
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PowerCLI	Cookbook

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

PowerCLI	Cookbook

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Instant	updates	on	new	Packt	books

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Configuring	the	Basic	Settings	of	an	ESXi	Host	with	PowerCLI

Introduction

Connecting	to	an	ESXi	host	or	a	vCenter	instance

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

www.allitebooks.com

http://www.allitebooks.org

Getting	the	VMware	host	object

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Joining	an	ESXi	host	into	Active	Directory

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Enabling	services	and	setting	security	profiles

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Setting	network	configuration

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	datastores	on	an	ESXi	host

Getting	ready

How	to	do	it…

How	it	works…

See	also

Configuring	syslog	settings	on	an	ESXi	host

Getting	ready

How	to	do	it…

www.allitebooks.com

http://www.allitebooks.org

How	it	works…

There’s	more…

Joining	an	ESXi	host	to	vCenter

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	a	configuration	script	to	set	all	properties	uniformly

Getting	ready

How	to	do	it…

How	it	works…

See	also

2.	Configuring	vCenter	and	Computing	Clusters

Introduction

Creating	a	virtual	datacenter	in	vCenter

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	cluster	and	adding	ESXi	hosts

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	cluster	advanced	features,	including	HA,	DRS,	and	EVC

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	up	resource	pools

www.allitebooks.com

http://www.allitebooks.org

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	up	folders	to	organize	objects	in	vCenter

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	permissions	on	vCenter	objects

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

3.	Managing	Virtual	Machines

Introduction

Deploying	the	first	virtual	machine

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

See	also

Cloning	a	virtual	machine	to	a	template

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

See	also

Deploying	new	virtual	machines	from	a	template

www.allitebooks.com

http://www.allitebooks.org

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

Importing	a	virtual	appliance	from	OVA

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

See	also

Performing	a	hot	add	of	virtual	hardware	to	an	existing	virtual	machine

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

See	also

Enabling	and	disabling	Fault	Tolerance	on	a	virtual	machine

Getting	Started

How	to	do	it…

How	it	works…

See	also

Increasing	the	disk	space	in	a	virtual	machine

Getting	Started

How	to	do	it…

How	it	works…

Upgrading	the	virtual	hardware	version	of	a	virtual	machine

Getting	Started

How	to	do	it…

How	it	works…

See	also

Locating	and	reloading	inaccessible	or	invalid	virtual	machines

www.allitebooks.com

http://www.allitebooks.org

Getting	Started

How	to	do	it…

How	it	works…

Setting	VMware	Tool	settings	from	PowerCLI

Getting	Started

How	to	do	it…

How	it	works…

Creating	basic	reports	of	VM	properties	using	VMware	Tools	and	PowerCLI

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

See	also

4.	Working	with	Datastores	and	Datastore	Clusters

Introduction

Performing	Storage	vMotion

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Finding	Raw	Disk	Mappings	in	your	environment

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Locating	thin	or	thick	provisioned	disks

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

www.allitebooks.com

http://www.allitebooks.org

Converting	thin	to	thick	disks	with	Storage	vMotion

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	and	managing	datastore	clusters

Getting	ready

How	to	do	it…

How	it	works…

Setting	Storage	DRS	automation	levels	for	individual	virtual	machines

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Setting	Storage	DRS	automation	levels	for	individual	VMs	using	PowerCLI	6

Getting	ready

How	to	do	it…

How	it	works…

5.	Creating	and	Managing	Snapshots

Introduction

Creating	a	snapshot

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

See	also

Getting	a	list	of	snapshots	in	the	environment

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

www.allitebooks.com

http://www.allitebooks.org

Manipulating	the	list	of	snapshots	to	get	better	information

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

See	also

Scoping	and	filtering	a	list	of	snapshots

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

Removing	targeted	snapshots

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

Find	lost	or	unknown	snapshots

Getting	Started

How	to	do	it…

How	it	works…

Creating	a	function	to	automatically	remediate	snapshots

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

See	also

Scheduling	automatic	snapshot	remediation

Getting	Started

How	to	do	it…

How	it	works…

See	also

Creating	a	snapshot	management	module

Getting	Started

How	to	do	it…

How	it	works…

There’s	more…

6.	Managing	Resource	Pools,	Reservations,	and	Limits	for	Virtual	Machines

Introduction

Setting	reservations	and	limits	for	resource	pools

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Balancing	share	allocations	on	resource	pools

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	custom	attribute	with	a	number	of	shares	per	VM	on	each	resource	pool

Getting	ready

How	to	do	it…

How	it	works…

Automating	share	allocation	balancing

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Reporting	shares,	reservations,	and	limits	of	resource	pools	and	virtual	machines

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

7.	Creating	Custom	Reports	and	Notifications	for	vSphere

Introduction

Getting	alerts	from	a	vSphere	environment

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Basics	of	formatting	output	from	PowerShell	objects

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Sending	output	to	CSV	and	HTML

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Reporting	VM	objects	created	during	a	predefined	time	period	from	VI	Events	object

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	custom	properties	to	add	useful	context	to	your	virtual	machines

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	PowerShell	native	capabilities	to	schedule	scripts

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

8.	Performing	ESXCLI	and	in-guest	Commands	from	PowerCLI

Introduction

Retrieving	the	ESXCLI	object	in	PowerCLI

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	the	ESXCLI	vm	namespace	to	kill	a	misbehaving	VM

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Performing	ESXi	ping	with	an	ESXCLI	object

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	custom	storage	and	path	selection	policies

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	coredump	settings	for	an	ESXi	host	from	PowerCLI

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Executing	native	commands	inside	the	guest	operating	system	from	PowerCLI

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

9.	Managing	DRS	and	Affinity	Groups	using	PowerCLI

Introduction

Applying	recommendations	for	partially	automated	DRS	clusters

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	a	cluster	into	maintenance	mode	with	PowerCLI

Getting	ready

How	to	do	it…

There’s	more…

Using	native	DRS	rule	cmdlets	to	manage	KeepTogether	and	Separate	rules

Getting	ready

How	to	do	it…

How	it	works…

Learning	the	MoRef	way	of	identifying	objects

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	DRS	group	for	virtual	machines

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	the	members	of	a	DRS	group

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Updating	the	members	of	a	VM	DRS	group

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	custom	function	to	update	members	of	a	DRS	group

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	rules	to	maintain	memberships	of	DRS	groups	using	a	custom	function

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	Compare-Object	to	audit	group	memberships	for	differences

Getting	ready

How	to	do	it…

How	it	works…

See	also

10.	Working	with	vCloud	Director	from	PowerCLI

Introduction

Connecting	to	a	vCloud	environment

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	and	managing	organizations	in	vCloud

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	new	user	in	an	organization	using	Views

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	an	organization’s	virtual	datacenter	in	vCloud	Director

Getting	ready

How	to	do	it…

How	it	works…

Importing	a	vApp	template	into	vCloud

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Configuring	networking	in	a	vCloud	vApp

Getting	ready

How	to	do	it…

How	it	works…

Reassigning	vApp	VM	network	settings	with	PowerCLI

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Starting	and	stopping	vApps	and	individual	VMs	in	a	vCloud

Getting	ready

How	to	do	it…

How	it	works…

A.	Setting	up	and	Configuring	vCloud	Director

The	hosted	vCloud	environment

Deploying	the	vCloud	Director	environment	from	AutoLab

Build	your	own	vCloud	Director	implementation	on	your	vSphere	lab	environment

Additional	resources

Index

PowerCLI	Cookbook

PowerCLI	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2015

Production	reference:	1200315

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-372-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Philip	Sellers

Reviewers

Dustin	Lenz

Ajeet	Singh	Raina

Earl	Waud

Commissioning	Editor

Ashwin	Nair

Acquisition	Editor

Sonali	Vernekar

Content	Development	Editor

Arwa	Manasawala

Technical	Editor

Menza	Mathew

Copy	Editor

Rashmi	Sawant

Project	Coordinator

Danuta	Jones

Proofreaders

Simran	Bhogal

Joel	T.	Johnson

Indexer

Rekha	Nair

Graphics

Abhinash	Sahu

Production	Coordinator

Melwyn	D’sa

Cover	Work

Melwyn	D’sa

About	the	Author
Philip	Sellers	is	an	IT	enthusiast	residing	in	Myrtle	Beach,	South	Carolina.	Philip	has
more	than	16	years	of	industry	experience	in	consulting	and	systems	administration.
Currently,	he	is	a	senior-level	systems	administrator	with	Horry	Telephone	Cooperative,
America’s	largest	telecommunications	cooperative.	Philip	focuses	on	Microsoft	and
VMware	software	solutions	along	with	server	and	SAN	infrastructure.	He	spends	a	lot	of
time	wrangling	unwieldy	systems	and	tries	to	tame	as	much	as	he	can	with	automation
using	tools	such	as	PowerCLI.

Philip	has	a	bachelor	of	science	degree	in	interdisciplinary	studies	with	a	minor	in
computer	science	from	Coastal	Carolina	University	and	holds	certifications	as	a	VMware
VCAP5-DCA	and	VCP5-DCV	and	is	a	Microsoft	Certified	IT	Professional.

He	maintains	a	technology	blog	at	http://www.techazine.com	that	provides	explanations
and	reviews	of	enterprise	IT	solutions,	and	he	is	a	leader	with	the	Myrtle	Beach	VMware
Users	Group.	You	may	also	follow	him	on	Twitter	@pbsellers.

Philip	is	married	to	his	college	sweetheart,	Jennifer,	and	has	two	kids	who	keep	him	busy
when	he’s	not	working.

http://www.techazine.com

Acknowledgments
I	would	like	to	thank	my	wonderful	wife,	Jennifer,	for	her	support	and	patience	during	the
project	and	for	all	of	her	enthusiasm	and	encouragement.	I	enjoy	every	day	of	our
adventure	together.	I	would	also	like	to	thank	my	children,	Peyton	and	Jake.	No	dream	is
too	big	for	you	to	dream	and	if	you	put	your	mind	to	it,	step	by	step	(or	chapter	by
chapter)	you	can	achieve	anything	you	set	your	mind	to.	You	three	are	the	reasons	why	I
do	what	I	do	and	I	love	you	all.

To	my	mom	and	dad,	thank	you	for	always	supporting	me,	listening,	and	encouraging	me,
no	matter	how	crazy	the	idea	was.	Thank	you	dad	for	teaching	me	to	troubleshoot;	you
prepared	me	in	ways	you’ll	never	know	because	you	taught	me	to	solve	problems.

A	special	thanks	to	my	technical	reviewers;	I	appreciate	the	valuable	work	you	did.	All	of
your	notes	and	suggestions	helped	make	this	book	the	best	possible	resource	it	could	be.
Thank	you	to	the	Packt	Publishing	team	who	worked	on	this	book.	Thank	you	to	my
managers	and	executive	staff	at	Horry	Telephone	Cooperative	for	allowing	me	to	pursue
this	opportunity.

About	the	Reviewers
Dustin	Lenz	is	currently	an	MTS	IT	systems	engineer	with	a	large	semiconductor
manufacturer.	Dustin	earned	a	bachelor	of	science	degree	in	computer	technology	from
Ball	State	University,	Muncie,	Indiana,	and	has	earned	his	certification,	VCP,	from
VMware	for	datacenter	technologies.

Ajeet	Singh	Raina	is	a	senior	systems	engineer	at	Dell	R&D.	He	has	received	a
certification	in	VMware	Certified	Professional	(VCP	4.1)	and	has	more	than	7	years	of
experience	working	on	open	source	and	virtualization	platforms.	He	was	a	part	of	the
VMQA	GOS	Validation	Team	at	VMware	India	and	validated	all	flavors	of	operating
systems	on	ESXi	4.1	and	5.0.	He	is	currently	working	with	Enterprise	Solutions	Group	at
Dell	and	has	a	solid	understanding	of	a	diverse	range	of	IT	infrastructure,	systems
management,	systems	integration,	and	quality	assurance.

Ajeet	has	a	great	passion	for	open	source	technologies	(Linux,	Hadoop,	and	OpenStack).
He	likes	providing	tech-talks	and	technical	consultations	on	the	latest	open	source
software	and	has	a	habit	of	sharing	it	through	blogs	and	wikis.	He	can	be	reached	at
http://collabnix.com

This	book	would	not	have	been	a	success	without	the	direct	and	indirect	help	from	many
people.	Thanks	to	my	wife	and	my	5-year-old	kid	for	putting	up	with	me	for	all	the
missing	family	time	and	for	providing	me	with	love	and	encouragement	throughout	the
writing	period.	Thanks	to	my	parents	and	family	members	for	all	the	love,	guidance,	and
encouragement	during	the	tough	times.

Thanks	to	all	my	past	and	present	colleagues	and	mentors	at	VMware	and	Dell	for	the
insightful	discussions	and	the	knowledge	they	shared	with	me.

Earl	Waud	is	a	virtualization	development	professional	with	more	than	7	years	of	focused
industry	experience	in	creating	innovative	solutions	for	hypervisor	provisioning,
management,	and	automation.	He	is	an	expert	in	aligning	engineering	strategy	with
organizational	vision	and	goals,	and	delivering	highly	scalable	and	user	friendly
virtualization	environments.

With	more	than	18	years	of	experience	in	developing	customer	facing	and	corporate	IT
software	solutions,	he	has	a	proven	track	record	of	delivering	high-caliber	and	on-time
technology	solutions	that	have	a	significant	impact	on	business	results.

Earl	currently	lives	in	San	Diego,	California.	He	is	blessed	with	a	beautiful	wife,	Patti,	and
three	amazing	daughters,	Madison,	Daniella,	and	Alexis.

Currently,	Earl	is	a	senior	systems	engineer	with	Intuit	Inc.,	a	company	that	creates
business	and	financial	management	solutions	that	simplify	the	business	of	life	for	small
businesses,	consumers,	and	accounting	professionals.

Earl	can	be	reached	online	at	http://sandiegoearl.com.

I	would	like	to	thank	my	wonderful	family	for	allowing	me	to	spend	some	of	my	precious
family	time	to	review	this	book.	I	love	and	appreciate	you	all,	and	I	know	I	am	truly

www.allitebooks.com

http://collabnix.com
http://sandiegoearl.com
http://www.allitebooks.org

blessed	to	be	part	of	this	family.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit
http://www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	http://www.PacktPub.com
and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in
touch	with	us	at	<service@packtpub.com>	for	more	details.

At	http://www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt
books	and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	http://www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Instant	updates	on	new	Packt	books
Get	notified!	Find	out	when	new	books	are	published	by	following	@PacktEnterprise	on
Twitter	or	the	Packt	Enterprise	Facebook	page.

Preface
VMware	PowerCLI	offers	a	compelling	command-line	alternative	to	the	point-and-click
administration	of	vSphere	and	vCloud	Director.	As	virtualization	has	become	mainstream
and	deployments	begin	to	sprawl,	the	simple	commands	of	PowerCLI	allows	faster
administration	by	executing	tasks	on	groups	of	objects	in	the	virtual	environment.

Since	PowerCLI	follows	a	very	logical	pattern,	it	can	be	quickly	adopted,	making	it	the
first	choice	for	many	vSphere	administrators.	However,	with	simplicity,	it	also	combines
extensibility	to	allow	users	to	build	their	own	functions	and	modules	to	solve	specific
problems	not	addressed	by	out-of-box	functionalities.

What	this	book	covers
Chapter	1,	Configuring	the	Basic	Settings	of	an	ESXi	Host	with	PowerCLI,	covers	the
configuration	of	a	fresh	installation	of	VMware	ESXi	on	a	host	system.

Chapter	2,	Configuring	vCenter	and	Computing	Clusters,	teaches	you	how	to	perform	a
basic	vCenter	configuration	and	add	multiple	ESXi	hosts	into	a	cluster	with	vSphere
features,	such	as	Dynamic	Resource	Scheduler	(DRS)	and	High	Availability	(HA).

Chapter	3,	Managing	Virtual	Machines,	provides	you	with	many	of	the	common	tasks
needed	to	manage	virtual	machines	from	PowerCLI,	including	deploying	and	cloning
virtual	machines,	changing	hardware	settings	on	virtual	machines,	and	reloading
inaccessible	virtual	machines	in	vCenter.

Chapter	4,	Working	with	Datastores	and	Datastore	Clusters,	introduces	the	PowerCLI
cmdlets	needed	to	create	and	manage	datastores	and	datastore	clusters	for	individual	ESXi
hosts	or	vSphere	clusters.

Chapter	5,	Creating	and	Managing	Snapshots,	covers	cmdlets	and	routines	to	work	with
snapshots	on	virtual	machines,	how	to	manage	and	report	on	snapshots	before	they
become	problems,	and	uses	the	topic	to	teach	you	how	to	write	your	own	function	in
PowerCLI	that	can	be	reused	easily.	This	chapter	also	covers	how	to	take	your	code	and
schedule	it	to	run	with	defined	triggers	using	native	PowerShell	commands.

Chapter	6,	Managing	Resource	Pools,	Reservations,	and	Limits	for	Virtual	Machines,
covers	the	topic	of	creating	and	managing	resource	pools	and	their	associated	settings	that
include	reservations	and	limits	both	at	a	pool	and	virtual	machine	level.

Chapter	7,	Creating	Custom	Reports	and	Notifications	for	vSphere,	teaches	you	how	to
use	many	of	the	native	PowerShell	features	for	reporting	and	leveraging	those	with
PowerCLI	cmdlets	to	create	custom	reports	and	notifications.

Chapter	8,	Performing	ESXCLI	and	in-guest	Commands	from	PowerCLI,	works	with	the
advanced	topics	of	using	ESXCLI,	an	alternative	command-line	administration	tool,	from
within	PowerCLI	to	access	and	manage	settings	that	are	not	natively	accessible	from
PowerCLI.	This	chapter	also	covers	some	of	the	basics	of	performing	in-guest	commands
invoked	from	PowerCLI.

Chapter	9,	Managing	DRS	and	Affinity	Groups	PowerCLI,	is	built	on	everything	covered
in	the	previous	chapters	to	discuss	managing	the	vSphere	DRS	features	from	PowerCLI	by
building	your	own	functions	and	modules	to	alter	the	group	memberships	of	DRS	groups
and	keep	the	membership	updated	per	defined	rules.

Chapter	10,	Working	with	vCloud	Director	from	PowerCLI,	changes	gears	and	covers
managing	vCloud	Director	and	vCloud	deployments	in	multi-tenanted	environments.

Appendix,	Setting	up	and	Configuring	vCloud	Director,	covers	certain	installation	tips	and
techniques.

What	you	need	for	this	book
To	create	and	perform	the	commands	created	in	the	recipes	of	this	cookbook,	you	will
need:

VMware	vSphere	PowerCLI
Windows	PowerShell	2.0	or	3.0
VMware	vCenter	Server
VMware	ESXi	hosts	(physical	or	nested	virtual)
VMware	vCloud	Director	and	vShield	Manager

This	book	was	written	and	tested	against	PowerCLI	versions	5.5,	5.8,	and	6.0,	and	utilizes
PowerShell	3.0.

Windows	PowerShell	2.0	or	3.0	are	distributed	as	part	of	the	Windows	Management
Framework	and	are	available	for	free	from	http://www.microsoft.com.	VMware	vSphere
PowerCLI	and	the	VMware	Hypervisor	(ESXi)	are	available	for	free	from
http://www.vmware.com.	You	can	obtain	a	60-day	trial	license	for	vSphere	that	cover
ESXi	and	vCenter	Server	in	order	to	enable	advanced	features	and	management.	vCloud
Director	is	available	as	a	trial	with	a	streamlined	virtual	appliance	for	evaluation	purposes
from	http://www.vmware.com.

http://www.microsoft.com
http://www.vmware.com
http://www.vmware.com

Who	this	book	is	for
This	book	is	written	for	readers	with	a	basic,	working	knowledge	of	PowerCLI,	a
command-line	tool	for	managing	vSphere	and	vCloud	environments	that	is	based	on
PowerShell.	The	book	is	written	in	a	recipe	format,	which	means	that	each	chapter
approaches	a	topic	of	vSphere	or	vCloud	administration	and	walks	you	through	step-by-
step	commands	to	handle	the	common	tasks.	Each	recipe	is	built	on	the	previous	recipes
that	allow	you	to	learn	how	to	take	basic	commands	and	combine	them	into	functions	and
modules	in	order	to	automate	tasks	for	your	environment,	making	your	job	easier.

It	is	assumed	that	you	have	a	working	understanding	of	VMware	vSphere,	both	ESXi	and
vCenter	Server,	and	the	experience	with	vCloud	Director	might	help	you	with	the	chapter
focused	on	this	topic.	The	book	is	written	so	that	you	can	go	beyond	simple	commands	in
PowerCLI	and	unleash	the	potential	of	more	complex	series	of	commands	that	handle	real
work	problems.	It	is	impossible	to	cover	every	possible	use	for	PowerCLI,	but	the	book
covers	some	topics	in	representative	ways	and	gives	you	techniques	to	apply	to	any	other
need	you	might	encounter.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“To
check	the	version	you	are	running,	open	a	PowerCLI	prompt	and	run	Get-
PowerCLIVersion.”

Any	command-line	input	or	output	is	written	as	follows:

Set-PowerCLIConfiguration	-InvalidCertificateAction	Ignore	-Scope	Session	-

Confirm:$false

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Open	the	Organizations
section	under	Manage	&	Monitor	and	select	an	organization.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

www.allitebooks.com

http://www.allitebooks.org

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted
and	the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,
under	the	Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your
title	from	http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Configuring	the	Basic	Settings
of	an	ESXi	Host	with	PowerCLI
In	this	chapter,	you	will	cover	the	following	recipes:

Connecting	to	an	ESXi	host	or	a	vCenter	instance
Getting	the	VMware	host	object
Joining	an	ESXi	host	into	Active	Directory
Enabling	services	and	setting	security	profiles
Setting	network	configuration
Creating	datastores	on	an	ESXi	host
Configuring	syslog	settings	on	a	host
Joining	an	ESXi	host	to	vCenter
Creating	a	configuration	script	to	set	all	properties	uniformly

Introduction
Initially,	automation	doesn’t	save	time.	To	get	the	benefits	of	automation,	you	must	invest
the	time	upfront	to	create	scripts	that	you’ll	use	time	and	again.	In	this	chapter,	you’ll	take
your	first	ESXi	host	that	has	been	installed	with	an	IP	address	configured	on	it,	and	you
will	configure	the	server	continually	from	there.	This	chapter	will	take	an	administrator
through	the	basic	configuration	tasks	needed	to	perform	the	initial	configuration,	join	them
to	vCenter,	and	get	it	into	an	operational	state.	At	the	end	of	this	chapter,	all	of	these	steps
will	build	into	a	scripted	configuration	that	can	be	executed	against	new	hosts	in	the
future.

Connecting	to	an	ESXi	host	or	a	vCenter
instance
To	begin	working	with	PowerCLI,	you	must	first	have	PowerShell	installed	and	available
on	the	system	on	which	you	will	run	PowerCLI.	PowerShell	is	a	part	of	the	Windows
Management	Framework	and	it	ships	with	Windows	client	and	server	versions.	PowerCLI
extends	PowerShell	with	commands	to	administer	VMware	environments.	With
PowerShell	installed,	you	will	need	to	obtain	PowerCLI	from	http://www.vmware.com.
The	specific	link	is	listed	in	the	See	also	section	of	this	recipe.

Once	you	have	installed	PowerCLI,	you	will	need	to	build	an	ESXi	host	for	this	recipe.
All	that	is	required	is	a	fresh	ESXi	installation	from	the	ISO	or	DVD	image	distributed	by
VMware.	Once	installed,	set	an	IP	address	on	an	accessible	network	using	the	console
screens	of	the	new	ESXi	host.	The	network	address	should	be	accessible	from	your
PowerCLI	workstation.

With	the	assumption	that	your	ESXi	host	is	built,	the	first	step	to	administer	VMware
environments	in	PowerCLI	is	to	connect	to	the	ESXi	host	or	to	a	vCenter	server.	In	this
chapter,	you	will	focus	on	how	to	configure	a	single	ESXi	host.	In	the	next	chapter,	you
will	focus	on	how	to	configure	a	vCenter	Server	and	a	vSphere	cluster	of	ESXi	hosts.

http://www.vmware.com

Getting	ready
To	begin,	you	only	need	to	launch	PowerCLI	from	its	shortcut	on	the	desktop	or	from	the
Start	Menu.	If	you	already	had	PowerCLI	previously	installed,	you	will	want	to	check	the
version	number	to	ensure	that	the	cmdlet	references	throughout	the	book	are	available	to
you.	Each	version	of	PowerCLI	builds	additional	native	cmdlets	and	functionalities.	To
check	the	version	you	are	running,	open	a	PowerCLI	prompt	and	run	Get-
PowerCLIVersion.

The	recipes	in	this	book	are	built	and	tested	using	VMware	PowerCLI	5.5	Release	1	and
have	also	been	tested	with	VMware	PowerCLI	5.8	Release	1,	which	accompanies	vCloud
Suite	5.8.	The	recipes	also	work	on	vSphere	and	PowerCLI	6.0	with	any	differences	noted.

How	to	do	it…
1.	 At	the	PowerCLI	prompt,	you	will	execute	the	Connect-VIServer	cmdlet	as	follows:

Connect-viserver	<hostname	or	IP>

2.	 When	executed,	the	code	will	attempt	to	perform	a	single	sign-on	into	the	ESXi	host,
but	unless	your	username	is	root	and	you	set	the	same	password	locally	and	on	ESX,
single	sign-in	will	fail.	You	will	be	prompted	with	a	normal	Windows	login	window,
which	is	displayed	as	follows,	and	you	should	log	in	with	the	root	username	and	the
password	you	specified	during	your	ESXi	installation:

3.	 Once	you	successfully	log	in	to	the	ESXi	host,	a	confirmation	message	will	be
displayed	with	the	name	or	IP	address	of	the	ESXi	host	you	connected	to,	the	port,
and	the	user	you’ve	connected	to,	as	shown	in	the	following	example:

Name																											Port		User

----																											----		----

192.168.0.241																		443			root

4.	 At	this	point,	the	PowerCLI	session	is	connected	to	a	host	and	ready	to	execute	work.

How	it	works…
The	Connect-VIServer	cmdlet	is	the	simplest	kind	of	cmdlet	in	PowerCLI.	This	cmdlet
initiates	a	connection	to	the	vCenter	or	ESXi	web	services	to	allow	additional	commands
to	be	passed	to	the	server	and	be	executed.

The	Connect-VIServer	cmdlet	requires	only	the	name	of	the	host	to	which	you	want	to
connect.	There	are	additional	parameters	that	you	might	pass	to	the	cmdlet,	such	as	the
protocol	(HTTP	or	HTTPS),	the	username,	and	the	password.	If	you	prefer	not	to	keep
your	password	in	plain	text,	you	can	also	pass	a	PSCredentials	object.	The
PSCredentials	object	contains	login	data	to	authenticate.	For	more	information	about	the
PSCredentials	objects,	type	get-help	about_server_authentication.

Once	you	execute	the	cmdlet,	a	warning	will	be	displayed	in	yellow,	similar	to	the
following	one:

The	warning	is	displayed	because	the	certificate	installed	on	the	ESXi	host	is	self-signed
and	untrusted	by	the	computer	you	are	connecting	from.	Changing	an	SSL	certificate	on
ESXi	hosts	will	be	covered	later	in	the	book,	but	the	warning	can	be	ignored	this	time.	The
cmdlet	will	continue	to	execute	even	though	the	warning	is	displayed.

You	can	also	prevent	the	invalid	certificate	errors	by	running	the	following	PowerCLI
cmdlet	that	changes	the	action	when	an	invalid	certificate	is	encountered:

Set-PowerCLIConfiguration	-InvalidCertificateAction	Ignore	-Scope	Session	-

Confirm:$false

There’s	more…
If	you	choose	to	join	the	ESXi	host	to	Active	Directory,	your	PowerCLI	session	performs
a	single	sign-in.	PowerCLI	uses	the	credentials	of	your	current	Windows	session	to	log	in
against	the	ESXi	host	or	vCenter	server	if	your	account	has	access	to	the	server.	If	your
account	does	not	have	access	to	the	server	that	it	is	attempting	to	connect	to,	a	login	box
will	be	presented	like	our	example,	shown	in	the	preceding	screenshot,	in	this	recipe.

See	also
The	Joining	an	ESXi	host	into	Active	Directory	recipe
The	Setting	permissions	on	vCenter	objects	recipe	in	Chapter	2,	Configuring	vCenter
and	Computing	Clusters
VMware	PowerCLI	Documentation	Center	and	Installation	Download
https://www.vmware.com/support/developer/PowerCLI/

https://www.vmware.com/support/developer/PowerCLI/

Getting	the	VMware	host	object
Cmdlets	become	available	to	manage	a	host	after	we	connect	to	that	host	to	manage	it.	The
first	concept	that	you	will	need	to	become	aware	of	are	PowerShell	objects.	Objects	are
defined	as	data	obtained	from	commands	that	run	in	PowerShell	and	PowerCLI.	To
perform	configuration	on	an	ESXi	host,	the	commands	that	you	run	will	need	a	host
object,	which	is	specified.

In	this	recipe,	you	will	learn	how	to	obtain	a	VMHost	object.

Getting	ready
To	begin	with,	open	a	PowerCLI	window	and	connect	to	an	ESXi	host	or	a	vCenter
instance.

How	to	do	it…
1.	 PowerCLI	is	straightforward.	To	retrieve	an	ESXi	host	object,	just	run	the	following

command	line:

Get-VMHost

2.	 After	running	the	Get-VMHost	cmdlet,	an	object	that	contains	one	or	more	ESXi	hosts
is	returned.	You	are	connecting	to	a	single	ESXi	host	in	this	example	and	running
Get-VMHost	that	returns	the	host	object	with	a	single	host.	If	you	were	connecting
against	a	vCenter	instance,	Get-VMHost	(with	no	other	arguments)	would	return	an
object	that	contains	all	of	the	hosts	managed	by	vCenter.	When	running	against
vCenter,	you	can	specify	a	filter	with	the	Get-VMHost	cmdlet	in	order	to	find	one	or
more	hosts	that	match	the	specified	pattern:

Get-VMHost	esxhost*

Get-VMHost	VMHOST1

3.	 Instead	of	calling	the	Get-VMHost	cmdlet	each	time,	you	need	to	get	the	ESXi	host.
You	can	store	the	host	object	in	a	variable.	PowerShell	variables	are	specified	using	$
followed	by	a	name.	The	following	is	an	example	of	our	ESXi	host:

$esxihost	=	Get-VMHost

How	it	works…
To	learn	more	about	the	VMHost	object,	you	can	use	the	Get-Member	cmdlet	with	the
variable	you	have	just	defined.	To	use	Get-Member,	you	will	call	the	VMHost	object	by
typing	the	$esxihost	variable.	Then,	you	pipe	the	object	into	the	Get-Member	cmdlet	as
follows:

$esxihost	|	Get-Member

PowerCLI	is	an	extension	of	PowerShell	that	is	used	specifically	for	VMware	product
management.	PowerShell	is	an	object-based	language	that	uses	the	concept	of
encapsulating	both	data	and	operations	within	an	object	data	type,	which	is	a	familiar
object-oriented	programming	concept.	Objects	have	defined	data	areas	and	can	include
functions	that	perform	operations	on	the	data	in	the	object.

The	output	from	the	cmdlet	shows	all	of	the	data	contained	in	the	Property	elements	in
the	object.	The	object	also	includes	a	number	of	methods.	These	methods	are	used	to
manipulate	the	data	in	the	object.	The	output	of	the	preceding	command	is	shown	in	the
following	screenshot:

You	can	call	a	method	by	using	a	dot	notation	(.)	and	by	calling	the	method	name	followed
by	parenthesis,	such	as	in	the	following	example:

$esxihost.ConnectionState.ToString()

In	the	preceding	example,	the	State	property	is	an	object	inside	the	VMHost	object,	but	the
ToString()	method	converts	the	output	to	a	string.

Now	that	the	ESXi	host	object	is	stored	in	a	variable,	you	can	proceed	with	other	cmdlets
for	configuration	and	run	them	using	the	host	object	to	perform	the	configuration.

There’s	more…
Get-VMHost	has	other	applications	other	than	just	returning	the	VMHost	object	to	use.	Like
all	other	Get-	cmdlets,	this	cmdlet	can	be	used	to	find	a	host	in	a	particular	configuration
or	state.	You	can	use	Get-VMHost	to	find	hosts	assigned	to	a	particular	location	in	vCenter
using	the	-Location	parameter.	You	might	want	to	find	hosts	that	have	been	assigned	a
particular	tag	in	vSphere	using	the	–Tag	parameter	or	you	might	want	to	find	the	host
running	a	particular	VM	with	the	-VM	parameter.	Another	interesting	use	case	is	specifying
the	-Datastore	parameter	to	find	all	of	the	hosts	that	have	a	particular	datastore
connected.

Get-VMHost	is	just	one	of	the	many	cmdlets	that	work	with	VMHost	objects.	Others	will	be
explored	in	Chapter	2,	Configuring	vCenter	and	Computing	Clusters.

See	also
The	Setting	up	folders	to	organize	objects	in	vCenter	recipe	in	Chapter	2,
Configuring	vCenter	and	Computing	Clusters
The	Creating	basic	reports	of	VM	properties	using	VMware	Tools	and	PowerCLI
recipe	in	Chapter	3,	Managing	Virtual	Machines

Joining	an	ESXi	host	into	Active
Directory
As	mentioned	in	the	connecting	section,	joining	an	ESXi	host	to	Active	Directory	offers
the	ability	to	connect	to	the	host	without	entering	the	credentials	for	administrators.	Active
Directory	is	a	Windows	implementation	of	Lightweight	Directory	Access	Protocol
(LDAP).	It	contains	accounts	for	users,	computers,	and	groups.	It	runs	on	a	Windows
Server	that	has	the	Active	Directory	role	installed	and	that	has	been	“promoted”	to
become	a	domain	controller.	To	perform	this	recipe,	you	will	need	at	least	one	Active
Directory	server	available	on	the	network	with	the	ESXi	host.

Seamless	authentication	is	one	of	the	biggest	reasons	to	join	a	host	to	Active	Directory.
However,	beyond	single	sign-on,	once	the	ESXi	host	is	connected	to	Active	Directory,
groups	in	the	directory	can	be	leveraged	to	grant	permissions	to	the	ESXi	host.	If	you	do
not	have	Active	Directory	installed	and	do	not	wish	to,	you	can	skip	this	recipe	and	move
on	to	other	topics	of	host	configuration	without	any	impact	to	future	recipes.

Getting	ready
PowerCLI	has	Get-VMHostAuthentication	and	Set-VMHostAuthentication,	two	cmdlets
to	deal	with	host	authentication.	To	get	ready	to	set	up	authentication,	open	a	PowerCLI
window	and	connect	to	a	single	ESXi	host.

How	to	do	it…
1.	 Because	the	cmdlets	require	a	VMHost	object,	you’ll	again	be	using	Get-VMHost	to

either	populate	a	variable	or	to	pipe	an	object	to	the	next	object.	The	first	step	is	to
obtain	a	VMHost	object	for	our	target	ESXi	host.	This	can	be	done	using	the	following
command	line:

$esxihost	=	Get-VMHost	192.168.0.241

2.	 Once	you	have	your	VMHost	object,	you	can	look	at	setting	up	the	authentication.	The
Set-VMHostAuthentication	cmdlet	needs	to	be	executed.	The	cmdlet	requires
several	parameters	to	join	an	ESXi	host	to	the	domain.	The	syntax	needed	is
displayed	as	follows:

$esxihost	|	Get-VMHostAuthentication	|	Set-VMHostAuthentication	-

JoinDomain	-Domain	domain.local	-user	username	-password	*****

3.	 Executing	the	cmdlet	will	prompt	you	to	confirm	that	you	want	to	join	this	host	to	the
domain	specified.	If	your	answer	is	Y,	the	cmdlet	will	continue	and	execute	the
operation	as	follows:

Perform	operation?

Joining	VMHost	'192.168.0.241'	to	Windows	Domain	'domain.local'.

[Y]	Yes		[A]	Yes	to	All		[N]	No		[L]	No	to	All		[S]	Suspend		[?]	Help

(default	is	"Y"):Y

Domain										DomainMembershipStatus				TrustedDomains

------										----------------------				--------------

DOMAIN.LOCAL				Ok

How	it	works…
One	of	the	first	things	you	will	notice	about	this	recipe	is	that	there	is	an	extra	Get-
VMHostAuthentication	cmdlet	in	the	middle	of	the	command	line.	Why	does	it	need	to
perform	Get	before	performing	Set?	It	would	seem	that	you	can	simply	pipe	the	VMHost
object	into	cmdlet	to	specify	your	target	host	and	the	cmdlet	will	execute	the	function.	But
as	you	try	that,	using	the	following	command	line,	PowerCLI	displays	an	error,	as	shown
in	the	following	screenshot:

$esxihost	|	Set-VMHostAuthentication	-JoinDomain	-Domain	domain.local	-user	

username	-password	*****

In	this	case,	the	cmdlet	looks	for	a	VMHostAuthentication	object	and	not	a	VMHost	object,
so	an	error	is	displayed.	If	you	go	back	and	simply	execute	the	Set-
VMHostAuthentication	cmdlet	as	follows,	it	will	prompt	you	for	a
VMHostAuthentication	object	and	wait	for	an	input:

Set-VMHostAuthentication	-JoinDomain	-Domain	domain.local	-user	username	-

password	*****

This	is	where	the	Get-VMHostAuthentication	cmdlet	gets	added.	It	retrieves	the
VMHostAuthentication	object	from	the	host	you	targeted	since	this	cmdlet	accepts	the
VMHost	object	as	a	piped	input.

The	Get-Help	cmdlet	for	Set-VMHostAuthentication	also	shows	that	the	cmdlet	expects
a	VMHostAuthentication	object	to	be	passed	as	a	parameter	for	the	cmdlet.	By	executing
the	cmdlet	with	all	of	its	parameters	and	no	piped	input,	you	also	learned	that	you	can
debug	and	learn	what	input	the	cmdlet	is	expecting	and	missing.

There’s	more…
The	same	cmdlets	can	also	be	used	to	remove	a	host	from	a	domain,	if	needed.	The	-
LeaveDomain	parameter	is	a	part	of	the	Set-VMHostAuthentication	cmdlet	and	allows
this	need.

In	addition	to	setting	up	an	ESXi	host	to	accept	Active	Directory	authentication,
PowerCLI	also	provides	a	number	of	cmdlets	to	add	local	users,	groups,	and	permissions
inside	a	single	ESXi	host.	The	New-VMHostAccount	cmdlet	is	used	to	create	new	users	on
an	ESXi	system.	The	same	cmdlet	previously	allowed	the	creation	of	groups,	but	this
functionality	was	removed	with	ESXi	5.1.	There	is	a	Set-VMHostAccount	cmdlet	to
change	accounts	and	group	memberships,	and	a	Remove-VMHostAccount	cmdlet	to	remove
a	user	or	a	group.

See	also
The	Setting	permissions	on	vCenter	objects	recipe	in	Chapter	2,	Configuring	vCenter
and	Computing	Clusters

Enabling	services	and	setting	security
profiles
ESXi	hosts	enable	a	few	services	by	default,	but	there	are	some	additional	services	that	are
installed	but	blocked.	In	some	cases,	you	might	want	to	enable	SSH	on	the	host.	However,
since	VMware	does	not	recommend	enabling	SSH	and	will	display	a	warning.	You	can	set
an	advanced	setting	to	disable	this	warning.

Getting	ready
To	begin	with,	you	should	open	a	PowerCLI	prompt	and	connect	to	an	ESXi	or	vCenter
host.	You	will	also	want	to	store	a	VMHost	object	in	a	variable	named	$esxihost.

How	to	do	it…
1.	 The	first	step	is	to	get	the	list	of	available	services	from	a	VMware	host.	To	do	this,

you	use	the	Get-VMHostService	cmdlet	and	pass	the	VMHost	object	into	the	cmdlet	as
follows:

$esxihost	|	Get-VMHostService

2.	 The	output	of	the	preceding	cmdlet	will	display	a	list	of	the	available	services	on	the
ESXi	host	along	with	its	policy	(whether	it	is	set	on	or	off	by	default)	if	it’s	running.
The	label	is	a	friendly	identifier	to	find	the	service	you	want	to	configure,	but	the	key
is	the	piece	of	data	you	will	use	to	return	the	single	service	you	want.

3.	 In	this	case,	we’re	looking	to	configure	the	service	with	the	TSM-SSH	key.	To	scope
the	results	down	to	that	one	service	in	the	object,	you	will	use	a	PowerShell	where
clause	as	follows:

$esxihost	|	Get-VMHostService	|	where	{	$_.key	-eq	"TSM-SSH"	}

4.	 Now	that	you	have	it	scoped	down	to	a	single	service,	you	pass	this	object	into	the
Set-VMHostService	cmdlet	with	the	desired	policy	of	On	as	follows:

$esxihost	|	Get-VMHostService	|	where	{	$_.key	-eq	"TSM-SSH"	}	|	Set-

VMHostService	-Policy	"On"

5.	 At	this	point,	you	have	configured	the	host	to	autostart	the	service	on	boot,	but	the
service	is	still	not	running	in	the	current	boot.	To	do	this,	you	will	instead	use	the
Start-VMHostService	cmdlet.	Again,	you	have	to	pass	in	the	VMHostService	object
for	SSH	(or	any	other	service	that	you	choose).

$esxihost	|	Get-VMHostService	|	where	{	$_.key	-eq	"TSM-SSH"	}	|	Start-

VMHostService	

6.	 With	the	service	running,	vSphere	displays	the	warning	that	you	have	enabled	SSH.
This	will	leave	your	host	showing	in	a	warning	state	as	long	as	the	service	is	running;
however,	VMware	does	allow	you	to	suppress	this	warning,	but	this	is	set	through	an
advanced	setting.	To	set	this,	you	need	to	execute	the	following	cmdlet:

$esxihost	|	Get-AdvancedSetting	–Name	UserVars.SuppressShellWarning	|	

Set-AdvancedSetting	–value	1

7.	 When	executed,	the	preceding	command	line	will	prompt	you	to	confirm	the	settings.
This	confirmation	can	be	suppressed	using	the	–Confirm:$false	common	parameter,
which	is	useful	in	scripts:

$esxihost	|	Get-AdvancedSetting	–Name	UserVars.SuppressShellWarning	|	

Set-AdvancedSetting	–value	1	–Confirm:$false

How	it	works…
For	configuring	host	services,	the	native	cmdlets	follow	the	expected	pattern	of	Get	and
Set	functionality	in	PowerCLI.	Get-VMHostService	expects	a	VMHost	object	as	the	input
which	is	logical	since	these	host	services	exist	within	the	scope	of	a	host.	Once	you	get	the
host	service	by	name	and	store	it	in	a	variable	or	pass	it	as	an	object	in	the	pipeline,	you
can	easily	set	the	settings	to	the	desired	configuration.	In	addition	to	Get	and	Set	cmdlets,
you	also	have	Start	and	Stop	cmdlets.	The	Start	and	Stop	cmdlets	are	more	specific	to	this
use	case	since	we’re	dealing	with	host	services	and	there	is	a	specific	need	to	start	or	stop
them	in	addition	to	configuring	them.	The	Start	and	Stop	cmdlets	also	accept	the
HostService	objects	as	inputs,	just	like	the	Set-VMHostService	cmdlet.

In	the	specific	use	case	of	the	SSH	Server	service,	it	causes	a	warning	to	be	displayed	to
the	client.	To	disable	this	warning	from	been	displayed,	you	can	use	an	advanced	setting
named	UserVars.SupressShellWarning.	While	this	is	not	recommended	for	production
systems,	there	are	plenty	of	use	cases	where	SSH	is	needed	and	is	helpful	in	lab
environments,	where	you	might	want	to	configure	the	setting.

There’s	more…
The	cmdlet	to	start	the	SSH	service	can	be	easily	adapted	beyond	the	illustrated	use	case
with	the	use	of	a	ForEach	loop.	For	troubleshooting	and	configuration,	you	might	need	to
enable	SSH	in	order	to	tail	a	log	file	or	to	install	a	custom	module.	In	these	cases,	starting
SSH	in	bulk	might	be	handy.	To	do	this,	you	take	the	preceding	code	and	wrap	it	in	the
loop.	An	example	of	a	connection	to	a	vCenter	host,	a	variable	with	multiple	VMHost
objects	returned,	and	a	loop	to	step	through	and	start	SSH	on	each	is	shown	as	follows:

Connect-VIServer	vcenterhost.domain.local

$esxihosts	=	Get-VMHost

foreach	($esxihost	in	$esxihosts)	{

$esxihost	|	Get-VMHostService	|	where	{	$_.key	-eq	

"TSM-SSH"	}	|	Start-VMHostService	

}

This	quickly	allows	you	to	turn	on	SSH	for	temporary	use.	Following	a	reboot,	the	service
will	no	longer	be	running	and	you	can	easily	change	the	preceding	code	to	be	a	Stop-
VMHostService	cmdlet	and	turn	off	the	service	in	bulk.

Setting	network	configuration
One	of	the	first	things	to	be	completed	against	a	new	ESXi	installation	is	network
configuration.	Network	configuration	consists	of	several	things	on	an	ESXi	host—first
would	be	to	configure	the	additional	management	interfaces	of	the	host	for	VMotion,
Fault	Tolerance	logging,	vSphere	Replication,	and	VSAN	traffic.

Getting	ready
To	begin	this	recipe,	you	will	need	to	open	a	PowerCLI	window,	connect	to	an	ESXi	host,
and	load	a	VMHost	object	into	a	variable.	The	example	uses	$esxihost	as	the	variable	for
the	VMHost	object.

On	installation,	ESXi	has	a	single	Network	Interface	Card	(NIC)	labeled	eth0	that	is
connected	to	a	VMware	Standard—vSwitch.	The	vSwitch	has	two	port	groups	created:
one	labeled	Management	Network	for	management	traffic	and	the	other	is	labeled	VM
Network.	The	Management	Network	is	a	vmkernel	port	with	the	IP	defined	on	the
console	attached	to	it.

In	this	example,	our	host	contains	six	10	Gigabit	NICs	that	will	connect	the	host	to	the
network.	You	will	define	two	additional	vSwitches	with	two	physical	ports	attached	to
each	for	redundancy.	The	additional	vSwitches	will	handle	storage	and	replication	traffic
on	one	and	VM	traffic	on	the	other.

Note
Best	practices	of	vSphere	networking	are	far	beyond	the	scope	of	this	book.	The	network
layout	shown	in	the	preceding	diagram	is	not	an	endorsement	of	a	particular	layout	and	is
for	illustration	purposes	to	show	the	PowerCLI	cmdlets	used	to	configure	networking	on
ESXi.

How	to	do	it…
1.	 To	begin	with,	let’s	get	an	idea	of	the	network	layout	that	is	in	place,	by	default.

From	a	default	install,	there	is	a	single	virtual	switch	named	vSwitch0.	The	first
cmdlet	shows	you	the	properties	of	this	virtual	switch	and	the	second	shows	you	the
port	groups	associated	with	that	vSwitch.	To	do	this,	review	the	output	of	the	two
PowerCLI	cmdlets:

$esxihost	|	Get-VirtualSwitch

$esxihost	|	Get-VirtualPortGroup	–VirtualSwitch	vSwitch0

2.	 The	first	thing	to	be	completed	is	to	remove	the	default	VM	Network	port	group,
since	it’s	not	the	best	practice	to	have	Virtual	Machine	traffic	on	the	management
ports,	and	this	default	port	group	is	not	a	part	of	the	design	you	outlined	for	this
configuration:

$esxihost	|	Get-VirtualPortGroup	-Name	"VM	Network"	|	Remove-

VirtualPortGroup	–Confirm:$false

3.	 The	preceding	command	combines	the	Get-VirtualPortGroup	and	Remove-
VirtualPortGroup	cmdlets	to	change	the	confirmation.	When	executed,	you	will
receive	either	a	confirmation	or	an	error.	If	the	port	group	is	connected	to	or	in	use	by
a	VM,	you	will	receive	an	error	message.	Once	you	remove	the	VM	Network	port
group,	the	next	step	is	to	add	an	additional	vmkernel	port	that	will	be	used	for
vMotion.

Note
While	this	is	outside	the	scope	of	this	book,	there	are	many	different	ideas	for	the
best	design	of	VMware	networking.	Most	administrators	agree	that	Management
traffic	and	vMotion	traffic	should	be	separated,	but	with	increasing	speeds	and
capabilities	of	NICs	today,	it’s	common	to	see	them	sharing	the	same	virtual	switch.
Administrators	will	set	the	Management	traffic	to	be	active	on	the	first	NIC	and
vMotion	to	be	active	on	the	second	NIC.	The	two	traffic	streams	will	only	be	on	the
same	NIC	in	a	failover	situation.

4.	 In	our	design,	you	will	set	Management	and	vMotion	to	be	collocated	on	the	same
switch.	To	do	this,	use	the	New-VMHostNetworkAdapter	cmdlet	and	pass	in	the	name
of	the	port	group,	the	virtual	switch,	and	the	IP	information.	You	will	also	pass	in	a
parameter	to	specify	that	this	vmkernel	port	should	be	used	for	VMotion	as	follows:

$esxihost	|	New-VMHostNetworkAdapter	-PortGroup	"VMotion	Network"	-

VirtualSwitch	vSwitch0	-IP	192.168.50.241	-SubnetMask	255.255.255.0	-

VMotionEnabled	$true

5.	 In	our	design,	although	vMotion	and	Management	traffic	exist	on	the	same	vSwitch,
the	traffic	will	be	separated	using	active	and	standby	links	on	each	port	group.	This	is
done	by	changing	the	NIC	Teaming	Policy	with	the	Set-NicTeamingPolicy	cmdlet.
You	can	see	in	the	following	two	commands	that	the	active	and	standby	NIC
assignments	are	opposite	between	the	two	port	groups:

$esxihost	|	Get-VirtualPortGroup	-Name	"Management	Network"	|	Get-

NicTeamingPolicy	|	Set-NicTeamingPolicy	–MakeNicActive	vmnic0	–

MakeNicStandby	vmnic1

$esxihost	|	Get-VirtualPortGroup	-Name	"VMotion	Network"	|	Get-

NicTeamingPolicy	|	Set-NicTeamingPolicy	–MakeNicActive	vmnic1	–

MakeNicStandby	vmnic0

6.	 The	port	group	is	automatically	created	and	the	vmkernel/host	port	is	created	for	our
vMotion	network,	but	it’s	on	the	wrong	VLAN.	Our	vMotion	traffic	is	on	a	different
VLAN,	so	you	need	to	set	this	on	the	port	group	as	follows:

$esxihost	|	Get-VirtualPortGroup	-Name	"VMotion	Network"	|	Set-

VirtualPortGroup	–VlanID	50

7.	 The	next	step	is	to	create	a	new	virtual	switch	with	its	own	uplinks	on	vmnic2	and
vmnic3,	as	shown	in	our	diagram.	To	confirm	that	the	physical	NICs	exist,	you	can
run	the	following	cmdlet:

$esxihost	|	Get-VMHostNetworkAdapter

The	Get-VMHostNetworkAdapter	cmdlet	displays	all	of	the	vmkernel	ports	along
with	all	of	the	physical	NICs	present	on	the	host.

8.	 After	confirming	the	NIC,	you	will	run	the	New-VirtualSwitch	cmdlet	to	provision
the	new	virtual	switch.	This	cmdlet	provisions	the	vSwitch	with	its	uplinks,	but	it’s
currently	an	island	with	no	connectivity	for	Management	or	virtual	servers:

$esxihost	|	New-VirtualSwitch	-Name	vSwitch1	-Nic	vmnic2,vmnic3

9.	 The	next	step	is	to	create	vmkernel	ports	for	storage	traffic	and	replication	traffic.
These	are	created	in	the	same	way	as	the	VMotion	Network	we	provisioned	earlier:

$esxihost	|	New-VMHostNetworkAdapter	-PortGroup	"Storage	Network"	-

VirtualSwitch	vSwitch1	-IP	192.168.100.241	-SubnetMask	255.255.255.0	-

VsanTrafficEnabled	$true

$esxihost	|	Get-VirtualPortGroup	-Name	"Storage	Network"	|	Set-

VirtualPortGroup	–VlanID	100

$esxihost	|	New-VMHostNetworkAdapter	-PortGroup	"FT	Logging	Network"	-

VirtualSwitch	vSwitch1	-IP	192.168.200.241	-SubnetMask	255.255.255.0	-

FaultToleranceLoggingEnabled	$true

$esxihost	|	Get-VirtualPortGroup	-Name	"FT	Logging	Network"	|	Set-

VirtualPortGroup	–VlanID	200

10.	 Again,	you	want	to	make	sure	that	our	Storage	Traffic	and	Fault	Tolerance	traffic
don’t	end	up	competing	for	bandwidth.	Therefore,	you	will	assign	one	port	group	to
be	active	on	one	uplink	and	the	other	port	group	to	be	active	on	the	second	uplink.
This	is	done	again	with	the	Set-NicTeamingPolicy	cmdlet:

$esxihost	|	Get-VirtualPortGroup	-Name	"Storage	Network"	|	Get-

NicTeamingPolicy	|	Set-NicTeamingPolicy	–MakeNicActive	vmnic2	–

MakeNicStandby	vmnic3

$esxihost	|	Get-VirtualPortGroup	-Name	"FT	Logging	Network"	|	Get-

NicTeamingPolicy	|	Set-NicTeamingPolicy	–MakeNicActive	vmnic3	–

MakeNicStandby	vmnic2

11.	 The	final	step	of	our	network	provisioning	is	to	create	new	port	groups	for	Virtual
Machine	traffic.	You	have	set	all	of	the	virtual	machine	traffic	to	its	own	vSwitch	and
uplinks	in	the	design	outlined.	The	first	step	is	to	create	the	virtual	switch	like	you
did	for	vSwitch1	as	follows:

$esxihost	|	New-VirtualSwitch	-Name	vSwitch2	-Nic	vmnic4,vmnic5

12.	 Once	the	virtual	switch	is	created,	you	can	create	two	port	groups	on	the	virtual
switch.	However,	in	this	case,	New-VirtualPortGroup	doesn’t	allow	any	pipeline
input,	so	you	will	need	to	specify	the	server	as	a	parameter	instead	of	passing	it
through	the	pipeline:

New-VirtualPortGroup	-Name	"Infrastructure	Network"	-VirtualSwitch	

vSwitch2	-VLanId	1	-Server	192.168.0.241

New-VirtualPortGroup	-Name	"Application	Network"	-VirtualSwitch	

vSwitch2	-VLanId	2	-Server	192.168.0.241

How	it	works…
In	this	example,	you	will	work	with	the	VMHost	object	to	enumerate	and	identify	the
existing	configuration	that	is	put	in	place	during	the	installation.	From	there,	you	remove
the	default	VM	networking	configuration,	you	provision	new	virtual	switches	and
vmkernel	ports	to	segment	traffic,	and	you	enable	certain	management	functions	across
the	vmkernel	ports.

While	most	of	the	configuration	covered	in	this	section	deals	with	the	initial	configuration
of	a	host,	some	of	the	concepts	are	repeated	more	often.	For	instance,	if	you	have	a	multi-
node	cluster	and	you’re	adding	a	new	virtual	machine	network,	you’ll	use	the	New-
VirtualPortGroup	cmdlet	often.	As	you	have	seen	in	previous	examples,	you	can	easily
create	an	array	of	ESXi	hosts—either	by	using	Get-VMHost	in	vCenter	or	by	manually
specifying	a	list	of	hosts—and	then	connect	and	provision	the	same	port	group	on	many
hosts,	quickly.	This	would	mean	big	time	savings	and	less	potential	for	manual	error	when
compared	to	manually	clicking	on	each	through	the	GUIs	to	configure	the	new	port	group
on	each	host	in	the	cluster.

By	also	using	the	Set-NicTeamingPolicy	cmdlet,	you	can	set	a	preferred	uplink	port	for
each	port	group	and	put	the	other	NIC	into	standby	mode.	This	allows	us	to	keep	the
Management	and	vMotion	and	the	Storage	and	Fault	Tolerance	traffic	separated	so	they
will	not	cause	the	performance	of	one	another	to	be	degraded.

There’s	more…
In	this	recipe,	you	focused	on	VMware	Standard	vSwitches.	Users	with	Enterprise	Plus
licensing	also	have	the	option	of	using	VMware	Distributed	vSwitches	which	have	their
own	set	of	cmdlets	to	manage	and	configure	these	advanced	virtual	switches.

See	also
The	Network	Management	with	vSphere	Distributed	Switches	under	VMware
vSphere	5.5	Documentation	Center	page	at	http://pubs.vmware.com/vsphere-
55/topic/com.vmware.powercli.ug.doc/GUID-D2C0E491-A0CB-4799-A80D-
19EA9114B682.html	or	else	just	type	http://bit.ly/1wJs1JP.

http://pubs.vmware.com/vsphere-55/topic/com.vmware.powercli.ug.doc/GUID-D2C0E491-A0CB-4799-A80D-19EA9114B682.html
http://bit.ly/1wJs1JP

Creating	datastores	on	an	ESXi	host
With	networking,	VMware	has	done	a	lot	of	work	to	ease	administration	with	the	VMware
Distributed	Virtual	Switch.	In	vSphere	5.5,	VMware	introduced	Datastore	Clusters	that
alleviate	some	of	the	management	of	datastores.	However,	from	a	provisioning	standpoint,
the	initial	setup	of	storage	is	still	manual	and	can	take	a	lot	of	manual	steps.	Scripting	this
makes	a	lot	of	sense	in	large	environments.

Datastore	and	storage	under	vSphere	is	also	different	since	some	operations	must	be
performed	on	the	raw	storage	device	and	these	steps	are	not	repeated	on	every	host.	There
are	three	types	of	storage	connectivity	that	you	might	need	to	provision:	NFS,	iSCSI,	and
Fibre	Channel.	For	this	example,	you	will	focus	on	iSCSI	and	NFS,	and	you	will	work	on
provisioning	storage	from	both.	Along	the	way,	Fibre	Channel	will	also	be	discussed	since
its	concepts	overlap	with	iSCSI	from	a	vSphere	perspective.

Getting	ready
For	this	example,	you	will	need	to	open	a	PowerCLI	window	and	connect	to	an	ESXi	host.
You	will	also	want	to	make	sure	that	you	have	the	VMHost	object	stored	in	a	variable
named	$esxihost,	covered	in	the	Getting	the	VMware	host	object	section.

www.allitebooks.com

http://www.allitebooks.org

How	to	do	it…
1.	 The	simplest	of	all	datastores	to	provision	is	an	NFS	datastore.	A	single	PowerCLI

cmdlet	will	provision	an	NFS	datastore.	The	New-Datastore	cmdlet	will	take	all	of
the	input	needed	to	provision	the	new	datastore	and	make	it	available	for	use.	Since
NFS	does	not	use	the	VMFS	filesystem,	there	are	no	filesystem	properties	that	need
to	be	passed.	To	connect	NFS,	you	just	need	to	provide	a	name	for	vSphere	to
identify	the	datastore,	a	path	(the	export),	and	the	host	that	is	providing	the	NFS,	as
follows:

$esxihost	|	New-Datastore	-Nfs	-Name	DataStoreName	-Path	/data1/export	

-NfsHost	nfsserver.domain.local

2.	 With	this,	you’ve	got	your	first	datastore	presented	and	ready	to	host	virtual
machines.	For	NFS,	this	is	all	that	is	required.

3.	 iSCSI	and	Fibre	Channel	storage	is	a	bit	more	complex	to	provision	from	a
PowerCLI	and	vSphere	perspective.	Provisioning	storage	on	either	of	these	protocols
will	require	additional	decisions	to	be	made	when	creating	the	datastore.	iSCSI	also
requires	additional	configuration	steps	that	are	not	needed	with	Fibre	Channel.	We
will	focus	on	iSCSI	in	this	example	and	I	will	make	a	note	of	where	the	concepts
overlap	with	Fibre	Channel.

4.	 iSCSI	is	an	IP-based	storage	protocol,	and	as	such,	you	will	need	to	do	a	bit	of
network	configuration	to	set	up	iSCSI	to	work	in	our	environment.	The	first	thing
that	needs	to	be	done	is	to	enable	iSCSI	and	to	create	a	software	iSCSI	target,	as
follows:

$esxihost	|	Get-VMHostStorage

5.	 By	default,	there	isn’t	a	software	iSCSI	target	that	is	created.	To	create	this,	you	need
to	expand	on	the	previous	cmdlet	and	set	this	value	to	true,	as	follows:

$esxihost	|	Get-VMHostStorage	|	Set-VMHostStorage	-SoftwareIScsiEnabled	

$true

6.	 The	next	step	is	to	set	the	iSCSI	targets	using	the	New-IscsiHbaTargets	cmdlet.	This
cmdlet	requires	that	you	pass	in	the	iSCSI	HBA	as	an	object,	so	first,	you	retrieve	the
iSCSI	HBA	using	Get-VMHostHba	and	store	it	in	a	variable	and	then	use	it	with	New-
IscsiHbaTargets:

$iSCSIhba	=	$esxihost	|	Get-VMHostHba	-Type	iScsi

New-IScsiHbaTarget	-IScsiHba	$iSCSIhba	-Address	$target	-ChapType	

Required	-ChapName	vSphere	-ChapPassword	Password1

Note
In	the	example,	there	are	additional	parameters	for	authentication.	iSCSI	uses
Challenge-Handshake	Authentication	Protocol	(CHAP)	to	authenticate	sessions	to
the	target	storage.	Authentication	is	not	required	and	if	the	storage	system	is	not
configured	for	authentication,	these	parameters	can	be	omitted.	However,	it’s	a	bad

practice	to	deploy	a	production	storage	array	without	authentication.

7.	 The	final	step	of	the	initial	iSCSI	configuration	is	to	bind	the	iSCSI	HBA	to	a
specific	port.	Since	you	created	a	Storage	Network	management	port,	this	is	the	port
that	you	want	to	use.	To	make	this	change	and	to	remove	any	other	ports,	you	have	to
use	the	ESXCLI	interface	within	PowerCLI.	There	isn’t	a	native	PowerCLI	cmdlet
for	this	function:

$esxcli	=	Get-ESXCLI	-VMHost	$esxihost

$esxcli.iscsi.networkportal.add($iscsihba,	$true,"vmk2")

8.	 In	our	case,	the	vmkernel	port	assigned	to	the	Storage	Network	port	group	is	vmk2.
Using	the	ESXCLI	interface,	you	can	assign	it	to	the	iSCSI	HBA.	To	confirm	the
change,	you	can	use	the	list()	method,	as	follows:

$esxcli.iscsi.networkportal.list()

9.	 As	you	will	see,	there	are	other	vmkernel	ports	listed.	In	my	case,	vmk0;	you	can
remove	them	with	a	simple	remove()	method,	as	follows:

$esxcli.iscsi.networkportal.remove($iscsihba,$true,"vmk0")

Now	that	the	system	has	its	targets	configured,	if	the	iSCSI	array	has	provisioned
storage	to	the	host,	it	should	be	visible.	This	is	the	point	where	iSCSI	and	Fibre
Channel	converge.	Since	iSCSI	uses	the	host	bus	adapter	model	that	Fibre	Channel
invented,	they	work	in	the	same	way	after	initial	configuration.	You	must	run	the
NFS	mount	on	each	server	and	you	must	set	up	iSCSI	initial	configuration	on	each
host.	Scanning	and	formatting	VMFS	datastores	only	needs	to	be	done	from	a	single
host	for	iSCSI	and	Fibre	Channel	disks	since	they	are	shared	resources.	This	means
that	when	scripting	the	steps	on	each	host,	the	next	few	steps	only	need	to	be	done	on
a	single	host	in	the	cluster	and	then	every	host	needs	to	be	a	rescan:

$esxihost	|	Get-VMHostStorage	-RescanAllHBA	-RescanVmfs

Starting	with	a	rescan	is	a	good	idea	so	that	your	system	recognizes	all	of	the	storage
changes	and	sees	all	disks	that	have	been	presented.	Whether	you’re	using	software
or	hardware	iSCSI,	Fibre	Channel,	or	converged	network	adapters,	this	is	the	point
where	your	hosts	see	its	SAN	disks.

10.	 At	this	point,	your	ESXi	system	doesn’t	have	iSCSI	or	Fibre	Channel	datastores	that
it	can	use.	Even	though	the	disk	is	visible,	it	is	unformatted	and	not	ready	to	host
VMs.	To	discover	your	disks	and	to	enumerate	the	data	you	need	to	configure	it,	you
will	need	to	use	the	Get-ScsiLun	cmdlet:

$esxihost	|	Get-ScsiLun

11.	 This	returns	a	list	of	disks	available	to	the	SCSI	subsystem	under	ESXi.	The	list
might	contain	a	lot	of	objects.	You	can	use	various	properties	returned	by	the
ScsiLun	object	to	identify	and	leverage	the	list	for	provisioning.	For	instance,	you
can	scope	the	list	using	the	Vendor	property	or	by	the	model.	For	the	purpose	of	this
example,	we	will	assume	that	you	have	a	disk	identified	by	the	iSCSIDisk	model	and

use	that	for	scoping.	To	create	a	new	datastore	on	the	disk,	you	need	the	canonical
name,	which	is	also	a	property	in	the	ScsiLun	object:

$LUN	=	$esxihost	|	Get-ScsiLun	|	Where	{$_.Model	-like	"iSCSIDisk"}	

12.	 In	situations	where	you	have	many	disks	presented	to	a	host,	identification	by	model
might	not	be	the	best.	Another	method	would	be	to	use	the	RuntimeName	property	that
enumerates	the	HBA,	controller,	target,	and	the	LUN	number.	For	instance,	if	you
know	the	LUN	number	you	want	to	prepare	is	LUN	8	that	is	represented	in	the
RuntimeName	as	L8,	the	PowerCLI	to	scope	and	return	this	would	be	as	follows:

$LUN	=	$esxihost	|	Get-ScsiLun	|	Where	{$_.RuntimeName	-like	"*L8"}	

13.	 By	storing	the	LUN	in	a	variable,	we	can	verify	the	returned	value	to	ensure	that	you
have	the	correct	object	and	number	of	objects	expected	before	passing	it	into	the	New-
Datastore	cmdlet:

$esxihost	|	New-Datastore	-Name	iSCSIDatastore1	-Path	

$LUN.CanonicalName	-VMFS

14.	 This	provisions	the	disk	as	a	VMFS	filestore	and	allows	it	to	be	used	for	VM	storage.
At	this	point,	you	can	initiate	a	rescan	on	all	of	the	ESXi	hosts	in	the	cluster	and	they
will	all	see	the	same	shared	storage.

How	it	works…
Provisioning	datastores	in	vSphere	works	differently	for	each	type	of	SAN	storage.	NFS	is
simpler	than	iSCSI	or	Fibre	Channel	and	just	requires	that	you	connect	(or	mount)	the
datastore	for	use	on	the	host.	Software-based	iSCSI	requires	that	you	do	some	additional
configuration	on	the	host	so	that	it	can	connect	to	the	target	array,	but	then	iSCSI	and
Fibre	Channel	both	will	work	in	the	same	way	with	backend	storage	LUNs	being
presented	to	the	host	for	consumption.

See	also
The	Creating	and	managing	datastore	clusters	and	the	Performing	Storage	vMotion
recipes	in	Chapter	4,	Working	with	Datastores	and	Datastore	Clusters

Configuring	syslog	settings	on	an	ESXi
host
Booting	your	ESXi	from	SD	or	USB	flash	storage	is	a	common	scenario.	However,	when
booting	from	SD	and	USB,	ESXi	does	not	use	that	storage	for	logging.	Instead,	it	keeps
the	logs	in	memory,	which	is	nonpersistent.	Now	that	you	have	established	a	shared,
persistent	storage,	you	can	point	the	ESXi	hosts	syslog	functions	to	store	the	logs	onto	the
shared	disk	so	that	it	can	survive	a	reboot	or	help	you	to	troubleshoot.	Even	hosts	booting
from	a	local	spinning	disk	might	want	to	redirect	their	syslog	onto	a	shared	SAN	drive	so
that	it’s	accessible	from	another	hosts	if	one	of	the	hosts	fails.

Another	common	use	in	enterprises	is	a	centralized	syslog	server	or	a	third-party	log
collection	and	analytics	service,	such	as	Splunk.	Third-party	services	offer	filters,	alarms,
search,	and	other	advanced	features	to	add	context	and	value	to	the	logs	collected	from
systems.

This	section	will	cover	setting	this	configuration	on	an	ESXi	host.

Getting	ready
To	work	in	this	section,	you	will	need	to	open	a	PowerCLI	window,	connect	to	an	ESXi
host,	and	populate	the	$esxihost	variable	with	a	VMHost	object.

How	to	do	it…
1.	 PowerCLI	provides	the	Get-AdvancedConfig	cmdlet	that	lets	us	peer	into	the

advanced	settings	of	the	ESXi	host.	Even	in	the	GUI,	the	syslog	settings	for	an	ESXi
host	are	set	within	the	Advanced	Configuration	setting.	If	you	enumerate	all	of	the
advanced	settings	and	then	scope	for	items	with	syslog.global,	you	will	see	the
settings	you	want	to	adjust	to	set	centralize	logging:

$esxihost	|	Get-AdvancedSetting	|	Where	{$_.Name	-like	

"syslog.global*"}

The	two	settings	you	want	to	adjust	are:	logDirUnique	that	sets	a	subdirectory	for
each	host	in	the	cluster,	and	logDir	that	sets	the	centralized	location.

2.	 The	logDirUnique	setting	is	an	easy	one.	First,	you	will	need	to	scope	down	to
retrieve	just	that	setting	and	then	pipe	it	into	the	Set-AdvancedSetting	cmdlet:

$esxihost	|	Get-AdvancedSetting	|	Where	{$_.Name	-like	

"Syslog.global.logDirUnique"}	|	Set-AdvancedSetting	-value	$true	-

Confirm:$false

3.	 The	second	directory	takes	a	bit	more	configuration.	The	logDir	setting	is	a	string
that	defines	a	storage	path.	So	in	our	case,	you	need	to	figure	out	which	datastore
we’re	going	to	locate	the	syslog	files	onto.	The	VMFS	datastore	is	identified	as	a
bracketed	name,	which	is	followed	by	a	path	name.	In	the	earlier	example,	you
created	a	datastore	called	iSCSIDatastore1	and	you	will	now	use	it	as	our	syslog
global	directory:

$esxihost	|	Get-AdvancedSetting	|	Where	{$_.Name	-like	

"Syslog.global.logDirUnique"}	|	Set-AdvancedSetting	-value	"

[iSCSIDatastore1]	syslog"	-Confirm:$false

Alternatively,	if	you	want	to	direct	all	log	files	to	a	centralized	syslog	server,	you	can
set	this	setting,	the	Syslog.global.logHost	value.

4.	 To	set	the	syslog	host	value,	you	will	use	the	same	cmdlet	used	to	set	the	previous
values	for	syslog,	except	that	you	will	alter	the	advanced	setting	used	in	the	Where
statement.	The	value	should	be	Syslog.global.logHost	to	locate	the	correct	value	to
be	set:

$esxihost	|	Get-AdvancedSetting	|	Where	{$_.Name	-like	

"Syslog.global.logHost"}	|	Set-AdvancedSetting	-value	"	

tcp://syslogserver:514	"	-Confirm:$false

How	it	works…
The	vSphere	Advanced	Settings	control	the	syslog	functions.	There	are	properties	in	the
advanced	settings	that	control	how	often	and	at	what	frequency	to	roll	the	log	files,	and	in
this	example,	where	to	store	the	global	syslog	directory,	and	whether	to	make	a	unique
subdirectory	for	this	host’s	log	files.

The	Get-AdvancedSetting	and	Set-AdvancedSetting	cmdlets	expose	and	allow	us	to	set
these	Advanced	Settings	from	PowerCLI.

Setting	the	global	log	directory	requires	the	administrator	to	choose	a	datastore	and	a
subdirectory	on	which	to	create	these	log	files.	The	format	of	the	path	is	set	by	using	the
bracketed	datastore	name	and	then	a	relative	path	inside	the	datastore.	This	is	a	path
definition	that	vSphere	understands,	but	it	is	also	specific	to	vSphere.	It	uses	a	Linux-like
path	definition,	but	it	begins	inside	the	datastore	location.

There’s	more…
In	general,	it’s	best	to	leave	vSphere	advanced	settings	with	their	default	values	unless
instructed	to	make	changes	by	VMware	support.	The	vSphere	advanced	settings	can	alter
the	behavior	of	ESXi	significantly	and	should	be	done	with	caution.

Joining	an	ESXi	host	to	vCenter
Joining	an	ESXi	host	to	vCenter	is	done	from	vCenter.	The	cmdlets	for	adding	a	host	to	a
vCenter	installation	all	require	communication	with	vCenter.	In	this	section,	we’ll	connect
to	vCenter	and	add	the	host	into	inventory.	All	additional	configuration	to	vCenter	from
PowerCLI	will	be	covered	in	the	next	chapter.

Getting	ready
Open	a	new	PowerCLI	window.	This	will	ensure	that	no	variables	are	populated	and	no
open	connection	to	an	ESXi	is	lingering.

How	to	do	it…
In	this	example,	you	will	connect	to	a	vCenter	Server	instead	of	directly	connecting	to	an
ESXi	host.	Our	vCenter	server	has	the	hostname:	vcentersrv.domain.local.

1.	 To	connect	to	vCenter,	use	the	same	cmdlet	that	you	used	in	the	Connecting	to	an
ESXi	host	or	a	vCenter	instance	recipe:

$vcenter	=	connect-viserver	vcentersrv.domain.local	

Note
The	same	certificate	warning	might	be	displayed	and	you	might	be	prompted	to	log
in	if	your	computer	cannot	single	sign-in	to	the	vCenter	instance.

2.	 Once	connected	to	vCenter,	you	can	use	the	Add-VMHost	to	add	the	host	into
inventory:

Add-VMHost	-Server	$vcenter	-Name	esxsrv1.domain.local	-Location	

"Primary"

Note
For	the	purpose	of	this	section,	the	value	of	-Location	is	assumed	to	be	a	datacenter
object	already	created	in	vCenter.	In	the	next	chapter,	you’ll	see	code	on	how	to
create	this	datacenter	object.

3.	 When	prompted,	enter	the	administrative	account	credentials	for	the	ESXi	to	perform
the	join	operation.

4.	 The	host	is	now	added	to	vCenter	Server	and	can	be	administered	by	the	server.

How	it	works…
Joining	an	ESXi	to	vCenter	is	a	simple	cmdlet	to	configure	and	complete.	It	simply	links
the	ESXi	into	vCenter	so	that	all	of	the	additional	configuration	and	control	will	be
directed	from	the	vCenter	host.

At	this	point,	connecting	to	the	ESXi	host	will	display	a	message	in	the	GUI	clients	that
shows	it’s	being	managed	by	vCenter	and	that	all	changes	should	be	made	through
vCenter.	That	is	mostly	the	case	from	PowerCLI	too,	but	there	might	be	additional	times
when	configuration	needs	to	be	made	directly	against	a	host.	One	example	would	be	to
change	multipathing	settings	for	storage.

See	also
The	Creating	a	virtual	datacenter	in	vCenter,	Creating	a	cluster	and	adding	ESXi
hosts,	and	Setting	cluster	advanced	features,	including	HA,	DRS,	and	EVC	recipes	in
Chapter	2,	Configuring	vCenter	and	Computing	Clusters

Creating	a	configuration	script	to	set	all
properties	uniformly
In	this	section,	you	are	going	to	cover	all	of	the	cmdlets	that	have	been	covered	in	this
chapter	by	bringing	them	together	into	a	single	script.	This	script	will	allow	us	to	take	an
array	of	ESXi	hosts	identified	by	either	their	hostname	or	IP	address	and	to	run	the	full
scripted	configuration	against	them.

In	many	ways,	this	PowerCLI	script	will	function	much	like	a	Host	Profile	in	vSphere.
Host	Profiles	are	a	configuration	definition	that	can	be	created	from	an	existing,
configured	host	and	applied	on	hosts	to	establish	a	desired	configuration	state.	If	hosts
deviate	from	the	configuration,	the	profile	might	be	reapplied	to	remediate	any	undesired
changes.

Unfortunately,	Host	Profiles	are	only	available	to	customers	with	Enterprise	Plus
licensing.	However,	this	PowerCLI	solution	will	work	for	any	vSphere	customer	with
Essentials,	Essentials	Plus,	Standard,	or	Enterprise	licensing.

Getting	ready
For	this	last	recipe	of	the	chapter,	you’ll	most	likely	want	to	open	something	such	as
PowerShell	ISE.	PowerShell	ISE	provides	you	with	additional	tools	to	edit	larger	scripts,
color	code	the	cmdlets,	and	ensure	that	there	are	no	syntax	errors.	Alternatively,	you	might
want	a	text	editing	tool	such	as	NotePad,	NoteTab	Light,	Sublime	Text,	or	NotePad++.

How	to	do	it…
1.	 First	things	first,	let’s	begin	with	pseudocode/documentation	of	what	you	want	to

accomplish.	In	between	each	of	these	sections,	you	will	insert	the	code	you	have
previously	developed	individually	and	put	them	into	a	full	file:

#	Script	to	mass	configure	ESXi	hosts

#	Step	1	-	Store	credentials	for	ESXi	hosts

#	Step	2	–	Set	a	list	of	target	ESXi	hosts	and	IP	settings

#	Step	3	–	Write	a	ForEach	loop	to	iterate	through	hosts

#	Step	4	–	Connect	to	ESXi	host

#	Step	5	–	Obtain	a	VMHost	object	to	use	for	configuration

#	Step	6	–	Join	the	ESXi	system	to	Active	Directory

#	Step	7	–	Enable	services	on	the	ESXi	host	&	set	firewall

#	Step	8	–	Configure	the	network	settings

#	Step	9	–	Configure	NFS	&	iSCSI	settings

#	Step	10	-	Join	hosts	to	vCenter

#	Step	11	-	Rescan	for	storage	changes

#	Step	12	–	Configure	persistent	syslog	storage

2.	 Since	you	want	this	script	to	do	as	much	without	any	manual	intervention,	you	will
want	to	try	and	eliminate	as	many	prompts	as	possible.	Since	you	will	be	connecting
to	and	executing	commands	on	multiple	ESXi	hosts,	you	would	normally	get
prompted	to	login	each	time	you	connect	to	a	host.	To	avoid	this,	you	can	store	the
credentials	in	a	variable	and	pass	them	to	each	connect-viserver	cmdlet.

#	Step	1	-	Store	credentials	for	ESXi	hosts

$esxiCreds	=	Get-Credential

Note
When	you	first	covered	connecting	to	ESXi	servers	from	PowerCLI,	you	experienced
the	login	box	for	the	host.	The	Get-Credentials	cmdlet	causes	the	same	action	but
returns	a	credentials	object	that	can	be	reused.	For	now,	you’ll	proceed	with	the
stored	credentials	and	you	will	use	them	in	a	later	step.

3.	 You’re	going	to	use	an	array	of	hostnames	to	connect	to	individual	ESXi	hosts	for
configuration.	To	create	the	array,	you	set	a	variable	and	store	a	comma	separated	list
of	addresses	to	connect	to.	The	addresses	can	either	be	hostnames	or	IP	addresses.
For	this	example,	you	will	use	IP	addresses,	but	they	can	easily	be	fully	qualified
domain	names:

#	Step	2	-	Set	a	list	of	target	ESXi	hosts	and	IP	settings

$esxiTargets	=	"192.168.0.241","192.168.0.242",	"192.168.0.243",	

"192.168.0.244"

4.	 For	the	network	configuration	settings,	you	will	need	to	set	up	some	additional
settings.	Since	each	host	has	three	additional	vmkernel	ports	configured,	you	need	to
build	a	different	address	for	each	of	these	to	be	used	in	Step	8.	To	allow	this,	you	will
create	three	additional	variables	that	contain	the	first	three	octets	of	the	network	for
each	vmkernel	port:

$vMotionNetwork	=	"192.168.50."

$storageNetwork	=	"192.168.100."

$ftlogNetwork	=	"192.168.200."

5.	 The	next	step	is	to	go	back	and	pull	in	all	of	the	code	you	had	previously	written	in
one	form	or	another.	For	this,	you	will	reuse	the	ForEach	loop	to	execute	the	cmdlets
on	multiple	ESXi	hosts:

#	Step	3	-	Write	a	ForEach	loop	to	iterate	through	hosts

ForEach	($hostname	in	$esxiTargets)	{

6.	 The	curly	brace	marks	the	beginning	of	the	ForEach	loop.	You	will	close	the	loop
with	a	right	curly	brace	later	in	the	script.	Inside	the	loop,	you’re	going	to	include
Steps	4	–	9	from	the	outline.

7.	 For	the	next	step,	you’re	going	to	use	our	stored	credentials	to	connect	to	an	ESXi
host.	Immediately	after	this,	you	will	store	our	VMHost	object	for	use	throughout	the
rest	of	the	loop:

#	Step	4	-	Connect	to	ESXi	host

$connectedHost	=	connect-viserver	$hostname	-Credential	$esxiCreds

#	Step	5	–	Obtain	a	VMHost	object	to	use	for	configuration

$esxihost	=	Get-VMHost	$hostname

8.	 For	the	next	several	steps,	you’re	just	going	to	pull	code	you	have	already	developed.
Since	each	step	was	covered	in	depth,	you	will	just	bring	over	the	code:

#	Step	6	–	Join	the	ESXi	system	to	Active	Directory

$esxihost	|	Get-VMHostAuthentication	|	

Set-VMHostAuthentication	-JoinDomain	-Domain	domain.local	-user	

username	-password	*****	-Confirm:$false

#	Step	7	–	Enable	services	on	the	ESXi	host	&	set	firewall

$esxihost	|	Get-VMHostService	|	where	{	$_.key	-eq	"TSM-SSH"	}	|	Set-

VMHostService	-Policy	"On"	-Confirm:$false

$esxihost	|	Get-VMHostService	|	where	{	$_.key	-eq	"TSM-SSH"	}	|	Start-

VMHostService	-Confirm:$false

#	Step	8	–	Configure	the	network	settings

$esxihost	|	Get-VirtualPortGroup	-Name	"VM	Network"	|	Remove-

VirtualPortGroup	–Confirm:$false	

9.	 For	the	network	settings,	you	will	need	three	additional	IP	addresses	for	the	vMotion,
Storage,	and	FT	Logging	vmkernel	ports.	You	will	compute	these	addresses	using	the
last	octet	of	the	service	console	IP.	To	do	this,	you	will	first	retrieve	the	IP	address	of
the	host:

$esxihost_ipaddress	=	$esxihost	|	Get-VMHostNetworkAdapter	-name	vmk0

10.	 Next,	you	will	split	the	string	based	on	the	period	between	octets,	then	take	the	last
octet	of	the	IP	address	and	store	it	as	a	variable.	The	IP	is	in	a	property	called	IP.	To
split	that	IP	into	an	array,	you	will	use	the	Split()	method,	which	is	a	built-in
PowerShell	method	that	transforms	a	string	into	an	array	by	separating	characters

with	the	character	passed	into	the	method.

For	instance,	you	want	to	separate	the	string	at	the	periods	of	the	IP	address,	so	you
pass	"."	into	the	Split()	method.	Since	the	Split()	method	turns	it	into	an	array,
you	can	then	reference	the	element	you	want	to	return	–	the	fourth	element.	However,
remember	arrays	begin	count	at	0,	so	you	will	return	element	3	using	square	brackets.

$lastOctet	=	$esxihost_ipaddress.IP.Split(".")[3]

Note
Because	data	is	stored	in	objects,	objects	have	both	properties	and	methods.	Methods
perform	operations	on	the	data	of	the	object	and	properties	contain	the	data	of	the
object.	In	subsequent	recipes	throughout	this	book,	you	will	look	at	and	use	other
methods	to	gain	more	experience	using	built-in	PowerShell	functionality	to
manipulate	data	stored	in	objects.

11.	 The	last	step	to	build	the	address	for	this	host	in	the	ForEach	loop	is	to	concatenate
the	final	octet	with	the	network	strings	to	build	a	full	IP	address:

$vmotionIP	=	$vMotionNetwork	+	$lastOctet

$storageIP	=	$storageNetwork	+	$lastOctet

$ftlogIP	=	$ftlogNetwork	+	$lastOctet

12.	 Now	that	your	unique	IP	addresses	are	created	on	the	three	additional	networks,	you
can	use	them	with	the	cmdlets	you	wrote	in	the	Setting	network	configuration	recipe.

$esxihost	|	New-VMHostNetworkAdapter	-PortGroup	"VMotion	Network"	-

VirtualSwitch	vSwitch0	-IP	$vmotionIP	-SubnetMask	255.255.255.0	-

VMotionEnabled	$true

$esxihost	|	Get-VirtualPortGroup	-Name	"VMotion	Network"	|	Set-

VirtualPortGroup	–VlanID	50

#	Create	new	virtual	switch	for	Storage	and	FT	Logging

$esxihost	|	New-VirtualSwitch	-Name	vSwitch1	-Nic	vmnic2,vmnic3

#	Create	vmkernel	ports	for	Storage	and	FT	Logging

$esxihost	|	New-VMHostNetworkAdapter	-PortGroup	"Storage	Network"	-

VirtualSwitch	vSwitch1	-IP	$storageIP	-SubnetMask	255.255.255.0	-

VsanTrafficEnabled	$true

$esxihost	|	Get-VirtualPortGroup	-Name	"Storage	Network"	|	Set-

VirtualPortGroup	–VlanID	100

$esxihost	|	New-VMHostNetworkAdapter	-PortGroup	"FT	Logging	Network"	-

VirtualSwitch	vSwitch1	-IP	$ftlogIP	-SubnetMask	255.255.255.0	-

FaultToleranceLoggingEnabled	$true

$esxihost	|	Get-VirtualPortGroup	-Name	"FT	Logging	Network"	|	Set-

VirtualPortGroup	–VlanID	200

#	Create	new	Virtual	Switch	for	Virtual	Machines

$esxihost	|	New-VirtualSwitch	-Name	vSwitch2	-Nic	vmnic4,vmnic5

#	Create	Port	Groups	for	Virtual	Machines

New-VirtualPortGroup	-Name	"Infrastructure	Network"	-VirtualSwitch	

vSwitch2	-VLanId	1	-Server	$connectedhost

New-VirtualPortGroup	-Name	"Application	Network"	-VirtualSwitch	

vSwitch2	-VLanId	2	-Server	$connectedhost

#	Step	9	–	Configure	NFS	&	iSCSI	settings

#	Connect	NFS	datastore

$esxihost	|	New-Datastore	-Nfs	-Name	DataStoreName	-Path	/data1/export	

-NfsHost	nfsserver.domain.local

#	Configure	iSCSI	Settings

$esxihost	|	Get-VMHostStorage	|	Set-VMHostStorage	-SoftwareIScsiEnabled	

$true$iSCSIhba	=	$esxihost	|	Get-VMHostHba	-Type	iScsi

New-IScsiHbaTarget	-IScsiHba	$iSCSIhba	-Address	$target	-ChapType	

Required	-ChapName	vSphere	-ChapPassword	Password1

$esxcli	=	Get-ESXCLI	-VMHost	$esxihost

$esxcli.iscsi.networkportal.add($iscsihba,	$true,"vmk2")

13.	 The	final	part	of	the	ESXi	host	configuration	is	closing	the	ForEach	loop	and	then
disconnecting	from	this	host	so	that	you	can	connect	to	the	next	host:

Disconnect-VIServer	-Server	$connectedHost	-Confirm:$false

}

At	this	point	in	the	initial	configuration,	you	would	want	to	format	your	datastores	on
iSCSI	or	Fibre	Channel	arrays,	but	this	is	not	really	a	repeatable	set	of	steps.	I	would
suggest	one	of	the	two	things—either	configure	the	datastore	manually	from
PowerCLI	or	configure	it	from	the	GUI	and	then	come	back	and	run	the	remainder	of
the	script.	Since	the	focus	of	this	example	is	to	make	a	repeatable	configuration
script,	the	datastore	formatting	doesn’t	fit	since	it	is	a	command	used	just	one	time	.

14.	 The	next	step	is	to	take	our	hosts	and	connect	them	to	vCenter.	The	easiest	way	to	do
this	is	to	connect	to	vCenter	and	then	use	Add-VMHost	to	add	them	into	inventory.
While	in	the	same	ForEach	loop	to	accomplish	this,	you	can	set	central	syslog	and
rescan	the	hosts	for	all	storage	changes:

$vcenter	=	connect-viserver	vcentersrv.domain.local

$datacenter	=	Get-Datacenter	"Primary"

Note
For	the	purpose	of	this	script,	you	are	going	to	assume	that	vCenter	already	has	a
datacenter	created	and	named	“Primary.”	You	will	use	this	location	to	place	the	ESXi
host	into	vCenter.

15.	 Next,	you	will	run	through	an	additional	ForEach	loop	to	add	the	hosts	and	set	their
settings	in	vCenter:

ForEach	($hostname	in	$esxTarget)	{

16.	 Now,	you	are	ready	to	add	the	host	into	vCenter	from	the	Joining	an	ESXi	host	to
vCenter	recipe:

#	Step	10	-	Join	hosts	to	vCenter

Add-VMHost	-Server	$vcenter	-Name	$hostname	l	-Location	$datacenter	-

Credential	$esxiCreds

17.	 After	adding	the	host	to	vCenter,	you	want	to	store	a	VMHost	object	pointing	to	the
host	to	use	with	later	cmdlets	in	this	loop:

$esxihost	=	Get-VMHost	$hostname

18.	 For	the	next	few	steps,	you	will	pull	the	host	settings	related	to	rescanning	for
datastores	and	setting	the	syslog	settings:

#	Step	11	-	Rescan	for	storage	changes

$esxihost	|	Get-VMHostStorage	-RescanAllHBA	-RescanVmfs

#	Step	12	–	Configure	persistent	syslog	storage

$esxihost	|	Get-AdvancedSetting	|	Where	{$_.Name	-like	

"Syslog.global.logDirUnique"}	|	Set-AdvancedSetting	-value	$true	-

Confirm:$false

$esxhost	|	Get-AdvancedSetting	|	Where	{$_.Name	-like	"logDir"}	|	Set-

AdvancedSetting	-value	"[iSCSIDatastore1]	syslog"	-Confirm:$false

19.	 Finally,	you	will	close	the	loop	with	a	right	curly	brace.

}

Note
With	connect-viserver,	you	might	have	to	log	in	a	second	time	in	the	script	with
different	credentials	to	vCenter	versus	individual	hosts.	Afterwards,	the	hosts	should	be
populated	into	vCenter.

Finally,	your	settings	and	desired	state	should	be	fully	transferred	to	the	ESXi	host	by	the
script.

How	it	works…
In	this	example,	you	wrap	up	all	of	the	code	you	have	developed	throughout	the	chapter.
You	bring	together	the	pieces	of	code	that	achieve	specific	tasks	into	a	fully	scripted
configuration	that	you	can	apply	toward	a	number	of	ESXi	hosts.	The	script	gives	us
repeatability,	so	when	you	need	to	extend	the	cluster	with	a	new	ESXi,	or	when	you
rebuild	the	host	because	you’ve	replaced	or	upgraded	the	hardware,	you	can	run	this	script
against	it	and	be	back	to	the	same	working	condition	as	before	replacement.

The	basis	of	the	script	is	a	ForEach	loop.	Because	you	define	the	ESXi	hosts	in	an	array,
you	can	connect	to	each	of	them	and	run	all	of	the	commands	and	then	move	the	next
entry	in	the	array.	The	script	also	suppresses	confirmation	dialogs	so	that	it	can	continue	to
issue	cmdlets	against	the	host.	You	also	stored	the	login	credentials,	which	means	that	you
only	have	to	log	in	once	and	the	script	will	use	the	same	credentials	to	connect	and
configure	all	of	the	hosts	in	the	defined	array.

See	also
VMware	vSphere	Host	Profiles	at
http://www.vmware.com/products/vsphere/features/host-profiles

http://www.vmware.com/products/vsphere/features/host-profiles

Chapter	2.	Configuring	vCenter	and
Computing	Clusters
In	this	chapter,	you	will	cover	the	following	topics:

Creating	a	virtual	datacenter	in	vCenter
Creating	a	cluster	and	adding	ESXi	hosts
Setting	cluster	advanced	features,	including	HA,	DRS,	and	EVC
Setting	up	resource	pools
Setting	up	folders	to	organize	objects	in	vCenter
Setting	permissions	on	vCenter	objects

Introduction
A	single	ESXi	host	allows	you	to	run	multiple	virtual	machines	on	a	single	server,	but	to
tap	the	full	potential	of	power	from	vSphere,	you’re	going	to	need	vCenter	and	clusters	of
ESXi	hosts.	This	chapter	will	cover	the	basic	concepts	of	creating	and	managing	pools	of
resources	using	vCenter	and	multiple	ESXi	hosts.

vCenter	is	an	increasingly	critical	part	of	the	vSphere	infrastructure	since	it	handles	the
coordination	of	clustering	and	automation	across	multiple	ESXi	hosts.	This	drives	the
change	and	increases	the	complexity	of	vCenter	deployments	in	each	new	version	of
vSphere.	Even	while	the	vCenter	deployments	are	becoming	more	complex,	VMware	is
working	to	try	and	ease	that	management	by	packaging	the	solution	in	simpler	ways.
vSphere	5.1	introduced	the	new	Single	Sign-On	(SSO)	service	to	the	platform,	and
vSphere	5.5	streamlined	deployment	of	the	SSO’s	second	version	in	vSphere.	vSphere	5.5
also	improved	the	virtual	appliance	version	of	vCenter,	known	as	the	vCenter	Server
Appliance	(VCSA).	With	version	6.0,	the	SSO	service	has	grown	into	the	Platform
Services	Controller	(PSC).	In	addition	to	SSO,	the	PSC	includes	licensing,	a	certificate
authority,	and	a	centralized	certificate	store.	The	PSC	can	also	replicate	data	between
multiple	instances	of	itself.

For	the	purpose	of	this	chapter,	you	assume	that	vCenter	is	set	up	and	it	is	in	an
operational	state.	If	you	do	not	already	have	vCenter	running,	deploying	VCSA	as	a
virtual	appliance	is,	by	far,	the	easiest	way	to	get	it	running	and	functional	for	your
environment.

For	deploying	VCSA	for	version	5.5,	following	the	prompts	in	the	Deploy	OVF
Template…	menu	option	of	the	GUI	is	the	easiest	way	to	deploy	vCenter.	The
deployment	of	vCenter	is	not	within	the	scope	of	this	book	since	it	really	requires	the	GUI
to	deploy.	Even	though	PowerCLI	can	deploy	virtual	appliances,	it	misses	answering	the
critical	questions	needed	for	the	successful	VCSA	deployment.

If	you	are	deploying	VCSA	for	version	6.0	and	you	are	using	VMware	Workstation,
VMware	Fusion,	or	even	standalone	ESXi	to	deploy	your	VCSA,	using	the	VMware	OVF
Tool	is	a	quick	and	automated	method.	OVF	Tool	allows	you	to	define	the	passwords,	IP
addresses,	and	other	information	needed	for	VCSA	to	perform	its	configuration	during	the
first	boot.	Without	these	parameters,	the	VCSA	fails	to	configure	on	first	boot	and	you
receive	an	error.	Blogger	William	Lam	has	a	post	and	scripted	installation	using	the	OVF
Tool	at	http://www.virtuallyghetto.com/2015/02/ultimate-automation-guide-to-deploying-
vcsa-6-0-part-1-embedded-node.html.

http://www.virtuallyghetto.com/2015/02/ultimate-automation-guide-to-deploying-vcsa-6-0-part-1-embedded-node.html

Creating	a	virtual	datacenter	in	vCenter
vSphere	has	several	defined	objects	that	are	used	to	create	virtual	datacenters.	For
example,	an	object	named	Datacenter	sits	at	the	root	of	vSphere	and	allows	the	clusters
and	other	host	infrastructures	to	be	placed	inside	the	virtual	datacenter.	Installations	might
have	multiple	datacenters;	however,	most	VMware	administrators	use	additional
datacenter	objects	in	vSphere	to	represent	a	physical	site	and	use	the	datacenter	object	as	a
boundary	where	the	infrastructure	exists.	In	this	recipe,	you	will	take	a	look	at	the	code
needed	to	create	your	new	datacenter	object	in	vCenter.

Getting	ready
For	this	recipe,	you	will	need	to	open	a	PowerCLI	prompt,	you	need	the	DNS	name	or	IP
address	of	your	vCenter	host,	and	the	password	for	the	default	administrator	account	in
vCenter.

How	to	do	it…
In	order	to	create	a	virtual	datacenter,	and	to	create	new	datacenter	object	in	vCenter,
perform	the	following	steps:

1.	 The	first	step	is	to	connect	to	your	vCenter	server.	You	need	to	use	the	same	cmdlet
to	connect	to	vCenter	that	you	use	to	connect	to	a	single	ESXi	host:	the	Connect-
VIServer	cmdlet:

Connect-VIServer	vcentersrv.domain.local

2.	 Log	in	with	the	default	Administrator@vsphere.local	account	created	during	the
VCSA	deployment	or	vSphere	SSO	installation.	When	you	log	in	successfully,	a
prompt	will	be	displayed	that	shows	the	server	you	are	successfully	connected	to,	as
shown	in	the	following	screenshot:

3.	 To	start,	let’s	run	the	Get-Datacenter	cmdlet	with	no	additional	parameters	to	see
whether	there	are	any	existing	objects	in	vCenter.	On	a	fresh	vCenter	install,	there	is
no	output:

Get-Datacenter

4.	 To	configure	a	new	datacenter,	the	cmdlet	is	New-Datacenter,	which	is	very
straightforward.	Logically,	you	just	need	to	provide	a	name	for	your	datacenter,	and	it
will	create	a	datacenter	on	the	vCenter:

New-Datacenter	-Name	"Primary"

5.	 If	you	run	the	preceding	cmdlet,	you’ll	receive	an	error	that	a	mandatory	parameter
and	location	is	missing.	However,	if	this	is	a	brand	new	vCenter	installation,	which
location	would	you	possibly	pass	into	this	cmdlet?

6.	 To	answer	this	question,	you	will	run	the	Get-Folder	cmdlet	to	see	whether	there	are

any	folder	locations	that	you	might	be	able	to	use.	You	will	add	a	-NoRecursion
parameter	because	you	only	want	to	return	the	top-level	results:

Get-Folder	-NoRecursion

Name																														Type

----																														----

Datacenters																							Datacenter

7.	 Interestingly,	there	is	a	root	folder	called	Datacenters	that	exists	by	default.	That’s	a
location	you	can	pass	into	this	cmdlet.

8.	 So,	the	next	step	is	to	put	the	two	cmdlets	together	and	create	our	datacenter.	You	will
repeat	the	New-Datacenter	cmdlet	and	you	will	specify	-Location	this	time	with	the
cmdlet	in	Step	4	returning	the	Datacenters	folder:

New-Datacenter	-Name	"Primary"	-Location	(Get-Folder	-NoRecursion)

Name

Primary

9.	 The	resultant	output	confirms	that	a	new	datacenter	called	Primary	has	been	created.
If	you	rerun	the	Get-Datacenter	cmdlet,	now,	it	has	the	same	output.

How	it	works…
The	cmdlet	that	actually	creates	a	new	datacenter	is	very	straightforward.	The	only	point
of	confusion	is	a	required	-Location	parameter.	This	requirement	is	confusing	because
there	are	no	objects	in	vCenter	on	a	fresh	install.	However,	as	you	explore	the	Get-Folder
cmdlet,	you	will	find	that	a	default	Datacenters	folder	is	created	during	the	installation	of
vCenter	and	it	is	meant	to	hold	new	datacenter	objects.	The	following	diagram	depicts	the
hierarchy:

At	the	top	level	is	the	root	folder	of	vCenter.	Inside	the	root	folder	is	the	Datacenters
folder.	Before	a	datacenter	is	created,	root	is	the	only	folder	that	exists	in	vCenter.	The
new	Primary	datacenter	that	you	created	is	located	inside	the	Datacenters	folder.	Inside
Primary,	four	additional	folders	are	automatically	created	that	correspond	to	the	four
views	that	you	see	in	the	vSphere	Client.	Each	of	these	are	special	folders	used	by	vCenter
services	to	house	the	inventory	items.

By	passing	location	in	the	Datacenters	folder	using	Get-Folder	-NoRecursion,	you
know	that	you	are	passing	location	in	the	root	folder	where	our	datacenter	named	Primary
should	be	created.	If	you	rerun	Get-Folder	|	Select	*	after	creating	the	datacenter,	you
will	see	the	additional	objects	in	the	preceding	figure,	and	you	will	see	that	their	Parent
parameter	is	defined	as	Primary.

Creating	a	cluster	and	adding	ESXi	hosts
Clusters	are	the	basis	for	everything	that	is	great	within	vSphere.	Clusters	are	the	level
where	individual	resources	become	pooled	and	shared	for	virtual	machines.	Clusters	allow
all	higher-level	functionalities	within	vSphere,	such	as	an	automatic	restart	after	a
hardware	failure	and	dynamic	balancing	of	workloads.	Individual	ESXi	hosts	and	clusters
can	exist	at	the	same	level	under	a	datacenter	object	in	vSphere.

In	this	recipe,	you	will	walk	through	the	steps	necessary	to	set	up	your	first	cluster	of
servers	in	vCenter.	You	will	be	reusing	the	same	four	ESXi	hosts	that	you	configured	in
the	Creating	a	configuration	script	to	set	all	properties	uniformly	recipe	from	Chapter	1,
Configuring	the	Basic	Settings	of	an	ESXi	Host	with	PowerCLI.

Getting	ready
This	chapter	assumes	that	your	vCenter	has	the	datacenter	object	defined	and	that	you
have	individual	ESXi	hosts	connected	or	managed	by	vCenter.	In	this	example,	you	will
call	the	Primary	datacenter,	like	you	defined	in	the	previous	recipe.	You	will	need	to	open
a	PowerCLI	prompt	and	connect	to	your	vCenter	instance.

vSphere	clusters	have	several	advanced	features,	and	when	creating	the	cluster,	you	will
want	to	enable	these	features	in	most	cases.	In	this	example,	you	will	enable	High
Availability	(HA)	and	Dynamic	Resource	Scheduling.	You	will	also	set	the	DRS	mode
to	FullyAutomated.	In	the	next	recipe,	you	will	look	at	configuring	these	cluster	settings.

How	to	do	it…
In	order	to	set	up	your	first	cluster	of	servers	in	vCenter	by	reusing	the	same	four	ESXi
hosts	that	you	have	configured	earlier,	perform	the	following	steps:

1.	 The	New-Cluster	cmdlet	is	very	simple.	If	you	perform	a	Get-Help	cmdlet	on	this
cmdlet,	you	will	see	a	number	of	additional	parameters	that	you	can	define,	but	in	its
simplest	form,	New-Cluster	only	requires	two	parameters:	a	location	and	a	name:

New-Cluster	-Location	(Get-Datacenter	-Name	"Primary")	-Name	BigCluster	

-HAEnabled	-DRSEnabled	-DRSAutomationLevel	FullyAutomated

2.	 A	confirmation	output	will	follow	and	you	can	confirm	whether	the	new	cluster	was
created	using	the	Get-Cluster	cmdlet.

3.	 The	next	step	is	to	add	a	host	to	a	cluster.	For	this,	you	will	use	the	familiar	Get-
VMHost	cmdlet	to	find	our	existing	host	and	then	use	the	Move-VMHost	cmdlet	to
move	it	into	the	cluster,	passing	the	cluster	object	as	the	location:

Get-VMHost	esxsrv1.domain.local	|	Move-VMHost	-Destination	(Get-Cluster	

-Name	"BigCluster")

4.	 If	you	had	not	previously	added	the	host	to	vCenter,	you	could	simply	use	the	Add-
VMHost	cmdlet	that	you	used	in	the	Joining	an	ESXi	host	to	vCenter	recipe	in	Chapter
1,	Configuring	the	Basic	Settings	of	an	ESXi	Host	with	PowerCLI,	and	specify	-
Location	to	be	our	newly	created	cluster.	In	vCenter	Server	6,	you	also	need	to	add
the	-Force:$true	parameter.	vCenter	Server	6	checks	the	SSL	thumbprint	of	the	host
and	if	it’s	not	trusted,	the	Add-Host	cmdlet	will	fail.	The	-Force	parameter	will	make
this	host	add,	even	with	an	untrusted	certificate.

Add-VMHost	-Name	esxsrv1.domain.local	-Location	(Get-Cluster	

"BigCluster")	-Force:$true

How	it	works…
Creating	a	cluster	on	vSphere	is	pretty	simple.	A	cluster	can	exist	without	any	hosts	in	it,
but	there’s	no	reason	to	set	up	empty	clusters.	Adding	hosts	to	the	cluster	begins	to	build	a
functional	pool	of	resources	for	your	virtual	machines	to	share.

Creating	a	cluster	only	needs	a	location	and	a	name.	Everything	beyond	these	parameters
is	optional,	but	you	can	get	much	more	detailed	information	if	you	like	by	enabling	and
configuring	advanced	features,	such	as	DRS	and	HA,	from	the	same	cmdlet.

There’s	more…
In	the	previous	chapter,	we	covered	how	to	add	an	individual	host	to	vCenter	and
configure	multiple	hosts	with	the	same	configuration.	This	recipe	takes	a	step	further	and
allows	you	to	create	clusters	using	individual	ESXi	hosts	with	similar	configurations.

Admitting	the	first	host	into	a	cluster	is	simple	from	PowerCLI,	but	it	certainly	has
implications	for	the	new	cluster.	The	first	host	of	the	cluster	defines	some	things	about	the
cluster	and	determines	what	can	be	added	in	the	future.	Hosts	should	contain	compatible
processors	or	should	have	other	settings	configured	to	make	disliked	processors	from	the
same	vendor	more	compatible	with	each	other.	These	settings	are	EVC	settings	and	we
will	cover	these	in	the	next	recipe.

See	also
The	Joining	an	ESXi	host	to	vCenter	and	Creating	a	configuration	script	to	set	all
properties	uniformly	recipes	in	Chapter	1,	Configuring	the	Basic	Settings	of	an	ESXi
Host	with	PowerCLI

Setting	cluster	advanced	features,
including	HA,	DRS,	and	EVC
The	previous	recipe	mentioned	the	advanced	features	of	vSphere	clusters.	In	this	recipe,
you	will	configure	those	advanced	features	since	it	is	more	common	to	reconfigure	these
settings	than	to	initially	set	these	settings.

The	cluster	settings	you	are	going	to	be	working	with	are	HA,	DRS,	and	Enhanced
vMotion	Compatibility	(EVC)	settings.	In	the	vSphere	Client,	these	settings	are	exposed
in	the	Edit	Cluster	Settings	option.

Creating	a	cluster	is	a	one-time	event,	but	as	you	deploy	vSphere,	you	might	not	be	ready
to	automate	vMotions	or	Storage	vMotions	with	DRS	in	your	cluster	from	the	beginning.

However,	over	a	period	of	time,	your	comfort	level	with	these	automation	technologies
begins	to	increase	and	you	would	want	to	put	the	cluster	on	autopilot	and	change	the
automation	level	to	be	fully	automated.	You	will	cover	how	to	do	this	and	how	to	set	up
other	common	settings	from	PowerCLI.

PowerCLI	is	useful	for	these	settings	because	it	allows	you	to	repeat	the	same	cmdlet
against	multiple	clusters	in	large	environments,	or	to	change	your	configuration	and
change	it	back	easily	for	smaller	environments.	However,	even	cluster-wide	settings	are
just	the	beginning	of	what	you	can	configure	faster	in	PowerCLI	than	in	the	GUI.

DRS	rules	are	a	great	example	of	something	that	is	faster	to	configure	from	PowerCLI
than	in	the	GUI.	Since	you	can	use	the	Get-VM	cmdlet	to	quickly	return	an	object	with
multiple	VMs	matching	a	search	string,	you	can	pass	this	into	a	new	rule	instead	of
searching	and	clicking	multiple	times	on	the	GUI.

You	can	also	see	that	one	vSphere	advanced	clustering	feature	is	missing	from	this	recipe:
Fault	Tolerance	(FT).	The	reason	it	is	missing	from	this	configuration	recipe	is	that	the
only	requirements	for	Fault	Tolerance	to	work	were	already	configured	in	the	ESXi
configuration	from	Chapter	1,	Configuring	the	Basic	Settings	of	an	ESXi	Host	with
PowerCLI.	For	FT,	you	need	to	set	a	vmkernel	port	with	an	IP	address	and	enable	this	for
FT	logging.	There	is	no	additional	configuration	required.

Getting	ready
To	begin,	you	will	need	to	open	a	PowerCLI	window	and	log	into	a	vCenter	server.

In	this	recipe,	you	will	configure	the	availability	and	resource	balancing	features	of	a
cluster.	All	of	these	features	are	managed	at	a	cluster	level,	so	you	will	utilize	the	Get-
Cluster	cmdlet	to	specify	which	cluster	you	want	to	be	working	with.

Reconfiguring	the	cluster	settings	is	a	common	requirement	for	the	existing	clusters.	You
will	explore	simple	cmdlets	to	enable	and	disable	HA	or	DRS	on	a	cluster,	you	will	take	a
look	at	how	to	configure	the	additional	settings	used	for	the	restart	order	with	HA	and	how
workloads	are	balanced	with	DRS.

However,	DRS	doesn’t	stop	at	simply	balancing	workloads.	DRS	rules	expand	beyond
simply	spreading	the	load	evenly	across	the	hosts	in	a	cluster.	DRS	rules	can	dictate	which
VMs	should	coreside	on	the	same	host	and	which	VMs	should	never	reside	on	the	same
host.	The	latter	is	particularly	helpful	when	you	have	multiple,	identical	app	servers
fronted	by	a	load	balancer.	To	have	redundancy,	you	need	to	make	sure	that	a	hardware
failure	can’t	take	down	both	VMs	at	once.	You	will	also	examine	how	to	create	simple
DRS	rules	for	keeping	VMs	together	and	keeping	VMs	separated.

For	HA,	Admission	Control	is	a	feature	that	reserves	resources,	so	that	a	cluster	can
withstand	losing	one	or	more	hosts	without	negatively	impacting	the	performance.	This
setting	can	be	enabled	or	disabled,	and	you	can	also	adjust	the	number	of	hosts’	failures
that	the	cluster	can	accommodate.	The	cluster	reserves	resources	so	that	if	the	specified
numbers	of	hosts	fail,	the	VM	workloads	still	run	without	being	resource	constrained.
These	settings	prevent	users	from	powering	on	virtual	machines	if	the	resource	conditions
are	not	met.

Note
If	you	are	running	vCloud	Director,	DRS	is	required	and	must	not	be	disabled.

Since	HA	is	primarily	concerned	with	recovering	failed	virtual	machines,	there	are	two
additional	settings	that	you	can	set:	Isolation	Response	and	Restart	Priority.	Isolation
Response	sets	the	reactive	behavior	that	the	host	should	take	if	it	becomes	isolated	from
the	rest	of	the	cluster.	You	can	set	this	to	either	power	off	the	VMs	or	to	do	nothing.	The
Restart	Priority	setting	sets	the	default	priority	for	VMs	in	the	cluster	if	they	fail.	This	can
be	set	per	VM,	so	at	the	cluster	level	you	are	setting	the	default.	Ideally,	your	most	critical
VMs	are	manually	set	to	a	higher	level,	other	critical	VMs	to	medium,	and	management
systems	and	noncritical	systems	to	low.	It’s	also	important	to	note	that	if	Admission
Control	doesn’t	have	resources	to	restart	any	more	VM’s,	the	lowest	priority	VMs	would
be	left	powered	off.

How	to	do	it…
In	order	to	set	up	the	advanced	features	of	a	cluster,	including	HA,	DRS,	and	EVC,	that	is,
to	configure	the	availability	and	resource	balancing	features	of	a	cluster,	perform	the
following	steps:

1.	 Changes	to	any	existing	cluster	will	utilize	the	Set-Cluster	cmdlet.	The	Set-
Cluster	cmdlet	has	the	same	features	as	the	New-Cluster	cmdlet	you	used	in	the
previous	recipe.	With	Set-Cluster,	you	will	specify	a	cluster	using	the	-Cluster
parameter	and	then	you	can	make	any	configuration	changes	to	the	cluster	you	want.
Let’s	start	with	a	quick	cmdlet	to	disable	HA:

Set-Cluster	-Cluster	"BigCluster"	-HAEnable	$false

Change	$false	to	$true	and	the	cmdlet	turns	on	the	feature.	Simple!

Set-Cluster	-Cluster	"BigCluster"	-HAEnable	$true

2.	 Next,	you	might	want	to	change	the	Admission	Control	and	Failover	Level	settings
for	HA	on	the	cluster.	Again,	you	turn	to	the	Set-Cluster	cmdlet	to	make	these
setting	changes.	The	-HAAdmissionControlEnabled	parameter	controls	whether
Admission	Control	is	turned	on.	The	-HAFailoverLevel	parameter	is	set	to	a	number
from	1	to	4	specifying	how	many	host	failures	you	want	the	cluster	to	be	able	to
survive.	You	will	set	our	example	to	survive	one	host	failure:

Set-Cluster	-Cluster	"BigCluster"	-HAadmissionControlEnabled	$true	-

HAFailoverLevel	1

3.	 Next,	you	can	set	the	Isolation	Response	and	Restart	Priority	settings	for	the	cluster,
again	using	the	Set-Cluster	cmdlet.	First,	you	use	-HAIsolationResponse	to	set	the
behavior	if	the	host	becomes	isolated.	Next,	you	use	-HARestartPriority	to	set	the
default	priority	to	restart	VMs	in	the	cluster:

Set-Cluster	-Cluster	"BigCluster"	-HAIsolationResponse	PowerOff	-

HaRestartPriority	Medium

It	is	also	important	to	note	that	all	of	these	settings	can	be	combined	in	a	single	Set-
Cluster	cmdlet.

4.	 It	is	also	common	to	change	the	DRS	mode	on	a	cluster.	To	do	this,	you	again	use	the
Set-Cluster	cmdlet,	but	you	will	use	the	-DrsAutomationLevel	parameter	to	set	the
mode:

Set-Cluster	-Cluster	"BigCluster"	-DrsAutomationLevel	Manual	-

Confirm:$false

More	commonly,	you	might	want	to	set	the	DRS	mode	to	fully	automated:

Set-Cluster	-Cluster	"BigCluster"	-DrsAutomationLevel	FullyAutomated	-

Confirm:$false

5.	 Next,	in	this	example,	you	will	make	sure	that	our	domain	controllers	are	not	both
running	on	the	same	ESXi	node	by	defining	a	DRS	rule.	First,	you	need	to	retrieve	a

list	of	the	domain	controller	VM’s	with	the	Get-VM	cmdlet.	The	New-DrsRule	cmdlet
allows	you	to	create	a	KeepTogether	or	a	Separate	rule.	The	syntax	is	very	simple.
You	need	to	specify	a	name	for	our	rule,	a	cluster,	whether	or	not	this	is	a
KeepTogether	rule,	and	finally,	which	VMs	are	passed	by	a	variable:

$domaincontrollers	=	Get-VM	-Name	"DC*"

New-DrsRule	-Name	"Separate	DCs"	-Cluster	"BigCluster"	-Enabled	$true	-

KeepTogether	$false	-VM	$domaincontrollers

6.	 Reporting	the	EVC	mode	setting	is	very	straightforward	from	PowerCLI.	To	begin,
you	must	retrieve	the	cluster	object	and	the	EVC	mode	setting	as	a	parameter	of	this
object:

Get-Cluster	"BigCluster"	|	Select	Name,	EVCMode

7.	 Changing	the	EVC	mode	setting	is	pretty	simple	using	the	Set-Cluster	cmdlet,	but
it	requires	PowerCLI	5.5	R2.	The	earlier	versions	of	PowerCLI	do	not	include	the	-
EVCMode	parameter	with	the	Set-Cluster	cmdlet.	You	simply	need	to	specify	the	key
of	the	mode	you	want	to	enable.	A	chart	of	the	keys	is	included	in	the	How	it	works…
section:

Set-Cluster	-Cluster	"Primary"	-EVCMode	'intel-penryn'

How	it	works…
All	of	these	settings	are	cluster-level	settings	and	so	most	of	them	are	set	using	the	Set-
Cluster	cmdlet.	Set-Cluster,	like	New-Cluster	in	the	previous	recipe,	has	a	number	of
parameters	specific	to	vSphere	clusters.	Many	of	the	parameters	are	simple	Boolean
inputs,	either	$true	or	$false.	Others	have	defined	the	input	where	you	might	need	to	use
the	Get-Help	Set-Cluster	cmdlet	in	order	to	investigate	the	exact	input	expected	for	the
setting	you	desire.

Again,	where	does	PowerCLI	buy	you	the	biggest	benefits	for	cluster	configuration?
Anytime	you’ve	got	more	than	one	cluster,	and	you	want	to	make	sure	that	you	have
uniform	settings	across	the	clusters.	If	you	want	to	make	sure	that	your	HA,	DRS,	and
EVC	settings	are	the	same	for	several	hosts,	you	simply	use	a	Get-Cluster	cmdlet.	Search
for	all	of	the	clusters	in	your	datacenter	or	for	specific	clusters	in	the	datacenter,	and	then
pipe	that	directly	into	a	Set-Cluster	cmdlet	with	your	desired	settings.	This	is	much
faster	and	helps	you	to	eliminate	human	error	by	picking	the	wrong	setting	in	the	GUI
while	changing	clusters	one	at	a	time.

One	of	the	parameters,	-EVCmode,	specifically	needs	enumerated	input	settings.	The
following	tables	show	the	available	EVC	mode	keys	that	can	be	set	from	the	New-Cluster
and	Set-Cluster	cmdlets:

Intel	CPUs EVC	mode	keys

Intel®	“Merom”	Generation intel-merom

Intel®	“Penryn”	Generation intel-penryn

Intel®	“Nehalem”	Generation intel-nehalem

Intel®	“Westmere”	Generation intel-westmere

Intel®	“Sandy	Bridge”	Generation intel-sandybridge

Intel®	“Ivy	Bridge”	Generation intel-ivybridge

AMD	CPUs EVC	mode	keys

AMD	Opteron™	Generation	1 iamd-rev-e

AMD	Opteron™	Generation	2 amd-rev-f

AMD	Opteron™	Gen.	3	(no	3DNow!™) amd-greyhound-no3dnow

AMD	Opteron™	Generation3 amd-greyhound

AMD	Opteron™	Generation	4 amd-bulldozer

AMD	Opteron™	“Piledrive”	Generation amd-piledriver

There’s	more…
While	you	talked	about	KeepTogether	and	Separate	DRS	rules,	there	are	other	types	of
DRS	rules	and	those	are	VM	to	Host	rules.	While	PowerCLI	doesn’t	provide	cmdlets	to
handle	DRS	Affinity	Group	assignments,	this	is	one	of	the	best	use	cases	for	PowerCLI
and	one	that	I	use	in	my	managed	environments.	Users	who	have	implemented	a	VMware
Metro	Storage	Cluster	might	need	to	routinely	manage	and	assign	VMs	to	Affinity	Groups
to	make	sure	that	VMs	are	running	in	a	particular	physical	location.	This	is	an	advanced
use	case,	but	you	should	definitely	read	the	blog	post	and	code	from	Niklas	Åkerlund
linked	in	the	See	also	section.

See	also
Refer	to	the	article	titled,	vSphere	Cluster	Host-VM	rule	affinity	with	PowerCLI,
by	Niklas	Åkerlund,	available	at	http://vniklas.djungeln.se/2012/06/28/vsphere-
cluster-host-vm-rule-affinity-with-powercli/

http://vniklas.djungeln.se/2012/06/28/vsphere-cluster-host-vm-rule-affinity-with-powercli/

Setting	up	resource	pools
Resource	pools	are	objects	within	vSphere	where	VM	objects	with	similar	performance
requirements	can	be	grouped	together.	Resource	pools	allow	a	priority	to	be	set	to	pools	of
compute,	memory,	and	disk	resources,	so	that	when	the	contention	occurs,	the	hypervisor
can	choose	which	VMs	get	access	to	resources	first.	Resource	pools	exist	within	the
cluster	objects	in	vSphere	or	within	host	objects	if	a	host	is	not	a	part	of	a	cluster.

Getting	ready
To	begin	this	recipe,	you	will	need	to	open	a	PowerCLI	window	and	connect	to	a	vCenter
server.	For	the	purpose	of	this	example,	we’re	going	to	configure	two	resource	pools:
Production	and	Development.	The	Production	resource	pool	will	be	configured	with	the
high	setting	for	CPU	and	memory	resources.	The	Development	resource	pool	will	be
configured	with	the	low	setting	for	CPU	and	memory	resources.

Sometimes,	PowerCLI	defines	its	normal	conventions	and	resource	pools	is	one	of	them.
You	can’t	simply	pass	a	cluster	in	as	the	location	for	a	new	resource	pool.	Although	it	is
not	shown,	when	you	create	a	cluster,	it	creates	a	default	resource	pool	called	Resources,
which	is	similar	to	how	the	creation	of	a	datacenter	created	four	subfolders.	The	location
that	a	New-ResourcePool	cmdlet	is	looking	for	is	a	resource	pool	object.

How	to	do	it…
In	order	to	set	up	a	resource	pool,	perform	the	following	steps:

1.	 The	first	step	is	to	locate	the	root	Resources	folder	so	that	you	can	use	it	in	the
creation	of	a	new	resource	pool.	Since	all	of	the	root	resource	folders	are	called
Resources,	you	should	scope	the	Get-ResourcePool	cmdlet	to	make	sure	that	the
pool	is	for	the	correct	cluster.	If	you	only	have	one	cluster,	this	is	a	nonissue,	but	you
will	illustrate	it	to	make	the	code	more	reusable:

Get-ResourcePool	-Name	"Resources"	-Location	(Get-Cluster	-Name	

"BigCluster")

2.	 With	this	scoping	statement,	you	can	use	this	in	the	-Location	parameter	of	the	New-
ResourcePool	cmdlet.	In	addition	to	the	location,	you	also	need	to	specify	a	name	for
the	new	pool	and	additional	parameters	to	define	the	CPU	and	RAM	share	settings.
Additional	parameters	can	also	be	defined	to	set	reservations	for	CPU	or	RAM	and
expandable	reservations.	In	our	example,	you	will	set	the	-
CPUExpandableReservations	and	-MemExpandableReservation	parameters	to
$true:

New-ResourcePool	-Name	"Production"	-Location	(Get-ResourcePool	-Name	

"Resources"	-Location	(Get-Cluster	-Name	"BigCluster"))	-

CPUSharesLevel	high	-MemSharesLevel	high	-CpuExpandableReservation	

$true	-MemExpandableReservation	$true

3.	 While	this	is	the	most	correct	way	to	create	the	new	pool,	you	need	to	ensure	that	you
have	specified	the	correct	resource	pool	to	contain	it.	There	is	a	much	shorter	cmdlet
that	will	accomplish	the	same	in	our	environment:

New-ResourcePool	-Name	"Production"	-Location	"BigCluster"	-

CPUSharesLevel	high	-MemSharesLevel	high	-CpuExpandableReservation	

$true	-MemExpandableReservation	$true

This	is	much	cleaner	and	more	readable	code	than	the	previous	one	and	it	will
accomplish	the	same	thing.

4.	 The	next	step	is	to	repeat	the	same	code	for	our	Development	resource	pool,	except
you	want	to	set	the	share	levels	to	low	in	this	example:

New-ResourcePool	-Name	"Development"	-Location	"BigCluster"	-

CPUSharesLevel	low	-MemSharesLevel	low	-CpuExpandableReservation	$true	

-MemExpandableReservation	$true

5.	 Again,	you	have	to	move	objects	into	this	resource	pool.	Moving	a	VM	into	the
resource	pool	will	not	move	it	out	of	the	folders	or	other	locations	where	it	might	be
assigned,	it	will	only	move	the	VM	in	the	context	of	the	Host	and	Clusters	view.	You
will	use	the	Move-VM	cmdlet	and	specify	the	host	and	the	location:

Move-VM	-Name	vCenterSrv	-Location	(Get-ResourcePool	"Production")

6.	 Lastly,	if	you	have	an	existing	resource	pool,	but	you	need	to	adjust	the	settings,	you
can	do	so	with	the	same	parameters	using	the	Set-ResourcePool	cmdlet:

Set-ResourcePool	-ResourcePool	(Get-ResourcePool	Production)	-

CpuSharesLevel	Custom	-NumCpuShare	8000

How	it	works…
The	New-ResourcePool	cmdlet	creates	a	new	pool	inside	the	location	specified	in	the
cmdlet.	If	the	location	is	a	Host	or	Cluster,	the	new	pool	is	automatically	placed	into	the
Resources	pool	at	the	root	of	the	cluster	or	host.

The	New-ResourcePool	cmdlet	provides	a	lot	of	additional	parameters	to	configure	the
resource	pool	from	the	start.	In	our	example,	you	specified	the	shares	level,	which	is	one
of	four	enumerated	choices:	Low,	Normal,	High,	and	Custom.	With	Custom,	you	also	have
to	specify	a	number	using	the	-NumCpuShares	and	-NumMemShares	parameters.	In	addition
to	share	definitions,	you	can	also	set	the	reservations	and	limits	for	CPU	and	RAM.	You
can	specify	a	number	of	MHz	or	MB	for	reservations	and	limits	on	the	pool.	Limits	allow
no	more	than	the	specified	amount	of	CPU	or	RAM	resources,	and	reservations	guarantee
the	specified	amount	of	CPU	or	RAM	resources	for	the	pool.	There	is	also	the	concept	of
expandable	reservations	that	allows	a	pool	to	borrow	the	specified	value	if	its	parent	has
unallocated	resources.

One	thing	that	should	start	to	become	clear	is	that	unique	names	go	a	long	way	to
shortcutting	your	code.	If	a	name	is	unique	to	a	single	folder,	cluster,	host,	or	an	object,
there	is	no	need	to	pass	in	the	location	by	an	object	using	a	Get-	cmdlet.	Names	without
spaces	also	help	to	shortcut	code,	since	any	name	with	spaces	requires	quotes	around	it.

There’s	more…
Resource	Pools	in	vSphere	can	be	intimidating,	but	they	play	a	powerful	role	in	keeping
things	running	smoothly.	Chris	Wahl	of	WahlNetwork.com	has	an	excellent	post	about
Resource	Pools	and	includes	a	PowerCLI	script	to	help	keep	your	pools	balanced	using	his
formula	for	computing	the	appropriate	number	of	shares.	For	more	information,	refer	to
http://wahlnetwork.com/2012/02/01/understanding-resource-pools-in-vmware-vsphere/

http://wahlnetwork.com/2012/02/01/understanding-resource-pools-in-vmware-vsphere/

See	also
Creating	and	reporting	vSphere	resource	pools
Moving	objects	between	resource	pools
Reporting	shares,	reservations	and	limits	of	resource	pools,	and	virtual	machines
Setting	shares,	reservations,	and	limits	for	similarly	classified	objects	in	vSphere

Setting	up	folders	to	organize	objects	in
vCenter
vSphere	folders	are	flexible	containers	with	other	vSphere	objects	inside.	Folder	objects	in
vSphere	are	meant	to	be	a	logical	organizational	structure	for	objects	that	are	not	tied	to
physical	resources.	This	means	that	VM	objects	from	different	clusters	or	even	different
datacenters	can	be	logically	grouped	together.	The	same	applies	to	port	groups,	switches,
or	datastores.

This	is	important	as	you	begin	to	look	at	delegating	access	from	VMs	to	operators,
developers,	and	other	users	in	the	organization,	so	that	you	can	group	together	all	of	the
VMs	that	a	user	needs	to	access.	Folders	also	help	administrators	to	easily	locate	objects
and	report	on	objects	for	a	particular	business	unit	or	group	within	their	companies.

In	this	recipe,	you	will	look	at	the	simple	cmdlets	used	to	create	folder	structures	in
vSphere,	and	move	objects	into	these	folders	with	simple	PowerCLI	cmdlets.

Getting	ready
To	begin,	you	need	to	open	a	PowerCLI	window	and	connect	to	a	vCenter	server.	You
should	also	read	and	review	the	Creating	a	virtual	datacenter	in	vCenter	recipe	earlier	in
this	chapter,	since	it	discusses	the	hierarchy	of	folders	inside	a	vSphere	datacenter.	This
recipe	uses	a	lot	of	the	concepts	introduced	in	the	earlier	recipes.

For	this	recipe,	you	will	use	the	New-Folder	cmdlet	and	understand	the	different	types	of
folders	that	it	can	create	inside	vCenter.	Folders	are	used	in	multiple	areas	of	vCenter	for
organizational	purposes.	You	will	also	take	a	look	at	the	use	of	Get-Folder	and	Remove-
Folder.

The	New-Folder	cmdlet	is	another	cmdlet	that	relies	on	the	-Location	parameter	to
determine	where	to	create	the	object	you’re	defining.	As	you	observed	in	the	Creating	a
virtual	datacenter	in	vCenter	recipe,	you	are	able	to	use	the	Get-Folder	cmdlet	to	return
the	four	special	folders	automatically	provisioned	under	a	datacenter	object.

For	this	example,	you	will	create	several	folder	structures.	You	will	create	two,	two-level
folders	under	the	VM	and	Templates	view	for	Infrastructure	and	App	Servers.	You	will
create	two	subfolders	called	Domain	Controllers	and	VMware	under	Infrastructure.
You	will	create	a	Standard	vSwitches	folder	in	the	Networks	view	and	you	will	create	an
NFS	and	iSCSI	folder	under	the	Datastores	view.	Finally,	you	will	create	a	Finance	and
IT	folder	under	the	Host	and	Clusters	view	to	store	clusters	owned	by	these	businesses.
The	following	illustrates	this	structure:

How	to	do	it…
In	order	to	set	up	folders	to	organize	objects	in	vCenter,	perform	the	following	steps:

1.	 The	first	step	is	to	retrieve	the	datacenter	where	you	want	these	folders	to	be	created.
By	first	getting	the	datacenter	object,	you	ensure	that	if	you	had	more	than	one
datacenter	defined,	you	would	be	operating	in	the	correct	datacenter.	So,	the	first	step
is	to	run	Get-Datacenter	and	find	our	Primary	datacenter:

Get-Datacenter	-Name	"Primary"

Note
In	this	particular	example,	since	Primary	is	the	only	datacenter	object,	you	do	not
have	to	pass	in	the	datacenter	object	to	the	next	cmdlet.	By	specifying	Primary,	you
ensure	that	you	have	selected	the	desired	datacenter	if	you	have	multiple	objects	with
the	same	name	in	your	infrastructure.

2.	 The	next	step	is	to	pipe	this	datacenter	object	into	a	New-Folder	cmdlet,	which	will
limit	the	results	to	within	this	datacenter.	If	you	start	with	the	Infrastructure	folder,
you	need	to	return	the	root	folder	with	type	vm:

Get-Datacenter	-Name	"Primary"	|	Get-Folder	-name	"vm"

3.	 Now	that	you	have	a	single	folder,	this	will	serve	as	our	location	parameter	for	our
new	Infrastructure	folder.	Using	New-Folder,	you	will	pass	in	our	desired	name
and	the	location	parameter	from	the	previous	step:

New-Folder	-Name	"Infrastructure"	-Location	(Get-Datacenter	-Name	

"Primary"	|	Get-Folder	-name	"vm")

4.	 Next,	you	can	repeat	the	same	step	with	our	App	Servers	folder.	The	only	parameter
that	should	change	is	the	name	parameter:

New-Folder	-Name	"App	Servers"	-Location	(Get-Datacenter	-Name	

"Primary"	|	Get-Folder	-name	"vm")

5.	 The	next	step	is	to	create	a	subfolder	under	Infrastructure	for	Domain	Controllers.	To
do	this,	you	change	the	name	and	the	location	of	the	same	cmdlet.	Instead	of
searching	for	the	folder	named	vm,	you	will	search	for	the	one	you	just	created	named
Infrastructure.	While	we’re	at	it,	you	can	create	the	VMware	folder	as	well	by
repeating	the	cmdlet	with	a	different	name	defined:

New-Folder	-Name	"Domain	Controllers"	-Location	(Get-Datacenter	-Name	

"Primary"	|	Get-Folder	-name	"Infrastructure")

New-Folder	-Name	"VMware"	-Location	(Get-Datacenter	-Name	"Primary"	|	

Get-Folder	-name	"Infrastructure")

6.	 Next,	you	will	move	to	create	the	Standard	vSwitches	folder	under	the	Networking
area.	To	do	this,	you	need	to	run	the	New-Folder	cmdlet	and	search	for	the	root
network	folder	in	the	datacenter	for	the	location:

New-Folder	-Name	"Standard	vSwitches"	-Location	(Get-Datacenter	-Name	

"Primary"	|	Get-Folder	-Name	"network")

7.	 With	this	successfully	created,	you	will	write	three	additional	New-Folder	cmdlets
creating	the	NFS	and	iSCSI	datastore	folders	and	the	Finance	and	IT	host	folders.
These	follow	the	same	format:

New-Folder	-Name	"NFS"	-Location	(Get-Datacenter	-Name	"Primary"	|	Get-

Folder	-Name	"datastore")

New-Folder	-Name	"iSCSI"	-Location	(Get-Datacenter	-Name	"Primary"	|	

Get-Folder	-Name	"datastore")

New-Folder	-Name	"Finance"	-Location	(Get-Datacenter	-Name	"Primary"	|	

Get-Folder	-Name	"host")

New-Folder	-Name	"IT"	-Location	(Get-Datacenter	-Name	"Primary"	|	Get-

Folder	-Name	"host")

8.	 With	all	of	the	folder	structures	now	created,	you	can	take	a	look	at	moving	objects
into	these	locations.	You	will	use	multiple	cmdlets	that	begin	with	Move-	in	order	to
relocate	objects	into	these	folders	you	have	created.	Let’s	begin	with	the	VM	folder
VMware,	and	relocate	our	vCenter	server	into	that	folder.	Since	you	know	that	this	is
the	only	folder	named	VMware	in	vCenter,	you	will	use	the	shortcut	and	just	use	Get-
Folder	with	the	name:

Move-VM	-VM	"vCenterSrv"	-Location	(Get-Folder	-Name	"VMware")

9.	 The	next	object	you	want	to	relocate	is	the	cluster	you	created	named	BigCluster
using	the	Move-Cluster	cmdlet.	Move-Cluster	requires	the	-Location	parameter	and
also	a	cluster	name	with	the	-Cluster	parameter.	You	can	relocate	BigCluster	into
the	IT	host	folder:

Move-Cluster	-Cluster	"BigCluster"	-Location	(Get-Folder	-Name	"IT")

10.	 Lastly,	you	can	reorganize	our	datastores	logically	using	the	Move-Datastore	cmdlet.
This	cmdlet	uses	the	parameter	-Destination	instead	of	-Location,	but	accepts	the
input	of	a	Folder	object:

Move-Datastore	-Datastore	"NFSDatastore1"	-Destination	(Get-Folder	-

Name	"NFS")

Move-Datastore	-Datastore	"iSCSIDatastore1"	-Destination	(Get-Folder	-

Name	"iSCSI")

11.	 Unfortunately,	there	is	no	native	cmdlet	to	move	PortGroups	from	Standard
vSwitches	into	folders	in	the	Networking	view,	but	it	can	be	done	in	the	vSphere
Client	GUI.

How	it	works…
The	New-Folder	cmdlet	automatically	determines	what	type	of	folder	to	create	based	on
the	location	passed	to	it.	There	are	five	types	of	folders:	datacenter,	vm,	host,	network,	and
datastore.	If	you	pass	the	vm	folder	location,	a	vm	folder	will	be	created.	The	type	of
folder	determines	where	the	folder	is	visible	in	the	GUI.	In	PowerCLI,	you	can	also	use
these	types	to	scope	the	results	returned	from	the	Get-Folder	cmdlet	by	passing	the	-Type
parameter.

If	you	can	see,	each	of	the	Move-	cmdlets	accepts	a	name	parameter	that	is	specific	to	the
type	of	object	it	expects:	Move-VM	uses	the	-VM	parameter,	Move-Datastore	uses	-
Datastore,	and	Move-Cluster	uses	the	-Cluster	parameter.	This	follows	a	logical	pattern
that	you	can	expect	even	without	using	Get-Help	to	see	instructions.

There’s	more…
In	this	recipe,	you	worked	with	host,	vm,	network,	and	datastore	groups	within	a
datacenter.	vSphere	also	allows	you	to	create	datacenter	folders	at	the	same	level	as
datacenter	objects	to	arrange	datacenters	logically.

See	also
The	Deploying	new	virtual	machines	from	a	template	and	Creating	basic	reports	of
VM	properties	using	VMware	Tools	and	PowerCLI	recipes	in	Chapter	3,	Managing
Virtual	Machines

Setting	permissions	on	vCenter	objects
As	a	shared	computing	platform,	vSphere	has	always	had	a	strong	roles	and	permissions
model.	This	allows	administrators	who	control	the	physical	infrastructure	and	the	virtual
infrastructure	to	delegate	levels	of	access	to	users.	vCenter	provides	nine	default	roles	that
you	can	assign	to	users	on	different	vSphere	objects.	By	contrast,	an	ESXi	host	only	has
three	default	roles:	Administrator,	Read-Only,	and	No	Access.

What	is	great	about	the	vSphere	permission	model	is	that	you	can	take	users	or	groups
(both	AD,	and	from	vSphere,	SSO)	and	you	can	assign	them	a	level	of	access	at	a	cluster,
folder,	resource	pool,	datacenter,	or	at	the	vCenter	root.	The	same	user	or	group	can	have
different	access	at	different	levels,	but	permissions	assigned	at	a	higher	level	are	inherited
through	objects	at	lower	levels	in	the	hierarchy.

If	you	have	specific	needs,	vCenter	also	exposes	the	ability	to	create	your	own	roles	using
individual	vSphere	privileges.	This	allows	very	specific	access	to	be	granted	for	users	and
tighter	security	for	all	of	the	shared	resources.	There	are	hundreds	of	privileges	that	can
control	interaction	for	vCenter	and	each	one	can	be	configured	into	a	custom	role	and
assigned	in	vCenter.

In	this	recipe,	you	will	learn	the	basic	cmdlets	used	to	assign	roles	and	permissions	to
users	and	vSphere	objects.

Getting	ready
To	begin,	you	will	need	to	open	a	PowerCLI	window	and	connect	to	a	vCenter	server.

For	the	purpose	of	this	recipe,	you	will	take	our	folder	structure	and	assign	groups	of	users
from	Active	Directory	to	access	these	resources	using	predefined	roles.	This	assumes	that
you	have	properly	configured	your	VMware	SSO	to	allow	Active	Directory
authentication.

You	will	take	an	Active	Directory	group	called	IT	Admins	and	delegate	access	to	the
entire	Primary	datacenter.	You	will	take	the	Finance	Developers	group	and	delegate	the
operator	access	to	them	for	the	Finance	folder	in	vCenter.	You	will	delegate	the	read-only
access	to	a	service	account	user	who	is	going	to	be	reporting	on	vCenter	using	PowerCLI.

How	to	do	it…
In	order	to	set	up	permissions	on	vCenter	objects,	perform	the	following	steps:

1.	 To	begin,	you	will	want	to	know	what	roles	are	available	on	the	system	where	you
can	add	permissions.	To	do	this,	you	run	the	Get-VIRole	cmdlet	and	pipe	it	to	a
Select	cmdlet	to	return	just	the	name	and	description:

Get-VIRole	|	Select	Name,	Description

2.	 Now	that	you	have	a	list	of	roles	to	work	with,	you	can	begin	the	permission
assignment.	To	do	this,	you	will	use	the	New-VIPermission	cmdlet.	This	cmdlet
requires	an	Entity	where	the	permission	will	be	applied,	a	Principal	who	represents
the	user	or	group	and	the	desired	role.	For	the	first	cmdlet,	you	will	grant	the	Admin
role	on	the	Primary	datacenter	to	our	IT	Admin	group,	which	has	the	principal	name
DOMAIN\IT	Admin:

New-VIPermission	-Entity	(Get-Datacenter	"Primary")	-Principal	

"DOMAIN\IT	Admins"	-Role	Admin

3.	 Using	the	same	format	for	another	New-VIPermission	cmdlet,	you	can	now	grant	our
Finance	Developers	group	the	operator	status	as	VirtualMachineUser	on	the
Finance	folder.	You	will	use	the	Get-Folder	cmdlet	to	set	our	entity	(or	location):

New-VIPermission	-Entity	(Get-Folder	"Finance")	-Principal	

"DOMAIN\Finance	Developers"	-Role	VirtualMachineUser

4.	 Lastly,	you	want	to	grant	read-only	access	to	the	reports	service	account	that	will	be
used	to	script	reports	and/or	perform	monitoring	on	vCenter.	You	will	again	use	the
New-VIPermission	cmdlet	and	the	ReadOnly	role	granting	access	to	the	Primary
datacenter:

New-VIPermission	-Entity	(Get-Datacenter	"Primary")	-Principal	

"DOMAIN\reports"	-Role	ReadOnly

5.	 For	the	next	step,	suppose	you	have	some	users	that	work	at	an	IT	Monitoring	office,
who	need	to	be	able	to	monitor	vSphere	and	clear	alarms	on	vCenter.	There	is	no
predefined	role	that	has	those	specific	permissions.	However,	with	PowerCLI,	you
can	create	a	new	role.	To	begin,	let’s	use	the	Get-VIRole	cmdlet	to	retrieve	the
readonly	role	and	view	the	privileges	assigned:

Get-VIRole	-Name	readonly	|	Select	Name,	PrivilegeList

6.	 With	this,	you	can	see	that	the	readonly	role	has	three	privileges	–Anonymous,	View,
and	Read.	You	can	use	these	as	the	basis	of	our	custom	role.	However,	you	need	to
give	the	user	rights	to	clear	alarms,	so	the	next	step	is	to	find	the	privilege	to	do	this.
In	order	to	find	this,	you	can	use	the	Get-VIPrivilege	cmdlet	to	get	a	list	of
privileges	related	to	alarms	by	searching	with	the	help	of	the	-Name	parameter	and	a
wildcard:

Get-VIPrivilege	-Name	*alarm*

7.	 With	the	output	from	the	previous	cmdlet,	you	can	see	a	privilege	called
Acknowledge	alarm	that	should	allow	our	IT	Monitoring	group	the	access	they
need.	The	next	step	is	to	create	our	custom	role.	To	do	this,	you	use	the	New-VIRole
cmdlet	and	pass	in	a	name	for	our	new	role	and	the	privileges	you	have	found	using
the	-Privilege	parameter:

New-VIRole	-Name	"IT	Monitoring"	-Privilege	"Anonymous",	"View",	

"Read",	"Acknowledge	alarm"

8.	 Last	but	not	least,	you	have	to	assign	the	permission	using	our	new	role.	To	do	this,
you	use	the	New-VIPermission	cmdlet	again	with	the	-Entity,	-Principal,	and	-
Role	parameters:

New-VIPermission	-Entity	(Get-Datacenter	"Primary")	-Principal	

"DOMAIN\IT	Monitoring	Group"	-Role	"IT	Monitoring"

How	it	works…
With	the	vSphere	roles	and	permissions	model,	administrators	have	a	very	high	level	of
control	over	what	and	where	users	can	have	access.	The	default	roles	can	be	easily
leveraged	to	assign	permissions	for	common	sets	of	functionality.	A	role	is	a	defined
group	of	privileges	that	can	be	assigned	to	an	individual	user	or	group	of	users.	Privileges
are	specific	rights	to	perform	granular	tasks	in	vSphere.	If	a	default	role	doesn’t	have	the
exact	mix	of	privileges	that	you	need	to	grant,	vSphere	is	extensible,	and	a	custom	role
can	be	created.

The	second	half	of	the	model	is	the	permissions.	Permissions	use	defined	roles	along	with
user	account	or	groups.	From	a	cmdlet	standpoint,	the	user	account	or	groups	are	known
as	Principals.	A	permission	consists	of	a	role	and	a	principal,	and	permissions	are	defined
on	particular	objects.	Permissions	are	inherited	through	the	hierarchy,	which	means	that	if
you	grant	a	permission	at	the	datacenter	level,	then	all	of	the	folders,	clusters,	hosts,
virtual	machines,	networking,	and	datastores	will	inherit	the	permission	granted	at	the
datacenter	level.

As	you	illustrated	in	the	recipe,	you	can	take	individual	folders	that	contain	groups	of
VMs	for	a	specific	group	of	users	and	grant	permissions	for	them.	In	our	example,	our
Finance	Developers	group	of	users	need	operational	privileges	on	the	Finance	folder	of
VMs.	Using	the	default	VirtualMachineUsers	role,	you	can	grant	them	access	to	do
operations	such	as	power	on	and	power	off	the	VMs,	and	use	the	remote	console.

There’s	more…
With	hundreds	of	privileges	packaged	with	vCenter,	it	can	be	daunting	to	try	and	create
custom	roles.	Some	privileges	that	might	not	be	obviously	required	can	prevent	a	custom
role	from	having	the	desired	access.	One	suggestion	is	to	take	an	existing	or	default	role
and	then	work	from	its	privilege	set	to	alter	it	for	your	uses.	This	can	easily	be	done	by
retrieving	an	existing	privilege	set	and	storing	them	in	a	variable.	Then	you	can	pass	this
existing	list	of	privileges	into	your	new	custom	VIRole.

For	many	environments,	the	default	roles	can	be	absolutely	sufficient	for	most
administration.	The	other	great	advantage	of	using	the	default	roles	is	that	these	change
from	version	to	version	of	vCenter	as	new	privileges	can	be	added.

Chapter	3.	Managing	Virtual	Machines
In	this	chapter,	you	will	cover	the	following	recipes:

Deploying	the	first	virtual	machine
Cloning	a	virtual	machine	to	a	template
Deploying	new	virtual	machines	from	a	template
Importing	a	virtual	appliance	from	OVA
Performing	a	hot	add	of	virtual	hardware	to	an	existing	virtual	machine
Enabling	and	disabling	Fault	Tolerance	on	a	virtual	machine
Increasing	the	disk	space	in	a	virtual	machine
Upgrading	the	virtual	hardware	version	of	a	virtual	machine
Locating	and	reloading	inaccessible	or	invalid	virtual	machines
Setting	VMware	Tool	settings	from	PowerCLI
Creating	basic	reports	of	VM	properties	using	VMware	Tools	and	PowerCLI

Introduction
In	the	first	two	chapters	of	this	book,	you	created	a	base	platform	that	will	allow	you	to
run	virtual	machines.	In	this	chapter,	you	begin	to	work	with	actual	workloads.	This
chapter	will	cover	provisioning	the	first	VM,	deploying	virtual	machines	in	bulk,	and
managing	the	virtual	machines.

There	are	actually	several	ways	to	create	a	virtual	machine.	The	first	is	to	build	it	like	you
would	build	a	normal	physical	server.	For	this,	you	need	to	install	an	operating	system
onto	a	blank	disk	from	the	installation	media	(CD,	DVD,	a	USB	flash	drive,	or	an	ISO
image).	This	process	is	very	manual	and	repetitive	for	administrators.

vSphere	improves	this	process	through	the	ability	to	clone	a	VM	once	it’s	built.	Cloning
makes	an	identical	copy	of	your	VM	so	that	it	can	be	deployed	multiple	times.	Cloning	is
also	important	for	other	tasks	such	as	creating	test	labs	and	replicating	problems.

In	addition	to	cloning,	vSphere	can	also	mark	a	built	VM	as	a	template,	signifying	that	it	is
prepared	with	the	intent	to	build	other	VMs.	Templates	cannot	be	powered	on	or	changed.
This	limits	a	prepared	VM	from	accidentally	being	used	for	another	purpose.	Cloning	and
deploying	a	VM	from	a	template	are	very	similar.

The	fourth	way	to	deploy	a	VM	is	to	deploy	a	virtual	appliance.	Based	on	a	very	similar
technology,	deploying	a	virtual	appliance	is	a	workflow	that	imports	a	specially	formatted
file.	A	virtual	appliance	often	comes	in	an	Open	Virtual	Appliance	(OVA)	or	Open
Virtualization	Format	(OVF).	vSphere	has	a	workflow	to	import	OVA	and	OVF	in	order
to	create	machines.

However,	getting	a	VM	started	is	only	the	beginning,	because	all	administrators	know	that
maintaining	computers	takes	much	more	time	and	energy	than	simply	deploying	them.
You	will	cover	several	additional	recipes	to	help	with	the	administration	and	upkeep	of
your	virtual	machines	once	you	deploy	them.

Deploying	the	first	virtual	machine
To	begin	deploying	your	first	virtual	machine	from	PowerCLI,	the	first	thing	you	will
notice	about	this	recipe	is	the	number	of	parameters	that	you	are	going	to	need	to	specify
in	order	to	create	a	new	virtual	machine.	There	are	a	lot	of	things	that	go	into	defining	a
fully	functioning	server	including	basic	things	such	as	the	number	of	processors,	the
amount	of	RAM,	the	number	and	the	size	of	the	virtual	disks,	and	a	name.	Other
parameters	that	are	required	are	going	to	be	specific	to	the	virtual	environment,	such	as
defining	the	host,	the	VM	folder,	and	the	resource	pool	that	the	VM	is	going	to	reside	in.

Getting	Started
To	begin	this	recipe,	you	will	need	to	open	a	PowerCLI	window	and	connect	to	a	vCenter
server.

How	to	do	it…
1.	 Creating	a	new	VM	using	PowerCLI	uses	the	New-VM	cmdlet.	The	first	parameter	will

have	a	name,	which	is	the	identifier	that	you	will	use	in	other	cmdlets	to	identify	this
VM.	Try	to	execute	the	cmdlet	and	look	at	the	error	you	receive:

New-VM	-Name	WinVM1

2.	 The	error	tells	us	that	you	need	to	specify	a	VMHost,	ResourcePool,	or	vApp.	The
last	parameter	is	actually	deprecated,	so	you	really	have	only	two	choices.	In	this
example,	let’s	use	Production,	one	of	the	ResourcePools	created	in	Chapter	2,
Configuring	vCenter	and	Computing	Clusters,	which	is	as	follows:

New-VM	-Name	WinVM1	-ResourcePool	"Production"

If	you	execute	the	cmdlet	now,	it	will	execute	successfully	and	create	a	VM	with	1
vCPU,	0.25	GB	of	RAM,	and	a	4	GB	hard	disk.	However,	this	doesn’t	meet	the	needs
of	running	a	modern	version	of	Windows.	If	you	have	already	created	a	VM,	let’s
delete	it	now	with	the	Remove-VM	cmdlet:

Get-VM	WinVM1	|	Remove-VM	-DeletePermanently

3.	 For	the	next	step,	you	need	to	define	some	additional	parameters.	First,	let’s	specify
the	number	of	CPUs	to	be	assigned	and	specify	the	amount	of	RAM	to	be	dedicated
to	this	new	VM.	You	can	do	this	with	the	-NumCPU	and	-MemoryMB	or	-MemoryGB
parameters.

New-VM	-Name	WinVM1	-ResourcePool	"Production"	-NumCPU	2	-MemoryGB	4

4.	 A	Windows	VM	will	need	at	least	40	GB,	or	preferably	60	GB,	so	you	will	have	to
add	a	parameter	to	specify	the	disk	size.	Similar	to	the	RAM	allocation,	you	can
specify	the	size	of	our	disks	with	-DiskMB	or	-DiskGB	parameters.	You	can	also
specify	more	than	one	disk	with	sizes	separated	by	commas.	In	this	example,	you	will
create	a	single	60	GB	disk	that	is	thick	provisioned	by	default:

New-VM	-Name	WinVM1	-ResourcePool	"Production"	-NumCPU	2	-MemoryGB	4	-

DiskGB	60

5.	 Another	important	specification	is	a	network	so	that	the	VM	can	communicate.	You
can	specify	a	port	group	or	multiple	port	groups	that	the	VM	should	be	connected	to
using	the	-NetworkName	parameter.	Multiple	port	groups	should	be	separated	by
commas.	For	this	recipe,	you	will	use	the	Infrastructure	Network	port	group	you
created	in	Chapter	1,	Configuring	the	Basic	Settings	of	an	ESXi	Host	with	PowerCLI,
which	is	as	follows:

New-VM	-Name	WinVM1	-ResourcePool	"Production"	-NumCPU	2	

-MemoryGB	4	-DiskGB	60	-NetworkName	"Infrastructure	Network"

6.	 The	cmdlet	that	we’ve	assembled	will	certainly	create	a	VM,	but	something	is	still
missing	and	that’s	the	operating	system.	To	install	an	operating	system,	the	easiest
thing	to	do	is	to	attach	a	bootable	ISO	image	to	the	VM,	but	to	do	this	you	need	to

add	a	virtual	CD-ROM	drive	to	the	VM.	To	do	this,	you	will	use	the	-CD	parameter.	If
you	need	a	virtual	floppy	drive,	you	can	also	add	it	with	-Floppy:

New-VM	-Name	WinVM1	-ResourcePool	"Production"	-NumCPU	2	

-MemoryGB	4	-DiskGB	60	-NetworkName	"Infrastructure	Network"	-CD

7.	 There	is	one	more	important	thing	that	needs	to	be	defined	and	that	is	the	Guest
operating	system.	In	vSphere,	the	OS	defined	on	a	VM	will	allow	features	that	are
compatible	and	disable	features	that	are	not	compatible.	For	this	recipe,	you	will	set
the	GuestID	parameter	to	windows7server64Guest,	which	is	the	ID	for	Windows
Server	2008	R2.

New-VM	-Name	WinVM1	-ResourcePool	"Production"	-NumCPU	2	-MemoryGB	4	-

DiskGB	60	-NetworkName	"Infrastructure	Network"	-CD	-GuestID	

"windows7server64Guest"

8.	 When	you	execute	the	cmdlet,	you	will	get	a	confirmation	output	that	shows	the
name	of	the	VM,	power	state,	number	of	CPUs,	and	RAM,	as	shown	in	the	following
screenshot:

9.	 Now	that	the	VM	is	created,	you	can	start	the	VM	using	the	Start-VM	cmdlet.	The
Start-VM	cmdlet	only	needs	to	know	which	VM	to	start	with.	To	supply	this,	you	can
use	the	Get-VM	cmdlet,	which	is	as	follows:

Get-VM	WinVM1	|	Start-VM

You	could	have	actually	started	the	VM	by	piping	the	Start-VM	cmdlet	with	no
additional	parameters	to	our	New-VM	cmdlet.	The	following	command	line	is	an
example:

New-VM	-Name	WinVM1	-ResourcePool	"Production"	-NumCPU	2	-MemoryGB	4	-

DiskGB	60	-NetworkName	"Infrastructure	Network"	-CD	-GuestID	

"windows7server64Guest"	|	Start-VM

10.	 The	last	step	is	to	mount	an	ISO	file	to	the	CD	drive	so	that	the	operating	system	can
begin	the	installation.	In	this	example,	you	will	use	an	ISO	file	called
Windows2012Server.iso	that	is	stored	on	the	iSCSIDatastore1	datastore.	To	mount
the	CD,	you	will	use	the	New-CDDrive	cmdlet:

New-CDDrive	-VM	WinVM1	-IsoPath	"[iSCSIDatastore1]	

Windows2012Server.iso"

11.	 At	this	point,	the	VM	should	recognize	and	begin	booting	from	the	CD	drive,	but	you
might	need	to	interact	with	the	console,	so	you	should	load	a	remote	console	session.
You	can	do	this	with	the	Open-VMConsoleWindow	cmdlet:

Get-VM	WinVM1	|	Open-VMConsoleWindow

How	it	works…
The	New-VM	cmdlet	taps	into	the	normal	GUI	workflow	to	create	a	VM,	but	where	the	GUI
presents	a	step-by-step	group	of	choices	to	define	the	options,	the	PowerCLI	New-VM
cmdlet	requires	that	all	of	the	decisions	be	made	upfront.	The	New-VM	cmdlet	can	work
with	fewer	parameters,	but	if	you	have	specific	needs,	there	are	parameters	that	let	you
customize	the	VM	to	your	needs.

Additionally,	you	looked	at	the	New-CDDrive	cmdlet	that	allows	you	to	take	an	ISO	image
that	is	stored	on	a	datastore	and	mount	it	to	the	VM	you	created.	This	maps	the	file	to	the
virtual	CD	drive	that	you	defined	in	the	New-VM	cmdlet.	This	allows	you	to	boot	and	install
an	operating	system	into	the	VM.	Finally,	you	used	the	Open-VMConsoleWindow	to	allow
you	to	interact	with	the	remote	console	and	complete	the	installation.

I	will	certainly	concede	that	using	the	GUI	to	build	your	first	VM	is	probably	the	easiest
way	to	build	a	single	VM.	As	you	will	see	in	the	subsequent	recipes,	understanding	how	to
create	virtual	machines	using	PowerCLI	is	essential	to	other	processes	that	you	will
perform	more	frequently	in	PowerCLI.

There’s	more…
As	you	complete	this	first	recipe,	you	might	wonder	why	you	would	ever	choose	to	use
PowerCLI	to	create	a	blank	virtual	machine.	Cloning	a	VM	from	a	template	or	deploying
a	virtual	appliance	seems	much	more	usable	since	these	two	options	will	include	an
operating	system.	The	reason	the	first	option	is	included	is	to	cover	use	cases	beyond
static	operating	system	deployments.	There	are	a	number	of	use	cases	where	the	guest
operating	system	you	wish	to	run	might	be	deployed	from	a	PXE	boot	directly	into	a
virtual	machine.

Virtual	Desktop	Infrastructure	(VDI)	and	even	farms	of	application	servers	might	boot
from	dynamically	assigned	boot	images	and	boot	over	the	network.	These	types	of	PXE
boot	environments	allow	administrators	to	quickly	increase	or	decrease	the	number	of
servers	that	deliver	an	application.	In	the	VDI	use	case,	you	might	need	to	redeploy	a
patched	image	and	instead	of	having	to	patch	100	virtual	desktops,	you	will	only	need	to
patch	a	single	image	and	then	reboot	all	100	virtual	desktops	to	update	them	from	their
golden	master	delivered	over	a	network	boot.

Once	again,	when	it	comes	to	doing	work	in	bulk,	you	can	easily	seed	an	array	of	integers
to	a	ForEach	loop	and	quickly	deploy	100	or	1,000	virtual	machines.	All	uniform	settings
are	ready	to	boot	from	the	network	and	you	can	accomplish	deploying	all	of	these	virtual
machines	with	less	than	10	lines	of	PowerCLI	code.	It	would	take	15	to	20	clicks	per	VM
to	deploy	these	in	the	GUI.

See	also
VMware	SDK	Documentation:	Enum	–	VirtualMachineGuestOsIdentifier	is
available	at	http://pubs.vmware.com/vsphere-
55/topic/com.vmware.wssdk.apiref.doc/vim.vm.GuestOsDescriptor.GuestOsIdentifier.html

http://pubs.vmware.com/vsphere-55/topic/com.vmware.wssdk.apiref.doc/vim.vm.GuestOsDescriptor.GuestOsIdentifier.html

Cloning	a	virtual	machine	to	a	template
Cloning	is	one	of	the	golden	features	of	virtualization.	It	is	a	feature	that	once	you	have
used	it,	you	will	never	want	to	go	back	to	manually	deploying	servers.	It	really	eases	the
problems	of	deploying	consistent	and	compliant	virtual	machines	by	allowing	an
administrator	to	create	a	good,	compliant	image	and	then	make	copies	of	it	for	all	future
deployments.

While	you	can	clone	regular	virtual	machines,	and	there	might	be	times	when	you	need	to
do	this,	most	of	the	time	you	will	be	cloning	new	virtual	machines	from	a	template.	In	this
recipe,	you	will	take	a	prepared	VM	with	its	operating	system	installed	and	basic
configuration	set,	and	explore	how	to	clone	it	and	how	to	convert	it	to	a	template.

Surprisingly,	there	is	no	Clone-VM	cmdlet.	The	clone	functionality	is	actually	rolled	into
the	New-VM	cmdlet,	which	makes	sense	because	essentially,	a	cloned	VM	is	a	new	VM.

Getting	Started
To	begin	this	recipe,	you	will	need	to	open	a	PowerCLI	window	and	connect	to	a	vCenter
server.	In	addition,	you	will	need	to	have	at	least	one	VM	created	in	the	installation.

How	to	do	it…
1.	 To	begin,	you	will	first	retrieve	an	existing	VM	using	the	Get-VM	cmdlet.	This	VM	is

going	to	be	used	as	our	template,	so	you	need	to	get	it	in	order	to	convert	it:

Get-VM	WinVM1

2.	 Next,	you	want	to	make	a	copy	of	the	VM	that	will	become	a	template.	You	will	use
the	New-VM	cmdlet	again	to	create	a	clone	of	the	VM.	You	will	specify	a	name,
WinTemplate,	for	the	clone.	Since	the	VM	won’t	be	running,	you	will	also	want	to	try
and	conserve	the	disk	space,	so	you	will	want	to	create	a	thin	provisioned	disk	with
the	-DiskStorageFormat	parameter.	Finally,	you	must	specify	either	-VMHost	or	-
ResourcePool,	and	in	this	example	you	will	reuse	our	Production	ResourcePool.

Get-VM	WinVM1	|	New-VM	-Name	"WinTemplate"	-DiskStorageFormat	Thin	-

ResourcePool	Production

3.	 After	you	deploy	the	clone,	the	next	step	is	to	convert	our	new	VM	into	a	template.
For	this,	there	is	a	special	parameter	with	the	Set-VM	cmdlet	named	-ToTemplate	that
simply	converts	the	specified	VM	to	a	template:

Set-VM	-VM	"WinTemplate"	-ToTemplate	-Confirm:$false

How	it	works…
When	using	the	New-VM	cmdlet	to	clone,	you	need	to	pass	in	the	name	of	a	VM	to	clone
from	or	you	can	pass	it	through	the	pipeline.	The	-VM	parameter	is	used	when	you	specify
it	in	the	command	line.	In	this	recipe,	you	retrieved	a	VM	object	using	the	Get-VM	cmdlet
and	passed	it	through	the	pipeline.	Because	each	object	passed	through	the	pipeline	had	a
specified	type,	PowerCLI	knew	that	the	input	was	to	be	used	for	the	-VM	parameter.	Since
this	parameter	expects	a	VM	object	or	a	string,	it	can	be	used	to	search	for	a	VM	object.
You	can	easily	rewrite	the	cmdlet	using	the	-VM	parameter,	as	shown	in	the	following
command	line:

New-VM	-Name	"WinTemplate"	-DiskStorageFormat	Thin	-ResourcePool	Production

The	conversion	of	the	VM	that	you	cloned	into	a	template	is	very	simple.	It	takes	a	simple
Set-VM	cmdlet	with	the	special	-ToTemplate	parameter	created	for	this	specific	task.
However,	since	this	cmdlet	uses	the	Set-VM	cmdlet,	there	are	actually	many	additional
things	that	can	be	done	at	the	same	time	as	the	conversion.	You	can	change	parameters,
such	as	the	number	of	CPUs	and	amount	of	RAM,	using	the	same	parameters	that	you
used	in	the	previous	recipe	when	you	created	new	virtual	machines.

There’s	more…
There	is	another	free	resource	that	VMware	provides	and	that	is	the	online	PowerCLI
Documentation	at	the	VMware	website.	This	reference	provides	the	same	information	that
you	can	get	from	the	Get-Help	cmdlet	in	an	easy	and	searchable	online	format.	One	of	the
things	useful	at	the	online	documentation	is	the	table	of	all	the	parameters	that	includes	a
description,	whether	it	accepts	an	input	from	the	pipeline	and	whether	it	is	a	required
parameter.

See	also
VMware,	vSphere	PowerCLI	Documentation	is	available	at
https://www.vmware.com/support/developer/PowerCLI/

https://www.vmware.com/support/developer/PowerCLI/

Deploying	new	virtual	machines	from	a
template
Deploying	a	new	virtual	machine	from	a	template	is	surprisingly	easy.	This	is	a	task	that
you	will	perform	often.	Although	there	are	some	template	specific	cmdlets,	these	have	to
do	with	making	changes	to	templates	after	they	are	converted.	To	deploy	a	VM,	you	come
back	to	New-VM	cmdlet.

Getting	Started
To	get	started,	you	should	open	a	new	PowerCLI	window	and	connect	to	the	vCenter
server	where	you	defined	our	template	VM.

How	to	do	it…
1.	 To	begin	this	recipe,	you	will	need	to	assemble	a	New-VM	cmdlet.	The	first	step	is	to

specify	the	template	that	is	to	be	cloned	from	using	the	-Template	cmdlet.	As	of
vSphere	5.5,	the	-Template	parameter	can	accept	pipeline	input,	but	this	is
deprecated,	so	it	is	better	to	specify	the	template	by	a	parameter:

New-VM	-Template	"WinTemplate"

2.	 The	next	step	is	to	add	the	name	for	the	VM	and	the	host	or	the	ResourcePool	that	the
VM	is	going	to	deploy	into:

New-VM	-Template	"WinTemplate"	-Name	"NewWinVM"	-ResourcePool	

"Production"

3.	 Since	the	template	is	thin	provisioned,	you	might	also	want	to	convert	this	back	to	a
thick	provisioned	disk.	This	is	sometimes	a	recommendation	for	storage	that	already
has	thin	provisioning	built	in	at	the	array	level.	Again,	this	is	done	with	the	-
DiskStorageFormat	parameter.	For	thick	disks,	our	choices	are	EagerZeroThick	or
Thick,	which	is	the	Lazy	Zeroed	Thick	option:

New-VM	-Template	"WinTemplate"	-Name	"NewWinVM"	-ResourcePool	

"Production"	-DiskStorageFormat	Thick

4.	 Not	quite	complete,	yet,	you	can	take	a	shortcut	by	specifying	a	folder	location	for
the	new	VM.	You	will	assume	that	NewWinVM	is	an	application	server	and	needs	to	be
placed	in	App	Servers:

New-VM	-Template	"WinTemplate"	-Name	"NewWinVM"	-ResourcePool	

"Production"	-DiskStorageFormat	Thick	-Location	"App	Servers"

How	it	works…
For	the	third	recipe,	we’ve	turned	to	the	New-VM	cmdlet.	It’s	important	to	note,	however,
that	you	have	used	New-VM	in	three	different	ways	and	each	way	has	a	different	set	of
parameters	that	can	be	used.	Take	a	look	at	the	following	output	from	Get-Help	New-VM:

You	will	see	that	New-VM	has	four	groupings	of	parameters	that	work	together,	but	not	all
of	the	cmdlets	are	accepted	in	all	parameters.	This	particular	use	case	with	the	-Template
parameter	doesn’t	accept	inputs	such	as	-NumCPU	and	-MemoryGB	and	will	throw	an	error	if
specified.

However,	why?	These	are	valid	parameters	for	the	New-VM	cmdlet,	correct?	Yes	and	no.
When	a	cmdlet	plays	many	roles,	such	as	New-VM,	certain	things	are	not	possible.	When
you	provision	a	VM	from	a	template	in	the	GUI,	that	workflow	doesn’t	include	the	ability
to	change	the	hardware	during	the	deployment.

Note
Changing	the	VM	hardware	has	existed	as	an	experimental	feature	in	vSphere	for	a	few
versions,	but	it	isn’t	a	part	of	the	same	deployment	workflow.

Since	this	is	not	an	available	option,	the	parameters	used	for	deploying	a	template	do	not
accept	the	parameters	that	would	alter	the	VM	hardware	profile.	You	will	encounter	a
number	of	these	multi-use	cmdlets	in	PowerCLI	which	is	why	you	are	referred	to	Get-
Help	and	online	documentation.	These	resources	will	clear	syntax	questions	such	as	these.

There’s	more…
Deploying	a	virtual	machine	from	a	template	is	a	fantastic	feature	of	vSphere.	However,	it
doesn’t	fully	address	the	problem	of	deploying	virtual	machines	because	the	guest
operating	system	will	need	further	customization	to	truly	become	a	different	virtual
machine.	Virtual	machines	running	Windows	operating	systems	will	require	the	Sysprep
process	to	be	run,	which	generates	a	new	System	Identifier	(SID),	making	it	a	new
server.	Virtual	machines	running	Linux	will	need	to	customize	the	network	settings	and
reset	these	since	the	Media	Access	Control	(MAC)	address	of	the	virtual	machine	has
changed	and	it	will	need	to	be	reconfigured	for	network	connectivity.

To	handle	some	of	these	use	cases,	vSphere	packages	a	customizer	feature	that	allows	an
administrator	to	define	the	basic	settings	to	be	applied	against	a	guest	operating	system.
These	settings	can	include	the	network	settings,	the	name	of	the	machine,	licensing
information,	and	even	the	ability	to	change	the	guest’s	virtual	hardware	during
deployment.

You	will	see	that	two	of	the	parameter	sets	include	a	-OSCustomizationSpec	parameter.
This	parameter	allows	you	to	pass	an	OS	customization	specification	to	the	template	to	be
executed	after	the	VM	deploys.	The	OS	customization	specification	is	a	set	of	parameters,
including	settings	to	change	the	SID,	the	administrator	password,	the	domain	information
to	join	the	system	to	the	domain,	network	settings,	product	key,	time	zone,	and	other
settings.	The	OSCustomizationSpec	object	contains	all	of	this	information,	so	you	can
create	an	object	with	the	Set-OSCustomizationSpec	cmdlet	and	pass	this	in	as	a	variable
to	the	New-VM	cmdlet.

Importing	a	virtual	appliance	from	OVA
Not	all	virtual	machines	have	to	be	built	from	scratch	or	built	from	a	template	that	you’ve
created	in-house.	Many	virtual	machines	are	distributed	in	appliance	form	using	the	OVA
and	OVF	formats.	OVA	is	a	single	file	that	contains	all	of	the	details	and	virtual	disk
information	for	a	virtual	machine.

OVF	is	a	set	of	files	that	contains	specifications	and	the	data	disks	for	a	virtual	machine.
These	two	formats	allow	vendors	to	create	pre-defined	copies	of	their	application	and
easily	distribute	them	for	use.

Importing	a	virtual	appliance	from	PowerCLI	is	actually	a	pretty	simple	task	to
accomplish,	but	it	does	come	with	a	bit	of	risk.	Not	all	virtual	appliances	are	created	in	a
way	such	that	importing	them	from	PowerCLI	will	work.	For	instance,	the	vCenter
Server	Appliance	(VCSA)	is	not	a	great	candidate	for	importing	in	PowerCLI	because	it
requires	a	lot	of	additional	configuration	questions	to	be	answered	during	the	import
wizard.	Without	these	settings	being	defined,	the	initial	boot	and	configuration	of	the	VM
will	fail.

However,	there	are	many	other	applications	that	are	easily	imported	from	PowerCLI.	Load
balancers,	web	servers,	and	other	applications	are	distributed	and	they	require	no
additional	customization.	These	simple	appliances	boot	the	first	time,	obtain	an	address
from	DHCP,	and	then	allow	you	to	perform	the	configuration.	For	these,	PowerCLI	offers
a	significant	time	saving	when	deploying	multiple	copies	of	a	virtual	appliance.	However,
you	should	test	the	virtual	appliance	first	in	the	GUI	in	order	to	know	if	additional	custom
properties	are	required	for	a	successful	deployment,	and	if	they	are	not,	you	can	proceed
with	PowerCLI.

When	you	are	researching	solutions,	the	VMware	Virtual	Appliances	Marketplace,
page	located	at	https://solutionexchange.vmware.com/store/category_groups/virtual-
appliances,	is	a	great	resource	to	find	virtual	appliances.

https://solutionexchange.vmware.com/store/category_groups/virtual-appliances

Getting	Started
To	begin	this	recipe,	you	will	need	to	open	a	PowerCLI	window	and	connect	to	a	vCenter
server.	You	will	also	need	to	find	a	virtual	appliance	and	download	it	so	that	you	can	use	it
for	this	recipe.	If	you	need	a	virtual	appliance,	but	you	aren’t	sure	what	to	download,
blogger	Mike	Laverick	has	several	options	available	for	download	at	his	website,
http://www.mikelaverick.com/download/.	Another	possibility	is	SmartOS	from	Joyent	that
is	available	at	http://www.smartos.org.

For	this	recipe,	you	will	use	a	virtual	appliance	called	SliTaz	4.0,	which	is	a	small	OVF
and	OVA	downloaded	from	Laverick’s	website.

http://www.mikelaverick.com/download/
http://www.smartos.org

How	to	do	it…
1.	 To	begin,	note	the	location	where	you	have	saved	your	files	for	the	virtual	appliance.

If	the	appliance	download	is	zipped,	unzip	it	and	save	it	in	an	easy	to	access	location.
For	this	recipe,	my	virtual	appliance	is	located	at	C:\va	on	my	local	machine.

2.	 Next,	you	will	use	the	Import-VApp	cmdlet	to	import	the	appliance	files.	The	first
and	the	most	important	parameter	is	the	-Source	parameter	that	points	to	the	OVF	or
the	OVA	file.	You	must	also	specify	a	host	using	-VMHost:

Import-vApp	-Source	C:\va\SliTaz4.0\SliTaz4.0.ovf	-Name	"SliTaz4.0"	-

VMHost	esxhost1.domain.local

3.	 You	will	see	a	progress	bar	as	the	import	completes,	followed	by	the	output	with
confirmation	of	the	Name,	PowerState,	Number	of	CPUs,	and	the	amount	of	memory
assigned	to	your	imported	virtual	appliance:

4.	 Once	the	deployment	finishes,	you	can	power	on	the	new	VM.	To	do	so,	just	use	the
Start-VM	cmdlet	with	the	-VM	parameter	to	specify	our	new	SliTaz4.0	VM:

Start-VM	-VM	"SliTaz4.0"

How	it	works…
When	you	execute	the	Import-vApp	cmdlet	in	PowerCLI,	the	distributed	virtual	appliance
files	are	read	in	using	the	-Source	cmdlet	and	validated	against	the	hash	provided	as	a	part
of	the	package.	Once	the	validation	occurs,	the	virtual	disk	is	uploaded	to	a	datastore,
either	specified	by	a	parameter	or	chosen	by	vSphere	if	not	specified.	In	our	recipe,	you
did	not	specify	a	particular	datastore	for	the	VM	to	be	placed,	so	vSphere	chose	the
datastore	location	automatically	on	the	specified	host.	The	-VMHost	parameter	is
mandatory	and	you	must	deploy	to	a	host	specifically.	You	can	also	specify	a	-Location
value	that	can	be	any	sort	of	VIContainer,	such	as	ResourcePools,	Clusters,	or	Folders	are
all	possible,	but	it	is	not	a	replacement	for	-VMHost.

Importing	a	virtual	appliance	or	a	vApp	is	simple	from	a	PowerCLI	perspective.	What
goes	on	behind	the	scenes	is	a	bit	more	than	it	might	appear.	Each	OVA	file	or	OVF
bundle	also	bundles	a	hash	that	is	used	to	verify	the	validity	of	the	image	before	it	is
imported	and	deployed.	If	the	hash	does	not	match	the	data	files	provided,	an	error	is
presented	and	the	import	will	fail.	This	is	intended	to	stop	corruption	and	to	avoid
malicious	changes	from	being	made	to	the	virtual	appliance	once	it’s	created.

Although	this	section	focuses	on	importing	a	virtual	appliance,	the	same	cmdlets	can	be
used	to	deploy	a	vApp.	A	vApp	is	nothing	more	than	several	bundled	virtual	appliances
that	work	together	to	form	an	application.	One	virtual	appliance	can	be	a	database	server
or	a	collection	server	while	the	other	is	a	management	server.	Both	are	needed	for	a	fully
functioning	application,	so	that	they	are	bundled	together	using	the	vApp	construct	in
vSphere.

A	great	example	of	a	vApp	is	vCenter	Operations	Manager	(vCOPS).	vCOPS	is	a
multiserver	application	that	bundles	two	virtual	appliances:	a	UI	virtual	machine	and	an
analytics	virtual	machine.	The	import	process	happens	as	a	single	vApp	but	in	the
background	it	deploys	both	the	virtual	machines.

There’s	more…
As	you	can	imagine,	deploying	virtual	appliances	and	vApps	in	bulk	is	particularly	handy.
With	an	easy	For	loop,	you	can	deploy	many	of	these	for	lab	or	classroom	environments
to	quickly	get	workloads	up	and	running	as	you	need.	Beyond	testing	environments,
deploying	many	virtual	appliances	is	handy	in	production	environments	when	deploying
clusters	of	virtual	network	appliances,	such	as	load	balancers.

See	also
Mike	Laverick’s	blog	contains	OVF/OVA	downloads	at
http://www.mikelaverick.com/download/
SmartOS	from	Joyent	is	available	at	http://www.smartos.org

http://www.mikelaverick.com/download/
http://www.smartos.org

Performing	a	hot	add	of	virtual	hardware
to	an	existing	virtual	machine
One	of	the	greatest	benefits	of	virtualization	is	the	ability	to	give	a	virtual	machine	a
hardware	upgrade	without	buying	new	hardware.	Since	each	virtual	machine	only	uses	a
portion	of	the	host’s	available	resources,	you	can	reconfigure	the	virtual	machine	and	add
additional	hardware.	You	can	add	a	USB	controller,	a	CD	drive,	additional	hard	disks,
SCSI	controllers,	vCPUs,	and	RAM	to	the	virtual	machines	that	have	already	been
configured.

In	the	past,	adding	CPU	and	RAM	to	a	virtual	machine	was	a	task	that	had	to	be	done
while	the	VM	was	offline,	but	increasingly,	guest	operating	systems	are	establishing
support	for	hot	add,	which	means	that	administrators	can	increase	the	RAM	and	number	of
CPUs	of	a	virtual	machine	while	the	guest	is	running.

The	most	recent	version	of	Windows	and	Linux	support	hot	add	vCPU	and	RAM.
VMware	publishes	a	Compatibility	Guide	page	for	Guest	OS,	which	outlines	features
available	for	each	version	of	the	supported	guest	OS,	including	whether	it	can	support
vCPU	and	memory	hot	add.	The	link	for	the	compatibility	guide	is	at	the	end	of	this
recipe.	From	a	GUI	standpoint,	you	go	to	the	same	Edit	Settings…	dialog	box	and	when
you	select	RAM,	the	settings	are	no	longer	greyed	out.	After	you	change	and	save	the
settings,	the	virtual	machine	sees	and	recognizes	the	additional	memory.

In	this	section,	you	will	learn	about	adding	hardware	to	a	virtual	machine.	You	will	also
look	at	which	functions	will	work	online	and	which	will	require	the	VM	to	be	offline	in
order	to	make	the	change.

Getting	Started
In	this	recipe,	you	will	run	through	a	number	of	common	hardware	reconfiguration	that
needs	to	occur	in	virtual	machines	and	can	easily	be	handled	through	PowerCLI.	The	first
thing	you	will	cover	are	some	online	reconfigurations:	adding	vCPU	and	memory	to	a
supported	Guest	OS,	adding	disk	space	to	an	existing	disk,	and	adding	a	brand	new	virtual
disk	to	an	existing	VM.	Next,	you	will	cover	some	reconfiguration	that	must	be	done
offline	such	as	adding	an	additional	SCSI	controller	and	a	different	set	of	virtual	disks
needed	to	set	up	a	Windows	cluster	running	in	VMware.	To	begin,	you	will	need	to	open	a
PowerCLI	window	and	connect	to	a	vCenter	instance.

How	to	do	it…
1.	 To	begin,	you	have	to	figure	out	which	virtual	machine	needs	to	be	reconfigured.	You

will	do	this	with	the	Get-VM	cmdlet:

Get-VM	Win*

2.	 You	will	see	the	output	that	indicates	WinVM1	is	powered	on.	You	will	use	the	Set-
VM	cmdlet	to	make	changes	to	the	running	VM.	You	will	also	see	that	WinVM1	is
running	with	two	CPUs	and	4	GB	of	RAM.	However,	4	GB	is	not	sufficient	for	the
application	you	are	running,	so	you	need	to	increase	this	amount	to	12	GB.	To	do
this,	you	will	use	the	-VM	parameter	to	specify	the	VM	name	and	the	-MemoryGB	to
reallocate	more	RAM:

Set-VM	-VM	WinVM1	-MemoryGB	12

When	you	execute	the	cmdlet,	you	get	an	error	because	hot	add	is	not	enabled,	which
is	shown	as	follows:

The	operation	for	the	entity	"WinVM1"	failed	with	the	following	

message:	"Memory	hot	plug	is	not	supported	for	this	virtual	machine."

3.	 The	reconfiguration	failed	in	this	case	because	you	did	not	define	the	running	VM
with	the	ability	to	hot	add	RAM	or	CPUs.	You	will	need	to	shut	down	the	VM	and
reconfigure	it.	However,	there	is	no	cmdlet	specifically	to	do	this.	You	will	need	to
use	the	Get-View	cmdlet.	The	first	step	is	to	shut	down	the	VM	with	Stop-VM	cmdlet
and	then	retrieve	a	View	of	the	VM	with	Get-View.

Stop-VM	-VM	WinVM1

$vmview	=	Get-VM	WinVM1	|	Get-View

4.	 The	next	step	is	to	create	a	new	configuration	specification	object	and	store	the
settings	you	want	to	change	with	their	needed	settings.	To	do	this,	you	will	first
define	a	new	object	with	the	type,	VMware.VIM.VirtualMachineConfigSpec,	which
is	the	object	type	for	a	virtual	machine’s	configuration:

$ConfigSpec	=	New-Object	VMware.VIM.VirtualMachineConfigSpec

5.	 The	next	step	is	to	set	the	two	options	that	control	the	hot	add	capability.	To	do	this,
you	need	one	more	object	to	be	defined:	VMware.VIM.optionvalue:

$options	=	New-Object	VMware.VIM.optionvalue

6.	 The	next	step	is	to	define	key	and	value	pairs	for	the	options	you	want	to	change.	Our
keys	for	hot	add	are	mem.hotadd	and	vcpu.hotadd.	You	will	set	both	of	these	to	a
value,	true:

$options.Key	=	"mem.hotadd"

$options.Value	=	"true"

7.	 The	next	step	is	to	add	this	pair	to	the	configuration	specification.	You	can	do	this	by
using	the	+=	assignment	operator:

$ConfigSpec.extraconfig	+=	$options

8.	 The	last	step	is	to	commit	these	changes	to	the	VM.	For	this,	you	will	use	the
VMView	object’s	built-in	Reconfig()	function.	You	can	call	the	VMView	object
using	the	$vmview	variable	you	defined	earlier.	You	pass	the	$ConfigSpec	variable
you	created	into	this	view	to	redefine	these	options:

$vmview.ReconfigVM($ConfigSpec)

9.	 Next,	you	repeat	the	last	three	steps	with	a	new	key	and	value	pair	for	vCPU	hot	add:

$options.Key	=	"vcpu.hotadd"

$options.Value	=	"true"

$ConfigSpec.extraconfig	+=	$options

$vmview.ReconfigVM($ConfigSpec)

10.	 At	this	point,	you	can	restart	the	VM	with	the	Start-VM	cmdlet:

Start-VM	-VM	WinVM1

11.	 Once	it	has	a	chance	to	get	back	online,	you	can	attempt	to	hot	add	RAM	to	the	VM:

Set-VM	-VM	WinVM1	-MemoryGB	12

This	could	have	been	executed	while	the	VM	was	offline	without	the	need	to
reconfigure	the	VM	for	hot	add	vCPU	and	memory,	but	if	you	need	to	add	RAM	or
vCPU	in	the	future,	the	VM	is	ready	to	do	this	while	it’s	online.

12.	 The	same	application	needs	an	additional	data	disk	with	20	GB	of	disk	space.	You
will	add	this	as	a	new	disk	on	the	VM:

Get-VM	WinVM1	|	New-HardDisk	-CapacityGB	20	

13.	 Once	the	disk	is	added	to	the	VM,	the	operating	system	will	need	to	format	and
prepare	the	disk	for	use.

How	it	works…
In	this	recipe,	you	attempted	to	perform	a	hot	add	or	an	online	add	of	RAM	into	a	VM.
The	VM	was	not	configured	to	enable	the	hot	add	feature,	even	though	the	operating
system	supported	the	feature.	When	you	created	WinVM1	earlier	in	this	chapter,	you
created	it	with	the	GuestID	for	Windows	Server	2008	R2,	which	supported	the	hot	add
vCPU	and	memory.	However,	the	feature	does	not	get	enabled	by	default.	What’s	more,
there	isn’t	a	cmdlet	to	enable	this	feature	in	a	VM	either.	Within	the	Set-VM	cmdlet,	there
are	no	parameters	to	enable	hot	add.	So,	you	have	to	turn	to	lower-level	SDK	features	to
achieve	this.

All	of	the	high-level	cmdlets	in	PowerCLI	leverage	the	same	underlying	web	SDK	and
make	calls	against	it	to	perform	the	operations	that	you	have	executed.	However,	in	this
example,	it	is	up	to	us	to	manually	retrieve	and	create	objects	of	the
VirtualMachineConfigSpec	and	the	optionvalue	types.	Once	you	create	these	with	the
New-Object	cmdlet,	you	are	able	to	populate	data	into	these	that	you	can	use	in
conjunction	with	a	VMView	object	retrieved	with	the	Get-View	cmdlet.

There’s	more…
As	PowerCLI	has	matured,	there	have	been	many	cmdlets	that	have	been	added	to	the
toolset.	In	the	past,	it	was	necessary	to	work	with	Views	and	SDK-based	objects	to
achieve	a	number	of	setting	changes.	There	is	tremendous	power	working	with	Views	too.
It	is	impossible	to	cover	all	of	the	possibilities	within	PowerCLI,	simply	because	it	is	an
extensible	and	flexible	toolkit	where	administrators	and	developers	can	build	their	own
functionalities	easily.

If	ever	you	hit	a	roadblock	trying	to	achieve	something	that	you	need	to	do	with
PowerCLI,	there	is	a	good	chance	that	someone	has	created	a	script	leveraging	the	lower-
level	SDK	Views	and	functions	in	PowerCLI.	It	is	always	a	good	bet	to	start	with	a	web
search	to	try	and	discover	the	resources	others	are	making	available	for	free.	While	it	is
not	nearly	as	straight	forward	as	working	with	native	cmdlets,	the	potential	is	there	if	you
need	to	script	a	setting	change.

See	also
VMware	Guest	OS	Compatibility	Guide	is	available	at
http://www.vmware.com/resources/compatibility/pdf/VMware_GOS_Compatibility_Guide.pdf

http://www.vmware.com/resources/compatibility/pdf/VMware_GOS_Compatibility_Guide.pdf

Enabling	and	disabling	Fault	Tolerance	on
a	virtual	machine
In	addition	to	VMware	High	Availability	(HA)	clustering,	VMware	also	provides	the
ability	to	enable	Fault	Tolerance	(FT)	to	protect	a	running	virtual	machine.	FT	creates	a
secondary	virtual	machine	on	a	second	host	in	the	cluster	and	executes	all	of	the	same
instructions	on	both	the	VMs.	In	the	event	of	a	host	failure	on	the	server	hosting	the
primary	VM,	the	secondary	VM	will	assume	the	role	of	the	primary	with	no	downtime.
There	are	no	breaks	in	the	network	connectivity	or	application	uptime.

In	vSphere	5.5,	FT	has	a	significant	list	of	requirements,	including	at	least	two	ESXi	hosts
with	FT	compatible	processors,	shared	datastores,	and	networking	hosting	the	VM.	In
addition,	your	ESXi	hosts	must	have	a	logging	network	connection	between	the	hosts	for
Fault	Tolerance	where	the	process	instructions	are	transmitted	for	execution	on	the
secondary	VM.	Most	restrictive,	however,	is	vSphere	5.5	which	only	supports	FT	on	a
virtual	machine	with	only	one	vCPU.

If	you	meet	these	requirements,	however,	enabling	FT	on	a	virtual	machine	is	very	simple
from	PowerCLI.	There	is	not	a	native	cmdlet	to	handle	this,	but	the	ExtensionData
property	in	a	VM	object	has	a	method	to	enable	and	to	disable	the	protection	feature.

Getting	Started
For	this	recipe,	you	will	need	a	PowerCLI	window	with	a	connection	to	a	vCenter	Server.
You	will	also	require	at	least	two	ESXi	hosts	connected	to	a	shared	datastore	hosting
WinVM1	or	another	VM	whose	name	can	be	substituted	in	the	recipe.	If	the	ESXi	hosts
were	built	by	the	commands	created	in	Chapter	1,	Configuring	the	Basic	Settings	of	an
ESXi	Host	with	PowerCLI,	the	Fault	Tolerance	logging	network	should	be	created	and
active	between	the	ESXi	hosts.

How	to	do	it…
1.	 The	first	step	is	to	retrieve	a	VM	object	using	the	Get-VM	cmdlet.	For	an	easy

reference,	assign	this	object	to	the	$vm	variable:

$vm	=	Get-VM	"WinVM1"

2.	 Now	that	you	have	the	object,	you	should	check	to	see	whether	Fault	Tolerance	is
compatible	for	this	VM.	To	do	this,	there	is	a	method	in	ExtensionData.	Perform	a
Get-Method	cmdlet,	or	GM	for	short,	to	look	inside	the	ExtensionData	property	of	the
object:

$vm.ExtensionData	|	GM

3.	 If	you	look	through	the	list	of	methods	in	properties	in	ExtensionData,	you	will	find
a	QueryFaultToleranceCompatibility	method.	This	can	be	used	to	check	for
problems	that	would	prevent	Fault	Tolerance	to	be	enabled.	If	there	are	no	faults
listed,	you	can	continue	with	the	next	step.	If	there	are	faults	listed,	these	will
indicate	problems	you	should	resolve	before	trying	to	enable	FT	on	the	VM:

$vm.ExtensionData.QueryFaultToleranceCompatibility()

4.	 You	can	look	through	the	list	of	methods	in	ExtensionData	again	with	Get-Method
and	to	locate	the	two	methods	you	will	use	to	enable	and	disable	FT.	The	method
used	to	enable	FT	is	named	CreateSecondaryVM.	The	method	to	disable	FT	is	named
TurnOffFaultToleranceForVM.	With	WinVM1	powered	off,	run	the
CreateSecondaryVM	command.	You	will	pass	in	$null	for	the	value	of	the	method
that	will	allow	DRS	to	place	the	secondary	VM	onto	an	ESXi	host.	Alternatively,	you
can	specify	the	ID	of	a	specific	host	where	the	secondary	VM	should	be	placed	in	the
method:

$vm.ExtensionData.CreateSecondaryVM($null)

5.	 At	this	point,	you	can	power	on	the	VM	and	you	will	see	both	the	primary	and
secondary	VM	being	powered	on	in	vCenter:

Start-VM	-VM	"WinVM1"

6.	 Even	while	the	VM	is	running,	you	can	turn	off	Fault	Tolerance	with	the
TurnOffFaultToleranceForVM	method	mentioned	in	Step	4.	This	is	disabled	and
then	removes	the	secondary	VM:

$vm.ExtensionData.TurnOffFaultToleranceForVM()

How	it	works…
The	primary	methods	for	enabling	and	disabling	Fault	Tolerance	in	vSphere	are
CreateSecondaryVM	and	TurnOffFaultToleranceForVM,	and	these	methods	are	located	in
the	VM	object	within	PowerCLI.	CreateSecondaryVM	will	create	the	secondary	VM	and
then	replicate	its	power	state.

If	powered	on,	it	will	take	a	snapshot	of	the	VM’s	memory,	start	it	at	a	known	point,	and
then	begin	replaying	the	instructions	from	the	snapshot	forward.

In	addition	to	CreateSecondaryVM,	you	might	have	seen	additional	methods	called
EnableSecondaryVM	and	DisableSecondaryVM.	Although	Enable	and	Create	might	sound
like	similar	operations,	they	have	different	purposes.	DisableSecondaryVM	is	used	to
disable	FT	on	the	next	power	on	of	the	VM,	and	EnableSecondaryVM	enables	FT	on	the
next	power	on	of	the	VM	and	the	method	is	only	used	to	enable	a	VM	that	has	been
disabled	with	the	DisableSecondaryVM	method.

When	you	explore	the	ExtensionData	property	with	Get-Method,	you	will	also	see	almost
identically	named	methods	CreateSecondaryVM_task	and
TurnOffFaultToleranceForVM_task.	These	methods	generate	tasks,	but	they	do	not
return	useful	feedback	from	the	command.	The	_task	methods	only	return	the	identifying
value	of	the	task	generated	on	vCenter	Server,	however,	the	_task	methods	perform	the
same	work	as	their	counterparts.

In	the	recipe,	you	created	the	secondary	VM	on	a	powered	off	WinVM1.	This	was	done
for	simplicity	in	the	recipe,	however,	sometimes	enabling	FT	on	a	powered	on	VM	will
result	in	an	error	“Replay	is	unavailable	for	the	current	configuration.”	The	workaround
for	that	error	is	to	shut	down	the	VM	to	be	protected,	so	this	was	suggested	prior	to
running	the	CreateSecondaryVM	method	for	this	reason.

See	also
VMware	vSphere	5.5	Availability	Guide	is	available	at
http://pubs.vmware.com/vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-esxi-
vcenter-server-55-availability-guide.pdf

http://pubs.vmware.com/vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-55-availability-guide.pdf

Increasing	the	disk	space	in	a	virtual
machine
In	the	previous	recipe,	you	covered	configuring	a	VM	for	hot	adding	vCPU	and	RAM	on
an	existing	virtual	machine.	In	this	recipe,	you	will	dive	a	bit	deeper	into	space	allocation
for	virtual	machines.	With	applications	and	data	demands	growing,	it’s	a	common	use	case
to	need	to	increase	disk	space	on	a	virtual	server,	but	it’s	not	just	a	VMware	vSphere
setting.	In	all	the	cases,	you	will	need	to	do	things	within	the	guest	operating	system	to
recognize	and	utilize	the	additional	space	provided.

In	terms	of	virtual	hardware,	virtual	hard	disks	have	always	been	hardware	that	can	be
added	while	the	system	was	running,	just	as	you	did	in	the	previous	recipe.	However,	in
addition	to	adding	a	hard	disk,	the	sizes	of	the	disks	can	also	be	increased	while	the
system	is	online	and	this	allows	you	to	allocate	more	disk	space	without	the	need	to	stop
an	application.

Getting	Started
For	this	recipe,	you	will	need	a	PowerCLI	window	with	a	connection	to	a	vCenter	server
where	WinVM1	was	created.

How	to	do	it…
1.	 The	first	step	is	to	locate	the	hard	disk	that	you	want	to	grow.	The	best	way	to	do	this

is	to	locate	the	VM	with	a	Get-VM	and	pipe	that	into	a	Get-HardDisk	cmdlet:

Get-VM	"WinVM1"	|	Get-HardDisk

2.	 You	will	see	that	more	than	one	disk	is	returned.	Unless	you	want	to	grow	both	to	the
same	size,	you	will	need	to	select	one	of	the	two	using	a	Where	clause	on	our
previous	cmdlet:

Get-VM	"WinVM1"	|	Get-HardDisk	|	Where	{$_.CapacityGB	-eq	60}

3.	 Now	that	the	result	is	scoped	down	to	the	one	disk	that	you	want	to	work	with,	you
can	use	the	Set-HardDisk	cmdlet	to	change	the	size	on	this	disk.	To	do	this,	you
simply	pass	the	-CapacityGB	in	as	a	parameter	with	a	new	value.	When	you	execute
the	command,	it	will	ask	you	for	a	confirmation,	or	you	can	add	the	-
Confirm:$false	parameter	to	suppress	this:

Get-VM	"WinVM1"	|	Get-HardDisk	|	Where	{$_.CapacityGB	-eq	60}	|	Set-

HardDisk	-CapacityGB	80	-Confirm:$false

4.	 You	can	confirm	the	disk	size	change	with	the	Get-VM	cmdlet:

Get-VM	"WinVM1"	|	Get-HardDisk

5.	 The	next	step	is	to	go	into	the	operating	system	and	let	the	filesystem	grow	or	rescan
the	filesystem	in	order	to	recognize	the	additional	disk	space.

How	it	works…
The	Set-HardDisk	cmdlets	change	the	characteristics	of	the	VMDK	file	under	the	virtual
machine.	Each	virtual	disk	is	actually	made	up	of	two	files,	one	with	the	metadata	that
describes	the	virtual	disk	and	one	with	the	actual	blocks	of	data	inside	it.	For	thin
provisioned	disks,	the	metadata	is	updated	but	the	true	data	file	doesn’t	change	since	the
blocks	are	allocated	only	when	used.	For	thick	provisioned,	both	Lazy	Zero	and	Eager
Zero	disks,	the	sizing	of	the	data	file	also	changes.

Once	the	virtual	disk	files	are	updated,	the	virtual	machine	sees	that	the	disk	size	changes
within	the	guest	operating	system.	It	is	up	to	the	operating	system	to	then	make	use	of	the
additional	space	by	rescanning	the	disk	subsystem	and	by	changing	the	partition	sizing
using	native	OS	utilities.

Upgrading	the	virtual	hardware	version	of
a	virtual	machine
From	release	to	release,	VMware	has	enhanced	the	functionality	of	virtual	machines	and
each	new	set	of	capabilities	is	represented	by	a	virtual	hardware	version	number.	Each
virtual	machine	has	an	assigned	virtual	hardware	number	and	this	represents	the	feature
set	that	the	virtual	machine	can	make	use	of	and	defines	which	version	of	host	is	required
to	run	the	virtual	machine.	In	short,	it’s	basically	the	file	format	of	the	virtual	machine,
since	every	virtual	machine	is	made	up	of	a	definition	file,	virtual	hard	disks,	and	a	few
other	special	purpose	files.	In	order	for	a	virtual	machine	to	make	use	of	the	new
functionality,	its	virtual	hardware	must	be	upgraded.

Migrating	virtual	machines	from	one	virtual	hardware	version	to	another	is	another
common	task	during	the	life	cycle	of	a	virtual	machine.	You	might	need	to	add	a	type	of
hardware	that	only	works	with	a	virtual	hardware	version	higher	than	you	are	running,	or
you	might	simply	need	to	stay	updated	for	other	technical	reasons.	Regardless	of	the
reasons,	you	can	bulk	change	virtual	hardware	versions	from	PowerCLI	which	is	a	huge
time	saver	for	large	virtual	environments.

Getting	Started
To	begin,	you	will	need	a	PowerCLI	with	a	connection	to	a	vCenter	Server.	You	will	clone
the	virtual	appliance	running	an	earlier	version	of	the	virtual	hardware	that	you	will	use	to
upgrade	to	a	later	version	of	the	virtual	hardware	in	this	recipe.

How	to	do	it…
1.	 To	begin,	you	will	need	to	do	a	couple	of	steps	to	prepare	this	recipe.	The	first	step	is

to	import	a	virtual	appliance	and	specify	an	older	version	of	virtual	hardware	so	that
you	have	something	to	upgrade.	To	do	this,	you	will	reuse	the	New-VM	cmdlet	from
the	Cloning	a	virtual	machine	to	a	template	recipe,	which	is	as	follows:

New-VM	-VM	SliTaz4.0	-Name	SliTazTest	-ResourcePool	Production	

2.	 Next,	confirm	that	the	virtual	machine	you’ve	cloned	is	running	an	earlier	version	of
virtual	hardware	using	Get-VM	with	a	Select	cmdlet:

Get-VM	SliTazTest	|	Select	Name,	Version

3.	 VMware	recommends	that	you	take	a	snapshot	of	the	VM	before	upgrading	the
virtual	hardware	so	that	you	can	revert	in	the	event	of	a	problem	after	the	upgrade.	To
do	this,	you	will	use	the	New-Snapshot	cmdlet:

Get-VM	SliTazTest	|	New-Snapshot	-Name	"Before	Virtual	Hardware	

Upgrade"	

4.	 The	next	step	is	to	perform	the	virtual	hardware	upgrade:

Set-VM	-VM	SliTazTest	-Version	v8

5.	 Next,	you	will	start	the	virtual	machine	again	with	Start-VM:

Start-VM	-VM	SliTazTest

Open-VMConsoleWindow	SliTazTest

6.	 The	last	step	is	to	verify	that	the	VM	is	booted	and	is	operational	after	the	upgrade.

How	it	works…
The	actual	process	of	changing	the	virtual	machine	version	is	quite	simple.	It’s	a	native
PowerCLI	cmdlet	and	the	syntax	is	easy	to	understand.	Behind	the	scenes,	the	VMX	file
undergoes	a	small	change,	but	changing	the	version	doesn’t	do	a	lot	inside	the	virtual
machine.	Any	changes	will	be	detected	on	the	first	boot	of	the	operating	system.

For	the	best	luck	with	virtual	hardware	upgrade,	VMware	recommends	that	you	first
upgrade	VMware	Tools	inside	the	virtual	machine.	This	ensures	that	you	will	get	all	of	the
latest	drivers	as	a	part	of	the	VMware	Tools	package.	The	drivers	will	be	required	if	you
add	newly	available	virtual	hardware	that	the	virtual	hardware	version	unlocks.

Upgrading	virtual	hardware	from	Version	4	or	higher	is	also	reversible,	but	you	must	make
a	snapshot	of	the	virtual	machine	first,	as	you	did	in	this	recipe.	In	the	event	that
something	happened	and	virtual	machine	does	not	function	after	the	upgrade,	you	can
revert	to	the	snapshot	quickly	to	recover.	Upgrading	from	Version	3	is	irreversible,	even
with	a	snapshot.

So,	why	are	virtual	hardware	versions	or	virtual	machine	versions	so	important?	These
versions	dictate	what	version	of	ESXi	you	must	be	running	at	a	host	level	to	run	the	virtual
machine.	Version	4	is	the	most	compatible	version	that	can	run	on	ESX	or	ESXi	3.5	or
higher.	Version	7	requires	ESX	or	ESXi	4	or	higher	to	run.	Version	8	requires	ESXi	5	or
higher	and	Version	9	requires	ESXi	5.5	to	run.	Virtual	appliances	are	likely	going	to	come
with	an	older	version	of	virtual	hardware	since	it	takes	a	period	of	time	before	some	IT
shops	upgrade	their	production	vSphere	version.	It’s	not	uncommon	to	receive	virtual
appliances	running	Version	7,	such	as	the	SliTaz	4.0	virtual	appliance	in	this	recipe.

However,	it’s	more	than	just	which	version	of	ESXi	is	required.	Higher	versions	unlock
new	hardware	capabilities,	increase	RAM	allocations,	support	new	NIC	types,	and	other
features	that	earlier	versions	of	ESXi	didn’t	support.	Paravirtual	SCSI	controllers,	which
provide	faster	disk	IO	in	virtual	machines,	require	version	7	or	higher.	E1000e	network
cards	in	a	virtual	machine	require	Version	8	or	higher.	Version	9	unlocks	up	to	512	MB	of
video	memory	in	a	virtual	machine.	Version	10	adds	virtual	SATA	controllers	to	virtual
machines.	These	are	just	a	few	examples,	but	VMware	has	an	extensive	list	of	differences
in	vSphere	Documentation	Center.

See	also
VMware	vSphere	5.5	Documentation	Center	is	available	at
http://pubs.vmware.com/vsphere-55/index.jsp

http://pubs.vmware.com/vsphere-55/index.jsp

Locating	and	reloading	inaccessible	or
invalid	virtual	machines
Since	virtual	machines	are	nothing	more	than	a	group	of	files	that	define	a	computer,
sometimes	an	ESXi	host	or	vCenter	might	lose	communication	with	a	filesystem	or
datastore	where	the	virtual	machine	files	are	stored.	In	that	event,	the	VM	can	be	labeled
as	inaccessible	or	invalid	inside	vCenter.	One	way	to	solve	this	is	to	unregister	and
reregister	the	virtual	machine’s	VMX	file	to	vCenter	or	the	ESXi	host.

When	you	have	many	of	these	inaccessible	or	invalid	VMs,	like	after	a	storage	outage,	it
can	become	a	tedious	process	to	cleanup.	PowerCLI	can	offer	an	easy	and	quick	way	to
provide	a	remedy	for	this	situation.	In	this	recipe,	we’ll	explore	how	to	locate	and	identify
inaccessible	or	invalid	virtual	machines	and	how	to	automatically	reregister	them	to	fix	the
problem.

This	recipe	is	available	online	and	is	a	good	use	case	that	will	help	you	understand	the	use
of	View	objects	in	PowerCLI.	Many	of	the	View	objects	in	PowerCLI	possess	a	lot	of
methods	or	functions,	many	more	than	the	objects	used	by	native	cmdlets.

Getting	Started
To	begin	this	recipe,	you	will	need	to	open	a	PowerCLI	window	and	connect	to	a	vCenter
Server.

How	to	do	it…
1.	 To	begin	with	this	recipe,	you	will	need	to	get	a	VMView	object.	You	can	do	this	using

the	Get-View	cmdlet	in	PowerCLI.	This	time,	you	will	obtain	a	VMView	object	that
contains	all	of	the	virtual	machines	connected	to	this	vCenter	server:

$vmview	=	Get-View	-ViewType	VirtualMachine

2.	 Now	that	you	have	the	view,	let’s	explore	it	a	bit	more.	You	will	pipe	our	View	object
into	Get-Member	to	see	which	methods	and	properties	are	a	part	of	this	object:

$vmview	|	Get-Member

3.	 Next,	let’s	obtain	a	VM	object	from	a	native	PowerCLI	cmdlet	using	the	Get-VM
cmdlet:

$vmobject	=	Get-VM

$vmobject	|	Get-Member

4.	 If	you	measure	the	objects,	you	will	see	that	there	are	36	properties	in	$vmview	and
38	properties	in	$vmobject,	as	seen	in	the	following	screenshot:

5.	 In	comparison,	if	you	measure	the	number	of	Methods,	there	is	a	huge	difference.
$vmview	has	100	methods	and	$vmobject	has	only	10,	as	seen	in	the	following
screenshot:

6.	 Why	is	there	such	a	big	difference	in	the	number	of	methods	since	the	number	of
properties	is	almost	identical?	If	you	spend	some	time	going	through	the	list	of
members	for	both	of	the	objects,	you’ll	begin	to	see	many	methods	very	similar	to	the
native	PowerCLI	cmdlets	dealing	with	VM,	such	as	PowerOnVM,	PowerOffVM,
CloneVM,	RelocateVM,	and	so	on	in	the	View	object.	For	the	VM	object,	you	are
expected	to	use	the	native	PowerCLI	cmdlets,	whereas	the	View	shows	the	low-level
functions	that	the	native	PowerCLI	are	using.

7.	 The	VMView	retrieved	from	Get-View	and	stored	in	$vmview	is	the	one	that	will	work
in	this	case.	You	can	use	the	Reload()	function	and	the	Runtime	property	for	our
needs	with	inaccessible	or	invalid	VMs.	From	our	Get-Member	cmdlet,	you	can	see
that	the	Runtime	Property	is	an	object	VMware.Vim.VirtualMachineRuntimeInfo.
You	can	explore	this	object	by	enumerating	it	at	the	command	line:

$vmview.Runtime

8.	 From	this	enumeration,	you	will	see	a	property	named	ConnectionState.
Unfortunately,	all	of	your	VM’s	are	likely	“Connected.”	However,	this	is	the	property
that	will	show	“inaccessible”	or	“invalid”	if	the	VM	were	in	that	state.	So,	you	will
use	this	property	to	scope	down	our	target	VMs.	You	can	do	this	using	a	Where
statement:

$vmview	|	Where	{$_.Runtime.ConnectionState	-eq	"inaccessible"	-or	

$_.Runtime.ConnectionState	-eq	"invalid"}

9.	 When	you	run	the	preceding	cmdlet,	unless	you	happen	to	have	a	VM	in	an
inaccessible	state,	there	will	be	no	results	returned,	but	you	will	proceed	with	the

script.	The	last	thing	is	to	use	the	Reload()	function.	In	this	case,	you	will	invoke	it
with	$_.Reload():

$vmview	|	Where	{$_.Runtime.ConnectionState	-eq	"inaccessible"	-or	

$_.Runtime.ConnectionState	-eq	"invalid"}	|	$_.Reload()

How	it	works…
One	of	the	primary	reasons	to	include	this	recipe	is	that	it	is	useful	to	address	a	real
problem	you	might	encounter,	but	beyond	that,	it	is	a	fairly	simple	yet	advanced	use	case
for	PowerCLI	Views	which	makes	it	easy	to	study	that	topic.

In	the	recipe,	you	will	use	the	Get-Member	cmdlet	to	examine	the	objects	returned	by	Get-
View	and	Get-VM	and	compare	the	number	of	Methods	and	Properties	contained	in	both.
While	the	number	of	properties	is	almost	identical,	the	number	of	Methods	differs
significantly.	The	reason	for	this	is	that	many	of	the	functions,	including	the	Get-View
VMView,	are	accomplished	with	other	native	cmdlets	in	PowerCLI.

In	this	recipe,	the	work	is	performed	by	the	Reload()	function	in	the	VMView.	However,
you	have	to	scope	down	the	target	VMs	to	be	only	the	VMs	that	are	in	the	inaccessible	or
invalid	state.	You	performed	that	with	a	simple	Where	statement,	however,	it	required	us	to
go	deeper	into	an	object	stored	in	our	VMView	object.

Setting	VMware	Tool	settings	from
PowerCLI
Over	a	period	of	time,	VMware	Tools	have	changed	within	virtual	machines.	Initially,
these	tools	were	configurable	within	a	virtual	machine	and	included	drivers	for	the	virtual
hardware	specific	to	the	operating	system.	The	tools	also	provided	some	basic	settings	to
allow	the	guest	virtual	machine	to	synchronize	its	time	with	the	ESXi	host	and	to
automatically	upgrade	to	a	newer	version	of	tools	on	shutdown.	Tools	also	allow	graceful
shutdown	of	the	guest	operating	system	by	executing	a	script	inside	the	guest,	rather	than
just	powering	off	the	VM.

Current	versions	of	VMware	Tools	provide	no	user	configurable	settings	inside	the	guest
operating	system	and	now	require	all	of	the	configurations	to	occur	at	the	VM	level,	the
same	as	changing	virtual	hardware.	At	the	same	time,	there	are	no	native	cmdlets	to
change	the	VMware	Tool	settings	in	the	VM	configuration.	To	make	these	changes,	you
will	again	have	to	turn	to	a	VMView	and	custom	configuration	objects.

Getting	Started
To	begin	this	recipe,	you	will	need	to	open	a	PowerCLI	session	and	connect	to	the	vCenter
sever	with	our	test	WinVM1	configured.	In	addition	to	the	concepts	you	have	already
covered,	in	this	recipe	you	will	also	need	to	obtain	and	pass	in	a	ChangeVersion	attribute
to	make	the	configuration	change.	This	attribute	prevents	overwriting	changes	made
between	the	time	when	a	configuration	is	read	and	when	it	is	updated.	You	will	need	to
take	the	current	ChangeVersion	and	pass	it	back	in	with	the	new
VirtualMachineConfigSpec	to	update	the	configuration.

How	to	do	it…
1.	 The	first	step	is	to	obtain	the	VMView	object	for	the	virtual	machine.	You	can	do	this

using	the	Get-View	cmdlet	with	the	-VIObject	parameter:

$vmview	=	Get-View	-VIObject	(Get-VM	WinVM1)

2.	 The	next	step	is	to	create	a	new	VirtualMachineConfigSpec	object:

$ConfigSpec	=	New-Object	VMware.Vim.VirtualMachineConfigSpec

3.	 Once	you	have	the	new	object	created,	you	need	to	take	the	ChangeVersion	cmdlet
from	the	view	you	obtained	and	place	it	into	our	new	ConfigSpec:

$ConfigSpec.ChangeVersion	=	$vmview.Config.ChangeVersion

4.	 Next,	you	have	to	create	a	subkey	in	the	$ConfigSpec	object	with	an	additional
ToolsConfigInfo	object	since	this	is	the	configuration	you	want	to	change:

$ConfigSpec.tools	=	New-Object	VMware.Vim.ToolsConfigInfo

5.	 Now,	with	a	ToolsConfigInfo	object	defined	in	ConfigSpec,	you	can	make	our
configuration	changes.	The	upgrade	policy	is	defined	by	a	toolsUpgradePolicy	key.
You	will	set	the	policy	to	have	a	value	of	upgradeAtPowerCycle:

$ConfigSpec.tools.toolsUpgradePolicy	=	"upgradeAtPowerCycle"

6.	 The	other	setting	change	you	want	to	make	is	to	enable	the	guest	time	sync	with	the
ESXi	host.	To	do	this,	you	will	use	the	syncTimeWithHost	key	and	set	it	to	$true.	To
disable	this,	you	will	set	the	same	key	to	$false:

$ConfigSpec.tools.syncTimeWithHost	=	$true

7.	 The	last	step	is	to	issue	the	reconfiguration	function	on	the	View:

$vmview.ReconfigVM($ConfigSpec)

How	it	works…
This	recipe	takes	you	a	little	deeper	into	VMViews.	In	this	recipe,	you	create	new	objects
for	VirtualMachineConfigSpec	and	ToolsConfigInfo	and	use	these	objects	to	make
configuration	changes	by	populating	some	properties	in	these	new	objects.	Only	the
properties	that	you	add	data	to	will	have	any	data	populated.	You	also	looked	at	the
ChangeVersion	attribute	and	used	it	to	populate	changes	back	to	a	virtual	machine	through
the	use	of	Views.	When	you	invoked	the	ReconfigVM()	method,	it	took	the	data	you
populated	in	the	VirtualMachineConfigSpec	object	and	changed	those	properties	on	the
virtual	machine.	This	recipe	takes	you	through	a	more	advanced	use	case	of	Views	and
shows	another	way	that	you	can	use	the	Methods	in	the	view	to	invoke	a	change.

Creating	basic	reports	of	VM	properties
using	VMware	Tools	and	PowerCLI
PowerShell	has	a	number	of	features	that	make	it	great	for	creating	reports.	It	includes
native	features	to	export	output	in	CSV	and	Excel	formats	to	make	it	easier	to	work	with
the	retrieved	data.	You	can	also	search	and	filter	through	your	cmdlets	to	easily	locate	and
then	scope	down	the	results	that	you	want.

You	might	need	to	create	basic	reports	to	report	properties	in	the	VMs,	such	as	disk	free
space	or	virtual	hardware	defined.	Even	better,	you	can	be	the	hero	when	your	supervisor
is	looking	for	details	about	virtual	machines	related	to	a	particular	department	or	an
application	if	you	know	how	to	tap	into	the	potential	of	PowerCLI	and	PowerShell’s
reporting.

As	you	have	seen	in	the	earlier	recipes,	PowerCLI	has	cmdlets	that	look	a	lot	like	SQL
with	Select,	Where,	and	Sort	cmdlets.	These	let	you	take	a	result	set	from	a	Get-	cmdlet
and	quickly	return	what	you’re	specifically	looking	for.	Beyond	these	cmdlets,	you	can
also	use	-Filter,	-Name,	-VM,	or	other	parameters	to	return	only	the	specific	objects	you
are	looking	for.

For	this	recipe,	you	will	be	responding	to	several	requests	that	you	have	been	assigned.
The	first	is	for	a	list	of	all	the	infrastructure	virtual	machines	and	the	operating	systems
that	they	are	running.	Your	manager	is	concerned	with	upgrades	needed	because	of	the
impending	end-of-life	of	an	operating	system.

The	second	request	from	your	manager	is	to	create	a	scheduled	task	that	will	generate	an
e-mail	when	a	virtual	machine’s	disk	space	has	less	than	10	percent	space	free	on	a
filesystem.

Getting	Started
To	begin	this	section,	open	a	PowerCLI	window	and	connect	to	the	vCenter	server.

How	to	do	it…
1.	 To	begin	our	first	request,	we’re	going	to	start	with	a	simple	Get-VM	cmdlet	to

retrieve	the	list	of	VM’s	we’re	targeting:

$InfraVMs	=	Get-VM	-Location	"Infrastructure"

2.	 The	next	thing	you	need	to	do	is	look	through	all	of	the	available	fields	and	see	which
make	sense	for	your	report.	You	can	examine	the	fields	using	the	Get-Member	cmdlet:

$InfraVMs	|	Get-Member

3.	 From	this	output,	you	can	select	the	fields	you	want.	Start	with	Name,	NumCPU,
MemoryGB,	Description,	Host,	and	PowerState.	You	can	pull	only	these	properties
using	a	simple	Select	cmdlet:

$InfraVMs	|	Select	Name,	NumCPU,	MemoryGB,	Description,	Host,	

PowerState

4.	 With	this,	you	have	the	data	you	want.	However,	the	format	isn’t	the	best.	How	can
you	get	the	data	out	of	PowerCLI	in	a	better	format?	This	is	where	PowerShell’s
native	features	come	in	handy.	PowerShell	has	a	cmdlet	called	Export-CSV	that	saves
the	data	from	an	object	to	a	CSV	file.	Even	though	the	cmdlet	says	CSV,	as	in
comma,	you	can	override	the	separator	and	use	any	other	character.	In	this	case,	you
only	need	to	specify	a	path	for	the	CSV	file	using	the	-Path	cmdlet:

$InfraVMs	|	Select	Name,	NumCPU,	MemoryGB,	Description,	Host,	

PowerState	|	Export-CSV	-Path	c:\infravms.csv

Now,	you	can	open	the	CSV	file	with	Microsoft	Excel	or	any	other	spreadsheet
software	and	manipulate	it	for	reporting.	PowerShell	automatically	includes	column
headings.

5.	 Comma	separated	values	isn’t	the	only	way	to	get	a	nice	report.	PowerShell	also	has
a	ConvertTo-HTML	cmdlet	that	will	format	a	full	HTML	file.	The	unfortunate	thing	is
that	the	formatting	is	very	plain.	It	also	displays	the	HTML	output	to	the	screen.	You
will	need	to	use	the	ConvertTo-HTML	cmdlet	along	with	Out-File	to	direct	the	output
to	a	file,	unlike	the	Export-CSV	cmdlet	that	does	the	conversion	and	saves	it	in	one
cmdlet:

$InfraVMs	|	Select	Name,	NumCPU,	MemoryGB,	Description,	Host,	

PowerState	|	ConvertTo-HTML	|	Out-File	c:\infravms.html

6.	 Fortunately,	it	is	easy	to	improve	the	formatting	with	a	little	CSS.	To	do	this,	you	can
store	a	string	in	a	variable	and	pass	it	into	the	ConvertTo-HTML	cmdlet	with	the	-Head
parameter:

$head	=	'<style>

body	{	font-family:	Helvetica;

							font-size:	12pt;	}

td,	th	{	border:	1px	solid	black;	}

th	{	color:white;

					background-color:black;	}

table,	tr,	td,	th	{	padding:	4px;	margin:	0px	}

</style>'

$InfraVMs	|	Select	Name,	NumCPU,	MemoryGB,	Description,	Host,	

PowerState	|	ConvertTo-HTML	-head	$head	|	Out-File	c:\infravms.html

7.	 The	other	request	you	received	was	to	create	a	script	that	e-mails	when	the	disk	space
gets	low	on	a	Guest	OS	filesystem.	To	comply	with	this	request,	you	need	to	work
with	VMs	that	have	working	VMware	Tools.	Without	Tools,	you	do	not	have	the
ability	to	see	into	the	filesystems	or	the	free	space	of	the	filesystems	from	PowerCLI.
First,	you	will	need	to	save	the	lines	of	the	script	into	a	text	file	with	the	.ps1
extension.

8.	 After	saving	the	file,	the	next	step	is	to	ensure	that	this	script	knows	that	it	requires
the	VMware	PowerCLI	Tools	in	this	script.	To	do	this,	you	will	include	an	Add-
PSSnapin	cmdlet	at	the	beginning	of	the	script:

Add-PSSnapin	VMware.VimAutomation.Core

9.	 While	you	can	use	Get-VM	and	Get-HardDisk	as	you	did	in	the	Increasing	the	disk
space	in	a	virtual	machine	recipe,	unfortunately,	these	cmdlets	don’t	expose	the
filesystems	and	their	free	space	either.	Once	again,	we’ll	be	using	a	View	to	report
the	free	space.	So,	the	first	step	is	to	get	a	View	with	all	of	the	Virtual	Machines
using	Get-View:

$vmview	=	Get-View	-ViewType	VirtualMachine

10.	 Next,	you	want	to	check	the	ToolStatus	parameter,	but	when	you	enumerate	the
View	there	isn’t	a	property	related	to	VMware	Tools;	however,	there	is	a	Guest
parameter	populated	with	an	object.	Digging	into	the	Guest	parameter,	you	will	find	a
ToolsStatus	parameter.	You	can	use	this	to	scope	down	only	objects	with	operating
VMware	Tools.	The	two	values	you	want	to	return	are	toolsOk	and	toolsOld.	The
second	value	means	VMware	Tools	are	running	but	are	not	the	latest	version.
However,	these	will	still	work	for	the	needs	of	this	recipe:

$VMsWithTools	=	Get-VM	|	Get-View	|	Where	{$_.Guest.ToolsStatus	-like	

"toolsO*"}	

11.	 Next,	you	have	an	object	with	all	of	the	virtual	machines	that	you	can	monitor	the
disk	space	for.	The	next	step	is	to	enumerate	the	disks	from	these	virtual	machines.
You	can	run	through	a	quick	ForEach	loop	to	enumerate	all	of	the	values:

ForEach	($vm	in	$VMsWithTools)	{

			$vm.Guest.Disk	

}

12.	 This	is	good,	but	it	doesn’t	quite	hit	our	needs.	You	have	values	for	the	capacity	and
free	space	for	each	filesystem.	You	can	create	a	computed	value	for	the	percentage	of
free	space	with	a	simple	math	expression.	In	a	Select	statement,	you	can	use	a
hashtable	to	compute	a	new	property.	A	hashtable	needs	to	be	constructed	very
specifically,	beginning	with	the	@	symbol,	followed	by	a	curly	brace,	and	then	either
Name=	or	N=	followed	by	a	string	that	becomes	the	key	name	for	this	property.	This

section	is	followed	by	a	semicolon,	then	either	Expression=	or	E=	and	an	expression
statement.	The	formatting	for	the	percentage	of	free	space	would	be	constructed	as
follows:

@{N='FreePercent';E={"{0:P1}"	-f	($_.FreeSpace	/	$_.Capacity)	}}

13.	 Next,	you	combine	this	into	a	select	statement	with	all	of	the	other	properties	in	this
object.	Now,	you	will	repeat	the	ForEach	loop.	You	will	also	see	a	PowerShell
formatting	string	to	convert	the	computed	number	into	a	percentage:

ForEach	($vm	in	$VMsWithTools)	{

$vm.Guest.Disk	|	Select	*,	@{N='FreePercent';E={"{0:P1}"	-f	(

$_.FreeSpace	/	$_.Capacity)	}}

}

14.	 However,	there	is	still	something	missing	in	the	output.	You	don’t	know	which	VM
the	filesystems	belong	to.	You	can	solve	it	with	an	additional	hashtable	to	bring	in	the
$vm.Name	property	into	this	object,	where	it	doesn’t	exist:

ForEach	($vm	in	$VMsWithTools)	{

$vm.Guest.Disk	|	Select	@{N='VM';E={$vm.Name}},	*,	@{N='FreePercent';E=

{"{0:P1}"	-f	($_.FreeSpace	/	$_.Capacity)	}}	

}

15.	 Finally,	you	need	to	scope	down	the	results	to	just	be	the	ones	with	under	10	percent
free	space.	That	can	be	done	by	adding	a	Where	statement:

ForEach	($vm	in	$VMsWithTools)	{

$vm.Guest.Disk	|	Select	@{N='VM';E={$vm.Name}},	*,	@{N='FreePercent';E=

{"{0:P1}"	-f	($_.FreeSpace	/	$_.Capacity)	}}	|	Where	{	$_.FreePercent	

*	100	-lt	10}

}

16.	 The	output	of	the	preceding	ForEach	loop	is	in	the	listed	format.	You	can	easily
change	that	by	piping	the	output	to	Format-Table:

ForEach	($vm	in	$VMsWithTools)	{

$vm.Guest.Disk	|	Select	@{N='VM';E={$vm.Name}},	*,	@{N='FreePercent';E=

{"{0:P1}"	-f	($_.FreeSpace	/	$_.Capacity)	}}	|	Where	{	$_.FreePercent	

*	100	-lt	10}	|	Format-Table

}

17.	 Next,	you	need	to	check	for	the	output	and	create	an	e-mail	if	there	are	any	VMs
included	with	less	than	10	percent	free	space.	To	do	this,	you	need	to	modify	the
ForEach	loop	to	store	the	output	into	a	variable	that	adds	data	during	each	run
through	the	ForEach.	In	this	example,	the	output	will	be	stored	in	a	variable	called
$output:

ForEach	($vm	in	$VMsWithTools)	{

$output	+=	$vm.Guest.Disk	|	Select	@{N='VM';E={$vm.Name}},	*,	

@{N='FreePercent';E={"{0:P1}"	-f	($_.FreeSpace	/	$_.Capacity)	}}	|	

Where	{	$_.FreePercent	*	100	-lt	10}	|	Format-Table

}

18.	 Now	that	you	have	all	of	the	output	in	a	variable,	you	can	measure	the	variable	to	see

how	many	rows	are	contained	in	it:

$outputrows	=	$output	|	Measure

19.	 Then,	use	a	simple	If	statement	to	see	if	the	number	of	rows	is	greater	than	zero.	If
they	are,	you	will	send	an	e-mail:

if	($outputrows.count	>	0)	{

Send-MailMessage	-To	group@domain.local	-Subject	"Disk	with	less	than	

10%	free	disk	space"	-Body	$output	-SmtpServer	mail.domain.local	-From	

powershell@domain.local

}

20.	 Now,	the	PowerShell	script	can	be	set	up	as	a	scheduled	task	in	Windows,	but	as	it
stands,	it	wouldn’t	run	unless	you	have	set	your	PowerShell	to	run	unsigned	code,
which	isn’t	recommended.	Therefore,	you	should	sign	this	PowerShell	script	using	a
user	certificate,	though	that	goes	beyond	the	scope	of	this	book.	See	the	link	in	the
See	also	section	about	code	signing	with	PowerShell.

How	it	works…
Both	of	the	issues	solved	in	this	recipe	utilize	a	single	PowerShell	object	to	return	the
results	that	you	are	searching	for.	In	the	second	part	of	the	recipe,	the	VM	name	was	not
included	in	the	object	with	the	other	data,	so	you	used	a	hashtable	to	include	the	VM
name,	which	was	part	of	the	parent	object.	You	also	created	a	computed	hashtable	for	the
percentage	of	free	space.	Hashtables	are	extremely	useful	when	extending	the	native
capabilities	of	PowerCLI	or	PowerShell.	More	than	anything	else,	hashtables	look	odd
from	a	code	standpoint.

In	this	recipe,	you	also	formatted	a	number	as	a	percentage	and	that	code	looks	pretty	odd
too.	While	most	of	PowerShell	is	very	straightforward,	there	are	times	when	the	code
looks	very	foreign	and	is	hard	to	follow.	In	the	See	also	section,	there	are	links	to	TechNet
articles	that	will	help	you	go	further	with	hashtables	and	number	formatting.

The	primary	thing	to	understand	here	is	that	if	the	data	is	in	a	single	object,	it	is	very
simple	to	create	exports	or	conversions	of	the	data	in	common	formats	such	as	CSV	or	any
delimited	file	format	and	HTML.	The	HTML	formatting	can	be	as	simple	or	elaborate	as
you	want.

There’s	more…
There	is	really	no	limit	to	the	types	of	reports	that	you	can	create	from	PowerShell.	One	of
the	greatest	additional	features	is	its	ability	to	export	the	content	you	obtain	to	HTML
format.	You	can	add	an	HTML	header	and	some	basic	formatting	in	CSS	to	the	beginning
of	a	PowerShell	script	so	that	it	can	generate	an	HTML	table	of	the	data	you	have
retrieved.	This	is	great	for	attaching	to	e-mails	or	for	formatting	the	body	of	alert	e-mails
to	make	them	friendlier	for	the	users	receiving	them.

See	also
Microsoft	TechNet,	Formatting	Numbers	is	available	at
http://technet.microsoft.com/en-us/library/ee692795.aspx
Microsoft	TechNet,	Working	with	Hash	Tables	is	available	at
http://technet.microsoft.com/en-us/library/ee692803.aspx
TechNet	Magazine,	Windows	PowerShell:	The	Many	Ways	to	a	Custom	Object,
available	at	http://technet.microsoft.com/en-us/magazine/hh750381.aspx
Microsoft	TechNet	Magazine,	Windows	PowerShell,	under	Sign	Here,	Please,
available	at	http://technet.microsoft.com/en-us/magazine/2008.04.powershell.aspx

http://technet.microsoft.com/en-us/library/ee692795.aspx
http://technet.microsoft.com/en-us/library/ee692803.aspx
http://technet.microsoft.com/en-us/magazine/hh750381.aspx
http://technet.microsoft.com/en-us/magazine/2008.04.powershell.aspx

Chapter	4.	Working	with	Datastores	and
Datastore	Clusters
In	this	chapter,	you	will	cover	the	following	topics:

Performing	Storage	vMotion
Finding	Raw	Disk	Mappings	in	your	environment
Locating	thin	or	thick	provisioned	disks
Converting	thin	to	thick	disks	with	Storage	vMotion
Creating	and	managing	datastore	clusters
Setting	Storage	DRS	automation	levels	for	individual	virtual	machines
Setting	Storage	DRS	automation	levels	for	individual	VMs	using	PowerCLI	6

Introduction
Virtual	machines	are	not	static.	Virtual	workloads	change	by	the	minute	and	vSphere	has	a
lot	of	features	that	help	administrators	handle	those	dynamic	workloads.	Log	files	and
growing	datasets	cause	virtual	machines	to	run	out	of	disk	space.	Fortunately,
administrators	can	easily	grow	the	VMDK	files	and	allocate	more	disk	space	to	the	virtual
machine,	which	was	covered	in	the	Increasing	the	disk	space	in	a	virtual	machine	recipe
in	Chapter	3,	Managing	Virtual	Machines.

As	several	virtual	machines	increases	their	disk	space,	the	datastore	where	they	reside
might	begin	to	run	low	on	space.	Virtual	machine	snapshots	can	also	constrain	the	amount
of	available	disk	space.	Thin	provisioned	disks	in	an	over-provisioned	datastore	can
completely	exhaust	the	available	space.	All	of	these	reasons	cause	administrators	to	be
faced	with	the	manual	task	of	rebalancing	virtual	machines	across	datastores.

In	early	versions	of	vSphere,	the	only	way	to	balance	datastores	was	an	offline	migration
of	a	virtual	machine.	Since	version	ESX/ESXi	3.5,	VMware	added	the	ability	to	relocate
the	storage	of	a	virtual	machine	online,	while	the	virtual	machine	is	still	running.	This
feature	is	called	Storage	vMotion.	Storage	vMotion	is	an	easy	task	to	complete	with
PowerCLI.	A	single	cmdlet	can	initiate	the	relocation	of	virtual	machine	files	to	a	new
datastore,	while	the	VM	remains	online.

In	vSphere	5,	VMware	introduced	the	concept	of	datastore	clusters	to	help	administrators
automate	the	balancing	of	datastores	and	fix	the	manual	work.	Datastore	clusters	provide	a
way	to	automate	datastore	balancing	by	using	Storage	vMotion.

In	addition	to	the	growing	disk	problems,	administrators	are	faced	with	the	need	to	convert
vSphere	virtual	disks	from	thick	to	thin,	and	vice	versa,	in	different	use	cases.	Again,	this
is	a	task	that	is	well	suited	for	PowerCLI	because	it	is	a	repetitive	task	that	can	be	easily
done	in	one	quick	line.

All	of	these	topics	are	on	the	slate	in	this	chapter’s	recipes.

Performing	Storage	vMotion
One	of	the	most	common	things	you	might	need	to	do	with	your	datastores	is	to	relocate	a
virtual	machine	from	one	datastore	to	another	using	Storage	vMotion.	It	allows
administrators	to	rebalance	storage	utilization	across	datastores.	It	also	allows
administrators	to	completely	vacate	a	datastore	for	maintenance	or	migration.	Storage
vMotion	allows	you	to	nondisruptively	move	a	virtual	machine	between	datastores	and
borrows	its	name	from	vMotion,	which	allows	a	VM	to	relocate	from	host	to	host,	while
the	VM	remains	online.

Getting	ready
To	begin	this	recipe,	you	will	need	to	open	a	PowerCLI	window,	connect	to	a	vCenter
server,	and	have	a	running	virtual	machine	with	at	least	two	datastores	connected	to	the
host.

How	to	do	it…
To	relocate	a	virtual	machine	from	one	datastore	to	another	using	Storage	vMotion,
perform	the	following	steps:

1.	 In	the	Setting	up	resource	pools	recipe	in	Chapter	2,	Configuring	vCenter	and
Computing	Clusters,	you	used	the	Move-VM	cmdlet	to	relocate	a	virtual	machine	from
one	resource	pool	to	another.	The	same	cmdlet	works	for	starting	a	Storage	vMotion.
The	target	VM	will	be	the	TTYLinux1	VM	imported	in	Chapter	3,	Managing	Virtual
Machines.	Lastly,	you	need	to	specify	a	destination	with	the	-Datastore	parameter:

Move-VM	-VM	TTYLinux1	-Datastore	iSCSIDatastore2

2.	 While	that	is	simple	enough,	you	certainly	do	not	want	to	repeat	the	cmdlet	for	every
VM	you	might	need	to	move.	If	every	VM	on	iSCSIDatastore1	needed	to	be	moved,
so	that	maintenance	can	be	performed	on	that	storage	array,	or	if	you	need	to	move
VMs	onto	a	new	array	and	decommission	an	old	array,	there	is	an	easier	way.	First,
we	get	all	of	the	VMs	from	that	datastore	with	the	Get-VM	cmdlet:

Get-VM	-Datastore	iSCSIDatastore1

3.	 Next,	you	will	take	this	cmdlet	and	pipe	that	object	with	all	of	the	VMs	into	a	Move-
VM	cmdlet	to	initiate	the	Storage	vMotion	to	the	destination	datastore.	You	will	see
that	you	do	not	have	to	specify	a	VM	name	because	it’s	piped	into	Move-VM:

Get-VM	-Datastore	iSCSIDatastore1	|	Move-VM	-Datastore	iSCSIDatastore2

4.	 Perhaps	you	don’t	want	to	include	all	of	the	VMs	from	a	datastore,	but	maybe	all
from	a	particular	group,	such	as	all	of	our	TTYLinux	VMs.	You	can	easily	repeat	the
same	cmdlet	with	the	-VM	parameter	and	a	wildcard	match	for	the	VMs	you	want	to
move:

Get-VM	-VM	TTYLinux*	-Datastore	iSCSIDatastore1	|	Move-VM	-Datastore	

iSCSIDatastore2

How	it	works…
The	pipeline	again	saves	you	from	having	to	type	repetitive	cmdlets.	You	can	do	the	work
and	type	a	Move-VM	cmdlet	for	each	VM	you	want	to	target,	but	you	don’t	have	to	with
PowerCLI.	You	get	the	benefit	of	initiating	multiple	Storage	vMotion	processes	easily.
The	left-hand	side	of	the	pipe	retrieves	your	target	VMs	that	you	want	to	work	with,	and
the	right-hand	side	performs	the	action.

With	any	of	the	Get-	prefixed	cmdlets,	you	can	use	wildcard	and	regex	search	strings	to
locate	the	exact	virtual	machines	that	you	need.	Perhaps	the	virtual	machines	you	want	to
move	are	all	in	the	same	folder	but	they	do	not	necessarily	match	a	pattern	in	the	VM
name.

In	that	case,	you	can	use	the	-Folder	instead	of	-Datastore	and	-Name	to	quickly	retrieve
the	list	of	VMs	to	target.	It	is	important	to	note	that	we’re	not	using	Get-Datastore	or
Get-Folder	here,	but	Get-VM	to	return	a	VM	object	since	you	want	to	move	a	VM.

Lots	of	PowerCLI	cmdlets	can	get	more	complex	than	this	and	you	can	easily	pipe	objects
through	many	cmdlets,	as	needed.	However,	by	now,	you	should	certainly	be	getting	a
sense	of	the	power	of	the	pipeline.

There’s	more…
Storage	vMotion	implies	the	online	relocation	of	a	VM	from	one	datastore	to	another;
however,	you	can	easily	move	a	virtual	machine	while	its	offline,	too.	For	some
operations,	an	offline	migration	is	the	only	option.	One	of	the	offline-only	migrations	is	to
convert	a	Raw	Disk	Mapping	(RDM)	into	a	VMDK.	In	the	next	recipe,	you	will	combine
several	PowerCLI	cmdlets	to	find	RDM	in	your	vSphere	environment.	However,	the	same
Move-VM	cmdlet	will	move	a	VM	whether	it	is	online	or	offline.

Finding	Raw	Disk	Mappings	in	your
environment
Raw	Disk	Mappings	are	a	pass	through	disk	type	that	can	be	used	with	virtual	machines.
With	an	RDM,	the	logical	disk	is	connected	to	the	VM	directly.	Instead	of	being	formatted
as	a	VMFS	volume,	the	logical	disk	is	formatted	with	an	OS	filesystem.	RDMs	allow	use
cases	such	as	sharing	a	cluster	disk	between	a	physical	and	virtual	node	in	a	cluster,	or	for
taking	an	existing	Logical	Unit	Number	(LUN)	of	data	and	moving	it	from	a	physical
host	to	a	virtual	machine.	Some	of	the	use	cases	are	stop-gap	uses	that	are	employed
during	the	transition	from	physical	to	virtual	drives	and	this	might	require	you	to	identify
and	convert	RDMs	in	your	environment.	PowerCLI	is	an	excellent	way	to	identify	virtual
machines	with	RDMs	attached.

Getting	ready
To	begin	this	recipe,	you	will	need	to	open	a	PowerCLI	window,	connect	to	a	vCenter
server,	and	have	a	virtual	machine	with	a	Raw	Disk	Mapping.	Many	environments	will	not
have	virtual	machines	with	an	RDM,	but	for	those	who	do,	this	is	handy	to	use	for
PowerCLI.

How	to	do	it…
In	order	to	find	RDMs	in	your	environment,	perform	the	following	steps:

1.	 The	first	step	is	to	get	all	of	the	VMs	in	your	environment.	To	do	this,	issue	a	Get-VM
cmdlet	with	no	parameters,	which	returns	an	object	with	all	VMs.

2.	 Next,	you	will	pipe	that	object	into	Get-HardDisk.	RDMs	are	attached	to	a	VM,	such
as	VMDK	virtual	disks,	and	are	listed	as	hard	disks:

Get-VM	|	Get-HardDisk

3.	 The	object	returned	actually	has	a	lot	of	additional	data	in	it.	To	explore	this,	use	a
Get-Member	cmdlet	to	explore	all	of	the	additional	properties	available:

Get-VM	|	Get-HardDisk	|	Get-Member

Note
Sometimes,	it’s	more	useful	to	see	the	data	so	you	can	also	enumerate	the	data	using
a	Select	*	-First	1cmdlet

4.	 In	the	list	of	properties,	you	will	see	the	DiskType	property.	RDMs	are	signified	by
two	different	disk	types:	RawPhysical	and	RawVirtual.	These	correspond	to	the
modes	for	how	you	can	attach	an	RDM	to	a	VM.	You	can	add	the	-DiskType
parameter	to	the	cmdlet	and	specify	the	two	disk	types	you	want	to	search	for:

Get-VM	|	Get-HardDisk	-DiskType	"RawPhysical","RawVirtual"

5.	 If	your	goal	is	to	create	a	report	of	these	disks,	you	can	pipe	the	output	object	to	a
Select	cmdlet	and	retrieve	the	properties	you	want	to	display.	You	can	even	pipe	the
Select	cmdlet	to	an	Export-CSV	cmdlet,	which	was	covered	at	the	end	of	Chapter	3,
Managing	Virtual	Machines,	to	create	a	report	that	can	be	easily	edited.

How	it	works…
Both	of	the	Get-	prefixed	cmdlets	that	were	used	in	this	recipe	are	simple	and
straightforward.	The	Get-VM	retrieves	all	of	the	VMs	in	the	environment,	and	the	Get-
HardDisk	accepts	the	VM	object	that	is	piped	to	it	and	retrieves	all	of	the	hard	disks
associated	with	each	VM.	All	are	returned	as	objects	that	can	be	scoped	and	reported	in
whatever	format	the	administrator	wants.

There’s	more…
Locating	your	RDM	might	only	be	half	the	story.	As	vSphere	has	matured,	the	use	cases
for	using	an	RDM	have	decreased	and	most	needs	are	addressed	without	needing	an
RDM.	Migrating	from	an	RDM	to	a	VMDK	might	be	the	goal,	and	as	mentioned	in	the
Performing	Storage	vMotion	recipe,	converting	an	RDM	to	a	VMDK	is	an	offline
migration	process.	Even	though	it	must	be	performed	offline,	the	conversion	invoked	from
PowerCLI	is	accomplished	with	the	same	Move-VM	cmdlet	that	performs	a	Storage
vMotion.

This	recipe	helped	you	to	identify	the	RDM	in	your	environment.	To	convert	the	RDM	to
a	VMDK,	you	should	shut	down	the	VM	and	initiate	a	Move-VM	cmdlet	just	as	it	was	done
in	the	Performing	Storage	vMotion	recipe.	By	shutting	down	the	VM	first,	vSphere	will
relocate	the	RDM	into	a	VMDK	file	that	allows	you	to	remove	the	RDM	from	vSphere
altogether.	If	you	perform	this	online,	the	VMDK	wrapper	file	for	the	RDM	will	be
relocated,	but	vSphere	doesn’t	convert	the	RDM.

See	also
The	Migrating	virtual	machines	with	Raw	Disk	Mappings	(RDMs)	page	under
the	VMware	Knowledge	Base	title	which	is	available	at
http://kb.vmware.com/kb/1005241

http://kb.vmware.com/kb/1005241

Locating	thin	or	thick	provisioned	disks
In	the	early	version	of	ESXi,	all	VMDKs	were	thick	provisioned	disks,	which	means	that
all	of	the	data	sections	of	the	disk	were	preallocated	onto	the	backend	storage.	Thick
provisioned	disks	can	be	inefficient,	especially	when	there	is	a	large	amount	of	white
space	or	unused	space	inside	of	the	disk.	For	instance,	if	you	have	a	100	GB	disk	and	only
21	GB	is	actually	used	by	the	guest	operating	system,	you’ve	lost	79	GB	of	usable	disk
space	in	your	datastore	that	could	be	used	by	other	virtual	machines.	As	storage	in
vSphere	evolved,	and	as	virtualization	matured,	the	concept	of	thin	provisioned	disks	was
introduced	in	vSphere.

Thin	provisioning	is	the	concept	of	allocating	only	the	data	sections	of	a	disk	that	have
data	and	not	allocating	any	zeroed	out	sections	of	the	disk.	Thin	provisioning	can	save	a
tremendous	amount	of	backend	storage	since	most	virtual	machines	include	some	free
space.	Since	the	free	space	is	not	allocated,	the	use	of	thin	disks	allows	administrators	to
oversubscribe	a	datastore	and	allocate	more	space	than	that	is	available	in	the	datastore.

In	this	recipe,	you’ll	explore	how	to	identify	the	VMDK	disk	type	and	learn	which	virtual
machines	have	thick	provisioned	and	thin	provisioned	disks.

Getting	ready
For	this	recipe,	you	will	need	to	open	a	PowerCLI	window,	connect	to	vCenter,	and	have	a
few	virtual	machines	running.

How	to	do	it…
In	order	to	explore	and	learn	which	virtual	machines	have	thick	provisioned	and	thin
provisioned	disks,	perform	the	following	steps:

1.	 Building	on	the	previous	recipe,	you	will	begin	with	a	Get-VM	cmdlet	and	the	Get-
HardDisk	cmdlet	in	order	to	find	the	disks	you	need	to	target:

Get-VM	|	Get-HardDisk

2.	 If	you	pipe	the	object	you	retrieve	to	Get-Member,	you	can	enumerate	the	properties
available:

Get-VM	|	Get-HardDisk	|	Get-Member

3.	 One	of	the	properties	of	the	object	is	StorageFormat.	This	is	the	property	you	can
use	to	identify	either	thin	or	thick	disks.	Unlike	the	DiskType	property,	there	isn’t	a
parameter	to	retrieve	all	of	the	thin	or	thick	disks.	For	this,	you	will	need	to	pipe	the
object	to	a	Where	cmdlet:

Get-VM	|	Get-HardDisk	|	Where	{$_.StorageFormat	-like	"Thin"}

How	it	works…
In	the	previous	recipe,	you	were	able	to	scope	the	hard	disks	returned	using	the	-DiskType
parameter	in	the	Get-HardDisk	cmdlet.	There	isn’t	a	-StorageFormat	parameter	so	you
are	forced	to	use	a	Where	cmdlet	to	trim	down	the	results	to	only	the	set	that	you	want.
This	is	less	efficient	than	using	native	filtering	in	the	prefixed	Get-	cmdlet,	but	it	works
just	the	same.	In	the	end,	you	have	an	object	with	only	the	hard	disks	that	you’re	interested
in.	Now,	it	is	time	to	use	them.	You	will	find	their	detailed	usage	in	the	next	recipe.

There’s	more…
It	is	important	to	note	that	the	concept	of	thin	and	thick	provisioned	disks	is	not	unique	to
VMware	and	many	storage	platforms	include	this	capability.	Most	vendors	who	perform
thin	provisioning	in	the	storage	platform	recommend	that	you	do	not	use	VMware’s	thin
provisioning	in	addition	to	the	storage	vendor’s	thin	provisioning.	Thin	on	thin	can	lead	to
major	problems	as	the	data	grows	and	can	cause	unintended	downtime	if	the	VMFS
datastore	or,	worse,	the	array	runs	out	of	disk	space.	There	is	also	a	performance	penalty
to	thin	provisioning,	and	high-performance	or	business	critical	applications	often
recommend	using	thick	provisioning.	This	leads	to	the	need	to	identify	thin	provisioned
disks	and	convert	them	to	thick	provisioned	disks.	In	this	recipe,	you	will	build	the
PowerCLI	to	identify	the	VMware	thin	provisioned	disks,	and	in	the	next	recipe,	you	will
use	this	to	identify	and	convert	them	using	Storage	vMotion.

Converting	thin	to	thick	disks	with
Storage	vMotion
In	the	previous	recipe,	you	explored	how	to	identify	virtual	disks	that	are	thin	provisioned
in	vSphere.	In	this	recipe,	you	will	take	that	concept	further.	You	will	take	the	virtual
machines	identified	as	thin	provisioned	and	create	PowerCLI	cmdlets	to	convert	these
using	Storage	vMotion.

As	with	all	of	the	capabilities,	there	are	occasions	when	you	need	to	transition	from	a	thick
provisioned	disk	to	a	thin	provisioned	disk,	or	vice	versa.	VMware	Fault	Tolerance
requires	VMs	to	have	thick	provisioned	disks.	For	instance,	in	this	recipe,	you’ll	examine
how	to	convert	disks	from	one	disk	type	to	another.

As	a	part	of	the	conversion,	you	will	be	faced	with	a	choice	of	two	types	of	thick
provisioned	disks.	The	two	choices	are	Eager	Zero	and	Lazy	Zero	thick	provisioned	disks.
Lazy	Zero	is	the	default	flat	file	format	of	VMDK	that	has	always	existed	in	vSphere.
Eager	Zero	is	a	new	type	of	thick	provisioned	file	that	zeroes	out	the	disk	area	for	the	new
VMDK	file	being	created.	By	zeroing	out	the	space,	any	deleted	data	that	might	have
existed	on	the	disk	will	be	lost.	For	both	of	these	formats,	all	of	the	space	required	for	the
disk	is	required	at	the	time	of	creation.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	host.	You	will	also	need	a	VM	that	is	in	the	thin	provisioned	format	to	be
converted.

How	to	do	it…
In	order	to	explore	how	to	convert	disks	from	one	disk	type	to	another,	perform	the
following	steps:

1.	 The	first	step	is	to	pull	forward	the	code	to	identify	the	thin	provisioned	disks	in
vSphere	that	was	created	in	the	previous	recipe:

Get-VM	|	Get-HardDisk	|	Where	{$_.StorageFormat	-like	"Thin"}

2.	 The	next	step	is	to	perform	a	Move-VM	cmdlet.	The	problem	is	that	the	preceding	code
returns	a	disk	object	and	not	a	VM	object,	but	the	parent	property	does	specify	the
VM	name.	To	retrieve	VM	objects,	you	will	need	to	rely	on	the	Get-VM	cmdlet.
Explore	the	VM	object’s	properties	with	Get-Member:

Get-VM	|	Get-Member

3.	 You	will	see	that	the	VM	object	has	a	HardDisks	property	and	it	is	the	same	type	of
object	that	Get-HardDisk	returns.	You	know	that	StorageFormat	contains	the	data
you	need	to	compare	with	the	HardDisk	object	from	our	previous	recipe.	Since	you
need	the	VM	object,	and	the	VM	object	contains	the	HardDisks	property	with	the
HardDisk	objects,	you	can	use	$_.HardDisks.StorageFormat	as	follows:

Get-VM	|	Where	{$_.HardDisks.StorageFormat	-like	"Thin"}

4.	 You	now	have	a	VM	object	returned	that	can	be	piped	to	Move-VM	to	perform	Storage
vMotion	and	covert	the	disks:

Get-VM	|	Where	{$_.HardDisks.StorageFormat	-like	"Thin"}	|	Move-VM	-

Datastore	"iSCSIDatastore2"	-DiskStorageFormat	"Thick"

5.	 If	the	VM	is	already	on	iSCSIDatastore2,	then	the	conversion	will	not	work.	To
make	sure	that	this	works	properly,	you	should	add	an	additional	statement	to	the
Where	clause	to	omit	VMs	on	the	destination	datastore.	You	can	do	this	by	adding	a
Get-Datastore	cmdlet	in	the	Where	clause	and	omitting	anything	on
iSCSIDatastore2.	Using	Get-Datastore	requires	you	to	specify	the	related	object,
which	is	the	current	object	represented	by	$_:

Get-VM	|	Where	{$_.HardDisks.StorageFormat	-like	"Thin"	-and	(Get-

Datastore	-RelatedObject	$_)	-notlike	"iSCSIDatastore2"}	|	Move-VM	-

Datastore	"iSCSIDatastore2"	-DiskStorageFormat	"Thick"

6.	 Lastly,	rerun	this	to	find	and	convert	any	thin	provisioned	disks	on	iSCSIDatastore2
by	moving	those	to	iSCSIDatastore1:

Get-VM	|	Where	{$_.HardDisks.StorageFormat	-like	"Thin"	-and	(Get-

Datastore	-RelatedObject	$_)	-notlike	"iSCSIDatastore1"}	|	Move-VM	-

Datastore	"iSCSIDatastore1"	-DiskStorageFormat	"Thick"

How	it	works…
This	recipe	works	by	using	Storage	vMotion	to	move	a	virtual	machine	from	one	datastore
to	another,	and	by	transforming	the	type	of	disk	used	under	the	VM	during	the	relocation.
Storage	vMotion	includes	the	capability	to	change	the	virtual	disk’s	storage	format	during
a	relocation.	However,	you	should	also	note	that	you	must	move	from	one	datastore	to
another.	If	you	send	the	cmdlet	to	relocate	the	VM	to	the	datastore	it	already	resides	on,	no
transformation	will	occur.

The	Where	clause	in	this	recipe	gets	a	little	more	complex.	Since	you	want	to	omit	any	VM
on	the	destination	datastore,	you	use	the	Get-Datastore	cmdlet.	However,	this	part	of	the
where	statement	doesn’t	use	data	in	the	current	object	being	piped.	Instead,	the	Get-
Datastore	cmdlet	receives	the	current	object	as	the	input	and	then	retrieves	its	datastore.
Get-Datastore	returns	a	datastore	object	and	then	you	can	compare	it	against	that	result
to	see	whether	the	VM	resides	on	our	destination	datastore.	Not	everything	in	a	Where
statement	needs	to	be	compared	against	data	in	the	current	object.	You	can	easily	run
additional	cmdlets	in	parenthesis	if	you	need	additional	data.

There’s	more…
You	can	also	convert	a	thick	disk	to	a	thin	disk	using	the	same	approach	in	this	recipe,	by
just	reversing	the	storage	format	you’re	searching	for	and	the	storage	format	of	your
destination.	Again,	if	you	try	to	perform	a	Storage	vMotion	and	disk	format	change	from
the	same	datastore	to	itself,	no	change	will	happen.

Creating	and	managing	datastore	clusters
vSphere	5	introduced	the	new	concept	of	a	datastore	cluster,	which	is	a	storage	pool	of
VMFS	datastores	clustered	in	a	similar	way	to	how	vSphere	clusters	hosts	to	share
compute.	Datastore	clusters	use	Storage	DRS	to	manage	the	pool	of	storage.

Storage	DRS,	as	it	is	known,	makes	recommendations	to	balance	utilization	and	workload
across	datastores	in	the	cluster.	Using	Storage	vMotion,	a	datastore	cluster	can	balance	the
utilization	of	datastores	so	that	the	virtual	machines	are	less	likely	to	run	out	of	disk	space
on	their	VMFS	datastores	or	experience	performance	issues	due	to	latency.	Storage	DRS
can	either	make	recommendations	or	can	automatically	apply	recommendations	to	move	a
VM	from	one	datastore	to	another	if	a	datastore	runs	low	on	the	available	disk	space.
Storage	DRS	can	also	move	around	virtual	machines	for	the	initial	placement	of	a	VM	that
requires	more	disk	space	than	what	is	available	on	any	single	datastore	in	a	datastore
cluster.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to
vCenter.	You	will	also	need	two	or	more	datastores	that	can	be	put	into	a	datastore	cluster.

How	to	do	it…
In	order	to	start	creating	datastore	clusters	and	manage	them	efficiently,	perform	the
following	steps:

1.	 First,	create	a	datastore	cluster	with	the	New-DatastoreCluster	cmdlet.	You	will
need	to	specify	a	name	for	the	cluster	with	the	-Name	parameter.	You	must	also
specify	the	datacenter	to	place	the	new	datastore	cluster	using	the	-Location
parameter.	For	simplicity,	in	this	example,	you	will	only	specify	a	name:

New-DatastoreCluster	-Name	"iSCSIcluster"	-Location	(Get-Datacenter	

Primary)

2.	 Next,	you	need	to	move	some	datastores	into	the	datastore	cluster.	Since	you	are
working	with	datastores,	the	first	thing	is	to	get	your	datastore(s).	In	this	example,
you	will	use	Get-Datastore	to	get	all	iSCSI	datastores:

Get-Datastore	-Name	iSCSI*

3.	 Next,	pipe	the	object	to	the	Move-Datastore	cmdlet	and	specify	the	destination	using
-Destination.	For	the	destination,	you	will	use	a	Get-DatastoreCluster	cmdlet	to
move	the	datastores	into	the	cluster:

Get-Datastore	-Name	iSCSI*	|	Move-Datastore	-Destination	(Get-

DatastoreCluster	-Name	"iSCSICluster")

4.	 Now	that	your	datastore	cluster	has	a	datastore	in	it,	you	can	change	the	settings	on
the	cluster.	By	default,	Storage	DRS	is	set	to	manual	mode.	This	means	that	it	will
make	recommendations	about	which	VMs	to	migrate	between	datastores.	To	change
this,	you	use	the	Set-DatastoreCluster	cmdlet	with	the	-SdrsAutomationLevel
parameter	to	set	the	level	to	FullyAutomated	or	Manual:

Set-DatastoreCluster	-DatastoreCluster	"iSCSICluster"	-

SdrsAutomationLevel	FullyAutomated

5.	 You	can	change	the	thresholds	within	the	datastore	cluster.	The	thresholds	control
when	the	cluster	recommends	VM	migrations	between	the	datastores.	By	default,	the
default	threshold	for	space	utilization	is	80	percent,	but	you	can	change	this	with	the
-SpaceUtilizationThresholdPercent	cmdlet:

Set-DatastoreCluster	-DatastoreCluster	"iSCSICluster"	-

SpaceUtilizationThresholdPercent	90

6.	 Lastly,	you	can	set	the	IO	latency	threshold	and	enable	(or	disable)	the	IO	load
balancing	within	the	cluster.	By	default,	IO	load	balancing	is	disabled.	To	set	these,
you	use	the	-IOLatencyThresholdMillisecond	and	-IOLoadBalanceEnabled
parameters:

Set-DatastoreCluster	-DatastoreCluster	"iSCSICluster"	-

IoLatencyThresholdMillisecond	30	-IOLoadBalanceEnabled	$True

How	it	works…
Datastore	clusters	are	meant	to	ease	the	management	and	balancing	of	datastores.
Datastores	experience	problems	due	to	growing	storage	requirements	with	new	VMDKs
being	added,	the	allocation	of	new	blocks	within	thin	provisioned	disks,	and	the	growing
size	of	snapshots.	When	utilization	of	a	datastore	crosses	a	threshold,	Storage	DRS	will
make	the	recommendation	to	move	a	VM	from	the	datastore	to	rebalance	the	utilization.	If
the	Storage	DRS	automation	level	is	automatic,	the	recommendation	is	applied
immediately.	If	it	is	in	manual	mode,	the	administrator	must	apply	the	recommendation.	In
the	next	recipe,	you	will	explore	ways	to	receive	and	apply	these	recommendations	from
PowerCLI.

As	you	also	explored	in	this	recipe,	there	is	an	additional	type	of	balancing	that	is	possible
and	that	is	IO	load	balancing.	Although	it	is	disabled	in	a	datastore	cluster	by	default,	this
type	of	balancing	will	benefit	environments	that	have	multiple	storage	arrays,	or	with
storage	arrays	that	link	LUNs	to	specific	drives	and	spindles.	Traditional,	monolithic
storage	arrays	require	administrators	to	define	and	carve	out	LUNs	with	a	lot	of	thought
put	into	the	number	of	spindles	to	support	a	given	workload.	With	virtualization,	these
workloads	are	dynamic	and	a	noisy	neighbor	can	spell	bad	performance	for	other	VMs	on
a	LUN.

Arrays	that	are	architected	to	spread	the	IO	across	large	pools	of	disks	that	include	flash
caching	or	all-flash	architectures	would	be	less	likely	to	benefit	from	IO	load	balancing.	In
storage	arrays	such	as	these,	all	of	the	LUNs	presented	will	likely	display	similar	IO
latency	numbers,	so	it’s	less	likely	to	benefit	from	the	environment.	However,	if	the
environment	has	multiple	arrays,	the	benefits	can	come	back	into	play.

Setting	Storage	DRS	automation	levels	for
individual	virtual	machines
In	the	previous	recipe,	you	created	a	datastore	cluster,	moved	datastores	into	the	cluster,
and	set	the	cluster-wide	settings.	In	the	recipe,	you	set	the	automation	level	to	fully
automated.	This	means	that	Storage	DRS	will	direct	placement	and	migrations	of	virtual
machines	based	on	space	utilization	and/or	IO	thresholds.	However,	there	might	be	valid
times	when	a	virtual	machine	should	not	be	moved.	Perhaps	it’s	a	large	virtual	machine,	or
a	business-critical	virtual	machine,	where	you	don’t	want	Storage	DRS	to	automatically
move	the	data	disks.	In	these	cases,	you	can	override	the	cluster-wide	settings	and	you	can
set	a	per-VM	Storage	DRS	automation	setting.	However,	PowerCLI	does	not	have	a	native
cmdlet	to	make	this	configuration	change.	In	this	recipe,	you	will	explore	how	to	use
views	and	objects	to	make	the	setting	change	and	save	it	for	vSphere	5.5	using	PowerCLI
5.5.	If	you	are	using	vSphere	6	and	PowerCLI	6,	continue	to	the	next	recipe	to	learn	a
slightly	different	method	for	the	newer	version.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window,	an	active	connection	to	a	vCenter
server,	and	a	datastore	cluster	configured	in	the	Fully	Automated	mode.

How	to	do	it…
In	order	to	set	the	Storage	DRS	automation	level	to	FullyAutomated	for	individual	virtual
machines,	perform	the	following	steps:

1.	 First,	you	should	check	the	current	settings	of	your	datastore	cluster	so	that	you	know
what	the	default	cluster	settings	are	that	are	being	applied	to	your	virtual	machines.
To	do	this,	use	the	Get-DatastoreCluster	cmdlet	and	store	the	returned	object	in	a
variable:

$dsc	=	Get-DatastoreCluster	"iSCSICluster"

2.	 With	the	datastore	cluster	object	stored	in	a	variable,	output	the	variable,	and	select
all	of	the	properties	to	view	the	contents:

$dsc	|	Select	*

3.	 In	the	output,	view	the	properties	defined	on	your	virtual	machines.	Taking	it	a	step
further,	take	a	look	at	the	ExtensionData	property.	It	shows	that	it	contains	a
VMware.Vim.StoragePod	object.	To	explore	it,	output	this	object	using	dot	notation
and	the	property	name:

$dsc.ExtensionData

4.	 Inside	this	object,	your	output	will	show	a	PodStorageDrsEntry	property	that
contains	additional	objects.	In	the	PodStorageDrsEntry	object	there	are	four
properties.	The	first	one	is	StorageDrsConfig	where	you	will	focus	on	our	setting
changes.	Inside	of	StorageDrsConfig,	there	are	two	properties:

$dsc.ExtensionData.PodStorageDrsEntry.StorageDrsConfig

5.	 Inside	the	StorageDrsConfig	object,	you	will	see	two	properties.	The	first	is
PodConfig	and	this	contains	the	detailed	settings	for	DatastoreCluster.	The	other	is
VMConfig	and	this	is	the	one	that	contains	the	individual	VM	settings	related	to
Storage	DRS.

6.	 The	recipe	assumes	that	your	datastore	cluster	is	in	the	FullyAutomated	mode	and
that	this	is	applied	to	all	of	the	virtual	machines.	However,	for	this	recipe,	assume
that	you	want	to	omit	your	domain	controller	from	this	policy	and	you	never	want	it
to	be	relocated.

7.	 You	need	to	start	with	a	View:	the	StorageResourceManager	view.	Once	you	create
the	View,	you	will	not	use	it	again	until	you	are	ready	to	save	all	of	the	changes	that
are	made	in	this	script:

$storagemgr	=	Get-View	StorageResourceManager

8.	 You	need	to	create	an	entry	in	VmConfig	to	change	the	Storage	DRS	settings	for	an
individual	VM.	To	build	this	config,	first	you	need	to	create	a	new	config	object
using	the	New-Object	cmdlet.	The	type	of	the	object	to	create	is
VMware.Vim.StorageDrsConfigSpec.

$spec	=	New-Object	VMware.Vim.StorageDrsConfigSpec

9.	 For	vSphere	5.x,	you	will	need	to	output	all	of	the	VMs	and	use	a	Where	statement	to
choose	the	ones	you	want	to	change:

$dsc.ExtensionData.PodStorageDrsEntry.StorageDrsConfig.VmConfig	|	Where	

{$_.VM	-like	"AD01*"}

10.	 Whoops!	That	didn’t	return	anything.	The	reason	is	that	the	VM	property	of
VmConfig	contains	a	reference	to	the	VM	but	not	the	VM’s	name.	You	need	to	adapt
this	to	correlate	the	VM’s	name	to	the	reference	ID.	To	do	this,	you	can	use	Get-VM
with	the	ID	parameter.

$dsc.ExtensionData.PodStorageDrsEntry.StorageDrsConfig.VmConfig	|	Where	

{(Get-VM	-Id	$_.VM)	-like	"AD01*"}

11.	 Now	that	it	is	scoped	properly,	you	can	make	changes	to	these	objects.	To	do	this,
you	will	pipe	the	output	from	the	preceding	section	into	a	ForEach	loop:

$dsc.ExtensionData.PodStorageDrsEntry.StorageDrsConfig.VmConfig	|	Where	

{(Get-VM	-Id	$_.VM)	-like	"AD01*"}	|	ForEach	{

12.	 Inside	the	loop,	you	need	a	new	VMware.Vim.StorageDrsVmConfigSpec	object	to
store	our	change	to	StorageDrsVmConfigSpec.	There	are	two	major	properties	in
StorageDrsVmConfigSpec.	The	first	is	Operation	or	the	action	to	do	on
StorageDrsVmConfigSpec,	that	is	defined.	The	Operation	property	can	be	add,
edit,	or	remove.	The	next	property	is	Info.	This	will	contain	the	existing	data	that	is
piped	into	the	ForEach	loop,	and	it	will	also	contain	our	changes	to	be	made:

$vmconfig	=	New-Object	VMware.Vim.StorageDrsVmConfigSpec

$vmconfig.Operation	=	"edit"

$vmconfig.Info	=	$_

$vmconfig.Info.Enabled	=	$false

13.	 The	last	step	in	the	ForEach	loop	is	to	add	this	StorageDrsVmConfigSpec	object	into
StorageDrsConfigSpec.

$spec.vmConfigSpec	+=	$vmconfig

}

14.	 Using	the	ForEach	loop,	all	of	the	StorageDrsVmConfigSpec	object	have	been	added
to	the	StorageDrsConfigSpec	object.	The	last	step	is	to	use	a
ConfigureStorageDrsForPod	method	on	the	StorageResourceManager	view	that
you	saved	to	the	$storagemgr	variable	to	do	the	operations	you	specified	in
StorageDrsConfigSpec:

$storagemgr.ConfigureStorageDrsForPod($dsc.ExtensionData.MoRef,$spec,$t

rue)

How	it	works…
This	recipe	is	one	of	the	most	advanced	so	far	in	the	book.	It	utilizes	a	number	of	objects
and	illustrates	all	of	the	different	object	types	that	are	available	within	PowerCLI.
Underlying	any	native	cmdlets,	these	objects	get	utilized	and	executed	to	do	the	work
specified	through	the	more	simple	cmdlets.	Any	time	you	are	working	with	custom
configuration	specifications,	it	is	important	to	remember	that	you	need	a	View	in	order	to
have	methods	to	apply	these	specifications	once	you	define	them.	If	you	only	define	them
in	objects,	they	will	never	make	a	change.	The	objects	defined	are	just	data	in	variables
until	you	combine	them	with	a	View	and	a	method	to	perform	the	changes	defined.

In	the	very	beginning	of	the	recipe,	you	explored	the	DatastoreCluster	object	returned
from	the	Get-DatastoreCluster	cmdlet.	While	exploring	that	object,	you	observed
nested	objects	that	were	several	levels	deep.	By	traversing	the	data	at	each	level,	you
observed	the	structure	that	you	needed	to	create	or	edit	individually.	Once	you	created
each	object,	you	nested	it	back	in	the	same	way	as	the	DatastoreCluster	object.	You
created	a	StorageDrsVmConfigInfo	object,	stored	it	in	a	StorageDrsVmConfigSpec	object,
and	then	stored	it	in	a	StorageDrsConfigSpec	object.	Once	you	assembled	your	data	with
changes	defined	in	them,	you	used	the	ConfigureStorageDrsForPod	method	on	the
DatastoreCluster	View	to	make	the	changes.

This	methodology	does	not	just	apply	to	storage.	The	recipe	is	written	in	this	way	in	order
to	allow	you	to	view	the	data	structure	to	help	understand	how	the	data	is	assembled	so
that	you	can	repeat	similar	operations	for	other	object	types	and	do	similar	work	to	the
underlying	data.

Note
This	comes	with	a	strong	word	of	caution,	especially	for	beginner	PowerCLI	scripters.
While	there	is	a	lot	of	potential	for	scripting	great	changes,	there	is	a	big	potential	to
damage	something.	PowerCLI	and	vSphere	attempt	to	keep	you	in	bounds,	but	there	is	a
good	chance	you	could	do	some	harm	also.	It	is	a	very	good	idea	to	have	a	test
environment	to	try	scripts	and	things	before	doing	these	scripts	on	a	production	system.

There’s	more…
When	you	were	exploring	the	PodStorageDrsEntry	object,	you	focused	on	the
StorageDrsConfig	property,	but	you	also	saw	that	there	were	the	Recommendations,
DrsFault,	and	ActionHistory	properties.	These	properties	are	operational	properties
within	the	datastore	cluster.	The	ActionHistory	property	contains	a	list	of	all	the	previous
recommendations	that	have	been	applied.	This	property	is	particularly	helpful	if	you	want
to	report	what	actions	have	been	applied	on	this	datastore	cluster.	The	DrsFault	property
shows	any	conditions	that	cannot	be	fixed	due	to	a	rule	or	other	constraints	that	will	not
allow	a	recommendation	to	be	applied.	Recommendations	shows	a	list	of	the	active
recommendations	that	are	waiting	to	be	applied	in	the	datastore	cluster.	Recommendations
is	also	a	property	to	check	on	a	datastore	cluster	configured	in	manual	mode.

Setting	Storage	DRS	automation	levels	for
individual	VMs	using	PowerCLI	6
While	vSphere	6	requires	a	slightly	different	method	to	update	Storage	DRS	automation
levels	for	virtual	machines,	most	of	the	information	in	the	previous	recipe	applies	to	users
running	vSphere	6	and	PowerCLI	6.	The	primary	difference	in	vSphere	6	is	that	you	will
need	to	build	the	entire	StorageDrsVmConfigSpec	object	from	scratch	rather	than	edit	an
existing	item.	In	this	recipe,	you	will	learn	to	build	a	complete	StorageDrsVmConfigSpec
object	to	set	the	automation	levels	for	Storage	DRS.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window,	an	active	connection	to	vCenter
server,	and	a	datastore	cluster	configured	in	the	FullyAutomated	mode.

How	to	do	it…
In	order	to	set	the	automation	levels	for	Storage	DRS	for	individual	VMs,	perform	the
following	steps:

1.	 Just	like	in	the	vSphere	5.5	Version	of	this	recipe,	you	will	need	to	first	check	the
current	settings	of	the	datastore	cluster.	To	do	this,	use	the	Get-DatastoreCluster
cmdlet.	You	will	want	to	store	the	object	returned	in	a	variable	for	use	later	in	the
recipe.	Using	dot	notation,	you	may	investigate	the	values	in	the	ExtensionData
property,	and	for	Storage	DRS,	the	PodStorageDRSEntry	property:

$dsc	=	Get-DatastoreCluster	"iSCSICluster"

$dsc.ExtensionData.PodStorageDRSEntry

2.	 In	the	PodStorageDrsEntry	object,	there	are	four	properties.	The	first	one	is
StorageDrsConfig,	and	you	will	focus	on	this	property	for	our	setting	changes:

$dsc.ExtensionData.PodStorageDrsEntry.StorageDrsConfig

3.	 Inside	the	StorageDrsConfig	object,	you	will	see	two	properties.	The	first	one	is
PodConfig	that	contains	the	detailed	settings	for	DatastoreCluster.	The	other	is
VMConfig,	which	is	the	one,	that	contains	the	individual	VM	settings-related	to
Storage	DRS.

4.	 The	recipe	assumes	that	your	datastore	cluster	is	in	the	FullyAutomated	mode,	and
this	is	applied	against	all	the	virtual	machines.	However,	for	this	recipe,	assume	that
you	want	to	omit	your	domain	controller	from	this	policy,	and	you	never	want	it	to	be
relocated.

5.	 You	need	to	start	with	a	View,	the	StorageResourceManager	view.	Once	you	create
the	View,	you	will	not	use	it	again	until	you	are	ready	to	save	all	the	changes	that	are
made	in	this	script:

$storagemgr	=	Get-View	StorageResourceManager

6.	 For	vSphere	6,	you	will	need	to	first	get	the	VMs	you	want	to	change	the	Storage
DRS	settings	for.	Use	the	Get-VM	cmdlet	to	select	the	VMs	you	want	to	change:

Get-VM	-Name	"AD01*"

7.	 Take	and	pipe	the	object	with	the	VM	or	VMs	into	a	ForEach	loop:

Get-VM	-Name	"AD01*"	|	ForEach	{

8.	 Next,	build	a	new	StorageDrsVmConfigSpec	object	and	populate	data	into	it.	At	this
point,	we	specify	an	operation	to	add	the	new	spec.	We	create	a	new	ConfigInfo
object,	populate	it	with	the	VM’s	reference	ID,	and	set	the	Enabled	parameter	to
false.	These	settings	are	very	similar	to	what	would	be	set	in	vSphere	5.5	in	the
earlier	set	of	steps:

$vmconfig	=	New-Object	VMware.Vim.StorageDrsVmConfigSpec

$vmconfig.Operation	=	"add"

$info	=	New-Object	VMware.Vim.StorageDrsVmConfigInfo

$info.Vm	=	$_.Id

$info.Enabled	=	$false

$vmconfig.Info	=	$info

$spec.vmConfigSpec	+=	$vmconfig

}

9.	 The	last	step	is	to	use	a	ConfigureStorageDrsForPod	method	on	the
StorageResourceManager	view	that	you	saved	to	the	$storagemgr	variable	in	order
to	do	the	operations	that	you	specified	in	StorageDrsConfigSpec:

$storagemgr.ConfigureStorageDrsForPod($dsc.ExtensionData.MoRef,$spec,$t

rue)

How	it	works…
In	this	recipe,	you	can	build	your	own	StorageDRSConfigSpec	object	using	references	to
the	VM	objects	and	action	operations	that	are	predefined	on	the	StorageDRSVmConfigSpec
PowerShell	object.	Unlike	the	vSphere	5.5	recipe,	the	vSphere	6	recipe	relies	on	you	to
create	the	objects	with	the	operations	in	them	rather	than	modifying	an	object	that	you
retrieve	from	the	current	configuration.	In	many	ways,	this	is	a	much	simpler	method	to
implement	and	maintain	because	you	can	select	the	items	to	be	changed,	define	the	change
in	the	ConfigSpec	objects,	and	then	run	the	changes.

Chapter	5.	Creating	and	Managing
Snapshots
In	this	chapter,	you	will	cover	the	following	topics:

Creating	a	snapshot
Getting	a	list	of	snapshots	in	the	environment
Manipulating	the	list	of	snapshots	to	get	better	information
Scoping	and	filtering	a	list	of	snapshots
Removing	targeted	snapshots
Finding	lost	or	unknown	snapshots
Creating	a	function	to	automatically	remediate	snapshots
Scheduling	automatic	snapshot	remediation
Creating	a	snapshot	management	module

Introduction
Snapshots	are	one	of	the	best	features	in	vSphere.	Snapshots	are	the	safety	net	built	into
the	platform	that	allows	you	to	easily	revert	to	a	previous	known	good	state	in	the	event
that	something	happens	in	a	VM.	Some	environments	run	regularly	scheduled	snapshots.
Some	administrators	use	them	only	before	changes	are	made	in	the	environment.

Over	a	period	of	time,	virtual	machine	snapshots	grow	to	a	point	that	they	can	exhaust	all
of	the	available	disk	space	on	a	datastore.	Administrators	can	take	multiple	snapshots	and
each	snapshot	references	a	parent,	which	means	that	there	is	added	overhead	for	IO	since
the	system	has	to	combine	multiple	files	in	order	to	find	the	correct	data	to	return.	The
extra	latency	is	minimal	and	the	benefits	of	the	snapshot	far	outweigh	the	time.

Snapshots	do,	however,	introduce	a	management	point,	since	you	should	not	let	snapshots
linger	for	too	long	for	fear	of	exhausting	disk	space.	PowerCLI	is	an	easy	way	to	script
and	maintain	your	snapshots	and	ensure	that	they	do	not	cause	problems	in	the
environment.	Since	you’re	dealing	with	many	snapshots	and	many	VMs,	PowerCLI	can
handle	management	with	short	and	simple	cmdlets.

In	this	chapter,	you	will	start	with	simple	cmdlets	to	create,	report,	and	remove	snapshots.
You	will	move	on	toward	more	complex	topics	such	as	creating	a	function	to
automatically	manage	snapshots	based	on	specific	criteria.	You	will	then	take	that	function
and	turn	it	into	an	easily	distributable	module	that	other	administrators	or	users	might	be
able	to	reuse.

Creating	a	snapshot
There	are	lots	of	reasons	why	you	might	want	to	create	a	snapshot,	and	like	many	other
processes,	PowerCLI	really	shines	when	you	need	to	create	more	than	one	at	the	same
time.	Creating	a	snapshot	is	an	easy	process	from	a	native	cmdlet.	What	is	even	better	is
that	the	cmdlet	can	accept	piped	input	of	virtual	machines	that	allows	you	to	quickly
create	snapshots	for	groups	of	servers.	Many	times,	when	deploying	updates	or	patches	to
software,	you	need	to	create	snapshots	on	multiple	servers	running	the	same	application.
PowerCLI	is	perfect	for	the	job.

There	are	two	types	of	snapshots.	You	can	take	snapshots	that	include	the	memory	to
return	the	VM	to	a	running	state,	including	the	memory	at	the	time	that	it	is	taken.	This
type	of	snapshot	allows	a	VM	to	be	brought	back	to	a	running	state	with	an	active
application.	There	are	also	snapshots	that	simply	snap	the	disk,	but	these	would	make	a
crash-consistent	version	of	the	virtual	machine	since	the	running	application	might	have
data	in	memory	that	has	not	been	preserved.	Reverting	to	this	type	of	snapshot	would	boot
the	virtual	server	as	if	it	had	been	reset	while	running	or	like	it	had	crashed.

Getting	Started
To	begin	this	recipe,	you	will	need	to	open	a	PowerCLI	window	and	you	should	have	an
active	connection	to	vCenter	server.	In	Chapter	3,	Managing	Virtual	Machines,	you
imported	a	virtual	appliance	named	SliTaz4.0,	but	an	alternative	virtual	appliance	was
mentioned	and	named	TTYLinux.	For	this	recipe,	you	will	import	a	copy	of	TTYLinux	and
use	it	for	many	of	the	recipes	moving	forward	in	the	book.

TTYLinux	is	one	of	the	smallest	virtual	appliances	and	it	is	freely	distributed,	making	it	a
great	lab	virtual	machine.	The	link	to	download	this	is	in	the	See	Also	section	of	this
recipe.	Once	you	have	downloaded	the	virtual	appliance	and	unzipped	the	files,	import	it
with	the	command	such	as	changing	the	source	location	and	name	of	your	ESXi	host:

Import-vApp	-Source	C:\va\TTYLinux\TTYLinux.ovf	-Name	"TTYLinux1"	-VMHost	

esxsrv1.domain.local.domain.local

To	start	the	VM	after	importing	it,	you	will	use	the	Start-VM	cmdlet:

Start-VM	-VM	"TTYLinux1"

How	to	do	it…
In	order	to	create	a	snapshot	using	a	native	cmdlet	of	PowerCLI,	perform	the	following
steps:

1.	 To	create	a	new	snapshot,	you	will	use	the	New-Snapshot	cmdlet.	It	requires	two
parameters,	-VM	for	the	VM	to	be	targeted	and	-Name	for	the	name	of	the	snapshot:

New-Snapshot	-VM	TTYLinux1	-Name	"My	First	Snapshot"

2.	 In	larger	environments,	you	might	not	know	the	exact	name	of	a	VM,	so	sometimes,
it	is	easier	to	first	use	a	Get-VM	cmdlet	to	find	the	VMs	you	want	to	target	and	then
pipe	them	into	the	New-Snapshot	cmdlet.	This	is	also	effective	if	you	have	multiple
VMs	with	similar	names	that	all	need	to	be	snapped:

Get-VM	-Name	TTY*

Get-VM	-Name	TTY*	|	New-Snapshot	-Name	"My	Second	Snapshot"

3.	 Creating	a	snapshot	with	only	the	required	parameters	creates	a	PoweredOff	snapshot
of	the	disk,	which	is	crash-consistent.	This	means	that	any	data	in	memory	might	not
be	preserved	in	the	snapshot	and	the	VM	would	think	that	it	started	from	a	crash	state
on	the	next	boot.	However,	you	can	also	include	a	snapshot	on	the	RAM	for	the	VM
to	revert	to	a	powered	on	state.	To	do	this,	add	the	-Memory	parameter:

Get-VM	-Name	TTY*	|	New-Snapshot	-Name	"Before	Maintenance"	-Memory

4.	 You	can	also	create	a	snapshot	that	quiesces	the	disk.	This	means	that	it	temporarily
stops	all	writes	so	that	it	can	take	a	snapshot	of	the	disk	knowing	that	there	is	no
activity	in	progress.	To	do	this,	add	the	-Quiesce	parameter:

Get-VM	-Name	TTY*	|	New-Snapshot	-Name	"After	Maintenance"	-Memory	-

Quiesce

5.	 The	other	important	parameter	to	add	is	a	description.	The	description	can	be	any
string	of	characters.	It	can	be	used	to	add	notes	about	the	snapshot,	such	as	who
requested	it	or	a	date	when	it	can	be	safely	removed:

Get-VM	-Name	TTY*	|	New-Snapshot	-Name	"After	Installation"	-Memory	-

Quiesce	-Description	"Requested	by	John	in	Accounting"

How	it	works…
The	New-Snapshot	cmdlet	is	a	single	purpose,	native	cmdlet	for	creating	snapshots	on
vSphere	from	PowerCLI.	The	cmdlet	accepts	just	a	few	parameters,	and	the	recipe	walks
you	through	an	explanation	of	those	parameters	from	just	the	required	parameters	to	using
all	of	them	in	a	single	command.

The	New-Snapshot	cmdlet	directs	the	creation	of	a	snapshot	within	vSphere.	What’s
important	to	point	out	is	that	although	the	vSphere	Windows	client	and	the	vSphere	Web
Client	both	take	a	snapshot	with	memory,	by	default,	the	PowerCLI	cmdlet	takes	the
snapshot	without	memory	unless	you	include	the	-Memory	parameter.

The	default	New-Snapshot	cmdlet	also	doesn’t	quiesce	the	disk	unless	the	parameter	is
sent.	Quiescing	the	disk	ensures	that	no	partial	writes	are	captured	with	the	snapshot	and	it
ensures	better	data	consistency.	In	a	Windows	VM,	the	quiescence	process	calls	the
Windows	Volume	Shadow	Copy	Services	(VSS)	to	ensure	that	the	IO	is	paused	long
enough	for	the	snapshot	to	be	taken	and	then	IO	is	resumed.	VSS	coordinates	not	only
with	the	Windows	operating	system,	but	it	can	also	coordinate	with	applications	running
in	the	VM	to	take	better	point-in-time	backups.

There’s	more…
While	VMware	Tools	in	Microsoft	Windows	uses	VSS	to	coordinate,	not	all	applications
might	be	supported	by	VSS.	This	leads	to	more	crash-consistent	snapshots	and	backups.	It
is	possible	to	extend	the	functionality	to	third-party	applications	by	stopping	the
application	or	calling	a	utility	to	stop	IO	using	the	scripts	shipped	as	a	part	of	the	VMware
Tools.	VMware	has	knowledge	base	articles	on	the	topic	and	there	are	many	blog	posts
that	chronicle	how	to	take	better	snapshots	to	ensure	less	data	loss.

See	also
Understanding	virtual	machine	snapshots	in	VMware	ESXi	and	ESX	(1015180)
on	the	VMware	Knowledge	Base	page	is	available	at
http://kb.vmware.com/kb/1015180
Application	quiescing	with	Windows	2008	R2	SP1	and	Windows	2012	with
vSphere	Data	Protection,	VMware	Data	Recovery,	and	third-party	backup
software	(2044169)	on	the	VMware	Knowledge	Base	page	is	available	at
http://kb.vmware.com/kb/2044169
Mike	Laverick’s	blog	on	OVF/OVA	downloads	with	TTYLinux	OVF	is	available	at
http://www.mikelaverick.com/download/

http://kb.vmware.com/kb/1015180
http://kb.vmware.com/kb/2044169
http://www.mikelaverick.com/download/

Getting	a	list	of	snapshots	in	the
environment
Now	that	you’ve	created	a	bunch	of	snapshots	in	your	environment,	it	is	time	to	keep	track
of	them.	Creating	a	list	of	snapshots	is	extremely	easy.	This	recipe	will	cover	how	to	get
that	list	and	perform	basic	manipulation	for	reporting	on	your	snapshots.

Getting	Started
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	the
vCenter	host.	You	will	also	need	to	have	VMs	with	snapshots,	either	created	as	in	the
previous	recipe	or	created	by	some	other	method.

How	to	do	it…
In	order	to	get	the	created	list	of	snapshots	and	perform	basic	manipulation	for	reporting
on	these	snapshots,	perform	the	following	steps:

1.	 The	logical	cmdlet	to	retrieve	a	list	of	snapshot	objects	is	the	Get-Snapshot	cmdlet.
You	can	assume	that	you	can	run	it	with	no	parameters,	such	as	Get-VM,	and	return	a
list	of	all	the	snapshots	in	the	environment.	If	you	execute	the	following	cmdlet	on	its
own,	you	get	an	error:

Get-Snapshot

2.	 The	error	states	that	a	mandatory	object	VM	is	not	found.	This	means	that	the	cmdlet
is	expecting	a	VM	object	to	be	passed	with	a	list	of	targeted	VMs	that	should	be
checked	for	snapshot.	To	list	all	of	the	snapshots	in	the	environment,	you	must	first
run	a	Get-VM	cmdlet	and	then	pipe	it	to	Get-Snapshot:

Get-VM	|	Get-Snapshot

The	output	for	the	preceding	command	is	shown	in	the	following	screenshot:

3.	 The	default	output	from	the	Get-Snapshot	cmdlet	does	not	show	you	which	VMs
these	correspond	to.	You	need	to	add	a	column	to	the	default	output	to	make	it	more
usable.	To	do	this,	you	need	to	pipe	the	output	to	a	Select	statement	and	add	the	VM
column	to	the	output:

Get-VM	|	Get-Snapshot	|	Select	VM,	Name,	Description,	PowerState

4.	 Perhaps	you	are	searching	for	a	particular	VM,	or	group	of	VMs,	instead	of	all	the
VMs	in	a	large	environment.	You	can	easily	add	parameters	to	Get-VM,	the	same
parameters	that	you	used	in	the	previous	chapters.	For	example,	use	the	-Name
parameter	to	just	return	our	TTYLinux1	VM:

Get-VM	-Name	TTY*	|	Get-Snapshot	|	Select	VM,	Name,	Description,	

PowerState

How	it	works…
Get-Snapshot	requires	a	VM	object	to	be	passed.	If	you	need	to	check	for	snapshots	on	a
particular	VM,	you	can	pass	the	VM	by	its	name	into	the	cmdlet	and	PowerCLI	will	go
and	find	the	VM.	However,	you’ll	most	likely	pipe	in	the	output	of	a	Get-VM	cmdlet	into
Get-Snapshot.	In	the	recipe,	you	worked	with	this	method	and	returned	a	VM	object	that
contains	all	of	the	VMs	of	the	environment	and	then	ran	Get-Snapshot	against	all	of	the
VMs.

At	the	end	of	the	recipe,	you	looked	at	scoping	down	the	result	of	VMs	using	the	-Name
parameter	in	the	Get-VM	cmdlet.	You	should	use	the	-Name	parameter	in	this	case	rather
than	another	method,	such	as	using	a	Where	statement,	to	perform	the	scoping	because	it
saves	some	time.	In	more	complex	scripts	and	very	large	environments,	scoping	in	the
cmdlet	rather	than	using	a	Where	statement	improves	the	runtime	of	the	script.	Both	will
certainly	work,	and	in	this	example,	there	is	a	negligible	difference	in	the	time	required.
There	are	more	ways	than	these	to	accomplish	your	task,	so	it	becomes	a	personal
preference	how	you	approach	it.

There’s	more…
Even	though	you	can	use	parameters	on	Get-VM	to	scope	your	list	of	targeted	VMs	to
check	for	snapshots,	you	can	string	together	additional	cmdlets	and	pipe	their	output	to
Get-VM.	Again,	it	comes	back	to	a	question	of	preference	and	efficiency.	You	can	run	a
Get-VMHost	cmdlet	and	pipe	that	into	Get-VM	or	Get-Datacenter	and	pipe	the	output	into
Get-VM.	However,	you	can	easily	use	-Location	and	have	Get-VM	retrieve	a	list	based	on
these	same	named	objects	in	vSphere	without	the	need	of	a	separate	cmdlet.

There	are	some	occasions	when	you	will	want	to	scope	based	on	the	data	returned	in	the
Snapshot	object.	In	those	cases,	you	have	no	choice	but	to	scope	using	a	Where	statement,
and	you	will	examine	those	examples	in	the	next	recipe	in	this	chapter.

Manipulating	the	list	of	snapshots	to	get
better	information
Wouldn’t	it	be	great	if	a	list	could	tell	you	how	large	your	snapshots	are	growing?
Wouldn’t	it	help	if	you	are	running	low	on	disk	space	to	know	which	snapshot	is	the
largest	in	your	environment?	By	default,	the	consumed	amount	of	disk	space	is	not	a
property	that	gets	returned	to	the	list	of	output	for	Get-Snapshot.	However,	you	can	easily
add	properties	to	the	View	of	the	data	being	returned.	This	is	a	native	PowerShell	function
intended	to	build	on	the	default	views	and	return	any	property	contained	in	the	objects
returned	by	a	cmdlet.	Although	you	will	examine	it	when	used	with	snapshots,	the	same
technique	works	for	any	PowerShell	object.

Getting	Started
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to
vCenter.	You	will	also	need	one	or	more	virtual	machines	with	snapshots	present.

How	to	do	it…
In	order	to	manipulate	the	list	of	snapshots	to	get	better	information	about	them,	perform
the	following	steps:

1.	 As	you	observed	in	the	previous	recipe,	the	information	returned	by	default	from	the
Get-Snapshot	cmdlet	doesn’t	tell	you	all	that	you	want	to	know.	One	handy	column
that	can	be	leveraged	is	the	Created	column.	The	Created	column	contains	the
timestamp	of	when	the	snapshot	was	created.	To	return	this,	you	simply	need	to	use	a
Select	command	with	the	column	included:

Get-VM	|	Get-Snapshot	|	Select	VM,	Name,	Created

2.	 The	size	columns	are	additional	handy	columns	that	you	might	need	to	report.	For
this	recipe,	you	will	use	the	SizeGB	column	(SizeMB	is	another	available	column)	and
then	sort	it	based	on	this	value	so	that	it	orders	snapshots	from	the	largest	to	smallest
in	size:

Get-VM	|	Get-Snapshot	|	Select	VM,	Name,	SizeGB	|	Sort	SizeGB	–Desc

The	output	for	the	preceding	command	is	shown	in	the	following	screenshot:

3.	 In	the	preceding	screenshot,	you	can	see	that	the	SizeGB	column	is	truncated	in	the
default	output	because	it	is	too	large	to	fit.	Since	that	is	not	very	usable,	you	can	use	a
calculated	value	to	make	this	more	human-readable.	To	do	this,	you	will	use	the
Name/Expression	syntax	for	a	calculated	value:

Get-VM	|	Get-Snapshot	|	Select	VM,	Name,	Created,	@{N="Size";E={"{0:N2}	

GB"	-f	($_.SizeGB)}}	

4.	 The	last	step	to	make	this	list	more	useful	is	to	add	a	sort	so	that	you	get	the	largest
snapshots	listed	first.	To	do	this,	you	use	the	Sort	statement	and	pass	in	the	name	of
the	column	to	sort	by.	By	default,	the	Sort	statement	will	be	in	an	ascending	order,
but	to	override	this,	use	the	-Desc	parameter:

Get-VM	|	Get-Snapshot	|	Select	VM,	Name,	Created,	@{N="Size";E={"{0:N2}	

GB"	-f	($_.SizeGB)}}	|	Sort	SizeGB	-Desc	

How	it	works…
In	this	recipe,	you	worked	with	calculated	values.	You	created	a	property	named	Size	and
wrote	an	expression	that	formats	the	number	to	two	decimal	places.	To	do	this,	you	used	a
formatting	feature	in	PowerShell	called	the	-f	operator.	You	specified	a	format	of	{0:N2},
which	means	the	variable	will	be	output	as	a	number	with	2	decimal	places.

There’s	more…
The	PowerShell	-f	operator	is	probably	one	of	the	most	cryptic	things	that	you’ll
encounter	in	PowerShell	and	PowerCLI.	It	looks	completely	foreign	to	the	rest	of	the
language,	but	it	works	by	taking	a	formatting	string	in	double	quotes	and	applying	it	to	the
variable	that	is	specified	after	the	-f	operator.

You	can	use	it	to	simply	format	the	output,	or	you	can	use	it	to	format	and	then	store	the
reformatted	information	back	into	a	variable.	There	are	thousands	of	blog	articles	and
TechNet	articles	that	explain	the	-f	operator	and	format	manipulation	in	PowerShell.	It
goes	far	beyond	the	scope	of	this	book,	but	it’s	a	concept	that	needs	to	be	introduced.	It	is
very	useful	for	formatting	readable	output,	and	especially	for	creating	reports	in
PowerCLI.

See	also
The	Microsoft	TechNet	page,	and	the	Formatting	Numbers	topic,	is	available	at
http://technet.microsoft.com/en-us/library/ee692795.aspx

http://technet.microsoft.com/en-us/library/ee692795.aspx

Scoping	and	filtering	a	list	of	snapshots
As	with	other	cmdlets,	there	are	several	ways	to	approach	scoping	and	filtering	a	list	of
snapshots	in	PowerCLI.	There	are	several	methods	and	some	will	have	benefits	in	one
situation	over	another.	In	this	recipe,	you	will	look	at	a	couple	of	different	ways	to	scope	a
list	of	snapshots.

Getting	Started
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to
vCenter.	You	should	also	have	completed	the	previous	recipe.

In	this	recipe,	you	will	write	PowerCLI	that	will	scope	down	the	list	of	snapshots	returned
in	the	output	object	to	only	include	snapshots	that	were	created	more	than	30	days	ago.
However,	since	your	environment	might	not	have	snapshots	more	than	30	days	old,	you
can	modify	the	code	to	work	with	30	minute	old	snapshots.

You	will	begin	by	manually	inputting	a	date	to	compare	against	the	Created	column	of	the
snapshot	object	returned	by	Get-Snapshot.

How	to	do	it…
In	order	to	approach	scoping	and	filtering	a	list	of	snapshots	in	PowerCLI,	perform	the
following	steps:

1.	 To	begin	this	recipe,	you	will	use	the	same	Get-VM	and	Get-Snapshot	commands	you
began	the	previous	recipe	with.	However,	this	time,	you	will	use	a	Where	cmdlet	and
input	today’s	date	as	a	string.	For	this	example,	1/1/2014	will	be	used:

Get-VM	|	Get-Snapshot	|	Where	{$_.Created	-LT	"1/1/2014"}

Note
Make	sure	that	you	use	a	date	greater	than	today’s	date	when	running	this	cmdlet,	so
that	any	snapshots	created	today	in	the	Creating	a	snapshot	recipe	will	appear.

2.	 While	using	a	string	to	compare	against	the	Created	column	is	great	for	interactive
sessions,	if	you	want	to	script	an	automatic	removal	after	30	days,	you	will	need	to
compute	30	days	prior.	To	do	this,	you	can	use	the	PowerShell	Get-Date	cmdlet.	To
create	the	timestamp	for	30	days	ago,	use	the	Get-Date	cmdlet	and	use	the	AddDays
method	of	its	returned	object	to	add	-30	days.	Execute	this	PowerShell	and	it	outputs
a	date	exactly	30	days	ago	to	the	second	that	it	was	run:

(Get-Date).AddDays(-30)

3.	 Combine	the	Get-Date	cmdlet	with	the	PowerCLI	you	previously	used,	adding	it	to	a
Where	cmdlet	that	compares	Created	to	the	timestamp	generated	by	Get-Date.	You
will	use	the	less	than,	-LT,	operator	for	the	Where	statement.

Get-VM	|	Get-Snapshot	|	Where	{$_.Created	-LT	(Get-Date).AddDays(-30)}	

|	Select	VM,	Name,	Created

4.	 Unless	you	have	taken	a	while	between	the	Creating	a	snapshot	recipe	and	this
recipe,	your	snapshots	are	not	30	days	old.	To	test	the	functionality,	modify	the	script
to	change	AddDays	to	AddMinutes,	and	you	can	use	AddMinutes	for	the	remainder	of
the	recipe.	As	long	as	it	has	been	at	least	30	minutes	since	you	created	your
snapshots,	this	should	return	the	list	of	snapshots	you	created:

Get-VM	|	Get-Snapshot	|	Where	{$_.Created	-LT	(Get-

Date).AddMinutes(-30)}	|	Select	VM,	Name,	Created

5.	 In	your	environment,	you	might	also	be	concerned	with	snapshots	growing	to	sizes
more	than	5	GB.	(5	GB	is	an	arbitrary	number,	just	for	an	illustration.)	You	can
combine	this	case	into	the	Where	cmdlet.	You	will	compare	SizeGB	to	be	greater	than
(-GT)	and	5.	You	might	also	want	to	repeat	the	calculated	value	from	the	previous
recipe	to	show	the	size	of	the	snapshot:

Get-VM	|	Get-Snapshot	|	Where	{$_.Created	-LT	(Get-

Date).AddMinutes(-30)	-AND	$_.SizeGB	-GT	5}	|	Select	VM,	Name,	Created,	

@{N="Size";E={"{0:N2}	GB"	-f	($_.SizeGB)}}

Note

Unless	you	are	running	this	against	an	active	environment,	this	should	not	return	any
snapshots	since	the	TTYLinux1	snapshots	are	all	very	small.

How	it	works…
In	this	recipe,	you	took	the	Get-Snapshot	object	and	output	only	the	snapshots	that	were
older	than	30	days.	Since	your	test	environment	likely	doesn’t	have	snapshots	that	are	30
days	old,	you	changed	this	to	test	against	snapshots	that	are	only	30	minutes	old.	This
should	have	returned	a	list	of	snapshots	that	you	created	in	the	Creating	a	snapshot	recipe
of	this	chapter.

The	point	to	take	away	is	that	you	can	use	the	Get-Date	cmdlet	to	return	the	present	time,
and	then	use	methods	included	in	the	date	object	to	manipulate	the	date	to	go	back	in	time
30	days	using	the	AddDays,	30	minutes	using	the	AddMinutes,	or	any	other	amount	of	time
with	the	provided	methods.	You	can	make	the	Add	methods	subtract	by	providing	them
with	a	negative	number.

In	this	recipe,	you	didn’t	scope	based	on	the	Get-	cmdlets,	but	instead	used	a	Where
statement.	As	you	have	progressed	through	the	chapter,	you	used	the	Get-	cmdlets	to
scope	as	it	was	available,	but	this	is	a	case	where	there	are	no	parameters	to	scope	on	the
Get-Snapshot.	Instead,	you	have	to	examine	the	methods	and	properties	that	are	returned
by	the	Snapshot	object	and	utilize	the	Where	statement	to	work	with	those	values.

There’s	more…
Utilizing	what	you	learned	in	this	chapter	will	allow	you	to	easily	target	any	particular
snapshot	that	you	might	encounter	that	needs	to	be	removed	or	altered.	This	recipe	is	also
powerful	for	reporting	and	creating	proactive	alerts	of	your	environment	once	thresholds
are	crossed.	You	can	take	code	similar	to	this	and	create	a	scheduled	task,	a	recipe	which
is	covered	later	in	the	chapter,	and	have	it	e-mail	these	alerts	on	a	daily	basis	so	that	you
get	a	heads	up	on	what	snapshots	exist	and	how	they	have	grown	in	your	environment.

Removing	targeted	snapshots
Sometimes,	you	will	want	to	remove	a	specific	snapshot,	but	not	all	of	the	snapshots	on	a
virtual	machine.	Sometimes,	you	will	want	to	clean	up	an	entire	virtual	machine.	In	this
recipe,	we’re	going	to	work	with	two	of	the	virtual	machines	that	you	created	snapshots
with	in	the	first	recipe	of	the	chapter.

Getting	Started
From	the	first	recipe	of	this	chapter,	you	created	snapshots	onto	TTYLinux1.	In	the	first
part	of	this	recipe,	you	will	remove	a	single	snapshot	from	the	tree	of	snapshots	on	this
VM.	To	do	this,	you	will	match	it	against	the	name	of	the	snapshot	that	was	created.

Once	you	remove	a	targeted,	single	snapshot,	you	will	remove	all	of	the	snapshots	on	the
VM,	like	you	would	after	a	project	is	complete	or	a	software	upgrade	is	completed
successfully.	The	VM	will	have	three	generations	of	snapshots	still	present	and	with	a
single	PowerCLI	cmdlet	you	will	remove	them	all.

To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	a	connection	to	the	vCenter
host	with	TTYLinux1	(or	the	virtual	machine	you	used	in	the	Creating	a	snapshot	recipe).

How	to	do	it…
In	order	to	first	remove	a	single	snapshot	from	the	tree	of	snapshots	on	a	VM,	and	then	all
of	the	snapshots	on	the	VM,	perform	the	following	steps:

1.	 Since	you	know	the	name	of	the	VM	you	are	targeting,	you	will	use	a	Get-Snapshot
with	the	-VM	parameter	to	list	all	of	the	snapshots:

Get-Snapshot	-VM	TTYLinux1

2.	 In	the	preceding	screenshot,	note	that	the	second	snapshot	has	the	name,	My	Second
Snapshot.	This	is	the	snapshot	you	want	to	remove.	To	do	this,	you	can	use	the
Remove-Snapshot	cmdlet,	but	you	need	to	pass	in	a	snapshot.	To	get	the	snapshot	to
target,	use	the	Get-Snapshot	cmdlet	with	the	-Name	parameter:

Get-Snapshot	-VM	TTYLinux1	-Name	"My	Second	Snapshot"	|	Remove-Snapshot

3.	 When	you	execute	the	command,	it	will	prompt	you	to	confirm	the	removal	of	this
single	snapshot	file.	You	can	suppress	this	with	a	-Confirm:$false	cmdlet.	In	all,	it
is	a	painless	process	to	remove	a	specific	snapshot.

4.	 Far	easier,	you	can	remove	all	of	the	snapshots	on	a	VM	with	a	single	and	quick
cmdlet.	You	will	run	a	Get-Snapshot	-VM	cmdlet	and	pipe	that	to	Remove-Snapshot
with	a	-Confirm:$false	cmdlet,	and	all	of	the	snapshots	are	instantly	and
irreversibly	removed:

Get-Snapshot	-VM	TTYLinux1	|	Remove-Snapshot	-Confirm:$false

5.	 Like	other	PowerCLI,	the	-VM	parameter	can	accept	a	wild	card	input	so	that	you	can
do	this	on	certain	VMs	or	all	VMs	in	an	environment.

6.	 Going	back	to	the	example	of	removing	all	snapshots	more	than	30	days,	you	can
combine	the	Where	statement	from	the	Scoping	and	filtering	a	list	of	snapshots
recipe	into	this	chapter:

Get-Snapshot	-VM	*	|	Where	{$_.Created	-LT	(Get-Date).AddDays(-30)}	|	

Remove-Snapshot

Note

When	targeting	large	groups	of	VM	or	snapshots,	use	the	-Confirm:$false	cmdlet
with	caution.	It	will	initiate	the	removal	process	and	there	isn’t	any	going	back.	If
you	execute	without	the	-Confirm:$false	cmdlet,	PowerCLI	will	prompt	you	to
confirm	the	removal	of	each	snapshot.

How	it	works…
In	this	recipe,	you	will	look	at	two	scenarios.	The	first	scenario	is	to	remove	all	snapshots
on	a	particular	VM.	This	is	easier	since	you	can	use	the	Get-VM	cmdlet	to	retrieve	the	VM
or	VMs	that	you	want	to	target	and	then	you	can	pipe	it	to	Get-Snapshot	and	retrieve	all
of	the	snapshots	on	these	VMs.	Once	you	have	a	list	of	snapshots,	you	can	pipe	it	to
Remove-Snapshot	and	the	snapshots	will	be	removed	from	the	virtual	machine.	There	is
no	real	scoping	or	difficulty	in	doing	this.

In	the	second	scenario,	it	follows	the	same	basic	pattern,	but	you	don’t	want	to	remove	all
of	the	snapshots.	So,	you	need	to	take	our	Get-Snapshot	and	scope	it	with	a	Where
statement	to	get	just	the	snapshot	that	you	want.	There’s	a	lot	of	data	that	you	can	use	to
target	a	specific	snapshot,	but	the	easiest	way	is	to	refer	to	it	by	a	name	or	by	a	date
created.

In	this	recipe,	you	will	work	with	both	scenarios.	Using	Get-Snapshot	and	piping	it	to	the
Remove-Snapshot	cmdlet	is	the	most	functional	way	to	remove	a	snapshot	since	you	don’t
have	to	know	a	lot	of	specifics	about	the	snapshot	you’re	targeting.	Using	Get-Snapshot
allows	you	the	benefit	of	exploring	before	you	remove	a	snapshot.

There’s	more…
There	are	many	different	properties	in	a	snapshot	object	that	you	can	use	to	scope	and
target	snapshots	for	removal.	One	great	aspect	of	PowerCLI	is	that	it	can	handle	scoping
and	targeting	for	any	scenario	imaginable,	that	is,	as	long	as	the	data	is	there	in	the
snapshot	object	to	interpret	or	discern	which	VMs	should	be	included	in	a	removal
process.	You	should	spend	more	time	examining	the	data	in	a	snapshot	object	using	the
Get-Member	cmdlet	and	the	Select	*	cmdlets	after	Get-Snapshot.	Take	a	look	at	the	data
points	and	explore	the	objects	contained	inside.	PowerCLI	can	be	like	onions	with	layers
of	depth	inside	them.

Find	lost	or	unknown	snapshots
While	not	common,	there	are	times	when	a	snapshot	might	get	lost	or	not	be	reported
properly.	Many	times,	this	happens	as	a	result	of	backup	software	leveraging	snapshots
and	not	cleaning	up	properly.	So	what	is	a	lost	or	unknown	snapshot?	It’s	a	VM	where	the
VM	definition	points	to	a	VMDK	that	has	a	parent;	however,	vSphere	does	not	show	that
it	has	a	snapshot.

What	is	an	easy	way	to	see	a	VMDK	with	a	parent	defined?	Snapshots	usually	take	the
parent’s	name	and	append	-0000#	to	the	end	of	the	name	to	create	the	snapshot	disk.	In	the
definition	of	this	VMDK	file,	it	points	to	a	parent.	VMware	Horizon	View	uses	this
method	to	create	linked	clones	where	a	parent	is	shared	by	many	child	VMs.	However,	in
a	vSphere	environment,	it	can	spell	trouble	if	the	child	disk	grows	to	the	same	size	as	its
parent	and	it	is	not	intended	to	be	a	long	term	snapshot.	Although	the	problem	appears	to
be	more	prevalent	in	the	earlier	version	of	vSphere,	it	is	still	a	great	way	to	dig	in	and
understand	a	little	more	about	snapshots.

Getting	Started
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	a	connection	to	vCenter	with
one	or	more	VMs	present.

How	to	do	it…
In	order	to	find	lost	or	unknown	snapshots,	perform	the	following	steps:

1.	 The	first	step	is	to	get	a	list	of	VMs	that	meet	the	criteria	outlined	in	the	introduction
—find	VMs	with	disks	that	have	filenames	that	end	in	0000	and	a	number.	To	do	this,
you	use	Get-VM	and	pipe	it	to	a	Get-HardDisk	cmdlet	to	return	a	list	of	the	actual	disk
files.	Then,	pipe	that	output	to	a	Where	statement	and	look	for	names	that	contain
0000:

Get-VM	|	Get-HardDisk	|	Where	{$_.Filename	-like	"*0000*"}

2.	 The	next	step	is	to	get	a	list	of	VMs	with	known	snapshots.	That’s	easy,	since	you
wrote	that	command	string	in	earlier	recipes.	You	use	Get-VM	and	pipe	it	to	Get-
Snapshot:

Get-VM	|	Get-Snapshot

3.	 Next,	you	need	to	compare	the	two	sets	of	output	and	look	for	differences.	The
problem	is	that	you	have	a	HardDisk	object	and	a	Snapshot	object.	You	can’t
compare	these,	so	what	do	you	need	to	compare?	VMs.	Modify	the	hard	disks
command	string	and	you	can	select	the	Parent	property,	which	is	the	name	of	the	VM.
Since	you	know	that	the	Snapshot	object	has	a	property	named	VM,	create	a
calculated	value	named	VM	with	the	data	from	Parent:

Get-VM	|	Get-HardDisk	|	Where	{$_.Filename	-like	"*0000*"}	|	Select	

@{N="VM";E={$_.Parent}}

4.	 When	executed,	you	can	see	that	there	is	duplicate	output	in	this.	To	fix	that,	you	can
use	the	Get-Unique	cmdlet	with	an	-AsString	parameter:

Get-VM	|	Get-HardDisk	|	Where	{$_.Filename	-like	"*0000*"}	|	Select	

@{N="VM";E={$_.Parent}}	|	Get-Unique	-AsString

5.	 Next,	you	need	to	perform	a	similar	Select	and	Get-Unique	on	the	Snapshot	object
you	returned.

Get-VM	|	Get-Snapshot	|	Select	VM	|	Get-Unique	-AsString

6.	 The	last	step	is	to	combine	these	two	objects	into	a	Compare-Object	cmdlet.	You	will
also	want	to	add	a	-Property	VM	so	that	the	compare	occurs	on	the	single	property:

Compare-Object	$(Get-VM	|	Get-HardDisk	|	Where	{$_.Filename	-like	

"*0000*"}	|	Select	@{N="VM";E={$_.Parent}}	|	Get-Unique	-AsString)	

$(Get-VM	|	Get-Snapshot	|	Select	VM	|	Get-Unique	-AsString)	-Property	

VM

Note
If	you	execute	this	against	your	environment	and	get	the	output,	you	have	lost	or
unknown	snapshots.	In	a	test	environment,	it	would	be	unexpected	to	get	the	output
from	running	this	code.	If	you	do	not	get	an	error,	then	the	syntax	is	correct.

7.	 Repeat	the	last	line	of	code	and	assign	it	to	$Targets	variable:

$Targets	=	Compare-Object	$(Get-VM	|	Get-HardDisk	|	Where	{$_.Filename	

-like	"*0000*"}	|	Select	@{N="VM";E={$_.Parent}}	|	Get-Unique	-

AsString)	$(Get-VM	|	Get-Snapshot	|	Select	VM	|	Get-Unique	-AsString)	-

Property	VM

8.	 To	begin	to	repair	the	lost	or	unknown	snapshot,	you	need	to	create	a	new	snapshot
on	the	VM.	Use	the	variable	you	created	with	the	Compare-Object	cmdlet	in	a
ForEach	loop	and	create	a	new	snapshot	on	each	object:

ForEach	($Target	in	$Targets)	{

	New-Snapshot	-Name	"SnapRepair"	-VM	$Target.VM

}

9.	 In	the	last	step,	remove	the	snapshot	you	just	created:

ForEach	($Target	in	$Targets)	{

	Get-Snapshot	-VM	$Target.VM	|	Remove-Snapshot	-Confirm:$false

}

10.	 Rerun	the	Compare-Object	cmdlet	you	created	to	see	whether	the	VM	is	still
showing	a	VMDK	with	the	“0000”	in	the	filename	and	no	active	snapshot.

How	it	works…
This	recipe	gets	into	a	very	specific	use	case	for	PowerCLI,	but	it	seems	to	occur	with
certain	backup	software	and	configurations.	Later	versions	of	vSphere	seem	not	to	be	as
susceptible	to	the	issue,	but	the	earlier	versions	of	backup	software	that	leveraged	the
VCB	backup	method	seemed	to	have	some	issues	with	removing	snapshots	cleanly.
However,	beyond	the	snapshot	and	backup	use	case,	there	might	be	other	times	when	you
need	to	compare	the	two	lists	in	PowerCLI.	This	recipe	shows	you	all	that	you	need	to
know	to	compare	two	objects,	even	if	they	are	of	different	types	and	don’t	match.	The
output	is	usable	and	can	be	leveraged	to	do	real	work	based	on	the	differences.

So,	what	happened	in	the	recipe?	The	first	thing	is	that	you	obtained	a	list	of	hard	disk
filenames	using	the	Get-HardDisk	cmdlet	with	Get-VM	piped	into	it.	This	gave	you	a	list
of	matches	where	their	filename	pointed	to	a	file	with	0000	in	the	name,	indicating	that	it
is	some	sort	of	a	snapshot.	The	second	part	of	the	compare	was	a	list	of	known	snapshots
from	the	Get-Snapshot	cmdlet.	The	differences	between	the	lists	would	be	the	unknown
snapshots.

The	last	part	of	the	recipe	is	simple	clean	up	for	the	situation,	which	is	to	create	a	known
snapshot	and	remove	it.	The	removal	process	then	cleans	up	all	snapshots	on	the	VM
because	you	did	not	scope	or	specify	them.	A	lot	of	times,	when	this	occurred	in	the	wild,
creating	a	new	snapshot	made	vSphere	recognize	the	full	tree	of	parent	disk	files	and
reassemble	the	list	of	snapshots	to	be	removed.	While	it	is	not	100	percent	effective	even
for	the	use	described,	it’s	a	great	work	around	and	good	study	of	scoping,	limiting	results
to	unique	values	and	comparing	the	two	lists.

Creating	a	function	to	automatically
remediate	snapshots
Creating	ad	hoc	commands	is	very	useful	in	PowerCLI,	but	there	are	times	and	situations
where	you	find	yourself	repeatedly	doing	the	same	tasks,	or	where	your	series	of	cmdlets
becomes	long	for	complex	tasks.	The	next	step	is	to	create	a	PowerCLI	function	that	can
be	reused	and	repeated.	In	the	case	of	snapshot	management,	the	function	can	be	initiated
from	a	single	command	and	will	run	through	your	established	procedure.	This	makes	it
easier	to	do	your	work.

You	can	take	and	store	the	function	in	a	.ps1	file	that	can	be	referenced	easily.	While
functions	are	really	useful,	they	must	be	defined	in	each	new	PowerCLI	window,	so
storing	them	in	a	file	eases	that	process.

It	is	also	important	to	understand	scope	when	working	with	functions.	Each	PowerShell	or
PowerCLI	window	is	a	scope	in	itself.	Each	function	is	given	its	own	scope	as	well,	which
means	that	each	function	can	use	the	same	variable	names,	and	changing	data	in	the
function’s	variables	does	not	affect	variables	outside	its	scope.

Getting	Started
To	begin	this	recipe,	you	will	need	a	text	editor	or	PowerShell	editor.

You	can	use	the	native	PowerShell	ISE	or	a	third-party	editor	such	as	Dell	Software’s
PowerGUI.

How	to	do	it…
In	order	to	create	a	function	to	automatically	remediate	snapshots,	perform	the	following
steps:

1.	 The	first	step	is	to	create	a	new	.ps1	file	using	your	editor	and	save	it	to	a	folder.
2.	 The	next	step	is	to	set	up	a	basic	function.	To	do	this,	you	use	the	function	keyword

followed	by	the	name	of	your	function	and	a	set	of	curly	braces:

function	Remove-30DaySnaps

{	

}

3.	 You	should	begin	by	adding	some	notes	to	the	function.	The	2011	issue	of	TechNet
Magazine	provided	a	template	that	you	can	reuse	for	the	notes	in	a	function.	Add	the
following	inside	the	curly	braces:

	<#

	.SYNOPSIS

	Describe	the	function	here

	.DESCRIPTION

	Describe	the	function	in	more	detail

	.EXAMPLE

	Give	an	example	of	how	to	use	it

	.EXAMPLE

	Give	another	example	of	how	to	use	it

	.PARAMETER	VM

	The	VM	name	to	query

	.PARAMETER	DAYSOLD

	The	number	of	days	if	the	snapshot	exceeds	it	is	removed

	#>

Note
Notes	are	important	and	should	be	included.	These	notes	are	used	to	build	the	online
help	when	Get-Help	is	called	for	your	custom	function.

4.	 To	make	this	function	work,	you	should	define	a	list	of	parameters.	In	this	function,
you	will	want	to	define	a	single	parameter	called	VM.	Below	the	notes	section,	add	a
param	section.	The	param	section	defines	things	such	as	whether	this	parameter	is
required,	can	it	be	piped	in,	and	a	help	message	if	it	is	missing	to	prompt	the	user	for
the	input.	You	can	also	set	a	default	value	for	a	parameter	that	is	not	mandatory,	such
as	$DaysOld	in	the	example:

param	(

	[Parameter(Mandatory=$True,

	ValueFromPipeline=$True,

	ValueFromPipelineByPropertyName=$True,

	HelpMessage='Name:')]

	[string[]]$VM,

	[double]$DaysOld	=	30

)

5.	 Next,	add	a	process()	section	with	the	actual	work:

process	{

	Get-Snapshot	-VM	$vm	|	Where	{$_.Created	-LT	(Get-Date).AddDays(-

$DaysOld)}	|	Remove-Snapshot	-Confirm:$false

}

6.	 From	the	file,	you	can	copy	all	of	your	assembled	code	and	paste	it	into	your
PowerCLI	window.	You	might	have	to	press	Return	at	the	end	of	the	script	to	execute
all	that	you	pasted	into	the	window.	There	is	no	output	expected	if	the	function	passes
syntax	checks.

Note
Caution:	Do	not	run	this	on	a	production	system	with	snapshots	unless	you	really
want	to	remove	any	snapshots	older	than	30	days!	This	will	remove	snapshots.

7.	 Now	you	can	call	the	function	using	the	Remove-30DaySnaps	function	name	in
PowerCLI.	To	run	it,	specify	the	-VM	*	as	the	parameter.

How	it	works…
A	PowerShell	function	is	a	construct	that	most	of	the	native	PowerCLI	cmdlets	are	written
in.	Since	PowerShell	is	extensible,	the	VMware	teams	have	utilized	functions	and
modules	in	order	to	build	and	distribute	a	very	functional	set	of	tools.	What	you	are
writing	is	more	specific,	but	the	functionality	is	very	similar	to	what	PowerCLI	delivers	to
the	vSphere	administrator.

A	function	begins	with	two	major	sections:	the	params	and	the	process.	The	process
section	does	the	work	of	the	function.	The	params	section	defines	the	input	expected	and
controls	how	the	input	comes	into	the	function.	In	addition,	you	defined	some	basic	notes
about	the	function.

There’s	more…
This	is	an	incredibly	simple	function.	Functions	are	most	powerful	when	they	are	doing
complex	PowerShell	routines	that	would	be	difficult	or	impossible	to	manually	repeat	at
the	command	line.	There	has	to	be	a	sufficient	amount	of	complexity	to	really	make	use	of
the	power	of	functions	because	of	the	overhead	of	defining	the	parameters,	input,	and
output	of	the	function.	Another	value	is	packaging,	even	a	simple	routine	to	distribute
among	administrators	or	operators	who	use	your	environment.

You	can	see	that	you	didn’t	call	the	.ps1	file	in	this	recipe.	This	is	because	the	.ps1	file	is
unsigned	and	is	using	the	default	PowerShell	execution	policy,	the	.ps1	file	cannot	be
called.	In	the	next	recipe,	you	will	look	at	how	to	sign	the	code	and	allow	execution.

The	comment	block	and	its	format	are	also	important	since	this	is	leveraged	by	the	Get-
Help	cmdlet.	The	Get-Help	cmdlet	will	reference	the	information	in	this	section	in	order
to	build	the	help	output.	You	can	test	this	by	running	Get-Help	Remove-30DaySnaps	and
see	what	the	output	looks	like.

See	also
TechNet	Magazine’s	Windows	PowerShell:	Build	a	Better	Function	page	is
available	at	http://technet.microsoft.com/en-us/magazine/hh360993.aspx
The	Dell	Software	PowerGUI	guide	is	available	at
http://en.community.dell.com/techcenter/powergui/m/

http://technet.microsoft.com/en-us/magazine/hh360993.aspx
http://en.community.dell.com/techcenter/powergui/m/

Scheduling	automatic	snapshot
remediation
With	the	function	in	an	established	form,	you	can	take	and	execute	the	.ps1	file	using	the
Windows	Task	Scheduler.	Creating	the	scheduled	task	for	a	PowerShell	requires	that	you
set	up	some	basic	things	within	the	.ps1	file	that	has	your	function.	You	will	also	want	to
run	the	function	with	a	given	set	of	parameters	for	this	scheduled	task.	All	of	these	things
can	be	added	into	the	file.

In	order	to	use	a	.ps1	file,	you	will	need	to	change	the	execution	policy	and	sign	your
code	file.	Code	signing	for	PowerShell	and	PowerCLI	adds	a	trusted	digital	signature	to	a
file,	allowing	PowerShell	to	identify	the	source	and	trust	the	file	if	the	signature	is	trusted.
Code	signed	with	a	trusted	publisher	can	be	run	on	a	Windows	machine	with	a	more
secure	PowerShell	execution	policy	set	to	AllSigned	or	RemoteSigned.	Code	files	that
have	not	been	signed	require	the	Unsigned	execution	policy	to	be	set,	but	this	is	not	secure
since	even	malicious	PowerShell	could	be	executed.	In	order	to	avoid	unneeded	risk,	you
should	sign	your	code	files.

For	corporate	networks	with	a	certificate	authority	installed,	signing	your	code	is	as
simple	as	obtaining	a	user	certificate	and	running	a	simple	cmdlet	and	this	recipe	will
cover	the	second	scenario.

Getting	Started
To	begin	this	recipe,	you	will	need	the	.ps1	file	that	you	created	in	the	previous	recipe
along	with	a	text	editor	or	PowerShell	editor.	The	recipe	assumes	that	there	is	an	Active
Directory	Certificate	Authority	installed	in	the	environment.

For	the	purpose	of	this	recipe,	assume	that	your	company	has	a	policy	that	snapshots
shouldn’t	exist	for	more	than	30	days.	You	will	slightly	modify	the	function	you	created	in
the	previous	recipe	in	order	to	accept	a	parameter	called	days,	which	you	will	use	for	the
company	policy.

The	second	part	of	the	recipe	is	to	utilize	the	Windows	Task	Scheduler	to	initiate	the
PowerCLI	commands	that	you	want	to	execute.

To	do	this	task,	you	will	need	your	.ps1	file	created	in	the	previous	recipe	and	you	will
need	to	open	the	Windows	Task	Scheduler	on	your	PowerCLI	machine.

How	to	do	it…
In	order	to	schedule	automatic	snapshot	remediation,	perform	the	following	screenshot:

1.	 For	this	recipe,	you	will	leverage	the	function	.ps1	file	that	you	created.	Make	a	copy
of	this	file	and	add	one	line	to	the	end	that	will	initiate	the	function	and	run	it	for	all
VMs:

Remove-30DaySnaps	-VM	*

2.	 Save	the	file	with	the	new	line	to	a	new	filename,	Remove-30DaySnaps.ps1,	and	save
it	to	a	known	location.	For	the	steps	in	the	book,	you	can	use	C:\Scripts	as	the
location,	but	any	location	will	work.	By	adding	the	preceding	line	to	the	.ps1	file,
when	it	is	run	by	the	scheduler,	the	function	will	run	for	all	VMs	in	the	environment.

3.	 The	next	step	is	to	sign	the	.ps1	file	so	that	it	can	be	executed	by	PowerShell.	The
default	security	configuration	of	PowerShell	prevents	all	external	files	from	being
executed.	Check	the	execution	policy	of	your	machine:

Get-ExecutionPolicy

4.	 If	the	execution	policy	is	set	to	Restricted,	you	will	need	to	change	this	to
RemoteSigned.	You	will	need	to	launch	a	PowerCLI	or	PowerShell	window	with	the
Run	as	Administrator	option	in	order	to	execute	the	following	command,	otherwise
you	will	receive	an	access	denied	error:

Set-ExecutionPolicy	-ExecutionPolicy	RemoteSigned

5.	 The	next	step	is	to	retrieve	a	code	signing	certificate	from	an	internal	certificate
authority.

Note
Obtaining	a	code	signing	certificate	is	outside	the	scope	of	this	book,	but	check	out
the	link	in	the	See	also	section	for	help	in	order	to	obtain	a	code	signing	certificate.

If	the	certificate	authority	that	you	retrieve	your	certificate	from	is	trusted	throughout
your	network,	you	will	be	able	execute	this	file	anywhere	on	the	network.	Outside
your	network,	it	would	not	be	trusted	and	would	most	likely	not	be	allowed	to
execute.	You	can	distribute	signed	code	by	obtaining	a	certificate	from	an	externally
trusted	certificate	authority.

6.	 The	next	step	is	to	sign	the	.ps1	file	you’ve	created	for	this	scheduled	task.	To	do
this,	you	run	the	Set-AuthenticodeSignature	cmdlet:

Set-AuthenticodeSignature	C:\Scripts\Remove-30DaySnaps.ps1	@(Get-

Children	cert:\\CurrentUsers\My	-codesigning)[0]

7.	 To	schedule	the	file	to	run,	you	will	need	to	supply	a	command	line	into	the	Task
Scheduler.	The	first	part	of	the	command	line	to	supply	is	the	location	of	the
PowerShell	executable:

C:\Windows\system32\windowspowershell\v1.0\powershell.exe

8.	 PowerShell	either	requires	that	you	include	the	snap-in	for	a	language	such	as
PowerCLI	to	activate	all	of	its	cmdlets	or	you	can	specify	a	Console	File.	From	Task
Scheduler,	the	console	file	is	probably	the	easier	method.	You	specify	-
PSConsoleFile	to	powershell.exe:

C:\Windows\system32\windowspowershell\v1.0\powershell.exe	-

PSConsoleFIle	"c:\Program	Files\VMware\Infrastructure\vSphere	

PowerCLI\vim.psc1"

9.	 Lastly,	you	need	to	specify	the	location	of	your	custom	.ps1	file	to	execute.	You
specify	the	name	of	your	script	file	with	&	'path\to\file':

C:\Windows\system32\windowspowershell\v1.0\powershell.exe	-

PSConsoleFIle	"c:\Program	Files\VMware\Infrastructure\vSphere	

PowerCLI\vim.psc1"	"&	'C:\scripts\Remove-30DaySnaps.ps1'"

Note
Although	you	are	leveraging	the	function	you	created	in	a	.ps1	file,	you	can	simply
pass	the	process	block	with	the	-VM	*	and	AddDays(-30)	in	a	simple	.ps1	file.
However,	leveraging	the	function	illustrates	that	you	can	do	much	more	complex
scripts	and	you	had	already	written	it.

How	it	works…
The	Windows	Task	Scheduler	has	all	of	the	functionality	built	into	it	to	execute	processes
based	on	different	criteria,	such	as	a	specified	time	or	every	2	hours.	Since	it	has
scheduling	capabilities,	it	makes	it	the	perfect	solution	to	execute	PowerShell.	Task
Scheduler	can	run	the	powershell.exe	executable,	but	you	need	to	specify	a	.ps1
PowerShell	script	file	to	run.

In	addition,	this	is	running	PowerCLI	commands	that	are	a	superset	of	commands	created
by	VMware.	In	order	for	those	to	be	accessible,	you	either	need	to	add	Add-PsSnapin
VMware.VimAutomation.Core	into	your	.ps1	file,	or	you	need	to	define	-PSConsoleFile
on	the	powershell.exe	command	line.	Keep	in	mind,	you	are	scheduling	this	to	run	in
Windows	cmd.exe	and	not	in	PowerShell	directly.	You	are	calling	the	powershell.exe
executable,	which	in	turn	will	execute	the	PowerShell	and	PowerCLI	commands	inside	the
specified	.ps1	file.

In	the	Using	PowerShell	Native	Capabilities	to	Schedule	Scripts	recipe	in	Chapter	7	,
Creating	Custom	Reports	and	Notifications	for	vSphere,	you	will	look	at	another	method
of	scheduling	PowerCLI	and	PowerShell	to	be	run	on	a	schedule	with	a	new	feature	added
in	PowerShell	3.0.

See	also
The	Sign	Here,	Please	subtopic	under	the	Windows	PowerShell	topic	in	the
Microsoft	TechNet	Magazine,	dated	April	2008,	is	available	at
http://technet.microsoft.com/en-us/magazine/2008.04.powershell.aspx
The	Obtaining	a	Code	Signing	Certificate	and	Signing	PowerShell	Scripts	page	is
available	at	http://www.mikepfeiffer.net/2010/02/obtaining-a-code-signing-
certificate-and-signing-powershell-scripts/
The	Using	PowerShell	Native	Capabilities	to	Schedule	Scripts	recipe	in	Chapter	7,
Creating	Custom	Reports	and	Notifications	for	vSphere

http://technet.microsoft.com/en-us/magazine/2008.04.powershell.aspx
http://www.mikepfeiffer.net/2010/02/obtaining-a-code-signing-certificate-and-signing-powershell-scripts/

Creating	a	snapshot	management	module
While	running	all	of	this	from	a	function	and	using	a	.ps1	file	works	very	well,	there	is	a
better	way.	PowerCLI	users	can	actually	take	the	work	of	a	function	and	create	their	own
module,	just	like	the	ones	that	are	used	when	you	use	Import-Module	in	PowerShell	or
PowerCLI.	By	creating	a	module,	you	can	locate	this	in	a	default	PSModulePath	for
PowerShell	and	you	can	import	it	like	any	vendor	supplied	modules.	You	can	also
distribute	this	module	to	end	users,	help	desk	staff,	or	other	administrators	to	ease
management.	By	taking	your	function	or	functions	to	this	level,	you	can	gain	portability
for	the	code	that	you’ve	created.

It	is	important	to	note	that	any	script	file	with	one	or	more	functions	can	become	a
module.	Each	module	should	be	a	unique	name,	and	each	module	will	be	a	.psm1	file
located	in	a	directory	of	the	same	name	as	the	file.

Getting	Started
To	begin	this	recipe,	you	will	need	a	new	PowerCLI	window	that	was	not	used	in	the
previous	recipes,	and	you	will	need	the	file	you	created	in	the	Creating	a	function	to
automatically	remediate	snapshots	recipe.

How	to	do	it…
In	order	to	create	a	snapshot	management	module,	perform	the	following	steps:

1.	 Creating	a	module	requires	locating	a	.psm1	file	in	a	specific	location.	The	location
required	is	defined	in	a	PowerShell	variable.	To	check	for	your	locations,	you	can	use
Get-Content	to	retrieve	the	location:

Get-Content	Env:\PSModulePath

2.	 The	output	of	the	preceding	command	lists	a	series	of	paths	on	the	Windows	system
separated	by	semicolons.	Each	of	these	paths	is	a	location	where	PowerShell	will
look	to	try	and	import	a	module	when	instructed.	Any	of	these	locations	can	be	used
for	your	custom	module.

3.	 The	next	step	is	to	navigate	to	one	of	the	paths	listed	in	PSModulePath.	Open	a
Windows	Explorer	window	to	one	of	the	paths	listed.

Note
If	you	attempt	to	open	the	path	that	begins	with	C:\Users\<user>\Documents,	it’s
likely	the	WindowsPowerShell	directory	will	not	exist.	In	this	event,	you	can	create
the	WindowsPowerShell	directory	with	a	Modules	directory	inside	it.

If	you	open	the	path	that	begins	with	C:\Windows\System32\,	you	will	see	additional
modules	present,	as	shown	in	the	following	screenshot:

4.	 Inside	the	Modules	folder,	create	a	new	folder	named	for	your	custom	module.	For

this	example,	you	can	create	a	module	called	“30DaySnaps.”
5.	 Open	the	.ps1	file	you	created	with	the	Remove-30DaySnaps	function	inside	the	file.

Save	the	file	as	30DaySnaps.psm1	inside	the	new	30DaySnaps	folder	you	created	in
the	Modules	directory	of	your	choice.	No	other	modifications	are	needed	to	your	.ps1
file.

Note
Do	not	use	the	.ps1	file	that	was	used	to	schedule	a	recurring	task,	because	that	file
includes	a	line	to	execute	the	function.	You	do	not	want	this	behavior	for	a	module.

6.	 In	a	new	PowerCLI	window,	try	to	run	Remove-30DaySnaps.
7.	 You	can	see	that	the	error	received	does	not	recognize	Remove-30DaySnaps	as	the

name	of	a	cmdlet,	function,	or	script.	Even	though	the	module	is	in	a	known	path,	it
has	not	been	loaded,	or	in	PowerShell	terminology,	it	has	not	been	imported.	The
next	step	in	a	new	PowerCLI	window	is	to	perform	an	Import-Module	cmdlet:

Import-Module	30DaySnaps

8.	 Try	again	to	run	Remove-30DaySnaps	in	the	PowerCLI	window.
9.	 Now,	your	function	is	available.	You	can	run	a	Get-Help	Remove-30DaySnaps	in	the

window	and	you	get	online	help	for	your	custom	function.

How	it	works…
By	creating	this	custom	module,	which	is	no	more	than	a	PowerShell	function	in	a
specially	named	.psm1	file,	you	can	distribute	the	module	to	other	administrators	or
operators.	Each	system	that	needs	to	be	able	to	run	this	custom	module	will	locate	it	in	one
of	the	PSModulePath	locations	on	their	system.	Once	the	.psm1	file	and	module’s	directory
structure	are	located	on	the	system,	the	user	can	run	an	Import-Module	cmdlet	to	load	the
module	files,	and	then	the	user	can	invoke	any	of	the	functions	contained	in	the	module.

Again,	in	this	recipe,	code	signing	is	an	issue.	If	the	code	is	not	signed	with	a	trusted
certificate,	users	will	experience	problems	loading	the	module,	so	the	code	should	be
signed	with	a	certificate	from	a	trusted	certificate	authority.	This	can	be	an	Active
Directory	Certificate	Authority	as	long	as	it	is	trusted	by	the	systems,	which	might	be
controlled	by	the	group	policy	on	the	domain.

The	names	of	the	functions	in	your	module	should	follow	normal	PowerShell	naming
schemes.	There	are	a	set	of	verbs	such	as	Get,	New,	Remove,	Set,	Add,	Start,	and	Stop
that	are	PowerShell	recognized	verbs.	If	your	module	includes	nonstandard	verbs,
PowerShell	will	display	an	error	on	import	that	your	functions	do	not	use	the	standard
verbs	which	can	make	them	less	discoverable.	As	a	general	rule,	you	should	stick	to	the
normal	verbs	to	name	your	functions;	however,	you	are	not	bound	to	use	these	verbs	only.

There’s	more…
The	process	in	our	example,	the	.psm1	module	file,	is	simple.	The	modules	you	write	will
likely	include	many	functions	inside	them,	and	the	processes	can	be	much	more	complex
routines	or	series	of	commands.	One	good	example	is	account	provisioning	for	Active
Directory	and	perhaps	email.	Another	example	for	vSphere	might	be	adapting	to	the	ESXi
build	routine	that	you	prepared	in	Chapter	1,	Configuring	the	Basic	Settings	of	an	ESXi
Host	with	PowerCLI,	and	turning	it	into	a	module	and	function	that	you	can	import	and
execute	with	a	single	function	name.

Chapter	6.	Managing	Resource	Pools,
Reservations,	and	Limits	for	Virtual
Machines
In	this	chapter,	you	will	cover	the	following	topics:

Setting	reservations	and	limits	for	resource	pools
Balancing	share	allocations	on	resource	pools
Creating	a	custom	attribute	with	a	number	of	shares	per	VM	on	each	resource	pool
Automating	share	allocation	balancing
Reporting	shares,	reservations,	and	limits	of	resource	pools	and	virtual	machines

Introduction
The	primary	concept	that	vSphere	is	built	around	is	taking	an	individual	computer,
network	and	disk	resources,	and	combining	those	into	a	pool	that	can	be	shared	by
numerous	virtual	machines.	Because	of	this	base	concept,	resource	pools	in	vSphere	are	an
important	concept	to	understand	and	administer.

In	this	chapter,	you	will	look	at	the	basic	management	of	resource	pools	using	PowerCLI.
Resource	pools	have	several	settings	that	determine	how	virtual	machines	are	given	access
to	the	available	resources.	In	an	environment	where	there	is	no	contention,	virtual
machines	can	consume	all	of	the	resources	that	they	request.	However,	as	your
environments	grow,	contention	for	resources	develops,	and	resource	pools	are	used	to	set
priorities	and	limits	on	how	much	a	virtual	machine	can	consume.

Reservations	are	settings	for	virtual	machines	so	they	are	guaranteed	a	certain	amount	of
CPU	or	memory	regardless	of	how	much	contention	or	slowdown	it	might	create	on	other
virtual	machines.	Limits	within	resource	pools	establish	a	ceiling,	where	a	virtual	machine
can	consume	no	more	CPU	or	memory.	Finally,	Shares	are	an	allocation	allotment	that	are
set	at	a	pool	level	and	then	split	between	individual	virtual	machines	in	the	pool.
Individual	virtual	machines	can	have	their	shares	adjusted	to	give	them	a	priority	above	or
below	other	virtual	machines	in	the	same	pool.

These	three	types	of	settings	are	the	management	points	for	resource	pools.	If
misconfigured,	these	settings	can	cause	your	environment,	or	some	virtual	machines	in
your	environment	to	behave	poorly.

Setting	reservations	and	limits	for
resource	pools
At	a	conceptual	level,	reservations	and	limits	make	a	lot	of	sense	to	a	vSphere
administrator.	Reservations	are	the	guarantees	to	a	VM	that	it	will	receive	at	least	the
specified	amount	of	CPU	or	RAM	as	defined	by	the	reservation.	Limits	are	at	the	other
end	and	limit	the	VM	to	not	use	more	than	a	certain	amount	of	CPU	or	RAM.

Reservations	and	Limits	can	be	set	on	individual	VMs,	or	they	can	be	set	on	the	resource
pool	and	then	used	by	the	VMs	inside	the	pool.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to
vCenter.

How	to	do	it…
To	set	reservations	and	limits	for	resource	pools,	perform	the	following	steps:

1.	 To	set	resource	configurations	on	one	or	more	virtual	machines,	you	can	use	the	Set-
VMResourceConfiguration	cmdlet.	The	Set-VMResourceConfiguration	cmdlet
expects	to	have	a	resource	configuration	piped	into	it,	so	you	must	use	a	Get-
VMResourceConfiguration	cmdlet	to	retrieve	and	pipe	in	an	existing	configuration:

Get-VMResourceConfiguration	TTYLinux1

2.	 The	next	step	is	to	determine	the	reservation	or	limit	you	wish	to	set.	For	this
example,	we	will	guarantee	25	MB	of	RAM	reservation	for	TTYLinux1	and	you	will
set	a	CPU	limit	of	1	GHz	on	the	same	VM:

Get-VMResourceConfiguration	TTYLinux1	|	Set-VMResourceConfiguration	-

MemReservationMB	25	-CpuLimitMhz	1024

Note
All	of	the	other	settings	on	a	Set-VMResourceConfiguration	cmdlet	work	in	the
same	way	as	these	two	examples.	Refer	to	the	Get-Help	for	the	cmdlet	or	the	online
help	from	VMware	for	details	on	all	of	the	parameters.

3.	 To	set	the	same	type	of	configuration	at	a	resource	pool	level,	you	will	use	the	Set-
ResourcePool	cmdlet.	Unlike	Set-VMResourceConfiguration,	the	Set-
ResourcePool	cmdlet	has	a	parameter	to	accept	the	name	of	the	resource	pool	as	a
string	and	does	not	expect	an	object.	In	the	next	example,	you	will	set	a	reservation
for	1	GB	of	RAM	on	the	Production	resource	pool:

Set-ResourcePool	-ResourcePool	(Get-ResourcePool	-Name	Production)	-

MemReservationGb	1

4.	 If	you	have	several	resource	pools	named	Production,	the	preceding	cmdlet	will	just
set	multiple	resource	pools	with	the	configuration.	You	will	see	this	in	the	output
from	the	cmdlet.	If	you	need	to	scope	things	down	to	a	particular	cluster,	one	option
is	to	use	a	Get-ResourcePool	cmdlet	inside	the	-ResourcePool	parameter,	and	use
the	-Location	parameter	to	set	a	specific	location	as	the	cluster,	BigCluster:

Set-ResourcePool	-ResourcePool	(Get-ResourcePool	-Location	BigCluster	-

Name	Production)	-MemReservationGB	1

5.	 You	will	see	that	you	used	MemReservationGB,	but	there	is	also	MemReservationMB
available	to	use.	Both	set	the	same	parameter,	but	each	represents	the	value	in
different	measurements.	Both	can	be	used	interchangeably.	To	rewrite	the	previous
cmdlet	in	MB,	just	change	the	parameter	and	value:

Set-ResourcePool	-ResourcePool	(Get-ResourcePool	-Location	BigCluster	-

Name	Production)	-MemReservationMB	1024

6.	 For	the	CPU,	there	is	only	an	MHz	representation.	To	set	the	CPU	reservation	on	the
resource	pool,	change	the	parameter	to	-CpuReservationMhz	and	add	a	value	of	512

to	this:

Set-ResourcePool	-ResourcePool	(Get-ResourcePool	-Location	BigCluster	-

Name	Production)	-CpuReservationMhz	512

7.	 Limits	work	just	the	same	from	a	functional	standpoint	as	Reservations.	To	set	a	2
GHz	limit	and	a	4	GB	limit	on	the	pool,	you	will	use	the	-CpuLimitMhz	and	-
MemLimitGB	parameters:

Set-ResourcePool	-ResourcePool	(Get-ResourcePool	-Location	BigCluster	-

Name	Production)	-CpuLimitMhz	2048	-MemLimitGB	4

How	it	works…
Reservations	on	virtual	machines	are	a	recommendation	for	business	critical	applications,
ensuring	that	these	virtual	machines	are	allocated	all	of	the	requested	RAM	and	CPU	that
they	require.	Other	times,	reservations	make	sense	for	latency	sensitive	applications	such
as	Voice	over	IP	(VoIP)	or	transactional	applications.

By	setting	a	reservation	on	the	virtual	machine,	it	sets	aside	that	amount	of	processor	or
RAM	allocation	to	ensure	that	the	virtual	machine	receives	that	amount	every	time	it
needs	it.	No	other	virtual	machine	shares	these	allocations.	By	setting	the	limit,	you	can
ensure	that	the	virtual	machine	never	uses	more	than	the	capped	limit.	One	use	case	for	a
limit	on	a	VM	is	for	small	environments	with	low	CPU	counts.	You	might	want	to	limit	a
VM’s	CPU	in	that	case	so	that	it	doesn’t	steal	the	CPU	cycles	from	the	ESXi	host	and
make	it	become	unresponsive	and	unmanageable.

Using	the	Set-VMResourceConfiguration	cmdlet,	you	saw	how	to	set	these	on	a	VM
basis.	You	also	worked	with	setting	these	on	a	resource	pool	with	the	Set-ResourcePool
cmdlet	with	the	-CpuLimitMhz,	-CpuReservationMhz,	-MemLimitMB,	and	-
MemReservationMB	parameters.

Reservations	and	limits	on	the	pool	work	in	a	slightly	different	way.	Once	the	reservation
is	made,	it’s	shared	among	the	individual	virtual	machines	in	the	pool	instead	of	against	a
single	virtual	machine.

There’s	more…
The	cmdlets	that	are	used	here	for	setting	reservations	and	limits	are	also	the	same	cmdlets
that	are	used	to	set	shares	on	both	VM	and	resource	pools.	You	will	explore	the	cmdlets
and	their	uses	with	shares	in	the	next	recipe.

Although	it’s	not	explored	in	this	chapter,	VMs	can	also	have	other	resource	limits,	such
as	disk	shares	and	IO	limits,	set	on	them.	Disk	shares	work	just	like	CPU	and	memory
shares	and	are	configured	with	similar	cmdlets.	The	limits	for	the	disk	are	set	with	IO	per
second,	so	it’s	a	different	metric	than	the	arbitrary	CPU	and	memory	share	values.	The
disk	shares	and	IO	per	second	limits	are	not	available	with	resource	pools.

See	also
VMware’s	vSphere	PowerCLI	Reference	documentation	for	Set-
VMResourceConfiguration	is	available	at
https://www.vmware.com/support/developer/PowerCLI/PowerCLI55/html/Set-
VMResourceConfiguration.html

https://www.vmware.com/support/developer/PowerCLI/PowerCLI55/html/Set-VMResourceConfiguration.html

Balancing	share	allocations	on	resource
pools
While	limits	and	reservations	make	immediate	sense	to	most	administrators,	shares	are	a
more	abstract	concept,	and	although	they	have	a	major	impact	in	the	way	that	your
workloads	run	on	vSphere,	these	often	get	overlooked.	Many	administrators	set	these	on
resource	pools	and	forget	them	later,	but	with	dynamic	workloads,	the	number	of	virtual
machines	in	a	resource	pool	can	affect	the	distribution	of	shares	and	have	negative	effects
on	performance.

vSphere	environments	combine	multiple	classes	of	virtual	machines.	You	might	have	first
class,	business	class,	and	coach	passengers	if	you’ll	allow	an	airline	comparison.	While
you	want	your	first	class	or	mission	critical	virtual	machines,	to	have	all	of	the	resources
that	they	request,	business	class	still	get	perks,	but	only	after	the	first	class	virtual
machines	needs	are	met.	Coach	gets	whatever	is	left	over.	Your	development	and	test
machines	can	be	your	coach	passengers	in	vSphere.

If	resource	pools	are	left	with	default	allocations,	you	might	not	get	the	desired	service
level	for	your	VM.	For	instance,	your	Production	pool	might	have	been	allocated	a	share
value	of	High	that	has	a	default	value	of	8000.	Your	Development	pool	might	have	been
allocated	a	value	of	Low	with	a	default	value	of	2000.	If	you	have	10	production	VMs	and
only	two	development	VMs,	your	production	VMs	will	receive	800	shares	each	and	your
development	VMs	will	receive	4000	shares	each.	In	essence,	your	coach	passengers	are
getting	better	treatment	than	the	first	class	passengers.

One	of	the	methods	to	achieve	the	desired	performance	is	to	compute	the	number	of	shares
for	the	pool	based	on	the	number	of	virtual	machines	in	the	pool.	Chris	Wahl	has	an
excellent	blog	post	that	is	the	basis	for	this	recipe	on	his	blog	at
http://www.wahlnetwork.com.	In	his	blog	post,	Chris	proposes	that	you	take	the	number
of	VMs	in	a	pool	and	multiply	this	by	the	number	of	shares	you	want	per	VM.	Each
resource	pool	can	have	a	different	number	of	shares	per	VM	based	on	the	importance	of
the	pool.	The	computed	number	becomes	the	allocation	of	shares	for	your	pool.	This	is	the
method	you	will	use	in	this	recipe.

This	method	means	that	you	should	periodically	reallocate	shares	as	the	number	of	virtual
machines	change	in	the	pool	in	order	to	avoid	a	disproportionate	number	of	shares	being
allocated	to	your	less	important	workloads.

Using	the	default	Low,	Normal,	and	High	settings	is	an	unoptimized	way	to	allocate	your
shares.	By	performing	the	share	allocation	based	on	the	number	of	running	VMs,	as	well
as	the	value	of	shares	per	VM,	you	will	ensure	the	outcome	that	you	want	by	distributing
the	shares	equitably.

http://www.wahlnetwork.com

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to
vCenter.	You	should	also	have	a	couple	of	resource	pools	defined	with	VMs	in	each
resource	pool.

How	to	do	it…
In	order	to	balance	share	allocations	on	resource	pools,	perform	the	following	steps:

1.	 First	things	first,	you	will	get	a	list	of	target	resource	pools	with	the	Get-
ResourcePool	cmdlet.

2.	 The	next	step	is	to	retrieve	a	single	resource	pool	into	a	variable	using	Get-
ResourcePool:

$Pool	=	Get-ResourcePool	Production

3.	 Once	you	have	a	single	pool,	you	will	need	the	total	number	of	VMs	in	the	pool.	One
way	to	get	this	is	the	Extension	data	property	of	the	resource	pool,
$Pool.ExtensionData.Vm.count.	Another	way	to	do	this	is	with	Get-VM	|	Measure.
You	can	also	limit	the	count	to	running	VMs	by	adding	a	Where	statement	with	the
PowerState	property:

$VmCount	=	$Pool	|	Get-VM	|	Where	{$_.PowerState	-eq	"PoweredOn"}	|	

Measure

4.	 The	next	step	is	to	compute	your	share	values.	To	do	this,	simply	multiply	the
number	of	VMs	in	$vmcount	by	the	desired	share	count	for	CPU	and	RAM:

$PoolShares	=	$VmCount.Count	*	100

5.	 The	last	step	is	to	set	the	shares	for	this	resource	pool.	This	is	handled	with	the	Set-
ResourcePool	cmdlet.	You	will	need	to	provide	the	-ResourcePool	parameter,	along
with	the	following:	-CpuSharesLevel,	-NumCpuShares,	-RamSharesLevel,	and-
NumRamShares,	in	the	cmdlet,	like	you	used	when	creating	a	resource	pool	in	the
Setting	up	resource	pools	recipe	in	Chapter	2,	Configuring	vCenter	and	Computing
Clusters:

Set-ResourcePool	-ResourcePool	$Pool.Name	-CpuSharesLevel:Custom	-

NumCpuShares	$PoolShares	-MemSharesLevel:Custom	-NumMemShares	

$PoolShares	-Confirm:$false

6.	 You	will	need	to	repeat	the	code	again	for	your	additional	resource	pools.	In	our
example,	the	environment	that	was	created	in	Chapter	2,	Configuring	vCenter	and
Computing	Clusters,	you	had	one	additional	resource	pool	named	Development:

$Pool	=	Get-ResourcePool	Development

$VmCount	=	$Pool	|	Get-VM	|	Where	{$_.PowerState	–eq	"PoweredOn"}	|	

Measure

$PoolShares	=	$VmCount.Count	*	50

Set-ResourcePool	-ResourcePool	$Pool.Name	-CpuSharesLevel:Custom	-

NumCpuShares	$PoolShares	-MemSharesLevel:Custom	-NumMemShares	

$PoolShares	-Confirm:$false

How	it	works…
Adding	three	simple	lines	of	PowerCLI	and	your	resource	pools	will	have	an	equitable
number	of	shares	as	defined	by	the	number	of	shares	per	VM	that	you	want	in	the
environment.	It	is	simple	multiplication,	but	as	you	can	see,	it’s	repetitive	and	would	be	a
good	example	to	use	in	a	ForEach	loop.	Later	in	this	chapter,	you	will	build	on	this	code
and	reuse	it	in	a	large	example	that	also	leverages	a	ForEach	loop	to	assign	a	shares	value
to	multiple	resource	pools.

There’s	more…
Chris	Wahl’s	blog	post	provides	sample	code	for	an	interactive	routine	where	you	are
prompted	for	the	number	of	shares	per	VM	for	each	resource	pool.	The	script	iterates
through	the	list	of	resource	pools	in	order	to	configure	the	shares	for	each.	The	link	for	the
blog	post	is	in	the	See	also	section	of	this	recipe.	It	provides	an	additional	step	that	you
will	find	useful	since	it	lets	you	define	and	change	the	share	allocation	easily.

Moving	beyond	the	interactive	method,	the	next	couple	of	recipes	set	up	a	way	to	create	a
completely	automated	routine	of	updating	the	share	values	that	can	be	scheduled	or	run
interactively.	You	will	define	the	number	of	shares	per	VM	on	each	resource	pool	and	the
script	can	run	from	there.

In	addition	to	Chris	Wahl’s	post,	Duncan	Epping	also	posted	on	the	topic	back	in	2010	on
Yellow	Bricks.	The	script	and	information	he	presented	is	also	highly	applicable	to
environments	today.	The	script	that	he	provides	on	his	site	was	written	by	a	colleague.	It
uses	a	different	method,	but	it	is	a	great	script	to	explore.

Even	more,	you	can	set	share	allocations	on	individual	VMs,	making	one	more	important
than	another	in	the	resource	pool.	The	VMs	take	a	default	allocation	of	Normal	in	a
resource	pool,	but	this	can	be	overridden	to	Low,	High,	or	Custom,	and	can	have	a	custom
share	value	allocated.	This	is	done	with	the	same	Set-VMResourceConfiguration	cmdlet
that	you	used	in	the	previous	recipe.

See	also
Wahl	Network:	Understanding	Resource	Pools	in	VMware	vSphere	is	available	at
http://wahlnetwork.com/2012/02/01/understanding-resource-pools-in-vmware-
vsphere/
Yellow	Bricks:	Custom	shares	on	a	Resource	Pool,	scripted	is	available	at
http://www.yellow-bricks.com/2010/02/24/custom-shares-on-a-resource-pools-
scripted/

http://wahlnetwork.com/2012/02/01/understanding-resource-pools-in-vmware-vsphere/
http://www.yellow-bricks.com/2010/02/24/custom-shares-on-a-resource-pools-scripted/

Creating	a	custom	attribute	with	a
number	of	shares	per	VM	on	each
resource	pool
Creating	your	base	script	to	set	the	number	of	shares	per	resource	pool	is	the	first	step	to
fully	automating	a	process	to	update	your	share	values	in	order	to	keep	up	with	the
changes	and	movements	in	the	vSphere	environment.	Many	vSphere	environments	can
have	multiple	clusters	and	many	more	resource	pools	than	just	a	Development,	Test,	and
Production	pool.	For	example,	your	environment	can	have	a	pool	for	mission	critical
systems	and	one	for	database	systems.

If	you	have	a	complex	environment,	one	method	to	automate	the	share	value	assignment	is
to	define	a	number	of	shares	per	VM	on	each	resource	pool.	This	will	allow	you	to	take
the	predefined	number	of	shares	and	do	the	computations	from	the	previous	recipe	in	a
more	automated	way.	This	recipe	will	walk	you	through	the	process	of	creating	a	custom
attribute	and	assigning	a	value	to	that	attribute	on	each	of	the	resource	pools.

In	this	example,	you	will	use	the	resource	pools	created	in	the	Setting	up	resource	pools
recipe	in	Chapter	2,	Configuring	vCenter	and	Computing	Clusters.	These	resource	pools
are	Production	and	Development.	For	this	recipe,	you	will	assign	100	as	the	SharesPerVM
value	on	Production	and	50	as	the	SharesPerVM	value	on	Development.

Getting	ready
To	begin	this	process,	you	will	need	a	PowerCLI	window,	an	active	connection	to	vCenter,
and	Production	and	Development	resource	pools	created	on	your	cluster.

How	to	do	it…
In	order	to	create	a	custom	attribute	with	a	number	of	shares	per	VM	on	each	resource
pool,	perform	the	following	steps:

1.	 The	first	step	is	to	create	the	custom	attribute	that	can	be	used	on	resource	pools.	The
GUI	does	not	display	the	custom	attribute	anywhere,	but	it	is	visible	if	you	perform	a
Get-ResourcePool	|	Select	*	cmdlet	from	PowerCLI.	You	will	see	the
CustomFields	property	in	the	returned	values.	To	begin,	examine	the	existing	custom
attributes	defined	in	vCenter	with	Get-CustomAttributes:

Get-CustomAttribute|	Select	*

2.	 You	can	see	in	the	output	that	one	of	the	properties	is	TargetType.	The	TargetType
property	is	a	predefined	list	of	objects	in	vSphere	that	can	have	custom	attributes
defined.	To	do	this,	you	will	use	a	TargetType	property	of	ResourcePool.	To	create
the	custom	attribute,	you	will	use	the	New-CustomAttribute	cmdlet	with	a	-Name
parameter	to	define	the	name:

New-CustomAttribute	-Name	SharesPerVM	-TargetType	ResourcePool

3.	 If	you	perform	another	Get-CustomAttribute,	you	will	see	the	newly	created
attribute.

4.	 Next,	you	prepare	to	assign	a	number	to	the	SharesPerVM	value	on	each	resource
pool.	To	get	a	list	of	resource	pools,	use	the	Get-ResourcePool	cmdlet.	Also,	run	a
Get-ResourcePool	|	Select	*	cmdlet	and	you	can	see	that	SharesPerVM	is	now
listed	as	CustomField	on	each	resource	pool.

Note
This	is	a	one-time	assignment,	but	it	is	something	that	needs	to	be	done	for	any	new
resource	pools	created	in	the	environment.

5.	 For	each	of	the	resource	pools,	you	will	need	to	repeat	the	following	cmdlet.	To
assign	a	value,	use	the	Set-Annotation	cmdlet.	Set-Annotation	requires	-Entity
that	points	to	an	object	in	vSphere,	in	this	case,	it’s	our	resource	pool.	You	must	also
define	-CustomAttribute	and	-Value	in	each	cmdlet:

Set-Annotation	-Entity	(Get-ResourcePool	Production)	-CustomAttribute	

SharesPerVM	-Value	100

Set-Annotation	-Entity	(Get-ResourcePool	Development)	-CustomAttribute	

SharesPerVM	-Value	50

6.	 Run	Get-ResourcePool	|	Select	*	to	check	the	values	and	you	can	see	that	they
are	set	in	the	CustomField	property,	as	shown	in	the	following	screenshot:

How	it	works…
Creating	the	custom	attribute	and	assigning	values	sets	you	up	to	be	able	to	create	a
repeatable	and	customizable	solution	for	setting	share	values	on	your	resource	pools.
Custom	attributes	can	be	used	on	many	types	of	objects	in	vSphere,	but	are	most
commonly	defined	on	VMs.	There	are	third-party	software	solutions	that	rely	on	custom
attributes	to	track	values	or	data	that	the	software	needs	to	operate	with	vSphere.

In	the	next	recipe,	you	will	take	the	Balancing	share	allocations	on	resource	pools	recipe
and	extend	it	into	a	fully-automated	solution	that	maintains	balance	for	your	share
settings.

Automating	share	allocation	balancing
In	this	recipe,	you	will	take	the	Balancing	share	allocations	on	resource	pools	recipe	and
extend	it	into	a	fully-automated	solution	that	maintains	the	balance	of	shares	in	your
resource	pools.	This	solution	uses	the	SharesPerVM	custom	attribute	that	you	created	in
the	previous	recipe	to	compute	the	number	of	shares	needed	for	each	resource	pool.	The
intent	is	to	create	a	fully-automated	script	that	can	be	scheduled	and	run	in	order	to	ensure
that	your	share	settings	are	properly	balanced	for	the	desired	allocations	you	want.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to
vCenter.	You	will	need	the	code	you	created	in	the	Balancing	share	allocations	on
resource	pools	recipe,	and	you	need	to	have	completed	the	Creating	a	custom	attribute
with	a	number	of	shares	per	VM	on	each	resource	pool	recipe.

To	make	this	script	as	multipurpose	as	possible,	you	will	need	to	extend	your	scope
slightly.	Since	vCenter	can	have	multiple	clusters,	you	need	to	account	for	multiple
clusters	and	loop	through	your	code	in	a	ForEach	loop	for	each	cluster.	Each	cluster	will
have	its	own	resource	pools,	and	the	allocation	should	be	based	on	the	number	of	VMs
inside	the	cluster	and	its	resource	pools	only,	and	not	on	the	total	vSphere	environment.
You	should	get	the	number	of	VMs	from	each	cluster	and	each	resource	pool,	and	you
should	ensure	that	you	will	only	compute	based	on	the	number	of	powered	on	VMs.

To	make	this	as	useful	as	possible,	you	can	also	format	this	as	a	function	and	save	it	as	a
module	in	a	module	location	like	you	learned	about	in	the	Creating	a	snapshot
management	module	recipe	in	Chapter	5,	Creating	and	Managing	Snapshots.	This	will
allow	you	to	drop	into	PowerCLI,	import	your	custom	module,	and	execute	the	rebalance
anytime	that	you	have	made	a	lot	of	configuration	changes	or	deployment,	before	the
automated	rebalance	task	runs.

How	to	do	it…
In	order	to	automate	the	balancing	of	share	allocation	so	that	it’s	possible	to	compute	the
number	of	shares	needed	for	each	resource	pool,	perform	the	following	steps:

1.	 The	first	step	is	to	define	the	new	function,	along	with	the	code	notes	for	help	and	the
parameters	needed.	For	now,	assume	that	there	are	no	parameters:

function	Set-ResourcePoolShareValues

{

		<#

		.SYNOPSIS

		Sets	the	custom	share	value	of	each	resource	pool	based	on	the	number	

of	virtual	machines	in	the	pool

		.DESCRIPTION

		Calculates	the	number	of	shares	per	resource	pool	as	the	number	of	

virtual	machines	multiplied	by	the	SharesPerVM	custom	attribute	stored	

on	each	virtual	machine.	Prompts	user	to	input	a	SharesPerVM	value	if	

missing	or	emails	administrators	if	run	as	a	scheduled	task.

		.EXAMPLE

		Set-ResourcePoolShareValues

		#>

param	(

)

process	{

2.	 In	the	next	step,	you	will	retrieve	all	of	the	resource	pools	in	the	cluster:

$Pools	=	Get-ResourcePool	|	Where	{$_.Name	-ne	"Resources"}

ForEach	($Pool	in	$Pools)	{

3.	 Inside	the	loop,	you	will	use	a	variable	called	$SharesPerVM,	but	you	want	to	start
with	it	as	a	null	value	on	each	loop	so	that	you	don’t	inadvertently	set	a	value	from
the	loop	before	on	a	different	pool.	You	want	to	ensure	that	it	is	fresh	each	loop:

$SharesPerVM	=	$null

4.	 You	are	now	ready	to	move	the	code	you	created	in	the	Balancing	share	allocations
on	resource	pools	recipe	into	this	ForEach	loop.	Add	an	If	statement	to	check	and
ensure	that	$SharesPerVM	is	defined	and	only	compute	the	$PoolShares	variable	and
execute	the	change	if	$SharesPerVM	is	defined:

$VmCount	=	Get-VM	-Location	$Pool	|	Where	{$_.PowerState	–eq	

"PoweredOn"}	|	Measure

[int]$SharesPerVM	=	$Pool.CustomFields.Item("SharesPerVM")

If	($SharesPerVM	-ne	$null)	{

$PoolShares	=	$VmCount.Count	*	$SharesPerVM

Set-ResourcePool	-ResourcePool	$Pool	-CpuSharesLevel:Custom	-

NumCpuShares	$PoolShares	-MemSharesLevel:Custom	-NumMemShares	

$PoolShares	-Confirm:$false

5.	 Now,	what	if	the	resource	pool	doesn’t	have	an	allocation	of	SharesPerVM	defined?
First,	you	should	add	an	e-mail	alert	to	notify	an	administrator.	So,	you	should	add	an
Else	block	to	the	If	statement.	Without	a	lot	of	explanation,	the	two	objects	will
create	an	e-mail	message.	The	first	is	Net.Mail.MailMessage	and	the	other	is
Net.Mail.SmtpClient,	which	is	the	SMTP	server	information.	Each	has	properties
that	you	will	populate	in	order	to	send	the	message:

}	Else	{

		$msg	=	New-Object	Net.Mail.MailMessage

		$smtpServer	=	New-Object	Net.Mail.SmtpClient("hostname")

		$msg.From	=	"fromaddress@yourcompany.com"

		$msg.To.Add("admin@yourcompany.com")

		$msg.Subject	=	"Set-ResourcePoolShareValues	-	Missing	SharesPerVM	

value	for	resource	pool"

		$msg.Body	=	"The	resource	pool	$($Pool.Name)	does	not	have	a	

SharesPerVM	allocation	saved	on	the	pool.	Please	run	Set-

ResourcePoolShareValues	interactively	to	set	and	save	a	value."	

		$smtp.Send($msg)

}	<#	End	If	#>

6.	 Now,	close	out	the	ForEach	loop:

}	<#	End	ForEach	#>

7.	 Lastly,	you	need	to	close	the	process	section	of	the	function	and	close	the	function
itself:

}	<#	End	process	#>

}	<#	End	function	#>

8.	 You	can	also	prompt	the	user	to	get	the	SharesPerVM	value	and	set	it	on	the	resource
pool	if	it	is	not	set.	To	do	this,	go	back	to	the	[int]$SharesPerVM	=
$Pool.CustomFields.SharesPerVM	line	of	code.	Wrap	this	line	of	code	in	an	If
statement,	and	if	the	value	is	missing,	prompt	the	user	to	set	the	value	using	the
existing	code.	To	get	the	user	input,	you	will	use	the	Read-Host	cmdlet	that	creates	an
interactive	prompt	with	the	message	you	define	and	stores	the	value	that	the	user
inputs	into	a	variable.	You	will	reuse	the	code	in	order	to	set	the	value	on	the	custom
attribute:

If	($Pool.CustomFields.Item("SharesPerVM")-eq	"")	{

		[int]$SharesPerVM	=	Read-Host	"Missing	SharePerVM	value	for	

$($Pool.Name)	resource	pool.	How	many	shares	per	VM	in	the	

$($Pool.Name)	resource	pool?"

		Set-Annotation	-Entity	$Pool	-CustomAttribute	SharesPerVM	-Value	

$SharesPerVM

}	Else	{

		[int]$SharesPerVM	=	$Pool.CustomFields.Item("SharesPerVM")

}	<#	End	If	#>

9.	 Since	you’ve	just	added	the	input,	running	the	function	as	a	scheduled	task	will	now
hang	and	wait	for	an	input	if	SharesPerVM	is	not	defined	for	a	pool.	In	this	case,	you

want	to	define	a	parameter	called	RunAsTask.	By	default,	you	will	assume	that	the
function	is	run	interactively;	however,	the	RunAsTask	parameter	will	accept	$true	as
the	input	and	let	this	run	as	a	scheduled	task,	suppressing	any	input	requests	and	send
an	e-mail	or	another	alert	to	show	an	error	for	a	pool	without	the	SharesPerVM
defined.	Also,	don’t	forget	to	add	a	line	to	the	notes	for	this	parameter:

Param	(

		[Parameter(Mandatory=$False,

		ValueFromPipeline=$False,

		ValueFromPipelineByPropertyName=$False,

		HelpMessage='Name:')]

		[Boolean]$RunAsTask	=	$False

)

10.	 Now	change	the	first	line	of	your	If	statement	where	you	will	prompt	for	input	and
add	a	check	for	the	$RunAsTask	parameter.	If	the	value	is	$false,	allow	the
interactive	input,	and	if	$RunAsTask	is	$true,	it	will	be	skipped:

If	($Pool.CustomFields.Item("SharesPerVM")	-eq	""	-and	$RunAsTask	-eq	

$false)	{

11.	 You	can	run	the	function	in	PowerCLI	or	copy	and	paste	it	from	a	text	editor.	Once
you	create	the	function	in	the	PowerCLI	window,	you	can	execute	it	with	no
parameters:

Set-ResourcePoolShareValues

12.	 With	everything	tested	and	working,	the	next	step	is	to	save	the	code	as
ResourcePoolShareValues.psm1	file	and	save	it	into	one	of	the	locations	defined	by
the	PSModulePath	environment	variable:

Get-Content	Env:\PSModulePath

13.	 Create	a	folder	called	ResourcePoolShareValues	in	one	of	these	path	locations	and
then	save	the	ResourcePoolShareValues.psm1	file	in	that	directory.

14.	 You	will	also	need	to	code	sign	the	file.	For	more	information	on	that	process,	see	the
Scheduling	automatic	snapshot	remediation	recipe	in	Chapter	5,	Creating	and
Managing	Snapshots.

How	it	works…
The	recipe	works	by	reading	the	custom	attribute	of	SharesPerVM	from	each	resource	pool
and	computes	the	share	assignment	from	the	number	of	powered	on	VMs,	multiplied	by
the	number	of	shares	per	VM.	It	does	this	for	every	resource	pool	and	every	cluster.

The	recipe	relies	on	the	custom	attribute	and	on	the	Set-ResourcePool	cmdlet	in	order	to
make	the	change.	Once	the	custom	attributes	are	all	defined,	you	can	run	the	function	in	a
scheduled	task	that	are	two	simple	lines:

Add-PSSnapIn	VMware.VimAutomation.Core

Import-Module	ResourcePoolShareValues

Connect-VIServer	hostname

Set-ResourcePoolShareValues	-RunAsTask	$true

You	can	always	import	and	run	the	function	interactively.	If	you	receive	an	e-mail
notification	that	the	SharesPerVM	value	is	not	set,	you	can	run	the	cmdlet	and	add	this
value	interactively,	or	you	can	refer	to	the	instructions	in	the	Creating	a	custom	attribute
with	a	number	of	shares	per	VM	on	each	resource	pool	recipe	and	set	it	manually.

There’s	more…
It’s	important	to	remember	that	module	files	can	include	more	than	one	function.	Similar
concepts	or	management	areas	can	easily	be	grouped	together	into	a	module	file.	In	the
next	recipe,	you	will	extend	this	module	file	with	additional	functionalities.

See	also
The	Scheduling	automatic	snapshot	remediation	recipe	in	Chapter	5,	Creating	and
Managing	Snapshots

Reporting	shares,	reservations,	and	limits
of	resource	pools	and	virtual	machines
Now	that	you	have	the	shares	fully	automated	and	scheduled,	you	might	need	to	report	the
values	and	ensure	that	everything	is	good.	Since	your	shares	are	defined	by	the	number	of
VMs	and	the	custom	attribute	value,	you	can	easily	create	a	table-formatted	report	that
includes	the	set	values	for	memory	and	CPU	shares	and	compare	that	against	a	computed
value.	This	will	help	you	to	verify	that	your	function	is	working	in	the	future.	For	this
recipe,	you	will	write	an	additional	function	to	add	into	your	module.

Getting	ready
This	recipe	will	continue	inside	the	.psm1	file	that	you	created	in	the	previous	recipe.	You
will	need	this	file,	a	text	editor,	a	PowerCLI	window,	and	an	active	connection	to	vCenter.

How	to	do	it…
In	order	to	report	shares,	reservations,	and	limits	of	resource	pools	and	virtual	machines,
perform	the	following	steps:

1.	 The	first	step	is	to	get	a	basic	function	established.	Refer	to	the	Automating	share
allocation	balancing	recipe	and	grab	the	function	definition,	the	code	notes,	the
param,	and	process	blocks	of	the	function	and	copy	those	to	a	new	function	called
Get-ResourcePoolShareValues.

2.	 Once	you	have	created	the	skeleton	of	the	function,	edit	the	notes	for	this	function.
Include	a	note	and	a	description	about	what	the	function	will	do	along	the	lines	of,
“This	function	retrieves	the	set	values	for	CPU	and	memory	shares	along
with	the	SharesPerVM	custom	attribute,	the	number	of	virtual	machines

running	in	the	pool,	and	the	computed	value	of	shares	to	verify	the
settings.”

3.	 This	function	will	have	no	parameters,	so	the	param	block	can	be	left	blank.
4.	 In	the	process	block,	you	will	begin	the	processing	by	getting	back	a	list	of	the

resource	pools.	To	do	this,	use	the	Get-ResourcePool	function	and	exclude	the
overall	Resources	root-level	pool:

Get-ResourcePool	|	Where	{$_.Name	-ne	"Resources"}

5.	 To	this	line	of	code,	add	a	Select	statement	where	you	will	extract	the	properties	that
you	want	to	report	back.	These	properties	are	Name,	NumCPUShares,	NumMemShares.

Get-ResourcePool	|	Where	{$_.Name	-ne	"Resources"}	|	Select	Name,	

CPUSharesLevel,	NumCPUShares,	MemSharesLevel,	NumMemShares,

6.	 In	many	vSphere	environments,	there	can	be	multiple	Production	resource	pools
with	the	same	name,	but	the	cluster	name	or	ESXi	hostname	will	show	where	this
particular	Production	pool	is	located.	To	retrieve	it,	you	need	to	create	a	named
expression	using	Get-View	to	retrieve	the	name	of	the	cluster	or	host	based	on	the
ExtensionData.Owner	property:

@{N="Owner";E={(Get-View	$_.ExtensionData.Owner).Name}},	

7.	 You	also	want	to	include	the	SharesPerVM	value	that	is	a	custom	attribute.	To	add
this,	use	a	dot	notation	to	access	the	value	of	this	property.	You	will	need	to	create
this	as	a	named	expression:

@{N="SharesPerVM";E={$_.CustomFields.Item('SharesPerVM')}},

8.	 The	next	thing	we	want	to	include	is	the	count	of	the	number	of	VMs	in	each
resource	pool.	The	question	that	arises	is,	can	you	access	this	in	ExtensionData,	or
do	you	need	to	use	a	Get-VM	cmdlet	in	an	expression?	The	answer	to	this	question	is
shown	in	the	following	command	line:

@{N="ActiveVMs";E={(Get-VM	-Location	$_	|	Where	{$_.PowerState	-eq	

'PoweredOn'}	|	Measure).Count}},

9.	 The	next	thing	that	you	need	to	do	is	compute	what	the	share	value	should	be	set	to

so	that	the	administrator	can	visually	compare	it	with	the	set	value	and	know	if	an
update	is	needed:

@{N="ComputedShares";E={[int]$_.CustomFields.Item('SharesPerVM')	*	

[int](Get-VM	-Location	$_	|	Where	{$_.PowerState	-eq	'PoweredOn'}	|	

Measure).Count}	}	

10.	 The	last	thing	is	to	force	the	output	into	a	table.	You	can	do	this	by	piping	the	output
to	Format-Table	or	to	FT	as	a	shortcut.	The	final	process	code,	all	together,	should
be	as	follows:

Get-ResourcePool	|	Where	{$_.Name	-ne	"Resources"}	|	Select	Name,	

CPUSharesLevel,	NumCPUShares,	MemSharesLevel,	NumMemShares,	

@{N="Owner";E={(Get-View	$_.ExtensionData.Owner).Name}},	

@{N="SharesPerVM";E={$_.CustomFields.Item('SharesPerVM')}},	

@{N="ActiveVMs";E={(Get-VM	-Location	$_	|	Where	{$_.PowerState	-eq	

'PoweredOn'}	|	Measure).Count}},	@{N="ComputedShares";E=

{[int]$_.CustomFields.Item('SharesPerVM')	*	[int](Get-VM	-Location	$_	|	

Where	{$_.PowerState	-eq	'PoweredOn'}	|	Measure).Count}	}	|	FT

11.	 Close	your	process	block	and	close	the	function,	and	save	the	file.	You	are	now	ready
to	test	the	module:

		}	<#	End	process	#>

}	<#	End	function	#>

12.	 Just	to	be	safe,	start	a	new	PowerCLI	window	and	connect	to	vCenter.	Perform	an
Import-Module	ResourcePoolShareValues	function	and	then	run	the	Get-
ResourcePoolShareValues	function	to	see	the	output,	as	illustrated	in	the	following
screenshot:

How	it	works…
This	function	pulls	a	predefined	set	of	properties	from	the	resource	pool	and	computes
several	additional	attributes	in	order	to	provide	the	administrator	with	the	values	set	and
what	the	computed	value	of	shares	should	be.	This	is	really	just	defining	a	shortcut,	since
the	code	to	accomplish	this	is	a	one-line	PowerCLI	command.	However,	with	multiple
computed	values	in	named	expressions,	it’s	not	one	that	you	would	easily	write	off	the	top
of	your	head	over	and	over.

Building	on	what	you	learned	in	the	last	chapter,	you	will	see	how	functions	can	group
together	functionality	around	the	same	management	idea.

There’s	more…
There	are	no	limits	to	this	style	of	Get-	function.	If	you	have	different	reporting	views	for
different	staff,	but	need	to	generate	them	often,	a	function	is	a	handy	way	to	create	these.
You	can	create	a	different	function	for	Bob’s	view	and	Tom’s	view,	saving	time	and	effort
on	your	part.

You	can	take	these	functions	a	level	deeper	and	integrate	the	e-mail	code	to	take	the	output
and	send	it	directly	to	users.	Adding	a	parameter	or	writing	a	modified	version	of	this
script	will	allow	you	to	quickly	send	a	list	to	a	manager	who	is	requesting	it	without	ever
having	to	think	about	the	PowerCLI	code	again.

If	the	user	prefers	to	get	the	report	output	in	a	format	that	they	can	manipulate	further,
such	as	Excel,	combine	the	output	with	either	Export-CSV	or	ConvertTo-CSV	and	then
attach	it	to	the	e-mail.	There	are	so	many	combinations	and	it’s	surprisingly	easy	to	set
these	up	for	all	your	needs.

See	also
The	Sending	output	to	CSV	and	HTML	recipe	in	Chapter	7,	Creating	Custom	Reports
and	Notifications	for	vSphere

Chapter	7.	Creating	Custom	Reports	and
Notifications	for	vSphere
In	this	chapter,	you	will	cover	the	following	topics:

Getting	alerts	from	a	vSphere	environment
Basics	of	formatting	output	from	PowerShell	objects
Sending	output	to	CSV	and	HTML
Reporting	VM	objects	created	during	a	predefined	time	period	from	VI	Events	object
Setting	custom	properties	to	add	useful	context	to	your	virtual	machines
Using	PowerShell	native	capabilities	to	schedule	scripts

Introduction
This	chapter	is	all	about	leveraging	the	information	available	to	you	in	PowerCLI.	As
much	as	any	other	topic,	figuring	out	how	to	tap	into	the	data	that	PowerCLI	offers	is	as
important	as	understanding	the	cmdlets	and	syntax	of	the	language.	However,	once	you
obtain	your	data,	you	will	need	to	alter	the	formatting	and	how	it’s	returned	to	be	used.
This	is	something	you’ve	been	doing	to	some	extent	throughout	the	book	so	far	with
Select	statements.	PowerShell,	and	by	extension	PowerCLI,	offers	a	big	set	of	ways	to
control	the	formatting	and	the	display	of	information	returned	by	its	cmdlets	and	data
objects.	You	will	explore	all	of	these	topics	with	the	recipes	in	this	chapter.

Getting	alerts	from	a	vSphere
environment
Discovering	the	data	available	to	you	is	the	most	difficult	thing	that	you	will	learn	and
adopt	in	PowerCLI	after	learning	the	initial	cmdlets	and	syntax.	There	is	a	large	amount	of
data	available	to	you	through	PowerCLI,	but	there	are	techniques	to	extract	the	data	in	a
way	that	you	can	use.	The	Get-Member	cmdlet	is	a	great	tool	for	discovering	the	properties
that	you	can	use.	Sometimes,	just	listing	the	data	returned	by	a	cmdlet	is	enough;	however,
when	the	property	contains	other	objects,	Get-Member	can	provide	context	to	know	that
the	Alarm	property	is	a	Managed	Object	Reference	(MoRef)	data	type.

As	your	returned	objects	have	properties	that	contain	other	objects,	you	can	have	multiple
layers	of	data	available	for	you	to	expose	using	PowerShell	dot	notation
($variable.property.property).	The	ExtensionData	property	found	on	most	objects
has	a	lot	of	related	data	and	objects	to	the	primary	data.	Sometimes,	the	data	found	in	the
property	is	an	object	identifier	that	doesn’t	mean	much	to	an	administrator	but	represents
an	object	in	vSphere.	In	these	cases,	the	Get-View	cmdlet	can	refer	to	that	identifier	and
return	human-readable	data.

This	recipe	will	walk	you	through	the	methods	of	accessing	data	and	converting	it	to
usable,	human-readable	data	wherever	needed	so	that	you	can	leverage	it	in	scripts.	To
explore	these	methods,	we	will	take	a	look	at	vSphere’s	built-in	alert	system.

While	PowerCLI	has	native	cmdlets	to	report	on	the	defined	alarm	states	and	actions,	it
doesn’t	have	a	native	cmdlet	to	retrieve	the	triggered	alarms	on	a	particular	object.	To	do
this,	you	must	get	the	datacenter,	VMhost,	VM,	and	other	objects	directly	and	look	at	data
from	the	ExtensionData	property.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to
vCenter.	You	should	also	check	the	vSphere	Web	Client	or	the	vSphere	Windows	Client	to
see	whether	you	have	any	active	alarms	and	to	know	what	to	expect.	If	you	do	not	have
any	active	VM	alarms,	you	can	simulate	an	alarm	condition	using	a	utility	such	as
HeavyLoad.	For	more	information	on	generating	an	alarm,	see	the	There’s	more…	section
of	this	recipe.

How	to	do	it…
In	order	to	access	data	and	convert	it	to	usable,	human-readable	data,	perform	the
following	steps:

1.	 The	first	step	is	to	retrieve	all	of	the	VMs	on	the	system.	A	simple	Get-VM	cmdlet	will
return	all	VMs	on	the	vCenter	you’re	connected	to.

2.	 Within	the	VM	object	returned	by	Get-VM,	one	of	the	properties	is	ExtensionData.
This	property	is	an	object	that	contains	many	additional	properties	and	objects.	One
of	the	properties	is	TriggeredAlarmState:

Get-VM	|	Where	{$_.ExtensionData.TriggeredAlarmState	-ne	$null}

3.	 To	dig	into	TriggeredAlarmState	more,	take	the	output	of	the	previous	cmdlet	and
store	it	into	a	variable.	This	will	allow	you	to	enumerate	the	properties	without
having	to	wait	for	the	Get-VM	cmdlet	to	run.	Add	a	Select	-First	1	cmdlet	to	the
command	string	so	that	only	a	single	object	is	returned.	This	will	help	you	look
inside	without	having	to	deal	with	multiple	VMs	in	the	variable:

$alarms	=	Get-VM	|	Where	{$_.ExtensionData.TriggeredAlarmState	-ne	

$null}	|	Select	-First	1

4.	 Now	that	you	have	extracted	an	alarm,	how	do	you	get	useful	data	about	what	type	of
alarm	it	is	and	which	vSphere	object	has	a	problem?	In	this	case,	you	have	VM
objects	since	you	used	Get-VM	to	find	the	alarms.	To	see	what	is	in	the
TriggeredAlarmState	property,	output	the	contents	of	TriggeredAlarmState	and
pipe	it	to	Get-Member	or	its	shortcut	GM:

$alarms.ExtensionData.TriggeredAlarmState	|	GM

The	following	screenshot	shows	the	output	of	the	preceding	command	line:

5.	 List	the	data	in	the	$alarms	variable	without	the	Get-Member	cmdlet	appended	and
view	the	data	in	a	real	alarm.	The	data	returned	does	tell	you	the	time	when	the	alarm
was	triggered,	the	OverallStatus	property	or	severity	of	the	alarm,	and	whether	the
alarm	has	been	acknowledged	by	an	administrator,	who	acknowledged	it	and	at	what
time.

6.	 You	will	see	that	the	Entity	property	contains	a	reference	to	a	virtual	machine	(as
you	saw	in	the	Locating	and	reloading	inaccessible	or	invalid	virtual	machines
recipe	from	Chapter	3,	Managing	Virtual	Machines).	You	can	use	the	Get-View
cmdlet	on	a	reference	to	a	VM,	in	this	case,	the	Entity	property,	and	return	the
virtual	machine	name	and	other	properties.	You	will	also	see	that	Alarm	is	referred	to
in	a	similar	way	and	we	can	extract	usable	information	using	Get-View	also:

Get-View	$alarms.ExtensionData.TriggeredAlarmState.Entity

Get-View	$alarms.ExtensionData.TriggeredAlarmState.Alarm

7.	 You	can	see	how	the	output	from	these	two	views	differs.	The	Entity	view	provides
the	name	of	the	VM.	You	don’t	really	need	this	data	since	the	top-level	object
contains	the	VM	name,	but	it’s	good	to	understand	how	to	use	Get-View	with	an
entity.

On	the	other	hand,	the	data	returned	by	the	Alarm	view	does	not	show	the	name	or
type	of	the	alarm,	but	it	does	include	an	Info	property.	Since	this	is	the	most	likely
property	with	additional	information,	you	should	list	its	contents.	To	do	so,	enclose
the	Get-View	cmdlet	in	parenthesis	and	then	use	dot	notation	to	access	the	Info
variable:

(Get-View	$alarms.ExtensionData.TriggeredAlarmState.Alarm).Info

8.	 In	the	output	from	the	Info	property,	you	can	see	that	the	example	alarm	in	the
screenshot	is	a	Virtual	Machine	CPU	usage	alarm.	Your	alarm	can	be	different,	but
it	should	appear	similar	to	this.

9.	 After	retrieving	PowerShell	objects	that	contain	the	data	that	you	need,	the	easiest
way	to	return	the	data	is	to	use	calculated	expressions.	Since	the	Get-VM	cmdlet	was
the	source	for	all	lookup	data,	you	will	need	to	use	this	object	with	the	calculated
expressions	to	display	the	data.	To	do	this,	you	will	append	a	Select	statement	after
the	Get-VM	and	Where	statement.	Notice	that	you	use	the	same	Get-View	statement,
except	that	you	change	your	variable	to	$_,	which	is	the	current	object	being	passed
into	Select:

Get-VM	|	Where	{$_.ExtensionData.TriggeredAlarmState	-ne	$null}	|	

Select	Name,	@{N="AlarmName";E={(Get-View	

$_.ExtensionData.TriggeredAlarmState.Alarm).Info.Name}},	

@{N="AlarmDescription";E={(Get-View	

$_.ExtensionData.TriggeredAlarmState.Alarm).Info.Description}},	

@{N="TimeTriggered";	E={$_.ExtensionData.TriggeredAlarmState.Time}},	

@{N="AlarmOverallStatus";	E={$_.ExtensionData.TriggeredAlarmState.	

OverallStatus}}

How	it	works…
When	the	data	you	really	need	is	several	levels	below	the	top-level	properties	of	a	data
object,	you	need	to	use	calculated	expressions	to	return	these	at	the	top	level.	There	are
other	techniques	where	you	can	build	your	own	object	with	only	the	data	you	want
returned,	but	in	a	large	environment	with	thousands	of	objects	in	vSphere,	the	method	in
this	recipe	will	execute	faster	than	looping	through	many	objects	to	build	a	custom	object.
Calculated	expressions	are	extremely	powerful	since	nearly	anything	can	be	done	with
expressions.

More	than	that,	you	explored	techniques	to	discover	the	data	you	want.	Data	exploration
can	provide	you	with	incredible	new	capabilities.	The	point	is	you	need	to	know	where	the
data	is	and	how	to	pull	that	data	back	to	the	top	level.

There’s	more…
It	is	likely	that	your	test	environment	has	no	alarms	and	in	this	case,	it	might	be	up	to	you
to	create	an	alarm	situation.	One	of	the	easiest	to	control	and	create	is	heavy	CPU	load
with	a	CPU	load-testing	tool.	JAM	Software	created	software	named	HeavyLoad	that	is	a
stress-testing	tool.	This	utility	can	be	loaded	into	any	Windows	VM	on	your	test	systems
and	can	consume	all	of	the	available	CPU	that	the	VM	is	configured	with.	To	be	safe,
configure	the	VM	with	a	single	vCPU	and	the	utility	will	consume	all	of	the	available
CPU.

Once	you	install	the	utility,	go	to	the	Test	Options	menu	and	you	can	uncheck	the	Stress
GPU	option,	ensure	that	Stress	CPU	and	Allocate	Memory	are	checked.	The	utility	also
has	shortcut	buttons	on	the	Menu	bar	to	allow	you	to	set	these	options.	Click	on	the	Start
button	(which	looks	like	a	Play	button)	and	the	utility	begins	to	stress	the	VM.

For	users	who	wish	to	do	the	same	test,	but	utilize	Linux,	StressLinux	is	a	great	option.
StressLinux	is	a	minimal	distribution	designed	to	create	high	load	on	an	operating	system.

See	also
You	can	read	more	about	the	HeavyLoad	Utility	available	under	the	JAM	Software
page	at	http://www.jam-software.com/heavyload/
You	can	read	more	about	StressLinux	at	http://www.stresslinux.org/sl/

http://www.jam-software.com/heavyload/
http://www.stresslinux.org/sl/

Basics	of	formatting	output	from
PowerShell	objects
Anything	that	exists	in	a	PowerShell	object	can	be	output	as	a	report,	e-mail,	or	editable
file.	Formatting	the	output	is	a	simple	task	in	PowerShell	and	to	some	extent	you’ve
already	been	doing	some	basic	formatting	in	prior	recipes.	Sometimes,	the	information
you	receive	in	the	object	is	in	a	long	decimal	number	format,	but	to	make	it	more	readable,
you	want	to	truncate	the	output	to	just	a	couple	decimal	places.	You	did	this	in	the
Manipulating	the	list	of	snapshots	to	get	better	information	recipe	in	Chapter	5,	Creating
and	Managing	Snapshots,	with	formatting	numbers.

In	this	recipe,	you	will	take	a	look	at	the	Format-Table,	Format-Wide,	and	Format-List
cmdlets.	You	will	dig	into	the	Format-Custom	cmdlet	and	also	take	a	look	at	the	-f	format
operator	that	you	leveraged	in	Chapter	5,	Creating	and	Managing	Snapshots,	for	uses
beyond	formatting	numbers.

The	truth	is	that	native	cmdlets	do	a	great	job	returning	data	using	default	formatting.
When	we	start	changing	and	adding	our	own	data	to	the	list	of	properties	returned,	the
formatting	can	become	unoptimized.	Even	in	the	returned	values	of	a	native	cmdlet,	some
columns	might	be	too	narrow	to	display	all	of	the	information.

Getting	ready
To	begin	this	recipe,	you	will	need	the	PowerShell	ISE.

How	to	do	it…
In	order	to	format	the	output	from	PowerShell	objects,	perform	the	following	steps:

1.	 Run	Add-PSSnapIn	VMware.VimAutomation.Core	in	the	PowerShell	ISE	to	initialize
a	PowerCLI	session	and	bring	in	the	VMware	cmdlet.	Connect	to	your	vCenter
server.

2.	 Start	with	a	simple	object	from	a	Get-VM	cmdlet.	The	default	output	is	in	a	table
format.	If	you	pipe	the	object	to	Format-Wide,	it	will	change	the	default	output	into	a
multicolumn	with	a	single	property,	just	like	running	a	dir	/w	command	at	the
Windows	Command	Prompt.	You	can	also	use	FW,	an	alias	for	Format-Wide:

Get-VM	|	Format-Wide

Get-VM	|	FW

3.	 If	you	take	the	same	object	and	pipe	it	to	Format-Table	or	its	alias	FT,	you	will
receive	the	same	output	if	you	use	the	default	output	for	Get-VM:

Get-VM

Get-VM	|	Format-Table

4.	 However,	as	soon	as	you	begin	to	select	a	different	order	of	properties,	the	default
formatting	disappears.	Select	the	same	four	properties	and	watch	the	formatting
change.	The	default	formatting	disappears.

Get-VM	|	Select	Name,	PowerState,	NumCPU,	MemoryGB	|	FT

5.	 To	restore	formatting	to	table	output,	you	have	a	few	choices.	You	can	change	the
formatting	on	the	data	in	the	object	using	the	Select	statement	and	calculated
expressions.	This	is	the	method	you	used	in	the	Manipulating	the	list	of	snapshots	to
get	better	information	recipe	of	Chapter	5,	Creating	and	Managing	Snapshots.	You
can	also	pass	formatting	through	the	Format-Table	cmdlet.	While	setting	formatting
in	the	Select	statement	changes	the	underlying	data,	using	Format-Table	doesn’t
change	the	data,	but	only	its	display.	The	formatting	looks	essentially	like	a
calculated	expression	in	a	Select	statement.	You	provide	Label,	Expression,	and
formatting	commands:

Get-VM	|	Select	*	|	FT	Name,	PowerState,	NumCPU,	@{Label="MemoryGB";	

Expression={$_.MemoryGB};	FormatString="N2";	Alignment="left"}

6.	 If	you	have	data	in	a	number	data	type,	you	can	convert	it	into	a	string	using	the
ToString()	method	on	the	object.	You	can	try	this	method	on	NumCPU:

Get-VM	|	Select	*	|	FT	Name,	PowerState,	@{Label="Num	CPUs";	

Expression={($_.NumCpu).ToString()};	Alignment="left"},	

@{Label="MemoryGB";	Expression={$_.MemoryGB};	FormatString="N2";	

Alignment="left"}

7.	 The	other	method	is	to	format	with	the	-f	operator,	which	is	basically	a	.NET
derivative.	When	you	used	this	previously	in	Chapter	5,	Creating	and	Managing
Snapshots,	there	wasn’t	a	lot	of	explanation.	To	better	understand	the	formatting	and
string,	the	structure	is	{<index>[,<alignment>][:<formatString>]}.	Index	sets

that	are	a	part	of	the	data	being	passed,	will	be	transformed.	The	alignment	is	a
numeric	value.	A	positive	number	will	right-align	those	number	of	characters.	A
negative	number	will	left-align	those	number	of	characters.	The	formatString
parameter	is	the	part	that	defines	the	format	to	apply.	In	this	example,	let’s	take	a
datastore	and	compute	the	percentage	of	free	disk	space.	The	format	for	percent	is	p:

Get-Datastore	|	Select	Name,	@{N="FreePercent";E={"{0:p}	-f	

($_.FreeSpaceGB	/	$_.CapacityGB)}}

8.	 To	make	the	FreePercent	column	15	characters	wide,	you	add	0,15:p	to	the	format
string:

Get-Datastore	|	Select	Name,	@{N="FreePercent";E={"{0,15:p}	-f	

($_.FreeSpaceGB	/	$_.CapacityGB)}}

How	it	works…
With	the	Format-Table,	Format-List,	and	Format-Wide	cmdlets,	you	can	change	the
display	of	data	coming	from	a	PowerCLI	object.	These	cmdlets	all	apply	basic
transformations	without	changing	the	data	in	the	object.	This	is	important	to	note	because
once	the	data	is	changed,	it	can	prevent	you	from	making	changes.	For	instance,	if	you
take	the	percentage	example,	after	transforming	the	FreePercent	property,	it	is	stored	as	a
string	and	no	longer	as	a	number,	which	means	that	you	can’t	reformat	it	again.	Applying
a	similar	transformation	from	the	Format-Table	cmdlet	would	not	alter	your	data.	This
doesn’t	matter	when	you’re	performing	a	one-liner,	but	in	a	more	complex	script	or	in	a
routine,	where	you	might	need	to	not	only	output	the	data	but	also	reuse	it,	changing	the
data	in	the	object	is	a	big	deal.

There’s	more…
This	recipe	only	begins	to	tap	the	full	potential	of	PowerShell’s	native	-f	format	operator.
There	are	hundreds	of	blog	posts	about	this	topic,	and	there	are	use	cases	and	examples	of
how	to	produce	the	formatting	that	you	are	looking	for.	The	following	link	also	gives	you
more	details	about	the	operator	and	formatting	strings	that	you	can	use	in	your	own	code.

See	also
For	more	information,	refer	to	the	PowerShell	-f	Format	operator	page	available	at
http://ss64.com/ps/syntax-f-operator.html

http://ss64.com/ps/syntax-f-operator.html

Sending	output	to	CSV	and	HTML
On	the	screen	the	output	is	great,	but	there	are	many	times	when	you	need	to	share	your
results	with	other	people.	When	looking	at	sharing	information,	you	want	to	choose	a
format	that	is	easy	to	view	and	interpret.	You	might	also	want	a	format	that	is	easy	to
manipulate	and	change.

Comma	Separated	Values	(CSV)	files	allow	the	user	to	take	the	output	you	generate	and
use	it	easily	within	a	spreadsheet	software.	This	allows	you	the	ability	to	compare	the
results	from	vSphere	versus	internal	tracking	databases	or	other	systems	easily	to	find
differences.	It	can	also	be	useful	to	compare	against	service	contracts	for	physical	hosts	as
examples.

HTML	is	a	great	choice	for	displaying	information	for	reading,	but	not	manipulation.
Since	e-mails	can	be	in	an	HTML	format,	converting	the	output	from	PowerCLI	(or
PowerShell)	into	an	e-mail	is	an	easy	way	to	assemble	an	e-mail	to	other	areas	of	the
business.

What’s	even	better	about	these	cmdlets	is	the	ease	of	use.	If	you	have	a	data	object	in
PowerCLI,	all	that	you	need	to	do	is	pipe	that	data	object	into	the	ConvertTo-CSV	or
ConvertTo-HTML	cmdlets	and	you	instantly	get	the	formatted	data.	You	might	not	be
satisfied	with	the	HTML-generated	version	alone,	but	like	any	other	HTML,	you	can
transform	the	look	and	formatting	of	the	HTML	using	CSS	by	adding	a	header.

In	this	recipe,	you	will	examine	the	conversion	cmdlets	with	a	simple	set	of	Get-	cmdlets.
You	will	also	take	a	look	at	trimming	results	using	the	Select	statements	and	formatting
HTML	results	with	CSS.

This	recipe	will	pull	a	list	of	virtual	machines	and	their	basic	properties	to	send	to	a
manager	who	can	reconcile	it	against	internal	records	or	system	monitoring.	It	will	export
to	a	CSV	file	that	will	be	attached	to	the	e-mail	and	you	will	use	the	HTML	to	format	a	list
in	an	e-mail	to	send	to	the	manager.

Getting	ready
To	begin	this	recipe,	you	will	need	to	use	the	PowerShell	ISE.

How	to	do	it…
In	order	to	examine	the	conversion	cmdlets	using	Get-	cmdlets,	trim	results	using	the
Select	statements,	and	format	HTML	results	with	CSS,	perform	the	following	steps:

1.	 Open	the	PowerShell	ISE	and	run	Add-PSSnapIn	VMware.VimAutomation.Core	to
initialize	a	PowerCLI	session	within	the	ISE.

2.	 Again,	you	will	use	the	Get-VM	cmdlet	as	the	base	for	this	recipe.	The	fields	that	we
care	about	are	the	name	of	the	VM,	the	number	of	CPUs,	the	amount	of	memory,	and
the	description:

$VMs	=	Get-VM	|	Select	Name,	NumCPU,	MemoryGB,	Description

3.	 In	addition	to	the	top-level	data,	you	also	want	to	provide	the	IP	address,	hostname,
and	the	operating	system.	These	are	all	available	from	the	ExtensionData.Guest
property:

$VMs	=	Get-VM	|	Select	Name,	NumCPU,	MemoryGB,	Description,	

@{N="Hostname";E={$_.ExtensionData.Guest.HostName}},	@{N="IP";E=

{$_.ExtensionData.Guest.IPAddress}},	@{N="OS";E=

{$_.ExtensionData.Guest.GuestFullName}}

4.	 The	next	step	is	to	take	this	data	and	format	it	to	be	sent	as	an	HTML	e-mail.
Converting	the	information	to	HTML	is	actually	easy.	Pipe	the	variable	you	created
with	the	data	into	ConvertTo-HTML	and	store	in	a	new	variable.	You	will	need	to
reuse	the	data	to	convert	it	to	a	CSV	file	to	attach:

$HTMLBody	=	$VMs	|	ConvertTo-HTML	

5.	 If	you	were	to	output	the	contents	of	$HTMLBody,	you	will	see	that	it	is	very	plain,
inheriting	the	defaults	of	the	browser	or	e-mail	program	used	to	display	it.	To	dress
this	up,	you	need	to	define	some	basic	CSS	to	add	some	style	for	the	<body>,
<table>,	<tr>,	<td>,	and	<th>	tags.	You	can	add	this	by	running	the	ConvertTo-
HTML	cmdlet	again	with	the	-PreContent	parameter:

$css	=	"<style>	body	{	font-family:	Verdana,	sans-serif;	font-size:	

14px;	color:	#666;	background:	#FFF;	}	table{	width:100%;	border-

collapse:collapse;	}	table	td,	table	th	{	border:1px	solid	#333;	

padding:	4px;	}	table	th	{	text-align:left;	padding:	4px;	background-

color:#BBB;	color:#FFF;}	</style>"

$HTMLBody	=	$VMs	|	ConvertTo-HTML	-PreContent	$css

6.	 It	might	also	be	nice	to	add	the	date	and	time	generated	to	the	end	of	the	file.	You	can
use	the	-PostContent	parameter	to	add	this:

$HTMLBody	=	$VMs	|	ConvertTo-HTML	-PreContent	$css	-PostContent	"<div>

Generated:	$(Get-Date)</div>"

7.	 Now,	you	have	the	HTML	body	of	your	message.	To	take	the	same	data	from	$VMs
and	save	it	to	a	CSV	file	that	you	can	use,	you	will	need	a	writable	directory,	and	a
good	choice	is	to	use	your	My	Documents	folder.	You	can	obtain	this	using	an
environment	variable:

$tempdir	=	[environment]::getfolderpath("mydocuments")

8.	 Now	that	you	have	a	temp	directory,	you	can	perform	your	export.	Pipe	$VMs	to
Export-CSV	and	specify	the	path	and	filename:

$VMs	|	Export-CSV	$tempdir\VM_Inventory.csv

9.	 At	this	point,	you	are	ready	to	assemble	an	e-mail	and	send	it	along	with	your
attachment.	Most	of	the	cmdlets	are	straightforward.	You	set	up	a	$msg	variable	that
is	a	MailMessage	object.	You	create	an	Attachment	object	and	populate	it	with	your
temporary	filename	and	then	create	an	SMTP	server	with	the	server	name:

$msg	=	New-Object	Net.Mail.MailMessage

$attachment	=	new-object	

Net.Mail.Attachment("$tempdir\VM_Inventory.csv")

$smtpServer	=	New-Object	Net.Mail.SmtpClient("hostname")

10.	 You	set	the	From,	To,	and	Subject	parameters	of	the	message	variable.	All	of	these
are	set	with	dot	notation	on	the	$msg	variable:

$msg.From	=	"fromaddress@yourcompany.com"

$msg.To.Add("admin@yourcompany.com")

$msg.Subject	=	"Weekly	VM	Report"

11.	 You	set	the	body	you	created	earlier,	as	$HTMLBody,	but	you	need	to	run	it	through
Out-String	to	convert	any	other	data	types	to	a	pure	string	for	e-mailing.	This
prevents	an	error	where	System.String[]	appears	instead	of	your	content	in	part	of
the	output:

$msg.Body	=	$HTMLBody	|	Out-String

12.	 You	need	to	take	the	attachment	and	add	it	to	the	message:

$msg.Attachments.Add($attachment)

13.	 You	need	to	set	the	message	to	an	HTML	format;	otherwise,	the	HTML	will	be	sent
as	plain	text	and	not	displayed	as	an	HTML	message:

$msg.IsBodyHtml	=	$true

14.	 Finally,	you	are	ready	to	send	the	message	using	the	$smtpServer	variable	that
contains	the	mail	server	object.	Pass	in	the	$msg	variable	to	the	server	object	using
the	Send	method	and	it	transmits	the	message	via	SMTP	to	the	mail	server:

$smtpServer.Send($msg)

15.	 Don’t	forget	to	clean	up	the	temporary	CSV	file	you	generated.	To	do	this,	use	the
PowerShell	Remove-Item	cmdlet	that	will	remove	the	file	from	the	filesystem.	Add	a
-Confirm	parameter	to	suppress	any	prompts:

Remove-Item	$tempdir\VM_Inventory.csv	-Confirm:$false

How	it	works…
Most	of	this	recipe	relies	on	native	PowerShell	and	less	on	the	PowerCLI	portions	of	the
language.	This	is	the	beauty	of	PowerCLI.	Since	it	is	based	on	PowerShell	and	only	an
extension,	you	lose	none	of	the	functions	of	PowerShell,	a	very	powerful	set	of	commands
in	its	own	right.

The	ConvertTo-HTML	cmdlet	is	very	easy	to	use.	It	requires	no	parameters	to	produce
HTML,	but	the	HTML	it	produces	isn’t	the	most	legible	if	you	display	it.	However,	a	bit
of	CSS	goes	a	long	way	to	improve	the	look	of	the	output.	Add	some	colors	and	style	to
the	table	and	it	becomes	a	really	easy	and	quick	way	to	format	a	mail	message	of	data	to
be	sent	to	a	manager	on	a	weekly	basis.

The	Export-CSV	cmdlet	lets	you	take	the	data	returned	by	a	cmdlet	and	convert	that	into
an	editable	format	for	use.	You	can	place	this	onto	a	file	share	for	use	or	you	can	e-mail	it
along,	as	you	did	in	this	recipe.

In	the	earlier	chapters,	you	didn’t	go	into	much	detail	on	how	to	create	a	mail	message.
This	recipe	takes	you	step	by	step	through	the	process	of	creating	a	mail	message,
formatting	it	in	HTML,	and	making	sure	that	it’s	relayed	as	an	HTML	message.	You	also
looked	at	how	to	attach	a	file.	To	send	a	mail,	you	define	a	mail	server	as	an	object	and
store	it	in	a	variable	for	reuse.	You	create	a	message	object	and	store	it	in	a	variable	and
then	set	all	of	the	appropriate	configuration	on	the	message.	For	an	attachment,	you	create
a	third	object	and	define	a	file	to	be	attached.	That	is	set	as	a	property	on	the	message
object	and	then	finally,	the	message	object	is	sent	using	the	server	object.

There’s	more…
ConvertTo-HTML	is	just	one	of	four	conversion	cmdlets	in	PowerShell.	In	addition	to
ConvertTo-HTML,	you	can	convert	data	objects	into	XML.	ConvertTo-JSON	allows	you	to
convert	a	data	object	into	an	XML	format	specific	for	web	applications.	ConvertTo-CSV	is
identical	to	Export-CSV	except	that	it	doesn’t	save	the	content	immediately	to	a	defined
file.	If	you	had	a	use	case	to	manipulate	the	CSV	before	saving	it,	such	as	stripping	the
double	quotes	or	making	other	alternations	to	the	contents,	you	can	use	ConvertTo-CSV
and	then	save	it	to	a	file	at	a	later	point	in	your	script.

Reporting	VM	objects	created	during	a
predefined	time	period	from	VI	Events
object
An	important	auditing	tool	in	your	environment	can	be	a	report	of	when	virtual	machines
were	created,	cloned,	or	deleted.	Unlike	snapshots,	that	store	a	created	date	on	the
snapshot,	virtual	machines	don’t	have	this	property	associated	with	them.	Instead,	you
have	to	rely	on	the	events	log	in	vSphere	to	let	you	know	when	virtual	machines	were
created.

PowerCLI	has	the	Get-VIEvents	cmdlet	that	allows	you	to	retrieve	the	last	1,000	events
on	the	vCenter,	by	default.	The	cmdlet	can	accept	a	parameter	to	include	more	than	the
last	1,000	events.	The	cmdlet	also	allows	you	to	specify	a	start	date,	and	this	can	allow
you	to	search	for	things	within	the	past	week	or	the	past	month.

At	a	high	level,	this	recipe	works	the	same	in	both	PowerCLI	and	the	vSphere	SDK	for
Perl	(VIPerl).	They	both	rely	on	getting	the	vSphere	events	and	selecting	the	specific
events	that	match	your	criteria.	Even	though	you	are	looking	for	VM	creation	events	in
this	recipe,	you	will	see	that	the	code	can	be	easily	adapted	to	look	for	many	other	types	of
events.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	server.

How	to	do	it…
In	order	to	report	VM	objects	created	during	a	predefined	time	period	from	VI	Events
object,	perform	the	following	steps:

1.	 You	will	use	the	Get-VIEvent	cmdlet	to	retrieve	the	VM	creation	events	for	this
recipe.	To	begin,	get	a	list	of	the	last	50	events	from	the	vCenter	host	using	the	-
MaxSamples	parameter:

Get-VIEvent	-MaxSamples	50

2.	 If	you	pipe	the	output	from	the	preceding	cmdlet	to	Get-Member,	you	will	see	that	this
cmdlet	can	return	a	lot	of	different	objects.	However,	the	type	of	object	isn’t	really
what	you	need	to	find	the	VM’s	created	events.	Looking	through	the	objects,	they	all
include	a	GetType()	method	that	returns	the	type	of	event.	Inside	the	type,	there	is	a
name	parameter.

3.	 Create	a	calculated	expression	using	GetType()	and	then	group	it	based	on	this
expression,	you	will	get	a	usable	list	of	events	you	can	search	for.	This	list	is	also
good	for	tracking	the	number	of	events	your	systems	have	encountered	or	generated:

Get-VIEvent	-MaxSamples	2000	|	Select	@{N="Type";E={$_.GetType().Name}}	

|	Group	Type

4.	 In	the	preceding	screenshot,	you	will	see	that	there	are	VMClonedEvent,
VmRemovedEvent,	and	VmCreatedEvent	listed.	All	of	these	have	to	do	with	creating	or
removing	virtual	machines	in	vSphere.	Since	you	are	looking	for	created	events,
VMClonedEvent	and	VmCreatedEvent	are	the	two	needed	for	this	script.	Write	a	Where
statement	to	return	only	these	events.	To	do	this,	we	can	use	a	regular	expression	with
both	the	event	names	and	the	-match	PowerShell	comparison	parameter:

Get-VIEvent	-MaxSamples	2000	|	Where	{$_.GetType().Name	-match	"

(VmCreatedEvent|VmClonedEvent)"}

5.	 Next,	you	want	to	select	just	the	properties	that	you	want	in	your	output.	To	do	this,
add	a	Select	statement	and	you	will	reuse	the	calculated	expression	from	Step	3.	If
you	want	to	return	the	VM	name,	which	is	in	a	Vm	property	with	the	type	of
VMware.Vim.VVmeventArgument,	you	can	create	a	calculated	expression	to	return	the
VM	name.	To	round	out	the	output,	you	can	include	the	FullFormattedMessage,
CreatedTime,	and	UserName	properties:

Get-VIEvent	-MaxSamples	2000	|	Where	{$_.GetType().Name	-match	"

(VmCreatedEvent|VmClonedEvent)"}	|	Select	@{N="Type",E=

{$_.GetType().Name}},	@{N="VMName",E={$_.Vm.Name}},	

FullFormattedMessage,	CreatedTime,	UserName

6.	 The	last	thing	you	will	want	to	do	is	go	back	and	add	a	time	frame	to	the	Get-
VIEvent	cmdlet.	You	can	do	this	by	specifying	the	-Start	parameter	along	with
(Get-Date).AddMonths(-1)	to	return	the	last	month’s	events:

Get-VIEvent	-Start	(Get-Date).AddMonths(-1)	-MaxSamples	2000	|	Where	

{$_.GetType().Name	-match	"(VmCreatedEvent|VmClonedEvent)"}	|	Select	

@{N="Type",E={$_.GetType().Name}},	@{N="VMName",E={$_.Vm.Name}},	

FullFormattedMessage,	CreatedTime,	UserName

How	it	works…
The	Get-VIEvent	cmdlet	drives	a	majority	of	this	recipe,	but	in	this	recipe	you	only
scratched	the	surface	of	the	information	you	can	unearth	with	Get-VIEvent.	As	you	saw	in
the	screenshot,	there	are	so	many	different	types	of	events	that	can	be	reported,	queried,
and	acted	upon	from	the	vCenter	server.

Once	you	discover	and	know	which	events	you	are	looking	for	specifically,	then	it’s	a
matter	of	scoping	down	the	results	with	a	Where	statement.	Last,	you	use	calculated
expressions	to	pull	data	that	is	several	levels	deep	in	the	returned	data	object.

One	of	the	primary	things	employed	here	is	a	regular	expression	used	to	search	for	the
types	of	events	you	were	interested	in:	VmCreatedEvent	and	VmClonedEvent.	By
combining	a	regular	expression	with	the	-match	operator,	you	were	able	to	use	a	quick	and
very	understandable	bit	of	code	to	find	more	than	one	type	of	object	you	needed	to	return.

There’s	more…
Regular	Expressions	(RegEx)	are	big	topics	on	their	own.	These	types	of	searches	can
match	any	type	of	pattern	that	you	can	establish	or	in	the	case	of	this	recipe,	a	number	of
defined	values	that	you	are	searching	for.	RegEx	are	beyond	the	scope	of	this	book,	but
they	can	be	a	big	help	anytime	you	have	a	pattern	you	need	to	search	for	and	match,	or
perhaps	more	importantly,	replace.	You	can	use	the	-replace	operator	instead	of	–match
to	not	only	to	find	things	that	match	your	pattern,	but	also	change	them.

See	also
For	more	information	on	Regular	Expressions	refer	to	http://ss64.com/ps/syntax-
regex.html
The	PowerShell.com	page:	Text	and	Regular	Expressions	is	available	at
http://powershell.com/cs/blogs/ebookv2/archive/2012/03/20/chapter-13-text-and-
regular-expressions.aspx

http://ss64.com/ps/syntax-regex.html
http://powershell.com/cs/blogs/ebookv2/archive/2012/03/20/chapter-13-text-and-regular-expressions.aspx

Setting	custom	properties	to	add	useful
context	to	your	virtual	machines
Building	on	the	use	case	for	the	Get-VIEvent	cmdlet,	Alan	Renouf	of	VMware’s
PowerCLI	team	has	a	useful	script	posted	on	his	personal	blog	(refer	to	the	See	also
section)	that	helps	you	pull	the	created	date	and	the	user	who	created	a	virtual	machine
and	populate	this	into	a	custom	attribute.	This	is	a	great	use	for	a	custom	attribute	on
virtual	machines	and	makes	some	useful	information	available	that	is	not	normally	visible.

This	is	a	process	that	needs	to	be	run	often	to	pick	up	details	for	virtual	machines	that	have
been	created.	Rather	than	looking	specifically	at	a	VM	and	trying	to	go	back	and	find	its
creation	date	as	Alan’s	script	does,	in	this	recipe,	you	will	take	a	different	approach
building	on	the	previous	recipe	and	populate	the	information	from	the	found	creation
events.	Maintenance	in	this	form	would	be	easier	by	finding	creation	events	for	the	last
week,	running	the	script	weekly,	and	updating	the	VMs	with	the	data	in	the	object	rather
than	looking	for	VMs	with	missing	data	and	searching	through	all	of	the	events.

This	recipe	assumes	that	you	are	using	a	Windows	system	that	is	joined	to	AD	on	the
same	domain	as	your	vCenter.	It	also	assumes	that	you	have	loaded	the	Remote	Server
Administration	Tools	for	Windows	so	that	the	Active	Directory	PowerShell	modules	are
available.	This	is	a	separate	download	for	Windows	7.	The	Active	Directory	Module	for
PowerShell	can	be	enabled	on	Windows	7,	Windows	8,	Windows	Server	2008,	and
Windows	Server	2012	in	the	Programs	and	Features	control	panel	under	Turn	Windows
features	on	or	off.

Getting	ready
To	begin	this	script,	you	will	need	the	PowerShell	ISE.

How	to	do	it…
I	order	to	set	custom	properties	to	add	useful	context	to	your	virtual	machines,	perform	the
following	steps:

1.	 Open	the	PowerShell	ISE	and	run	Add-PSSnapIn	VMware.VimAutomation.Core	to
initialize	a	PowerCLI	session	within	the	ISE.

2.	 The	first	step	is	to	create	a	custom	attribute	in	vCenter	for	the	CreatedBy	and
CreateDate	attributes:

New-CustomAttribute	-TargetType	VirtualMachine	-Name	CreatedBy

New-CustomAttribute	-TargetType	VirtualMachine	-Name	CreateDate	

3.	 Before	you	begin	the	scripting,	you	will	need	to	run	ImportSystemModules	to	bring
in	the	Active	Directory	cmdlets	that	you	will	use	later	to	lookup	the	username	and
reference	it	back	to	a	display	name:

ImportSystemModules

4.	 Next,	you	need	to	locate	and	pull	out	all	of	the	creation	events	with	the	same	code	as
the	Reporting	VM	objects	created	during	a	predefined	time	period	from	VI	Events
object	recipe.	You	will	assign	the	events	to	a	variable	for	processing	in	a	loop	in	this
case;	however,	you	will	also	want	to	change	the	period	to	1	week	(7	days)	instead	of
1	month:

$Events	=	Get-VIEvent	-Start	(Get-Date).AddDays(-7)	-MaxSamples	25000	|	

Where	{$_.GetType().Name	-match	"(VmCreatedEvent|VmClonedEvent)"}

5.	 The	next	step	is	to	begin	a	ForEach	loop	to	pull	the	data	and	populate	it	into	a	custom
attribute:

ForEach	($Event	in	$Events)	{

6.	 The	first	thing	to	do	in	the	loop	is	to	look	up	the	VM	referenced	in	the	Event’s	Vm
parameter	by	name	using	Get-VM:

$VM	=	Get-VM	-Name	$Event.Vm.Name

7.	 Next,	you	can	use	the	CreatedTime	parameter	on	the	event	and	set	this	as	a	custom
attribute	on	the	VM	using	the	Set-Annotation	cmdlet:

$VM	|	Set-Annotation	-CustomAttribute	"CreateDate"	-Value	

$Event.CreatedTime

8.	 Next,	you	can	use	the	Username	parameter	to	lookup	the	display	name	of	the	user
account	who	created	the	VM	using	Active	Directory	cmdlets.	For	the	Active
Directory	cmdlets	to	be	available,	your	client	system	or	server	needs	to	have	the
Microsoft	Remote	Server	Administration	Tools	(RSAT)	installed	to	make	the
Active	Directory	cmdlets	available.	The	data	coming	from	$Event.Username	is	in
DOMAIN\username	format.	You	need	just	the	username	to	perform	a	lookup	with	Get-
AdUser,	so	that	you	can	split	on	the	backslash	and	return	only	the	second	item	in	the
array	resulting	from	the	split	command.	After	the	lookup,	the	display	name	that	you

will	want	to	use	is	in	the	Name	property.	You	can	retrieve	it	with	dot	notation:

$User	=	(($Event.UserName.split("\"))[1])

$DisplayName	=	(Get-AdUser	$User).Name

9.	 To	do	this,	you	need	to	use	a	built-in	on	the	event	and	set	this	as	a	custom	attribute	on
the	VM	using	the	Set-Annotation	cmdlet:

$VM	|	Set-Annotation	-CustomAttribute	"CreatedBy"	-Value	$DisplayName

10.	 Finally,	close	the	ForEach	loop.

}	<#	End	ForEach	#>

How	it	works…
This	recipe	works	by	leveraging	the	Get-VIEvent	cmdlet	to	search	for	events	in	the	log
from	the	last	number	of	days.	In	larger	environments,	you	might	need	to	expand	the	-
MaxSamples	cmdlet	well	beyond	the	number	in	this	example.	There	might	be	thousands	of
events	per	day	in	larger	environments.

The	recipe	looks	through	the	log	and	the	Where	statement	returns	only	the	creation	events.
Once	you	have	the	object	with	all	of	the	creation	events,	you	can	loop	through	this	and
pull	out	the	username	of	the	person	who	created	each	virtual	machine	and	the	time	they
were	created.	Then,	you	just	need	to	populate	the	data	into	the	custom	attributes	created.

There’s	more…
Combine	this	script	with	the	next	recipe	and	you	have	a	great	solution	for	scheduling	this
routine	to	run	on	a	daily	basis.	Running	it	daily	would	certainly	cut	down	on	the	number
of	events	you	need	to	process	through	to	find	and	update	the	virtual	machines	that	have
been	created	with	the	information.

You	should	absolutely	go	and	read	Alan	Renouf’s	blog	post	on	which	this	recipe	is	based.
This	primary	difference	between	this	recipe	and	the	one	Alan	presents	is	the	use	of	native
Windows	Active	Directory	PowerShell	lookups	in	this	recipe	instead	of	the	Quest	Active
Directory	PowerShell	cmdlets.

See	also
Virtu-Al.net:	Who	created	that	VM?	is	available	at	http://www.virtu-
al.net/2010/02/23/who-created-that-vm/

http://www.virtu-al.net/2010/02/23/who-created-that-vm/

Using	PowerShell	native	capabilities	to
schedule	scripts
In	the	previous	recipes	of	this	book,	you	scheduled	PowerCLI	to	run	as	scheduled	tasks	by
defining	and	referring	to	a	script	file	(.ps1)	and	running	it	from	the	PowerShell.exe
executable.	There	is	potentially	a	better	and	easier	way	to	schedule	your	processes	to	run
from	PowerShell	and	PowerCLI	and	those	are	known	as	Scheduled	Jobs.	Scheduled	Jobs
were	introduced	in	PowerShell	3.0	and	distributed	as	part	of	the	Windows	Management
Framework	3.0	and	higher.

While	Scheduled	Tasks	can	execute	any	Windows	batch	file	or	executable,	Scheduled	Jobs
are	specific	to	PowerShell	and	are	used	to	generate	and	create	background	jobs	that	run
once	or	on	a	specified	schedule.	Scheduled	Jobs	appear	in	the	Windows	Task	Scheduler
and	can	be	managed	with	the	scheduled	task	cmdlets	of	PowerShell.	The	only	difference	is
that	the	scheduled	jobs	cmdlets	cannot	manage	scheduled	tasks.

These	jobs	are	stored	in	the	Microsoft\Windows\PowerShell\ScheduledJobs	path	of	the
Windows	Task	Scheduler.	You	can	see	and	edit	them	through	the	management	console	in
Windows	after	creation.

What’s	even	greater	about	Scheduled	Jobs	in	PowerShell	is	that	you	are	not	forced	into
creating	a	.ps1	file	for	every	new	job	you	need	to	run.	If	you	have	a	PowerCLI	one-liner
that	provides	all	of	the	functionality	you	need,	you	can	simply	include	it	in	a	job	creation
cmdlet	without	ever	needing	to	save	it	anywhere.

Getting	ready
To	being	this	recipe,	you	will	need	a	PowerCLI	window	with	an	active	connection	to	a
vCenter	server.

How	to	do	it…
In	order	to	schedule	scripts	using	the	native	capabilities	of	PowerShell,	perform	the
following	steps:

1.	 If	you	are	running	PowerCLI	on	systems	lower	than	Windows	8	or	Windows	Server
2012,	there’s	a	chance	that	you	are	running	PowerShell	2.0	and	you	will	need	to
upgrade	in	order	to	use	this.	To	check,	run	Get-PSVersion	to	see	which	version	is
installed	on	your	system.	If	less	than	version	3.0,	upgrade	before	continuing	this
recipe.

2.	 Throw	back	a	script	you	have	already	written,	the	script	to	find	and	remove	snapshots
over	30	days	old	from	the	Removing	targeted	snapshots	recipe	in	Chapter	5,	Creating
and	Managing	Snapshots:

Get-Snapshot	-VM	*	|	Where	{$_.Created	-LT	(Get-Date).AddDays(-30)}	|	

Remove-Snapshot	-Confirm:$false

3.	 To	schedule	a	new	job,	the	first	thing	you	need	to	think	about	is	what	triggers	your
job	to	run.	To	define	a	new	trigger,	you	use	the	New-JobTrigger	cmdlet:

$WeeklySundayAt6AM	=	New-JobTrigger	-Weekly	-At	"6:00	AM"	-DaysOfWeek	

Sunday	–WeeksInterval	1

4.	 Like	scheduled	tasks,	there	are	some	options	that	can	be	set	for	a	scheduled	job.
These	include	whether	to	wake	the	system	to	run:

$Options	=	New-ScheduledJobOption	–WakeToRun	–StartIfIdle	–

MultipleInstancePolicy	Queue

5.	 Next,	you	will	use	the	Register-ScheduledJob	cmdlet.	This	cmdlet	accepts	a
parameter	named	ScriptBlock	and	this	is	where	you	will	specify	the	script	that	you
have	written.	This	method	works	best	with	one-liners,	or	scripts	that	execute	in	a
single	line	of	piped	cmdlets.	Since	this	is	PowerCLI	and	not	just	PowerShell,	you
will	need	to	add	the	VMware	cmdlets	and	connect	to	vCenter	at	the	beginning	of	the
script	block.	You	also	need	to	specify	the	-Trigger	and	-ScheduledJobOption
parameters	that	are	defined	in	the	previous	two	steps:

Register-ScheduledJob	-Name	"Cleanup	30	Day	Snapshots"	-ScriptBlock	{	

Add-PSSnapIn	VMware.VimAutomation.Core;	Connect-VIServer	servers;	Get-

Snapshot	-VM	*	|	Where	{$_.Created	-LT	(Get-Date).AddDays(-30)}	|	

Remove-Snapshot	-Confirm:$false}	-Trigger	$WeeklySundayAt6AM	-

ScheduledJobOption	$Options

6.	 You	are	not	restricted	to	only	running	a	script	block.	If	you	have	a	routine	in	a	.ps1
file,	you	can	easily	run	it	from	ScheduledJob	also.	For	illustration,	if	you	have	a	.ps1
file	stored	in	c:\Scripts	named	30DaySnaps.ps1,	you	can	use	the	following	cmdlet
to	register	a	job:

Register-ScheduledJob	-Name	"Cleanup	30	Day	Snapshots"	–FilePath	

c:\Scripts\30DaySnaps.ps1	-Trigger	$WeeklySundayAt6AM	-

ScheduledJobOption	$Options

7.	 Even	better,	those	modules	you	defined	in	the	earlier	chapters	are	also	fair	game	for
your	scheduled	jobs.	In	Chapter	5,	Creating	and	Managing	Snapshots,	you	wrote	a
module	for	30DaySnaps.	Rather	than	scheduling	the	scheduled	job	and	defining	the
PowerShell	in	the	job,	a	more	maintainable	method	can	be	to	write	the	module	and
then	call	the	function	from	the	scheduled	job.	One	other	requirement	is	that	Single
Sign-On	should	be	configured	so	that	the	Connect-VIServer	works	correctly	in	the
script:

Register-ScheduledJob	-Name	"Cleanup	30	Day	Snapshots"	-ScriptBlock	

{Add-PSSnapIn	VMware.VimAutomation.Core;	Connect-ViServer	server;	

Import-Module	30DaySnaps;	Remove-30DaySnaps	-VM	*}	-Trigger	

$WeeklySundayAt6AM	-ScheduledJobOption	$Options

How	it	works…
This	recipe	leverages	the	scheduled	jobs	framework	developed	specifically	for	running
PowerShell	as	scheduled	tasks.	It	doesn’t	require	you	to	configure	all	of	the	extra	settings
as	you	have	seen	in	previous	examples	of	scheduled	tasks.	These	are	PowerShell	native
cmdlets	that	know	how	to	implement	PowerShell	on	a	schedule.

One	thing	to	keep	in	mind	is	that	these	jobs	will	begin	with	a	normal	PowerShell	session
—one	that	knows	nothing	about	PowerCLI,	by	default.	You	will	need	to	include	Add-
PSSnapIn	VMware.VimAutomation.Core	in	each	script	block	or	the	.ps1	file	that	you	use
with	a	scheduled	job.

There’s	more…
There	is	a	full	library	of	cmdlets	to	implement	and	maintain	scheduled	jobs.	You	have
Set-ScheduleJob	that	allows	you	to	change	the	settings	of	a	registered	scheduled	job	on	a
Windows	system.

You	can	disable	and	enable	scheduled	jobs	using	the	Disable-ScheduledJob	and	Enable-
Scheduled	job	cmdlets.	This	allows	you	to	pause	the	execution	of	a	job	during
maintenance,	or	for	other	reasons,	without	needing	to	remove	and	resetup	the	job.	This	is
especially	helpful	since	the	script	blocks	are	inside	the	job	and	not	saved	in	a	separate
.ps1	file.

You	can	also	configure	remote	scheduled	jobs	on	other	systems	using	the	Invoke-Command
PowerShell	cmdlet.	This	concept	is	shown	in	examples	on	Microsoft	TechNet	in	the
documentation	for	the	Register-ScheduledJob	cmdlet.

In	addition	to	scheduling	new	jobs,	you	can	remove	jobs	using	the	Unregister-
ScheduledJob	cmdlet.	This	cmdlet	requires	one	of	three	identifying	properties	to
unschedule	a	job.	You	can	pass	-Name	with	a	string,	-ID	with	the	number	identifying	the
job,	or	an	object	reference	to	the	scheduled	job	with	-InputObject.	You	can	combine	the
Get-ScheduledJob	cmdlet	to	find	and	pass	the	object	by	pipeline.

See	also
To	read	more	about	Microsoft	TechNet:	PSScheduledJob	Cmdlets,	refer	to
http://technet.microsoft.com/en-us/library/hh849778.aspx

http://technet.microsoft.com/en-us/library/hh849778.aspx

Chapter	8.	Performing	ESXCLI	and	in-
guest	Commands	from	PowerCLI
In	this	chapter,	you	will	cover	the	following	topics:

Retrieving	the	ESXCLI	object	in	PowerCLI
Using	the	ESXCLI	vm	namespace	to	kill	a	misbehaving	VM
Performing	ESXi	ping	with	an	ESXCLI	object
Configuring	custom	storage	and	path	selection	policies
Configuring	coredump	settings	for	an	ESXi	host	from	PowerCLI
Executing	native	commands	inside	the	guest	operating	system	from	PowerCLI

Introduction
ESXCLI	is	the	default	command-line	interface	for	configuring	ESXi	hosts.	It	was
introduced	with	vSphere	5.0	in	2010	and	unified	command	line	configuration	under	a
single	command	with	a	set	of	namespaces.	ESXCLI	can	be	run	interactively	on	the
console	of	a	host	(after	enabling	it	in	the	Troubleshooting	Modes	menu),	or	it	can	be
initiated	remotely	from	a	VMware	Management	Appliance,	or	from	an	installation	of	the
VMware	vSphere	CLI.

PowerCLI	can	natively	perform	many	of	the	same	configuration	tasks	as	ESXCLI,	but
there	are	times	when	ESXCLI	is	needed	to	make	a	configuration	change	that	PowerCLI
does	not	allow.	One	example	is	to	set	the	storage	path	selection	policies	on	a	host,	which
cannot	be	done	with	PowerCLI.

Rather	than	having	to	switch	between	two	command	lines	and	syntax,	PowerCLI	also
provides	you	with	a	way	to	create	an	ESXCLI	object	on	a	host	and	allows	you	to	execute
ESXCLI	commands	with	this	object.	The	ESXCLI	object	works	like	any	other	object	in
PowerCLI	or	PowerShell	and	there	is	very	little	new	to	learn,	except	the	structure	of	the
ESXCLI	object	itself.

Even	beyond	ESXCLI,	PowerCLI	can	be	used	to	leverage	scripts	and	commands	inside
guest	operating	systems.	Because	of	the	VMware	Tools	that	run	in	virtual	machines,
PowerCLI	can	inject	commands	and	routines	to	run	and	can	receive	the	output	of	the
commands	to	be	used	in	PowerCLI.

Retrieving	the	ESXCLI	object	in
PowerCLI
To	begin	leveraging	ESXCLI	from	PowerCLI,	you	need	to	obtain	an	ESXCLI	object	and
begin	looking	through	the	structure	of	the	object.	In	particular,	the	methods	attached	to	an
ESXCLI	object	are	powerful	for	performing	configuration	tasks	on	a	host.

ESXCLI	is	limited	in	scope	to	an	individual	ESXi	host.	This	means	that	it	is	not	aware	of
vCenter	and	performing	an	operation	on	many	hosts	is	going	to	require	you	to	loop
through	a	set	of	defined	hosts	to	execute	the	same	operation.

ESXCLI	works	differently	than	PowerCLI.	Where	PowerCLI	is	object-based	and	all	of	the
data	and	methods	for	changing	data	are	stored	within	objects,	ESXCLI	works	on	the
concept	of	namespaces.	There	are	14	namespaces	that	comprise	ESXCLI.	If	you	run
esxcli	on	the	direct	console	of	an	ESXi	host,	the	output	is	the	list	of	namespaces	with	a
description	of	each.	The	output	is	pictured	in	the	following	screenshot:

On	a	clean	installation	of	ESXi	5.5,	there	are	13	namespaces	output.	The	vcloud
namespace	is	added	to	an	ESXi	host	once	vCloud	Director	has	been	connected	to	the
vCenter	Server	which	manages	the	host.	If	you	do	not	have	vCloud	Director	running	in
your	environment,	the	vcloud	namespace	is	missing.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server.

How	to	do	it…
In	order	to	retrieve	the	ESXCLI	object	in	PowerCLI,	perform	the	following	steps:

1.	 The	first	step	is	to	obtain	your	ESXCLI	object.	To	do	this,	you	use	the	Get-EsxCli
cmdlet.	If	you	perform	a	Get-Help	cmdlet	on	Get-EsxCli,	you	will	see	that	it
requires	a	-VMHost	parameter.	This	is	not	optional,	and	the	easiest	way	is	to	obtain
this	from	a	Get-VMHost	cmdlet	and	pipe	it	to	Get-EsxCli.	To	begin,	choose	a	single
server,	as	shown	in	the	following	command	line:

$esxcli	=	Get-EsxCli	-VMHost	esxsrv1.domain.local

2.	 Once	you	have	an	object,	the	next	step	is	to	look	at	the	namespaces	from	ESXCLI.
To	do	this,	enumerate	the	contents	by	calling	the	variable	$esxcli.	If	you	compare
the	output	of	this	object	to	the	output	from	running	$esxcli	on	the	same	ESXi	host,
they	match.	The	output	is	shown	in	the	following	screenshot:

3.	 Next,	explore	the	device	namespace	using	dot	notation.	Type	in	the	$esxcli	variable
name,	a	dot,	and	then	the	device	to	show	the	data	within	the	device	element.	Look	at
the	elements	returned	in	the	output	from	the	object.	Try	it	for	the	hardware	and
system	elements	too,	as	follows:

$esxcli.device

$esxcli.hardware

$esxcli.system

4.	 Dig	a	bit	deeper	into	the	device	element.	The	output	from	the	previous	step	listed	an
alias	element	within	the	device.	If	you	output	this	with	the	dot	notation	as
$esxcli.device.alias,	you	will	see	two	methods,	list()	and	get().	Try	running
the	list()	method	to	see	all	of	the	device	aliases:

$esxcli.device.alias.list()

5.	 Next,	do	the	same	for	the	hardware	element.	Run	$esxcli.hardware	and	you	will
see	a	cpu	element	listed.	If	you	show	the	contents	of	the	cpu	element	using
$esxcli.hardware.cpu,	you	will	see	a	method	called	list()	available.	Run	the
list()	method	in	hardware.cpu.	A	screenshot	of	the	output	is	shown	just	after	the
following	command	line:

$esxcli.hardware.cpu.list()

6.	 Like	other	PowerCLI	objects,	if	you	find	data	you	want	to	use,	you	can	assign	it	to	a
variable.	In	this	case,	you	will	use	the	$cpuinfo	variable	and	assign	the	contents	of
the	cpu	list	into	it:

$cpuinfo	=	$esxcli.hardware.cpu.list()

7.	 Assigning	data	to	a	variable	isn’t	the	only	thing	that	you	want	to	extract	and	use	it.
You	can	also	surround	the	command	that	returns	the	data	with	parenthesis.	The
parenthesis	lets	PowerCLI	know	how	to	execute	the	command	inside	it,	and	then,	you
can	use	dot	notation	behind	the	right	parenthesis	to	access	the	properties	returned.
The	following	two	commands	return	the	same	data.	Using	parenthesis	is	sometimes
preferred,	since	it	has	shortcuts	and	uses	a	single	line	of	PowerCLI	code	versus
assigning	it	to	a	variable	that	requires	two	lines:

$cpuinfo.Brand

($esxcli.hardware.cpu.list()).Brand

How	it	works…
Working	with	an	ESXCLI	object	should	seem	very	similar	to	working	with	a	View	object
in	PowerCLI.	Instead	of	calling	the	data	within	the	object	a	property,	this	object	calls	the
data	in	the	object	an	element.	In	addition	to	elements,	you	also	used	a	couple	of	methods.
In	the	next	few	recipes,	you	will	see	that	the	two	are	very	similar	in	which	you	have
methods	available	that	you	can	call	to	execute	work	within	the	ESXCLI	object.

Since	PowerCLI	and	ESXCLI	work	differently,	PowerCLI	adapts	the	namespace	concept
into	elements	within	an	object.	The	ESXCLI	object	represents	each	of	the	namespaces	as
an	element	and	the	subcommands	of	each	namespace	can	be	accessed	using	dot	notation.

Fortunately,	as	you	have	already	seen	throughout	this	book,	you	can	easily	get	a	list	of
hosts	from	vCenter	and	loop	through	them	in	a	ForEach	loop.	This	is	a	great	example	of
leveraging	native	ESXCLI	capabilities	and	native	PowerCLI	capabilities	to	create	a	better
solution	than	ESXCLI	can	offer	on	its	own.

There’s	more…
There	are	many	additional	layers	of	data	inside	an	ESXCLI	object.	For	any	esxcli
command,	you	will	find	references	in	blogs	or	within	the	VMware	documentation	that	can
be	adapted	to	run	from	PowerCLI.	The	advantage	is	that	you	can	connect	to	a	vCenter	host
with	PowerCLI	and	create	ESXCLI	objects	against	many	hosts	to	execute	commands.
With	native	esxcli,	you	must	connect	directly	to	a	host	each	time,	making	scripting
across	many	hosts	very	difficult.

Using	the	ESXCLI	vm	namespace	to	kill	a
misbehaving	VM
After	exploring	the	namespaces	of	ESXCLI,	you	can	see	that	these	are	represented	as
elements	in	an	ESXCLI	object	when	used	in	PowerCLI.	One	of	these	namespaces	or
elements	is	the	vm	namespace.	Within	the	vm	namespace,	you	have	commands	that	can	list
all	of	the	running	virtual	machines	on	a	host	along	with	their	process	number.	With	this
information,	there	is	also	a	method	in	the	vm	namespace	that	allows	you	to	kill	a	VM.	If
you	are	running	PowerCLI	to	manage	ESXi	hosts,	using	the	ESXCLI	object	is	a	quick
way	to	access	the	virtual	machine’s	kill	command	without	enabling	troubleshooting
modes:	the	ESXi	shell	or	SSH	on	an	ESXi	host.	In	this	recipe,	you	will	examine	how	to
perform	this	operation.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server.

Note
Caution!	Do	not	execute	this	recipe	on	a	VM	unless	you	are	sure	you	want	to	power	it	off.
Running	this	on	the	wrong	VM	can	cause	data	loss,	because	it	immediately	terminates	the
VM’s	process	on	the	ESXi	host	and	does	not	perform	a	graceful	shutdown.

How	to	do	it…
In	order	to	kill	a	misbehaving	VM	using	the	ESXCLI	vm	namespace,	perform	the
following	steps:

1.	 The	first	step	is	to	obtain	an	ESXCLI	object,	as	you	learned	in	the	previous	recipe.
Remember	that	you	must	specify	a	single	VMHost	for	your	ESXCLI	object,	since
ESXCLI	is	restricted	to	a	single	host	at	a	time:

$esxcli	=	Get-EsxCli	-VMHost	esxsrv1.domain.local

2.	 To	find	a	VM,	you	will	need	to	take	a	look	at	the	vm	namespace.	To	do	this,	use	dot
notation	with	your	variable:

$esxcli.vm

3.	 You	will	see	that	the	vm	namespace	has	one	element	and	process.	If	you	enumerate	it,
you	will	see	two	methods:	kill	and	list:

$esxcli.vm.process

4.	 While	it’s	not	necessary	as	often,	sometimes,	a	VM	stops	responding,	and	for	one
reason	or	another	you	need	to	perform	a	kill	operation	on	the	VM.	Storage	problems
can	cause	an	issue	such	as	these.	In	that	case,	you	can	list	the	process	IDs	for	each
VM	on	the	host:

$esxcli.vm.process.list()

5.	 If	you	check	the	output,	the	process	ID	is	listed	as	0	on	all	of	your	VMs,	but	you	have
a	WorldID	parameter	defined.	You	can	pass	it	to	the	kill()	method	in	order	to
terminate	the	process.	The	kill()	method	requires	a	type	and	WorldID.	The	type	is
one	of	the	three	values:	soft,	hard,	or	force:

$esxcli.vm.process.kill("soft",	1000397005)

Note
Your	WorldID	will	change	for	every	VM	each	time	it	is	started	on	a	host.	The
example	WorldID	is	for	illustration	purposes	only,	and	should	not	be	tried	against
your	host.

6.	 If	you	list	the	running	VMs	again,	notice	that	the	VM	you	just	killed	is	no	longer
listed.	Even	though	the	ESXCLI	object	is	stored	in	a	variable,	this	works	in	a	slightly
different	way	than	normal	with	PowerShell	variables,	and	the	object	is	updated	to
reflect	the	current	state	after	killing	the	VM.

How	it	works…
When	you	enumerated	$esxcli.vm.process,	PowerCLI	returned	a	list	of	two	methods
that	you	can	use.	These	equate	to	the	same	commands	that	can	be	used	in	ESXCLI.	These
commands	in	ESXCLI	take	switches	to	receive	the	additional	information	and	make
changes	to	the	configuration,	and	in	PowerCLI,	these	become	methods	with	positional
properties.	Because	these	are	positional,	a	value	must	be	passed	for	each	position,	or	at
least	to	the	last	position	so	that	you	have	an	actual	value	to	specify.

There’s	more…
There	is	much	more	that	you	can	do	with	ESXCLI,	and	in	the	next	couple	of	recipes,	you
will	build	some	scripts	to	handle	some	common	tasks	where	ESXCLI	is	required.	ESXCLI
has	a	full	namespace	devoted	to	network,	but	this	is	an	area	covered	well	by	PowerCLI.
Storage,	on	the	other	hand,	is	covered	by	PowerCLI,	but	the	path	selection	policies	and
storage	array	type	identification	are	not	configurable	from	PowerCLI	except	through
ESXCLI.

Performing	ESXi	ping	with	an	ESXCLI
object
While	many	of	the	networking	configurations	can	be	accomplished	with	native	PowerCLI,
one	of	the	things	in	the	networking	space	that	might	be	useful	from	ESXCLI	objects	is	the
ability	to	perform	ping	testing	from	vmkernel	interfaces	on	a	host.	By	default,	the	vmk0
interface	is	the	default	management	interface	of	the	host.	In	this	recipe,	you	will	use	this
interface	and	perform	ping	testing.	Unlike	a	ping	from	a	Windows	or	Linux	system,	the
results	of	a	PowerCLI	ping	will	return	in	an	object	form	just	like	any	other	cmdlet.

There	are	a	couple	of	reasons	to	look	at	this	particular	use	case.	First,	there	are	a	lot	of
positional	parameters	with	the	ping.	Second,	some	of	the	parameters	aren’t
straightforward,	and	the	in-line	documentation	doesn’t	explain	much	about	parameters
beyond	their	data	types.	However,	since	ESXCLI	is	the	basis	for	these	objects,	all	of	the
documentation	for	it	also	applies.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	a	connection	to	a	vCenter
Server.	If	we	continue	from	the	previous	recipe,	you	can	leverage	the	ESXCLI	object	and
variable,	and	if	not,	you	can	obtain	a	new	object	in	Step	1	of	this	recipe.

How	to	do	it…
In	order	to	perform	ESXi	ping	testing	from	vmkernel	interfaces	on	an	ESXCLI	host,
perform	the	following	steps:

1.	 The	first	step	is	to	obtain	your	ESXCLI	object.	To	do	this,	again,	you	use	the	Get-
EsxCli	cmdlet:

$esxcli	=	Get-VMHost	esxsrv1.domain.local	|	Get-EsxCli

2.	 Ping	is	found	within	the	network	namespace	under	the	diag	element.	If	you	run
$esxcli.network.diag,	you	will	see	a	list	of	available	methods,	including	ping.

3.	 Ping	requires	a	number	of	positional	parameters.	The	following	is	the	output	for	the
ping:

ping(long	count,	boolean	debug,	boolean	df,	string	host,	string	

interface,	string	interval,	boolean	ipv4,	boolean	ipv6,	string	

netstack,	string	nexthop,	long	size,	long	ttl,	string	wait)

4.	 In	all,	there	are	13	parameters,	but	luckily,	you	only	need	to	specify	up	to	the	last
parameter	that	matters	to	you.	However,	you	must	specify	all	of	the	parameters	up	to
that	point.	In	our	example,	you	need	to	make	sure	that	it	is	an	IPv4	ping	test	and	not
an	IPv6	test.	You	can	ping	an	IP	on	the	same	network	as	your	host	for	a	count	of	1
and	for	an	interval	of	1:

$pingresults	=	$esxcli.network.diag.ping(1,	$false,	$false,	

"192.168.1.1",	"vmk0",	1,	$true,	$false)

Note
One	of	the	parameters	specified	is	$false	that	is	sent	to	the	df	parameter.	This
parameter	is	the	Don’t	Fragment	flag	for	the	TCP	traffic,	but	this	isn’t	specifically
outlined	in	the	documentation	on	the	command.	To	find	the	exact	explanation,	you
can	refer	to	the	vSphere	Documentation	Center	and	the	article	about	esxcli	network.
The	link	for	this	article	is	in	the	See	also	section	of	this	recipe.

5.	 You	will	see	that	the	results	were	stored	in	a	variable.	The	variable	contains	two
parameters:	Summary	and	Trace.	If	you	run	a	Get-Member	cmdlet,	you	will	see	that
both	of	these	are	of	type	Code	Property.	If	you	enumerate	the	value	of	the	Summary
property,	you	will	see	the	success	or	failure	of	your	ping:

$pingresults.Summary

6.	 If	you	have	tested	more	than	one	count,	you	will	have	an	array	of	results.	You	can
enumerate	the	results	one	at	a	time	using	brackets	and	the	position	in	the	array.	You
can	also	loop	through	and	display	each	with	a	ForEach	loop:

$pingresults[0].Summary

How	it	works…
This	recipe	works	based	on	a	method	from	the	ESXCLI	object	in	the	network	namespace
under	the	diag	element.	The	ping	performs	a	normal	ping,	but	the	method	includes	ways
to	force	an	IPv4	address	ping	only,	an	IPv6	address	ping	only,	or	multiple	tests.	You	can
specify	the	count	of	how	many	attempts	and	the	intervals	between	each	test.

There’s	more…
Even	though	you	can	use	native	PowerCLI	cmdlets	to	configure	networking	properties,
there	is	nothing	to	stop	you	from	configuring	networking	using	ESXCLI.	The	entire
network	namespace	is	available	with	commands	to	configure	the	network	firewall	in
ESXi,	the	interfaces,	their	IP	address	or	DNS	search	settings,	and	many	more	settings.	All
of	these	settings	are	given	in	detail	in	the	vSphere	Documentation	Center	for	ESXCLI.
Anything	that	can	be	done	from	a	command	line	with	ESXCLI	can	also	be	done	in
PowerCLI	with	the	ESXCLI	object.

See	also
For	more	information	on	esxcli	network	commands,	visit	the	VMware	vSphere
Documentation	Center	at	http://pubs.vmware.com/vsphere-55/index.jsp?
topic=%2Fcom.vmware.vcli.ref.doc%2Fesxcli_network.html

http://pubs.vmware.com/vsphere-55/index.jsp?topic=%2Fcom.vmware.vcli.ref.doc%2Fesxcli_network.html

Configuring	custom	storage	and	path
selection	policies
One	of	the	more	common	uses	for	ESXCLI	in	PowerCLI	is	the	configuration	of	Storage
Array	Type	Plug-in	(SATP)	and	path	selection	policy	(PSP)	settings.	These
configurations	are	particularly	important	from	array	to	array.	While	ESXi	ships	with	many
default	configurations,	storage	array	vendors	often	have	specific	settings	and	claim	rules
that	might	need	to	be	configured	on	each	host.	These	settings	can	easily	be	set	with
ESXCLI,	and	since	it	works	on	the	command	line,	it	can	work	in	PowerCLI	with	the
ESXCLI	object.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	a	connection	to	a	vCenter
Server.	If	we	continue	from	the	previous	recipe,	you	can	leverage	the	ESXCLI	object	and
variable,	and	if	not,	you	can	obtain	a	new	object	in	Step	1	of	this	recipe.

How	to	do	it…
In	order	to	configure	custom	storage	and	the	path	selection	policies,	perform	the	following
steps:

1.	 The	first	step	is	to	obtain	your	ESXCLI	object.	To	do	this,	again,	you	use	the	Get-
EsxCli	cmdlet:

$esxcli	=	Get-VMHost	esxsrv1.domain.local	|	Get-EsxCli

2.	 To	begin	this	recipe,	first	take	a	look	at	two	custom	SATP	rules	written	in	ESXCLI.
You	will	need	to	adapt	each	into	a	PowerCLI	routine	in	order	to	create	the	custom
rule	on	each	host:

esxcli	storage	nmp	satp	rule	add	-s	"VMW_SATP_SYMM"	-V	"EMC"	-M	

"SYMMETRIX"	-P	"VMW_PSP_RR"	-O	"iops=1"	-e	"EMC	Symmetrix	(custom	

rule)"

esxcli	storage	nmp	satp	rule	add	-s	"VMW_SATP_ALUA"	-P	"VMW_PSP_RR"	-O	

iops=100	-c	"tpgs_on"	-V	"3PARdata"	-M	"VV"	-e	"HP	3PAR	Custom	

iSCSI/FC/FCoE	ALUA	Rule"

3.	 The	next	step	is	to	enumerate	the	add	method	in	the	ESXCLI	to	get	a	list	of	all	the
necessary	positional	parameters.	These	are	outlined	in	the	screenshot	that	follows	the
command:

$esxcli.storage.nmp.satp.rule

4.	 To	adapt	the	EMC	array’s	ESXCLI	command	to	PowerCLI,	you	need	to	match	the
parameters	to	the	correct	order	for	PowerCLI:

$esxcli.storage.nmp.satp.rule.add($null,	$null,	"EMC	Symmetrix	(custom	

rule)",	$null,	$null,	$null,	"SYMMETRIX",	"iops=1",	"VMW_PSP_RR",	

$null,	"VMW_SATP_SYMM",	$null,	$null,	"EMC")

5.	 To	adapt	the	3PAR	array’s	ESXCLI	command	to	PowerCLI,	you	will	need	to	do	the
same	match	in	the	correct	order	for	the	PowerCLI	add	method:

$esxcli.storage.nmp.satp.rule.add($true,	"tpgs_on",	"	HP	3PAR	Custom	

iSCSI/FC/FCoE	ALUA	Rule",	$null,	$null,	$null,	"VV",	"iops=100",	

"VMW_PSP_RR",	$null,	"VMW_SATP_ALUA",	$null,	$null,	"3PARdata")

6.	 Sometimes,	the	SATP	claims	rule	isn’t	the	only	change	that	needs	to	be	made.	It	is
common	to	reconfigure	the	existing	LUNs	to	change	their	PSP	for	existing	LUNs	on
a	running	system.	This	can	be	done	without	ESXCLI.	It	uses	the	Get-ScsiLun	and
Set-ScsiLun	cmdlets.	You	can	scope	based	on	the	CanonicalName	parameter	that
matches	your	LUN	identifiers	and	then	force	it	to	check	your	desired	PSP:

Get-VMHost	|	Get-ScsiLun	-CanonicalName	"naa.600*"	|	Set-ScsiLun	-

MultipathPolicy	"roundrobin"

7.	 You	might	also	want	to	scope	based	on	a	specific	vendor	name	if	you	have	multiple
vendors	or	array	types	within	your	environment.	Each	array	or	vendor	might	have
different	best	practices.	In	this	case,	use	Get-ScsiLun	and	then	use	a	Where
statement.	There	is	no	parameter	to	specify	a	vendor	on	Get-ScsiLun.	For	this	step,
change	the	vendor	name	to	3pardata	unless	you	are	running	a	3PAR	array:

Get-VMHost	|	Get-ScsiLun	|	Where	{$_.Vendor	-eq	"3pardata"}	|	Set-

ScsiLun	-MultipathPolicy	"roundrobin"

8.	 Setting	the	vendor	from	ESXCLI	is	also	possible,	but	it	is	going	to	involve	the	list
method	and	a	ForEach	loop	to	set	the	PSP:

$luns	=	$esxcli.storage.nmp.device.list()

ForEach	($lun	in	$luns)	{	

$esxcli.storage.nmp.device.set($null,	$lun.Device,	"VMW_PSP_RR")

}	<#	End	ForEach	#>

9.	 In	addition	to	setting	the	PSP,	you	can	also	set	additional	device	configurations	on	the
item.	To	do	so,	you	can	tap	into
$esxcli.storage.nmp.psp.roundrobin.deviceconfig.set().	Just	add	this	line
into	the	ForEach	loop	created	in	the	previous	step	and	both	of	the	settings	can	be
completed	at	once:

$esxcli.storage.nmp.psp.roundrobin.deviceconfig.set(0,	1,	$lun.device,	

[long]100,	"iops",	$false)

How	it	works…
The	ESXCLI	storage	namespace	commands	configure	the	storage	subsystem	in	ESXi.	The
PowerCLI	equivalent	in	an	ESXCLI	object	performs	the	exact	same	thing,	and	in	this
recipe,	you	work	with	the	SATP	claim	rules	and	the	PSP	defaults	and	settings.	This	allows
you	to	create	default	rules	for	the	configuration	of	new	LUNs	and	any	pre-existing	LUNs
on	a	system	following	a	reboot.

In	this	recipe,	it	was	necessary	to	set	all	of	the	available	parameters	for	the	SATP	claim
rules	since	we	needed	to	set	the	Vendor	and	it	was	the	last	value.	Anything	that	was	not
specifically	specified	in	the	original	ESXCLI	command	received	a	$null	value	in	the
PowerCLI	command	string,	and	the	result	is	the	same	whether	you	use	esxcli	natively	or
through	an	object	in	PowerCLI.

As	you	saw	with	the	path	selection	policies,	it	was	necessary	to	go	into	two	different
areas:	the	nmp.device	and	the	nmp.psp	namespaces,	for	configuring	different	settings.
First,	you	need	to	make	sure	that	the	device	is	using	the	round	robin	path	selection	policy
and	then	you	can	access	the	roundrobin	settings	to	configure	it	further.

There’s	more…
Similar	to	the	network	commands	in	the	network	namespace,	the	storage	namespace	has	a
lot	of	available	methods	that	can	be	invoked	by	PowerCLI.	These	methods	are	of	a	wide
range	and	can	allow	you	to	configure	snapshot	resignaturing	(useful	in	disaster	recovery	or
restoration	scenarios),	reset	storage	subsystems,	list	the	devices	connected	to	a	server	and
their	settings,	and	as	this	recipe	illustrated,	set	a	number	of	configuration	values.

See	also
For	more	information	on	esxcli	storage	available	refer	to	the	VMware	vSphere	5.5
Documentation	Center	at	http://pubs.vmware.com/vsphere-
55/index.jsp#com.vmware.vcli.ref.doc/esxcli_storage.html

http://pubs.vmware.com/vsphere-55/index.jsp#com.vmware.vcli.ref.doc/esxcli_storage.html

Configuring	coredump	settings	for	an
ESXi	host	from	PowerCLI
While	not	as	frequent	as	a	Windows	Blue	Screen	of	Death,	VMware’s	similar	purple
diagnostic	screen	is	something	you	will	run	into	from	time	to	time	due	to	a	hardware
problem,	a	driver	issue,	or	a	firmware	issue	on	an	ESXi	host.	In	these	cases,	collecting
diagnostic	information	from	a	crash	is	very	important	to	diagnose	and	solve	the	problem.
At	the	same	time,	it	has	become	very	common	to	boot	your	ESXi	host	from	a	USB	or	SD
media	rather	than	from	traditional	hard	disks.

If	you	use	a	USB	or	SD	media	to	boot,	you	need	to	send	coredumps	to	a	persistent
location.	You	have	several	options.	VMware	ships	a	network-based	coredump	collector
that	installs	with	vCenter.	You	can	specify	a	network	location	to	send	coredumps	to.	You
can	also	save	them	to	a	file	or	partition	on	the	server.	Coredumps	to	file	was	added	in
vSphere	5.5.	Setting	these	settings	is	extremely	easy	to	do	with	ESXCLI,	but	there	aren’t
native	PowerCLI	cmdlets	to	handle	this.	So,	this	is	another	great	use	for	ESXCLI	in
PowerCLI.

In	this	recipe,	you	will	configure	a	host	to	send	both	a	network	coredump	and	write	it	to	a
file.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server.

How	to	do	it…
In	order	to	configure	the	coredump	settings	for	an	ESXi	host	to	send	both	a	network
coredump	and	write	it	to	a	file	from	PowerCLI,	perform	the	following	steps:

1.	 The	first	step	to	set	the	coredump	configuration	is	to	obtain	an	ESXCLI	object:

$esxcli	=	Get-VMHost	esxsrv1.domain.local	|	Get-EsxCli

2.	 Once	you	have	the	object,	you	will	need	to	work	in	the	system	namespace	again.
Under	system,	you	have	the	coredump	element,	and	if	you	enumerate	it	you	will	see
the	three	elements:	file,	network,	and	partition:

$esxcli.system.coredump

3.	 Inside	each	of	these	namespaces/elements,	there	is	a	get()	or	list()	method	that
allows	you	to	see	the	current	settings	configured.	For	the	network	element,	get()
returns	the	settings.	For	the	file	element,	get()	returns	the	single	active	file.	For	file,
there	is	also	a	list()	method	that	returns	all	of	the	configured	files,	including
inactive	ones:

$esxcli.system.coredump.network.get()

$esxcli.system.coredump.file.list()

4.	 To	set	up	a	network	coredump	location,	you	will	use	the	network	element.	There	is	a
get()	and	a	set()	method	in	this	element.	To	set	this,	the	syntax	is	as	follows:

boolean	set(boolean	enable,	string	interfacename,	string	serveripv4,	

long	serverport)

5.	 To	assemble	a	command,	you	will	need	an	interface	name—a	vmkernel	port—that
can	talk	to	the	network	location	that	will	receive	your	remote	dump	file.	You	will	also
need	a	destination	IP	address	and	a	port	number.	Lastly,	you	need	to	enable	it:

$esxcli.system.coredump.network.set($null,	"vmk0",	"192.168.1.200",	

"6500")

6.	 If	you	notice,	you	did	not	set	the	enable	positional	parameter	to	$true	in	this
command.	If	you	try	to	change	it	to	$true	while	setting	the	other	parameters,	the
command	will	fail	with	an	error	that	shows	you	can’t	combine	the	enable	with	other
parameters.	Instead,	you	have	to	call	the	enable	parameter	in	a	separate	command
after	configuring	the	other	settings:

$esxcli.system.coredump.network.set($true)

7.	 If	you	do	not	have	a	network	coredump	collector,	you	can	also	set	a	file	to	save	the
coredump	file	into	the	collection.	Unlike	network	coredump	locations,	you	can	have
multiple	file	locations	for	coredumps,	but	only	one	can	be	active	at	a	time.	To	add	a
file	location,	you	use	the	add()	method.	The	syntax	for	add()	is	as	follows:

boolean	add(boolean	auto,	string	datastore,	boolean	enable,	string	

file,	long	size)

8.	 To	add	a	new	file,	you	need	to	specify	the	datastore	name	and	the	name	of	the	file.
These	are	the	only	two	parameters	required,	but	if	you	want	to	enable	this	new	file,
you	can	do	it	at	the	same	time	as	you	set	the	file	(unlike	the	network	settings):

$esxcli.system.coredump.file.add($null,"DATASTORE1",	$true,	

"CoreDumpFileName")

9.	 Since	you	have	multiple	files,	you	might	need	to	change	them.	Using	the	list()
method	under	the	file	element,	you	can	get	a	path.	With	the	path,	you	can	use	the
set()	method	to	change	the	active	file.	The	syntax	for	the	file	set()	method	is
shown	as	follows:

boolean	set(boolean	enable,	string	path,	boolean	smart,	boolean	

unconfigure)

10.	 To	activate	an	existing	file,	the	example	command	will	consist	of	the	path	that
includes	the	Datastore’s	UUID	and	the	filename	of	the	file	setup,	as	shown	in	the
following	command:

$esxcli.system.coredump.file.set($true,	"/vmfs/volumes/53cabdf3-

866f371f-c5bf-0017087d98f0/vmkdump/test.dumpfile")

How	it	works…
This	set	of	commands	works	within	the	ESXCLI	system	namespace.	The	system
namespace	configures	the	system	settings	for	ESXi	hosts.	The	coredump	settings	are	a	set
of	commands	related	to	the	locations	and	destinations	for	where	to	send	dump	files	after	a
crash	of	ESXi.	The	ESXCLI	command	allows	files,	a	partition,	or	a	network	location.	In
this	recipe,	you	created	scripts	to	specify	the	network	and	file	locations	to	save	the
coredump	files	into.	The	methods	are	different	for	the	types	of	ways	of	setting	up	the
locations	and	activating	them.	The	same	idiosyncrasies	exist	in	ESXCLI	directly,	so	these
carry	over	to	the	methods	that	you	use	in	PowerCLI.

There’s	more…
VMware	has	several	knowledge	base	articles	related	to	setting	up	coredump	locations	for
ESXi	hosts.	Each	of	them	has	a	lot	of	additional	information	about	the	best	practices	for
setting	up	these	settings.	In	particular,	the	network	coredump	article	gives	a	lot	of
additional	information	beyond	the	scope	of	this	section	that	is	related	to	configuring	and
setting	up	the	Dump	Collector	service	that	ships	with	vCenter	Server.	Configuring	the
Dump	Collector	service	and	configuring	the	host	to	send	to	the	collector	are	both
important	settings	in	order	to	get	this	configuration	to	work	properly.

It’s	also	important	to	notice	that	you	can	mix	and	use	both	a	file	location	and	a	network
location	to	send	coredumps.	Since	these	files	contain	important	diagnostic	information	to
troubleshoot	a	crash,	to	have	copies	both	on	the	filesystem	and	sent	to	the	network
collector	is	not	a	bad	idea.

See	also
For	more	information	on	ESXi	Network	Dump	Collector	in	VMware	vSphere	5.x
refer	to	VMware	Knowledge	Base	available	at	http://kb.vmware.com/kb/1032051
For	more	information	on	Configuring	ESXi	coredump	to	file	instead	of	partition
refer	to	the	VMware	Knowledge	Base	available	at	http://kb.vmware.com/kb/2077516

http://kb.vmware.com/kb/1032051
http://kb.vmware.com/kb/2077516

Executing	native	commands	inside	the
guest	operating	system	from	PowerCLI
One	of	the	most	interesting	cmdlets	in	PowerCLI	is	the	Invoke-VMScript	cmdlet.	It
allows	you	to	execute	scripts	and	commands	inside	the	guest	operating	system	if	it	is
running	VMware	Tools.	There	are	a	lot	of	exceptions	and	requirements	that	need	to	be	met
in	order	for	this	cmdlet	to	work.	First,	forget	about	commands	that	require	elevated
privileges	in	Windows.	If	it	prompts	you	with	UAC,	then	it	will	most	likely	not	work.

There	are	some	prerequisites	needed	for	Invoke-VMScript	to	work.	First,	you	need	to	be
running	a	32-bit	PowerCLI	window,	the	VM	guest	must	be	running,	and	it	needs	to	be
running	VMware	Tools.	You	should	be	able	to	connect	to	port	902	on	the	ESXi	host	from
the	machine	running	PowerCLI.

Even	with	several	requirements,	this	capability	is	handy.	Some	of	the	examples	that	are
available	on	the	Internet	show	starting	and	stopping	application	instances	using	Invoke-
VMScript	or	setting	the	guest	configuration	values.	In	this	recipe,	you	will	put	together	a
basic	script	that	reports	the	proxy	server	from	a	Windows	guest.	You	will	also	write	a
command	that	stops	and	then	starts	an	Apache	web	server	on	an	Ubuntu	Linux	server.

Unlike	the	previous	examples	with	ESXCLI,	Invoke-VMScript	doesn’t	return	its	output	as
an	object.	It	returns	a	simple	string	output	back	to	the	console.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server.	You	will	need	a	Windows	guest	running	in	a	VM,	and	you	will	need	the
login	credentials	for	an	account	inside	the	VM.

How	to	do	it…
In	order	to	execute	the	native	commands	inside	the	guest	operating	system	from
PowerCLI,	perform	the	following	steps:

1.	 The	script	assumes	that	you	have	an	active	connection	to	vCenter,	but	if	not,	run	a
Connect-VIServer	cmdlet	and	connect	to	a	vCenter	Server.

2.	 The	first	step	to	perform	an	in-guest	script	is	to	assemble	an	Invoke-VMScript
cmdlet.	To	see	what	is	needed	to	create	the	script,	use	Get-Help	on	the	cmdlet	to
view	the	parameters:

Get-Help	Invoke-VMScript

3.	 You	will	see	multiple	parameters	devoted	to	credentials	in	the	help	menu.	To	connect
to	the	VM,	you	will	need	the	guest	credentials	passed	in	the	command	string.	You
can	specify	the	credentials	in	the	command	line,	but	a	more	secure	way	might	be	to
use	the	Get-Credential	cmdlet	to	store	credentials	in	a	variable.	You	will	receive	a
Windows	credential	box	where	you	can	specify	your	username	and	password	for
authentication	to	the	guest	operating	system:

$guestcreds	=	Get-Credential

Note
Keep	in	mind	that	the	credentials	are	stored	but	not	verified.	The	login	won’t	occur
until	you	run	Invoke-VMScript,	so	you	will	not	receive	a	prompt	saying	that	the
credentials	are	valid	or	invalid	until	later.

4.	 Looking	at	the	parameters,	the	obviously	needed	parameters	are	-ScriptText	for	the
command	to	run	inside	the	guest,	-VM	to	specify	which	VM	to	run	the	script	inside	of,
and	credentials	to	connect	to	the	VM:

Invoke-VMScript	-ScriptText	"echo	Hello	World"	-VM	"WinVM1"	-

GuestCredential	$guestcreds

5.	 The	Invoke-VMScript	cmdlet	can	also	run	as	single-line	without	an	existing
connection	to	an	ESXi	host	or	vCenter.	In	addition	to	the	guest	credentials,	you
would	need	to	specify	the	details	of	the	VMHost	and	its	credentials	to	connect	to	the
host:

$hostcreds	=	Get-Credential

Invoke-VMScript	-ScriptText	"echo	Hello	World"	-VM	"WinVM1"	-

GuestCredential	$guestcreds	-Server	esxsrv1.domain.local	-

HostCredential	$hostcreds

6.	 Beyond	the	simple	Hello,	World!	example,	you	can	perform	real	operations.	Next,
perform	a	netsh	function	in	Windows	to	return	the	proxy	settings	of	the	system.	The
command	is	netsh	winhttp	show	proxy	for	Windows	7	and	Windows	Server	2008	or
later.	Run	the	following	command.	You	will	see	the	screenshot	following	it,	which
shows	you	a	sample	of	the	output	returned:

Invoke-VMScript	-ScriptText	"netsh	winhttp	show	proxy"	-VM	"WinVM1"	-

GuestCredential	$guestcreds

7.	 Performing	an	in-guest	operation	on	a	Linux	server	is	just	as	simple.	Collect	a	set	of
credentials	to	connect	to	the	Linux	server	and	then	pass	a	command	to	be	executed.
In	this	case,	you	can	pass	the	service	command	to	restart	the	apache2	web	server	on
the	guest:

$linuxcreds	=	Get-Credential

Invoke-VMScript	-ScriptText	"service	apache2	stop"	-VM	Ubuntu14	-

GuestCredential	$linuxcreds

Invoke-VMScript	-ScriptText	"service	apache2	start"	-VM	Ubuntu14	-

GuestCredential	$linuxcreds

The	output	for	the	preceding	command	line	is	given	in	the	following	screenshot:

How	it	works…
The	Invoke-VMScript	cmdlet	works	using	the	VMware	Tools	to	pass	a	script	into	the
guest	operating	system	and	execute	it.	It	requires	the	appropriate	guest	OS	credentials	to
execute	the	code,	so	it	adheres	to	the	standard	Windows	security	practices	and	will	not
allow	an	unprivileged	user	to	inject	or	do	anything	more	than	they	are	allowed	in	the	guest
VM.	However,	from	an	administrator’s	standpoint,	this	allows	a	VMware	administrator	to
script	and	handle	some	common	guest	configurations	directly	from	PowerCLI.	The	net
results	can	be	more	uniform	deployments	and	less	human	errors	possible	by	creating
repeatable	scripts	for	common	tasks.

There	are	several	limitations	to	the	functionality.	Its	ability	to	perform	configuration	tasks
can	be	hampered	by	the	Windows	User	Account	Control	(UAC)	functionality	that	tries	to
reduce	the	runspace	privileges	of	administrative	accounts	within	the	operating	system.	On
the	Linux	front,	its	capability	isn’t	universally	available	to	all	flavors	of	Linux.

There’s	more…
There	are	several	great	blog	posts	about	the	Invoke-VMScript	capability	from	some	great
PowerCLI	community	members.	One	post	is	from	Luc	Dekens	and	includes	a	full	script
for	evaluating	whether	or	not	the	requirements	of	Invoke-VMScript	are	met.	This	script	is
a	great	starting	point	that	will	help	you	verify	that	everything	needed	is	set	up	for	your
attempts	to	run	Invoke-VMScript.

See	also
For	more	information,	refer	to	Luc	Dekens’s	blog	on	Will	Invoke-VMScript	work?,
available	at	http://www.lucd.info/2012/01/01/will-invoke-vmscript-work/

http://www.lucd.info/2012/01/01/will-invoke-vmscript-work/

Chapter	9.	Managing	DRS	and	Affinity
Groups	using	PowerCLI
In	this	chapter,	you	will	cover	the	following	topics:

Applying	recommendations	for	partially	automated	DRS	clusters
Setting	a	cluster	into	maintenance	mode	with	PowerCLI
Using	native	DRS	rule	cmdlets	to	manage	KeepTogether	and	Separate	rules
Learning	the	MoRef	way	of	identifying	objects
Creating	a	DRS	group	for	virtual	machines
Listing	the	members	of	a	DRS	group
Updating	the	members	of	a	VM	DRS	group
Creating	a	custom	function	to	update	members	of	a	DRS	group
Creating	rules	to	maintain	memberships	of	DRS	groups	using	a	custom	function
Using	Compare-Object	to	audit	group	memberships	for	differences

Introduction
The	Distributed	Resource	Scheduler	(DRS)	feature	of	vSphere	offers	administrators	a
hands-off	method	of	balancing	workloads	across	compute	clusters	and	datastores.
VMware	DRS	can	be	run	in	a	fully-automated	mode	or	in	a	partially-automated	mode	for
compute,	where	DRS	makes	recommendations	based	on	standard	deviations	and	other
mathematical	computations	for	balancing	workloads	in	a	vSphere	cluster.	Storage	DRS	is
a	storage-specific	application	of	the	functionality	that	uses	factors	such	as	latency	and
capacity	to	balance	storage	in	a	cluster	of	datastores.

As	with	anything	that	is	fully-automated,	there	will	always	be	exceptions	that
administrators	have	to	account	for.	There	can	be	virtual	machines	that	should	never
coreside	on	the	same	host,	such	as	domain	controllers	in	the	same	forest.	There	can	be
virtual	machines	that	should	always	be	on	the	same	host	to	improve	the	performance	due
to	high	amounts	of	network	traffic	between	them.	These	sorts	of	exceptions	are	managed
with	DRS	rules.	vSphere	clusters	have	KeepTogether	and	Separate	rules	for	these	cases
that	can	be	defined	on	clusters.

DRS	also	has	the	ability	to	set	up	affinity	rules	that	are	applied	when	virtual	machines	start
or	are	running	in	a	cluster.	These	rules	can	define	a	group	of	virtual	machines	and	apply	a
specific	requirement	to	them	on	a	group	of	hosts.	PowerCLI	does	not	ship	a	cmdlet	to
manage	DRS	groups	or	affinity	rules,	but	there	are	methods	to	programmatically	configure
the	groups	in	some	cases.

PowerCLI	offers	some	basic	cmdlets	to	handle	DRS	rules	and	their	creation.	In	this
chapter,	you	will	take	a	look	at	the	built-in	functionality	of	DRS	rules	from	PowerCLI,
and	then	you	will	create	some	additional	functions	that	can	help	you	configure	DRS	rules,
where	PowerCLI	doesn’t	deliver	default	cmdlets.

Applying	recommendations	for	partially
automated	DRS	clusters
PowerCLI	offers	you	the	ability	to	set	a	cluster	into	autopilot,	but	that	is	not	a	requirement
to	receive	the	benefits	for	DRS.	DRS	clusters	can	also	be	set	into	a	partially	automated
mode	that	lets	DRS	make	recommendations	and	allows	the	administrator	to	apply	those
recommendations.	PowerCLI	offers	native	cmdlets	to	retrieve	a	list	of	recommendations
and	allows	them	to	be	applied.

Get-DRSRecommendations	and	Apply-DRSRecommendation	allow	you	to	retrieve	the
current	recommendations	and	then	apply	them.	In	vSphere	6,	the	Apply-
DRSRecommendation	cmdlet	changes	to	Invoke-DRSRecommendation.	The	functionality	is
the	same,	but	the	verb	changes.	Like	any	other	native	cmdlet,	you	can	take	the	results	and
scope	the	list	of	recommendations	to	apply.	One	important	thing	to	note	here	is	that	the
Get-DRSRecommendation	and	the	Apply-DRSRecommendation	cmdlets	only	apply	to
compute	clusters	and	not	to	storage	clusters.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server.	You	will	also	need	to	ensure	that	the	cluster	you	want	to	use	is	set	in	a
partially	automated	DRS	mode.	If	the	cluster	is	in	a	fully	automated	mode,	the	system	will
automatically	apply	any	recommendations,	so	there	will	be	none	to	retrieve.

How	to	do	it…
In	order	to	apply	recommendations	for	partially-automated	DRS	clusters,	perform	the
following	steps:

1.	 If	you	have	DRS	enabled	inside	your	cluster,	you	can	obtain	a	list	of	the	waiting	DRS
recommendations	by	running	the	Get-DRSRecommendation	cmdlet.	It	requires	no
parameters:

Get-DRSRecommendation

2.	 Without	any	options,	Get-DRSRecommendation	retrieves	recommendations	for	the
entire	vCenter	Server	across	all	clusters.	If	you	specify	the	-Cluster	parameter	or	if
you	pipe	in	a	cluster	object	from	a	Get-Cluster	cmdlet,	both	will	retrieve	the	same
recommendations	because	the	same	cluster	object	is	passed	to	the	cmdlet:

Get-DRSRecommendation		-Cluster	"BigCluster"

Get-Cluster	"BigCluster"	|	Get-DRSRecommendation

3.	 Recommendations	have	an	associated	priority	with	them.	When	you	set	the
automation	mode	of	a	DRS	cluster	to	FullyAutomated,	you	have	the	ability	to	set	the
level	of	automation.	A	priority	is	set	on	each	recommendation.	With	the	Get-
DRSRecommendation	cmdlet,	you	can	also	retrieve	only	specific	priorities	with	the	-
Priority	parameter:

Get-DRSRecommendation	-Cluster	"BigCluster"	-Priority	1,2,3

4.	 Of	course,	there	might	be	times	when	you	need	to	only	select	a	particular	priority,
and	you	can	do	that	with	a	Where	cmdlet	similar	to	the	one	you	used	with	other
cmdlets.	But	what	can	you	use	to	identify	specific	recommendations?	By	default,	the
Get-DRSRecommendation	cmdlet	returns	the	Priority	and	Recommendation	columns,
but	there	is	also	a	Key	property	that	is	a	unique	identifier	for	every	recommendation
made.	This	is	easy	to	sort	with:

Get-DRSRecommendation	|	Select	Priority,	Recommendation,	Key

Get-DRSRecommendation	|	Where	{$_.Key	-eq	"255"}

5.	 Lastly,	you	can	retrieve	and	apply	recommendations	by	piping	the	recommendation
object	into	the	Apply-DRSRecommendation	cmdlet:

Get-DRSRecommendation		|	Where	{$_.Key	-eq	"255"}	|	Apply-

DRSRecommendation

6.	 The	same	is	true	if	you	want	to	apply	all	recommendations	for	priorities	1,	2,	and	3:

Get-DRSRecommendation	-Cluster	"BigCluster"	-Priority	1,2,3	|	Apply-

DRSRecommendation

How	it	works…
The	Get-DRSRecommendation	cmdlet	retrieves	recommendations	from	the	vSphere	cluster
and	enumerates	them	in	one	or	more	DRSRecommendation	objects.	The	objects	contain	the
cluster	and	target,	a	virtual	machine,	along	with	the	priority,	recommendation,	and	the
reason	for	the	recommendation.	The	parameters	for	the	cmdlet	allow	you	to	retrieve	only
recommendations	for	a	particular	cluster	or	for	a	particular	priority	level.

The	priority	level	of	a	recommendation	is	based	on	a	mathematical	formula	that	includes
the	standard	deviation	of	the	load	imbalance	between	the	hosts	in	the	clusters.	The	priority
is	based	on	a	scale	up	to	five	with	the	lower	numbers	having	more	impact	or	importance.
There	are	two	common	reasons	for	DRS	recommendations.	The	first	is	balancing	the
average	CPU	loads	on	hosts	and	the	second	is	satisfying	affinity	rules	defined	on	the
cluster.	The	second	reason	is	controlled	by	user-defined	rules	that	you	will	look	at	in	the
next	recipe.

Once	you	return	a	list	of	recommendations	and	you	have	selected	only	the	ones	that	you
wish	to	apply,	you	can	pass	the	object	into	the	Apply-DRSRecommendation	cmdlet	that
applies	the	recommended	action.	The	Apply-DRSRecommendation	cmdlet	expects	a
DRSRecommendation	object	to	be	passed	in,	either	through	a	variable	or	a	pipeline.	At	this
point,	DRS	applies	the	recommendations	for	the	objects	specified.	Also	note,	in	vSphere
6,	the	command	changes	from	Apply-DRSRecommendation	to	Invoke-
DRSRecommendation.

There’s	more…
Sometimes,	DRS	recommendations	can’t	be	applied.	These	cases	are	referred	to	as	faults,
and	they	have	a	reason	associated	with	them	and	an	explanation	why	they	cannot	be
applied.	Faults	are	displayed	in	a	separate	area	in	the	vCenter	Client	and	include	the
prevented	action,	as	well	as	what	type	of	problem	was	attempted	to	be	solved.	In	many
cases,	the	fault	can	be	caused	by	a	virtual	machine	being	assigned	to	groups	with	opposite
rules.	In	this	case,	one	rule	or	the	other	must	be	applied,	but	if	no	clear	winner	can	be
determined,	vSphere	leaves	the	VM	where	it	is	currently	running.

See	also
You	can	refer	to	the	Calculating	the	priority	level	of	a	VMware	DRS	migration
recommendation	in	vSphere	4.0	topic	of	the	VMware	Knowledge	Base,	available	at
http://kb.vmware.com/kb/1007485

http://kb.vmware.com/kb/1007485

Setting	a	cluster	into	maintenance	mode
with	PowerCLI
Maintenance	is	inevitable.	vSphere’s	DRS	features	do	a	lot	to	help	administrators	when
maintenance	is	required.	vSphere	has	a	maintenance	mode	feature	for	hosts	in	a	cluster
that	prevents	any	virtual	machines	from	being	started	or	moved	onto	the	host	while
maintenance	is	occurring.	Hosts	need	to	be	placed	into	maintenance	mode	for	changes	and
patching	to	occur.

For	a	cluster	running	in	a	fully	automated	mode,	putting	a	host	into	maintenance	mode
will	kick	off	a	set	of	automated	steps	that	will	use	vMotion	to	move	all	of	the	running
virtual	machines	to	other	hosts.	Using	the	vSphere	Client,	you	can	optionally	move	any
powered	off	virtual	machines	to	other	hosts.	In	a	partially	automated	mode,	placing	the
host	into	maintenance	mode	will	cause	a	number	of	DRS	recommendations	to	be	made
that	will	need	to	be	applied	manually.	You	can	use	the	previous	recipe	to	apply	these
recommendations.

If	you	use	PowerCLI	to	place	the	host	into	maintenance	mode,	you	do	not	have	the	ability
to	move	powered	off	virtual	machines	automatically	like	you	do	when	using	the	vCenter
Client.	However,	you	can	easily	retrieve	and	move	any	powered	off	VMs	using	the	Get-VM
and	Move-VM	cmdlets.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server	with	a	cluster	defined.

How	to	do	it…
In	order	to	set	up	a	cluster	into	maintenance	mode	with	PowerCLI,	perform	the	following
steps:

1.	 The	first	step	to	place	a	host	into	maintenance	mode	is	to	retrieve	the	correct	host.
The	easiest	way	to	do	this	and	confirm	that	you	have	only	selected	the	host	or	hosts
you	want	is	to	use	the	Get-VMHost	cmdlet.	For	instance,	if	you	want	to	put	the	odd
hosts,	esx1,	esx3,	and	esx5,	into	maintenance	mode,	you	would	need	to	retrieve
them.	You	can	combine	a	regular	expression	in	the	Get-VMHost	cmdlet	to	retrieve	just
the	three	that	you	want.	To	do	this,	include	square	brackets	and	the	three	numbers
you	want	them	to	be	in	the	location	you	want	them:

Get-VMHost	esx[135].domain.local

2.	 With	the	correct	hosts	retrieved,	you	can	place	them	into	maintenance	mode.	To	do
this,	use	the	Set-VMHost	cmdlet.	The	Set-VMHost	cmdlet	has	a	-Status	parameter
that	accepts	the	Maintenance	setting	and	will	begin	the	process	of	putting	a	host	into
maintenance	mode:

Get-VMHost	esx[135].domain.local	|	Set-VMHost	-State	"Maintenance"

3.	 If	the	host	is	in	a	fully	automated	mode,	all	virtual	machines	running	begin	to	move
with	vMotions	caused	by	DRS	recommendations.	If	the	cluster	is	in	a	partially
automated	mode,	your	next	step	is	to	retrieve	the	recommendations	and	apply	them.
To	do	this,	you	will	use	the	Get-DRSRecommendation	cmdlet:

Get-DRSRecommendations	-Cluster	BigCluster	|	Apply-DRSRecommendation

4.	 Next,	you	should	check	whether	any	powered	off	VMs	are	left	on	the	host.	In	the
event	that	the	host	has	a	problem	with	the	patch	or	configuration	change,	you	want	to
ensure	that	the	VMs	registered,	but	powered	off,	on	this	host	have	been	relocated	and
can	be	started	elsewhere.	To	do	this,	you	will	use	the	Get-VM	cmdlet.	Pipe	the	three
hosts	you	want	into	the	Get-VM	cmdlet:

Get-VMHost	esx[135].domain.local	|	Get-VM

5.	 With	the	list	of	VMs	returned,	the	next	step	is	to	move	them	onto	a	different	host.	To
do	this,	use	the	Move-VM	cmdlet	and	specify	any	of	the	other	hosts.	Since	the	VMs	are
not	running,	it	really	makes	no	difference	to	which	host	you	relocate	these	VMs:

Get-VMHost	esx[135].domain.local	|	Get-VM	|	Move-VM	-Destination	

esx2.domain.local	-Confirm:$false

6.	 At	this	point,	the	host	is	placed	into	maintenance	mode	and	work	can	be	completed
on	it—whether	it’s	hardware	upgrades,	software	patches,	configuration	changes,	or
hardware	replacement.

There’s	more…
Bringing	a	host	out	of	maintenance	mode	is	even	easier,	since	you	don’t	need	to	worry
about	the	offline	virtual	machines.	To	do	this,	you	will	use	the	same	Set-VMHost	cmdlet
except	that	you	will	change	the	-State	parameter	to	be	Connected:

Get-VMHost	esx[135].domain.local	|	Set-VMHost	-State	"Connected"

It	would	also	be	incredibly	easy	to	create	a	function	that	does	both	of	the	maintenance
mode	invocation	and	moves	all	of	the	powered	off	virtual	machines	to	other	nodes.	What’s
more,	your	function	can	automate	maintenance	mode	for	a	manual	DRS	cluster	by
combining	all	of	the	steps	of	this	recipe.

The	one	piece	that	you	would	need	to	alter	is	the	Move-VM	cmdlet	to	move	the	powered	off
VMs.	Instead	of	specifying	a	host,	you	should	use	a	method	where	you	return	a	list	of
hosts	in	the	cluster	with	the	Connected	status,	run	a	Where	statement.	The	name	is	not	like
the	host	you’re	putting	in	maintenance	mode.	You	can	use	a	Select	-First	1	cmdlet	to
find	a	different	host	to	move	the	VM	onto.

Using	native	DRS	rule	cmdlets	to	manage
KeepTogether	and	Separate	rules
PowerCLI	has	a	number	of	built-in	cmdlets	to	manage	DRS	rules.	These	rules	allow	you
to	keep	virtual	machines	together	and	ensure	that	they	stay	separated	within	a	vSphere
cluster.

A	simple	example	of	two	virtual	machines	that	should	never	coreside	on	the	same	host
would	be	domain	controllers.	You	want	to	ensure	that	all	of	your	domain	controllers	are
not	running	on	the	single	host	in	case	a	physical	server	fails,	so	you	will	set	a	Separate
rule.

A	simple	example	of	two	virtual	machines	that	should	always	coreside	on	the	same	host
would	be	an	application	server	and	its	database	that	handles	gigabits	of	traffic	per	second.
You	can	achieve	better	throughput	and	performance	of	the	database	traffic	if	the	two
virtual	machines	are	on	the	same	host.

These	are	the	two	scenarios	that	are	covered	in	this	recipe.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server	with	a	vSphere	cluster	defined	and	running	in	vCenter.

How	to	do	it…
Let’s	see	how	to	use	native	DRS	rule	cmdlets	to	manage	KeepTogether	and	Separate	rules
by	performing	the	following	series	of	steps:

1.	 To	begin	creating	a	DRS	rule,	you	will	need	to	use	the	New-DRSRule	cmdlet.	The
cmdlet	requires	a	name	and	a	cluster	to	be	specified.	In	addition	to	this,	you	need	to
specify	the	-KeepTogether	parameter.	It’s	Boolean	and	requires	either	$true	or
$false	to	be	passed	into	it.	A	-KeepTogether:$false	statement	is	used	for	a
Separate	rule.	Last,	you	have	to	specify	a	list	of	virtual	machine	names:

New-DRSRule	-Name	"Separate	Active	Directory"	-Cluster	BigCluster	-

KeepTogether:$false	-VM	DC01,DC02

2.	 To	verify	the	rule	you	just	created,	use	the	Get-DRSRule	cmdlet.	The	cmdlet	requires
the	-Cluster	parameter	to	be	specified:

Get-DRSRule	-Cluster	BigCluster

3.	 You	will	see	that	the	VMIds	property	doesn’t	display	a	friendly	VM	name	that	is	easy
to	understand.	Instead,	it	contains	the	Managed	Object	Reference	(MoRef)	for	each
VM.	You	will	take	a	look	at	the	MoRef	in	detail	in	the	next	recipe.	With	the	MoRef;
however,	you	are	able	to	look	up	the	VM	by	creating	a	calculated	expression.	The
VMIds	property	includes	multiple	VMs,	so	a	ForEach	loop	is	needed	along	with	the
Get-VM	cmdlet	and	the	-ID	parameter:

Get-DRSRule	-Cluster	Bigcluster	|	Select	Name,	Enabled,	KeepTogether,	

@{N="VM";E={	ForEach	($VM	in	$_.VMIds)	{	(Get-VM	-Id	$vm).Name	}	}	}

4.	 To	create	a	second	rule	and	to	keep	two	application	servers	together	on	the	same	host,
you	will	use	the	same	syntax	as	a	Separate	rule,	but	you	pass	$true	to	the	-
KeepTogether	parameter:

New-DRSRule	-Name	"App	One"	-Cluster	BigCluster	-KeepTogether:$true	-VM	

App01,DB01

How	it	works…
Managing	the	KeepTogether	and	Separate	rules	in	PowerCLI	is	very	simple.	The	cmdlet	is
the	same,	and	the	only	difference	between	the	two	types	of	rules	is	the	-KeepTogether
parameter’s	Boolean	value.	Beyond	that	value,	the	structure	of	these	rules	is	the	same.	You
set	up	a	name,	specify	a	cluster,	and	specify	the	virtual	machines	that	are	affected	by	this
rule.

Once	the	rule	is	in	place,	DRS	will	attempt	to	enforce	the	rule	on	its	next	run,	either	by
generating	a	recommendation	that	can	be	applied	in	a	partially	automated	cluster	or
implementing	the	change	if	it	can	meet	the	conditions	specified	in	a	fully	automated
cluster.	These	rules	generate	recommendations	that	reference	the	affinity	rules	as	the
reason	for	the	recommendation.

Learning	the	MoRef	way	of	identifying
objects
A	MoRef	is	a	unique	identifier	in	the	vSphere	platform	for	every	individual	object.	Even
two	objects	of	the	same	type	and	the	same	name	have	different	MoRef	identifiers.	Because
vSphere	builds	relationships	based	on	MoRefs,	you	can	easily	rename	objects,	such	as
virtual	machines	or	resource	pools,	without	affecting	memberships	and	associations.

While	this	recipe	might	seem	like	a	bit	of	a	tangent,	it	is	a	necessary	one	before	moving	on
to	building	VM	and	Host	Groups	for	VM	to	Host	affinity	rules.	These	rules	do	not	have
native	PowerCLI	cmdlets	to	manage	them;	therefore,	you	need	to	use	object	views	and
methods	to	create	these	configurations	and	those	require	MoRefs.

You	have	encountered	MoRefs	in	other	recipes	throughout	the	book,	such	as	the	Setting
Storage	DRS	automation	levels	for	individual	virtual	machines	recipe	in	Chapter	4,
Working	with	Datastores	and	Datastore	Clusters,	and	the	Getting	alerts	from	vSphere
environment	recipe	in	Chapter	7,	Creating	Custom	Reports	and	Notifications	for	vSphere.
In	both	of	these	cases,	the	managed	object	reference	was	used	in	the	code	to	identify	a
single	virtual	machine.

Commonly,	MoRefs	are	the	identifiers	that	you	must	use	when	creating	and	working	with
configuration	specifications	and	the	Get-View	cmdlet	because	the	underlying	relationships
are	specific	or	related	to	this	unique	identifier	and	not	to	a	display	name,	which	might
change.	This	implicitly	ties	a	single,	specific	object	to	the	specification	that	is	being
defined.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server.

How	to	do	it…
Let’s	see	how	to	use	the	MoRef	to	identify	objects	by	performing	the	following	series	of
steps:

1.	 There	are	several	ways	to	retrieve	the	MoRef	of	a	virtual	machine.	The	easiest	way	is
to	use	a	Get-VM	cmdlet	and	explore	the	ExtensionData	property	of	the	VM.	The
MoRef	is	one	of	the	properties	inside	the	ExtensionData	property.	Enumerate	the
data	in	ExtensionData	using	dot	notation	and	enclosing	the	cmdlet	in	parenthesis:

(Get-VM	-Name	TTYLinux1).ExtensionData

2.	 Inside	the	ExtensionData	property,	you	will	see	the	associated	data	of	the	virtual
machine.	Notice	the	Parent,	Datastore,	Network,	and	ResourcePool	properties.
They	all	include	MoRef	identifiers	that	point	to	the	associated	objects	where	the	VM
is	stored	and	connected.

3.	 If	you	go	a	step	further	and	enumerate	the	MoREF	property,	you	will	find	that	it	is
actually	a	two-part	property	that	contains	Type	and	Value.	To	do	this,	add	MoREF	to
the	Get-VM	cmdlet	in	dot	notation:

(Get-VM	-Name	TTYLinux1).ExtensionData.MoREF

4.	 Go	back	to	the	datastore	for	a	moment;	if,	for	instance,	you	have	a	MoRef,	you	can
easily	look	up	the	object	by	-ID	as	you	did	in	the	previous	recipe.	To	do	this	for	a
datastore,	use	the	Get-Datastore	cmdlet	with	the	-ID	parameter:

Get-Datastore	-ID	((Get-VM	-Name	TTYLinux1).ExtensionData.Datastore)

5.	 While	you	have	other	ways	to	get	the	datastore	of	a	VM,	this	method	is	also	viable.
The	point	is	that	there	are	multiple	ways	to	retrieve	or	correlate	objects	in	PowerCLI,
depending	on	what	type	of	object	you	have.

How	it	works…
MoRefs	are	unique	identifiers	assigned	to	objects	at	the	time	of	their	creation.	Even	if	you
create	more	objects	with	the	same	name,	each	one	will	be	generated	with	its	own	unique
identifier.	Many	of	the	rules	and	relationships	in	vSphere	are	built	around	the	MoRef.	The
native	PowerCLI	cmdlets	hides	the	MoRef	from	your	view	and	instead	uses	friendly
names	to	make	things	easier	to	use.	However,	behind	any	of	the	commands	that	are
executed,	the	MoRef	is	being	called	to	identify	one	specific	VM	at	a	time.

When	you	begin	working	with	Views	and	ExtensionData	properties,	the	MoRef	becomes
more	visible	since	the	object	views	are	the	underlying	methods	for	performing	the	actual
work	against	vSphere.	You	begin	to	see	these	more	as	you	take	a	look	at	the	relationships
between	objects	in	vSphere.

There’s	more…
The	MoRef	is	used	frequently	when	you	look	at	the	Web	Services	SDK	on	the	vCenter
Server	located	at	https://<vcentername>/mob.	This	SDK	web	interface	is	a	good
resource	for	you	to	explore	and	drill	down	to	objects	within	vSphere.	You	might	be	able	to
discover	and	find	the	data	you	are	looking	for	more	easily	in	the	web	interface	which	you
can	then	translate	back	to	the	same	object	within	PowerCLI.

To	begin,	let’s	take	a	look	at	the	Web	Services	SDK.	You	need	to	browse	to
https://<vcentername>/mob	and	log	in	with	an	account	that	has	vCenter	privileges.
Once	inside,	you	can	see	the	top-level	Properties	and	Methods	split	into	two	sections.
One	of	the	properties	is	Content.	If	you	click	on	Content,	you	see	a	lot	of	properties	with
the	name	Manager.	These	are	all	data	managers	that	span	across	the	entire	vCenter
installation.

One	of	the	properties	listed	is	rootFolder.	This	points	to	the	Datacenters	default	root
folder,	where	you	created	your	datacenter	object	in	the	Creating	a	virtual	datacenter	in
vCenter	recipe	in	Chapter	2,	Configuring	vCenter	and	Computing	Clusters.	If	you	drill
down	into	rootFolder,	you	will	see	the	datacenter	you	defined	in	Chapter	2,	Configuring
vCenter	and	Computing	Clusters,	with	the	MoRef	of	that	object	in	the	childEntity
property.	If	you	drill	into	the	childEntity	value,	you	begin	to	see	many	more	MoRef
objects	for	alarms,	datastores,	and	networks.	At	this	point,	it	should	become	more	clear
that	the	same	structure	you	see	exposed	in	the	vCenter	Client	is	represented	in	the	nested
data	objects	through	the	Web	Services	SDK.

This	tool	can	be	a	powerful	aid	when	you	are	building	and	writing	routines	in	PowerCLI
but	need	a	‘treasure	map’	to	guide	you	to	the	data	you	are	looking	for.

Creating	a	DRS	group	for	virtual
machines
Using	what	you	just	learned	about	MoRefs,	you	can	build	your	first	virtual	machine	DRS
group.	DRS	groups	are	accessible	in	the	Cluster	view	object.	In	this	recipe,	you	will	define
a	new	group	in	the	Cluster	view	object.	The	new	group	will	contain	several	virtual
machines	and	you	will	also	define	a	host	group.	Once	these	are	defined,	you	can	create	a
rule	that	ties	a	VM	group	to	a	Host	group.

To	begin	building	a	DRS	group,	the	first	step	is	to	take	a	look	at	the	structure	in	vSphere
where	the	DRS	groups	are	defined.	This	is	part	of	the	cluster	view	object	in	PowerCLI.	In
this	view,	you	can	define	the	configuration	specifications	that	define	the	DRS	groups,	both
for	virtual	machines	and	hosts.	The	same	method	applies	for	both,	differing	only	between
the	type	of	object	that	you	define.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server.	You	should	also	have	a	virtual	machine	DRS	group	created	and	virtual
machines	assigned	to	the	group.

How	to	do	it…
Let’s	create	a	DRS	group	for	virtual	machines	by	performing	the	following	steps:

1.	 The	first	step	is	to	get	the	cluster	view	for	the	cluster	that	we	want	to	manage.	In	this
case,	the	cluster	is	BigCluster.	To	get	the	view,	first	use	the	Get-Cluster	cmdlet	and
then	pipe	that	into	Get-View:

Get-Cluster	"BigCluster"	|	Get-View

2.	 The	next	step	is	to	examine	the	Configuration	and	ConfigurationEx	properties	in
this	object:

(Get-Cluster	"BigCluster"	|	Get-View).Configuration

(Get-Cluster	"BigCluster"	|	Get-View).ConfigurationEx

3.	 You	will	see	that	the	ConfigurationEx	property	includes	a	Group	property	within	it.
If	you	output	that	object,	you	will	find	the	list	of	existing	groups:

(Get-Cluster	"BigCluster"	|	Get-View).ConfigurationEx.Group

4.	 If	you	have	a	brand	new	cluster	with	no	groups	created,	you	might	not	get	any
results.	In	that	case,	the	results	of	a	cluster	with	existing	groups	would	return	a	list	of
groups.	Running	the	output	through	the	Get-Member	or	GM	cmdlet	would	show	you
two	object	definitions	from	the	results:	the	first	is	the	VMware.Vim.ClusterVmGroup
object,	and	the	second	is	the	VMware.Vim.ClusterHostGroup	object.	These	are	the
types	of	objects	that	you	will	need	to	create.

5.	 You	will	need	to	create	a	new	object	for	the	VM	group,	but	this	object	must	be	stored
in	the	more	generic	VMware.Vim.ClusterGroupSpec	type.	The	reason	it	must	be	of
this	type	is	because	the	Group	property	in	ConfigurationEx	is	of	this	type,	but
contains	the	VMware.Vim.ClusterVmGroup	objects.	To	create	the	new	object,	use	the
New-Object	cmdlet:

$group	=	New-Object	VMware.Vim.ClusterGroupSpec

6.	 If	you	enumerate	the	$group	variable	now,	you	will	see	an	Info	and	Operation
property.	By	default,	the	Operation	property	takes	the	value	of	add.	To	use	this,	you
will	populate	the	Info	property	with	a	new	VMware.Vim.ClusterVmGroup	object:

$group.Info	=	New-Object	VMware.Vim.ClusterVmGroup	

7.	 Next,	you	can	name	your	new	VM	group.	To	do	this,	you	can	simply	use	dot	notation
to	populate	the	Name	property	of	the	Info	property	in	the	$group	variable:

$group.Info.Name	=	"TTYLinux	VMs"

8.	 Next,	you	should	populate	the	VMs	that	belong	to	this	group.	You	can	use	any	cmdlet
that	you	want	to	retrieve	an	object	that	contains	the	VMs	that	should	be	assigned	to
the	group.	In	this	case,	you	can	match	against	the	TTYLinux	VMs	using	Get-VM	with	a
pattern	match.	Once	you	have	the	object,	loop	through	a	ForEach	loop	to	assign	the
virtual	machines	to	the	Vm	property:

$vms	=	Get-VM	"TTYLinux*"

ForEach	($vm	in	$vms)	{

		$group.Info.Vm	+=	$vm.ExtensionData.MoRef

}

9.	 Now	that	you	have	the	group	built,	the	last	step	is	to	assign	this	back	to	the	cluster
view.	To	do	this,	you	need	to	use	the	cluster	view.	It	is	easy	to	store	the	cluster	view
in	a	variable	so	that	you	can	easily	use	it:

$cluster	=	Get-Cluster	"BigCluster"	|	Get-View

10.	 Inside	the	cluster	view	object,	there	is	a	method	named
ReconfigureComputeResource_Task.	Although	this	doesn’t	directly	explain	that	it	is
used	to	make	a	group	change,	this	is	the	method	that	will	do	the	work.	However,	this
method	calls	for	a	specific	object	to	be	passed	into	it.	The	output	from	a	Get-Member
cmdlet	on	the	cluster	view	shows	you	the	expected	syntax	of
ReconfigureComputeResource_Task:

TypeName			:	VMware.Vim.ClusterComputeResource

Name							:	ReconfigureComputeResource_Task

MemberType	:	Method

Definition	:	VMware.Vim.ManagedObjectReference	

ReconfigureComputeResource_Task(VMware.Vim.ComputeResourceConfigSpec	

spec,	bool	modify)

11.	 Your	group	definition	stored	in	$group	can	actually	be	stored	in	this
ComputeResourceConfigSpec	object	type,	but	we	need	to	create	one	more	object	and
nest	the	$group	object	inside	it.	Use	New-Object	to	create	a
VMware.Vim.ClusterConfigSpecEx	object:

$spec	=	New-Object	VMware.Vim.ClusterConfigSpecEx

$spec.GroupSpec	=	$group

12.	 Finally,	you	need	to	call	the	ReconfigureComputeResource_Task	method	and	pass
the	specification	stored	in	$spec	into	it:

$cluster.ReconfigureComputeResource_Task($spec,$true)

Note
At	this	point,	you	created	a	new	VM	group.	To	do	the	same	for	a	host	group,	you
only	need	to	change	the	procedure	in	Step	6	to	be	of	the	type,
VMware.Vim.ClusterHostGroup.

How	it	works…
This	recipe	works	by	leveraging	the	cluster	view	object	in	PowerCLI.	This	object	has	a	lot
of	methods	and	data	stored	in	it	that	relate	to	the	definition	of	a	compute	cluster.	In	this
case,	you	created	a	new	Group	object	that	is	of	a	generic	group	object	called
VMware.Vim.ClusterGroupSpec.	Inside	this	object,	you	define	either	a	host	or	VM	group
object	with	the	name	and	host	or	VM	objects	linked	to	it.	The	Group	specification	is	then
stored	in	an	overall	VMware.Vim.ClusterConfigSpecEx	object	and	that	object	is	used	with
a	Reconfiguration	method	on	the	cluster	view.

Although	there	are	several	nested	levels	of	objects,	together	they	form	a	specification	that
defines	the	group	configuration.	Using	the	Get-Member	cmdlet	is	the	best	way	to
understand	what	types	of	each	object	are	present	in	the	nested	data	structure.	When	you
see	an	example	or	a	definition	of	the	types	using	Get-Member,	you	can	engineer	a	structure
to	define	new	data.	However,	you	must	leverage	a	method	to	initiate	a	change.	Without
this	critical	piece,	a	defined	specification	never	gets	moved	into	use.	This	is	a	critical	piece
of	the	definition.	In	the	next	recipe,	you	will	also	leverage	the	same	data	structure	to	list
members	of	an	existing	group.

There’s	more…
Even	though	you’ve	gone	through	the	steps	of	creating	a	new	group,	you	probably	do	not
want	to	do	these	steps	manually	for	more	groups.	There	is	a	much	easier	way	to	handle
this	by	creating	functions.	Rather	than	covering	all	of	that	in	this	recipe,	you	can	read
blogger	Arnim	van	Lieshout’s	two	excellent	and	elegant	functions	to	handle	creation	of
new	DRS	virtual	machine	groups	and	new	DRS	host	groups.

This	blog	post	is	an	excellent	example	of	many	other	great	resources	and	scripts	available
online;	however,	there	is	no	replacement	for	understanding	how	a	script	works.	This
recipe	teaches	you	the	“how	to”	part	of	the	equation,	but	van	Lieshout’s	script	is	a
preferred	way	to	handle	future	creation.	The	same	blog	post	also	includes	a	script	using
the	same	techniques	to	create	new	VM	to	Host	rules.	This	script	can	be	used	to	combine
created	VMs	and	Host	groups	and	defines	rules	with	them.

See	also
For	more	information	on	Arnim	van	Lieshout’s	New	DRS	Group	Functions	you	can
refer	to	http://www.van-lieshout.com/2011/06/drs-rules/

http://www.van-lieshout.com/2011/06/drs-rules/

Listing	the	members	of	a	DRS	group
Now	that	you	know	how	to	correlate	a	MoRef	back	to	a	VM	name,	and	how	to	create	a
DRS	group,	the	next	step	is	to	be	able	to	audit	and	list	the	members	of	DRS	groups.
Getting	the	list	of	groups	is	fairly	simple.	In	fact,	you	already	attempted	to	do	this	in	the
previous	recipe.	However,	the	returned	information	will	be	in	the	form	of	MoRefs	for	VM
or	Hosts.	You	need	to	convert	these	so	that	you	can	see	the	membership.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server.	You	should	also	have	a	virtual	machine	DRS	group	created	and	virtual
machines	assigned	to	the	group.

How	to	do	it…
In	order	to	audit	and	list	the	members	of	DRS	groups,	perform	the	following	steps:

1.	 To	report	the	members	of	a	DRS	group,	you	can	do	this	with	the	cluster	view	object.
The	first	step	is	to	get	the	cluster	view	again	for	the	cluster	you	want	to	report	using
the	Get-View	cmdlet.	The	parameter	you	want	to	report	is	in	ConfigurationEx
property	and	in	the	Group	subproperty:

(Get-Cluster	"BigCluster"	|	Get-View).ConfigurationEx.Group

2.	 You	can	add	a	Select	statement	to	this	in	order	to	get	the	name	of	the	group	and
change	the	MoRefs	into	VM	or	Host	Names.	To	do	this,	you	can	create	a	calculated
expression	that	runs	a	ForEach	loop	on	the	Vm	property	to	look	up	each	VM	and
return	its	name:

(Get-Cluster	"BigCluster"	|	Get-View).ConfigurationEx.Group	|	Select	

Name,	@{N='VMs';E={ForEach	($vm	in	$_.Vm)	{	(Get-VM	-Id	$vm).Name	}}}

3.	 You	can	also	create	a	calculated	expression	to	return	the	list	of	Hosts	by	name:

(Get-Cluster	"BigCluster"	|	Get-View).ConfigurationEx.Group	|	Select	

Name,	@{N='VMs';E={ForEach	($vm	in	$_.Vm)	{	(Get-VM	-Id	$vm).Name	}}},	

@{N='Hosts';E={ForEach	($vmhost	in	$_.Host)	{	(Get-VMHost	-Id	

$vmhost).Name	}}}

4.	 The	results	returned	will	show	whether	a	group	is	a	VM	or	Host	group	based	on	the
type	of	members	that	are	returned.

How	it	works…
This	recipe	works	based	on	the	data	stored	in	the	cluster	view	object.	Since	this	represents
all	of	the	DRS	groups,	both	VM	and	Host	groups,	you	can	easily	access	them.	The
primary	component	of	the	recipe	is	to	create	calculated	expressions	to	translate	the	MoRef
objects	into	usable	data	that	is	more	meaningful.

There’s	more…
You	can	leverage	this	code	to	create	a	function	to	get	all	of	the	virtual	machines	that	are	a
member	of	the	DRS	group	and	return	them	like	a	Get-Function	cmdlet	would.	To	do	this,
you	use	the	code	you	have	generated	in	this	recipe	and	wrap	it	as	a	process	section,	add
the	header,	params,	and	name	your	function.	This	will	allow	you	to	repetitively	call	the
function	whenever	it	is	in	use	in	other	scenarios.

One	of	the	things	that	creating	the	function	might	allow	you	to	do	is	to	take	a	returned
object	and	compare	it	against	the	desired	set	of	items	in	another	object.	Since	the
Compare-Object	cmdlet	of	PowerShell	is	pretty	simple	to	use,	as	long	as	the	two	objects
match	in	type	and	format,	you	should	be	able	to	compare	and	drop	out	differences.	This
becomes	a	powerful	auditing	tool	for	your	DRS	groups.

See	also
The	Using	Compare-Object	to	audit	group	memberships	for	differences	recipe	in
Chapter	9,	Managing	DRS	and	Affinity	Groups	using	PowerCLI

Updating	the	members	of	a	VM	DRS
group
Returning	back	to	the	task	of	building	a	host	and	VM	DRS	groups,	the	MoRef	in	the
previous	recipe	will	be	used	extensively.	The	groups	and	their	memberships	will	be
created	using	object	views,	configuration	specifications,	and	the	MoRef	of	each	VM	that
belongs	to	the	group.

You	might	be	wondering	why	should	you	create	or	maintain	these	types	of	groups	from
PowerCLI	instead	of	through	the	GUI,	if	there	aren’t	native	cmdlets	available	to	you.	In
PowerCLI,	it	is	easy	to	assemble	a	group	of	objects	in	an	object	that	meets	the	specific
criteria.	This	is	something	you’ve	been	doing	all	throughout	the	book.	You	can	take
criteria	such	as	“all	VMs	on	datastores	from	storage	array	X”	and	easily	search	for	them
with	the	Get-DatastoreCluster,	Get-Datastore,	and	Get-VM	cmdlets.	Once	you	have
that	list,	you	can	update	the	DRS	group	to	match.	PowerCLI	actually	makes	much	more
sense	to	update	DRS	groups	through	the	native	vCenter	Client	method.

The	vCenter	Client	doesn’t	offer	any	of	the	enhanced	search	capabilities	in	the	DRS	group
member	pickers.	You	get	a	list	of	VMs	and	you	can	search	only	for	members	to	be	added
by	name.	It	is	a	manual	process	to	verify	that	the	VMs	stored	on	storage	array	X	are	the
same	ones	in	the	group.

It	is	impossible	to	use	the	vCenter	Client	to	identify	which	VMs	are	missing	from	all
groups.	In	scenarios	such	as	Metro	Storage	Clusters,	you	might	want	every	VM	to	have	an
affinity	to	one	site	or	another	and	this	is	generally	done	with	DRS	groups	and	VM-Host
affinity.	However,	if	you	can’t	verify	or	audit	this	in	the	vCenter	Client,	there	is	no	way	to
know	for	sure.

In	this	recipe,	you	will	create	host	and	vm	DRS	groups	using	MoRefs.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to	a
vCenter	Server.	You	might	want	to	have	a	text	editor	to	store	parts	of	the	code	to	turn	them
into	a	reusable	function.

You	will	need	to	start	with	an	existing	DRS	group.	If	you	do	not	have	an	existing	DRS
group,	you	can	create	one	in	the	vCenter	Client,	or	by	using	the	Creating	a	DRS	group	for
virtual	machines	recipe	earlier	in	this	chapter.	This	recipe	will	follow	the	same	basic
structure	as	the	creation	process.

How	to	do	it…
In	order	to	update	the	members	of	a	VM	DRS	group,	perform	the	following	steps:

1.	 In	the	Creating	a	DRS	Group	for	virtual	machines	recipe,	you	used	a	view	in	order	to
make	the	changes	to	the	cluster	DRS	groups.	There	is	another	method.	In	this	recipe,
you	will	use	a	cluster	object	instead	of	a	cluster	view	object.	To	obtain	this,	use	the
Get-Cluster	cmdlet.	You	will	utilize	the	ExtensionData	property	to	make	the
changes	later	in	the	recipe:

$cluster	=	Get-Cluster	"BigCluster"

Note
There	are	many	methods	to	solve	most	problems	in	PowerCLI.	You	can	easily	write
the	earlier	recipe	using	a	Cluster	object	instead	of	a	Cluster	View	object	also.

2.	 The	next	step	is	to	create	three	new	objects	that	you	will	use	for	the	configuration
change.	From	the	Creating	a	DRS	group	for	virtual	machines	recipe,	you	will	need	a
configuration	specification	object,	a	virtual	machine	group	object,	and	a	generic
group	object:

$spec	=	New-Object	VMware.Vim.ClusterConfigSpecEx

$group	=	New-Object	VMware.Vim.ClusterGroupSpec

$group.Info	=	New-Object	VMware.Vim.ClusterVmGroup	

3.	 You	need	to	set	the	operation	of	the	group	specification	to	be	of	the	type	edit	to
make	the	group	membership	changes:

$group.Operation	=	"edit"

4.	 The	next	step	is	to	specify	the	name	of	the	group	to	be	edited.	To	do	this,	you	set	the
Name	property	in	the	ClusterVMGroup	object.	You	can	do	this	using	dot	notation	on
the	$group	variable	that	contacts	the	group	specification,	since	the	ClusterVMGroup
object	is	a	property	in	the	group	specification:

$group.Info.Name	=	"TTYLinux	VMs"

5.	 In	the	creation	recipe,	you	assigned	any	VM	that	matched	the	TTYLinux*	pattern	into
the	group.	In	this	update,	you	will	only	assign	the	TTYLinux1	VM	into	the	group	to
ensure	that	your	code	has	worked.	Use	the	Get-VM	cmdlet	to	retrieve	the	VM	object,
then	use	a	ForEach	loop	to	populate	these	into	the	group	object:

$vms	=	Get-VM	TTYLinux1

ForEach	($vm	in	$vms)	{

		$group.Info.VM	+=	$vm.ExtensionData.MoREF

}

6.	 Next,	you	should	assign	the	completed	group	object	into	the	specification.	The
specification	was	stored	earlier	in	a	$spec	variable,	so	we	can	use	dot	notation	again
to	set	the	GroupSpec	property:

$spec.GroupSpec	+=	$group

7.	 Last,	you	need	to	actually	make	the	change	that	is	defined	by	the	configuration	you
just	outlined.	To	do	this	in	the	earlier	recipe,	you	used	the
ReconfigureComputeResource_Task	method.	This	method	also	exists	in
ExtensionData	of	the	cluster	object.	To	check	this,	use	the	Get-Member	cmdlet	on
ExtensionData:

$cluster.ExtensionData	|	Get-Member

8.	 The	syntax	of	this	method	is	the	same:	it	receives	two	parameters.	The	first	parameter
is	the	specification	and	the	second	is	a	Boolean	to	make	the	change	or	not.	The	$spec
variable	contains	our	completed	specification	and	a	$true	Boolean	value	will	make
the	change:

$cluster.ExtensionData.ReconfigureComputeResource_Task($spec,	$true)

9.	 The	last	step	is	to	confirm	that	the	changes	were	made.	You	can	do	this	using	the
vCenter	Client,	or	by	using	the	Listing	the	members	of	a	DRS	group	recipe.

How	it	works…
The	update	works	the	exact	same	way	as	the	creation	script	in	terms	of	assembling	a
specification	with	multiple	PowerShell	objects	nested	in	an	overall	specification.	This	data
is	passed	into	a	method	to	make	the	change	to	the	cluster	configuration.

In	this	recipe,	you	used	a	slightly	different	method	to	achieve	the	same	outcome.	One
reason	this	was	included	was	to	illustrate	the	possibility	of	multiple	methods	to	achieve
the	same	results.	The	cluster	object’s	ExtensionData	property	contains	many	of	the	same
abilities	as	a	cluster	view.	Using	one	over	the	other	is	a	personal	preference	since	they
achieve	the	same	thing.	Using	the	cluster	object	might	be	preferred	since	the	view	requires
an	additional	cmdlet;	however,	both	are	completely	correct.

Creating	a	custom	function	to	update
members	of	a	DRS	group
Updates	to	DRS	group	members	will	likely	occur	much	more	often	than	the	initial
creation	of	a	DRS	group	in	vSphere.	Because	of	this,	creating	a	function	to	easily	manage
and	update	the	members	of	a	DRS	group	is	helpful.	In	this	recipe,	you	will	create	two
functions	that	are	used	to	update	VM	DRS	groups	and	Host	DRS	groups.

In	writing	the	function,	you	will	begin	to	take	into	consideration	the	type	of	data	that	can
be	passed	into	the	function	from	your	users.	This	is	important	to	consider,	because	as
you’ve	seen,	there	can	be	multiple	ways	to	signify	a	particular	object	in	PowerCLI	that	all
points	back	to	the	same	virtual	machine.	You	can	have	string	data,	you	can	pass	in	a
virtual	machine	object,	a	MoRef,	or	a	View.	All	of	these	are	valid	representations	of	a
virtual	machine.	The	same	is	true	for	other	elements	in	vSphere,	such	as	virtual	hosts,
datastores,	and	networking.

To	begin	writing	the	function,	you	will	pull	back	some	of	the	same	code	that	you	used	in
the	previous	chapters	where	you	created	functions,	but	you	will	add	some	additional
sections	to	the	functions	you	will	create	in	this	chapter.	This	function	is	completely	based
on	the	Arnim	van	Lieshout	scripts	referenced	in	the	Creating	a	DRS	group	for	virtual
machines	recipe.

Getting	ready
To	begin	this	recipe,	you	need	to	open	the	PowerShell	ISE,	which	will	make	creating	a
function	easier.

How	to	do	it…
In	order	to	create	a	custom	function	to	update	members	of	a	DRS	group,	perform	the
following	steps:

1.	 To	begin,	you	will	need	to	connect	to	a	vCenter;	however,	first	you	need	to	add	the
PowerCLI	Snapin	using	the	Add-PSSnapin	cmdlet.	These	cmdlets	can	be	executed	in
the	lower	half	of	the	window	where	PowerShell	is	executed.	They	do	not	need	to	be
in	the	function	file	you	are	creating:

Add-PSSnapin	VMware.VimAutomation.Core

Connect-VIServer	vcenter.domain.local

2.	 Your	next	step	is	to	set	up	a	generic	function	in	the	ISE	window.	To	begin,	create	the
function	definition	in	the	script	file	area	of	the	ISE:

function	Update-VmDrsGroup	{

3.	 Next,	include	the	notes	block	of	the	function.	This	is	the	area	where	the	description	of
the	function,	its	examples,	and	other	information	will	be	outlined.	This	information	is
used	for	online	help	with	the	Get-Help	cmdlet:

<#

		.SYNOPSIS

				Updates	the	VMs	in	an	existing	VM	DRS	group

		.DESCRIPTION

				Reconfigures	an	existing	virtual	machine	DRS	group	to

				contain	the	group	of	virtual	machines	defined	by	the	-VM	property	

of	the	function.

		.PARAMETER	Cluster

				The	name	of	the	cluster	with	the	DRS	group	to	update

		.PARAMETER	Name

				The	name	of	the	VM	DRS	group	to	update

		.PARAMETER	VM

				The	list	of	virtual	machines	to	place	in	the	DRS	group.

		.EXAMPLE

				Update-VmDrsGroup	-Cluster	BigCluster	-Name	"VM	Group"	-VM	(Get-VM	

WinVM*)

				.EXAMPLE

				Update-VmDrsGroup	-Cluster	BigCluster	-Name	"VM	Group"	-VM	

WinVM1,DB1,App1

#>

4.	 The	next	step	is	to	define	the	parameters	that	are	accepted	by	the	function.	You	do
this	inside	a	param()	block.	You	will	have	three	parameters	to	define:	Cluster,	Name,
and	VM.	Each	parameter	needs	to	be	mandatory.	The	VM	parameter	should	not	accept
the	pipeline	input.	In	this	function,	you	can	also	add	some	additional	functionalities
using	HelpMessage:

param	(

		[parameter(valuefrompipeline	=	$false,	mandatory	=	$true,

				HelpMessage	=	"Enter	a	list	of	VM	names")]

						[PSObject]	$VM,

		[parameter(mandatory	=	$true,

				HelpMessage	=	"Enter	the	name	of	a	cluster")]

						[PSObject]	$Cluster,

		[parameter(mandatory	=	$true,

				HelpMessage	=	"Enter	the	name	of	a	VM	DRS	Group")]

						[String]	$Name

)

5.	 The	next	step	is	to	begin	the	processing	of	the	function.	To	begin,	you	use	the	process
script	block	with	a	curly	brace:

process	{

6.	 The	first	thing	to	do	in	the	process	block	is	to	define	the	new	objects	that	you	will
need	in	order	to	update	the	group.	These	are	the	same	three	objects	that	you	created
in	the	previous	recipe:

$spec	=	New-Object	VMware.Vim.ClusterConfigSpecEx

$group	=	New-Object	VMware.Vim.ClusterGroupSpec

$group.Info	=	New-Object	VMware.Vim.ClusterVmGroup

7.	 Once	you	have	the	objects	created,	you	should	begin	to	populate	the	specification.
The	first	thing	to	populate	is	the	operation	type	and	that	should	be	set	to	edit:

$group.Operation	=	"edit"

8.	 The	next	step	is	to	populate	the	name	of	the	group	from	the	$Name	parameter,	which
will	be	passed	in	by	the	user:

$group.Info.Name	=	$Name

9.	 Next,	you	should	attend	to	the	cluster	assignment.	Because	the	-Cluster	parameter
accepts	multiple	types	of	input,	you	need	to	standardize	the	input	before	using	it	in
your	script.	You	need	a	cluster	object,	which	is	of	type	ClusterImpl.	If	you	receive
anything	else,	you	need	to	change	it	into	a	cluster	object.	To	do	this	for	the	Cluster
parameter,	you	can	use	a	switch	statement.	Each	variable	has	a	type	associated	and
includes	a	gettype()	method	to	return	the	type	for	evaluation:

Switch	($Cluster.gettype().name)	{

		"String"	{	$Cluster	=	Get-Cluster	-Name	$Cluster	}

		"ClusterImpl"	{	}

		"ClusterComputeResource"	{	$Cluster	=	Get-Cluster	-Id	$Cluster.MoRef	

}

		"ManagedObjectReference"	{	$Cluster	=	Get-Cluster	-Id	$Cluster	}

10.	 If	the	type	doesn’t	match	the	types	you	need	to	accept	for	the	parameter,	you	should
display	an	error	back	to	the	user.	You	can	do	this	by	defining	a	default	in	the	switch
statement	that	throws	an	error	for	any	other	type:

		default	{	throw	"The	data	specified	for	the	-Cluster	variable	does	

not	match	the	expected	types."}

11.	 Don’t	forget	to	close	the	switch	statement:

}

12.	 Next,	you	should	also	do	the	data	clean	up	for	the	-VM	parameter.	In	this	block,

however,	you	have	additional	work.	Not	only	do	you	need	to	possibly	get	the	VM,
but	you	also	need	to	add	these	into	your	group	objects.	You	can	do	both	in	the	script
block.	This	is	the	same	method	used	in	the	Arnim	van	Lieshout	scripts	referenced	in
the	Creating	a	DRS	group	for	virtual	machines	recipe.	If	a	string	is	passed	in	the	-VM
parameter,	you	need	to	use	the	string	to	get	virtual	machines,	loop	through	them,	and
add	those	to	$group.Info.VM.	If	you	get	either	a	VM	object	(from	Get-VM)	or	a	VM
view	(from	Get-View)	passed	in,	you	can	add	the	MoREF	values	in	a	single	line	using
dot	notation.	Even	though	there	are	multiple	objects	in	the	-VM	parameter,	if	you	use
dot	notation,	the	MoRef	for	all	of	the	objects	is	accessible	and	returned	by
referencing	it	once.	In	any	case,	the	objects	should	be	added	to	the	$group.Info.VM
property	using	the	+=	operator	to	preserve	any	existing	data	and	add	the	current
object	to	it:

if	(($VM.gettype().name)	-eq	"String")	{	$VM	=	Get-VM	-Name	$VM	}

ForEach	($item	in	$VM)	{

		Switch	($item.gettype().name)	{

				"String"	{	Get-VM	-Name	$VM	|	%{	$group.Info.VM	+=	

$_.ExtensionData.MoREF	}}

				"VirtualMachineImpl"	{	$group.Info.VM	+=	$item.ExtensionData.MoREF	

}	

				"VirtualMachine"	{	$group.Info.VM	+=	$item.MoRef	}

		}

}

13.	 Next,	you	should	check	to	make	sure	that	the	VM	list	has	data.	If	it	is	empty,	you
need	to	throw	an	error.	To	do	this,	use	an	if	command	and	specify	the	name	of	the
property.	If	it	is	populated,	it	returns	$true	and	if	not,	$false:

if	($group.Info.VM)	{

14.	 Next,	assign	the	group	object	into	the	specification	object:

$spec.GroupSpec	+=	$group

15.	 Last,	execute	the	method	to	update	the	group	membership	with	the	method	on	the
cluster	object:

$cluster.ExtensionData.ReconfigureComputeResource_Task($spec,	$true)

16.	 Now,	you	need	to	handle	a	$false	condition	from	the	if	statement	with	an	else
statement.	Inside	the	else	statement,	you	would	want	to	throw	the	error	and	tell	the
user	that	the	update	failed	and	why	it	failed:

}	else	{

			throw	"There	are	no	Virtual	Machines	defined.	Update	failed."

}

17.	 Now,	close	the	process	block	next	with	a	curly	brace:

}

18.	 You	have	one	last	closing	curly	brace,	this	time	to	close	the	function:

}

How	it	works…
The	Update-VmDrsGroup	function	takes	the	individual	cmdlets	and	specifications	from	the
previous	recipe	and	builds	controls	and	structure	around	them	to	create	the	function.	When
writing	a	multi-purpose	function,	you	have	to	plan	for	the	different	types	of	input	that	can
be	passed	into	the	function	and	handle	processing	for	those	different	types,	if	that	is
required.

You	have	already	seen	functions,	but	in	this	case,	you	added	several	new	things.	You
added	controls	for	multiple	parameters,	where	there	were	three	required	or	mandatory
parameters.	You	added	definition	to	accept	one	of	the	three	through	the	pipeline.	You
added	multiple	examples	and	documentation	for	each	parameter	to	the	documentation
block.	You	also	checked	for	some	errors,	used	the	throw	command	to	stop	processing,	and
sent	the	output	to	the	user	to	indicate	why	a	failure	occurred.	All	of	these	are	things	you
need	to	consider	when	putting	together	code	that	others	will	use.	While	you	might	pass	in
a	string	of	virtual	machines	every	time,	another	user	might	choose	to	pass	them	in	from	a
Get-VM	cmdlet	or	even	from	View	or	an	unknown	object	type.	If	you	were	only	processing
based	on	strings,	it	would	cause	a	failure	when	attempting	to	run.

There’s	more…
The	same	function	can	easily	be	updated	to	perform	the	same	task	for	Host	DRS	Groups
on	a	cluster.	The	documentation	would	need	to	change	in	the	documentation	block,	but	the
actual	processing	is	very	much	the	same.	Instead	of	using	Get-VM,	you	will	use	Get-
VMHost	and	you’d	have	to	check	the	VMHostImpl	type	(from	Get-VMHost)	and	HostSytem
type	(from	Get-View)	instead	of	the	VM	object	types.	Include	both	in	the	script	file	and
save	it	as	a	module	for	easy	updates	of	both	VM	and	Host	DRS	Groups.	Combine	these
functions	with	the	Arnim	van	Lieshout	authored	scripts	and	you	have	a	power	set	of	tools
to	manage	DRS	groups	on	your	vSphere	implementation.

See	also
For	more	information	on	Arnim	van	Lieshout’s	New	DRS	Group	Functions	you	can
refer	to	http://www.van-lieshout.com/2011/06/drs-rules/
The	Creating	a	snapshot	management	module	recipe	in	Chapter	5,	Creating	and
Managing	Snapshots

http://www.van-lieshout.com/2011/06/drs-rules/

Creating	rules	to	maintain	memberships
of	DRS	groups	using	a	custom	function
In	this	recipe,	you	will	create	a	list	of	rules	that	leverage	the	Update-VmDrsGroup	function
that	you	created	in	the	previous	recipe	in	order	to	keep	assignments	up	to	date	in	a	very
dynamic	environment.	These	rules	can	be	defined	and	then	set	as	a	scheduled	job	in
PowerShell	to	ensure	that	the	assignments	are	up	to	date	at	all	times,	even	if
administrators	move	a	virtual	machine	to	a	different	location.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	the	function	that	you	created
in	the	previous	recipe.	You	will	also	need	an	active	connection	to	a	vCenter	Server.	All	of
the	cmdlets	will	update	groups	on	the	cluster,	BigCluster.	You	will	need	to	create	five
groups	in	the	vCenter	Client	to	use	these	rules	and	updates.	Place	the	vCenter	VM	in	each
of	the	groups,	since	you	cannot	create	an	empty	group.	If	the	groups	contain	different
members	after	writing	the	rules,	the	update	worked	successfully.	The	groups	to	be	created
are	Production	Servers,	iSCSICluster	VMs,	Datastore1	VMs,	WinVMs,	and	VM	Group,
on	the	BigCluster	vSphere	cluster.

For	this	recipe,	you	will	create	several	commands	to	update	VM	group	memberships
based	on	the	following	rules:

Update	a	DRS	VM	Group	called	Production	Servers	to	include	the	database	VMs
in	the	Production	resource	pool.	This	might	be	necessary	to	ensure	licensing
compliance	if	you	only	license	a	subset	of	hosts	in	a	cluster	to	run	a	database
application.
Update	a	DRS	VM	group	with	all	of	the	VMs	in	a	Datastore	Cluster	named
iSCSICluster.	This	is	helpful	if	you	have	a	datastore	cluster	from	an	array	at	one	site
in	a	Metro	Storage	Cluster	configuration	to	set	affinity	of	hosts	in	the	same	site	to	a
local	storage.
Update	a	DRS	VM	group	with	the	VMs	from	a	datastore	called	Datastore1.
Update	a	DRS	VM	group	with	a	list	of	VMs	that	match	the	wildcard	pattern	of
WinVM*	for	a	group	named	WinVMs.
Update	a	DRS	VM	group	from	a	list	of	specific	VMs	that	don’t	match	any	particular
pattern.	The	VM	list	is	WinVM1,	TTYLinux1,	and	DC02.

How	to	do	it…
In	order	to	create	rules	to	maintain	memberships	of	DRS	groups	using	a	custom	function,
perform	the	following	steps:

1.	 To	create	the	first	rule,	you	can	use	the	Get-ResourcePool	cmdlet	to	retrieve	the
desired	pool	and	then	pipe	it	to	Get-VM	and	retrieve	only	the	VMs	in	that	resource
pool.	From	there,	you	use	this	command	as	the	-VM	parameter	on	Update-VmDrsGroup
and	update	the	group	specified	by	name	on	the	cluster	specified.	In	this	case,	the
name	is	Production	Servers	and	the	cluster	is	BigCluster:

Update-VmDrsGroup	-Name	"Production	Servers"	-Cluster	"BigCluster"	-VM	

(Get-ResourcePool	"Production"	|	Get-VM)

2.	 For	the	next	example,	you	can	use	the	same	method	of	retrieving	the	datastore	cluster
and	then	piping	that	into	Get-VM	to	obtain	the	list	of	VMs	in	that	cluster.	Then,
specify	it	as	the	-VM	into	the	Update-VmDrsGroup	function:

Update-VmDrsGroup	-Name	"iSCSICluster	VMs"	-Cluster	"BigCluster"	-VM	

(Get-DatastoreCluster	"iSCSICluster"	|	Get-VM)

3.	 You	can	also	use	the	parameters	of	a	Get-VM	cmdlet	to	return	the	list.	In	this	case,	use
the	-Datastore	parameter	to	return	all	VMs	on	that	datastore	and	then	pass	the	VMs
into	the	Update-VmDrsGroup	function:

Update-VmDrsGroup	-Name	"Datastore1	VMs"	-Cluster	"BigCluster"	-VM	

(Get-VM	-Datastore	"Datastore1")

4.	 Wildcards	are	certainly	within	scope	too.	In	this	case,	you	can	specify	a	wildcard	and
pass	it	directly	as	a	string	on	the	-VM	parameter	into	the	Update-VmDrsGroup	cmdlet
and	the	function	will	transform	into	the	necessary	objects:

Update-VmDrsGroup	-Name	"WinVMs"	-Cluster	"BigCluster"	-VM	WinVM*

5.	 For	a	list	of	unalike,	nonmatching	virtual	machines,	you	can	still	handle	this	in	a
single	command.	You	can	specify	a	list	of	virtual	machines	using	comma	separation
in	the	Update-VmDrsGroup	function	in	the	-VM	parameter:

Update-VmDrsGroup	-Name	"VM	Group"	-Cluster	"BigCluster"	-VM	

WinVM1,TTYLinux1,DC02

How	it	works…
As	you	near	the	end	of	the	book,	this	is	one	of	those	recipes	that	helps	you	tie	up	loose
ends.	This	brings	together	native	cmdlet	operations	combined	with	a	pipeline	and	a
custom	function	that	you’ve	written.	Each	of	the	rules	can	be	scheduled	to	run	at	an
interval	to	update	the	group	membership	to	ensure	that	virtual	machines	are	running	where
you	want	them	to	be	running.

There’s	more…
When	you	go	to	the	next	level	of	automation,	the	virtual	machine	groups	or	host	groups
with	DRS.	You	should	also	closely	watch	for	DRS	faults	in	the	vCenter	Client.	Faults,	if
you	remember,	are	any	of	the	recommendations	that	cannot	be	applied	due	to	some	sort	of
conflict	condition.	In	the	event	that	your	rules	apply	virtual	machines	into	groups	that
make	up	competing	DRS	rules,	you	will	get	faults.	In	the	event	of	faults,	you	will	need	to
research	through	and	find	which	rules	are	causing	DRS	not	to	apply	its	recommendations
on	a	virtual	machine.	Faults	do	not	impair	the	running	of	a	virtual	machine;	however,	the
VM	might	not	be	running	where	you	want	it	to	be	located	in	the	vSphere	cluster.

See	also
The	Using	PowerShell	native	capabilities	to	schedule	scripts	recipe	in	Chapter	7,
Creating	Custom	Reports	and	Notifications	for	vSphere

Using	Compare-Object	to	audit	group
memberships	for	differences
As	mentioned	in	the	Listing	the	members	of	a	DRS	group	recipe,	you	can	easily	compare	a
rule	to	the	existing	configuration	as	an	auditing	procedure.	In	this	recipe,	you	will	retrieve
the	list	of	existing	VMs	in	the	group,	and	then	compare	that	with	a	list	of	the	VMs	from
the	desired	group.	You	will	use	the	group	created	in	the	Creating	a	DRS	group	for	virtual
machines	recipe	named	TTYLinux	VMs.

To	make	the	results	interesting,	compare	against	the	virtual	machines	WinVM1	and
TTYLinux1.	Only	one	of	these	should	be	a	match,	while	the	others	should	fall	out	as
differences.	Then,	you	can	compare	the	existing	groups	against	a	wildcard	pattern	match
of	TTYLinux*.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	with	an	active	connection	to	a
vCenter	established.

How	to	do	it…
In	order	to	use	Compare-Object	to	audit	group	memberships	for	differences,	perform	the
following	steps:

1.	 The	first	thing	is	to	obtain	a	cluster	object	and	obtain	all	of	the	DRS	groups	and	store
them	into	a	variable:

(Get-Cluster	"BigCluster").ExtensionData.ConfigurationEx.Group

2.	 Next,	you	want	to	get	the	results	of	just	the	group	you	want	to	check.	To	do	this,	you
can	use	a	Where	command	to	scope	the	results:

$group	=	(Get-Cluster	"BigCluster").ExtensionData.ConfigurationEx.Group	

|	Where	{$_.Name	-eq	"VM	Group"}

3.	 The	next	step	is	to	get	a	list	of	the	current	virtual	machines	that	should	match	the
DRS	group	defined.	Obtain	this	result	using	the	Get-VM	cmdlet:

$vm	=	Get-VM	WinVM1,TTYLinux1,DC02

4.	 The	next	step	is	to	run	a	Compare-Object	cmdlet	between	the	two	lists.	The	groups
from	the	cluster	object	come	in	MoRef	form,	which	is	the	easiest	thing	to	compare
against.	Since	you	used	Get-VM,	you	have	the	MoRef	of	the	VMs	stored	in
ExtensionData.MoRef	on	the	virtual	machine	object:

Compare-Object	($group.Vm)	($vm.ExtensionData.MoRef)

5.	 To	clean	up	the	results,	create	a	calculated	expression	to	display	the	name	of	the
virtual	machine	instead	of	its	MoRef.	The	results	for	the	following	command	line	are
displayed	in	the	screenshot	following	it:

Compare-Object	($group.Vm)	($vm.ExtensionData.MoRef)	|	Select	

@{N="VM";E={(Get-VM	-Id	$_.InputObject).Name}},	SideIndicator

6.	 On	the	left-hand	side,	you	have	the	two	VMs,	TTYLinux2,	and	TTYLinux3	displayed
because	they	match	the	TTYLinux*	pattern	that	was	used	to	create	the	group.	On	the
right-hand	side,	you	see	the	WinVM1	that	does	not	match	the	TTYLinux*	pattern.
This	is	expected,	but	it	illustrates	how	you’d	see	results	in	the	event	that	something
doesn’t	match.	If	the	two	objects	match	completely,	you	will	see	different	results.	To
illustrate	this,	update	the	contents	of	the	$vm	variable	with	a	new	Get-VM	run	to	match
against	TTYLinux*:

$vm	=	Get-VM	TTYLinux*

7.	 Now,	rerun	the	same	compare	statement	from	the	earlier	recipe	and	you	will	see	a
different	result—no	result	actually.	The	following	screenshot	illustrates	the	expected
behavior:

Compare-Object	($group.Vm)	($vm.ExtensionData.MoRef)	|	Select	

@{N="VM";E={(Get-VM	-Id	$_.InputObject).Name}},	SideIndicator

8.	 In	the	real	world,	if	you	had	different	results	and	wanted	to	update	the	list,	you	can
easily	do	this	using	the	$vm	variable.	This	would	be	an	easy	check	and	update	if
different.	To	do	this,	you	can	automate	this	with	an	if	statement.	If	they	are	different
(which	means	that	a	result	is	returned),	execute	the	Update-VmDrsGroup	function,	or
else	output	a	message	saying	they	are	not	different:

If	(Compare-Object	($group.Vm)	($vm.ExtensionData.MoRef)	|	Select	

@{N="VM";E={(Get-VM	-Id	$_.InputObject).Name}},	SideIndicator)	{

		Update-VmDrsGroup	-Name	"TTYLinux	VMs"	-Cluster	"BigCluster"	-VM	$vm

}	else	{

		write-host	"There	were	no	differences."

}

How	it	works…
The	Compare-Object	cmdlet	is	a	very	useful	command	that	lets	you	compare	the	data
inside	two	different	objects	and	output	the	differences.	The	SideIndicator	column	shows
which	side	has	the	difference.	This	would	allow	you	to	see	where	changes	have	occurred
in	the	vSphere	environment	based	on	changes	to	the	rules	you	have	defined.	For	the
comparison	to	occur	correctly,	you	need	to	ensure	that	the	data	on	both	of	the	objects	is	of
the	same	type.	While	type	conversion	can	occur	with	comparisons,	for	the	best	results	we
ensure	that	both	types	match.	In	this	case,	we	used	the	MoRef	since	that	was	the	data
available	without	conversion	from	the	DRS	group.	This	same	data	was	available	in
ExtensionData	on	the	virtual	machine	object.	This	allowed	for	a	quick	and	easy
comparison.

The	results	were	not	in	a	format	that	were	easy	to	read	or	act	on,	however,	this	was	easily
fixed	by	using	a	calculated	expression	to	look	up	and	display	the	friendly	name	of	the
virtual	machine.

This	also	allows	you	to	keep	your	groups	up	to	date	at	any	level	of	automation	where	you
feel	comfortable.	If	you	didn’t	want	the	updates	to	occur	automatically	on	scheduled
intervals,	you	can	run	this	audit	report	and	then	send	the	results	by	e-mail	to	an
administrator	who	can	then	go	and	act	upon	the	changes.

See	also
The	Sending	output	to	CSV	and	HTML	and	the	Using	PowerShell	native	capabilities
to	schedule	scripts	recipes	in	Chapter	7,	Creating	Custom	Reports	and	Notifications
for	vSphere

Chapter	10.	Working	with	vCloud
Director	from	PowerCLI
In	this	chapter,	you	will	cover	the	following	topics:

Connecting	to	a	vCloud	environment
Creating	and	managing	organizations	in	vCloud
Creating	a	new	user	in	an	organization	using	Views
Creating	an	organization’s	virtual	datacenter	in	vCloud	Director
Importing	a	vApp	template	into	vCloud
Configuring	networking	in	a	vCloud	vApp
Reassigning	vApp	VM	network	settings	with	PowerCLI
Starting	and	stopping	vApps	and	individual	VMs	in	a	vCloud

Introduction
When	installing	PowerCLI,	the	optional	vCloud	Director	PowerCLI	can	be	installed	to	let
you	manage	vCloud	environments.	This	addition	allows	customers	to	connect	to	and
manage	vCloud	installations,	either	in	a	private	installation	using	vCloud	Director	or	in	a
hybrid	or	public	cloud	hosted	on	a	vCloud	Provider.	For	vCloud	customers	who	do	not
handle	backend	administration	on	vCloud	Director	datacenters,	VMware	also	offers	the
PowerCLI	for	Tenants	distribution,	which	is	a	reduced	set	of	cmdlets	needed	for	an	end-
user.	For	the	recipes	in	this	chapter,	you	will	need	the	full	distribution	of	PowerCLI	with
vCloud	Director	PowerCLI.	Connecting	to	vCloud	is	a	little	different	than	connecting	to
and	managing	vSphere	with	PowerCLI,	but	all	of	the	concepts	that	you	learned	up	to	this
point	apply	in	a	vCloud	environment.

Think	of	vCloud	as	a	superset	of	controls	over	the	vSphere	virtualization	platform.	vCloud
extends	the	concepts	of	vSphere,	but	also	adds	the	concept	of	providers	and	organizations.
Multiple	providers	might	have	virtual	datacenters	on	the	same	infrastructure	and	offer
services,	securely,	to	organizations	from	the	same	vCloud.	Each	provider	might	have
multiple	tenants	and	each	tenant	is	segmented	from	each	other.	The	vCloud	Networking
and	Security	component,	also	known	as	vShield,	is	required	to	keep	the	tenants	separated
and	secure	from	one	another.

In	addition	to	controls	and	security,	vCloud	also	adds	network	capabilities	to	encapsulate
and	extend	the	border	of	datacenters	between	physical	locations.	This	is	important	for
hybrid	cloud	deployments	where	parts	of	the	tenant’s	Cloud	are	onsite	and	part	of	it	is
hosted	with	a	provider.	vCloud	Director	manages	both	the	local	and	remote	vCloud
locations	and	bridges	the	two.

Last	but	not	least,	vCloud	abstracts	services	and	applications	a	bit	more	than	vSphere	by
packaging	them	into	a	service	catalog	that	is	made	available	to	customers	through	a	self-
service	portal.

In	this	chapter,	you	will	work	with	vCloud	Director	using	the	vCloud	Director	PowerCLI
set	of	cmdlets	included	in	the	PowerCLI	installation.	If	you	did	not	install	PowerCLI	for
Tenants	when	you	installed	PowerCLI	on	your	workstation,	you	will	need	to	rerun	the
installation.	You	need	to	select	Modify	from	the	Program	Maintenance	window	and	select
This	feature	will	be	installed	on	your	local	hard	drive,	as	shown	in	the	following
screenshot:

After	the	installation,	the	vCloud	Director	PowerCLI	cmdlets	will	be	available	to	you.

In	order	to	complete	the	recipes	in	this	chapter,	you	will	need	to	have	a	vCloud
environment	to	connect	to.	This	can	be	an	on-premise	vCloud	Director	installation	or	a
hosted	vCloud	environment	with	a	service	provider.	This	chapter	assumes	that	you’re
acting	as	an	administrator	for	at	least	your	organization	in	vCloud.

Connecting	to	a	vCloud	environment
Before	you	can	do	any	work	in	a	vCloud	environment,	you	need	to	connect	to	it.
Connecting	to	vCloud	Director	or	to	a	vCloud	Hybrid	Service	Provider	looks	very	similar
to	connecting	to	vCenter	or	an	ESXi	host.

Getting	ready
The	cmdlet	to	connect	to	vCloud	is	essentially	the	same	as	the	Connect-VIServer	cmdlet
used	to	connect	to	vCenter	or	an	individual	ESXi	host.	Instead	of	the	VI	acronym,	the
cmdlets	for	vCloud	Director	use	CI.	So,	the	cmdlet	to	connect	to	vCloud	is	Connect-
CIServer.

How	to	do	it…
In	order	to	connect	to	a	vCloud	environment,	perform	the	following	steps:

1.	 The	first	step	is	to	connect	using	the	Connect-CIServer	cmdlet.	Try	using	it	just	like
a	Connect-VIServer	cmdlet:

Connect-CiServer	vcloud.lab.local

If	the	certificate	used	to	install	vCloud	Director	is	not	trusted,	you	will	be	prompted
with	a	message	about	an	invalid	certificate,	as	shown	in	the	following	screenshot:

2.	 You	can	choose	to	accept	the	certificate	either	one	time	or	permanently.	However,	by
default,	it	will	deny	access	since	the	certificate	is	invalid.

3.	 You	will	be	prompted	to	log	in	to	the	vCloud	Director	system	with	a	Windows	login
prompt.	If	SSO	is	configured	with	vCloud	Director,	you	can	Single	Sign-On	without
being	prompted	for	the	credentials.

4.	 Once	logged	in,	you	will	return	to	the	PowerCLI	command	prompt.	To	check	the
connection,	you	can	enumerate	a	global	variable	called	$DefaultCiServers:

$DefaultCiServers	|	Select	*

How	it	works…
The	first	thing	that	you	will	see	is	the	PowerCLI	that	displays	a	different	message	about
the	SSL	certificate	from	the	vCloud	Director	versus	a	vCenter	with	an	untrusted
certificate.	If	your	certificate	is	not	trusted	for	vCloud	Director,	the	message,	It	is
recommended	that	you	do	not	connect	to	any	server	with	an	invalid	certificate,	is
shown.	The	language	and	recommendation	is	slightly	different,	possibly	because	vCloud
assets	might	be	outside	your	datacenter	and	an	invalid	certificate	can	be	a	sign	of	a
problem.	Therefore,	it	is	a	very	important	factor	when	connecting	to	outside	vCloud
Director	or	vCloud	assets	hosted	by	third	parties	so	that	their	certificates	are	valid.

If	you	are	managing	a	vCloud	Director	with	customers	connecting	to,	you	will	need	to
ensure	that	you	install	a	trusted	certificate	from	a	trusted	certificate	authority	in	order	to
avoid	this	issue	for	the	customers.	On	internal	deployments	of	vCloud	Director,	you	can
use	an	internal	certificate	authority	that	is	trusted	on	your	internal	domain.

Beyond	the	handling	and	message	of	the	certificate,	if	not	trusted,	the	connection	to
vCloud	Director	is	identical	to	the	connection	to	vCenter	Server,	except	for	two
parameters.	The	Connect-CIServer	cmdlet	allows	you	to	pass	a	-Org	parameter	to
connect	to	a	specific	organization.	This	is	an	important	parameter	that	you	will	see	in	the
following	recipe.	Using	the	-Org	parameter	ensures	that	you	are	connected	to	the	desired
organization’s	assets	in	vCloud.	Since	organization	users	cannot	connect	to	the	default
vCloud,	the	-Org	parameter	is	required	for	users	in	an	organization.	The	other	parameter	is
the	missing	-AllLinked	parameter,	since	linked-mode	is	a	vCenter	function	between
multiple	vCenter	Servers.

There’s	more…
While	in	this	recipe,	you	can	connect	as	the	super-user	administrator	for	the	entire
infrastructure,	the	same	cmdlet	is	used	for	an	organizational	administrator	to	connect	and
manage	their	infrastructure.	In	the	next	recipe,	you	will	set	up	organizations	and	you	will
reuse	this	cmdlet	to	connect	as	the	super-user	administrator,	and	ensure	that	the	security
perimeters	are	defined	between	organizations.

Creating	and	managing	organizations	in
vCloud
Organizations	are	a	foundational	concept	of	the	vCloud	environment.	Organizations	are
used	to	separate	tenants	within	a	vCloud	environment	and	can	be	interpreted	in	many
ways	depending	on	the	use	case	for	a	vCloud	deployment.	For	an	internal	vCloud
provider,	the	organizations	might	represent	departments	that	need	to	keep	assets	separated,
such	as	in	a	university,	governmental	setting,	or	even	a	subsidiary	of	a	company.	For
external	vCloud	providers,	organizations	might	represent	wholly	separate	businesses	that
have	contracts	with	the	provider.

Getting	ready
To	begin	this	recipe,	you	will	need	your	vCloud	environment	running	along	with	a
PowerCLI	window.

Before	you	can	provision	organizations	in	vCloud	Director,	you	need	to	define	a	Provider
Virtual	Data	Center	(Provider	vDC)	in	vCloud	Director.	If	you	have	not	performed	this,
you	will	need	log	in	to	the	web	interface	and	set	this	up.

How	to	do	it…
In	order	to	create	and	manage	organizations	in	vCloud,	perform	the	following	steps:

1.	 The	first	step	is	to	establish	a	connection	with	vCloud	Director	with	the	primary
administrator	account.	To	do	this,	use	the	Connect-CiServer	cmdlet	without	an	-Org
parameter:

Connect-CiServer	vcloud.lab.local

2.	 Once	you	have	the	connection	as	the	primary	administrator,	you	will	need	to	create	a
new	organization.	To	do	this,	you	will	use	the	New-Org	cmdlet.	The	New-Org	cmdlet
requires	a	-Name	and	-FullName	parameter	and	has	an	optional	-Description
parameter.	For	this	recipe,	you	will	create	several	color	organizations:

New-Org	-Name	Red	-FullName	"Red	Org"

New-Org	-Name	Blue	-FullName	"Blue	Org"

New-Org	-Name	Orange	-FullName	"Orange	Org"

3.	 Each	of	these	organizations	is	now	a	perimeter	or	boundary	where	virtual	assets	can
be	deployed	and	managed.

How	it	works…
Creating	Organizations	within	vCloud	Director	is	very	simple	and	takes	a	short,	native
New-Org	cmdlet.	This	cmdlet	doesn’t	take	many	options	or	configuration	parameters,	but	it
creates	the	basis	on	which	everything	else	in	vCloud	Director	is	built.	The	organization	is
the	base	unit	that	is	assigned	to	tenants	in	vCloud.	Organizations	form	boundaries	that
contain	the	virtual	infrastructure.	Organizations	can	have	different	network	definitions,
different	storage	policies,	and	certainly	separate	accounts	and	permissions	from	one
another.	While	many	organizations	in	vCloud	Director	can	share	the	same	underlying
vSphere	infrastructure,	the	boundary	is	secure	between	organizations	so	that	customers
and	their	data	never	intermingle.	It	is	possible,	however,	to	share	the	network	connections
between	two	organizations	using	direct	connections	if	two	organizations	need	to
communicate	between	one	another.

As	you	move	further	in	this	chapter,	you	will	explore	additional,	common	administration
and	configuration	tasks	for	vCloud	Director.	Each	one	goes	a	bit	deeper	into	the
capabilities	while	allowing	you	to	ultimately	build	your	first	vApp	and	create	a	repeatable
copy	that	can	be	deployed	from	a	service	catalog.

There’s	more…
To	log	in	to	any	of	the	organizations	defined	in	this	recipe,	you	will	need	to	create
accounts.	To	do	this,	you	use	views	since	there	is	no	native	PowerCLI	cmdlet	to	create	a
user	in	an	organization.	In	the	next	recipe,	you	will	perform	this	option	and	write	a
function	that	can	be	reused	to	handle	this	process.

Creating	a	new	user	in	an	organization
using	Views
In	this	recipe,	since	PowerCLI	does	not	yet	have	a	New-CIUser	cmdlet,	you	will	write	a
function	to	handle	this	process.	The	function	requires	to	have	the	correct	rights	to	create
organizational	users,	but	it	will	allow	you	to	create	users	from	PowerCLI	without	having
to	switch	back	to	the	web	console.	The	code	and	function	are	based	on	a	blog	post	from
Alan	Renouf,	a	product	manager	who	focuses	on	automation	frameworks	and	CLI	at
VMware.

Getting	ready
To	begin	this	recipe,	open	PowerShell	ISE	and	set	up	a	VMware	PowerCLI	environment
by	adding	the	PSSnapIn	cmdlet,	VMware.VimAutomation.Core.

How	to	do	it…
In	order	to	create	a	new	user	in	an	organization	using	Views,	perform	the	following	steps:

1.	 In	PowerShell	ISE,	set	up	a	basic	function	definition	for	New-CIUser:

Function	New-CIUser	{

2.	 Next,	add	your	synopsis	and	help	text	to	the	function:

<#

.SYNOPSIS

		Creates	a	new	user	in	a	vCloud	installation

.DESCRIPTION

		Creates	a	new	user	account	in	an	organization	of	a	vCloud	Director	

installation

.PARAMETER	Name

		The	username	of	the	new	user

.PARAMETER	FullName

		The	full	name	or	display	name	of	the	user

.PARAMETER	Password

		The	password	for	the	new	user	account

.PARAMETER	Org

		The	name	of	the	organization	to	add	the	user	into

.PARAMETER	Role

		The	role	of	the	new	user	to	be	defined	for	the	organization

.EXAMPLE

		New-CIUser	-Name	newuser	-Password	newpass	-Org	OrgName	-FullName	

"First	Last"	-Role	"Organization	Administrator"

#>

3.	 Next,	create	a	parameter	block	and	define	the	parameters	needed	to	generate	a	new
user	account.	The	parameters	should	include	a	username,	the	display	name,	a
password,	the	organization	to	add	the	user	into,	and	the	role	of	the	user.	The	Get-
CIUser	cmdlet	also	has	an	Enabled	parameter	where	a	user	account	can	be	disabled
but	it	still	exists.	However,	since	you	are	creating	an	account,	there	is	probably	little
chance	that	you	need	to	create	a	disabled	account:

Param	(

		$Name,

		$Password,

		$FullName,

		$Org,

		$Role

)

4.	 Next,	create	a	Process	block	in	the	function:

Process	{

5.	 Now,	you	need	to	create	a	new	user	object	to	store	the	user	information	that	will
define	the	new	account.	The	type	of	the	new	object	is
VMware.VimAutomation.Cloud.Views.User:

				$orgAdminUser	=	New-Object	VMware.VimAutomation.Cloud.Views.User

6.	 The	next	step	is	to	populate	the	new	object	with	the	data	supplied	by	the	parameters
on	the	function:

				$orgAdminUser.Name	=	$Name

				$orgAdminUser.FullName	=	$FullName

				$orgAdminUser.Password	=	$Password

7.	 Since	there	is	little	need	to	create	a	disabled	user	account,	you	can	statically	define
the	IsEnabled	property	to	$true:

				$orgAdminUser.IsEnabled	=	$true

8.	 Next,	you	need	to	take	the	$Role	parameter’s	data,	which	is	most	likely	a	string	input
and	convert	it	into	an	object.	You	previously	performed	a	procedure	similar	to	this	in
the	Creating	a	custom	function	to	update	members	of	a	DRS	group	recipe	in	Chapter
9,	Managing	DRS	and	Affinity	Groups	using	PowerCLI,	using	a	Switch	statement	to
identify	the	type	of	data	passed	into	the	function	and	to	normalize	this	data	to	the
object	you	need:

Switch	($Role.GetType().Name)	{

		"Reference"	{	$orgAdminUser.Role	=	$Role	}

9.	 If	you	get	a	String	input,	you	can	try	and	match	the	string	value	against	the	defined
objects	and	use	these	to	pass	in	the	Role	object.	To	do	this,	first	you	need	to	obtain
the	roles	defined	in	the	vCloud	Director.	You	can	leverage	the	$DefaultCIServers
global	variable	to	find	the	role:

"String"	{

						$vcloud	=	$DefaultCIServers[0].ExtensionData

10.	 Next,	you	can	do	a	comparison	using	the	Where	statement	to	match	the	string
provided	against	a	defined	role	that	is	stored	in	ExtensionData:

						$orgAdminRole	=	$vcloud.RoleReferences.RoleReference	|	Where	

{$_.Name	-eq	$Role}

11.	 With	the	role	object	capture,	you	can	now	assign	it	to	the	user	object	in	the	Role
parameter:

				$orgAdminUser.Role	=	$orgAdminRole

12.	 Close	the	string	portion	of	the	Switch	statement	with	a	right	curly	brace,	and	then
close	the	Switch	statement	with	a	right	curly	brace:

				}

		}

13.	 The	next	step	is	to	obtain	the	organization	object’s	extension	data.	This	is	the	data
that	contains	additional	details	about	the	organization	and	includes	a	method	called
CreateUser:

				$OrgED	=	(Get-Org	$Org).ExtensionData

14.	 Using	the	CreateUser	method,	you	pass	in	the	new	user	object	and	you	are	now	able

to	create	the	user:

				$user	=	$OrgED.CreateUser($orgAdminUser)

15.	 Last,	you	can	run	a	Get-CIUser	cmdlet	to	check	and	ensure	that	the	user	account	was
created	properly:

				Get-CIUser	-Org	$Org	-Name	$Name

16.	 Close	the	process	block	with	a	right	curly	brace:

}

17.	 Close	the	function	and	it	is	ready	for	use:

}

18.	 So,	the	next	step	is	to	highlight	and	run	the	object	in	PowerShell	ISE.	If	there	are	no
syntax	errors,	it	should	return	you	to	a	prompt	with	no	output.

19.	 The	next	step	is	to	try	it	with	a	new	account.	Create	a	user	named,	orange1,	with	a
full	name,	Orange	Admin,	in	the	organization,	Orange:

New-CIUser	-Name	"orange1"	-Password	"newpass"		-FullName	"Orange	

Admin"	-Org	"Orange"	-Role	"Organization	Administrator"

20.	 The	expected	output	will	simply	show	you	the	output	of	Get-CIUser,	the	new	user
account	once	created.	Any	errors	will	be	shown	inline.	If	the	user	account	is	created
properly,	you	can	now	try	logging	into	the	vCloud	under	the	organizational
administrator’s	account.	When	prompted,	log	in	with	the	new	user’s	credentials:

Connect-CIServer	vcloud.lab.local	-Org	Orange

How	it	works…
So,	like	any	of	the	other	recipes	in	the	book	created	because	of	gaps	in	native	PowerCLI
cmdlets,	this	is	another	example	of	using	Views	and	ExtensionData	to	do	work.	In	this
case,	ExtensionData	of	the	vCloud	View	allows	you	to	create	a	user.	It	leverages	the
CreateUser	method,	but	this	method	requires	a	user	object	to	be	passed	into	it.	You	can
create	and	populate	data	into	a	new	object	of	the	expected	type	for	the	CreateUser
method.

For	the	most	part,	the	parameterized	input	is	simply	placed	into	the	new	user	object,
except	for	the	role.	The	role	is	expected	to	be	an	object	itself.	Therefore,	you	have	to
check	to	see	whether	the	user	passed	the	role	they	wanted	as	a	Reference	object	or	if	you
need	to	find	the	corresponding	Reference	object	to	match	the	string	that	was	passed	in	the
command	line.

Once	the	function	is	created,	you	can	test	it	and	then	you	can	log	into	the	Cloud	with	the
organizational	administrator’s	account	in	this	recipe.	Both	of	these	are	just	tests	to	ensure
that	everything	is	working	properly.

See	also
For	more	information	on	VMware	PowerCLI	Blog:	Automating	creation	of	vCD
Organizations,	Users	and	Org	vDCs	by	Alan	Renouf	refer	to
http://blogs.vmware.com/PowerCLI/2012/03/automating-creation-of-vcd-
organizations-users-and-org-vdcs.html

http://blogs.vmware.com/PowerCLI/2012/03/automating-creation-of-vcd-organizations-users-and-org-vdcs.html

Creating	an	organization’s	virtual
datacenter	in	vCloud	Director
Within	vCloud	Directory’s	hierarchy,	the	Provider	vDC	is	the	top-level	object,	which	is
similar	to	the	datacenter	in	vCenter	Server.	Inside	a	Provider	VDC,	you	can	house
multiple	organization	virtual	datacenters.	In	this	recipe,	you	will	create	several
Organization	VDCs	inside	the	provider	VDC	that	is	defined	when	you	set	up	vCloud
Director.

Each	time	that	you	create	a	new	organization	(tenant)	on	vCloud	Director,	you	must	give
them	a	place	to	provision	services.	That	is	the	purpose	of	the	organizational	VDC.
However,	organizations	can	have	multiple	Organization	VDCs	assigned	to	them,	perhaps
one	onsite,	and	one	at	a	third-party	provider’s	site.

Unless	you	are	handling	multiple	resellers	on	the	same	infrastructure,	there	is	probably	no
need	for	multiple	Provider	VDCs,	but	there	are	always	exceptions	to	any	rule.	One
possible	exception	would	be	the	infrastructure	is	managed	by	separate	vCenter	Servers.	A
Provider	VDC	is	limited	to	a	single	vCenter	Server.	The	point	is	that	you	have	the	ability
to	define	multiple	Provider	VDCs,	if	needed,	regardless	of	the	reason.

In	the	previous	recipe,	you	referenced	a	blog	post	from	Alan	Renouf.	In	the	past,	he	has
provided	the	code	for	a	New-OrgVDC	function.	Since	the	post	was	created	in	2012,	vCloud
Director	PowerCLI	has	added	a	native	PowerCLI	cmdlet	of	the	same	name.	Instead	of
relying	on	the	custom	function,	you	can	now	create	virtual	datacenters	for	organizations
natively.

Getting	ready
To	begin	this	recipe,	you	will	need	a	new	PowerCLI	window	with	an	active	connection	to
the	vCloud	Director	under	the	primary	administrator’s	account	(not	connected	to	a
particular	organization).

How	to	do	it…
In	order	to	create	an	organization’s	vDC	in	vCloud	Director,	perform	the	following	steps:

1.	 As	noted	earlier,	the	cmdlet	to	create	a	new	Organization	VDC	is	New-OrgVDC.	Run	a
Get-Help	cmdlet	on	the	cmdlet	to	get	a	view	of	all	the	parameters	and	the	ways	in
which	you	can	execute	the	cmdlet.	There	are	actually	three	sets	of	execution
parameters.	The	primary	difference	between	the	three	parameters	is	the	parameter	to
signify	the	Allocation	Model.

2.	 To	get	a	better	understanding	of	the	Allocation	Models,	you	can	move	over	to	the
vCloud	Director	web	interface.	Open	the	Organizations	section	under	Manage	&
Monitor	and	select	an	organization.	Click	on	Manage	VDCs	on	the	right-hand	side
of	the	page	and	then	click	on	the	+	sign	to	create	a	new	VDC.	The	Allocation	Model
screen	is	the	second	screen.	The	following	screenshot	is	found	under	the	New
Organization	VDC	wizard	and	shows	you	the	Allocation	Models	and	descriptions
for	each:

3.	 Beyond	the	Allocation	Model	and	implications	of	each,	the	cmdlet	parameters	are	the
same	between	all	the	three	sets	of	cmdlets.	For	the	purpose	of	this	recipe,	you	can	use
the	-AllocationModelAllocationPool	parameter:

4.	 To	put	together	the	cmdlet	for	the	new	Organization	VDC,	you	will	need	to	specify	a
name,	the	organization,	the	provider	VDC,	and	any	optional	parameters.	Both	the
organization	and	provider	VDC	have	to	be	specified	as	objects,	and	not	strings.	The
next	step	is	to	obtain	these	parameters:

$Org	=	Get-Org	-Name	"Orange"

$ProviderVDC	=	Get-ProviderVdc	-Name	"PrimaryVDC"

5.	 Next,	you	can	assemble	the	New-OrgVDC	cmdlet	to	create	the	new	virtual	datacenter.
You	will	also	need	to	specify	the	amount	of	CPU,	RAM,	and	storage	to	be	allocated
to	the	new	vDC:

New-OrgVDC	-Name	"Orange	OnSite	DC"	-Org	$Org	-ProviderVdc	$ProviderVDC	

-AllocationModelAllocationPool	

6.	 Now	try	the	same	cmdlet	in	the	Blue	Org,	create	it	with	the	same	parameters,	but
instead	of	passing	variables	in	the	command	line,	use	nested	cmdlets:

New-OrgVDC	-Name	"Blue	OnSite	DC"	-Org	(Get-Org	"Blue")	-ProviderVdc	

(Get-ProvidedVdc	-Name	"PrimaryVDC")	-AllocationModeAllocationPool

7.	 If	you	forget	to	set	anything,	you	need	set	it	at	the	time	of	creation.	You	can	always
go	back	and	perform	the	Get	and	Set	operations	on	OrgVDC	to	change	the	settings:

Get-OrgVDC	-Name	"Orange	Onsite	DC"	|	Set-OrgVDC	-UseFastProvisioning	

$true

How	it	works…
This	recipe	is	pretty	simple,	using	a	native	cmdlet	to	provision	the	organization	virtual
datacenter.	The	only	complication	is	that	the	cmdlet	expects	objects	to	be	passed	into	the
command	line	in	order	to	identify	the	organization	and	the	provider	VDC.	You	can	easily
obtain	these	with	additional	cmdlets	and	pass	that	information	into	the	command	line.

In	this	recipe,	you	will	use	two	different	methods	that	work	equally	to	create	a	vDC	for	an
Organization.	One	uses	inline	cmdlets	that	utilizes	parenthesis	to	pass	the	data	objects	into
the	main	New-OrgVDC	cmdlet.

Importing	a	vApp	template	into	vCloud
The	real	utility	of	vCloud	environments	comes	from	the	service	catalogs	and	automated
deployment	of	services.	This	orchestration	makes	it	simpler	for	end	users	to	go	to	a	self-
service	portal	and	order	a	new	instance	of	a	service	that	is	created	and	deployed	on	the
backend	infrastructure	automatically.

The	end	user	doesn’t	need	to	worry	about	which	physical	host	to	install	the	application,
the	database	tier	and	the	application	tier,	the	network	connections	and	IP	pool	of	the
application,	and	certainly	not	which	types	of	storage	should	be	utilized.	All	of	these
decisions	should	be	made	for	the	user	based	on	the	policy	and	definition	of	the	vApp	in
vCloud.

The	vApp	is	the	building	block	of	services	in	vCloud	Director	as	well	as	vSphere.	vApps
package	together	the	multiple	pieces	that	create	a	full	service	or	application.	Many	times,
applications	require	multiple	systems	in	order	to	operate,	and	the	vApp	concept	helps
them	package	together	those	disparate	parts	and	wraps	it	with	the	configuration	into	a
package.

The	easiest	way	to	get	a	vApp	into	vCloud	Director	is	to	import	an	existing	virtual
machine.	The	second	way	is	to	import	an	OVF	or	OVA	format	virtual	appliance.	The
second	method	is	easier	to	perform	through	the	GUI,	since	PowerCLI	doesn’t	provide	you
with	a	direct	way	to	handle	this	through	the	command	line.	In	PowerCLI,	you	have	to
import	the	vApp	into	vCenter	Server	and	then	pull	it	into	vCloud	Director	using	the	first
method.	This	recipe	will	focus	on	the	first	method.

Getting	ready
To	begin	this	recipe,	you	will	also	need	a	PowerCLI	window	with	an	active	connection	to
vCloud	Director	and	an	active	connection	to	vCenter.	You	will	also	need	an	existing
virtual	machine	located	in	vCenter	being	managed	by	vCloud	Director.	This	recipe	is
written	to	use	the	TTYLinux1	virtual	machine	that	was	provisioned	earlier	in	the	book.

How	to	do	it…
In	order	to	import	a	vApp	template	into	vCloud,	perform	the	following	steps:

1.	 The	first	step	is	to	make	sure	that	you	are	connected	to	both	vCloud	Director	and
vCenter	Server	for	this	recipe.	Run	both	a	Connect-CIServer	and	Connect-VIServer
cmdlet	and	log	in	as	prompted	with	credentials	for	each	system:

Connect-CIServer	vcloud.lab.local

Connect-VIServer	vcenter.lab.local

2.	 You	will	need	to	connect	to	vCenter	because	you	will	use	and	pass	a	VM	object	from
vCenter	into	an	Import-CIvApp	cmdlet	for	the	vCloud	Director	to	import	the	vApp
from	vCenter.	Import-CIvApp	requires	the	name	of	the	VM,	a	new	name	for	the
vApp,	and	the	organization	to	import	the	vApp	into:

Import-CIvApp	-VM	(Get-VM	"TTYLinux1")	-Name	TTYLinux-vApp	-OrgVDC	

(Get-OrgVDC	-Name	"Orange	Onsite	DC")

How	it	works…
The	cmdlet	for	importing	a	vApp	from	an	existing	virtual	machine	is	pretty	simple.	It
requires	just	three	parameters:	-Name,	-VM,	and	-OrgVDC	to	represent	the	new	name	of	the
VM,	the	VM	object	to	import,	and	the	Organization	vDC	objects	respectively.	Instead	of
using	the	-OrgVDC	parameter,	you	can	also	use	the	-Org	parameter	if	you	only	have	a
single	Organization	VDC	for	the	organization.	However,	if	you	have	more	than	one,	you
will	need	to	specify	the	-OrgVDC	parameter	by	its	name	because	there	would	be	no	default
values.

There’s	more…
You’re	not	quite	ready	to	start	the	new	vApp	you	imported.	There	are	still	a	few
configuration	changes	required	before	you	can	fire	up	the	new	VM,	including	setting	the
network	configuration.	Even	though	the	VM	was	configured	and	running	on	vSphere,	the
network	configuration	doesn’t	translate	one	to	one	into	vCloud.

In	the	next	section,	you	will	investigate	vCloud	networking	and	begin	to	make	the	changes
necessary	to	allow	this	VM	to	communicate	with	the	network.

Configuring	networking	in	a	vCloud	vApp
Before	you	can	boot	the	vApps	you	just	imported,	you	need	to	define	networking	for	the
vApp	to	connect	to.	While	storage	and	storage	policies	are	automatically	pulled	over	from
vSphere,	the	networking	for	vCloud	requires	a	lot	of	additional	configuration.	This	makes
sense	because	connectivity	to	the	services	running	on	a	vCloud	have	a	lot	of	requirements,
including	private	VLANs	and	Edge	services	to	NAT	addresses	that	are	private	to	public	or
external	facing	networks.	Some	deployments	might	need	to	connect	to	preprovisioned
VLANs	directly	to	a	virtual	datacenter	for	client	connectivity	on	the	private-side	of	the
cloud.

vCloud	Networking	can	become	an	extremely	deep	subject	and	stray	far	beyond	the	scope
of	this	book.	However,	there	are	some	basic	configuration	things	that	are	universal	to
vCloud	Virtual	Datacenters,	and	those	are	the	topics	this	recipe	will	cover.

Again,	the	highest	levels	of	configuration	for	vCloud	Networking	do	not	have	native
PowerCLI	cmdlets	to	configure	them.	Instead,	you	should	go	into	the	vCloud	Director
GUI	and	preconfigure	two	portions	of	the	networking	configuration:	an	External	Network,
which	will	be	a	network	connected	to	your	live	lab	subnet,	and	a	Network	Pool,	which
will	be	a	private	network	only	in	the	vCloud	that	will	be	routed	using	vShield	Edge	to
your	live	network.

Instead	of	focusing	on	the	top-level	provider	network	definitions,	you	will	be	faced	with
configuring	the	Organization	VDC	and	vApp	networks	more	often.	The	provider	networks
need	to	be	connected	and	made	available	to	the	Organization	VDC.	Once	this	is	done,	the
default	vApp	Network	created	with	the	Import-CIVapp	cmdlet	can	be	assigned	and
activated.

In	this	recipe,	you	will	use	Views	in	order	to	build	a	configuration	and	link	the	external
network	to	the	Organization	VDC.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	and	an	active	connection	to
vCloud	Director.

How	to	do	it…
In	order	to	configure	networking	in	a	vCloud	vApp,	perform	the	following	steps:

1.	 The	first	step	to	configure	a	newly	imported	vApp	is	to	set	up	its	network.	At	this
point,	your	organization	vDC	does	not	have	any	network	defined	except	for	those
attached	from	the	provider	VDC.	To	list	the	networks	defined	for	the	organization,
use	the	Get-OrgNetwork	cmdlet:

Get-OrgNetwork	-Org	"Orange"

2.	 When	you	enumerate	the	networks,	you	should	see	the	external	network	defined.	The
external	network	will	be	used	to	connect	to	vApp	networks,	so	let’s	store	the	object
representing	this	network	in	a	variable.	In	this	step,	the	recipe	uses	Local	as	the	name
for	the	external	network,	so	change	it	according	to	your	own	environment:

$ExtNet	=	Get-ExternalNetwork	"Local"

3.	 The	next	step	is	to	create	a	new	object	to	define	OrgVdcNetwork.	This	object	is	of
type	VMware.VimAutomation.Cloud.Views.OrgVdcNetwork:

$OrgVdcNetwork	=	New-Object	

VMware.VimAutomation.Cloud.Views.OrgVdcNetwork

4.	 Name	your	new	network	in	the	Configuration.Name	property:

$orgVdcNetwork.Name	=	"Orange	External	Network"

5.	 Next,	the	IsShared	property	should	be	defined	and	set	to	$false:

$orgVdcNetwork.IsShared	=	$false

6.	 Inside	the	OrgVDCNetwork	object,	you	need	to	create	a	configuration	object	and	store
it	in	the	Configuration	property.	This	is	where	the	options	will	be	stored	to	define
the	network:

$orgVdcNetwork.Configuration	=	New-Object	

VMware.VimAutomation.Cloud.Views.NetworkConfiguration

7.	 The	first	bit	of	configuration	to	perform	is	to	set	the	upstream	or	parent	network.	This
is	the	External	Network	that	you	want	to	connect	to	the	Organization	VDC.	However,
instead	of	referring	to	the	External	Network	by	an	object,	the	ParentNetwork
property	actually	refers	to	the	network	by	a	hyperlink.	The	hyperlink	is	stored	in	the
href	property	of	the	External	Network	object:

$orgVdcNetwork.Configuration.ParentNetwork	=	$ExtNet.href	

8.	 The	next	step	is	to	set	FenceMode	to	bridged.	The	three	FenceMode	options	are:
isolated,	bridged,	and	routed.	The	isolated	option	passes	no	traffic,	bridged
passes	native	traffic	from	the	connected	network,	and	routed	will	configure	and	set
up	a	vShield	VM	to	route	and	perform	other	network	functions	between	the
networks:

$orgVdcNetwork.Configuration.FenceMode	=	'bridged'

9.	 What	is	a	network	without	IP	addresses?	Nonfunctional.	Therefore,	you	need	to
define	IP	addresses,	and	to	handle	this,	you	will	need	to	create	another	object	and
store	it	in	the	Configuration.IpScopes	property:

$orgVdcNetwork.Configuration.IpScopes	=	New-Object	

VMware.VimAutomation.Cloud.Views.IpScopes

10.	 Because	this	network	is	bridged,	you	can	reuse	the	scopes	defined	in	the	parent
network.	Simply	refer	to	the	same	data	in	the	$ExtNet	variable:

$orgVdcNetwork.Configuration.IpScopes.IpScope	+=	

$ExtNet.ExtensionData.Configuration.IpScopes.IpScope

11.	 Last,	but	perhaps	the	most	important	is	to	create	the	network	you	have	defined.	To	do
this,	you	need	to	obtain	the	OrgVdc	View:

$orgVdcView	=	(Get-OrgVdc	-name	"Orange	Onsite	DC").ExtensionData

12.	 Once	you	have	the	View,	you	can	now	use	the	CreateNetwork()	method	on	the	view
to	save	the	configuration	you	have	defined:

$orgVdcView.CreateNetwork($orgVdcNetwork)

13.	 Now	that	the	direct	network	connection	has	been	extended	into	the	Organization
VDC,	you	can	use	it	with	the	vApp	you	have	imported.	By	default,	the	vApp	brings	a
network	map	to	its	vSphere	Standard	Switch.	You	can	map	the	Organization	VDC
network	into	the	vApp.	To	do	this,	you	use	the	New-CIVAppNetwork	cmdlet,	which
requires	the	vApp	and	parent	network	to	create	a	direct	link:

New-CIVAppNetwork	-VApp	(Get-CIVapp	-Name	"TTYLinux-vApp")	-Direct	-

ParentOrgNetwork	(Get-OrgNetwork	-Name	"Orange	External	Network")

How	it	works…
This	recipe	creates	the	network	definitions	in	the	organization	vDC	and	inside	a	vApp,
you	need	to	connect	the	vApp	that	you	imported	and	allow	it	to	connect	to	the	lab	subnet.
This	is	just	one	scenario,	but	this	is	a	scenario	not	covered	by	the	defined	PowerCLI
cmdlets.	So,	you	need	to	turn	to	vCloud	Views,	similar	to	the	Views	you	have	leveraged
for	vSphere	in	the	earlier	chapters.

The	Views	work	the	same	for	vCloud	infrastructure	as	vCenter	controlled	infrastructure.
You	create	a	new	object	and	then	populate	data	into	the	object,	including	additional
objects	linked	to	properties	of	the	parent.	Once	a	fully	defined	configuration	is	created,
you	can	use	a	method	from	a	View	to	execute	and	create	the	network.	One	difference	to	be
noted	in	the	steps	is	that	other	infrastructure	objects,	such	as	the	reference	to	the	parent
network,	are	defined	with	hyperlinks	and	not	with	Managed	Object	References
(MoREF)	such	as	vSphere.	This	is	one	big	difference	using	Views	in	vCloud	versus
vCenter.

Reassigning	vApp	VM	network	settings
with	PowerCLI
Now	that	you	have	the	vApp	imported	and	you	have	linked	the	outside	network,	both	to
the	virtual	datacenter	for	the	organization	and	to	the	vApp,	you	can	now	assign	it	to	the
virtual	machine	inside	the	vApp.	You	can	change	any	other	vApp	settings	in	order	to	make
the	application	or	service	functional.

In	the	case	of	the	imported	vApp,	you	still	have	the	default	network	imported	with	the
vApp.	To	allow	your	TTYLinux-vApp	to	talk	to	the	lab	network,	you	will	need	to	edit	the
virtual	machine	inside	the	vApp	and	map	its	network	connection	to	the	new	vApp
Network	named	Orange	External	Network	that	was	defined	in	the	previous	recipe.

This	time,	PowerCLI	has	native	cmdlets	to	perform	the	network	reassignments.	In	this
recipe,	you	will	remove	the	imported	network	and	reassign	the	VM	to	use	the	new
network	connection	for	the	local	lab	network.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	with	an	active	connection	to
vCloud	Director.

How	to	do	it…
In	order	to	reassign	vApp	VM	network	settings	with	PowerCLI,	perform	the	following
steps:

1.	 The	first	step	to	reassign	the	vApp	is	to	locate	the	current	network	connection,	set	it
to	none	if	it	is	not	already	set	and	remove	any	unneeded	network	assignments	on	the
vApp.	To	check	for	network	assignments	on	the	vApp,	use	the	simple	Get-
CIvAppNetwork	cmdlet.	To	scope	the	results	down	to	the	single	vApp	you	are	looking
for,	first	use	a	Get-CIVApp	and	pipe	that	result	into	Get-CIVAppNetwork:

Get-CIVApp	-Name	"TTYLinux-vApp"	|	Get-CIVAppNetwork

The	output	for	the	preceding	command	line	is	given	in	the	following	screenshot:

2.	 Your	output	should	contain	a	couple	of	different	networks.	The	Infrastructure
Network	parameter	in	the	preceding	screenshot	was	the	imported	network	that	came
from	vCenter,	which	is	named	the	same	as	the	Standard	vSwitch	assignment	of	the
source	VM.	The	connection	type	for	this	network	is	Isolated,	which	means	that	it	will
not	communicate	with	the	outside	resources,	so	that	won’t	help	you	connect	your
new	vApp	to	the	lab	network	so	it	should	be	removed.	You	will	utilize	the	network
you	created	in	the	previous	step,	which	is	the	Direct	connection	type.	Repeat	the
cmdlet	and	store	the	Isolated	network	in	a	$IsolatedNet	variable	and	store	the
Direct	connection	in	a	$DirectNet	variable.	You	will	use	both	the	networks	in	the
next	steps:

$IsolatedNet	=	Get-CIVApp	-Name	"TTYLinux-vApp"	|	Get-CIVAppNetwork	-

ConnectionType	Isolated

$DirectNet	=	Get-CIVApp	-Name	"TTYLinux-vApp"	|	Get-CIVAppNetwork	-

ConnectionType	Direct

3.	 The	next	step	is	to	reassign	the	network	adapter	on	the	VM	in	the	vApp.	To	do	this,
you	will	use	the	Set-CINetworkAdapter	cmdlet.	The	cmdlet	requires	the	network
adapter	to	be	passed	into	the	cmdlet,	and	an	easy	way	to	do	it	is	to	pipe	the	output
from	Get-CINetworkAdapter	to	retrieve	the	adapter	object.	You	can	also	use	Get-
CIVApp	with	the	name	of	the	vApp	to	change	and	Get-CIVM	(along	with	the	name	of
the	VM	if	the	vApp	has	multiple	VMs)	to	scope	down	the	list	of	the	network	adapters
to	the	one	you	want	to	change.	Since	there	is	only	one	VM	and	one	network	adapter
in	the	VM,	the	Get-CIVM	and	Get-CINetworkAdapter	cmdlets	require	no	parameters:

Get-CIVApp	-Name	"TTYLinux-vApp"	|	Get-CIVM	|	Get-CINetworkAdapter	|	

Set-CINetworkAdapter	-VAppNetwork	$DirectNet	-Connected	$true	-

IpAddressAllocationMode	"Dhcp"

4.	 Since	the	Isolated	network	serves	no	purpose	for	connecting	to	the	VM	and	it	has
now	been	replaced	with	the	direct	network	connection	on	the	VM.	You	can	now
remove	it.	Removing	the	network	is	simple	with	the	native	Remove-CIVAppNetwork
cmdlet.	Since	you	stored	the	isolation	vApp	Network	in	a	variable	earlier,	you	can
simply	pass	the	network	object	into	the	cmdlet	with	the	-VAppNetwork	parameter:

Remove-CIVAppNetwork	-vAppNetwork	$IsolatedNet

Note
An	important	thing	to	notice	is	that	even	if	the	vApp	Network	has	the	same	name	on
each	vApp,	this	object	is	specifically	linked	to	TTYLinux-vApp	and	represents	a
specific	network	to	be	removed.	Each	object	is	unique	and	this	can	be	verified	with
the	href	property	on	the	object.

How	it	works…
This	recipe	was	achieved	with	all	native	cmdlets.	The	trickiest	part	of	the	procedure	is	to
retrieve	the	correct	network	adapter	to	be	changed,	but	the	specific	network	adapter	can	be
easily	found.	You	just	need	to	know	the	hierarchy	of	where	the	network	adapter	is	located.
The	network	adapter	needed	is	in	the	vApp	named	TTYLinux-vApp	and	in	the	VM,	which
is	inside	the	vApp.	String	together	the	three	native	cmdlets	and	you	will	be	able	to	retrieve
that	network	adapter.	Once	you	have	done	this,	you	can	reassign	the	network	with	the	-
vAppNetwork	parameter	and	also	make	any	additional	reconfigurations	that	you	want.

There’s	more…
A	vApp	is	a	container.	The	container	allows	multiple	components	that	make	a	fully
functional	app	to	coreside	inside	the	vApp	container.	This	means	that	multiple	virtual
machines,	such	as	a	web	frontend	VM	and	a	processing	VM,	can	be	defined	and	a	direct
network	link	between	them	can	be	created.	It	also	means	that	a	third	database	VM	can	be
created	and	linked	to	the	processing	VM	on	a	separate	private	network,	creating	a	three
tier	application	infrastructure.

The	web	frontend	can	be	the	only	one	of	the	three	that	talks	to	the	outside	networks,	and
as	an	administrator,	you	might	want	to	turn	the	firewall	off	for	the	web	frontend.	All	of
this	can	be	defined	in	a	vApp.

Once	a	vApp	is	defined,	you	can	import	it	into	the	service	catalog	for	easy	and	repeatable
deployments	of	this	app.	All	of	the	required	infrastructure,	including	network	services
such	as	firewalls	or	load	balancers,	can	be	packaged	so	that	when	a	new	instance	of	the
app	is	deployed,	the	fully	functional	package	lays	down	all	of	the	required	virtual
infrastructure	to	allow	it	to	run	in	a	self-contained	environment.

For	the	task	of	designing	multi-tier	vApps,	you’ll	likely	use	the	vCloud	Director	web
administration	to	configure	all	of	the	virtual	machines	and	networks,	but	PowerCLI	can
easily	take	that	package	and	deploy	them	in	mass,	as	it	is	needed	by	the	customers.

Starting	and	stopping	vApps	and
individual	VMs	in	a	vCloud
Now	that	the	vApp	is	configured,	you	are	ready	to	start	the	vApp.	Because	of	the	vApp
definition	and	packaging,	even	a	vApp	that	contains	only	a	single	VM	has	multiple	ways
to	control	it.	A	single	VM	vApp	can	also	contain	security	or	network	related	virtual
appliances	that	deploy	and	run	along	with	the	VM	(in	the	case	of	routed	vApp	Networks).

vApps	can	define	the	boot	order	and	can	wait	for	one	system	to	come	online	before
starting	the	next	using	the	boot	order	definitions.	So,	starting	the	vApp	will	bring	systems
up	in	an	orderly	way,	where	using	vCloud	VM	cmdlets	lets	you	control	the	VM	boot
regardless	of	the	vApp	boot	orders.	There	are	multiple	cmdlets	that	can	stop	individual
components	of	the	vApp	or	the	entire	vApp	entity.

In	this	recipe,	you	will	start	a	vApp	and	then	restart	an	individual	VM	in	the	vApp,	just
like	you	would	if	a	single	VM	was	misbehaving	or	if	it	might	have	locked	up.	You	can
also	shut	down	an	individual	VM	without	stopping	the	vApp	itself.

Getting	ready
To	begin	this	recipe,	you	will	need	a	PowerCLI	window	with	an	active	connection	to
vCloud	Director.

How	to	do	it…
In	order	to	start	and	stop	vApps	and	individual	VMs	in	a	vCloud,	perform	the	following
steps:

1.	 To	start	a	vApp,	you	will	use	the	Start-CIVApp	cmdlet.	It	requires	just	a	reference	to
the	vApp.	An	easy	way	to	do	this	is	to	perform	a	Get-CIVApp	cmdlet	and	search	for
the	vApp	you	want	to	start	and	pipe	that	to	Start-CIVApp:

Get-CIVApp	-Name	"TTYLinux-vApp"	|	Start-CIVApp

2.	 Starting	a	vApp	can	take	an	extended	amount	of	time	in	vCloud,	especially	for	the
first	time.	This	is	because	some	vApps	require	additional	network	and	security
appliances	to	deploy	and	boot	before	the	VMs	themselves	can	start.	The	vApp
packages	can	have	other	infrastructures	to	provision	on	first	boot.

3.	 Once	the	vApp	has	started,	you	can	check	its	status	with	the	Get-CIVApp	cmdlet.
4.	 If	a	single	VM	within	the	vApp	misbehaves,	you	might	want	to	quickly	restart	that

single	VM.	To	do	this	outside	the	vApp	controls,	PowerCLI	has	the	Restart-CIVM
cmdlet.	This	cmdlet	needs	the	VM	object	to	be	passed	into	it,	and	since	there	can	be
many	VMs	with	the	same	name	in	vCloud	(remember,	vApps	have	the	same	name
for	the	VMs	in	each	deployment),	you	should	use	Get-CIVApp	and	pipe	that	to	Get-
CIVM	to	get	the	specific	VM	you	want	to	restart:

Get-CIVApp	-Name	"TTYLinux-vApp"	|	Get-CIVM	|	Restart-CIVM

5.	 With	vCloud,	you	cannot	dynamically	reassign	a	network	on	a	VM	since	the	network
definition	can	include	network	and	security	appliances,	network	services,	and	IP
address	pools.	So,	you	might	need	to	shut	down	a	VM	that	has	misassigned	a
network,	change	the	network,	and	start	it	again.	PowerCLI	has	cmdlets	specifically
for	stopping	and	starting	a	VM	in	a	vApp.	The	same	procedure	for	locating	the	VM
with	Get-CIVApp	and	Get-CIVM	should	be	used	to	identify	the	correct	VM:

Get-CIVApp	-Name	"TTYLinux-vApp"	|	Get-CIVM	|	Stop-CIVM

6.	 Make	your	network	or	other	VM	configuration	changes	and	run	the	Start-CIVM
cmdlet:

Get-CIVApp	-Name	"TTYLinux-vApp"	|	Get-CIVM	|	Start-CIVM

7.	 Finally,	if	you’re	ready	to	shut	down	and	decommission	a	vApp,	which	might	include
many	VMs	and	other	configurations,	you	can	use	the	Stop-CIVApp	cmdlet	to	shut
down	the	entire	package.	Then,	you	can	use	Remove-CIVApp	to	remove	it	from
vCloud:

Get-CIVApp	-Name	"TTYLinux-vApp"	|	Stop-CIVApp

Get-CIVApp	-Name	"TTYLinux-vApp"	|	Remove-CIVApp

How	it	works…
The	cmdlets	from	this	recipe	are	very	simple	and	straightforward.	The	native	cmdlets	for
vApp	and	VM	control	are	easy	to	use	and	control	the	vApp’s	operation	in	vCloud.	The
critical	thing	to	keep	in	mind	and	the	reason	to	call	these	out	in	the	chapter	is	that	with	a
vCloud	deployment,	there	can	be	tens	or	hundreds	of	copies	of	a	vApp	on	the
infrastructure.	This	makes	it	critical,	particularly	for	backend	administrators,	to	ensure	that
they	are	working	in	the	correct	organization	and	the	correct	vApp	to	ensure	that	the	correct
vApp	or	VM	is	started,	stopped,	or	restarted.

One	way	to	assist	you	with	this	is	to	connect	to	an	account	with	the	least	privileges
required	to	administer	what	you’re	configuring.	If	you	are	working	with	a	particular
organization’s	datacenter,	you	will	want	to	connect	directly	to	that	Organization	VDC
rather	than	to	the	primary	vCloud	account	so	that	you	only	see	the	vApps	deployed	for
that	one	company.	This	helps	you	avoid	any	unintended	downtime	or	problems.

Appendix	A.	Setting	up	and	Configuring
vCloud	Director
For	the	recipes	of	Chapter	10,	Working	with	vCloud	Director	from	PowerCLI,	you	will
need	a	vCloud	environment	to	connect	to	for	testing	the	vCloud	Director	PowerCLI.	There
are	several	options	for	a	test	environment	to	connect	to.	In	this	section,	there	are	three
options	that	you	can	perform	for	establishing	a	vCloud	Director	environment	in	this	book,
and	they	are	as	follows:

The	hosted	vCloud	environment
Deploying	the	vCloud	Director	environment	from	AutoLab
Building	your	own	vCloud	Director	implementation	on	your	vSphere	lab
environment

The	hosted	vCloud	environment
Perhaps	the	easiest	method	to	test	vCloud	Director	PowerCLI	is	a	hosted	vCloud
environment.	If	you	have	an	account	with	a	hosting	provider	for	a	vCloud	environment,
and	you	have	the	administrative	access	to	your	organization,	you	can	perform	all	of	the
recipes	in	this	book.

Deploying	the	vCloud	Director
environment	from	AutoLab
If	you	don’t	have	vCloud	Director	available	in	a	lab	environment,	an	automated	option	to
set	up	an	environment	is	the	AutoLab,	created	by	Alastair	Cooke,	and	it	is	supported	by
many	VMware	community	members.	AutoLab	is	available	from
http://www.labguides.com,	and	it	is	a	set	of	VM	definitions	for	ESXi	or	for	VMware
Workstation	and	VMware	Fusion	to	configure	an	entire,	self-contained	lab	environment.

You	will	still	need	to	obtain	all	of	the	software	yourself;	however,	AutoLab	fully
automates	the	deployment	of	a	functional	lab	environment.	In	additional	to	vSphere,
AutoLab	includes	scripts	to	deploy	vShield	Manager	and	vCloud	Director	that	were	added
by	Damian	Karlson.	Deploying	AutoLab	will	take	several	hours,	but	it’s	one	of	the	fastest
ways	to	go	from	zero	to	vCloud	and	to	have	an	environment	to	work	with	vCloud	Director
PowerCLI.	Follow	the	instructions	in	the	guide	provided	and	ensure	that	you	get	the
specific	versions	of	software	noted	in	the	guide	to	ensure	a	smooth	deployment.

In	addition	to	building	a	fully	functioning	vCloud	Director	implementation,	AutoLab	has	a
great	collection	of	PowerCLI	scripts	that	you	can	learn	from.	You	can	examine	each	of	the
scripts	that	are	distributed	with	AutoLab	to	see	other	examples	of	the	scripted	installation
and	configuration	of	ESXi	hosts.

http://www.labguides.com

Build	your	own	vCloud	Director
implementation	on	your	vSphere	lab
environment
The	third	option	is	to	build	and	load	vCloud	Director	in	a	lab	environment.	This	method	is
not	significantly	more	difficult	than	AutoLab,	but	you	might	run	into	several	issues	during
deployment	that	AutoLab	can	handle	for	you.	This	section	is	an	overview	of	the	build
process;	however,	additional	instructions	for	each	step	can	be	located	in	the	VMware
installation	documentation	for	each	product.

For	your	vCloud	Director	installation,	you	will	need	the	following	software	loaded	in	your
environment:

vCenter	Server,	ESXi	hosts,	and	Microsoft	Active	Directory
vShield	Manager
vCloud	Director

The	first	step	in	enhancing	a	vCenter-managed	environment	and	turning	it	into	a	vCloud-
managed	environment	is	to	install	vShield	Manager	if	this	isn’t	already	in	use	on	vCenter.
vShield	Manager	controls	network	and	security	operations	in	vCenter	and	vCloud
Director.	vCloud	Director	requires	vShield	Manager,	where	vCenter	can	use	it	as	an
optional	component.

Installing	vShield	Manager	is	simple.	It	is	distributed	as	an	OVA	format	virtual	appliance.
Perform	the	following	steps	to	install	vShield	Manager:

1.	 Using	vCenter	Client,	import	the	OVA	and	complete	the	custom	configuration	values
for	default	passwords.

2.	 Once	booted,	log	in	to	the	web	administration	with	the	default	password	you	defined
and	connect	vShield	Manager	to	your	vCenter	Server.

3.	 After	connecting,	make	sure	to	navigate	to	the	vCenter	server	and	click	on	each	host.
Install	the	vShield	Endpoint	component	and	optionally	the	vShield	App	component
on	each	host.	At	this	point,	the	vShield	Manager	is	connected	and	ready	for	vCloud
Director	to	be	installed.

The	next	step	is	to	install	the	vCloud	Director;	this	is	straightforward,	but	involves	a	few
additional	steps.

1.	 You	will	need	a	Linux	virtual	machine	loaded	with	a	current	operating	system.
CentOS	is	a	good	choice	because	it’s	free	and	works	well	with	vCloud	Director.	You
should	deploy	a	virtual	machine	with	two	network	adapters	and	preconfigure	these
network	adapters	with	IP	addresses	before	moving	forward.

2.	 The	next	step	is	to	install	a	database	for	vCloud	Director	to	connect	to.	You	can
download	a	free	version	of	Oracle	for	Linux	or	Microsoft	SQL	Express	installation.
Oracle	for	Linux	can	be	installed	on	the	vCloud	Director	VM.	If	you	choose	SQL

Express,	you	can	install	this	on	a	Windows	VM	(possibly	the	Domain	Controller	for
very	small	lab	environments).

3.	 Create	a	database	and	create	the	username	and	password	needed	to	connect	to	it.	You
will	use	these	credentials	when	configuring	vCloud	Director.

4.	 The	last	step	before	installing	vCloud	Director	is	to	generate	a	certificate	keystore
that	will	be	used	for	the	HTTPS	connection	on	the	vCloud	Director’s	web	interface.
You	can	generate	this	using	the	Java	keytool	command	in	Linux.

5.	 After	installing	a	database,	run	the	.bin	installation	file	for	vCloud	Director	in	the
vCloud	VM.	Any	missing	prerequisite	software	will	be	listed	and	you	can	load	this
with	a	Linux	package	manager.

6.	 Install	any	prerequisites	and	restart	the	installation	of	vCloud	Director.	Once	it
finishes	the	installation,	it	prompts	you	to	start	the	initial	configuration	and	respond
back	with	a	yes	reply.

In	the	initial	configuration,	you	will	specify	the	addresses	to	use	with	vCloud	Director	and
the	database	to	connect	to.	The	initial	configuration	will	connect	to	the	database	and	build
its	database	and	tables.	Once	this	step	completes,	you	can	launch	and	log	in	to	vCloud
Director	with	the	username	and	password	you	defined	during	the	configuration.

vCloud	Director	PowerCLI	doesn’t	allow	you	to	easily	handle	the	highest	level	of
administration	for	the	vCloud	environment.	Instead,	you	should	launch	it	and	log	into	the
administration	web	interface	on	vCloud	Director.	Once	logged	in,	follow	the	Guided
Tasks	section	to	initially	configure	vCloud	Director	against	your	vCenter	Server	and	set
up	a	new	provider	virtual	datacenter.

Once	you	have	completed	the	guided	tasks	in	vCloud	Director,	you	should	be	ready	to
begin	the	recipes	of	Chapter	10,	Working	with	vCloud	Director	from	PowerCLI.

Additional	resources
For	additional	resources,	refer	to	the	following	links:

VMware	vCloud	Service	Providers:	http://vcloudproviders.vmware.com/
AutoLab:	http://www.labguides.com/autolab/
vCloud	Director	Trial:	http://www.vmware.com/go/try-vcloud-director
vCloud	Networking	and	Security	(vShield	Manager):
http://www.vmware.com/go/try-cns
vShield	Manager	Installation	Guide:
http://www.vmware.com/pdf/vshield_512_quickstart.pdf

http://vcloudproviders.vmware.com/
http://www.labguides.com/autolab/
http://www.vmware.com/go/try-vcloud-director
http://www.vmware.com/go/try-cns
http://www.vmware.com/pdf/vshield_512_quickstart.pdf

Index
A

Active	Directory
ESXi	host,	joining	into	/	Joining	an	ESXi	host	into	Active	Directory	,	How	to	do
it…,	How	it	works…,	There’s	more…

add()	method	/	How	to	do	it…,	How	to	do	it…
Admission	Control	/	Getting	ready
alerts

getting,	from	vSphere	environment	/	Getting	alerts	from	a	vSphere	environment,
How	to	do	it…,	How	it	works…

Arnim	van-Lieshout
New	DRS	Group	Functions,	URL	/	See	also

AutoLab
vCloud	Director	environment,	deploying	/	Deploying	the	vCloud	Director
environment	from	AutoLab
about	/	Deploying	the	vCloud	Director	environment	from	AutoLab
URL	/	Deploying	the	vCloud	Director	environment	from	AutoLab

C
Challenge-Handshake	Authentication	Protocol	(CHAP)	/	How	to	do	it…
cloning

about	/	Cloning	a	virtual	machine	to	a	template,	How	it	works…
cluster

creating	/	Creating	a	cluster	and	adding	ESXi	hosts,	Getting	ready,	How	it
works…
setting,	into	maintenance	mode	with	PowerCLI	/	Setting	a	cluster	into
maintenance	mode	with	PowerCLI,	There’s	more…

cluster	advanced	features
setting	/	Setting	cluster	advanced	features,	including	HA,	DRS,	and	EVC,
Getting	ready,	How	to	do	it…,	How	it	works…,	There’s	more…

Compare-Object
used,	for	auditing	group	memberships	/	How	to	do	it…,	How	it	works…

configuration	script
creating,	to	set	properties	uniformly	/	Creating	a	configuration	script	to	set	all
properties	uniformly,	How	to	do	it…

ConfigureStorageDrsForPod	method	/	How	to	do	it…
coredump	settings,	for	ESXi	host

configuring,	from	PowerCLI	/	Configuring	coredump	settings	for	an	ESXi	host
from	PowerCLI,	How	to	do	it…,	There’s	more…

CSV
output,	sending	to	/	Sending	output	to	CSV	and	HTML,	How	to	do	it…,	How	it
works…
about	/	Sending	output	to	CSV	and	HTML

custom	attribute
creating,	number	of	shares	per	VM	on	resource	pool	used	/	Creating	a	custom
attribute	with	a	number	of	shares	per	VM	on	each	resource	pool,	How	to	do	it…,
How	it	works…

custom	function
creating,	for	updating	DRS	group	member	/	Creating	a	custom	function	to
update	members	of	a	DRS	group,	How	to	do	it…,	How	it	works…
used,	for	maintaining	DRS	groups	membership	/	Creating	rules	to	maintain
memberships	of	DRS	groups	using	a	custom	function,	How	to	do	it…,	There’s
more…

custom	properties
setting,	to	add	context	to	virtual	machines	/	Setting	custom	properties	to	add
useful	context	to	your	virtual	machines,	How	to	do	it…

custom	storage
configuring	/	Configuring	custom	storage	and	path	selection	policies,	How	to	do
it…,	How	it	works…

D
datastore	cluster

creating	/	Creating	and	managing	datastore	clusters,	How	to	do	it…,	How	it
works…
managing	/	Creating	and	managing	datastore	clusters,	How	to	do	it…,	How	it
works…

datastores
creating,	on	ESXi	host	/	Creating	datastores	on	an	ESXi	host,	How	to	do	it…,
How	it	works…

Datastores	view
NFS	/	Getting	ready
iSCSI	/	Getting	ready

Dell	Software	PowerGUI	guide
URL	/	See	also

disks
thin	to	thick	disks	converting,	Storage	vMotion	used	/	Converting	thin	to	thick
disks	with	Storage	vMotion,	How	to	do	it…,	How	it	works…

disk	space
in	virtual	machine,	increasing	/	Increasing	the	disk	space	in	a	virtual	machine,
How	it	works…

DRS
working	with	/	Setting	cluster	advanced	features,	including	HA,	DRS,	and	EVC,
Getting	ready,	How	to	do	it…,	There’s	more…
about	/	Introduction

DRS	group
creating,	for	virtual	machines	/	Creating	a	DRS	group	for	virtual	machines,	How
to	do	it…,	How	it	works…
members,	listing	/	Listing	the	members	of	a	DRS	group,	How	to	do	it…,	There’s
more…

DRS	groups	membership
maintaining,	with	custom	function	/	Creating	rules	to	maintain	memberships	of
DRS	groups	using	a	custom	function,	How	to	do	it…,	There’s	more…
rules,	creating	/	Creating	rules	to	maintain	memberships	of	DRS	groups	using	a
custom	function,	How	to	do	it…

Dynamic	Resource	Scheduling	(DRS)	/	Getting	ready

E
Enhanced	vMotion	Compatibility	(EVC)	settings

working	with	/	Setting	cluster	advanced	features,	including	HA,	DRS,	and	EVC,
Getting	ready,	How	to	do	it…,	How	it	works…,	There’s	more…

ESXCLI
about	/	Introduction

esxcli	network	commands
URL	/	See	also

ESXCLI	object
retrieving,	in	PowerCLI	/	Retrieving	the	ESXCLI	object	in	PowerCLI,	How	to
do	it…,	How	it	works…
used,	for	performing	ESXi	ping	/	Performing	ESXi	ping	with	an	ESXCLI
object,	How	to	do	it…,	There’s	more…

esxcli	storage	commands
URL	/	See	also

ESXCLI	vm	namespace
used,	for	killing	VM	/	Using	the	ESXCLI	vm	namespace	to	kill	a	misbehaving
VM,	How	to	do	it…

ESXi	coredump
URL	/	See	also

ESXi	host
connecting	to	/	Connecting	to	an	ESXi	host	or	a	vCenter	instance,	How	it
works…
joining,	into	Active	Directory	/	Joining	an	ESXi	host	into	Active	Directory	,
How	to	do	it…,	How	it	works…,	There’s	more…
datastores,	creating	on	/	Creating	datastores	on	an	ESXi	host,	How	to	do	it…,
How	it	works…
syslog	settings,	configuring	/	Configuring	syslog	settings	on	an	ESXi	host,	How
to	do	it…,	How	it	works…
joining,	to	vCenter	/	Joining	an	ESXi	host	to	vCenter,	How	it	works…
coredump	settings,	configuring	from	PowerCLI	/	Configuring	coredump	settings
for	an	ESXi	host	from	PowerCLI,	How	to	do	it…,	There’s	more…

ESXi	hosts
adding	/	Creating	a	cluster	and	adding	ESXi	hosts,	Getting	ready,	How	it
works…

ESXi	Network	Dump	Collector
URL	/	See	also

ESXi	ping
performing,	with	ESXCLI	object	/	Performing	ESXi	ping	with	an	ESXCLI
object,	How	to	do	it…,	How	it	works…

EVC
working	with	/	Setting	cluster	advanced	features,	including	HA,	DRS,	and	EVC

ExtensionData	property	/	How	to	do	it…

F
Fault	Tolerance

on	virtual	machine,	enabling	/	Enabling	and	disabling	Fault	Tolerance	on	a
virtual	machine,	How	to	do	it…,	How	it	works…
on	virtual	machine,	disabling	/	Enabling	and	disabling	Fault	Tolerance	on	a
virtual	machine,	How	to	do	it…,	How	it	works…

Fault	Tolerance	(FT)	/	Setting	cluster	advanced	features,	including	HA,	DRS,	and
EVC
folders

setting,	up	for	object	organization	/	Setting	up	folders	to	organize	objects	in
vCenter,	Getting	ready,	How	to	do	it…,	How	it	works…

G
get()	method	/	How	to	do	it…
group	memberships

auditing,	with	Compare-Object	/	Using	Compare-Object	to	audit	group
memberships	for	differences,	How	to	do	it…,	How	it	works…

H
HA

about	/	Getting	ready
working	with	/	Setting	cluster	advanced	features,	including	HA,	DRS,	and	EVC,
Getting	ready,	How	to	do	it…,	How	it	works…
Admission	Control	settings	/	How	to	do	it…
Failover	Level	settings	/	How	to	do	it…

Host	and	Clusters	view
Finance	/	Getting	ready
IT	/	Getting	ready

hosted	vCloud	environment	/	The	hosted	vCloud	environment
HTML

output,	sending	to	/	Sending	output	to	CSV	and	HTML,	How	to	do	it…,	How	it
works…

I
individual	VMs

starting,	in	vCloud	/	Starting	and	stopping	vApps	and	individual	VMs	in	a
vCloud,	Getting	ready,	How	it	works…
stopping,	in	vCloud	/	Starting	and	stopping	vApps	and	individual	VMs	in	a
vCloud,	How	to	do	it…,	How	it	works…

Infrastructure
Domain	Controllers	folder	/	Getting	ready
VMware	folder	/	Getting	ready

Invoke-VMScript
URL	/	See	also

Isolation	Response	/	Getting	ready

J
JAM	Software	page

URL	/	See	also

K
KeepTogether	and	Separate	rules

managing,	with	native	DRS	rule	cmdlets	/	Using	native	DRS	rule	cmdlets	to
manage	KeepTogether	and	Separate	rules,	How	to	do	it…,	How	it	works…

kill()	method	/	How	to	do	it…

L
Lightweight	Directory	Access	Protocol	(LDAP)	/	Joining	an	ESXi	host	into	Active
Directory
linked	clones	/	Find	lost	or	unknown	snapshots
list()	method	/	How	to	do	it…

M
Managed	Object	Reference	(MoRef)	/	How	to	do	it…
Managed	Object	Reference	(MoRef)	data	type	/	Getting	alerts	from	a	vSphere
environment
Managed	Object	References	(MoREF)	/	How	it	works…
Management	Network	/	Getting	ready
Media	Access	Control	(MAC)	/	There’s	more…
members,	DRS	group

listing	/	Listing	the	members	of	a	DRS	group,	How	to	do	it…,	There’s	more…
updating,	with	custom	function	/	Creating	a	custom	function	to	update	members
of	a	DRS	group,	How	to	do	it…,	How	it	works…

members,	VM	DRS	group
updating	/	Updating	the	members	of	a	VM	DRS	group,	Getting	ready,	How	to
do	it…

Microsoft	TechNet
Formatting	Numbers,	URL	/	See	also
Working	with	Hash	Tables,	URL	/	See	also
Windows	PowerShell,	URL	/	See	also

Microsoft	TechNet	page
URL	/	See	also

MoRef	way
used,	for	identifying	objects	/	Learning	the	MoRef	way	of	identifying	objects,
How	to	do	it…,	There’s	more…

N
native	commands,	guest	operating	system

executing,	from	PowerCLI	/	Executing	native	commands	inside	the	guest
operating	system	from	PowerCLI,	How	to	do	it…,	How	it	works…

native	DRS	rule	cmdlets
used,	for	managing	KeepTogether	and	Separate	rules	/	Using	native	DRS	rule
cmdlets	to	manage	KeepTogether	and	Separate	rules,	How	to	do	it…,	How	it
works…

network	configuration
setting	/	Setting	network	configuration,	Getting	ready,	How	to	do	it…,	There’s
more…

networking	configuration
in	vCloud	vApp	/	Configuring	networking	in	a	vCloud	vApp,	How	to	do	it…,
How	it	works…

Network	Interface	Card	(NIC)	/	Getting	ready
Networks	view

Standard	vSwitches	folder	/	Getting	ready
New-Snapshot	cmdlet	/	How	it	works…

O
objects

identifying,	with	MoRef	way	/	Learning	the	MoRef	way	of	identifying	objects,
How	to	do	it…,	There’s	more…

organization
new	user,	creating	with	Views	/	Creating	a	new	user	in	an	organization	using
Views,	How	to	do	it…,	See	also
virtual	data	center,	creating	in	vCloud	Director	/	Creating	an	organization’s
virtual	datacenter	in	vCloud	Director,	How	to	do	it…

organizations,	vCloud
managing	/	Creating	and	managing	organizations	in	vCloud,	How	to	do	it…,
There’s	more…
creating	/	Creating	and	managing	organizations	in	vCloud,	How	to	do	it…,
There’s	more…

output
sending,	to	CSV	/	Sending	output	to	CSV	and	HTML,	Getting	ready,	How	to	do
it…,	There’s	more…
sending,	to	HTML	/	Sending	output	to	CSV	and	HTML,	How	to	do	it…,	There’s
more…

OVA
about	/	Introduction
virtual	appliance,	importing	from	/	Importing	a	virtual	appliance	from	OVA,
How	to	do	it…,	How	it	works…

OVF
about	/	Introduction

P
partially	automated	DRS	clusters

recommendations,	applying	/	Applying	recommendations	for	partially
automated	DRS	clusters,	How	to	do	it…,	How	it	works…

path	selection	policies
configuring	/	Configuring	custom	storage	and	path	selection	policies,	How	to	do
it…,	How	it	works…

path	selection	policy	(PSP)	/	Configuring	custom	storage	and	path	selection	policies
permissions

setting,	up	on	vCenter	objects	/	Setting	permissions	on	vCenter	objects,	How	to
do	it…,	How	it	works…,	There’s	more…

PowerCLI
URL	/	Connecting	to	an	ESXi	host	or	a	vCenter	instance
used,	for	creating	VM	properties	basic	reports	/	Creating	basic	reports	of	VM
properties	using	VMware	Tools	and	PowerCLI,	How	to	do	it…,	There’s	more…
about	/	Introduction
ESXCLI	object,	retrieving	/	Retrieving	the	ESXCLI	object	in	PowerCLI,	How
to	do	it…,	How	it	works…
ESXi	host	coredump	settings,	configuring	from	/	Configuring	coredump	settings
for	an	ESXi	host	from	PowerCLI,	How	to	do	it…,	How	it	works…,	There’s
more…
native	commands	of	guest	operating	system,	executing	from	/	Executing	native
commands	inside	the	guest	operating	system	from	PowerCLI,	How	to	do	it…,
How	it	works…
used,	for	setting	cluster	into	maintenance	mode	/	Setting	a	cluster	into
maintenance	mode	with	PowerCLI,	How	to	do	it…
used,	for	reassigning	vApp	VM	network	settings	/	Reassigning	vApp	VM
network	settings	with	PowerCLI,	How	to	do	it…,	How	it	works…

PowerCLI	6
used,	for	settingStorage	DRS	automation	levels	for	individual	VMS	/	Setting
Storage	DRS	automation	levels	for	individual	VMs	using	PowerCLI	6,	How	to
do	it…,	How	it	works…

PowerShell
native	capabilities,	using	to	schedule	scripts	/	Using	PowerShell	native
capabilities	to	schedule	scripts,	How	to	do	it…,	How	it	works…

PowerShell	-f	Format	operator	page
URL	/	See	also

PowerShell	objects
output	formatting,	basics	/	Basics	of	formatting	output	from	PowerShell	objects,
How	to	do	it…,	There’s	more…

Provider	Virtual	Data	Center	(Provider	VCD)	/	Getting	ready
provisioned	disk

thin	or	thick	provisioned	disk,	locating	/	Locating	thin	or	thick	provisioned

disks,	There’s	more…
PSScheduledJob	Cmdlets

URL	/	See	also

R
Raw	Disk	Mappings

finding,	in	environment	/	Finding	Raw	Disk	Mappings	in	your	environment,
How	it	works…

recommendations
applying,	for	partially	automated	DRS	clusters	/	Applying	recommendations	for
partially	automated	DRS	clusters,	How	to	do	it…,	How	it	works…

Regular	Expressions	(RegEx)
about	/	There’s	more…
URL	/	See	also

reservations
about	/	Introduction
setting,	for	resource	pools	/	Setting	reservations	and	limits	for	resource	pools,
How	to	do	it…,	How	it	works…
reporting	/	Reporting	shares,	reservations,	and	limits	of	resource	pools	and
virtual	machines,	How	to	do	it…,	How	it	works…,	There’s	more…

resource	pools
setting	up	/	Setting	up	resource	pools,	Getting	ready,	How	to	do	it…,	There’s
more…
URL	/	There’s	more…
about	/	Introduction
limits	within	/	Introduction
reservations,	setting	/	Setting	reservations	and	limits	for	resource	pools,	How	to
do	it…,	How	it	works…
limits,	setting	/	Setting	reservations	and	limits	for	resource	pools,	How	to	do
it…,	How	it	works…
share	allocations,	balancing	/	Balancing	share	allocations	on	resource	pools,
How	to	do	it…,	How	it	works…
custom	attribute,	creating	with	number	of	shares	per	VM	/	Creating	a	custom
attribute	with	a	number	of	shares	per	VM	on	each	resource	pool,	How	to	do	it…,
How	it	works…
limits,	reporting	/	Reporting	shares,	reservations,	and	limits	of	resource	pools
and	virtual	machines,	How	to	do	it…,	How	it	works…,	There’s	more…

Restart	Priority	/	Getting	ready
rules

creating,	for	DRS	groups	membership	maintenance	/	Creating	rules	to	maintain
memberships	of	DRS	groups	using	a	custom	function,	How	to	do	it…,	There’s
more…

S
scripts

scheduling,	PowerShell	native	capabilities	used	/	Using	PowerShell	native
capabilities	to	schedule	scripts,	How	to	do	it…,	There’s	more…

security	profiles
setting	/	Enabling	services	and	setting	security	profiles	,	How	to	do	it…,	There’s
more…

services
enabling	/	Enabling	services	and	setting	security	profiles	,	How	to	do	it…,	How
it	works…

set()	method	/	How	to	do	it…
share	allocations

setting,	on	resource	pools	/	Balancing	share	allocations	on	resource	pools,	How
to	do	it…,	How	it	works…
balancing,	automating	/	Automating	share	allocation	balancing,	Getting	ready,
How	to	do	it…,	How	it	works…

shares
about	/	Introduction
reporting	/	Reporting	shares,	reservations,	and	limits	of	resource	pools	and
virtual	machines,	How	to	do	it…,	How	it	works…,	There’s	more…

Single	Sign-On	(SSO)	/	Introduction
SmartOS	/	See	also
snapshot

about	/	Introduction
creating	/	Creating	a	snapshot,	How	to	do	it…,	There’s	more…
list,	retrieving	in	environment	/	Getting	a	list	of	snapshots	in	the	environment,
How	to	do	it…,	How	it	works…,	There’s	more…
list,	manipulating	/	Manipulating	the	list	of	snapshots	to	get	better	information,
How	to	do	it…,	There’s	more…
list,	scoping	/	Scoping	and	filtering	a	list	of	snapshots,	How	to	do	it…,	How	it
works…
list,	filtering	/	Scoping	and	filtering	a	list	of	snapshots,	How	to	do	it…,	How	it
works…
targeted,	removing	/	Removing	targeted	snapshots,	How	to	do	it…,	There’s
more…
unknown	snapshot,	finding	/	Find	lost	or	unknown	snapshots,	How	to	do	it…,
How	it	works…
lost	snapshot,	finding	/	Find	lost	or	unknown	snapshots,	How	to	do	it…,	How	it
works…
function,	creating	to	remediate	snapshots	/	Creating	a	function	to	automatically
remediate	snapshots,	How	to	do	it…,	There’s	more…
automatic	snapshot	remediation,	scheduling	/	Scheduling	automatic	snapshot
remediation,	How	to	do	it…,	How	it	works…

management	module,	creating	/	Creating	a	snapshot	management	module,	How
to	do	it…,	How	it	works…

Storage	Array	Type	Plug-in	(SATP)	/	Configuring	custom	storage	and	path	selection
policies
Storage	DRS

about	/	Creating	and	managing	datastore	clusters
automation	levels,	setting	for	individual	virtual	machines	/	Setting	Storage	DRS
automation	levels	for	individual	virtual	machines,	How	to	do	it…,	How	it
works…

Storage	DRS	automation	levels
setting,	for	individual	VMs	with	PowerCLI	6	/	Setting	Storage	DRS	automation
levels	for	individual	VMs	using	PowerCLI	6,	How	to	do	it…,	How	it	works…

Storage	vMotion
performing	/	Performing	Storage	vMotion,	How	to	do	it…,	There’s	more…
used,	for	converting	thin	to	thick	disks	/	Converting	thin	to	thick	disks	with
Storage	vMotion,	How	to	do	it…,	How	it	works…

StressLinux
URL	/	See	also

syslog	settings
configuring,	on	ESXi	host	/	Configuring	syslog	settings	on	an	ESXi	host,	How
to	do	it…,	How	it	works…

System	Identifier	(SID)	/	There’s	more…

T
TechNet	Magazine

URL	/	See	also
template

virtual	machine,	cloning	to	/	Cloning	a	virtual	machine	to	a	template,	How	it
works…,	See	also
new	virtual	machines,	deploying	from	/	Deploying	new	virtual	machines	from	a
template,	How	it	works…,	There’s	more…

Text	and	Regular	Expressions
URL	/	See	also

V
vApps

starting,	in	vCloud	/	Starting	and	stopping	vApps	and	individual	VMs	in	a
vCloud,	How	to	do	it…,	How	it	works…
stopping,	in	vCloud	/	Starting	and	stopping	vApps	and	individual	VMs	in	a
vCloud,	How	it	works…

vApp	template
importing,	in	vCloud	/	Importing	a	vApp	template	into	vCloud,	How	it	works…

vApp	VM	network	settings
reassigning,	with	PowerCLI	/	Reassigning	vApp	VM	network	settings	with
PowerCLI,	How	to	do	it…,	There’s	more…

vCenter
ESXi	host,	joining	to	/	Joining	an	ESXi	host	to	vCenter,	How	to	do	it…
virtual	datacenter,	creating	/	Creating	a	virtual	datacenter	in	vCenter,	How	to	do
it…,	How	it	works…

vCenter	instance
connecting	to	/	Connecting	to	an	ESXi	host	or	a	vCenter	instance,	How	it
works…

vCenter	objects
organizing,	by	setting	up	folders	/	Setting	up	folders	to	organize	objects	in
vCenter,	Getting	ready,	How	to	do	it…
permissions,	setting	up	/	Setting	permissions	on	vCenter	objects,	How	to	do	it…,
How	it	works…,	There’s	more…

vCenter	Operations	Manager	(vCOPS)	/	How	it	works…
vCenter	Server	Appliance	(VCSA)	/	Introduction,	Importing	a	virtual	appliance	from
OVA
vCloud

about	/	Introduction
organizations,	creating	/	Creating	and	managing	organizations	in	vCloud,	How
to	do	it…,	There’s	more…
organizations,	managing	/	Creating	and	managing	organizations	in	vCloud,	How
to	do	it…,	There’s	more…
vApp	template,	importing	/	Importing	a	vApp	template	into	vCloud,	How	it
works…
vApps,	stopping	/	Starting	and	stopping	vApps	and	individual	VMs	in	a	vCloud,
How	to	do	it…,	How	it	works…
individual	VMs,	starting	/	Starting	and	stopping	vApps	and	individual	VMs	in	a
vCloud,	How	to	do	it…
vApps,	starting	/	Starting	and	stopping	vApps	and	individual	VMs	in	a	vCloud,
How	to	do	it…
individual	VMs,	stopping	/	Starting	and	stopping	vApps	and	individual	VMs	in
a	vCloud,	How	to	do	it…,	How	it	works…

vCloud	Director

organization’s	virtual	data	center,	creating	/	Creating	an	organization’s	virtual
datacenter	in	vCloud	Director,	How	to	do	it…
references	/	Additional	resources

vCloud	Director	environment
deploying,	from	AutoLab	/	Deploying	the	vCloud	Director	environment	from
AutoLab

vCloud	Director	implementation
building,	on	vSphere	lab	environment	/	Build	your	own	vCloud	Director
implementation	on	your	vSphere	lab	environment

vCloud	Director	PowerCLI	/	The	hosted	vCloud	environment
vCloud	environment

connecting	to	/	Connecting	to	a	vCloud	environment,	How	to	do	it…,	How	it
works…

vCloud	vApp
networking	configuration	/	Configuring	networking	in	a	vCloud	vApp,	How	to
do	it…,	How	it	works…

Views
used,	for	creating	new	user	in	organization	/	Creating	a	new	user	in	an
organization	using	Views,	How	to	do	it…

Virtu-Al.net
URL	/	See	also

virtual	appliance
importing,	from	OVA	/	Importing	a	virtual	appliance	from	OVA,	Getting	Started,
How	to	do	it…,	There’s	more…

virtual	datacenter
creating,	in	vCenter	/	Creating	a	virtual	datacenter	in	vCenter,	How	to	do	it…,
How	it	works…

virtual	data	center,	organization
creating,	in	vCloud	Director	/	Creating	an	organization’s	virtual	datacenter	in
vCloud	Director,	How	to	do	it…,	How	it	works…

Virtual	Desktop	Infrastructure	(VDI)
about	/	There’s	more…

virtual	hardware	version
of	virtual	machine,	upgrading	/	Upgrading	the	virtual	hardware	version	of	a
virtual	machine	,	Getting	Started,	How	it	works…

virtual	machine
first	virtual	machine,	deploying	/	Deploying	the	first	virtual	machine,	How	to	do
it…,	How	it	works…,	There’s	more…
cloning,	to	template	/	Cloning	a	virtual	machine	to	a	template,	How	it	works…
new	virtual	machines,	deploying	from	template	/	Deploying	new	virtual
machines	from	a	template,	How	it	works…,	There’s	more…
hot	add	of	virtual	hardware,	performing	/	Performing	a	hot	add	of	virtual
hardware	to	an	existing	virtual	machine,	How	to	do	it…,	How	it	works…
disk	space,	increasing	/	Increasing	the	disk	space	in	a	virtual	machine,	How	to

do	it…,	How	it	works…
virtual	hardware	version,	upgrading	/	Upgrading	the	virtual	hardware	version	of
a	virtual	machine	,	How	to	do	it…,	How	it	works…
inaccessible	virtual	machines,	locating	/	Locating	and	reloading	inaccessible	or
invalid	virtual	machines	,	How	to	do	it…,	How	it	works…
inaccessible	virtual	machines,	reloading	/	Locating	and	reloading	inaccessible	or
invalid	virtual	machines	,	How	to	do	it…,	How	it	works…
invalid	virtual	machines,	reloading	/	Locating	and	reloading	inaccessible	or
invalid	virtual	machines	,	How	to	do	it…
invalid	virtual	machines,	locating	/	Locating	and	reloading	inaccessible	or
invalid	virtual	machines	,	How	to	do	it…

virtual	machines
about	/	Introduction
reporting	/	Reporting	shares,	reservations,	and	limits	of	resource	pools	and
virtual	machines,	How	to	do	it…,	How	it	works…,	There’s	more…
DRS	group,	creating	/	Creating	a	DRS	group	for	virtual	machines,	How	to	do
it…,	How	it	works…

VM
killing,	with	ESXCLI	vm	namespace	/	Using	the	ESXCLI	vm	namespace	to	kill
a	misbehaving	VM,	How	to	do	it…,	How	it	works…

VM	DRS	group
members,	updating	/	Updating	the	members	of	a	VM	DRS	group,	How	to	do
it…

VM	Network	/	Getting	ready
VM	objects

reporting	/	Reporting	VM	objects	created	during	a	predefined	time	period	from
VI	Events	object,	How	to	do	it…,	There’s	more…

VM	properties
basic	reports	creating,	VMware	Tools	used	/	Creating	basic	reports	of	VM
properties	using	VMware	Tools	and	PowerCLI,	How	to	do	it…,	How	it	works…
basic	reports	creating,	PowerCLI	used	/	Creating	basic	reports	of	VM	properties
using	VMware	Tools	and	PowerCLI,	How	to	do	it…,	How	it	works…

VMware	Guest	OS	Compatibility	Guide
URL	/	See	also

VMware	host	object
obtaining	/	Getting	the	VMware	host	object,	How	it	works…,	There’s	more…

VMware	Knowledge	Base
URL	/	See	also

VMware	Knowledge	Base	page
URL	/	See	also

VMware	PowerCLI	Blog
URL	/	See	also

VMware	PowerCLI	Documentation	Center	and	Installation
URL	/	See	also

VMware	SDK	Documentation
URL	/	See	also

VMware	Tools
used,	for	creating	VM	properties	basic	reports	/	How	to	do	it…,	How	it	works…

VMware	Tool	settings
setting,	from	PowerCLI	/	Setting	VMware	Tool	settings	from	PowerCLI	,	How
to	do	it…,	How	it	works…

VMware	Virtual	Appliances	Marketplace
URL	/	Importing	a	virtual	appliance	from	OVA

VMware	vSphere	5.5	Availability	Guide
URL	/	See	also

VMware	vSphere	5.5	Documentation	Center
URL	/	See	also

VMware	vSphere	Host	Profiles
URL	/	See	also

Voice	over	IP	(VoIP)	/	How	it	works…
Volume	Shadow	Copy	Services	(VSS)	/	How	it	works…
vShield	Manager	/	Build	your	own	vCloud	Director	implementation	on	your	vSphere
lab	environment
vSphere	5	/	Creating	and	managing	datastore	clusters
vSphere	environment

alerts,	getting	from	/	Getting	alerts	from	a	vSphere	environment,	How	to	do	it…,
How	it	works…

vSphere	lab	environment
vCloud	Director	implementation,	building	/	Build	your	own	vCloud	Director
implementation	on	your	vSphere	lab	environment

vSphere	PowerCLI	Documentation
URL	/	See	also

vSphere	PowerCLI	Reference	documentation
URL	/	See	also

W
Wahl	Network

URL	/	See	also
Web	Services	SDK

URL	/	There’s	more…

	PowerCLI Cookbook
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Instant updates on new Packt books
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Configuring the Basic Settings of an ESXi Host with PowerCLI
	Introduction
	Connecting to an ESXi host or a vCenter instance
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Getting the VMware host object
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Joining an ESXi host into Active Directory
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Enabling services and setting security profiles
	Getting ready
	How to do it…
	How it works…
	There's more…
	Setting network configuration
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Creating datastores on an ESXi host
	Getting ready
	How to do it…
	How it works…
	See also
	Configuring syslog settings on an ESXi host
	Getting ready
	How to do it…
	How it works…
	There's more…
	Joining an ESXi host to vCenter
	Getting ready
	How to do it…
	How it works…
	See also
	Creating a configuration script to set all properties uniformly
	Getting ready
	How to do it…
	How it works…
	See also
	2. Configuring vCenter and Computing Clusters
	Introduction
	Creating a virtual datacenter in vCenter
	Getting ready
	How to do it…
	How it works…
	Creating a cluster and adding ESXi hosts
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Setting cluster advanced features, including HA, DRS, and EVC
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Setting up resource pools
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Setting up folders to organize objects in vCenter
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Setting permissions on vCenter objects
	Getting ready
	How to do it…
	How it works…
	There's more…
	3. Managing Virtual Machines
	Introduction
	Deploying the first virtual machine
	Getting Started
	How to do it…
	How it works…
	There's more…
	See also
	Cloning a virtual machine to a template
	Getting Started
	How to do it…
	How it works…
	There's more…
	See also
	Deploying new virtual machines from a template
	Getting Started
	How to do it…
	How it works…
	There's more…
	Importing a virtual appliance from OVA
	Getting Started
	How to do it…
	How it works…
	There's more…
	See also
	Performing a hot add of virtual hardware to an existing virtual machine
	Getting Started
	How to do it…
	How it works…
	There's more…
	See also
	Enabling and disabling Fault Tolerance on a virtual machine
	Getting Started
	How to do it…
	How it works…
	See also
	Increasing the disk space in a virtual machine
	Getting Started
	How to do it…
	How it works…
	Upgrading the virtual hardware version of a virtual machine
	Getting Started
	How to do it…
	How it works…
	See also
	Locating and reloading inaccessible or invalid virtual machines
	Getting Started
	How to do it…
	How it works…
	Setting VMware Tool settings from PowerCLI
	Getting Started
	How to do it…
	How it works…
	Creating basic reports of VM properties using VMware Tools and PowerCLI
	Getting Started
	How to do it…
	How it works…
	There's more…
	See also
	4. Working with Datastores and Datastore Clusters
	Introduction
	Performing Storage vMotion
	Getting ready
	How to do it…
	How it works…
	There's more…
	Finding Raw Disk Mappings in your environment
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Locating thin or thick provisioned disks
	Getting ready
	How to do it…
	How it works…
	There's more…
	Converting thin to thick disks with Storage vMotion
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating and managing datastore clusters
	Getting ready
	How to do it…
	How it works…
	Setting Storage DRS automation levels for individual virtual machines
	Getting ready
	How to do it…
	How it works…
	There's more…
	Setting Storage DRS automation levels for individual VMs using PowerCLI 6
	Getting ready
	How to do it…
	How it works…
	5. Creating and Managing Snapshots
	Introduction
	Creating a snapshot
	Getting Started
	How to do it…
	How it works…
	There's more…
	See also
	Getting a list of snapshots in the environment
	Getting Started
	How to do it…
	How it works…
	There's more…
	Manipulating the list of snapshots to get better information
	Getting Started
	How to do it…
	How it works…
	There's more…
	See also
	Scoping and filtering a list of snapshots
	Getting Started
	How to do it…
	How it works…
	There's more…
	Removing targeted snapshots
	Getting Started
	How to do it…
	How it works…
	There's more…
	Find lost or unknown snapshots
	Getting Started
	How to do it…
	How it works…
	Creating a function to automatically remediate snapshots
	Getting Started
	How to do it…
	How it works…
	There's more…
	See also
	Scheduling automatic snapshot remediation
	Getting Started
	How to do it…
	How it works…
	See also
	Creating a snapshot management module
	Getting Started
	How to do it…
	How it works…
	There's more…
	6. Managing Resource Pools, Reservations, and Limits for Virtual Machines
	Introduction
	Setting reservations and limits for resource pools
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Balancing share allocations on resource pools
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating a custom attribute with a number of shares per VM on each resource pool
	Getting ready
	How to do it…
	How it works…
	Automating share allocation balancing
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Reporting shares, reservations, and limits of resource pools and virtual machines
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	7. Creating Custom Reports and Notifications for vSphere
	Introduction
	Getting alerts from a vSphere environment
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Basics of formatting output from PowerShell objects
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Sending output to CSV and HTML
	Getting ready
	How to do it…
	How it works…
	There's more…
	Reporting VM objects created during a predefined time period from VI Events object
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Setting custom properties to add useful context to your virtual machines
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using PowerShell native capabilities to schedule scripts
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	8. Performing ESXCLI and in-guest Commands from PowerCLI
	Introduction
	Retrieving the ESXCLI object in PowerCLI
	Getting ready
	How to do it…
	How it works…
	There's more...
	Using the ESXCLI vm namespace to kill a misbehaving VM
	Getting ready
	How to do it…
	How it works…
	There's more…
	Performing ESXi ping with an ESXCLI object
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Configuring custom storage and path selection policies
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Configuring coredump settings for an ESXi host from PowerCLI
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Executing native commands inside the guest operating system from PowerCLI
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	9. Managing DRS and Affinity Groups using PowerCLI
	Introduction
	Applying recommendations for partially automated DRS clusters
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Setting a cluster into maintenance mode with PowerCLI
	Getting ready
	How to do it...
	There's more...
	Using native DRS rule cmdlets to manage KeepTogether and Separate rules
	Getting ready
	How to do it…
	How it works…
	Learning the MoRef way of identifying objects
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a DRS group for virtual machines
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Listing the members of a DRS group
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Updating the members of a VM DRS group
	Getting ready
	How to do it…
	How it works…
	Creating a custom function to update members of a DRS group
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating rules to maintain memberships of DRS groups using a custom function
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using Compare-Object to audit group memberships for differences
	Getting ready
	How to do it…
	How it works…
	See also
	10. Working with vCloud Director from PowerCLI
	Introduction
	Connecting to a vCloud environment
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating and managing organizations in vCloud
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a new user in an organization using Views
	Getting ready
	How to do it…
	How it works…
	See also
	Creating an organization's virtual datacenter in vCloud Director
	Getting ready
	How to do it…
	How it works…
	Importing a vApp template into vCloud
	Getting ready
	How to do it…
	How it works…
	There's more…
	Configuring networking in a vCloud vApp
	Getting ready
	How to do it…
	How it works…
	Reassigning vApp VM network settings with PowerCLI
	Getting ready
	How to do it…
	How it works…
	There's more…
	Starting and stopping vApps and individual VMs in a vCloud
	Getting ready
	How to do it…
	How it works…
	A. Setting up and Configuring vCloud Director
	The hosted vCloud environment
	Deploying the vCloud Director environment from AutoLab
	Build your own vCloud Director implementation on your vSphere lab environment
	Additional resources
	Index

