGateway required interface on the Book Payment System compo-
nent to the ICreditCardProcessingGateway provided interface on the External Credit
Card Processor Gateway.

Create the dependency relationship between the Book Web Application and the Book

Web App Database components by selecting the Dependency element from the Toolbox
window, clicking the Book Web Application component, and then clicking the Book web
App Database component. A dotted arrow is drawn between the two, indicating the depen-
dency of the web application on the database. Do the same thing between the Book Payment
System component and the Book Payment System Database component. The component
diagram is now complete, as shown in Figure 15-12.

NOTE To show how a larger component is comprised of smaller components,
a component can also be placed inside other components on a component
diagram.

Component Diagram Toolbox

Figure 15-13 shows the different elements and associations available for component diagrams.

Component Diagrams | 309

-
cmp BookComponents
ICreditCardPr atevay
A “components El
=20 ﬁ =
A e gl . External Credit Card Processor Gateway
Book Website Web Browser :
- m [
[_) 1 I
1 T 1
! 1
1 I
1
. |
HTIP : ICreditCardPr atdy
\ l_ i ‘j ilﬁ wcomponents E
: A P Book Payment System
Book Website Book Web Application l
| = - I
- =2 i i ?O T
T _l_' (- IBookPaymentSystem :
: 1B0okPaymentSystem :
1 1
1 1
1 1
1 1
¥ L)
acomponente {l A “companents {l
Book Web App Database Book Payment System Database
-
4 3

FIGURE 15-12

Search Toolbox

4 UML Component Diagram

& Pointer
5] Component
7 Dependency

/" Delegation

&~ Provided Interface
&~ Required Interface
G Comment

A Generalization

/A Connector

A Part Assembly

4 General

There are no usable controls in this
group. Drag an item onto this text to
add it to the toolbox,

Toolbox R

FIGURE 15-13

310 | CHAPTER 15 TOP-DOWN DESIGN

Table 15-4 describes the different elements and associations.

TABLE 15-4: Component Diagram Toolbox Objects

NAME

Pointer
Component

Dependency

Delegation

Provided Interface

Required Interface

DESCRIPTION
Turns the mouse back into a regular mouse pointer.
Adds a component that defines a reusable unit of system functionality.

Defines how an element depends on another element. Begins the rela-
tionship from the dependent element.

Designates behavior between a port on an outer component and an
interface on an inner component.

Adds an interface that a component provides to other components.

Adds an interface that a component requires from other components.

Comment Adds a comment for more details.

Generalization Defines how a component derives from another component. Begins
the relationship from the derived component.

Connector Creates a default relationship between shapes based on the types of

shapes being connected.

Part Assembly Specifies a connection between parts in a component. Connects a

required interface on one part to a provided interface on another part.

CLASS DIAGRAMS

Class diagrams depict the classes within an application or system and the relationship that exists
between them. Different symbols represent the varying relationships that may exist (such as inheri-
tance or association). This information is described independent of any reference to a particular
implementation of the class. The purpose of the class diagram is to focus on the logical aspects of
the classes instead of how they are implemented.

NOTE This chapter discusses UML class diagrams, or logical class diagrams.
There is another type of class diagram, called a .NET class diagram, used to
visualize program code. That is not discussed in this book. More information on
this type of diagram can be found at http://aka.ms/vsl3classdiagram.

In a class diagram, a type is a class, interface, or enumeration. Class and interface objects can
have attributes defined. An attribute is a value that can be attached to an instance of a class or an

http://aka.ms/vs13classdiagram

Class Diagrams | 311

interface. Classes and interfaces can also have operations defined. An operation is a method or func-
tion that can be performed by an instance of a class or interface.

On a class diagram, you can draw associations between any pairs of types. An association indicates
that the system being developed stores links between the instances of the associated types. An asso-
ciation is a diagrammatic method of showing an attribute or pair of attributes. For example, if you
have a class BookStore that has an attribute of type Book, you can state that definition by drawing
an association between Bookstore and Book.

Using the UML Model Explorer, you can locate interfaces you have defined on the component dia-
gram and drag those directly onto the class diagram to create them.

Creating a Class Diagram

Use the following steps to create a class diagram that shows the relationship between a store class,
a BookStore class, and a Books class. A bookstore is a more specific version of a store, and a book-
store contains multiple books.

1. Using the same modeling project from before, right-click the project in Solution Explorer,
and, from the context menu, select Add &> New Item.

2. Select the UML Class Diagram template and name it BooksClassDiagram.classdia-
gram. Click the Add button to create this diagram. A blank UML class diagram named
BooksClassDiagram is created in the modeling project and opened in a Visual Studio tab.

3. In the Toolbox tab, click the class element and then click a blank space on the UML class
diagram. This creates a class object on the diagram. In the properties for the class, change the
name to be store. This is going to be a generic store class that the bookstore object inherits
from. Set the Is Abstract property of the Store class to True, to indicate it is an abstract
class.

NOTE Notice how, when setting the class to be abstract, the font of the title
changes to italic.

4. The store class has a couple of generic attributes that apply to all stores, such as location
and store hours.

Right-click the store class and select Add &> Attribute to create a new attribute. Name the
attribute Location. Select the Location attribute, and, in the Properties window, set the
Type property to be String. Add a second attribute named storeHours and set its type to
be string as well.

5. Create the bookstore class. The bookstore class inherits from the Store class created earlier,
as it is a specialized type of store.

Using the Toolbox window, add another class object to the diagram, under the store
object, and name it BookStore. Select the Inheritance element in the Toolbox window.
Click the Bookstore class and then click the store class. A solid arrow appears that points

312

CHAPTER 15 TOP-DOWN DESIGN

from the Bookstore class to the store class, indicating that the BookStore inherits from
the store.

The inherited operations and attributes are not typically shown on specialized types, which
is why the store class attributes are not displayed on the Bookstore class. However, you
can use the smart tag on the inheritance arrow to add inherited operations to the specialized
class. Simply click the smart tag and select Override Operations. Then select which opera-
tions to show on the specialized class.

Now create a class for the books. Add another class object to the class diagram, below

the BookStore class, and rename it Book. Add two attributes to the Book class: Price

of type Integer and NumberOfPages of type Integer. Select the Association element
from the Toolbox window, click the BookStore class, and then click on the Book class. An
Association element is used to represent any kind of linkage between two elements, regard-
less of how the linkage is actually implemented in the code itself.

A Bookstore can have multiple books in it, so you must modify the Multiplicity property
for the Book class.

Select the Association linking the BookStore and Book classes. In the Properties window,
click the arrow next to the Second Role property to expand it. Change the Multiplicity
value to be *, indicating the BookStore can contain multiple books.

Add an operation for ordering books to the Bookstore class. Right-click the class and select
Add = Operation. Name the operation orderBook.

You must set the parameters and the return type for this operation by selecting the
OrderBook operation and going to the Properties window. In the Properties window, set the
Return Type to be Boolean. Click the ellipsis in the Parameters field to open the Operation
Parameter Collection Editor window.

In the Parameter Collection Editor window, click the Add button to create a new parameter.
Set the name of the parameter to be Item, and the type to be Book. Click the Add button
again to create a second parameter named Quantity with a type of Integer. Click the OK
button to close the Operation Parameter Collection Editor window.

Figure 15-14 shows the final result of the class diagram.

Class Diagram Toolbox

Figure 15-15 shows the different elements and associations available for class diagrams.

Table 15-5 describes the different elements and associations.

Class Diagrams | 313

cd BooksClassDiagram)

4

A Store

[= Attributes
+ Location : String

[= Operations

+ StoreHours : String

S

= Attributes
[= Operations

+ OrderBook(Item : Book, Quantity : Integer) : Boalean

BookStore

BookStore
Bock | *

-

#

=

=

Book

Attributes

+ MumberOfPages : Integer
+ Price : Intager
Operations

-

FIGURE 15-14

TABLE 15-5: Class Diagram Toolbox Objects

NAME
Pointer
Class

Interface

Enumeration
Package
Comment

Association

DESCRIPTION

Toolbox
Search Toolbox P~
4 UML Class Diagram
k Pointer
#3 Class
=0 |nterface
= Enumeration
Package
G Comment
" Association
<+ Aggregation
Composition
7 Dependency
A Inheritance
', Package Import
/' Connector
4 General

There are no usable controls in this
group. Drag an item onto this text to

add it to the toolbox.

Server Explo... GLLIDE UML Model...

FIGURE 15-15

Turns the mouse back into a regular mouse pointer.

Adds a type that defines a class.

Adds an interface to specify the attributes and operations that classes

require to realize this interface.

Adds a type that defines a list of specific values.

Adds a package to organize types according to their namespaces.

Adds a comment for more details.

Defines how an element interacts with another element. Begins the relation-

ship from the referencing type.

continues

314 | CHAPTER 15 TOP-DOWN DESIGN

TABLE 15-5 (continued)

NAME DESCRIPTION

Aggregation Specifies that the source type refers to parts of the target type. The parts
can be shared with another owner.

Composition Specifies that the source type has parts of the target type. The parts cannot
be shared with another owner.

Dependency Defines how a type depends on another type. Begins the relationship from
the dependent type.

Inheritance Defines how a type inherits or realizes the members of another type.

Package Import Defines how a package imports types defined in another package. Begins
the relationship from the package that uses another package.

Connector This connection tool creates a default relationship between shapes, based
on the types of shapes being connected.

Generating Code from a UML Class Diagram

Visual Studio Ultimate 2013 allows you to generate code from a UML class diagram. Using the class
diagram as a base, you can generate skeleton code from the class diagram elements. You can also
create UML class diagrams from your code base.

To generate code from a class diagram, right-click the class diagram and select Generate code from
the context menu. By default, executing this command generates a C# type for each type on the
UML class diagram. The following are the default results for generating code:

> A C# type is produced for each type on the UML model. Each type is placed in a separate
code file.

A C# property is generated for each attribute of a UML class.
A C# method is generated for each operation of a UML class.

A C# field is generated for each navigable association in which the class participates.

Y VYV VY

If the UML type is contained in a package, the generated C# type is placed inside a
namespace, and the file is generated in a folder with the same name as the namespace.

However, you can customize this behavior—including the language generated as well as the differ-
ent outputs—by modifying the text templates that are used for generating the code.

NOTE For more information on customizing the Generate Code command, see
“Customizing the Generate Code Command” in the MSDN Library: http://
msdn.microsoft.com/en-us/library/f£657795.aspx#custom.

http://msdn.microsoft.com/en-us/library/ff657795.aspx#custom
http://msdn.microsoft.com/en-us/library/ff657795.aspx#custom

Summary | 315

Figure 15-16 shows the BookStore.cs C# class that was generated

by running the Generate Code

command against the BooksClassDiagram.classdiagram class diagram created earlier in this sec-
tion. A new class named BookStore that inherits from the store class was created. Also, a stub

method for the operation orderBook was created.

LI IR EooksClassDiagram.classdiagram

#3 BookStore -
_|/; ___
// <auto-generated>
I This code was generated by a tool
1 Changes to this file will be lost if the code is regenerated.
/f <fauto-generated>
e

—lusing System;
using System.Collections.Generic;
using system.Ling;
using System.Text;

Slpublic class BookStore : Store

Solution Explorer X
@le-20dB|
Search Solution Explorer (Ctrl+;) P~

& Selution 'Ch15ModelingProject’ (2 pr
4 7 Ch15ModelingProject
=-B Layer References
4 ModelDefinition
b €m BookComponents.component
b B# BooksClassDiagram.classdiagr
b & CreateOrder.activitydiagram
b & OrderBookactivitydiagram
b OrderBookusecasediagram
b § OrderBookDetailed.usecasedia
b FF OrderBookSequenceDiagram.s
4 Ch15ModelingProjectlib
b Properties
> =B References
4 GeneratedCode
P c# Book.cs
P ©* BookStore.cs
P c* Store.cs

4 »

SN Team Explo.. Class View

{ .
= public virtual IEnumerable<Book> Book
{
get;
set;
}
= public virtual bocl OrderBook(Book Item, int Quantity)
{
throw new System.NotImplementedException();
b
}
100% -4 »
FIGURE 15-16

SUMMARY

This chapter examined the capabilities of use case, activity, sequence, component, and class dia-
grams. You looked at how to create a use case diagram, and learned about its different components.
Next, you learned about activity diagrams, where, in addition to examining an example of how to
build a diagram, you also learned how to link an activity diagram back to a use case diagram. You
then examined sequence diagrams, their components, and how to create them.

You learned the purpose behind component diagrams, how to create them, and the different ele-
ments available to component diagrams. Finally, you learned about class diagrams and how they are
used. You learned about the different elements that are available for class diagrams and concluded
the chapter with a look at how to generate code from a class diagram.

316 | CHAPTER 15 TOP-DOWN DESIGN

Chapter 16 discusses how you can use the Architecture Explorer to drill down into the existing
project, which helps you to understand the different aspects of the project. The information in the
Architecture Explorer can then be turned into a graphical view by creating a dependency graph.
Finally, you will learn about code maps, a new feature in Visual Studio Ultimate 2013 to help you
better understand your code base.

16

Analyzing Applications
Using Architecture Explorer,
Dependency Graphs,

and Code Maps

WHAT'S IN THIS CHAPTER?

Exploring Architecture Explorer
Using Architecture Explorer to understand existing code

Visualizing existing code using dependency graphs

Y Y VY Y

Visualizing existing code using code maps

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/proalm3ed
on the Download Code tab. The files are in the Chapter 16 download folder and individually
named as shown throughout this chapter.

Every software developer has been in the following situation at some point in time: You have
just started a new job with a new company, and you’re expecting to write a new, fancy appli-
cation. You are up to speed on some of the latest coding technologies, methodologies, and
languages. You arrive for work ready to sit down and use everything you know to crank out
some code to help the company succeed.

And then it happens. There is a legacy system that was built several years ago that must be
updated. You are the lucky developer who has been assigned to make that update — never
mind that you have no idea or concept of how the application works, the inner workings of the
calls between different objects, or how it interacts with other third-party add-ins.

http://www.wrox.com/go/proalm3ed

318 | CHAPTER 16 ANALYZING APPLICATIONS

Before Visual Studio Ultimate 2010, the only solution to this problem was to get your hands dirty
in the code. You had to open the code files and start tracing (as best you could) how the logic flows
between the different classes and components that make up the application. Maybe you would even
try (as best you could) to diagram the logic flow on a piece of scratch paper.

Visual Studio Ultimate 2010 changed all that with the introduction of the Architecture Explorer
tool, and Visual Studio Ultimate 2013 has added even more functionality to make exploring your
application easier. Using Architecture Explorer, you can quickly learn more about your current
application by visualizing the organization and relationships among the various parts. By using
Architecture Explorer in conjunction with dependency graphs, you can analyze an existing system
and more quickly understand it. Code maps, new to Visual Studio Ultimate 2013, provide another
visualization option for your code. These tools also enable you to find areas in the application that
should be improved or modified.

This chapter examines Architecture Explorer, dependency graphs, and code maps. The chapter
begins with a discussion about the Architecture Explorer tool, including what it is, and how it was
designed to be used. From there, you learn about using Architecture Explorer and how you can use
it to drill down into your existing application.

After that, you learn how to take the information from Architecture Explorer and make it graphical
by turning it into a dependency diagram. Dependency diagrams are a nice way to graphically view
your code, as well as code contained in other managed DLLs (such as the .NET Framework). In
Visual Studio Ultimate 2013, dependency graphs can visualize code without the use of Architecture
Explorer. In this chapter, you find out how to utilize those features and learn about the Code Index,
a back-end database for dependency graphs that helps speed the visualization process. You’ll also
learn about code maps, and how you can use them to understand your project code.

UNDERSTANDING THE CODE BASE

Although the example used throughout this chapter is rather simplistic, it works well to introduce
the different capabilities of Architecture Explorer, dependency diagrams, and code maps. So, let’s
take a look at the code base used throughout this chapter so that later sections will make more sense.

Figure 16-1 shows the projects and code files that make up the sample solution.
This solution is made up of two project files:

> FirstProject—This project contains two class files, FirstClass.cs and SecondClass
.cs. The FirstClass.cs class file contains two methods, Method1 and Method2. The
SecondClass. cs class file contains one method, Method3.

> gecondProject—This project contains one class file, ThirdClass.cs. The ThirdClass.cs
class file contains three methods: Method4, Method5, and Methodé.
Getting confused yet? Let’s add to it a little more:
> Method1 calls Method3 and Method2.

> Method2 calls Method1.

Architecture Explorer Basics | 319

Method3 doesn’t call any other methods.
Method4 calls Method1.

Methods calls Method3.

Y Y VY Y

Methodé doesn’t call any other methods.

Selution Explorer C
"
@ e--ndim|
Search Solution Explorer (Ctrl+;) P

fad Selution 'MySolution' (2 projects)
4 FirstProject

b M Properties

> =B References

P c# FirstClass.cs

P c# SecondClass.cs
4 SecondProject

b M Properties

[=B References

P c# ThirdClass.cs

FIGURE 16-1

Whew! All of that sounds just a little bit confusing, and this is only a contrived solution with two
projects and three classes. Imagine what it would seem like with a real software solution, with
hundreds of projects, and thousands of classes and methods. As you are about to learn, though,
Architecture Explorer, dependency graphs, and code maps are going to help with the understanding
of any project, both small and large.

ARCHITECTURE EXPLORER BASICS

In Visual Studio Ultimate 2013, you use Architecture Explorer to drill down into your existing
code, which enables you to select the code you want to visualize using a dependency graph. You can
use Architecture Explorer to browse existing source code open in Visual Studio Ultimate 2013, as
well as browse compiled managed code located in .d11 or .exe files. You can extend Architecture
Explorer with third-party tools, which allow you to browse other domains of code or other items.
After you have drilled down into your code and selected the items you are interested in, you can
turn that information into a dependency graph.

NOTE Architecture Explorer is available only in Visual Studio Ultimate 2013,
and will work on any managed code from .NET 2.0 onward.

320 | CHAPTER 16 ANALYZING APPLICATIONS

Understanding the Architecture Explorer Window

To open Architecture Explorer, open Visual Studio Ultimate 2013. From the main menu of Visual
Studio, select View = Architecture Explorer. Alternatively, from the main menu of Visual Studio,
you can select Architecture &> Windows > Architecture Explorer.

NOTE The shortcut keys for opening Architecture Explorer are Ctrl+/ and
Ctrl+R.

Figure 16-2 shows an initial view of Architecture Explorer.

Architecture Explorer * 0 x

db L Visual Studio <MySolution>
ﬁ o0 Class View
‘-)
=

=0 Solution View

4 File System
=B Select Files...

FIGURE 16-2

Architecture Explorer represents structures as nodes and relationships as links. As you browse
through your code base using Architecture Explorer, nodes are displayed in successive columns to
the right. The first column in Figure 16-2 shows the initial domains and views that are available for

browsing. Selecting a domain or view causes a new node to appear to the right with the results of
that selection.

NOTE You can browse all the way to the level of statements for Visual C# and

Visual Basic projects. For other languages, you can browse to the procedure
level.

When you select a node in a column, the next column shows node information that is logically
related to the selection made in the initial column. For example, selecting a class in a column shows
the members of that class in the following column. You have the capability to select multiple nodes
in multiple columns and then display that information as a dependency graph.

Architecture Explorer Options

As you can see in Figure 16-2, there are four options (represented as icons) available on the left side
of the Architecture Explorer window.

Architecture Explorer Basics | 321

The first option enables you to create a new dependency graph document from all the nodes
currently selected in Architecture Explorer. To include only the nodes in the current column,
you can press and hold the Ctrl key before clicking this option.

The second option enables you to add the selected nodes from Architecture Explorer to an existing
dependency graph that is currently visible in Visual Studio. As with the first option, to include only
the nodes that are in the current column, press and hold the Ctrl key before clicking this option.

The third option enables you to export the information from Architecture Explorer into a .dgml
file. A Directed Graph Markup Language (DGML) file is the XML schema used to define a
dependency graph. Selecting this option exports all the information open, in all of the columns, into
a .dgml file that you can view at a later date.

The fourth option resets Architecture Explorer to its initial state, cleaning up the window and
enabling you to start from the beginning.

Navigating Through Architecture Explorer

To begin navigating through Architecture Explorer, select one of the rows in the first column. You
have several options.

Under the Visual Studio column heading you can choose to view the information in your solution
either by classes or through a solution view, which enables you to view the different files in your
solution. If you don’t want to drill down through all the files in a solution, you can click the Select
Files option and open only the files you are interested in.

For this example, let’s navigate through the code using the Class View options. In Architecture
Explorer, select Class View under Visual Studio <My Solution>. This opens a new column to the
right of the selected column, displaying a list of all the different namespaces in the solution, as
shown in Figure 16-3.

Architecture Explorer * 0 x

% 4 Visual Studio <MySolution> v | -

£ . :
é 01 Class View {} FirstProject

e u-B Solution View {} SecondProject

2 4 File System
=B Select Files...

Oof2

FIGURE 16-3

In Figure 16-3, you see that the two namespaces currently in the solution (FirstProject and
SecondProject) are displayed on the right of the screen.

Obviously, for a large project, you could have many namespaces, which could result in a large scroll-
ing list in this column. The listbox at the top of the column enables you to filter the information
in this column. For example, if you only wanted to see namespaces that began with “Second” you

322 | CHAPTER 16 ANALYZING APPLICATIONS

could type second in the listbox, press Enter, and the contents of the column would be filtered, as
shown in Figure 16-4.

Architecture Explorer > I x
g% 4 Visual Studio <MySolution=> 7 Second| =

£ -

k8 =8 Class View {} SecondProject

; =8 Solution View
£

4 File System
=B Select Files...

Dof1

FIGURE 16-4

Notice the differences between Figure 16-3 and Figure 16-4. Figure 16-3 displays all the namespaces
in the solution. Figure 16-4 displays only the namespaces that match the filter expression. Also,
notice the filter icon that is added in the lower-right of the column, giving a visual indication that
the column is currently being filtered.

NOTE When you type a filter, a substring search is performed. For example,
if you enter c for the filter statement, it matches on both FirstProject and
SecondProject.

To clear the filtering on a column, simply delete the filter statement and press Enter. This removes
the filter and displays the entire contents of the column.

From the namespace column, you can navigate into the different classes contained in a particular
namespace. Selecting the FirstProject namespace opens a new column to the right, containing
the classes in the FirstProject namespace — in this case, FirstClass and SecondClass. As men-
tioned previously, you can filter on this column by entering your filter criteria into the listbox at the
top of the column. You can also filter based on different categories and properties.

Click the filter button located to the left of the filter listbox at the top of the column. This displays
all the possible categories and properties that can be filtered on, as shown in Figure 16-5.

Architecture Explorer > I x
44 4 Visual Studio <MySolution> 7 | -| %‘ 7 | -
: ® —]

% =8 Class View {] FirstProject 4 Categories

c * 8 Solution View {1 SecondProject [] Classi2!

£ 4 File System 4 Properties

=B Select Files... b [] Is Abstract (2 L\,

B[] IsFinal (21
B[] IsPublict
p [leonia

1of2
S

FIGURE 16-5

Architecture Explorer Basics |

323

For this particular column on classes, you have the following filter options:

> C(Class

> s Abstract
> Is Final

> Is Public
> Icon

You have the option of selecting one or multiple filter options, allowing you to drill down into the
information contained in the column in a variety of ways.

Exploring Options for Namespaces

In addition to the filtering options mentioned previously, you have another option for controlling

what is displayed in a column. In Figure 16-5, just to the left of the column containing the classes,
there is a collapsed column labeled Types. Clicking that collapsed column expands it, as shown in
Figure 16-6.

i
®
e
=

Architecture Explorer

4 Visual Studio <MySolution>
=B Class View

50 Solution View

v |

~|| 4 Node Navigation

4 File System
=B Select Files...

{} FirstProject
{} SecondProject

(W) Classes

[Delegates
[Enums

[Interfaces
[Members
[Modules

[Mamespaces
[Structs

[Typedefs

O Types

[Unigns

[Using Aliases

4 QOutbound Navigation
[All Qutbound
[Contains

4 Inbound Navigation
[All Inbound
[Contained By
[Namespace Reference So

4 Analysis
[Circular References
[™ Find Hubs

1of2

[Unreferenced Nodes

-

v

FirstClass
#3 SecondClass

Dof2

FIGURE 16-6

This column provides a variety of options for determining what is initially displayed in the column.

The first section is the Node Navigation section. By default, the Types node is selected, which shows

324 | CHAPTER 16 ANALYZING APPLICATIONS

all the different available types — in this case, FirstClass and SecondClass. You can select the
following nodes for display:

> Classes
Delegates
Enums
Interfaces
Members
Modules
Namespaces
Structs
Typedefs
Types

Unions

Y Y Y Y Y Y VY VY VY VYYy

Aliases

You can select multiple nodes by holding down the Ctrl key while you select the nodes. Each time
you select a node, the column to the right recalculates with the new data to display.

You have the capability to organize the link types into two categories: outbound and inbound.
These categories describe the direction of the link in relation to the currently selected node.

An outbound link points from the currently selected node to the next related node. For example, say
that you have currently selected the FirstProject namespace. If you select All Outbound under
Outbound Navigation, the two classes, FirstClass and SecondClass, are displayed. FirstClass
and SecondClass exist in the FirstProject namespace, and, as such, are the next related nodes
beneath the FirstProject namespace.

You have the following options for Outbound Navigation:
> All Outbound
> Contains

An inbound link points from a previously related node to the currently selected node. For example,
say that you have currently selected the FirstProject namespace. If you select All Inbound under
Inbound Navigation, the solution file MySolution is displayed in the next column. MySolution
exists above the FirstProject namespace from a hierarchical perspective.

The following options exist for Inbound Navigation:
> All Inbound
> Contained By

> Namespace Reference Source

Architecture Explorer Basics | 325

You also have the capability to perform Analysis and Grouping options. Using the Analysis options,
you can look for circular references or hubs (for example, classes) that are not being called or used.
The Grouping options also enable you to group by container or properties.

The following options exist for Analysis:
> Circular References
> Find Hubs
> Unreferenced Nodes

The following options exist for Grouping:
> Group by Containers

> Group by Properties

Exploring Options for Classes

Previously, you learned about some of the Node Navigation options from a namespace perspective.
Let’s continue the example by selecting the Firstclass class in Architecture Explorer to see what

Node Navigation options are from a class perspective. Figure 16-7 shows Architecture Explorer
after the FirstClass class has been selected.

Architecture Explorer > o x
b 4 Visual Studio <MySolution> 7 | v| g v - § v | '|
& eEClass View {} FirstProject & T | ® Methodi
c 8 Solution View {} SecondProject #2 SecondClass ° @ Method2
£ . File System
=B Select Files..,
1ofz otz Oofz

FIGURE 16-7

By default, Node Navigation defaults to Members. As you can see in Figure 16-7, FirstClass has
only two members: two methods named Method1 and Method2. As you might expect, the filtering
options at the top of the column work the same as they have in previous columns. However, now

that you are working on a class level as opposed to a namespace level, you have different navigation
options.

From the Node Navigation options, you can view any of the following information about the
selected class:

> Classes
> Delegates

> Enums

326 | CHAPTER 16 ANALYZING APPLICATIONS

Generic Arguments
Generic Parameters
Interfaces

Members

Y Y Y VY Y

Structs

> Types

Outbound Navigation has several more options available to it, as you would expect. Classes

can inherit from other classes, implement interfaces, and have attributes. The following are the

Outbound Navigation options:
> All Outbound

Contains

Generic Arguments

Generic Parameters

Implements

Y Y Y VY Y

Inherits From

» Uses Attribute

Inbound Navigation also has more options, including the following;:

> All Inbound

> Contained By
> Inherited By
>

Used By

The Analysis patterns and Grouping options are the same as before.

Exploring Options for Members

For this example, drill down one more level to look at some of the Node Navigation options available
at a member level. In Architecture Explorer, select the Method1 method, as shown in Figure 16-8.

Architecture Explorer

v 1 x

v g v

53550

{1 FirstProject
{} SecondProject

#z FirstClass
#3 SecondClass

I V|54 B
|

EELTITEI

@ Method1

@ Method2

e

v

@ Method2
@ Method3

1of2 1of2
4

1of2

Oof2

FIGURE 16-8

Architecture Explorer Basics | 327

As you would expect, the Node Navigation options have changed again. By default, when you select
a method, the resulting column in Architecture Explorer shows all the outbound calls that method
makes (that is, all the methods that the selected method uses).

From a Node Navigation perspective, you can view any of the following information about the
selected method:

>

Y Y Y Y Y Y

>

Block Expressions
Classes

Fields

Generic Arguments
Generic Parameters
Methods
Parameters

Types

Outbound Navigation has several more options available to it, as you would expect. The following
are the Outbound Navigation options:

>

Y Y Y VY Y VY VY VY VY

All Outbound
Calls

Contains

Function Pointers
Generic Arguments
Generic Parameters
Parameters

Reads Fields
Return Types

Uses Attribute
Writes Fields

Inbound Navigation also has more options, including the following:

>

Y VYV VY

All Inbound
Called By
Contained By
Function Pointers

Property Gets

328 | CHAPTER 16 ANALYZING APPLICATIONS

Property Sets
> Referenced By

The Analysis patterns and Grouping options are the same as before.

DEPENDENCY GRAPHS

They say a picture is worth a thousand words, and dependency graphs prove that saying.
Architecture Explorer is invaluable for its capability to drill down into the code base, but it can

also present so much information that it can be a bit overwhelming as well. Given its capability to
continuously scroll to the right, you could become confused after doing an intense, deep drill-down.
Wouldn’t it be nice to be able to visualize the information from Architecture Explorer? Dependency
graphs enable you to do just that.

You can use a dependency graph to explore the relationships and organization of an existing code
base. These graphs make it easy to understand code that is new or unfamiliar to you. The relation-
ships on the graph make it readily apparent how different areas of code relate to one another and
can show you how a change to one area of code could cause potential issues for other areas of the
code. You have multiple ways to view your dependency graph information.

NOTE A dependency graph shows only those dependencies in code that have
gone through a successful build. Any code that did not build successfully does
not appear on the dependency graph.

NOTE Dependency graphs are also referred to as directed graphs. The two
terms are used interchangeably.

Creating the First Dependency Graph

You actually have several different options for creating a dependency graph. Because the first half of
this chapter deals with Architecture Explorer, let’s continue that thread so you can see how you can
create dependency graphs from Architecture Explorer. Later, you learn how you can create depen-
dency graphs, without using Architecture Explorer, to get a quick overview of your source code or
compiled code.

Previously, using Architecture Explorer, you learned how to drill down into your source code. You
saw how to select the FirstProject namespace, the FirstClass class, and the Method1 method.
From here, let’s select Method2 and Method3 in Architecture Explorer.

Dependency Graphs | 329

To display this information as a dependency graph, simply click the Create a New Graph Document
button on the Architecture Explorer window. This takes all the information selected in Architecture
Explorer and displays it as a dependency graph, as shown in Figure 16-9.

Graphl.dgml® &= X

9 Undo | Show Related - Layout~ 3P | w | Share = | e | Legend
MySoclution LEGEND X
+
{} FirstProject
#3 FirstClass
@ Method1
@ Method3 @ Method2

FIGURE 16-9

As you can see, this graph provides an easy-to-understand graphical overview of the information
contained in Architecture Explorer. You can see that the FirstProject namespace contains the
FirstClass class. The FirstcClass class contains two methods: Methodl and Method2. Method1
makes references to both Method2 and Method3. Also, you can see that Method2 makes reference to
Methodl.

If you want to view the code file for a particular node, that is easy to do from the dependency graph.
You simply right-click the node and select Go To Definition from the context menu to open the code
file associated with the selected node.

You can easily add more nodes to an existing dependency graph. Let’s say you create an initial
dependency graph using Architecture Explorer. Now, let’s say that you want to add more nodes to
the graph to make it more detailed. Select the nodes you want to add in Architecture Explorer and
then click the Add Selected Nodes to Existing Graph button on the left side of the Architecture
Explorer window. This adds the selected nodes to the existing graph.

Creating a Dependency Graph Without Architecture Explorer

You can also create a dependency graph without even opening Architecture Explorer. This can be
very handy when you want to analyze the entire code base of your code without having to worry
about drilling down through particular elements using Architecture Explorer. For example, you can
drag and drop a .NET assembly onto a blank diagram and it automatically decomposes the assem-
bly for you.

330 | CHAPTER 16 ANALYZING APPLICATIONS

From the main menu of Visual Studio Ultimate 2013, select Architecture = Generate Dependency
Graph. This provides you with two options for generating your dependency graph:

> For Solution—This option generates a dependency graph based on the current open
solution.

> For Include File—This option generates a dependency graph based on a C++ include file.

Figure 16-10 shows an example of a dependency graph generated using the For Solution option. You
will need to click Legend to see the legend shown in Figure 16-10.

Undo Show Related ~ Layout~ 3P | Lo] | Share = | by | Legend

Qut Parameter

Parameter

Local Variable

Externals

I Streaming Video: Understand your code dependencies through visualization -
LEGEND x
Results
Assembly
Namespace
Interface
Struct E
Enumeration
Delegate E
@P FirstProject.exe Class
Property >
Externals. Method @
Event t4
Field L
@
‘o
@
|
L

FIGURE 16-10

Each project generates its own assemblies, which, in the example project, would be FirstProject
.exe and SecondProject .exe. In addition, there is a reference to an Externals assembly, which
includes the references and calls into the .NET Framework. Although the black-and-white picture
might not show it well, the legend is color-coded to help you easily understand the different aspects
of your dependency graph.

Dependency Graphs | 331

Navigating Through Your Dependency Graph

You may be thinking that the information shown in Figure 16-10 is nice, but it is not that helpful.
It sure would be nice if you could drill down into the dependency graph in a manner similar to how
you drill down into information in Architecture Explorer. Well, guess what? You can!

By clicking the arrow icon located at the top-left of a node, you can expand the node to view the
detailed information in that node, as shown in Figure 16-11. The arrow icon will become visible
when you mouse over the node.

AssemblyDependenciesl.dgml® & >
'9 Unde | Show Related ~ Layout~ 3P | L] | Share~ | | M 74

LEGEND x
Results
Assembly
Namespace
Interface m
Struct E
. Enumeration
veesne 5]
® Method Property »
¥ [g
) Ny Method @
@ Method2 Event £
| Extemats Field [~
.d— | | QOut Parameter '@
@ Method3 Parameter ‘@
| Local Variable &
Externals .
L

FIGURE 16-11

FirstProject.exe is comprised of the FirstProject namespace. The namespace contains three
classes: FirstClass, SecondClass, and Classl. FirstClass contains two methods: Method1 and
Method2. SecondClass contains one method: Method3.

The dependency graph shows the interactions between the different methods. It also shows that the
SecondProject .exe assembly makes calls to Method3 in the Secondclass class. To view exactly
which object is making this call, you can expand the information for that assembly on the depen-
dency graph.

332 | CHAPTER 16 ANALYZING APPLICATIONS

NOTE The information displayed in Figure 16-11 is the same information dis-
played in Figure 16-9, just in a different format. You can format a dependency
graph using a variety of different options.

The next question you might have is whether you can drill down into that external node. The
answer is, yes! Using a dependency graph, you can drill down into external assemblies (such as the
.NET Framework). This is an incredibly powerful tool. You now have the capability to delve into
the .NET Framework and map how all the objects and methods interact with each other, enabling
you to come to a much better and deeper understanding of how the .NET Framework works.
Figure 16-12 shows an example of this.

AssemblyDependenciesl.dgml* = >
¥ Undo Show Related ~ Layout~ 2 | @ | Share= 0 | B [70.283 -| | Legend
I3 Streaming Video: Understand your code dependencies through visualization -
| |
LEGEND x
Results
scorlib.dll
Namespace [0
£} System.Reflection —— m
. Struct m
Enumeraton
Delegat:
wesie [
Class
Property »~
veos @
) System Diagnostics Event £
B —— Out Parameter %@
Parameter]
£} System RuntimeInteropSenvices
Local Variable e
4} System Runtime CompilerServices Externals .

FIGURE 16-12

You also have the capability to interact with your dependency graph by right-clicking the graph
and selecting from a variety of context menu options. You will recognize many of the options from
Architecture Explorer. The exact options depend on what is selected on the dependency graph.

Dependency Graphs | 333

You can select a specific node on a graph and then choose the Advanced = Select menu option from
the context menu. This enables you to do the following:

> Select all incoming links to the selected node

> Select all outgoing links from the selected node

> Select both incoming and outgoing links from the selected node
> Select all connected nodes to the selected node

> Select all children of the selected node

You have the capability to add groups and categories to the graph, enabling you to organize the
graph in a more readable fashion.

Refer to Figure 16-11 to see another nice feature of dependency graphs, which is the capability to
apply different analyzers to the information on the graph. You saw these analyzers before when you
worked with Architecture Explorer, but they make even more sense when you see them in conjunc-
tion with the dependency graph.

From the Legend, click the Add button (it looks like a plus sign), select Analyzer, and then select
Circular References. This analyzer looks for circular references, or infinite loops, in your graph.
When those references are found, it highlights them (in red) on the dependency graph, instantly
bringing them to your attention, as shown in Figure 16-13.

AssembhyDependenciest.dgmi® = < |
¥ Unde | Show Related = Layout~ 37 ‘ 0 | Share = | il | Legend

I3 Streaming Video: Understand your code dependencies through visualization -
l \ LEGEND x
@ AEDE D Circular References I:Ij
{3 FirstProject Results
< Assembly 0l
CE‘; FirstClass .
Namespace
@ Method] Interface m
Struct E
@ Method2 Enumeration
Delegate @
L Class
(M SecondClass

Error List
Y - 0 Errors 1 2Warnings 0 Messages Search Error List P~
Description File Line Column Project
1 1 Circular reference found involving: Method1 ({Assembly="file:///C:/ALM 2013 Book/Chapter AssemblyDependencii 0 0

16/MySolution/FirstProject/bin/Debug/FirstProject.exe” Namespace=FirstProject
Type=FirstClass Member={MName=Method1 OverloadingParareters=
[(Assembly="file:///C:/Program Files (x86)/Reference
Assemblies/Microsoft/Framework/.METFramework/v4.0/Profile/Client/mscorlib.dil"
Namespace=System Type=Int32)1}))
1 2 Circular reference found involving: Method2 ((Assembly="file:///C:/ALM 2013 Book/Chapter AssemblyDependencii 0 0
16/MySelution/FirstProject/bin/Debug/FirstProject.exe” Namespace=FirstProject
Type=FirstClass Member=Method2))

FIGURE 16-13

334 | CHAPTER 16 ANALYZING APPLICATIONS

The Find Hubs analyzer is also available. It shows which hubs are a Node Property in the top
25 percent of high-connected nodes. This is a quick-and-easy way to see which hubs are involved
with a majority of the work in the application.

The Unreferenced Nodes analyzer is also available. It highlights any nodes that are not referenced by
any other nodes. They are orphans. This is a good way to find areas of the code that are not being
used either because of oversight or because they are no longer needed.

Dependency Graph Legend

In the upper-right corner of each dependency graph is the legend (see Figure 16-11). You can use
the legend to help you understand all the different components that make up the dependency
graph. One nice feature of the legend is that it is completely customizable, which means you can
control the shapes and colors that are used on the graph, thus enabling you to customize the graph
to your needs.

For the dependency graph shown in Figure 16-11, if you were to click the Add button on the legend
(the plus icon), you would have the following four options that could be added to the graph:

> Node Property
> Node Category
> Link Property
> Link Category

Each of these options has sub-options underneath it that you can add to the legend. To see these
sub-options, you will need to expand the nodes in the diagram. For Node Property, the options are
the following:

> Is Abstract
Is Final
Is Private
Is Public

Is Static

>

>

>

>

> StrongName

> Error

> File Path

> Group

> Circular References

For Node Category, the options are the following:
> Assembly

> C(Class

Dependency Graphs | 335

Method
Namespace

Externals

Y Y VY Y

FileSystem.Category.FileOfType.exe
For Link Property, the options are the following;:
> Circular Link
> Weight
And, finally, for Link Category, the option is the following:
> Calls
> User Attribute
> Inherits From
> References

When you have added a new item to the legend, you can customize its appearance. You can click the
icon in the legend and select from the following four customization options:

> Background—This lets you select a color for the background of the node.
> Stroke—This selects the color that outlines the node.

> Foreground—This sets the text color in the node.
>

Icons—This enables you to select from a variety of icons to add into the node itself.

Dependency Graph Toolbar

You can use the dependency graph toolbar to modify the look and feel of a dependency graph. At the
far left of the toolbar are the Undo/Redo buttons, allowing you to undo a change or reapply a previ-
ously undone change. The Show Related drop-down allows you to see any assemblies that reference,
or are referenced, by a selected item on the graph. The Layout drop-down allows you to specify

the directional flow of the dependency graph. Options here include Left-to-Right, Right-to-Left,
Top-to-Bottom, Bottom-to-Top, and Quick Clusters. Top-to-Bottom is the default view. The Quick
Clusters view shows the nodes as clusters or hubs. In this view, the graph is arranged with the most
dependent nodes near the center, and the least dependent nodes at the outer edges of the clusters of
hubs. Figure 16-14 shows the dependency graph toolbar.

Clicking the magnifying glass opens a search window, so you can search the dependency graph for
specific information. The Share drop-down allows you to copy the dependency graph image to the
clipboard, email the image, or save it as a portable XPS document.

Finally, there are the zoom controls. As you can imagine, a dependency graph can grow to be quite
large. These tools enable you to zoom into and out of areas of the graph that you are interested
in. You can use the drop-down listbox to fit the graph to the page or to select pre-specified zoom

336 | CHAPTER 16 ANALYZING APPLICATIONS

options. You can also use the scroll wheel on the mouse to zoom in and out of the graph, as well as
a button to fit the diagram to the screen.

| 9 Undo | Show Related ~ Layout~ 3P | R | Share~ | bic | Legend
FIGURE 16-14

The Code Index

One of the things you will notice about dependency graphs is that they are very responsive. When you
generated a dependency graph for the entire solution, you probably saw the window in Figure 16-15.

Generating dependency graph

+ Building selution
Indexing the code
Building the graph

Preparing code index for first-time use

Cancel

FIGURE 16-15

When you generate a dependency graph, the first thing that happens is the solution is built. Next,
the assemblies are indexed and stored in a SQL Server localdb database. This database is referred
to as the Code Index. Then, the graph is built using the indexed information from the Code Index.
Although this means the initial visualization of the graph takes longer to generate, after you start
working with the graph you can very quickly drill down into elements or add new elements to the
graph.

Zooming in and out of a dependency graph is a fast, pleasant experience. In Visual Studio Ultimate
2013, through the use of the Code Index, only the portion of the graph that is being utilized at the
time is brought into memory, making it much more responsive.

As just mentioned, the Code Index is created when the dependency graph is initially generated. It is
possible to prepopulate the index during the automated build process, using build tasks. To do this,
you need to make use of the Visual Studio Visualization and Modeling SDK, which is freely avail-
able from Microsoft.

NOTE For more information on the Visual Studio Visualization and Modeling
SDK, see the MSDN information available at http: //archive.msdn
.microsoft.com/vsvmsdk.

You can view the contents of the Code Index using Server Explorer in Visual Studio Ultimate
2013. Open the Server Explorer window in Visual Studio Ultimate 2013. Right-click the Data

http://archive.msdn

Code Maps | 337

Connections icon and select Add Connection from the context menu. This opens the Choose Data
Source window. Select Microsoft SQL Server, then click the Continue button. This opens the Add
Connection window, shown in Figure 16-16.

Enter information to connect to the selected data source or click "Change” to
choose a different data seurce and/or provider.

Data source:

[Microsoft SQL Server (SalClient) || change. |

Server name:

(localdb)w11.0 v/ | Refresh |

Log on to the server

(®) Use Windows Authentication
() Use SQL Server Authentication

User name:
Passward:
Save my password
Connect to a database

(®) Select or enter a database name:

() Attach a database file:

Logical name:

| Come]

FIGURE 16-16

In the Server Name field, enter (1ocaldb)\v11.0. Select the database named Repository. This is the
Code Index database. Click OK to close the window and connect to the Code Index. Figure 16-17
shows a list of tables from the Code Index. At this point, you can open the tables to view the data
collected by the indexing.

CODE MAPS

Code maps are a new feature in Visual Studio Ultimate 2013 that, in some ways, are very similar to
dependency graphs. Code maps allow you to visualize your code relationships. However, one of the

main differences is that code maps appear alongside your code, allowing you to see where you are in
the hierarchy of the code while you are working on the code itself.

338 | CHAPTER 16 ANALYZING APPLICATIONS

Server Explorer > o x
R |¥sEiegk
4 g¥ Data Connections -

4 @ r2-08-winfxbd\localdb#7e2dffed.Microsoft.VsCodelndex.dbo

Pl Tables
- B LinkCategoriesTable (ArchitectureTools.Common)
I EE AssemblyldTable (ArchitectureTools.|dentifiers)
I EE Intemnal AssemblyPersisted|dStatusTable (ArchitectureTools.|dentifiers)
I BB Internal TypeldsTable (ArchitectureTools.|dentifiers)
I BB Internal TypelnstanceShortldsTable (ArchitectureTools.|dentifiers)
I BB MethodinstanceldTable (ArchitectureTools.|dentifiers)
I R MNamespaceldTable (ArchitectureTools.|dentifiers)
I EE TypelnstanceldTable (ArchitectureTools. dentifiers)
I BE AssemblyDependenciesTable (ArchitectureTools.Runtime)
I BB AssemblyTypeResolutionStatusTable (ArchitectureTools.Runtime)
b ER AssemblyTypeResolutionTable (ArchitectureTools.Runtime)
b BB TypeContainmentsTable (ArchitectureTools.Runtime)
b ER Internal dSequenceAliases (Repository)
- EE Internal ldSequences (Repository)
b EE ColumnsTable (Repository.Catalog)
I BB DomainsTable (Repository.Catalog)

b EE EnumerationsTable (Repository.Catalog)

b B EnumerationValuesTable (Repository.Catalog)

I EE RelationshipsTable (Repository.Catalog)

> FE RelationsTable (Repository.Catalog)

> EE RoleColumnsTable (Repository.Catalog)

I ER RoleKindsTable (Repository.Catalog)

I ER RoleRoleKindsTable (Repository.Catalog)

I ER RolesTable (Repository.Catalog)

- FE SchemasTable (Repository.Catalog)

I FR SeguencesTable (Repository.Catalog)
Server Explorer

FIGURE 16-17

In Visual Studio, in your current working solution, open the FirstClass.cs file. Right-click
Methodl and select Show on Code Map from the context menu. This opens a new tab, named
CodeMap1 .dgml, next to your code, and adds a single node for Method1, as shown in Figure 16-18.

The green arrow next to the node indicates that your cursor is currently in this method. In Visual
Studio you can select Method2 to see the cursor disappear on the code map. Select the Method1 node
on the code map, and look at the code window. Notice that all the places where the method is called
are highlighted in the code file. This makes it easy to find all instances of a called object within a
section of code.

Let’s take this one step farther, and say you want to find all the methods that call Method1. You
can right-click Method1 in the code map, and select Find All References. You can also right-click
Method1 in your code, and select Find All References on Code Map. This will find all the references
to Method1 in your code base, and add them to the code map, shown in Figure 16-19.

Code Maps | 339

FirstClass.cs 7
“ FirstProject.FirstClass
Flusing System;
using System.Collections.Generic;
using System.Ling;
using System.Text;

]
~| @ Method1(int param1) 9 Undo Show Related ~ Layout =

| (] | Share~ % | b=+

] Streaming Video: Understanding complex code with Cede Map -

b

Elnamespace FirstProject

{ a1

public static class FirstClaszs
{

.

o

;tatic pllblic void Methpdl(int paraml)
{
SecondClass.Method3();
FirstClass.Method2();
}
» © Methodl

=] static public veid Method2()

{
¥

FirstClass.Method1(7);

00% |4 »
FIGURE 16-18

A CodeMapl.dgml* & >

#3 FirstProject.FirstClass -|® Method1{int param1) - 2 Undo Show Related » Layout~ 3P | L)] | Share~ | poid "
using System.Collections.Generic; *

using System.Ling; -

using System.Text;

] Streaming Video! Understanding complex code with Code Map A

Elnamespace FirstProject

{

Hoop
‘ {
=

w

ublic static class FirstClass

static public wvoid Methodl({ int paraml)

secondClass.Method3();
FirstClass.Method2();

@ Method4 2 Method2
) A

El static public void Method2()

'Y
FirstClass.Methodl(7); » @ Methodl

W% -4 »
FIGURE 16-19

340 | CHAPTER 16 ANALYZING APPLICATIONS

The latest nodes added to the map are shown in green, making it easy to find them. As you can
imagine, code maps can grow rather large. You can use the toolbar at the top of the code map tab
(the same toolbar used for dependency graphs) to resize the diagram as well as change its orienta-
tion. You can also right-click a node to change its colors. You can add comments to a code map by
right-clicking the code map and selecting New Comment from the context menu. This allows you to
provide annotations that other team members might find helpful.

Each item in the code map has a recycle icon located in its top-left corner. This is the Refetch
Children button. Clicking this button will fetch any children of the associated item, and add them to
the code map.

Another nice feature of code maps is its ability to view the call stack visually while debugging. This
also allows you to make notes on the map to track what the code is doing, while you are trying to
find and fix bugs. You can create code maps in C#, Visual Basic, C++, and JavaScript. To try this
out, open the FirstClass.cs file in Visual Studio, and set a breakpoint on the Secondclass
.Method3 () ; line. Press FS to start debugging the application. Visual Studio

will break at the selected line, and enter debug mode. In the debugger tool- ’ 2 6. G @ A CodeMap

bar at the top of Visual Studio, select the Code Map button, shown in FIGURE 16-20
Figure 16-20.

This opens the current call stack (shown in orange) in a code map window next to the code base.
Now what’s nice about this code map is that it will be automatically updated as you move through
your code. Figure 16-21 shows the code map after stepping through the code.

FirstClass.cs # > im X v CallStackl.dgml* + X * | IntelliTrace * o x

% FirstProject FirstClass <@ Methodag - 2 Undo | Show Related~ Layout~ 3 | @ | share~ | "} B 2| £ I
ing System.Collections.Generic; =1 .
:z:g Sizt::. L:anc ons.BENerics j I Streaming Video: Debug visually with Code Map debugger integ |‘E‘H Categories '”A” Threads b
using System.Text; Search i
© Debugger: Beginning of Applic:
Snamespace FirstPraject e de | Q) Debugger: Breakpoint Hit: Meth
{ » t © Debugger: Step Recorded: Metr
: ¢ static elass FirstClass l_vj © Debugger: Step Recorded: Metr
St © Debugger: Step Recorded: Metr
E public void Methodl({ int paraml l O Debugger: Step Recorded: Mett
@ Method1] C» Live Event: Step Recorded: Metl
° secondClass.Methods () ; .[= Metho g
FirstClass.Method2(); l A user performed a step in the
} debugger.
@ Method3 o[@ Method2]
= . . Time: 10/