
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PDF Explained

John Whitington

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

PDF Explained
by John Whitington

Copyright © 2012 John Whitington. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2011-11-30 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449310028 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. PDF Explained, the image of a lesser anteater, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31002-8

[LSI]

1322603542

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449310028
http://www.allitebooks.org

Table of Contents

Preface . vii

1. Introduction . 1
A Little History 1

Page Description Languages 1
Development of PDF 2
Some Advantages of PDF 2
ISO Standardization 3
Specialized Kinds of PDF 4
Version Summary 5

What’s in a PDF? 6
Text and Fonts 6
Vector Images 7
Raster Images 7
Color Spaces 7
Metadata 7
Navigation 8
Optional Content 8
Multimedia 8
Interactive Forms 9
Logical Structure and Reflow 9
Security 9
Compression 9

Who Uses PDF? 10
The Printing Industry 10
Ebooks and Publishing 10
PDF Forms 10
Document Archiving 11
As a File Format 11

Useful Free Software 11

iii

www.allitebooks.com

http://www.allitebooks.org

2. Building a Simple PDF . 13
Basic PDF Syntax 14

Document Content 14
Page Content 15
File Structure 15

Document Structure 15
Building the Elements 16

File Header 17
Main Objects 17
Graphical Content 18
Catalog, Cross-Reference Table, and Trailer 18

Putting it Together 20
Remarks 23

3. File Structure . 25
File Layout 25

Header 27
Body 28
Cross-Reference Table 28
Trailer 29

Lexical Conventions 29
Objects 30

Integers and Real Numbers 31
Strings 31
Names 32
Boolean Values 32
Arrays 32
Dictionaries 33
Indirect References 33

Streams and Filters 33
Incremental Update 35
Object and Cross-Reference Streams 35
Linearized PDF 36
How a PDF File is Read 37
How a PDF File is Written 38

4. Document Structure . 39
Trailer Dictionary 39
Document Information Dictionary 40
Document Catalog 41
Pages and Page Trees 42
Text Strings 45
Dates 45

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Putting it Together 46

5. Graphics . 51
Looking at Content Streams 51
Operators and Graphics State 53
Building and Painting Paths 54

Bézier Curves 56
Filled Shapes and Winding Rules 58

Colors and Color Spaces 60
Transformations 62
Clipping 65
Transparency 66
Shadings and Patterns 66
Form XObjects 69
Image XObjects 70

6. Text and Fonts . 73
Text and Fonts in PDF 73
Text State 74
Printing Text 74

Text Sections 74
Text Space and Text Positioning 75
Showing Text 76

Defining and Embedding Fonts 81
Font Types in PDF 81
Type 1 Fonts 82
Font Encodings 83
Embedding a Font 84

Extracting Text from a Document 86
Resources 87

7. Document Metadata and Navigation . 89
Bookmarks and Destinations 89

Destinations 90
The Document Outline (Bookmarks) 90

XML Metadata 93
Annotations and Hyperlinks 94
File Attachments 96

8. Encrypted Documents . 99
Introduction 99
The Encryption Dictionary 104
Reading Encrypted Documents 104

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Writing Encrypted Documents 105
Editing Encrypted Documents 105

9. Working with Pdftk . 107
Command Line Syntax 107
Merging Documents 108

What Happens when Files are Merged 109
Splitting Documents 110

What Happens when Files are Split 110
Stamps and Watermarks 111

How a Stamp is Added 111
Extracting and Setting Metadata 111
File Attachments 112
Encryption and Decryption 113

Decrypting Input Files 113
Encrypting the Output 113

Compression 114

10. PDF Software and Documentation . 115
PDF Viewers 115

Adobe Reader 115
Preview 116
Xpdf 116
GSview 116

Software Libraries 116
iText for Java and C# 116
TCPDF for PHP 117
Processing PDF with Perl 117
PDF on Mac OS X 117

Converting Formats 117
PDF to PostScript and Back Again 118
Rasterizing PDF to an Image 118
Printing Files to PDF 118

PDF Editors 118
Adobe Acrobat 119
Editing with Preview on Mac OS X 119

PDF and Graphics Documentation 119
ISO 32000 and the PDF File Format 119
PDF Hacks 120
Related Topics 120
Forums and Discussion 120
Adobe’s Website Resources 121

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

The Portable Document Format (PDF) is the world’s leading page description language,
and the first format equally useful for print and online use.

PDF documents are now almost ubiquitous in the printing industry, in document in-
terchange, and in the online distribution of paginated content. They are, however,
widely viewed as opaque and delicate and are poorly understood, even by those of a
technical disposition.

This is partly due to a perplexing lack of documentation; the file format reference is
freely available, but is of a size and complexity which requires a time investment un-
likely to be plausible for the majority of those working with PDF.

This book aims to be an approachable introduction. It is suitable both for the
technically-minded, and for those who just want to understand a little of the PDF for-
mat to give context to their work with tools which produce or process PDF documents.

Who Should Read This Book
We’ve tried to write a book which serves as a general introduction, with some optional
technical interludes, giving you the chance to type in example PDF files and see how
they display.

This book is suitable for:

• Adobe Acrobat users who want to understand the reasons behind the facilities it
provides, rather than just how to use them. For example: encryption options, trim
and crop boxes, and page labels.

• Power users who want to use command-line software to process PDF documents
in batches by merging, splitting, and optimizing them.

• Programmers writing code to read, edit, or create PDF files.

• Industry professionals in search, electronic publishing, and printing who want to
understand how to use PDF’s metadata and workflow features to build coherent
systems.

vii

www.allitebooks.com

http://www.allitebooks.org

Organization of Contents
Chapter 1, Introduction

In this chapter, we give a history of the PDF format and put it into context. We
look at the advantages PDF has over similar technologies, introduce specialized
kinds of PDF files such as PDF/X and PDF/A, and take a brief tour of the elements
which comprise a typical PDF document. We conclude by looking at how PDF is
used in industry.

Chapter 2, Building a Simple PDF
We begin in earnest, building a simple PDF file from scratch in a text editor. We
show how to process this into a fully valid PDF and open it in a PDF viewer. We
explain each component of the file, taking our first look at various parts of the PDF
syntax.

Chapter 3, File Structure
In this chapter, we describe the layout and content of a PDF file, and the syntax of
the objects from which it is built. We describe how a PDF document is read from
a flat file into a structured format and, conversely, written from that structured
format to a flat file.

Chapter 4, Document Structure
In this chapter, we leave behind the bits and bytes of the PDF file, and consider the
logical structure of its objects, describing how pages and their resources are ar-
ranged into a document.

Chapter 5, Graphics
We describe how to create vector graphics and raster images in PDF, and how to
deal with transparency, color spaces, and patterns. We illustrate with examples,
showing the code and the result in a PDF viewer.

Chapter 6, Text and Fonts
In this chapter, we look at the PDF operators for building and showing text strings
using different fonts and sizes, and how to build lines and paragraphs. We describe
the different types of fonts and encodings in PDF documents, and how they are
defined and used. We look at the process of text extraction from a PDF document.

Chapter 7, Document Metadata and Navigation
Here, we discuss topics not directly related to the visual appearance of the docu-
ment, but to ancillary data: bookmarks, metadata, hyperlinks, annotations, and
file attachments. For each, we describe how they are defined in PDF and give ex-
amples.

Chapter 8, Encrypted Documents
We look at how encryption and document permissions work in PDF, and see how
to inspect encryption information in Adobe Reader. We describe how programs
which process PDF files read, write, and edit encrypted documents.

viii | Preface

www.allitebooks.com

http://www.allitebooks.org

Chapter 9, Working with Pdftk
In this chapter, we show how to use the popular pdftk program for the command-
line processing of PDF files, looking at common usage scenarios. We describe what
a program such as pdftk has to do internally to achieve certain tasks (for example,
merging or splitting documents).

Chapter 10, PDF Software and Documentation
Here, we describe both Adobe and open-source software for viewing, converting,
editing, and programming with PDF files. We give sources of further documenta-
tion and other resources such as support and discussion forums.

Acknowledgments
I should like to thank my editor, Simon St.Laurent, who was enthusiastic about this
project from the beginning.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon indicates a warning or caution.

Obtaining Code Examples
All the PDF code examples in this book are available for download in a zip archive from
the O’Reilly website. The text of the book contains enough information to reconstruct
these examples (with the exception of encrypted documents, which are not suitable for
typing in manually).

The examples include the PDF source for the figures in this book.

Preface | ix

http://oreilly.com/catalog/0636920021483

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “PDF Explained by John Whitington (O’Re-
illy). Copyright 2012 John Whitington, 978-1-449-31002-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

x | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920021483

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

http://oreilly.com/catalog/0636920021483
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

The Portable Document Format (PDF) is the world’s leading language for describing
the printed page, and the first one equally suitable for paper and online use. In this
chapter, we take a tour of its uses, features, and history. We look at some useful free
software and resources, some of which we’ll use later in this book.

A Little History
Today we take the high fidelity exchange of documents for granted, knowing that a
document sent here will appear the same there and vice versa, and that it may be dis-
played equally on screen and on paper. This was not always so.

Page Description Languages
We could pass documents between users, and from user to printer, as a series of bitmap
pictures (e.g., TIFF or PNG), one for each page. However, this doesn’t allow for any
structure to be retained, precludes scaling to different paper sizes or resolutions without
loss of quality, involves huge file sizes, and so on.

A page description language like PDF is way of describing the contents (text and graph-
ics) of a printed or onscreen page using highly structured data, often with extra
metadata describing various aspects of the document (such as printing information or
textual annotations or how it is to be viewed or printed). This way, decisions about
how the document is rasterized (converted to pixels by a printer or on screen) can be
left until the end of the production process. A PDF file can contain text and associated
font definitions, vector and bitmap graphics, navigation (such as hyperlinks and book-
marks), and interactive forms.

1

PDF is used wherever the exact presentation of the content is important (for example
for a print advertisement or book). It isn’t normally suitable when the content is to be
layed out or reflowed at the last moment, such as in a variable width web page—
languages like HTML and CSS which separate content from presentation are more
suitable in those circumstances.

Other page description languages

Many page description languages were created when the printing of lines of text in fixed
fonts began to be replaced by digital graphics printing. The printer would then process
the language to generate a bitmap at the appropriate resolution. For example, PostScript
(Adobe), PCL (Hewlett Packard), and KPDL (Kyocera). Simpler languages were used
for vector plotters (for example, HPGL from Hewlett Packard).

These languages varied in complexity and functionality. PostScript files, for example,
are full programs—the result of executing the program is the document’s visual rep-
resentation. These languages often contain extra instructions to control aspects of the
document other than the page content, for example which tray paper is drawn from or
whether the output is to be duplexed.

Development of PDF
PDF began as an internal project at Adobe to create a platform-neutral method for
document interchange. PostScript was already popular in the print community, but
wasn’t practical for on screen use with the computers of the day—especially for random
access (to render page 50 of a PostScript document, one must process pages 1–49 first).
The idea was to use a subset of the PostScript graphics language together with ancillary
data to create a structured language for standalone documents to be viewed on (or
printed from) any computer.

PDF 1.0 was announced in 1993, with Acrobat Distiller (for creating and editing PDF
files) and Acrobat Reader (for viewing only), both as paid-for programs. The US Tax
Authorities started to ship tax forms as PDFs, purchasing a license to allow their users
to download Acrobat Reader for free. Later on, Acrobat Reader was made available to
everybody at no cost, leading to the widespread use of PDF for the exchange of docu-
ments online.

Over the next 10 years, after a slow start as prepress features were added, PDF overtook
PostScript as the language of choice in the printing industry. Today, it is the only general
page description language of note.

Some Advantages of PDF
When a number of formats compete to be the industry standard, the best contender is
not always the victor—luck can intervene. In this case, though, PDF had a number of
singular advantages. We look at some of them here.

2 | Chapter 1: Introduction

Random access and linearization

Unlike PostScript, any object (page, graphic etc.) in a PDF document can be accessed
at will, in constant time. This means it’s no harder to read page 150 than page 1.
Linearization is the process of arranging the objects in the file such that all those needed
for a given page are located in adjacent positions. This explains why you can quickly
jump to any page in a PDF being viewed in Acrobat Reader in a web browser window
—the viewer doesn’t need to load the whole file to begin with, it fetches from the server
just the sections needed to display each new page.

Stream creation and incremental update

Stream creation is the ability inherent in the PDF format to allow files to be created
in order, from beginning to end, even if the eventual file is larger than the memory
available.

Incremental update means that, when editing a file, it’s possible to write the changes
to the end of the file without modifying any existing part—this makes saving changed
versions very fast, and can be used to provide an undo mechanism (since the previous
version is still intact).

Embedded fonts

Fonts used in a PDF are embedded along with the document. This means that it should
always be rendered correctly, regardless of which fonts are installed on a given com-
puter. The program creating the PDF document will remove unnecessary data from the
font (such as metrics and unused characters), so the file does not become unduly large.
PDF supports all common font formats, such as TrueType and Type 1.

Searchable text

Most PDF files maintain the information to map the character shapes making up the
text to Unicode character codes. This means that you can copy and paste text from a
document, or search the text easily. More recent developments in PDF allow the logical
order of the text in the document to be stored separately from the layout of the text on
the page, preserving yet more structured information.

ISO Standardization
PDF was released as an open standard by the International Organization for Standard-
ization (ISO) in 2008. The ISO-32000-1:2008 document is largely the same as the PDF
file format document previously released by Adobe.

This independence lends legitimacy and oversight to the PDF standard, which should
encourage its further adoption. However, with no real tools for detecting whether a file
meets the standard (Adobe Reader will happily load malformed files, so many tools
create them), genuine rigor is some time away.

A Little History | 3

The PDF File Format Document
The PDF File Format Version 1.7 is documented in ISO 32000-1:2008, which is avail-
able on CD or as a PDF for 380 Swiss Francs at the International Organization for
Standardization.

The almost identical Adobe Document “Adobe PDF Reference, Sixth Edition, version
1.7” is available in PDF format at the Adobe PDF Technology Center. Adobe exten-
sions, which do not yet form part of the ISO standard, are published at the same loca-
tion.

Unfortunately, the PDF File Format is no longer available in print.

Specialized Kinds of PDF
There are several specialized variations on the PDF format—both standardized, and in
development. These are subsets of the PDF format. Each file is a valid PDF document,
but with restrictions on the facilities used or the content itself. Two of these, PDF/A
and PDF/X, are now ISO standards.

PDF/A

The PDF/A Standard (ISO 19005-1:2005) defines a set of rules for documents intended
for long-term archiving in libraries, national archives and bureaucracies. It also requires
a “conforming reader” to act in certain ways, using the embedded fonts, using color
management, and so forth. Briefly, the restrictions on PDF/A are:

• No encryption

• All fonts to be embedded

• Metadata is required

• JavaScript is disallowed

• Device-independent color spaces only

• No audio or video content

There are two levels of PDF/A compliance: PDF/A-1b (“level B compliance”) requires
exact visual reproduction of the document. PDF/A-1a (“level A compliance”) requires
that text can be mapped to Unicode, and that the order and structure of the text is
documented, in addition to the requirement of exact visual reproduction.

The PDF/A Competence Center is an industry group representing PDF/A stakeholders.
A second ISO version of PDF/A is in preparation.

4 | Chapter 1: Introduction

http://www.iso.org/iso/catalogue_detail?csnumber=51502
http://www.iso.org/iso/catalogue_detail?csnumber=51502
http://www.adobe.com/devnet/pdf.html
http://www.pdfa.org

PDF/X

The PDF/X Standard is a family of ISO standards for graphics exchange in the printing
industry, the latest of which is PDF/X-5 (ISO 15930-8:2010). It defines a number of
restrictions:

• All fonts must be embedded

• All image data must be embedded

• Cannot contain sound, films or non-printable annotations

• No forms

• No JavaScript

• Limited compression algorithms

• No encryption

and a number of extra requirements:

• The file is marked as PDF/X with the subversion (e.g., PDF/X-5)

• Bleed, trim and/or art boxes are required, in addition to the normal page size. These
boxes define the size of the media, the printable area, the final cut size, and so on.

• A flag is set if the file has been trapped. Trapping is the process of creating small
overlaps between graphical objects to mask registration problems in multiple color
printing processes.

• The file must contain an output intent, containing a color profile describing how it
is to be printed.

Version Summary
PDF is fully backward compatible (you can load a PDF version 1.0 document into a
program designed for PDF 1.7) and mostly forward compatible (programs written for
PDF 1.0 can normally load PDF 1.7 files). Forward compatibility is ensured because
readers ignore content they don’t understand—it’s only when new compression meth-
ods or object storage mechanisms are introduced that this may be broken. Since PDF
1.5 in 2003, such changes have been minimal. PDF versions and their features are
summarized in Table 1-1.

Table 1-1. Functionality in PDF versions 1.0 to 1.7 Extension Level 8

PDF version Acrobat Reader
version

Launched Summary of new features

1.0 1.0 1993 First release.

1.1 2.0 1996 Device independent color spaces, encryption (40-bit), ar-
ticle threads, named destinations, and hyperlinks.

1.2 3.0 1996 AcroForms (interactive forms), films, and sounds, more
compression methods, Unicode support.

A Little History | 5

PDF version Acrobat Reader
version

Launched Summary of new features

1.3 4.0 2000 More color spaces, embedded (attached) files, digital sig-
natures, annotations, masked images, gradient fills, log-
ical document structure, prepress support.

1.4 5.0 2001 Transparency, 128-bit encryption, better form support,
XML metadata streams, tagged PDF, JBIG2 compression.

1.5 6.0 2003 Object streams and cross-reference streams for more
compact files, JPEG 2000 support, XFA forms, public-key
encryption, custom encryption methods, optional con-
tent groups.

1.6 7.0 2004 OpenType fonts, 3D content, AES encryption, new color
spaces.

1.7 (later ISO
32000-1:2008)

8.0 2006 XFA 2.4, new kinds of string, extensions to public-key
architecture.

1.7 Extension Level 3 9.0 2008 256-bit AES encryption.

1.7 Extension Level 5 9.1 2009 XFA 3.0.

1.7 Extension Level 8 X 2011 Not yet known.

What’s in a PDF?
A typical PDF file contains many thousands of objects, multiple compression mecha-
nisms, different font formats, and a mixture of vector and raster graphics together with
a wide variety of metadata and ancillary content. We take a brief tour of these elements
here, for context—they are covered more fully in later chapters.

Text and Fonts
A PDF file can contain text drawn from multiple fonts of all popular formats (Type1,
TrueType, OpenType, legacy bitmap fonts etc). Font files are embedded in the docu-
ment, so the character shapes are always available, meaning the file should render the
same on any computer. A variety of character encodings are supported, including Uni-
code.

Text can be filled with any color, pattern, or transparency. A piece of text may be used
as a shape to clip other content, allowing complicated graphical effects whilst text
remains selectable and editable.

Typically, enough information is encoded in a PDF document to allow text extraction,
though the process is not always straightforward.

6 | Chapter 1: Introduction

Vector Images
Graphical content in PDF is based on the model first used in Adobe’s PostScript lan-
guage. It consists of paths built from straight lines and curves. Each path may be filled,
“stroked” to draw a line, or both. Lines can have varying thicknesses, join styles and
dash patterns.

Paths may be filled in any color, with a repeating pattern defined by other objects, or
with a smooth gradient between two colors. All these options apply also to the lines of
stroked paths.

Paths can be rendered using a variety of plain or gradient transparencies, with several
different blend modes defining how semitransparent objects interact. Objects may be
grouped together for the purposes of transparency, so a single transparency can be
applied to a whole group of objects at once.

Paths can be used to clip other objects, so that only sections of those objects overlapping
with the clipping path are shown. These clipping regions may be nested within one
another.

PDF has a mechanism which allows a graphic to be defined once and then used multiple
times in different contexts. This can be used, for instance, for a recurring motif, even
across more than one page.

Raster Images
PDF documents can include bitmap images between 1 and 16 bits per component, in
several color spaces (for example, three-component RGB or four-component CMYK).
Images can be compressed using a variety of lossless and lossy compression
mechanisms.

Images may be placed at any scale or rotation, used to create a fill pattern, and may
have a mask which defines how they use transparency to blend with the background
they are placed on.

Color Spaces
PDF can use color spaces related to particular electronic or print devices (grayscale,
RGB, CMYK) and ones related to human color perception. In addition, there are color
spaces for the printing industry such as spot colors. Mechanisms exist for simpler PDF
programs (like onscreen viewers) to fall back to basic color spaces if they do not support
the more advanced ones.

Metadata
PDF documents have a set of standard metadata, such as title, author, keywords and so
on. These are defined outside the graphical content and have no effect on the document

What’s in a PDF? | 7

when viewed. The creator (the program which created the content) and producer (the
program that wrote the PDF file) are also recorded. Each document also has a set of
unique identifiers, allowing them to be tracked through a workflow.

Since PDF 1.4, the metadata can be stored in an XML (eXtensible Markup Langauge)
document embedded in the PDF using Adobe’s Extensible Metadata Platform (XMP).
This defines a way to store metadata for objects in the PDF which can be extended by
third parties to hold information relevant to their particular workflows or products.

Navigation
PDF documents have two methods of navigation, when viewed on screen:

• The document outline, commonly known as the document’s bookmarks, is a struc-
tured list of destinations within the document, shown alongside it. Clicking on one
moves the view to that page or position.

• Hyperlinks within the text or graphics of a document allow the user to click to
move elsewhere within the document, or to open an external URL.

Optional Content
Optional content groups in PDF allow parts of the content of a page to be grouped
together and shown—or not shown—based on some other factor (user choice, whether
the document is on screen or printed, the zoom factor). Relationships between groups
can be defined, so that they depend upon one another. One use for this is to emulate
the “layers” found in graphics packages. For example, Adobe Illustrator layers are pre-
served when a document it produces is read with a PDF viewer.

Multimedia
PDF documents can include various kinds of multimedia elements. A lot of this breaks
the portability inherent in PDF, and is often not well supported outside of Adobe
products.

From PDF 1.2
Sounds and movies can be embedded.

From PDF 1.4
Slide shows can be defined, to move automatically between pages with transition
effects.

From PDF 1.5
A more general system for including arbitrary media types was introduced.

From PDF 1.6
3D Artwork can be embedded.

8 | Chapter 1: Introduction

Interactive Forms
There are two incompatible forms architectures in PDF: AcroForms, which is an open
standard, and the Adobe XML Forms Architecture (XFA), which is documented but
requires commercial software from Adobe.

Forms allow users to fill in text fields, and use check boxes and radio buttons. When
the data is complete, it may be saved into the document (if allowed) or submitted to a
URL for further processing. Embedded JavaScript is often used in conjunction with
forms to deal with verification of field values or similar tasks.

Logical Structure and Reflow
Logical structure facilities allow information about the structural content (chapters,
sections, figures, tables, and footnotes) to be included alongside the graphical content.
The particular elements are customizable by third parties.

A tagged PDF is one which has logical structure based on a set of Adobe-defined ele-
ments. Files following these conventions can be reflowed by a reader to display the same
text in a different page size or text size, for example in an ebook reader.

Security
PDF documents can be encrypted for security, using RC4 or AES encryption methods.
There are two passwords—the owner password and the user password. The owner
password unlocks the file for all changes, the user password just allows a range of
operations selected by the owner when the file was originally encrypted (for example,
allowing or disallowing printing or text extraction). Frequently the user password is
blank, so the file appears to open as normal, but functionality is restricted.

Starting with PDF 1.3, digital signatures can be used to authenticate the identity of a
user or the contents of the document.

Compression
Images and other data streams in PDF can be compressed using a variety of lossless and
lossy methods defined by third parties. By compressing only these streams (rather than
the whole file), the structure of the PDF objects is always available without decom-
pressing the whole file, and compressed sections can be processed only when needed.
There are several groups of compression methods:

• Lossless compression for bi-level (e.g., black and white) images. PDF supports the
standard fax encoding methods for bi-level images and, from PDF 1.4, the JBIG2
standard, which provides better compression for the same class of images.

• Lossy image filters such as JPEG and, from PDF 1.5, JPEG2000.

What’s in a PDF? | 9

• Lossless compression mechanisms suitable for image data and general data com-
pression, such as Flate (The zip algorithm), Lempel-Ziv-Welch (LZW) and run
length encoding.

Who Uses PDF?
PDF is used in a wide variety of industries and professions. We describe some here,
explaining why PDF is suitable for each.

The Printing Industry
PDF has support for the color spaces, page dimension information (such as media,
crop, art and bleed boxes), trapping support, and resolution-independence required
for commercial printing. Together with other technologies, PDF is the key part of the
publishing-for-print workflow. The extensibility of PDF metadata allows various
schemes for including extra data along with the document, and for keeping it with the
document throughout the publishing process—parts of the workflow which don’t un-
derstand a particular piece of metadata will at least preserve it.

Ebooks and Publishing
This book was created using the DocBook system, which takes a structured document
in XML format, typesets it, and produces a PDF complete with hyperlinks and book-
marks, together with a more traditional PDF suitable for printing.

PDF is one of the competing eBook formats. To support display on a wide range of
screens, PDF documents may be tagged with reflow information, allowing lines of text
to be displayed at differing widths on each device. This is at odds with the other uses
of PDF, where fixed text layout is a requirement.

PDF Forms
PDF forms are especially useful when existing paper-based systems are being transi-
tioned to electronic ones, or must exist alongside them. A PDF form (filled in online
then printed out) looks the same as one filled in manually on paper, and may be pro-
cessed by existing human and computer systems in the same way.

Automatic submission of forms from within the PDF viewer, the use of JavaScript to
add intelligence (making sure figures add up in a tax form, for example), and the use
of digital signatures to sign filled-in forms are all compelling reasons to use PDF for
electronic forms.

10 | Chapter 1: Introduction

Document Archiving
Through PDF/A, PDF is the ideal format for long-term archiving, combining accurate
representations of scanned and electronic content, together with Unicode language
support, and compression mechanisms for all sorts of data including the important
CCITT Fax and JBIG2 methods for monochrome images. Being an ISO standard (and
one which is near-ubiquitous) guarantees that these documents can be read long into
the future.

PDF can be used for Optical Character Recognition (OCR), allowing searchable text
to be created from the original, the exact visual representation being retained alongside
the recognized text.

As a File Format
PDF is not, at first sight, suitable for use as an editable vector graphics format. For
example, a circle won’t remain editable as a circle, since it will have been converted to
a number of curves (there is no circle element in PDF).

However, if appropriate use is made of its extensibility to store auxiliary data, it makes
a good solution. Adobe Illustrator, for example, now uses an extended form of PDF as
its file format. The file can be viewed in any PDF viewer but Illustrator can make use
of the extended data when it is loaded back into the program.

Useful Free Software
In this book, we use various pieces of software to help us with examples. Luckily,
everything you need is freely available. You’ll need a PDF viewer:

• Acrobat Reader is Adobe’s own PDF viewer. It supports all versions and features
of PDF and comes with a browser plug-in on most platforms. It’s available for
Microsoft Windows, Mac OS X, Linux, Solaris, and Android.

• Preview is the pre-installed PDF viewer and browser plug-in for PDF documents
on Mac OS X. It’s highly capable, and very fast, but doesn’t support everything
that Acrobat Reader does. Many people stick with Preview as the default applica-
tion for PDF files, but install Acrobat Reader as well.

• Xpdf is an open source PDF viewer for Unix. It supports a reasonable subset of PDF.

• gv is a PostScript and PDF viewer frontend for GhostScript (see below). It can
render the textual and graphical content of almost all documents. However, it lacks
most of the interactive features of other PDF viewers.

Useful Free Software | 11

http://get.adobe.com/reader/
http://foolabs.com/xpdf
http://pages.cs.wisc.edu/~ghost/gv/index.htm

There are two key command-line tools:

• pdftk is a multiplatform command-line tool for processing PDF files in various
ways. It can be downloaded in pre-built form for Microsoft Windows, Mac OS X,
and Linux, as well as in source code form.

• Ghostscript is a set of tools including an interpreter for PostScript and PDF. It can
be used to render PDF files, and to process them in various ways from the command
line. It is available in binary form for Microsoft Windows, and in source code form
for all platforms.

A full discussion of Adobe and open-source PDF software is in Chapter 10.

12 | Chapter 1: Introduction

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://pages.cs.wisc.edu/~ghost/

CHAPTER 2

Building a Simple PDF

In this chapter, we’ll build PDF content manually in a text editor. Then we’ll use the
free pdftk program to turn it into a valid PDF file and look at the output in a PDF viewer.

This example, together with all the PDF files in this book, can be downloaded from the
web page for this book.

We’ll be looking at a lot of new concepts all at once, so don’t worry if it seems
overwhelming—we’ll come back to all of this in future chapters.

pdftk—The PDF Toolkit
pdftk is a free, open source command-line tool for Microsoft Windows, Mac OS X, and
Unix. We’re going to use it in this chapter (and throughout this book) to turn PDF
content we’ve written in a text editor into a valid PDF file. pdftk can also be used to:

Merge and split PDF documents
Rotate PDF pages
Decrypt and encrypt
Fill PDF forms with data
Apply watermarks and stamps
Print and change PDF metadata
Attach files to PDF documents

Source and binary packages for pdftk can be found at PDF Labs.

The creator of pdftk, Sid Steward, is also the author of O’Reilly’s PDF Hacks—a selec-
tion of tools and tips for working with PDF.

13

http://oreilly.com/catalog/0636920021483
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit
http://oreilly.com/catalog/9780596006556

Basic PDF Syntax
A PDF file contains at least three distinct languages:

• The document content, which is a number of objects with links between them
forming a directed graph. These objects describe the structure of the document
(pages, metadata, fonts, and resources).

• The page content, described using a series of operators for placing text and graphics
on a single page.

• The file structure, consisting of a header, trailer, and cross-reference table helping
programs to locate and read the file’s contents.

Document Content
The document content consists of objects built out of, amongst others, the following
elements:

• Names, written as /Name.

• Integers, like 50.

• Strings, introduced with brackets, like (The Quick Brown Fox).

• References to other objects like 2 0 R, a reference to object 2.

• Arrays (ordered collections) of objects, like [50 30 /Fred], an array of three items,
in order: 50, 30, and /Fred.

• Dictionaries (unordered maps from names to objects), like << /Three 3 /Five 5
>>, which maps /Three to 3 and /Five to 5.

• Streams, which consist of a dictionary and some binary data. These are used to
store streams of PDF graphics operators, and other binary data such as images and
fonts.

For example, here’s a page object, which is a dictionary containing a number of items,
each associated with a name:

<< /Type /Page
 /MediaBox [0 0 612 792]
 /Resources 3 0 R
 /Parent 1 0 R
 /Contents [4 0 R]
>>

This dictionary contains five entries:

/Type /Page
The name /Page is associated with the dictionary key /Type.

/MediaBox [0 0 612 792]
The array of four integers [0 0 612 792] is associated with the dictionary key /
MediaBox.

14 | Chapter 2: Building a Simple PDF

/Resources 3 0 R
Object number 3 is associated with the dictionary key /Resources.

/Parent 1 0 R
Object number 1 is associated with the dictionary key /Parent.

/Contents [4 0 R]
The one-element array of indirect references [4 0 R] is associated with the dic-
tionary key /Contents.

Page Content
The page content is a list of operators, each of which is preceded by zero or more
operands. Here’s a series of operators for selecting the /F0 font at 36 points and placing
text at the current position:

/F0 36.0 Tf
(Hello, World!) Tj

Here, Tf and Tj are the operators, and /F0, 36.0, and (Hello, World!) are the operands.
You can see that some syntactic elements (names and strings, for example) are shared
across the languages used for both page content and document content.

File Structure
The file structure consists of:

• A header to distinguish the file as a PDF document.

• A cross-reference table listing the byte offsets of each object in the document—this
allows the objects to be accessed arbitrarily, rather than having to be read in order.

• The trailer, which includes the byte offset of the cross-reference table, followed by
an end-of-file marker.

When writing our example file, we’ll use incomplete values for a lot of the file structure,
relying on pdftk to fill in the details. For example, it’s impractical for us to write the
cross-reference table manually.

Document Structure
The example we’ll be building is just about the simplest meaningful PDF file. However,
it needs a surprisingly large number of elements. In addition to the file structure we’ve
described above, a minimal PDF document must have a number of basic sections
present:

• The trailer dictionary, which provides information about how to read the rest of
the objects in the file.

• The document catalog, which is the root of the object graph.

Document Structure | 15

• The page tree, which enumerates the pages in the document.

• At least one page. Each page must have:

— Its resources, which include, for example, fonts.

— Its page content, which contains the instructions for drawing text and graphics
on the page.

This arrangement is illustrated in Figure 2-1.

Figure 2-1. Object graph for Hello, World! PDF, with object numbers in brackets from Example 2-1

Building the Elements
We’ll type the PDF data into a text file. The line endings chosen by your text editor are
unimportant (<CR> [Unix and Mac OS X] and <CR><LF> [Microsoft Windows] are
both fine). We’re going to skip some information (the data that is hard to work out
manually), relying on pdftk to fill it in afterward. We will:

• Use an abbreviated header.

• Miss out the length of the page content stream, so we don’t have to manually count
the number of bytes.

• Omit almost all of the cross-reference table.

• Use 0 for the byte offset of the cross-reference table, again to avoid having to count
it manually.

16 | Chapter 2: Building a Simple PDF

www.allitebooks.com

http://www.allitebooks.org

First, we’ll look at the sections of the file (in the order in which they appear) and then
we’ll put them together and run pdftk to make a valid PDF file.

File Header
The file header usually consists of two lines. The first identifies the file as a PDF and
gives its version number:

%PDF-1.0 PDF version 1.0 header

The second line is hard to type into a text editor since it contains nonprintable char-
acters. We’ll have pdftk do this for us.

Main Objects
On to the main body of the file—the objects. The first is the page list, which is a dic-
tionary linking to the page objects in the document.

1 0 obj Object 1
<< /Type /Pages It's a page list
 /Count 1 There is one page
 /Kids [2 0 R] List of object numbers of pages. Just object 2 here.
>>
endobj End of object 1

Next up is the page. Again, it’s a dictionary. It contains the paper size, an indirect
reference back to the page list, and to the graphical content and resources.

2 0 obj
<< /Type /Page It's a page
 /MediaBox [0 0 612 792] Paper size is US Letter Portrait (612 points by 792 points)
 /Resources 3 0 R Reference to resources at object 3
 /Parent 1 0 R Reference back up to parent page list
 /Contents [4 0 R] Graphical content is in object 4
>>
endobj

Now, the resources. Here, there is just one entry, the font dictionary, which in our
example contains a single font, which we’re going to use to write some text on the page.

3 0 obj
<< /Font The font dictionary
 << /F0 Just one font, called /F0
 << /Type /Font These three lines reference the built-in font Times Italic
 /BaseFont /Times-Italic
 /Subtype /Type1 >>
 >>
>>
endobj

Building the Elements | 17

Graphical Content
The page contents stream contains a sequence of operators for placing text and graphics
on the page. It was linked to by the /Contents entry in the page dictionary.

A stream object consists of a dictionary followed by a raw data stream, containing a
series of PDF operands and operators. Normally, this would be compressed to reduce
file size, but we’re typing it in manually, so we don’t compress it. We must also specify
the length of the stream in bytes—pdftk will add the required /Length entry to the stream
dictionary for us.

4 0 obj The page contents stream
<< >>
stream Beginning of stream
1. 0. 0. 1. 50. 700. cm Position at (50, 700)
BT Begin text block
 /F0 36. Tf Select /F0 font at 36pt
 (Hello, World!) Tj Place the text string
ET End text block
endstream End of stream
endobj

The result of this stream of graphics operators on the page is shown in Figure 2-2.

Catalog, Cross-Reference Table, and Trailer
The last part of the file starts with the document catalog, which is the root object of the
object graph. There follows the cross-reference table, which gives the byte offsets of
each object in the file. We’ll have pdftk fill this in for us. There are two final lines: one
gives the byte offset of the start of the cross-reference table (we write 0 and pdftk will
replace it for us). Finally, the end-of-file marker %%EOF.

5 0 obj
<< /Type /Catalog The document catalog
 /Pages 1 0 R Reference to the page list
>>
endobj
xref Start of cross-reference table, which we have missed out
0 6
trailer
<< /Size 6 Number of lines in cross-reference table (number of objects plus one)
 /Root 5 0 R Reference to the document catalog
>>
startxref
0 Byte offset of start of xref table, which we have set to 0
%%EOF End of file marker

Now we’re ready to put these pieces together.

18 | Chapter 2: Building a Simple PDF

Figure 2-2. The result of our graphics operators on the page

Building the Elements | 19

Putting it Together
The source for this file (Example 2-1) can be found in the online resources for this
book, or you can type it in yourself. Save it as hello-broken.pdf.

Example 2-1. The invalid hello-broken.pdf PDF file suitable for manual creation

%PDF-1.0 File header
1 0 obj Main objects
<< /Type /Pages
 /Count 1
 /Kids [2 0 R]
>>
endobj
2 0 obj
<< /Type /Page
 /MediaBox [0 0 612 792]
 /Resources 3 0 R
 /Parent 1 0 R
 /Contents [4 0 R]
>>
endobj
3 0 obj
<< /Font
 << /F0
 << /Type /Font
 /BaseFont /Times-Italic
 /Subtype /Type1 >>
 >>
>>
endobj
4 0 obj Graphical content
<< >>
stream
1. 0. 0. 1. 50. 700. cm
BT
 /F0 36. Tf
 (Hello, World!) Tj
ET
endstream
endobj
5 0 obj Catalog, cross-reference table, and trailer
<< /Type /Catalog
 /Pages 1 0 R
>>
endobj
xref
0 6
trailer
<< /Size 6
 /Root 5 0 R
>>

20 | Chapter 2: Building a Simple PDF

http://oreilly.com/catalog/0636920021483
http://oreilly.com/catalog/0636920021483

startxref
0
%%EOF

As it stands, hello-broken.pdf is not a valid PDF file, and even Adobe Reader (which
is fairly tolerant of malformed files) won’t cope with it.

We can use the free pdftk tool to fix up the hello-broken.pdf file with the missing details,
writing the output to hello.pdf:

pdftk hello-broken.pdf output hello.pdf

pdftk reads the file and its objects, and calculates the correct data for the missing or
incorrect sections we wrote, and produces the valid file shown in Example 2-2. Note
that the spacing and formatting of some of the syntax has been altered—each PDF
producer makes slightly different choices about this.

Example 2-2. The completed PDF file hello.pdf, fixed by pdftk

%PDF-1.0
%âãÏÓ
1 0 obj
<<
/Kids [2 0 R]
/Count 1
/Type /Pages
>>
endobj
2 0 obj
<<
/Rotate 0
/Parent 1 0 R
/Resources 3 0 R
/MediaBox [0 0 612 792]
/Contents [4 0 R]
/Type /Page
>>
endobj
3 0 obj
<<
/Font
<<
/F0
<<
/BaseFont /Times-Italic
/Subtype /Type1
/Type /Font
>>
>>
>>
endobj
4 0 obj
<<
/Length 65
>>

Putting it Together | 21

stream
1. 0. 0. 1. 50. 700. cm
BT
 /F0 36. Tf
 (Hello, World!) Tj
ET

endstream
endobj
5 0 obj
<<
/Pages 1 0 R
/Type /Catalog
>>
endobj xref
0 6
0000000000 65535 f
0000000015 00000 n
0000000074 00000 n
0000000192 00000 n
0000000291 00000 n
0000000409 00000 n
trailer

<<
/Root 5 0 R
/Size 6
>>
startxref
459
%%EOF

Some nonprintable characters have been added to the PDF header—this ensures
that the file is recognized as binary (rather than text) by, for example, file transfer
programs such as FTP.

The length in bytes of the stream has been filled in.

The cross-reference table has been filled in with the byte offsets of each object in the
file.

The byte offset of the start of the cross-reference table has been filled in.

The file can now be loaded into a PDF viewer. The result in Acrobat Reader on Mi-
crosoft Windows is shown in Figure 2-3.

22 | Chapter 2: Building a Simple PDF

Figure 2-3. Hello, World! PDF, viewed in the free Adobe Reader on Microsoft Windows

Remarks
We’ve seen how to build a simple PDF file from scratch, using pdftk to help us, and
we’ve looked at some of the basic syntax that makes up a PDF document.

You can look at existing PDF files using your text editor too. However, some of the
data (such as the graphics operators making up the page content) is likely to be com-
pressed and thus unreadable. The pdftk command can be used to decompress these
sections for easier reading—see “Compression” on page 114.

In future chapters, we’ll look at the parts of a typical PDF file in some detail and how
programs read, write, and edit PDF files. At each stage, there will be the opportunity
to build example files by altering and extending the example we built in this chapter.

Remarks | 23

CHAPTER 3

File Structure

In this chapter, we describe the layout and content of the PDF file’s four main sections,
and the syntax of the objects which make up each one. We also outline the process of
reading a PDF file into a high level data structure, and the converse operation of writing
that structure to a PDF file.

File Layout
A simple valid PDF file has four parts, in order:

1. The header, which gives the PDF version number.

2. The body, containing the pages, graphical content, and much of the ancillary in-
formation, all encoded as a series of objects.

3. The cross-reference table, which lists the position of each object within the file, to
facilitate random access.

4. The trailer including the trailer dictionary, which helps to locate each part of the
file and lists various pieces of metadata which can be read without processing the
whole file.

For reference, we reproduce the “Hello, World” PDF from Chapter 2 as Example 3-1.
The first line of each of the four sections has been annotated.

Example 3-1. A small PDF file

%PDF-1.0 Header starts here
%âãÏÓ
1 0 obj Body starts here
<<
/Kids [2 0 R]
/Count 1
/Type /Pages
>>
endobj
2 0 obj
<<

25

/Rotate 0
/Parent 1 0 R
/Resources 3 0 R
/MediaBox [0 0 612 792]
/Contents [4 0 R]
/Type /Page
>>
endobj
3 0 obj
<<
/Font
<<
/F0
<<
/BaseFont /Times-Italic
/Subtype /Type1
/Type /Font
>>
>>
>>
endobj
4 0 obj
<<
/Length 65
>>
stream
1. 0. 0. 1. 50. 700. cm
BT
 /F0 36. Tf
 (Hello, World!) Tj
ET
endstream
endobj
5 0 obj
<<
/Pages 1 0 R
/Type /Catalog
>>
endobj
xref Cross-reference table starts here
0 6
0000000000 65535 f
0000000015 00000 n
0000000074 00000 n
0000000192 00000 n
0000000291 00000 n
0000000409 00000 n
trailer Trailer starts here
<<
/Root 5 0 R
/Size 6
>>
startxref
459
%%EOF

26 | Chapter 3: File Structure

Graphs
The collection of objects in a PDF file form a graph. This meaning of the word graph
is nothing to do with pie charts or histograms, but refers to a collection of nodes con-
nected together by links.

In our case, the nodes are PDF objects, and the links are indirect references. Reading a
PDF document is the process of creating a graph of the PDF objects in the file. This
graph is directed—links only go one way.

Figure 3-1 shows the object graph for the helloworld.pdf document in Example 3-1.

Figure 3-1. The graph of objects in our example file

We now take a closer look at each of these four parts in turn, using Example 3-1 for
reference.

Header
The first line of a PDF file gives the version number of the document. In our example,
this is:

%PDF-1.0

This defines the file as PDF version 1.0. PDF is backward compatible, so a PDF 1.3
document should be readable by a program which knows about, for example, PDF 1.5.
It is also, for the most part, forward compatible, so most PDF programs will attempt
to read any file, no matter what the supposed version number is.

Since PDF files almost always contain binary data, they can become corrupted if line
endings are changed (for example, if the file is transferred over FTP in text mode). To

File Layout | 27

allow legacy file transfer programs to determine that the file is binary, it is usual to
include some bytes with character codes higher than 127 in the header. For example:

%âãÏÓ

The percent sign indicates another header line, the other few bytes are arbitrary char-
acter codes in excess of 127. So, the whole header in our example is:

%PDF-1.0
%âãÏÓ

Body
The file body consists of a sequence of objects, each preceded by an object number,
generation number, and the obj keyword on one line, and followed by the endobj key-
word on another. For example:

1 0 obj
<<
/Kids [2 0 R]
/Count 1
/Type /Pages
>>
endobj

Here, the object number is 1, and the generation number is 0 (it almost always is). The
content for object 1 is in between the two lines 1 0 obj and endobj. In this case, it’s the
dictionary <</Kids [2 0 R] /Count 1 /Type /Pages>>.

Cross-Reference Table
The cross-reference table lists the byte offset of each object in the file body. This allows
random access to the objects, so that they do not have to be read in order, and an object
which is never used is never read. This means, in particular, that simple operations like
counting the number of pages in a PDF document can be fast, even on large files.

Every object in a PDF file has an object number and a generation number. Generation
numbers are used when a cross reference table entry is reused—we don’t consider them
here (they will always be zero).

For our purposes, we can consider the cross-reference table to consist of a header line
indicating the number of entries, then a special entry, then one line for each object in
the file body. In our file:

0 6 Six entries in table, starting at 0
0000000000 65535 f Special entry
0000000015 00000 n Object 1 is at byte offset 15
0000000074 00000 n Object 2 is at byte offset 74
0000000192 00000 n etc...
0000000291 00000 n
0000000409 00000 n Object 5 is at byte offset 409

28 | Chapter 3: File Structure

Note that the byte offsets are stored with leading zeros to ensure each entry is the same
length. Thus, we can read the cross-reference table with random access too.

Trailer
The first line of the trailer is just the trailer keyword. This is followed by the trailer
dictionary, which contains at least the /Size entry (which gives the number of entries
in the cross-reference table) and the /Root entry (which gives the object number of the
document catalog, which is the root element of the graph of objects in the body).

There follows a line with just the startxref keyword, a line with a single number (the
byte offset of the start of the cross-reference table within the file), and then the line %
%EOF, which signals the end of the PDF file.

Here’s the trailer from Example 3-1:

trailer Trailer keyword
<< The trailer dictinonary
/Root 5 0 R
/Size 6
>>
startxref startxref keyword
459 Byte offset of cross-reference table
%%EOF End-of-file marker

The trailer is read from the end of the file backwards: the end-of-file marker is found,
the byte offset of the cross-reference table extracted, and then the trailer dictionary
parsed. The trailer keyword marks the upper extent of the trailer.

Lexical Conventions
A PDF file is a sequence of 8 bit bytes. Using the rules we describe in this chapter, these
characters can be grouped into tokens (such as keywords and numbers), and the file
parsed.

Some general rules apply to the main body of the file, and frequently to the various
other languages in a PDF file. There are three kinds of characters: regular characters,
whitespace characters, and delimiters. The whitespace characters are listed in Ta-
ble 3-1. The delimiters are () < > [] { } / %, and are used to define arrays, diction-
aries and so on. All other characters are regular characters, with no special meaning.

Lexical Conventions | 29

Table 3-1. Whitespace characters

Character code Meaning

0 Null

9 Tab

10 Line feed

12 Form feed

13 Carriage return

32 Space

PDF files can use <CR>, <LF>, or a <CR><LF> sequence to end a line. Note, however,
that changing the line endings en masse (for example, in a text editor) will likely corrupt
the file, since it will alter any line ending sequences that happen to occur in the midst
of compressed binary data sections.

Objects
PDF supports five basic objects:

• Integers and real numbers, such as 42 and 3.1415.

• Strings, which are enclosed in brackets, and come in a variety of encodings. For
example (The Quick Brown Fox).

• Names, which are used for keys in dictionaries, and innumerable other purposes.
They are introduced with a /, for example /Blue.

• Boolean values, denoted by the keywords true and false.

• The null object, denoted by the keyword null.

and three compound objects:

• Arrays, which contain an ordered collection of other objects such as [1 0 0 0].

• Dictionaries, which consist of an unordered collection of pairs, mapping names to
objects. For example, <</Contents 4 0 R /Resources 5 0 R>>, which maps /Con
tents to the indirect reference 4 0 R and /Resources to the indirect reference 5 0 R.

• Streams, which hold binary data, together with a dictionary describing attributes
of the data such as its length and any compression parameters. Streams are used
to store images, fonts and so on.

and a way of linking objects together:

• The indirect reference, which forms a link from one object to another.

A PDF file consists of a graph of objects, with indirect references forming the links
between them. The object graph for Example 3-1 is shown in Figure 3-1.

30 | Chapter 3: File Structure

Integers and Real Numbers
An integer is written as one or more of the decimal digits 0..9 optionally preceded by
a plus or minus sign:

0 +1 -1 63

A real number is written as one or more decimal digits optionally preceded by a plus
or minus sign, and optionally having one decimal point, which may be leading, inside,
or following:

0.0 0. .0 -0.004 65.4

Frequently, the specification allows a given object to be either an integer or a real num-
ber. Other times it must be an integer. In addition, the range and accuracy of integers
and reals is defined by the PDF implementation, not the standard. In certain imple-
mentations, if an integer exceeds the range available, it is converted to a real number.

Exponential notation is not allowed. For example, you can’t write
4.5e-6.

Strings
Strings consist of a series of bytes, written between parentheses:

(Hello, World!)

The backslash \ character and the parenthesis characters () must be escaped by pre-
ceding them with a backslash. For example, writing:

(Some \\ escaped \(characters)

represents the string “Some \ escaped (characters”. Balanced pairs of parentheses
within the string need not be escaped. For example, (Red (Rouge)) represents the string
“Red (Rouge)”.

A backslash can also be used to introduce other character codes for readability purposes
(see Table 3-2).

Table 3-2. Escape sequences in strings

Character sequence Meaning

\n Line feed

\r Carriage return

\t Horizontal tab

\b Backspace

\f Form feed

\ ddd Character code in three octal digits

Objects | 31

After the string is read from the file, and the escaped characters resolved to yield the
series of bytes forming the string proper, it may then be interpreted as described in
“Text Strings” on page 45.

Hexadecimal strings

Strings can also be written as a sequence of hexadecimal digits between < and >, each
pair representing a byte:

<4F6Eff00> Bytes 0x4F, 0x6E, 0xFF, and 0x00

When there is an odd number of digits, the last is assumed to be 0. Hexadecimal strings
are typically used to make binary data user-readable. It is functionally the same as
describing strings in the usual way.

Names
Names are used throughout PDF, as keys for dictionaries and to define various multi-
valued objects where using integers to enumerate them would be unintuitive. A name
is introduced with the forward slash. For example:

/French

The / character is part of the name—in fact, / on its own is a valid name. The name
may not contain whitespace or delimiters, but where a name needs to correspond to
some external name which has these characters (for example, spaces), we can use a
hash sign followed by two decimal digits:

/Websafe#20Dark#20Green

This represents the name /Websafe Dark Green since, in ASCII, hexadecimal 20 is the
code for space. Names are case-sensitive (/French and /french are different).

Boolean Values
PDF allows the boolean values true and false. They are frequently used as flags in
dictionary entries.

Arrays
An array represents an ordered collection of PDF objects, including other arrays. The
objects need not all be of the same type. For example, the array:

[0 0 400 500]

contains four numbers in order: 0, 0, 400, 500. The array:

[/Green /Blue [/Red /Yellow]]

contains three items: the name /Green, the name /Blue and the array of two names
[/Red /Yellow].

32 | Chapter 3: File Structure

Dictionaries
A dictionary represents an unordered collection of key-value pairs. The dictionary maps
the keys to the values—provide a key, and the value is the result of looking it up in the
dictionary. The keys are names, the values may be any PDF object. Dictionaries are
written between << and >>. For example:

<</One 1 /Two 2 /Three 3>>

maps the name /One to the integer 1, the name /Two to the integer 2, and the
name /Three to the integer 3. Dictionaries can, of course, contain other dictionaries.
Nested dictionaries form the bulk of the non-graphical structured data in most PDF
files.

Indirect References
In order to split the PDF content over separate objects (so data may be read only if
required), we connect them together with indirect references. The indirect reference to
object 6 is written as:

6 0 R

Here, 6 is the object number, 0 is the generation number (which we don’t consider
here), and R is the indirect reference keyword.

For example, here’s a typical dictionary using indirect references:

<< /Resources 10 0 R
 /Contents [4 0 R] >>

In this example, objects 10 and 4 are being referenced in the values of a dictionary.

Streams and Filters
Streams are used to store binary data. They are formed of a dictionary followed by a
chunk of binary data. The dictionary lists the length of the data, and optionally other
parameters, according to the particular use to which the stream is put.

Syntactically, a stream consists of a dictionary, followed by the stream keyword, a new-
line (<LF> or <CR><LF>), zero or more bytes of data, another newline, and finally
the endstream keyword. From our example file:

4 0 obj Object 4
<<
/Length 65 Length of the data
>>
stream Stream keyword
1. 0. 0. 1. 50. 700. cm 65 bytes of data, here a graphics stream
BT
 /F0 36. Tf
 (Hello, World!) Tj

Streams and Filters | 33

ET
endstream endstream keyword
endobj end of object

Here, the dictionary just contains the /Length entry, which gives the length of the stream
in bytes.

All streams must be indirect objects. Streams are almost always compressed, using a
variety of mechanisms, which are listed in Table 3-3.

Table 3-3. PDF stream compression methods

Method name Description

/ASCIIHexDecode Produces one byte of uncompressed data for each pair of hexadecimal digits
in the compressed data. > indicates end of data. Whitespace is ignored.
This filter and /ASCII85Decode are intended to reduce data to 7
bits—/ASCII85Decode is more complicated, but more compact.

/ASCII85Decode This 7-bit encoding uses the printable characters ! through u and z. The
sequence ~> indicates end of data.

/LZWDecode Implements Lempel-Ziv-Welch compression, as used by the TIFF image
format.

/FlateDecode Flate compression, as used by the open source zlib library. Defined in RFC
1950. Both /LZWDecode and /FlateDecode can have predictors in the
stream dictionary, which define postprocessing on the data to reverse pre-
processing which was done when it was compressed.

/RunLengthDecode A simple byte-based run-length compressor.

/CCITTFaxDecode Implements Group 3 and Group 4 encoding, as used by fax machines. Works
well on monochrome (1bpp) images, not for general data.

/JBIG2Decode A more modern, better compression mechanism for the kinds of data suitable
for use with /CCITTFaxDecode, but also suitable for grayscale and color
images and general data. Implements the JBIG2 compression method.

/DCTDecode JPEG lossy compression. Whole JPEG files can be put in here, complete with
all the headers.

/JPXDecode JPEG2000 lossy and lossless compression. Limited to the JPX baseline set of
features, with a few exceptions.

Here’s an example of a compressed stream:

796 0 obj
<</Length 275 /Filter /FlateDecode>>
stream
HTKO0÷ü And 268 more bytes...
endstream
endobj

Multiple filters can be used, by specifying an array instead of a name for the /Filter
entry in the stream’s dictionary. For example, an image compressed with the JPEG
method then ASCII85 encoded, might have the following filter entry:

34 | Chapter 3: File Structure

/Filter [/ASCII85Decode /DCTDecode]

Filters which require external parameters (for example, defining compression
parameters outside the data stream itself) store those in the stream dictionary too.

Incremental Update
Incremental update allows a file to be updated by appending modifications to the end
of the file, so the whole file doesn’t need to be written again (which, for a large file,
could take a long time). The update constitutes the new or changed objects, and an
update to the cross-reference table. This means saving the changes takes less time, but
the file may become bloated (because objects which are no longer needed cannot be
deleted).

This updating process may happen several times. A side-effect is that files updated in
this fashion may have those changes undone one or more levels, to retrieve earlier
versions of the document.

When altering a digitally signed document, all updates must be made incrementally—
otherwise, the digital signature would be invalidated. The recipient can undo the in-
cremental updates to retrieve the original, certified document.

When a file is updated incrementally, a new trailer is added, containing all the entries
from the previous trailer, together with a /Prev entry giving the byte offset of the pre-
vious cross-reference table. Thus, a file which has been incrementally updated will have
multiple trailer dictionaries and end-of-file markers. In this way, a PDF application can
read the cross-reference sections in reverse order to build up a list of the latest versions
of each object in the file. Objects which have been replaced keep the same object
number.

Object and Cross-Reference Streams
Starting with PDF 1.5, a new mechanism was introduced to further compress PDF files
by allowing many objects to be put into a single object stream, the whole stream being
compressed. In tandem, a new mechanism for referencing the objects in these streams
was introduced—cross-reference streams.

A file will generally use several sets of object streams, grouping together objects which
are needed at certain times, for example all the objects on page one, all the objects on
page two, and so on. This retains the random access property of the document, which
would be lost if all the objects in a file were to be put into a single object stream. Object
streams can’t contain other streams.

Files compressed with these mechanisms are rather hard to read manually, so we can
use the decompress operation in pdftk as usual, to rewrite them decompressed for in-

Object and Cross-Reference Streams | 35

spection. This has the side effect of writing them without object and cross-reference
streams. See Chapter 9 for details.

Linearized PDF
When viewing a large PDF file in a network environment, especially when the data rate
is low or the network latency high, the user does not want to wait for the whole file to
download to view it. This is especially important when the document is being viewed
inside a web browser.

We should like the first page to appear quickly, and for changing to another page (by
clicking on a hyperlink or a bookmark) to be as fast as possible. In the case of individual
pages being large (rather than just the whole document), we should like page content
to appear incrementally, most-important content first. Network transport mechanisms
such as HTTP (The HyperText Transfer Protocol, used for fetching web pages in a web
browser) often allow an arbitrary chunk of data to be fetched. However, because of
latency, we wish to fetch a single chunk with all the data for a page, rather than hundreds
of little chunks, one for each object.

PDF 1.2 introduced such a mechanism, linearized PDF. This adds rules for how to order
objects in a file and hint tables to indicate how such objects have been ordered. The
system is backward compatible, so that a linearized PDF file is also a normal one, and
may be read as such by a reader which does not understand linearized PDF.

A linearized PDF file can be recognized by the presence of a linearization dictionary at
the top of the file, directly after the header. For example:

%PDF-1.4
%âãÏÓ
4 0 obj
<< /E 200967
 /H [667 140]
 /L 201431
 /Linearized 1
 /N 1
 /O 7
 /T 201230
>>
endobj

The pdfopt command line program shipped with GhostScript can linearize a file. For
example:

pdfopt input.pdf output.pdf

This linearizes input.pdf and writes the result to output.pdf.

36 | Chapter 3: File Structure

www.allitebooks.com

http://www.allitebooks.org

How a PDF File is Read
To read a PDF file, converting it from a flat series of bytes into a graph of objects in
memory, the following steps might typically occur:

1. Read the PDF header from the beginning of the file, checking that this is, indeed,
a PDF document and retrieving its version number.

2. The end-of-file marker is now found, by searching backward from the end of the
file. The trailer dictionary can now be read, and the byte offset of the start of the
cross-reference table retrieved.

3. The cross-reference table can now be read. We now know where each object in the
file is.

4. At this stage, all the objects can be read and parsed, or we can leave this process
until each object is actually needed, reading it on demand.

5. We can now use the data, extracting the pages, parsing graphical content, extract-
ing metadata, and so on.

This is not an exhaustive description, since there are many possible complications (en-
cryption, linearization, objects, and cross-reference streams).

The following recursive data structure, given in psuedocode, can hold a PDF object.

pdfobject ::= Null
 | Boolean of bool
 | Integer of int
 | Real of real
 | String of string
 | Name of string
 | Array of pdfobject array
 | Dictionary of (string, pdfobject) array Array of (string, pdfobject) pairs
 | Stream of (pdfobject, bytes) Stream dictionary and stream data
 | Indirect of int

For example, the object << /Kids [2 0 R] /Count 1 /Type /Pages >> might be repre-
sented as:

Dictionary
 ((Name (/Kids), Array (Indirect 2)),
 (Name (/Count), Integer (1)),
 (Name (/Type), Name (/Pages)))

Figure 3-1, shown earlier in the chapter, shows the object graph for the file in Exam-
ple 3-1.

How a PDF File is Read | 37

How a PDF File is Written
Writing a PDF document to a series of bytes in a file is much simpler than reading it—
we don’t need to support all of the PDF format, just the subset we intend to use. Writing
a PDF file is very fast, since it amounts to little more than flattening the object graph
to a series of bytes.

1. Output the header.

2. Remove any objects which are not referenced by any other object in the PDF. This
avoids writing objects which are no longer needed.

3. Renumber the objects so they run from 1 to n where n is the number of objects in
the file.

4. Output the objects one by one, starting with object number one, recording the byte
offset of each for the cross-reference table.

5. Write the cross-reference table.

6. Write the trailer, trailer dictionary, and end-of-file marker.

38 | Chapter 3: File Structure

CHAPTER 4

Document Structure

In this chapter, we leave behind the bits and bytes of the PDF file, and consider the
logical structure. We consider the trailer dictionary, document catalog, and page tree.
We enumerate the required entries in each object. We then look at two common struc-
tures in PDF files: text strings and dates.

Figure 4-1 shows the logical structure of a typical document.

Figure 4-1. Typical document structure for a two page PDF document

Trailer Dictionary
This dictionary, residing in the file’s trailer rather than the main body of the file, is one
of the first things to be processed when a program wants to read a PDF document. It

39

contains entries allowing the cross-reference table—and thus the file’s objects—to be
read. Its important entries are summarized in Table 4-1.

Table 4-1. Entries in a trailer dictionary (*denotes required entry)

Key Value type Value

/Size* Integer Total number of entries in the file’s cross-reference table (usually equal to the
number of objects in the file plus one).

/Root* Indirect reference to dictionary The document catalog.

/Info Indirect reference to dictionary The document’s document information dictionary.

/ID Array of two Strings Uniquely identifies the file within a work flow. The first string is decided when
the file is first created, the second modified by workflow systems when they
modify the file.

Here’s an example trailer dictionary:

<<
 /Size 421
 /Root 377 0 R
 /Info 375 0 R
 /ID [<75ff22189ceac848dfa2afec93deee03> <057928614d9711db835e000d937095a2>]
>>

Once the trailer dictionary has been processed, we can go on to read the document
information dictionary and the document catalog.

Document Information Dictionary
The document information dictionary contains the creation and modification dates of
the file, together with some simple metadata (not to be confused with the more com-
prehensive XMP metadata discussed in “XML Metadata” on page 93).

Document information dictionary entries are described in Table 4-2. A typical docu-
ment information dictionary is given in Example 4-1.

Table 4-2. Entries in a document information dictionary. The types “text string” and “date string”
are explained later in this chapter.

Key Value type Value

/Title text string The document’s title. Note that this is nothing to do with any title displayed on the first
page.

/Subject text string The subject of the document. Again, this is just metadata with no particular rules about
content.

/Keywords text string Keywords associated with this document. No advice is given as to how to structure these.

/Author text string The name of the author of the document.

/CreationDate date string The date the document was created.

40 | Chapter 4: Document Structure

Key Value type Value

/ModDate date string The date the document was last modified.

/Creator text string The name of the program which originally created this document, if it started as another
format (for example, “Microsoft Word”).

/Producer text string The name of the program which converted this file to PDF, if it started as another format
(for example, the format of a word processor).

Example 4-1. Typical document information dictionary

<<
 /ModDate (D:20060926213913+02'00')
 /CreationDate (D:20060926213913+02'00')
 /Title (catalogueproduit-UK.qxd)
 /Creator (QuarkXPress: pictwpstops filter 1.0)
 /Producer (Acrobat Distiller 6.0 for Macintosh)
 /Author (James Smith)
>>

The date string format (for /CreationDate and /ModDate) is discussed in the section
“Dates” on page 45. The text string format (which describes how different encodings
can be used within the string type) is described in “Text Strings” on page 45.

Document Catalog
The document catalog is the root object of the main object graph, from which all other
objects may be reached through indirect references. In Table 4-3, we list the document
catalog dictionary entries which are required, and some of the many optional ones, so
as to introduce brief PDF topics we don’t cover elsewhere in these pages.

Table 4-3. The document catalog (*denotes required entry)

Key Value type Value

/Type* name Must be /Catalog.

/Pages* indirect reference to
dictionary

The root node of the page tree. Page trees are discussed in
“Pages and Page Trees” on page 42.

/PageLabels number tree A number tree giving the page labels for this document. This
mechanism allows for pages in a document to have more com-
plicated numbering than just 1,2,3…. For example, the preface
of a book may be numbered i,ii,iii..., whilst the main content
starts again at 1,2,3….These page labels are displayed in PDF
viewers—they have nothing to do with printed output.

/Names dictionary The name dictionary. This contains various name trees, which
map names to entities, to prevent having to use object numbers
to reference them directly.

Document Catalog | 41

Key Value type Value

/Dests dictionary A dictionary mapping names to destinations. A destination is a
description of a place within a PDF document to which a hyper-
link sends the user.

/ViewerPreferences dictionary A viewer preferences dictionary, which allows flags to specify the
behavior of a PDF viewer when the document is viewed on
screen, such as the page it is opened on, the initial viewing scale
and so on.

/PageLayout name Specifies the page layout to be used by PDF viewers. Values
are /SinglePage, /OneColumn, /TwoColumnLeft,
/TwoColumnRight, /TwoPageLeft, /TwoPageRight.
(Default: /SinglePage). Details are in Table 28 of ISO
32000-1:2008.

/PageMode name Specifies the page mode to be used by PDF viewers. Values
are /UseNone, /UseOutlines, /UseThumbs,
/FullScreen, /UseOC, /UseAttachments.
(Default: /UseNone). Details are in Table 28 of ISO
32000-1:2008.

/Outlines indirect reference to
dictionary

The outline dictionary is the root of the document outline,
commonly known as the bookmarks.

/Metadata indirect reference to
stream

The document’s XMP metadata—see “XML Meta-
data” on page 93.

Pages and Page Trees
A page dictionary in a PDF document brings together instructions for drawing the
graphical and textual content (which we consider in Chapter 5 and Chapter 6) with the
resources (fonts, images, and other external data) which those instructions make use
of. It also includes the page size, together with a number of other boxes defining crop-
ping and so forth.

The entries in a page dictionary are summarized in Table 4-4.

Table 4-4. Entries in a page dictionary (*denotes required entry)

Key Value type Value

/Type* name Must be /Page.

/Parent* indirect reference to dictionary The parent node of this node in the page tree.

/Resources dictionary The page’s resources (fonts, images, and so on). If this entry is
omitted entirely, the resources are inherited from the parent node
in the page tree. If there are really no resources, include this entry
but use an empty dictionary.

/Contents indirect reference to stream or array of
such references

The graphical content of the page in one or more sections. If this
entry is missing, the page is empty.

42 | Chapter 4: Document Structure

Key Value type Value

/Rotate integer The viewing rotation of the page in degrees, clockwise from north.
Value must be a multiple of 90. Default value: 0. This applies to
both viewing and printing. If this entry is missing, its value is in-
herited from its parent node in the page tree.

/MediaBox* rectangle The page’s media box (the size of its media, i.e., paper). For most
purposes, the page size. If this entry is missing, it is inherited from
its parent node in the page tree.

/CropBox rectangle The page’s crop box. This defines the region of the page visible by
default when a page is displayed or printed. If absent, its value is
defined to be the same as the media box.

The rectangle data structure for the media box and the other boxes is an array of four
numbers. These define the diagonally opposite corners of the rectangle—the first two
elements of the array being the x and y coordinates of one corner, the latter two elements
being those of the other. Normally, the lower-left and upper-right corners are given.
So, for example:

/MediaBox [0 0 500 800]
/CropBox [100 100 400 700]

defines a 500 by 800 point page with a crop box removing 100 points on each side of
the page.

The pages are linked together using a page tree, rather than a simple array. This tree
structure makes it faster to find a given page in a document with hundreds or thousands
of pages. Good PDF applications build a balanced tree (one with the minimum height
for the number of nodes). This ensures that a particular page can be located quickly.
The nodes with no children are the pages themselves. An example page tree structure
for seven pages is shown in Figure 4-2.

This would be written in PDF objects as shown in Example 4-2. The entries in an
intermediate or root page tree node (i.e., not a page itself) are summarized in Table 4-5.

Figure 4-2. A page tree for seven pages. The exact shape of the tree is left to the individual PDF
application. The PDF code for this tree is shown in Example 4-2.

Pages and Page Trees | 43

Example 4-2. PDF objects used to build the page tree illustrated in Figure 4-2

1 0 obj Root node
<< /Type /Pages /Kids [2 0 R 3 0 R 4 0 R] /Count 7 >>
endobj
2 0 obj Intermediate node
<< /Type /Pages /Kids [5 0 R 6 0 R 7 0 R] /Parent 1 0 R /Count 3 >>
endobj
3 0 obj Intermediate node
<< /Type /Pages /Kids [8 0 R 9 0 R 10 0 R] /Parent 1 0 R /Count 3 >>
endobj
4 0 obj Page 7
<< /Type /Page /Parent 1 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
5 0 obj Page 1
<< /Type /Page /Parent 2 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
6 0 obj Page 2
<< /Type /Page /Parent 2 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
7 0 obj Page 3
<< /Type /Page /Parent 2 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
8 0 obj Page 4
<< /Type /Page /Parent 3 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
9 0 obj Page 5
<< /Type /Page /Parent 3 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
10 0 obj Page 6
<< /Type /Page /Parent 3 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj

Table 4-5. Entries in an intermediate or root page tree node (*denotes a required entry)

Key Value type Value

/Type* name Must be /Pages.

/Kids* array of indirect references The immediate child page-tree nodes of this node.

/Count* integer The number of page nodes (not other page tree nodes) which are eventual
children of this node.

/Parent indirect reference to page tree node Reference to the parent of this node (the node of which this is a child).
Must be present if not the root node of the page tree.

In this tree, any page can be found at most two indirect references away from the root
node.

44 | Chapter 4: Document Structure

Text Strings
Strings outside of the actual textual content of a page (e.g., bookmark names, document
information etc.) are known as text strings. They are encoded using either PDFDocEn-
coding or (in more recent documents) Unicode. PDFDocEncoding is a based on the
ISO Latin-1 Encoding. It is documented fully in Annex D of ISO Standard
32000-1:2008.

Text strings which are encoded as Unicode are distinguished by looking at the first two
bytes: these will be 254 followed by 255. This is the Unicode byte-order marker
U+FEFF, which indicates the UTF16BE encoding. This means a PDFDocEncoding
string can’t begin with þ (254) followed by ÿ (255), but this is unlikely to occur in any
reasonable circumstance.

Dates
The creation and modification dates /CreationDate and /ModDate in the document in-
formation dictionary are examples of the PDF date format, which encodes a date in a
string, including information about the time zone.

A date string has the format:

(D:YYYYMMDDHHmmSSOHH'mm')

where the parentheses indicate a string as usual. The other parts of the date are sum-
marised in Table 4-6.

Table 4-6. PDF date format constituents

Portion Meaning

YYYY The year, in four digits, e.g., 2008.

MM The month, in two digits from 01 to 12.

DD The day, in two digits from 01 to 31.

HH The hour, in two digits from 00 to 23.

mm The minute, in two digits from 00 to 59.

SS The second, in two digits from 00 to 59.

O The relationship of local time to Universal Time, either +, - or Z. + signifies local time is later than UT, - earlier, and
Z equal to Universal Time.

HH' The absolute value of the offset from Universal Time in hours, in two digits from 00 to 23.

mm' The absolute value of the offset from Universal Time in minutes, in two digits from 00 to 59.

Dates | 45

All parts of the date after the year are optional. For example, (D:1999) is perfectly valid.
Plainly, though, if you omit one part, you must omit everything which follows, other-
wise the result would be ambiguous. The default values for DD and MM is 01, for all
other parts, the default is zeros.

For example:

(D:20060926213913+02'00')

represents September 26th 2006 at 9:39:13 p.m, in a time zone two hours ahead of
Universal Time.

Putting it Together
This is a manually-created text, to be processed into a valid PDF file by pdftk using the
method introduced in Chapter 2. It is a three page document, with document infor-
mation dictionary and page tree. Figure 4-3 shows this document displayed in Acrobat
Reader. Figure 4-4 is the corresponding object graph.

Example 4-3. A three page document with document information dictionary

%PDF-1.0 Header
1 0 obj Top-level of page tree: has two children—page one and an intermediate page tree node
<< /Kids [2 0 R 3 0 R] /Type /Pages /Count 3 >>
endobj
4 0 obj Contents stream for page one
<< >>
stream
1. 0.000000 0.000000 1. 50. 770. cm BT /F0 36. Tf (Page One) Tj ET
endstream
endobj
2 0 obj Page one
<<
 /Rotate 0
 /Parent 1 0 R
 /Resources
 << /Font << /F0 << /BaseFont /Times-Italic /Subtype /Type1 /Type /Font >> >> >>
 /MediaBox [0.000000 0.000000 595.275590551 841.88976378]
 /Type /Page
 /Contents [4 0 R]
>>
endobj
5 0 obj Document catalog
<< /PageLayout /TwoColumnLeft /Pages 1 0 R /Type /Catalog >>
endobj
6 0 obj Page three
<<
 /Rotate 0
 /Parent 3 0 R
 /Resources
 << /Font << /F0 << /BaseFont /Times-Italic /Subtype /Type1 /Type /Font >> >> >>
 /MediaBox [0.000000 0.000000 595.275590551 841.88976378]
 /Type /Page

46 | Chapter 4: Document Structure

 /Contents [7 0 R]
>>
endobj
3 0 obj Intermediate page tree node, linking to pages two and three
<< /Parent 1 0 R /Kids [8 0 R 6 0 R] /Count 2 /Type /Pages >>
endobj
8 0 obj Page two
<<
 /Rotate 270
 /Parent 3 0 R
 /Resources
 << /Font << /F0 << /BaseFont /Times-Italic /Subtype /Type1 /Type /Font >> >> >>
 /MediaBox [0.000000 0.000000 595.275590551 841.88976378]
 /Type /Page
 /Contents [9 0 R]
>>
endobj
9 0 obj Content stream for page two
<< >>
stream
q 1. 0.000000 0.000000 1. 50. 770. cm BT /F0 36. Tf (Page Two) Tj ET Q
1. 0.000000 0.000000 1. 50. 750 cm BT /F0 16 Tf ((Rotated by 270 degrees)) Tj ET
endstream
endobj
7 0 obj Content stream for page three
<< >>
stream
1. 0.000000 0.000000 1. 50. 770. cm BT /F0 36. Tf (Page Three) Tj ET
endstream
endobj
10 0 obj Document information dictionary
<<
 /Title (PDF Explained Example)
 /Author (John Whitington)
 /Producer (Manually Created)
 /ModDate (D:20110313002346Z)
 /CreationDate (D:2011)
>>
endobj xref
0 11
trailer Trailer dictionary
<<
 /Info 10 0 R
 /Root 5 0 R
 /Size 11
 /ID [<75ff22189ceac848dfa2afec93deee03> <057928614d9711db835e000d937095a2>]
>>
startxref
0
%%EOF

Putting it Together | 47

Figure 4-3. Example 4-3 converted to a valid PDF with pdftk and displayed in Acrobat Reader

48 | Chapter 4: Document Structure

Figure 4-4. Object graph for Example 4-3

Putting it Together | 49

CHAPTER 5

Graphics

In this chapter, we’ll run through the main ways to build graphics in the content stream
of a PDF page. All of the examples are based on the same PDF we created manually in
Chapter 2 and processed into valid PDF documents with pdftk in the same fashion. All
the examples are included in the online resources.

Looking at Content Streams
A PDF page is made up of one or more content streams, defined by the /Contents entry
in the page object, together with a shared set of resources, defined by the /Resources
entry. In all our examples, there will only be a single content stream. Multiple content
streams are equivalent to a single stream containing their concatenated content.

Here’s an example page, with no resources and a single content stream:

3 0 obj
<<
 /Type /Page
 /Parent 1 0 R
 /Resources << >>
 /MediaBox [0 0 792 612]
 /Rotate 0
 /Contents [2 0 R]
>>
endobj

Here’s the associated content stream, consisting of the stream dictionary and the stream
data.

2 0 obj
<< /Length 18 >> Stream dictionary
stream
200 150 m 600 450 l S Stream data
endstream
endobj

51

We’ll discover what the m, l and S operators do in a moment. The numbers are meas-
urements in points—a point (or pt) is 1/72 inch. The result of loading this document
into a PDF viewer (after processing with pdftk as per Chapter 2) is shown in Figure 5-1.

The full manually created file (before processing with pdftk) is shown in Example 5-1.
We’re going to be using variations on this file for the rest of this chapter. For the most
part we’ll just change the content stream for each example, but later on we’ll need to
add one or more extra resources to the PDF. All of these files are found in the online
resources for this book.

Example 5-1. Skeleton PDF listing for examples in this chapter

%PDF-1.0 PDF header
1 0 obj Page tree
<< /Kids [2 0 R]
 /Type /Pages
 /Count 1
>>
endobj
2 0 obj Page object
<< /Rotate 0
 /Parent 1 0 R
 /MediaBox [0 0 792 612]
 /Resources 3 0 R
 /Type /Page
 /Contents [4 0 R]
>>
endobj
3 0 obj Resources
<< >>
4 0 obj Page content stream
<< /Length 19 >>
stream
200 150 m 600 450 l S
endstream
endobj
5 0 obj Document catalog
<< /Pages 1 0 R
 /Type /Catalog
>>
endobj xref Skeleton cross-reference table
0 6
trailer Trailer dictionary
<< /Root 5 0 R
 /Size 6
>>
startxref
0
%%EOF End-of-file marker

Content streams are almost always compressed, so to inspect the content stream of an
existing document, we can use the pdftk decompress operation. For example, the
command:

52 | Chapter 5: Graphics

pdftk input.pdf decompress output output.pdf

writes input.pdf to output.pdf with the streams uncompressed.

Figure 5-1. Defining and stroking a single line

Operators and Graphics State
A content stream consists of a series of operators, each preceded by zero or more
operands. Table 5-1 lists the 78 graphics operators in 6 groups. In this chapter, we’ll be
looking at selected operators from the first four groups.

Table 5-1. PDF graphics operators

Group Used for Operators

Graphics state operators Changing the graphics state (current
color, stroke width etc).

w J j M d ri i gs q Q cm CS
cs SC SCN sc scn G g RG rg
K k

Path construction operators Building lines, curves and rectangles. m l c v y h re

Path painting operators Stroke and fill paths, or use them to define
clipping regions.

S s f F f* B B* b b* n W W*

Operators and Graphics State | 53

Group Used for Operators

Other painting operators Shading patterns and inline images. sh BI ID EI Do

Text operators Select and show text in various fonts and
ways.

Tc Tw Tz TL Tf Tr Ts Td TD
Tm T* Tj TJ ' '' d0 d1

Marked content and compatibility oper-
ators

Used to demarcate sections of the stream. MP DP BMC BDC EMC BX EX

The page is rendered by considering each operator and its operands in turn. The
graphics state is maintained throughout, altered by some operators, consulted by oth-
ers. Operands are often numbers, but can be names, dictionaries, or arrays.

The part of the graphics state which would be needed to render our examples, as it may
appear in a typical PDF implementation, is summarized in Table 5-2.

Table 5-2. Graphics state

Entry Type Initial value

Current transformation matrix matrix The matrix which transforms default user coordinates to device
coordinates

Fill color color Black

Line color color Black

Line width real 1.0

Path join style integer Mitered joins (0)

Cap style integer Square butt caps (0)

Line dash pattern integer array Solid line

Current clipping path path The empty path

Blend mode name or array Normal

Soft mask name or dictionary None

Alpha constant real 1.0 (full opacity)

Alpha source boolean false

Building and Painting Paths
We’re using a landscape US Letter page (width 11 inches or 792 points; height 8.5
inches or 612 pts). The PDF coordinate system, by default, has the origin at the lower-
left corner of the page, with x and y increasing rightward and upward, respectively.

Let’s use some path construction, stroking, and line attribute operators to build a sim-
ple graphics stream:

100 100 m 300 200 l 700 100 l Move to (100, 100), line to (300, 200), line to (700, 100)
S Stroke the line
8 w Change line width from the default (1.0) to 8.0

54 | Chapter 5: Graphics

1 J Change line ending cap to rounded (code 1) from default square (code 0)
100 200 m 300 300 l 700 200 l Define new path, same shape but 100pts higher up the page
S Stroke the new line
[20] 0 d Change to 20pt dashes
100 300 m 300 400 l 700 300 l Define new path, same shape but another 100pts higher up the page
S Stroke the new line

The result is shown in Figure 5-2.

Figure 5-2. Building lines with differing widths, end caps, join styles, and dash patterns

We’ve used the m operator to move to the start of the new path, and the l operator to
form two lines. Note that at this point, nothing has been drawn—the page is only
affected when we use the S operator to stroke the line. The S operator also clears the
current path.

The w operator sets the line width in the graphics state to 8 points. The J operator sets
the line endings to rounded caps. The dash pattern is set with the d operator, which
takes two operands: an array (which is a repeating sequence of dash length, gap length,
dash length etc, which are cycled through when stroking the line), and an initial offset
(the phase) which moves the start of the pattern. In our example, there is just one entry,
so dashes and gaps are both 20pt, and the phase is 0.

Building and Painting Paths | 55

Line joins, dash patterns, and line caps are summarized in Table 5-3, Table 5-4, and
Table 5-5, respectively.

Paths may be made from more than one subpath, each subpath starting with the m
operator. This can be used to define a single path made from several discontiguous
shapes.

Table 5-3. Line joins

Join number Meaning

0 Mitered join

1 Rounded join

2 Beveled join

Table 5-4. Dash patterns

Dash pattern specification Meaning

[] 0 Solid line

[2] 0 2 on, 2 off, 2 on...

[2] 1 1 on, 2 off, 2 on... (phase is set to 1)

[2 3] 0 2 on, 3 off, 2 on...

Table 5-5. Line caps

Cap number Meaning

0 Butt caps. Squared off at the end of the line.

1 Round caps. Semicircles attached at the end of each line.

2 Projecting square caps. Projects at end of line for half the width of the line, and is then squared off.

Bézier Curves
As well as straight lines, we can draw curves. There are many different possible schemes
for defining curves, but the industry has settled on Bézier curves, named for the auto-
mobile engineer Pierre Bézier. They are easy and predictable to manipulate with the
mouse onscreen, relatively easy to draw at any resolution or accuracy, and simple to
define mathematically.

A curve is defined by four points—the start and end points, and two control points
which define how the curve is shaped between start and end. The curve does not nec-
essarily pass through the control points, but always sits fully inside the convex quad-
rilateral defined by its four points.

An example curve, showing the start and end points and the two control points (shown
with dotted lines from the end points, as they may be represented in a graphics editor)
can be seen in Figure 5-3. This was generated by using the c operator:

56 | Chapter 5: Graphics

300 200 m 400 300 500 400 600 200 c S

We use the m operator to move the current point to the start of the curve. The c operator
takes three more coordinates: the first control point, second control point, and end
point.

For more information on Bézier curves, consult a graphics text—see“PDF and Graphics
Documentation” on page 119.

Figure 5-3. A Bézier curve

Drawing circles with Bézier curves

Interestingly, it’s not possible to draw exact circles in PDF. But we can use several Bézier
curves to approximate one closely. We’ll use four symmetric curves (the minimum
number to get a good result), one for each quadrant. For a specimen quadrant of the
unit circle centered at (1, 0), the coordinates are shown in Figure 5-4. The number k is
about 0.553.

Building and Painting Paths | 57

Figure 5-4. Approximating a circular arc with a Bézier curve

Filled Shapes and Winding Rules
Paths may be filled as well as stroked, by substituting another operator from Ta-
ble 5-6 for the S operation we used before (here, we used B to fill and stroke the path).
Figure 5-5 shows a shape filled and stroked using the following code:

2.0 w
0.75 g Change fill color to light Gray
250 250 m Move to start of path
350 350 450 450 550 250 c First curve
450 250 350 200 y Second curve
h B Close and fill

We’ve used the g operator to set the fill color. This is explained in “Colors and Color
Spaces” on page 60. For the second curve, we’ve used the y operator which is like c,
except that the second control point and the end point are one and the same, so only
four operands are needed.

There are two factors distinguishing fill operators from one another:

• Whether the path is automatically closed before filling. Closing involves adding a
straight line segment from the current point to the starting point of the current
subpath. The path may be manually closed with the h operator.

• The winding rule which determines the choices made when filling an object which
is self-intersecting or made up of multiple subpaths which overlap. Figure 5-6
shows the effect of the two winding rules on both a self-intersecting object, and a
path made from two overlapping rectangular subpaths.

The code for Figure 5-6 is:

100 350 200 200 re
120 370 160 160 re f Non-zero
400 350 200 200 re
420 370 160 160 re f* Even-odd

58 | Chapter 5: Graphics

150 50 m 150 250 l 250 50 l 50 150 l 350 150 l h f
550 50 m 550 250 l 650 50 l 450 150 l 750 150 l h f*

Here, we’ve also used the re operator. This creates a rectangular, closed path given four
arguments: minimum x, minimum y, width, and height.

Table 5-6. Operators for filling and stroking paths

Operator Function

n Ends the path with no visual effect. This is used to change the current clipping path (see “Clipping” on page 65).

b Close, fill and stroke the path (non-zero winding rule)

b* Close, fill and stroke the path (even-odd winding rule)

B Fill and stroke the path (non-zero winding rule)

B* Fill and stroke the path (even-odd winding rule)

f or F Fill the path (non-zero winding rule)

f* Fill the path (even-odd winding rule)

S Stroke the path

s Close and stroke the path

Figure 5-5. A filled shape

Building and Painting Paths | 59

Colors and Color Spaces
To change the fill or stroke color in a PDF graphics stream, we need to change the
current color space using one operator, and then change the color using another.
Fill and stroke color spaces are separate—the current fill color space could be
DeviceRGB and the stroke color space DeviceGray, for example.

In this section, we look at the basic DeviceGray, DeviceRGB, and DeviceCMYK color
spaces (more complicated color spaces are covered in the PDF Standard):

Figure 5-6. Non-zero (L) and even-odd (R) winding rules

60 | Chapter 5: Graphics

• The DeviceGray color space has one additive component, which varies from 0.0
(Black) to 1.0 (White).

• The DeviceRGB color space has three additive components for Red, Green, and
Blue. They each range from 0.0 (e.g., no Red) to 1.0 (e.g., full Red).

• The DeviceCMYK color space has four subtractive components for Cyan, Magenta,
Yellow, and Key (Black). They each range from 0.0 (no pigment) to 1.0 (full pig-
ment).

To change the stroke color space, we use the CS operator. To change the fill color space,
use cs instead. The SC operator (with a number of operands equal to the number of
components in the current color space) can then be used to set the stroke color, or sc
to set the fill color. For example:

/DeviceRGB CS Set stroke color space
0.0 0.5 0.9 SC Set color to RGB (0.0, 0.5, 0.9)

There are shortcut operators for the device color spaces, which set the current stroke
or fill color space and the current stroke or fill color in one operation. These are sum-
marized in Table 5-7.

Table 5-7. Simple color and color space operators

Operator Operands Function

G 1 Change stroke color space to /DeviceGray and set color

g 1 Change fill color space to /DeviceGray and set color

RG 3 (R, G, B) Change stroke color space to /DeviceRGB and set color

rg 3 (R, G, B) Change fill color space to /DeviceRGB and set color

K 4 (C, M, Y, K) Change stroke color space to /DeviceCMYK and set color

k 4 (C, M, Y, K) Change fill color space to /DeviceCMYK and set color

When a content stream begins, the default color space is /DeviceGray and the default
color value is 0 (fully black), so we can use the g operator straight away:

200 250 100 100 re f
0.25 g
300 250 100 100 re f
0.5 g
400 250 100 100 re f
0.75 g
500 250 100 100 re f

The result is shown in Figure 5-7.

Colors and Color Spaces | 61

Figure 5-7. The DeviceGray color space

Transformations
So far, we’ve seen operators that alter the graphics state of all the operators that follow
them. In order to allow us to group together graphics objects with their attributes (such
as color), we can bracket a group of operators with the q and Q operators. The q operator
puts aside the current graphics state. The state may then be altered, objects painted,
and so on— as usual. When the Q operator is invoked, the previous saved state is
restored. The q/Q pairs may be nested, one pair inside another:

0.75 g Change to light Gray fill
250 250 100 100 re f
q Save the graphics state
0.25 g Change to dark Gray fill
350 250 100 100 re f
Q Retrieve the previous graphics state
450 250 100 100 re f Light Gray again

The q/Q operators in a stream must form balanced pairs (with the exception that, at the
end of a graphics stream, any remaining Q operators may be omitted). The result is
shown in Figure 5-8.

62 | Chapter 5: Graphics

Figure 5-8. Using q and Q operators to isolate color attributes

One of the most frequent uses of q/Q pairs is to isolate the effects of coordinate trans-
forms. We can use the cm operator to change the transformation from user space
coordinates to device space coordinates. This is known as the Current Transformation
Matrix (CTM). It’s important that this change to the graphics state is isolated by a q/
Q pair, because it’s complicated to undo.

The cm operator takes six arguments, representing a matrix to be composed with the
CTM. Here are the basic transforms:

• Translation by (dx, dy) is specified by 1, 0, 0, 1, dx, dy

• Scaling by (sx, sy) about (0, 0) is specified by sx, 0, 0, sy, 0, 0

• Rotating counterclockwise by x radians about (0, 0) is specified by cos x, sin x, -sin
x, cos x, 0, 0

The cm operator appends the given transform to the CTM, rather than replacing it. To
rotate or scale around an arbitrary point (rather than the origin), translate to the origin,
rotate or scale, and translate back.

Any graphics text will have a full discussion of the mathematics of such transforms. See
“PDF and Graphics Documentation” on page 119.

Transformations | 63

Consider the following, illustrated in Figure 5-9:

2.0 w
0.75 g
100 100 m 200 200 300 300 400 100 c (a) Untransformed shape
300 100 200 50 y h B
q
0.96 0.25 -0.25 0.96 0 0 cm (b) Rotate counterclockwise by 1/4 radian
100 100 m 200 200 300 300 400 100 c
300 100 200 50 y h B
Q
q
0.5 0 0 0.5 0 0 cm (c) Scale original shape by 0.5 about the origin
100 100 m 200 200 300 300 400 100 c
300 100 200 50 y h B
1 0 0 1 300 0 cm (d) Translate (c) by 300 units in the new space, i.e., 150 units in the original space
100 100 m 200 200 300 300 400 100 c
300 100 200 50 y h B
Q

Note the use of q and Q to isolate the effect of transforms.

Figure 5-9. Translation, scaling and rotation with the cm operator

64 | Chapter 5: Graphics

Clipping
We can use a path, built in the usual way, to set the clipping path. From that point on,
only content within the path’s area will be shown. This is done by using the W operator
(for a non-zero path) or W* operator (for an even-odd path).

The operator intersects the path given with the existing clipping path, so it can only be
used to make the clipping region smaller, not larger. The clipping path remains the
current path, so it can be used to stroke the outline of the clipping region using, for
example, the S operator. The W operator is a modifier to the painting operation, so if
we don’t want to stroke the outline of the new clipping path, we must substitute the
no-op path painting operator n. Here’s an example where we define a clipping path:

200 100 m 200 500 l 500 100 l h W S

Here we have defined a closed triangular path, set the clipping region using W and then
stroked it using S. The result of setting this clipping path and then drawing the same
scene as Figure 5-2 can be seen in Figure 5-10.

Figure 5-10. Clipping to a path (the path is also shown)

Clipping | 65

Transparency
PDF has a sophisticated but complicated transparency mechanism which works in
multiple color spaces, allows different types of blending, and supports grouped trans-
parencies. We only consider simple transparency here.

There are no specific transparency operators so we use the gs operator to load the fill
transparency level from the /ca entry in the /ExtGState entry in the page’s resources.
The /ExtGState entry is a dictionary of collections of external graphics state, which we
can load in using the gs operator.

For our example, the resources consist of just the /ExtGState entry, with a single
collection of state, called /gs1. It contains just the /ca entry for fill transparency:

<< /ExtGState
 << /gs1
 << /ca 0.5 >> Half transparent
 >>
>>

Here is the corresponding content stream:

2.0 w Select 2pt line width
/gs1 gs Select /gs1 from external graphics state
0.75 g Select light Gray
200 250 m 300 350 400 450 500 250 c
400 250 300 200 y h B
1 0 0 1 100 100 cm
200 250 m 300 350 400 450 500 250 c
400 250 300 200 y h B

The result is shown in Figure 5-11. The transparency is defined so that 0 means wholly
transparent, and 1 wholly opaque. The stroke transparency may be altered with /CA in
place of (or in addition to) /ca.

Shadings and Patterns
As well as plain colors, PDF allows various patterns to be used to fill and stroke objects:

• Tiling patterns, where a pattern cell is replicated over the page.

• Shading patterns, where a gradient between colors is used to fill an object. There
are many types, with many options and settings:

Function-based
Axial
Radial
Free-form Gouraud-shaded triangle mesh
Lattice-form Gouraud-shaded triangle mesh
Coons patch mesh
Tensor-product patch mesh

66 | Chapter 5: Graphics

We consider just Axial and Radial shadings.

Patterns are invoked by changing to the /Pattern color space using the cs operator,
then using the scn operator to select a named pattern. Patterns are listed by name in
the /Pattern dictionary in the page’s resources. For example:

/Pattern
 <<
 /GradientShading Our name for the pattern
 <<
 /Type /Pattern
 /PatternType 2 A shading pattern
 /Shading
 <<
 /ColorSpace /DeviceGray
 /ShadingType 2 A linear shading
 /Function << /FunctionType 2 /N 1 /Domain [0 1] >>
 /Coords [150 200 450 500] Coordinates of start and end of gradient
 /Extend [true true]
 >>
 >>
 >>

Figure 5-11. Transparency in PDF

Shadings and Patterns | 67

This defines an axial shading pattern. We have named our pattern /GradientShading.
The pattern type for shadings is 2. Our shading is defined by:

• The color space /DeviceGray

• The shading type 2 (Axial)

• The coordinates of the start and end of the shading: (150, 200) and (450, 500)

We don’t discuss the /Extend or /Function entries here. The pattern is now invoked,
and a shape drawn:

/Pattern cs Choose pattern color space for fills
/GradientShading scn Choose our pattern as a color
250 300 m 350 400 450 500 550 300 c
450 300 350 250 y h f

The result is Figure 5-12.

Figure 5-12. An axial shading pattern

If we change to a radial shading by changing the /ShadingType to 3, and change
the /Coords entry to [400 400 0 400 400 200]—a radial shading with inner radius 0
and outer radius 200 both centered on (400, 400):

68 | Chapter 5: Graphics

/Coords [400 400 0 400 400 200]
/ShadingType 3

The result is shown in Figure 5-13.

Figure 5-13. A radial shading pattern

Form XObjects
In “Transformations” on page 62, we used the q and Q operators to display a single
object using various transformations. However, we had to recite the operations for
drawing the object each time. A Form XObject allows us to store a set of graphics
instructions, and use them repeatedly (even on different pages), at differing scales and
positions.

Form XObjects have nothing to do with PDF forms (the kind you fill in).

Form XObjects | 69

3 0 obj Resources of current page
<<
 /XObject << /X1 5 0 R >> Our XObject is called /X1
>>
endobj
5 0 obj The XObject itself
<< The XObject dictionary
 /Type /XObject
 /Subtype /Form
 /Length 69
 /BBox [0 0 792 612]
>>
stream The XObject content
2.0 w
0.5 g
250 300 m 350 400 450 500 500 300 c
450 300 350 250 y h B
endstream
endobj

Object 3 in the listing above is the page’s /Resources entry. Its /XObject entry is a
dictionary listing the XObjects used in that page. We’ve named our XObject /X1. Object
5 is the XObject itself. It’s a stream, with the following entries in its dictionary:

• The /Type of this object is /XObject.

• The /Subtype of this XObject is /Form, distinguishing it as a form XObject.

• The /Length is the length in bytes of the stream, as usual.

• The /BBox entry gives a bounding box for the XObject, in this case the same as the
page itself.

The stream contains the code for setting up the line and width, and the shape itself.
Now, we can use the XObject from the main content stream, using the Do operator with
the XObject’s name as the operand:

/X1 Do Invoke XObject /X1
0.5 0 0 0.5 0 0 cm Scale by 0.5 about the origin
/X1 Do Invoke the XObject again, at the new scale

The result is shown in Figure 5-14.

When the Do operator is encountered, the current graphics state is saved, the /Matrix
entry (if any) from the XObject is concatenated with the CTM, the content is drawn
(clipped by the XObject’s /BBox), and the current graphics state is restored.

Image XObjects
Images are specified using separate objects, again stored in the /XObject entry in the
page’s resources dictionary. They are thus separate from the graphics content stream,
and so may be reused multiple times, even across pages. To specify an image, we provide
the image data (usually compressed using one of many mechanisms such as JPEG), its

70 | Chapter 5: Graphics

width and height, and some parameters which describe the conversion from the image
data to values in its color space.

Here is a resources entry for an image XObject:

<< /XObject << /X2 5 0 R >> >>

This defines an image XObject called /X2 whose parameters are:

5 0 obj
<<
 /Type /XObject It's an XObject
 /Subtype /Image It's an image
 /ColorSpace /DeviceGray The color space of the image. Also determines how many components it has.
 /Length 8 The length of the stream in bytes, as usual
 /Width 8 Image width in pixels
 /Height 8 Image height in pixels
 /BitsPerComponent 1 Number of bits used for each component
>>
stream
@`pxxp`@ The image data
endstream

Figure 5-14. Form XObject used at two scales

Image XObjects | 71

To make this possible to type in manually, we’ve defined a one-bit-per-pixel black and
white image, containing just 64 bits of data. Typically, images would be hundreds or
thousands of pixels in each direction and with up to 16 bits per component, with one,
three, or four components.

Images always map to the square (0,0)...(1,1) in user space, so we use cm operators to
scale the image to the appropriate size and position:

q
1 0 0 1 100 100 cm Translate
200 0 0 200 0 0 cm Scale
/X2 Do Invoke image XObject
Q
q
1 0 0 1 400 100 cm And again with a different position and scale
100 0 0 100 0 0 cm
/X2 Do
Q

The result is shown in Figure 5-15.

Figure 5-15. Image XObject used at two scales

72 | Chapter 5: Graphics

CHAPTER 6

Text and Fonts

In the previous chapter, we saw how a series of graphics operators can be used to draw
content on a page, by reference to their operands and a stack-based graphics state.

In this chapter, we look at the operators and state for selecting characters from fonts
and printing them on the page. Then, we see how fonts and their metrics are defined
and embedded in PDF documents. Finally, we discuss the complex task of general-
purpose text extraction from a document.

Text and Fonts in PDF
It would be possible to define a page description language where none of the text layout
had been performed, and plain text was supplied along with boxes and columns to be
filled on-the-fly, just like a desktop publishing package. Conversely, it would be pos-
sible to define a page description language without fonts or text as such at all, just
relying on text being converted to outline shapes as the document is produced, having
been layed out in, for example, a word-processor.

PDF adopts a middle ground—the ideas of a font and of small-scale text layout are
retained, but the large-scale paragraph layout must be done in advance. This has the
following advantages:

• Complete control over layout, because large-scale layout (paragraphs, line-breaks)
are the job of the program producing the PDF. The document will look as it is
supposed to.

• Predictable small-scale text layout such as strings with fixed character spacing is
supported, so the position of each character need not be explicitly stated.

• Space saved by the use of fonts as libraries of character shapes, and the simple
inclusion of existing font files minimizing compatibility and portability problems.

• Original characters and some layout elements are maintained, so copy-and-paste
and text extraction are normally possible.

73

Text State
The text state parameters and the operators which modify them are summarized in
Table 6-1.

Table 6-1. Text state parameters and their operators

Parame-
ter

Description Operands Operators Initial value

Tc Character spacing charSpace Tc sets the character spacing to charSpace,
expressed in unscaled text space units.

0

Tw Word spacing wordSpace Tw sets the word spacing to wordSpace,
expressed in unscaled text units.

0

Th Horizontal spacing scale Tz sets the horizontal scaling to (scale / 100). 100 (normal spacing)

Tl Leading leading TL sets the text leading to leading, expressed
in unscaled text space units.

0

Tf, Tfs Font, Font Size font, size Tf selects the font font at size size points. None. Must be specified.

Tmode Rendering Mode render Tr sets the text rendering mode to render, an
integer.

0

Trise Rise rise Ts sets the text rise to rise, expressed in un-
scaled text space units.

0

We discuss the phrase “unscaled text space units” in “Text Space and Text Position-
ing” on page 75. The text state is stored along with the graphics state, and manipu-
lated using the operators above. The current text state is affected by the stack operators
q and Q, just like the graphics state.

Printing Text
Printing text on the page requires:

1. Selecting a font.

2. Choosing position, size, and orientation.

3. Choosing spacing, color, text rendering mode, and other parameters.

4. Selecting characters from the font, and showing them on the page.

Text Sections
The operators BT (begin text) and ET (end text) form brackets around text sections.
Operators for showing text in a page’s content stream may only appear between BT and
ET. Operators for altering text state, however, are not restricted in this way. Text sec-
tions may also contain other operators altering the general graphics state.

74 | Chapter 6: Text and Fonts

As an example, we return to the “Hello, World!” file from Chapter 2:

1. 0. 0. 1. 50. 700. cm Position at (50, 700)
BT Begin text block
 /F0 36. Tf Select /F0 font at 36pt
 (Hello, World!) Tj Place the text string
ET End text block

Here, we’ve used the Tf operator with font name and size operators to select the font,
and the Tj operator to show a text string. We have relied on the graphics operator cm
to position the text. Now, we will discuss other methods of changing the text position.

Text Space and Text Positioning
Text space is the coordinate system in which text is defined. The transformation from
this text space into user space (and then into device space, as usual) determines where
text is placed on the page. The origin of the first glyph in the text string is placed at the
origin of text space.

There are two matrices to consider:

• The text matrix, which defines the current transformation for the next glyph. It is
altered by the text positioning and text showing operators.

• The text line matrix, which is the state of the text matrix at the beginning of the
current line. Thus, lines of text may be aligned vertically by the use of an operator
to move to the next line, without manually keeping track of the position of the start
of the line.

These matrices do not persist from text section to text section, but are reset to the
identity matrix at the beginning of each text section. Together with the font size, hor-
izontal scaling, and text rise, these two matrices define the transformation from text
space to user space.

The operators for modifying the text position are summarized in Table 6-2.

Table 6-2. Operators for positioning text

Operands Operator Function

x,y Td Move the text position to the next line, offset by (x,y). The parameters are expressed in unscaled
text space units.

x,y TD Move the text position to the next line, offset by (x,y). Sets the leading to -y. The parameters are
expressed in unscaled text space units.

- T* Move the text position to the next line. Equivalent to the sequence 0 leading Td (where leading is
the current text leading).

a,b,c,d,e,f Tm Sets the text matrix and text line matrix to [a b 0 c d 0 e f 1]. Unlike the graphics matrix
operator cm, the matrix replaces the current matrix, rather than being concatenated with it.

Printing Text | 75

Showing Text
The Tj operator shows text at the current position. This, in combination with the text
positioning operators we have already seen would suffice. However, for convenience
and brevity, three additional operators (', '', and TJ) are provided. These are shortcuts
for common combinations of text-showing and text-positioning. The text showing op-
erators are summarized in Table 6-3.

Table 6-3. Operators for showing text

Operands Operator Function

string Tj Show string at the current position.

string ' Go to the next line, taking into account the leading and text matrices, and show string at the
new position. The same as using T* followed by Tj.

wordspace,
charspace,
string

'' Set the word spacing to wordspace and the character spacing to charspace. Go to the next line,
taking into account the leading and text matrices, and show string at the new position. The
same the sequence wordspace Tw charspace Tc string '.

array TJ This operator allows a text string to be shown with adjustments for individual glyph positions
(for example, kerning). The array contains strings and numbers, in any combination. String
entries are shown as normal; number entries adjust the text matrix horizontally by subtracting
that amount (expressed in thousandths of a unit of text space).

We will now go through some examples of showing text, using the standard font and
the Latin-1 based PDFDocEncoding for simplicity. As always, these examples can be
found in the online resources.

Character and word spacing

Here is our first example, where we show some lines of text using various operators.
The result is illustrated in Figure 6-1:

BT
/F0 36 Tf
1 0 0 1 120 350 Tm
50 TL
(Character and Word Spacing) Tj T*
3 Tc
(Character and Word Spacing) Tj T*
10 Tw
(Character and Word Spacing) Tj
ET

In this example we have:

1. Used Tf to select font /F0 at 36 points.

2. Used Tm to set the text position to (120, 350).

3. Used TL to set the leading to 50 points.

4. Shown a string with Tj, and used T* to move to the next line.

76 | Chapter 6: Text and Fonts

5. Set the character spacing to 3 points, and drawn the string again.

6. Set the word spacing to 10 points, and drawn the string a third time.

Figure 6-1. Character and word spacing

Text transforms

In this example, we show how text transforms combine with graphics transforms to
make sure that text positioning operations (for example, moving to the next line) work
properly, even when the whole text section is transformed. The result is Figure 6-2:

0.96 0.25 -0.25 0.96 0 0 cm
BT
/F0 48 Tf
48 TL
1 0 0 1 270 240 Tm
(Text and graphics) Tj T*
(transforms combined) Tj T*
(with newlines) Tj
ET

Printing Text | 77

Here, we have:

1. Set up the graphics matrix to rotate anticlockwise around the origin with cm.

2. Selected a font and set the leading with Tf and TL.

3. Set the text matrix to offset the start by (270, 240) with Tm.

4. Written three lines with Tj and T*.

Figure 6-2. Text transforms

Text rise

The Ts operator can be used to adjust the vertical position of text:

BT
/F0 72 Tf
1 0 0 1 140 290 Tm
(Text) Tj
20 Ts
(Up) Tj
0 Ts
(and) Tj
-20 Ts
(Down) Tj
ET

78 | Chapter 6: Text and Fonts

The result is shown in Figure 6-3. This is the first time we’ve used multiple Tj operators
without starting a new line. Note that the Tj operator, having shown the text, sets the
text position to the end of the string which was just drawn.

Figure 6-3. Superscripting and subscripting with the text rise operator

Kerning and glyph adjustment

The TJ operator is an alternative to Tj for drawing a string with horizontal glyph ad-
justments. These typically occur when text is layed out in a word-processor or type-
setter, especially if the content is fully justified. The TJ operator is a convenient way to
encode this information without using dozens of operators for each line of text:

BT
/F0 72 Tf
90 TL
1 0 0 1 240 330 Tm
[(PJ WAYNE)] TJ T*
[(P)150(J)(W)150(A)80(YN)20(E)] TJ
ET

We have used TJ twice here; once to show the text as normal, and a second time in-
cluding manual kerns in the array passed to TJ. The result is illustrated in Figure 6-4.

Printing Text | 79

Figure 6-4. Kerned text

Text rendering modes

There are seven rendering modes for text, set with the Tr operator. Four of them are
for setting up text as a clipping path, and one is for writing invisible text. We don’t
consider those here. The other three (modes 0, 1, and 2) are used for filling, stroking,
and filling-followed-by-stroking respectively. The colors set in the same way as for
shape drawing:

0.5 g
BT
/F0 72 Tf
1 0 0 1 160 380 Tm
90 TL
(Text Mode Zero) Tj T*
1 Tr
(Text Mode One) Tj T*
2 Tr
(Text Mode Two) Tj
ET

The result is illustrated in Figure 6-5.

80 | Chapter 6: Text and Fonts

Figure 6-5. The simple text rendering modes

Defining and Embedding Fonts
A font is a collection of glyphs (character shapes) for a particular character set. In PDF,
a font is composed of a font dictionary which defines the metrics, character set, and
encoding (mapping of character codes in text strings to characters in the font), together
with the font program (which is the actual font file), in a variety of formats (Type 1,
TrueType etc).

Font Types in PDF
PDF allows the use of the major popular font formats, together with Type 3 fonts which
allow the encoding of any other font type (for example, legacy bitmap fonts) by defining
the character shapes directly using a collection of PDF graphics operators.

Defining and Embedding Fonts | 81

Type 1 fonts
Introduced with font type /Type1 in the font dictionary. Type 1 is an Adobe font
format originally for use with PostScript. The standard 14 fonts are defined as Type
1 fonts. Multiple Master Type 1 fonts (/MMType1) are an extension of Type 1 al-
lowing the automatic generation of many font styles from a one set of outlines.

TrueType fonts
Introduced with font type /TrueType in the font dictionary. Based on Apple’s True-
Type font format (also frequently used in Microsoft Windows).

Type 3 fonts
Introduced with font type /Type3. These are fonts composed of streams of PDF
graphics operators. This means they can include colors and shadings, so are more
flexible, but have no hinting mechanisms for clear display at small sizes. Often used
to emulate other font formats (for example, bitmap fonts).

CID fonts
These are composite fonts, intended to support multibyte character sets (where a
font has a huge number of glyphs, such as Chinese). They are not discussed in this
text.

Type 1 Fonts
We will use Type 1 fonts as an example. Table 6-4 summarizes the entries in a Type 1
font dictionary.

Table 6-4. Type 1 font dictionary (*denotes required entry, **denotes required except for the standard
14 fonts)

Key Value type Value

/Type* name Must be /Font.

/Subtype* name Must be /Type1.

/BaseFont* name The PostScript name for the font.

/FirstChar** integer The first code in the /Widths array.

/LastChar** integer The last code in the /Widths array.

/Widths** array of integers Array of length (/LastChar - /FirstChar + 1), giving the glyph
width for those characters in thousandths of text space units.

/FontDescriptor** indirect reference to
dictionary

A font descriptor dictionary giving the font’s metrics (other than the glyph
widths).

/Encoding name or dictionary The font’s character encoding, for example /MacRomanEncoding
or /WinAnsiEncoding. More complicated ones are described by
dictionaries.

/ToUnicode stream A stream containing instructions for the extraction of text content. See
“Extracting Text from a Document” on page 86.

82 | Chapter 6: Text and Fonts

There are 14 standard Type 1 fonts in PDF. These are fonts where the metrics and
outlines (or suitable substitution fonts) must be available in any PDF application.
Nowadays, however, Adobe recommends that all fonts are fully embedded, even these.
The standard fonts are:

Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Helvetica
Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique
Courier
Courier-Bold
Courier-Oblique
Courier-BoldOblique
Symbol
ZapfDingbats

For example, here is a simple Type 1 font:

1 0 obj
<< /Type /Font
 /Subtype /Type1
 /BaseFont /Times-Roman
 /FirstChar 0
 /LastChar 255
 /Widths [255 255 255 255 ... 744 268 380 380 380 380 380 380 380 380 380 380]
 /FontDescriptor 2 0 R
 /Encoding /WinAnsiEncoding
>>

The ellipsis ... is content we have omitted, not part of the PDF language. We discuss
the /FontDescriptor and /Encoding entries later. The /Widths array gives the widths in
thousandths of a text space unit for each of the 256 characters in this font.

Font Encodings
The font encoding describes the mapping between character codes (characters in the
strings used in content streams) and glyph descriptions in the font. Font programs have
their own built-in encodings, but the PDF font can alter the encoding to use a Macintosh
font with a Microsoft Windows encoding, or to use a single-byte encoding to select up
to 256 characters from a font with more than 256 glyphs (e.g., variations on characters
or ligatures).

The simplest /Encoding entry is just the name of one of the standard encodings, which
are defined in the PDF Standard, Appendix D. More complicated encodings are defined

Defining and Embedding Fonts | 83

by using a dictionary instead of a name for the encoding. The entries in this dictionary
are summarized in Table 6-5.

Table 6-5. Entries in an encoding dictionary

Key Value type Value

/Type name Must be /Encoding

/BaseEncoding name The base encoding, from which the /Differences entry defines differences. This is
one of the predefined encodings /MacRomanEncoding, /MacExpertEncoding,
or /WinAnsiEncoding. If this entry is absent, the differences are from the font file’s
built-in encoding.

/Differences array of
integers and
names

Defines the differences from the base encoding. Contains zero or more sections each
beginning with a number n followed by glyph names for character n, n+1, n+2 etc. For
example [6 /endash /emdash 34 /space] maps 6 to /endash, 7
to /emdash, and 34 to /space.

In Example 6-1, the font has an encoding that defines a difference from the built-in font
encoding by replacing character 1 by the character /bullet (the bullet point). This
means that the PDF viewer can cut and paste the text properly, because it now knows
that character code 1 is a bullet point (names like /bullet are predefined in the Adobe
Glyph List). It makes no difference to the display of the PDF.

Example 6-1. A font encoding for a font with the bullet point added

25 0 obj
<< /Type /Font
 /Subtype /Type1
 /Encoding 23 0 R Reference to the encoding dictionary.
 /BaseFont /Symbol
 /ToUnicode 24 0 R Instructions for conversion to Unicode.
>>
endobj

23 0 obj Encoding dictionary
<< /Type /Encoding
 /BaseEncoding /WinAnsiEncoding The base encoding.
 /Differences [1 /bullet] The differences
>>
endobj

Embedding a Font
When creating a PDF file, the fonts must be embedded, so that the glyph descriptions
and encodings are available to the program showing the PDF or processing it in other
ways. To embed a font:

84 | Chapter 6: Text and Fonts

1. Various details from the font file are extracted—a process that varies depending
upon the font format in question. These details (metrics, encodings etc.) are used
to fill out a font dictionary, the font metrics, and the font encoding dictionary.

2. These details can now be stripped from the font file in question, if that is allowed
by the font format, leaving just the glyph descriptions—all this information is now
in the font dictionary. This reduces the size of the embedded font.

3. The font may be subsetted, removing whole glyph descriptions, reducing the font
file to one which holds only the characters which are actually used. For example,
a font only used for the title of a document may only actually use ten characters.
Depending on the font format, the encoding may have to be altered to place all
these characters in the first few character positions in the font so they are numbered
1,2,3…. Subset fonts may be identified by a prefix formed of six uppercase letters
followed by a +, such as RTFGRF+. This unique code is generated when the subset is
created to allow different subsets to be distinguished from one another.

An example of an embedded font is given in Example 6-2.

Example 6-2. An embedded font, including encoding and font descriptor

9 0 obj
<</Type /Font
 /Subtype /TrueType It's a TrueType font
 /BaseFont /GCCBBY+TT8Et00 Font is TT8Et00. GCCBBY+ prefix identifies as a subset font.
 /FontDescriptor 8 0 R
 /FirstChar 1 There are 41 characters in this font.
 /LastChar 41
 /Widths
 [603 603 603 603 603 603 603 603 603 603 603 603 603 603 The widths. It's a fixed-width font.
 603 603 603 603 603 603 603 603 603 603 603 603 603 603
 603 603 603 603 603 603 603 603 603 603 603 603 603]
 /Encoding 14 0 R
>>

14 0 obj The font encoding.
<< /Type /Encoding
 /BaseEncoding /WinAnsiEncoding The base encoding
 /Differences The changes. In this case, it's a subset font with the characters at position 1 onward.
 [1 /w /i /d /g /e /t /s /T /h /space /r /u /l /a /x /bracketleft
 /underscore /J /o /n /S /m /quotesingle /A /p /c /bracketright
 /one /colon /braceleft /b /k /braceright /v /period /parenleft
 /two /parenright /asterisk /y /P]
>>
endobj

8 0 obj The font descriptor, giving the remaining metrics.
<< /Type /FontDescriptor
 /FontName /GCCBBY+TT8Et00
 /FontBBox [0 -205 602 770]
 /Flags 4
 /Ascent 770
 /CapHeight 770

Defining and Embedding Fonts | 85

 /Descent -205
 /ItalicAngle 0
 /StemV 90
 /MissingWidth 602
 /FontFile2 12 0 R The actual font file, here in TrueType format.
>>
endobj

The details of the actual font formats (Type1, TrueType etc.) are not discussed here—
in fact, they are not discussed in the PDF Standard either, but by external documents
from the providers of those font formats.

Extracting Text from a Document
It is customary to include enough information in a file’s font dictionaries to allow the
actual character identities (rather than just the glyphs) to be retrieved. This is important
to allow users to search and copy text from PDF viewing applications like Adobe
Reader. In can also be used, in a more limited capacity, to allow edits to be made to
the textual content of a document.

There are two mechanisms for this: the /Encoding entry in the font (which maps char-
acter codes to Adobe Glyph List entries like /bullet), and a more modern mechanism,
the /ToUnicode entry which provides a program in a language defined by Adobe which
maps character codes directly to Unicode entities. Here is an example of a /ToUnicode
program:

23 0 obj
<< /Length 317 >>
stream
/CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo <<
/Registry (Symbol+0) /Ordering (T1UV) /Supplement 0 >> def
/CMapName /Symbol+0 def
1 begincodespacerange <01> <01> endcodespacerange
1 beginbfrange
<01> <01> <2022> Maps character code 1 to Unicode U+2022, the bullet point
endbfrange
endcmap CMapName currentdict /CMap defineresource pop end end
endstream
endobj

Another hardship in the extraction of text is reconstructing the text operators within
the content stream. Operators may split up the text for kerning or justification, and
hyphenation at the end of lines can interrupt the stream of characters. Indeed, it is even
possible that the text operators may be out of order. Usually, though, a good recon-
struction of text may be produced from most modern files.

86 | Chapter 6: Text and Fonts

www.allitebooks.com

http://www.allitebooks.org

Resources
As well as the PDF Standard, there are a number of other documents which provide
further detail on the topics discussed in this chapter:

• Unicode is described fully in The Unicode Standard, Version 5.0, published by The
Unicode Consortium. A more digestible introduction is O’Reilly’s own Unicode
Explained by Jukka K. Korpela.

• Fonts and Encodings by Yannis Haralambous (O’Reilly) explains the various font
formats used by PDF.

• The Adobe Font and Type Technology Center is a collection of historic and current
documents for the various font formats and encoding systems, including pre-Uni-
code methods for encoding foreign languages.

Resources | 87

http://oreilly.com/catalog/9780596101213
http://oreilly.com/catalog/9780596101213
http://oreilly.com/catalog/9780596102425
http://www.adobe.com/devnet/opentype.html

CHAPTER 7

Document Metadata and Navigation

In this chapter, we discuss four topics related not to the visual appearance of a PDF
document, but to the ancillary data which may also be included for interactive, onscreen
use of documents, and the metadata used to carry extra information with a document
for use by programs in a PDF workflow.

Destinations
Data structures defining a position within a file. They can be used to specify where
a bookmark or hyperlink points to. Bookmarks (properly called the document out-
line) are used as a table of contents for the document.

XML Metadata
A stream containing an XML file in a specified format, containing some of the same
metadata as the document information dictionary, together with additional fields.

File Attachments
Allow whole files to be encapsulated in a document, much like an email
attachment.

Annotations
Allow text and graphics to be applied on top of a PDF page, separate from the main
page content, for display by onscreen readers. One particular kind of annotation
is the hyperlink, which allows a user to click somewhere on a page and be redirected
to a destination elsewhere in the file.

Bookmarks and Destinations
A document’s bookmarks (properly called the document outline) are a tree of entries
(typically titles of chapters, sections, paragraphs etc.) which can be clicked on in a PDF
viewer to move around the document. Each entry has some text and a destination de-
scribing where it links to.

89

Destinations
A destination defines a place in a PDF file, consisting of the page number, position
within that page, and magnification to use when viewing that page. Destinations may
be defined explicitly (as we will do for simplicity) or referenced by a name and looked
up in a document-wide name tree listing all destinations. The bookmarks are typically
displayed alongside the document in a PDF viewer.

Destinations are defined using an array object, with the contents depending upon the
kind of destination. Destination syntax is summarized in Table 7-1.

Table 7-1. Syntax for destinations. “page” is an indirect reference to a page object. Destinations use
the crop box (or media box if there is no crop box) unless otherwise specified.

Array Description

[page /Fit] Display the page at a scale which just fits the whole page in the window both horizontally
and vertically.

[page /FitH top] Display the page with the vertical coordinate top at the top edge of the window, and
the magnification set to fit the document horizontally.

[page /FitV left] Display the page with the horizontal coordinate left at the left edge of the window, and
the magnification set to fit the document vertically.

[page /XYZ left top zoom] Display the page with (left, top) at the upper-left corner of the window and the page
magnified by factor zoom. A null value for any parameter indicates no change.

[page /FitR left bottom right top] Display the page zoomed to show the rectangle specified by left, bottom, right, and top.

[page /FitB] Display the page like /Fit, but use the bounding box of the page’s contents, rather
than the crop box.

[page /FitBH top] Display the page like /FitH, but use the bounding box of the page’s contents, rather
than the crop box.

[page /FitBV left] Display the page like /FitV, but use the bounding box of the page’s contents, rather
than the crop box.

The Document Outline (Bookmarks)
The document outline consists of a tree of outline entries defined by an outline dic-
tionary and a number of outline item dictionaries. The outline dictionary is pointed to
by the /Outlines entry in the document catalog. The subentries (children) for an entry
may be shown by default (open) or concealed by default and only revealed by clicking
(closed). The outline dictionaries are summarized in Tables 7-2 and 7-3.

90 | Chapter 7: Document Metadata and Navigation

Table 7-2. Entries in an outline dictionary

Key Value type Value

/Type name If present, must be /Outlines.

/First indirect reference to dictionary An outline item dictionary for the first top-level item in the document outline.
Required if any document outline entries present.

/Last indirect reference to dictionary An outline item dictionary for the last top-level item in the document outline.
Required if any document outline entries present.

/Count integer The total number of open outline entries in all parts of the outline. May be
omitted if no open entries.

Table 7-3. Entries in an outline item dictionary *denotes a required entry

Key Value type Value

/Title* text string Text to be displayed for this entry.

/Parent* indirect reference to dictionary Pointer to the parent of this item in the outline tree. Either another outline
item dictionary or the top-level outline dictionary.

/Prev indirect reference to dictionary Pointer to the previous item at this level, if there is one.

/Next indirect reference to dictionary Pointer to the next item at this level, if there is one.

/First indirect reference to dictionary Pointer to the first child item of this entry, if it has one.

/Last indirect reference to dictionary Pointer to the last child item of this entry, if it has one.

/Count integer The number of open entries below this one, if this entry is open. If closed, a
negative integer whose absolute value is the number of descendants which
would be revealed if this item were to be opened by the user.

/Dest name, string or array The destination. Arrays are destinations, names are references to entries in
the /Dests entry in the document catalog, strings are references to entries
in the /Dests entry in the document’s name dictionary.

Building an example

Consider a file with three pages. We wish to build the following hierarchy:

Part 1 (points to page one)

Part 1A (points to page two)

Part 1B (points to page three)

The resultant code is shown in Example 7-1. The page objects in this document have
object numbers 3, 5, and 7 for pages one, two and three respectively. Object 12 is the
document catalog. Object 11 is the document outline dictionary, and objects 8, 9, and
10 are document outline item dictionaries.

Bookmarks and Destinations | 91

Example 7-1. An example document outline

8 0 obj
<< /Parent 10 0 R /Title (Part 1B) /Dest [7 0 R /Fit] /Prev 9 0 R >>
endobj
9 0 obj
<< /Parent 10 0 R /Title (Part 1A) /Dest [5 0 R /Fit] /Next 8 0 R >>
endobj
10 0 obj
<< /Parent 11 0 R /First 9 0 R /Dest [3 0 R /Fit] /Title (Part 1) /Last 8 0 R >>
endobj
11 0 obj
<< /First 10 0 R /Last 10 0 R >>
endobj
12 0 obj
<< /Outlines 11 0 R /Pages 1 0 R /Type /Catalog >>

Adobe Reader displays the document and its outline as shown in Figure 7-1.

Figure 7-1. Example PDF with bookmarks in Adobe Reader

92 | Chapter 7: Document Metadata and Navigation

XML Metadata
Starting with PDF 1.4, metadata streams can be used to attach XML metadata to the
whole document, or to individual elements within it. Document level metadata streams
extend and supersede the document information dictionary (which is almost always
included for compatibility with older PDF programs).

The metadata is stored uncompressed and (typically) unencrypted, and in such a way
that external tools which don’t know about PDF can find it within a PDF file easily.

The XML uses markup defined by the Extensible Metadata Platform (XMP) which is
described in Adobe’s XMP: Extensible Metadata Platform. This format includes a
method of embedding the metadata in other formats (e.g., PDF) in a platform-
independent way so that programs which cannot understand the enclosing format can
still extract the XMP data. Full details of the XMP Format are on Adobe’s website.

Example XMP metadata is shown in Example 7-2. You can see some of the familiar
entries from the document information dictionary. Note also the sequence /Type /
Metadata /Subtype /XML which identifies this stream as XMP metadata. A metadata
stream is added to a document by using the /Metadata entry in the document catalog.

Example 7-2. XML Metadata for the ISO PDF Format reference manual PDF. The ↵ symbol is used
to indicate a line which continues without a carriage return. The ␣ symbol is used to represent a space
character.

4884␣0␣obj<</Length␣3508/Type/Metadata/Subtype/XML>>stream
<?xpacket␣begin='ï»¿'␣id='W5M0MpCehiHzreSzNTczkc9d'?>
<?adobe-xap-filters␣esc="CRLF"?>
<x:xmpmeta␣xmlns:x='adobe:ns:meta/'␣x:xmptk='XMP␣toolkit␣2.9.1-14,␣framework␣1.6'>
<rdf:RDF␣xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'↵
xmlns:iX='http://ns.adobe.com/iX/1.0/'>
<rdf:Description␣rdf:about='uuid:b8659d3a-369e-11d9-b951-000393c97fd8'↵
␣xmlns:pdf='http://ns.adobe.com/pdf/1.3/'↵
␣pdf:Producer='Acrobat␣Distiller␣6.0.1␣for␣Macintosh'>↵
</rdf:Description>
<rdf:Description␣rdf:about='uuid:b8659d3a-369e-11d9-b951-000393c97fd8'↵
␣xmlns:xap='http://ns.adobe.com/xap/1.0/'↵
␣xap:CreateDate='2004-11-14T08:41:16Z'↵
␣xap:ModifyDate='2004-11-14T16:38:50-08:00'↵
␣xap:CreatorTool='FrameMaker␣7.0'↵
␣xap:MetadataDate='2004-11-14T16:38:50-08:00'>↵
</rdf:Description>
<rdf:Description␣rdf:about='uuid:b8659d3a-369e-11d9-b951-000393c97fd8'↵
␣xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/'↵
␣xapMM:DocumentID='uuid:919b9378-369c-11d9-a2b5-000393c97fd8'/>
<rdf:Description␣rdf:about='uuid:b8659d3a-369e-11d9-b951-000393c97fd8'↵
␣xmlns:dc='http://purl.org/dc/elements/1.1/'↵
␣dc:format='application/pdf'>↵
<dc:description><rdf:Alt>↵
<rdf:li␣xml:lang='x-default'>␣Adobe␣Portable␣Document␣Format␣(PDF)␣</rdf:li>↵
</rdf:Alt></dc:description>↵
<dc:creator>␣<rdf:Seq>␣<rdf:li>↵

XML Metadata | 93

http://www.adobe.com/products/xmp/

Adobe␣Systems␣Incorporated␣</rdf:li>␣</rdf:Seq>␣</dc:creator>↵
<dc:title>␣<rdf:Alt>↵
<rdf:li␣xml:lang='x-default'>PDF␣Reference,␣version␣1.6␣</rdf:li>␣</rdf:Alt>↵
</dc:title></rdf:Description>↵
</rdf:RDF>
</x:xmpmeta>
␣␣␣
(Many more lines of padding)
<?xpacket␣end='w'?>
endstream
endobj

Annotations and Hyperlinks
Annotations are used in PDF to add comments or interactive elements outside of the
page content itself. Each viewer application (for example Adobe Reader or Mac OS X
Preview) may display these annotations in a different way, even changing between
software versions, so the exact visual effect cannot be relied upon. The annotations do
not affect the printed output.

One or more annotations may be associated with each page using an array under the
entry /Annots in the page dictionary. Each annotation is a dictionary. The more im-
portant entries are described in Table 7-4. Each type of annotation has additional en-
tries in this dictionary.

Table 7-4. Entries in an annotation dictionary (*denotes required entry)

Key Value type Value

/Type name If present, must be /Annot.

/Subtype* name The type of this annotation.

/Rect* rectangle The location and size of the annotation in default user space units.

/Contents text string The textual content of this annotation, or if none, an alternate human-readable description.

We’ll look at two kinds of annotations: text annotations which can be used to add
comments, and link annotations which are used to make hyperlinks within a document.
There are many other types for drawing on the document, highlighting text and adding
printer’s marks. In “File Attachments” on page 96, we use file attachment annota-
tions to add attachments to individual pages.

First, a text annotation. Here, the /Subtype is /Text. The code is shown in Exam-
ple 7-3. We set the extra annotation dictionary entry /Open to true to indicate the note
will be visible when the document is opened. The background color is set to White
with the /C entry.

94 | Chapter 7: Document Metadata and Navigation

Example 7-3. A Text annotation

6 0 obj
<<
 /Subtype /Text
 /Open true
 /Contents (An example text annotation)
 /Type /Annot
 /Rect [400 100 500 200]
 /C [1 1 1] RGB (1, 1, 1) i.e., White
>>

/Annots [6 0 R] Extra entry in page dictionary

The result in Adobe Reader is shown in Figure 7-2. Note that Adobe Reader ignores
the /Rect entry here—other viewers may use it.

Figure 7-2. Example PDF with text annotation on page 1 in Adobe Reader

Now, let’s try a link annotation, to build a hyperlink from page one to page three. A
link annotation has subtype /Link and a /Dest entry giving the destination (described
in “Destinations” on page 90). The /Rect entry defines the area of the hyperlink.

The code is shown in Example 7-4.

Annotations and Hyperlinks | 95

Example 7-4. A link annotation

6 0 obj
<<
 /Subtype /Link
 /Dest [4 0 R /Fit]
 /Type /Annot
 /Rect [45 760 260 800]
>>

/Annots [6 0 R] Extra entry in page dictionary

The result in Adobe Reader is shown in Figure 7-3.

Figure 7-3. Example PDF with a link annotation on page 1 in Adobe Reader

File Attachments
An attachment is a way of including one or more files (of any type) within a PDF docu-
ment. Files may be attached to the document as a whole, or to individual pages. Typ-
ically, the PDF viewer will display a list of any attachments, allowing the user to open
or save them. This facility could be used, for example, to bundle example resources
along with a PDF of a slide-show presentation.

96 | Chapter 7: Document Metadata and Navigation

The embedded file itself is simply included in a stream object, with /Type /Embedded
File as an additional entry in the stream dictionary. The code for a sample embedded
file is shown in Example 7-5.

Example 7-5. An embedded file

8 0 obj
<< /Type /EmbeddedFile /Length 35 >>
stream
This is a text file attachment...

endstream
endobj

The embedded file stream is referenced in two quite different ways: one for attachments
to the whole document, another for attachments to particular pages.

To attach to the whole document, an /EmbeddedFiles entry is included in the name
dictionary referenced by the /Names entry in the document catalog. The code is shown
in Example 7-6.

Example 7-6. PDF Code for an attachment at the document level. The embedded file is object 8 (see
Example 7-5).

9 0 obj
<< /Names
 << /EmbeddedFiles
 << /Names
 [(attachment.txt) << /EF << /F 8 0 R >> /F (attachment.txt) /Type /F >>] >>
 >>
 /Pages 1 0 R
 /Type /Catalog >>
endobj

To attach to a single page, a special kind of annotation is used, listed as usual in
the /Annots dictionary in the page dictionary. The code is shown in Example 7-7.

Example 7-7. PDF code for an attachment to a particular page. The embedded file is object 8 (see
Example 7-5).

9 0 obj
<<
 /Type /Page

 (Other dictionary entries as usual)

 /Annots
 [<< /FS << /EF << /F 8 0 R >> /F (attachment.txt) /Type /F >>
 /Subtype /FileAttachment
 /Contents (attachment.txt)
 /Rect [18 796.88976378 45 823.88976378]
 >>]

File Attachments | 97

>>
endobj

Adobe Reader’s display of the attachment in a sidebar is shown in Figure 7-4.

Figure 7-4. Example PDF with attachment on page three in Adobe Reader

98 | Chapter 7: Document Metadata and Navigation

CHAPTER 8

Encrypted Documents

PDF documents can be encrypted using a variety of industry-standard schemes which
have increased in complexity and security over the years, starting with PDF version 1.1.
The PDF standard provides, in addition, a general mechanism for encapsulating third-
party encryption and security policies.

Encryption applies, with a few exceptions, to streams and strings in the file, but does
not encrypt numbers or other PDF data types, nor does it encrypt the file as a whole.
Thus, the document’s object structure remains visible to applications without the need
for decryption, but the substantive content of the document is safeguarded.

The more modern PDF encryption methods allow the file’s XMP metadata stream
(“XML Metadata” on page 93) to be left unencrypted so it may be extracted and read
by programs which don’t know how to open encrypted PDF files, or if the password is
not known.

Introduction
Due to the complexity of encrypted documents, it isn’t possible to manually build an
example (as we have in other chapters), but we can use pdftk to process our standard
hello.pdf file into an encrypted one, encypted.pdf:

pdftk hello.pdf output encrypted.pdf encrypt_40bit owner_pw fred

This creates the output file encrypted.pdf using the 40-bit RC4 method with an owner
password of “fred”. The owner password is the master password for the file. Someone
who has it can do anything with the file, including re-encrypting it or changing the
security settings. The user password allows the user to perform certain actions (view
the document, print the document etc.) defined by the owner when the file was
encrypted.

99

In our example, we’re using a blank user password, which is very common. This means
the file opens right away in a PDF viewer, without any password being entered. We’ve
banned the user from doing anything other than viewing the file (see “Encryption and
Decryption” on page 113 for details of the pdftk syntax for permissions and different
encryption types).

When the file is opened in Adobe Reader, the only noticeable change is that
(SECURED) is appended to the window’s title bar. By opening the File...Properties
window, and choosing the Security tab, the security properties can be viewed—see
Figure 8-1. A more technically-minded display is obtained by clicking on the Show
Details... button to bring up the window shown in Figure 8-2.

Figure 8-1. Security properties display in Adobe Reader for encrypted.pdf

100 | Chapter 8: Encrypted Documents

Figure 8-2. Security properties further detail display in Adobe Reader for encrypted.pdf

If using a program which can edit PDF files, such as Adobe Acrobat, the user will the
prompted for the owner password upon attempting any editing operation not allowed
by the permissions, as shown in Figure 8-3.

Figure 8-3. Entering the owner password in a program capable of PDF editing (here, Adobe Acrobat)

Introduction | 101

A similar dialog is presented upon opening the file if the document has a non-blank
user password, as shown in Figure 8-4. If the password is not known, the file cannot
be opened, even for viewing.

Figure 8-4. Opening a file with a non-blank user password in Adobe Reader

Example 8-1 shows the content of our new file. See if you can spot the differences from
the standard hello.pdf file in Example 2-2.

Example 8-1. An encrypted file

%PDF-1.1
%âãÏÓ
1 0 obj
<< /Kids [2 0 R] /Type /Pages /Count 1 >>
endobj
3 0 obj
<< /Length 72 >>
stream
(72 bytes of encrypted data)
endstream

102 | Chapter 8: Encrypted Documents

endobj
2 0 obj
<<
 /Rotate 0
 /Parent 1 0 R
 /Resources
 <<
 /Font
 <<
 /F0
 <<
 /BaseFont /Times-Italic
 /Subtype /Type1
 /Type /Font
 >>
 >>
 >>
 /MediaBox [0.000000 0.000000 595.275590551 841.88976378]
 /Type /Page
 /Contents [3 0 R]
>>
endobj
4 0 obj
<< /Pages 1 0 R /Type /Catalog >>
endobj
5 0 obj The encryption dictionary
<<
 /R 2
 /P -64
 /O (ífff÷ÚÉMº]Òq)È¢ÏºA»fgygy^ÏynÔZ¾gtëÙ)
 /Filter /Standard
 /V 1
 /U (gdË^Wîg:lÆr({M8®qµG9Tæ$YTscåGùLÂÐþ¬)
>>
endobj xref
0 6
0000000000 65535 f
0000000015 00000 n
0000000199 00000 n
0000000074 00000 n
0000000427 00000 n
0000000478 00000 n
trailer
<<
 /Encrypt 5 0 R Reference to encryption dictionary at object 5
 /Root 4 0 R
 /Size 6
 /ID [<a7d625071f5b223d97922e9e6c3fff23><e546c20487a77c4156083bf56f69bb4d>]
>>
startxref
617
%%EOF

Introduction | 103

The Encryption Dictionary
Look again at Example 8-1. An encryption dictionary has been included (object 5) and
referenced by the /Encrypt entry in the trailer dictionary. This encryption dictionary
contains, in this instance:

• The /R and /V entries which, together, define which encryption algorithms are to
be used.

• The /P entry, which is a bitfield indicating the permissions (view, print etc.) which
are attached to the use of the user password.

• The /O and /U entries which are used to verify the owner and user passwords re-
spectively.

• The /Filter entry which is /Standard for Adobe security methods.

Standard encryption methods provided are:

40-bit RC4 (PDF 1.1)
128-bit RC4 (PDF 1.4)
128-bit AES Encryption (PDF 1.5)
256-bit AES Encryption (PDF 1.7 ExtensionLevel 3)

The permissions bitfield for 40-bit RC4 (the first method to be introduced) allows for
a /P entry allowing a combination of printing, modification of the document, extraction
of text and graphics, and annotation. The 128-bit RC4 and later methods allow more
permission options.

The permissions are described in prose by the ISO standard and so the consistency of
their implementation by different PDF processing programs cannot be relied upon.

Reading Encrypted Documents
Any encrypted file may be read as usual, and parsed into an object graph, without regard
to its encryption. We can then inspect it for encryption by checking for the existence
of an /Encrypt entry in the trailer dictionary. Then, we try to decrypt the file using the
blank user password:

1. The contents of the encryption dictionary are read, and the encryption type
determined.

2. The user password is authenticated (it is processed using a one-way algorithm, and
compared with the /U entry in the encryption dictionary).

3. Using a further algorithm, an encryption key is calculated.

4. This key is used to decrypt each stream and string in the file. This can be done all
at once or, more efficiently, only when an object is actually needed.

5. The permissions are read, and enforced in any further operations done on the file.

104 | Chapter 8: Encrypted Documents

The actual algorithm used for each step depends upon the kind of encryption in use.
The same process is used if the user password is non-blank, using the password entered
by the user instead.

To decrypt using the owner password, a similar process is followed, except that the
permissions need not be applied. If the file is opened with the user password and later,
the owner password is entered, the permissions may be relaxed.

Writing Encrypted Documents
To write a parsed PDF to a file with encryption:

1. The /U and /O entries are calculated based a one-way algorithm combining the
owner and user passwords.

2. The rest of the entries in the encryption dictionary are built, including the permis-
sions, and the encryption dictionary is added to the trailer dictionary.

3. Each string and stream in the file is encrypted using a key calculated from the
encryption dictionary.

4. The PDF object graph is flattened to a file in the usual fashion.

Again, the actual algorithms involved at each stage vary with the encryption method
in use.

Editing Encrypted Documents
If the permissions on a file allow it to be edited with just the user password, we must
be able to write the modified file, still encrypted with the same owner and user pass-
word. However, the algorithms given above would require the owner password to be
known to encrypt the file again for writing.

To solve this problem, the encryption parameters from the original reading of the file
are retained, even though the encryption dictionary itself must be removed once the
file is decrypted. The encryption dictionary (including the /O and /U entries) may there-
fore be reconstructed.

Editing Encrypted Documents | 105

CHAPTER 9

Working with Pdftk

Pdftk is a multiplatform command-line tool built on the iText library (which is described
in “iText for Java and C#” on page 116). It has facilities for merging, splitting, and
stamping documents, and for setting and reading metadata.

Obtaining Pdftk
Pdftk is an open source program, licensed under the GPL. Binary packages for Microsoft
Windows and Mac OS X, and source code for all platforms can be found at PDF Labs.

The creator of pdftk, Sid Steward, is also the author of O’Reilly’s PDF Hacks—a col-
lection of tools and tips for working with PDF.

Command Line Syntax
Pdftk has a somewhat unusual command-line interface, where elements often have to
appear in a particular order. We can split them into four groups, in the order they are
specified:

1. The input file or files, and possible input passwords.

2. The operation and any arguments it requires.

3. The output and any output passwords and permissions.

4. Sundry output and other options.

The full details can be found in the manual for pdftk—in this chapter, we give only the
subset needed for our examples.

107

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://oreilly.com/catalog/9780596006556

Merging Documents
To merge documents, we use the cat operation. This is the default operation, so we
don’t actually need to specify the cat keyword. For example, to merge the pages of
three files into one, in order, we need:

pdftk file1.pdf file1.pdf file3.pdf output output.pdf

This writes a new file to output.pdf containing all the pages of file1.pdf, file2.pdf, and
file3.pdf, in order. The output file may not be the same as any of the input files.

Pdftk allows us to choose which pages are taken from each document, and what the
viewing rotation of each output page is. Such page ranges are used by listing them in
order after the inputs. For example:

pdftk file1.pdf file2.pdf 1-5 even output out.pdf

takes pages one to five inclusive from file1.pdf and pages two, four, six… from file2.pdf.

Page ranges in pdftk
A page range contains up to five parts:

• The input PDF handle, e.g., B. This is discussed below.

• The beginning page number.

• Optionally a dash, followed by the ending page number.

• An optional qualifier (even or odd), which modifies the page range already given.

• The page rotation:

— N (set rotation to 0°)

— E (set rotation to 90°)

— S (set rotation to 180°)

— W (set rotation to 270°)

— L (rotate by -90°)

— R (rotate by +90°)

— D (rotate by +180°)

Either page number can be end to refer to the last page of a document. The beginning
page number can be larger than the ending page number (the pages will be taken in
reverse order).

For example:

• 3 (page three only)

• 1-6 (pages one to six only)

• 1,4,5-end (page one, page four, and all pages from page five onwards)

• end-1 (all pages in reverse order)

108 | Chapter 9: Working with Pdftk

To include pages from a file at two or more distinct points in the output, we can asso-
ciate handles with each file by writing, for example A=input.pdf, and refer to those
handles when giving the page ranges.

• A1 A B The first page of document A (duplicated as a cover page), then the whole
of documents A and B.

• A4-50oddD Odd pages of file labeled A between 4 and 50, rotated by 180°.

For example:

pdftk A=file.pdf B=file2.pdf A1 A B output out.pdf

What Happens when Files are Merged
To perform a simple merge of PDF files in the manner of pdftk, the following steps
might be performed:

1. Read each file into memory and create a graph of PDF objects, possibly lazily (i.e.,
parsing objects on demand, since not all of them will be needed if only certain pages
are included).

2. Renumber the objects in the object graphs so they are mutually exclusive i.e., 1...p,
p+1...q, q+1...r etc.

3. Put all these PDF objects into a new object graph.

4. Create a new page tree, containing the required combination of page objects from
the original files.

5. Create a new trailer dictionary and root object, linking to the new page tree.

6. Write the new document to a file.

A fully functioning merge would also need to:

• Trim references to pages no longer in the document due to the use of a page range.
Were this not done, a single reference to a page which is not in the output can
result in the inclusion of all of the objects from that page, bloating the output.

• Remove duplicate font definitions. Often, files to be merged come from the same
source, and share content like fonts. These can be deduplicated to save space.

• Combine the other parts of the file—bookmarks, destinations, forms and so on.
Generally speaking, data which is strictly per-page survives automatically, but
document-wide data needs specific merging support.

• Making decisions on where to take metadata and PDF version numbers from (for
example, using the highest PDF version number amongst the inputs and taking the
metadata from the first given file).

Merging Documents | 109

Splitting Documents
To take a selection of pages from a document, we use the same syntax as for merging,
because our operation is equivalent to merging just one file with a page range:

pdftk file1.pdf 2-20 output out.pdf

This writes pages 2-20 inclusive to the output file. Pdftk has a separate facility for split-
ting a file into individual pages and writing them all to disk at once, using the burst
operation.

pdftk input.pdf burst

By default, this writes the pages to pg_0001.pdf, pdf_0002.pdf etc. To write them with
differently-formatted names, an output string in the style of the built-in C function
printf may be provided. For example:

pdftk input.pdf burst output page%03d.pdf

would create page001.pdf, page002.pdf etc.

The burst operation also writes the document’s metadata to the file doc-data.txt. We
consider this functionality in “Extracting and Setting Metadata” on page 111.

What Happens when Files are Split
In order to split a PDF into several parts of one or more pages each, a program such as
pdftk would take the following steps:

1. Load and parse the input document into an object graph, possibly lazily (so that
pages which aren’t going to appear in any of the output don’t have to be processed).

2. Create a new, empty PDF data structure for each new document. Create a new
page tree for each page range, using the same object numbers as the existing
document.

3. Copy all the objects from the input PDF into each output PDF.

4. Remove all objects not required in each PDF (i.e., ones which are no longer
referenced).

To perform the last step correctly, it is important to process bookmarks, destinations,
and other cross-page objects to remove references to pages which no longer appear in
a given output file, since a single errant reference could result in a source file’s whole
object graph being included, even though none of it is required.

110 | Chapter 9: Working with Pdftk

Stamps and Watermarks
A stamp is a PDF page placed over another so that the page contents are combined. A
watermark (which pdftk calls a background) is the same, but the stamp is placed under
the existing page contents. This doesn’t work well if the pages of the input PDF have
a colored background, since the watermark often won’t show through.

With pdftk, this is achieved using the stamp and watermark operations, which place the
stamp on (or under) all the pages in the given range. If the page sizes differ, the stamp
is scaled to fit and centered.

For example:

pdftk file.pdf stamp stamp.pdf output output.pdf

How a Stamp is Added
When a program like pdftk adds a stamp to an input PDF, the following steps must be
taken:

1. Load and parse both files into PDF object graphs.

2. Rectify the object numbers in both PDFs so that they are mutually exclusive. The
objects from the stamp PDF may now be added to the input PDF.

3. The page data for the stamp is appropriately scaled and centered with relation to
the page size of each page in the source PDF.

4. The page data for the stamp is appended to the page data for source PDF on each
page. Resources like fonts and images must all be renamed so as not to clash. Any
unmatched stack operators (q/Q) must be matched up prior to adding the new data.

5. The PDF can now be written to the output file.

Extracting and Setting Metadata
Pdftk can extract a document’s metadata (author, title etc.) to a text file, either in ASCII
format (with non-ASCII characters encoded as XML-style numerical entities) or as
Unicode UTF8. This is achieved with the dump_data or dump_data_utf8 keywords. For
example:

pdftk input.pdf dump_data output data.txt

writes the data in Example 9-1 to data.txt.

Example 9-1. Example output of pdftk dump_data operation (ellipses indicate where we have
truncated the output for brevity)

InfoKey: Creator
InfoValue: XSL Formatter V4.3 R1 (4,3,2008,0424) for Linux
InfoKey: Title
InfoValue: PDF Explained

Extracting and Setting Metadata | 111

InfoKey: Producer
InfoValue: Antenna House PDF Output Library 2.6.0 (Linux)
InfoKey: ModDate
InfoValue: D:20110713115225-05'00'
InfoKey: CreationDate
InfoValue: D:20110713115225-05'00'
PdfID0: 57f4673abea4ca58a27e19bf1871dfa
PdfID1: 57f4673abea4ca58a27e19bf1871dfa
NumberOfPages: 90
...
BookmarkTitle: Table of Contents
BookmarkLevel: 1
BookmarkPageNumber: 5
BookmarkTitle: Preface
BookmarkLevel: 1
BookmarkPageNumber: 9
BookmarkTitle: Why Read This Book?
BookmarkLevel: 2
BookmarkPageNumber: 9
BookmarkTitle: Audience
BookmarkLevel: 2
BookmarkPageNumber: 9
...
PageLabelNewIndex: 1
PageLabelStart: 1
PageLabelNumStyle: DecimalArabicNumerals
PageLabelNewIndex: 5
PageLabelStart: 5
PageLabelNumStyle: LowercaseRomanNumerals
PageLabelNewIndex: 13
PageLabelStart: 1
PageLabelNumStyle: DecimalArabicNumerals

This data lists:

1. Values and keys from the document information dictionary

2. The number of pages in the document

3. The bookmark titles, levels, and destination pages

4. The page labels

The update_info operation can be used to perform the reverse: to set the information
listed above. There is also a corresponding update_info_utf8 operation. For example,
we can modify the data.txt file we created and then use update_info:

pdftk input.pdf update_info data.txt output output.pdf

File Attachments
PDF files can have attachments added at the document or page level. The technical
foundations of PDF attachments are discussed in Chapter 7. To add an attachment at
the file level:

112 | Chapter 9: Working with Pdftk

pdftk input.pdf attach_files file1.xls file2.xls output output.pdf

The attachment is added to the end of the list of file-level attachments. To add an
attachment at the page level, use the to_page keyword:

pdftk input.pdf attach_files file1.xls to_page 4 output output.pdf

To extract the attachments from a document, writing them to a given directory, we can
use the unpack_files keyword:

pdftk input.pdf unpack_files output outputs/

This writes the attachments, under their original filenames, in the outputs directory.

Encryption and Decryption
Pdftk has facilities for reading encrypted files, and for encrypting the output file.

Decrypting Input Files
The input_pw keyword can be used to specify owner passwords for the input file(s). The
passwords are associated with the inputs by using handles, as with page ranges. If no
handles are given, the passwords are assumed to be given in the same order as the input
files. If the user password is given instead, most pdftk features will not be available,
because the PDF security model would prevent it.

For example, to merge two files which are encrypted, the passwords can be provided
thus:

pdftk file1.pdf file2.pdf input_pw fred charles output out.pdf

Here, “fred” is the password for file1.pdf, “charles” the password for file2.pdf.

Encrypting the Output
Pdftk can encrypt the output using the 40-bit or 128-bit RC4 encryption methods using
the encrypt_40bit and encrypt_128bit keywords. We can specify the owner and user
passwords using the owner_pw and user_pw keywords. For example, to encrypt a file
with 128-bit encryption using an owner password, but the blank user password:

pdftk input.pdf output output.pdf encrypt_128bit owner_pw fred

Notice we leave out the user_pw keyword to indicate a blank user password.

We have not yet specified the operations to be allowed when the user password is
entered. This can be done by using the allow keyword with one or more of the per-
missions (corresponding to those enumerated in Chapter 8):

Printing
DegradedPrinting
ModifyContents

Encryption and Decryption | 113

Assembly
CopyContents
ScreenReaders
ModifyAnnotations
FillIn
AllFeatures (all of the above, plus top quality printing)

For example, to allow form filling, but nothing else:

pdftk input.pdf output output.pdf encrypt_128bit allow FillIn owner_pw fred

Compression
In order to view or edit page-level content like streams of graphics operators, it is nec-
essary first to remove the compression used for the data stream. This can be achieved
with the pdftk uncompress modifier:

pdftk compressed.pdf output uncompressed.pdf uncompress

The process can be reversed (following manual editing, for example) by using
compress instead:

pdftk uncompressed.pdf output compressed.pdf compress

114 | Chapter 9: Working with Pdftk

CHAPTER 10

PDF Software and Documentation

In this chapter we list and describe software for viewing, converting, editing, and pro-
gramming with PDF files. We consider both open source software, and zero-cost com-
mercial software where it is provided by Adobe or operating system manufacturers.
There is a large variety of commercial software from third parties, which we do not
discuss here.

We also list sources of further documentation and information.

PDF Viewers
The job of a PDF viewer is to:

• Display the graphical and textual content of the document.

• Allow the user to interact with the document using bookmarks and hyperlinks.

• Enable searching of the textual content, and extraction of text via cut and paste.

Not every viewer has all of these features. Due to the huge complexity of the PDF format
and the formats it encapsulates (for example, fonts and images), performance can vary
significantly—especially on files using more modern PDF features.

Adobe Reader
Adobe Reader is Adobe’s own, free PDF viewer and the only one guaranteed to support
the various proprietary extensions Adobe has made to PDF (for example, the more
modern kinds of forms and annotations). It comes with a PDF plug-in for common web
browsers, and is available for Microsoft Windows, Mac OS X, Linux, Solaris, and An-
droid. It allows forms to be filled in and submitted electronically.

Adobe Reader can be found at Adobe’s website.

115

http://get.adobe.com/reader/

Preview
Many Mac OS X users prefer the fast, simple PDF viewer Preview, provided with the
operating system. It launches more quickly, and is smoother in use than Adobe Reader,
with good support for searching and extracting text. Quick launching is especially im-
portant when the PDF viewer is loaded within a web browser window as a plug-in.
Typically, Acrobat Reader is also installed for the occasions when Preview doesn’t sup-
port a file (for example, a fillable form with JavaScript for a tax return).

In addition, Preview has limited (but increasing) editing capabilities, described in
“Editing with Preview on Mac OS X” on page 119.

Xpdf
Xpdf is a small, fast, open source PDF viewer, running on virtually any Unix-like com-
puter where The X Window System is available. Support for advanced PDF facilities is
limited, but it is a highly reliable program for files within its capabilities.

Xpdf can be found at Foo Labs’ website.

GSview
GSview is an open source PDF and PostScript viewer for Microsoft Windows and Unix.
It is based on the venerable and highly reliable GhostScript PDF and PostScript inter-
preter.

GSview and GhostScript (which is required by GSview) can be downloaded from the
GhostScript website.

Software Libraries
Adobe provides its own expensive, commercially-licensed library for PDF manipula-
tion, based on the same code as Acrobat itself. In this section, we consider popular
open source alternatives.

In general, it’s much easier to build libraries to write PDF files than to read them. To
write a file, one need only understand the small subset of PDF required for a particular
application (i.e., one compression mechanism, one font type etc.) and no complicated
parsing mechanisms. To read a file, one must implement the whole standard.

iText for Java and C#
iText is a mature open source library for reading and writing PDF documents, and for
making textual reports using high-level building blocks such as paragraphs, lists, tables,
and images. It also has support for building bookmarks, hyperlinks, annotations, and
JavaScript actions. Fillable forms can be constructed, and encrypted files are supported.

116 | Chapter 10: PDF Software and Documentation

http://foolabs.com/xpdf
http://pages.cs.wisc.edu/~ghost/
http://pages.cs.wisc.edu/~ghost/

iText can be downloaded from the iText Software website.

TCPDF for PHP
TCPDF is a pure PHP library for the generation of PDF reports, including text layout,
tables, conversion of HTML, annotations, hyperlinks, and images. Web services can
use TCPDF to build a document dynamically and serve it to a PDF viewer running
within a web browser, or send it by email.

TCPDF can be downloaded, together with a wide range of examples from its website.

Processing PDF with Perl
There are a large number of PDF libraries for reading, writing, and editing PDF files in
Perl, some of which are highly mature, others less so. Documentation is often sparse,
belying the extensive capabilities available.

As with all free Perl modules, the Comprehensive Perl Archive Network holds both
source code and documentation.

PDF on Mac OS X
Apple’s PDFKit provides a number of classes for use with Apple’s supported program-
ming languages (such as Objective C). These include:

• PDFView, an onscreen view on a PDF document.

• PDFDocument and PDFPage for document and page-level manipulation.

• PDFAnnotation, PDFAction, PDFOutline, and PDFSelection for interactive
facilities.

Apple’s built-in PDF viewer, Preview, is built on these libraries. The PDF Kit Libraries
are documented in Apple’s Mac OS X Developer Library.

Converting Formats
Format conversions come in three categories:

• Converting to or from a similar, scalable vector format (e.g., PostScript or SVG).
In this case, structural information is often preserved well.

• Converting from a PDF to a raster image, such as a PNG or TIFF.

• Converting from a raster image to a PDF, which often just involves simple encap-
sulation, especially in the case of formats PDF knows about, like JPEG.

Converting Formats | 117

http://itextpdf.com/
http://www.tcpdf.org/
http://www.cpan.org/
http://developer.apple.com/

PDF to PostScript and Back Again
The pdf2ps and ps2pdf command-line programs which ship with GhostScript can con-
vert between PDF and PostScript. Sometimes this involves quite complicated and slow
processing which may lead to larger file sizes or the loss of some constructs (for example,
text being converted to outlines). PDF and PostScript are, after all, very different—
despite a shared heritage.

ps2pdf and pdf2ps are available from the GhostScript home page.

Rasterizing PDF to an Image
The gs program which comes with GhostScript can be used to render a PDF page to a
raster image at a given resolution, suitable for printing or for onscreen use. This is the
facility used by GSView to display PDF pages. This is achieved by specifying one of
several special output devices which correspond to image file formats, such as PNG
and TIFF.

gs is part of the GhostScript system, available from the GhostScript home page.

Printing Files to PDF
Most modern word-processors have the facility to export as PDF, maintaining hyper-
links and building bookmarks for the table of contents. However, it is often necessary
to produce PDF output from programs which do not have the facility to convert their
native format to PDF. This can be achieved by the use of a printer driver which writes
the PDF to a file, instead of printing it.

Mac OS X provides this facility natively, through the “Save as PDF” option in the print
dialog.

On Unix platforms, this facility is provided by the open source CUPS-PDF backend to
the CUPS printing system.

On Microsoft Windows, the open source PDFCreator printer driver achieves the same
job. It uses GhostScript internally.

PDF Editors
PDFs were not originally intended to be edited significantly, but as a scalable, structured
end-format for publishing. Thus, most editing software has restricted and specific
editing functions such as merging files, adding annotations, filling in forms, or making
small edits to page content.

In Chapter 9 we looked at pdftk, an open source program for command-line manipu-
lation of PDF files. In this section, we list other ways of editing existing PDF files.

118 | Chapter 10: PDF Software and Documentation

http://pages.cs.wisc.edu/~ghost/
http://pages.cs.wisc.edu/~ghost/
http://cups-pdf.de/
http://cups-pdf.de/
http://sourceforge.net/projects/pdfcreator/

Adobe Acrobat
Adobe’s own PDF editor, Acrobat (which costs several hundred dollars) has a wide
range of functionality, over and above that of the free Adobe Reader. This includes:

• Printing to PDF, and conversion from PostScript to PDF.

• Conversion to and from Microsoft Word and Excel.

• Optical Character Recognition (OCR), producing a PDF file which looks exactly
like the scanned document, but has searchable, editable text.

• Reordering, rotating, and editing pages and contents.

• Preflight and print publishing tools.

• Building PDF forms.

• Creating and validating PDF/A and PDF/X.

• Adding encryption and digital signatures.

There are many commercial third party plug-ins available for Adobe Acrobat, providing
extra functionality.

Editing with Preview on Mac OS X
Preview, the standard PDF Viewing program on Mac OS X, also has editing facilites,
which tend to be underused since they are not prominent in the interface.

Preview can annotate PDF documents, highlight and strike through text, crop pages,
add text, add hyperlinks, delete and rearrange pages, and merge PDFs.

Preview deals with a wide range of documents, and manages to preserve functionality
it doesn’t understand when editing other aspects of the file.

PDF and Graphics Documentation
This book was written to fill a conspicuous gap in PDF literature. Here, we list other
sources of information and documentation.

ISO 32000 and the PDF File Format
The PDF Reference Manual was published as a book until PDF version 1.6. Now, alas
(but perhaps fittingly, given its subject matter), it is only available as a PDF document.

PDF version 1.7 was ratified as an ISO Standard in 2008 (Standard number ISO
32000-1:2008). The ISO charges almost 500 US Dollars for a PDF copy (by download,
or on CD-ROM). Luckily, Adobe continues to provide the PDF Version 1.7 Reference
electronically. This is an approved copy of ISO 32000-1:2008. In particular, the chapter,
section, and subsection numbers are identical.

PDF and Graphics Documentation | 119

More recent Adobe extensions to PDF 1.7 are documented in ExtensionLevel docu-
ments, which do not form part of the ISO Standard, but would be expected to form
part of a later, updated one.

Both Adobe’s copy of ISO 32000-1:2008 and the ExtensionLevel documents can be
downloaded from the Adobe Developer Connection Website.

PDF Hacks
O’Reilly’s other PDF title, PDF Hacks by Sid Steward, emphasizes practical solutions
to a wide range of PDF problems. It includes 100 separate hacks to:

• Customize PDF viewers to make reading PDFs more comfortable.

• “Refry” huge PDF files into much smaller files.

• Create PDF files with a variety of tools on a number of platforms.

• Edit PDF text from the gVim text editor.

• Use familiar software to create PDFs with advanced navigation features.

• Build PDFs with sophisticated navigation and interactive features.

• Generate PDFs on the fly.

• Integrate PDF files with websites beyond a simple hyperlink.

• Collect data on a website with PDF forms.

• Index and compare PDF files.

• Convert incoming faxes to PDF.

• Write scripts that control Adobe Acrobat.

Related Topics
The PDF standard and this book make reference to (and sometimes assume knowledge
of) the general area of computer graphics. The standard reference for these topics is
Computer Graphics Principles and Practice (Foley et al., Addison-Wesley 1990). This
book contains all the background on Bézier curves, transparency, affine transforma-
tions, and other topics needed to understand how to write PDF graphics streams.

A good reference for understanding the dictionaries, trees, and other data structures in
PDF and why they were chosen is Algorithms (Cormen et al., MIT Press, 1990). Any
similar book on algorithms should suffice.

Forums and Discussion
There are a number of places to discuss technical PDF topics:

• The Planet PDF Forums are a popular venue for all sorts of technical and non-
technical PDF discussions.

120 | Chapter 10: PDF Software and Documentation

http://www.adobe.com/devnet/pdf/pdf_reference.html
http://oreilly.com/catalog/9780596006556
http://forum.planetpdf.com/

• Adobe’s Adobe Reader Forums for technical support and discussion for Adobe
Reader.

• The comp.text.pdf usenet newsgroup is a low traffic place for more technical
discussions.

Adobe’s Website Resources
There are two relevant sections of the Adobe website for those interested in the technical
aspects of PDF:

• The PDF Technology Center contains PDF reference documents.

• The Acrobat Developer Center has resources and documentation for writing Ac-
robat plug-ins, the FDF forms format, and a developer knowledge base.

PDF and Graphics Documentation | 121

http://forums.adobe.com/community/adobe_reader_forums/adobe_reader
http://www.adobe.com/devnet/pdf.html
http://www.adobe.com/devnet/acrobat.html

About the Author
John Whitington is the author of one of the few complete PDF implementations,
CamlPDF, which implements the PDF file format from the bit level up. After graduating
from the University of Cambridge, he founded Coherent Graphics Ltd, developers of
command line PDF tools for Windows, Mac OS X, and Unix, and the Proview PDF
Editor for Mac OS X.

	Table of Contents
	Preface
	Who Should Read This Book
	Organization of Contents
	Acknowledgments
	Conventions Used in This Book
	Obtaining Code Examples
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Introduction
	A Little History
	Page Description Languages
	Other page description languages

	Development of PDF
	Some Advantages of PDF
	Random access and linearization
	Stream creation and incremental update
	Embedded fonts
	Searchable text

	ISO Standardization
	Specialized Kinds of PDF
	PDF/A
	PDF/X

	Version Summary

	What’s in a PDF?
	Text and Fonts
	Vector Images
	Raster Images
	Color Spaces
	Metadata
	Navigation
	Optional Content
	Multimedia
	Interactive Forms
	Logical Structure and Reflow
	Security
	Compression

	Who Uses PDF?
	The Printing Industry
	Ebooks and Publishing
	PDF Forms
	Document Archiving
	As a File Format

	Useful Free Software

	Chapter 2. Building a Simple PDF
	Basic PDF Syntax
	Document Content
	Page Content
	File Structure

	Document Structure
	Building the Elements
	File Header
	Main Objects
	Graphical Content
	Catalog, Cross-Reference Table, and Trailer

	Putting it Together
	Remarks

	Chapter 3. File Structure
	File Layout
	Header
	Body
	Cross-Reference Table
	Trailer

	Lexical Conventions
	Objects
	Integers and Real Numbers
	Strings
	Hexadecimal strings

	Names
	Boolean Values
	Arrays
	Dictionaries
	Indirect References

	Streams and Filters
	Incremental Update
	Object and Cross-Reference Streams
	Linearized PDF
	How a PDF File is Read
	How a PDF File is Written

	Chapter 4. Document Structure
	Trailer Dictionary
	Document Information Dictionary
	Document Catalog
	Pages and Page Trees
	Text Strings
	Dates
	Putting it Together

	Chapter 5. Graphics
	Looking at Content Streams
	Operators and Graphics State
	Building and Painting Paths
	Bézier Curves
	Drawing circles with Bézier curves

	Filled Shapes and Winding Rules

	Colors and Color Spaces
	Transformations
	Clipping
	Transparency
	Shadings and Patterns
	Form XObjects
	Image XObjects

	Chapter 6. Text and Fonts
	Text and Fonts in PDF
	Text State
	Printing Text
	Text Sections
	Text Space and Text Positioning
	Showing Text
	Character and word spacing
	Text transforms
	Text rise
	Kerning and glyph adjustment
	Text rendering modes

	Defining and Embedding Fonts
	Font Types in PDF
	Type 1 Fonts
	Font Encodings
	Embedding a Font

	Extracting Text from a Document
	Resources

	Chapter 7. Document Metadata and Navigation
	Bookmarks and Destinations
	Destinations
	The Document Outline (Bookmarks)
	Building an example

	XML Metadata
	Annotations and Hyperlinks
	File Attachments

	Chapter 8. Encrypted Documents
	Introduction
	The Encryption Dictionary
	Reading Encrypted Documents
	Writing Encrypted Documents
	Editing Encrypted Documents

	Chapter 9. Working with Pdftk
	Command Line Syntax
	Merging Documents
	What Happens when Files are Merged

	Splitting Documents
	What Happens when Files are Split

	Stamps and Watermarks
	How a Stamp is Added

	Extracting and Setting Metadata
	File Attachments
	Encryption and Decryption
	Decrypting Input Files
	Encrypting the Output

	Compression

	Chapter 10. PDF Software and Documentation
	PDF Viewers
	Adobe Reader
	Preview
	Xpdf
	GSview

	Software Libraries
	iText for Java and C#
	TCPDF for PHP
	Processing PDF with Perl
	PDF on Mac OS X

	Converting Formats
	PDF to PostScript and Back Again
	Rasterizing PDF to an Image
	Printing Files to PDF

	PDF Editors
	Adobe Acrobat
	Editing with Preview on Mac OS X

	PDF and Graphics Documentation
	ISO 32000 and the PDF File Format
	PDF Hacks
	Related Topics
	Forums and Discussion
	Adobe’s Website Resources

