
Pro
Spring Boot

A no-nonsense guide containing case
studies and best practices for Spring Boot
—
Felipe Gutierrez

THE E XPER T ’S VOICE® IN SPRING

www.allitebooks.com

http://www.allitebooks.org

 Pro Spring Boot

 Felipe Gutierrez

www.allitebooks.com

http://www.allitebooks.org

Pro Spring Boot

Felipe Gutierrez
Albuquerque
New Mexico, USA

ISBN-13 (pbk): 978-1-4842-1432-9 ISBN-13 (electronic): 978-1-4842-1431-2
DOI 10.1007/978-1-4842-1431-2

Library of Congress Control Number: 2016941344

Copyright © 2016 by Felipe Gutierrez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Manuel Jordan Elera
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to readers at
 www.apress.com/9781484214329 . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484212318
www.apress.com/source-code/
http://www.allitebooks.org

 To my wife, Norma Castaneda.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

 ■Chapter 1: Introduction to Spring Boot .. 1

 ■Chapter 2: Your First Spring Boot Application ... 9

 ■Chapter 3: Spring Boot Auto-Confi guration, Features, and More 43

 ■Chapter 4: Spring Boot CLI .. 73

 ■Chapter 5: Spring with Spring Boot ... 89

 ■Chapter 6: Testing with Spring Boot .. 107

 ■Chapter 7: Data Access with Spring Boot .. 121

 ■Chapter 8: Web Development with Spring Boot ... 149

 ■Chapter 9: Security with Spring Boot .. 177

 ■Chapter 10: Messaging with Spring Boot .. 211

 ■Chapter 11: Spring Boot Actuator ... 245

 ■Chapter 12: Deploying Spring Boot ... 283

 ■Chapter 13: Spring Boot in the Cloud .. 307

 ■Chapter 14: Extending Spring Boot Apps .. 335

 ■Appendix: Spring Boot 1.4.x .. 357

Index ... 361

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ... xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

 ■Chapter 1: Introduction to Spring Boot .. 1

Spring Boot ... 1

Spring Applications ... 2

Spring Boot to the Rescue .. 3

Why Spring Boot? ... 6

Spring Boot Features .. 6

Summary .. 7

 ■Chapter 2: Your First Spring Boot Application ... 9

Installing Spring Boot CLI ... 9

UNIX OSs: Linux, OS X, and Solaris ... 9

Windows OS.. 11

Spring Boot with Maven and Gradle ... 13

Using Maven ... 13

Using Gradle ... 14

Spring Boot Using External Tools.. 16

Spring Boot Using the Spring Initializr .. 16

Using the Spring Initializr with UNIX cURL .. 18

Spring Boot Using Spring Tool Suite (STS) .. 19

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

Your First Spring Boot Application .. 24

Spring Boot Journal .. 24

How Spring Boot Works .. 39

Summary .. 41

 ■Chapter 3: Spring Boot Auto-Confi guration, Features, and More 43

Auto-Confi guration ... 43

Disabling a Specifi c Auto-Confi guration ... 45

@EnableAutoConfi guration and @Enable<Technology> Annotations 47

Spring Boot Features .. 49

SpringApplication Class .. 51

SpringApplicationBuilder .. 56

Application Arguments ... 58

ApplicationRunner and CommandLineRunner .. 60

Application Confi guration ... 62

Confi guration Properties Examples .. 63

Custom Properties Prefi x .. 69

Summary .. 72

 ■Chapter 4: Spring Boot CLI .. 73

Spring Boot CLI ... 73

The run Command .. 74

The test Command ... 76

The grab Command .. 78

The jar Command ... 79

The war Command ... 80

The install Command .. 81

The uninstall Command .. 81

The init Command .. 82

The shell Command .. 85

The help Command ... 86

Summary .. 87

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

 ■Chapter 5: Spring with Spring Boot ... 89

Spring Web Applications ... 89

J2EE Web Applications ... 89

Spring MVC Applications... 93

Spring Boot Web Applications ... 98

Using Spring with Spring Boot ... 101

XML with Spring Boot ... 101

Groovy Beans in Spring Boot .. 102

Standalone Spring Apps vs. Spring Boot Apps .. 103

Using Spring Technologies in Spring Boot .. 104

Summary .. 105

 ■Chapter 6: Testing with Spring Boot .. 107

Testing Spring Boot .. 107

Web Testing .. 109

Summary .. 120

 ■Chapter 7: Data Access with Spring Boot .. 121

SQL Databases ... 121

Data Access Using the JDBC Template with Spring Boot ... 122

Data Access Using JPA with Spring Boot.. 131

NoSQL Databases ... 140

Summary .. 147

 ■Chapter 8: Web Development with Spring Boot ... 149

Spring MVC ... 149

Spring Boot Web Applications .. 150

Playing with the HAL Browser .. 171

Summary .. 175

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

 ■Chapter 9: Security with Spring Boot .. 177

Simple Security for Spring Boot ... 177

Security Using the application.properties File .. 181

In-Memory Security .. 182

Security Using a Database .. 183

Securing Resources .. 186

Spring Boot with OAuth2 .. 199

Summary .. 209

 ■Chapter 10: Messaging with Spring Boot .. 211

What Is Messaging? ... 211

JMS with Spring Boot ... 211

A Simpler JMS Consumer ... 217

Connect to Remote JMS Server .. 221

RabbitMQ with Spring Boot .. 221

Installing RabbitMQ .. 221

RabbitMQ/AMQP: Exchanges, Bindings, and Queues .. 221

Remote RabbitMQ ... 231

Redis Messaging with Spring Boot .. 231

Installing Redis ... 231

Remote Redis ... 237

WebSockets with Spring Boot .. 237

Summary .. 244

 ■Chapter 11: Spring Boot Actuator ... 245

Spring Boot Actuator .. 245

/actuator ... 248

/autoconfi g ... 249

/beans ... 250

/confi gprops ... 251

/docs ... 252

/dump ... 253

 ■ CONTENTS

xi

/env ... 254

/fl yway .. 255

/health .. 261

/info .. 262

/liquibase .. 263

/logfi le... 268

/metrics .. 270

/mappings ... 272

/shutdown ... 273

/trace .. 274

Sensitive Endpoints .. 275

Changing the Endpoint ID ... 276

Actuator CORS Support .. 276

Changing the Management Endpoints Path ... 276

Using Spring Boot Actuator in a Non-Web Application ... 277

Summary .. 281

 ■Chapter 12: Deploying Spring Boot ... 283

Setting Up the Spring Boot Journal App ... 283

Creating the SSL Self-Signed Keystore .. 289

Testing SSL ... 290

Creating Executable JARs .. 293

The Java Way .. 294

The Spring Boot Way .. 294

Creating Executable and Deployable WARs .. 295

Deploying to a Tomcat-Based Server ... 298

Activating Profi les ... 299

Creating Spring Boot Apps as a Service ... 301

Spring Boot Apps as Windows Service ... 302

Spring Boot with Docker .. 303

Summary .. 306

 ■ CONTENTS

xii

 ■Chapter 13: Spring Boot in the Cloud .. 307

The Cloud and Cloud-Native Architectures ... 307

Twelve-Factor Applications .. 308

Microservices ... 309

Preparing the Spring Boot Journal App as Microservice .. 309

Cloud Foundry .. 311

Cloud Foundry .. 312

Pivotal Cloud Foundry Features .. 312

Cloud Foundry CLI - Command Line Interface .. 313

Development Enviroment - PCFDev .. 313

Pivotal Cloud Foundry .. 322

Deploying to Pivotal Web Services ... 325

Summary .. 333

 ■Chapter 14: Extending Spring Boot Apps .. 335

Custom Spring Boot Module ... 335

The spring-boot-journal Project ... 335

The journal-spring-boot-starter Project ... 337

The journal-spring-boot-autoconfi gure Project .. 339

Package and Install the Journal Project ... 346

The spring-boot-calendar Project ... 348

Custom Health Indicator ... 353

Summary .. 356

 ■Appendix: Spring Boot 1.4.x .. 357

Spring Boot 1.4.X Release Notes .. 357

Upgrading from Spring Boot 1.3 ... 357

New and Noteworthy .. 359

Index ... 361

xiii

 About the Author

 Felipe Gutierrez is a solutions software architect, with bachelor’s
and master’s degrees in computer science from Instituto Tecnologico
y de Estudios Superiores de Monterrey Campus Ciudad de Mexico.
Gutierrez has over 20 years of IT experience, during which time he
developed programs for companies in multiple vertical industries,
including government, retail, healthcare, education, and banking.
He currently works as a principal technical instructor for Pivotal,
specializing in Cloud Foundry, Spring Framework, Spring Cloud Native
Applications, Groovy, and RabbitMQ, among other technologies. He has
worked as a solutions architect for big companies like Nokia, Apple,
Redbox, and Qualcomm, among others. He is also the author of the
Apress title Introducing Spring Framework .

xv

 About the Technical Reviewer

 Manuel Jordan Elera is an autodidactic developer and researcher who
enjoys learning new technologies for his own experiments and creating
new integrations.

 Manuel won the 2010 Springy Award—Community Champion and
Spring Champion 2013. In his little free time, he reads the Bible and
composes music on his guitar. Manuel is known as dr_pompeii .
He has tech reviewed numerous books for Apress, including Pro Spring,
4th Edition (2014), Practical Spring LDAP (2013), Pro JPA 2, Second Edition
(2013), and Pro Spring Security (2013).

 Read his 13 detailed tutorials about many Spring technologies and contact
him through his blog at http://www.manueljordanelera.blogspot.com
or follow him on his Twitter account at @dr_pompeii .

http://www.manueljordanelera.blogspot.com/

xvii

 Acknowledgments

 I would like to express all my gratitude to the Apress team—to Steve Anglin for accepting my proposal; to
Mark Powers for keeping me on track and for his patience with me; to Matthew Moodie and the rest of the
Apress team involved in this project. Thanks to everybody for making this possible.

 Thanks to my technical reviewer, Manuel Jordan, for all the details and effort in his reviews, and the
entire Spring Boot team for creating this amazing technology.

 Thanks to my parents, Rocio Cruz and Felipe Gutierrez, for all their love and support. Thanks to my
brother Edgar Gerardo Gutierrez. Special thanks to my girls who keep me on track: Norma, Nayely my
“Flaca,” and Ximena my “Gallito”. I love you girls!

 —Felipe Gutierrez

1© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_1

 CHAPTER 1

 Introduction to Spring Boot

 It has been almost 13 years since the first beta release of the Spring Framework, which proved that you could
create Java Enterprise applications without the complicated architecture that Sun Microsystems exposed to
the world with the release of J2EE.

 The Spring Framework was released as an open source project and was accepted well. It became
the best open source framework for creating enterprise applications in a fast, reliable, and elegant way by
promoting the use of design patterns and becoming one of the first frameworks to use the Dependency of
Injection pattern. The Spring Framework has won a lot of awards in the open source community and keeps
up to date by creating new features and embracing new technologies. This helps developers focus only on
the application business-logic and leave the heavy lifting to the Spring Framework.

 This chapter introduces the Spring Boot technology and gives you a very small taste of what it is and
what you can do with it. You will learn about all its features and the associated “how-tos” during the course
of the book. Let’s get started.

 Spring Boot
 I can easily say that Spring Boot is the next chapter of the Spring Framework. Don’t get me wrong, though;
Spring Boot won’t replace the Spring Framework. That’s because Spring Boot is the Spring Framework! You
can view Spring Boot as a new way to create Spring applications with ease.

 Spring Boot simplifies the way you develop, because it makes it easy to create production-ready
Spring-based applications that you can just run . You will find out that, with Spring Boot, you can create
standalone applications that use an embedded server, making them 100% runnable applications. I will talk
about this in several chapters of the book. One of its best features is that Spring Boot is an “opinionated”
technology in that it will help you follow the best practices for creating robust, extensible, and scalable
Spring applications.

 You can find the Spring Boot project at http://projects.spring.io/spring-boot/ and very extensive
documentation at http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/ . You can
see the Spring Boot home page in Figure 1-1 .

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1431-2_1)
contains supplementary material, which is available to authorized users.

http://projects.spring.io/spring-boot/
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
http://dx.doi.org/10.1007/978-1-4842-1431-2_1

CHAPTER 1 ■ INTRODUCTION TO SPRING BOOT

2

 Spring Applications
 If you are a Spring developer like me, you already know that in order to create a simple Spring web
application, you must follow certain rules of the J2EE stack and some of the Spring Framework. Those rules
include the following:

 Create a folder structure that contains your WAR (Web ARchive):

• It must contain a WEB-INF folder with lib and classes subfolders that contain the
third-party libraries and your web application classes, respectively.

• Some JSP (if needed), HTML, CSS, images, and JavaScript (if needed) files.

• A file named web.xml that will contain the Spring org.springframework.web.
servlet.DispatcherServlet class.

• Your Spring beans in the form <servlet-name>-servlet.xml (of course, you can
override this and add the complete location and name of your Spring beans).

 Figure 1-1. Spring Boot home page (http://projects.spring.io/spring-boot/)

http://projects.spring.io/spring-boot/

CHAPTER 1 ■ INTRODUCTION TO SPRING BOOT

3

 Use a utility to package your WAR file. You can use the jar tool, but most people are more used to running
Apache Maven, Gradle, or, if you are “old-school,” Apache Ant to compile, test, and create the WAR file.

 Use an application server or container to run your WAR file, such as Tomcat, Jetty, Jboss, or WebSphere.
Sometimes you need a dedicated server for deploying J2EE applications.

 Even though it’s only a few steps, the reality is a more painful when you have a lot of resources and
classes and a bunch of Spring beans that you need to include, wire up, and use. I’m not criticizing the
way Spring web applications are developed, but I think it is more about what tool you use to help you
avoid this particular hassle. Tools range from an IDE such as the STS tool (https://spring.io/tools) that
helps you include the correct Spring XML schemas for declaring your beans, to external tools like YEOMAN
(http://yeoman.io/), which helps you create the structure and avoid the boilerplate to set everything up.

 I’m talking about a simple Spring web application, but what happens when you need to include some
persistence, or messaging, or perhaps you need to include security? Then you need an easy way to manage
your dependencies. Of course, the easiest way is to download each dependency, but this can become a
nightmare, at which point you’ll start looking for tools like Apache Maven or Gradle (a Groovy DSL for
compile, build, and deploy use) to help you with these dependency management tasks.

 Believe me, at some point it gets more difficult, and there should be a better way to develop Spring
applications, right?

 Spring Boot to the Rescue
 Thanks to the amazing hard work of the Spring team, the first beta released two years ago gave amazing
results. I was lucky to test it, and now with more added to it, it has become the “de facto” way to create
Spring applications.

 Instead of reading more about Spring Boot and how easy it is to use, take a look at the simplest Spring
web application possible. See Listing 1-1 .

 Listing 1-1. app.groovy

 @RestController
 class WebApp{
 @RequestMapping("/")
 String greetings(){
 "<h1>Spring Boot Rocks</h1>"
 }
 }

 Listing 1-1 shows you a Groovy application and the simplest possible Spring web application.
But why Groovy? Well, Groovy removes all the boilerplate of Java and, with a few lines of code, you have a
web app. How do you run it? You simply execute the following command:

 $ spring run app.groovy

 You should have something like the following output:

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
 (()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v1.3.1.RELEASE)

https://spring.io/tools
http://yeoman.io/

CHAPTER 1 ■ INTRODUCTION TO SPRING BOOT

4

 INFO 62862 --- [runner-0] o.s.boot.SpringApplication : Starting application on
 INFO 62862 --- [runner-0] o.s.boot.SpringApplication : No active profile set,
falling back to default profiles: default
 ...
 INFO 62862 --- [runner-0] s.b.c.e.t.TomcatEmbeddedServletContainer : Tomcat initialized with
port(s): 8080 (http)
 INFO 62862 --- [runner-0] o.apache.catalina.core.StandardService : Starting service Tomcat
 INFO 62862 --- [runner-0] org.apache.catalina.core.StandardEngine : Starting Servlet
Engine: Apache Tomcat/8.0.30
 INFO 62862 --- [ost-startStop-1] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring
embedded WebApplicationContext
 INFO 62862 --- [ost-startStop-1] o.s.web.context.ContextLoader : Root
WebApplicationContext: initialization completed in 1820 ms
 INFO 62862 --- [ost-startStop-1] o.s.b.c.e.ServletRegistrationBean : Mapping servlet:
'dispatcherServlet' to [/]
 ...
 INFO 62862 --- [runner-0] s.b.c.e.t.TomcatEmbeddedServletContainer : Tomcat started on
port(s): 8080 (http) ...

 You may be wondering: Wait a minute, what is this spring run command? How can I install it? What
else do I need? Don’t worry too much; in the next chapter, you will install the Spring Boot CLI (Command
Line Interface) and you will learn everything you need to know about this particular tool.

 You can open a browser and point to http://localhost:8080 to see the message: Spring Boot Rocks .
 How does the Spring Boot know about a web application and how to run it? Spring Boot inspects your

code and, based on the annotations @RestController and @RequestMapping , tries to execute your code as
a web application. It does this by using an embedded Tomcat server and running the web app from within.
That’s it! It’s very simple to create a Spring web application.

 Now let’s see the Java version, which is a minimal web app. I’ll show you only the code for now; in the
next chapter, you’ll learn how to set it up. See Listings 1-2 and 1-3 .

 Listing 1-2. SimpleWebApp.java

 package com.apress.spring;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;

 @SpringBootApplication
 public class SimpleWebApp {

 public static void main(String[] args) {
 SpringApplication.run(SimpleWebApp.class, args);
 }
 }

 Listing 1-2 shows you the entry point for a Spring Boot application in Java. It’s using a
@SpringBootApplication annotation and the SpringApplication singleton class in the main method that
will execute the application. The run method call accepts two parameters—the class that actually contains
the annotated @SpringBootApplication annotation and the application’s arguments.

CHAPTER 1 ■ INTRODUCTION TO SPRING BOOT

5

 Listing 1-3. SimpleWebController.java

 package com.apress.spring;

 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RestController;

 @RestController
 public class SimpleWebController {

 @RequestMapping("/")
 public String greetings(){
 return "<h1> Spring Boot Rocks in Java too!</h1>";
 }
 }

 Listing 1-3 shows you the typical Spring MVC controller class, where you use the @RestController and
the @RequestMapping annotations to tell Spring to use the SimpleWebController class as a web controller
and to use the method greetings as an entry point for a HTTP request.

 You can run this example by using the Spring Boot CLI, the same as you did with the Groovy version.
In this case, though, you are using the .java extension:

 $ spring run *.java

 Or, if you add the structure for Maven, you can run this example by using the following command:

 $ mvn spring-boot:run

 Or, if you have the Maven wrapper (discussed in the next chapter), you can run it with the
following command:

 $ mvn spring-boot:run

 Or, if you set up the structure for Gradle, you can run it with this command:

 $ gradle bootRun

 Regardless of the method you use, open a browser and point to the URL http://localhost:8080/ .
You should see the message: “Spring Boot Rocks in Java too!”.

 You may be wondering how to set this Java version up or how to use the Spring Boot CLI, right? Don’t
worry, in the next chapter, you will see how to install and use the Spring Boot CLI to prototype Spring apps
in the awesome programming language called Groovy (like Listing 1-1) and you will learn how to use Spring
Boot to run Java-based Spring applications (like Listings 1-2 and 1-3) and how Spring Boot works internally.

 For now, I simply wanted to show you that, with a few lines of code, you can create a simple Spring web
application using Groovy or Java instead of all that hassle from the J2EE stack.

 ■ Note If you want to use Spring Boot right away, feel free to use the book’s companion source code. The Java
example contains the structure and everything you need to run the Maven wrapper: $ mvnw spring-boot:run .

CHAPTER 1 ■ INTRODUCTION TO SPRING BOOT

6

 Why Spring Boot?
 Spring Boot has many features that make it suitable for:

• Cloud Native Applications that follow the 12 factor patterns (developed by the Netflix
engineering team at http://12factor.net/)

• Productivity increases by reducing time of development and deployment

• Enterprise-production-ready Spring applications

• Non-functional requirements, such as the Spring Boot Actuator (a module that
brings metrics, health checks, and management easily) and embedded containers
for running web applications (such as Tomcat, Undertow, Jetty, etc.)

 The term “microservices” is getting attention for creating scalable, highly available, and robust
applications, and Spring Boot fits there perfectly by allowing developers to focus only on the business logic
and to leave the heavy lifting to the Spring Framework.

 Spring Boot Features
 Spring Boot has a lot of features that you’ll learn about in the following chapters, and here is just a taste:

• The SpringApplication class. I showed you that in a Java Spring Boot application,
the main method executes this singleton class. This particular class provides a
convenient way to initiate a Spring application.

• Spring Boot allows you to create applications without requiring any XML
configuration. Spring Boot doesn’t generate code.

• Spring Boot provides a fluent builder API through the SpringApplicationBuilder
singleton class that allows you to create hierarchies with multiple application
contexts. This particular feature is related to the Spring Framework and how it works
internally. If you are a Spring developer already, you’ll learn more about this feature
in the following chapters. If you are new to Spring and Spring Boot, you just need to
know that you can extend Spring Boot to get more control over your applications.

• Spring Boot offers you more ways to configure the Spring application events and
listeners. This will be explained in more detail in the following chapters.

• I mentioned that Spring Boot is an “opinionated” technology, which means
that Spring Boot will attempt to create the right type of application, either a web
application (by embedding a Tomcat or Jetty container) or a single application.

• The ApplicationArguments interface. Spring Boot allows you to access any
application arguments. This is useful when you want to run your application with
some parameters. For example, you can use --debug mylog.txt or --audit=true
and have access to those values.

• Spring Boot allows you to execute code after the application has started. The only
thing you need to do is implement the CommandLineRunner interface and provide
the implementation of the run(String ...args) method. A particular example is to
initialize some records in a database as it starts or check on some services and see if
they are running before your application starts.

http://12factor.net/

CHAPTER 1 ■ INTRODUCTION TO SPRING BOOT

7

• Spring Boot allows you to externalize configurations by using an
application.properties or application.yml file. More about this in the
following chapters.

• You can add administration-related features, normally through JMX. You do this
simply by enabling the spring.application.admin.enabled property in the
 application.properties or application.yml files.

• Spring Boot allows you to have profiles that will help your application run in
different environments.

• Spring Boot allows you to configure and use logging very simply.

• Spring Boot provides a simple way to configure and manage your dependencies by
using starter poms. In other words, if you are going to create a web application, you
only need to include the spring-boot-start-web dependency in your Maven pom
or Gradle build file.

• Spring Boot provides out-of-the-box non-functional requirements by using the
Spring Boot Actuator, so you can see the health, memory, and so on, of your
application.

• Spring Boot provides @Enable<feature> annotations that help you to include,
configure, and use technologies like databases (SQL and NoSQL), caching,
scheduling, messaging, Spring integration, batching, and more.

 As you can see, Spring Boot has all these features and more, and you’ll learn more about these features in
the following chapters. Now it’s time to start learning more about Spring Boot by seeing how it works internally.

 Summary
 This chapter provided a quick overview of the Spring Framework and covered one of its new technologies:
Spring Boot.

 The following chapters start showing you all the cool features of Spring Boot, first by creating simple
applications and understanding the internals of Spring Boot and then by creating more complicated
applications.

9© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_2

 CHAPTER 2

 Your First Spring Boot Application

 In this chapter you are going to install the Spring Boot CLI, learn more a little about it, and create your first
Spring Boot application. You will learn how Spring Boot works internally so you have a better picture of this
amazing technology.

 You can create Spring Boot applications by using the Spring Boot Command Line Interface (CLI) or by
using Maven, Gradle, and even Apache Ant. This chapter has step-by-step explanations on what needs to
be done to set up your environment from the command line through using Spring Boot on an Integrated
Development Environment (IDE). Let’s get started!

 Installing Spring Boot CLI
 Before you install the Spring Boot CLI, it’s necessary to check your Java installation, because you must have
JDK 1.6 or higher in your computer. Sometimes it’s necessary to have the JAVA_HOME environment variable
pointing to your Java installation and the java program in your PATH .

 UNIX OSs: Linux, OS X, and Solaris
 There are a lot of tools that can help you install the Spring Boot CLI. If you are using any UNIX environment,
including Linux, OS X, or Solaris, you can use a very good tool named SDKMAN. You can find it at
 http://sdkman.io/ . Open a terminal window and execute the following:

 $ curl -s get.sdkman.io | bash

 After it finishes, you can execute the following line to run the sdk command:

 $ source "$HOME/.sdkman/bin/sdkman-init.sh"

 Then make sure that the sdk command is working by executing this line:

 $ sdk version
 SDKMAN 3.2.4

 Next, it’s time to install the Spring Boot CLI, which you do by executing this command:

 $ sdk install springboot

http://sdkman.io/

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

10

 Once the CLI is installed, you can check if everything went okay by executing this request:

 $ spring --version
 Spring CLI v1.3.2.RELEASE

 You should get the latest version of Spring Boot; in my case it’s release 1.3.2. Now you are ready to start
using the Spring Boot CLI on a UNIX system.

 ■ Note You can use the same sdk command to install Groovy and Gradle. You can install those two by
executing: $ sdk install groovy and $ sdk install gradle .

 There is another UNIX-like OS option called homebrew . This tool was initially developed for OS X users
so they could install missing tools from the UNIX/Linux world. One of the benefits of brew is that it has a
sandbox that doesn’t interfere with your system.

 On OS X you can go to the http://brew.sh/ web site and read more about this particular tool. In order
to install brew , you must execute this command:

 $ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

 Once it finishes installing, follow the instructions to get it working from the command line. You might
need to open a new terminal and/or do a source over the .bash_profile file to get it working, although if
you have the latest version, you won’t need to do this. Just follow the instructions on the screen after you
install brew. You can then execute the following command to install Spring Boot:

 $ brew tap pivotal/tap
 $ brew install springboot

 If you are a Linux user, you can install brew (you can get more info at http://brew.sh/linuxbrew/) by
executing this command:

 $ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/linuxbrew/go/install)"

 Then execute the same commands from above:

 $ brew tap pivotal/tap
 $ brew install springboot

 That’s it; it’s very simple. One of the benefits of using the Linux version is that you don’t need sudo ,
because all the software is installed in your home directory.

 ■ Note You can also use the brew command to install the software that we are going to use in the next
chapters, including RabbitMQ, Redis, and MySQL.

http://brew.sh/
http://brew.sh/linuxbrew/)

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

11

 Windows OS
 If you are a Windows user or you don’t want to use the previous methods, you can download the ZIP binary
distribution and uncompress it. These are the links of release 1.3.2:

• http://repo.spring.io/release/org/springframework/boot/spring-boot-
cli/1.3.2.RELEASE/spring-boot-cli-1.3.2.RELEASE-bin.zip

• http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/

 These links are the binary versions, but if you wonder where those links are coming from, you can
find them here: https://docs.spring.io/spring-boot/docs/current/reference/html/getting-
started-installing-spring-boot.html#getting-started-manual-cli-installation . You must have
the JAVA_HOME variable set (pointing to your Java SDK) and the SPRING_HOME variable pointing to where
you uncompress the binary distribution. Also make sure to set up your PATH variable, which includes the
% SPRING_HOME%\bin path (or, if you are using UNIX, it’s $SPRING_HOME/bin) . By setting these variables to the
environment, you will have access to the spring.bat or spring scripts.

 ■ Note The binary distribution contains a Groovy version, so you are set if you want to run Groovy scripts. You
can verify that your installation was successful by typing $ spring --version Spring CLI v1.3.2.RELEASE .

 You have the Spring Boot CLI, so what’s next? In the previous chapter, you saw a simple web application
written in Groovy and Java, and the way that you run it is by executing this command:

 $ spring run *.groovy

 or

 $ spring run *.java

 But there is more to it. Not only is the Spring Boot CLI useful for running the application but it also
initializes and creates the structure you need. For example, you can create a base or minimal project by
executing the following:

 $ spring init --build gradle myapp

 This command will call the web service at https://start.spring.io (this is discussed in the following
sections of this chapter) and will create a folder named myapp . The project is Gradle-based, although if you
don’t include the --build gradle option, it will by default create a Maven-based project. Figure 2-1 shows
the structure of the project.

http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.2.RELEASE/spring-boot-cli-1.3.2.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.2.RELEASE/spring-boot-cli-1.3.2.RELEASE-bin.zip
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started-installing-spring-boot.html#getting-started-manual-cli-installation
https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started-installing-spring-boot.html#getting-started-manual-cli-installation
https://start.spring.io/

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

12

 Figure 2-1 shows you the Spring Boot project structure created when you execute the spring init
command. If you want to add more features—such as web, JPA, and Maven projects—you can execute the
following command:

 $ spring init -dweb,data-jpa,h2,thymeleaf --build maven myapp --force

 This command will create a Spring Boot Maven project and will include all the necessary dependencies
in the pom.xml file to run a Spring Boot web application. It will include libraries to handle web files (this will
include the embedded Tomcat server), persistence (data-jpa), the H2 database engine (h2), and a viewer
engine (thymeleaf). You need to use --force to override the previous myapp directory or you can change
the name.

 Don’t worry too much about what are those dependencies or how they create this project; you’ll learn
more about this in the following sections.

 Now you are set to start using the Spring Boot CLI with Groovy or Java and can create prototype
applications. You can use the Spring Boot CLI to create “production-ready” apps, which will depend on
how you set up your environment to use this tool. You’ll learn more about using the Spring Boot CLI in this
chapter and later chapters.

 Figure 2-1. Spring Boot project structure

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

13

 Spring Boot with Maven and Gradle
 If you already use Maven (https://maven.apache.org/) or Gradle (http://gradle.org/) as tools for
compiling, testing, and building, you can use also Spring Boot. And as you might guess, you need to include
some dependencies in order to use Spring Boot. The following sections explain what you need for every
project in Spring Boot. You must see these as requirements if you want to use Maven or Gradle to develop
Spring Boot apps.

 Using Maven
 Listing 2-1 shows the pom.xml file that you use every time you need to create a Spring Boot app.

 Listing 2-1. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>myapp</artifactId>
 <version>0.0.1-SNAPSHOT</version>

 <!-- Spring Boot Parent Dependencies-->
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.1.RELEASE</version>
 </parent>

 <!-- Add dependencies: starter poms -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 </dependency>

 <!-- Spring Boot Plugin for creating JAR/WAR files -->
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
 </project>

www.allitebooks.com

https://maven.apache.org/
http://gradle.org/
http://www.allitebooks.org

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

14

 Listing 2-1 shows you the minimum pom.xml that you can have for any Spring Boot application. If you
take a closer look, there is a <parent/> tag section where you need to include the spring-boot-starter-
parent artifact. This particular dependency contains all you need to run your app. It contains all the
descriptions of dependencies that a Spring Boot application needs, like all the dependencies of the Spring
Framework (spring-core), Spring Test (spring-test), and more. You only need to use this parent pom.

 Another section is the starter poms , where you declare the dependencies of the actual Spring Boot
feature you want to use. Listing 2-1 shows the default starter, spring-boot-starter artifactId . The starter
poms will bring all the dependencies that you need for your application, which is why you need to include
just one starter pom. For example, if you are creating a web application, the only dependency you need is the
 spring-boot-starter-web artifact:

 ...
 <!-- Add dependencies: starter poms -->
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 ...
 </dependencies>
 ...

 This dependency will include all the spring-core , spring-web , spring-webmvc , embedded Tomcat
server, and other libraries related to the web application. A later section of this chapter explains more about
the Spring Boot starter poms. At this point, you simply need to understand that you can include these
dependencies in your main pom.xml file.

 The last section is the Spring Boot Maven plugin, and it is included by declaring the spring-boot-
maven-plugin artifact. This particular plugin will help you package your application as a JAR or WAR with
the command: mvn package . It also has several goals/tasks that you can use, like the one in the previous
chapter for running the Spring Boot app: mvn spring-boot:run . You can get more information about this
plugin at its web site: http://docs.spring.io/spring-boot/docs/1.3.1.RELEASE/maven-plugin/ .

 You are set now with Maven. You are going to create your first Spring Boot app later, though. Right now I
want you to know all the possible ways to use Spring Boot.

 Using Gradle
 You can use Gradle (http://gradle.org/) to compile, test, and build Spring Boot apps. Just as with Maven,
you need to have a minimum description for creating Spring Boot applications. See Listing 2-2 .

 Listing 2-2. build.gradle

 buildscript {
 repositories {
 jcenter()
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "http://repo.spring.io/milestone" }
 }
 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-plugin:1.3.1.RELEASE")
 }
 }

http://docs.spring.io/spring-boot/docs/1.3.1.RELEASE/maven-plugin/
http://gradle.org/)

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

15

 apply plugin: 'java'
 apply plugin: 'spring-boot'

 jar {
 baseName = 'myproject'
 version = '0.0.1-SNAPSHOT'
 }

 repositories {
 jcenter()
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "http://repo.spring.io/milestone" }
 }

 dependencies {
 // starter poms dependencies
 compile('org.springframework.boot:spring-boot-starter')
 }

 Listing 2-2 shows you the minimum build.gradle file that you need to use to run Spring Boot
applications. The first section you need to look at is the buildscript , where you add the dependency of the
Spring Boot Gradle plugin. This plugin contains the parent pom (which contains all the base dependencies)
and the tasks that will help you compile, run, and package your Spring Boot apps. It declares a repositories
section where the Gradle tool will look for Maven-like servers that provide all the libraries needed by the
 dependencies section that is declared.

 Next is the section where you apply the plugins, in this case the apply plugin: spring-boot . This will
add the tasks mentioned above. Then, either you are creating a jar or a war declaration that contains the
 baseName and the version . Next is the repositories section, where all the dependencies can be found to be
downloaded into your environment. Finally there is the dependencies section, where you put all the starter
poms in the form of org.springframework.boot:spring-boot-starter-<feature/technology> . Listing 2-2
shows the default spring-boot-starter artifact.

 So, for example if you want to create a web application with testing, you need to add the following in the
 dependencies section:

 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile("org.springframework.boot:spring-boot-starter-test")

 If you want to use a starter pom, you have to add the following syntax.
 For Maven:

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-[TECHNOLOGY]</artifactId>
 </dependency>

 For Gradle:

 compile("org.springframework.boot:spring-boot-starter-[TECHNOLOGY]")

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

16

 As you can see, the Spring Boot team created a very easy-to-follow naming convention for all the starter
poms. Note also that you don’t need to add any dependency version, because the starter poms will take care
of that.

 Now you are set to use Gradle for your Spring Boot apps.

 ■ Note When using Gradle you can use the Gradle wrapper, which allows you to have a binary Gradle when
you want to distribute your application and the computer doesn’t have Gradle. See http://www.gradle.org/
docs/current/userguide/gradle_wrapper.html .

 Spring Boot Using External Tools
 You have learned how to install Spring Boot CLI to use Groovy or Java for your apps, and you have seen the
minimal declaration dependencies for using Maven or Gradle. You do need to create a directory structure as
well. If you want to add more features, you also need the names of the starter poms. (I showed you only the
minimum requirements for Maven and Gradle, right?)

 Well, there is a tool that you can use without using an IDE. The Spring team created a reference
architecture tool/service called Spring Initializr, and you can use it to create a complete project with all the
dependencies that you need.

 Spring Boot Using the Spring Initializr
 You can find this reference architecture service at http://start.spring.io . It’s hosted by Pivotal Web
Services. Right now it’s on its second iteration. It provides a simple version (Figure 2-2) and a full version
(Figure 2-3) and both look great!

http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
http://start.spring.io/

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

17

 Figure 2-2 shows an interface where you can create your Spring Boot application. You can include all the
dependencies by just typing web , security, or jpa . If you click the Generate Project button, you will get a ZIP
file that contains the structure and the pom.xml or build.gradle file, depending on what project type you
choose. You can also select the Spring Boot version and the programming language to use (Groovy or Java).

 Figure 2-3 shows you the full version of the Spring Initializr, and if you keep scrolling down, you will find
all the dependencies that you can add by clicking on the checkboxes. After you select the features you want
to use, click the Generate Project button to get the ZIP file that contains your project.

 Figure 2-2. Simple view of the Spring Initializr (http://start.spring.io)

http://start.spring.io/

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

18

 Using the Spring Initializr with UNIX cURL
 The Spring Initializr can be accessed using the UNIX cURL command because at the end it is a web service
and it exposes a RESTful API. So, for example, if you wanted to create a simple project that contains just the
minimum files, you could execute the following command:

 $ curl -s https://start.spring.io/starter.zip -o myapp.zip

 This command will create a myapp.zip file that contains all the structure for the Spring Boot app. And
by default it contains a Maven project with its pom.xml file and a Maven wrapper. This means that you aren’t
required to have Maven installed, because it comes with it. You can easily use all the goals/tasks to compile,
build, and run your Spring Boot apps.

 Figure 2-3. Full version of the Spring Initializr

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

19

 If you want the minimum structure for a Gradle-based project, just execute the following command:

 $ curl -s https://start.spring.io/starter.zip -o myapp.zip –d type=gradle-project

 With this command you will have a build.gradle and a Gradle wrapper. They will help you to compile,
build, and run your Spring Boot apps without having to install Gradle.

 If you want to create a Spring Boot application with a web feature, you can execute the following
command:

 $ curl -s https://start.spring.io/starter.zip -o myapp.zip -d type=maven-project -d
dependencies=web

 Using this command, you will have in your pom.xml file the spring-boot-starter-web artifact as a
dependency. Sometimes you will want to see how the pom.xml or build.gradle file looks when you’re
adding some dependencies. You can generate these files by executing the following command if you want
only the Maven pom.xml :

 $ curl -s https://start.spring.io/pom.xml -d packaging=war -o pom.xml -d
dependencies=web,data-jpa

 This command will generate only the pom.xml with a WAR package type and the spring-boot-starter-
web and the spring-boot-starter-data-jpa artifacts. If you want the build.gradle file as well, you execute
the following command:

 $ curl -s https://start.spring.io/build.gradle -o build.gradle -d dependencies=web,data-jpa

 This command will generate only the build.gradle as a JAR (this is the default option, unless you use
the -d packaging flag) and it will contain the same starters from the previous command. So, as you can see,
you have several options for creating a Spring Boot application.

 ■ Note You can get more details about what other options you can set when executing the cURL command.
Just execute this command: $ curl start.spring.io .

 Notice that the -s option is used in these examples. It allows you to force the cURL command to be silent, and
you can remove it and see the progress of the ZIP file being downloaded. You can get more information about all
the flags shown in the cURL examples by Googling them or executing the $man curl command.

 Spring Boot Using Spring Tool Suite (STS)
 If you are already using the Eclipse IDE , you can install the STS as a plugin or download it at
 https://spring.io/tools/sts/all . The STS is available for all the different operating systems.
See Figure 2-4 .

https://spring.io/tools/sts/all

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

20

 One of the benefits of using the STS is that it comes with Spring Boot support. Choose File ➤ New to see
the Spring Starter Project option (it’s the first option shown in Figure 2-5).

 Figure 2-4. Spring Tool Suite (STS) web page (https://spring.io/tools/sts/all)

https://spring.io/tools/sts/all

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

21

 If you click on the Spring Starter Project option, the Spring Starter Project wizard will appear. This is
where you put all the general information about your Spring Boot project. See Figure 2-6 .

 Figure 2-5. Choose File ➤ New ➤ Spring Starter Project

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

22

 Figure 2-6 shows you the first page of the wizard where normally you select the project type (Maven
or Gradle), the Java version, the language (Java or Groovy), and some other Maven descriptors. If you click
Next, the dependencies page appears. See Figure 2-7 .

 Figure 2-6. The Spring Starter Project wizard—general information about the Spring Boot project

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

23

 Figure 2-7 shows you the next page of the wizard, where you select the dependencies for your
application and the version of Spring Boot to use. You can choose the latest snapshot. And if you click Next,
you can see the summary of your Spring Boot project. See Figure 2-8 .

 Figure 2-7. Spring Starter Project wizard—dependencies selection

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

24

 Figure 2-8 shows you the final step and summary of what the wizard will generate, because it gives
access to the URL and all the parameters that you can use with the cURL command. You could even paste the
whole URL in a browser and get the ZIP file.

 The Spring Starter Project wizard will download and uncompress in the background and set the
workspace with the Spring Boot project you created. As you can see, you have another option to create
Spring Boot applications. One of the major benefits of using the STS is that it has support for Spring Boot.
This means wizard support and code-completion support for the application.properties and the
 application.yml files, as well as cloud support and some other features.

 Your First Spring Boot Application
 It’s time to create your first Spring Boot application. The idea of this application is simple—it’s a journal
application. You will start with something simple in this chapter, just enough to get to know the Spring Boot
internals. During the rest of the book, you will modify it so at the end you have a complete and production-
ready Spring Boot application.

 Spring Boot Journal
 This application is called “ Spring Boot Journal” and it’s a simple application in which you will have a
collection of entries that shows the main ideas over a timeline.

 Figure 2-8. Spring Starter Project wizard—summary page

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

25

 You have installed Spring Boot CLI and you already know more about the different options for using
Spring Boot with Maven or Gradle. You also know that you can use an IDE like the STS and use the Spring
Boot project wizard. Regardless of the method you choose, it will be the same for this application. It’s most
important to describe the main concepts behind the Spring Boot technology.

 These steps show you how to create the Spring Boot journal application using the STS:

 1. Open the STS and select File ➤ New ➤ Spring Starter Project. You can add any
package name or any group or artifactId if you want, just make sure to select
Java as the language. I will use both pom.xml and build.gradle files, so you
have all the dependencies this app needs. See Figure 2-9 . After entering all the
necessary information, click Next to move to the dependencies page.

 Figure 2-9. Spring Starter project—Spring Boot journal

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

26

 Figure 2-9 shows you the first page of the Spring Starter Project wizard. As I said before, you can put
whatever information you like. The important part are the classes you are going to use, but if you want to
follow along, this is the information I used in the example:

 Field Value

 Name spring-boot-journal

 Type Maven

 Packaging Jar

 Java Version 1.8

 Language Java

 Group com.apress.spring

 Artifact spring-boot-journal

 Version 0.0.1-SNAPSHOT

 Description Demo project for Spring Boot

 Package com.apress.spring

 2. On the next page of the Spring Starter Project wizard, you choose the
technologies that Spring Boot Journal will use. In this case, check Web (Web),
Template Engines (Thymeleaf, which is a template engine capable of processing
and generating HTML, XML, JavaScript, CSS, and text that is suitable for the
view layer of web applications, a better approach to the Java Server Pages or
JSPs, because it’s faster and more reliable), Data (JPA), and Database (H2). This
example uses the JPA technology with the in-memory H2 database.

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

27

 See Figure 2-10 . After choosing your dependencies, you can click Finish.

 Figure 2-10. Spring Starter Project wizard —dependencies — Spring Boot journal

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

28

 3. Take a look at the project’s file structure. You should have something similar to
Figure 2-11 .

 4. Next, take a look at the pom.xml file that was generated. You should have
something like Listing 2-3 .

 Listing 2-3. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-journal</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-journal</name>
 <description>Demo project for Spring Boot</description>

 Figure 2-11. Spring Boot journal project structure

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

29

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.1.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

30

 Listing 2-3 shows you the pom.xml of the Spring Boot journal. The important part in this pom is the
 dependencies section, which contains all the starter poms that you selected in the wizard. Remember, you
are going to use a web technology (your Spring Boot journal is a web application— spring-boot-starter-web),
a template engine (Thymeleaf— spring-boot-starter-thymeleaf) that will render the HTML pages of
the journal app, a Data (JPA – spring-boot-starter-data-jpa) technology that will take care of the data
persistence, a Database engine (H2), an in-memory database, and a test unit framework (spring-boot-
starter-test) that will help with all the unit and integration testing. For now, and for your first application,
the H2 database engine will be enough. Later in the book you will switch to different database engines, such
as MySQL, MongoDB, or Redis.

 If you selected a Gradle project, Listing 2-4 shows you the build.gradle file.

 Listing 2-4. build. gradle

 buildscript {
 ext {
 springBootVersion = '1.3.1.RELEASE'
 }
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-plugin:${springBootVersion}")
 }
 }

 apply plugin: 'java'
 apply plugin: 'eclipse'
 apply plugin: 'idea'
 apply plugin: 'spring-boot'

 jar {
 baseName = 'spring-boot-journal'
 version = '0.0.1-SNAPSHOT'
 }
 sourceCompatibility = 1.8
 targetCompatibility = 1.8

 repositories {
 mavenCentral()
 }

 dependencies {
 compile('org.springframework.boot:spring-boot-starter-data-jpa')
 compile('org.springframework.boot:spring-boot-starter-thymeleaf')
 compile('org.springframework.boot:spring-boot-starter-web')
 runtime('com.h2database:h2')
 testCompile('org.springframework.boot:spring-boot-starter-test')
 }

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

31

 eclipse {
 classpath {
 containers.remove('org.eclipse.jdt.launching.JRE_CONTAINER')
 containers 'org.eclipse.jdt.launching.JRE_CONTAINER/org.eclipse.jdt.internal.debug.

ui.launcher.StandardVMType/JavaSE-1.8'
 }
 }

 task wrapper(type: Wrapper) {
 gradleVersion = '2.9'
 }

 Listing 2-4 shows the build.gradle file. The important part is to take a look at the dependencies
sections where all the starter poms are declared. It’s very similar to Maven. I only want to comment
about the last section, where there is a Eclipse declaration. This will help you to get the correct runtime
environment when you import this project to STS or any other Eclipse IDE version.

 5. For this journal, you need to create a domain class. See Listing 2-5 , which shows
the Journal class.

 Listing 2-5. com.apress.spring.domain. Journal.java

 package com.apress.spring.domain;

 import java.text.ParseException;
 import java.text.SimpleDateFormat;
 import java.util.Date;

 import javax.persistence.Entity;
 import javax.persistence.GeneratedValue;
 import javax.persistence.GenerationType;
 import javax.persistence.Id;
 import javax.persistence.Transient;

 @Entity
 public class Journal {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;
 private String title;
 private Date created;
 private String summary;

 @Transient
 private SimpleDateFormat format = new SimpleDateFormat("MM/dd/yyyy");

 public Journal(String title, String summary, String date) throws ParseException{
 this.title = title;
 this.summary = summary;
 this.created = format.parse(date);
 }

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

32

 Journal(){}

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public Date getCreated() {
 return created;
 }

 public void setCreated(Date created) {
 this.created = created;
 }

 public String getSummary() {
 return summary;
 }

 public void setSummary(String summary) {
 this.summary = summary;
 }

 public String getCreatedAsShort(){
 return format.format(created);
 }

 public String toString(){
 StringBuilder value = new StringBuilder("JournalEntry(");
 value.append("Id: ");
 value.append(id);
 value.append(",Title: ");
 value.append(title);
 value.append(",Summary: ");
 value.append(summary);
 value.append(",Created: ");
 value.append(getCreatedAsShort());
 value.append(")");
 return value.toString();
 }
 }

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

33

 Listing 2-5 shows you the Journal domain class. Because you are using the JPA technology, you need to
use the @Entity , @Id , and @GeneratedValue annotations so this class gets marked as JPA entity and can be
persisted to the database. You are going to see more of these classes in later chapters of the book. As you can
see, there is also a @Transient annotation, which will indicate to the JPA engine not to persist that property,
because it’s only being used to format the date. This class has two constructors, one with no arguments and
is needed for the JPA engine and the other with some arguments that you are going to use to populate the
database.

 There is an override of the toString method, which will be useful for printing the records.

 6. Next, you need to create a persistence mechanism for the journal data. You
are going to use the Spring Data JPA technology by creating an interface and
extending it from the JpaRepository interface. See Listing 2-6 .

 Listing 2-6. com.apress.spring.repository. JournalRepository.java

 package com.apress.spring.repository;

 import org.springframework.data.jpa.repository.JpaRepository;
 import com.apress.spring.domain.Journal;

 public interface JournalRepository extends JpaRepository<Journal, Long> { }

 Listing 2-6 shows you the Spring Data Repository JPA technology, and it’s easy to extend the
 JpaRepository interface. The JpaRepository is a marker interface that allows the Spring Data Repository
engine to recognize it and apply the necessary proxy classes to implement not only the base CRUD (Create,
Read, Update, Delete) actions, but also some custom methods. You can do this by having some naming
conventions, such as findByTitleLike or findBySummary or even findByTitleAndSummaryIgnoringCase .
All the actions will then be set as transactional by default. The JpaRepository also has some convenient
behavior because you can add sortable and paging actions to your data.

 Don’t worry too much about this right now, because you’ll learn more about the Spring Data
(JDBC and JPA) in its own chapter. For now, the only thing you need to do is create the interface and extend
from the JpaRepository marker interface.

 7. Because this is a web application, you need to create a web controller.
See Listing 2-7 .

 Listing 2-7. com.apress.spring.web. JournalController.java

 package com.apress.spring.web;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.stereotype.Controller;
 import org.springframework.ui.Model;
 import org.springframework.web.bind.annotation.RequestMapping;

 import com.apress.spring.repository.JournalRepository;

 @Controller
 public class JournalController {

 @Autowired
 JournalRepository repo;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

34

 @RequestMapping("/")
 public String index(Model model){
 model.addAttribute("journal", repo.findAll());
 return "index";
 }
 }

 Listing 2-7 shows the web controller, which will send back all the journal entries. In this case the class
is marked with the @Controller , which is a marker for the Spring MVC engine so this class is treated as web
controller. The @Autowired annotation will instantiate the JournalRepository variable repo, so it can be
used in the index method.

 The index method is marked with the @RequestMapping annotation, which will make this method
the handler for every request in the default route / . If you take a look, there is a Model class parameter
that will be created, and it will add an attribute named journal with a value that is the result of calling the
 JournalRepository interface, repo.findAll() method. Remember that by extending a JpaRepository , you
have by default different methods, and one of them is the findAll method. This method will return all the
entries from the database. The return will be the name of the page index , then the Spring MVC engine will
look for the index.html in the templates folder.

 8. Then in the src/main/resources/templates folder, you need to create the
 index.html file. See Listing 2-8 .

 Listing 2-8. src/main/resources/templates/index. html

 <!doctype html>
 <html lang="en-US" xmlns:th="http://www.thymeleaf.org" >
 <head>
 <meta charset="utf-8"></meta>
 <meta http-equiv="Content-Type" content="text/html"></meta>
 <title>Spring Boot Journal</title>
 <link rel="stylesheet" type="text/css" media="all" href="css/bootstrap.min.css"></link>
 <link rel="stylesheet" type="text/css" media="all" href="css/bootstrap-glyphicons.css">
</link>

 <link rel="stylesheet" type="text/css" media="all" href="css/styles.css"></link>
 </head>

 <body>
 <div class="container">
 <h1>Spring Boot Journal</h1>

 <ul class="timeline">
 <div th:each="entry,status : ${journal}" >
 <li th:attr="class=${status.odd}?'timeline-inverted':''" >
 <div class="tl-circ"></div>
 <div class="timeline-panel">
 <div class="tl-heading">
 <h4> TITLE </h4>
 <p><small class="text-muted"><i class="glyphicon glyphicon-time"></i>

 CREATED </small></p>
 </div>

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

35

 <div class="tl-body">
 <p> SUMMARY </p>
 </div>
 </div>

 </div>

 </div>
 </body>
 </html>

 Listing 2-8 shows you the index.html file that will be rendered using the Thymeleaf engine, which
is why you have an XML namespace in the html tag. What is important here is the th:each instruction. It
will get the journal entries as a collection (by using the entry variable and the status variable in the index
of each iteration) and it will iterate to create different tags based on the number of entries. To access the
property for each entry, you use the th:text instruction.

 9. As you can see in Listing 2-8 , there are some CSS defined. The important one
is style.css . (I borrowed this style from Jake Rocheleau at http://blog.
templatemonster.com/2014/04/23/tutorial-build-vertical-timeline-
archives-page-using-bootstrap/ .) I modified and added this style.css file
to the book’s source companion code. You can download it from the Apress web
site. It’s important to know that Spring Boot will look for the static/ path to
collect all the public files that you want to expose to the web, this will be the case
with JavaScript, image files, and CSS files.

 10. Now the important part, the main application. See Listing 2-9

 Listing 2-9. com.apress.spring. SpringBootJournalApplication.java

 package com.apress.spring;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;

 @SpringBootApplication
 public class SpringBootJournalApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootJournalApplication.class, args);
 }
 }

 Listing 2-9 shows you the main application. You don’t need to do anything, and this is the class that
was generated when you use the Spring Starter Project wizard. You are ready to run it, but wait! Where is the
data? You need to inject some data so you can see the result. Modify the SpringBootJournalApplication
class to look like Listing 2-10 .

http://blog.templatemonster.com/2014/04/23/tutorial-build-vertical-timeline-archives-page-using-bootstrap/
http://blog.templatemonster.com/2014/04/23/tutorial-build-vertical-timeline-archives-page-using-bootstrap/
http://blog.templatemonster.com/2014/04/23/tutorial-build-vertical-timeline-archives-page-using-bootstrap/

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

36

 Listing 2-10. com.apress.spring. SpringBootJournalApplication.java

 package com.apress.spring;

 import org.springframework.beans.factory.InitializingBean;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;

 import com.apress.spring.domain.Journal;
 import com.apress.spring.repository.JournalRepository;

 @SpringBootApplication
 public class SpringBootJournalApplication {

 @Bean
 InitializingBean saveData(JournalRepository repo){
 return () -> {
 repo.save(new Journal("Get to know Spring Boot","Today I will learn Spring

Boot","01/01/2016"));
 repo.save(new Journal("Simple Spring Boot Project","I will do my first Spring

Boot Project","01/02/2016"));
 repo.save(new Journal("Spring Boot Reading","Read more about Spring

Boot","02/01/2016"));
 repo.save(new Journal("Spring Boot in the Cloud","Spring Boot using Cloud

Foundry","03/01/2016"));
 };
 }

 public static void main(String[] args) {
 SpringApplication.run(SpringBootJournalApplication.class, args);
 }
 }

 Listing 2-10 shows the final version of the journal app. One thing to mention is the saveData method
that is returning an InitializingBean . This particular class is always called when the Spring engine is
creating the instance to initialize it. In this case, the method will be executed before the application finishes
running.

 In order to run it, select the SpringBootJournalApplication.java class from the Package Explorer view
and right-click on it. Then choose Run As ➤ Spring Boot App. Once it's running you can open a browser and
point to http://localhost:8080 . You should see something like Figure 2-12 .

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

37

 Figure 2-12 shows you the result of running the Spring Boot journal application. If you analyze it in
more detail, probably what is most time consuming will be the graphic design rather than the code. With
only a few lines of code, you have a very cool Spring Boot app. You will modify this app in the remaining
chapters.

 You can stop your application by pressing Ctrl+C in the terminal where the application is running.
 What happens if you want to expose this journal as a service? It would be nice to have a request

to the http://localhost:8080/journal and the response be JSON data. You need to modify the
 JournalController class. You are going to add a new method that will handle the /journal route and
respond as JSON data.

 Go to your JournalController class and modify it to look like Listing 2-11 .

 Listing 2-11. com.apress.spring. web.JournalController.java

 package com.apress.spring.web;

 import java.util.List;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.http.MediaType;
 import org.springframework.stereotype.Controller;
 import org.springframework.ui.Model;
 import org.springframework.web.bind.annotation.RequestMapping;

 Figure 2-12. The Spring Boot journal web application

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

38

 import org.springframework.web.bind.annotation.ResponseBody;

 import com.apress.spring.domain.Journal;
 import com.apress.spring.repository.JournalRepository;

 @Controller
 public class JournalController {

 @Autowired
 JournalRepository repo;

 @RequestMapping(value="/journal", produces = {MediaType.APPLICATION_JSON_UTF8_VALUE})
 public @ResponseBody List<Journal> getJournal(){
 return repo.findAll();
 }

 @RequestMapping("/")
 public String index(Model model){
 model.addAttribute("journal", repo.findAll());
 return "index";
 }
 }

 Listing 2-12 shows you the modified version of the JournalController class. Remember that at some
point this will become a service, so by adding the getJournal method and using the @ResponseBody ,
it will automatically respond with JSON data. But how does Spring Boot know about transforming the
objects into the JSON format? Well, this is not Spring Boot, it’s the Spring MVC module. When you use the
 @ResponseBody annotation, Spring MVC will automatically use the correct HTTP message converters to
transform your response into JSON data.

 If you run the application again and point your browser to http://localhost:8080/journal , you
should get something similar to Figure 2-13 .

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

39

 Now you can create better applications that actually use this data to be exposed as a nice web interface.
My intention for the journal web interface was just as an example, and I bet you can create a better looking
web interface.

 How Spring Boot Works
 I think now is time to see how Spring Boot does it; how it works internally to relieve the developer from the
headache of a J2EE web application. If you are a Spring or J2EE developer, you saw that you didn’t use a
configuration file—no XML (web.xml), no @Configuration class, or any other Spring Beans definition file.

 Maybe you are thinking that Spring Boot generated code—some classes to create all the necessary files
to run this application—but that’s not the case, Spring Boot never generates code and will never output
any source code. Remember that I said that Spring Boot is an opinionated technology, which means that it
follows the best practices to create a very robust application with minimum effort.

 Let’s see what is really happening when you run the SpringBootJournalApplication app. Listing 2-10
shows the main application. It is marked with the @SpringBootApplication annotation. This annotation
looks like Listing 2-12 .

 Figure 2-13. Added a JSON response at http://localhost:8080/journal

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

40

 Listing 2-12. org.springframework.boot.autoconfigure.SpringBootApplication. java

 package org.springframework.boot.autoconfigure;

 @Target(ElementType.TYPE)
 @Retention(RetentionPolicy.RUNTIME)
 @Documented
 @Inherited
 @Configuration
 @EnableAutoConfiguration
 @ComponentScan
 public @interface SpringBootApplication {

 Class<?>[] exclude() default {};

 String[] excludeName() default {};

 @AliasFor(annotation = ComponentScan.class, attribute = "basePackages")
 String[] scanBasePackages() default {};

 @AliasFor(annotation = ComponentScan.class, attribute = "basePackageClasses")
 Class<?>[] scanBasePackageClasses() default {};

 }

 Listing 2-12 shows the @SpringBootApplication annotation. What is important to see is that this is a
composed annotation because it contains the @Configuration , @EnableAutoConfiguration , and
 @ComponentScan annotations. Don’t worry I will explain all these annotation in the following chapters. In
version 1.0 of Spring Boot, you needed to use these three annotations to create a Spring Boot app. Since
version 1.2.0, the Spring team created this enhanced @SpringBootApplication annotation. Remember,
Spring Boot tries to simplify everything without having a configuration file.

 The important key for Spring Boot to work is the @EnableAutoConfiguration annotation, because it
contains the Auto-Configuration feature, and this is where it all starts to happen. Spring Boot will use
auto-configuration based on your classpath, your annotations, and your configuration to add the right
technology and create a suitable application. This means that all those annotations facilitate how Spring
Boot will configure your app.

 To sum up, in Listing 2-10 Spring Boot uses the @SpringBootApplication and the auto-configuration
(based on the @EnableAutoConfiguration annotation) to try to identify all your components. First it will
inspect your classpath, and because your dependency is a spring-boot-starter-web , it will try to configure
the application as a web application. It will also identify that the JournalController class is a web controller
because it is marked with the @Controller and because it contains the @RequestMapping annotations. And
because the spring-boot-starter-web has the Tomcat server as a dependency, the Spring Boot will use it
when you run your application.

 Yes, a Tomcat server. Spring Boot has all these non-functional features that bring more to your
application. You will learn more about this in later chapters, but for now you need to know that every time
you create a web application, you will have a Tomcat server embedded. Note that you can exclude Tomcat
and use another server like Jetty or Undertow.

 You can also create a standalone application, by going to the command line and executing this:

 $ mvn package

CHAPTER 2 ■ YOUR FIRST SPRING BOOT APPLICATION

41

 This command will create a JAR file in the target folder. Then you can execute the following command:

 $ java -jar target/spring-boot-journal-0.0.1-SNAPSHOT.jar

 You will have a running application (go to the http://localhost:8080). This technique helps to create
and distribute the application to your clients.

 Summary
 This chapter showed you how to install and use Spring Boot with your first Spring Boot Journal application.
You saw that there are many possibilities for using Spring Boot—by command line with the Spring Boot CLI;
using the Spring Initializr web service with cURL ; and by using the Spring Tool Suite (STS).

 With your first application, you saw how easy it was to integrate different technologies and, with a few
lines of code, have a good looking and functional web application. You also learned how Spring Boot works
internally and how it creates your application based on your classpath and annotations.

 The next chapter goes deeper into a configuration that you can use to extend Spring Boot even more.

43© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_3

 CHAPTER 3

 Spring Boot Auto-Configuration,
Features, and More

 This chapter talks about the Spring Boot features that involve configuration. First it shows you
how Spring Boot works when it’s using the auto-configuration feature (in detail) when you add the
@EnableAutoConfiguration annotation. Then the chapter shows you some of Spring Boot’s extra features,
such as externalizing your configuration properties, its enable and disable features, and more.

 Auto-Configuration
 The previous chapter explained that auto-configuration is one of the important features in Spring Boot
because it will try to do its best to configure your Spring Boot application according to your classpath
(this will be according to your maven pom.xml or gradle build.gradle files), annotations, and any Java
configuration declarations.

 The example in Listing 3-1 is the same one from previous chapters, but in this case I want to use it to
explain what happens behind the scenes when Spring Boot runs it.

 Listing 3-1. app.groovy

 @RestController
 class WebApp{

 @RequestMapping("/")
 String greetings(){
 "Spring Boot Rocks"
 }
 }

 You can run this program using the Spring Boot CLI (Command Line Interface) with this command:

 $ spring run app.groovy

 Spring Boot won’t generate any code (no output), but will add some on the fly. This is one of the
advantages of Groovy, in that you can have access to the AST (Abstract Syntax Tree) at running time. For Java,
this normally happens using proxy classes. Spring Boot will start by importing missing dependencies, like
importing the org.springframework.web.bind.annotation.RestController annotation, among others.

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

44

 Next, it will identify that you need a Web Spring Boot Starter (I will talk more about it in the following
sections) because you marked your class and your method with the @RestController and the @RequestMapping
 annotations, so it will add to the code the @Grab("spring-boot-web-starter") annotation.

 Next, it will add the necessary annotation that will trigger some auto-configuration,
the @EnableAutoConfiguration annotation, and last, it will add the main method that will be the entry
point for the application. You can see the resultant code in Listing 3-2 .

 Listing 3-2. app.groovy modified by Spring Boot

 import org.springframework.web.bind.annotation.RestController;
 // Other Imports

 @Grab("spring-boot-web-starter")
 @EnableAutoConfiguration
 @RestController
 class WebApp{
 @RequestMapping("/")
 String greetings(){
 "Spring Boot Rocks"
 }

 public static void main(String[] args) {
 SpringApplication.run(WebApp.class, args);
 }
 }

 Listing 3-2 shows the actual modified program that Spring Boot will run. All this “build-up” is
happening in memory. You can see in action how the auto-configuration works, by running Listing 3-1 with
the --debug parameter. Take a look:

 $ spring run app.groovy --debug
 ...
 DEBUG 49009 --- [] autoConfigurationReportLoggingInitializer :
 ===========================
 AUTO-CONFIGURATION REPORT
 ===========================

 Positive matches:

 //You will see all the conditions that were met to enable a web application. And this is
because you have the //@RestController annotation.

 Negative matches:

 //You will find all the conditions that failed. For example you will find that the
ActiveMQAutoConfiguration class did //not match, because you don't have any reference of the
ActiveMQConnectionFactory.

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

45

 Review the output from the command in your terminal and you’ll see all the positive and negative
matches that Spring Boot did before running this simple application. Because you are running the Spring
Boot CLI, it’s doing a lot by trying to guess what kind of application you want to run. When you create a
Maven or Gradle project and specify some dependencies (pom.xml or build.gradle), you are helping Spring
Boot make decisions based on your dependencies.

 Disabling a Specific Auto-Configuration
 Recall that Chapter 2 covered the @SpringBootApplication annotation a bit. This annotation is equivalent
to the @Configuration , @ComponentScan , and @EnableAutoConfiguration annotations. You can disable
a specific auto-configuration by adding the @EnableAutoConfiguration annotation to your class with the
 exclude parameter. Listing 3-3 shows an example.

 Listing 3-3. app.groovy

 import org.springframework.boot.autoconfigure.jms.activemq.ActiveMQAutoConfiguration

 @RestController
 @EnableAutoConfiguration(exclude=[ActiveMQAutoConfiguration.class])
 class WebApp{

 @RequestMapping("/")
 String greetings(){
 "Spring Boot Rocks"
 }
 }

 Listing 3-3 shows the @EnableAutoConfiguration annotation with the exclude parameter. This
parameter receives an array of auto-configuration classes. If you run this again with the following command:

 $ spring run app.groovy --debug
 ...
 Exclusions:

 org.springframework.boot.autoconfigure.jms.activemq.ActiveMQAutoConfiguration
 ...

 You will see the exclusion of the ActiveMQAutoConfiguration class. This is a very useful technique
for Groovy scripts, when you want Spring Boot to skip certain and unnecessary auto-configurations. You
might wonder why you would want to exclude a configuration. Well, sometimes you will have dependencies
that work in two different types of applications—web and non-web for example—and you want to use the
 jackson-core library that handles JSON objects to create a non-web app. This library can work in web or
non-web apps, but the auto-configuration will guess that, based on this dependency, your application is a
web app. In that case, you can exclude the web auto-configuration from happening. This is one example of
many where you might use the auto-configuration exclusion.

http://dx.doi.org/10.1007/978-1-4842-1431-2_2

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

46

 Listing 3-4 shows this exclusion on a Java Spring Boot app.

 Listing 3-4. DemoApplication.java—Spring Boot snippet

 package com.example;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration;
 import org.springframework.boot.autoconfigure.jms.activemq.ActiveMQAutoConfiguration;

 @SpringBootApplication(exclude={ActiveMQAutoConfiguration.class,DataSourceAutoConfiguration.class})
 public class DemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }
 }

 Listing 3-4 shows you a Java version. In this example the main class is declaring only the
 @SpringBootApplication annotation, and within this annotation you can exclude the auto-configuration
classes. Listing 3-4 shows two classes being excluded—the ActiveMQAutoConfiguration and
 DataSourceAutoConfiguration classes. Why is @EnableAutoConfiguration annotation not being used?
Remember that the @SpringBootApplication annotation inherits @EnableAutoConfiguration ,
@Configuration , and @ComponentScan , which is why you can use the exclude parameter within the
@SpringBootApplication .

 If you run a Maven or Gradle project (using the example in Listing 3-4) with the debug option, you will
see output like this:

 $ spring run DemoApplication.java --debug
 ...
 Exclusions:

 org.springframework.boot.autoconfigure.jms.activemq.ActiveMQAutoConfiguration
 org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration
 ...

 ■ Note Groovy handles the arrays in a different way from Java. The example in Listing 3-3 (app.groovy)
uses in the exclude parameter [] (square brackets) to handle arrays, which is the Groovy way. Listing 3-4
(DemoApplication.java) uses in the exclude parameter and { } (curly braces) to handle the arrays, which is
the Java way.

 You can find all the book’s source code at the Apress web site or by going to https://github.com/felipeg48/
pro-spring-boot .

https://github.com/felipeg48/pro-spring-boot
https://github.com/felipeg48/pro-spring-boot

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

47

 @ EnableAutoConfiguration and
@Enable<Technology> Annotations
 You will find that the Spring Framework and some of its modules—like Spring Core, Spring Data,
Spring AMQP, and Spring Integration—provide @Enable<Technology> annotations. For example,
@EnableTransactionManagement , @EnableRabbit , and @EnableIntegration are part of the modules
mentioned. Within Spring applications, you can use these annotations to follow the pattern “convention
over configuration,” thus making your apps even easier to develop and maintain without worrying too
much about configuration.

 Spring Boot can also take advantage of these annotations. These annotations are used in the
@EnableAutoConfiguration annotation to do the auto-configuration. Let’s take a closer look at the
@EnableAutoConfiguration annotation and see the logic behind it. You’ll see where the @Enable<Technology>
annotations fit. It’s worth mentioning that in other chapters you will be learning more about these annotations.
See Listing 3-5 .

 Listing 3-5. Snippet of org.springframework.boot.autoconfigure.EnableAutoConfiguration.java

 ...
 // More declarations here ...
 ...
 @Import (EnableAutoConfigurationImportSelector.class)
 public @interface EnableAutoConfiguration {

 Class<?>[] exclude() default {};

 String[] excludeName() default {};

 }

 Listing 3-5 shows you the @EnableAutoConfiguration annotation. As you already know, this class will
attempt to guess and configure the beans that your application will need. The auto-configuration classes are
applied based on the classpath and which beans your app has defined, but what this makes more powerful
is the org.springframework.boot.autoconfigure.EnableAutoConfigurationImportSelector class that
finds all the necessary configuration classes.

 The EnableAutoConfigurationImportSelector class has a several methods, but one of the most
important for the auto-configuration to happen is the getCandidateConfiguration method. See Listing 3-6 .

 Listing 3-6. Snippet of org.springframework.boot.autoconfigure.EnableAutoConfigurationImportSelector

 ...
 protected List<String> getCandidateConfigurations(AnnotationMetadata metadata,
 AnnotationAttributes attributes) {
 return SpringFactoriesLoader.loadFactoryNames(
 getSpringFactoriesLoaderFactoryClass(), getBeanClassLoader());
 }
 ...

 Listing 3-6 shows you a snippet of the EnableAutoConfigurationImportSelector class, where
the getCandidateConfigurations method returns SpringFactoriesLoader.loadFactoryNames . The
 SpringFactoriesLoader.loadFactories will look for the META-INF/spring.factories defined in the
 spring-boot-autoconfigure JAR. See Listing 3-7 for its contents.

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

48

 Listing 3-7. Snippet of spring-boot-autoconfigure-<version>.jar#META-INF/spring.factories

 # Initializers
 org.springframework.context.ApplicationContextInitializer=\
 org.springframework.boot.autoconfigure.logging.AutoConfigurationReportLoggingInitializer
 ...

 # Application Listeners
 org.springframework.context.ApplicationListener=\
 org.springframework.boot.autoconfigure.BackgroundPreinitializer

 # Auto Configure
 org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
 org.springframework.boot.autoconfigure.admin.SpringApplicationAdminJmxAutoConfiguration,\
 org.springframework.boot.autoconfigure.aop.AopAutoConfiguration,\
 org.springframework.boot.autoconfigure.amqp.RabbitAutoConfiguration,\
 org.springframework.boot.autoconfigure.MessageSourceAutoConfiguration,\
 org.springframework.boot.autoconfigure.PropertyPlaceholderAutoConfiguration,\
 org.springframework.boot.autoconfigure.batch.BatchAutoConfiguration,\
 org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration,\
 org.springframework.boot.autoconfigure.cassandra.CassandraAutoConfiguration,\
 org.springframework.boot.autoconfigure.cloud.CloudAutoConfiguration,\

 As you can see from Listing 3-7 , the spring.factories defined all the auto-configuration
classes that will be used to guess what kind of application you are running. Let’s take a look at the
 CloudAutoConfiguration class. See Listing 3-8 .

 Listing 3-8. org.springframework.boot.autoconfigure.cloud.CloudAutoConfiguration.java

 package org.springframework.boot.autoconfigure.cloud;

 import org.springframework.boot.autoconfigure.AutoConfigureOrder;
 import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
 import org.springframework.boot.autoconfigure.condition.ConditionalOnClass;
 import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
 import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
 import org.springframework.cloud.Cloud;
 import org.springframework.cloud.app.ApplicationInstanceInfo;
 import org.springframework.cloud.config.java.CloudScan;
 import org.springframework.cloud.config.java.CloudScanConfiguration;
 import org.springframework.context.annotation.Configuration;
 import org.springframework.context.annotation.Import;
 import org.springframework.context.annotation.Profile;
 import org.springframework.core.Ordered;

 @Configuration
 @Profile("cloud")
 @AutoConfigureOrder(CloudAutoConfiguration.ORDER)
 @ConditionalOnClass(CloudScanConfiguration.class)
 @ConditionalOnMissingBean(Cloud.class)

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

49

 @ConditionalOnProperty(prefix = "spring.cloud", name = "enabled", havingValue = "true",
matchIfMissing = true)
 @Import(CloudScanConfiguration.class)
 public class CloudAutoConfiguration {

 // Cloud configuration needs to happen early (before data, mongo etc.)
 public static final int ORDER = Ordered.HIGHEST_PRECEDENCE + 20;

 }

 Listing 3-8 shows you the CloudAutoConfiguration class. As you can see, it’s very short class,
but it will configure a cloud application if it finds the spring-cloud classes. But how? It will use the
@ConditionalOnClass and @ConditionalOnMissingBean annotations to decide if the application is a cloud
app. Don’t worry too much about this, because you are going to use these annotations when you create your
own auto-configuration class in the last chapter of the book.

 Another thing to note in Listing 3-8 is the use of the @ConditionalOnProperty , which applies only if the
 spring.cloud property is enabled. It’s worth mentioning that this auto-configuration will be executed in a
 cloud profile, denoted by the @Profile annotation. The @Import annotation will be applied only if the other
annotations met their conditions, meaning that the import of the CloudScanConfiguration class will be
executed if the spring-cloud classes are in the classpath.

 Spring Boot Features
 This section shows you some of the Spring Boot features. Spring Boot is highly customizable, from the
auto-configuration that guesses what kind of application you are trying to run (explained in the previous
section), to customize how it starts, what to show, and what to enable or disable based on its own properties.
So let’s get started.

 Let’s create a Spring Boot Java project with the spring init command. (Make sure you have the Spring
Boot installed on your system. If not, you can review the previous chapter on how to install it.) Execute the
following command in a terminal window:

 $ spring init -g=com.apres.spring -a=spring-boot-simple --package=com.apress.spring
-name=spring-boot-simple -x

 This command will create a Maven Java project with a groupId=com.apress.spring ,
an artifactId=spring-boot-simple , and a package=com.apress.spring with a project’s
name=spring-boot-simple . It will be created in the current directory (-x). Don’t worry too much about
the parameters; you’ll learn more about them in the next chapter. This command will generate the structure
shown in Figure 3-1 .

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

50

 Figure 3-1 shows you the project structure after running the spring init command. Let’s run the application
and see what happens. You will see (in the next chapter in more detail) that the Spring Initializr includes a
Maven wrapper that you can use. To run it, execute the following command in the same terminal window:

 $./mvnw spring-boot:run
 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
 (()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v1.3.3.RELEASE)

 INFO[main] c.a.spring.SpringBootSimpleApplication : Starting SpringBootSimpleApplication
on liukang.local with PID 75712 (/Books/pro-spring-boot/spring-boot-simple-java/target/
classes started by felipeg in /Books/pro-spring-boot/spring-boot-simple-java)
 INFO[main] c.a.spring.SpringBootSimpleApplication : No active profile set, falling back to
default profiles: default
 INFO[main] s.c.a.AnnotationConfigApplicationContext : Refreshing org.springframework.
context.annotation.AnnotationConfigApplicationContext@203f6b5: startup date [Thu Feb 25
19:00:34 MST 2016]; root of context hierarchy
 INFO[main] o.s.j.e.a.AnnotationMBeanExporter : Registering beans for JMX exposure on startup
 INFO[main] c.a.spring.SpringBootSimpleApplication : Started SpringBootSimpleApplication in
0.789 seconds (JVM running for 4.295)
 INFO[Th-1] s.c.a.AnnotationConfigApplicationContext : Closing org.springframework.context.
annotation.AnnotationConfigApplicationContext@203f6b5: startup date [Thu Feb 25 19:00:34
MST 2016]; root of context hierarchy
 INFO[Th-1] o.s.j.e.a.AnnotationMBeanExporter : Unregistering JMX-exposed beans on shutdown

 Figure 3-1. Spring Boot project— directory structure

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

51

 You should see something similar to the output above. It will show you a banner (“Spring”) and some
logs. The main application is shown in Listing 3-9 .

 Listing 3-9. src/main/java/com/apress/spring/SpringBootSimpleApplication.java

 package com.apress.spring;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;

 @SpringBootApplication
 public class SpringBootSimpleApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootSimpleApplication.class, args);
 }
 }

 Listing 3-9 shows you the main application. You already know about it from the previous chapters,
but let’s review it again:

• @SpringBootApplication . This annotation is actually the @ComponentScan ,
 @Configuration , and @EnableAutoConfiguration annotations. You already know
everything about @EnableAutoConfiguration from the previous sections.

• SpringApplication . This class provides the bootstrap for the Spring Boot
application that is executed in the main method. You need to pass the class that will
be executed.

 Now, you are ready to start customizing the Spring Boot app.

 SpringApplication Class
 You can have a more advanced configuration using the Spring application, because you can create an
instance out of it and do a lot more. See Listing 3-10 .

 Listing 3-10. Version 2 of src/main/java/com/apress/spring/SpringBootSimpleApplication.java

 package com.apress.spring;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;

 @SpringBootApplication
 public class SpringBootSimpleApplication {

 public static void main(String[] args) {

 SpringApplication app = new SpringApplication(SpringBootSimpleApplication.class);
 //add more features here.
 app.run(args);
 }
 }

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

52

 Custom Banner
 Every time you run your application, you can see a banner being displayed at the beginning of the
application. That banner can be customized in different ways. Listing 3-11 shows how to implement the
 org.springframework.boot.Banner interface.

 Listing 3-11. Version 3 of src/main/java/com/apress/spring/SpringBootSimpleApplication.java

 package com.apress.spring;

 import java.io.PrintStream;

 import org.springframework.boot.Banner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.core.env.Environment;

 @SpringBootApplication
 public class SpringBootSimpleApplication {

 public static void main(String[] args) {

 SpringApplication app = new SpringApplication(SpringBootSimpleApplication.class);
 app.setBanner(new Banner() {
 @Override
 public void printBanner(Environment environment, Class<?> sourceClass,

PrintStream out) {
 out.print("\n\n\tThis is my own banner!\n\n".toUpperCase());
 }
 });
 app.run(args);
 }
 }

 When you run the application, you will see something like this:

 $./mvnw spring-boot:run

 THIS IS MY OWN BANNER!

 INFO[main] c.a.spring.SpringBootSimpleApplication : Starting SpringBootSimpleApplication
on liukang.local with PID 75712 (/Books/pro-spring-boot/spring-boot-simple-java/target/
classes started by felipeg in /Books/pro-spring-boot/spring-boot-simple-java)
 ...
 ...
 INFO[main] c.a.spring.SpringBootSimpleApplication : Started SpringBootSimpleApplication in
0.789 seconds (JVM running for 4.295)
 INFO[Th-1] s.c.a.AnnotationConfigApplicationContext : Closing org.springframework.context.
annotation.AnnotationConfigApplicationContext@203f6b5: startup date [Thu Feb 25 19:00:34 MST
2016]; root of context hierarchy
 INFO[Th-1] o.s.j.e.a.AnnotationMBeanExporter : Unregistering JMX-exposed beans on shutdown

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

53

 You can also create your own ASCII banner and display it. There is a very cool site that creates ASCII art
from text (http://patorjk.com). See Figure 3-2 .

 Figure 3-2. http://patorjk.com —text to ASCII art generator

http://patorjk.com/
http://patorjk.com/

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

54

 Figure 3-2 shows you the http://patorjk.com site. You can click the “Text to ASCII Art Generator” link.
Once you are there, add the text “Pro Spring Boot” in the text field (or whatever you want). Then click Test All
to see all the different ASCII art. See Figure 3-3 .

 Figure 3-3. ASCII art

http://patorjk.com/

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

55

 Figure 3-3 shows you all the ASCII art (around 314 different drawings). Select your favorite and click the
button Select Text. Copy it (Ctrl+C Windows/Cmd+C Mac) and then create a file named banner.txt in the
 src/main/resources/ directory. See Figure 3-4 .

 Figure 3-4. The content of src/main/resource/banner.txt

 You can run your application again using this command:

 $./mvnw spring-boot:run

 You will see the ASCII art you added to the banner.txt file. If you run your app using Listing 3-11
(where you are setting the banner), it will override it and use the banner.txt file that is in your classpath.
That’s the default.

 By default, Spring Boot will look for the banner.txt in the classpath. But you can change its location.
Create another banner.txt file (or copy the one you have already) in the src/main/resources/META-INF/
directory. Then you can run the application by passing a -D parameter. Execute the following command:

 $./mvnw spring-boot:run -Dbanner.location=classpath:/META-INF/banner.txt

 This command is using the -D flag to pass the banner.location property that is pointing to the new
classpath location: /META-INF/banner.txt . You can declare this property in the src/main/resources/
application.properties file, as follows:

 banner.location=classpath:/META-INF/banner.txt

 And run it like this:

 $./mvnw spring-boot:run

 You have several options for the setting up the banner.txt file. You can remove completely the banner.
You can define it in src/main/resources/applications.property like this:

 spring.main.banner-mode=off

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

56

 This command has precedence over the default banner.txt located at the classpath:banner.txt
location. You can also do this programmatically. See Listing 3-12 .

 Listing 3-12. Version 4 of src/main/java/com/apress/spring/SpringBootSimpleApplication.java

 package com.apress.spring;

 import org.springframework.boot.Banner.Mode;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;

 @SpringBootApplication
 public class SpringBootSimpleApplication {

 public static void main(String[] args) {
 SpringApplication app = new SpringApplication(SpringBootSimpleApplication.class);
 app.setBannerMode(Mode.OFF);
 app.run(args);
 }
 }

 SpringApplicationBuilder
 The SpringApplicationBuilder class provides a fluent API and is a builder for the SpringApplication
and ApplicationContext instances. It also provides hierarchy support. Everything that I showed you so far
(with the SpringApplication) can be set with this builder. This is another way to configure your Spring Boot
application. You use the other approach or maybe you are more comfortable with the fluent API where you
can have more readable code. See Listing 3-13 .

 Listing 3-13. Version 5 of src/main/java/com/apress/spring/SpringBootSimpleApplication.java

 package com.apress.spring;

 import org.springframework.boot.Banner;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.boot.builder.SpringApplicationBuilder;

 @SpringBootApplication
 public class SpringBootSimpleApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder()
 .bannerMode(Banner.Mode.OFF)
 .sources(SpringBootSimpleApplication.class)
 .run(args);

 }
 }

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

57

 Listing 3-13 shows you the SpringApplicationBuilder fluent API. Next, let’s consider more examples.
 You can have a hierarchy when you’re creating a Spring app (If you want to know more about

application context in Spring, I recommend you read the Apress book called “Pro Spring 4 th Edition”) and
you can create this with the SpringApplicationBuilder .

 new SpringApplicationBuilder(SpringBootSimpleApplication.class)
 .child(MyConfig.class)
 .run(args);

 If you have a web configuration, make sure it’s being declared as a child. All the web configuration must
depend on a main Spring context, which is why it needs to be declared as a child. Also parent and children
must share the same org.springframework.core.Environment interface (this represents the environment
in which the current application is running and is related to profiles and properties declarations).

 You can log the info at startup or not; by default, this is set to true:

 new SpringApplicationBuilder(SpringBootSimpleApplication.class)
 .logStartupInfo(false)
 .run(args);

 You can activate profiles:

 new SpringApplicationBuilder(SpringBootSimpleApplication.class)
 .profiles("prod","cloud")
 .run(args);

 You’ll learn more about profiles later, so you can make sense of the line above.
 You can attach listeners for some of the ApplicationEvent events:

 Logger log = LoggerFactory.getLogger(SpringBootSimpleApplication.class);
 new SpringApplicationBuilder(SpringBootSimpleApplication.class)
 .listeners(new ApplicationListener<ApplicationEvent>() {

 @Override
 public void onApplicationEvent(ApplicationEvent event) {
 log.info("#### > " + event.getClass().getCanonicalName());
 }

 })
 .run(args);

 When you run your application, you should see at least the following output:

 ...
 #### > org.springframework.boot.context.event.ApplicationPreparedEvent
 ...
 #### > org.springframework.context.event.ContextRefreshedEvent
 #### > org.springframework.boot.context.event.ApplicationReadyEvent
 ...
 #### > org.springframework.context.event.ContextClosedEvent
 ...

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

58

 Then your application can add the necessary logic to handle those events. In addition, you can have
these events: ApplicationStartedEvent (sent at the start), ApplicationEnvironmentPreparedEvent
(sent when the environment is known), ApplicationPreparedEvent (sent after the bean definitions),
 ApplicationReadyEvent (sent when the application is ready), ApplicationFailedEvent (sent in case of
exception during the startup), and the other I showed you in the output (related to the Spring container). All
these events can be useful when you want to set up your application (database, check up for some services,
etc.) before it runs, or if your application fails during a start (ApplicationFailedEvent), because you’ll
probably want to send a notification somewhere.

 You can remove any web environment auto-configuration. Remember that Spring Boot will try to guess
what kind of app you are running based on the classpath, and for a web app, the algorithm is very simple.
Imagine that you are using some libraries that actually can run without a web environment and your app is
not a web app; however, Spring Boot tries to configure it as such:

 new SpringApplicationBuilder(SpringBootSimpleApplication.class)
 .web(false)
 .run(args);

 The previous section showed you how to you use @EnableAutoConfiguration and its parameter
 exclude , by passing the auto-configuration classes that you don’t want to be checked on. The above code
is where you set the web(false) and it’s the same idea as the exclude parameter. As you can see, you have
many options for configuring Spring Boot .

 Application Arguments
 Spring Boot allows you to get the arguments passed to the application. When you have this:

 SpringApplication.run(SpringBootSimpleApplication.class, args);

 You can access the args in your beans. See Listing 3-14 .

 Listing 3-14. Version 10 of src/main/java/com/apress/spring/SpringBootSimpleApplication.java

 package com.apress.spring;

 import java.io.IOException;
 import java.util.List;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.ApplicationArguments;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.stereotype.Component;

 @SpringBootApplication
 public class SpringBootSimpleApplication {

 public static void main(String[] args) throws IOException {
 SpringApplication.run(SpringBootSimpleApplication.class, args);
 }
 }

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

59

 @Component
 class MyComponent {

 private static final Logger log = LoggerFactory.getLogger(MyComponent.class);

 @Autowired
 public MyComponent(ApplicationArguments args) {
 boolean enable = args.containsOption("enable");
 if(enable)
 log.info("## > You are enable!");

 List<String> _args = args.getNonOptionArgs();
 log.info("## > extra args ...");
 if(!_args.isEmpty())
 _args.forEach(file -> log.info(file));
 }
 }

 When you execute args.containsOption("enable") , it will expect the argument as --<arg> , so in
Listing 3-14 it will be expecting --enable . The getNonOptionArgs will take other arguments. To test it, you
can execute the following command:

 $./mvnw spring-boot:run -Drun.arguments="--enable"

 You should see the text: ## > You are enable . Also you can run it like this :

 $./mvnw spring-boot:run -Drun.arguments="arg1,arg2"

 Accessing Arguments with an Executable JAR
 You have the option to create a standalone app, in the form of an executable JAR (you will see more about
this). To create a executable JAR, simply execute the following command:

 $./mvnw package

 This command will create an executable JAR, meaning that you can run it like this:

 $ java -jar target/spring-boot-simple-0.0.1-SNAPSHOT.jar

 You can pass arguments like this:

 $ java -jar target/spring-boot-simple-0.0.1-SNAPSHOT.jar --enable arg1 arg2

 You should get the same text for the enable arg and a list of arg1 and arg2 .

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

60

 ApplicationRunner and CommandLineRunner
 Spring Boot allows you to execute code before your application starts. Spring Boot has the
 ApplicationRunner and the CommandLineRunner interfaces that expose the run methods. See Listing 3-15 .

 Listing 3-15. Version 11 of src/main/java/com/apress/spring/SpringBootSimpleApplication.java

 package com.apress.spring;

 import java.io.IOException;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.ApplicationArguments;
 import org.springframework.boot.ApplicationRunner;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;

 @SpringBootApplication
 public class SpringBootSimpleApplication implements CommandLineRunner, ApplicationRunner{
 private static final Logger log = LoggerFactory.getLogger

(SpringBootSimpleApplication.class);

 public static void main(String[] args) throws IOException {

 SpringApplication.run(SpringBootSimpleApplication.class, args);

 }

 @Bean
 String info(){
 return "Just a simple String bean";
 }

 @Autowired
 String info;

 @Override
 public void run(ApplicationArguments args) throws Exception {
 log.info("## > ApplicationRunner Implementation...");
 log.info("Accessing the Info bean: " + info);
 args.getNonOptionArgs().forEach(file -> log.info(file));
 }

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

61

 @ Override
 public void run(String... args) throws Exception {
 log.info("## > CommandLineRunner Implementation...");
 log.info("Accessing the Info bean: " + info);
 for(String arg:args)
 log.info(arg);
 }
 }

 Listing 3-15 shows you the CommandLineRunner and ApplicationRunner interfaces and their
implementations. CommandLineRunner exposes the public void(String... args) method and
 ApplicationRunner exposes the public void run(ApplicationArguments args) method. These are
practically the same. It’s not necessary to implement both at the same time; if you want to have more
control over the arguments, implement the ApplicationRunner interface. You can run Listing 3-15 with the
following command:

 $./mvnw spring-boot:run -Drun.arguments="arg1,arg2"

 You should see the the logs for the info bean and the printout of the arguments passed. Listing 3-16
shows another way to use the CommandLineRunner interface.

 Listing 3-16. Version 12 of src/main/java/com/apress/spring/SpringBootSimpleApplication.java

 package com.apress.spring;

 import java.io.IOException;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;

 @SpringBootApplication
 public class SpringBootSimpleApplication {
 private static final Logger log = LoggerFactory.getLogger

(SpringBootSimpleApplication.class);

 public static void main(String[] args) throws IOException {

 SpringApplication.run(SpringBootSimpleApplication.class, args);

 }

 @Bean
 String info(){
 return "Just a simple String bean";
 }

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

62

 @Autowired
 String info;

 @Bean
 CommandLineRunner myMethod(){
 return args -> {
 log.info("## > CommandLineRunner Implementation...");
 log.info("Accessing the Info bean: " + info);
 for(String arg:args)
 log.info(arg);
 };
 }
 }

 Listing 3-16 shows a method that’s annotated with the @Bean annotation returning a CommandLineRunner
implementation. This example uses the Java 8 syntax (lambda) to do the return. You can add as many
methods that return a CommandLineRunner as you want. If you want to execute these in certain order, you can
use the @Order annotation. If you want to run Listing 3-16 just execute the same command as before:

 $./mvnw spring-boot:run -Drun.arguments="arg1,arg2"

 Application Configuration
 Developers know that they are never going to get rid of some application configuration. They will always
be looking where they can persist URLs, IPs, credentials, and database information, for example. Basically
any data that they normally use quite often in their applications. They know as a best practice that they
need to avoid to hardcode this kind of configuration information. That’s why they need to externalize it so
it can be secure and easy to use and deploy.

 With Spring you can use XML and the <context:property-placeholder/> tag, or you can use the
@PropertySource annotation to declare your properties. You simply point to a file that has them declared.
Spring Boot offers you the same mechanism but with improvements:

 Spring Boot has different options for saving your application configuration:

• You can use a file named application.properties , which should be located in the
root classpath of your application (there are more places where you can add this file
that you’ll learn about later).

• You can use a YAML notation file named application.yml that also needs to be
located in the root classpath (there are more places where you can add this file that
you’ll learn about later).

• You can use environment variables. This is becoming the default practices for cloud
scenarios.

• You can use command-line arguments.

 Remember that Spring Boot is an opinionated technology, so most of its application configuration is
based on a common application.properties or application.yml file. If none is specified, it already has
those property’s values as defaults. You can get the complete list of the common application properties
here: https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-
properties.html .

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

63

 One of the best features from Spring (and of course from Spring Boot as well) is that you can
access the properties values by using the @Value annotation (with the name of the property) or from the
 org.springframework.core.env.Environment interface, which extends from the org.springframework.
core.env.PropertyResolver interface. For example, if you have a src/main/resources/application.
properties file with the following content:

 data.server=remoteserver:3030

 You can access the data.server property in your application by using the @Value annotation, as shown
in the following snippet:

 //...
 @Service
 public class MyService {

 @Value("${data.server}")
 private String server;

 //...
 }

 This code snippet shows you the usage of the @Value annotation. Spring Boot will inject the
 data.server property value from the application.properties file in the server variable with its value:
 remoteserver:3030 .

 If you don’t want to use the application.properties , you can inject the properties via the command line:

 $ java -jar target/myapp.jar --data.server=remoteserver:3030

 You will get the same result. If you don’t like the application.properties file or you hate the YAML
syntax, you can also use a specialized environment variable named SPRING_APPLICATION_JSON to expose the
same properties and its values. For example:

 $ SPRING_APPLICATION_JSON='{ "data":{"server":"remoteserver:3030"}}' java -jar target/myapp.jar

 (You must put the SRPING_APPLICATION_JSON variable before you execute the java -jar or the Maven
command.) Again, you will get the same result. As you can see, Spring Boot gives you several ways to expose
application properties.

 Configuration Properties Examples
 Let’s create a simple project that will help you understand the application configuration:

 $ spring init -g=com.apres.spring -a=spring-boot-config --package=com.apress.spring
-name=spring-boot-config -x

 This command will create a simple Maven Java project. Before continuing with the project, you must
know that Spring Boot uses an order if you want to override your application configuration properties:

• Command-line arguments

• SPRING_APPLICATION_JSON

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

64

• JNDI (java:comp/env)

• System.getProperties()

• OS environment variables

• RandomValuePropertySource (random.*)

• Profile-specific (application-{profile}.jar) outside of the package JAR

• Profile-specific (application-{profile}.jar) inside of the package JAR

• Application properties (application.properties) outside of the package JAR

• Application properties (application.properties) inside of the package JAR

• @PropertySource

• SpringApplication.setDefaultProperties

 As you can see, that’s the order for overriding the application properties. I’ll clarify a little on the
“outside” and “inside” package JAR. This means that if you have a JAR library dependency that has an
 application.properties (or YAML file) in it and it’s being used in your application, then your application
with its own application.properties file will have precedence over the application.properties that is in
the JAR library.

 Let’s start with some examples.

 Command-Line Arguments
 Go to your project (that you did with the Spring init command) and edit the main class to look like Listing 3-17 .

 Listing 3-17. src/main/java/com/apress/spring/SpringBootConfigApplication.java

 package com.apress.spring;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Value;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;

 @SpringBootApplication
 public class SpringBootConfigApplication {

 private static Logger log = LoggerFactory.getLogger(SpringBootConfigApplication.class);

 public static void main(String[] args) {
 SpringApplication.run(SpringBootConfigApplication.class, args);
 }

 @Value("${server.ip}")
 String serverIp;

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

65

 @Bean
 CommandLineRunner values(){
 return args -> {
 log.info(" > The Server IP is: " + serverIp);
 };
 }
 }

 Listing 3-17 shows you the main class. As you can see, it is using the @Value("${server.ip}")
annotation. This annotation will translate the text "${server.ip}" and will look for this property and its
value in the order mentioned earlier.

 You can run this example by executing the following command in the root of your project:

 $./mvnw spring-boot:run -Dserver.ip=192.168.12.1

 If you package first your app (to create an executable JAR) and then run it with this:

 $./mvnw package -DskipTests=true
 $ java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar --server.ip=192.168.12.1

 In either case, you will see something similar to the following output:

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
 (()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v1.3.3.RELEASE)

 INFO 97094 -[m] c.a.spring.SpringBootConfigApplication : Starting
SpringBootConfigApplication v0.0.1-SNAPSHOT on liukang.local with PID 97094
 INFO 97094 -[m] c.a.spring.SpringBootConfigApplication : No active profile set, falling
back to default profiles: default
 INFO 97094 -[m] s.c.a.AnnotationConfigApplicationContext : Refreshing startup date [Sat Feb
27 10:44:24 MST 2016]; root of context hierarchy
 INFO 97094 -[m] o.s.j.e.a.AnnotationMBeanExporter : Registering beans for JMX
exposure on startup
 INFO 97094 -[m] c.a.spring.SpringBootConfigApplication : > The Server IP is: 192.168.12.1
 INFO 97094 -[m] c.a.spring.SpringBootConfigApplication : Started
SpringBootConfigApplication in 1.624 seconds (JVM running for 2.255)
 INFO 97094 -[t] s.c.a.AnnotationConfigApplicationContext : Closing startup date [Sat Feb 27
10:44:24 MST 2016]; root of context hierarchy
 INFO 97094 -[t] o.s.j.e.a.AnnotationMBeanExporter : Unregistering JMX-exposed beans
on shutdown

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

66

 You can see from this output the text " > The Server IP is: 1921.68.12.1" . Now, let’s create the
 application.properties file. See Listing 3-18 .

 Listing 3-18. src/main/resources/application.properties

 server.ip=192.168.23.4

 If you run the application with the same command-line arguments, you will see that the arguments
have precedence over the application.properties file. If you run it without the arguments, such as:

 $./mvnw spring-boot:run

 or

 $./mvnw package
 $ java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar

 You get the text: "> The Server IP is: 192.168.3.4" . If you are used to JSON formatting, perhaps
you are interested in passing your properties in this format. You can use the spring.application.json
property. You can run it like this:

 $./mvnw spring-boot:run -Dspring.application.json='{"server":{"ip":"192.168.145.78"}}'

 or

 $ java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar --spring.application.json='{"server
":{"ip":"192.168.145.78"}}'

 Or you can also add it as environment variable:

 $ SPRING_APPLICATION_JSON='{"server":{"ip":"192.168.145.78"}}' java -jar target/spring-boot-
config-0.0.1-SNAPSHOT.jar

 You will see the text: "> The Server IP is: 192.168.145.78" . You can also add your environment
variable that refers to your property like this:

 $ SERVER_IP=192.168.150.46 ./mvnw spring-boot:run

 or

 $ SERVER_IP=192.168.150.46 java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar

 You will see the text "> The Server IP is: 192.168.150.46" . How does Spring Boot know that the
environment variable is related to the server.ip property?

 ■ Note If you are using Windows OS, all the environment variables must have the keyword SET before the
variable. For example: C:\> SET SERVER_IP=192.168.150.46 java -jar target/spring-boot-config-
0.0.1-SNAPSHOT.jar

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

67

 Relaxed Binding
 Spring Boot uses relaxed rules for binding. See Table 3-1 .

 Table 3-1. Spring Boot Relaxed Binding

 Property Description

 message.destinationName Standard camel case.

 message.destination-name Dashed notation, which is the recommended way to add the
 application.properties or YML file.

 MESSAGE_DESTINATION_NAME Uppercase, which is the recommended way to denote OS environment
variables.

 Table 3-1 shows you the relaxed rules that apply to property names. That’s why in the previous example, the
 server.ip property is recognized also as SERVER_IP . These relaxed rules help you avoid collision names. They
have to do with the @ConfigurationProperties annotation and its prefix, which you see in a later section.

 Changing Location and Name
 Spring Boot has an order to find the application.properties or YAML file. It will look in:

• The /config subdirectory located in the current directory

• The current directory

• A classpath /config package

• The classpath root

 You can test this by creating a /config subdirectory in your current directory and adding a new
 application.properties , and then test that the order is true. Remember that you should already have a
 application.properties file in the classpath root (src/main/resources).

 Spring Boot allows you to change the name and location of the properties file. So for example, imagine
that you will use the /config subdirectory and the name of the properties file is now mycfg.properties
(its content is server.ip=127.0.0.1). Then you can run the app with the following command:

 $./mvnw spring-boot:run -Dspring.config.name=mycfg

 or

 $./mvnw package -DskipTests=true
 $ java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar --spring.config.name=mycfg

 or

 $ SPRING_CONFIG_NAME=mycfg java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar

 You should see the text: "> The Server IP is: 127.0.0.1" . It’s not necessary to include the
 .properties with the name because it will automatically use it (same for a YAML file; you don’t need
to specify the extension). And as said before, you can also change its location. For example, create a

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

68

subdirectory named app and add a mycfg.properties file (its content is server.ip=localhost). Then you
can run or execute your app with the following:

 $./mvnw spring-boot:run -Dspring.config.name=mycfg -Dspring.config.location=file:app/

 or

 $ java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar --spring.config.location=file:app/
--spring.config.name=mycfg

 You can add the mycfg.properties file to the src/main/resources/META-INF/conf (you can create it)
and execute this:

 $ mkdir -p src/main/resources/META-INF/conf
 $ cp config/mycfg.properties src/main/resources/META-INF/conf/
 $./mvnw clean spring-boot:run -Dspring.config.name=mycfg -Dspring.config.
location=classpath:META-INF/conf/

 You should see the text: "> The Server IP is: 127.0.0.1" . Try to change the value of the property
so you can see that it is looking in the classpath. (Normally it will print an error that says Resource or
File not found in the classpath.) Spring Boot also has an order to search for the properties file:

• classpath

• classpath:/config

• file:

• file:config/

 Unless you change the order with the spring.config.location property. To change the location of the
properties file, you need to set the SPRING_CONFIG_LOCATION environment variable.

 ■ Note If you are using Windows OS, the slash is \ for creating directories or copying files.

 Profile Based
 Since version 3.1, the Spring Framework added a cool feature that allows developers to create custom properties
and beans based on profiles. This is a useful way to separate environments without having to recompile or
package a Spring app. You simply have to specify the active profile with the @ActiveProfiles annotation
(when you are testing classes) or get the current environment and use the setActiveProfiles method. You can
also use the SPRING_PROFILES_ACTIVE environment variable or the spring.profiles.active property.

 You can use the properties file using this format: application-{profile}.properties . Create two files
in your config/ subdirectory: application-qa.properties and application-prod.properties . Here are
the contents of each one:

• application-qa.properties

 server.ip=localhost

• application-prod.properties

 server.ip=http://my-remote.server.com

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

69

 Now you can run your example with the following:

 $./mvnw clean spring-boot:run -Dspring.profiles.active=prod

 When you execute this command, take a look at the beginning of the logs. You should see something
similar to the following output:

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
 (()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v1.3.3.RELEASE)

 INFO 2242 -[m] ...ConfigApplication : Starting SpringBootConfigApplication on liukang.
local with PID 2242

 INFO 2242 -[m] ...ConfigApplication : The following profiles are active: prod
 INFO 2242 -[m] ...gApplicationContext : Refreshing AnnotationConfigApplicationContext

@696a03a3y
 INFO 2242 -[m] ...BeanExporter : Registering beans for JMX exposure on startup
 INFO 2242 -[m] ...ConfigApplication : > The Server IP is: http://my-remote.server.com
 INFO 2242 -[m] ...ConfigApplication : Started SpringBootConfigApplication in 1.586 seconds
 INFO 2242 -[t] ...gApplicationContext : Closing @696a03a3
 INFO 2242 -[t] ...BeanExporter : Unregistering JMX-exposed beans on shutdown

 You should see the legend that reads "The following profiles are active: prod" and of
course the profile application properties active (application-prod.properties) value: "> The Server IP
is: http://my-remote.server.com" . As an exercise, try to change the name of the application-prod.
properties to mycfg-prod.properties and the application-qa.properties to mycfg-qa.properties , and
use the Spring properties that will get the new name. If you don’t set any active profiles, it will get the default,
which means that it will grab the application.properties .

 Custom Properties Prefix
 Spring Boot allows you to write and use your own custom property prefix for your properties. The only thing
you need to do is annotate with the @ConfigurationProperties annotation a Java class that will have setters
and getters as their properties.

 If you are using the STS IDE, I recommend including a dependency in your pom.xml . This dependency
will create a code insight and it will trigger the editor’s code completion for the properties. So add the next
dependency in your pom.xml :

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-configuration-processor</artifactId>
 <optional>true</optional>
 </dependency>

 This dependency will allow you to process your custom properties and have a code completion.
Now, let’s see the example. Modify your src/main/resource/application.properties file to look like
Listing 3-19 .

http://my-remote.server.com/

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

70

 Listing 3-19. src/main/resources/application.properties

 server.ip=192.168.3.5

 myapp.server-ip=192.168.34.56
 myapp.name=My Config App
 myapp.description=This is an example

 Listing 3-19 shows you the application.properties file. What is new is the second block, where the
custom properties with myapp as the prefix are defined. Next, open your main app class and edit it to look like
Listing 3-20 .

 Listing 3-20. Version2 of src/main/java/com/apress/spring/SpringBootConfigApplication.java

 package com.apress.spring;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.beans.factory.annotation.Value;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.boot.context.properties.ConfigurationProperties;
 import org.springframework.context.annotation.Bean;
 import org.springframework.stereotype.Component;

 @ SpringBootApplication
 public class SpringBootConfigApplication {

 private static Logger log = LoggerFactory.getLogger(SpringBootConfigApplication.class);

 public static void main(String[] args) {
 SpringApplication.run(SpringBootConfigApplication.class, args);
 }

 @Value("${myapp.server-ip}")
 String serverIp;

 @Autowired
 MyAppProperties props;

 @Bean
 CommandLineRunner values(){
 return args -> {
 log.info(" > The Server IP is: " + serverIp);
 log.info(" > App Name: " + props.getName());
 log.info(" > App Info: " + props.getDescription());
 };
 }

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

71

 @Component
 @ConfigurationProperties(prefix="myapp")
 public static class MyAppProperties {
 private String name;
 private String description;
 private String serverIp;

 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getDescription() {
 return description;
 }
 public void setDescription(String description) {
 this.description = description;
 }
 public String getServerIp() {
 return serverIp;
 }
 public void setServerIp(String serverIp) {
 this.serverIp = serverIp;
 }
 }

 }

 Listing 3-20 shows you the main app class. Let’s examine it:

• @Value("${myapp.server-ip}") . The annotation now has a myapp.server-ip ,
which means that the value will be equal to 192.168.34.56.

• @Autowired MyAppProperties props . This is creating an instance of the
 MyAppProperties type.

• @Component @ConfigurationProperties(prefix="myapp") . The
 @ConfigurationProperties annotation tells Spring Boot that the class will be
used for all the properties defined in the application.properties file that has
the myapp prefix. Meaning that it will recognized when you have myapp.serverIp
(or myapp.server-ip), myapp.name , and myapp.description . The @Component
annotation is used to make sure that the class is picked up as a bean.

 The Spring Boot uses relaxed rules to bind environment properties to the @ConfigurationProperties
beans, so you don’t have any collision names.

 Now if you run your app, you should see all your myapp properties:

 $./mvnw clean spring-boot:run
 ...
 > The Server IP is: 192.168.34.56
 > App Name: My Config App
 > App Info: This is an example
 ...

CHAPTER 3 ■ SPRING BOOT AUTO-CONFIGURATION, FEATURES, AND MORE

72

 As you can see, you have plenty of options for using your application configuration properties.
You haven’t seen any YAML examples though, and if you want to use the YAML syntax, refer to the Spring
Boot documentation for examples.

 Summary
 This chapter gave you a tour of the Spring Boot insights by explaining the auto-configuration feature,
including how the @EnableAutoConfiguration annotation works behind the scenes. You learned how to
exclude some of the auto-configuration classes as well.

 You learned about some of the Spring Boot features and how to use the application configuration
properties. You also learned how to customize your application configuration properties by adding a prefix.

 The next chapter covers the Spring CLI in more detail.

73© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_4

 CHAPTER 4

 Spring Boot CLI

 This chapter discussed a Spring Boot tool that can help you create prototypes and production-ready
applications. This tool is part of the Spring Boot installation you performed in the first chapters. This is not a
Maven or Gradle plugin or dependency.

 I’m talking about the Spring Boot Command Line Interface (CLI). Just to recap, in previous chapters,
you learned that you can get the CLI from the binary installation at http://repo.spring.io/release/
org/springframework/boot/spring-boot-cli/ or, if you are using a Mac/Linux, you can use homebrew
(http://brew.sh/) with the following command:

 $ brew tap pivotal/tap
 $ brew install springboot

 If you are using Linux, you can use the sdkman tool (http://sdkman.io/) and install it with the
following command:

 $ sdk install springboot

 All the examples will be in Java and Groovy. There is no real distinction between one language or
another in the sense of compile, run, or package. The only difference is some extra parameters that will pass
to the command line, but don’t worry too much; you’ll see those in a moment.

 Spring Boot CLI
 The first time I started to learn Spring Boot, which was around three years ago, it was the first alpha release,
and the only available command was the run. What else do you need, right? It was amazing that with a few
lines of code you can have a web application written in Groovy up and running. It was simple and awesome.

 Now in version 1.3.X-GA and 1.4.X-SNAPSHOT, it has more options and an interactive shell that you’ll
see soon. To see the CLI in detail, you need to consider some simple examples. Let’s start with the one in
Listing 4-1 , which shows the Groovy example from previous chapters.

 Listing 4-1. app.groovy

 @RestController
 class WebApp{

 @RequestMapping("/")
 String greetings(){
 "Spring Boot Rocks"
 }
 }

http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/
http://brew.sh/)
http://sdkman.io/)

CHAPTER 4 ■ SPRING BOOT CLI

74

 Listing 4-1 shows you the simplest Groovy web application you can have and that you can run with
Spring Boot. Now, let’s see the same web application but in Java. See Listing 4-2 .

 Listing 4-2. WebApp.java

 package com.apress.spring;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RestController;

 @RestController
 @SpringBootApplication
 public class WebApp {

 @RequestMapping("/")
 public String greetings(){
 return "Spring Boot Rocks in Java too!";
 }

 public static void main(String[] args) {
 SpringApplication.run(WebApp.class, args);
 }

 }

 Listing 4-2 shows you the Java version of the simplest web application. As I mentioned, Spring Boot
enables you to choose Java or Groovy in order to create enterprise and production-ready applications with ease.

 Let’s start using all the CLI commands.

 The run Command
 The run command will allow you to run Java or Groovy Spring Boot applications. Its syntax is the following:

 spring run [options] <files> [--] [args]

 The available options are:

 Option Description

 --autoconfigure [Boolean] Adds the auto-configuration compiler transformation. Remember the
auto-configuration features and how everything works by adding the
 @EnableAutoConfiguration or the composed @SpringBootApplication
annotations. This is the same idea (default is true).

 --classpath, - cp Adds the classpath entries, and it’s useful when you have third-party
libraries. As a recommendation, you can create a lib/ folder in the root
of your program and add all the classes or JARs there.

 --no-guess-dependencies Does not attempt to guess the dependencies. This is useful when you
already use the @Grab annotation in your application.

(continued)

CHAPTER 4 ■ SPRING BOOT CLI

75

 Option Description

 --no-guess-imports Does not attempt to guess the imports. This is useful when you have
already included some of the imports in your Groovy application.
For example, in a Java app you can use this option because you are
importing the classes you need. There is more about this in Chapter 3
(in the auto-configuration section).

 -q, --quiet Quiets logging. In other words, it won’t print anything to the console.

 -v, --verbose Logs everything. It is useful for seeing what’s going on, because it shows
you even the code introspection and what is adding to the program.
See Chapter 3 for more information.

 --watch Sets a watch to the file(s) for changes. It is useful when you don’t want to
stop and run the app again.

 To run the Groovy application (shown in Listing 4-1), you simply execute:

 $ spring run app.groovy

 Executing this command, you will have a web application up and running and listening to port 8080 by
default, but you can override this by executing the following command:

 $ spring run app.groovy -- --server.port=8888

 This command will run the web application and it will be listening in port 8888. Now, if you want to add
some third-party library and load the dependencies, you simply execute:

 $ spring run -cp lib/mylib.jar app.groovy

 If you want to run the Java application (Listing 4-2), you just execute:

 $ spring run WebApp.java

 ■ Note You can stop your application by pressing Ctrl+C in your keyboard.

 If you are running a Java application, it’s important to add the package keyword. You don’t need to have a
hierarchy or create any directories. If you don’t add a package to Spring Boot scanning it will be impossible
to run your app because it needs to scan all the available dependencies of Spring. It will start scanning all the
dependencies used and start from the root of every dependency, so be careful!

 If you have several files, you can use the wildcard * to compile all of them. Just execute this command:

 $ spring run *.groovy

 If, for some reason, you need to tweak the JVM and its options, you can execute the following command:

 $ JAVA_OPTS=-Xmx2g spring run app.groovy

 This command will increase the memory heap up to 2GB for the app.groovy application.

http://dx.doi.org/10.1007/978-1-4842-1431-2_3
http://dx.doi.org/10.1007/978-1-4842-1431-2_3

CHAPTER 4 ■ SPRING BOOT CLI

76

 The test Command
 The test command runs a Spring Groovy script and Java tests. Its syntax is the following:

 spring test [options] files [--] [args]

 The available options are:

 Option Description

 --autoconfigure [Boolean] Adds the auto-configuration compiler transformation (default is true).

 --classpath, -cp Adds the classpath entries, which is useful when you have third-party
libraries. As a recommendation, you can create a lib/ folder in the root of
your program and add all the classes or JARs there.

 --no-guess-dependencies Does not attempt to guess the dependencies. This is useful when you
already use the @Grab annotation in your application.

 --no-guess-imports Does not attempt to guess the imports. This is useful when you already
include some of the imports in your Groovy application. For example, in
a Java app you can use this option because you are importing the classes
you need. See more in Chapter 3 (in the auto-configuration section).

 To run a test, you need a test, right? Listings 4-3 , 4-4 , and 4-5 show examples using the well known JUnit
and Spock frameworks.

 Listing 4-3. test.groovy

 class MyTest{
 @Test
 void simple() {
 String str= "JUnit works with Spring Boot"
 assertEquals "JUnit works with Spring Boot",str
 }
 }

 Listing 4-3 shows you the simplest unit test, and if you can see you don’t need to use any imports,
Spring Boot will take care of that. To run it, you execute:

 $ spring test test.groovy

 Take a look at the Spock unit test shown in Listing 4-4 .

 Listing 4-4. spock.groovy

 @Grab('org.spockframework:spock-core:1.0-groovy-2.4')
 import spock.lang.Specification
 import org.springframework.boot.test.OutputCapture

 class SimpleSpockTest extends Specification {

 @org.junit.Rule
 OutputCapture capture = new OutputCapture()

http://dx.doi.org/10.1007/978-1-4842-1431-2_3

CHAPTER 4 ■ SPRING BOOT CLI

77

 def "get output and capture it"() {
 when:
 print 'Spring Boot works with Spock'

 then:
 capture.toString() == 'Spring Boot works with Spock'
 }

 }

 Listing 4-4 shows you the use of the Spock Framework by extending the Specification class and defining
the methods. In order to use the Spock Framework it’s necessary to import the necessary dependencies
and to include those dependencies by adding the @Grab annotation that will include the Spock dependency
for Groovy. The intention of this section is to show the usage of Spock. But if you are looking for more
information about it, you can go to http://spockframework.org/ . All its documentation is found at
 http://spockframework.github.io/spock/docs/1.0/index.html .

 Listing 4-4 also shows you one of the new features of Spring Boot, which is the OutputCapture class.
It allows you to capture output from System.out and System.err . In order to run this test, you execute the
same instruction but change the name of the file:

 $ spring test spock.groovy

 It’s important to know that Spring Boot won’t always figure it out when you are using third-party
libraries, so you must use the @Grab annotation and the correct import .

 Take a look at the unit test in Java, shown in Listing 4-5 .

 Listing 4-5. MyTest.java

 import org.junit.Rule;
 import org.junit.Test;
 import org.springframework.boot.test.OutputCapture;

 import static org.hamcrest.Matchers.*;
 import static org.junit.Assert.*;

 public class MyTest {

 @Rule
 public OutputCapture capture = new OutputCapture();

 @Test
 public void stringTest() throws Exception {
 System.out.println("Spring Boot Test works in Java too!");
 assertThat(capture.toString(), containsString("Spring Boot Test works in

Java too!"));
 }

 }

http://spockframework.org/
http://spockframework.github.io/spock/docs/1.0/index.html

CHAPTER 4 ■ SPRING BOOT CLI

78

 Listing 4-5 shows you a unit test written in Java. The assertThat statement belongs to the org.junit.
Assert class that can be accessed as static. The containsString is a static method from the org.hamcrest.
Matchers class, and it will match the capture string. This unit test also uses the OutputCapture class. To run
it, you just execute this command:

 $ spring test MyTest.java

 If you want to test the web application (Listing 4-1 — app.groovy), you can create the code in Listing 4-6 .

 Listing 4-6. test.groovy

 class SimpleWebTest {

 @Test
 void greetingsTest() {
 assertEquals("Spring Boot Rocks", new WebApp().greetings())
 }

 }

 To test this, just execute the following command:

 $ spring test app.groovy test.groovy

 This command will use the previous class—the WebApp (from Listing 4-1 — app.groovy)—and it will
call the greetings method to get the string back.

 Although these examples are extremely simple, it’s important to see how easy is to create and run tests
using the command-line interface. A special chapter includes a more elaborated unit and integration test
using all the power of Spring Boot.

 The grab Command
 The grab command will download all the Spring Groovy scripts and Java dependencies to the ./repository
directory. Its syntax is the following:

 spring grab [options] files [--] [args]

 The available options are:

 Option Description

 --autoconfigure [Boolean] Adds the auto-configuration compiler transformation (default is true).

 --classpath, -cp Adds the classpath entries, which is useful when you have third-party
libraries. As a recommendation, you can create a lib/ folder in the root of
your program and add all the classes or JARs there.

 --no-guess-dependencies Does not attempt to guess the dependencies. This is useful when you
already use the @Grab annotation in your application.

 --no-guess-imports Does not attempt to guess the imports. This is useful when you already
include some of the imports in your Groovy application. For example, in a Java
app you can use this option because you are importing the classes you need.
For more information, see Chapter 3 (in the auto-configuration section).

http://dx.doi.org/10.1007/978-1-4842-1431-2_3

CHAPTER 4 ■ SPRING BOOT CLI

79

 You can use any of the listings you’ve seen so far to execute the grab command. For Listing 4-4 , you can
execute:

 $ spring grab MyTest.java

 If you check out the current directory, you will see the repository subdirectory created with all the
dependencies. The grab command is useful when you want to execute a Spring Boot application that doesn’t
have an Internet connection and the libraries are needed. The grab command is also used to prepare your
application before you can deploy it to the cloud. (You’ll see this useful command in Chapter 13 , “Spring
Boot in the Cloud.”)

 The jar Command
 The jar command will create a self- contained executable JAR file from a Groovy or Java script. Its syntax is
the following:

 spring jar [options] <jar-name> <files>

 The available options are:

 Option Description

 --autoconfigure [Boolean] Adds the auto-configuration compiler transformation (default is true).

 --classpath, -cp Adds the classpath entries, which is useful when you have third-party
libraries. As a recommendation, you can create a lib/ folder in the root of
your program and add all the classes or JARs there.

 --exclude A pattern to find the files and exclude them from the final JAR file.

 --include A pattern to find the files and include them in the final JAR file.

 --no-guess-dependencies Does not attempt to guess the dependencies. This is useful when you
already use the @Grab annotation in your application.

 --no-guess-imports Does not attempt to guess the imports. This is useful when you already
include some of the imports in your Groovy application. For example, in
a Java app you can use this option because you are importing the classes
you need. For more information, see Chapter 3 (the auto-configuration
section).

 You can use Listing 4-1 (app.groovy) and execute the following command:

 $ spring jar app.jar app.groovy

 Now you can check out your current directory and see that there are two files—one named app.jar.
original and another named app.jar . The only difference between the files is that the app.jar.original
is the one created by the dependency management (Maven) to create the app.jar . It’s a fat JAR that can be
executed with the following:

 $ java -jar app.jar

http://dx.doi.org/10.1007/978-1-4842-1431-2_13
http://dx.doi.org/10.1007/978-1-4842-1431-2_3

CHAPTER 4 ■ SPRING BOOT CLI

80

 By executing this command, you will have a web application up and running. The jar command
enables application portability, because you can ship your application and run it in any system that has
Java installed, without worrying about an application container. Remember that Spring Boot will embed the
Tomcat application server in a Spring Boot web application.

 The war Command
 This is very similar to the previous command. The war command will create a self-contained executable
WAR file from a Groovy or Java script. Its syntax is the following:

 spring war [options] <war-name> <files>

 The available options are:

 Option Description

 --autoconfigure [Boolean] Adds the auto-configuration compiler transformation (default is true).

 --classpath, -cp Adds the classpath entries, which is useful when you have third-party
libraries. As a recommendation, you can create a lib/ folder in the root of
your program and add all the classes or JARs there.

 --exclude A pattern to find the files and exclude them from the final JAR file.

 --include A pattern to find the files and include them in the final JAR file.

 --no-guess-dependencies Does not attempt to guess the dependencies. This is useful when you
already use the @Grab annotation in your application.

 --no-guess-imports Does not attempt to guess the imports. This is useful when you already
include some of the imports in your groovy application. For example, in
a Java app you can use this option because you are importing the classes
you need. For more information, see Chapter 3 (the auto-configuration
section).

 You can use Listing 4-1 (app.groovy) to run the war command by executing the following:

 $ spring war app.war app. groovy

 After executing this command, you will have in your current directory the app.war.original and the
 app.war files. You can run it with the following command:

 $ java -jar app.war

 In the previous command I mentioned the word portability, right? So what would be the case for a
WAR file? Well, you can use the WAR file in existing application containers like Pivotal tcServer, Tomcat,
WebSphere, Jetty, etc.

http://dx.doi.org/10.1007/978-1-4842-1431-2_3

CHAPTER 4 ■ SPRING BOOT CLI

81

 ■ Note You can use either command to create a portable and executable application. The only difference is
that when you use the war command, it will create a “transportable” WAR, which means that you can run your
application as a standalone or you can deploy it to a J2EE-compliant container. You are going to see a complete
example in the following chapters.

 The install Command
 The install command is very similar to the grab command; the only difference is that you need to specify
the library you want to install (in a coordinate format groupId:artifactId:version ; the same as the @Grab
annotation). It will download it and the dependencies in a lib directory. Its syntax is the following:

 spring install [options] <coordinates>

 The available options are:

 Option Description

 --autoconfigure [Boolean] Adds the auto-configuration compiler transformation (default is true).

 --classpath, -cp Adds the classpath entries, which is useful when you have third-party
libraries. As a recommendation, you can create a lib/ folder in the root of
your program and add all the classes or JARs there.

 --no-guess-dependencies Does not attempt to guess the dependencies. This is useful when you
already use the @Grab annotation in your application.

 --no-guess- imports Does not attempt to guess the imports. This is useful when you already
include some of the imports in your groovy application. For example, in
a Java app you can use this option because you are importing the classes
you need. For more information, see Chapter 3 (the auto-configuration
section).

 Take for example Listing 4-4 (spock.groovy). If you execute the following command:

 $ spring install org.spockframework:spock-core:1.0-groovy-2.4

 You will have in the lib directory the Spock library and its dependencies.

 ■ Note If you are using the SDKMAN tool (http://sdkman.io/), it will download the libraries in the
 $HOME/.sdkman/candidates/springboot/1.3.X.RELEASE/lib directory.

 The uninstall Command
 The uninstall command will uninstall the dependencies from the lib directory. Its syntax is the following:

 spring uninstall [options] <coordinates>

http://dx.doi.org/10.1007/978-1-4842-1431-2_3
http://sdkman.io/)

CHAPTER 4 ■ SPRING BOOT CLI

82

 The available options are:

 Option Description

 --autoconfigure [Boolean] Adds the auto-configuration compiler transformation (default is true).

 --classpath, -cp Adds the classpath entries, which is useful when you have third-party
libraries. As a recommendation, you can create a lib/ folder in the root of
your program and add all the classes or JARs there.

 --no-guess- dependencies Does not attempt to guess the dependencies. This is useful when you
already use the @Grab annotation in your application.

 --no-guess-imports Does not attempt to guess the imports. This is useful when you already
include some of the imports in your groovy application. For example, in a
Java app you can use this option because you are importing the classes you
need. For more information, see Chapter 3 (the auto-configuration section).

 You can test this command by executing the following command:

 $ spring uninstall org.spockframework:spock-core:1.0-groovy-2.4

 It will remove all the Spock dependencies from the lib directory.

 The init Command
 The init command will help you initialize a new project by using the Spring Initializr (http://start.
spring.io/). Whether or not you are using an IDE, this command will help you get everything ready to start
developing Spring Boot applications. Its syntax is the following:

 spring init [options] [location]

 The available options are:

 Option Description

 -a, --artifactId The project coordinate; if it’s not provided it, the default name is demo .

 -b, --boot-version The Spring Boot version to use; if it’s not provided it will get the latest, defined as
the parent-pom .

 --build The build system to use; the possible values are maven or gradle . If it’s not
specified, the default value is maven .

 -d, --dependencies A comma-separated list of dependency identifiers that will be included. For
example, -d=web or -d=web,jdbc,actuator .

 --description The project description.

 -f, --force Overwrites existing files.

 --format A format of the generated content. Useful when you want to import your projects
into an IDE like STS. The possible values are build and project . If it’s not
provided, the default value is project .

(continued)

http://dx.doi.org/10.1007/978-1-4842-1431-2_3
http://start.spring.io/)
http://start.spring.io/)

CHAPTER 4 ■ SPRING BOOT CLI

83

 Option Description

 -g, --groupId The project coordinates defining the group ID. If it’s not provided, it defaults to
 com.example .

 -j, --java-version The language level. If it’s not provided, it defaults to 1.8 .

 -l, --language Specifies the programming language. The possible values are java and groovy .
If it’s not provided, it defaults to java .

 -n, --name The name of the application. If it’s not provided, it defaults to demo .

 -p, --packaging The project packaging. The values are jar , war , and zip . If it’s not provided, it will
generate a ZIP file.

 --package-name The package name. If it’s not provided, it defaults to demo .

 -t, --type The project type. The values are maven-project , maven-build , gradle-project ,
and gradle-build . If it’s not provided, it defaults to maven-project .

 --target The URL of the service to use. It defaults to https://start.spring.io . This means
that you can create your own reference service.

 -v, --version The project version. If it’s not provided, it defaults to 0.0.1-SNAPSHOT .

 -x, --extract Extracts the content of the project created in the current directory if the location is
not specified.

 You will use this command very often (if you are not using an IDE such as the STS or IntelliJ), so you can
get used to it with the following examples.

 To create a default project, you just execute:

 $ spring init

 It will generate a demo.zip file. You can unzip it and take a look at the structure (a Maven project
structure), as shown in Figure 4-1 , but the most important part will be the pom.xml file. If you look at this file,
you can see the minimal dependencies: spring-boot-starter and spring-boot-starter-test .

 Figure 4-1. The demo.zip contents

https://start.spring.io/

CHAPTER 4 ■ SPRING BOOT CLI

84

 Figure 4-1 shows the demo.zip structure. Take a look at the src folder, which contains the main/java/
com/example/DemoApplication.java file and of course its unit test. Also you can see that it contains two
additional files, mvnw (for UNIX) and mvnw.cmd (for Windows). These commands allow you to run a Maven
project without actually having Maven installed on your system.

 You can simply execute the following command:

 $./mvnw spring-boot:run

 This command will download the Maven tool (in the .mvn subdirectory) and run it. If you take a look
at the DemoApplication.java class, you’ll see that it’s not doing much. It’s simply running the Spring Boot
application. With all this you have a template that you can use over and over. If you want to create a web
application, the only thing you need to do is add the spring-boot-starter-web dependency.

 init Examples
 This section includes more examples using the init command. The following command will create a web
application with JDBC Gradle project:

 $ spring init -d=web,jdbc --build=gradle

 This command will generate a demo.zip file, but with its contents using Gradle. It will include the
Gradle wrapper so you don’t have to install it.

 If you want to generate only the pom.xml (for a Maven project) or build.gradle file (for a Gradle
project), just add --format=build and --build=[gradle|maven] :

 $ spring init -d=web,data-jpa,security --format=build --build=gradle

 This command will create the build.gradle file with the web, JPA, and security dependencies.

 $ spring init -d=jdbc,amqp --format=build

 This command will create the pom.xml file. If you don’t add the --build parameter, it defaults to Maven.
 To create a project with the name, groupId and artifactId, you need to use the -name , -g , and -a

parameters respectively:

 $ spring init -d=amqp -g=com.apress.spring -a=spring-boot-rabbitmq -name=spring-boot-
rabbitmq

 This command will create a spring-boot-rabbitmq.zip file (Maven project) with the groupId and
artifactId specified.

 By default, when the package name is not specified, it defaults to com.example . If you want to add a
package convention, you need to add the --package parameter:

 $ spring init -d=web,thymeleaf,data-jpa,data-rest,security -g=com.apress.spring -a=spring-
boot-journal-oauth --package-name=com.apress.spring -name=spring-boot-journal-oauth

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ SPRING BOOT CLI

85

 It’s fine to have a ZIP file for portability, but you can uncompress directly into the current directory.
You simply add the -x parameter:

 $ spring init -d=web,thymeleaf,data-jpa,data-rest,security,actuator,h2,mysql
-g=com.apress.spring -a=spring-boot-journal-cloud --package-name=com.apress.spring
-name=spring-boot-journal-cloud -x

 This command will uncompress the ZIP file on the fly and the contents will be written to the current
directory.

 If you are curious and want to know more about the dependencies or other parameter values, you can
execute the following command:

 $ spring init --list

 You will be using the spring init command throughout the entire book, so take a moment and review
all its options.

 An Alternative to the init Command
 There will be times when you need just the pom.xml or build.gradle files, perhaps to check out the
dependencies and declarations or to look at the plugins declarations. You execute the following command:

 $ curl -s https://start.spring.io/pom.xml -d packaging=war -o pom.xml

 Yes, you read it right! Remember that the init command calls the Spring Initializr service at
 https://start.spring.io , so you can use the UNIX cURL command. This command will generate only
the pom.xml file. And if you are curious again to see what else you can do by using the UNIX cURL command,
just execute the following:

 $ curl start.spring.io

 This command will print all the available options and some examples using cURL with the Spring
Initializr. You learned in previous chapters that, within the STS (Spring Tool Suite) IDE, you can create a
Spring Boot application by selecting Spring Starter Project. This wizard will connect to the Spring Initializr,
so either you use an IDE or the command line to get a Spring Boot project structure.

 The shell Command
 The shell command will start an embedded shell. Execute the following command:

 $ spring shell
 Spring Boot (v1.3.X.RELEASE)
 Hit TAB to complete. Type 'help' and hit RETURN for help, and 'exit' to quit.
 $

 As you can see from the output, you can type help to get more information about the shell. Actually the
 spring shell is the previous command, but just executed in an embedded shell. One of the benefits is that
it has a TAB completion so you can get all the possible suggestions for the options.

https://start.spring.io/

CHAPTER 4 ■ SPRING BOOT CLI

86

 The help Command
 The help command will be your best friend. You can execute it as follows:

 spring help
 usage: spring [--help] [--version]
 <command> [<args>]

 Available commands are:

 run [options] <files> [--] [args]
 Run a spring groovy script

 test [options] <files> [--] [args]
 Run a spring groovy script test

 grab
 Download a spring groovy script's dependencies to ./repository

 jar [options] <jar-name> <files>
 Create a self-contained executable jar file from a Spring Groovy script

 war [options] <war-name> <files>
 Create a self-contained executable war file from a Spring Groovy script

 install [options] <coordinates>
 Install dependencies to the lib directory

 uninstall [options] <coordinates>
 Uninstall dependencies from the lib directory

 init [options] [location]
 Initialize a new project using Spring Initializr (start.spring.io)

 shell
 Start a nested shell

 Common options:

 -d, --debug Verbose mode
 Print additional status information for the command you are running

 See 'spring help <command>' for more information on a specific command.

 As you can see from this output, you can also execute the spring help <command> , which is very handy
because you will get more information about the command and in some case some examples on how to use
it. For example, if you want to know about the init command, just execute the following:

 $ spring help init

 Remember, the spring help command is your best friend.

CHAPTER 4 ■ SPRING BOOT CLI

87

 Summary
 The chapter showed you how to use the Spring Boot Command Line Interface. It explained all the different
commands and their options.

 You learned mentioned that one of the most important commands is the init command and it will
be used in the entire book, either through a terminal in a command line or by using an IDE such as STS or
IntelliJ.

 In the next chapter, you are going to learn how to create Spring applications and then compare them
side by side with Spring Boot applications.

89© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_5

 CHAPTER 5

 Spring with Spring Boot

 This chapter shows you how an old Spring developer used to do applications and compare them to Spring
Boot. It also shows you how to use legacy Spring code with your Spring Boot applications.

 Why this is important? I’ve been asked by several developers why Spring Boot is better than Spring or if
Spring Boot will get rid of the Spring Framework. Remember that I said in the first chapters that Spring Boot
is Spring, and you need to think of it as a new way to create the next generation of Spring applications.

 Spring Web Applications
 Let’s start by creating the same simple web application from the other chapters that will print out “Spring
Rocks!”, this time using just Spring. First you need to know a little bit of background on the J2EE web and
Spring MVC, because it’s the base for all Spring web applications. If you already know about it, feel free to
skip to the next sections.

 J2EE Web Applications
 Creating a Java web application hasn’t been an easy task since the beginning. I explained in Chapter 1 that
you need to get a lot going even before you can run your application, but let’s get started. You are going to
create a J2EE web application, a servlet application, in an “old-fashion” way, using Maven archetypes with a
servlet 2.4 specification. If you recall, the servlet was the first attempt to use a server side request to produce
some HTML content.

 You are going to use Maven, so make sure you have it in your PATH . Let's start by creating the web project
template by executing this command:

 $ mvn archetype:create -DgroupId=com.apress.j2ee -DartifactId=simple-web-app
-DarchetypeArtifactId=maven-archetype-webapp

 This command will create a simple-web-app folder with the structure shown in Figure 5-1 .

http://dx.doi.org/10.1007/978-1-4842-1431-2_1

CHAPTER 5 ■ SPRING WITH SPRING BOOT

90

 Figure 5-1 . shows you the result of executing the maven command. Let’s start by adding a missing
dependency in the pom.xml . Listing 5-1 shows you the final pom.xml .

 Listing 5-1. simple-web-app/pom.xml

 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.j2ee</groupId>
 <artifactId>simple-web-app</artifactId>
 <packaging>war</packaging>

 <version>1.0-SNAPSHOT</version>
 <name>simple-web-app Maven Webapp</name>
 <url>http://maven.apache.org</url>

 <dependencies>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 Figure 5-1. A simple-web-app structure

CHAPTER 5 ■ SPRING WITH SPRING BOOT

91

 <build>
 <finalName>simple-web-app</finalName>
 </build>
 </project>

 The missing dependency was the servlet-api artifactId , and this is because you need to create a
servlet class.

 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>provided</scope>
 </dependency>

 Another important part of the pom.xml file is the <packaging> tag. It tells Maven that this will be a Web
ARchive or WAR. Next, let’s create the servlet class. See Listing 5-2 .

 Listing 5-2. src/main/java/com/apress/j2ee/SimpleServlet.java

 package com.apress.j2ee;

 import java.io.IOException;
 import java.io.PrintWriter;

 import javax.servlet.ServletException;
 import javax.servlet.http.HttpServlet;
 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

 public class SimpleServlet extends HttpServlet {
 protected void service(HttpServletRequest request, HttpServletResponse response) throws
 ServletException, IOException {
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<body>");
 out.println("<h1>Simple Web Application with Java</h1>");
 out.println("</body>");
 out.println("</html>");
 }

 }

 Listing 5-2 shows you the SimpleServlet class, which needs to be in the src/main/java/com/
apress/j2ee path. The SimpleServlet is its method service and uses the PrintWriter class as a response
for any request. Now you need to define the URL pattern that will use this servlet class. The URL pattern
needs to be defined in the web.xml that is located in the WEB-INF folder. To be more specific, you need to edit
the src/webapp/WEB-INF/web.xml file to declare the servlet class. See Listing 5-3 .

CHAPTER 5 ■ SPRING WITH SPRING BOOT

92

 Listing 5-3. src/webapp/WEB-INF/web.xml

 <!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >

 <web-app>
 <display-name>Archetype Created Web Application</display-name>
 <servlet>
 <servlet-name>SimpleServlet</servlet-name>
 <display-name>SimpleServlet</display-name>
 <description>A simple Servlet</description>
 <servlet-class>com.apress.j2ee.SimpleServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SimpleServlet</servlet-name>
 <url-pattern>/SimpleServlet</url-pattern>
 </servlet-mapping>
 </web-app>

 Listing 5-3 shows the web.xml file where you declare two sections—one is the name of the servlet, with
the <servlet> tag. The other is the servlet mapping with the <servlet-mapping> tag where you add the URL
that will be the endpoint of the request. In this case, it’s the /SimpleServlet .

 Now you can execute the following command to package your web application:

 $ mvn clean package

 This command will create the target/simple-web-app.war file. Now you need to look for an
application server. You can use Pivotal tcServer (https://network.pivotal.io/products/pivotal-
tcserver) or you can use Tomcat (http://tomcat.apache.org/). Or, if you are using a Mac/Linux, you can
use brew (http://brew.sh/) by executing:

 $ brew install tomcat

 Place your WAR in your <tomcat-installation>/webapps/ directory and run your application
server. To run your application server, you can go to the <tomcat-installation>/bin directory and execute
the startup.sh script. Then you can go to your web browser and access http://localhost:8080/
simple-web-app/SimpleServlet . You should see this text:

 Simple Web Application with Java

 Of course, you can use an IDE of your preference and import this Maven project to facilitate the creation
of the servlet class and to edit the other files—you are more than welcome to do so. My point here is that
either you choose and IDE or you do this manually like I showed you. It’s still a hassle to create just a simple
web application. This was the daily task for a web developer at least a decade ago.

 After servlets, the JavaServer Pages (JSP) were born, but of course, J2EE evolved more and more. With its
Servlet 3 specification, it provides a new configuration-less way for creating a web application by creating the
 @WebServlet that allows you to annotate your servlet class without a web.xml file.

https://network.pivotal.io/products/pivotal-tcserver)
https://network.pivotal.io/products/pivotal-tcserver)
http://tomcat.apache.org/)
http://brew.sh/)

CHAPTER 5 ■ SPRING WITH SPRING BOOT

93

 Spring MVC Applications
 The Spring Framework brought a new way to develop web applications by introducing a MVC (Model View
Controller) pattern into the framework that is easy to set up and use. I know that the MVC was invented
in the 70s and modeled by other frameworks and other programming languages even before the Spring
Framework, but the Spring team did an excellent job using this pattern as a base model for every web
application by simplifying its functionality.

 Let’s take a look at a Spring MVC application and its parts. You can use the previous Maven archetype:

 $ mvn archetype:create -DgroupId=com.apress.spring -DartifactId=simple-web-spring-app
-DarchetypeArtifactId=maven-archetype-webapp

 You are going to modify this because this particular Maven archetype is kind of old, but is useful just to
create the files and directory structure. For example, you should change the web.xml version from 2.3 to 2.5,
because you are going to use the Servlet 2.5 specification. This is one of the many hassles from J2EE. Now
take a look at the final pom.xml in Listing 5-4 .

 Listing 5-4. pom.xml

 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.springframework.samples.service.service</groupId>
 <artifactId>simple-web-spring-app</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>war</packaging>

 <properties>

 <!-- Generic properties -->
 <java.version>1.8</java.version>

 <!-- Web -->
 <jsp.version>2.2</jsp.version>
 <jstl.version>1.2</jstl.version>
 <servlet.version>2.5</servlet.version>

 <!-- Spring -->
 <spring-framework.version>3.2.3.RELEASE</spring-framework.version>

 </properties>

 <dependencies>

 <!-- Spring MVC -->
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>${spring-framework.version}</version>
 </dependency>

CHAPTER 5 ■ SPRING WITH SPRING BOOT

94

 <!-- Other Web dependencies -->
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>jstl</artifactId>
 <version>${jstl.version}</version>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>${servlet.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax.servlet.jsp</groupId>
 <artifactId>jsp-api</artifactId>
 <version>${jsp.version}</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <build>
 <finalName>simple-web-spring-app</finalName>
 </build>

 </project>

 Listing 5-4 shows you the pom.xml that you will use for this application. Take a moment and analyze the
differences from Listing 5-1 . You will see that you are now using the Spring MVC version 3.2.3.RELEASE and
some other dependencies like the tag libraries. Right now the Spring MVC is in its version 4.2 (it’s simpler),
but I wanted to show you how Spring developers used to do Spring web applications.

 Next, let’s look at web.xml . Modify it to look the same as the one in Listing 5-5 .

 Listing 5-5. src/main/webapp/WEB-INF/web.xml

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 id="WebApp_ID" version="2.5">

 <display-name>simple-web-spring-app</display-name>

 <servlet>
 <servlet-name>dispatcherServlet</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/mvc-config.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

CHAPTER 5 ■ SPRING WITH SPRING BOOT

95

 <servlet-mapping>
 <servlet-name>dispatcherServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>

 </web-app>

 Listing 5-5 shows you the web.xml . Remember that it must be exactly the same. Just take a look and compare
it to Listing 5-3 . First the version is now 2.5 (normally this was an indication of the servlet engine you will use),
next there is the servlet declaration that adds the org.springframework. web.servlet.DispatcherServlet class
that is the main dispatcher that will trigger the MVC pattern. As an additional declaration, the <init-param>
tag will look for an XML configuration file, in this case WEB-INF/mvc-config.xml . This file is a Spring context
configuration.

 Next, take a look at the Spring configuration shown in Listing 5-6 .

 Listing 5-6. src/main/webapp/WEB-INF/mvc-config.xml

 <?xml version="1.0" encoding="UTF-8"?>

 <beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:mvc="http://www.springframework.org/schema/mvc"

xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/mvc

http://www.springframework.org/schema/mvc/spring-mvc.xsd
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd">

 <bean name="/showMessage.html"
 class="com.apress.spring.SimpleController" />

 <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/view/"/>
 <property name="suffix" value=".jsp"/>
 </bean>

 </beans>

 Listing 5-6 shows you the XML configuration. This is a typical Spring configuration where you define
your bean (POJO-Plain Old Java Objects) classes that will be instantiate the Spring container. If you take
a look at this XML, you will find that there is a bean and its name is /showMessage.html and it’s pointing
to the com.apress.spring.SimpleController Java class (you are going to see the code soon). This
particular declaration is the URL that will map to the class to be executed when there is a request to the
 /showMessage.html URL. There is also another bean declaration that is mandatory, because this is where
you define your views by declaring the InternalResourceViewResoulver class. In this case, every view will
be located at the /WEB-INF/view and every page will have the .jsp extension. This is very useful for security
reasons, because you don’t want to have access to the root folder and extract your pages.

 Next look at the SimpleController class in Listing 5-7 .

CHAPTER 5 ■ SPRING WITH SPRING BOOT

96

 Listing 5-7. src/main/java/com/apress/spring/SimpleController.java

 package com.apress.spring;

 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

 import org.springframework.web.servlet.ModelAndView;
 import org.springframework.web.servlet.mvc.AbstractController;

 public class SimpleController extends AbstractController{

 @Override
 protected ModelAndView handleRequestInternal(HttpServletRequest request,
 HttpServletResponse response) throws Exception {

 ModelAndView model = new ModelAndView("showMessage");
 model.addObject("message", "Spring MVC Web Application");
 return model;
 }
 }

 Listing 5-7 shows you the SimpleController class. This class extends from the AbstractController
class that has all the logic to manage your request (/showMessage.html). There is an override of the
 handleRequestInternal method that will respond by returning a ModelAndView instance that contains the
information of what view to display. It carries some data in the message variable, in this case the text “Spring
MVC Web Application”.

 Next, let’s see the actual view that was declared in the controller with the code:

 ModelAndView model = new ModelAndView("showMessage");

 This line tells the Spring MVC that the view will be the showMessage , which is actually located at
 /WEB-INF/view/showMessage.jsp . The page display will be handled by the InternalResourceViewResolver
class, as shown in Listing 5-8

 Listing 5-8. src/main/webapp/WEB-INF/view/showMessage.jsp

 <!DOCTYPE html>

 <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>
 <html>
 <head>
 <meta charset="utf-8">
 <title>Welcome</title>
 </head>
 <body>
 <h2>${message}</h2>
 </body>
 </html>

CHAPTER 5 ■ SPRING WITH SPRING BOOT

97

 Listing 5-8 shows you the showMessage.jsp file. What is interesting here is the <h2> tag that contains the
 ${message} declaration. This declaration will be executed and translated to the attribute that comes from
the controller when you declare the following in Listing 5-7 :

 model.addObject("message", "Spring MVC Web Application");

 So, Spring will render the "Spring MVC Web Application" message. Now, if you package your
application with the following:

 $ mvn clean package

 You will have the target/simple-web-spring-app.war file. Now you can use the application server
of your preference and deploy it. Once it’s deployed you can access it in the web browser using the
 http://localhost:8080/simple-web-spring-app/showMessage.html URL and it will show the
 "Spring MVC Web Application" message. And that’s it; it’s a simple Spring MVC application!

 If you already know Spring MVC, you may notice that I showed you a very old way to do it. Spring MVC
versions 2.5, 3, and 4 allow you to add annotations to avoid extending from other classes and have more mapping
in one single class. Take a look at Listing 5-9 , which shows a better version of the controller using annotations.

 Listing 5-9. src/main/java/com/apress/spring/SimpleController.java using annotations

 package com.apress.spring;

 import org.springframework.stereotype.Controller;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;
 import org.springframework.web.servlet.ModelAndView;

 @Controller
 @RequestMapping("/showMessage.html")
 public class HelloWorldController{

 @RequestMapping(method = RequestMethod.GET)
 public ModelAndView helloWorld(){

 ModelAndView model = new ModelAndView("showMessage");
 model.addObject("message", "Spring MVC Web App with annotations");

 return model;
 }
 }

 Listing 5-9 shows you a newer version of the Spring MVC where you can use annotations and remove
extra configuration from the XML file. See Listing 5-10 .

CHAPTER 5 ■ SPRING WITH SPRING BOOT

98

 Listing 5-10. src/main/webapp/WEB-INF/mvc-config.xml

 <?xml version="1.0" encoding="UTF-8"?>

 <beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:mvc="http://www.springframework.org/schema/mvc"

xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/mvc

http://www.springframework.org/schema/mvc/spring-mvc.xsd
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.apress.spring" />

 <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/view/"/>
 <property name="suffix" value=".jsp"/>
 </bean>

 </beans>

 Listing 5-10 shows you the mvc-config.xml file where now it's using the <context:component-scan>
tag. Look at the com.apress.spring package level (sub-packages too) to find the marked classes. In this
case it will find the SimpleController class because it’s marked with the @Controller annotation. You can
see that there is no more bean definitions about the request mapping; everything is now handled by the
 SimpleController class and its annotations, such as @RequestMapping .

 As you can see, the Spring Framework and in this case the Spring MVC technology has evolved over the
years, making it easier for developers to create Web applications.

 Spring Boot Web Applications
 Now it’s Spring Boot’s turn. You are going to use the same simple web application. You can use the minimal
Spring Boot app in Groovy, as shown in Listing 5-11 .

 Listing 5-11. app.groovy

 @RestController
 class WebApp{

 @RequestMapping("/showMessage.html")
 String greetings(){
 "Spring Boot MVC is easier"
 }
 }

 Listing 5-11 shows you the minimal Spring Boot web application. Just run it with the following command:

 $ spring run app.groovy

CHAPTER 5 ■ SPRING WITH SPRING BOOT

99

 Now you can open a browser and go to http://localhost:8080/showMessage.html . That was so easy!
No Maven, no web.xml , no bean declarations, no configuration of any kind! That’s the power of Spring Boot;
it’s an opinionated technology that allows you to create applications with ease.

 But wait, let’s do this simple web application using Maven. I mean, you are going to have at some point
several classes and at least you need to have some structure, right?

 In the previous chapter, you learned how to create a base template for Spring Boot using the Spring Boot
CLI, remember? So open a terminal, create a folder (simple-web-spring-boot), and execute the following
command:

 $ mkdir simple-web-spring-boot
 $ cd simple-web-spring-boot
 $ spring init -d=web -g=com.apress.spring -a=simple-web-spring-boot --package-name=com.
apress.spring -name=simple-web-spring-boot -x

 This command will create the base for your Spring Boot web application.

• The -d=web tells the CLI to include the web dependency (spring-boot-starter-web)

• The -g=com.apress.spring is the groupId

• The -a=simple-web-spring-boot-app is the artifactId

• The --package-name=com.apress.spring is the package name convention for
the classes

• The -name=simple-web-spring-boot-app is the name of the application

• The -x will extract the template in the current directory; if you omit the extract
option, you will find a simple-web-spring-boot-app.zip file

 Your file structure should be similar to the one in Figure 5-2 .

 Figure 5-2. Spring Boot structure after running the spring init command

CHAPTER 5 ■ SPRING WITH SPRING BOOT

100

 Now you can open SimpleWebSpringBootApplication.java and modify it to look the same as
Listing 5-12 .

 Listing 5-12. src/main/java/com/apress/spring/SimpleWebSpringBootApplication.java

 package com.apress.spring;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.web.bind.annotation.RestController;
 import org.springframework.web.bind.annotation.RequestMapping;

 @RestController
 @SpringBootApplication
 public class SimpleWebSpringBootApplication {

 @RequestMapping("/showMessage.html")
 public String index(){
 return "Spring Boot Rocks!";
 }

 public static void main(String[] args) {
 SpringApplication.run(SimpleWebSpringBootApplication.class, args);
 }
 }

 Listing 5-12 shows the modified SimpleWebSpringBootApplication.java , where it's marked as a web
rest controller with the @RestController annotation and it defines an index method marked with
 @RequestMapping . This will accept all incoming requests to the /showMessage.html URL. You are familiar
with @SpringBootApplication , which will trigger the auto-configuration. It’s based on your classpath and the
main method that will execute the application by calling the SpringApplication.run method. Remember,
when you run the application it will lunch an embedded Tomcat and will start listening on port 8080.

 To run it, just execute the following command:

 $./mvnw spring-boot:run

 This command will run the application, so open the browser and go to the http://localhost:8080/
showMessage.html URL. You will see the message: “ Spring Boot Rocks! ”. I showed you that when you use the
CLI, it will access the start.spring.io URL and build and download your template. The cool thing is that it
brings Maven or Gradle wrappers, so you don’t need to install them. I know that in the previous examples I
told you that you need to have Maven installed, right? So you are correct, you can run:

 $ mvn spring-boot:run

 Now you know more about old Java vs. Spring MVC vs. Spring Boot. Spring Boot still uses Spring MVC as
the base for web applications, but in a very easy way. One of the major differences of Java/Spring MVC is that
you get rid of the configuration files. No more XML files to deal with.

 Of course, you will have some legacy Spring applications and you might want to incorporate some of
these with your new Spring Boot applications. Let’s see how you could use your existing Spring apps with
Spring Boot.

CHAPTER 5 ■ SPRING WITH SPRING BOOT

101

 Using Spring with Spring Boot
 This section shows you how to use existing Spring apps in Spring Boot applications. Remember that
Spring Boot is Spring, so this is an easy task, but let’s start by considering the Spring container and the
configurations and how you can use them in Spring Boot.

 The Spring Framework in its first versions had a heavy dependency on XML configuration files. After
Java 5 came into being, the Java configuration (annotations) was another mechanism used to configure the
Spring container with the @ Configuration (as marker for classes) and the @Bean annotations (for declaring
the bean instances). Spring Boot follows the same pattern—you can use XML or annotation with Spring Boot.

 XML with Spring Boot
 If you have already several XML configuration files, you can integrate them with just one annotation in your
main application. The org.springframework.context.annotation.ImportResource annotation accepts an
array of string types to add the XML definitions.

 If you are a Spring developer, you will recognize that this particular annotation was introduced in Spring
version 3 and it hasn’t changed. Your Spring Boot application will import your resources with ease. For
example, you can declare the following in the main app or in a configuration class:

 @ImportResource({"META-INF/spring/services-context.xml","META-INF/spring/repositories-
context.xml"})
 @SpringBootApplication
 public class SpringXmlApplication {

 @Autowired
 TaskRepository task;

 @Autowired
 ServiceFacade service;

 //More logic...
 }

 This code shows how you can use existing XML configuration files in your main Spring Boot application
(or maybe you have already some Java config that you need to use):

 @ImportResource("classpath:applicationContext.xml")
 @Configuration
 public class SimpleConfiguration {

 @Autowired
 Connection connection; //This comes from the applicationContext.xml file.

 @Bean
 Database getDatabaseConnection(){
 return connection.getDBConnection();
 }

 // Mode code here....
 }

CHAPTER 5 ■ SPRING WITH SPRING BOOT

102

 This code shows how you can reuse your XML in an existing Java configuration class. You can also use a
main class method to use your existing XML file:

 public class Application {
 public static void main(String[] args) throws Exception {
 ConfigurableApplicationContext ctx = new SpringApplication("/META-INF/spring/

integration.xml").run(args);
 System.out.println("Hit Enter to terminate");
 System.in.read();
 ctx.close();
 }
 }

 This example is related to the Spring Integration technology, where all the integration beans are
working in the background.

 Groovy Beans in Spring Boot
 Another nice feature is that you can use the Groovy DSL (Domain Specific Language) for creating beans. This
idea was taken from the Grails project, which is still very active and uses Spring as a base. In the upcoming
version, it will include Spring Boot. With this Groovy beans DSL, you can create your Spring beans without
the XML clutter. See Listing 5-13 .

 Listing 5-13. app.groovy

 @RestController
 class SimpleWebApp {

 @Autowired
 String text

 @RequestMapping("/")
 String index() {
 "You can do: ${text}!"
 }
 }

 beans {
 text String, "Spring Boot with Groovy beans"
 }

 Listing 5-13 shows you the beans DSL that you can use as well. In Chapter 18 of the book “Introducing
Spring Framework” from Apress Publishing, I provided a small introduction to the Groovy DSL syntax. See
that chapter if you want to get more familiar with it. You can run Listing 5-13 as usual:

 $ spring run app.groovy

 Point your browser at http://localhost:8080 . You will get "You can do: Spring Boot with Groovy
beans" . So, you have ways to reuse Spring XML files or use the Groovy syntax to create some configurations.

http://dx.doi.org/10.1007/978-1-4842-1431-2_18

CHAPTER 5 ■ SPRING WITH SPRING BOOT

103

 Standalone Spring Apps vs. Spring Boot Apps
 Not all applications are web apps; sometimes you need to run your Spring application in standalone mode
without any server. You simply run it as a regular service or as a job and finish. To run a Spring application,
you normally use the following code in your main method:

 public static void main(final String[] args) {
 final ApplicationContext context = new ClassPathXmlApplicationContext("META-INF/spring/

app-ctx.xml");
 final Service service = context.getBean(ServiceFacade.class);

 //Some process to run here
 //Extra work here
 }

 This code is using the ApplicationContext interface and the ClassPathXmlApplicationContext
class to load the beans and initialize the container. After that you can use your beans by using the getBean
method. Then you can do some process or call some functions and finish. In Spring Boot, it’s a little
different. In order to execute some code after the Spring Boot is initialized and running, you have some
choices, as shown in Listing 5-14 .

 Listing 5-14. SpringBoot Example, Implementing the CommandLineRunner Interface

 package com.apress.spring;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;

 @SpringBootApplication
 public MyApplication implements CommandLineRunner {

 public void run(String... args) {
 // This will run after the SpringApplication.run(..)
 // Do something...
 }

 public static void main(String[] args) throws Exception {
 SpringApplication.run(MyApplication.class, args);
 }
 }

 Listing 5-14 shows you how you can run some processes or jobs after SpringApplication.run is called,
by implementing the org.springframework.boot.CommandLineRunner interface and implementing the
 run(String... args) method. This is useful when you want to execute jobs or services, such as send a
notification about the application or execute a SQL statement to update some rows before your application
runs. This is not a web application; it is a standalone app.

CHAPTER 5 ■ SPRING WITH SPRING BOOT

104

 Another alternative is to use the following code:

 @Bean
 public CommandLineRunner runner(){
 return new CommandLineRunner() {
 public void run(String... args){
 //Run some process here
 }
 };
 }

 This code shows you how to use the CommandLineRunner interface as a bean by marking the method
with @Bean annotation. Or, if you are using Java 8, you can use the lambdas feature like this:

 @Bean
 public CommandLineRunner runner(Repository repo){
 return args -> {
 //Run some process here
 };
 }

 This code shows you how to use the CommandLineRunner interface using the Java 8 lambdas. In this case
the method’s parameter is a Repository , which is normally useful to do some database tasks.

 Maybe you are wondering what you need to do if you need to run some code even before the
 CommandLineRunner . You can do this by returning an InitializingBean interface.

 @Bean
 InitializingBean saveData(Repository repo){
 return () -> {
 //Do some DB inserts
 };
 }

 This code shows you how to execute some code even before the CommandLineRunner . Perhaps you need
to initialize a database before you run tasks on it. This can be helpful for testing purposes. Don’t worry too
much, I’ll show you more detail and with some complete examples in the following chapters.

 Using Spring Technologies in Spring Boot
 I showed you in the previous sections of this chapter that Spring Boot is Spring, and you can use any Spring
beans defined in a XML or a Java Configuration class. But what about some of the Spring technologies, such
as Spring JMS, Spring AMQP, Spring Integration, Spring Caching, Spring Session, Spring Rest, etc.?

 The following chapters show you how to use all these technologies in more detail, but I can tell you
now that the auto-configuration is the base of this, which means all the new annotations that Spring
Framework version 4 uses. The key here is to get used to some of the annotations that allow you to use these
technologies very easily.

 The only thing you need to know now is that there is an annotation called @Enable<Technology> for
each of these technologies; see Table 5-1 .

CHAPTER 5 ■ SPRING WITH SPRING BOOT

105

 Table 5-1 shows you some of the @Enable<Technology> annotations that will be required when you
want to create applications and use some of these Spring technologies. You’ll learn more about these
annotations during the course of this book.

 Summary
 This chapter explained the differences between old Java web apps, Spring MVC, and the new way, the Spring
Boot way, to create web applications.

 You learned how to use legacy or existing Spring apps along with Spring Boot, using either XML or Java
configuration annotations. You also learned about multiple ways to run Spring Boot apps and execute code
after the SpringApplication.run method executes and even before the CommandLineRunner interface with
its run method executes.

 You learned how to use all the Spring technologies by simply using the @Enable<Technology> .
All these are covered in more detail in the following chapters.

 In the next chapter, you are going to learn how to test your Spring Boot applications.

 Table 5-1. Spring Technologies Used in Spring Boot

 Annotation Description

 @EnableJms Messaging with JMS technology

 @EnableCaching Caching abstraction

 @EnableRabbit Messaging for the AMQP with RabbitMQ

 @EnableBatchProcessing Spring batch

 @EnableWebSecurity Spring security

 @EnableRedisHttpSession Spring session

 @EnableJpaRepositories Spring data

 @EnableIntegration Spring integration

107© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_6

 CHAPTER 6

 Testing with Spring Boot

 This chapter shows you how to test your Spring Boot applications. It’s important to understand that you
actually don’t need Spring to write tests, because you will write your classes following simple architectural
design principles such as designing to an interface or using the SOLID object oriented design principle.
Spring encourages you with some of these designs and provides some tools for testing.

 Remember that Spring Boot is Spring, so testing should be very straight forward. You will reuse all the
Spring test tools and features. In this case, you will use the spring-boot-starter-test pom for your unit
and integration tests.

 By default, the spring-boot-starter-test pom includes the Spring integration test for Spring
applications, the JUnit, which is the de facto standard for unit testing Java applications, Objenesis, Hamcrest
(a library of matcher objects), and Mockito (the Java mocking framework).

 Testing Spring Boot
 Let’s start by creating a test for a Spring application. Execute the following command in a terminal window:

 $ spring init --package=com.apress.spring -g=com.apress.spring -a=spring-boot
-name=sprint-boot -x

 This command will create a Maven project. Take a look at the pom.xml shown in Listing 6-1 .

 Listing 6-1. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>sprint-boot</name>
 <description>Demo project for Spring Boot</description>

CHAPTER 6 ■ TESTING WITH SPRING BOOT

108

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.3.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 6-1 shows the pom.xml for the project. Every time you create a project via Spring Initializr, you
will get the spring-boot-starter-test pom by default. This will include spring-test , junit , hamcrest ,
 objenesis , and mockito JARs. Of course, you can use Spock or another framework together with Spring test.

 By default, the Spring Initializr includes a test class, as shown in Listing 6-2 .

 Listing 6-2. src/test/java/com/apress/spring/SpringBootApplicationTests.java

 package com.apress.spring;

 import org.junit.Test;
 import org.junit.runner.RunWith;
 import org.springframework.boot.test.SpringApplicationConfiguration;
 import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

 @RunWith(SpringJUnit4ClassRunner.class)
 @SpringApplicationConfiguration(classes = SprintBootApplication.class)

CHAPTER 6 ■ TESTING WITH SPRING BOOT

109

 public class SprintBootApplicationTests {

 @Test
 public void contextLoads() {
 }

 }

 Listing 6-2 shows you the default test class. Let’s examine it:

• @RunWith(SpringJUnit4ClassRunner.class) . The @RunWith annotation
 belongs to the JUnit library and it will invoke the class it’s referencing
(SpringJUnit4ClassRunner.class) to run the tests instead of the runner built into
JUnit. The SpringJUnit4ClassRunner class is a custom extension of the JUnit’s
 BlockJUnit4ClassRunner . It provides all the functionality of the Spring Test Context
Framework. The SpringJUnit4ClassRunner supports the following annotations:

• @Test(expected=...)

• @Test(timeout=...)

• @Timed

• @Repeat

• @Ignore

• @ProfileValueSourceConfiguration

• @IfProfileValue

• You can also use the SpringClassRule and SpringMethodRule classes, both a custom
JUnit TestRule interface that supports class-level features of the TestContext
Framework. They are used together with the @ClassRule and @Rule annotations.

• @SpringApplicationConfiguration(classes = SprintBootApplication.class) .
This is a class-level annotation that knows how to load and configure an
 ApplicationContext , which means that you can have direct access to all the Spring
container classes by just using the @Autowired annotation. In this case, the main
 SpringBootApplication class wires everything up.

• @Test . This is a JUnit test annotation that will execute the method when the tests
start. You can have one or more methods. If you have several methods with this
annotation, it won’t execute them in order. For that you need to add the
 @FixMethodOrder(MethodSorters.NAME_ASCENDING) annotation to the class.

 Web Testing
 Let’s create a web project. This section shows you how to test web applications using third-party libraries. You
can create a new directory (spring-boot-web) and execute the following commands in a terminal window:

 $ mkdir spring-boot-web
 $ cd spring-boot-web
 $ spring init -d=web,thymeleaf --package=com.apress.spring -g=com.apress.spring
-a=spring-boot-web -name=sprint-boot-web -x

CHAPTER 6 ■ TESTING WITH SPRING BOOT

110

 What is different about the previous project is that you are adding the -d=web,thymeleaf parameter,
which will create a web project with the Thymeleaf technology as a view engine. The pom.xml file is shown in
Listing 6-3 .

 Listing 6-3. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-web</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>sprint-boot-web</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.3.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

CHAPTER 6 ■ TESTING WITH SPRING BOOT

111

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 6-3 shows you the pom. xml for a web project. As you can see, the dependencies are spring-
boot-starter-web and spring-boot-starter-thymeleaf . Remember that by default the Spring Initializr
 will always bring the spring-boot-starter-test dependency. Next, take a look at the Java test-generated
class shown in Listing 6-4 .

 Listing 6-4. src/test/java/com/apress/spring/SpringBootWebApplicationTests.java

 package com.apress.spring;
 import org.junit.Test;
 import org.junit.runner.RunWith;
 import org.springframework.test.context.web.WebAppConfiguration;
 import org.springframework.boot.test.SpringApplicationConfiguration;
 import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

 @RunWith(SpringJUnit4ClassRunner.class)
 @SpringApplicationConfiguration(classes = SprintBootWebApplication.class)
 @WebAppConfiguration
 public class SpringBootWebApplicationTests {

 @Test
 public void contextLoads() {
 }

 }

 Listing 6-4 shows you the test class. Because the project is a web app, the tests include a new annotation
called @WebAppConfiguration . It’s a class-level annotation that loads the org.springframework.web.
context.WebApplicationContext implementation, which will ensure that all your files and beans related to
the web app are accessible.

 You are already familiar with the other annotations. Let’s create an example application that you can use
for the next chapters. In the next chapter, you will extend the Spring Boot journal (by using the Spring Data
module) by creating a RESTful API. For now, you will use the domain class and create “hard-coded” data.

 ■ Note I recommend this particular article if you want to know more about the REST maturity model by
Dr. Leonard Richardson. You can find it at Martin Fowler’s web site at http://martinfowler.com/articles/
richardsonMaturityModel.html .

http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html

CHAPTER 6 ■ TESTING WITH SPRING BOOT

112

 Let’s start by identifying the journal domain class. See Listing 6-5 .

 Listing 6-5. src/main/java/com/apress/spring/domain/JournalEntry.java

 package com.apress.spring.domain;

 import java.text.ParseException;
 import java.text.SimpleDateFormat;
 import java.util.Date;

 public class JournalEntry {

 private String title;
 private Date created;
 private String summary;

 private final SimpleDateFormat format = new SimpleDateFormat("MM/dd/yyyy");

 public JournalEntry(String title, String summary, String date) throws
ParseException{

 this.title = title;
 this.summary = summary;
 this.created = format.parse(date);
 }

 JournalEntry(){}

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public Date getCreated() {
 return created;
 }

 public void setCreated(String date) throws ParseException{
 Long _date = null;
 try{
 _date = Long.parseLong(date);
 this.created = new Date(_date);
 return;
 }catch(Exception ex){}
 this.created = format.parse(date);
 }

 public String getSummary() {
 return summary;
 }

CHAPTER 6 ■ TESTING WITH SPRING BOOT

113

 public void setSummary(String summary) {
 this.summary = summary;
 }

 public String toString(){
 StringBuilder value = new StringBuilder("* JournalEntry(");
 value.append("Title: ");
 value.append(title);
 value.append(",Summary: ");
 value.append(summary);
 value.append(",Created: ");
 value.append(format.format(created));
 value.append(")");
 return value.toString();
 }
 }

 Listing 6-5 shows you the domain class you will be using . I think the only thing to notice is that you will use
a a small parsing process when you are setting the date (when you call setCreated) because you are passing
the data as a string in a format of MM/dd/yyyy . If you pass a long type representing the timestamp, you can
actually use the same setter. This is just for now; later in the book, you will see how this domain evolves.

 Because you are going to test some RESTful endpoints, you need a controller. See Listing 6-6 .

 Listing 6-6. src/main/java/com/apress/spring/controller/JournalController.java

 package com.apress.spring.controller;

 import java.text.ParseException;
 import java.util.ArrayList;
 import java.util.List;
 import java.util.stream.Collectors;

 import org.springframework.web.bind.annotation.PathVariable;
 import org.springframework.web.bind.annotation.RequestBody;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;
 import org.springframework.web.bind.annotation.RestController;

 import com.apress.spring.domain.JournalEntry;

 @RestController
 public class JournalController {

 private static List<JournalEntry> entries = new ArrayList<JournalEntry>();
 static {
 try {
 entries.add(new JournalEntry("Get to know Spring Boot","Today I will learn Spring

Boot","01/01/2016"));
 entries.add(new JournalEntry("Simple Spring Boot Project","I will do my first Spring

Boot Project","01/02/2016"));
 entries.add(new JournalEntry("Spring Boot Reading","Read more about Spring

Boot","02/01/2016"));

CHAPTER 6 ■ TESTING WITH SPRING BOOT

114

 entries.add(new JournalEntry("Spring Boot in the Cloud","Spring Boot using Cloud
Foundry","03/01/2016"));

 } catch (ParseException e) {
 e.printStackTrace();
 }
 }

 @RequestMapping("/journal/all")
 public List<JournalEntry> getAll() throws ParseException{
 return entries;
 }

 @RequestMapping("/journal/findBy/title/{title}")
 public List<JournalEntry> findByTitleContains(@PathVariable String title) throws
ParseException{

 return entries
 .stream()
 .filter(entry -> entry.getTitle().toLowerCase().contains(title.

toLowerCase()))
 .collect(Collectors.toList());
 }

 @RequestMapping(value="/journal",method = RequestMethod.POST)
 public JournalEntry add(@RequestBody JournalEntry entry){
 entries.add(entry);
 return entry;
 }
 }

 Listing 6-6 shows you the controller class. As you can see, you are going to have some journal entries in
memory, and you are defining some endpoints:

• /journal/all is where you will get all the journal entries in memory.

• /journal/findBy/title/{title} is where you can search for some part of the title
to get some results that match.

• These two endpoints correspond to the HTTP GET methods.

• /journal – POST is where you will use the HTTP POST to add a new journal entry.

 You already know about all the annotations used in this particular app, as they were discussed in the
previous chapter. Next, you need to do your regular test and run the app to see if it works. You can run it with
the following command:

 $./mvnw spring-boot:run

 Once it’s running you can go to http://localhost:8080/journal/all . You should see the JSON results
like the ones shown in Figure 6-1 .

CHAPTER 6 ■ TESTING WITH SPRING BOOT

115

 Figure 6-1 shows you the response you get by going to the /journal/all endpoint. Now, try the find
endpoint. Look for the word “cloud”. The URL to visit will be http://localhost:8080/journal/findBy/
title/cloud . You should see the results shown in Figure 6-2 .

 Figure 6-1. http://localhost:8080/journal/all

 Figure 6-2. http://localhost:8080/journal/findBy/title/cloud

 Figure 6-2 shows you the result of going to the /journal/findBy/title/{title} endpoint. Next let’s try
to post a new journal entry to the /journal endpoint. You can do that with the following command:

 $ curl -X POST -d '{"title":"Test Spring Boot","created":"06/18/2016","summary":"Create Unit
Test for Spring Boot"}' -H "Content-Type: application/json" http://localhost:8080/journal

 This command shows you how to use the cURL UNIX command where you are posting a new journal
entry in a JSON format to the /journal endpoint. Now you can go to /journal/all to see the new entry. See
Figure 6-3 .

CHAPTER 6 ■ TESTING WITH SPRING BOOT

116

 Figure 6-3 shows you the new entry added by posting the JSON data to the /journal endpoint. Of
course, this won’t cover testing. This was just an attempt to partially test. Although it might not make too
much sense right now, imagine if you needed to add 1,000 records and you have even more endpoints to
cover or you have different domain apps that need to go through all kinds of test.

 Testing manually like you just did won’t work for the volume or for the application. That’s where unit
and integration testing come in.

 Before I talk about the unit test, you are going to use a library that is useful to test JSON objects. It’s
called JsonPath by the company Jayway. So what you need to do is add the following dependency to your
 pom.xml :

 <dependency>
 <groupId>com.jayway.jsonpath</groupId>
 <artifactId>json-path</artifactId>
 <scope>test</scope>
 </dependency>

 Because you are using the spring-boot-starter-test pom, you don’t need to specify the version.
Now, let’s jump right into the new test you will be doing. See Listing 6-7 .

 Figure 6-3. The /journal/all endpoint after inserting a new journal entry

CHAPTER 6 ■ TESTING WITH SPRING BOOT

117

 Listing 6-7. src/test/java/com/apress/spring/SprintBootWebApplicationTests.java

 package com.apress.spring;

 import static org.hamcrest.Matchers.containsString;
 import static org.hamcrest.Matchers.iterableWithSize;
 import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
 import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.post;
 import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;
 import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.jsonPath;
 import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;
 import static org.springframework.test.web.servlet.setup.MockMvcBuilders.webAppContextSetup;

 import java.io.IOException;
 import java.nio.charset.Charset;
 import java.util.Arrays;

 import org.junit.Before;
 import org.junit.FixMethodOrder;
 import org.junit.Test;
 import org.junit.runner.RunWith;
 import org.junit.runners.MethodSorters;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.test.SpringApplicationConfiguration;
 import org.springframework.http.MediaType;
 import org.springframework.http.converter.HttpMessageConverter;
 import org.springframework.http.converter.json.MappingJackson2HttpMessageConverter;
 import org.springframework.mock.http.MockHttpOutputMessage;
 import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
 import org.springframework.test.context.web.WebAppConfiguration;
 import org.springframework.test.web.servlet.MockMvc;
 import org.springframework.web.context.WebApplicationContext;

 import com.apress.spring.domain.JournalEntry;

 @RunWith(SpringJUnit4ClassRunner.class)
 @SpringApplicationConfiguration(classes = SprintBootWebApplication.class)
 @WebAppConfiguration
 @FixMethodOrder(MethodSorters.NAME_ASCENDING)
 public class SprintBootWebApplicationTests {

 private final String SPRING_BOOT_MATCH = "Spring Boot";
 private final String CLOUD_MATCH = "Cloud";
 @SuppressWarnings("rawtypes")
 private HttpMessageConverter mappingJackson2HttpMessageConverter;
 private MediaType contentType = new MediaType(MediaType.APPLICATION_JSON.getType(),
 MediaType.APPLICATION_JSON.getSubtype(),
 Charset.forName("utf8"));
 private MockMvc mockMvc;

CHAPTER 6 ■ TESTING WITH SPRING BOOT

118

 @Autowired
 private WebApplicationContext webApplicationContext;

 @Autowired
 void setConverters(HttpMessageConverter<?>[] converters) {
 this.mappingJackson2HttpMessageConverter = Arrays.asList(converters).stream().

filter(
 converter -> converter instanceof MappingJackson2HttpMessageConverter).

findAny().get();
 }

 @Before
 public void setup() throws Exception {
 this.mockMvc = webAppContextSetup(webApplicationContext).build();
 }

 @Test
 public void getAll() throws Exception {
 mockMvc.perform(get("/journal/all"))
 .andExpect(status().isOk())
 .andExpect(content().contentType(contentType))
 .andExpect(jsonPath("$",iterableWithSize(5)))
 .andExpect(jsonPath("$[0]['title']",containsString(SPRING_BOOT_MATCH)));
 }

 @Test
 public void findByTitle() throws Exception {
 mockMvc.perform(get("/journal/findBy/title/" + CLOUD_MATCH))
 .andExpect(status().isOk())
 .andExpect(content().contentType(contentType))
 .andExpect(jsonPath("$",iterableWithSize(1)))
 .andExpect(jsonPath("$[0]['title']",containsString(CLOUD_MATCH)));
 }

 @Test
 public void add() throws Exception {
 mockMvc.perform(post("/journal")
 .content(this.toJsonString(new JournalEntry("Spring Boot Testing","Create

Spring Boot Tests","05/09/2016")))
 .contentType(contentType)).andExpect(status().isOk());
 }

 @SuppressWarnings("unchecked")
 protected String toJsonString(Object obj) throws IOException {
 MockHttpOutputMessage mockHttpOutputMessage = new MockHttpOutputMessage();
 this.mappingJackson2HttpMessageConverter.write(obj, MediaType.APPLICATION_JSON,

mockHttpOutputMessage);
 return mockHttpOutputMessage.getBodyAsString();
 }
 }

CHAPTER 6 ■ TESTING WITH SPRING BOOT

119

 Listing 6-7 shows you the unit test you will execute. Let’s examine it:

• HttpMessageConverter<T>, MediaType, MockMvc, WebApplicationContext . The
 HttpMessageConverter<T> is an interface that helps to convert from and to HTTP
requests and responses. You are going to use it to create a JSON format to post when
you test. The MediaType instance specifies that the actual call will be a JSON object.
The MockMvc is a helper class provided by the Spring MVC test module; you can get
more information at http://docs.spring.io/spring-framework/docs/current/
spring-framework-reference/html/integration-testing.html#spring-mvc-
test-framework . The WebApplicationContext will provide the configuration for a
web application and it will be necessary to create the MockMvc instance.

• setConverters(HttpMessageConverter) . This will set up the
 HttpMessageConverter<T> instance that is being used to convert the request, which
in this example is when you post to the /journal endpoint to add a new entry.
 HttpMessageConverter<T> works for every HTTP method.

• toJsonString(Object) . This is a helper method that will write the actual journal
entry to a JSON object.

• setup() . This method is marked by the JUnit’s @Before annotation, which means
that it will call the setup method for every test. In this case, it’s setting up the MockMvc
instance to do some assertions on the code later.

• getAll() . This method will test the /journal/all endpoint. As you can see, it’s
using mockMvc to perform a HTTP GET method and it will assert that the status
returned is the 200 CODE, that the response is a JSON object, and that the size
returned of the collections is 5. You might wonder why this is 5 when there is only 4
in memory? I’ll show why next.

• findByTitle() . This method will test the /journal/findBy/title/{title}
endpoint. It will use the mockMvc instance to perform a get and it will assert that you
have only one recurrence of a journal entry that includes the word “cloud”.

• add() . This method will test the /journal endpoint by performing a POST using the
 mockMvc instance. It will assert that the content type is a JSON object (remember that
you return the same object being posted) and that the status code is 200 .

 Why did you assert in the getAll method the size returned to 5? By default, the JUnit test methods
are not running in sequence, which means that the getAll method can start first, then the add method, and
so on. By default you don’t control that order. If you need to run your test in order, you can use the
 @FixMethodOrder(MethodSorters.NAME_ASCENDING) annotation, which tells the JUnit to run the test based
on the method’s name in ascending order. This means that the add method will run first, then the getAll
method, and finally the findByTitle method.

 JsonPath together with the Hamcrest (http://hamcrest.org/) libraries give you the flexibility to test
RESTful APIs. You can get more information at https://github.com/jayway/JsonPath and learn what else
you can do with this library.

 If you export this project into the STS IDE, you can run the unit test and visualize it like in Figure 6-4 .

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/integration-testing.html#spring-mvc-test-framework
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/integration-testing.html#spring-mvc-test-framework
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/integration-testing.html#spring-mvc-test-framework
http://hamcrest.org/
https://github.com/jayway/JsonPath

CHAPTER 6 ■ TESTING WITH SPRING BOOT

120

 You can create your unit tests using any framework you like. There is another project that makes testing
your REST endpoint even easier. Go to https://github.com/jayway/rest-assured to find out more. The
name of the library is Rest-Assured and it provides a fluent API to test RESTful APIs.

 Summary
 This chapter showed you how to test Spring and Spring Boot applications using the JUnit, using the provided
MockMvc, and using other test libraries like Hamcrest and JsonPath.

 In the following chapter, you learn about the persistence mechanism in Spring Boot and you will
continue working with the journal app.

 Figure 6-4. Running the tests using the STS IDE

https://github.com/jayway/rest-assured

121© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_7

 CHAPTER 7

 Data Access with Spring Boot

 Data has become the most important part of the IT world, from trying to access, persist, and analyze it,
to using a few bytes to petabytes of information. There have been many attempts to create frameworks
and libraries to facilitate a way for developers to interact with the data, but sometimes this becomes too
complicated.

 The Spring Framework after version 3.0 created different teams that specialized in the different
technologies, and the Spring-Data project team was born. This particular project’s goal is to make easier
uses of data access technologies, from relational and non-relational databases, to map-reduce frameworks
and cloud-based data services. This Spring-Data project is a collection of subprojects specific to a given
database.

 This chapter covers data access with Spring Boot using the simple application from Chapter 2 —the
Spring Boot journal app. You are going to make this simple app work with SQL and NoSQL databases.
From the journal app, you are going to use only the model—nothing about the web, just pure data. Let’s get
started.

 SQL Databases
 Do you remember those days when (in the Java world) you needed to deal with all the JDBC (Java Database
Connectivity) tasks? You had to download the correct drivers and connection strings, open and close
connections, SQL statements, result sets, and transactions, and convert from result sets to objects. In my
opinion, these are all very manual tasks. Then a lot of ORM (Object Relational Mapping) frameworks started
to emerge to manage these tasks—frameworks like Castor XML, Object-Store, and Hibernate to mention
a few. They allowed you to identify the domain classes and create XML that was related to the database’s
tables. At some point you also needed to be an expert to manage those kind of frameworks.

 The Spring Framework helped a lot with those frameworks by following the template design pattern.
It allowed you create an abstract class that defined ways to execute the methods and created the database
abstractions that allowed you to focus only on your business logic. It left all the hard lifting to the Spring
Framework, including handling connections (open, close, and pooling), transactions, and the way you
interact with the frameworks.

 It’s worth mentioning that the Spring Framework relies on several interfaces and classes (like the
 javax.sql.DataSource interface) to get information about the database you are going to use, how
to connect to it (by providing a connection string), and its credentials. Now, if you have some kind of
transaction management to do, DataSource is essential. Normally DataSource requires the Driver class,
the JDBC URL, the username, and password to connect to the database.

http://dx.doi.org/10.1007/978-1-4842-1431-2_2

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

122

 Data Access Using the JDBC Template with Spring Boot
 This section shows you the basics involved in data access by using only the JDBC abstraction from the Spring
Framework using Spring Boot. You will be using the spring-boot-starter-jdbc pom. In the example, you
are going to use the H2 in-memory database, which is a very effective engine for testing purposes.

 Start by executing the Spring Boot CLI and using the init command:

 $ spring init -d=jdbc,h2 -g=com.apress.spring -a=simple-jdbc-app --package-name=com.apress.
spring -name=simple-jdbc-app -x

 As you can see, this command will create a simple application that depends on the spring-boot-
starter-jdbc pom and the H2 (the H2 is an in-memory database engine) dependency. See Listing 7-1 .

 Listing 7-1. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>simple-jdbc-app</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>simple-jdbc-app</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>
 </dependency>

 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

123

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 7-1 shows you the pom.xml file. You can see that the spring-boot-starter-jdbc pom and the
H2 dependency are included. Next, let’s reuse the Journal Java class from Chapter 2 as the main domain
class. You need to create the directory structure. This class must be in the src/main/java/com/apress/
spring/domain folder. See Listing 7-2 .

 Listing 7-2. src/main/java/com/apress/spring/domain/Journal.java

 package com.apress.spring.domain;

 import java.text.SimpleDateFormat;
 import java.util.Date;

 public class Journal {

 private Long id;
 private String title;
 private Date created;
 private String summary;

 private SimpleDateFormat format = new SimpleDateFormat("MM/dd/yyyy");

 public Journal(Long id, String title, String summary, Date date){
 this.id = id;
 this.title = title;
 this.summary = summary;
 this.created = date;
 }

 Journal(){}

 public Long getId() {
 return id;
 }

http://dx.doi.org/10.1007/978-1-4842-1431-2_2

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

124

 public void setId(Long id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public Date getCreated() {
 return created;
 }

 public void setCreated(Date created) {
 this.created = created;
 }

 public String getSummary() {
 return summary;
 }

 public void setSummary(String summary) {
 this.summary = summary;
 }

 public String getCreatedAsShort(){
 return format.format(created);
 }

 public String toString(){
 StringBuilder value = new StringBuilder("* JournalEntry(");
 value.append("Id: ");
 value.append(id);
 value.append(",Title: ");
 value.append(title);
 value.append(",Summary: ");
 value.append(summary);
 value.append(",Created: ");
 value.append(getCreatedAsShort());
 value.append(")");
 return value.toString();
 }
 }

 Listing 7-2 shows you the Journal.java class. If you copied this class from Chapter 2 , you need to
remove all the annotations, because you don’t need them now. This class is a simple POJO (plain old Java
object). Next you will create a service in the src/main/java/com/apress/spring/service directory, which
is the JournalService.java class. The actions of this service are to insert data into the database and get all
the information from the database. See Listing 7-3 and analyze its contents.

http://dx.doi.org/10.1007/978-1-4842-1431-2_2

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

125

 Listing 7-3. src/main/java/com/apress/spring/service/JournalService.java

 package com.apress.spring.service;

 import java.util.ArrayList;
 import java.util.Date;
 import java.util.List;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.jdbc.core.JdbcTemplate;
 import org.springframework.stereotype.Service;

 import com.apress.spring.domain.Journal;

 @Service
 public class JournalService {
 private static final Logger log = LoggerFactory.getLogger(JournalService.class);

 @Autowired
 JdbcTemplate jdbcTemplate;

 public void insertData(){
 log.info("> Table creation");
 jdbcTemplate.execute("DROP TABLE JOURNAL IF EXISTS");
 jdbcTemplate.execute("CREATE TABLE JOURNAL(id SERIAL, title VARCHAR(255),

summary VARCHAR(255), created TIMESTAMP)");
 log.info("> Inserting data...");
 jdbcTemplate.execute("INSERT INTO JOURNAL(title,summary,created)

VALUES('Get to know Spring Boot','Today I will learn Spring Boot',
'2016-01-01 00:00:00.00')");

 jdbcTemplate.execute("INSERT INTO JOURNAL(title,summary,created)
VALUES('Simple Spring Boot Project','I will do my first Spring Boot
project','2016-01-02 00:00:00.00')");

 jdbcTemplate.execute("INSERT INTO JOURNAL(title,summary,created)
VALUES('Spring Boot Reading','Read more about Spring Boot',
'2016-02-01 00:00:00.00')");

 jdbcTemplate.execute("INSERT INTO JOURNAL(title,summary,created)
VALUES('Spring Boot in the Cloud','Learn Spring Boot using Cloud
Foundry','2016-01-01 00:00:00.00')");

 log.info("> Done.");
 }

 public List<Journal> findAll(){
 List<Journal> entries = new ArrayList<>();
 jdbcTemplate.query("SELECT * FROM JOURNAL",
 new Object[]{},
 (rs,row) -> new Journal(rs.getLong("id"),

rs.getString("title"), rs.getString("summary"),
new Date(rs.getTimestamp("created").getTime())))

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

126

 .forEach(entry -> entries.add(entry));
 return entries;
 }
 }

 Listing 7-3 shows you the JournalService.java class. Let’s take a look at its contents:

• JdbcTemplate . It auto-wires a JdbcTemplate class that will be the responsible for
executing tasks against the database. This particular class is based on the template
design pattern that I mentioned that allows developers to focus only on the data and
leave all the database tasks (insert, delete, etc.) to the template. How it knows which
database to connect to is discussed shortly.

• insertData . This method will first try to drop a Journal table if it exists, then it will
create the Journal table with its fields and, finally, it will insert the data into the
database. All these actions will be through the jdbcTemplate instance by executing
its method execute (this execute method accepts the SQL query syntax).

• findAll . This method will use the jdbcTemplate instance and the query method
(that accepts a SQL syntax) to get all the data; it will return a collection of Journal
instances.

• Logger . A log instance that prints out what is going on in the method calls.

 Next, modify the SimpleJdbcAppApplication.java class to look like Listing 7-4 .

 Listing 7-4. src/main/java/com/apress/spring/SimpleJdbcAppAplication.java

 package com.apress.spring;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;

 import com.apress.spring.service.JournalService;

 @SpringBootApplication
 public class SimpleJdbcAppApplication implements CommandLineRunner{
 private static final Logger log = LoggerFactory.getLogger(SimpleJdbcAppApplication.

class);

 @Autowired
 JournalService service;

 public static void main(String[] args) {
 SpringApplication.run(SimpleJdbcAppApplication.class, args);
 }

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

127

 @Override
 public void run(String... arg0) throws Exception {
 log.info("@@ Inserting Data....");
 service.insertData();
 log.info("@@ findAll() call...");
 service.findAll().forEach(entry -> log.info(entry.toString()));
 }
 }

 Listing 7-4 shows you the SimpleJdbcAppApplication.java class. As you already know, this is the main
class that will be executed:

• It declares the auto-wired version of the JournalService , making it available when
the run method executes.

• It implements the CommandLineRunner interface, and of course you need to
implement its method as well, called public void run(String... args) . Just
remember that this run method will be executed after the Spring Boot has started.
This is a good place to call the JournalService instance and execute the data
insertion and to call the findAll method.

• The Logger log instance prints out what is going on in the execution of the class.

 To run the application, execute the following command:

 $./mvnw spring-boot:run

 This command will run the app using the Maven wrapper that comes with the Spring Initializr. If you
have Maven as a global tool, just run this command:

 $ mvn spring-boot:run

 ■ Note If you are using the Maven wrapper (mvnw) command and you are getting the following error—
 Error: Could not find or load main class org.apache.maven.wrapper.MavenWrapperMain —this
means that you don’t have the .mvn folder and its JAR files in the current directory. So, you need to install them
manually. I know this sound redundant, but for this, you need to use Maven (a global installation and available in
your PATH environment variable) and execute $ mvn –N io.takari:maven:wrapper . Remember that the idea
of the Maven wrapper is portability, so if you want to send your code to somebody, just make sure to include the
 .mvn folder and its content. That way, that person doesn’t need to have/install Maven.

 After executing either of these commands, you should see the following output:

 INFO - [main] c.a.spring.SimpleJdbcAppApplication : @@ Inserting Data....
 INFO - [main] c.apress.spring.service.JournalService : > Table creation
 INFO - [main] c.apress.spring.service.JournalService : > Inserting data...
 INFO - [main] c.apress.spring.service.JournalService : > Done.
 INFO - [main] c.a.spring.SimpleJdbcAppApplication : @@ findAll() call...
 INFO - [main] c.a.spring.SimpleJdbcAppApplication : * JournalEntry(Id: 1,Title: Get to
know Spring Boot,Summary: Today I will learn Spring Boot,Created: 01/01/2016)

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

128

 INFO - [main] c.a.spring.SimpleJdbcAppApplication : * JournalEntry(Id: 2,Title: Simple
Spring Boot Project,Summary: I will do my first Spring Boot project,Created: 01/02/2016)
 INFO - [main] c.a.spring.SimpleJdbcAppApplication : * JournalEntry(Id: 3,Title: Spring
Boot Reading,Summary: Read more about Spring Boot,Created: 02/01/2016)
 INFO - [main] c.a.spring.SimpleJdbcAppApplication : * JournalEntry(Id: 4,Title: Spring
Boot in the Cloud,Summary: Learn Spring Boot using Cloud Foundry,Created: 01/01/2016)
 INFO - [main] c.a.spring.SimpleJdbcAppApplication : Started SimpleJdbcAppApplication in
1.736 seconds (JVM running for 6.581)

 As you can see from this output, the app is creating the table, inserting the data, and then finding all the
data persisted into the database. But how? You didn’t install any database engine or something to persist the
data and you didn’t create any DataSource or add any URL string connections. Remember that this simple
app is using the H2 in-memory database. The magic happens within Spring Boot for all related actions
against the database, like connection, query execution, and transactions (if you use the @Transactional
annotation as a marker in the class). But again, how does Spring Boot know about it?

 Remember that everything starts with the auto-configuration (provided by the @SpringBootApplication
annotation). It will detect that you have a H2 in-memory database dependency and it will create the right
 javax.sql.DataSource implementation. This means that by default it will have the org.h2.Driver driver
class, which is the connection URL as jdbc:h2:mem:testdb and the username: sa and password: empty to
connect to the H2 engine.

 The H2 engine offers a console where you can see all the tables and its data; however, this console is a
web application. So, what do you think you will need to get access to the H2 console? You are correct! You
need to include the spring-boot-starter-web pom dependency to your pom.xml .

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 You also need to add the following property to the src/main/resources/application.properties file.
See Listing 7-5 .

 Listing 7-5. src/main/resources/application.properties.

 spring.h2.console.enabled=true

 Listing 7-5 shows you the contents of the application properties. This property will enable the H2 web
console. Now, you can run your application again and the first thing you will notice is that it no longer stops;
it keeps running. You can see the logs that the Tomcat embedded server started. Now go to your browser and
go to http://localhost:8080/h2-console . You should see something similar to Figure 7-1 .

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

129

 Figure 7-1 shows you the H2 web console. You should see the Driver class, the JDBC URL, and the
credentials. If by some reason the JDBC URL is not the same, modify its value to jdbc:h2:mem:testdb . If you
then click the Connect button, you should see something similar to Figure 7-2 .

 Figure 7-1. H2 web console (http://localhost:8080/h2-console)

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

130

 Figure 7-2 shows you the in-memory database, including the testdb and the Journal table. You can
expand it and see its definition. You can also execute some SQL queries. For example, you can run the
 SELECT * FROM JOURNAL to see all the data that the application inserted. See Figure 7-3 .

 Figure 7-2. H2 web console in-memory testdb connection

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

131

 Figure 7-3 shows you the query result—all the data from the application. The H2 in-memory database is
a very good option for creating applications that need a persistence mechanism, which is normally used for
developing and testing purposes.

 Don’t forget to terminate your application by pressing Ctrl+C.
 You can expose and persist data by using the JdbcTemplate , but there are easier ways. Let’s take a look

at another option, something that is familiar to you from Chapter 2 , which is to use the JPA technology.

 Data Access Using JPA with Spring Boot
 The JPA (Java Persistence API, a J2EE specification. There is a nice article about JPA at http://www.oracle.
com/technetwork/articles/java/jpa-137156.html) is another alternative to using lightweight persistence
objects. Hibernate and Eclipse TopLink are the primary implementations of the JPA. The Spring Framework
has been part since its inception and played a very important role by providing helpers and abstraction
classes to make life easier for developers.

 You are going to continue to use the same journal app and make it work using the JPA technology. So, to
start, you can open a terminal and execute the Spring Initializr.

 $ spring init -d=data-jpa,h2 -g=com.apress.spring -a=simple-jpa-app --package-name=com.
apress.spring -name=simple-jpa-app -x

 Figure 7-3. SQL statements

http://dx.doi.org/10.1007/978-1-4842-1431-2_2
http://www.oracle.com/technetwork/articles/java/jpa-137156.html
http://www.oracle.com/technetwork/articles/java/jpa-137156.html

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

132

 Now, let’s take a look at the pom.xml file. As you likely know, you’ll need the spring-boot-starter-
data-jpa starter pom. See Listing 7-6 .

 Listing 7-6. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>simple-jpa-app</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>simple-jpa-app</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath /> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

133

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 7-6 shows you the pom.xml , and as you guessed, it required the spring-boot-starter-data-jpa
 and the h2 dependencies. Next, you are going to keep using the domain class, so let’s take a look at the src/
main/java/com/apress/spring/domain/Journal.java class. See Listing 7-7 .

 Listing 7-7. src/main/java/com/apress/spring/domain/Journal.java

 package com.apress.spring.domain;

 import java.text.ParseException;
 import java.text.SimpleDateFormat;
 import java.util.Date;

 import javax.persistence.Entity;
 import javax.persistence.GeneratedValue;
 import javax.persistence.GenerationType;
 import javax.persistence.Id;
 import javax.persistence.Transient;

 @Entity
 public class Journal {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;
 private String title;
 private Date created;
 private String summary;

 @Transient
 private SimpleDateFormat format = new SimpleDateFormat("MM/dd/yyyy");

 public Journal(String title, String summary, String date) throws ParseException{
 this.title = title;
 this.summary = summary;
 this.created = format.parse(date);
 }

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

134

 Journal(){}

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public Date getCreated() {
 return created;
 }

 public void setCreated(Date created) {
 this.created = created;
 }

 public String getSummary() {
 return summary;
 }

 public void setSummary(String summary) {
 this.summary = summary;
 }

 public String getCreatedAsShort(){
 return format.format(created);
 }

 public String toString(){
 StringBuilder value = new StringBuilder("* JournalEntry(");
 value.append("Id: ");
 value.append(id);
 value.append(",Title: ");
 value.append(title);
 value.append(",Summary: ");
 value.append(summary);
 value.append(",Created: ");
 value.append(getCreatedAsShort());
 value.append(")");
 return value.toString();
 }
 }

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

135

 Listing 7-7 shows the Journal. java class where it’s using the javax.persistence package classes and
interfaces, including the @Entity , @Id , and @Transient annotations. All these annotations belong to the
JPA specification and are going to be used to denote an entity (the class marked with @Entity annotation)
that will be mapped to a table (in this case to a Journal table) and to its fields (all private fields with setters
and getters, except for the one annotated with the @Transient annotation, which won’t be persistent to the
database). The Long id property is marked with the @Id and @GeneratedValue annotations, making this
field the primary key of the Journal table.

 Next let’s see the service; you are still going to use a service that will insert data and find all the data in
the database. See Listing 7-8 .

 Listing 7-8. src/main/java/com/apress/spring/service/JournalService.java

 package com.apress.spring.service;

 import java.text.ParseException;
 import java.util.List;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.stereotype.Service;

 import com.apress.spring.domain.Journal;
 import com.apress.spring.repository.JournalRepository;

 @Service
 public class JournalService {
 private static final Logger log = LoggerFactory.getLogger(JournalService.class);

 @Autowired
 JournalRepository repo;

 public void insertData() throws ParseException{
 log.info("> Inserting data...");
 repo.save(new Journal("Get to know Spring Boot","Today I will learn Spring

Boot","01/01/2016"));
 repo.save(new Journal("Simple Spring Boot Project","I will do my first Spring Boot

Project","01/02/2016"));
 repo.save(new Journal("Spring Boot Reading","Read more about Spring

Boot","02/01/2016"));
 repo.save(new Journal("Spring Boot in the Cloud","Spring Boot using Cloud

Foundry","03/01/2016"));
 log.info("> Done.");
 }

 public List<Journal> findAll(){
 return repo.findAll();
 }

 }

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

136

 Listing 7-8 shows you the service you will be using, so let’s examine its code:

• @Service . This annotation marks the class as a stereotype that will be recognized as
a bean by the Spring container, so it can be used, for example, with the @Autowired
annotation.

• JournalRepository . This instance is being auto-wired, but where is this
 JournalRepository interface? Don’t worry, you are going to see it in the next
segment. For now, you need to think of it as an instance that has the knowledge of
how to use the data, from connecting to the database, to accessing it for its usage.

• insertData . This method will insert the data into the database. Note that there
is no database or table creation; everything will be done by the abstraction of the
 JournalRepository .

• findAll . This method will call the JournalRepository instance to get all the data
from the database, returning a list of Journal instances.

 Next, let’s see the JournalRepository interface. See Listing 7-9 .

 Listing 7-9. src/main/java/com/apress/spring/repository/JournalRepository.java

 package com.apress.spring.repository;

 import org.springframework.data.jpa.repository.JpaRepository;

 import com.apress.spring.domain.Journal;

 public interface JournalRepository extends JpaRepository<Journal, Long> { }

 Listing 7-9 shows you the JournalRepository interface, but let’s dig into it. The JournalRepository
interface extends from another interface, the JpaRepository . The JpaRepository uses generics and requires
a marked class by the @Entity annotation and the Id as a java.io.Serializable object. In this case the
entity is the Journal.java class and the ID is a Long class.

 The JpaRepository interface looks like Listing 7-10 .

 Listing 7-10. <spring-data-jpa>/org/springframework/data/jpa/repository/JpaRepository.java

 public interface JpaRepository<T, ID extends Serializable> extends
PagingAndSortingRepository<T, ID> {

 List<T> findAll();

 List<T> findAll(Sort sort);

 List<T> findAll(Iterable<ID> ids);

 <S extends T> List<S> save(Iterable<S> entities);

 void flush();

 <S extends T> S saveAndFlush(S entity);

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

137

 void deleteInBatch(Iterable<T> entities);

 void deleteAllInBatch();

 T getOne(ID id);
 }

 Listing 7-10 shows you the JpaRepository that belongs to the spring-data-jpa JAR, and it provides
all those action methods that will run against the provided database. It’s important to note that you don’t
need to implement any of these methods, you only need to extend from this interface. But if you take a closer
look, you have additional behavior because it also extends from the PagingAndSortingRepository interface,
giving you out-of-the-box extra features when you need them.

 The Spring Framework and in this case the spring-data technology will be in charge of creating
dynamic proxies that will implement these methods for you. This is because all these actions are very
generic and repetitive, so you don’t have to implement them—you can let the spring-data do it on your
behalf.

 Now, let’s take a look at the main application. See Listing 7-11 .

 Listing 7-11. src/main/java/com/apress/spring/SimpleJpaAppApplication.java

 package com.apress.spring;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;

 import com.apress.spring.repository.JournalRepository;
 import com.apress.spring.service.JournalService;

 @SpringBootApplication
 public class SimpleJpaAppApplication {
 private static final Logger log = LoggerFactory.getLogger(SimpleJpaAppApplication.

class);

 public static void main(String[] args) {
 SpringApplication.run(SimpleJpaAppApplication.class, args);
 }

 @Bean
 CommandLineRunner start(JournalService service){
 return args -> {
 log.info("@@ Inserting Data....");
 service.insertData();
 log.info("@@ findAll() call...");
 service.findAll().forEach(entry -> log.info(entry.toString()));
 };
 }
 }

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

138

 Listing 7-11 shows you the main application, the SimpleJpaAppApplication.java class. Let’s examine
its code:

• @SpringBootApplication . This is the main annotation that will trigger the auto-
configuration and will identify that you are using the spring-boot-starter-data-
jpa . It will treat your application as a JPA app. It will also identify that you have
declared the H2 in-memory database and will create the javax.sql.DataSource for
you. It will be implemented with the H2 drivers and use the testdb database with the
default credentials.

• start . This method is marked as a Bean and will return a CommandLineRunner
interface. This is another way to tell the Spring Boot app to run this method after
the Spring application is started. In this example it’s using the Java 8 features to
return a lambda where it’s using the JournalService instance (the start method’s
parameter) to insert the data and then call the findAll method to get all the data
from the database.

 It’s cool to see that you don’t need to write any code for common database tasks—insert, update, and
delete are covered—but what happens if you need to perform a very particular find? What if you need to find
the journals that are after certain date, or you want to create a custom query with joins or stored procedures?

 By extending to the JpaRepository , you can create “query” methods using the following a property
naming convention. This provides extensibility in the behavior of the class. So for example, taking the
 Journal.java class, it contains the title property, so if you want to find all the titles that contain the word
 Spring , you can write a method like this:

 public List<Journal> findByTitleContaining(String word);

 This method will be translated to the SQL query: select * from JOURNAL where title like %?1% .
Where the ?1 parameter will be the word Spring . So it would be something like this:

 select * from journal where title like %Spring%

 What if you need to look for all the journal entries after certain date? It is easy as create a method like so:

 public List<Journal> findByCreatedAfter(Date date);

 This method will be translated to the SQL query: select * from JOURNAL where created > ?1 .
Very easy. But what if you needed to run a particular query? For example, you can modify the
 findByTitleContaining method and write something equivalent like this:

 @Query("select j from Journal j where j.title like %?1%")
 List<Journal> findByCustomQuery(String word);

 As you can see, you have many options. See Listing 7-12 , which is a modified version of
 JournalRepository.java .

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

139

 Listing 7-12. Modified Version of src/main/java/com/apress/spring/repository/JournalRepository.java

 package com.apress.spring.repository;

 import java.util.Date;
 import java.util.List;

 import org.springframework.data.jpa.repository.JpaRepository;
 import org.springframework.data.jpa.repository.Query;

 import com.apress.spring.domain.Journal;

 public interface JournalRepository extends JpaRepository<Journal, Long> {

 List<Journal> findByCreatedAfter(Date date);

 @Query("select j from Journal j where j.title like %?1%")
 List<Journal> findByCustomQuery(String word);
 }

 Listing 7-12 shows you another version of the JpaRepository , which contains the “query” method
declarations based on its properties (the journal class properties) and marks a method (with any name) with
the @Query annotation. The @Query annotation accepts the JPQL syntax.

 If you want to know more about the options for naming the “query” methods and the keywords that you
can use, I recommend you look at the spring-data reference at http://docs.spring.io/spring-data/jpa/
docs/current/reference/html/#jpa.query-methods.query-creation .

 Another Spring Boot feature using the spring-data enables you to use the schema.sql and data.sql
files (in the root of the classpath) to create the database and insert data. This feature is useful when you have
a dump of data and must initialize the database. So instead of using a service to insert the data, you can write
 data.sql and remove the insertData call from your service. See Listing 7-13 .

 Listing 7-13. src/main/resources/data.sql

 INSERT INTO JOURNAL(title,summary,created) VALUES('Get to know Spring Boot','Today I will
learn Spring Boot','2016-01-02 00:00:00.00');
 INSERT INTO JOURNAL(title,summary,created) VALUES('Simple Spring Boot Project','I will do my
first Spring Boot project','2016-01-03 00:00:00.00');
 INSERT INTO JOURNAL(title,summary,created) VALUES('Spring Boot Reading','Read more about
Spring Boot','2016-02-02 00:00:00.00');
 INSERT INTO JOURNAL(title,summary,created) VALUES('Spring Boot in the Cloud','Learn Spring
Boot using Cloud Foundry','2016-02-05 00:00:00.00');

 Listing 7-13 shows the SQL statements that will be detected by Spring Boot. Now you can remove
 insertData from your JournalService.java class and see the same effect.

 ■ Note If you want to see the SQL statements that the JPA/Hibernate engine is executing, you can use the
following property in the src/main/resources/application.properties file: spring.jpa.show-sql=true .

http://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods.query-creation
http://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods.query-creation

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

140

 You can test this code as usual:

 $./mvnw spring-boot:run

 If you want to learn more about JPA, I recommend the Apress book entitled Pro JPA 2, Second Edition as
well as the Pro Spring Fourth Edition and Spring Recipes Third Edition .

 NoSQL Databases
 NoSQL databases are another way to persist data, but in different way from the tabular relationships of the
relational databases. There is already a classification system for these emergent NoSQL databases. You can
find it based on its data model:

• Column (Cassandra, HBase, etc.)

• Document (CouchDB, MongoDB, etc.)

• Key-Value (Redis, Riak, etc.)

• Graph (Neo4J, Virtuoso, etc.)

• Multi-Model (OrientDB, ArangoDB, etc.)

 As you can see, you have many options. I think the most important kind of feature here nowadays is to
find a database that is scalable and can handle millions of records easily.

 This section covers the MongoDB, a NoSQL document database. You are going to use the previous
journal application, but before you start, you need to make sure that you have the MongoDB server installed
on your computer.

 If you are using Mac/Linux with the brew command (http://brew.sh/), execute the following
command:

 $ brew install mongodb

 You can run it with this command:

 $ mongod

 Or you can install MongoDB by downloading it from the web site at https://www.mongodb.org/
downloads#production and following the instructions.

 Next, let’s start by creating a new folder and a new application:

 $ mkdir simple-mongo-app
 $ cd simple-mongo-app
 $ spring init -d=data-mongodb -g=com.apress.spring -a=simple-mongo-app --package-name=com.
apress.spring -name=simple-mongo-app -x

 The mandatory question is which starter pom will you need for this example? The spring-boot-
starter-data-mongodb pom will be required for this example. See Listing 7-14 .

http://brew.sh/
https://www.mongodb.org/downloads#production
https://www.mongodb.org/downloads#production

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

141

 Listing 7-14. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>simple-mongo-app</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>simple-mongo-app</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

142

 Listing 7-14 shows you the pom. xml file with the spring-boot-starter-data-mongodb pom as a
dependency. Next let’s look at the src/main/java/com/apress/spring/domain/Journal.java class.
See Listing 7-15 .

 Listing 7-15. src/main/java/com/apress/spring/domain/Journal.java

 package com.apress.spring.domain;

 import java.text.ParseException;
 import java.text.SimpleDateFormat;
 import java.util.Date;

 import org.springframework.data.annotation.Id;
 import org.springframework.data.annotation.Transient;

 public class Journal {

 @Id
 private String id;
 private String title;
 private Date created;
 private String summary;

 @Transient
 private SimpleDateFormat format = new SimpleDateFormat("MM/dd/yyyy");

 public Journal(String title, String summary, String date) throws ParseException{
 this.title = title;
 this.summary = summary;
 this.created = format.parse(date);
 }

 Journal(){}

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

143

 public Date getCreated() {
 return created;
 }

 public void setCreated(Date created) {
 this.created = created;
 }

 public String getSummary() {
 return summary;
 }

 public void setSummary(String summary) {
 this.summary = summary;
 }

 public String getCreatedAsShort(){
 return format.format(created);
 }

 public String toString(){
 StringBuilder value = new StringBuilder("* JournalEntry(");
 value.append("Id: ");
 value.append(id);
 value.append(",Title: ");
 value.append(title);
 value.append(",Summary: ");
 value.append(summary);
 value.append(",Created: ");
 value.append(getCreatedAsShort());
 value.append(")");
 return value.toString();
 }
 }

 Listing 7-15 shows you the Journal.java class. Let’s review it:

• This time it uses the org.springframework.data.annotation.Id and the org.
springframework.data.annotation.Transient annotations , which are different
from the javax.persistence package (because they belong to the JPA specification).
They allow you to have unique key (with the @Id annotation) and the @Transient
marked property won’t be persisted to the database.

• Another important difference is the ID. In the previous code, it was a Long type, but
now it’s String , which is required for the MongoDB. The rest of the code remains the
same with its getters and setters.

 Next, let’s take a look at the src/main/java/com/apress/spring/repository/JournalRepository.
java interface, as shown in Listing 7-16 .

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

144

 Listing 7-16. src/main/java/com/apress/spring/repository/JournalRepository.java

 package com.apress.spring.repository;

 import java.util.List;

 import org.springframework.data.mongodb.repository.MongoRepository;

 import com.apress.spring.domain.Journal;

 public interface JournalRepository extends MongoRepository<Journal, String> {

 public List<Journal> findByTitleLike(String word);
 }

 Listing 7-16 shows you the JournalRepository.java interface. Let’s review it:

• Because this application is using the spring-data project and the spring-data-
mongodb subproject libraries, you can extend it from the MongoRepository interface.
This interface has common actions that run against the MongoDB. This interface
needs a Document (in this case, the Journal class) that will contain an id and a
 String .

• Again, because you are using the spring-data and spring-data-mongodb
abstractions, you can have “query” methods. In this example it will find a title
that contains a word. The “query” method findByTitleLike will be translated to
MongoDB query syntax. Something like db.journal.find({"title": /.*?1*/})
or similar.

 Now let’s take a look at the main application. See Listing 7-17 .

 Listing 7-17. src/main/java/com/apress/spring/SimpleMongoAppApplication.java

 package com.apress.spring;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;

 import com.apress.spring.domain.Journal;
 import com.apress.spring.repository.JournalRepository;

 @SpringBootApplication
 public class SimpleMongoAppApplication {
 private static final Logger log = LoggerFactory.getLogger(SimpleMongoAppApplication.

class);

 public static void main(String[] args) {
 SpringApplication.run(SimpleMongoAppApplication.class, args);
 }

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

145

 @Bean
 CommandLineRunner start(JournalRepository repo){
 return args -> {
 log.info("> Deleting existing data...");
 repo.deleteAll();

 log.info("> Inserting new data...");
 repo.save(new Journal("Get to know Spring Boot","Today I will learn Spring

Boot","01/02/2016"));
 repo.save(new Journal("Simple Spring Boot Project","I will do my

first Spring Boot Project","01/03/2016"));
 repo.save(new Journal("Spring Boot Reading","Read more about Spring

Boot","02/02/2016"));
 repo.save(new Journal("Spring Boot in the Cloud","Spring Boot using

Cloud Foundry","03/01/2016"));

 log.info("> Getting all data...");
 repo.findAll().forEach(entry -> log.info(entry.toString()));

 log.info("> Getting data using like...");
 repo.findByTitleLike("Cloud").forEach(entry -> log.info(entry.toString()));

 };
 }
 }

 Listing 7-17 shows you the main application. Does this app look familiar? It’s not that different from its
previous “relatives”. Here, it’s using the start method, which will be called after the Spring Boot app starts. It
will delete all existing data, it will insert them, and then it will use some of the finder methods.

 You can run it as usual, using the Maven wrapper or the global Maven installation:

 $./mvnw spring-boot:run

 You should see the following output:

 > Deleting existing data...
 > Inserting new data...
 > Getting all data...
 * JournalEntry(Id: 56b192d377c83f89cae51f5f,Title: Get to know Spring Boot,Summary: Today I
will learn Spring Boot,Created: 01/02/2016)
 * JournalEntry(Id: 56b192d377c83f89cae51f60,Title: Simple Spring Boot Project,Summary:
I will do my first Spring Boot Project,Created: 01/03/2016)
 * JournalEntry(Id: 56b192d377c83f89cae51f61,Title: Spring Boot Reading,Summary: Read more
about Spring Boot,Created: 02/02/2016)
 * JournalEntry(Id: 56b192d377c83f89cae51f62,Title: Spring Boot in the Cloud,Summary:
Spring Boot using Cloud Foundry,Created: 03/01/2016)
 > Getting data using like...
 * JournalEntry(Id: 56b192d377c83f89cae51f62,Title: Spring Boot in the Cloud,Summary:
Spring Boot using Cloud Foundry,Created: 03/01/2016)

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

146

 If you want to see the actual data in your MongoDB server, you can open a terminal and execute the
following commands:

 $ mongo
 MongoDB shell version: 3.2.1
 connecting to: test
 > show collections
 blog
 journal
 system.indexes
 > db.journal.find()
 { "_id" : ObjectId("56b192d377c83f89cae51f5f"), "_class" : "com.apress.spring.domain.
Journal", "title" : "Get to know Spring Boot", "created" : ISODate("2016-01-02T07:00:00Z"),
"summary" : "Today I will learn Spring Boot" }
 { "_id" : ObjectId("56b192d377c83f89cae51f60"), "_class" : "com.apress.spring.domain.
Journal", "title" : "Simple Spring Boot Project", "created" : ISODate("2016-01-
03T07:00:00Z"), "summary" : "I will do my first Spring Boot Project" }
 { "_id" : ObjectId("56b192d377c83f89cae51f61"), "_class" : "com.apress.spring.domain.
Journal", "title" : "Spring Boot Reading", "created" : ISODate("2016-02-02T07:00:00Z"),
"summary" : "Read more about Spring Boot" }
 { "_id" : ObjectId("56b192d377c83f89cae51f62"), "_class" : "com.apress.spring.domain.
Journal", "title" : "Spring Boot in the Cloud", "created" : ISODate("2016-03-01T07:00:00Z"),
"summary" : "Spring Boot using Cloud Foundry" }

 When you use the mongo client shell, you will be connected directly to the test database, which is what
Spring Boot will use as main database to create the document collection. In this case, it’s the name of the
Java class: journal . Then you can use the db.journal.find() query to get all the data.

 Spring Boot allows you to define the name of your database if you don’t want to use the default one.
You only need to add the following property to the src/main/resources/application.properties file:

 spring.data.mongodb.database=myjournal

 Then the MongoRepository will create the database using the myjournal name and will create the
 journal collection as well.

 You can take a peek at the MongoDB server by using its client. You can see the database, the collection,
and the data with the following commands:

 $ mongo
 MongoDB shell version: 3.2.3
 connecting to: test
 > show databases;
 local 0.078GB
 myjournal 0.078GB
 test 0.203GB
 > use myjournal
 switched to db myjournal
 > show collections
 journal
 system.indexes
 > db.journal.find()

CHAPTER 7 ■ DATA ACCESS WITH SPRING BOOT

147

 { "_id" : ObjectId("56b0ef2d77c8a628197f0aa4"), "_class" : "com.apress.spring.domain.
Journal", "title" : "Get to know Spring Boot", "created" : ISODate("2016-01-02T07:00:00Z"),
"summary" : "Today I will learn Spring Boot" }
 { "_id" : ObjectId("56b0ef2d77c8a628197f0aa5"), "_class" : "com.apress.spring.domain.
Journal", "title" : "Simple Spring Boot Project", "created" : ISODate("2016-01-
03T07:00:00Z"), "summary" : "I will do my first Spring Boot Project" }
 { "_id" : ObjectId("56b0ef2d77c8a628197f0aa6"), "_class" : "com.apress.spring.domain.
Journal", "title" : "Spring Boot Reading", "created" : ISODate("2016-02-02T07:00:00Z"),
"summary" : "Read more about Spring Boot" }
 { "_id" : ObjectId("56b0ef2d77c8a628197f0aa7"), "_class" : "com.apress.spring.domain.
Journal", "title" : "Spring Boot in the Cloud", "created" : ISODate("2016-03-01T07:00:00Z"),
"summary" : "Spring Boot using Cloud Foundry" }
 >

 This feature (the properties specified in the application.properties file) works not only for Mongo
but for every spring-data application. You can get more info about the right property setting at https://
docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html .

 Summary
 This chapter discussed relational and NoSQL databases and explained how the Spring Data project and
subprojects define several helpers and abstraction classes that will help you have data access regardless of
the database engine you use.

 I started by showing you the JdbcTemplate that is based on the template design pattern. You saw
execute methods that allow you to interact with the relational database. The relational database examples
used the H2 in-memory database, which is a very good technology for prototyping and testing purposes.

 The chapter showed you the H2 web console by adding the spring-boot-starter-web pom and setting
the spring.h2.console.enabled=true property to true. The chapter showed you the JPA and explained how
you can avoid writing common CRUD (Create, Read, Update, and Delete) tasks by creating an interface that
extends from the JpaRepository . You also learned that you can have “query” methods to support more tasks
for your data applications.

 You saw the NoSQL document database, the MongoDB, and learned how you can use the
 MongoRepository , which is very similar to the regular JPA.

 In the next chapter, you are going to start using all the data code from this chapter because you are
going to create web applications with Spring Boot.

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

149© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_8

 CHAPTER 8

 Web Development with
Spring Boot

 Nowadays the web is the main channel for any type of application—from desktop to mobile devices, from
social and business applications to games, and from simple content to streaming data. With this is mind,
Spring Boot can help you easily develop the next generation of web applications.

 This chapter shows you how to create Spring Boot web applications. You have already learned, with
some examples in earlier chapters, what you can do with the web. You learned that Spring Boot makes it
easier to create web apps with a few lines of code and that you don’t need to worry about configuration
files or look for an application server to deploy your web application. By using Spring Boot and its
auto-configuration, you can have an embedded application server like Tomcat or Jetty, which makes your
app very distributable and portable.

 Spring MVC
 Let’s start talking about the Spring MVC technology and some of its features. Remember that the Spring
Framework consists of about 20 modules or technologies, and the web technology is one of them. For
the web technology, the Spring Framework has the spring-web, spring-webmvc , spring-websocket , and
 spring-webmvc-portlet modules.

 The spring-web module has basic web integration features such as multipart file upload functionality,
initialization of the Spring container (by using servlet listeners), and a web-oriented application context.
The spring-mvc module (aka, the web server module) contains all the Spring MVC (Model-View-Controller)
and REST services implementations for web applications. These modules provide many features, such as
very powerful JSP tag libraries, customizable binding and validation, flexible model transfer, customizable
handler and view resolution, and so on.

 The Spring MVC is designed around the org.springframework.web.servlet.DispatcherServlet
class. This servlet is very flexible and has a very robust functionality that you won’t find in any other MVC
web frameworks out there. With the DispatcherServlet you have out-of-the-box several resolutions
strategies, including View resolvers, Locale resolvers, Theme resolvers, and Exception handlers. In other
words, the DispatcherServlet will take a HTTP request and redirect it to the right handler (the class marked
with the @Controller and the methods that use the @RequestMapping annotations) and the right view
(your JSPs).

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

150

 Spring Boot Web Applications
 You are going to continue using the Spring Boot Journal application, but with some modifications, so you
can see the power of using the Spring MVC with Spring Boot. Let’s start by creating the journal app.

 Open a terminal and execute the following commands:

 $ mkdir spring-boot-journal
 $ cd spring-boot-journal
 $ spring init -d=web,thymeleaf,data-jpa,data-rest -g=com.apress.spring -a=spring-boot-
journal --package-name=com.apress.spring -name=spring-boot-journal -x

 These commands will be the initial template for the Spring Boot journal. Now you are getting familiar
with the Spring Initializr. In this case you already know that you are going create a web application that will
use the Thymeleaf templating engine for the views, the JPA for all the data access, and a new starter, the
 data-rest , which will allow to expose the data repositories as RESTful API.

 Take a look at the pom.xml file, shown in Listing 8-1 .

 Listing 8-1. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-journal</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-journal</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

151

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <!-- MYSQL -->
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 8-1 shows you the pom.xml file that you are going to be using for the Spring Boot journal app.
Do you notice something different? You already know that spring-boot-starter-data-jpa , spring-boot-
starter-data-rest , spring-boot-starter-data-web , and spring-boot-starter-data-thymeleaf are the
starter poms because they were added as dependencies in the Spring Initializr. But note that there is now a
MySQL dependency, which means that you need to have the MySQL server up and running in your system.
If you want to install it, you can use brew for OS X/Linux:

 $ brew install mysql

 Or if you are using Windows you can find a version on the MySQL web site at http://dev.mysql.com/
downloads/mysql/ .

 Did you notice that in Listing 8-1 , there is no <version> tag in the MySQL dependency? This is because
the spring-boot-starter-parent pom has a dependency on the spring-boot-dependencies , where all
the versions that work with Spring are declared—in this case the MySQL driver library. That’s why working

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

152

with Spring Boot is so easy—you just add the right starter pom and don’t have to worry about third-party
dependencies.

 Let’s start by configuring the MySQL properties in the application. You can open and edit
 src/main/resources/application.properties to look like Listing 8-2 .

 Listing 8-2. src/main/resources/application.properties

 #Spring DataSource
 spring.datasource.url = jdbc:mysql://localhost:3306/journal
 spring.datasource.username = springboot
 spring.datasource.password = springboot
 spring.datasource.testWhileIdle = true
 spring.datasource.validationQuery = SELECT 1
 #JPA-Hibernate
 spring.jpa.show-sql = true
 spring.jpa.hibernate.ddl-auto = create-drop
 spring.jpa.hibernate.naming-strategy = org.hibernate.cfg.ImprovedNamingStrategy
 spring.jpa.properties.hibernate.dialect = org.hibernate.dialect.MySQL5Dialect

 Listing 8-2 shows you the application.properties file that the journal app will use. As you can see,
it’s very straightforward. You have two sections. The first section declares the values that the javax.sql.
DataSource will use, such as the JDBC URL, the credentials, and testWhileIdle and validationQuery .
These are useful for keeping the connection if it’s been idle for a long time. The second section declares all
dependencies related to JPA and Hibernate. The show-sql will log all the SQL (you can turn this on and off).
The hibernate.ddl-auto property will create the table (based on your declared entities annotated with
 @Entity) and when the app finishes, it will drop it. The other possible values are create and update
(the update value is recommended for production environments). hibernate.name-strategy will use the
best naming for your tables and fields in your database, and hibernate.dialect is useful for generating the
SQL optimized for the database engine—in this case MySQL.

 ■ Note In order to use the MySQL database and the credentials from Listing 8-2 , don’t forget to create
the journal database and add user privileges to the MySQL server. If you prefer, feel free to use your own
credentials.

 Next let’s add the domain src/main/java/com/apress/spring/domain/JournalEntry.java class;
see Listing 8-3 .

 Listing 8-3. src/main/java/com/apress/spring/domain/JournalEntry.java

 package com.apress.spring.domain;

 import java.text.ParseException;
 import java.text.SimpleDateFormat;
 import java.util.Date;

 import javax.persistence.Entity;
 import javax.persistence.GeneratedValue;
 import javax.persistence.GenerationType;

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

153

 import javax.persistence.Id;
 import javax.persistence.Table;
 import javax.persistence.Transient;

 import com.apress.spring.utils.JsonDateSerializer;
 import com.fasterxml.jackson.annotation.JsonIgnore;
 import com.fasterxml.jackson.databind.annotation.JsonSerialize;

 @Entity
 @Table(name="entry")
 public class JournalEntry {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;
 private String title;
 private Date created;
 private String summary;

 @Transient
 private final SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd");

 public JournalEntry(String title, String summary, String date) throws
ParseException{

 this.title = title;
 this.summary = summary;
 this.created = format.parse(date);
 }

 JournalEntry(){}

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 @JsonSerialize(using=JsonDateSerializer.class)
 public Date getCreated() {
 return created;
 }

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

154

 public void setCreated(Date created) {
 this.created = created;
 }

 public String getSummary() {
 return summary;
 }

 public void setSummary(String summary) {
 this.summary = summary;
 }

 @JsonIgnore
 public String getCreatedAsShort(){
 return format.format(created);
 }

 public String toString(){
 StringBuilder value = new StringBuilder("* JournalEntry(");
 value.append("Id: ");
 value.append(id);
 value.append(",Title: ");
 value.append(title);
 value.append(",Summary: ");
 value.append(summary);
 value.append(",Created: ");
 value.append(format.format(created));
 value.append(")");
 return value.toString();
 }
 }

 Listing 8-3 shows you the JournalEntry.java class. This class is a little different from the previous
chapters. One of the differences is that the JournalEntry class is marked with the @Table(name="entry")
annotation and with an attribute of name and value of entry . This will tell JPA/Hibernate that the table to
generate will be named entry . The next difference is that the getDateMethod is marked with the
 @JsonSerialize(using=JsonDateSerializer.class) annotation.

 The @JsonSerialize annotation has defined a JsonDateSerializer.class that will be used to
serialize the data. This is a customized class that you will see soon. This is useful for printing out the date in
a particular format, and this time you are going to use the standard ISO.DATE format that corresponds with
this pattern: yyyy-MM-dd .

 Also in Listing 8-3 you can see that the getCreatedAsShort() method is marked with @JsonIgnore ,
which will ignore the property when the JSON printout of the class is called. Next, consider the src/main/
java/com/apress/spring/utils/JsonDateSerializer.java class . Remember that this class will serialize
the date into a JSON object with a particular date format (ISO.DATE). See Listing 8-4 .

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

155

 Listing 8-4. src/main/java/com/apress/spring/utils/JsonDateSerializer.java

 package com.apress.spring.utils;

 import java.io.IOException;
 import java.text.SimpleDateFormat;
 import java.util.Date;

 import com.fasterxml.jackson.core.JsonGenerator;
 import com.fasterxml.jackson.core.JsonProcessingException;
 import com.fasterxml.jackson.databind.JsonSerializer;
 import com.fasterxml.jackson.databind.SerializerProvider;

 public class JsonDateSerializer extends JsonSerializer<Date>{

 private static final SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");

 @Override
 public void serialize(Date date, JsonGenerator gen, SerializerProvider provider)
 throws IOException, JsonProcessingException {
 String formattedDate = dateFormat.format(date);
 gen.writeString(formattedDate);
 }
 }

 Listing 8-4 shows you the JsonDateSerializer class that will be called by the JSON converter when
needed. This will happen automatically inside the HttpMessaConverter<T> class handled by the Spring
MVC. This class extends from the JsonSerializer class; it’s necessary to override the serialize method
that will be called when the serialization happens. This serializer is based on the JSON Jackson library. This
dependency is already included in the spring-boot-starter-web pom.

 Next, let’s look at the src/main/java/com/apress/spring/repository/JournalRepository.java
interface , which is the same one from previous chapters. See Listing 8-5 .

 Listing 8-5. src/main/java/com/apress/spring/repository/JournalRepository.java

 package com.apress.spring.repository;

 import org.springframework.data.jpa.repository.JpaRepository;
 import com.apress.spring.domain.JournalEntry;

 public interface JournalRepository extends JpaRepository<JournalEntry, Long> { }

 Listing 8-5 shows you the JournalRepository.java interface, which is the one that has all the JPA
actions and all the CRUD (Create-Read-Update-Delete) actions. Of course, you are going to need to modify it
to add some finders, but you will do that later in this chapter.

 Let’s run the app and see what happens:

 $./mvnw spring-boot:run

 After you run this command and then open a browser and go to http://localhost:8080 , you will get
some kind of message. Most likely an error about opening a type: application/hal+json or a Save File As
window because the browser doesn’t know how to handle this particular type of response.

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

156

 What you are getting from the application is a HAL+JSON response. The HAL (Hypertext Application
Language) is a representation of media, such as links. This is used by the HATEOAS (Hypermedia as the
Engine of Application State) as a way to manage REST endpoints through media links, but how does the
HATEOAS/HAL get here? Well, very simple. Remember that in the pom.xml file there is the spring-boot-
starter-data-rest dependency. This dependency will include the JPA models as a way to expose through
the HATEOAS media links for your REST API. This journal app is now an operational REST API web
application.

 Returning to the browser problem—how can you see the result of the application/hal+json format?
If you want to see it right away, you can open a terminal and execute the following command:

 $ curl -i http://localhost:8080
 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Content-Type: application/hal+json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Fri, 05 Feb 2016 00:12:29 GMT

 {
 "_links" : {
 "journalEntries" : {
 "href" : "http://localhost:8080/journalEntries{?page,size,sort}",
 "templated" : true
 },
 "profile" : {
 "href" : "http://localhost:8080/profile"
 }
 }
 }

 After executing the cURL command, you should get the same output, which shows the HAL+JSON type
format. If you want to use the browser, I suggest that you use Google Chrome and install the JSONView
add-on. If you do so, you can see the HAL+JSON type in your browser. Safari and Firefox have the same plugin/
add-on, but it doesn’t work properly all the time. See Figure 8-1 .

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

157

 Figure 8-1 shows you the browser view of the HAL+JSON type response. See that it defines several links,
such as http://localhost:8080/journalEntries . You will see a JSON format that exposes the _links
key with two additional entries: journalEntries (this is the plural of your JournalEntry domain class)
and profile . You can click on those links, but if you click in the first reference— journalEntries
(http://localhost:8080/journalEntries{?page,size,sort })—you will get an error, so you must adjust
the URL to be only http://localhost:8080/journalEntries . You can actually add default values to the
actual link but in this project we are not going to do that.

 If you click on the http://localhost:8080/profile you will be redirected to the ALPS metadata.
The ALPS is a data format for defining simple descriptions of application-level semantics. If you want to
know more about ALPS you can go here to http://alps.io/ . See Figure 8-2 .

 Figure 8-1. Google Chrome and the JSONView add-on at http://localhost:8080

http://alps.io/

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

158

 Figure 8-2 shows the result of going to one of the URLs defined; in this case the http://localhost:8080/
journalEntries URL. This is the result of using spring-boot-starter-data-rest and spring-boot-
starter-data-jpa , where you defined your interface that extends from the JpaRepository interface
(Listing 8-5).

 Another thing to notice is the _ embedded / journalEntries , which is actually the data that is pulled from
MySQL server. By default the Spring Data REST will create the plural of the entity , so the JournalEntry
class will become the journalEntries collection. Now, if you take a look at the MySQL server with the mysql
shell, you will notice that table create was entry due the @Table annotation in the JournalEntry class. So far
you don’t have any data.

 You can stop the app by pressing Ctrl+C on your keyboard. Now, let’s add some data. Create the
 src/main/resources/data.sql file. See Listing 8-6 .

 Listing 8-6. src/main/resources/data.sql

 INSERT INTO ENTRY(title,summary,created) VALUES('Get to know Spring Boot','Today I will
learn Spring Boot','2016-01-02 00:00:00.00');
 INSERT INTO ENTRY(title,summary,created) VALUES('Simple Spring Boot Project','I will do my
first Spring Boot project','2016-01-03 00:00:00.00');
 INSERT INTO ENTRY(title,summary,created) VALUES('Spring Boot Reading','Read more about
Spring Boot','2016-02-02 00:00:00.00');
 INSERT INTO ENTRY(title,summary,created) VALUES('Spring Boot in the Cloud','Learn Spring
Boot using Cloud Foundry','2016-02-05 00:00:00.00');

 You can run this application as usual:

 $./mvnw spring-boot:run

 Figure 8-2. http://localhost:8080/journalEntries

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

159

 And you can execute via the cURL command:

 $ curl -i http://localhost:8080/journalEntries
 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Content-Type: application/hal+json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Fri, 05 Feb 2016 02:22:54 GMT

 {
 "_embedded" : {
 "entry" : [{
 "title" : "Get to know Spring Boot",
 "created" : "2016-01-02",
 "summary" : "Today I will learn Spring Boot",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/api/journal/1"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/api/journal/1"
 }
 }
 }, {
 "title" : "Simple Spring Boot Project",
 "created" : "2016-01-03",
 "summary" : "I will do my first Spring Boot project",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/api/journal/2"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/api/journal/2"
 }
 }
 }, {
 "title" : "Spring Boot Reading",
 "created" : "2016-02-02",
 "summary" : "Read more about Spring Boot",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/api/journal/3"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/api/journal/3"
 }
 }
 }, {
 "title" : "Spring Boot in the Cloud",
 "created" : "2016-02-05",

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

160

 "summary" : "Learn Spring Boot using Cloud Foundry",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/api/journal/4"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/api/journal/4"
 }
 }
 }]
 },
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/api/journal"
 },
 "profile" : {
 "href" : "http://localhost:8080/api/profile/journal"
 },
 "search" : {
 "href" : "http://localhost:8080/api/journal/search"
 }
 },
 "page" : {
 "size" : 20,
 "totalElements" : 4,
 "totalPages" : 1,
 "number" : 0
 }
 }

 You will see something similar to the previous output. Or if you are using Google Chrome with the
JSONView add-on, you should see something like Figure 8-3 .

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

161

 Click one of the links from any entry. For example, click http://localhost:8080/journalEntries/1 or
use the cURL command:

 $ curl -i http://localhost:8080/journalEntries/1
 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Content-Type: application/hal+json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Fri, 05 Feb 2016 02:33:26 GMT

 Figure 8-3. http://localhost:8080 /journalEntries

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

162

 {
 "title" : "Get to know Spring Boot",
 "created" : "2016-01-02",
 "summary" : "Today I will learn Spring Boot",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries/1"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/journalEntries/1"
 }
 }
 }

 Now, it comes the fun part! You can post a value to the REST API. Just execute the following command
in a terminal window:

 $ curl -i -X POST -H "Content-Type:application/json" -d '{ "title":"Cloud
Foundry","summary":"Learn about Cloud Foundry and push a Spring Boot Application",
"created":"2016-04-05"}' http://localhost:8080/journalEntries
 HTTP/1.1 201 Created
 Server: Apache-Coyote/1.1
 Location: http://localhost:8080/journalEntries/5
 Content-Type: application/hal+json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Fri, 05 Feb 2016 02:50:16 GMT

 {
 "title" : "Cloud Foundry",
 "created" : "2016-04-05",
 "summary" : " Learn about Cloud Foundry and push a Spring Boot Application ",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries/5"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/journalEntries/5"
 }
 }
 }

 Yes! You have the GET, POST, PUT, PATCH, and DELETE HTTP methods, which you can run against the
 http://localhost:8080/journalEntries URL.

 Now stop your application (Ctrl+C). What about searching? Maybe you need to pass some parameters.
Let’s modify the JournalRepository and add the method queries. See Listing 8-7 .

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

163

 Listing 8-7. src/main/java/com/apress/spring/repository/JournalRepository.java

 package com.apress.spring.repository;

 import java.util.Date;
 import java.util.List;

 import org.springframework.data.jpa.repository.JpaRepository;
 import org.springframework.data.repository.query.Param;
 import org.springframework.format.annotation.DateTimeFormat;
 import org.springframework.format.annotation.DateTimeFormat.ISO;

 import com.apress.spring.domain.JournalEntry;

 public interface JournalRepository extends JpaRepository<JournalEntry, Long> {

 List<JournalEntry> findByCreatedAfter(@Param("after") @DateTimeFormat(iso =
ISO.DATE) Date date);

 List<JournalEntry> findByCreatedBetween(@Param("after") @DateTimeFormat(iso =
ISO.DATE) Date after,@Param("before") @DateTimeFormat(iso = ISO.DATE) Date before);

 List<JournalEntry> findByTitleContaining(@Param("word") String word);
 List<JournalEntry> findBySummaryContaining(@Param("word") String word);

 }

 Listing 8-7 shows you the new version of the JournalRepository.java interface. There are four query
methods with parameters marked by the @Param and @DateTimeFormat annotations. @Param has a value that
will define the parameter name to use for the URL. @DateTimeFormat is a helper for that parameter when the
type is the date value, meaning that you will need to pass a date in the form of yyyy-mm-dd, which is the ISO
date format.

 Now you can run your application:

 $./mvnw spring-boot:run

 And execute the following command in a different terminal window:

 $ curl -i http://localhost:8080/journalEntries

 When you execute this command, you will see at the end of the response a new URL in the _links section:

 ...
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries"
 },
 "profile" : {
 "href" : "http://localhost:8080/profile/journalEntries"
 },
 "search" : {
 "href" : "http://localhost:8080/journalEntries/search"
 }
 },

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

164

 "page" : {
 "size" : 20,
 "totalElements" : 4,
 "totalPages" : 1,
 "number" : 0
 }
 }

 You will find the search element pointing to http://localhost:8080/journalEntries/search . You can
query that URL with cURL or the browser:

 $ curl -i http://localhost:8080/journalEntries/search
 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Content-Type: application/hal+json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Fri, 05 Feb 2016 03:05:31 GMT

 {
 "_links" : {
 "findByCreatedAfter" : {
 "href" : "http://localhost:8080/journalEntries/search/findByCreatedAfter{?after}",
 "templated" : true
 },
 "findByTitleContaining" : {
 "href" : "http://localhost:8080/journalEntries/search/findByTitleContaining{?word}",
 "templated" : true
 },
 "findByCreatedBetween" : {
 "href" : "http://localhost:8080/journalEntries/search/findByCreatedBetween

{?after,before}",
 "templated" : true
 },
 "findBySummaryContaining" : {
 "href" : "http://localhost:8080/journalEntries/search/findBySummaryContaining{?word}",
 "templated" : true
 },
 "self" : {
 "href" : "http://localhost:8080/journalEntries/search"
 }
 }
 }

 You can search using the GET HTTP method. After you added the methods, they were converted into an
endpoint—that is, into RESTful API! So, by using the findByTitleContaining method, you can execute the
following command:

 $ curl -i http://localhost:8080/journalEntries/search/findByTitleContaining?word=Cloud
 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Content-Type: application/hal+json;charset=UTF-8

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

165

 Transfer-Encoding: chunked
 Date: Fri, 05 Feb 2016 03:07:12 GMT

 {
 "_embedded" : {
 "journalEntries" : [{
 "title" : "Spring Boot in the Cloud",
 "created" : "2016-02-05",
 "summary" : "Learn Spring Boot using Cloud Foundry",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries/4"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/journalEntries/4"
 }
 }
 }]
 },
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries/search/findByTitleContaining?word=Cloud"
 }
 }
 }

 What about the dates? You added several methods to look for a date. Let’s get all the entries after
2016-02-01 (assuming you are using the data.sql as in Listing 8-6):

 $ curl -i http://localhost:8080/journalEntries/search/findByCreatedAfter?after=2016-02-01
 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Content-Type: application/hal+json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Fri, 05 Feb 2016 03:20:25 GMT

 {
 "_embedded" : {
 "journalEntries" : [{
 "title" : "Spring Boot Reading",
 "created" : "2016-02-02",
 "summary" : "Read more about Spring Boot",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries/3"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/journalEntries/3"
 }
 }

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

166

 }, {
 "title" : "Spring Boot in the Cloud",
 "created" : "2016-02-05",
 "summary" : "Learn Spring Boot using Cloud Foundry",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries/4"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/journalEntries/4"
 }
 }
 }]
 },
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries/search/findByCreatedAfter?

after=2016-02-01"
 }
 }
 }

 If you want to try findByCreatedBetween , you can execute the following command (the URL is now
enclosed with double quotes for the two parameters— after and before):

 $ curl -i "http://localhost:8080/journalEntries/search/findByCreatedBetween?
after=2016-02-01&before=2016-03-01"
 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Content-Type: application/hal+json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Fri, 05 Feb 2016 03:24:07 GMT

 {
 "_embedded" : {
 "journalEntries" : [{
 "title" : "Spring Boot Reading",
 "created" : "2016-02-02",
 "summary" : "Read more about Spring Boot",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries/3"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/journalEntries/3"
 }
 }
 }, {
 "title" : "Spring Boot in the Cloud",
 "created" : "2016-02-05",
 "summary" : "Learn Spring Boot using Cloud Foundry",

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

167

 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries/4"
 },
 "journalEntry" : {
 "href" : "http://localhost:8080/journalEntries/4"
 }
 }
 }]
 },
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/journalEntries/search/findByCreatedBetween?

after=2016-02-01&before=2016-03-01"
 }
 }
 }

 This is amazing. By adding only a query method, you have all this functionality. As an exercise, you can
test the findBySummaryContaining search.

 You can the application by pressing Ctrl+C on your keyboard. Next, let’s create a web controller to show
the entries journal in a nice way. See Listing 8-8 .

 Listing 8-8. src/main/java/com/apress/spring/web/JournalController.java

 package com.apress.spring.web;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;
 import org.springframework.web.bind.annotation.RestController;
 import org.springframework.web.servlet.ModelAndView;

 import com.apress.spring.repository.JournalRepository;

 @RestController
 public class JournalController {

 private static final String VIEW_INDEX = "index";

 @Autowired
 JournalRepository repo;

 @RequestMapping(value="/", method = RequestMethod.GET)
 public ModelAndView index(ModelAndView modelAndView){
 modelAndView.setViewName(VIEW_INDEX);
 modelAndView.addObject("journal", repo.findAll());
 return modelAndView;
 }
 }

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

168

 Listing 8-8 shows you the JournalController.java class. Let’s examine it:

• @RestController . This class is marked with the @RestController annotation,
making it available as a web controller for the DispatcherServlet .

• @RequestMapping . This annotation is used over the index method that will become
the request handler for all incoming requests at the root level. The index method
has a modelAndView parameter that will be instantiated in the request. Inside the
method, the modelAndView instance will set the view (index.html) and the model
(journal) with all the elements found by calling the repo.findAll method. The
 index method will return the modelAndView instance.

• @Autowired . The JournalRepository interface will be instantiated and used here by
the index method. Remember that this class extends from the JpaRepository , which
means that it will generate all the CRUD and search logic needed.

 Before you run the application, make sure you have the same files as in Chapter 2 . You need the following:

• src/main/resources/static/css folder with all the CSS files
(bootstrap-glyphicons.css , bootstrap.min.css , and style.css)

• src/main/resources/templates folder with the index.html file, which is shown in
Listing 8-9

 Listing 8-9. src/main/resources/templates/index.html

 <!doctype html>
 <html lang="en-US" xmlns:th="http://www.thymeleaf.org">
 <head>
 <meta charset="utf-8"></meta>
 <meta http-equiv="Content-Type" content="text/html"></meta>
 <title>Spring Boot Journal</title>
 <link rel="stylesheet" type="text/css" media="all" href="css/bootstrap.min.css"></link>
 <link rel="stylesheet" type="text/css" media="all" href="css/bootstrap-glyphicons.css">
</link>

 <link rel="stylesheet" type="text/css" media="all" href="css/styles.css"></link>
 </head>

 <body>
 <div class="container">
 <h1>Spring Boot Journal</h1>
 <ul class="timeline">
 <div th:each="entry,status : ${journal}">
 <li th:attr="class=${status.odd}?'timeline-inverted':''">
 <div class="tl-circ"></div>
 <div class="timeline-panel">
 <div class="tl-heading">
 <h4>TITLE</h4>
 <p><small class="text-muted"><i class="glyphicon glyphicon-time"></i>

CREATED</small></p>
 </div>
 <div class="tl-body">
 <p>SUMMARY</p>
 </div>

http://dx.doi.org/10.1007/978-1-4842-1431-2_2

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

169

 </div>

 </div>

 </div>
 </body>
 </html>

 Listing 8-9 shows you the index.html file. Remember that this file is using the Thymeleaf view engine.
If you want to know more about the Thymeleaf engine, visit http://www.thymeleaf.org/ .

 Now, if you rerun your application and point to the browser to http://localhost:8080 , you will see
something similar to Figure 8-4 .

 Figure 8-4. http://localhost:8080

http://www.thymeleaf.org/

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

170

 Figure 8-4 shows the result of having a web controller. You can still point to http://localhost:8080/
journalEntries and see the HAL+JSON response, but I think it would be nice if you had a separate path for
your REST calls, something like /api path. That’s one of the benefits of using Spring Boot; it’s so configurable.
Go to the src/main/resources/application.properties file and add the following line to the end:

 spring.data.rest.basePath=/api

 If you are running you application, terminate it by pressing Ctrl+C. Then you can rerun your
application. You should now have the HAL+JSON response in the http://localhost:8080/api URL. If you
want to add more entries, you need to post to the http://localhost:8080/api/journalEntries URL.

 After testing the new endpoint, you can stop your application.
 That journalEntries path is too long, but it can be modified!. Let’s change it. Go to the src/main/java/

com/apress/spring/repository/JournalRepository.java interface and make sure it looks like the final
version shown in Listing 8-10 .

 Listing 8-10. Final Version of src/main/java/com/apress/spring/repository/JournalRepository.java

 package com.apress.spring.repository;

 import java.util.Date;
 import java.util.List;

 import org.springframework.data.jpa.repository.JpaRepository;
 import org.springframework.data.repository.query.Param;
 import org.springframework.data.rest.core.annotation.RepositoryRestResource;
 import org.springframework.format.annotation.DateTimeFormat;
 import org.springframework.format.annotation.DateTimeFormat.ISO;
 import org.springframework.transaction.annotation.Transactional;

 import com.apress.spring.domain.JournalEntry;

 @Transactional
 @RepositoryRestResource(collectionResourceRel = "entry", path = "journal")
 public interface JournalRepository extends JpaRepository<JournalEntry, Long> {

 List<JournalEntry> findByCreatedAfter(@Param("after") @DateTimeFormat(iso =
ISO.DATE) Date date);

 List<JournalEntry> findByCreatedBetween(@Param("after") @DateTimeFormat(iso =
ISO.DATE) Date after,@Param("before") @DateTimeFormat(iso = ISO.DATE) Date before);

 List<JournalEntry> findByTitleContaining(@Param("word") String word);
 List<JournalEntry> findBySummaryContaining(@Param("word") String word);

 }

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

171

 Listing 8-10 shows you the final version of the JournalRepository interface. Two annotations were
added. @Transactional makes all the REST calls transactional, which protects the data where there are
concurrent calls to the REST API. The @RepositoryRestResource annotation modifies the path to journal
and, instead of grabbing the plural names, it will call entry .

 If you rerun your application, you will have a better URL to get to the REST API:
 http://localhost:8080/api/journal . Feel free to inspect the URL and search. It will now be the
 http://localhost:8080/api/journal/search URL.

 How about that! You have a very cool journal application! Did you notice that you didn’t do anything in
the web controller? In the past, you needed to create the save, delete, find, and update methods. But not any
more; you have spring-data-rest and very good solution for a web application.

 Now, you can stop your application by pressing Ctrl+C.

 Playing with the HAL Browser
 One of the newest features of spring-data-rest and the web components is that you can install a HAL
browser that works out of the box. The only thing you need to do is add the following dependency to your
 pom.xml file.

 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-rest-hal-browser</artifactId>
 </dependency>

 If you rerun your application, go to the http://localhost:8080/api/browser . You should get
something similar to Figure 8-5 .

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

172

 Figure 8-5 shows you the HAL browser, which is a very nice tool to inspect your REST API. Add
 /api/journal to the Explorer field and click the Go button. You should see all the journal entries.
See Figure 8-6 .

 Figure 8-5. http://localhost:8080/api/browser

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

173

 Figure 8-6 shows you the result of exploring the / api/journal . Inserting data is also easy. Note the Links
section in Figure 8-5 . Click the yellow icon belonging to the entry caption (in its NON-GET column). This will
bring up the window you’ll use to input the data. See Figure 8-7 .

 Figure 8-6. /api/journal in the Explorer field

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

174

 Figure 8-7 shows you the journal entry form. As you can see, you have options. Feel free to click the links
and go back to your home and see all the data. Nice work! You created a Spring Boot web application with a
REST API.

 Figure 8-7. NON-GET action in journal entry form

CHAPTER 8 ■ WEB DEVELOPMENT WITH SPRING BOOT

175

 Summary
 This chapter showed you how to create a more robust journal application by using spring-data-rest and all
its features. Earlier chapters showed you how to extend the AbstractController class to get the Spring MVC
working, but since version 2.5 of the Spring Framework, in the web module (spring-web-mvc), you can use
annotations instead, such as @Controller , @RestController , @RequestMapping , @ResponseBody , and so on.

 It’s important to note that Spring Boot simplifies web development by removing all XML (Spring app
context and web.xml) configuration files.

 The next chapter discusses how to use security, and of course you are going to learn how to secure your
journal application.

177© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_9

 CHAPTER 9

 Security with Spring Boot

 This chapter shows you how to use security in your Spring Boot applications in order to secure your web
application. You learn everything from using basic security to using OAuth. Security has become a primary
and important factor for desktop, web, and mobile applications in the last decade. But security is a little
hard to implement because you need to think about everything—cross-site scripting, authorization, and
authentication, secure sessions, identification, encryption, and lot more. There is still a lot to do just to
implement simple security in your applications.

 The Spring security team has being working hard to make it easier for developers to bring security to
their applications, from securing service methods to entire web applications. Spring security is centered
around AuthenticationProvider and specialized UserDetailsService ; it also provides integration with
identity provider systems, such as LDAP, Active Directory, Kerberos, PAM, AOuth, and so on. You are going
to see and review a few of them in the examples in this chapter.

 Simple Security for Spring Boot
 The starter pom you need is spring-boot-starter-security , as you probably knew. The examples in this
chapter are based on Chapter 8 ’s examples. Let’s start by creating the project. Open a terminal window and
execute the following commands:

 $ mkdir spring-boot-journal-secure
 $ cd spring-boot-journal-secure
 $ spring init -d=web,thymeleaf,data-jpa,data-rest,mysql,security -g=com.apress.spring
-a=spring-boot-journal-secure --package-name=com.apress.spring -name=spring-boot-journal-
secure -x

 Start by reviewing the pom.xml . See Listing 9-1 .

 Listing 9-1. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-journal-secure</artifactId>

http://dx.doi.org/10.1007/978-1-4842-1431-2_8

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

178

 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-journal-secure</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

179

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
 </project>

 Listing 9-1 shows the pom.xml , and the new addition is spring-boot-starter-security .
Remember, because this app is the same one as in the previous chapter (the journal app), you need still the
 mysql-connector-java dependency driver.

 Next, copy all the journal classes (src/main/java) and all the web, SQL, and property files (src/main/
resources) from the previous chapter; you should end up with something similar to Figure 9-1 .

 Figure 9-1. The spring-boot- journal-secure project structure

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

180

 Next, let’s run it with the usual command:

 $./mvnw spring-boot:run

 After executing this command, you should be able to see a new line about the
 AuthenticationManagerConfiguration class . Something like the following output:

 ...
 INFO 29387 --- [] .e.DelegatingFilterProxyRegistrationBean : Mapping filter:
'springSecurityFilterChain' to: [/*]
 INFO 29387 --- [] o.s.b.c.e.ServletRegistrationBean : Mapping servlet:
'dispatcherServlet' to [/]
 INFO 29387 --- [] b.a.s.AuthenticationManagerConfiguration :

 Using default security password: f3f818e9-a36f-48ca-9b44-5ed4b3224384

 INFO 29387 --- [] o.s.s.web.DefaultSecurityFilterChain : Creating filter chain:
Ant [pattern='/css/**'], []
 INFO 29387 --- [] o.s.s.web.DefaultSecurityFilterChain : Creating filter chain:
Ant [pattern='/js/**'], []
 ...

 In the console, you should see the text: "Using default security password: xxx-xxxx-xxx ..."
with a GUID (Global Unique ID) that you will use to authenticate. If you go to your browser and visit
http://localhost:8080 , you should see something similar to Figure 9-2 .

 Figure 9-2. Basic security authentication on http://localhost:8080

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

181

 Figure 9-2 shows the basic security window, and of course the fields are going to be empty in the
beginning. I’ve just put the values that you will need to enter. By default, the AuthenticationManager
interface implementation has a single username, called user . So, in the User Name box, you enter the value
 user . The password is the GUID that you saw on the logs—a random password. This example uses the
 f3f818e9-a36f-48ca-9b44-5ed4b3224384 GUID. This GUID changes every time you run the application.

 That’s it! That’s the easiest and most basic security you can add to your web application, and the only
thing you did was add the spring-boot-starter-security pom. When the Spring Boot app starts, the auto-
configuration will identify that you have the web and the security dependencies and it will create the basic
security authentication. Of course, this is not very useful with production apps.

 Security Using the application.properties File
 Remember that with Spring Boot you can configure the security of your web app by using the application.
properties file. First stop your application by pressing Ctrl+C on your keyboard; then go to src/main/
resources/application.properties and add the security section to the end of the file. You’ll have
something similar to Listing 9-2 .

 Listing 9-2. src/main/resources/ application.properties

 spring.datasource.url = jdbc:mysql://localhost:3306/journal
 spring.datasource.username = springboot
 spring.datasource.password = springboot
 spring.datasource.testWhileIdle = true
 spring.datasource.validationQuery = SELECT 1

 spring.jpa.show-sql = true
 spring.jpa.hibernate.ddl-auto = create-drop
 spring.jpa.hibernate.naming-strategy = org.hibernate.cfg.ImprovedNamingStrategy
 spring.jpa.properties.hibernate.dialect = org.hibernate.dialect.MySQL5Dialect

 spring.data.rest.basePath=/api

 # Security
 security.user.name = springboot
 security.user.password = isawesome

 Listing 9-2 shows the application.properties file and all its sections. At the very end of the file is the
security section where you can specify the username and password for the basic authentication. Now if you
run the journal app with the command:

 $./mvnw spring-boot:run

 And then go to the http://localhost:8080 URL, you can test your new username (springboot) and
password (isawesome) and see the result. You can use cURL to access your /api and make sure it’s also
secured with:

 $ curl -i http:// springboot:isawesome @localhost:8080/api
 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 X-Content-Type-Options: nosniff
 X-XSS-Protection: 1; mode=block
 Cache-Control: no-cache, no-store, max-age=0, must-revalidate

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

182

 Pragma: no-cache
 Expires: 0
 X-Frame-Options: DENY
 Strict-Transport-Security: max-age=31536000 ; includeSubDomains
 Content-Type: application/hal+json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Sat, 06 Feb 2016 23:00:29 GMT

 {
 "_links" : {
 "entry" : {
 "href" : "http://localhost:8080/api/journal{?page,size,sort}",
 "templated" : true
 },
 "profile" : {
 "href" : "http://localhost:8080/api/profile"
 }
 }
 }

 Using this command, you can see that passing the username:password gives you access to the
REST API. You can stop your application now.

 In-Memory Security
 Using the application.properties file isn’t a real solution. Let’s see how you can use in-
memory security. You are going to create a new src/main/java/com/apress/spring/config/
InMemorySecurityConfiguration.java file, as shown in Listing 9-3 .

 Listing 9-3. src/main/java/com/apress/spring/config/InMemorySecurityConfiguration.java

 package com.apress.spring.config;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.context.annotation.Configuration;
 import org.springframework.security.config.annotation.authentication.builders.
AuthenticationManagerBuilder;
 import org.springframework.security.config.annotation.authentication.configuration.
EnableGlobalAuthentication;

 @Configuration
 @EnableGlobalAuthentication
 public class InMemorySecurityConfiguration {

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {
 auth.inMemoryAuthentication().withUser("user").password("password").

roles("USER")
 .and().withUser("admin").password("password").

roles("USER", "ADMIN");
 }
 }

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

183

 Listing 9-3 shows the InMemorySecurityConfiguration.java class . Let’s dig into it:

• @Configuration . This annotation tells the Spring Boot to use it as part of the
configuration; it’s similar to using XML files.

• @EnableGlobalAuthentication . This annotation marks the class and configures
all the necessary beans to activate the security on the application; it signals
that the annotated class can be used to configure a global instance of the
 AuthenticationManagerBuilder .

• @Autowired/configureGlobal(AuthenticationManagerBuilder auth) .
This method is called to auto-wire the AuthenticationManagerBuilder . The
 AuthenticationManagerBuilder allows you to easily build your authentication by
adding UserDetailsService and the authentication providers. You are going to learn
more about the options in the following sections. In this case, it will use in-memory
because it’s calling the inMemoryAuthentication method and setting up two users
with their passwords and roles.

 Before you run the application, comment out the security.user.name and security.user.password
properties from the src/main/resources/application.properties file. Just add a # sign in front of them,
like this:

 #security.user.name=springboot
 #security.user.password=isawesome

 Now you can run the journal app as usual:

 $./mvnw spring-boot:run

 After execute this command, go to http://localhost:8080 . You should be prompted for the username
and password. Use the ones in the code—for example, user as username and password as password. After
testing this code, you can stop your application.

 Security Using a Database
 Using the in-memory isn’t a real solution either, but there are alternatives. How about using a database?
Normally this is one of the most common approaches to saving users. Let’s see what you need to modify in
order to use a database as a security mechanism.

 You are using MySQL as a database engine, so let’s continue using that. First, you are going to create a
security configuration. Create the src/main/java/apress/spring/config/JdbcSecurityConfiguration.
java file. See Listing 9-4 .

 Listing 9-4. src/main/java/apress/spring/config/JdbcSecurityConfiguration.java

 package com.apress.spring.config;

 import java.sql.ResultSet;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.Configuration;
 import org.springframework.jdbc.core.JdbcTemplate;
 import org.springframework.jdbc.core.RowMapper;

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

184

 import org.springframework.security.config.annotation.authentication.builders.
AuthenticationManagerBuilder;
 import org.springframework.security.config.annotation.authentication.configuration.
EnableGlobalAuthentication;
 import org.springframework.security.config.annotation.authentication.configurers.
GlobalAuthenticationConfigurerAdapter;
 import org.springframework.security.core.authority.AuthorityUtils;
 import org.springframework.security.core.userdetails.User;
 import org.springframework.security.core.userdetails.UserDetailsService;

 @Configuration
 @EnableGlobalAuthentication
 public class JdbcSecurityConfiguration extends GlobalAuthenticationConfigurerAdapter{

 @Bean
 public UserDetailsService userDetailsService(JdbcTemplate jdbcTemplate) {
 RowMapper<User> userRowMapper = (ResultSet rs, int i) ->
 new User(
 rs.getString("ACCOUNT_NAME"),
 rs.getString("PASSWORD"),
 rs.getBoolean("ENABLED"),
 rs.getBoolean("ENABLED"),
 rs.getBoolean("ENABLED"),
 rs.getBoolean("ENABLED"),
 AuthorityUtils.createAuthorityList("ROLE_USER", "ROLE_ADMIN"));
 return username ->
 jdbcTemplate.queryForObject("SELECT * from ACCOUNT where ACCOUNT_NAME = ?",
 userRowMapper, username);
 }

 @Autowired
 private UserDetailsService userDetailsService;

 @Override
 public void init(AuthenticationManagerBuilder auth) throws Exception {
 auth.userDetailsService(this.userDetailsService);
 }
 }

 Listing 9-4 shows the Jdbc SecurityConfiguration.java class . Let’s examine it:

• @Configuration . The JdbcSecurityConfiguration.java class is marked with
the @Configuration , which allows Spring Boot to recognize this class as another
configuration file where normally you declare your beans. It’s the same as using an
XML file.

• @EnableGlobalAuthentication . This annotation marks the class and configures all
the necessary beans to activate the security on the application.

• GlobalAuthenticationConfigurerAdapter . The JdbcSecurityConfiguration.java
class extends from the GlobalAuthenticationConfigurerAdapter abstract class.
This class also implements the SecurityConfigurer interface and exposes an init
method that will be overridden in the JdbcSecurityConfiguration.java class.

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

185

• init(AuthenticationManagerBuilder) . Overrides the
 GlobalAuthenticationConfigurerAdapter init method. In this method, the
 AuthenticationManagerBuilder instance is used to build in-memory, LDAP, or
JDBC-based authentication by setting up a UserDetailsService instance.

• @Bean/userDetailsService(JdbcTemplate) . This method will set up a
 JdbcTemplate instance that will create a new org.springframework.security.
core.userdetails.User instance after a ResultSet is returned by using
 RowMapper that will match its constructor (User). This User instance accepts the
 username , password , enabled , accountNonExpired , credentialsNonExpired ,
 accountNonLocked , and authorities collections as the constructor’s parameters.
How the ResultSet will match the RowMapper ? Well, the Spring Security team
provides a SQL schema that will work by adding the users. Don’t worry, as you are
going to see the SQL schema in just a moment. If you wonder where this is, you can
go to https://docs.spring.io/spring-security/site/docs/current/reference/
html/appendix-schema.html .

• @Autowired/userDetailsService . This instance is retrieved from the
 userDetailsService method because it's declared as a bean.

 Remember that you have the InMemorySecurityConfiguration class, so this means that only one can
be used, not both. So you can leave it and the JdbcSecurityConfiguration will take precedence and all
the users will be in the MySQL database. Another option is that you can comment out the main annotation
(@Configuration and @EnableGlobalAuthentication) and it will be the same. The best solution is to use
profiles, by using the @Profile annotation and activating the profiles at run time with -Dspring.active.
profiles=memory or whatever name you give to the profile.

 Because this is a JDBC security, you need to add the table with its data to the src/main/resources/
schema.sql file. Here it will be for the table description and for the src/main/resources/data.sql .
See Listings 9-5 and 9-6 .

 Listing 9-5. src/main/resources/schema.sql

 -- SECURITY: USER ACCOUNT
 DROP TABLE IF EXISTS account;
 CREATE TABLE account (ACCOUNT_NAME VARCHAR(255) NOT NULL,
 PASSWORD VARCHAR(255) NOT NULL,
 ID SERIAL,
 ENABLED BOOL DEFAULT true) ;

 -- JOURNAL TABLE: ENTRY
 DROP TABLE IF EXISTS entry;
 CREATE TABLE entry (
 ID BIGINT(20) NOT NULL AUTO_INCREMENT,
 CREATED DATETIME DEFAULT NULL,
 SUMMARY VARCHAR(255) DEFAULT NULL,
 TITLE VARCHAR(255) DEFAULT NULL,
 PRIMARY KEY (ID)
);

 Listing 9-5 shows the schema.sql , which contains the mandatory account table for the security.
This table is mandatory and is an adaptation from the Spring Security documents: https://docs.spring.
io/spring-security/site/docs/current/reference/html/appendix-schema.html . Also notice that the

https://docs.spring.io/spring-security/site/docs/current/reference/html/appendix-schema.html
https://docs.spring.io/spring-security/site/docs/current/reference/html/appendix-schema.html
https://docs.spring.io/spring-security/site/docs/current/reference/html/appendix-schema.html
https://docs.spring.io/spring-security/site/docs/current/reference/html/appendix-schema.html

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

186

journal table entry is defined, because when you create schema.sql the property (spring.jpa.hibernate.
ddl-auto = create-drop) from the application.properties file will drop the table recently created.
That means that you need to comment out the property spring.jpa.hibernate.ddl-auto=create-drop
(from the application.properties) so it won’t affect the behavior. If you leave this property in, you’ll get
something like: "Can't find journal.entry table error" .

 Listing 9-6. src/main/resources/data.sql

 -- USERS IN JOURNAL
 INSERT INTO ACCOUNT(account_name , password) VALUES('springboot', 'isawesome');
 INSERT INTO ACCOUNT(account_name , password) VALUES('springsecurity', 'isawesometoo');

 -- JOURNAL DATA
 INSERT INTO ENTRY(title,summary,created) VALUES('Get to know Spring Boot','Today I will
learn Spring Boot','2016-01-02 00:00:00.00');
 INSERT INTO ENTRY(title,summary,created) VALUES('Simple Spring Boot Project','I will do my
first Spring Boot project','2016-01-03 00:00:00.00');
 INSERT INTO ENTRY(title,summary,created) VALUES('Spring Boot Reading','Read more about
Spring Boot','2016-02-02 00:00:00.00');
 INSERT INTO ENTRY(title,summary,created) VALUES('Spring Boot in the Cloud','Learn Spring
Boot using Cloud Foundry','2016-02-05 00:00:00.00');

 Listing 9-6 shows data.sql . You will add the two account users and the journal data to this file.
Now you are ready to run the journal app. Remember before you run it to comment out the spring.jpa.
hibernate.ddl-auto = create-drop property from the application.properties .

 To run it, use the normal command:

 $./mvnw spring-boot:run

 After executing the command, you can go to http://localhost:8080 and use the springsecurity
username and the isawesometoo password. That’s it; it’s very easy to implement JDBC security.

 Now stop your application. Let’s continue.

 Securing Resources
 Now you know how to secure the entire journal app, but sometimes you will required to secure just some
parts of your application. In this section you will secure the /api endpoint, because you are exposing POST,
PUT, and DELETE actions and you don’t want anybody to access it without credentials.

 You are going to create the src/main/java/com/apress/spring/config/
ResourceSecurityConfiguration.java class. This class will have all that you need for securing your
resources. See Listing 9-7 (version 1).

 Listing 9-7. src/main/java/com/apress/spring/config/ResourceSecurityConfiguration.java (Version 1)

 package com.apress.spring.config;

 import org.springframework.context.annotation.Configuration;
 import org.springframework.security.config.annotation.authentication.configuration.
EnableGlobalAuthentication;
 import org.springframework.security.config.annotation.web.builders.HttpSecurity;
 import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

187

 @Configuration
 @EnableGlobalAuthentication
 public class ResourceSecurityConfiguration extends WebSecurityConfigurerAdapter{

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/").permitAll()
 .antMatchers("/api/**").authenticated()
 .and()
 .httpBasic();

 }

 }

 Listing 9-7 shows the ResourceSecurityConfiguration class . Let’s review it:

• @Configuration . This annotation is picked up by Spring as part of the context
configuration. Here is where you declare beans or in this case configure part of the
security.

• WebSecurityConfigurerAdapter . There are different ways to configure the resources of
your web application and extending from the abstract WebSecurityConfigurerAdapter
class is one of them. One of the common patterns is to override the
 configure(HttpSecurity) and configure(AuthenticationManagerBuilder) methods,
but because you have the init(AuthenticationManagerBuilder) method overridden
from the GlobalAuthenticationConfigurerAdapter of the JdbcSecurityConfiguration
class, it’s not necessary to do it here. That’s why the only method you need to override
is the one with the HttpSecurity instance as a parameter.

• configure(HttpSecurity) . This method is overridden from the abstract class
 WebSecurityConfigurerAdapter , and here is where you specify which resources
to secure. In this case, the HttpSecurity instance class allows you to configure
web-based security for specific HTTP requests. By default it will be applied to all
requests, but you can restrict it by using its fluent API. In the example, you get into
the root (http://localhost:8080) of your web app with the .antMatchers("/").
permitAll() call and restrict the endpoint /api with .antMatchers("/api/**").
authenticated() call by making this restricting as HttpBasicConfigurer security .

 Let’s test it. Run you journal app by executing the following command:

 $./mvnw spring-boot:run

 If you go to your browser and point to the http://localhost:8080 URL, you will see the journal
entries right away; you don’t have to enter the username and password anymore. Now, if you go to the
 http://localhost:8080/api URL, you will be prompted for the username and password! Excellent—you
have secured your REST API endpoints.

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

188

 Let’s test the same app using the command line. Open another terminal windows and execute the
following command:

 $ curl -i http://localhost:8080/api
 HTTP/1.1 401 Unauthorized
 Server: Apache-Coyote/1.1
 X-Content-Type-Options: nosniff
 X-XSS-Protection: 1; mode=block
 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
 Pragma: no-cache
 Expires: 0
 X-Frame-Options: DENY
 Set-Cookie: JSESSIONID=CEE76CAE303F0A7819357DBF5CD017D7; Path=/; HttpOnly
 WWW-Authenticate: Basic realm="Realm"
 Content-Type: application/json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Tue, 09 Feb 2016 17:32:20 GMT

 {"timestamp":1455039140053,"status":401,"error":"Unauthorized","message":"Full
authentication is required to access this resource","path":"/api"}

 You will see that calling directly to the /api endpoint gives you the JSON message with some errors, like
the status 401 and the unauthorized errors. This means that you need to pass the username and password.
You can execute either of these two commands:

 $ curl -i http://springboot:isawesome@localhost:8080/api

 Or:

 $ curl -i -u springboot:isawesome http://localhost:8080/api
 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 X-Content-Type-Options: nosniff
 X-XSS-Protection: 1; mode=block
 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
 Pragma: no-cache
 Expires: 0
 X-Frame-Options: DENY
 Set-Cookie: JSESSIONID=2E8653866CBBBBB7070A715E404A4C72; Path=/; HttpOnly
 Content-Type: application/hal+json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Tue, 09 Feb 2016 17:36:23 GMT

 {
 "_links" : {
 "entry" : {
 "href" : "http://localhost:8080/api/journal{?page,size,sort}",
 "templated" : true
 },

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

189

 "profile" : {
 "href" : "http://localhost:8080/api/profile"
 }
 }
 }

 Both commands are passing the username and password, so now you have full access to the /api
endpoint. Of course, this offers a way to secure resources, but users are used to seeing a login form to access
some restricted area. Remember that the HttpSecurity class has a fluent API (a builder), so it already has an
integrated login form! Next, stop the app so you can modify some code. See Listing 9-8 , which is version 2 of
the ResourceSecurityConfiguration.java class.

 Listing 9-8. src/main/java/com/apress/spring/config/ResourceSecurityConfiguration.java (Version 2)

 package com.apress.spring.config;

 import org.springframework.context.annotation.Configuration;
 import org.springframework.security.config.annotation.web.builders.HttpSecurity;
 import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

 @Configuration
 public class ResourceSecurityConfiguration extends WebSecurityConfigurerAdapter{

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/").permitAll()
 .antMatchers("/api/**").authenticated()
 .and()
 .formLogin();
 }

 }

 Listing 9-8 shows version 2 of the ResourceSecurityConfiguration.java class . Let’s examine it:

• and().formLogin() . This is the only change. You removed the and().httpBasic()
call and replaced it with the and().formLogin() call. When you try to access the
/api endpoint it will redirect you to a basic web form (http://localhost:8080/login).
After entering the username and password, you will be redirected to the /api
endpoint.

 You can run your application as usual. You can go to http://localhost:8080/api , where you will see
something similar to Figure 9-3 .

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

190

 Figure 9-3 shows the result of accessing the http://localhost:8080/api . It will redirect to the
http://localhost:8080/login page. After you provide the correct credentials, it will redirect to the URL
you were looking for, which is http://localhost:8080/api , because now you are authenticated. As you can
see, it’s very easy to add a login form. Now you can stop your application.

 Maybe you are wondering whether you can have custom login and logout forms. Yes,
you can, and it’s very easy to implement them. See Listing 9-9 , which shows version 3 of the
 ResourceSecurityConfiguration.java class.

 Listing 9-9. src/main/java/com/apress/spring/config/ResourceSecurityConfiguration.java (Version 3)

 package com.apress.spring.config;

 import org.springframework.context.annotation.Configuration;
 import org.springframework.security.config.annotation.web.builders.HttpSecurity;
 import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

 Figure 9-3. http://localhost:8080/api ➤ redirects to ➤ http://localhost:8080/login url

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

191

 @Configuration
 public class ResourceSecurityConfiguration extends WebSecurityConfigurerAdapter{

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/").permitAll()
 .antMatchers("/api/**").authenticated()
 .and()
 .formLogin().loginPage("/login").permitAll()
 .and()
 .logout().permitAll();

 }

 }

 Listing 9-9 shows version 3 of the ResourceSecurityConfiguration.java class . Let’s examine it:

• formLogin().loginPage("/login").permitAll() . This call uses a login page. This
page is your custom page. You are going to see its contents in a few more lines.

• logout().permitAll() . This call has a logout endpoint that you can access to clear
all credentials.

 Both lines, for the login and logout, end with the permitAll() method call. This makes them accessible
with any authorization, which is what you want. You don’t want to secure the login and logout endpoint, right?

 Next, let’s create the src/main/resources/templates/login.html page. See Listing 9-10 .

 Listing 9-10. src/main/resources/templates/login.html

 <!DOCTYPE html>
 <html xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Login</title>
 <link rel="stylesheet" type="text/css" media="all" href="css/bootstrap.min.css">

</link>
 <link rel="stylesheet" type="text/css" media="all" href="css/bootstrap-glyphicons.

css"></link>
 <link rel="stylesheet" type="text/css" media="all" href="css/styles.css"></link>
 </head>
 <body>
 <div class="container">
 <div class="content">
 <p th:if="${param.logout}" class="alert">You have been logged out</p>
 <p th:if="${param.error}" class="alert alert-error">There was an error, please

try again</p>
 <h2>Login to Spring Boot Journal</h2>
 <form name="form" th:action="@{/login}" action="/login" method="POST" >
 <input type="text" name="username" value="" placeholder="Username" />
 <input type="password" name="password" placeholder="Password" />

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

192

 <input type="submit" id="login" value="Login" class="btn btn-primary" />
 </form>
 </div>
 </div>
 </body>
 </html>

 Listing 9-10 shows the login.html page . You’re using the Thymeleaf to get access to the correct post
endpoint (with the th:action and th:if) and using some parameters, but let’s consider it in more detail:

• th:if="${param.logout}" / th:if="${param.error}" . These are Thymeleaf
conditionals, and they are asking for the parameter logout and error. So if the
endpoint is /login?logout it will trigger the /logout endpoint (clearing all
credentials) and it will show the message: You have been logged out . If the
endpoint is /login?error it will display the message: There was an error, please
try again . The error will be triggered when you enter a bad password or username.

• th:action="@{/login}" / method="POST" will post the username and password
to the /login endpoint. If it succeeds, it will redirect to the /api endpoint; if not, it
will trigger an error message.

• <input> . The input tags for the username and password must be named username
and password . This is mandatory, but you can override them by providing the
parameter names in the UsernamePasswordAuthenticationFilter class.

 To activate the /logout , the protected endpoint is the /api and the response is always a HAL+JSON, so
you can click a button to log out from the main page, the index.html page. See Listing 9-11 .

 Listing 9-11. src/main/resources/templates/index.html (Version 2)

 <!doctype html>
 <html lang="en-US" xmlns:th="http://www.thymeleaf.org" xmlns:sec="http://www.thymeleaf.org/
extras/spring-security" >
 <head>
 <meta charset="utf-8"></meta>
 <meta http-equiv="Content-Type" content="text/html"></meta>
 <title>Spring Boot Journal</title>
 <link rel="stylesheet" type="text/css" media="all" href="css/bootstrap.min.css"></link>
 <link rel="stylesheet" type="text/css" media="all" href="css/bootstrap-glyphicons.css">
</link>

 <link rel="stylesheet" type="text/css" media="all" href="css/styles.css"></link>
 </head>

 <body>
 <div class="container">
 <h1>Spring Boot Journal</h1>
 <p sec:authorize="isAuthenticated()">
 <form th:action="@{/logout}" method="post">
 <input type="submit" value="Sign Out"/>
 </form>
 </p>
 <ul class="timeline">
 <div th:each="entry,status : ${journal}">

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

193

 <li th:attr="class=${status.odd}?'timeline-inverted':''">
 <div class="tl-circ"></div>
 <div class="timeline-panel">
 <div class="tl-heading">
 <h4>TITLE</h4>
 <p><small class="text-muted">
 <i class="glyphicon glyphicon-time"></i>
 CREATED
 </small></p>
 </div>
 <div class="tl-body">
 <p>SUMMARY</p>
 </div>
 </div>

 </div>

 </div>
 </body>
 </html>

 Listing 9-11 shows version 2 of the index.html page , but what is different from version 1? Let’s examine it:

• xmlns:sec . There is a new namespace, xmlns:sec , that points to the Thymeleaf
extras and the Spring security tags/attributes. This means that you are going to use
this namespace for something.

• sec:authorized . This attribute is part of the Thymeleaf library and it will execute
the isAuthenticated() method. This method is a global method of the main web
security, so this attribute knows how to access the global security and execute the
method. If the current user is authenticated, it will show a small form that contains
the post to the /logout endpoint.

• th:action="@{/logout}" method="post" . Here the endpoint is the /logout and
 must be a POST in order to work. If the user is authenticated the Sign Out button will
appear. If you click it, it will go to the /logout endpoint (clearing all credentials) and
will redirect to the /login?logout endpoint automatically.

 You are almost there! Don’t run your journal app yet! Are you missing something? Yes, there are two
things to do. First you need to modify your web JournalController . In the login.html you declared the
/login , and the ResourceSecurityConfiguration is also declaring the /login endpoint. So, right now the
controller doesn’t know where to locate the /login endpoint. See Listing 9-12 .

 Listing 9-12. src/main/java/com/apress/spring/web/JournalController.java

 package com.apress.spring.web;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;
 import org.springframework.web.bind.annotation.RestController;
 import org.springframework.web.servlet.ModelAndView;

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

194

 import com.apress.spring.repository.JournalRepository;

 @RestController
 public class JournalController {

 private static final String VIEW_INDEX = "index";
 private static final String VIEW_LOGIN = "login";

 @Autowired
 JournalRepository repo;

 @RequestMapping(value="/", method = RequestMethod.GET)
 public ModelAndView index(ModelAndView modelAndView){
 modelAndView.setViewName(VIEW_INDEX);
 modelAndView.addObject("journal", repo.findAll());
 return modelAndView;
 }

 @RequestMapping(value="/login")
 public ModelAndView login(ModelAndView modelAndView){
 modelAndView.setViewName(VIEW_LOGIN);
 return modelAndView;
 }
 }

 Listing 9-12 shows the web JournalController.java class . Remember that you need to specify the
/login endpoint mapping. The login(ModelAndView) method is mapped to the /login endpoint (by using
the @RequestMapping annotation). It only sets the view name to login, and remember that it will find the
page (login.html) in the templates folder.

 If you don’t want to modify your web controller, you can create a class, extend from the
 WebMvcConfigurerAdapter , and override the addViewControllers(ViewControllerRegistry) method. You
can then set the controller and view for the login page. For example, instead of creating a new class, you can
add this declaration to any class that has the @Configuration annotation. See this code:

 @Configuration
 static protected class LoginController extends WebMvcConfigurerAdapter{
 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/login").setViewName("login");
 }
 }

 Again, this code is necessary only if you didn’t want to modify your web JournalController class. This
code will configure the web controller and set the view .

 Now the second and last part before you run the journal app. Remember that you used the namespace
 xmlns:sec from the Thymeleaf library in the index.html page. This is a particular tag library that is not
included, so you need to add it to the pom.xml . See Listing 9-13 .

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

195

 Listing 9-13. pom.xml (Version 2, Including spring-security-taglibs and thymeleaf-extras-springsecurity4)

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-journal-secure</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-journal-secure</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath /> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <!-- SECURITY -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

196

 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-taglibs</artifactId>
 </dependency>

 <dependency>
 <groupId>org.thymeleaf.extras</groupId>
 <artifactId>thymeleaf-extras-springsecurity4</artifactId>
 </dependency>

 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
 </project>

 Listing 9-13 shows the new pom.xml . What is the difference from the previous version (Listing 9-1)? You
are adding the spring-security-taglibs and thymeleaf-extras-springsecurity4 dependencies, which
are necessary for the index.html page.

 Now you are ready to run your journal app. As usual, execute the following command:

 $./mvnw spring-boot:run

 After executing this command, make sure that you don’t see the Sign Out button from the main page
(http://localhost:8080). Next, go to http://localhost:8080/api ; you will see something similar to
Figure 9-4 .

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

197

 Figure 9-4 shows the custom login.html page . A different look from the default one, don’t you think?
Now test your credentials and you should see the HAL+JSON result (remember that in Google Chrome
you can see the HAL+JSON response better). After logging in and seeing the /api endpoint, you can go to
 http://localhost:8080 to see that the main page is now showing the Sign Out button. See Figure 9-5 .

 Figure 9-4. http://localhost:8080/api ➤ redirects to the http://localhost:8080/login page

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

198

 Figure 9-5 shows the result of the xmlns:sec namespace (the sec:authorize attribute in the <p/> tag),
which will call the is Authenticated() method and then display the button. If you click the button you will
be redirected to the /login?logout url. See Figure 9-6 .

 Figure 9-5. index.html : the user is authenticated and the Sign Out button is displayed

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

199

 Figure 9-6 shows the result of clicking the Sign Out button from the main page. You are redirected to
the /login?logout page. Remember that the Sign Out button has the /logout as its action and it will clear
out all credentials and redirect to the /login page with the ?logout parameter. It will show the message:
 "You have been logged out" .

 Wow! Very impressive. Even though there are a few steps involved, setting up security for your resources
is very easy with Spring and Spring Boot.

 Spring Boot with OAuth2
 OAuth2 is an open standard, and it’s used by companies like Pivotal, Google, Amazon, Facebook, Twitter,
and much more. These companies provide access to services by providing access tokens that are based on
credentials (client IDs and secret keys). The best way to describe it is with an image; see Figure 9-7 .

 Figure 9-6. After clicking the Sign Out button

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

200

 Figure 9-7 shows the OAuth flow. The Resource Owner (user) authorizes an application to access
the account. This is limited to the scope (read or write) of the authorization granted. Here the Resource
Owner will be the journal application because it’s the one that will use OAuth as a security mechanism.
The Authorization Server verifies the identity of the user and it is in charge of issuing access tokens to the
application client. The Resource Server secures the resources and will allow its access only through the
access token. The Application Client wants access, so it must be authorized by a username, password, and
keys. The authorization must be validated by an API.

 You are going to add OAuth to your journal app, and you are going to use only a few classes and the
same directory structure. You will no longer use the login page, so some of those classes will be removed.
You can start fresh form the command line and execute the following commands:

 $ mkdir spring-boot-journal-oauth
 $ cd spring-boot-journal-oauth
 $ spring init -d=web,thymeleaf,data-jpa,data-rest,security -g=com.apress.spring -a=spring-
boot-journal-oauth --package-name=com.apress.spring -name=spring-boot-journal-oauth -x

 The pom.xml file is almost identical to Listing 9-1 ; the only new dependency is spring-security-
oauth2 . See Listing 9-14 .

 Figure 9-7. OAuth flow

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

201

 Listing 9-14. pom.xml for OAuth

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-journal-oauth</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-journal-oauth</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

202

 <dependency>
 <groupId>org.springframework.security.oauth</groupId>
 <artifactId>spring-security-oauth2</artifactId>
 </dependency>

 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 9-14 shows the pom. xml file and the new dependency called spring-security-oauth2 .
Don’t forget your MySQL dependency. Now you need to copy the same structure from the previous project.
See Figure 9-8 .

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

203

 Figure 9-8 shows the final structure of the spring-boot-journal-oauth project. One of the new classes
is ResourceOAuthSecurityConfiguration.java . The class defines everything about OAuth; you will see that
later in this section.

 In the web JournalController.java remove the login method. The end class will look like Listing 9-15 .

 Listing 9-15. src/main/java/com/apress/spring/web/JournalController.java

 package com.apress.spring.web;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;
 import org.springframework.web.bind.annotation.RestController;
 import org.springframework.web.servlet.ModelAndView;

 Figure 9-8. The spring-boot-journal-oauth directory structure

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

204

 import com.apress.spring.repository.JournalRepository;

 @RestController
 public class JournalController {

 private static final String VIEW_INDEX = "index";

 @Autowired
 JournalRepository repo;

 @RequestMapping(value="/", method = RequestMethod.GET)
 public ModelAndView index(ModelAndView modelAndView){
 modelAndView.setViewName(VIEW_INDEX);
 modelAndView.addObject("journal", repo.findAll());
 return modelAndView;
 }
 }

 Listing 9-15 shows the JournalController.java class ; this is the same as in previous chapters.
The index.html file remains the same; you just remove the xmlns:sec namespace. See Listing 9-16 .

 Listing 9-16. src/main/resources/templates/index.html

 <!doctype html>
 <html lang="en-US" xmlns:th="http://www.thymeleaf.org">
 <head>
 <meta charset="utf-8"></meta>
 <meta http-equiv="Content-Type" content="text/html"></meta>
 <title>Spring Boot Journal</title>
 <link rel="stylesheet" type="text/css" media="all" href="css/bootstrap.min.css"></link>
 <link rel="stylesheet" type="text/css" media="all" href="css/bootstrap-glyphicons.css">
</link>

 <link rel="stylesheet" type="text/css" media="all" href="css/styles.css"></link>
 </head>

 <body>
 <div class="container">
 <h1>Spring Boot Journal</h1>
 <ul class="timeline">
 <div th:each="entry,status : ${journal}">
 <li th:attr="class=${status.odd}?'timeline-inverted':''">
 <div class="tl-circ"></div>
 <div class="timeline-panel">
 <div class="tl-heading">
 <h4>TITLE</h4>
 <p>
 <small class="text-muted">
 <i class="glyphicon glyphicon-time"></i>
 CREATED
 </small>
 </p>
 </div>

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

205

 <div class="tl-body">
 <p>SUMMARY</p>
 </div>
 </div>

 </div>

 </div>
 </body>
 </html>

 Listing 9-16 shows the index.html page . You just removed the xmlns:sec namespace. Remember all
the other classes and files remain the same; nothing will change.

 Next, create the src/main/java/com/apress/spring/config/ResourceOAuthSecurityConfiguration.
java class. See Listing 9-17 .

 Listing 9-17. src/main/java/com/apress/spring/config/ResourceOAuthSecurityConfiguration.java

 package com.apress.spring.config;

 import org.springframework.context.annotation.Configuration;
 import org.springframework.security.config.annotation.web.builders.HttpSecurity;
 import org.springframework.security.oauth2.config.annotation.web.configuration.
EnableAuthorizationServer;
 import org.springframework.security.oauth2.config.annotation.web.configuration.
EnableResourceServer;
 import org.springframework.security.oauth2.config.annotation.web.configuration.
ResourceServerConfigurerAdapter;

 @Configuration
 @EnableAuthorizationServer
 @EnableResourceServer
 public class ResourceOAuthSecurityConfiguration extends ResourceServerConfigurerAdapter{

 @Override
 public void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/").permitAll()
 .antMatchers("/api/**").authenticated();
 }

 }

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

206

 Listing 9-17 shows the ResourceOAuthSecurityConfiguration.java class . Let’s examine it:

• @Configuration . This annotation is used as a marker to configure any existing beans
or any other configuration before the application starts.

• @EnableAuthorizationServer . This annotation enables the authorization /oauth/
authorize and the token /oauth/token endpoints. The user is responsible for
securing the authorization endpoint. The token endpoint will be automatically
secured using HTTP basic authentication on the client’s credentials.—in this case by
using the username and password from the database.

• @EnableResourceServer . This annotation enables the Spring security filter that
authenticates requests via an incoming OAuth2 token.

• ResourceServerConfigurerAdapter . The ResourceOAuthSecurityConfiguration
class extends this class ResourceServerConfigurerAdapter , which is just a interface
marker because it implements the ResourceServerConfigurer interface, allowing
the program to override the configure(ResourceServerSecurityConfigurer)
and configure(HttpSecurity) methods. In this case the class is overriding
 configure(HttpSecurity) to add security to some resources.

• configure(HttpSecurity) . This is an override method and it’s using the HttpSecurity
instance to call the authorizeRequests() method builder. Remember that this instance
has a fluent API, so it’s easy to configure the requests and secure them.

• .antMatchers("/").permitAll() . Allows you to see the main page, the
 index.html page.

• .antMatchers("/api/**").authenticated() . Secures the REST API /api endpoint
with OAuth2 .

 Now, let’s run it. As usual, you can use the following command:

 $./mvnw spring-boot:run

 After executing this command, you can go to http://localhost:8080 . You should see the home page
with all the journal entries. Now, if you go to http://localhost:8080/api , you should see something
similar to Figure 9-9 .

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

207

 Figure 9-9 shows the result of going to the / api endpoint . Now it’s secured by the OAuth2 security. In
order to access it, go to the terminal and use the flow you saw earlier (Figure 9-7). However, before that take
note of the two GUIDs that were printed out in the logs:

 ...

 security.oauth2.client.clientId = acd167f6-04f8-4306-a118-03e2356f73aa
 security.oauth2.client.secret = 2dd4bec5-fe62-4568-94a1-c31ac3c4eb4e

 ...

 Remember that OAuth2 needs a client ID and secret keys and these values change every time you start
the application. Now, go to the terminal and execute:

 $ curl -i localhost:8080/oauth/token -d "grant_type=password&scope=read&username=springb
oot&password=isawesome" -u acd167f6-04f8-4306-a118-03e2356f73aa:2dd4bec5-fe62-4568-94a1-
c31ac3c4eb4e

 Figure 9-9. http://localhost:8080/api is now protected by the OAuth2 security

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

208

 The format for passing the client’s credential is -u <clientId>:<secret> . Note the colon : separating
them. The clientId and secret are the keys from the logs. Also notice that in the -d you are passing these
parameters—the grant_type=password , the scope=read (you can change this to write as well for POST,
PUT, DELETE resources, the possible values for scope are read and write), and the username=springboot
and password=isawesome . The last two are from the database. You should get something similar to the
following output:

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 X-Content-Type-Options: nosniff
 X-XSS-Protection: 1; mode=block
 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
 Pragma: no-cache
 Expires: 0
 X-Frame-Options: DENY
 Cache-Control: no-store
 Pragma: no-cache
 Content-Type: application/json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Wed, 10 Feb 2016 01:18:05 GMT

 {"access_token":"f1d362f2-b167-41d9-a411-35f8ba7f0454","token_type":"bearer","refresh_
token":"2d34f3d9-c160-488d-b9a8-b3b1bcb3281e","expires_in":43199,"scope":"write"}

 You will get the access_token that’s necessary to make the next calls. So now, you can execute the
following command:

 $ curl -i -H "Authorization: bearer f1d362f2-b167-41d9-a411-35f8ba7f0454" localhost:8080/api

 As you can see from this command you are using the access_token by providing the bearer
declaration. After you execute this command, you should get the following:

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 X-Content-Type-Options: nosniff
 X-XSS-Protection: 1; mode=block
 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
 Pragma: no-cache
 Expires: 0
 X-Frame-Options: DENY
 Content-Type: application/hal+json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Wed, 10 Feb 2016 01:19:57 GMT

CHAPTER 9 ■ SECURITY WITH SPRING BOOT

209

 {
 "_links" : {
 "entry" : {
 "href" : "http://localhost:8080/api/journal{?page,size,sort}",
 "templated" : true
 },
 "profile" : {
 "href" : "http://localhost:8080/api/profile"
 }
 }
 }

 As you can see, you still need to add the client ID and secret keys from the logs. Of course, you need a
way to use the database and save those keys, as well as get the correct access_token by providing the keys
and your credentials, but this will be your homework. This process will be very similar to the JDBC security
example.

 End users would never use the cURL command to access secure application with OAuth2. They
normally use a web interface to do that. There is a guide that talks about Spring Boot and OAuth2 that uses
AngularJS as a client, and I recommend you read it: https://spring.io/guides/tutorials/spring-boot-
oauth2/ .

 ■ Note I know this chapter has a lot of code, but don’t worry too much, as you can download it from the
Apress site or go to GitHub at http://github.com/felipeg48/pro-spring-boot .

 Summary
 This chapter showed you how you can use security in your web apps, from a simple HTTP to using in-
memory and JDBC. It also showed you how to implement OAuth authentication. As you can see, adding
security is now simpler than ever. With a few commands, you can secure your applications with ease. I know
that there are more ways to secure application, such as using SSL and TLS, and enabling these technologies
is also very simple in Spring Boot.

 The following chapter discusses messaging with Spring Boot.

https://spring.io/guides/tutorials/spring-boot-oauth2/
https://spring.io/guides/tutorials/spring-boot-oauth2/
http://github.com/felipeg48/pro-spring-boot

211© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_10

 CHAPTER 10

 Messaging with Spring Boot

 This chapter is all about messaging. It explains, with examples, how to use HornetQ for implementing the
JMS (Java Message Service), RabbitMQ for implementing AMQP (Advanced Message Queuing Protocol),
Redis for Pub/Sub, and WebSockets for implementing STOMP (Simple or Streaming Text Oriented Message
Protocol) with Spring Boot.

 What Is Messaging?
 Messaging is a way of communicating between one or more entities and it is everywhere.

 Computer messaging in one form or another has been around since the invention of the computer, and
it is defined as a method of communication between hardware and/or software components or applications.
There is always a sender and one or more receivers. Messaging can be synchronous and asynchronous,
pub-sub and peer-to-peer, RPC and enterprise-based, Message Broker, ESB (Enterprise Service Bus), MOM
(Message Oriented Middleware), etc.

 From all of this, we can say for certain that messaging enables distributed communication that must be
loosely coupled, meaning that it doesn’t matter how or what message the sender is publishing, the receiver
consumes the message without telling the sender.

 Of course, there is a lot we could say about messaging, from the old techniques and technologies to new
protocols and messaging patterns, but the intention of this chapter is to work with examples that illustrate
how Spring Boot can do messaging.

 With this in mind, let’s start creating some examples using some of the technologies and message
brokers out there.

 JMS with Spring Boot
 Let’s start by using JMS (Java Message Service). This is an old technology that is still being used by some
companies that have legacy applications. JMS was created by Sun Microsystems to create a way to send
messages synchronously and asynchronously, and it defines interfaces that need to be implemented by
message brokers such as WebLogic, IBM MQ, ActiveMQ, HornetQ, etc.

 JMS is a Java-only technology, and even so there have been some attempts to create message bridges
to combine JMS with other programming languages. Still it’s difficult or very expensive to mix different
technologies. I know that you are thinking that this is not true, because you can use Spring integration,
Google Protobuffers, Apache Thrift, and another technologies to integrate JMS, but it’s still a lot of work,
because you need to know and maintain code from all these technologies.

 Let’s start by creating an example using JMS with Spring Boot. The Spring Boot team has a HornetQ
starter pom available, so that’s the one you are going to use. HornetQ is an open source asynchronous
messaging project from JBoss.

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

212

 You can execute the Spring Initializr command:

 $ mkdir spring-boot-jms
 $ cd spring-boot-jms
 $ spring init -d=hornetq -g=com.apress.spring -a=spring-boot-jms
--package-name=com.apress.spring -name=spring-boot-jms -x

 This command will create the project structure and generate the pom.xml that you need. Let’s take a
look at it. See Listing 10-1 .

 Listing 10-1. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-jms</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-jms</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-hornetq</artifactId>
 </dependency>

 <dependency>
 <groupId>org.hornetq</groupId>
 <artifactId>hornetq-jms-server</artifactId>
 </dependency>

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

213

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 10-1 shows the pom.xml file you are going to use in this example. When you execute the Spring
Initializr command you put the hornetq as the dependency, which adds the spring-boot-starter-hornetq
starter pom. This starter pom will have all the hornetq client dependencies, and in this example you also
need the hornetq-jms-server dependency because you are going to use the embedded hornetq broker.

 Next let’s see how to configure the hornetq server. The configuration will take place in the application.
properties file. See Listing 10-2 .

 Listing 10-2. src/main/resources/application. properties

 spring.hornetq.mode=embedded
 spring.hornetq.embedded.enabled=true
 spring.hornetq.embedded.queues=springbootQueue,pivotalQueue

 myqueue=springbootQueue

 Listing 10-2 shows the application.properties file that you need to configure the hornetq server.
As you can see, you will use the embedded mode to declare the queues that are going to be created by
the hornetq server (the queue: pivotalQueue is not being used, but I wanted you to see that you can
create as many queues as you want separated by commas). Also you have another property named
 myqueue=springbootQueue, which is one of the queues you declared first. It’s the one that you will reference
in your code.

 Now let’s look at the producer that will send the messages to the broker’s queue. See Listing 10-3 .

 Listing 10-3. src/main/java/com/apress/spring/message/Producer.java

 package com.apress.spring.message;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.jms.core.JmsTemplate;

 public class Producer {
 private static final Logger log = LoggerFactory.getLogger(Producer.class);
 private JmsTemplate jmsTemplate;

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

214

 public Producer(JmsTemplate jmsTemplate){
 this.jmsTemplate = jmsTemplate;
 }

 public void sendTo(String queue, String message) {
 this.jmsTemplate.convertAndSend(queue, message);
 log.info("Producer> Message Sent");
 }
 }

 Listing 10-3 shows the Producer. java class. Let’s examine it:

• JmsTemplate . The JmsTemplate instance is a helper class that simplifies synchronous
JMS access code. This template uses the DynamicDestinationResolver and
 SimpleMessageConverter classes as default strategies for resolving a destination
name (queue names) or converting a message.

• Producer(jmsTemplate) . The constructor will use the JmsTemplate as a parameter.

• sendTo(queue, message) . This method has two parameters—the name of
queue (destination) and the message, both as type String . This method uses the
 jmsTemplate to use the convertAndSend method call to send the message and
pass the name of the queue and the actual message. The convertAndSend method
will try to use the best available message converter, and by default it will use the
 SimpleMessageConverter class. The SimpleMessageConverter will identify if the
message is a String , Map , byte[] array, or Serializable object.

 Next, let’s look at the Consumer.java class. See Listing 10-4 .

 Listing 10-4. src/main/java/com/apress/spring/message/Consumer.java

 package com.apress.spring.message;

 import javax.jms.JMSException;
 import javax.jms.Message;
 import javax.jms.MessageListener;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;

 public class Consumer implements MessageListener{
 private Logger log = LoggerFactory.getLogger(Consumer.class);

 @Override
 public void onMessage(Message message) {
 try {
 log.info("Consumer> " + message.getBody(Object.class));
 }catch (JMSException ex) {
 ex.printStackTrace();
 }
 }
 }

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

215

 Listing 10-4 shows the Consumer. java class. Let’s examine it:

• MessageListener . In, it’s necessary to implement from the MessageListener
interface and implement the onMessage(Message) method. The MessageListener
interface receives asynchronously delivered messages.

• onMessage(Message) . The method onMessage has as parameter called the Message
interface, which is the root interface of all JMS messages. It defines the message
header and contains a lot of methods (that you can look up in the JMS API docs), but
the important one here is getBody . This method is based on Java generics that get a
 Class type.

 Every time the producer sends a message to the queue, this consumer will be listening to that queue
and will consume the message. Then you can process it or do your business logic around the message. In
this example you are printing out the message.

 Next, you need to do some extra configuration involving how to connect to the HornetQ server. So far
you have the producer and consumer, but how do these two classes know how to connect to the broker? See
Listing 10-5 .

 Listing 10-5. src/main/java/com/apress/spring/config/MessagingConfig.java

 package com.apress.spring.config;

 import javax.jms.ConnectionFactory;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.beans.factory.annotation.Value;
 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.Configuration;
 import org.springframework.jms.listener.DefaultMessageListenerContainer;

 import com.apress.spring.message.Consumer;

 @Configuration
 public class MessagingConfig {

 @Autowired
 private ConnectionFactory connectionFactory;

 @Value("${myqueue}")
 private String queue;

 @Bean
 public DefaultMessageListenerContainer messageListener() {
 DefaultMessageListenerContainer container = new

DefaultMessageListenerContainer();
 container.setConnectionFactory(this.connectionFactory);
 container.setDestinationName(queue);
 container.setMessageListener(new Consumer());
 return container;
 }
 }

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

216

 Listing 10-5 shows the MessagingConfig. java class. Let’s examine it:

• @Configuration . You already know about this annotation. It tells the Spring
container to configure any declared methods annotated with the @Bean annotations.

• @Autowired ConnectionFactory . The ConnectionFactory is an interface. The Spring
container will configure this by implementing this interface creating a connection
with the default user identity to the broker. In this case it will create the connection
to the HornetQ server with the default credentials. The connectionFactory is useful
for both consumer and producer.

• @Bean messageListener . This method defines a bean that will
return a DefaultMessageListenerContainer instance. The
 DefaultMessageListenerContainer class needs the connectionFactory , the
 destinationName (queue = springbootQueue), and the messageListener that in this
case is the Consumer . The DefaultMessageListenerContainer will be responsible
for connecting to the queue and listening through the consumer’s MessageListener
interface implementation.

• @Value queue. The @Value annotation will look into the application.properties
file and will retrieve the value associated with it, in this case the myqueue . So the
queue instance will be springbootQueue as its value.

 That’s how you configure the connection to the HornetQ server, but Listing 10-5 only uses the
 connectionFactory instance to declare and use the consumer. What about the producer? As you remember
in Listing 10-3 the Producer class constructor needs the JmsTemplate , and the JmsTemplate class needs the
 connectionFactory instance to know where to send the message. Listing 10-6 is the main application and it
shows where you send a message.

 Listing 10-6. src/main/java/com/apress/spring/SpringBootJmsApplication.java

 package com.apress.spring;

 import org.springframework.beans.factory.annotation.Value;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;
 import org.springframework.jms.core.JmsTemplate;

 import com.apress.spring.message.Producer;

 @SpringBootApplication
 public class SpringBootJmsApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootJmsApplication.class, args);
 }

 @Value("${myqueue}")
 String queue;

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

217

 @Bean
 CommandLineRunner sendMessage(JmsTemplate jmsTemplate){
 return args -> {
 Producer producer = new Producer(jmsTemplate);
 producer.sendTo(queue, "Spring Boot Rocks!");
 };
 }
 }

 Listing 10-6 shows the main app, the SpringBootJmsApplication class. As you can see, it’s
declaring a @Bean CommandLineRunner method. (This means that it will be executed after the Spring Boot
finishes its pre-configuration. Also, this method has the JmsTemplate instance, which will be autowired
automatically.) The JmsTemplate is one of its constructors and it has a ConnectionFactory as parameter.
Spring Boot is intelligent enough to auto-wire the JmsTemplate instance by using the ConnectionFactory
that you configured in the MessagingConfig class (Listing 10-5) when you declared the @Autowired
ConnectionFactory instance. The method then will instantiate the Producer class by passing the
 jmsTemplate instance, and then it will use the sendTo method to send the message to the queue, in this case
the springbootQueue queue.

 Let’s run it as usual:

 $./mvnw spring-boot:run

 After running the program you should have the logs from the consumer and producer, something
similar to this:

 ...
 INFO 96581 --- [ssageListener-1] com.apress.spring.message.Consumer : Consumer> Spring Boot Rocks!
 INFO 96581 --- [main] com.apress.spring.message.Producer : Producer> Message Sent
 ...

 If you run your application several times, you will notice that the Consumer prints out its message before
the Producer . When Spring Boot starts doing the auto-configuration and properly wiring the beans, the
 messageListener bean is part of that wiring, so it automatically starts to listen to the Queue for messages.
Remember that the Producer is declared in the sendMessage method. This method happens last because it
returns the CommandLineRunner interface. That’s why you see the Consumer print out before the Producer .

 Congratulations, you created a Spring Boot application with JMS!

 A Simpler JMS Consumer
 I will show you a simpler consumer. This is possible thanks to the Spring Messaging team that created some
annotations to simplify everything.

 Start by creating another jms version project: spring-boot-jms-v2 . Execute the following command:

 $ mkdir spring-boot-jms-v2
 $ cd spring-boot-jms-v2
 $ spring init -d=hornetq -g=com.apress.spring -a=spring-boot-jms-v2 --package-name=com.
apress.spring -name=spring-boot-jms-v2 -x

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

218

 This command will create the same structure as the previous example, but here you only will modify the
main application and the application properties. The pom.xml is the same in both examples (of course, don’t
forget to include the hornetq-jms-server dependency), so there’s no need to review it. Now, let’s see the
 application.properties file. See Listing 10-7 .

 Listing 10-7. src/main/resources/ application .properties

 spring.hornetq.mode=embedded
 spring.hornetq.embedded.enabled=true
 spring.hornetq.embedded.queues=springbootQueue,springQueue

 myqueue=springbootQueue
 myotherqueue=springQueue

 Listing 10-7 shows the application.properties ; now it has the myqueue and myotherqueue properties
and you will be using these keys in the main application. Next, let’s see the main application. See Listing 10-8 .

 Listing 10-8. src/main/java/com/apress/spring/SpringBootJmsV2Application.java

 package com.apress.spring;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Value;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;
 import org.springframework.jms.annotation.JmsListener;
 import org.springframework.jms.core.JmsTemplate;

 @SpringBootApplication
 public class SpringBootJmsV2Application {
 private static final Logger log = LoggerFactory.getLogger(SpringBootJmsV2

Application.class);

 public static void main(String[] args) {
 SpringApplication.run(SpringBootJmsV2Application.class, args);
 }

 @JmsListener(destination="${myqueue}")
 public void simplerConsumer(String message){
 log.info("Simpler Consumer> " + message);
 }

 @Value("${myqueue}")
 String queue;

 @Bean
 CommandLineRunner start(JmsTemplate template){
 return args -> {
 log.info("Sending> ...");

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

219

 template.convertAndSend(queue, "SpringBoot Rocks!");
 };
 }
 }

 Listing 10-8 shows the SpringBootJmsV2Application app. You know most of the code, but there is a
new annotation called @JmsListener(destination) . This annotation will create a consumer listener and
the message will be handled by the method. You only need to pass the destination parameter (the name of
the queue) and that’s it. Spring will take care of the rest.

 Run this application as usual:

 $./mvnw spring-boot:run

 After running it, you should get the following output:

 ...
 INFO 99889 --- [main] c.a.spring.SpringBootJmsV2Application : Sending> ...
 INFO 99889 --- [enerContainer-1] c.a.spring.SpringBootJmsV2Application : Simpler
Consumer> SpringBoot Rocks!
 ...

 That’s your simpler Consumer . This is awesome—with just a simple annotation you have a functional
consumer—but there is more! First stop your application by pressing Ctrl+C .

 Spring JMS allows you to reply from the same method where the @JmsListener annotation is.
Listing 10-9 shows a new version of the SpringBootJmsV2Application app.

 Listing 10-9. The src/main/java/com/apress/spring/SpringBootJmsV2Application.java Version with Reply

 package com.apress.spring;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Value;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;
 import org.springframework.jms.annotation.JmsListener;
 import org.springframework.jms.core.JmsTemplate;
 import org.springframework.messaging.handler.annotation.SendTo;

 @SpringBootApplication
 public class SpringBootJmsV2Application {
 private static final Logger log = LoggerFactory.getLogger(SpringBootJmsV2Applicati
on.class);

 public static void main(String[] args) {
 SpringApplication.run(SpringBootJmsV2Application.class, args);
 }

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

220

 @JmsListener(destination="${myqueue}")
 @SendTo("${myotherqueue}")
 public String simplerConsumer(String message){
 log.info("Simpler Consumer> " + message);
 return message + " and Spring Messaging too!";
 }

 @JmsListener(destination="${myotherqueue}")
 public void anotherSimplerConsumer(String message){
 log.info("Another Simpler Consumer> " + message);
 }

 @Value("${myqueue}")
 String queue;

 @Bean
 CommandLineRunner start(JmsTemplate template){
 return args -> {
 log.info("Sending> ...");
 template.convertAndSend(queue, "SpringBoot Rocks!");
 };
 }
 }

 Listing 10-9 shows a new version of the main app. Let’s examine it:

• @JmsListener . Now you have two methods as consumers, one
with the destination="${myqueue}" (springbootQueue) and the
 destination="${myotherqueue}" (springQueue).

• @SendTo . This annotation will reply to the destination specified, in this case
 "${myotherqueue} " (springQueue), but take a look at the method simplerConsumer .
It now has a return type, a string, which will allow @SendTo to send the message to the
destination.

 This scenario is best used when you process your message and then need to have a reply queue.
 Now, if you run the application, you should have the following output:

 ...
 INFO 224 --- [m] c.a.spring.SpringBootJmsV2Application : Sending> ...
 INFO 224 --- [c] c.a.spring.SpringBootJmsV2Application : Simpler Consumer> SpringBoot Rocks!
 INFO 224 --- [c] c.a.spring.SpringBootJmsV2Application : Another Simpler Consumer>
SpringBoot Rocks! and Spring Messaging too!
 ...

 Now you know that there are more ways to do consumers with Spring Messaging and Spring Boot.

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

221

 Connect to Remote JMS Server
 Now you know how to write a Spring Boot JMS applications. These were simple examples where you
are using an embedded broker, but you can also use a remote broker. You simply need to change the
 application.properties . For example:

 spring.hornetq.mode=native
 spring.hornetq.host=192.168.1.10
 spring.hornetq.port=9876

 You can read about all the properties for HornetQ in the Spring Boot reference at https://docs.
spring.io/spring-boot/docs/current/reference/html/common-application-properties.html .

 RabbitMQ with Spring Boot
 Since the first attempts from companies like Sun/Oracle/IBM with JMS and Microsoft with MSMQ, the
protocols they used were proprietary. I know that JMS just defines an Interface API, but trying to mix
technologies or programming languages is a hassle. Gratefully and thanks to the team of JPMorgan, the
AMQP (Advance Message Queuing Protocol) was created. It’s an open standard application layer for MOM.
In other words, AMQP is a wire-level protocol, meaning that you can use any technology or programming
language with this protocol.

 Messaging brokers are competing with each other to prove that they are robust, reliable, and scalable,
but the most important issue is how fast they are. I’ve been working with a lot of brokers, and so far one of
the easiest to use, easiest to scale and fastest is RabbitMQ. RabbitMQ implements the AMQP protocol.

 It would take an entire book to describe each part of RabbitMQ and all the concepts around it, but I’ll
try to explain some of them based on this section’s example.

 Installing RabbitMQ
 Before I talk about RabbitMQ let’s install it. If you are using Mac OSX/Linux, you can use the brew command:

 $ brew upgrade
 $ brew install rabbitmq

 If you are using another UNIX or a Windows system, you can go to the RabbitMQ web site and use
the installers (http://www.rabbitmq.com/download.html). RabbitMQ is written in Erlang, so its major
dependency is to install the Erlang runtime in your system. Nowadays all the RabbitMQ installers come with
all the Erlang dependencies. Make sure to have the executables in your PATH variable. If you are using brew,
you don’t need to worry about setting the PATH variable.

 RabbitMQ/AMQP: Exchanges, Bindings, and Queues
 The AMQP defines three concepts that are a little different from the JMS world, but very easy to understand.
AMQP defines exchanges , which are entities where the messages are sent. Every exchange takes a message
and routes it to a zero or more queues . This routing involves an algorithm that is based on the exchange type
and some rules, called bindings .

 The AMPQ protocol defines four exchange types: Direct , Fanout , Topic, and Headers . Figure 10-1 shows
these different exchange types.

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
http://www.rabbitmq.com/download.html

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

222

 Figure 10-1 shows the possible exchange types. So, the main idea is to send a message to an exchange
including a routing key, then the exchange based on its type will deliver the message to the queue (or it
won’t if the routing key doesn’t match).

 The default exchange will be bound automatically to every queue created. The direct exchange is bound
 to a queue by a routing key; you can see this exchange type as one-to-one binding. The topic exchange
is similar to the Direct Exchange; the only difference is that in its binding you can add a wildcard into its
routing key. The headers exchange is similar to the topic exchange; the only difference is that the binding is
based on the message headers (this is a very powerful exchange, and you can do all and any expressions for
its headers). The fanout exchange will copy the message to all the bound queues; you can see this exchange
as a message broadcast.

 You can get more information about these topics at https://www.rabbitmq.com/tutorials/
amqp-concepts.html .

 The example in this section will use the default exchange type, which means that the routing key will
be equal to the name of the queue. Every time you create a queue, RabbitMQ will create a binding from the
default exchange (that the actual name is just an empty string) to the queue using the queue’s name.

 Figure 10-1. AMQP exchanges/ bindings/ queues

https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

223

 Get started by creating your project. Execute the following commands:

 $ mkdir spring-boot-rabbitmq
 $ cd spring-boot-rabbitmq
 $ spring init -d=amqp -g=com.apress.spring -a=spring-boot-rabbitmq --package-name=com.
apress.spring -name=spring-boot-rabbitmq -x

 Now, let’s take a look a the pom.xml . See Listing 10-10 .

 Listing 10-10. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-rabbitmq</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-rabbitmq</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-amqp</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

224

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 10-10 shows the pom.xml file. As you can see, it includes the spring-boot-starter-amqp starter
pom. This pom will include all the spring-amqp and rabbitmq-client libraries needed for connecting to the
RabbitMQ Broker .

 Next let’s create the Producer and Consumer . See Listings 10-11 and 10-12 .

 Listing 10-11. src/main/java/com/apress/spring/rabbitmq/Producer.java

 package com.apress.spring.rabbitmq;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.amqp.rabbit.core.RabbitTemplate;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.stereotype.Component;

 @Component
 public class Producer {
 private static final Logger log = LoggerFactory.getLogger(Producer.class);

 @Autowired
 RabbitTemplate rabbitTemplate;

 public void sendTo(String routingkey,String message){
 log.info("Sending> ...");
 this.rabbitTemplate.convertAndSend(routingkey,message);
 }
 }

 Listing 10-11 shows the Producer. java class. Let’s examine it:

• @Component . This annotation marks the class to be picked up by the Spring container.

• @Autowired RabbitTemplate . The RabbitTemplate is a helper class that simplifies
synchronous access to RabbitMQ for sending and receiving messages. This is very
similar to the JmsTemplate you saw earlier.

• sendTo(routingKey,message) . This method has as parameters the routing key and
the message. In this case the routing key will be the name of the queue. This method
is using the rabbitTemplate instance to call the convertAndSend method that
accepts the routing key and the message. Remember that the message will be sent to
the exchange (the default exchange) and the exchange will route the message to the
right queue .

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

225

 Next, the Consumer class is shown in Listing 10-12 .

 Listing 10-12. src/main/java/com/apress/spring/rabbitmq/Consumer.java

 package com.apress.spring.rabbitmq;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.amqp.rabbit.annotation.RabbitListener;
 import org.springframework.stereotype.Component;

 @Component
 public class Consumer {

 private static final Logger log = LoggerFactory.getLogger(Consumer.class);

 @RabbitListener(queues="${myqueue}")
 public void handler(String message){
 log.info("Consumer> " + message);
 }
 }

 Listing 10-12 shows the Consumer. java class. Let’s examine it:

• @Component . You already know this annotation. It will mark the class to be picked up
by the Spring container.

• @RabbitListener . This annotation will mark the method (because you can use this
annotation in a class as well) for creating a handler for any incoming messages,
meaning that it will create a listener that is connected to the RabbitMQ’s queue and
will pass that message to the method. Behind the scenes, the listener will do its best
to convert the message to the appropriate type by using the right message converter
(an implementation of the org.springframework.amqp.support.converter.
MessageConverter interface).

 As you can see from the Producer and Consumer , the code is very simple. If you created this by only
using the RabbitMQ Java client (https://www.rabbitmq.com/java-client.html), at least you need more
lines of code, for creating a connection, a channel, a message and send the message, or if you are writing a
consumer, then you need to open a connection, create a channel, create a basic consumer, and get into a
loop for processing every incoming message. This is a lot for simple producers or consumers. That’s why the
Spring AMQP team created this, a simple way to do a heavy task in a few lines of code.

 For this project, you will also depend on the src/main/resources/application.properties file and it
contains only one line:

 myqueue=spring-boot

 That’s the name of the queue that you are going to be using in RabbitMQ. Next, let’s take a look at the
main application. See Listing 10-13 .

https://www.rabbitmq.com/java-client.html

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

226

 Listing 10-13. src/main/java/com/apress/spring/ SpringBootRabbitmqApplication.java

 package com.apress.spring;

 import org.springframework.amqp.core.Queue;
 import org.springframework.beans.factory.annotation.Value;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;

 import com.apress.spring.rabbitmq.Producer;

 @SpringBootApplication
 public class SpringBootRabbitmqApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootRabbitmqApplication.class, args);
 }

 @Value("${myqueue}")
 String queue;

 @Bean
 Queue queue(){
 return new Queue(queue,false);
 }

 @Bean
 CommandLineRunner sender(Producer producer){
 return args -> {
 producer.sendTo(queue, "Hello World");
 };
 }
 }

 Listing 10-13 shows the main app . Let’s examine it:

• @Value String . You are familiar with this annotation, It will get the value from the
 application.properties .

• @Bean Queue . This will instantiate a bean of type Queue and will create a Queue
with the name provided by the queue string (spring-boot). The Queue class in its
constructor accepts the name of the queue and if that queue will be durable or not to
a server restart, meaning that if your restart your server the queue will be gone.

• @Bean CommandLineRunner . You are also familiar with this annotation and what it
means. It will be executed after all the configuration is done in Spring Boot, and
as you can see it’s using the Producer instance that calls the sendTo method that
accepts the name of the queue as the routing key and the message. (Remember that
the Producer class is annotated with the @Component annotation, so that’s why it can
be recognized as a parameter through the @Bean annotation.)

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

227

 Remember that in the AMQP protocol you need an exchange that is bound to a queue, so this particular
example will create at runtime a queue named spring-boot , and by default all the queues are bound to a
default exchange. That’s why you didn’t provide any information about a exchange. So, when the producer
sends the message it will be sent first to the default exchange then routed to the queue (spring-boot).

 Before you run your example, make sure your RabbitMQ server is up and running. You can start it by
opening a terminal and executing the following command:

 $ rabbitmq-server

 RabbitMQ 3.6.0. Copyright (C) 2007-2015 Pivotal Software, Inc.
 ## ## Licensed under the MPL. See http://www.rabbitmq.com/
 ## ##
 ########## Logs: /usr/local/var/log/rabbitmq/rabbit@localhost.log
 ###### ## /usr/local/var/log/rabbitmq/rabbit@localhost-sasl.log
 ##########
 Starting broker... completed with 12 plugins.

 This output shows the RabbitMQ server with 12 plugins installed. I forgot to mention that sometimes
the RabbitMQ server doesn’t come up with the web console manager installed, so you need to enable it by
executing the following:

 $ rabbitmq-plugins enable rabbitmq_management

 This will enable the web console and open port 15672 . You can go to your browser at
http://localhost:15672 and it will prompt for a username and password. The default credentials are
 guest:guest . You should then see the web console similar to Figure 10-2 .

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

228

 Figure 10-2 shows the RabbitMQ web console. Now you can run the project as usual:

 $./mvnw spring-boot:run

 After you execute this command, you should have something similar to the following output:

 ...
 INFO 80961 --- [main] com.apress.spring.rabbitmq.Producer : Sending> ...
 INFO 80961 --- [cTaskExecutor-1] com.apress.spring.rabbitmq.Consumer : Consumer> Hello World
 ...

 Figure 10-2. RabbitMQ web console management

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

229

 If you take a look at the RabbitMQ web console in the Queues tab, you should have defined the
spring-boot queue. See Figure 10-3 .

 Figure 10-3. RabbitMQ web console Queues tab

 Figure 10-3 shows the Queues tab from the RabbitMQ web console. The message you just sent was
delivered right away. If you want to play a little more and see some part of the throughput, you can modify
the main app as shown in Listing 10-14 , but don’t forget to stop your app by pressing Ctrl+C.

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

230

 Listing 10-14. Version 2 of src/main/java/com/apress/spring/SpringBootRabbitmqApplication. java

 package com.apress.spring;

 import java.util.Date;

 import org.springframework.amqp.core.Queue;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.beans.factory.annotation.Value;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;
 import org.springframework.scheduling.annotation.EnableScheduling;
 import org.springframework.scheduling.annotation.Scheduled;

 import com.apress.spring.rabbitmq.Producer;

 @EnableScheduling
 @SpringBootApplication
 public class SpringBootRabbitmqApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootRabbitmqApplication.class, args);
 }

 @Value("${myqueue}")
 String queue;

 @Bean
 Queue queue(){
 return new Queue(queue,false);
 }

 @Autowired
 Producer producer;

 @Scheduled(fixedDelay = 500L)
 public void sendMessages(){
 producer.sendTo(queue, "Hello World at " + new Date());
 }

 }

 Listing 10-14 shows a modified version of the main app. Let’s examine this new version:

• @EnableScheduling . This annotation will tell (via auto-configuration) the
Spring container that the org.springframework.scheduling.annotation.
ScheduleAnnotationBeanPostProcessor class needs to be created. It will register all
the methods annotated with @Scheduled to be invoked by a org.springframework.
scheduling.TaskScheduler interface implementation according to the fixedRate ,
 fixedDelay , or cron expression in the @Scheduled annotation.

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

231

• @Scheduled(fixedDelay = 500L) . This annotation will tell the TaskScheduler
interface implementation to execute the sendMessages method with a fixed delay of
500 milliseconds. This means that every half of a second you will send a message to
the queue.

 The other part of the app you already know. So if you execute the project again, you should see endless
messaging. While this is running take a look at the RabbitMQ console and see the output. You can put a for
loop to send even more messages in a half of a second.

 Remote RabbitMQ
 If you want to access a remote RabbitMQ, you add the following properties to the application.properties file:

 spring.rabbitmq.host=mydomain.com
 spring.rabbitmq.username=rabbituser
 spring.rabbitmq.password=thisissecured
 spring.rabbitmq.port=5672
 spring.rabbitmq.virtual-host=/production

 You can always read about all the properties for RabbitMQ in the Spring Boot reference at https://
docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html .

 Now you know how easy is to use RabbitMQ with Spring Boot. If you want to learn more about
RabbitMQ and the Spring AMQP technology, you can get more info at the main projects web site at http://
projects.spring.io/spring-amqp/ .

 You can stop RabbitMQ by pressing Ctrl+C where you start the broker. There are more options on how
to use RabbitMQ, like creating a cluster or having high availability. You can find more information about this
at http://www.rabbitmq.com/ .

 Redis Messaging with Spring Boot
 Now it’s Redis’ turn. Redis (REmote DIctionary Server) is a NoSQL key-value store database. It’s written in
C and even though has a small footprint in its core, it’s very reliable, scalable, powerful, and super fast. Its
primary function is to store data structures like Lists, hashes, strings, sets, and sorted sets. One of the other
main features is that it provides a publish/subscribe messaging system, which is why you are going to use
Redis only as message broker.

 Installing Redis
 Installing Redis is very simple. If you are using Mac OSX/Linux, you can use brew and execute the following:

 $ brew update && brew install redis

 If you are using a different flavor of UNIX or Windows, you can go to the Redis web site and download
the Redis installers at http://redis.io/download . Or if you want to compile it according to your system,
you can do that as well by downloading the source code.

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
http://projects.spring.io/spring-amqp/
http://projects.spring.io/spring-amqp/
http://www.rabbitmq.com/
http://redis.io/download

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

232

 Let’s start the project by executing the following commands:

 $ mkdir spring-boot-redis
 $ cd spring-boot-redis
 $ spring init -d=redis -g=com.apress.spring -a=spring-boot-redis --package-name=com.apress.
spring -name=spring-boot-redis -x

 Now, let’s review the pom.xml . See Listing 10-15 .

 Listing 10-15. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-redis</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-redis</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-redis</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

233

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 10-15 shows the pom.xml . You probably already know what start pom you need in order to use
Redis, it’s spring-boot-redis-starter . This pom will include all the spring-data-redis libraries and its
dependencies.

 Next, let’s see the Producer and Consumer . See Listings 10-16 and 10-17 .

 Listing 10-16. src/main/java/com/apress/spring/redis/Producer.java

 package com.apress.spring.redis;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.data.redis.core.StringRedisTemplate;
 import org.springframework.stereotype.Component;

 @Component
 public class Producer {
 private static final Logger log = LoggerFactory.getLogger(Producer.class);
 private StringRedisTemplate template;

 @Autowired
 public Producer(StringRedisTemplate template){
 this.template = template;
 }

 public void sendTo(String topic, String message){
 log.info("Sending> ...");
 this.template.convertAndSend(topic, message);
 }
 }

 Listing 10-16 shows the Producer .java class. Let’s examine it:

• @Component . This annotation will mark the Producer class to be considered a bean
for the Spring container.

• @Autowired Producer . This is the first time I showed you this annotation in a constructor.
This will resolve the parameter StringRedisTemplate first, before the Spring container
creates this class. The StringRedisTemplate class is a String-focused extension of the
 RedisTemplate class, which is a helper that simplifies Redis data access code.

• sendTo . This method sends a message using the template’s method called
 convertAndSend , passing the channel/topic and the message .

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

234

 As you can see, it’s a very simple Producer . Now, let’s take a look at the Consumer . See Listing 10-17 .

 Listing 10-17. src/main/java/com/apress/spring/redis/Consumer.java

 package com.apress.spring.redis;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.stereotype.Component;

 @Component
 public class Consumer {
 private static final Logger log = LoggerFactory.getLogger(Consumer.class);

 public void messageHandler(String message) {
 log.info("Consumer> " + message);
 }
 }

 Listing 10-17 show you the Consumer.java class. This class only uses the @Component annotation, which
you already know. For this project, you will need also the src/main/resources/application.properties
file with its contents:

 topic=spring-boot

 The spring-boot value will be used in the following file. Next, let’s see the configuration. You need to
connect to Redis, as shown in Listing 10-18 .

 Listing 10-18. src/main/java/com/apress/spring/config/RedisConfig.java

 package com.apress.spring.config;

 import org.springframework.beans.factory.annotation.Value;
 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.Configuration;
 import org.springframework.data.redis.connection.RedisConnectionFactory;
 import org.springframework.data.redis.listener.PatternTopic;
 import org.springframework.data.redis.listener.RedisMessageListenerContainer;
 import org.springframework.data.redis.listener.adapter.MessageListenerAdapter;

 import com.apress.spring.redis.Consumer;

 @Configuration
 public class RedisConfig {

 @Value("${topic}")
 String topic;

 @Bean
 RedisMessageListenerContainer container(RedisConnectionFactory connectionFactory,
 MessageListenerAdapter listenerAdapter) {

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

235

 RedisMessageListenerContainer container = new
RedisMessageListenerContainer();

 container.setConnectionFactory(connectionFactory);
 container.addMessageListener(listenerAdapter, new PatternTopic(topic));

 return container;
 }

 @Bean
 MessageListenerAdapter listenerAdapter(Consumer consumer) {
 return new MessageListenerAdapter(consumer, "messageHandler");
 }

 }

 Listing 10-18 shows the RedisConfig.java class. In order to connect to Redis, you must have declared
a RedisMessageListenerContainer that will connect to Redis and subscribe to a channel or topic using a
 MessageListenerAdapter . Let’s examine the class:

• @Bean RedisMessageListenerContainer . This container is very similar to the other
message containers (JMS, Rabbit). This container needs a ConnectionFactory
implementation (RedisConnectionFactory) based on the default credentials, host,
and port will connect to Redis (unless you override them in the application.
properties —more about this later). It also needs a MessageListenerAdapter
and a channel/topic to subscribe. As you can see the message listener is the call
of the listenerAdapter method that is resolved through the @Bean annotation
and the channel/topic is the PatternTopic class with the value of the String topic
(topic=spring-boot from the application.properties).

• @Bean MessageListenerAdapter . This method returns a new
 MessageListenerAdapter that is the Consumer class (it will use Consumer because is
marked with the @Component annotation) and the method (messageHandler) that will
handle the message once it is delivered.

 Take your time to analyze it. MessageListenerAdapter is very similar to the JMS and Rabbit adapters.
This adapter pattern will simplify the way you consume your message, regardless of its type, because under
the covers it will do its best to do serialization and deserialization to get the right type of message to the
method handler.

 Next, let’s see the main application. See Listing 10-19 .

 Listing 10-19. src/main/java/com/apress/spring/SpringBootRedisApplication. java

 package com.apress.spring;

 import org.springframework.beans.factory.annotation.Value;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;

 import com.apress.spring.redis.Producer;

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

236

 @SpringBootApplication
 public class SpringBootRedisApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootRedisApplication.class, args);
 }

 @Value("${topic}")
 String topic;

 @Bean
 CommandLineRunner sendMessage(Producer producer){
 return args -> {
 producer.sendTo(topic, "Spring Boot rocks with Redis messaging!");
 };
 }
 }

 Listing 10-19 shows the main app; you are already familiar with everything here.
 Before you run the project, make sure you have the Redis server up and running. To start it, execute the

following command in a terminal:

 $ redis-server
 89887:C 11 Feb 20:17:55.320 # Warning: no config file specified, using the default config.
In order to specify a config file use redis-server /path/to/redis.conf
 89887:M 11 Feb 20:17:55.321 * Increased maximum number of open files to 10032 (it was
originally set to 256).
 .
 _.-``__ ''-._
 .-`` `. `. ''-._ Redis 3.0.7 (00000000/0) 64 bit
 .-`` .-```. ```\/ _.,_ ''-._
 (' , .-` | `,) Running in standalone mode
 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379
 | `-._ `._ / _.-' | PID: 89887
 `-._ `-._ `-./ _.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' | http://redis.io
 `-._ `-._`-.__.-'_.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' |
 `-._ `-._`-.__.-'_.-' _.-'
 `-._ `-.__.-' _.-'
 `-._ _.-'
 `-.__.-'

 89887:M 11 Feb 20:17:55.323 # Server started, Redis version 3.0.7
 89887:M 11 Feb 20:17:55.323 * The server is now ready to accept connections on port 6379

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

237

 This output indicates that Redis is ready and listening in the port 6379 . Now you can run the project as
usual:

 $./mvnw spring-boot:run

 After executing this command, you should have in your logs something similar to the following output:

 ...
 INFO 90211 --- [main] com.apress.spring.redis.Producer : Sending> ...
 INFO 90211 --- [c-2] com.apress.spring.redis.Consumer : Consumer> Spring Boot rocks with
Redis messaging!
 ...

 Well done! You have created a Spring Bot messaging app using Redis. You can shut down Redis by
pressing Ctrl+C .

 Remote Redis
 If you want to access Redis remotely, you need to add the following properties to the
application.properties file:

 spring.redis.database=0
 spring.redis.host=localhost
 spring.redis.password=mysecurepassword
 spring.redis.port=6379

 You can always read about all the properties for Redis in the Spring Boot reference: https://docs.
spring.io/spring-boot/docs/current/reference/html/common-application-properties.html .

 You saw what you need to use Redis as a messaging broker, but if you want to know more about the
key-value store with Spring, you can check out the Spring Data Redis project at http://projects.spring.io/
spring-data-redis/ .

 WebSockets with Spring Boot
 It might seem logical that a topic about WebSockets should be in the web chapter instead, but I consider
WebSockets more related to messaging, and that’s why this section is in this chapter.

 WebSockets is a new way of communication, and it’s replacing the client/server web technology.
It allows long-held single TCP socket connections between the client and server. It’s also called push
technology, and it’s where the server can send data to the web without the client do long polling to request a
new change.

 This section shows you an example where you will send a message through a REST endpoint (Producer)
and receive the messages (Consumer) using a web page and some JavaScript libraries. So, let’s get started.
Open a terminal and execute the following commands:

 $ mkdir spring-boot-websockets
 $ cd spring-boot-websockets
 $ spring init -d=websocket -g=com.apress.spring -a=spring-boot-websockets --package-
name=com.apress.spring -name=spring-boot-websockets -x

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
http://projects.spring.io/spring-data-redis/
http://projects.spring.io/spring-data-redis/

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

238

 Let’s take a look at the pom.xml file. See Listing 10-20 .

 Listing 10-20. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-websockets</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-websockets</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-websocket</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

239

 The spring-boot-starter-websocket is the pom that will bring all the dependencies that you
need for creating a WebSockets messaging application. Between the dependencies you will have all the
 spring-webmvc , spring-messaging , spring-websocket , and tomcat-embedded you need, so there is no
need to include the spring-boot-starter-web dependency. The WebSockets starter pom will use them
automatically.

 Next, let’s see the Producer that will send the message to the HTML page. See Listing 10-21 .

 Listing 10-21. src/main/java/com/apress/spring/websocket/Producer.java

 package com.apress.spring.websocket;

 import java.text.SimpleDateFormat;
 import java.util.Date;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.messaging.simp.SimpMessagingTemplate;
 import org.springframework.stereotype.Component;

 @Component
 public class Producer {

 private static final SimpleDateFormat dateFormatter = new SimpleDateFormat("MM/dd/
yyyy HH:mm:ss");

 @Autowired
 private SimpMessagingTemplate template;

 public void sendMessageTo(String topic, String message) {
 StringBuilder builder = new StringBuilder();
 builder.append("[");
 builder.append(dateFormatter.format(new Date()));
 builder.append("] ");
 builder.append(message);

 this.template.convertAndSend("/topic/" + topic, builder.toString());
 }
 }

 Listing 10-21 shows the Producer.java class that will be sending messages to the HTML page. Let’s
examine it:

• @Component . This annotation will register the Producer class as the bean for the
Spring container.

• @Autowired SimpMessagingTemplate . This class is an implementation of the
 SimpMessagesSendingOperations class that provides methods for sending message
to users.

• sendMessageTo . This method uses the SimpleMessagingTemplate instance to call
the convertAndSend method (a familiar method from other technologies). The
 convertAndSend method requires a destination, in this case the topic where the
message will be sent, and the message itself. You may have noticed that there is a /
topic path before the topic’s name. This is the way WebSockets will identify the topic
name, by adding the /topic prefix.

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

240

 This results in a very simple Producer class. This class will be used in the REST endpoint, as shown in
Listing 10-22 .

 Listing 10-22. src/main/java/com/apress/spring/web/WebSocketController.java

 package com.apress.spring.web;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.web.bind.annotation.PathVariable;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestParam;
 import org.springframework.web.bind.annotation.RestController;

 import com.apress.spring.websocket.Producer;

 @RestController
 public class WebSocketController {

 @Autowired
 Producer producer;

 @RequestMapping("/send/{topic}")
 public String sender(@PathVariable String topic, @RequestParam String message){
 producer.sendMessageTo(topic, message);
 return "OK-Sent";
 }

 }

 Listing 10-22 shows the REST endpoint. Let’s examine it:

• @RestController . This annotation marks the class as a REST controller. This will
register endpoints marked with the @RequestMapping annotation.

• @RequestMapping("/send/{topic}") . This annotation is the REST endpoint.
In this case, it requires the topic path variable. The method sender accepts two
parameters—the topic that is marked as @PathVariable that matches the endpoint
signature (from the @RequestMapping annotation) and the message that is annotated
with @RequestParameter , meaning that this value will be passed as an url param.
The sender method uses the Producer instance to send the message to the specified
topic .

 Now you have your REST endpoint and your producer ready to send messages to a particular topic.
Next, let’s configure the endpoints necessary to create the WebSockets connections. See Listing 10-23 .

 Listing 10-23. src/main/java/com/apress/spring/config/WebSocketConfig.java

 package com.apress.spring.config;

 import org.springframework.context.annotation.Configuration;
 import org.springframework.messaging.simp.config.MessageBrokerRegistry;
 import org.springframework.web.socket.config.annotation.
AbstractWebSocketMessageBrokerConfigurer;

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

241

 import org.springframework.web.socket.config.annotation.EnableWebSocketMessageBroker;
 import org.springframework.web.socket.config.annotation.StompEndpointRegistry;

 @Configuration
 @EnableWebSocketMessageBroker
 public class WebSocketConfig extends AbstractWebSocketMessageBrokerConfigurer{

 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {
 registry.addEndpoint("/stomp").withSockJS();
 }

 @Override
 public void configureMessageBroker(MessageBrokerRegistry config) {
 config.enableSimpleBroker("/topic");
 config.setApplicationDestinationPrefixes("/app");
 }
 }

 Listing 10-23 shows the WebSocketConfig class. Let’s examine it:

• @Configuration . You know that this will mark the class as configuration for the
Spring container.

• @EnableWebSocketMessageBroker . This annotation will use the auto-
configuration to create all the necessary artifacts to enable broker-backed
messaging over WebSockets using a very high-level messaging sub-protocol. If
you need to customize the endpoints you need to override the methods from the
 AbstractWebSocketMessageBrokerConfigurer class.

• AbstractWebSocketMessageBrokerConfigurer . The WebSocketConfig is extending
from this class. It will override methods to customize the protocols and endpoints.

• registerStompEndpoints(StompEndpointRegistry registry) . This method will
register the Stomp (https://stomp.github.io/) endpoint; in this case it will register
the /stomp endpoint and use the JavaScript library SockJS (https://github.com/
sockjs).

• configureMessageBroker(MessageBrokerRegistry config) . This method will
configure the message broker options. In this case, it will enable the broker in the
/topic endpoint. This means that the clients who want to use the WebSockets broker
need to use the /topic to connect .

 Now, let’s see the actual consumer, which is the web page that will connect to the WebSockets broker.
Create the folder called static in src/main/resources/static and create index.html . See Listing 10-24 .

 Listing 10-24. src/main/resources/static/index. html

 <!DOCTYPE html>
 <html>
 <head>
 <title>Spring Boot WebSocket Messaging</title>
 <script type="text/javascript" src="//cdn.jsdelivr.net/jquery/2.2.0/jquery.min.js">

</script>

https://stomp.github.io/
https://github.com/sockjs
https://github.com/sockjs

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

242

 <script type="text/javascript" src="//cdn.jsdelivr.net/sockjs/1.0.3/sockjs.min.js">
</script>

 <script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/stomp.js/2.3.3/
stomp.min.js"></script>

 </head>
 <body>
 <div>
 <h3>Messages:</h3>
 <ol id="messages">
 </div>

 <script type="text/javascript">
 $(document).ready(function() {
 var messageList = $("#messages");
 var socket = new SockJS('/stomp');
 var stompClient = Stomp.over(socket);

 stompClient.connect({ }, function(frame) {
 stompClient.subscribe("/topic/message", function(data) {
 var message = data.body;
 messageList.append("" + message + "");
 });
 });
 });
 </script>
 </body>
 </html>

 Listing 10-24 shows the index.html web page. Notice that this page is in the src/main/resources/
static path, not in the templates. This is because you are not using any particular view engine like before.
So static files like this web page should be in the static folder. The index.html page uses several JavaScript
libraries. You can find always the latest at http://cdn.jsdelivr.net and http://cdnjs.cloudflare.com .
It uses the jQuery that will be use for append the messages to an HTML list. It will use the sockjs library to
connect to the /stomp endpoint, and it will use Stomp library to subscribe to the broker’s /topic/message
endpoint. The final topic will be /topic/message (or topic = message) , so that’s where the producer
needs to send the message .

 Now you are ready to start testing your Spring Boot WebSockets project. You can run the application as
usual:

 $./mvnw spring-boot:run

 Open the a browser and go to http://localhost:8080 . You should see the messages text. Next, open a
terminal and execute the following commands:

 $ curl localhost:8080/send/message -d "message=Spring Boot Rocks"
 OK-Sent
 $ curl localhost:8080/send/message -d "message=Spring Boot with WebSocket is awesome"
 OK-Sent
 $ curl localhost:8080/send/message -d "message=Hello World"
 OK-Sent

http://cdn.jsdelivr.net/
http://cdnjs.cloudflare.com/

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

243

 After using the first command you should see the messages appear in the browser. Verify that you are
using the path variable /message , and that it is the WebSockets topic. Also you are passing a parameter
message? It’s equivalent to use:

 $ curl "http://ocalhost:8080/send/message?message=Hi There"

 See Figure 10-4 for the results of these commands.

 Figure 10-4. SockJS and Stomp messages

 Figure 10-4 shows the result of posting messages through WebSockets. Now imagine the possibilities
for new applications that require some notification in real-time (such as creating real-time chat rooms or
updating stocks on the fly for your customers or updating your web site without preview or restart). With
Spring Boot and WebSockets you are covered.

 ■ Note All the code is available from the Apress site. You can also get the latest at
 https://github.com/felipeg48/pro-spring-boot repository .

https://github.com/felipeg48/pro-spring-boot

CHAPTER 10 ■ MESSAGING WITH SPRING BOOT

244

 Summary
 This chapter discussed all the technologies that are used for messaging, including JMS (Java Message
Service) and HornetQ. It also discussed how to connect to a remote server by providing the server name and
port in the application.properties file.

 You learned about AMQP and RabbitMQ and how you can send and receive messages using Spring
Boot. You also learned about Redis and how to use its Pub/Sub messaging, and finally you learned about
WebSockets and how easy it is to implement it with Spring Boot.

 The next chapter discusses the Spring Boot Actuator and how you can monitor your Spring Boot
application.

245© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_11

 CHAPTER 11

 Spring Boot Actuator

 This chapter discusses the Spring Actuator module and explains how you can use all its features to monitor
your Spring Boot applications.

 A common task during and after development that every developer does is to start checking out the
logs. Developers check to see if the business logic works as it supposed to, or check out the processing time
of some services, and so on. Even though they should have their unit, integration, and regression tests
in place, they are not exempt from externals failures like network (connections, speed, etc.), disk
(space, permissions, etc.), and more.

 When you deploy to production, it’s even more critical. You must pay attention to your applications
and sometimes to the whole system. When you start depending on some non-functional requirements like
monitoring systems that check for the health of the different applications, or maybe that set alerts when your
application gets to a certain threshold or even worse, when your application crashes, you need to act ASAP.

 Developers depend on many third-party technologies to do their job, and I’m not saying that this is bad,
but this means that all the heavy lifting is in the dev-ops teams. They must monitor every single application
and the entire system as a whole.

 Spring Boot Actuator
 Spring Boot includes an Actuator module , which introduces production-ready non-functional requirements
to your application. The Spring Boot Actuator module provides monitoring, metrics, and auditing right out
of box.

 What makes the Actuator module more attractive is that you can expose data through different
technologies, like HTTP (endpoints), JMX, and SSH (using CRaSH at http://www.crashub.org/).

 Let’s start with a basic web application. Open a terminal and execute the following commands:

 $ mkdir spring-boot-web-actuator
 $ cd spring-boot-actuator
 $ spring init -d=web,actuator -g=com.apress.spring -a=spring-boot-web-actuator
--package-name=com.apress.spring -name=spring-boot-web-actuator -x

 As you can see, the dependencies are web and actuator , and this will include the spring-boot-starter-web
and the spring-boot-starter-actuator poms. See Listing 11-1 .

http://www.crashub.org/

CHAPTER 11 ■ SPRING BOOT ACTUATOR

246

 Listing 11-1. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-web-actuator</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-web-actuator</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

CHAPTER 11 ■ SPRING BOOT ACTUATOR

247

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
 </project>

 Listing 11-1 shows the pom.xml file with the web and actuator starter poms. Now, let’s open the main
app and create a basic web controller and endpoint. See Listing 11-2 .

 Listing 11-2. src/main/java/com/apress/spring/ SpringBootWebActuatorApplication.java

 package com.apress.spring;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RestController;

 @RestController
 @SpringBootApplication
 public class SpringBootWebActuatorApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootWebActuatorApplication.class, args);
 }

 @RequestMapping("/")
 public String index(){
 return "Spring Boot Actuator";
 }
 }

 Listing 11-2 shows the main application. As you can see, there is nothing new. It’s just a simple web
application that maps to the root and returns the string "Spring Boot Actuator" . It’s based on what you
already know about the @RestController and the @RequestMapping annotations.

 Let’s start the application by executing the following:

 $./mvnw spring-boot:run

 After running the application, you should see these mappings in your logs:

 ...
 INFO - [m] o.s...M: Mapped "{[/]}"
 ...
 INFO - [m] o.s...E: Mapped "{[/health || /health.json],produces=[application/json]}"
 INFO - [m] o.s...E: Mapped "{[/beans || /beans.json],methods=[GET],produces=[application/json]}"
 INFO - [m] o.s...E: Mapped "{[/info || /info.json],methods=[GET],produces=[application/json]}"

CHAPTER 11 ■ SPRING BOOT ACTUATOR

248

 INFO - [m] o.s...E: Mapped "{[/mappings || /mappings.json],methods=[GET],
produces=[application/json]}"
 INFO - [m] o.s...E: Mapped "{[/env/{name:.*}],methods=[GET],produces=[application/json]}"
 INFO - [m] o.s...E: Mapped "{[/env || /env.json],methods=[GET],produces=[application/json]}"
 INFO - [m] o.s...E: Mapped "{[/metrics/{name:.*}],methods=[GET],produces=[application/json]}"
 INFO - [m] o.s...E: Mapped "{[/metrics || /metrics.json],methods=[GET],produces=
[application/json]}"
 INFO - [m] o.s...E: Mapped "{[/autoconfig || /autoconfig.json],methods=[GET],produces=
[application/json]}"
 INFO - [m] o.s...E: Mapped "{[/trace || /trace.json],methods=[GET],produces=[application/json]}"
 INFO - [m] o.s...E: Mapped "{[/configprops || /configprops.json],methods=[GET],
produces=[application/json]}"
 INFO - [m] o.s...E: Mapped "{[/dump || /dump.json],methods=[GET],produces=[application/json]}"
 ...

 First, you should see the RequestMappingHandlerMapping class mapped to the endpoint / from the
 @RequestMapping annotation you have in the index method. Also you will see, the EndpointHandlerMapping
class mapped to several endpoints that belong to the Actuator module. Let’s see each endpoint in detail.

 / actuator
 This endpoint is not listed by the EndpointHandlerMapping class, but let’s see what it does and how to
activate it. You can stop your application by pressing Ctrl+C on your keyboard.

 The /actuator endpoint will provide a hypermedia-based discovery page for all the other endpoints,
but it will require the Spring HATEOAS in the classpath, so if you include this in your pom.xml :

 <dependency>
 <groupId>org.springframework.hateoas</groupId>
 <artifactId>spring-hateoas</artifactId>
 </dependency>

 You can rerun your application and you will see that now is listed by the EndpointHandlerMapping class
logs and you can access it through the URL /actuator . So, if you go to http://localhost:8080/actuator ,
you should see something similar to Figure 11-1 .

CHAPTER 11 ■ SPRING BOOT ACTUATOR

249

 Figure 11-1 shows all the links that you can access through the Actuator module. The Actuator gives
you all the possible endpoints that you can access. Remember, you need to add the Spring HATEOAS
dependency to your pom.xml file as well.

 /autoconfig
 This endpoint will display the auto-configuration report. It will give you two groups: positiveMatches
and negativeMatches . Remember that the main feature of Spring Boot is that it will auto-configure your
application by seeing the classpath and dependencies. This has everything to do with the starter poms and
extra dependencies that you add to your pom.xml file. If you go to http://localhost:8080/autoconfig , you
should see something similar to Figure 11-2 .

 Figure 11-1. http://localhost:8080/actuator

CHAPTER 11 ■ SPRING BOOT ACTUATOR

250

 /beans
 This endpoint will display all the Spring beans that are used in your application. Remember that even
though you add a few lines of code to create a simple web application, behind the scenes Spring starts to
create all the necessary beans to run your app. If you go to http://localhost:8080/beans , you should see
something similar to Figure 11-3 .

 Figure 11-2. http://localhost:8080/autoconfig

CHAPTER 11 ■ SPRING BOOT ACTUATOR

251

 /configprops
 This endpoint will list all the configuration properties that are defined by the @ConfigurationProperties
beans, which is something that I showed you in earlier chapters. Remember that you can add your own
configuration properties prefix and that they can be defined and accessed in the application.properties
or YAML files. Figure 11-4 shows an example of this endpoint.

 Figure 11-3. http://localhost:8080/beans

CHAPTER 11 ■ SPRING BOOT ACTUATOR

252

 You can stop you application by pressing Ctrl+C.

 /docs
 This endpoint will show HTML pages with all the documentation for all the Actuator module endpoints.
This endpoint can be activated by including the spring-boot-actuator-docs dependency in pom.xml :

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-actuator-docs</artifactId>
 </dependency>

 Figure 11-4. http://localhost:8080/configprops

CHAPTER 11 ■ SPRING BOOT ACTUATOR

253

 After adding this dependency to your application, you can rerun it and see in the logs that the /docs
endpoint is listed. See Figure 11-5 as the result of including the spring-boot-actuator-docs
(http://localhost:8080/docs). Very useful!

 /dump
 This endpoint will perform a thread dump of your application. It shows all the threads running and their stack
trace of the JVM that is running your app. Go to http://localhost:8080/dump endpoint . See Figure 11-6 .

 Figure 11-5. http://localhost:8080/docs

CHAPTER 11 ■ SPRING BOOT ACTUATOR

254

 /env
 This endpoint will expose all the properties from the Spring’s ConfigurableEnvironment interface. This will
show any active profiles and system environment variables and all application properties, including the
Spring Boot properties. Go to http://localhost:8080/env . See Figure 11-7 .

 Figure 11-6. http://localhost:8080/dump

CHAPTER 11 ■ SPRING BOOT ACTUATOR

255

 / flyway
 This endpoint will provide all the information about your database migration scripts; it’s based on the
Flyway project (https://flywaydb.org/). This is very useful when you want to have full control of your
database by versioning your schemas. If you are familiar with Ruby on Rails, this is very similar to the active
record migrations.

 Before you continue, you can stop your application. To activate this endpoint you need to include the
following dependencies:

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

 Figure 11-7. http://localhost:8080/

https://flywaydb.org/

CHAPTER 11 ■ SPRING BOOT ACTUATOR

256

 <dependency>
 <groupId>org.flywaydb</groupId>
 <artifactId>flyway-core</artifactId>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>

 Because this is related to the database app, you need to include the previous dependencies, but
let’s use the main app to add simple code to enable a database application. Create a Person domain class.
See Listing 11-3 .

 Listing 11-3. src/main/java/com/apress/spring/domain/Person.java

 package com.apress.spring.domain;

 import javax.persistence.Entity;
 import javax.persistence.GeneratedValue;
 import javax.persistence.Id;

 @Entity
 public class Person {

 @Id
 @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;

 public String getFirstName() {
 return this.firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return this.lastName;
 }

 public void setLastName(String lastname) {
 this.lastName = lastname;
 }

 @Override
 public String toString() {
 return "Person (firstName=" + this.firstName + ", lastName=" +

this.lastName + ")";
 }
 }

CHAPTER 11 ■ SPRING BOOT ACTUATOR

257

 Listing 11-3 shows a basic class annotated with the @Entity , @Id , and @GeneratedValue annotations,
something that you already know and that I showed you in earlier chapters. Next, let’s create the repository
interface. See Listing 11-4 .

 Listing 11-4. src/main/java/com/apress/spring/repository/PersonRepository.java

 package com.apress.spring.repository;

 import org.springframework.data.repository.CrudRepository;

 import com.apress.spring.domain.Person;

 public interface PersonRepository extends CrudRepository<Person, Long> { }

 Listing 11-4 shows the PersonRepository.java interface. This time, instead of extending from
 JpaRepository , you are extending from the CrudRepository interface. This interface doesn’t have the
paging and sorting functionality, but for this example with basic CRUD operation it’s more than enough.

 Next, let’s add the following properties to the application.properties . See Listing 11-5 .

 Listing 11-5. src/main/resources/application.properties

 spring.jpa.hibernate.ddl-auto=validate
 spring.h2.console.enabled=true

 Listing 11-5 shows the two properties you are going to use—the first one validates the schemas/data
you are going to use and the second enables the /h2-console endpoint for you to see the table structure and
the queries.

 Next, modify the main app to look like Listing 11-6 .

 Listing 11-6. src/main/java/com/apress/spring/SpringBootWebActuatorApplication.java

 package com.apress.spring;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RestController;

 import com.apress.spring.repository.PersonRepository;

 @RestController
 @SpringBootApplication
 public class SpringBootWebActuatorApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootWebActuatorApplication.class, args);
 }

CHAPTER 11 ■ SPRING BOOT ACTUATOR

258

 @RequestMapping("/")
 public String index(){
 return "Spring Boot Actuator";
 }

 private static final Logger log = LoggerFactory.getLogger(SpringBootWebActuator
Application.class);

 @Bean
 CommandLineRunner findAll(PersonRepository repo){
 return args ->{
 log.info("> Persons in Database: ");
 repo.findAll().forEach(person -> log.info(person.toString()));
 };
 }
 }

 Listing 11-6 shows the SpringBootWebActuatorApplication.java class. Note the last few lines, where
you are defining a log (to print out the database records) and the @Bean CommandLineRunner , where it will
run after Spring Boot finalizes its auto-configuration and executes the findAll method. It receives the
 PersonRepository that will be auto-wired and will return the output of calling the repo.findAll from the
database.

 Now, before you run the application, you need to create the db/migration structure under src/main/
resources and add two versions of an init SQL scripts. This structure (db/migration) is required for this
application to work. See Figure 11-8 .

CHAPTER 11 ■ SPRING BOOT ACTUATOR

259

 Figure 11-8 shows the final structure for your current application and it’s important to notice the two
SQL scripts used to initialize the database. Note that they have versions V1 and V2. The naming convention
of using versions is required for this to work. See Listings 11-7 (V1) and 11-8 (V2).

 Listing 11-7. src/main/resources/db/migration/V1__init.sql

 DROP TABLE IF EXISTS PERSON;

 CREATE TABLE PERSON (
 id BIGINT GENERATED BY DEFAULT AS IDENTITY,
 first_name varchar(255) not null,
 last_name varchar(255) not null
);

 insert into PERSON (first_name, last_name) values ('Red', 'Lobster');

 Figure 11-8. The directory structure with the db/migration SQL scripts

CHAPTER 11 ■ SPRING BOOT ACTUATOR

260

 Listing 11-7 shows very simple SQL that will define the table and one record.

 Listing 11-8. src/main/resources/db/migration/V2__init.sql

 insert into PERSON (first_name, last_name) values ('Ronald', 'McDonald');
 insert into PERSON (first_name, last_name) values ('Jack', 'InTheBox');
 insert into PERSON (first_name, last_name) values ('Carl', 'Jr');

 Listing 11-8 shows version 2 of the init SQL script. As you can see, the only difference is that V2 has
more records to add. Now, if you run your application as usual:

 $./mvnw spring-boot:run

 You will find the following output in the logs:

 ...
 INFO 87925 --- [m] o.f.. : Flyway 3.2.1 by Boxfuse
 INFO 87925 --- [m] o.f.. : Database: jdbc:h2:mem:testdb (H2 1.4)
 INFO 87925 --- [m] o.f.. : Validated 2 migrations (execution time 00:00.013s)
 INFO 87925 --- [m] o.f.. : Creating Metadata table: "PUBLIC"."schema_version"
 INFO 87925 --- [m] o.f.. : Current version of schema "PUBLIC": << Empty Schema >>
 INFO 87925 --- [m] o.f.. : Migrating schema "PUBLIC" to version 1 - init
 INFO 87925 --- [m] o.f.. : Migrating schema "PUBLIC" to version 2 - init
 INFO 87925 --- [m] o.f.. : Successfully applied 2 migrations to schema "PUBLIC" (execution

time 00:00.090s).
 INFO 87925 --- [m] : Building JPA container EntityManagerFactory for persistence unit

'default'
 ...
 INFO 87925 --- [m] ...E : Mapped "{[/flyway || /flyway.json]
 ...
 INFO 87925 --- [m] ...App: > Persons in Database:
 INFO 87925 --- [m] ...App: Person (firstName=Red, lastName=Lobster)
 INFO 87925 --- [m] ...App: Person (firstName=Ronald, lastName=McDonald)
 INFO 87925 --- [m] ...App: Person (firstName=Jack, lastName=InTheBox)
 INFO 87925 --- [m] ...App: Person (firstName=Carl, lastName=Jr)
 ...

 As you can see from this output, the Flyway will kick in and execute the migration script in order based
on its version, so it will execute the V1__init.sql first, then the V2__init.sql . That’s why at the end you
will see the four persons in the output. Also it’s been mapped to the /flyway endpoint, so if you go to
 http://localhost:8080/flyway , you will see the information about the scripts executed and its state after
its execution. See Figure 11-9 .

CHAPTER 11 ■ SPRING BOOT ACTUATOR

261

 As you can see, you have now the power of using database migrations by adding the flyway-core
dependency together with the Actuator module. As an exercise, consider what you would need to do to
enable the flyway in your Spring Boot journal application.

 /health
 This endpoint will show the health of the application. If you are doing a database app like in the previous
section (/flyway) you will see the DB status and by default you will see also the diskSpace from your system.
If you are running your app, you can go to http://localhost:8080/health . See Figure 11-10 .

 Figure 11-9. http://localhost:8080/flyway

CHAPTER 11 ■ SPRING BOOT ACTUATOR

262

 Figure 11-10 shows the result of the health not only of your app but of the database connectivity. This is
very useful if you want to find about external services, such as in this example the database.

 /info
 This endpoint will display the public application info. This means that you need to add this information to
 application.properties . It’s recommended that you add it if you have multiple Spring Boot applications.
So, before you continue, stop your application. Next, modify your application.properties file so that it
looks like Listing 11-9 .

 Figure 11-10. http://localhost:8080/health

CHAPTER 11 ■ SPRING BOOT ACTUATOR

263

 Listing 11-9. src/main/resources/appplication.properties

 info.app.name=Spring Boot Web Actuator Application
 info.app.description=This is an example of the Actuator module
 info.app.version=1.0.0

 spring.jpa.hibernate.ddl-auto=validate
 spring.h2.console.enabled=true

 After adding the properties to your application.properties file, go to http://localhost:8080/info .
You should see something similar to Figure 11-11 .

 Figure 11-11. http://localhost:8080/info

 Figure 11-11 shows the information about your application, but it’s necessary to modify the
 application.properties with the info.app properties.

 /liquibase
 This endpoint will show all the Liquibase (http://www.liquibase.org/) database migrations that have
been applied. This is very similar to Flyway. If you are running your application, you can stop it now.

 You need to add the liquibase-core pom in order to enable the /liquibase endpoint:

 <dependency>
 <groupId>org.liquibase</groupId>
 <artifactId>liquibase-core</artifactId>
 </dependency>

 Modify your pom.xml to look like Listing 11-10 .

http://www.liquibase.org/

CHAPTER 11 ■ SPRING BOOT ACTUATOR

264

 Listing 11-10. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-web-actuator</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-web-actuator</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath /> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.hateoas</groupId>
 <artifactId>spring-hateoas</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-actuator-docs</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

CHAPTER 11 ■ SPRING BOOT ACTUATOR

265

 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.liquibase</groupId>
 <artifactId>liquibase-core</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
 </project>

 Listing 11-10 shows the pom.xml . If you were doing the flyway example, that’s the only one you need
to comment out or remove and replace it with the liquibase-core dependency. One of the requirements
of Liquibase is to have a db/changelog directory and a db.changelog-master.yaml file where you do your
migrations. Let’s see that file. See Listing 11-11 .

 Listing 11-11. src/main/resources/db/changelog/db.changelog-master.yaml

 databaseChangeLog:
 - changeSet:
 id: 1
 author: mrfood
 changes:
 - createTable:
 tableName: person
 columns:
 - column:
 name: id
 type: int
 autoIncrement: true
 constraints:
 primaryKey: true
 nullable: false
 - column:
 name: first_name
 type: varchar(255)

CHAPTER 11 ■ SPRING BOOT ACTUATOR

266

 constraints:
 nullable: false
 - column:
 name: last_name
 type: varchar(255)
 constraints:
 nullable: false
 - changeSet:
 id: 2
 author: mrfood
 changes:
 - insert:
 tableName: person
 columns:
 - column:
 name: first_name
 value: Bobs
 - column:
 name: last_name
 value: Burguers

 Listing 11-11 shows the db.changelog-master.yaml file. In this file you have two groups—the first one
will create the table with their columns and types and the second group will insert a record in the table.
If you need to know about the format and the types, take a look at the Liquibase documentation at
 http://www.liquibase.org/documentation/ . You should have the structure shown in Figure 11-12 .

http://www.liquibase.org/documentation/

CHAPTER 11 ■ SPRING BOOT ACTUATOR

267

 Next, you need to make a small change to application.properties . Change the property
 spring.jpa.hibernate.ddl-auto=validate to spring.jpa.hibernate.ddl-auto=none ; this is because
you don’t want the JPA to generate your table, this now should be handle by Liquibase. And that’s it; you
can run your application and you will see in the logs that Liquibase triggers the changelog file and there
is only one record in the database. Go to http://localhost:8080/liquibase to see something similar to
Figure 11-13 .

 Figure 11-12. Project structure with the db/changelog directory

CHAPTER 11 ■ SPRING BOOT ACTUATOR

268

 Figure 11-13 shows the result of executing the db.changelog-master.yaml file. So now you have at least
two options for database migrations.

 /logfile
 This endpoint will show the contents of the log file specified by the logging.file property , where you specify
the name of the log file (this will be written in the current directory). You can also set the logging.path , where
you set the path where the spring.log will be written. By default Spring Boot writes to the console/standard
out, and if you specify any of these properties, it will also write everything from the console to the log file.

 Figure 11-13. http://localhost:8080/liquibase

CHAPTER 11 ■ SPRING BOOT ACTUATOR

269

 You can stop your application. Go to src/main/resources/application.properties and add this to
the very end:

 logging.file=mylog.log

 Now you can rerun your application. If you go to the http://localhost:8080/logfile endpoint, you
should have something to Figure 11-14 , which shows the contents of the mylog.log file.

 Figure 11-14. http://localhost:8080/logfile

CHAPTER 11 ■ SPRING BOOT ACTUATOR

270

 / metrics
 This endpoint shows the metrics information of the current application, where you can determine the how
much memory it’s using, how much memory is free, the uptime of your application, the size of the heap is
being used, the number of threads used, and so on.

 One of the important features about this endpoint is that it has some counters and gauges that you can
use, even for statistics about how many times your app is being visited or if you have the log file enabled. If
you are accessing the /logfile endpoint, you will find some counters like counter.status.304.logfile ,
which indicates that the /logfile endpoint was accessed but hasn’t change. And of course you can have
custom counters.

 If you are running the application, you can stop it. Let’s create one simple example by reusing the same
example application and modifying the main app. See Listing 11-12 .

 Listing 11-12. src/main/java/com/apress/spring/SpringBootWebActuatorApplication.java

 package com.apress.spring;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.actuate.metrics.CounterService;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RestController;

 import com.apress.spring.repository.PersonRepository;

 @RestController
 @SpringBootApplication
 public class SpringBootWebActuatorApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootWebActuatorApplication.class, args);
 }

 @Autowired
 CounterService counter;

 @RequestMapping("/")
 public String index(){
 counter.increment("counter.index.invoked");
 return "Spring Boot Actuator";
 }

 private static final Logger log = LoggerFactory.getLogger(SpringBootWebActuator
Application.class);

CHAPTER 11 ■ SPRING BOOT ACTUATOR

271

 @Bean
 CommandLineRunner findAll(PersonRepository repo){
 return args ->{
 log.info("> Persons in Database: ");
 repo.findAll().forEach(person -> log.info(person.toString()));
 };
 }

 }

 Listing 11-12 shows the modified main app. Let’s examine it:

• @Autowired CounterService. CounterService is a service interface that can be used
to increment, decrement, and reset a named counter value. The counter instance
will be auto-wired by the Spring container.

• counter.increment("counter.index.invoked") . This instance method creates a
counter variable with the name counter.index.invoked (it can be whatever
name you want, just make sure it makes sense) and it will increment (by one)
its value every time it’s executed. So every time the index page is refreshed, the
 counter.index.invoked counter will be incremented by one.

 There is also another service interface you can use, especially designed for gauges, called the
 org.springframework.boot.actuate.metrics.GaugeService service interface. It can be used to submit
a named double value for storage an analysis. This is very useful when you want to get some statistics. For
example, you can create a smart system where you are connected to a climate sensor, and you are displaying
the temperature using the GaugeService . Then you can set alarms by setting a threshold that automatically
increases or decreases the temperature.

 You can rerun your application after the change (from Listing 11-12) and if you visit http://localhost:8080
several times (do a Refresh) and then go to the http://localhost:8080/metrics endpoint, you should see
something similar to Figure 11-15 .

CHAPTER 11 ■ SPRING BOOT ACTUATOR

272

 Figure 11-15 shows the /metrics endpoint. If you take a look at the very last counter, you will see
listed that counter.index.invoked has six hits. I think this is a nice way to have statistics and analysis of
your application that work out-of-the-box. The only thing you need to do is use the CounterService or
 GaugeService service interfaces.

 /mappings
 This endpoint shows all the lists of all @RequestMapping paths declared in your application. This is very
useful if you want to know more about what mappings are declared. If your application is running, you can
go to the http://localhost:8080/mappings endpoint. See Figure 11-16 .

 Figure 11-15. http://localhost:8080/metrics

CHAPTER 11 ■ SPRING BOOT ACTUATOR

273

 /shutdown
 This endpoint is not enabled by default. It allows the application to be gracefully shut down. This endpoint
is sensitive, which means it can be used with security, and it should be. If your application is running,
you can stop it now. If you want to enable the /shutdown endpoint, you need to add the following to the
 application.properties .

 endpoints.shutdown.enabled=true

 Figure 11-16. http://localhost:8080/mappings

CHAPTER 11 ■ SPRING BOOT ACTUATOR

274

 It’s wise to have this endpoint secured. You’d need to add the spring-boot-starter-security pom
dependency to your pom.xml:

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>

 Remember that by adding the security starter pom, you enable security by default. The username will
be user and the password will be printed out in the logs. Also you can establish a better security by using
in-memory, database, or LDAP users; see the Spring Boot security chapter for more information.

 For now, let’s add the endpoints.shutdown.enabled=true and the spring-boot-starter-security
pom and rerun the application. After running the application, take a look at the logs and save the password
that is printed out so it can be used with the /shutdown endpoint:

 ...
 Using default security password: 2875411a-e609-4890-9aa0-22f90b4e0a11
 ...

 Now if you open a terminal, you can execute the following command:

 $ curl -i -X POST http://localhost:8080/shutdown -u user:2875411a-e609-4890-9aa0-
22f90b4e0a11
 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 X-Content-Type-Options: nosniff
 X-XSS-Protection: 1; mode=block
 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
 Pragma: no-cache
 Expires: 0
 X-Frame-Options: DENY
 Strict-Transport-Security: max-age=31536000 ; includeSubDomains
 X-Application-Context: application
 Content-Type: application/json;charset=UTF-8
 Transfer-Encoding: chunked
 Date: Wed, 17 Feb 2016 04:22:58 GMT

 {"message":"Shutting down, bye..."}

 As you can see from this output, you are using a POST method to access the /shutdown endpoint, and
you are passing the user and the password that was printed out before. The result is the "Shutting down,
bye.." message. And of course your application is terminated. Again, it’s important to know that this
particular endpoint must be secured at all times.

 /trace
 This endpoint shows the trace information, which is normally the last few HTTP requests. This endpoint
can be useful to see all the request info and the information returned to debug your application at the HTTP
level. You can run your application and go to http://localhost:8080/trace . You should see something
similar to Figure 11-17 .

CHAPTER 11 ■ SPRING BOOT ACTUATOR

275

 Sensitive Endpoints
 I mentioned that the /shutdown is a sensitive endpoint, meaning that if you add security to your pom.xml it
will be secured by default. Every time you want to access an endpoint, it will prompt you for the username
and password.

 The only endpoints that are not sensitive are /docs , /info and /health . So, if you want to disable the
sensitive feature, you can configure them in the application.properties file. For example, imagine that
you already have security and you don’t want to be prompted for the username and password for the /beans
and /trace endpoints. What you need to do is add the following to your application.properties file:

 endpoints. beans .sensitive=false
 endpoints. trace .sensitive=false

 Figure 11-17. http://localhost:8080/trace

CHAPTER 11 ■ SPRING BOOT ACTUATOR

276

 If your application is running, you can stop it now and then rerun it to see the changes. Try to
access the /beans and /trace endpoint; you won’t be asked for credentials. The key here is to set the
 endpoints.<endpoint-name>.sensitive to false .

 Sensitive also means that you can display certain information. For example, if you are not using
security, and you set the endpoints.beans.health.sensitive=true , you will only see in the /health
endpoint the status UP . But if you set the sensitive=false you will have a little more information. You can
get more information about which endpoints are sensitive by default at https://docs.spring.io/spring-
boot/docs/current/reference/html/production-ready-endpoints.html .

 Changing the Endpoint ID
 You can configure the endpoint ID, which will change the name. Imagine that you don’t like the /beans
endpoint, at the end this is referring to the Spring beans, so what about if you change this endpoint to /spring .

 You make this change in the application.properties file in the form of:
 endpoints.<endpoint-name>.id=<new-name> . Example:

 endpoints. beans .id=spring

 If you rerun your application (stop and restart to apply the changes), you can access the /beans
endpoint using the /spring endpoint instead.

 Actuator CORS Support
 With the Spring Boot Actuator module, you can configure CORS (Cross-Origin Resource Sharing), which
 allows you to specify what cross-domains are authorized to use the Actuator’s endpoints. Normally
this allows inter-application connect to your endpoints, and due to security reasons, only the domains
authorized must be able to execute these endpoints.

 You configure this in the application.properties file:

 endpoints.cors.allowed-origins=*
 endpoints.cors.allowed-methods=GET,POST

 If your application is running, stop it and rerun it.
 Normally in the endpoints.cors.allowed-origins , you should put a domain name like

 http://mydomain.com or maybe http://localhost:9090 (not the *), which allows access your endpoints to
avoid any hack to your site. This would be very similar to using in any controller the @CrossOrigin(origins
= "http://localhost:9000") annotation.

 Changing the Management Endpoints Path
 By default the Spring Boot Actuator has its management in the root, which means that all the Actuator’s
endpoints can be accessed from the root / . For example: /beans , /health , and so on. Before you continue,
stop your application. You can change its management context path by adding the following property to the
 application.properties file:

 management.context-path=/monitor

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
http://mydomain.com/

CHAPTER 11 ■ SPRING BOOT ACTUATOR

277

 If you rerun your application, you will see that the EndpointHandlerMapping is mapping all the
endpoints by adding the /monitor/<endpoint-name> context path. You can now access the /trace endpoint
through http://localhost:8080/monitor/trace .

 You can also disable security, change the address, or change the port for the endpoints:

 management.context-path=/monitor
 management.security.enabled=false
 management.port=8081
 management.address=127.0.0.1

 This configuration will have its endpoint with the context-path /monitor/<endpoint-name> , the
security will be disabled, the port will be 8081 (this means that you will have two ports listening—one is the
8080 of your application and 8081 is for your management endpoints), and the endpoints or management
will be bind to the 127.0.0.1 address.

 If you want to disable the endpoints (for security reasons), add the following property to the
 application.properties file.

 management.port=-1

 if you stop your application and rerun it with the management.port=-1 , you won’t see the endpoints
anymore.

 Using Spring Boot Actuator in a Non-Web Application
 Maybe you are wondering if you can use the Spring Boot Actuator module in a non-web application, and the
answer is, yes you can! You will sometimes need to create specialty services that do very specific tasks, such
as batch processing, or create some integration apps that don’t require a web interface.

 In this section, you are going to create a simple standalone application from scratch and see how the
Spring Actuator works in a non-web environment.

 Let’s start by executing the following commands:

 $ mkdir spring-boot-actuator
 $ cd spring-boot-actuator
 $ spring init -d=actuator,remote-shell -g=com.apress.spring -a=spring-boot-actuator
--package-name=com.apress.spring -name=spring-boot-actuator -x

 Did you notice what is new? The remote-shell dependency tool is CRaSH (http://www.crashub.org/)
and it’s a shell for Java. You are going to connect to your application using ssh and you will see how to
interact with the Actuator.

 Let’s start by looking at the pom.xml . See Listing 11-13 .

 Listing 11-13. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

http://www.crashub.org/

CHAPTER 11 ■ SPRING BOOT ACTUATOR

278

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-actuator</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-actuator</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-remote-shell</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

CHAPTER 11 ■ SPRING BOOT ACTUATOR

279

 Listing 11-13 shows the pom.xml . The only new part is the spring-boot-starter-remote-shell
dependency. Next, run your application as usual, and there is nothing to do with your main app or adding
classes:

 $./mvnw spring-boot:run

 After you execute this command you will see two things. First, the logs print out a password:

 ...
 Using default password for shell access: 7cb536e1-6c2b-4f71-a9ac-d07b3a85d791
 ...

 Second, this program never ends. That’s because the CRaSH tool is listening by default at port 2000 .
Open a terminal and execute the following command:

 $ ssh -p 2000 user@localhost
 Password authentication
 Password:
 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
 (()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v1.3.2.RELEASE) on liukang.local
 >

 In the password prompt you will enter the password from the logs output (from this example: 7cb536e1-
6c2b-4f71-a9ac-d07b3a85d791). If you type help and press Enter, you should have the following output:

 > help
 Try one of these commands with the -h or --help switch:

 NAME DESCRIPTION
 autoconfig Display auto configuration report from ApplicationContext
 beans Display beans in ApplicationContext
 cron manages the cron plugin
 dashboard a monitoring dashboard
 egrep search file(s) for lines that match a pattern
 endpoint Invoke actuator endpoints
 env display the term env
 filter a filter for a stream of map
 java various java language commands
 jmx Java Management Extensions
 jul java.util.logging commands
 jvm JVM informations
 less opposite of more
 mail interact with emails
 man format and display the on-line manual pages

CHAPTER 11 ■ SPRING BOOT ACTUATOR

280

 metrics Display metrics provided by Spring Boot
 shell shell related command
 sleep sleep for some time
 sort sort a map
 system vm system properties commands
 thread JVM thread commands
 help provides basic help
 repl list the repl or change the current repl

 Next, use the command endpoint and list all the available endpoints:

 > endpoint list
 environmentEndpoint
 healthEndpoint
 beansEndpoint
 infoEndpoint
 metricsEndpoint
 traceEndpoint
 dumpEndpoint
 autoConfigurationReportEndpoint
 configurationPropertiesReportEndpoint

 Now that you now what endpoint you can invoke, invoke the healthEndpoint :

 > endpoint invoke healthEndpoint
 {status=UP, diskSpace={status=UP, total=750046937088, free=20512227328, threshold=10485760}}

 As an exercise you can experiment with all the other endpoints. As you can see, you have the same
behavior as a web interface. If you want to add your own security or change the default port (2000), you can
do so by adding all the properties to your application.properties file, for example:

 shell.ssh.enabled: true
 shell.ssh.port: 2222
 shell.auth: simple
 shell.auth.simple.user.password: password

 If you rerun your application, you now can connect with the following:

 $ ssh -p 2222 user@localhost

 Use password as the password. I covered only basic properties for the shell, but you can get more
information about other properties that you can apply by visiting https://docs.spring.io/spring-boot/
docs/current/reference/html/common-application-properties.html .

 Now you have a good understanding of how the Spring Boot Actuator module works, including what its
endpoints are and how to use them. Of course, you can create your own endpoint and health monitor, but I
will cover this in a later chapter.

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

CHAPTER 11 ■ SPRING BOOT ACTUATOR

281

 Summary
 This chapter showed you how the Spring Boot Actuator works, including what its endpoints are and how
customizable it can be. With the Actuator module, you can monitor your Spring Boot application, from using
the /health endpoint to using the /trace for more granular debugging.

 The next chapter talks about deploying your Spring Boot applications, including how to create JAR and
WAR files and use them as a service.

283© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_12

 CHAPTER 12

 Deploying Spring Boot

 During the entire book you have been executing the Maven command spring-boot:run and I haven’t
covered it in too much detail, but when you execute it, you are actually executing the Spring Boot Maven
plugin goals. These normally have a particular flow. They will compile your application (classes), execute the
unit tests, and run your application taking the target/classes (where the compilation phase output all the
compiled classes into) directory as the working directory.

 This chapter discusses another Maven command that will allow you to create standalone applications
or executable JARs. If you prefer, you can create WARs from your web application and run them using an
external application container.

 Before getting into the details, you need to set up the main project, which will help you understand the
Spring Boot deployment better.

 Setting Up the Spring Boot Journal App
 You have been working with this application throughout the entire book, and you are going to get most of it
from Chapter 9 . Let’s get started.

 Execute the following commands in a terminal window:

 $ mkdir spring-boot-journal
 $ cd spring-boot-journal
 $ spring init -d=web,thymeleaf,data-jpa,data-rest,mysql,actuator,security,actuator-docs
-g=com.apress.spring -a=spring-boot-journal --package-name=com.apress.spring
-name=spring-boot-journal -x

 As you can see, you are adding most of the dependencies that you already know. Listing 12-1 shows the
resultant pom.xml .

 Listing 12-1. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-journal</artifactId>

http://dx.doi.org/10.1007/978-1-4842-1431-2_9

CHAPTER 12 ■ DEPLOYING SPRING BOOT

284

 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-journal</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.2.RELEASE</version>
 <relativePath /> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-actuator-docs</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-taglibs</artifactId>
 </dependency>

CHAPTER 12 ■ DEPLOYING SPRING BOOT

285

 <dependency>
 <groupId>org.thymeleaf.extras</groupId>
 <artifactId>thymeleaf-extras-springsecurity4</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.hateoas</groupId>
 <artifactId>spring-hateoas</artifactId>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 12-1 shows the pom.xml that you are going to use. Review in detail this pom.xml and notice that
you are adding different dependencies from various chapters. You can copy some of the files from Chapter 9
(from the spring-boot-journal-secure project), because the application will be secure. Even so, I didn’t
explain that you can use SSL and connect through HTTPS. Now is a perfect time to create it, so when you
deploy it, SSL will be integrated.

 Take a look at the final directory structure of this version of the journal app, shown in Figure 12-1 .

http://dx.doi.org/10.1007/978-1-4842-1431-2_9

CHAPTER 12 ■ DEPLOYING SPRING BOOT

286

 Figure 12-1 shows the directory structure of the journal app, but which classes will be the same as the
ones in Chapter 9 ? Table 12-1 describes the packages and includes some notes. I don’t want to repeat all
the code here, just the classes that change and the new additions.

 Figure 12-1. Journal app directory structure

http://dx.doi.org/10.1007/978-1-4842-1431-2_9

CHAPTER 12 ■ DEPLOYING SPRING BOOT

287

 ■ Note You can find the book’s source code on the Apress site. Or you can go to my GitHub account at
 https://github.com/felipeg48/pro-spring-boot to get the latest code.

 Let’s start by checking out all the files that will be modified and the new keystore.jks that you will
create to use SSL. Listings 12-2 and 12-3 show InMemorySecurity and SecurityConfig , respectively.

 Listing 12-2. src/main/java/com/apress/spring/config/InMemorySecurityConfig.java

 package com.apress.spring.config;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.context.annotation.Configuration;
 import org.springframework.security.config.annotation.authentication.builders.
AuthenticationManagerBuilder;
 import org.springframework.security.config.annotation.authentication.configuration.
EnableGlobalAuthentication;

 @Configuration
 @EnableGlobalAuthentication
 public class InMemorySecurityConfig {

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {
 auth.inMemoryAuthentication().withUser("spring").password("boot").roles("USER")
 .and().withUser("admin").password("password")

.roles("USER", "ADMIN");
 }
 }

 Table 12-1. Reusable Code Summary

 Package/Directory Class/File Notes

 com.apress.spring SpringBootJournalApplication No changes

 com.apress.spring.domain JournalEntry No changes

 com.apress.spring.repository JournalRepository No changes

 com.apress.spring.utils JsonDateDeserializer
 JsonDateSerializer

 No changes

 com.apress.spring.web JournalController No changes

 com.apress.spring.config InMemorySecurityConfig
 SecurityConfig

 There is a change in both classes

 src/main/resources/ application.properties There are some new properties

 src/main/resources/ keystore.jks This is a new file that you will
generate

 src/main/resources/static
 src/main/resources/template

 css/*
 index.html
 login.html

 No changes

https://github.com/felipeg48/pro-spring-boot

CHAPTER 12 ■ DEPLOYING SPRING BOOT

288

 Listing 12-2 shows the InMemorySecurityConfig class, which is very similar to Chapter 9 , but now you
are changing the username and password and of course the users are going to be in-memory. Of course
you can change this to point to a database. (You can do this as an exercise.)

 Listing 12-3. src/main/java/com/apress/spring/config/SecurityConfig.java

 package com.apress.spring.config;

 import org.springframework.context.annotation.Configuration;
 import org.springframework.security.config.annotation.web.builders.HttpSecurity;
 import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;
 import org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
 import org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;

 @Configuration
 public class SecurityConfig extends WebSecurityConfigurerAdapter{

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/**").authenticated()
 .and()
 .formLogin().loginPage("/login").permitAll()
 .and()
 .logout().permitAll()
 .and()
 .csrf().disable();

 }

 @Configuration
 static protected class LoginController extends WebMvcConfigurerAdapter{
 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/login").setViewName("login");
 }
 }
 }

 Listing 12-3 shows the SecurityConfig.java , which is where you add the HTTP security. As you can
see in detail, you are securing everything now and providing a login page and a way to log out. You are also
adding a LoginController class that configures just the controller (from spring-security /login) and setting
its view (templates/login.html). Also notice that you are disabling the CORS (Cross-Origin Http Request)
by using the csrf().disable() . You already know about Spring Security and the entire configuration, so I
omit some of the details and continue with the other files.

 Next, let’s see the application.properties , shown in Listing 12-4 .

http://dx.doi.org/10.1007/978-1-4842-1431-2_9

CHAPTER 12 ■ DEPLOYING SPRING BOOT

289

 Listing 12-4. src/main/resources/applications.properties

 spring.datasource.url = jdbc:mysql://localhost:3306/journal
 spring.datasource.username = springboot
 spring.datasource.password = springboot
 spring.datasource.testWhileIdle = true
 spring.datasource.validationQuery = SELECT 1

 spring.jpa.show-sql = true
 spring.jpa.hibernate.ddl-auto = create-drop
 spring.jpa.hibernate.naming-strategy = org.hibernate.cfg.ImprovedNamingStrategy
 spring.jpa.properties.hibernate.dialect = org.hibernate.dialect.MySQL5Dialect

 spring.data.rest.basePath=/api

 management.context-path=/monitor
 endpoints.shutdown.enabled=true

 server.port=8443
 server.ssl.key-store=classpath:keystore.jks
 server.ssl.key-store-password=tomcat
 server.ssl.key-password=tomcat

 Listing 12-4 shows the new application.properties . As you can see, it contains all the information
from previous chapters, including the actuator management.context-path and the enabling of the shutdown
endpoint. It also includes the new server properties with a different username and password. As you can
see, it uses the server.ssl.<properties> to enable a secure socket layer, by providing the keystore, the
keystore’s password, and the key password. Also notice that the server port is 8443 , so now you will connect
to the https://localhost:8443 URL.

 Creating the SSL Self-Signed Keystore
 In order to get the SSL working in your application, you need to create a self-signed keystore file. If you
already have a CA (Certificate Authority), you can import it as your keystore file.

 This example assumes that you will do the self-certificate keystore, so open a terminal window
(go to your project’s root) and execute the following commands:

 $ keytool -genkey -alias tomcat -keyalg RSA -keystore src/main/resources/keystore.jks

 Enter keystore password: tomcat
 Re-enter new password: tomcat

 What is your first and last name?
 [Unknown]: apress media
 What is the name of your organizational unit?
 [Unknown]: publishing
 What is the name of your organization?
 [Unknown]: apress
 What is the name of your City or Locality?
 [Unknown]: ny

CHAPTER 12 ■ DEPLOYING SPRING BOOT

290

 What is the name of your State or Province?
 [Unknown]: ny
 What is the two-letter country code for this unit?
 [Unknown]: us
 Is CN=apress media, OU=publishing, O=apress, L=ny, ST=ny, C=us correct?
 [no]: yes

 Enter key password for <tomcat>
 (RETURN if same as keystore password):

 The keytool command comes with your Java distribution, so you should not have any issues. This
command creates a keystore.jks and places it in src/main/resources directory. You can add any values
for your common name, organizational unit, and so on, but keep in mind that you need to remember the
passwords because they are needed in the application.properties file. In this example, the password for
the keystore and the key is tomcat .

 Testing SSL
 All the other files remain the same, so it’s time to test the new SSL part. Remember that you need to have
your MySQL server up and running. Then, you can run your application as usual:

 $./mvnw spring-boot:run

 After you execute this command, you should have in your logs information about the Tomcat listening
in port 8443 . You can go to https://localhost:8443 . Since this should be the first time you do this, you
should see something similar (depending on your browser) to Figure 12-2 .

CHAPTER 12 ■ DEPLOYING SPRING BOOT

291

 Figure 12-2 shows the result of going to the https://localhost:8443 , and because there is a cert that
cannot be authenticated, you will get that warning. So you can click Proceed to Localhost (depending of your
browser) or add a Security exception so you are allowed to use this site. After that, you should see what’s
shown in Figure 12-3 .

 Figure 12-2. Google Chrome’s version of https://localhost: 8443

CHAPTER 12 ■ DEPLOYING SPRING BOOT

292

 Figure 12-3 shows the /login endpoint and this is because even the index page is secured (it was secured
in Listing 12-3), so you need to provide the username and password. You can use the ones you set up in
memory for example: spring as username and boot as password. After providing the credentials, you should
be redirected to the index page. See Figure 12-4 .

 Figure 12-3. https://localhost:8443/login

CHAPTER 12 ■ DEPLOYING SPRING BOOT

293

 Figure 12-4 shows the index page after you submit your credentials. Now you have a secured web
application. Maybe you are wondering why I didn’t add this example in the security chapter. Well, right now
it makes perfect sense to add it because you are going to start deploying your application and running it in
standalone mode or as a service, and what you are looking for is to have your app secured.

 Creating Executable JARs
 Now that you have your journal app tested and ready, let’s create a standalone application. This means that it
will be portable and you can ship it knowing that you still need a way to connect to a database. You can think
about it as a desktop application that runs in your web browser and can be distributed to different users.

 Figure 12-4. https://localhost:8443 after the /login page

CHAPTER 12 ■ DEPLOYING SPRING BOOT

294

 The Java Way
 When you create a Java application and you want to run it, normally you need to know about the class that
has the public static void main method to get executed. You would do something like this:

 $ java -cp .;lib/3rdparty.jar com.sample.MyApp

 Normally you specify the classpath with the -cp option to get your dependencies (if needed) or if you
package your application as a JAR file, you must provide a MANIFEST.MF where you need to declare the
 Main-Class declaration . (This declaration indicates which class within the JAR file is your application’s
entry point.) You also must declare the Start-Class declaration, so you can do something like this:

 $ java -cp .;lib/3rdparty.jar -jar myapp.jar

 You can add the classpath for third-party libraries (if needed).

 The Spring Boot Way
 Spring Boot works the same way as Java (but simpler) when you want to create an executable application.
It will identify which class has the public static void main method and it will generate everything that
you need to create an executable app. Let’s see how it’s done.

 To create the standalone and executable journal app, execute the following command:

 $./mvnw package

 This command will create a target/spring-boot-journal-0.0.1-SNAPSHOT.jar file. And that’s it!
That’s your executable application, an executable JAR. Now you can run it with the following:

 $ java -jar target/spring-boot-journal-0.0.1-SNAPSHOT.jar

 Your journal application will start. This is awesome. Now you can ship your application to your users
so they run it even without any third-party libraries. Wait, what? Remember that the journal app has some
dependencies, yet in this command there is no -cp (classpath) option.

 When you run the Maven package goal, it will package all the dependencies within the same JAR
(normally called “Fat JAR”) and will create the MANIFEST.MF file that has all the information related to your
app. It will also include the Main-Class and the Start-Class declarations set with the name of the main
classes that will start up your application.

 If you are curious about it, you can see the contents of the JAR file generated with the following:

 $ jar tvf target/spring-boot-journal-0.0.1-SNAPSHOT.jar

 (The jar command is another tool that comes with the JDK installation.) This command prints out the
JAR structure. You can see that there is a lib/ folder where all the dependencies are and some Spring Boot
classes that are helpers to run your application . If you want to see the MANIFEST.MF file, you can extract and
view it using the following commands:

 $ jar xvf target/spring-boot-journal-0.0.1-SNAPSHOT.jar META-INF/MANIFEST.MF
 $ cat META-INF/MANIFES.MF
 Manifest-Version: 1.0
 Implementation-Title: spring-boot-journal
 Implementation-Version: 0.0.1-SNAPSHOT

CHAPTER 12 ■ DEPLOYING SPRING BOOT

295

 Archiver-Version: Plexus Archiver
 Built-By: felipeg
 Start-Class: com.apress.spring.SpringBootJournalApplication
 Implementation-Vendor-Id: com.apress.spring
 Spring-Boot-Version: 1.3.2.RELEASE
 Created-By: Apache Maven 3.0.4
 Build-Jdk: 1.8.0_66
 Implementation-Vendor: Pivotal Software, Inc.
 Main-Class: org.springframework.boot.loader.JarLauncher

 As you can see from the MANIFEST.MF file, the Start-Class declaration points to your Spring
BootJournalApplication class and the Main-Class declaration points to the run helper JarLauncher from
Spring Boot that will be in charge of bootstrapping your application.

 Now you know how to create a Spring Boot standalone executable JAR.

 ■ Note I know that sometimes you don’t want to run the tests when you are creating the executable JAR.
You can execute $./mvnw package -DskipTests=true to skip the tests.

 Creating Executable and Deployable WARs
 You now know how to create an executable standalone JAR app—a portable way to distribute your
application—but what happens when you already have application servers like Pivotal tc Server , Tomcat ,
 JBoss , or Web Sphere, and are used to deploying WAR files?

 With Spring Boot apps, it’s really easy. You need to change two things:

 1. Modify pom.xml (or build.gradle).

• Change the <packaging> tag from jar to war (or apply the plugin war if you are
using Gradle).

• Add the spring-boot-starter-tomcat dependency to your pom.xml and set the
 scope to provided (or in your build.gradle set the name in the configurations
section to a providedRuntime if you are using Gradle).

 See Listing 12-5 for the pom.xml and Listing 12-6 for Gradle version.

 Listing 12-5. Snippet of pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-journal</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>war</packaging>

CHAPTER 12 ■ DEPLOYING SPRING BOOT

296

 <!-- ... -->
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <!-- ... -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 <scope>provided</scope>
 </dependency>
 <!-- ... -->
 </dependencies>
 </project>

 Listing 12-5 shows a snippet of the journal app’s pom.xml, where you change the packaging tag to WAR
and then you add the spring-boot-starter-tomcat dependency with the <scope> tag set to provided .
I know that the starter Tomcat is not in the original pom.xml because all the Tomcat dependencies are
downloaded by the spring-boot-starter-web pom, but you are adding the Tomcat dependency here. This
means that, when you package your application, all the libraries will now be placed in the WEB-INF/lib and
the WEB-INF/lib-provided for the Tomcat libraries within the “Fat JAR”.

 This will make your application executable as standalone app and container-ready. There is a reason
why in a WAR the tomcat libraries are placed in the WEB-INF-lib-provided directory—remember that
everything that you add in the WEB-INF/lib will be taken by the application container, so if you leave the
Tomcat JAR in this directory (WEB-INF/lib), the application container will fail because of duplicate JARs.
That’s why Spring Boot creates WEB-INF/lib-provided so it can run outside and inside of a container.

 Next, let’s see the build.gradle changes in Listing 12-6 .

 Listing 12-6. Snippet of build.gradle

 // more configuration here

 apply plugin: 'war'

 war {
 baseName = 'spring-boot-journal'
 version = '0.0.1-SNAPSHOT'
 }

 repositories {
 mavenCentral()
 }

 configurations {
 providedRuntime
 }

 dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 providedRuntime("org.springframework.boot:spring-boot-starter-tomcat")
 ...
 }

CHAPTER 12 ■ DEPLOYING SPRING BOOT

297

 Listing 12-6 shows build.gradle (if you are using Gradle to build and run your Spring Boot apps).
You modify the main application to extend from the SpringBootServletInitializer abstract class. This
is required because the Spring web is using the Servlet 3.0 support and it’s necessary to bootstrap your
application when it’s being deployed by the container.

 Let’s see the final version of the main app. See Listing 12-7 .

 Listing 12-7. src/main/java/com/apress/spring/SpringBootJournalApplication.java

 package com.apress.spring;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.boot.builder.SpringApplicationBuilder;
 import org.springframework.boot.context.web.SpringBootServletInitializer;

 @SpringBootApplication
 public class SpringBootJournalApplication extends SpringBootServletInitializer {

 @Override
 protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {
 return application.sources(SpringBootJournalApplication.class);
 }

 public static void main(String[] args) {
 SpringApplication.run(SpringBootJournalApplication.class, args);
 }
 }

 Listing 12-7 shows the main app. This class extends from the SpringBootServletInitializer and it’s
overriding the configure(SpringApplicationBuilder application) method. That will help to bootstrap
the application. Again, this is important if you want to deploy it in application container like Pivotal tcServer,
Tomcat, etc.

 So, after modifying the pom.xml and the main app, you are ready to create your container-ready journal
application. Execute the following command:

 $./mvnw clean package -DskipTests=true

 Now you will have your target/spring-boot-journal-0.0.1-SNAPSHOT.war file ready to be executed
with the following command:

 $ java -jar target/spring-boot-journal-0.0.1-SNAPSHOT.war

 After executing this command, you can go to https://localhost:8443 . You will be redirected to the
 /login page. Enter your credentials (spring/boot) to see the home page.

 Excellent! You have now a distributable and executable WAR journal app. Next, let’s deploy the same
WAR to a Tomcat-based container.

CHAPTER 12 ■ DEPLOYING SPRING BOOT

298

 ■ Note As a recommendation, you can always create a WAR file and extend from the
 SpringBootServletInitializer and override the configure method in your main application. This way, you
can create an executable and container-ready Spring Boot application.

 If you want to create a WAR when you are starting a new project with spring init , you can execute the
following command (your journal app):

 $ spring init -d=web,thymeleaf,data-jpa,data-rest,actuator,security,actuator-docs
-g=com.apress.spring -a=spring-boot-journal --package-name=com.apress.spring
-name=spring-boot-journal --packaging=war -x

 The only difference is that you added the --packaging=war option, which will configure everything that
you need (your pom.xml <packaging> tag will be set to war). Even the SpringBootServletInitializer
configuration will be created as separate class file.

 Deploying to a Tomcat-Based Server
 If you don’t have a Tomcat-based server you can installing it by using brew (if you have Mac OS/Linux), or
you can get the binaries from the Apache Tomcat web site (http://tomcat.apache.org/).

 $ brew update && brew install tomcat

 I personally recommend the Pivotal’s tc server, a Tomcat server on steroids! You can find all the
information at https://network.pivotal.io/products/pivotal-tcserver . Some of its cool features are:

• You can install Spring Insight, an embedded tool for monitoring and tracing your
Spring applications.

• It includes several add-ons such as GemFire (In-Memory Data Grid) and Redis
(Key-Value Store Database) for session-management. These are very handy when
you have a cluster of servers and want to centralize the session management.

• Highly configurable and very easy to use.

• Excellent documentation found at http://tcserver.docs.pivotal.io/docs/
index.html .

 You can install it with brew by executing the following command:

 $ brew update && brew tap pivotal/tap && brew install tcserver

 Once the brew finishes installing the tc server, follow these steps to deploy the journal app:

• Go to your installation and you should see a tcruntime-instance.sh file
 (/usr/local/Cellar/tcserver/<version>/libexec/ for the Mac). Execute the
following command:

 $./tcruntime-instance.sh create -i . myserver -v 8.0.30.C.RELEASE

http://tomcat.apache.org/
https://network.pivotal.io/products/pivotal-tcserver
http://tcserver.docs.pivotal.io/docs/index.html
http://tcserver.docs.pivotal.io/docs/index.html

CHAPTER 12 ■ DEPLOYING SPRING BOOT

299

 This command will create in the current folder the myserver directory with all the Tomcat installation
based on the 8.0.30.C.RELEASE (this version is the same as the name of the Tomcat folder that should be in
the current path and you should have at least 2 tomcat-<version>).

• Go to the myserver directory and copy the spring-boot-journal-0.0.1-SNAPSHOT.war
in the webapps folder with the name journal.war .

 $ cd myserver
 $ cd webapps
 $ cp ~/pro-spring-boot/ch12/spring-boot-journal/target/spring-boot-
journal-0.0.1-SNAPSHOT.war ./journal.war. Remember that you need to have
your MySQL server up and running.

• Next, go to the bin directory and start the tc server.

 $ cd ..
 $ cd bin
 $./tcruntime-ctl.sh start

 After executing these commands, the tc server should start. Now you can see the logs:

 $ tail -f ../logs/catalina.out

 You should see the familiar Spring Boot banner and all the logs about the journal app. Now you are
ready to use it. Go to http://localhost:8080/journal and you should see the /login page (it will redirect
to http://localhost:8080/journal/login). Enter your credentials (spring/boot) and your will see the
journal.

 Remember that the main context for your app is now /journal because you are using an application
 container . You can start testing all the other endpoints like /journal/monitor and /journal/api .

 Congratulations! You deployed your WAR journal app to an application container. Well done!

 Activating Profiles
 Have you noticed the difference between running the journal app as standalone app vs. in the tc server?
When running the journal app as standalone, you are using the https://localhost:8443 URL, which is a
SSL connection. But when you are using the tc server, you are not using the SSL/HTTPS. Spring Boot will
identify when you are deploying to a container and it will omit some of the properties that are valid only
when running in standalone mode. This means that if you want to secure the Tomcat server, you need to do
it in a different way. If you need more information about securing Tomcat, visit https://tomcat.apache.org/
tomcat-8.0-doc/ssl-howto.html . This link is generic for all Tomcats version 8.x.

 Also, what happens if you want to connect to a different database, such as a production database, or
have some other configuration that you want to expose when you are running in a container?

 The good thing is that you can use the Spring profiles, something that you read about in earlier chapters.
One of the recommended ways is to have several application-<profile>.properties files, so you can
activate them in standalone mode or in the container.

https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html
https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html

CHAPTER 12 ■ DEPLOYING SPRING BOOT

300

 You can create, for example, a new application-container.properties file. It will be identical to
the other. Maybe you can create a new database and use that one as an example. Its contents are shown in
Listing 12-8 .

 Listing 12-8. src/main/resources/application-container.properties

 spring.datasource.url = jdbc:mysql://localhost:3306/calendar
 spring.datasource.username = springboot
 spring.datasource.password = springboot
 spring.datasource.testWhileIdle = true
 spring.datasource.validationQuery = SELECT 1

 spring.jpa.show-sql = true
 spring.jpa.hibernate.ddl-auto = create-drop
 spring.jpa.hibernate.naming-strategy = org.hibernate.cfg.ImprovedNamingStrategy
 spring.jpa.properties.hibernate.dialect = org.hibernate.dialect.MySQL5Dialect

 spring.data.rest.basePath=/rest

 management.context-path=/insight
 endpoints.shutdown.enabled=true

 Listing 12-8 shows the new application-container.properties file. The only changes are the name
of the database from journal to calendar (remember that you need to create the calendar database in the
MySQL server), and the paths for the rest, from /api to /rest and the management context-path, from
 /monitor to /insight . The SSL properties are no longer required.

 Now, let’s package the app and run it as standalone, activating the profile to container .

 $./mvnw clean package -DskipTests=true
 $ java -Dspring.profiles.active="container" -jar target/spring-boot-journal-0.0.1-SNAPSHOT.war

 In the logs you can see (in the first three lines) the legend: "The following profiles are active:
container" . You can also review all the endpoints and even in your MySQL to see if the journal app created
the entry table.

 ■ Note If you want to run it first, meaning with the spring-boot:r un, you can do so by executing $
./mvnw spring-boot:run -Dspring.profiles.active="container" to activate the container profile.

 Now the question is, how can you activate the profiles in a Tomcat-based container? It’s as simple as
adding the property spring.profiles.active=container in the <tomcat-installation>/conf/catalina.
properties file.

 If you are using the tc server, you can go to the same path (the following commands are based on a Mac
installation):

 $ cd /usr/local/Cellar/tcserver/<version>/libexec/
 $ cd myserver/conf
 $ echo spring.profiles.active=container >> catalina.properties

CHAPTER 12 ■ DEPLOYING SPRING BOOT

301

 This command will append the properties to the catalina.properties file (see the double >>). Next
you can start your tc server and see the activated logs and the profile container.

 ■ Note Remember that to create a container-ready WAR executable, you need to modify your pom.xml
and subclass from the SpringBootServletInitializer . This is only for containers that support the Servlet
API 3.0+ versions. For older version or legacy containers, you can get more info in the Spring Boot reference
documentation.

 Creating Spring Boot Apps as a Service
 Another amazing feature of Spring Boot is that you can run your app as a service. Running a Spring Boot
as a service has its benefits. It’s easy to install and manage, and if the server restarts, your app will start
automatically without you having to do it manually.

 If you are using Unix, the only thing you need to do is add a configuration declaration to the Spring Boot
plugin in the pom.xml file and in build.gradle . See Listings 12-9 and 12-10

 Listing 12-9. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <!-- ...all the previous code -->

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>

 <configuration>
 <executable>true</executable>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </project>

CHAPTER 12 ■ DEPLOYING SPRING BOOT

302

 Listing 12-9 shows the pom.xml file. The only thing that’s new is in the <plugin> tag, the
 <configuration> tag that is making the WAR or JAR executable.

 Listing 12-10. build.gradle

 ...
 apply plugin: 'spring-boot'

 springBoot {
 executable = true
 }
 ...

 Listing 12-10 shows the build.gradle . The only thing you need to add is the springBoot declaration.
Now, when you package your application with the following:

 $./mvnw clean package -DskipTests=true

 You can execute the JAR directly:

 $ target/spring-boot-journal-0.0.1-SNAPSHOT.war

 And it will run! So, if you are running a UNIX environment you can just bind it to the /etc/init.d
(in a Debian environment, assuming you have the executable in the /opt folder):

 $ ln -s /opt/spring-boot-journal-0.0.1-SNAPSHOT.war /etc/init.d/journal

 Then you can start your application with the following:

 $ service journal start

 So simple! You’ll probably need to set up the run levels where the app might run. You can take a look at
your UNIX distribution to see what else you need to do in order to enable the journal app as a service.

 Maybe you are wondering how is this possible. You can take a peek at the file. If you execute the
following command:

 $ head -n 242 target/spring-boot-journal-0.0.1-SNAPSHOT.war
 #!/bin/bash
 ...
 ...

 You will see that the first 242 lines of the file are a BASH script. So, that’s how it runs.

 Spring Boot Apps as Windows Service
 If you are looking to do this in a Windows environment, you can take a look at this URL at https://github.
com/snicoll-scratches/spring-boot-daemon , which contains all the information you need to create a
Spring Boot application and run it as a Windows service.

https://github.com/snicoll-scratches/spring-boot-daemon
https://github.com/snicoll-scratches/spring-boot-daemon

CHAPTER 12 ■ DEPLOYING SPRING BOOT

303

 Spring Boot with Docker
 In the past years, Docker has become one of the emergent technologies that is gaining a lot of popularity,
because you can have multiple containers that can run a Linux-based OS in the same box. This is very
similar to a virtualized environment but without all the footprint of a VM. If you are not familiar with Docker,
I suggest reading some tutorials on the web at https://www.docker.com , https://docs.docker.com/mac ,
 https://docs.docker.com/linux and https://docs.docker.com/windows/ . Let’s get started and create a
Docker container that will include your journal app.

 Make sure you have Docker up and running. Before you build the image that will contain the journal
app, let’s use profiles again and add a new dependency to the pom.xml file. See Listing 12-11 .

 Listing 12-11. src/main/resources/application-docker.properties

 spring.datasource.url=jdbc:h2:mem:testdb;MODE=Oracle;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE
 spring.datasource.username=sa
 spring.datasource.password=
 spring.datasource.driverClassName=org.h2.Driver

 spring.data.rest.basePath=/api

 management.context-path=/monitor
 endpoints.shutdown.enabled=true

 server.port=8443
 server.ssl.key-store=classpath:keystore.jks
 server.ssl.key-store-password=tomcat
 server.ssl.key-password=tomcat

 Listing 12-11 shows the application-docker.properites . All the spring.datasource properties are
new. It has defined the H2 database that will run in-memory and also contains the SSL. Remember that in
order to use the H2 database you must include this dependency in the pom.xml file:

 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 </dependency>

 Now, you can create in the root folder the Dockerfile (this file helps create Docker images).
See Listing 12-12 .

 Listing 12-12. Dockerfile

 FROM java:8
 VOLUME /tmp
 ADD target/spring-boot-journal-0.0.1-SNAPSHOT.war journal.war
 ENV SPRING_PROFILES_ACTIVE docker
 EXPOSE 8443
 ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-jar","/journal.war"]

https://www.docker.com/
https://docs.docker.com/mac
https://docs.docker.com/linux/
https://docs.docker.com/windows/

CHAPTER 12 ■ DEPLOYING SPRING BOOT

304

 Listing 12-11 shows the Dockerfile that will be used to create the container. Let’s examine it:

• FROM java:8 . This line pulls a Debian 8 image (jessie) that contains the OpenJDK
version 8.

• VOLUME . Needed to create a volume, because Spring Boot creates working directories
for Tomcat by default.

• ADD . Copies the WAR (or JAR) file as journal.war (or Jar) in the root of the container.

• ENV . Needed to add the environment variable that will activate the Docker profile.

• EXPOSE . It’s exposing the port 8443 . Remember that this is the port for the SSL.

• ENTRYPOINT . This declaration determines how the container will execute when it
starts up. To reduce the Tomcat startup time, you need a system property pointing to
" /dev/./urandom " as a source of entropy.

 Next, execute the following command to build the Docker image:

 $ docker build -t springboot/journal

 This command will build an image with the springboot/journal tag name. After it finishes building,
you can run it with this command:

 $ docker run -p 8443:8443 springboot/journal

 This command will run the container using the springboot/journal image. Now you can go to your
browser and open the journal app. If you are running this example in Linux, just go to https://localhost:8443 .
If you are using a Mac or a Windows machine, use the Docker IP:

 $ docker-machine ip
 192.168.99.100

 Now you can go to https://192.168.99.100:8443 (or any Docker IP) and voilà! You have your journal
app running in a Docker container!

 Maybe you are wondering if there is another way to automate (at least a little) the creation of the Docker
image, and the answer is yes there is. There are Maven and Gradle plugins that incorporate the creating of
the images based on a Docker file.

 What you need to do is create a Dockerfile (I suggest in the src/main/resources folder) and add the
plugin to the pom.xml (or Gradle) file. See Listing 12-13 for the pom.xml example.

 Listing 12-13. Snippet of pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

https://192.168.99.100:8443/

CHAPTER 12 ■ DEPLOYING SPRING BOOT

305

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-journal</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>war</packaging>

 <!-- ... More tags here -->
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 <docker.image.prefix>springboot</docker.image.prefix>
 </properties>

 <!-- Dependencies here -->

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>com.spotify</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>0.4.1</version>
 <configuration>
 <imageName>${docker.image.prefix}/${project.artifactId}

</imageName>
 <dockerDirectory>src/main/resources/docker</dockerDirectory>
 <resources>
 <resource>
 <targetPath>/</targetPath>

 <directory>${project.build.directory}
</directory>

 <include>${project.build.finalName}.war
</include>

 </resource>
 </resources>
 </configuration>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 12-13 shows the pom.xml and the new declarations , the Docker plugin and the Docker property
prefix . The important part of the Docker plugin is the tag <dockerDirectory> , where the Dockerfile will live.
Next, let’s see the Dockerfile in Listing 12-14 .

CHAPTER 12 ■ DEPLOYING SPRING BOOT

306

 Listing 12-14. src/main/resources/docker/Dockerfile

 FROM java:8
 VOLUME /tmp
 ADD spring-boot-journal-0.0.1-SNAPSHOT.war journal.war
 ENV SPRING_PROFILES_ACTIVE docker
 EXPOSE 8443
 ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-jar","/journal.war"]

 Listing 12-14 shows the Dockerfile that will be used by the Maven Docker plugin . What is the difference
between this and Listing 12-12 ? One of the differences is the ADD declaration and the name, which will be
the same as the artifactId + version + extension . The other declarations remain the same. The other
difference is that the name of the Docker image will be springboot/spring-boot-journal , because it will
take only the artifactId as a name.

 Now you can build it and create the image in the same line with:

 $./mvnw clean package docker:build -DskipTests=true

 This command creates a new Docker image called springboot/spring-boot-journal . Now you can
run it with:

 $ docker run -p 8443:8443 springboot/spring-boot-journal

 You can go to your browser and take a look at your journal app. Congrats! You “Dockerized” your
journal application!

 ■ Note A quick note. In this Docker example you have two Dockerfile files—one in the root and another
in the src/main/resources/docker directory. The only difference is the ADD declaration. This src/main/
resources/docker/Dockerfile file will be picked up only by the Docker plugin in your pom.xml and it won’t
affect the other file in the root.

 Summary
 This chapter explained how to deploy your Spring Boot apps by using the command line, creating executable
and container-ready WARs, how to use profiles for deployment, and how to deploy to Docker containers.
As a developer, you have a lot of options for deployment.

 The next chapter shows you a little more of the deployment, but focuses on cloud environments.
It discusses the new technology architectural trend: Microservices.

307© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_13

 CHAPTER 13

 Spring Boot in the Cloud

 Cloud Computing is nowadays one of the most important concepts in the IT industry. Companies that want
to be at the edge of the latest technology are looking to be fast by increasing the speed of their services, they
want to be safe , by recovering from errors or mistakes as fast as possible without the client knowing about it,
they want to be scalable by growing horizontally (typically refers to scaling infrastructure capacity outward
such as spawning more servers to shared the load) instead of vertically (refers to the ability to increase
available resources (cpu, memory, disk space, etc) for an existing entity like a server); but what kind of
concept or technology can provide all these concepts?.

 The term “Cloud-Native” architectures is begining to emerge, because allows you as developer follow
some patterns that will provide speed, safety and scalability with ease. In this chapter I will show you how
you can create and deploy Spring Boot applications for the Cloud by following some of these patterns.

 The Cloud and Cloud-Native Architectures
 I imagine you have heard about these companies: Pivotal, Amazon, Google, Heroku, NetFlix, Uber that are
applying all the concepts I mentioned before; but how these companies have accomplished to be fast, safe
and scalable at the same time?

 One of the first pioneers of the Cloud Computing was Amazon , which started using virtualization as
primary tool to create resource elasticity; this means that any deployed application can have more computer
power, by increasing the number of virtual boxes, memory, processors, etc, without any IT person involved.
All these new ways to scale an application was the result satisfying all the user demand that has been and
keep growing.

 How NetFlix can satisfy all these user demands, and we are talking about millions of users daily that are
streaming media content? All these companies have now the IT insfrastructure required for the Cloud era,
but don’t you think that, any application that wants to be part of the cloud needs to be some how adaptable
to this new technology? What I mean with this comments is that, you need to start thinking on how scaling
resources will impact my application, you need to start thinking more on distributed systems, right? How my
applications will communicate to legacy systems or between each other in this kind of environments, what
happened if one of my systems is down and how to recover, or how the users (and if I have millions) can take
advantage of the Cloud?

 The new cloud-native architecture responds to all the above questions. Remember that now your
applications need to be fast, safe and scalable:

 First, you need to have some visibility in this new cloud environment, meaning that you need to have a
better way to monitor your applications, by setting alerts, have dashboards, etc. Fault isolation and tolerance ,
where you need to have applications that are context-bounded, meaning that the applications shouldn’t
have any dependency between each other; if one of your applications is down, the other apps should keep
running, or if you are deploying continuously an application, that shouldn’t affect the entire system; this
means also that you need to think about some kind of auto-recovery , where the entire system is capable to
identify the failure and recover.

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

308

 Twelve-Factor Applications
 Following what you need to create a cloud-native architecture, the engineers at Heroku start to identify a
lot of patterns that became the twelve-factor application guide. This guide shows how an application (a
single unit) need to be architect focusing on declarative configuration, being stateless and deployment
independent; this is what I mentioned before: your application need to be fast, safe and it can scale.

 This is the summary of the twelve- factor application guide:

• Codebase . One codebase tracked in VCS, many deploys. One app has a single code
base and its tracked by a version control system like Git, Subversion, Mercurial, etc.
You can do many deployments (from the same code base) to development, testing,
staging and production environments.

• Dependencies . Explicity declare and isolate dependencies. Some times your
environments don’t have internect connection (if is a private system), so you need to
think about packaging your dependencies (jars, gems, shared-libraries, etc) or if you
have an internal repository of libraries, you can declared manifest like poms, gemfile,
bundles, etc. Never rely that you will have everything in your final environment.

• Configuration . Store config in the environment. You should’t hardcode anything that
varies. Use the environment variables or a configuration server.

• Backing Services . Treat backing services as attached resources. Connect to services
via URL or configuration.

• Build, Release, Run . Strictly separate build and run stages. Related to a CI/CD
(Continuous Integration, Continuous Delivery)

• Processes . Execute the app as one or more stateless processes. Processess should not
store internal state. Share nothing. Any necessary state should be considered as a
 Backing Service .

• Port binding . Export services via port port binding. Your application is self-container,
and these apps are exposed via port binding. An application can become another
App’ service.

• Concurrency . Scale out via the process model. Scale by adding more application
instances. Individual processes are free to multithread.

• Disposability . Maximize robustness with fast startup and graceful shutdown.
Processes should be disposable (remember they are stateless). Fault tolerant.

• Environment parity . Keep development, staging and production environments as
similar as possible. This is a result of High Quality, ensures continuous delivery.

• Logs . Treat logs as event streams. Your apps should write to stdout. Logs are streams
of aggregated, time-ordered events.

• Admin processes . Run admin and managemenr tasks as one-off processes. Run
admin processes on the platform: DB migrations, one time scripts, etc.

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

309

 Microservices
 The term Microservices has been around for the last two years, trying to define a new way to create
applications. You need to see Microservices just as a way to decompose monolithic applications into
different and independent components that follow the twelve-factor app guide and when deployed they just
work. See the following Figure 13-1 :

 Figure 13-1. Monolithic vs. Microservices

 I think Microservices has been around since the invention of Unix, because you can use one of the
command line tools, like for example: grep , that is just a single unit that do its job well. And if you combine
several of these commands (eg. find . -name microservices.txt | grep -i spring-boot) you can
create a better app or system; but have in mind that these commands are independent of each other and the
way of communication is through the Unix pipe | . This analogy can be the same within your applications.

 Microservices help you to accelate development, why? Because you can designate a small team that can
work in one and only one feature of the application, with a bounded-context and that follows the twelve-
factor application guidelines.

 I know there is a lot to say about Microservices and guides on how migrate existing architectures
into Microservices, but the idea here is explore Spring Boot and see how can you deploy it into a cloud
environment.

 Preparing the Spring Boot Journal App as Microservice
 What would you need to do in order to convert the Spring Boot Journal App as a Microservice? Actually,
nothing! Yes, nothing, because Spring Boot was thought as a way to create Microservices with ease.

 So, you are going to use the same Spring Boot Journal App and be able to deploy it to a cloud platform.
Which platform? You are going to use Cloud Foundry!

 Let’s start by generating first our application. Execute the following commands:

 $ mkdir spring-boot-journal-cloud
 $ cd spring-boot-journal-cloud
 $ spring init -d=web,thymeleaf,data-jpa,data-rest,actuator,h2,mysql -g=com.apress.spring -
a=spring-boot-journal-cloud --package-name=com.apress.spring -name=spring-boot-journal-cloud -x

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

310

 from the above command, notice that, just for now you are removing the security (you can add it later).
Next, copy all the files that you are already familiar with, all the src/main/resources/templates (without
the login.html), src/main/resource/static , src/main/resources/application.properties and the Java
sources. You should have something similar to Figure 13-2 . Don’t worry too much, I will tell you if you need
to do any change in the files.

 Figure 13-2. Spring Boot Journal project

 Figure 13-2 shows you the directory structure, you can see that there is no config directory anymore,
because the security configuration is no longer needed, also notice that there only two properties file, one is
the default, the one that you should test (this will have the H2 in memory database). And the other property
file has the cloud word, meaning that you are going to use it for deploying using the cloud profile.

 ■ Note You can find the example of the chapter in the Book’s source code from the Apress Site or you can
download it from github at: https://github.com/felipeg48/pro-spring-boot .

https://github.com/felipeg48/pro-spring-boot

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

311

 See Listing 13-1 the default properties file.

 Listing 13-1. src/main/resources/application.properties

 spring.datasource.url=jdbc:h2:mem:tesdb;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE
 spring.datasource.driverClassName=org.h2.Driver
 spring.datasource.username=sa
 spring.datasource.password=
 spring.datasource.testWhileIdle = true
 spring.datasource.validationQuery = SELECT 1

 spring.jpa.show-sql = true
 spring.jpa.hibernate.ddl-auto = create-drop
 spring.jpa.hibernate.naming-strategy = org.hibernate.cfg.ImprovedNamingStrategy
 spring.jpa.properties.hibernate.dialect = org.hibernate.dialect.MySQL5Dialect

 spring.data.rest.basePath=/api

 management.context-path=/monitor
 endpoints.shutdown.enabled=true

 Listing 13-1 shows you the application. properties file (the default profile) that you are going to use
to run it locally. So, if your copy is ok, try to run you application; you should have the Journal App up and
running. All the data is in Memory. Also, try to get into the /api and /monitor endpoint, just to make sure
they work.

 Next, let’s review the application-cloud.properties file. See Listing 13-2 .

 Listing 13-2. src/main/resources/application-cloud.properties

 spring.data.rest.basePath=/rest

 management.context-path=/insight
 endpoints.shutdown.enabled=true

 Listing 13-2 shows you the contents of the application-cloud.properties . This would be cloud profile.
Notice that, there are no datasource properties, only the rest base path and the actuator management.context-
path declared. There is a meaning for this, but you are going to see why in the next sections.

 Before you deploy this to the cloud you need to know more about the Platform you are going to use.

 Cloud Foundry
 Cloud Foundry has been around since 2008, a PaaS (Platform As A Service) company that was acquired by
Spring Source and that Spring Source was itself acquired by VMWare, and since then, Cloud Foundry was and
still is the most used Open Source PaaS. It’s worth to mention that Cloud Foundry as an open source solution
has the largerst community support and it’s backed up by several large IT companies, like IBM (with BlueMix),
Microsoft, Intel, SAP and of course Pivotal (with Pivotal Cloud Foundry) and VMware among others.

 Cloud Foundry is the only open source solution that you can actually download and run it without
any problems, it just work! You can find two versions of Cloud Foundry, the open source:
 https://www.cloudfoundry.org/ and the commercial version: http://pivotal.io/platform . If you are
interested in download the commercial version, you can actually do it without any trials or limited time:
 https://network.pivotal.io/products/pivotal-cf , actually is a free version, but if you want to have
support or help on how to install it, that’s when you need to contact a Pivotal sales representative.

https://www.cloudfoundry.org/
http://pivotal.io/platform
https://network.pivotal.io/products/pivotal-cf

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

312

 Cloud Foundry
 Cloud Foundry is built on Open Architecture, and it offers the following features:

• Router . Routes incoming traffic to the appropriate component, usually the Cloud
Controller or a running application on a DEA node.

• Authentication . The OAuth2 server and Login server work together to provide
indentity management.

• Cloud Controller . The cloud controller is responsible for managing the lifecycle of
application.

• HM9000 . Monitors, determines and reconciles application to determine their state,
version and number of instances, and redirects to the Cloud Controller to take action
to correct any discrepancies.

• Application Execution (DEA) . The Droplet Execution Agent manages application
instances, tracks started instances and broadcasts state messages.

• Blob Store . The blob store: resources, application code, build packs and droplets.

• Service Brokers . When a developer provisions and binds a service to an application,
the service broker for that service is responsible for providing the service instance.

• Message Bus . Cloud Foundry uses NATS (this is different from the network nats),
a lightweight publish-subscribe and distributed queueing messaging system, for
internal communication between components.

• Logging and Statistics . The metrics collector gathers metrics from the components.
Operators can use this information to monitor an instance of Cloud Foundry.

 Pivotal Cloud Foundry Features
 Pivotal Cloud Foundry®, powered by Cloud Foundry (Open Source), delivers a turnkey PaaS experience on
multiple infrastructures with leading application and data services.

• Commercially supported release based on Cloud Foundry open source.

• Fully automated deployment, updates and 1-click horizontal and vertical scaling on
vSphere, vCloud Air, AWS or Openstack with minimal production downtime.

• Instant, horizontal application tier scaling.

• Web console for resource management and administration of applications and
services.

• Applications benefit from built-in services like load balancing and DNS, automated
health management, logging and auditing.

• Java Spring support through provided Java buildpack.

• Optimized developer experience for Spring framework.

• MySQL Service for rapid development and testing.

• Automatic application binding and service provisioning for Pivotal Services such as
Pivotal RabbitMQ and MySQL for Pivotal Cloud Foundry.

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

313

 what is the difference between the Open Source from the Commercial version? Well, all the features
listed above. In the Open Source version you need to do everything manually, using the command line
mostly (to install, configure, upgrade, etc), but in the Commercial version, you can use a Web console to
manage your infrastructure and run your applications. It’s important to know that you can install Cloud
Foundry in Amazon AWS, Open Stack and VSphere.

 Cloud Foundry CLI - Command Line Interface
 Before you start using Cloud Foundry , you must install a command line tool that will be useful for
deploying and do a lot of other tasks. If you are using a Windows OS you can get the latest version from
 https://github.com/cloudfoundry/cli#downloads .

 If you are using Mac OS/Linux you can use brew:

 $ brew update
 $ brew tap cloudfoundry/tap
 $ brew install cf-cli

 after you install it, you can test it by running:

 $ cf --version
 cf version 6.15.0

 now you are ready to use Cloud Foundry. Spoiler alert coming! As a final example, you will use the
Pivotal Web Service platform, this is the commercial version of Pivotal Cloud Foundry.

 Development Enviroment - PCFDev
 I’ve just given you the spoiler alert; you will use the Pivotal’s public PaaS. You can think of as a production
environment for your applications, but maybe you are wondering if there is something in between, I
mean, you want to test first your application, right? So, it should be something that emulates the Cloud
environment. Of course you are ready to probe that, by creating profiles and adding your database
connections to a properties file or even putting some variables in the environment variables’ OS; or by
installing Cloud Foundry (but for that you need to have ready your infrastructure and read about the Cloud
Foundry internal before installing it); and again, it should be easier way to deploy apps into a local machine.

 I’m glad there is. The Pivotal Cloud team did a very hard work to bring a Vagrant file with a VM ready
to use, that is actually a micro-instance of the actual Cloud Foundry; no need to pull off your hair trying to
install Cloud Foundry, just use the PCFDev (Pivotal Cloud Foundry Dev) and deploy your applications in
your local machine.

 PCFDev is one of the latest iterations of the Pivotal Cloud team, before PCFDev , it was: Lattice
(http://lattice.cf/) and before that: BoshLite (https://github.com/cloudfoundry/bosh-lite - this is
still very active in the community, but is more related to the internal parts of Cloud Foundry, related to the
 BOSH technology) and before that: (part of the VMware team) the Micro Cloud Foundry (https://micro.
cloudfoundry.com/ - That url is no longer valid, it will re-direct to the Pivotal Platform. This was also a VM
image). So, as you can see it’s being a lot of hard work to get into this point, where you can have an amazing
technology running in your local machine.

https://github.com/cloudfoundry/cli#downloads
http://lattice.cf/
https://github.com/cloudfoundry/bosh-lite
https://micro.cloudfoundry.com/
https://micro.cloudfoundry.com/

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

314

 Installing PCFDev
 What are the requirements?

• Vagrant 1.7+ - https://www.vagrantup.com/

• Cloud Foundry CLI (you already have this) - https://github.com/cloudfoundry/cli

• Internet Connection required (for DNS)

• Around 3 to 4GB of Disk space free.

• One of the following:

• VirtualBox: 5.0+ - https://www.virtualbox.org/

• VMware Fusion: 8+ - https://www.vmware.com/products/fusion

• VMware Workstation: 11+ - https://www.vmware.com/products/workstation

 ■ Note VMware requires the Vagrant VMware plugin that is sold by Hashicorp. https://www.hashicorp.com/ .

 after you install the requirements from above, you can now install PCFDev:

• Download pcfdev-<version>.zip from: https://network.pivotal.io/products/pcfdev

• Unzip the pcfdev-<version>.zip

• Open a terminal and go to the pcfdev-<version> folder.

• Run: vagrant up --provider=<provider> where <provider> can be: virtualbox ,
 vmware_fusion or vmware_workstation .

• (Optional) There are already some scripts that can be used instead of the previous
command. These scripts optimized the resources needed for your environment.
These scripts are:

• start-osx/stop-osx for Mac Users.

• start-windows.ps1/stop-windows.ps1 for Windows users.

 if you are using VirtualBox, then you do:

 $ vagrant up --provider=virtualbox

 After you run the above command, you should have in the last lines the following output:

 Bringing machine 'default' up with 'virtualbox' provider...
 ==> default: Importing base box pcfdev/pcfdev'...
 ==> default: Matching MAC address for NAT networking...
 ==> default: Checking if box pcfdev/pcfdev is up to date...
 ...
 ...
 ==> default: Waiting for services to start...
 ==> default: 0 out of 48 running
 ==> default: 3 out of 48 running
 ...
 ==> default: PCF Dev is now running.

https://www.vagrantup.com/
https://github.com/cloudfoundry/cli
https://www.virtualbox.org/
https://www.vmware.com/products/fusion
https://www.vmware.com/products/workstation
https://www.hashicorp.com/
https://network.pivotal.io/products/pcfdev

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

315

 ==> default: To begin using PCFDev, please run:
 ==> default: cf login -a api.local.pcfdev.io --skip-ssl-validation
 ==> default: Email: admin
 ==> default: Password: admin

 the first time it will take a few minutes (well, around 15 to 45 minutes depending on your system), and
this is because the PCFDev is downloading, setting everything up, so be patient! The above output tells you
that your PCFDev vm is up and running, so let’s start playing around with it.

 Login into PCFDev
 Let’s login into the PCFDev. Execute the following commands:

 $ cf login -a api.local.pcfdev.io --skip-ssl-validation
 API endpoint: api.local.pcfdev.io

 Email> admin

 Password>
 Authenticating...
 OK

 Targeted org pcfdev-org

 Targeted space pcfdev-space

 API endpoint: https://api.local.pcfdev.io (API version: 2.54.0)
 User: admin
 Org: pcfdev-org
 Space: pcfdev-space

 the cf login command sets the target api url, this means that every subsequent command using cf
will use that URL by default. This is a one-time only command (this will change when you target the public
Pivotal Web Services or if you company already has Pivotal Cloud Foundry, you can target your provided api
url). The output above shows you that you successfully have logged in.

 ■ Note Just for the curious, once you set the target URL and login, the cf command will write into your
home directory in the ~/.cf/config.json file. You can take a look at it (but don’t modify it), you will see the
target URL and some other keys. Now you are ready to deploy.

 By default PCFDev will assign a target Organization (pcfdev-org) and a target Space (pcfdev-space).
You can see the organizations and spaces as way to structure your development. You can have as many
organizations as you want. Every organization has one or more spaces. For example, you can create a
“Journal” organization and have “Prod”, “QA”, “Dev” spaces attach to the “Journal” organization.

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

316

 Now, I’m assuming you test you application before, so let’s package the Journal app with:

 $./mvnw clean package -DskipTests=true

 the above command will create the target/spring-boot-journal-cloud-0.0.1-SNAPSHOT.jar file.
Now your Journal app is ready the be deployed.

 Deploying to PCFDev
 To deploy your Journal app to PCFDev just execute the following command:

 $ cf push journal -p target/spring-boot-journal-cloud-0.0.1-SNAPSHOT.jar
 Creating app journal in org pcfdev-org / space pcfdev-space as admin...
 OK

 Creating route journal.local.pcfdev.io...
 OK

 Binding journal.local.pcfdev.io to journal...
 OK

 Uploading journal...
 Uploading app files from: target/spring-boot-journal-cloud-0.0.1-SNAPSHOT.jar
 Uploading 37.2M, 185 files
 Done uploading
 OK

 Starting app journal in org pcfdev-org / space pcfdev-space as admin...
 Downloading php_buildpack...Downloading staticfile_buildpack...Downloading ruby_buildpack...
 Downloading binary_buildpack...
 Downloading nodejs_buildpack...
 Downloading go_buildpack...
 Downloading python_buildpack...
 Downloading java_buildpack...
 Downloaded binary_buildpack (8.3K)
 Downloaded staticfile_buildpack (2.4M)
 Downloaded nodejs_buildpack (44.3M)
 Downloading ruby_buildpack failedDownloading go_buildpack failedDownloaded java_buildpack
(239.9M)
 Downloaded python_buildpack (254M)

 Showing health and status for app journal in org pcfdev-org / space pcfdev-space as admin...
 OK

 requested state: started
 instances: 1/1
 usage: 1G x 1 instances
 urls: journal.local.pcfdev.io
 last uploaded: Tue Feb 23 04:47:47 UTC 2016
 stack: cflinuxfs2

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

317

 buildpack: java-buildpack=v3.5.1-offline-http://github.com/pivotal-cf/pcf-java-buildpack.
git#d6c19f8 java-main open-jdk-like-jre=1.8.0_65 open-jdk-like-memory-calculator=2.0.1_
RELEASE spring-auto-reconfiguration=1.10.0_RELEASE
 ...

 the above output tells you that you deployed your app to PCFDev, but let’s see what actually happen.
First you executed this command (Do not execute this command, Im explaining what you did):

 $ cf push journal -p target/spring-boot-journal-cloud-0.0.1-SNAPSHOT.jar

 the syntax for pushing an application is:

 $ cf push <app-name> [-p <path>]

 so, you are pushing your application by given a name: journal , and you are telling where to get the file,
by the -p parameter passing the relative path of the jar, in this case: target/spring-boot-journal-cloud-
0.0.1-SNAPSHOT.jar . Then the PCFDev responds by entering into the internal deployment process. It will
download the necessary tools (buildpacks) that will identify the type of application (in this case a Spring/
Java app) and it will try to run the journal app by assigning a URL, in this case: journal.local.pcfdev.io .

 Now, you can go to your browser and see your Journal app in action. Congratulations, you just deploy
your app in your local Cloud environment, PCFDev!

 Cloud Profile
 Did you try to go to the /api and /monitor endpoints? Did you get an error? If you packaged the Journal app
with the two properties files, application.properties and application-cloud.properties , you should get
an error going to the /api and /monitor endpoint, but why?

 By default, when you deploy to PCFDev or Pivotal Cloud Foundry, the active profile is set to “ cloud ”,
this means that your Journal app will use the application-cloud.properties file, then, your endpoints
are different, remember? Your application-cloud.properties file sets the rest endpoint to: /rest and the
actuator endpoint set to: /insight . So, you can go to your browser and see that the endpoints work.

 If you want to see that actually these endpoints are mapped to the /rest and /insight , you can execute
the following command:

 $ cf logs journal --recent

 with the above command you can review all the logs of your app.

 Adding a new entry to the Journal
 Let’s try to add a new entry to the Journal app through the /rest endpoint. So far you have only 4 records, the
ones taken from the src/main/resources/data.sql file.

 To add a new record, in your terminal window execute the following command:

 $ curl -i -X POST -H "Content-Type:application/json" -d '{ "title":"Cloud
Foundry","summary":"Learn about Cloud Foundry and push a Spring Boot Application","creat
ed":"2016-04-05"}' http://journal.local.pcfdev.io/rest/journal

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

318

 the above cURL command will add a new record to your Journal through the endpoint http://
journal.local.pcfdev.io/rest/journal . You can now go to the home page and refresh, you should see
the new record added.

 Backing Services: Creating and Binding Service Instances
 If you stop your Journal app from the PCFDev with the command:

 $ cf stop journal

 and start it again with the command:

 $ cf start journal

 or you can do a simple:

 $ cf restart journal

 you will find out that the recent entry you posted is now gone, why? Because Spring Boot recognized
that you have in your dependencies the H2 (in-memory DB) so it will use it; but how about using the
 MySQL, because you have that dependency too. One of the good things is that you can create a Backing
Service (remember from the twelve factor app guide?), this means that you can create a MySQL service and
use it within your application.

 What is the difference here about using MySQL? First of all, Cloud Foundry offers you services that are
plugin into the platform, ready to be used. You don’t need to worry about installation or anything like that,
just use them and that’s it, and MySQL is one of those services that Cloud Foundry offers your that work out-
of-the-box.

 How can you use these Services, and in this case the MySQL service? You need to create an instance of
that MySQL and give it a name; this means that Cloud Foundry will create a dedicated Database instance
ready to be used. After creating the service instance, you need to bind it to your application.

 Let’s start by seeing that Services the PCFDev has . Execute the following command:

 $ cf marketplace
 Getting services from marketplace in org pcfdev-org / space pcfdev-space as admin...
 OK

 service plans description
 p-mysql 512mb, 1gb MySQL databases on demand
 p-rabbitmq standard RabbitMQ is a robust and scalable high-performance multi-protocol
messaging broker.
 p-redis shared-vm Redis service to provide a key-value store

 TIP: Use 'cf marketplace -s SERVICE' to view descriptions of individual plans of a given
service.

 from the above command you can see that PCFDev has 3 available backing services with their plans
(plans are a way to control what you consume from a service, for example if you choose a plan with 1GB,
you only have that storage size for your persistence, and if you pass that threshold you won’t be able to

http://journal.local.pcfdev.io/rest/journal
http://journal.local.pcfdev.io/rest/journal

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

319

persiste data anymore) and description, ready to be used. The Marketplace is where normally you will find
all the available services for Cloud Foundry. Now, let’s create the MySQL service instance with the following
command:

 $ cf create-service p-mysql 512mb mysql
 Creating service instance mysql in org pcfdev-org / space pcfdev-space as admin...
 OK

 the syntax to create a service instance is:

 cf create-service SERVICE PLAN SERVICE_INSTANCE [-c PARAMETERS_AS_JSON] [-t TAGS]

 where the SERVICE=p-mysql (name from the marketplace), PLAN=512mb and SERVICE_
INSTANCE=mysql (any name you want). The above command will create a “ mysql ” service instance from
the “ p-mysql ” backing service.

 If you execute the following command:

 $ cf services

 it will list the service you just created. Next, let’s bind the “ mysql ” service instance to the journal app
with the command:

 $ cf bind-service journal mysql
 Binding service mysql to app journal in org pcfdev-org / space pcfdev-space as admin...
 OK
 TIP: Use 'cf restage journal' to ensure your env variable changes take effect

 the syntax for binding a service instance is:

 cf bind-service APP_NAME SERVICE_INSTANCE [-c PARAMETERS_AS_JSON]

 where the APP_NAME=journal (this is the app name from the cf push command) and the SERVICE_
INSTANCE=mysql . The above command will bind the mysql service instance to the Journal app. Because you
bind a service to an application it’s required to restage the application to take the changes. To restage the
Journal app execute the following command:

 $ cf restage journal
 Restaging app journal in org pcfdev-org / space pcfdev-space as admin...

 after it’s re-stage you can go to the home page of your Journal app. You should see something similar to
Figure 13-3 .

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

320

 Figure 13-3 shows you the Journal app after restage, but what happen to the data? Because you have
bound a service (MySQL service), and because the application-cloud.properties doesn’t have any of the
 spring.jpa.* properties declared it will get the defaults, making the table drop every time you start/restart
the Journal application.

 Let’s fix that. Add the following properties to your application-cloud.properties file:

 spring.jpa.hibernate.ddl-auto=create
 spring.jpa.generate-ddl=true

 the above properties will create the table once, without droping when stop or restart. After that change,
you need to repackage the Journal app:

 $./mvnw clean package -DskipTests=true

 Figure 13-3. Journal App home page after restage

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

321

 then, you need to push your app back again:

 $ cf push journal -p target/spring-boot-journal-cloud-0.0.1-SNAPSHOT.jar

 refresh your browser (you should see still Figure 13-3), then you can try to insert an entry:

 $ curl -i -X POST -H "Content-Type:application/json" -d '{ "title":"Cloud
Foundry","summary":"Learn about Cloud Foundry and push a Spring Boot Application","creat
ed":"2016-04-05"}' http://journal.local.pcfdev.io/rest/journal

 after executing the above command you can refresh the home page. You should see something similar
to Figure 13-4 .

 Figure 13-4. Journal App - after inserting a new entry

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

322

 Figure 13-4 shows you the result of adding a new entry using the cURL command. Now if you stop and
start the Journal app:

 $ cf restart journal

 and refresh your browser, you should still have your entry you previously added. Congrats! Now you
push an application that has a backing service!

 ■ Note If you want to know more about the Cloud Floundry CLI, just execute the command: $ cf help this
will bring a very well documented commands. Or, you can execute: $ cf help <command-name> to get detail
help about a particular command. So, remember, cf help is your friend. If you also need more information
about Vagrant, you can go here: https://www.vagrantup.com/ .

 Pivotal Cloud Foundry
 Even though you can download Pivotal Cloud Foundry and install it (https://network.pivotal.io/
products/pivotal-cf) you need to have the infrastructure ready for it, but don’t worry; Pivotal also offers
you the infrastructure where you can make use of the actual Pivotal Cloud Foundry commercial version,
Pivotal Web Services http://run.pivotal.io/ . See Figure 13-5 .

https://www.vagrantup.com/
https://network.pivotal.io/products/pivotal-cf
https://network.pivotal.io/products/pivotal-cf
http://run.pivotal.io/

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

323

 Pivotal Web Services offers you a 60 trial, I think enough to get to know the power of Cloud Foundry.
You can sign up for it. In order to get the frial trial, you need to add your Mobile Number, because Pivotal
require SMS verification for claiming free trials to ensure responsible use of their platform and protect all the
current users. Your number is only used for claiming your free trial, and it will never be distributed to third-
parties or used for marketing purposes.

 ■ Note Users are limited to one free trial org per user account. If you have any issues or questions, please
contact support@run.pivotal.io .

 Figure 13-5. Pivotal Web Services http://run.pivotal.io/

http://run.pivotal.io/

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

324

 Once you signed up, you will login with your email provided and your username, and the first screen
that you will see, will be something similar to Figure 13-6 .

 Figure 13-6. Pivotal Web Services - Welcome Page

 Figure 13-6 shows you the welcome page, and is letting you know that you can download the CLI (you
already did) as Step 1, and in Step 2, you can see the commands that you need to execute in order to login
into Pivotal Web Services, as shown below:

 $ cf login -a https://api.run.pivotal.io
 Email: <your email>
 Password: <your password>

 Now, you are ready to use Pivotal Web Services, the commercial version of Pivotal Cloud Foundry. As
you already know, Pivotal Web Services offers you a Marketplace that allows you to add/bind services to
your applications. You can choose Market place from the left menu, and see what is available for you, or you
can go directly to this url: https://console.run.pivotal.io/marketplace . See Figure 13-7 .

https://console.run.pivotal.io/marketplace

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

325

 Figure 13-7 shows you the Marketplace. You can use the ClearDB for testing your MySQL, similar what
you did with the PCFDev where you added the service instance and bind it to the Journal application. Here,
you can either use the command line (as before) or use the Web ui.

 Deploying to Pivotal Web Services
 You are already logged in into Pivotal Web Services, now you can follow the same steps from the PCFDev
deployment, with just a small change:

 $./mvnw clean package -DskipTests=true
 $ cf push journal -p target/spring-boot-journal-cloud-0.0.1-SNAPSHOT.jar --random-route

 the above command will push your Journal app to the Pivotal Web Services, but notice the --random-
route , you need to add that, because the the url must be unique . By default, Pivotal Web Services will
generate a URL in the form of: https://<app-name>.cfapps.io for every single application hosted there (of
course you can bind your own domain) and because there are a thousand apps running, probably the name
“ journal ” (URL: https://journal.cfapps.io/) is already taken, and probably you will have some collision
names. That’s why you need to add the --random-route (until you register your own domain and point to
the app), this will generate a URL of the form: https://<app-name>-<random-name>.cfapps.io/ . In the
example about the URL was: http://journal-glenoid-anticlericalism.cfapps.io/ , so you can go ahead
an dive into your app.

 Figure 13-7. Pivotal WebServices Marketplace

https://journal.cfapps.io/
https://journal.cfapps.io/
https://journal.cfapps.io/
http://journal-glenoid-anticlericalism.cfapps.io/

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

326

 After you push you app you should see something like Figure 13-8 .

 Figure 13-8. Pivotal Web Services (CloudFoundry) - Journal Application up and running

 if you click in the row where it says: “ journal ”, you can see something similar to Figure 13-9 .

 Figure 13-9. Journa l App

 Figure 13-9 shows you your app and some other details. If you click below, in the “ Services ” tab, you
should have something similar to Figure 13-10 .

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

327

 Figure 13-10 shows you the “ Services ” tab, and as you can see there is no Backing Service bound to the
Journal app, so, go ahead an click the “+ Add from Marketplace ”. You will see the Marketplace. Select the
 ClearDB MySQL Database tile . ClearDB (https://www.cleardb.com/) is a company that optimize MySQL
for cloud infrastructure providing its services to Cloud Foundry and other cloud services like Heroku. See
Figure 13-11 .

 Figure 13-11. Marketplace - ClearDB MySQL Database tile

 Figure 13-10. Services tab detail

https://www.cleardb.com/

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

328

 Figure 13-12 shows you the Service Plans. Select the “ Spark DB free ” plan. After you select the plan, it
will take you to fillout some information about it, the Instance Configuration . See Figure 13-13 .

 Figure 13-12. ClearDB MySQL Database Service Plans

 after you select the tile, you will be redirect to select the plan of this Service. See Figure 13-12 .

 Figure 13-13. ClearDB MySQL Database - Instance Configuration

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

329

 Figure 13-13 shows you the Instance Configuration form. As you can see you need to add the Instance
Name: mysql and choose the default values. It will bind to the journal automatically. Click the “ Add ” button.
See Figure 13-14 .

 Figure 13-14. Journal App after the Service Instance was created and bound

 Figure 13-14 shows you the Journal app after you created the mysql service instance. Now is necessary
to restage. So, go to a terminal window and execute the following command:

 $ cf restage journal

 while the above command is executing, you can see your Journal app going down. See Figure 13-15 .

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

330

 Figure 13-15 shows you the Journal app with a down status because the “restage” is happening. After a
few seconds, you app will be up and running. Add some entries to your Journal App, and you should have
something similar to Figure 13-16 .

 Figure 13-15. Journal app in a restage status

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

331

 Figure 13-16. Journal App

 Of course you can do everything in the command line as before. You just did it using the Pivotal Web
Services console. And of course this is not the end, there is still more to learn about the Cloud Foundry.
For example, imagine that you have a lot of users for the Journal app, and you realize that you need more
instances and more memory for each instance. So, you can actually increase the number of instances by
going into the upper corner of the Journal app, where it says: “Scale App”. So, scale it to 2 instances and
reduce the memory to 512MB each(this is just to no exceed the quota, by default as a trial user you only have
1GB of memory available) See Figure 13-17 .

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

332

 Figure 13-17. Scale App

 Figure 13-18. Journal Application dashboard

 after you save it, you should have 2 instances. Cloud Foundry will create 2 separated instances and it
will assign 512MB each, and it will create an internal router so you have a load balancer out-of-the-box and
working. See Figure 13-18 .

 Figure 13-18 shows you the 2 instances up and running. Please, be curious and dig a little more into the
Pivotal Web Services console. You have a lot of power using the Cloud Foundry Platform.

 If you or your company has Pivotal Cloud Foundry, I totally recommend that you install more Services
and test them, specially the Spring Cloud Services tile (from https://network.pivotal.io/products/
p-spring-cloud-services) a new way to bring Spring app into a new level. The Spring Cloud Services
brings a Configuration Server, Service Registry and , Circuit Breaker pattern. After you have a small taste of
them, you won’t go back. You can get more info at: http://docs.pivotal.io/spring-cloud-services/ .

 I know that this chapter was a small taste of what Pivotal Cloud Foundry is, or maybe I missed to
mention other solutions, but by far, Cloud Foundry is the best Cloud PaaS out there, there is no comparison
to make.

https://network.pivotal.io/products/p-spring-cloud-services
https://network.pivotal.io/products/p-spring-cloud-services
http://docs.pivotal.io/spring-cloud-services/

CHAPTER 13 ■ SPRING BOOT IN THE CLOUD

333

 Summary
 In this chapter I talked about the cloud and what you need to do in order to create you application as native-
cloud. I mentioned also about the twelve-factor application guidelines that are just a patterns that you can
apply for developing for the cloud.

 I also talked about one of the best open source PaaS solutions, Cloud Foundry. I mentioned some of the
features and difference between the open source and the commercial version.

 I showed you how to deploy your Spring Boot application into Cloud Foundry, first by using the PCFDev
as development tool and then to the Pivotal Cloud Foundry. Also, I mentioned about the Spring Cloud
Service and how you can use them to get most of the Platform.

 In the next chapter I will show you how to extend Spring Boot by creating your own starter and health
endpoint.

335© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2_14

 CHAPTER 14

 Extending Spring Boot Apps

 Developers and software architects are often looking for design patterns to apply, new algorithms to
implement, reusable components that are easy to use and maintain, and new ways to improve development.
It’s not always easy to find a unique or perfect solution and it’s necessary to use different technologies and
methodologies to accomplish the goal of having an application that runs and never fails.

 This chapter explains how the Spring and Spring Boot teams created a pattern for reusable components
that are easy to use and implement. Actually, you have been learning about this pattern in the entire book,
and especially in the Spring Boot Configuration chapter.

 This chapter covers in detail the auto-configuration, including how you can extend and create new
Spring Boot modules that can be reusable. Let’s get started.

 Custom Spring Boot Module
 As you already know, the spring-boot-starter-<module> is an important piece for the Spring Boot engine
to auto-configure your application based on the dependencies that the starter that you defined brings to the
applications. This section discusses how you create your custom starter.

 Imagine for a moment that your Spring Boot journal app has a very good acceptance between your
colleagues and now you want to create a journal starter pom. How can you do that? You are going to create a
special project where you include three modules:

• spring-boot-journal . This is the project that you have been working on during the
book. I will show you which pieces you need to include in the following sections.

• journal-spring-boot-starter . This is your definition of your journal module.
Every time you want to include part of the journal in a new application, you need to
use this starter.

• journal-spring-boot-autoconfigure . This project brings the journal module to life
because you will create a special auto-configure configuration to set everything up
when another project includes journal-spring-boot-starter .

 The spring-boot-journal Project
 You are going to use the journal app as a module. Choose a directory and create a folder named
spring-boot-journal . Use the well known Spring Initializr command:

 $ mkdir spring-boot-journal
 $ cd spring-boot-journal
 $ spring init -d=web,thymeleaf,data-jpa,data-rest,h2,mysql -g=com.apress.spring -a=spring-
boot-journal --package-name=com.apress.spring -name=spring-boot-journal -x

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

336

 Next you can copy some of the files that you have been using during the chapters. Don’t worry too
much; I’ll tell you what to include. You need to have the structure shown in Figure 14-1 .

 Figure 14-1 shows the files that you need to copy over this new structure. The JournalEntry ,
 JournalRepository , and JsonDateSerializer classes haven’t change at all. Just make sure that your
 JournalEntry has the @Entity annotations because that’s what you will use. The contents of the
 applications.properties file is simple, as shown in Listing 14-1 .

 Listing 14-1. src/main/resources/application.properties

 spring.data.rest.basePath=/api

 The journal.html page is identical to the index.html of the other versions; there is no security
enabled. I will explain why you needed to rename it later. The data.sql contains some of the records for the
entry table. See Listing 14-2 .

 Figure 14-1. The spring-boot-journal directory structure

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

337

 Listing 14-2. src/main/resources/data.sql

 INSERT INTO ENTRY(title,summary,created) VALUES('Get to know Spring Boot','Today I will
learn Spring Boot','2016-01-02 00:00:00.00');
 INSERT INTO ENTRY(title,summary,created) VALUES('Simple Spring Boot Project','I will do my
first Spring Boot project','2016-01-03 00:00:00.00');
 INSERT INTO ENTRY(title,summary,created) VALUES('Spring Boot Reading','Read more about
Spring Boot','2016-02-02 00:00:00.00');
 INSERT INTO ENTRY(title,summary,created) VALUES('Spring Boot in the Cloud','Learn Spring
Boot using Cloud Foundry','2016-02-05 00:00:00.00');

 ■ Note Remember that you can get all the code from the Apress web site or from the GitHub repository at
 https://github.com/felipeg48/pro-spring-boot .

 If you run this app:

 $./mvnw spring-boot:run

 You won’t see the home page, but why? The web controller class is missing (JournalController),
but there is a reason for that and I will discuss it in the next sections. You can still go to the REST API, but
remember that it is included because you added (data-rest) in the Spring init command . So you can go
to http://localhost:8080/api/ and it should give you a result. (Remember to test it in the Chrome web
browser with the JSONView add-on installed, so you can see the response JSON+HAL.)

 The journal-spring-boot-starter Project
 Now you are going to define a starter that any new project will use to include the journal functionality.
Remember that you are in the spring-boot-journal directory, so go back one level and create the directory
 journal-spring-boot-starter and add a pom.xml .

 $ pwd
 /journal/spring-boot-journal
 $ cd ..
 $ mkdir journal-spring-boot-starter
 $ cd journal-spring-boot-starter

 Now copy the pom.xml file shown in Listing 14-3 . You’ll need it for your starter.

 Listing 14-3. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

https://github.com/felipeg48/pro-spring-boot

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

338

 <groupId>com.apress.spring</groupId>
 <artifactId>journal-spring-boot-starter</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>journal-spring-boot-starter</name>
 <description> Spring Boot Journal Starter</description>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>com.apress.spring</groupId>
 <artifactId>journal-spring-boot-autoconfigure</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 14-3 shows the pom.xml that defines only one dependency this time. The journal-spring-boot-
autoconfigure dependency is the project that you will create in the next section.

 For creating a starter, that’s it, you just define the project that you have the dependencies on and that’s
pretty much what you will be doing here. Of course, the important part is to have the dependencies ready.
The journal functionality is defined in the journal-spring-boot-autoconfigure project.

 Before you go to the next section, did you notice the name of the project? The Spring Boot team already
put in place a naming convention for any new starter project pom. This naming is in this form : <module>-
spring-boot-starter . If you are creating an auto-config project, the conventions is <module>-spring-
boot-autoconfigure . This is because some of the modules are based on this naming convention.

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

339

 The journal-spring-boot-autoconfigure Project
 This project will contain configuration that will allow the journal functionality to be active in any new project
that includes the journal-spring-boot-starter . Let’s start by creating the folder and initializing the project
with the Spring Initializr command.

 $ pwd
 /journal/journal-spring-boot-starter
 $ cd ..
 $ mkdir journal-spring-boot-autoconfigure
 $ cd journal-spring-boot-autoconfigure
 $ spring init -d=web,thymeleaf,data-jpa,data-rest,h2,mysql -g=com.apress.spring -a=journal-spring-
boot-autoconfigure --package-name=com.apress.spring -name=journal-spring-boot-autoconfigure –x

 Next you need to add an extra dependencies to the pom.xml that you just created by executing the
previous command. See Listing 14-4 .

 Listing 14-4. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>journal-spring-boot-autoconfigure</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>journal-spring-boot-autoconfigure</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.3.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 <journal.version>0.0.1-SNAPSHOT</journal.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-autoconfigure</artifactId>
 </dependency>

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

340

 <dependency>
 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-journal</artifactId>
 <version>${journal.version}</version>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-configuration-processor</artifactId>
 <optional>true</optional>
 </dependency>
 </dependencies>

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

341

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 14-4 shows the pom.xml that you will be using in your journal-spring-boot-autoconfigure
project. Next let’s create a class that will hold some properties that will part of the configuration for the
journal functionality. See Listing 14-5 .

 Listing 14-5. src/main/java/com/apress/spring/config/JournalProperties.java

 package com.apress.spring.config;

 import org.springframework.boot.context.properties.ConfigurationProperties;

 @ConfigurationProperties(prefix="journal")
 public class JournalProperties {

 private String contextPath = "/spring-boot-journal";
 private String banner;
 private String apiPath;

 public String getContextPath() {
 return contextPath;
 }

 public void setContextPath(String contextPath) {
 this.contextPath = contextPath;
 }

 public String getBanner() {
 return banner;
 }

 public void setBanner(String banner) {
 this.banner = banner;
 }

 public String getApiPath() {
 return apiPath;
 }

 public void setApiPath(String apiPath) {
 this.apiPath = apiPath;
 }

 }

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

342

 Listing 14-5 shows the JournalProperties class. You are already familiar with this type of class, because
I showed you in the first chapters that you can externalize your custom properties and can use your own
prefix. In this case you will have three properties:

• journal.context-path . Sets by default the context path of the journal home page,
which in this case is reachable at /spring-boot-journal . You give your users of the
 journal-spring-boot-starter a chance to change the context path by setting this
property in the application.properties file.

• journal.banner . Displays a banner about the journal being configured. I know that
this functionality won’t be a real value, but it just proves the point that you can do
a lot with the auto-configuration feature that Spring Boot provides. This property
accepts the location of the journal.txt file; the default is at /META-INF/banner/
journal.txt . You will create this file later. This allows your users that create their
own banners and use them with this journal property.

• journal.api-path . Sets the REST API context path. Remember that by default you
have the spring.data.rest.basePath when you include the spring-data-rest
pom and that you can change its path. Here you will expose the option to your users
to modify the path as well, but using your custom journal property.

 The next code example shows that all these properties will be used to configure the journal
functionality. The JournalAutoConfiguration class is the most important class in this project, as shown in
Listing 14-6 .

 Listing 14-6. src/main/java/com/apress/spring/config/JournalAutoConfiguration.java

 package com.apress.spring.config;

 import java.util.Properties;

 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

 import org.springframework.beans.factory.InitializingBean;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.Banner;
 import org.springframework.boot.ResourceBanner;
 import org.springframework.boot.autoconfigure.condition.ConditionalOnClass;
 import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
 import org.springframework.boot.autoconfigure.condition.ConditionalOnWebApplication;
 import org.springframework.boot.context.properties.EnableConfigurationProperties;
 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.Configuration;
 import org.springframework.core.env.Environment;
 import org.springframework.core.io.DefaultResourceLoader;
 import org.springframework.core.io.Resource;
 import org.springframework.core.io.ResourceLoader;
 import org.springframework.data.rest.core.config.RepositoryRestConfiguration;
 import org.springframework.data.rest.webmvc.config.RepositoryRestMvcConfiguration;
 import org.springframework.util.ClassUtils;
 import org.springframework.web.servlet.ModelAndView;

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

343

 import org.springframework.web.servlet.handler.SimpleUrlHandlerMapping;
 import org.springframework.web.servlet.mvc.AbstractController;

 import com.apress.spring.repository.JournalRepository;

 @Configuration
 @ConditionalOnWebApplication
 @ConditionalOnClass(JournalRepository.class)
 @EnableConfigurationProperties(JournalProperties.class)
 @ConditionalOnProperty(prefix = "journal", name = { "context-path", "banner" },
matchIfMissing = true)
 public class JournalAutoConfiguration extends RepositoryRestMvcConfiguration {
 private final String API_PATH = "/api";
 private final String BANNER = "/META-INF/banner/journal.txt";

 @ Autowired

 JournalProperties journal;

 @Autowired
 Environment environment;

 @Bean
 InitializingBean simple() {
 return () -> {
 Banner banner = null;
 ResourceLoader resourceLoader = new DefaultResourceLoader

(ClassUtils.getDefaultClassLoader());
 Resource resource = resourceLoader.getResource(BANNER);

 if (null == journal.getBanner()) {
 banner = new ResourceBanner(resource);
 } else {
 Resource _resource = resourceLoader.getResource(journal.getBanner());
 if (resource.exists()) {
 banner = new ResourceBanner(_resource);
 }
 }
 banner.printBanner(environment, environment.getClass(), System.out);
 };
 }

 @Override
 protected void configureRepositoryRestConfiguration(RepositoryRestConfiguration config) {
 if (null == journal.getApiPath())
 config.setBasePath(API_PATH);
 else
 config.setBasePath(journal.getApiPath());
 }

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

344

 @Autowired
 JournalRepository repo;

 @Bean
 AbstractController journalController() {
 return new AbstractController() {
 @Override
 protected ModelAndView handleRequestInternal(HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 ModelAndView model = new ModelAndView();
 model.setViewName("journal");
 model.addObject("journal", repo.findAll());
 return model;
 }
 };
 }

 @ Bean

 public SimpleUrlHandlerMapping urlHandler() {
 SimpleUrlHandlerMapping handler = new SimpleUrlHandlerMapping();
 handler.setOrder(Integer.MAX_VALUE - 2);
 Properties mappings = new Properties();
 mappings.put(journal.getContextPath(), "journalController");
 handler.setMappings(mappings);
 return handler;
 }

 }

 Listing 14-6 shows the main class that will be picked up by Spring Boot auto-configuration pattern.
It will try to configure the journal app to work as was specified by the properties and other configurations.
Let’s examine the class:

• @Configuration . As you know, this annotation will be picked up by the Spring Boot
auto-configuration.

• @ConditionalOnWebApplication . This annotation will tell the auto-configuration
to execute the configuration only if it’s a web application. If not, it will skip it.
This is useful when you have an application that doesn’t have the
spring-boot-starter-web pom.

• @ConditionalOnClass(JournalRepository.class) . This annotation tells the auto-
configuration that this configuration will be accepted only if in the classpath exists
the JournalRepository.class . Note that the JournalRepository will be configured
as a REST endpoint through the spring data-rest auto-configuration, so that’s why
you are adding this particular condition.

• @EnableConfigurationProperties(JournalProperties.class) . This annotation
tells the auto-configuration that you will be using the JournalProperties as a
custom property. Remember that you have access at all times by using the
 @Autowired or the @Value for a specific property.

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

345

• @ConditionalOnProperty(prefix = "journal", name = { "context-path",
"banner" }, matchIfMissing = true) . This annotation tells the auto-configuration
that if you don’t have the journal.context-path or the journal.banner properties
defined, it can execute the configuration anyway.

• RepositoryRestMvcConfiguration . The JournalAutoConfiguration class is
extending from the RepositoryRestMvcConfiguration class, which is helpful because
you are going to override the REST endpoints by using your journal.api-path .

• API_PATH, BANNER . These are the final variables that will be the default values for
the journal.api-path and journal.banner properties, if none is provided in the
 application.properties file.

• @Bean InitializingBean simple() . This method will be executed when this
class is created. This method will print out the banner at the console based on the
 journal.banner property. If none is provided, it will print out what you have in the
 /META-INF/banner/journal.txt classpath .

• configureRepositoryRestConfiguration(RepositoryRestConfiguration config) .
This method belongs to the RepositoryRestMvcConfiguration class and it’s overridden
by setting the REST endpoint’s context path based on the journal.api-path
property. If none is provided in the application properties, the default is /api .

• @Bean AbstractController journalController() . This method is the replacement
of the JournalController that you didn’t use in the journal application. Here
you are returning an AbstractController instance and you are overriding the
 handleRequestInternal method by adding the journal view (this will be from the
journal project at templates/journal.html ; this page is not an index.html page,
because you don’t want to have a collision name for other projects; I will explain
this later). You are also adding the model setting its value with the repo.findAll()
method call. The repo instance is the result of the @Autowired JournalRepository .
This means that you should have the JournalRepository class in your classpath.

• @Bean SimpleUrlHandlerMapping urlHandler() . This method will set the
handler for the final context path where the journal.html will be requested. You
are returning a SimpleUrlHandlerMapping instance that sets the correspondent
mapping, the URL (based on the journal.context-path property). and the
controller (the journalController method call). It’s very important to mention that
in order to create your own URL handler programmatically it’s mandatory to add this
call: handler.setOrder(Integer.MAX_VALUE - 2) ;. This is because the mappings
are in order, so they have the lowest order making the ResourceHttpRequestHandler
(this resource handler takes all in /**) to have precedence over your mapping. That’s
why it’s necessary to set the order in that way.

 Before you continue, take moment to analyze this more in detail. Try to look the meaning of every class.
Now, it’s worth mentioning that there are more @Conditional* annotation that allow you to execute the
configuration class.

 How does Spring Boot load this auto-configuration class? In order to use the power of the
auto-configuration, you need to create it in the META-INF/spring.factories file. You specify the class that
holds the auto-configuration. See Listing 14-7 .

 Listing 14-7. src/main/resources/META-INF/spring.factories

 org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
 com.apress.spring.config.JournalAutoConfiguration

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

346

 Listing 14-6 shows the contents of the spring.factories file. You need to specify the
class that will be picked up by the EnableAutoConfiguration class . This class imports the
 EnableAutoConfigurationImportSelector that will inspect the spring.factories and loads the class
and executes the declaration. That’s the secret behind the auto-configuration. If you see the source code of
 spring-boot-autoconfigure module itself you will find out that it contains a lot of the auto-configuration
classes defined. Here is a sneak peak of the spring-boot-autoconfigure spring.factories contents:

 # Initializers
 org.springframework.context.ApplicationContextInitializer=\
 org.springframework.boot.autoconfigure.logging.AutoConfigurationReportLoggingInitializer

 # Application Listeners
 org.springframework.context.ApplicationListener=\
 org.springframework.boot.autoconfigure.BackgroundPreinitializer

 # Auto Configure
 org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
 org.springframework.boot.autoconfigure.admin.SpringApplicationAdminJmxAutoConfiguration,\
 org.springframework.boot.autoconfigure.aop.AopAutoConfiguration,\
 org.springframework.boot.autoconfigure.amqp.RabbitAutoConfiguration,\
 org.springframework.boot.autoconfigure.MessageSourceAutoConfiguration,\
 org.springframework.boot.autoconfigure.PropertyPlaceholderAutoConfiguration,\
 org.springframework.boot.autoconfigure.batch.BatchAutoConfiguration,\
 org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration,\
 org.springframework.boot.autoconfigure.cassandra.CassandraAutoConfiguration,\
 org.springframework.boot.autoconfigure.cloud.CloudAutoConfiguration,\
 org.springframework.boot.autoconfigure.context.ConfigurationPropertiesAutoConfiguration,\
 org.springframework.boot.autoconfigure.dao.
PersistenceExceptionTranslationAutoConfiguration,\
 org.springframework.boot.autoconfigure.data.cassandra.CassandraDataAutoConfiguration,\
 org.springframework.boot.autoconfigure.data.cassandra.
CassandraRepositoriesAutoConfiguration,\
 org.springframework.boot.autoconfigure.data.elasticsearch.ElasticsearchAutoConfiguration,\
 org.springframework.boot.autoconfigure.data.elasticsearch.
ElasticsearchDataAutoConfiguration,\
 ...
 ...

 Remember that you can use --debug when you running your application. You can run it to see if your
starter is being picked up by the auto-configuration engine.

 Package and Install the Journal Project
 Now you have your three projects ready to be packaged and installed in your computer; but first let’s create a
 pom.xml that will treat the three projects as modules. Go one level up and create a pom.xml file.
See Figure 14-2 .

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

347

 Figure 14-2. The directory structure

 Next, let’s see the pom.xml . See Listing 14-8 .

 Listing 14-8. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.spring</groupId>
 <artifactId>journal</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>Extending Spring Boot</name>

 <modules>
 <module>spring-boot-journal</module>
 <module>journal-spring-boot-autoconfigure</module>
 <module>journal-spring-boot-starter</module>
 </modules>

 </project>

 Listing 14-8 shows the master pom that includes the three projects as modules. This will allow you to
package and install them. If you have Maven already installed, you can skip this part. If not, remember that
you are using the Spring init and this brings the Maven wrapper that you don’t have in the journal folder.
You have only the pom.xml , so in order to use the maven wrapper, execute the following commands:

 $ pwd
 /journal
 $ cp -r spring-boot-journal/.mvn .
 $ cp spring-boot-journal/mvn* .

 If you have now the Maven wrapper, execute the next command to package and install the journal project:

 $./mvnw clean package install -DskipTests=true

 Or if you have Maven installed, just execute this command:

 $ mvn clean package install -DskipTests=true

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

348

 That will install the three projects (in your home directory under . m2/repository), which means that
you are ready to use them in any new project you want to include with the journal starter.

 The spring-boot-calendar Project
 I know that I told you about creating only three projects— spring-boot-journal , journal-spring-boot-
starter , and journal-spring-boot-autoconfigure —but of course you need to test them too. You need to
see if the auto-configuration really accesses the JournalAutoConfiguration class.

 You can create a new project that can be outside of the journal solution (the three projects) and create
just a default Spring boot app using the spring init command:

 $ pwd
 /journal
 $ cd /
 $ mkdir calendar
 $ cd calendar
 $ spring init -g=com.apress.spring -a= spring-boot-calendar --package-name=com.apress.spring
-name= spring-boot-calendar –x

 This command will create your calendar project. Basically, this project will use the journal-spring-
boot-starter and that’s it. The project will only have an index page just to make the point that you can
create any application and use the journal starter. The final pom.xml for this project is shown in Listing 14-9 .

 Listing 14-9. pom.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.spring</groupId>
 <artifactId>spring-boot-calendar</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>spring-boot-calendar</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.3.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 </properties>

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

349

 <dependencies>
 <dependency>
 <groupId>com.apress.spring</groupId>
 <artifactId>journal-spring-boot-starter</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 </project>

 Listing 14-9 shows the pom.xml that you will use for the calendar project. See that you are only including
the journal-spring-boot-starter . If you run it right away, you should be able to see the banner (with the
legend Journal) and all the default endpoints (/api , /spring-boot-journal). Remember that these
default values now can be overridden, and that’s what you going to do in the next sections. You can run your
app as usual:

 $./mvnw spring-boot:run

 After running the calendar project just make sure that the journal is working. Now, let’s create a
controller in the main app and start adding some other details like an index.html page (that’s why you have
a journal.html in the spring-boot-journal module, so it won’t collide with this one).

 Listing 14-10 shows the main application.

 Listing 14-10. src/main/java/com/apress/spring/SpringBootCalendarApplication.java

 package com.apress.spring;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;
 import org.springframework.web.bind.annotation.RestController;
 import org.springframework.web.servlet.ModelAndView;

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

350

 import com.apress.spring.config.JournalProperties;

 @SpringBootApplication
 @RestController
 public class SpringBootCalendarApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootCalendarApplication.class, args);
 }

 private static final String VIEW_INDEX = "index";

 @Autowired
 JournalProperties journal;

 @RequestMapping(value="/", method = RequestMethod.GET)
 public ModelAndView index(ModelAndView modelAndView){
 modelAndView.setViewName(VIEW_INDEX);
 modelAndView.addObject("journal", journal);
 return modelAndView;
 }
 }

 Listing 14-10 shows the main application. You basically already know all the annotations in this class,
but it’s good to mention that the JournalProperties instance is available and you will be using it to access
its values in the index page.

 Next, let’s see the application.properties . Remember that you can now override those properties as
well. Its content is shown in Listing 14-11 .

 Listing 14-11. src/main/resources/application.properties

 journal.api-path=/myapi
 journal.context-path=/myjournal

 Listing 14-11 shows the application.properties that you will use in this second run to see if the
defaults can be overridden. For now it doesn’t have the journal.banner property (with the value
/META-INF/banner/journal.txt); you can play around with it later.

 Now let’s see the index.html page (you need to create the templates folder). See Listing 14-12 .

 Listing 14-12. src/main/resource/templates/index.html

 <!DOCTYPE html>
 <html lang="en" xmlns:th="http://www.thymeleaf.org" >
 <head>
 <meta charset="utf-8"></meta>
 <meta http-equiv="X-UA-Compatible" content="IE=edge"></meta>
 <meta name="viewport" content="width=device-width, initial-scale=1"></meta>
 <meta name="description" content=""></meta>
 <meta name="author" content=""></meta>
 <title>Spring Boot Calendar</title>
 <link href="css/bootstrap.min.css" rel="stylesheet"></link>
 <link href="css/cover.css" rel="stylesheet"></link>
 </head>

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

351

 <body>

 <div class="site-wrapper">
 <div class="site-wrapper-inner">
 <div class="cover-container">
 <div class="masthead clearfix">
 <div class="inner">
 <h3 class="masthead-brand">Spring Boot Calendar</h3>
 <nav>
 <ul class="nav masthead-nav">
 <li class="active">Home
 <a th:href="${journal.contextPath}" >Journal
 <a th:href="${journal.apiPath}" >API
 <a th:href="${journal.apiPath} + '/journal/search'" >Search

 </nav>
 </div>
 </div>

 <div class="inner cover">
 <h1 class="cover-heading">Spring Boot Calendar</h1>
 <p class="lead">This is a small Calendar application, showing the power of

Spring Boot auto-configuration features.
 This Calendar application also provides you a full access to the Journal Web UI</p>
 <p class="lead">
 <a th:href="${journal.contextPath}" class="btn btn-lg btn-default">Journal
 </p>
 </div>

 <div class="mastfoot">
 <div class="inner">
 <p>Spring Boot Calendar, powered by <a href="http://projects.spring.io/

spring-boot/">Spring Boot.</p>
 </div>
 </div>

 </div>

 </div>

 </div>
 </body>
 </html>

 Listing 14-12 shows index.html and the important part is the usage of the journal object that is sent
from the controller (the JournalProperties instance). Regardless of which path you add for the API or the
journal you will be always have the right endpoint.

 Before you run it, you need to have the cover.css file that is located in the static/css folder (you need
to create the static folder as well). The bootstrap.min.css is being picked up from the journal module,
so you don’t need it here. You can get this code from the Apress site. (Or you can get it from the GitHub at
 https://github.com/felipeg48/pro-spring-boot).

https://github.com/felipeg48/pro-spring-boot

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

352

 Now you are ready to run it:

 $./mvnw spring-boot:run

 If you go directly to the root at http://localhost:8080/ , you will see something like Figure 14-3 .

 Figure 14-3 shows the calendar app. You can test the links declared in the index.html file and see
if the endpoints actually work because they should have taken the values of the properties specified in
the application.properties file. So, click the Journal button and you should get sent to the /myjournal
endpoint. If you click at the top of the page in the navigation bar, the API menu option, you should be sent to
the /myapi endpoint and be able to read all about the RESTful services.

 Congratulations! You have just created your custom Spring Boot starter!

 Figure 14-3. The calendar application home page

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

353

 Custom Health Indicator
 Another way to extend your Spring Boot application is to add your own health indicator when you are
using the spring-boot-actuator module. It would be nice to have a way to monitor specific requirements;
for example, imagine that you want your calendar be able to monitor how many entries you have in your
journal. In other words, you can have customers who want to use your calendar application and you want to
limit the entries per journal. You’ll build a quota health monitor for that purpose.

 You will continue using the Calendar project. The spring-boot-starter-actuator is missing in your
 pom.xml in order to activate the health endpoints. So add this to your pom.xml :

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>

 Next, let’s create two classes that will define the quota monitor. The first class is a standard exception
handler. See Listing 14-13 .

 Listing 14-13. src/main/java/com/apress/spring/health/QuotaException.java

 package com.apress.spring.heatlh;

 public class QuotaException extends Exception {

 private static final long serialVersionUID = -1L;

 public QuotaException(String ex){
 super(ex);
 }

 }

 Listing 14-13 shows a simple class that extends from exception and overrides the constructor with a
String parameter; this is nothing new that you don’t already know. Next is the most important part to create
the monitor. See Listing 14-14 .

 Listing 14-14. src/main/java/com/apress/spring/health/QuotaHealthIndicator.java

 package com.apress.spring.heatlh;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.actuate.health.Health;
 import org.springframework.boot.actuate.health.HealthIndicator;
 import org.springframework.stereotype.Component;

 import com.apress.spring.repository.JournalRepository;

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

354

 @Component
 public class QuotaHealthIndicator implements HealthIndicator {

 private static final Long QUOTA_MAX_SIZE = 10L;

 @Autowired
 JournalRepository repo;

 @Override
 public Health health() {
 long size = repo.count();
 if(size <= QUOTA_MAX_SIZE)
 return Health.up().withDetail("quota.entries", size).build();
 else
 return Health
 .down()
 .withDetail("quota.entries", size)
 .withException(new QuotaException("Quota Exceeded. Max

allow: " + QUOTA_MAX_SIZE + ". See your Administrator
for Quota policies."))

 .build();
 }

 }

 Listing 14-14 shows the QuotaHealthIndicator class . Let’s examine it:

• HealthIndicator . This is the main interface that you need to implement in order to
create your custom health monitor. You need to implement the health method that
returns a health instance.

• Health health() . This method is an implementation method from the
 HealthIndicator interface, and it returns a health instance. This instance has a
fluent API that allows you to create the necessary response for your monitor. Take a
look at the code and see that you can set the health up or down depending on your
own business rules. Also note that you are using the JournalRepository instance
(repo) and using just the count() method that will bring the number of records you
have. This will help to decide what to do in your health monitor.

 As you can see, is very trivial to create a custom health indicator or monitor. You only need
to implement the HealthIndicator instances. As a naming convention, you need to append the
 HealthIndicator postfix to your class, so the Actuator can use the name. In this example the quota name
will be used in the response of the /health endpoint. In order to make this work, you need to annotate this
class with the @Component annotation so that the Spring engine can recognize the health actuator endpoint.

 It’s worth mentioning that there is another class that can be extended from: org.springframework.
boot.actuate.health.AbstractHealthIndicator . You need to implement the abstract method called
 doHealthCheck . See the Actuator’s documentation for more information about this class.

 Now it’s time to run it:

 $./mvnw spring-boot:run

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

355

 Figure 14-4. http://localhost:8080/health is showing the quota health monitor UP

 Figure 14-4 shows the result of going to the /health endpoint, and as you can see you have your own
 quota health monitor where the status is UP with the quota.entries key and a value of 4 . I’m assuming that
you still have the data.sql in one of your projects, which is why you have the four entries.

 Now, if you don’t want to add more entries, and want to see the monitor status change to down, you can
set the variable QUOTA_MAX_SIZE to 3 and then rerun the application. Then you can refresh the endpoint and
see the results shown in Figure 14-5 .

 After executing this command, you should see the Actuator endpoint displayed. You can go to the
 http://localhost:8080/health endpoint. See Figure 14-4 .

CHAPTER 14 ■ EXTENDING SPRING BOOT APPS

356

 Figure 14-5 shows the result of the whole health DOWN, because your quota status returns an exception.
 Congratulations! You created your own quota health monitor!

 ■ Note Another alternative is to use the STS IDE and import the projects—in this case the journal master
(the one that contains the modules) and the calendar—so you can test better and use the code completion that
the IDE offers you. Also you don’t need to package and install the project every time you do a modification; just
make the change and the IDE will take care of the rest.

 Summary
 This chapter showed you how to create a module for Spring Boot by using the auto-configuration pattern.
It showed you how to create your custom health monitor. As you can see, it’s very simple to extend Spring
Boot apps, so feel free to modify the code and experiment with them.

 We didn’t do much if any unit or integration testing and it would be good homework for you to practice
all the detail that I showed you. I think it will help you understand how Spring Boot works even better.
Repeat and you will master!

 Figure 14-5. http://localhost:8080/health is showing the quota health monitor DOWN

357© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2

 APPENDIX

 Spring Boot 1.4.x

 Spring Boot 1.4.X Release Notes
 Upgrading from Spring Boot 1.3

 Executable Jar Layout
 The layout (the directory structure) of executable jars has changed. If you are using Spring Boot’s Maven,
Gradle, or Ant support to build your application this change will not affect you. If you are building an
executable archive yourself, please be aware that an application’s dependencies are now packaged in
 BOOT-INF/lib rather than lib , and an application’s own classes are now packaged in BOOT-INF/classes
rather than the root of the jar.

 Deprecations from Spring Boot 1.3
 Classes, methods and properties that were deprecated in Spring Boot 1.3 have been removed in this release.
Please ensure that you aren’t calling deprecated methods before upgrading.

 In particular, log4j 1 support has been removed following Apache EOL announcement.

 DataSource Binding
 Prior to Spring Boot 1.4, auto-configured datasources were bound to the spring.datasource namespace .
In 1.4, we only bind the common settings to spring.datasource (see DataSourceProperties) and we have
defined new specific namespaces for the four connections pools we support (in that order):

• spring.datasource.tomcat for org.apache.tomcat.jdbc.pool.DataSource

• spring.datasource.hikari for com.zaxxer.hikari.HikariDataSource

• spring.datasource.dbcp for org.apache.commons.dbcp.BasicDataSource

• spring.datasource.dbcp2 for org.apache.commons.dbcp2.BasicDataSource

 If you were using specific settings of the connection pool implementation that you are using, you
will have to move that configuration to the relevant namespace. For instance, if you were using Tomcat’s
 testOnBorrow flag, you’ll have to move it from spring.datasource.test-on-borrow to spring.datasource.
tomcat.test-on-borrow .

 If you are using configuration assistance in your IDE, you can now see which settings are available per
connection pools rather than having all of them mixed in the spring.datasource namespace. This should
make your life much easier figuring out what implementation supports what features.

358

APPENDIX ■ SPRING BOOT 1.4.X

 Jta Settings Binding
 Similarly to DataSource binding, JTA provider-specific configuration properties for Atomikos and Bitronix
were bound to spring.jta . They are now bound to spring.jta.atomikos. properties and spring.jta.
bitronix. properties respectively; the meta-data for these entries has been greatly improved as well.

 @ConfigurationProperties Default Bean Names
 When a @ConfigurationProperties bean is registered via @EnableConfigurationProperties(SomeBean.
class) , we used to generate a bean name of the form <prefix>.CONFIGURATION_PROPERTIES . As of Spring
Boot 1.4, we have changed that pattern to avoid name clashes if two beans use the same prefix.

 The new conventional name is <prefix>-<fqn> , where <prefix> is the environment key prefix specified
in the @ConfigurationProperties annotation and <fqn> the fully qualified name of the bean. If the annotation
does not provide any prefix, only the fully qualified name of the bean is used.

 Jetty JNDI Support
 The spring-boot-starter-jetty “Starter POM” no longer includes org.eclipse.jetty: jetty-jndi . If you
are using Jetty with JNDI you will now need to directly add this dependency yourself.

 Analysis of Startup Failures
 Spring Boot will now perform analysis of common startup failures and provide useful diagnostic information
rather than simply logging an exception and its stack trace. For example, a startup failure due to the
embedded servlet container’s port being in use looked like this in earlier versions of Spring Boot:

 ERROR 24753 --- [main] o.s.boot.SpringApplication : Application
startup failed
 java.lang.RuntimeException: java.net.BindException: Address already in use
 at io.undertow.Undertow.start(Undertow.java:181) ~[undertow-core-1.3.14.Final.

jar:1.3.14.Final]
 at org.springframework.boot.context.embedded.undertow.UndertowEmbeddedServletContainer.

start(UndertowEmbeddedServletContainer.java:121) ~[spring-boot-1.3.2.RELEASE.
jar:1.3.2.RELEASE]

 at org.springframework.boot.context.embedded.EmbeddedWebApplicationContext.
startEmbeddedServletContainer(EmbeddedWebApplicationContext.java:293)
~[spring-boot-1.3.2.RELEASE.jar:1.3.2.RELEASE]

 at org.springframework.boot.context.embedded.EmbeddedWebApplicationContext.finish
Refresh(EmbeddedWebApplicationContext.java:141) ~[spring-boot-1.3.2.RELEASE.
jar:1.3.2.RELEASE]

 at org.springframework.context.support.AbstractApplicationContext.refresh(Abstract
ApplicationContext.java:541) ~[spring-context-4.2.4.RELEASE.jar:4.2.4.RELEASE]

 at org.springframework.boot.context.embedded.EmbeddedWebApplicationContext.refresh
(EmbeddedWebApplicationContext.java:118) ~[spring-boot-1.3.2.RELEASE.
jar:1.3.2.RELEASE]

 at org.springframework.boot.SpringApplication.refresh(SpringApplication.java:766)
[spring-boot-1.3.2.RELEASE.jar:1.3.2.RELEASE]

 at org.springframework.boot.SpringApplication.createAndRefreshContext(SpringApplication.
java:361) [spring-boot-1.3.2.RELEASE.jar:1.3.2.RELEASE]

359

APPENDIX ■ SPRING BOOT 1.4.X

 at org.springframework.boot.SpringApplication.run(SpringApplication.java:307)
[spring-boot-1.3.2.RELEASE.jar:1.3.2.RELEASE]

 at org.springframework.boot.SpringApplication.run(SpringApplication.java:1191)
[spring-boot-1.3.2.RELEASE.jar:1.3.2.RELEASE]

 at org.springframework.boot.SpringApplication.run(SpringApplication.java:1180)
[spring-boot-1.3.2.RELEASE.jar:1.3.2.RELEASE]

 at sample.undertow.SampleUndertowApplication.main(SampleUndertowApplication.java:26)
[classes/:na]

 Caused by: java.net.BindException: Address already in use
 at sun.nio.ch.Net.bind0(Native Method) ~[na:1.8.0_60]
 at sun.nio.ch.Net.bind(Net.java:433) ~[na:1.8.0_60]
 at sun.nio.ch.Net.bind(Net.java:425) ~[na:1.8.0_60]
 at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:223) ~[na:1.8.0_60]
 at sun.nio.ch.ServerSocketAdaptor.bind(ServerSocketAdaptor.java:74) ~[na:1.8.0_60]
 at org.xnio.nio.NioXnioWorker.createTcpConnectionServer(NioXnioWorker.java:190)

~[xnio-nio-3.3.4.Final.jar:3.3.4.Final]
 at org.xnio.XnioWorker.createStreamConnectionServer(XnioWorker.java:243)

~[xnio-api-3.3.4.Final.jar:3.3.4.Final]
 at io.undertow.Undertow.start(Undertow.java:137) ~[undertow-core-1.3.14.Final.

jar:1.3.14.Final]
 ... 11 common frames omitted

 In 1.4, it will look like this:

 ERROR 24745 --- [main] o.s.b.d.LoggingFailureAnalysisReporter :

 APPLICATION FAILED TO START

 Description:
 Embedded servlet container failed to start. Port 8080 was already in use.

 Action:
 Identify and stop the process that's listening on port 8080 or configure this application to
listen on another port.

 if you still want to see the stacktrace of the underlying cause, enable debug logging for org.springframework.
boot.diagnostics.LoggingFailureAnalysisReporter .

 Test Utilities
 spring-boot-starter- test now brings the Assert4J assertions library. Test utilities from the
 org.springframework.boot.test package have been moved to a spring-boot-test dedicated artifact.

 New and Noteworthy
 You can get all the new changes at this address : https://github.com/spring-projects/spring-boot/wiki ,
look for the Release Notes and the section New and Noteworthy.

https://github.com/spring-projects/spring-boot/wiki

361

 A
 Abstract Syntax Tree (AST) , 43
 /actuator endpoint , 248
 Advance Message Queuing Protocol (AMQP) , 221

 bindings , 221–222
 default exchange , 222
 direct exchange , 222
 fanout exchange , 222
 headers exchange , 222
 queues , 221–222
 topic exchange , 222

 Amazon , 307
 ApplicationRunner interface , 60–62
 Authenticated() method , 198
 /autoconfi g endpoint , 249
 Auto-confi guration

 ActiveMQAutoConfi guration class , 45–46
 DataSourceAutoConfi guration , 46
 DemoApplication.java—Spring Boot snippet , 46
 @EnableAutoConfi guration annotation , 44–45
 @Grab(spring-boot-web-starter)

annotation , 44
 jackson-core library , 45
 @RequestMapping , 44
 @RestController , 44
 Spring Boot application , 43
 Spring Boot modules

 API_PATH, BANNER , 345
 @Bean SimpleUrlHandlerMapping

urlHandler() , 345
 @ConditionalOnClass(JournalRepository.

class), 344
 @ConditionalOnWebApplication , 344
 @Confi guration , 344
 confi gureRepositoryRestConfi guration

(RepositoryRestConfi guration confi g) , 345
 EnableAutoConfi guration class , 346
 health indicator , 353–356
 JournalAutoConfi guration class , 348
 journal-spring-boot-autoconfi gure , 335, 348

 journal-spring-boot-starter , 335, 348
 RepositoryRestMvcConfi guration , 344

 spring-boot-journal , 335, 348
 web application , 44

 B
 Backing services

 cURL command , 322
 Journal app home page , 320
 MySQL , 318
 PCFDev , 318

 /beans endpoint , 250

 C
 class SimpleWebTest , 78
 Cloud computing

 microservices , 309
 twelve-factor application guide , 308

 admin processes , 308
 backing services , 308
 Codebase , 308
 concurrency , 308
 confi guration , 308
 dependencies , 308
 disposability , 308
 environment parity , 308
 logs , 308
 port binding , 308
 processes , 308

 Cloud Foundry
 Application Execution (DEA) , 312
 authentication , 312
 blob store , 312
 CLI , 313
 cloud controller , 312
 HM9000 , 312
 logging and statistics , 312
 message bus , 312
 PaaS , 311

 Index

© Felipe Gutierrez 2016
F. Gutierrez, Pro Spring Boot, DOI 10.1007/978-1-4842-1431-2

■ INDEX

362

 Pivotal Cloud Foundry , 312
 router , 312
 service brokers , 312

 Cloud-native architecture , 307
 Cloud Profi le

 application-cloud.properties , 317
 new entry to journal app , 317

 Command line interface (CLI) , 43
 UNIX cURL command , 85
 grab command , 78
 help command , 86
 init command , 82–85
 install command , 81
 jar command , 79–80
 run command , 74–75
 shell command , 85
 test command , 76–77
 uninstall command , 81–82
 war command , 80
 WebApp.java , 74

 CommandLineRunner interface , 60–62, 127
 /confi gprops endpoint , 251
 Continuous integration, continuous

delivery (CI/CD) , 308
 Cross-origin resource sharing (CORS) , 276

 D
 Data access

 JDBC template
 H2 web console , 129–130
 Journal.java class , 124, 126
 spring-boot-starter-jdbc , 122–124
 SQL statements , 131

 JournalService.java class
 fi ndAll , 126
 insertData , 126
 JdbcTemplate , 126
 Logger , 126

 using JPA, Spring Boot. Java Persistence
API (JPA)

 SimpleJdbcAppApplication.java class , 126
 Demo.zip structure , 84
 Docker

 ADD , 304
 application-docker.properties , 303
 Docker property prefi x , 305
 ENTRYPOINT , 304
 ENV , 304
 EXPOSE , 304
 FROM java , 304
 Maven Docker plugin , 306
 VOLUME , 304

 /docs endpoint , 252
 /dump endpoint , 253

 E
 EnableAutoConfi guration annotation , 47–49
 @Enable<Technology> annotations , 47–49
 EndpointHandlerMapping , 277
 /env endpoint , 254
 Executable and Deployable WARs , 299

 activating profi les , 299–300
 build.gradle , 296–297
 Gradle version , 295
 JBoss , 295
 Pivotal tc Server , 295
 SpringBootServletInitializer , 297
 target/spring-boot-journal-0.0.1-SNAPSHOT.

war fi le , 297
 Tomcat , 295
 Tomcat-based server , 298–299
 Tomcat dependencies , 296
 WEB-INF/lib , 296

 Executable JARs , 58, 293–294
 Java application , 294
 MANIFEST.MF fi le , 294
 public static void main method , 294

 F
 @FixMethodOrder(MethodSorters.NAME_

ASCENDING) annotation , 109

 G
 Groovy Domain Specifi c Language , 102
 groupId=com.apress.spring , 49

 H
 /health endpoint , 261
 HTTP GET methods , 114
 HTTP POST , 114
 HttpSecurity method , 187

 I
 import org.springframework.boot.

autoconfi gure.jms.activemq.
ActiveMQAutoConfi guration , 45

 /info endpoint , 262
 InternalResourceViewResoulver class , 95

 J, K
 J2EE Web applications , 89–92
 Java Message Service (JMS)

 application.properties , 213
 Consumer.java class , 215
 defi nition , 211

Cloud Foundry (cont.)

■ INDEX

363

 MessagingConfi g.java class , 216
 pom.xml fi le , 213
 Producer.java class , 214
 simpler consumer

 application.properties , 218
 creation , 217
 remote connection , 221
 SpringBootJmsV2Application app , 219

 SpringBootJmsApplication class , 217
 Java persistence API (JPA)

 CommandLineRunner interface , 138
 fi ndAll , 136
 insertData , 136
 Journal.java class , 135
 JournalRepository interface , 136
 JournalRepository.java , 138, 140
 JpaRepository interface , 136–138
 @Service , 136
 SimpleJpaAppApplication.java class , 138
 @SpringBootApplication , 138
 spring-boot-starter-data-jpa , 132–134
 spring-data technology , 137
 Spring Initializr , 131

 JavaServer Pages (JSP) , 92
 journal.api-path , 342
 Journal app directory structure , 286
 JournalAutoConfi guration , 342–344
 journal.banner , 342
 Journal Project, package and installation , 346–347
 Journal-spring-boot-autoconfi gure

Project , 339–342
 Journal-spring-boot-starter project , 337–338

 L
 /liquibase endpoint , 263
 /logfi le endpoint , 268

 M
 /mappings endpoint , 272
 MessageListener interface , 215
 Messaging

 defi nition , 211
 JMS (see Java Message Service (JMS))
 RabbitMQ (see RabbitMQ)
 redis (see Redis)
 WebSockets (see WebSockets)

 Microservices , 306
 vs. monolithic , 309
 Spring Boot Journal App , 309–311

 Model View Controller (MVC) , 93
 MongoDB

 db.journal.fi nd() query , 146
 Journal.java class , 143

 MongoRepository , 146
 spring-boot-starter-data-mongodb , 140, 142
 start method , 145

 MyTest.java , 77

 N
 NetFlix , 307
 NoSQL databases

 classifi cation system , 140
 MongoDB , 140, 142–143

 O
 onMessage method , 215
 org.springframework.boot.Banner interface , 52–55
 org.springframework.boot.Banner interface , 56

 P
 PCFDev . See Pivotal Cloud Foundry Dev (PCFDev)
 Pivotal Cloud Foundry Dev (PCFDev)

 deployment , 316–317
 installation , 314
 login into , 315

 Pivotal Web Services (Cloud Foundry)
 ClearDB MySQL Database , 327, 328
 deployment , 325–326
 installation , 322
 journal app , 326
 journal application dashboard , 332
 marketplace , 325
 mysql service instance , 329
 scale app , 332
 SMS verifi cation , 323
 welcome page , 324

 Q
 QuotaHealthIndicator class , 354

 R
 RabbitMQ , 221

 AMQP , 221–222
 Consumer.java class , 225
 creation , 223
 installation , 221
 pom.xml fi le , 224
 Producer.java class , 224
 remote connection , 231
 SpringBootRabbitmq

Application.java , 226, 230
 web console management , 228
 web console Queues tab , 229

■ INDEX

364

 Redis
 Consumer.java class , 234
 Installation , 231
 pom.xml fi le , 233
 Producer.java class , 233
 RedisConfi g.java class , 235
 remote connection , 237
 SpringBootRedisApplication.java , 235

 S
 sendTo method , 217
 setConverters(HttpMessageConverter). , 119
 /shutdown endpoint , 275
 SimpleJdbcAppApplication.java class , 127–128
 SimpleServlet class , 91
 Simple-web-app structure , 90
 Simple-web-spring-boot , 99
 Spring actuator module

 /actuator endpoint , 248
 /autoconfi g endpoint , 249
 /beans endpoint , 250
 /confi gprops endpoint , 250
 CORS , 276
 defi nition , 245
 /docs endpoint , 252
 /dump endpoint , 253
 endpoint ID , 276
 /env endpoint , 254
 /fl yway endpoint , 255
 /health endpoint , 261
 /info endpoint , 262
 /liquibase endpoint , 263
 /logfi le endpoint , 268
 management , 276
 /mappings endpoint , 272
 /metrics endpoint , 270
 non-web application , 277
 pom.xml fi le , 247
 sensitive endpoints , 275
 SpringBootWebActuatorApplication.java , 247
 /trace endpoint , 274

 SpringApplicationBuilder class , 56–58
 @SpringApplicationConfi guration(classes =

SprintBootApplication.class) , 109
 SpringApplication.run

(SpringBootSimpleApplication.class,
args) , 58

 Spring Boot
 address , 359
 analysis , 358
 app.groovy , 3
 applications

 auto-confi guration , 100
 @Bean annotation , 101
 build.gradle , 302

 @Confi guration annotation , 101
 with Docker , 303–306
 spring init command , 99
 $ spring run app.groovy , 98
 WAR/JAR executable , 302
 as Windows Service , 302

 @Confi gurationProperties bean , 358
 CLI

 UNIX cURL command , 85
 grab command , 78
 help command , 86
 init command , 82–85
 install command , 81
 jar command , 79–80
 run command , 74–75
 shell command , 85
 test command , 76–77
 uninstall command , 81–82
 war command , 80
 WebApp.java , 74

 deprecated methods , 357
 executable jars , 357
 features , 6–7

 application.properties , 62
 application.yml , 62
 ASCII art , 55
 command-line arguments , 62, 64–66
 confi guration properties , 63
 custom property prefi x , 69–72
 data.server property , 63
 directory structure , 50
 environment variables , 62
 location and name , 67–68
 profi le based , 68–69
 SPRING_APPLICATION_JSON , 63
 src/main/java/com/apress/spring/

SpringBootSimpleApplication.java , 51
 using Gradle , 14
 home page , 2
 installation , 9

 Linux, OS X, and Solaris , 9
 Windows OS , 11

 java extension , 5
 jetty-jndi , 358
 Journal application

 add JSON data , 39
 application.properties , 288–289
 build.gradle fi le , 30
 commands , 283
 directory structure , 285–286
 HTTPS , 285
 index.html fi le , 34
 InMemorySecurityConfi g class , 287–288
 Journal.java , 31
 JournalController.java , 33
 JournalRepository.java , 33

■ INDEX

365

 pom.xml , 28, 30
 reusable code summary , 287
 SecurityConfi g , 287
 @SpringBootApplication , 40
 SpringBootJournalApplication.java , 35–36
 Spring Boot journal web application , 37
 Spring Starter Project wizard , 26–27
 using STS , 25
 web.JournalController.java , 37

 using Maven , 13
 SimpleWebApp.java , 4
 SimpleWebController.java , 5
 spring.datasource namespace , 357
 Spring Initializr , 16
 spring.jta.atomikos.property , 358
 spring.jta.bitronix.property , 358
 STS web page , 19
 test utility , 359
 UNIX cURL command , 18
 WAR fi le , 2
 web application , 2

 spring-boot-calendar Project , 348–352
 spring-boot-journal-oauth directory

structure , 203
 Spring-boot-journal project , 335–336
 Spring Boot Relaxed Binding , 67
 Spring-boot-starter-test , 107–109
 Spring-boot-starter-web dependency , 84
 Spring-boot-web , 109
 SpringClassRule , 109
 Spring Initializr , 108, 111
 Spring integration test

 add() , 119
 fi ndByTitle() , 119
 getAll() , 119
 Hamcrest , 120
 HttpMessageConverter<T> , 119
 journal domain class , 112–116
 JsonPath , 119
 @RunWith annotation , 109
 setup() , 119
 spring-boot-starter-test , 111, 116
 STS IDE , 120
 toJsonString(Object) , 119

 SpringMethodRule , 109
 Spring MVC applications , 93–98
 Spring security

 application.properties , 181
 AuthenticationManagerConfi guration class , 180
 basic security window , 180
 custom login.html page , 197
 defi nition , 177
 http://localhost:8080/api, accessing , 190
 index html page , 193, 198
 InMemorySecurityConfi guration.java class , 183

 JournalController.java class , 194
 journal-secure project structure , 179
 login.html page , 192
 MySQL , 183
 OAuth2

 api endpoint , 207
 client ID , 207
 index.html page , 205
 JournalController.java class , 204
 ResourceOAuthSecurityConfi guration.java

class , 206
 OAuth2 pom.xml , 202
 OAuth fl ow , 200
 pom.xml , 177, 196
 ResourceSecurityConfi guration class , 187
 ResourceSecurityConfi guration.java

class , 189, 191
 JdbcSecurityConfi guration.java class , 184
 src/main/resources/data.sql , 186
 src/main/resources/schema.sql , 185

 Spring Technologies in Spring Boot , 104–105
 Spring Tool Suite (STS) , 19, 85
 SQL databases , 121–122
 SSL self-signed keystore fi le

 Certifi cate Authority , 289
 Google Chrome’s version , 291
 keytool command , 290
 /login endpoint , 292

 Standalone spring apps vs. Spring
Boot apps , 103–104

 String method , 214

 T, U, V
 @Test , 109
 Th ymeleaf technology , 110
 Tomcat-based server , 298–299
 /trace endpoint , 274

 W
 WebSecurityConfi gurerAdapter class , 187
 WebSockets

 defi nition , 237
 index.html web page , 241
 pom.xml fi le , 238
 Producer.java class , 239
 REST endpoint , 240
 SockJS and Stomp messages , 243
 WebSocketConfi g class , 240

 Web testing , 109–118

 X, Y, Z
 XML with Spring Boot , 101

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Spring Boot
	Spring Boot
	Spring Applications
	Spring Boot to the Rescue
	Why Spring Boot?
	Spring Boot Features

	Summary

	Chapter 2: Your First Spring Boot Application
	Installing Spring Boot CLI
	UNIX OSs: Linux, OS X, and Solaris
	Windows OS

	Spring Boot with Maven and Gradle
	Using Maven
	Using Gradle

	Spring Boot Using External Tools
	Spring Boot Using the Spring Initializr
	Using the Spring Initializr with UNIX cURL
	Spring Boot Using Spring Tool Suite (STS)

	Your First Spring Boot Application
	Spring Boot Journal
	How Spring Boot Works

	Summary

	Chapter 3: Spring Boot Auto-Configuration, Features, and More
	Auto-Configuration
	Disabling a Specific Auto-Configuration

	@EnableAutoConfiguration and @Enable<Technology> Annotations
	Spring Boot Features
	SpringApplication Class
	Custom Banner

	SpringApplicationBuilder
	Application Arguments
	Accessing Arguments with an Executable JAR

	ApplicationRunner and CommandLineRunner

	Application Configuration
	Configuration Properties Examples
	Command-Line Arguments
	Relaxed Binding
	Changing Location and Name
	Profile Based

	Custom Properties Prefix

	Summary

	Chapter 4: Spring Boot CLI
	Spring Boot CLI
	The run Command
	The test Command
	The grab Command
	The jar Command
	The war Command
	The install Command
	The uninstall Command
	The init Command
	init Examples
	An Alternative to the init Command

	The shell Command
	The help Command

	Summary

	Chapter 5: Spring with Spring Boot
	Spring Web Applications
	J2EE Web Applications
	Spring MVC Applications
	Spring Boot Web Applications

	Using Spring with Spring Boot
	XML with Spring Boot
	Groovy Beans in Spring Boot
	Standalone Spring Apps vs. Spring Boot Apps

	Using Spring Technologies in Spring Boot
	Summary

	Chapter 6: Testing with Spring Boot
	Testing Spring Boot
	Web Testing
	Summary

	Chapter 7: Data Access with Spring Boot
	SQL Databases
	Data Access Using the JDBC Template with Spring Boot
	Data Access Using JPA with Spring Boot

	NoSQL Databases
	Summary

	Chapter 8: Web Development with Spring Boot
	Spring MVC
	Spring Boot Web Applications
	Playing with the HAL Browser
	Summary

	Chapter 9: Security with Spring Boot
	Simple Security for Spring Boot
	Security Using the application.properties File
	In-Memory Security
	Security Using a Database
	Securing Resources

	Spring Boot with OAuth2
	Summary

	Chapter 10: Messaging with Spring Boot
	What Is Messaging?
	JMS with Spring Boot
	A Simpler JMS Consumer
	Connect to Remote JMS Server

	RabbitMQ with Spring Boot
	Installing RabbitMQ
	RabbitMQ/AMQP: Exchanges, Bindings, and Queues
	Remote RabbitMQ

	Redis Messaging with Spring Boot
	Installing Redis
	Remote Redis

	WebSockets with Spring Boot
	Summary

	Chapter 11: Spring Boot Actuator
	Spring Boot Actuator
	/actuator
	/autoconfig
	/beans
	/configprops
	/docs
	/dump
	/env
	/flyway
	/health
	/info
	/liquibase
	/logfile
	/metrics
	/mappings
	/shutdown
	/trace

	Sensitive Endpoints
	Changing the Endpoint ID
	Actuator CORS Support
	Changing the Management Endpoints Path
	Using Spring Boot Actuator in a Non-Web Application
	Summary

	Chapter 12: Deploying Spring Boot
	Setting Up the Spring Boot Journal App
	Creating the SSL Self-Signed Keystore

	Testing SSL
	Creating Executable JARs
	The Java Way
	The Spring Boot Way

	Creating Executable and Deployable WARs
	Deploying to a Tomcat-Based Server
	Activating Profiles

	Creating Spring Boot Apps as a Service
	Spring Boot Apps as Windows Service

	Spring Boot with Docker
	Summary

	Chapter 13: Spring Boot in the Cloud
	The Cloud and Cloud-Native Architectures
	Twelve-Factor Applications
	Microservices
	Preparing the Spring Boot Journal App as Microservice

	Cloud Foundry
	Cloud Foundry
	Pivotal Cloud Foundry Features
	Cloud Foundry CLI - Command Line Interface
	Development Enviroment - PCFDev
	Installing PCFDev
	Login into PCFDev
	Deploying to PCFDev
	Cloud Profile
	Adding a new entry to the Journal
	Backing Services: Creating and Binding Service Instances

	Pivotal Cloud Foundry
	Deploying to Pivotal Web Services

	Summary

	Chapter 14: Extending Spring Boot Apps
	Custom Spring Boot Module
	The spring-boot-journal Project
	The journal-spring-boot-starter Project
	The journal-spring-boot-autoconfigure Project
	Package and Install the Journal Project
	The spring-boot-calendar Project

	Custom Health Indicator
	Summary

	Appendix A: Spring Boot 1.4.x
	Spring Boot 1.4.X Release Notes
	Upgrading from Spring Boot 1.3
	Executable Jar Layout
	Deprecations from Spring Boot 1.3
	DataSource Binding
	Jta Settings Binding
	@ConfigurationProperties Default Bean Names
	Jetty JNDI Support
	Analysis of Startup Failures
	Test Utilities

	New and Noteworthy

	Index

