
Eric A. Meyer

Positioning
in CSS
LAYOUT ENHANCEMENTS FOR THE WEB

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Eric A. Meyer

Positioning in CSS
Layout Enhancements for the Web

www.allitebooks.com

http://www.allitebooks.org

978-1-491-93037-3

[LSI]

Positioning in CSS
by Eric A. Meyer

Copyright © 2016 Eric A. Meyer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Colleen Lobner
Copyeditor: Amanda Kersey
Proofreader: Molly Ives Brower

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

April 2016: First Edition

Revision History for the First Edition
2016-04-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491930373 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Positioning in CSS, the cover image of
salmon, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491930373
http://www.allitebooks.org

Table of Contents

Preface. v

Positioning. 1
Basic Concepts 1

Types of Positioning 1
The Containing Block 2

Offset Properties 3
Width and Height 6

Setting Width and Height 6
Limiting Width and Height 8

Content Overflow and Clipping 10
Overflow 11

Element Visibility 13
Absolute Positioning 15

Containing Blocks and Absolutely Positioned Elements 15
Placement and Sizing of Absolutely Positioned Elements 18
Auto-edges 19
Placing and Sizing Nonreplaced Elements 21
Placing and Sizing Replaced Elements 25
Placement on the z-axis 28

Fixed Positioning 32
Relative Positioning 33
Sticky Positioning 36
Summary 40

iii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

This element indicates a warning or caution.

v

www.allitebooks.com

http://www.allitebooks.org

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/positioning-in-css.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

vi | Preface

www.allitebooks.com

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/positioning-in-css
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.allitebooks.org

Positioning

The idea behind positioning is fairly simple. It allows you to define exactly where ele‐
ment boxes will appear relative to where they would ordinarily be—or position them
in relation to a parent element, another element, or even to the viewport (e.g., the
browser window) itself.

Basic Concepts
Before we delve into the various kinds of positioning, it’s a good idea to look at what
types exist and how they differ. We’ll also need to define some basic ideas that are
fundamental to understanding how positioning works.

Types of Positioning
You can choose one of five different types of positioning, which affect how the ele‐
ment’s box is generated, by using the position property.

position

Values: static | relative | sticky | absolute | fixed | inherit

Initial value: static

Applies to: All elements

Inherited: No

Computed value: As specified

1

www.allitebooks.com

http://www.allitebooks.org

The values of position have the following meanings:

static

The element’s box is generated as normal. Block-level elements generate a rectan‐
gular box that is part of the document’s flow, and inline-level boxes cause the cre‐
ation of one or more line boxes that are flowed within their parent element.

relative

The element’s box is offset by some distance. The element retains the shape it
would have had were it not positioned, and the space that the element would
ordinarily have occupied is preserved.

absolute

The element’s box is completely removed from the flow of the document and
positioned with respect to its containing block, which may be another element in
the document or the initial containing block (described in the next section).
Whatever space the element might have occupied in the normal document flow
is closed up, as though the element did not exist. The positioned element gener‐
ates a block-level box, regardless of the type of box it would have generated if it
were in the normal flow.

fixed

The element’s box behaves as though it was set to absolute, but its containing
block is the viewport itself.

sticky

The element is left in the normal flow until the conditions that trigger its sticki‐
ness come to pass, at which point it is removed from the normal flow but its orig‐
inal space in the normal flow is preserved. It will then act as if absolutely
positioned with respect to its containing block. Once the conditions to enforce
stickiness are no longer met, the element is returned to the normal flow in its
original space.

Don’t worry so much about the details right now, as we’ll look at each of these kinds
of positioning later. Before we do that, we need to discuss containing blocks.

The Containing Block
In general terms, a containing block is the box that contains another element. As an
example, in the normal-flow case, the root element (html in HTML) is the containing
block for the body element, which is in turn the containing block for all its children,
and so on. When it comes to positioning, the containing block depends entirely on
the type of positioning.

2 | Positioning

www.allitebooks.com

http://www.allitebooks.org

For a non-root element whose position value is relative or static, its containing
block is formed by the content edge of the nearest block-level, table-cell, or inline-
block ancestor box.

For a non-root element that has a position value of absolute, its containing block is
set to the nearest ancestor (of any kind) that has a position value other than static.
This happens as follows:

• If the ancestor is block-level, the containing block is set to be that element’s pad‐
ding edge; in other words, the area that would be bounded by a border.

• If the ancestor is inline-level, the containing block is set to the content edge of the
ancestor. In left-to-right languages, the top and left of the containing block are
the top and left content edges of the first box in the ancestor, and the bottom and
right edges are the bottom and right content edges of the last box. In right-to-left
languages, the right edge of the containing block corresponds to the right content
edge of the first box, and the left is taken from the last box. The top and bottom
are the same.

• If there are no ancestors, then the element’s containing block is defined to be the
initial containing block.

There’s an interesting variant to the containing-block rules when it comes to sticky-
positioned elements, which is that a rectangle is defined in relation to the containing
block called the sticky-constraint rectangle. This rectangle has everything to do with
how sticky positioning works, and will be explained in full later, in “Sticky Position‐
ing” on page 36.

An important point: positioned elements can be positioned outside of their contain‐
ing block. This is very similar to the way in which floated elements can use negative
margins to float outside of their parent’s content area. It also suggests that the term
“containing block” should really be “positioning context,” but since the specification
uses “containing block,” so will I. (I do try to minimize confusion. Really!)

Offset Properties
Four of the positioning schemes described in the previous section—relative, absolute,
sticky, and fixed—use four distinct properties to describe the offset of a positioned
element’s sides with respect to its containing block. These four properties, which are
referred to as the offset properties, are a big part of what makes positioning work.

Offset Properties | 3

top, right, bottom, left

Values: <length> | <percentage> | auto | inherit

Initial value: auto

Applies to: Positioned elements

Inherited: No

Percentages: Refer to the height of the containing block for top and bottom, and the width of the
containing block for right and left

Computed value: For relative or sticky-positioned elements, see the sections on those
positioning types. For static elements, auto; for length values, the corresponding
absolute length; for percentage values, the specified value; otherwise, auto

These properties describe an offset from the nearest side of the containing block (thus
the term offset properties). For example, top describes how far the top margin edge of
the positioned element should be placed from the top of its containing block. In the
case of top, positive values move the top margin edge of the positioned element
downward, while negative values move it above the top of its containing block. Simi‐
larly, left describes how far to the right (for positive values) or left (for negative val‐
ues) the left margin edge of the positioned element is from the left edge of the
containing block. Positive values will shift the margin edge of the positioned element
to the right, and negative values will move it to the left.

Another way to look at it is that positive values cause inward offsets, moving
the edges toward the center of the containing block, and negative values cause out‐
ward offsets.

The implication of offsetting the margin edges of a positioned element is that every‐
thing about an element—margins, borders, padding, and content—is moved in
the process[of positioning the element. Thus, it is possible to set margins, borders,
and padding for a positioned element; these will be preserved and kept with the
positioned element, and they will be contained within the area defined by the offset
properties.

It is important to remember that the offset properties define an offset from the analo‐
gous side (e.g., left defines the offset from the left side) of the containing block, not

4 | Positioning

from the upper-left corner of the containing block. This is why, for example, one way
to fill up the lower-right corner of a containing block is to use these values:

top: 50%; bottom: 0; left: 50%; right: 0;

In this example, the outer-left edge of the positioned element is placed halfway across
the containing block. This is its offset from the left edge of the containing block. The
outer-right edge of the positioned element, however, is not offset from the right edge
of the containing block, so the two are coincident. Similar reasoning holds true for
the top and bottom of the positioned element: the outer-top edge is placed halfway
down the containing block, but the outer-bottom edge is not moved up from the bot‐
tom. This leads to what’s shown in Figure 1.

Figure 1. Filling the lower-right quarter of the containing block

What’s depicted in Figure 1, and in most of the examples in this
chapter, is based around absolute positioning. Since absolute posi‐
tioning is the simplest scheme in which to demonstrate how top,
right, bottom, and left work, we’ll stick to that for now.

Note the background area of the positioned element. In Figure 1, it has no margins,
but if it did, they would create blank space between the borders and the offset edges.
This would make the positioned element appear as though it did not completely fill
the lower-right quarter of the containing block. In truth, it would fill the area, but this
fact wouldn’t be immediately apparent to the eye. Thus, the following two sets of
styles would have approximately the same visual appearance, assuming that the con‐
taining block is 100em high by 100em wide:

top: 50%; bottom: 0; left: 50%; right: 0; margin: 10em;
top: 60%; bottom: 10%; left: 60%; right: 10%; margin: 0;

Offset Properties | 5

Again, the similarity would be only visual in nature.

By using negative offset values, it is possible to position an element outside its
containing block. For example, the following values will lead to the result shown in
Figure 2:

top: 50%; bottom: -2em; left: 75%; right: -7em;

Figure 2. Positioning an element outside its containing block

In addition to length and percentage values, the offset properties can also be set to
auto, which is the default value. There is no single behavior for auto; it changes based
on the type of positioning used. We’ll explore how auto works later on, as we con‐
sider each of the positioning types in turn.

Width and Height
There will be many cases when, having determined where you’re going to position an
element, you will want to declare how wide and how high that element should be. In
addition, there will likely be conditions where you’ll want to limit how high or wide a
positioned element gets, not to mention cases where you want the browser to go
ahead and automatically calculate the width, height, or both.

Setting Width and Height
If you want to give your positioned element a specific width, then the obvious prop‐
erty to turn to is width. Similarly, height will let you declare a specific height for a
positioned element.

Although it is sometimes important to set the width and height of an element, it is
not always necessary when positioning elements. For example, if the placement of the
four sides of the element is described using top, right, bottom, and left, then the

6 | Positioning

height and width of the element are implicitly determined by the offsets. Assume
that we want an absolutely positioned element to fill the left half of its containing
block, from top to bottom. We could use these values, with the result depicted in Fig‐
ure 3:

top: 0; bottom: 0; left: 0; right: 50%;

Figure 3. Positioning and sizing an element using only the offset properties

Since the default value of both width and height is auto, the result shown in Figure 3
is exactly the same as if we had used these values:

top: 0; bottom: 0; left: 0; right: 50%; width: 50%; height: 100%;

The presence of width and height in this example add nothing to the layout of the
element.

Of course, if we were to add padding, a border, or a margin to the element, then the
presence of explicit values for height and width could very well make a difference:

top: 0; bottom: 0; left: 0; right: 50%; width: 50%; height: 100%;
 padding: 2em;

This will give us a positioned element that extends out of its containing block, as
shown in Figure 4.

This happens because (by default) the padding is added to the content area, and the
content area’s size is determined by the values of height and width. In order to get
the padding we want and still have the element fit inside its containing block, we
would either remove the height and width declarations, explicitly set them both to
auto, or set box-sizing to border-box.

Width and Height | 7

Figure 4. Positioning an element partially outside its containing block

Limiting Width and Height
Should it become necessary or desirable, you can place limits on an element’s width
by using the following properties, which I’ll refer to as the min-max properties. An
element’s content area can be defined to have minimum dimensions using min-width
and min-height.

min-width, min-height

Values: <length> | <percentage> | inherit

Initial value: 0

Applies to: All elements except nonreplaced inline elements and table elements

Inherited: No

Percentages: Refer to the width of the containing block

Computed value: For percentages, as specified; for length values, the absolute length; otherwise, none

Similarly, an element’s dimensions can be limited using the properties max-width and
max-height.

8 | Positioning

max-width, max-height

Values: <length> | <percentage> | none | inherit

Initial value: none

Applies to: All elements except nonreplaced inline elements and table elements

Inherited: No

Percentages: Refer to the height of the containing block

Computed value: For percentages, as specified; for length values, the absolute length; otherwise, none

The names of these properties make them fairly self-explanatory. What’s less obvious
at first, but makes sense once you think about it, is that values for all these properties
cannot be negative.

The following styles will force the positioned element to be at least 10em wide by 20em
tall, as illustrated in Figure 5:

top: 10%; bottom: 20%; left: 50%; right: 10%;
 min-width: 10em; min-height: 20em;

Figure 5. Setting a minimum width and height for a positioned element

Width and Height | 9

This isn’t a very robust solution since it forces the element to be at least a certain size
regardless of the size of its containing block. Here’s a better one:

top: 10%; bottom: auto; left: 50%; right: 10%;
 height: auto; min-width: 15em;

Here we have a case where the element should be 40% as wide as the containing block
but can never be less than 15em wide. We’ve also changed the bottom and height so
that they’re automatically determined. This will let the element be as tall as necessary
to display its content, no matter how narrow it gets (never less than 15em, of course!).

We’ll look at the role auto plays in the height and width of posi‐
tioned elements in an upcoming section.

You can turn all this around to keep elements from getting too wide or tall by using
max-width and max-height. Let’s consider a situation where, for some reason, we
want an element to have three-quarters the width of its containing block but to stop
getting wider when it hits 400 pixels. The appropriate styles are:

left: 0%; right: auto; width: 75%; max-width: 400px;

One great advantage of the min-max properties is that they let you mix units with
relative safety. You can use percentage-based sizes while setting length-based limits,
or vice versa.

It’s worth mentioning that these min-max properties can be very useful in conjunc‐
tion with floated elements. For example, we can allow a floated element’s width to be
relative to the width of its parent element (which is its containing block), while
making sure that the float’s width never goes below 10em. The reverse approach is also
possible:

p.aside {float: left; width: 40em; max-width: 40%;}

This will set the float to be 40em wide, unless that would be more than 40% the width
of the containing block, in which case the float will be limited to that 40% width.

Content Overflow and Clipping
If the content of an element is too much for the element’s size, it will be in danger of
overflowing the element itself. There are a few alternatives in such situations, and
CSS lets you select among them. It also allows you to define a clipping region to
determine the area of the element outside of which these sorts of things become
an issue.

10 | Positioning

Overflow
So let’s say that we have, for whatever reason, an element that has been pinned to a
specific size, and the content doesn’t fit. You can take control of the situation with the
overflow property.

overflow

Values: visible | hidden | scroll | auto | inherit

Initial value: visible

Applies to: Block-level and replaced elements

Inherited: No

Computed value: As specified

The default value of visible means that the element’s content may be visible outside
the element’s box. Typically, this leads to the content simply running outside its own
element box but not altering the shape of that box. The following markup would
result in Figure 6:

div#sidebar {position: absolute; top: 0; left: 0; width: 25%; height: 7em;
 background: #BBB; overflow: visible;}

If overflow is set to scroll, the element’s content is clipped—that is, hidden—at the
edges of the element box, but there is some way to make the extra content available to
the user. In a web browser, this could mean a scroll bar (or set of them), or another
method of accessing the content without altering the shape of the element itself. One
possibility is depicted in Figure 7, which results from the following markup:

div#sidebar {position: absolute; top: 0; left: 0; width: 15%; height: 7em;
 overflow: scroll;}

If scroll is used, the panning mechanisms (e.g., scroll bars) should always be ren‐
dered. To quote the specification, “this avoids any problem with scrollbars appearing
or disappearing in a dynamic environment.” Thus, even if the element has sufficient
space to display all its content, the scroll bars should still appear. In addition, when
printing a page or otherwise displaying the document in a print medium, the content
may be displayed as though the value of overflow were declared to be visible.

Content Overflow and Clipping | 11

Figure 6. Content visibly overflowing the element box

If overflow is set to hidden, the element’s content is clipped at the edges of the ele‐
ment box, but no scrolling interface should be provided to make the content outside
the clipping region accessible to the user. Consider the following markup:

div#sidebar {position: absolute; top: 0; left: 0; width: 15%; height: 7em;
 overflow: hidden;}

In such an instance, the clipped content would not be accessible to the user. This
would lead to a situation like that illustrated in Figure 8.

Figure 7. Overflowing content made available via a scroll mechanism

12 | Positioning

Figure 8. Clipping content at the edges of the content area

Finally, there is overflow: auto. This allows user agents to determine which behav‐
ior to use, although they are encouraged to provide a scrolling mechanism when nec‐
essary. This is a potentially useful way to use overflow, since user agents could
interpret it to mean “provide scroll bars only when needed.” (They may not, but they
certainly could and probably should.)

Element Visibility
In addition to all the clipping and overflowing, you can also control the visibility of
an entire element.

visibility

Values: visible | hidden | collapse | inherit

Initial value: visible

Applies to: All elements

Inherited: Yes

Computed value: As specified

Element Visibility | 13

This one is pretty easy. If an element is set to have visibility: visible, then it is, of
course, visible. If an element is set to visibility: hidden, it is made “invisible” (to
use the wording in the specification). In its invisible state, the element still affects the
document’s layout as though it were visible. In other words, the element is still there
—you just can’t see it, pretty much as if you’d declared opacity: 0.

Note the difference between this and display: none. In the latter case, the element is
not displayed and is removed from the document altogether so that it doesn’t have
any effect on document layout. Figure 9 shows a document in which a paragraph has
been set to hidden, based on the following styles and markup:

em.trans {visibility: hidden; border: 3px solid gray; background: silver;
 margin: 2em; padding: 1em;}

<p>
 This is a paragraph which should be visible. Nulla berea consuetudium ohio
 city, mutationem dolore. <em class="trans">Humanitatis molly shannon
 ut lorem. Doug dieken dolor possim south euclid.
</p>

Figure 9. Making elements invisible without suppressing their element boxes

Everything visible about a hidden element—such as content, background, and bor‐
ders—is made invisible. The space is still there because the element is still part of the
document’s layout. We just can’t see it.

It’s possible to set the descendant element of a hidden element to be visible. This
causes the element to appear wherever it normally would, despite the fact that the
ancestor is invisible. In order to do so, we explicitly declare the descendant element
visible, since visibility is inherited:

p.clear {visibility: hidden;}
p.clear em {visibility: visible;}

As for visbility: collapse, this value is used in CSS table rendering, which we
don’t really have room to cover here. According to the specification, collapse has the
same meaning as hidden if it is used on nontable elements.

14 | Positioning

Absolute Positioning
Since most of the examples and figures in the previous sections are examples of abso‐
lute positioning, you’re already halfway to understanding how it works. Most of what
remains are the details of what happens when absolute positioning is invoked.

Containing Blocks and Absolutely Positioned Elements
When an element is positioned absolutely, it is completely removed from the docu‐
ment flow. It is then positioned with respect to its containing block, and its margin
edges are placed using the offset properties (top, left, etc.). The positioned element
does not flow around the content of other elements, nor does their content flow
around the positioned element. This implies that an absolutely positioned element
may overlap other elements or be overlapped by them. (We’ll see how to affect the
overlapping order later.)

The containing block for an absolutely positioned element is the nearest ancestor ele‐
ment that has a position value other than static. It is common for an author to pick
an element that will serve as the containing block for the absolutely positioned ele‐
ment and give it a position of relative with no offsets, like so:

.contain {position: relative;}

Consider the example in Figure 10, which is an illustration of the following:

p {margin: 2em;}
p.contain {position: relative;} /* establish a containing block*/
b {position: absolute; top: auto; right: 0; bottom: 0; left: auto;
 width: 8em; height: 5em; border: 1px solid gray;}

<body>
<p>
 This paragraph does not establish a containing block for any of
 its descendant elements that are absolutely positioned. Therefore, the
 absolutely positioned boldface element it contains will be
 positioned with respect to the initial containing block.
</p>
<p class="contain">
 Thanks to <code>position: relative</code>, this paragraph establishes a
 containing block for any of its descendant elements that are absolutely
 positioned. Since there is such an element-- that is to say, a
 boldfaced element that is absolutely positioned, placed with respect
 to its containing block (the paragraph), it will appear within the
 element box generated by the paragraph.
</p>
</body>

Absolute Positioning | 15

The b elements in both paragraphs have been absolutely positioned. The difference is
in the containing block used for each one. The b element in the first paragraph is
positioned with respect to the initial containing block, because all of its ancestor ele‐
ments have a position of static. The second paragraph has been set to position:
relative, so it establishes a containing block for its descendants.

Figure 10. Using relative positioning to define containing blocks

You’ve probably noted that in that second paragraph, the positioned element overlaps
some of the text content of the paragraph. There is no way to avoid this, short of posi‐
tioning the b element outside of the paragraph (by using a negative value for right or
one of the other offset properties) or by specifying a padding for the paragraph that is
wide enough to accommodate the positioned element. Also, since the b element has a
transparent background, the paragraph’s text shows through the positioned element.
The only way to avoid this is to set a background for the positioned element, or else
move it out of the paragraph entirely.

You will sometimes want to ensure that the body element establishes a containing
block for all its descendants, rather than allowing the user agent to pick an initial con‐
taining block. This is as simple as declaring:

body {position: relative;}

In such a document, you could drop in an absolutely positioned paragraph, as fol‐
lows, and get a result like that shown in Figure 11:

<p style="position: absolute; top: 0; right: 25%; left: 25%; bottom:
 auto; width: 50%; height: auto; background: silver;">
 ...
</p>

The paragraph is now positioned at the very beginning of the document, half as wide
as the document’s width and overwriting other content.

16 | Positioning

Figure 11. Positioning an element whose containing block is the root element

An important point to highlight is that when an element is absolutely positioned, it
establishes a containing block for its descendant elements. For example, we can abso‐
lutely position an element and then absolutely position one of its children, as shown
in Figure 12, which was generated using the following styles and basic markup:

div {position: relative; width: 100%; height: 10em;
 border: 1px solid; background: #EEE;}
div.a {position: absolute; top: 0; right: 0; width: 15em; height: 100%;
 margin-left: auto; background: #CCC;}
div.b {position: absolute; bottom: 0; left: 0; width: 10em; height: 50%;
 margin-top: auto; background: #AAA;}

<div>
 <div class="a">
 absolutely positioned element A
 <div class="b">
 absolutely positioned element B
 </div>
 </div>
 containing block
</div>

Remember that if the document is scrolled, the absolutely positioned elements will
scroll right along with it. This is true of all absolutely positioned elements that are not
descendants of fixed-position or sticky-position elements.

This happens because, eventually, the elements are positioned in relation to some‐
thing that’s part of the normal flow. For example, if you absolutely position a table,
and its containing block is the initial containing block, then it will scroll because the
initial containing block is part of the normal flow, and thus it scrolls.

If you want to position elements so that they’re placed relative to the viewport and
don’t scroll along with the rest of the document, keep reading. The upcoming section
on fixed positioning has the answers you seek.

Absolute Positioning | 17

Figure 12. Absolutely positioned elements establish containing blocks

Placement and Sizing of Absolutely Positioned Elements
It may seem odd to combine the concepts of placement and sizing, but it’s a necessity
with absolutely positioned elements because the specification binds them very closely
together. This is not such a strange pairing upon reflection. Consider what happens if
an element is positioned using all four offset properties, like so:

#masthead h1 {position: absolute; top: 1em; left: 1em; right: 25%; bottom: 10px;
 margin: 0; padding: 0; background: silver;}

Here, the height and width of the h1’s element box is determined by the placement of
its outer margin edges, as shown in Figure 13.

If the containing block were made taller, then the h1 would also become taller; if the
containing block is narrowed, then the h1 will become narrower. If we were to add
margins or padding to the h1, then that would have further effects on the calculated
height and width of the h1.

Figure 13. Determining the height of an element based on the offset properties

18 | Positioning

But what if we do all that and then also try to set an explicit height and width?:

#masthead h1 {position: absolute; top: 0; left: 1em; right: 10%; bottom: 0;
 margin: 0; padding: 0; height: 1em; width: 50%; background: silver;}

Something has to give, because it’s incredibly unlikely that all those values will be
accurate. In fact, the containing block would have to be exactly two and a half times
as wide as the h1’s computed value for font-size for all of the shown values to be
accurate. Any other width would mean at least one value is wrong and has to be
ignored. Figuring out which one depends on a number of factors, and the factors
change depending on whether an element is replaced or nonreplaced.

For that matter, consider the following:

#masthead h1 {position: absolute; top: auto; left: auto;}

What should the result be? As it happens, the answer is not “reset the values to zero.”
We’ll see the actual answer, starting in the next section.

Auto-edges
When absolutely positioning an element, there is a special behavior that applies when
any of the offset properties other than bottom is set to auto. Let’s take top as an exam‐
ple. Consider the following:

<p>
 When we consider the effect of positioning, it quickly becomes clear that
 authors can do a great deal of damage to layout, just as they can do very
 interesting things.<span style="position: absolute; top: auto;
 left: 0;">[4] This is usually the case with useful technologies:
 the sword always has at least two edges, both of them sharp.
</p>

What should happen? For left, it’s easy: the left edge of the element should be placed
against the left edge of its containing block (which we’ll assume here to be the initial
containing block). For top, however, something much more interesting happens. The
top of the positioned element should line up with the place where its top would have
been if it were not positioned at all. In other words, imagine where the span would
have been placed if its position value were static; this is its static position—the
place where its top edge should be calculated to sit. CSS 2.1 had this to say about
static positions:

the term “static position” (of an element) refers, roughly, to the position an element
would have had in the normal flow. More precisely: the static position for top is the
distance from the top edge of the containing block to the top margin edge of a
hypothetical box that would have been the first box of the element if its specified posi
tion value had been static and its specified float had been none and its specified
clear had been none… The value is negative if the hypothetical box is above the con‐
taining block.

Absolute Positioning | 19

Therefore, we should get the result shown in Figure 14.

Figure 14. Absolutely positioning an element consistently with its “static” top edge

The “[4]” sits just outside the paragraph’s content because the initial containing
block’s left edge is to the left of the paragraph’s left edge.

The same basic rules hold true for left and right being set to auto. In those cases,
the left (or right) edge of a positioned element lines up with the spot where the edge
would have been placed if the element weren’t positioned. So let’s modify our previ‐
ous example so that both top and left are set to auto:

<p>
 When we consider the effect of positioning, it quickly becomes clear that
 authors can do a great deal of damage to layout, just as they can do very
 interesting things.<span style="position: absolute; top: auto; left:
 auto;">[4] This is usually the case with useful technologies:
 the sword always has at least two edges, both of them sharp.
</p>

This would have the result shown in Figure 15.

Figure 15. Absolutely positioning an element consistently with its “static” position

The “[4]” now sits right where it would have were it not positioned. Note that, since it
is positioned, its normal-flow space is closed up. This causes the positioned element
to overlap the normal-flow content.

20 | Positioning

This auto-placement works only in certain situations, generally wherever there are
few constraints on the other dimensions of a positioned element. Our previous exam‐
ple could be auto-placed because it had no constraints on its height or width, nor on
the placement of the bottom and right edges. But suppose, for some reason, there had
been such constraints. Consider:

<p>
 When we consider the effect of positioning, it quickly becomes clear that
 authors can do a great deal of damage to layout, just as they can do very
 interesting things.<span style="position: absolute; top: auto; left: auto;
 right: 0; bottom: 0; height: 2em; width: 5em;">[4] This is usually
 the case with useful technologies: the sword always has at least two edges,
 both of them sharp.
</p>

It is not possible to satisfy all of those values. Determining what happens is the sub‐
ject of the next section.

Placing and Sizing Nonreplaced Elements
In general, the size and placement of an element depends on its containing block. The
values of its various properties (width, right, padding-left, and so on) affect its lay‐
out, of course, but the foundation is the containing block.

Consider the width and horizontal placement of a positioned element. It can be rep‐
resented as an equation which states:

left + margin-left + border-left-width + padding-left + width +
padding-right + border-right-width + margin-right + right =
the width of the containing block

This calculation is fairly reasonable. It’s basically the equation that determines how
block-level elements in the normal flow are sized, except it adds left and right to
the mix. So how do all these interact? There is a series of rules to work through.

First, if left, width, and right are all set to auto, then you get the result seen in the
previous section: the left edge is placed at its static position, assuming a left-to-right
language. In right-to-left languages, the right edge is placed at its static position. The
width of the element is set to be “shrink to fit,” which means the element’s content
area is made only as wide as necessary to contain its content. The nonstatic position
property (right in left-to-right languages, left in right-to-left) is set to take up the
remaining distance. For example:

<div style="position: relative; width: 25em; border: 1px dotted;">
 An absolutely positioned element can have its content <span style="position:
 absolute; top: 0; left: 0; right: auto; width: auto; background:
 silver;">shrink-wrapped thanks to the way positioning rules work.
</div>

Absolute Positioning | 21

This has the result shown in Figure 16.

Figure 16. The “shrink-to-fit” behavior of absolutely positioned elements

The top of the element is placed against the top of its containing block (the div, in
this case), and the width of the element is just as much as is needed to contain the
content. The remaining distance from the right edge of the element to the right edge
of the containing block becomes the computed value of right.

Now suppose that only the left and right margins are set to auto, not left, width, and
right, as in this example:

<div style="position: relative; width: 25em; border: 1px dotted;">
 An absolutely positioned element can have its content <span style="position:
 absolute; top: 0; left: 1em; right: 1em; width: 10em; margin: 0 auto;
 background: silver;">shrink-wrapped thanks to the way positioning
 rules work.
</div>

What happens here is that the left and right margins, which are both auto, are set to
be equal. This will effectively center the element, as shown in Figure 17.

Figure 17. Horizontally centering an absolutely positioned element with auto margins

This is basically the same as auto-margin centering in the normal flow. So let’s make
the margins something other than auto:

<div style="position: relative; width: 25em; border: 1px dotted;">
 An absolutely positioned element can have its content <span style="position:
 absolute; top: 0; left: 1em; right: 1em; width: 10em; margin-left: 1em;
 margin-right: 1em; background: silver;">shrink-wrapped thanks to the
 way positioning rules work.
</div>

Now we have a problem. The positioned span’s properties add up to only 14em,
whereas the containing block is 25em wide. That’s an 11-em deficit we have to make
up somewhere.

22 | Positioning

www.allitebooks.com

http://www.allitebooks.org

The rules state that, in this case, the user agent ignores the value for right (in left-to-
right languages; otherwise, it ignores left) and solves for it. In other words, the
result will be the same as if we’d declared:

<span style="position: absolute; top: 0; left: 1em;
right: 12em; width: 10em; margin-left: 1em; margin-right: 1em;
right: auto; background: silver;">shrink-wrapped

This has the result shown in Figure 18.

Figure 18. Ignoring the value for right in an overconstrained situation

If one of the margins had been left as auto, then that would have been changed
instead. Suppose we change the styles to state:

<span style="position: absolute; top: 0; left: 1em;
right: 1em; width: 10em; margin-left: 1em; margin-right: auto;
background: silver;">shrink-wrapped

The visual result would be the same as that in Figure 18, only it would be attained by
computing the right margin to 12em instead of overriding the value assigned to the
property right.

If, on the other hand, we made the left margin auto, then it would be reset, as illustra‐
ted in Figure 19:

<span style="position: absolute; top: 0; left: 1em;
right: 1em; width: 10em; margin-left: auto; margin-right: 1em;
background: silver;">shrink-wrapped

Figure 19. Ignoring the value for margin-right in an overconstrained situation

In general, if only one of the properties is set to auto, then it will be used to satisfy
the equation given earlier in the section. Thus, given the following styles, the ele‐
ment’s width would expand to whatever size is needed, instead of “shrink-wrapping”
the content:

<span style="position: absolute; top: 0; left: 1em;
right: 1em; width: auto; margin-left: 1em; margin-right: 1em;
background: silver;">not shrink-wrapped

Absolute Positioning | 23

So far we’ve really only examined behavior along the horizontal axis, but very similar
rules hold true along the vertical axis. If we take the previous discussion and rotate it
90 degrees, as it were, we get almost the same behavior. For example, the following
markup results in Figure 20:

<div style="position: relative; width: 30em; height: 10em; border: 1px solid;">
 <div style="position: absolute; left: 0; width: 30%;
 background: #CCC; top: 0;">
 element A
 </div>
 <div style="position: absolute; left: 35%; width: 30%;
 background: #AAA; top: 0; height: 50%;">
 element B
 </div>
 <div style="position: absolute; left: 70%; width: 30%;
 background: #CCC; height: 50%; bottom: 0;">
 element C
 </div>
</div>

In the first case, the height of the element is shrink-wrapped to the content. In the
second, the unspecified property (bottom) is set to make up the distance between the
bottom of the positioned element and the bottom of its containing block. In the third
case, top is unspecified, and therefore used to make up the difference.

Figure 20. Vertical layout behavior for absolutely positioned elements

For that matter, auto-margins can lead to vertical centering. Given the following
styles, the absolutely positioned div will be vertically centered within its containing
block, as shown in Figure 21:

<div style="position: relative; width: 10em; height: 10em; border: 1px solid;">
 <div style="position: absolute; left: 0; width: 100%; background: #CCC;
 top: 0; height: 5em; bottom: 0; margin: auto 0;">
 element D
 </div>
</div>

24 | Positioning

There are two small variations to point out. In horizontal layout, either right or left
can be placed according to the static position if their values are auto. In vertical lay‐
out, only top can take on the static position; bottom, for whatever reason, cannot.

Also, if an absolutely positioned element’s size is overconstrained in the vertical direc‐
tion, bottom is ignored. Thus, in the following situation, the declared value of bottom
would be overridden by the calculated value of 5em:

<div style="position: relative; width: 10em; height: 10em; border: 1px solid;">
 <div style="position: absolute; left: 0; width: 100%; background: #CCC;
 top: 0; height: 5em; bottom: 0; margin: 0;">
 element D
 </div>
</div>

There is no provision for top to be ignored if the properties are overconstrained.

Placing and Sizing Replaced Elements
Positioning rules are different for replaced elements (e.g., images) than they are for
nonreplaced elements. This is because replaced elements have an intrinsic height and
width, and therefore are not altered unless explicitly changed by the author. Thus,
there is no concept of “shrink to fit” in the positioning of replaced elements.

Figure 21. Vertically centering an absolutely positioned element with auto-margins

The behaviors that go into placing and sizing replaced elements are most easily
expressed by a series of rules to be taken one after the other. These state:

1. If width is set to auto, the used value of width is determined by the intrinsic
width of the element’s content. Thus, if an image is intriniscally 50 pixels wide,

Absolute Positioning | 25

then the used value is calculated to be 50px. If width is explicitly declared (that is,
something like 100px or 50%), then the width is set to that value.

2. If left has the value auto in a left-to-right language, replace auto with the static
position. In right-to-left languages, replace an auto value for right with the
static position.

3. If either left or right is still auto (in other words, it hasn’t been replaced in a
previous step), replace any auto on margin-left or margin-right with 0.

4. If, at this point, both margin-left and margin-right are still defined to be auto,
set them to be equal, thus centering the element in its containing block.

5. After all that, if there is only one auto value left, change it to equal the remainder
of the equation.

This leads to the same basic behaviors we saw with absolutely positioned nonreplaced
elements, as long as you assume that there is an explicit width for the nonreplaced
element. Therefore, the following two elements will have the same width and place‐
ment, assuming the image’s intrinsic width is 100 pixels (see Figure 22):

<div>
 <img src="frown.gif" alt="a frowny face"
 style="position: absolute; top: 0; left: 50px; margin: 0;">
</div>
<div style="position: absolute; top: 0; left: 50px;
 width: 100px; height: 100px; margin: 0;">
 it's a div!
</div>

Figure 22. Absolutely positioning a replaced element

As with nonreplaced elements, if the values are overconstrained, the user agent is
supposed to ignore the value for right in left-to-right languages and left in right-to-

26 | Positioning

left languages. Thus, in the following example, the declared value for right is over‐
ridden with a computed value of 50px:

<div style="position: relative; width: 300px;">
 <img src="frown.gif" alt="a frowny face" style="position: absolute; top: 0;
 left: 50px; right: 125px; width: 200px; margin: 0;">
</div>

Similarly, layout along the vertical axis is governed by a series of rules that state:

1. If height is set to auto, the computed value of height is determined by the
intrinsic height of the element’s content. Thus, the height of an image 50 pixels
tall is computed to be 50px. If height is explicitly declared (that is, something
like 100px or 50%) then the height is set to that value.

2. If top has the value auto, replace it with the replaced element’s static position.
3. If bottom has a value of auto, replace any auto value on margin-top or margin-

bottom with 0.
4. If, at this point, both margin-top and margin-bottom are still defined to be auto,

set them to be equal, thus centering the element in its containing block.
5. After all that, if there is only one auto value left, change it to equal the remainder

of the equation.

As with nonreplaced elements, if the values are overconstrained, then the user agent
is supposed to ignore the value for bottom.

Thus, the following markup would have the results shown in Figure 23:

<div style="position: relative; height: 200px; width: 200px; border: 1px solid;">
 <img src="one.gif" alt="one" width="25" height="25"
 style="position: absolute; top: 0; left: 0; margin: 0;">
 <img src="two.gif" alt="two" width="25" height="25"
 style="position: absolute; top: 0; left: 60px; margin: 10px 0;
 bottom: 4377px;">
 <img src="three.gif" alt=" three" width="25" height="25"
 style="position: absolute; left: 0; width: 100px; margin: 10px;
 bottom: 0;">
 <img src="four.gif" alt=" four" width="25" height="25"
 style="position: absolute; top: 0; height: 100px; right: 0;
 width: 50px;">
 <img src="five.gif" alt="five" width="25" height="25"
 style="position: absolute; top: 0; left: 0; bottom: 0; right: 0;
 margin: auto;">
</div>

Absolute Positioning | 27

Figure 23. Stretching replaced elements through positioning

Placement on the z-axis
With all of the positioning going on, there will inevitably be a situation where two
elements will try to exist in the same place, visually speaking. Obviously, one of them
will have to overlap the other—but how does one control which element comes out
“on top”? This is where the property z-index comes in.

z-index lets you alter the way in which elements overlap each other. It takes its name
from the coordinate system in which side-to-side is the x-axis and top-to-bottom is
the y-axis. In such a case, the third axis—that which runs from back to front, as you
look at the display surface—is termed the z-axis. Thus, elements are given values
along this axis using z-index. Figure 24 illustrates this system.

z-index

Values: <integer> | auto | inherit

Initial value: auto

Applies to: Positioned elements

Inherited: No

Computed value: As specified

28 | Positioning

Figure 24. A conceptual view of z-index stacking

In this coordinate system, an element with a higher z-index value is closer to the
reader than those with lower z-index values. This will cause the high-value element
to overlap the others, as illustrated in Figure 25, which is a “head-on” view of Fig‐
ure 24. This precedence of overlapping is referred to as stacking.

Figure 25. How the elements are stacked

Any integer can be used as a value for z-index, including negative numbers. Assign‐
ing an element a negative z-index will move it further away from the reader; that is,

Absolute Positioning | 29

it will be moved lower in the stack. Consider the following styles, illustrated in Fig‐
ure 26:

p {background: rgba(255,255,255,0.9); border: 1px solid;}
p#first {position: absolute; top: 0; left: 0;
 width: 40%; height: 10em; z-index: 8;}
p#second {position: absolute; top: -0.75em; left: 15%;
 width: 60%; height: 5.5em; z-index: 4;}
p#third {position: absolute; top: 23%; left: 25%;
 width: 30%; height: 10em; z-index: 1;}
p#fourth {position: absolute; top: 10%; left: 10%;
 width: 80%; height: 10em; z-index: 0;}

Each of the elements is positioned according to its styles, but the usual order of stack‐
ing is altered by the z-index values. Assuming the paragraphs were in numeric order,
then a reasonable stacking order would have been, from lowest to highest, p#first,
p#second, p#third, p#fourth. This would have put p#first behind the other three
elements, and p#fourth in front of the others. Thanks to z-index, the stacking order
is under your control.

Figure 26. Stacked elements can overlap

As the previous example demonstrates, there is no particular need to have the z-
index values be contiguous. You can assign any integer of any size. If you want to be
fairly certain that an element stayed in front of everything else, you might use a rule
along the lines of z-index: 100000. This would work as expected in most cases—
although if you ever declared another element’s z-index to be 100001 (or higher), it
would appear in front.

30 | Positioning

Once you assign an element a value for z-index (other than auto), that element
establishes its own local stacking context. This means that all of the element’s descend‐
ants have their own stacking order, relative to the ancestor element. This is very simi‐
lar to the way that elements establish new containing blocks. Given the following
styles, you would see something like Figure 27:

p {border: 1px solid; background: #DDD; margin: 0;}
#one {position: absolute; top: 1em; left: 0;
 width: 40%; height: 10em; z-index: 3;}
#two {position: absolute; top: -0.75em; left: 15%;
 width: 60%; height: 5.5em; z-index: 10;}
#three {position: absolute; top: 10%; left: 30%;
 width: 30%; height: 10em; z-index: 8;}
p[id] em {position: absolute; top: -1em; left: -1em;
 width: 10em; height: 5em;}
#one em {z-index: 100; background: hsla(0,50%,70%,0.9);}
#two em {z-index: 10; background: hsla(120,50%,70%,0.9);}
#three em {z-index: -343; background: hsla(240,50%,70%,0.9);}

Figure 27. Positioned elements establish local stacking contexts

Note where the em elements fall in the stacking order. Each of them is correctly lay‐
ered with respect to its parent element, of course. Each em is drawn in front of its par‐
ent element, whether or not its z-index is negative, and parents and children are
grouped together like layers in an editing program. (The specification keeps children
from being drawn behind their parents when using z-index stacking, so the em in
p#three is drawn on top of p#one, even though its z-index value is -343.) Its z-index
value is taken with respect to its local stacking context: its containing block. That con‐
taining block, in turn, has a z-index, which operates within its local stacking context.

Absolute Positioning | 31

There remains one more value to examine. The CSS specification has this to say
about the default value, auto:

The stack level of the generated box in the current stacking context is 0. The box does
not establish a new stacking context unless it is the root element.

So, any element with z-index: auto can be treated as though it is set to z-index: 0.

Fixed Positioning
As implied in a previous section, fixed positioning is just like absolute positioning,
except the containing block of a fixed element is the viewport. A fixed-position ele‐
ment is totally removed from the document’s flow and does not have a position rela‐
tive to any part of the document.

Fixed positioning can be exploited in a number of interesting ways. First off, it’s pos‐
sible to create frame-style interfaces using fixed positioning. Consider Figure 28,
which shows a very common layout scheme.

Figure 28. Emulating frames with fixed positioning

This could be done using the following styles:

div#header {position: fixed; top: 0; bottom: 80%; left: 20%; right: 0;
 background: gray;}
div#sidebar {position: fixed; top: 0; bottom: 0; left: 0; right: 80%;
 background: silver;}

This will fix the header and sidebar to the top and side of the viewport, where they
will remain regardless of how the document is scrolled. The drawback here, though,
is that the rest of the document will be overlapped by the fixed elements. Therefore,

32 | Positioning

the rest of the content should probably be contained in its own div and employ
something like the following:

div#main {position: absolute; top: 20%; bottom: 0; left: 20%; right: 0;
 overflow: scroll; background: white;}

It would even be possible to create small gaps between the three positioned divs by
adding some appropriate margins, as follows:

body {background: black; color: silver;} /* colors for safety's sake */
div#header {position: fixed; top: 0; bottom: 80%; left: 20%; right: 0;
 background: gray; margin-bottom: 2px; color: yellow;}
div#sidebar {position: fixed; top: 0; bottom: 0; left: 0; right: 80%;
 background: silver; margin-right: 2px; color: maroon;}
div#main {position: absolute; top: 20%; bottom: 0; left: 20%; right: 0;
 overflow: auto; background: white; color: black;}

Given such a case, a tiled image could be applied to the body background. This image
would show through the gaps created by the margins, which could certainly be wid‐
ened if the author saw fit.

Another use for fixed positioning is to place a “persistent” element on the screen, like
a short list of links. We could create a persistent footer with copyright and other
information as follows:

footer {position: fixed; bottom: 0; width: 100%; height: auto;}

This would place the footer element at the bottom of the viewport and leave it there
no matter how much the document is scrolled.

Many of the layout cases for fixed positioning, besides “persistent
elements,” are handled as well, if not better, by grid layout.

Relative Positioning
The simplest of the positioning schemes to understand is relative positioning. In this
scheme, a positioned element is shifted by use of the offset properties. However, this
can have some interesting consequences.

On the surface, it seems simple enough. Suppose we want to shift an image up and to
the left. Figure 29 shows the result of these styles:

img {position: relative; top: -20px; left: -20px;}

Relative Positioning | 33

Figure 29. A relatively positioned element

All we’ve done here is offset the image’s top edge 20 pixels upward and offset the left
edge 20 pixels to the left. However, notice the blank space where the image would
have been had it not been positioned. This happened because when an element is rel‐
atively positioned, it’s shifted from its normal place, but the space it would have occu‐
pied doesn’t disappear. Consider the results of the following styles, which are depicted
in Figure 30:

em {position: relative; top: 10em; color: red;}

Figure 30. Another relatively positioned element

As you can see, the paragraph has some blank space in it. This is where the em ele‐
ment would have been, and the layout of the em element in its new position exactly
mirrors the space it left behind.

34 | Positioning

Of course, it’s also possible to shift a relatively positioned element to overlap other
content. For example, the following styles and markup are illustrated in Figure 31:

img.slide {position: relative; left: 30px;}

<p>
 In this paragraph, we will find that there is an image that has been
 pushed to the right. It will therefore <img src="star.gif" alt="A star!"
 class="slide"> overlap content nearby, assuming that it is not the
 last element in its line box.
</p>

Figure 31. Relatively positioned elements can overlap other content

There is one interesting wrinkle to relative positioning. What happens when a rela‐
tively positioned element is overconstrained? For example:

strong {position: relative; top: 10px; bottom: 20px;}

Here we have values that call for two very different behaviors. If we consider only
top: 10px, then the element should be shifted downward 10 pixels, but bottom:
20px clearly calls for the element to be shifted upward 20 pixels.

The original CSS2 specification does not say what should happen in this case. CSS2.1
stated that when it comes to overconstrained relative positioning, one value is reset to
be the negative of the other. Thus, bottom would always equal -top. This means the
previous example would be treated as though it had been:

strong {position: relative; top: 10px; bottom: -10px;}

Thus, the strong element will be shifted downward 10 pixels. The specification also
makes allowances for writing directions. In relative positioning, right always equals
-left in left-to-right languages; but in right-to-left languages, this is reversed: left
always equals -right.

As we saw in previous sections, when we relatively position an ele‐
ment, it immediately establishes a new containing block for any of
its children. This containing block corresponds to the place where
the element has been newly positioned.

Relative Positioning | 35

Sticky Positioning
A new addition to CSS is the concept of sticky positioning. If you’ve ever used a decent
music app on a mobile device, you’ve probably noticed this in action: as you scroll
through an alphabetized list of artists, the current letter stays stuck at the top of the
window until a new letter section is entered, at which point the new letter replaces the
old. It’s a little hard to show in print, but Figure 32 takes a stab at it by showing three
points in a scroll.

Figure 32. Sticky positioning

CSS makes this sort of thing possible by declaring an element to be position:
sticky, but (of course) there’s more to it than that.

First off, the offsets (top, left, etc.) are used to define a sticky-positioning rectangle
with relation to the containing block. Take the following as an example. It will have
the effect shown in Figure 33, where the dashed line shows where the sticky-
positioning rectangle is created:

#scrollbox {overflow: scroll; width: 15em; height: 18em;}
#scrollbox h2 {position: sticky; top: 2em; bottom: auto;
 left: auto; right: auto;}

Notice that the h2 is actually in the middle of the rectangle in Figure 33. That’s its
place in the normal flow of the content inside the #scrollbox element that contains
the content. The only way to make it sticky is to scroll that content until the top of the
h2 touches the top of the sticky-positioning rectangle—at which point, it will stick
there. This is illustrated in Figure 34.

36 | Positioning

Figure 33. The sticky-positioning rectangle

In other words, the h2 sits in the normal flow until its sticky edge touches the sticky
edge of the rectangle. At that point, it sticks there as if absolutely positioned, except
that it leaves behind the space it otherwise would have occupied in the normal flow.

Figure 34. Sticking to the top of the sticky-positioning rectangle

You may have noticed that the scrollbox element doesn’t have a position declara‐
tion. There isn’t one hiding offstage, either: it’s overflow: scroll that created a con‐
taining block for the sticky-positioned h2 elements. This is the one case where a
containing block isn’t determined by position.

If the scrolling is reversed so that the h2’s normal-flow position moves lower than the
top of the rectangle, the h2 is detached from the rectangle and resumes its place in the
normal flow. This is shown in Figure 35.

Sticky Positioning | 37

Figure 35. Detaching from the top of the sticky-positioning rectangle

Note that the reason the h2 stuck to the top of the rectangle in these examples is that
the value of top was set to something other than auto for the h2; that is, for the
sticky-positioned element. You can use whatever offset side you want. For example,
you could have elements stick to the bottom of the rectangle as you scroll downwards
through the content. This is illustrated in Figure 36:

#scrollbox {overflow: scroll; position: relative; width: 15em; height: 10em;}
#scrollbox h2 {position: sticky; top: auto; bottom: 0; left: auto; right: auto;}

Figure 36. Sticking to the bottom of the sticky-positioning rectangle

This could be a way to show footnotes or comments for a given paragraph, for exam‐
ple, while allowing them to scroll away as the paragraph moves upward. The same
rules apply for the left and right sides, which is useful for side-scrolling content.

If you define more than one offset property to have a value other than auto, then all
of them will become sticky edges. For example, this set of styles will force the h2 to
always appear inside the scrollbox, regardless of which way its content is scrolled
(Figure 37):

#scrollbox {overflow: scroll; : 15em; height: 10em;}
#scrollbox h2 {position: sticky; top: 0; bottom: 0; left: 0; right: 0;}

38 | Positioning

Figure 37. Making every side a sticky side

You might wonder: what happens if I have multiple sticky-positioned elements in a
situation like this, and I scroll past two or more? In effect, they pile up on top of one
another:

#scrollbox {overflow: scroll; width: 15em; height: 18em;}
#scrollbox h2 {position: sticky; top: 0; width: 40%;}
h2#h01 {margin-right: 60%; background: hsla(0,100%,50%,0.75);}
h2#h02 {margin-left: 60%; background: hsla(120,100%,50%,0.75);}
h2#h03 {margin-left: auto; margin-right: auto;
 background: hsla(240,100%,50%,0.75);}

It’s not easy to see in static images like Figure 38, but the way the headers are piling
up is that the later they are in the source, the closer they are to the viewer. This is the
usual z-index behavior—which means that you can decide which sticky elements sit
on top of others by assigning explicit z-index values. For example, suppose we
wanted the first sticky element in our content to sit atop all the others. By giving it
z-index: 1000, or any other sufficiently high number, it would sit on top of all the
other sticky elements that stuck in the same place. The visual effect would be of the
other elements “sliding under” the topmost element.

Figure 38. A sticky-header pileup

Sticky Positioning | 39

As of early 2016, the only browsers that supported position:
sticky were Firefox and Safari.

Summary
Thanks to positioning, it’s possible to move elements around in ways that the normal
flow could never accommodate. Although many positioning tricks are soon to give
way to grid layout, there are still a lot of uses for positioning—from sidebars that
always stay in the viewport to sticky section headings in lists or long articles. Com‐
bined with the stacking possibilities of the z-axis and the various overflow patterns,
there’s still a lot to like in positioning.

40 | Positioning

About the Author
Eric A. Meyer has been working with the Web since late 1993 and is an internation‐
ally recognized expert on the subjects of HTML, CSS, and web standards. A widely
read author, he is also the founder of Complex Spiral Consulting, which counts
among its clients America Online; Apple Computer, Inc.; Wells Fargo Bank; and Mac‐
romedia, which described Eric as “a critical partner in our efforts to transform Mac‐
romedia Dreamweaver MX 2004 into a revolutionary tool for CSS-based design.”

Beginning in early 1994, Eric was the visual designer and campus web coordinator for
the Case Western Reserve University website, where he also authored a widely
acclaimed series of three HTML tutorials and was project coordinator for the online
version of the Encyclopedia of Cleveland History and the Dictionary of Cleveland Biog‐
raphy, the first encyclopedia of urban history published fully and freely on the Web.

Author of Eric Meyer on CSS and More Eric Meyer on CSS (New Riders), CSS: The
Definitive Guide (O’Reilly), and CSS 2.0 Programmer’s Reference (Osborne/McGraw-
Hill), as well as numerous articles for the O’Reilly Network, Web Techniques, and
Web Review, Eric also created the CSS Browser Compatibility Charts and coordinated
the authoring and creation of the W3C’s official CSS Test Suite. He has lectured to a
wide variety of organizations, including Los Alamos National Laboratory, the New
York Public Library, Cornell University, and the University of Northern Iowa. Eric
has also delivered addresses and technical presentations at numerous conferences,
among them An Event Apart (which he cofounded), the IW3C2 WWW series, Web
Design World, CMP, SXSW, the User Interface conference series, and The Other
Dreamweaver Conference.

In his personal time, Eric acts as list chaperone of the highly active css-discuss mail‐
ing list, which he cofounded with John Allsopp of Western Civilisation, and which is
now supported by evolt.org. Eric lives in Cleveland, Ohio, which is a much nicer city
than you’ve been led to believe. For nine years he was the host of “Your Father’s Old‐
smobile,” a big-band radio show heard weekly on WRUW 91.1 FM in Cleveland.

You can find more detailed information on Eric’s personal web page.

Colophon
The animals on the cover of Positioning in CSS are salmon (salmonidae), which is a
family of fish consisting of many different species. Two of the most common salmon
are the Pacific salmon and the Atlantic salmon.

Pacific salmon live in the northern Pacific Ocean off the coasts of North America and
Asia. There are five subspecies of Pacific salmon, with an average weight of 10 to 30
pounds. Pacific salmon are born in the fall in freshwater stream gravel beds, where

http://www.complexspiral.com
http://bit.ly/css-tdg-3e
http://bit.ly/css-tdg-3e
http://www.css-discuss.org
http://www.css-discuss.org
http://evolt.org
http://www.meyerweb.com/eric

they incubate through the winter and emerge as inch-long fish. They live for a year or
two in streams or lakes and then head downstream to the ocean. There they live for a
few years, before heading back upstream to their exact place of birth to spawn and
then die.

Atlantic salmon live in the northern Atlantic Ocean off the coasts of North America
and Europe. There are many subspecies of Atlantic salmon, including the trout and
the char. Their average weight is 10 to 20 pounds. The Atlantic salmon family has a
life cycle similar to that of its Pacific cousins, and also travels from freshwater gravel
beds to the sea. A major difference between the two, however, is that the Atlantic sal‐
mon does not die after spawning; it can return to the ocean and then return to the
stream to spawn again, usually two or three times.

Salmon, in general, are graceful, silver-colored fish with spots on their backs and fins.
Their diet consists of plankton, insect larvae, shrimp, and smaller fish. Their unusu‐
ally keen sense of smell is thought to help them navigate from the ocean back to the
exact spot of their birth, upstream past many obstacles. Some species of salmon
remain landlocked, living their entire lives in freshwater.

Salmon are an important part of the ecosystem, as their decaying bodies provide fer‐
tilizer for streambeds. Their numbers have been dwindling over the years, however.
Factors in the declining salmon population include habitat destruction, fishing, dams
that block spawning paths, acid rain, droughts, floods, and pollution.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

www.allitebooks.com

http://animals.oreilly.com
http://www.allitebooks.org

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us

	Positioning
	Basic Concepts
	Types of Positioning
	The Containing Block

	Offset Properties
	Width and Height
	Setting Width and Height
	Limiting Width and Height

	Content Overflow and Clipping
	Overflow

	Element Visibility
	Absolute Positioning
	Containing Blocks and Absolutely Positioned Elements
	Placement and Sizing of Absolutely Positioned Elements
	Auto-edges
	Placing and Sizing Nonreplaced Elements
	Placing and Sizing Replaced Elements
	Placement on the z-axis

	Fixed Positioning
	Relative Positioning
	Sticky Positioning
	Summary

	About the Author

