
www.allitebooks.com

http://www.allitebooks.org

Object–Oriented Programming
with Swift 2

Get to grips with object-oriented programming with
Swift to efficiently build powerful real-world applications

Gastón C. Hillar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Object–Oriented Programming with Swift 2

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1220116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-569-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Gastón C. Hillar

Reviewers
Vinod Madigeri

Hugo Solis

Commissioning Editor
Amarabha Banerjee

Acquisition Editors
Nadeem Bagban

Reshma Raman

Content Development Editor
Divij Kotian

Technical Editor
Parag Topre

Copy Editor
Shruti Iyer

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gastón C. Hillar is an Italian and has been working with computers since he
was 8 years old. In the early 80s, he began programming with the legendary Texas
TI-99/4A and Commodore 64 home computers. Gaston has a bachelor's degree
in computer science and graduated with honors. He also holds an MBA in which
he graduated with an outstanding thesis. At present, Gaston is an independent IT
consultant and a freelance author who is always looking for new adventures around
the world.

He has been a senior contributing editor at Dr. Dobb's and has written more than
a hundred articles on software development topics. Gatson was also a former
Microsoft MVP in technical computing. He has received the prestigious Intel® Black
Belt Software Developer award seven times.

He is a guest blogger at Intel® Software Network (http://software.intel.com).
You can reach him at gastonhillar@hotmail.com and follow him on Twitter at
http://twitter.com/gastonhillar. Gastón's blog is http://csharpmulticore.
blogspot.com.

He lives with his wife, Vanesa, and his two sons, Kevin and Brandon.

www.allitebooks.com

http://software.intel.com
http://twitter.com/gastonhillar
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://www.allitebooks.org

About the Reviewers

Vinod Madigeri is a curious developer with a particular interest in object-oriented
programming. He has worked in different industries (telecommunication, game
technologies, and consumer electronics) writing software in C, C++, Objective-C,
Swift, and C#.

Vinod is a passionate software engineer who writes code for fun. He has been doing
this professionally for some 6 years and had been goofing with computers for 10
years before that.

Hugo Solis is an assistant professor in the physics department at University of
Costa Rica. His current research interests are computational cosmology, complexity,
and the influence of hydrogen on material properties. Hugo has wide experience
with languages such as C/C++ and Python for scientific programming and
visualization. He is a member of Free Software Foundation and has contributed
code to a few free software projects. Hugo has also been a technical reviewer for
Mastering Object-Oriented Python, Learning Object-Oriented Programming and Kivy:
Interactive Applications in Python and the author of Kivy Cookbook, Packt Publishing.
Currently, he is in charge of IFT, a Costa Rican scientific nonprofit organization for
the multidisciplinary practice of physics (http://iftucr.org).

I'd like to thank my beloved mother, Katty Sanchez, for her support
and vanguard thoughts.

www.allitebooks.com

http://iftucr.org
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To my sons, Kevin and Brandon, and my wife, Vanesa

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Objects from the Real World to Playground	 1

Installing the required software	 1
Capturing objects from the real world	 4
Generating classes to create objects	 11
Recognizing variables and constants to create properties	 14
Recognizing actions to create methods	 17
Organizing classes with UML diagrams	 20
Working with API objects in the Xcode Playground	 26
Exercises	 31
Test your knowledge	 31
Summary	 32

Chapter 2: Structures, Classes, and Instances	 33
Understanding structures, classes, and instances	 33
Understanding initialization and its customization	 34
Understanding deinitialization and its customization	 36
Understanding automatic reference counting	 36
Declaring classes	 37
Customizing initialization	 38
Customizing deinitialization	 41
Creating the instances of classes	 45
Exercises	 46
Test your knowledge	 46
Summary	 47

Chapter 3: Encapsulation of Data with Properties	 49
Understanding the elements that compose a class	 49
Declaring stored properties	 51
Generating computed properties with setters and getters	 54

Table of Contents

[ii]

Combining setters, getters, and a related property	 62
Understanding property observers	 65
Transforming values with setters and getters	 69
Using type properties to create values shared by all the instances
of a class	 70
Creating mutable classes	 74
Building immutable classes	 78
Exercises	 81
Test your knowledge	 81
Summary	 82

Chapter 4: Inheritance, Abstraction, and Specialization	 83
Creating class hierarchies to abstract and specialize behavior	 83
Understanding inheritance	 88
Declaring classes that inherit from another class	 90
Overriding and overloading methods	 96
Overriding properties	 101
Controlling whether subclasses can or cannot override members	 103
Working with typecasting and polymorphism	 108
Taking advantage of operator overloading	 121
Declaring operator functions for specific subclasses	 126
Exercises	 128
Test your knowledge	 128
Summary	 129

Chapter 5: Contract Programming with Protocols	 131
Understanding how protocols work in combination with classes	 131
Declaring protocols	 133
Declaring classes that adopt protocols	 137
Taking advantage of the multiple inheritance of protocols	 142
Combining inheritance and protocols	 144
Working with methods that receive protocols as arguments	 152
Downcasting with protocols and classes	 155
Treating instances of a protocol type as a different subclass	 159
Specifying requirements for properties	 162
Specifying requirements for methods	 164
Combining class inheritance with protocol inheritance	 166
Exercises	 178
Test your knowledge	 179
Summary	 180

Table of Contents

[iii]

Chapter 6: Maximization of Code Reuse with Generic Code	 181
Understanding parametric polymorphism and generic code	 181
Declaring a protocol to be used as a constraint	 183
Declaring a class that conforms to multiple protocols	 184
Declaring subclasses that inherit the conformance to protocols	 188
Declaring a class that works with a constrained generic type	 190
Using a generic class for multiple types	 195
Combining initializer requirements in protocols with generic types	 201
Declaring associated types in protocols	 202
Creating shortcuts with subscripts	 204
Declaring a class that works with two constrained generic types	 206
Using a generic class with two generic type parameters	 209
Inheriting and adding associated types in protocols	 213
Generalizing existing classes with generics	 214
Extending base types to conform to custom protocols	 223
Test your knowledge	 225
Exercises	 226
Summary	 227

Chapter 7: Object-Oriented Programming and Functional
Programming	 229

Refactoring code to take advantage of object-oriented programming	 229
Understanding functions as first-class citizens	 241
Working with function types within classes	 243
Creating a functional version of array filtering	 245
Writing equivalent closures with simplified code	 247
Creating a data repository with generics and protocols	 248
Filtering arrays with complex conditions	 253
Using map to transform values	 256
Combining map with reduce	 259
Chaining filter, map, and reduce	 262
Solving algorithms with reduce	 262
Exercises	 264
Test your knowledge	 265
Summary	 266

Chapter 8: Extending and Building Object-Oriented Code	 267
Putting together all the pieces of the object-oriented puzzle	 267
Adding methods with extensions	 269
Adding computed properties to a base type with extensions	 273
Declaring new convenience initializers with extensions	 278
Defining subscripts with extensions	 280

Table of Contents

[iv]

Working with object-oriented code in apps	 281
Adding an object-oriented data repository to a project	 290
Interacting with an object-oriented data repository through
Picker View	 294
Exercises	 299
Test your knowledge	 299
Summary	 300

Appendix: Exercise Answers	 301
Chapter 1, Objects from the Real World to Playground	 301
Chapter 2, Structures, Classes, and Instances	 301
Chapter 3, Encapsulation of Data with Properties	 302
Chapter 4, Inheritance, Abstraction, and Specialization	 302
Chapter 5, Contract Programming with Protocols	 302
Chapter 6, Maximization of Code Reuse with Generic Code	 302
Chapter 7, Object-Oriented Programming and Functional
Programming	 303
Chapter 8, Extending and Building Object-Oriented Code	 303

Index	 305

[v]

Preface
Object-oriented programming, also known as OOP, is a required skill in any modern
software developer job. It makes a lot of sense because object-oriented programming
allows you to maximize code reuse and minimize maintenance costs. However,
learning object-oriented programming is challenging because it includes too
many abstract concepts that require real-life examples to be easy to understand. In
addition, object-oriented code that doesn't follow best practices can easily become a
maintenance nightmare.

Swift is a multi-paradigm programming language, and one of its most important
paradigms is OOP. If you want to create great applications and apps for Mac, iPhone,
iPad, Apple TV, and Apple Watch, you need to master OOP in Swift. In addition, as
Swift also grabs the nice features found in functional programming languages, it is
convenient to know how to mix OOP code with functional programming code.

This book will allow you to develop high-quality reusable object-oriented code in
Swift 2.2. You will learn the object-oriented programming principles and how Swift
implements them. You will learn how to capture objects from real-world elements
and create object-oriented code that represents them. You will understand Swift's
approach towards object-oriented code. You will maximize code reuse and reduce
maintenance costs. Your code will be easy to understand, and it will work with
representations of real-life elements.

What this book covers
Chapter 1, Objects from the Real World to Playground, teaches you the principles of
object-oriented paradigms. We will discuss how real-world objects can become part
of the fundamental elements of code. We will translate elements into the different
components of the object-oriented paradigm supported in Swift: classes, protocols,
properties, methods, and instances.

Preface

[vi]

Chapter 2, Structures, Classes, and Instances, starts generating blueprints to create
objects. You will learn about an object's life cycle, and we will work with many
examples to understand how object initializers and deinitializers work.

Chapter 3, Encapsulation of Data with Properties, introduces you to organizing data in
the blueprints that generate objects. We will understand the different members of a
class and how they are reflected by members of the instances generated from a class.
You will learn the difference between mutable and immutable classes.

Chapter 4, Inheritance, Abstraction, and Specialization, introduces you to creating a
hierarchy of blueprints that generate objects. We will take advantage of inheritance
and many related features to specialize behavior.

Chapter 5, Contract Programming with Protocols, discusses how Swift works with
protocols in combination with classes. We will declare and combine multiple
blueprints to generate a single instance. We will declare protocols with different types
of requirements, and then we will create classes that conform to these protocols.

Chapter 6, Maximization of Code Reuse with Generic Code, teaches you how to maximize
code reuse by writing code capable of working with objects of different types—that
is, instances of classes that conform to specific protocols or whose class hierarchy
includes specific superclasses. We will work with protocols and generics.

Chapter 7, Object-Oriented Programming and Functional Programming, teaches you
how to refactor existing code to take full advantage of object-oriented code. We will
prepare the code for future requirements, reduce maintenance costs, and maximize
code reuse. We will also work with many functional programming features included
in Swift combined with object-oriented programming.

Chapter 8, Extending and Building Object-Oriented Code, puts together all the pieces of
the object-oriented puzzle. We will take advantage of extensions to add features to
types, classes, and protocols in which we don't have access to the source code. We
will make sure that the code exposes only the things that it has to expose, and you
will learn how everything you learned about object-oriented programming is useful
in any kind of app we might create.

What you need for this book
In order to work with Xcode and the Swift Playground, you will need a Mac OS
computer capable of running OS X 10.10.5 or later with 8 GB of RAM.

Preface

[vii]

In order to work with the Swift open source version on the Linux platform, you will
need any computer capable of running Ubuntu 14.04 or later or Ubuntu 15.10 or
later. These are the Linux distributions where the Swift open source binaries are built
and tested. It is also possible to run the Swift compiler and utilities on other Linux
distributions. You must take a look at the latest available documentation at the Swift
open source website, https://swift.org.

Who this book is for
If you are an IOS developer who has a basic idea of OOP and want to incorporate
OOP concepts with Swift to optimize your application's performance, then this
book is for you. This is a very useful resource for developers who want to shift from
Objective C, C#, Java, Python, JavaScript, or other object-oriented languages to Swift.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "We can assign 20 to regularHexagon1.lengthOfSide and 50 to
regularHexagon2.lengthOfSide."

A block of code is set as follows:

let degCUnitFromStr = HKUnit(fromString: "degC")
let degFUnitFromStr = HKUnit(fromString: "degF")

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Animal created
Mammal created
DomesticMammal created
Dog created
TerrierDog created
SmoothFoxTerrier created
I am 7 years old.
I am 14 years old.
I am 21 years old.
I am 4 years old.
I am 5 years old.

https://swift.org

Preface

[viii]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Start
Xcode, navigate to File | New | Playground…."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com

[1]

Objects from the Real World
to Playground

Whenever you have to solve a problem in the real world, you use elements and
interact with them. For example, when you are thirsty, you take a glass, you fill it up
with water, soda, or your favorite juice, and then you drink. Similarly, you can easily
recognize elements, known as objects, from real-world actions and then translate
them into object-oriented code. In this chapter, we will start learning the principles
of object-oriented programming to use them in the Swift programming language to
develop apps and applications.

Installing the required software
In this book, you will learn to take advantage of all the object-oriented features
included in the Swift programming language version 2.2. Most of the examples are
compatible with previous Swift versions, such as 1.0, 1.1, 1.2, 2.0, and 2.1, but it is
convenient to use Swift 2.0 or later because it has added error-handling features and
many performance and stability improvements as compared to its predecessors.

We will use Xcode as our IDE (Integrated Development Environment). All the
examples work with Xcode version 7 or higher. The latest versions of the IDE
include Swift 2.2 as one of the supported programming languages to build iOS apps,
watchOS apps, and Mac OS X applications. It is important to note that Xcode only
runs on Mac OS X, and all the instructions provided in this chapter consider that
we are running this operating system on a Mac computer. However, after Apple
launched Swift 2.2, it made the language open source and added a port to Linux.
Thus, we can apply everything we learn about object-oriented programming with
Swift when targeting other platforms to which the language is ported.

Objects from the Real World to Playground

[2]

In case you want to work with the Swift open source release, you can
download the latest development snapshot in the Downloads section
at http://swift.org. You can run all the code examples included
in the book in the Swift Read Evaluate Print Loop command-line
environment instead of working with Xcode Playground. The Swift
Read Evaluate Print Loop command-line environment is also known
as Swift REPL.

In order to install Xcode, you just need to launch Mac App Store, enter Xcode in the
search box, click on the Xcode application icon shown in the results, and make sure
that it is the application developed by Apple and not an Xcode helper application. The
following screenshot shows the details of the Xcode application in Mac App Store:

Then, click on GET and wait until Mac App Store downloads Xcode. Note that it
is necessary to download a few GBs, and therefore, it may take some time to finish
the download process. Once the download is finished, click on INSTALL APP and
follow the necessary steps to complete the application's installation process. Finally,
you will be able to launch the Xcode application as you would execute any other
application in your Mac OS X operating system.

Apple usually launches Xcode beta versions before releasing the final stable versions.
It is highly recommended to avoid working with beta versions to test the examples
included in the book because beta versions are unstable, and some examples might
crash or generate unexpected outputs. Mac App Store only offers the latest stable
version of Xcode, and therefore, there is no risk of installing a beta version by
mistake when following the previously explained steps.

http://swift.org

Chapter 1

[3]

In case we have any Xcode beta version installed on the same computer in which we
will run the book samples, we have to make sure that the configuration for the stable
Xcode version uses the appropriate command-line tools. We won't work with the
command-line tools, but we will take advantage of Playground, and this feature uses
the command-line tools under the hood.

Launch Xcode and navigate to Xcode | Preferences… and click on Locations. Make
sure that the Command Line Tools drop-down menu displays the stable Xcode
version that you installed as the selected option. The following screenshot shows
Xcode 7.2 (7C68) as the selected version for Command Line Tools:

We don't need an iOS Developer Program membership to run the
examples included in this book. However, in case we want to distribute
the apps or applications coded in Swift to any App Store or activate
certain capabilities in Xcode, we will require an active membership.

Objects from the Real World to Playground

[4]

We don't need any previous experience with the Swift programming language to
work with the examples in the book and learn how to model and create object-
oriented code with Swift. If we have some experience with Objective-C, Java, C#,
Python, Ruby, or JavaScript, we will be able to easily learn Swift's syntax and
understand the examples. Swift borrows many features from these and other modern
programming languages, and therefore, any knowledge of these languages will be
extremely useful.

Capturing objects from the real world
Now, let's forget about Xcode and Swift for a while. Imagine that we have to develop
a new universal iOS app that targets the iPad, iPhone, and iPod touch devices. We
will have different UIs (User Interfaces) and UXs (User eXperiences) because these
devices have diverse screen sizes and resolutions. However, no matter the device in
which the app runs, it will have the same goal.

Imagine that Vanessa is a very popular YouTuber, painter, and craftswoman
who usually uploads videos on a YouTube channel. She has more than a million
followers, and one of her latest videos had a huge impact on social networking sites.
In this video, she sketched basic shapes and then painted them with acrylic paint to
build patterns. She worked with very attractive colors, and many famous Hollywood
actresses uploaded pictures on Instagram sharing their creations with the technique
demonstrated by Vanessa and with the revolutionary special colors developed by a
specific acrylic paint manufacturer.

Obviously, the acrylic paint manufacturer wants to take full advantage of this
situation, so he specifies the requirements for an app. The app must provide a set
of predefined 2D shapes that the user can drag and drop in a document to build
a pattern so that he/she can change both the 2D position and size. It is important
to note that the shapes cannot intersect, and users cannot change the line widths
because they are the basic requirements of the technique introduced by Vanessa. A
user can select the desired line and fill colors for each shape. At any time, the user
can tap a button, and the app must display a list of the acrylic paint tubes, bottles,
or jars that the user must buy to paint the drawn pattern. Finally, the user can easily
place an online order to request the suggested acrylic paint tubes, bottles, or jars. The
app also generates a tutorial to explain to the user how to generate each of the final
colors for the lines and fills by thinning the appropriate amount of acrylic paint with
water, based on the colors that the user has specified.

Chapter 1

[5]

The following image shows an example of a pattern. Note that it is extremely simple
to describe the objects that compose the pattern: four 2D shapes—specifically, two
rectangles and two circles. If we measure the shapes, we would easily realize that
they aren't two squares and two ellipses; they are two rectangles and two circles.

We can easily recognize objects; we understand that the pattern is composed of many
2D geometric shapes. Now, let's focus on the core requirement for the app, which
is calculating the required amounts of acrylic paint. We have to take into account
the following data for each shape included in the pattern in order to calculate the
amount of acrylic paint:

•	 The perimeter
•	 The area
•	 The line color
•	 The fill color

Objects from the Real World to Playground

[6]

The app allows users to use a specific color for the line that draws the borders of each
shape. Thus, we have to calculate the perimeter in order to use it as one of the values
that will allow us to estimate the amount of acrylic paint that the user must buy to
paint each shape's border. Then, we have to calculate the area to use it as one of the
values that will allow us to estimate the amount of acrylic paint that the user must
buy to fill each shape's area.

We have to start working on the backend code that calculates areas and perimeters.
The app will follow Vanessa's guidelines to create the patterns, and it will only
support the following six shapes:

•	 Squares
•	 Equilateral triangles
•	 Rectangles
•	 Circles
•	 Ellipses
•	 Regular hexagons

We can start writing Swift code—specifically, six functions that calculate the areas
of the previously enumerated shapes and another six to calculate their perimeters.
Note that we are talking about functions, and we stopped thinking about objects;
therefore, we will face some problems with this path, which we will solve with an
object-oriented approach from scratch.

For example, if we start thinking about functions to solve the problem, one possible
solution is to code the following 12 functions to do the job:

•	 calculateSquareArea

•	 calculateEquilateralTriangleArea

•	 calculateRectangleArea

•	 calculateCircleArea

•	 calculateEllipseArea

•	 calculateRegularHexagonArea

•	 calculateSquarePerimeter

•	 calculateEquilateralTrianglePerimeter

•	 calculateRectanglePerimeter

•	 calculateCirclePerimeter

•	 calculateEllipsePerimeter

•	 calculateRegularHexagonPerimeter

Chapter 1

[7]

Each of the previously enumerated functions has to receive the necessary parameters
of each shape and return either its calculated area or perimeter.

Now, let's forget about functions for a bit. Let's recognize the real-world objects
from the application's requirements that we were assigned. We have to calculate the
areas and perimeters of six elements, which are six nouns in the requirements that
represent real-life objects—specifically 2D shapes. Our list of real-world objects is
exactly the same that Vanessa's specification uses to determine the shapes allowed to
be used to create patterns. Take a look at the list:

•	 Squares
•	 Equilateral triangles
•	 Rectangles
•	 Circles
•	 Ellipses
•	 Regular hexagons

After recognizing the real-life objects, we can start designing our application by
following an object-oriented paradigm. Instead of creating a set of functions that
perform the required tasks, we can create software objects that represent the state
and behavior of a square, equilateral triangle, rectangle, circle, ellipse, and regular
hexagon. This way, the different objects mimic the real-world 2D shapes. We can
work with the objects to specify the different attributes required to calculate the
area and perimeter. Then, we can extend these objects to include the additional data
required to calculate other required values, such as the quantity of acrylic paint
required to paint the borders.

Now, let's move to the real world and think about each of the previously enumerated
six shapes. Imagine that we have to draw each of the shapes on paper and calculate
their areas and perimeters. After we draw each shape, which values will we use to
calculate their areas and perimeters? Which formulas will we use?

We started working on an object-oriented design before we started
coding, and therefore, we will work as if we didn't know many
concepts of geometry. For example, we can easily generalize the
formulas that we use to calculate the perimeters and areas of regular
polygons. However, we will analyze the requirements in most cases;
we still aren't experts on the subject, and we need to dive deeper
into the subject before we can group classes and generalize their
behavior.

Objects from the Real World to Playground

[8]

The following figure shows a drawn square and the formulas that we will use to
calculate the perimeter and area. We just need the length of side value, usually
identified as a.

The following figure shows a drawn equilateral triangle and the formulas that we
will use to calculate the perimeter and area. This type of triangle has equal sides,
and the three internal angles are equal to 60 degrees. We just need the length of side
value, usually identified as a.

Chapter 1

[9]

The following figure shows a drawn rectangle and the formulas that we will use to
calculate the perimeter and area. We need the width and height values.

The following figure shows a drawn circle and the formulas that we will use to
calculate the perimeter and area. We just need the radius value, usually identified
as r.

www.allitebooks.com

http://www.allitebooks.org

Objects from the Real World to Playground

[10]

The following figure shows a drawn ellipse and the formulas that we will use to
calculate the perimeter and area. We need the semimajor axis (usually labelled as a)
and semiminor axis (usually labelled as b) values.

The following figure shows a drawn regular hexagon and the formulas that we will
use to calculate the perimeter and area. We just need the length of the side value,
usually labelled as a.

Chapter 1

[11]

The following table summarizes the data required for each shape:

Shape Required data
Square The length of a side
Equilateral triangle The length of a side
Rectangle The width and height
Circle The radius
Ellipse The semimajor and semiminor axes
Regular hexagon The length of a side

Each object that represents a specific shape encapsulates the required data that we
identified. For example, an object that represents an ellipse will encapsulate the
ellipse's semimajor and semiminor axes.

Data encapsulation is one of the major pillars of object-oriented
programming.

Generating classes to create objects
Imagine that you want to draw and calculate the areas of six different ellipses. You
will end up with six ellipses drawn, their different semimajor axis and semiminor
axis values, and their calculated areas. It would be great to have a blueprint to
simplify the process of drawing each ellipse with their different semimajor axis and
semiminor axis values.

In object-oriented programming, a class is a template definition or blueprint from
which objects are created. Classes are models that define the state and behavior of
an object. After declaring a class that defines the state and behavior of an ellipse, we
can use it to generate objects that represent the state and behavior of each real-world
ellipse.

Objects are also known as instances. For example, we can
say each circle object is an instance of the Circle class.

Objects from the Real World to Playground

[12]

The following picture shows two circle instances drawn with their radius values
specified: Circle #1 and Circle #2. We can use a Circle class as a blueprint to generate
the two different Circle instances. Note that Circle #1 has a radius value of 175, and
Circle #2 has a radius value of 350. Each instance has a different radius value.

The following image shows three ellipse instances drawn with their semimajor axis
and semiminor axis values specified: Ellipse #1, Ellipse #2, and Ellipse #3. In this
case, we can use an Ellipse class as a blueprint to generate the three different ellipse
instances. It is very important to understand the difference between a class and the
objects or instances generated through its usage. The object-oriented programming
features supported in Swift allow us to discover which blueprint we used to generate
a specific object. We will use these features in many examples in the upcoming
chapters. Thus, we can know that each object is an instance of the Ellipse class. Each
ellipse has its own specific values for the semimajor and semiminor axes.

Chapter 1

[13]

Objects from the Real World to Playground

[14]

We recognized six completely different real-world objects from the application's
requirements, and therefore, we can generate the following six classes to create the
necessary objects:

•	 Square

•	 EquilateralTriangle

•	 Rectangle

•	 Circle

•	 Ellipse

•	 RegularHexagon

Note the usage of Pascal case for class names; this means that the first letter of each
word that composes the name is capitalized, while the other letters are in lowercase.
This is a coding convention in Swift. For example, we use the RegularHexagon name
for the class that will generate regular hexagons.

Recognizing variables and constants to
create properties
We know the information required for each of the shapes to achieve our goals.
Now, we have to design the classes to include the necessary properties that provide
the required data to each instance. We have to make sure that each class has the
necessary variables that encapsulate all the data required by the objects to perform
all the tasks based on our application domain.

Let's start with the RegularHexagon class. It is necessary to know the length of a side
for each instance of this class—that is, for each regular hexagon object. Thus, we need
an encapsulated variable that allows each instance of the RegularHexagon class to
specify the value for the length of a side.

The variables defined in a class to encapsulate the data for each
instance of the class in Swift are known as properties. Each
instance has its own independent value for the properties defined
in the class. The properties allow us to define the characteristics
for an instance of the class. In other programming languages,
these variables defined in a class are known as either attributes
or fields.

Chapter 1

[15]

The RegularHexagon class defines a floating point property named lengthOfSide,
whose initial value is equal to 0 for any new instance of the class. After we create
an instance of the RegularHexagon class, it is possible to change the value of the
lengthOfSide attribute.

Note the usage of Camel case, which is using a lowercase first letter, for class
property names. The first letter is lowercase, and then, the first letter for each word
that composes the name is capitalized, while the other letters are in lowercase. It is
a coding convention in Swift for both variables and properties. For example, we use
the name lengthOfSide for the property that stores the value of the length of side.

Imagine that we create two instances of the RegularHexagon class. One of the
instances is named regularHexagon1 and the other regularHexagon2. The instance
names allow us to access the encapsulated data for each object, and therefore, we can
use them to change the values of the exposed properties.

Swift uses a dot (.) to allow us to access the properties of instances. So,
regularHexagon1.lengthOfSide provides access to the length of side for the
RegularHexagon instance named regularHexagon1, and regularHexagon2.
lengthOfSide does the same for the RegularHexagon instance named
regularHexagon2.

Note that the naming convention makes it easy for us to
differentiate an instance name—that is, a variable from a class
name. Whenever we see the first letter in uppercase or capitalized,
it means that we are talking about a class.

We can assign 20 to regularHexagon1.lengthOfSide and 50 to regularHexagon2.
lengthOfSide. This way, each RegularHexagon instance will have a different value
for the lengthOfSide attribute.

Now, let's move to the Ellipse class. We can define two floating point attributes for
this class: semiMajorAxis and semiMinorAxis. Their initial values will also be 0.
Then, we can create three instances of the Ellipse class named ellipse1, ellipse2,
and ellipse3.

We can assign the values summarized in the following table to the three instances of
the Ellipse class:

Instance name semiMinorAxis value semiMajorAxis value
ellipse1 210 400

ellipse2 180 300

ellipse3 180 356

Objects from the Real World to Playground

[16]

This way, ellipse1.semiMinorAxis will be equal to 210, while ellipse3.
semiMinorAxis will be equal to 180. The ellipse1 instance represents an ellipse
with semiMinorAxis of 210 and semiMajorAxis of 400.

The following table summarizes the floating point properties defined for each of the
six classes that we need for our application:

Class name Properties list
Square lengthOfSide

EquilateralTriangle lengthOfSide

Rectangle width and height
Circle radius

Ellipse semiMinorAxis and semiMajorAxis
RegularHexagon lengthOfSide

The properties are members of their respective classes. However,
properties aren't the only members that classes can have.

Note that three of these classes have the same property: lengthOfSide—specifically,
the following three classes: Square, EquilateralTriangle, and RegularHexagon.
We will dive deep into what these three classes have in common later and take
advantage of object-oriented features to reuse code and simplify our application's
maintenance. However, we are just starting our journey, and we will make
improvements as we learn additional object-oriented features included in Swift.

The following image shows a UML (Unified Modeling Language) class diagram
with the six classes and their properties. This diagram is very easy to understand.
The class name appears on the top of the rectangle that identifies each class. A
rectangle below the same shape that holds the class name displays all the property
names exposed by the class with a plus sign (+) as a prefix. This prefix indicates that
what follows it is an attribute name in UML and a property name in Swift.

Chapter 1

[17]

Recognizing actions to create methods
So far, we designed six classes and identified the necessary properties for each
of them. Now, it is time to add the necessary pieces of code that work with the
previously defined properties to perform all the tasks. We have to make sure that
each class has the necessary encapsulated functions that process the property values
specified in the objects to perform all the tasks.

Let's forget a bit about similarities between the different classes. We will work
with them individually as if we didn't have the necessary knowledge of geometric
formulas. We will start with the Square class. We need pieces of code that allow each
instance of this class to use the value of the lengthOfSide property to calculate the
area and perimeter.

The functions defined in a class to encapsulate the behavior of
each instance of the class are known as methods. Each instance
can access the set of methods exposed by the class. The code
specified in a method can work with the properties specified in the
class. When we execute a method, it will use the properties of the
specific instance. Whenever we define methods, we must make
sure that we define them in a logical place—that is, in the place
where the required data is kept.

Objects from the Real World to Playground

[18]

When a method doesn't require parameters, we can say that it is a parameterless
method. In this case, all the methods we will initially define for the classes will be
parameterless methods that just work with the values of the previously defined
properties and use the formulas shown in the figures. Thus, we will be able to call
them without arguments. We will start creating methods, but we will be able to
explore additional options based on specific Swift features later.

The Square class defines the following two parameterless methods. We will declare
the code for both methods within the definition of the Square class so that they can
access the lengthofSide property value, as follows:

•	 calculateArea: This method returns a floating point value with the
calculated area for the square. It returns the square of the lengthOfSide
attribute value (lengthOfSide2 or lengthOfSide ^ 2).

•	 calculatePerimeter: This method returns a floating point value with the
calculated perimeter for the square. It returns the lengthOfSide attribute
value multiplied by 4 (4 * lengthOfSide).

Note the usage of Camel case—that is, using a lowercase first letter—for method
names. The first letter is in lowercase, and then, the first letter for each word that
composes the name is capitalized, while the other letters are in lowercase. As it
happened with property names, it is a coding convention in Swift for methods.

Swift uses a dot (.) to allow us to execute the methods of the instances. Imagine
that we have two instances of the Square class: square1 with the lengthOfSide
property equal to 20 and square2 with the lengthOfSide property equal to 40. If
we call square1.calculateArea, it will return the result 202, which is 400. If we call
square2.calculateArea, it will return the result 402, which is 1600. Each instance
has a diverse value for the lengthOfSide attribute, and therefore, the results of
executing the calcualteArea method are different.

If we call square1.calculatePerimeter, it will return the result of 4 * 20, which is
80. On the other hand, if we call square2.calculatePerimeter, it will return the
result of 4 * 40, which is 160.

Now, let's move to the EquilateralTriangle class. We need exactly two
methods with the same names specified for the Square class: calculateArea and
calculatePerimeter. In addition, the methods return the same type and don't need
parameters, so we can declare both of them as parameterless methods, as we did in
the Square class. However, these methods have to calculate the results in a different
way; that is, they have to use the appropriate formulas for an equilateral triangle.
The other classes also need the same two methods. However, each of them will use
the appropriate formulas for the related shape.

Chapter 1

[19]

We have a specific problem with the calculatePerimeter method that the Ellipse
class generates. Perimeters are complex to calculate for ellipses, so there are many
formulas that provide approximations. An exact formula requires an infinite series
of calculations. We can use an initial formula that isn't very accurate, which we will
have to improve later. The initial formula will allow us to return a floating point
value with the calculated approximation of the perimeter for the ellipse.

The following figure shows an updated version of the UML diagram with the six
classes, their attributes, and their methods:

Objects from the Real World to Playground

[20]

Organizing classes with UML diagrams
So far, our object-oriented solution includes six classes with their properties and
methods. However, if we take another look at these six classes, we will notice that
all of them have the same two methods: calculateArea and calculatePerimeter.
The code for the methods in each class is different because each shape uses a
special formula to calculate either the area or perimeter. However, the declarations,
contracts, or protocols for the methods are the same. Both methods have the same
name, are always parameterless, and return a floating point value. Thus, all of them
return the same type.

When we talked about the six classes, we said we were talking about six different
geometrical shapes or simply shapes. Thus, we can generalize the required behavior
or protocol for the six shapes. The six shapes must define the calculateArea and
calculatePerimeter methods with the previously explained declarations. We can
create a protocol to make sure that the six classes provide the required behavior.

The protocol is a special class named Shape, and it generalizes the requirements
for the geometrical shapes in our application. In this case, we will work with a
special class, but in the future, we will use protocols for the same goal. The Shape
class declares two parameterless methods that return a floating point value:
calculateArea and calculatePerimeter. Then, we will declare the six classes as
subclasses of the Shape class, which will inherit these definitions, and provide the
specific code for each of these methods.

The subclasses of Shape (Square, EquilateralTriangle, Rectangle, Circle,
Ellipse, and RegularHexagon) implement the methods because they provide code
while maintaining the same method declarations specified in the Shape superclass.
Abstraction and hierarchy are two major pillars of object-oriented programming.

Object-oriented programming allows us to discover whether an object is an instance
of a specific superclass. After we chang the organization of the six classes and
they become subclasses of Shape, any instance of Square, EquilateralTriangle,
Rectangle, Circle, Ellipse, or RegularHexagon is also a Shape class. In fact,
it isn't difficult to explain the abstraction because we speak the truth about the
object-oriented model when we say that it represents the real world. It makes
sense to say that a regular hexagon is indeed a shape, and therefore, an instance of
RegularHexagon is a Shape class. An instance of RegularHexagon is both a Shape
(the superclass of RegularHexagon) and a RegularHexagon (the class that we used
to create the object) class.

Chapter 1

[21]

The following figure shows an updated version of the UML diagram with the
superclass or base class (Shape), its six subclasses, and their attributes and methods.
Note that the diagram uses a line that ends in an arrow that connects each subclass to
its superclass. You can read the line that ends in an arrow as the following: the class
where the line begins "is a subclass of" the class that has the line ending with an arrow.
For example, Square is a subclass of Shape, and EquilateralTriangle is a subclass
of Shape.

Objects from the Real World to Playground

[22]

A single class can be the superclass of many subclasses.

Now, it is time to have a meeting with a domain expert—that is, someone that has
an excellent knowledge of geometry. We can use the UML diagram to explain the
object-oriented design for the solution. After we explain the different classes that
we will use to abstract behavior, the domain expert explains to us that many of
the shapes have something in common and that we can generalize behavior even
further. The following three shapes are regular polygons:

•	 An equilateral triangle (the EquilateralTriangle class)
•	 A square (the Square class)
•	 A regular hexagon (the RegularHexagon class)

Regular polygons are polygons that are both equiangular and equilateral. All the
sides that compose a regular polygon have the same length and are placed around
a common center. This way, all the angles between any two sides are equal. An
equilateral triangle is a regular polygon with three sides, the square has four sides,
and the regular hexagon has six sides. The following picture shows the three regular
polygons and the generalized formulas that we can use to calculate their areas and
perimeters. The generalized formula to calculate the area requires us to calculate a
cotangent, which is abbreviated as cot:

Chapter 1

[23]

As the three shapes use the same formula with just a different value for the number
of sides (n) parameter, we can generalize the required protocol for the three regular
polygons. The protocol is a special class named RegularPolygon that defines a
new numberOfSides property that specifies the number of sides with an integer
value. The RegularPolygon class is a subclass of the previously defined Shape
class. It makes sense because a regular polygon is indeed a shape. The three classes
that represent regular polygons become subclasses of RegularPolygon. However,
both the calculateArea and calculatePerimeter methods are coded in the
RegularPolygon class using the generalized formulas. The subclasses just specify
the right value for the inherited numberOfSides property, as follows:

•	 EquilateralTriangle: 3
•	 Square: 4
•	 RegularHexagon: 6

The RegularPolygon class also defines the lengthOfSide property that was
previously defined in the three classes that represent regular polygons. Now, the
three classes become subclasses or RegularPolygon and inherit the lengthOfSide
property. The following figure shows an updated version of the UML diagram with
the new RegularPolygon class and the changes in the three classes that represent
regular polygons. The three classes that represent regular polygons do not declare
either the calculateArea or calculatePerimeter methods because these classes
inherit them from the RegularPolygon superclass and don't need to make changes
to these methods that apply a general formula.

Objects from the Real World to Playground

[24]

Our domain expert also explains to us a specific issue with ellipses. There are many
formulas that provide approximations of the perimeter value for this shape. Thus,
it makes sense to add additional methods that calculate the perimeter using other
formulas. He suggests us to make it possible to calculate the perimeters with the
following formulas:

•	 The second version of the formula developed by Srinivasa Aiyangar
Ramanujan

•	 The formula proposed by David W. Cantrell

Chapter 1

[25]

We will define the following two additional parameterless methods to the Ellipse
class. The new methods will return a floating point value and solve the specific
problem of the ellipse shape:

•	 CalculatePerimeterWithRamanujanII

•	 CalculatePerimeterWithCantrell

This way, the Ellipse class will implement the methods specified in the Shape
superclass and also add two specific methods that aren't included in any of the other
subclasses of Shape. The following figure shows an updated version of the UML
diagram with the new methods for the Ellipse class:

Objects from the Real World to Playground

[26]

Working with API objects in the Xcode
Playground
Now, let's forget a bit about geometry, shapes, polygons, perimeters, and areas.
We will interact with API objects in the Xcode Playground. You still need to learn
many things before we can start creating object-oriented code. However, we will
write some code in the Playground to interact with an existing API before we move
forward with our journey into the object-oriented programming world.

Object-oriented programming is extremely useful when you have to interact
with API objects. When Apple launched iOS 8, it introduced a Health app that
provided iPhone users access to a dashboard of health and fitness data. The
HealthKit framework introduced in the iOS SDK 8 allows app developers to request
permissions from the users themselves to read and write specific types of health and
fitness data. The framework makes it possible to ask for, create, and save health and
fitness data that the users will see summarized in the Health app.

When we store and query health and fitness data, we have to use the framework
to work with the units in which the values are expressed, their conversions, and
localizations. For example, let's imagine an app that stores body temperature data
without considering units and their conversions. A value of 39 degrees Celsius
(which is equivalent to 102.2 degrees Fahrenheit) in an adult would mean that
his/her body temperature is higher than normal (that is, he/she may have a fever).
However, a value of 39 degrees Fahrenheit (equivalent to 3.88 degrees Celsius)
would mean that his/her body is close to its freezing point. If our app just stores
values without considering the related units and user preferences, we can have huge
mistakes. If the app just saves 39 degrees and thinks that the user will always display
Celsius, it will still display 39 degrees to a user whose settings use Fahrenheit as the
default temperature unit. Thus, the app will provide wrong information to the user.

The data in HealthKit is always represented by a double value with an associated
simple or complex unit. The units are classified into types, and it is possible to check
the compatibility between units before performing conversions. We can work with
HealthKit quantities and units in the Swift interactive Playground and understand
how simple it is to work with an object-oriented framework. It is important to note that
the Playground doesn't allow us to interact with the HealthKit data store. However,
we will just play with quantities and units with a few object-oriented snippets.

Chapter 1

[27]

Start Xcode, navigate to File | New | Playground…, enter a name for the
Playground, select iOS as the desired platform, click on Next, select the desired
location for the Playground file, and click on Create. Xcode will display a
Playground window with a line that imports UIKit and creates a string variable.
You just need to add the following line to be able to work with quantities and units
from the HealthKit framework, as shown in the subsequent screenshot:

import HealthKit

All HealthKit types start with the HK prefix. HKUnit represents a particular unit that
can be either simple or complex. Simple units for Temperature are degrees Celsius
and degrees Fahrenheit. A complex unit for Mass/Volume is ounces per liter (oz/L).
HKUnit supports many standard SI units (Système Internationale d'Unités in
French, International System of Units in English) and nonSI units.

Add the following two lines to the Swift Playground and check the results on the
right-hand side of the window; you will notice that they generate instances of
HKTemperatureUnit. Thus, you created two objects that represent temperature units,
as follows:

let degCUnit = HKUnit.degreeCelsiusUnit()
let degFUnit = HKUnit.degreeFahrenheitUnit()

However, there are other ways to create objects that represent temperature units.
It is also possible to use the HKUnit initializer, which returns the appropriate unit
instance from its string representation. For example, the following lines also generate
instances of HKTemperatureUnit for degrees in Celsius and Fahrenheit:

let degCUnitFromStr = HKUnit(fromString: "degC")
let degFUnitFromStr = HKUnit(fromString: "degF")

The following lines generate two instances of HKEnergyUnit—one for kilocalories
and the other for kilojoules:

let kiloCaloriesUnit = HKUnit(fromString: "kcal")
let joulesUnit = HKUnit(fromString: "kJ")

Objects from the Real World to Playground

[28]

The next two lines generate two instances of HKMassUnit—one for kilograms and the
other for pounds:

let kiloGramsUnit = HKUnit.gramUnitWithMetricPrefix(HKMetricPrefix.
Kilo)
let poundsUnit = HKUnit.poundUnit()

The next line generates an instance of _HKCompoundUnit because the string specifies
a complex unit for Mass/Volume: ounces per liter (oz/L). The subsequent screenshot
shows the results displayed in the Playground:

let ouncesPerLiter = HKUnit(fromString: "oz/L")

HKQuantity encapsulates a quantity value (Double) and the unit of measurement
(HKUnit). This class doesn't provide all the operations you might expect to work
with quantities and their units of measure, but it allows you to perform some useful
compatibility checks and conversions.

The following lines create two HKQuantity instances with temperature units named
bodyTemperature1 and bodyTemperature2. The former uses degrees Celsius
(degCUnit) and the latter degrees Fahrenheit (degFUnit). Then, the code calls the
isCompatibleWithUnit method to make sure that each HKQuantity instance can
be converted to degrees Fahrenheit (degFUnit). If isCompatibleWithUnit returns
true, it means that you can convert to HKUnit, which is specified as an argument.
We always have to call this method before calling the doubleValueForUnit method.
This way, we will avoid errors when the units aren't compatible.

Chapter 1

[29]

The doubleValueForUnit method returns the quantity value converted to the
unit specified as an argument. In this case, the two calls make sure that the value is
expressed in degrees Fahrenheit no matter the temperature unit specified in each
HKQuantity instance. The screenshot that follows the given code shows the results
displayed in the Playground:

let bodyTemperature1 = HKQuantity(unit: degCUnit, doubleValue: 35.2)
let bodyTemperature2 = HKQuantity(unit: degFUnit, doubleValue: 95)
print(bodyTemperature1.description)
print(bodyTemperature2.description)

if bodyTemperature1.isCompatibleWithUnit(degFUnit) {
 print("Temperature #1 in Fahrenheit degrees:
\(bodyTemperature1.doubleValueForUnit(degFUnit))")
}

if bodyTemperature2.isCompatibleWithUnit(degFUnit) {
 print("Temperature #2 in Fahrenheit degrees: \(bodyTemperature2.
doubleValueForUnit(degFUnit))")
}

www.allitebooks.com

http://www.allitebooks.org

Objects from the Real World to Playground

[30]

The following line shows an example of the code that creates a new HKQuantity
instance with a quantity and temperature unit converted from degrees Fahrenheit to
degrees Celsius. There is no convert method that acts as a shortcut, so we have to call
doubleValueForUnit and use it in the HKQuantity initializer, as follows:

let bodyTemperature2InDegC = HKQuantity(unit: degCUnit, doubleValue:
bodyTemperature2.doubleValueForUnit(degCUnit))

The compare method returns an NSComparisonResult value that indicates whether
the receiver is greater than, equal to, or less than the compatible HKQuantity
value specified as an argument. For example, the following lines compare
bodyTemperature1 with bodyTemperature2 and print the results of the comparison.
Note that it isn't necessary to convert both the HKQuantity instances to the same
unit; they just need to be compatible, and the compare method will be able to
perform the comparison by making the necessary conversions under the hood. In
this case, one of the temperatures is in degrees Celsius, and the other is in degrees
Fahrenheit. The screenshot that follows the given code shows the results displayed in
the Playground:

let comparisonResult = bodyTemperature1.compare(bodyTemperature2)
switch comparisonResult {
 case NSComparisonResult.OrderedDescending:
 print("Temperature #1 is greater than #2")
 case NSComparisonResult.OrderedAscending:
 print("Temperature #2 is greater than #1")
 case NSComparisonResult.OrderedSame:
 print("Temperature #1 is equal to Temperature #2")
}

Chapter 1

[31]

Exercises
Now that you understand what an object is, it is time to recognize objects in different
applications.

•	 Exercise 1: Work with an iOS app and recognize its objects. Work with
an app that has both an iPhone and iPad version. Execute the app in both
versions and recognize the different objects that the developers might have
used to code the app. Create an UML diagram with the classes that you
would use to create the app. Think about the methods and properties that
you would require for each class. If the app is extremely complex, just focus
on a specific feature.

•	 Exercise 2: Work with a Mac OS X application and recognize its objects.
Execute the app and work with a specific feature. Recognize the objects that
interact to enable you to work with the feature. Write down the objects you
recognized and their required behaviors.

Test your knowledge
1.	 Objects are also known as:

1.	 Classes.
2.	 Subclasses.
3.	 Instances.

2.	 The code specified in a method within a class:
1.	 Cannot access the properties specified in the class.
2.	 Can access the properties specified in the class.
3.	 Cannot interact with other members of the class.

3.	 A subclass:
1.	 Inherits all members from its superclass.
2.	 Inherits only methods from its superclass.
3.	 Inherits only properties from its superclass.

4.	 The variables defined in a class to encapsulate data for each instance of the
class in Swift are known as:

1.	 Subclasses.
2.	 Properties.
3.	 Methods.

Objects from the Real World to Playground

[32]

5.	 The functions defined in a class to encapsulate behavior for each instance of
the class are known as:

1.	 Subclasses.
2.	 Properties.
3.	 Methods.

Summary
In this chapter, you learned how to recognize real-world elements and translate
them into the different components of the object-oriented paradigm supported in
Swift: classes, protocols, properties, methods, and instances. You understood that
the classes represent blueprints or templates to generate the objects, also known as
instances.

We designed a few classes with properties and methods that represent blueprints
for real-life objects. Then, we improved the initial design by taking advantage of the
power of abstraction and specialized different classes. We generated many versions
of the initial UML diagram as we added superclasses and subclasses. Finally, we
wrote some code in the Swift Playground to understand how we can interact with
API objects.

Now that you have learned some of the basics of the object-oriented paradigm, we
are ready to start creating classes and instances in Swift, which is the topic of the
next chapter.

[33]

Structures, Classes,
and Instances

In this chapter, you will learn the differences between structures and classes. We will
start working with examples on how to code classes and customize the initialization
and deinitialization of instances. We will understand how classes work as blueprints
to generate instances and dive deep on all the details of automatic reference
counting, also known as ARC.

Understanding structures, classes, and
instances
In the previous chapter, you learned some of the basics of the object-oriented
paradigm, including classes and objects, which are also known as instances.
We started working on an app required by an acrylic paint manufacturer that
wanted to take full advantage of the popularity of a popular YouTuber, painter,
and craftswoman. We ended up creating a UML diagram with the structure of
many classes, including their hierarchy, properties, and methods. It is time to take
advantage of the Playground to start coding the classes and work with them.

In Swift, a class is always the type and blueprint. The object is the working instance
of the class, and one or more variables can hold a reference to an instance. An object
is an instance of the class, and the variables can be of a specific type (that is, a class)
and hold objects of the specific blueprint that we generated when declaring the class.

It is very important to mention some of the differences between a class and structure
in Swift. A structure is also a type and blueprint. In fact, structures in Swift are very
similar to classes. You can add methods and properties to structures as you do with
classes with the same syntax.

Structures, Classes, and Instances

[34]

However, there is a very important difference between structures and
classes: Swift always copies structures when you pass them around
the code because structures are value types. For example, whenever
you pass a structure as an argument to a method or function, Swift
copies the structure. When you work with classes, Swift passes them
by reference because classes are reference types. In addition, classes
support inheritance, while structures don't.

There are other differences between classes and structures. However, we will focus
on the capabilities of classes because they will be the main building blocks of our
object-oriented solutions.

Now, let's move to the world of superheroes. If we want to model an object-oriented
app to work with superheroes, we will definitely have a SuperHero base class. Each
superhero available in our app will be a subclass of the SuperHero superclass. For
example, let's consider that we have the following subclasses of SuperHero:

•	 SpiderMan: This is a blueprint for Spider-Man
•	 AntMan: A blueprint for Ant-Man

So, each superhero becomes a subclass of SuperHero and a type in Swift. Each
superhero is a blueprint that we will use to create instances. Suppose Kevin,
Brandon, and Nicholas are three players that select a superhero as their preferred
character to play a game in our app. Kevin and Brandon choose Spider-Man, and
Nicholas selects Ant-Man. In our application, Kevin will be an instance of the
SpiderMan subclass, Brandon will be an instance of the SpiderMan subclass, and
Nicholas will be an instance of the AntMan subclass.

As Kevin, Brandon, and Nicholas are superheroes, they share many properties. Some
of these properties will be initialized by the class, because the superhero they belong
to determines some features—for example, the super powers, strength, running
speed, flying speed (in case the superhero has flight abilities), attack power, and
defense power. However, other properties will be specific to the instance, such as the
name, weight, age, costume, and hair colors.

Understanding initialization and its
customization
When you ask Swift to create an instance of a specific class, something happens
under the hood. Swift creates a new instance of the specified type, allocates the
necessary memory, and then executes the code specified in the initializer.

Chapter 2

[35]

You can think of initializers as equivalents of constructors in
other programming languages such as C# and Java.

When Swift executes the code within an initializer, there is already a live instance of
the class. Thus, we have access to the properties and methods defined in the class.
However, we must be careful in the code we put in the initializer because we might
end up generating huge delays when we create instances of the class.

Initializers are extremely useful to execute setup code
and properly initialize a new instance.

So, for example, before you can call either the CalculateArea or
CalculatePerimeter method, you want both the semiMajorAxis and
semiMinorAxis fields for each new Ellipse instance to have a value initialized to
the appropriate values that represent the shape. Initializers are extremely useful
when we want to define the values for the properties of the instances of a class right
after their creation and before we can access the variables that reference the created
instances.

Sometimes, we need specific arguments to be available at the time we create an
instance. We can design different initializers with the necessary arguments and use
them to create instances of a class. This way, we can make sure that there is no way
of creating specific classes without using the provided initializers that make the
necessary arguments required.

Swift uses a two-phase initialization process for classes. The first phase makes each
class in the hierarchy that defines a property assign the initial value for each of them.
Once all the properties are assigned their initial value, the second phase allows each
class in the hierarchy to customize each of its defined properties. After the second
phase finishes, the new instance is ready to be used, and Swift allows us to access the
variable that references this instance to access its properties and/or call its methods.

In case you have experience with Objective-C, the two-phase
initialization process in Swift is very similar to the procedure in
Objective-C. However, Swift allows us to set customized initial values.

Structures, Classes, and Instances

[36]

Understanding deinitialization and its
customization
At some specific times, our app won't require to work with an instance anymore.
For example, once you calculate the perimeter of a regular hexagon and display the
results to the user, you don't need the specific RegularHexagon instance anymore.
Some programming languages require you to be careful about leaving live instances
alive, and you have to explicitly destroy them and deallocate the memory that it
consumed.

Swift uses an automatic reference counting, also known as ARC, to automatically
deallocate the memory used by instances that aren't referenced anymore. When Swift
detects that you aren't referencing an instance anymore, Swift executes the code
specified within the instance's deinitializer before the instance is deallocated from
memory. Thus, the deinitializer can still access all of the instance's resources.

You can think of deinitializers as equivalents of destructors in
other programming languages such as C# and Java. You can
use deinitializers to perform any necessary cleanup before the
objects are deallocated and removed from memory.

For example, think about the following situation: you need to count the number of
instances of a specific class that are being kept alive. You can have a variable shared
by all the classes. Then, customize the class initializer to atomically increase the value
for the counter—that is, increase the value of the variable shared by all the classes.
Finally, customize the class deinitializer to atomically decrease the value for the
counter. This way, you can check the value of this variable to know the objects that
are being referenced in your application.

Understanding automatic reference
counting
Automatic reference counting is very easy to understand. Imagine that we have to
distribute the items that we store in a box. After we distribute all the items, we must
throw the box in a recycle bin. We cannot throw the box to the recycle bin when we
still have one or more items in it. Seriously, we don't want to lose the items we have
to distribute because they are very expensive.

The problem has a very easy solution; we just need to count the number of items that
remain in the box. When the number of items in the box reaches zero, we can get rid
of the box.

Chapter 2

[37]

One or more variables can hold a reference to a single instance
of a class. Thus, it is necessary to count the number of references
to an instance before Swift can get rid of an instance. When the
number of references to a specific instance reaches zero, Swift
can automatically and safely remove the instance from memory
because nobody needs this specific instance anymore.

For example, you can create an instance of a class and assign it to a variable. The
automatic reference counting mechanism registers the reference and knows that
there is one reference to this instance. Then, you can assign the same instance to
another variable, and therefore, the automatic reference counting mechanism will
increase the reference count for the single instance to two.

After the first variable runs out of scope, the second variable that holds a reference
to the instance will still be accessible. The automatic reference counting mechanism
will decrease the reference count for the single instance to one as a result of the
first variable running out of scope. At this point, the reference count for the single
instance is equal to one, and therefore, the instance must still be available—that is,
we need it alive.

After the second variable runs out of scope, there are no more variables that hold a
reference to the instance; therefore, the automatic reference counting mechanism will
decrease the reference count for the single instance to zero and mark it as disposable.
At this point, the instance can be safely removed from memory.

The automatic reference counting mechanism can remove the
instance from memory at any time after the reference count
for the instance reaches zero.

Declaring classes
The following lines declare a new minimal Circle class in Swift:

class Circle {
}

The class keyword, followed by the class name (Circle), composes the header of the
class definition. In this case, the class doesn't have a parent class or superclass; therefore,
there are neither superclasses listed after the class name, nor a colon (:). A pair of curly
braces ({}) encloses the class body after the class header. In the forthcoming chapters,
we will declare classes that inherit from another class, and therefore, they will have
a superclass. In this case, the class body is empty. The Circle class is the simplest
possible class we can declare in Swift.

Structures, Classes, and Instances

[38]

Any new class you create that doesn't specify a superclass is
considered a base class. Whenever you declare a class without a
subclass, the class doesn't inherit from a universal base class, as it
happens in other programming languages such as C#. Thus, the
Circle class is known as a base class in Swift.

Customizing initialization
We want to initialize instances of the Circle class with the radius value. In order to
do so, we can take advantage of customized initializers. Initializers aren't methods,
but we will write them with syntax that is very similar to the instance methods. They
will use the init keyword to differentiate from instance methods, and Swift will
execute them automatically when we create an instance of a given type. Swift runs
the code within the initializer before any other code within a class.

We can define an initializer that receives the radius value as an argument and use it
to initialize a property with the same name. We can define as many initializers as we
want to, and therefore, we can provide many different ways of initializing a class. In
this case, we just need one initializer.

The following lines create a Circle class and define an initializer within the class
body:

class Circle {
 var radius: Double
 init(radius: Double)
 {
 print("I'm initializing a new Circle instance with a radius
value of \(radius).")
 self.radius = radius
 }
}

The initializer is declared with the init keyword. The initializer receives a single
argument: radius. The code within the initializer prints a message on the console
indicating that the code is initializing a new Circle instance with a specific radius
value. This way, we will understand when the code within the initializer is executed.
As the initializer has an argument, we can call it a parameterized initializer.

Chapter 2

[39]

Then, the following line assigns the radius the Double value received as an argument
to the radius classes' Double property. We will use self.radius to access the
radius property for the instance and radius to reference the argument. In Swift,
the self keyword provides access to the instance that is created and we want to
initialize. The line before the initializer declares the radius double property.
We will dive deep into the proper usage of properties in Chapter 3, Encapsulation of
Data with Properties.

The following lines create two instances of the Circle class named circle1 and
circle2. Note that it is necessary to use the radius argument label each time we
create an instance because we use the previously declared initializer. The initializer
specifies radius as the name of the argument of the Double type that it requires.
When we create an instance, we have to use the same argument name indicated in
the initializer declaration, radius, followed by a colon (:) and the value we want to
pass for the parameter. The first line specifies radius: 25; therefore, we will pass 25
to the radius parameter. The second line specifies radius: 50; and therefore, we will
pass 50 to the radius parameter:

var circle1 = Circle(radius: 25)
var circle2 = Circle(radius: 50)

When we enter all the lines that declare the class and create the two instances in the
Playground, we will see two messages that say "I'm initializing a new Circle
instance with a radius value of" followed by the radius value specified in the
call to the initializer of each instance, as shown in the following screenshot:

Structures, Classes, and Instances

[40]

Each line that creates an instance uses the class name followed by the argument label
and the desired value for the radius class as an argument enclosed in parentheses.
Swift automatically assigns the Circle type for each of the variables (circle1
and circle2). After we execute the two lines that create the instances of Circle,
we can take a look at the values for circle1.radius and circle2.radius in the
Playground. We can click on the Quick Look icon and a popup will display the
property and its value for the instance. The following screenshot shows the results of
inspecting circle1:

The following line won't allow the Playground to compile the code and will display
a build error because the compiler cannot find a parameterless initializer declared
in the Circle class. The specific error message is the following: "Missing argument
for parameter 'radius' in call." The subsequent screenshot shows the error
icon on the left-hand side of the line that tries to create a Circle instance and the
detailed Playground execution error displayed within the Debug area at the bottom
of the window:

var circleError = Circle()

Remove the previous line that generated an error and enter the following two lines:

print(circle1.dynamicType)
print(circle2.dynamicType)

The Playground will display "Circle\n" as a result for both the lines because both the
variables hold instances of the Circle class, as shown in the following screenshot.
The dynamicType expression allows us to retrieve the runtime type as a value.

Chapter 2

[41]

Customizing deinitialization
We want to know when the instances of the Circle class will be removed from
memory—that is, when the objects aren't referenced by any variable and the
automatic reference count mechanism decides that they have to be removed
from memory. Deinitializers are special parameterless class methods that are
automatically executed just before the runtime destroys an instance of a given
type. Thus, we can use them to add any code we want to run before the instance is
destroyed. We cannot call a deinitializer; they are only available for the runtime.

The deinitializer is a special class method that uses the deinit keyword in its
declaration. The declaration must be parameterless, and it cannot return a value.

The following lines declare a deinitializer within the body of the Circle class:

deinit {
 print("I'm destroying the Circle instance with a radius value of \
(radius).")
}

The following lines show the new complete code for the Circle class:

class Circle {
 var radius: Double
 init(radius: Double)
 {
 print("I'm initializing a new Circle instance with a radius
value of \(radius).")
 self.radius = radius
 }

 deinit {
 print("I'm destroying the Circle instance with a radius value
of \(radius).")
 }

}

Structures, Classes, and Instances

[42]

The code within the deinitilizer prints a message on the console indicating that the
runtime will destroy a Circle instance with a specific radius value. This way, we
will understand when the code within the deinitializer is executed.

The following lines create two instances of the Circle class named
circleToDelete1 and circleToDelete2. Then, the next lines assign new instances
to both variables; therefore, the reference count for both objects reaches 0, and the
automatic reference counting mechanism destroys them. Before the destruction
takes place, Swift executes the deinitialization code. Enter the following lines in the
Playground after adding the code for the destructor to the Circle class:

var circleToDelete1 = Circle(radius: 25)
var circleToDelete2 = Circle(radius: 50)
circleToDelete1 = Circle(radius: 32)
circleToDelete2 = Circle(radius: 47)

We will see the following messages in the Playground, as shown in the screenshot
that follows them:

I'm initializing a new Circle instance with a radius value of 25.0.
I'm initializing a new Circle instance with a radius value of 50.0.
I'm initializing a new Circle instance with a radius value of 32.0.
I'm destroying the Circle instance with a radius value of 25.0.
I'm initializing a new Circle instance with a radius value of 47.0.
I'm destroying the Circle instance with a radius value of 50.0.

Chapter 2

[43]

The first two lines appear because we created instances of Circle, and Swift
executed the initialization code. Then, we assigned the result of creating a new
instance of the Circle class to the circleToDelete1 variable, and therefore, we
removed the only existing reference to the instance with a radius value of 25.0.
Swift printed a line that indicates that it initialized a new instance with a radius
value of 32.0. After this line, Swift printed the line generated by the execution of the
deinitializer of the Circle instance that had a radius value of 25.0.

Structures, Classes, and Instances

[44]

Then, we assigned the result of creating a new instance of the Circle class to the
circleToDelete2 variable, and therefore, we removed the only existing reference
to the instance with a radius value of 50.0. Swift printed a line that indicates that it
initialized a new instance with a radius value of 47.0. After this line, Swift printed
the line generated by the execution of the deinitializer of the Circle instance that
had a radius value of 50.0.

The following lines create an instance of the Circle class named circle3 and then
assign a reference of this object to referenceToCircle3. Thus, the reference count
to the object increases to 2. The next line assigns a new instance of the Circle class
to circle3; therefore, the reference count for the object goes down from 2 to 1. As
the referenceToCircle3 variable stills holds a reference to the Circle instance,
Swift doesn't destroy the instance, and we don't see the results of the execution of the
deinitializer. Note that the screenshot only displays the results of the execution of the
initializer, and there is no execution for the deinitializer:

var circle3 = Circle(radius: 42)
var referenceToCircle3 = circle3
circle3 = Circle(radius: 84)

Chapter 2

[45]

Creating the instances of classes
The following lines create an instance of the Circle class named circle within
the scope of a getGeneratedCircleRadius function. The code within the function
uses the created instance to access and return the value of its radius property. In
this case, the code uses the let keyword to declare an immutable reference to the
Circle instance named circle. An immutable reference is also known as a constant
reference because we cannot replace the reference hold by the circle constant to
another instance of Circle. When we use the var keyword, we declare a reference
that we can change later.

After we define the new function, we will call it. Note that the screenshot displays
the results of the execution of the initializer and then the deinitializer. Swift destroys
the instance after the circle constant becomes out of scope because its reference
count goes down from 1 to 0; therefore, there is no reason to keep the instance alive:

func getGeneratedCircleRadius() -> Double {
 let circle = Circle(radius: 20)
 return circle.radius
}

print(getGeneratedCircleRadius())

The following lines show the results displayed in the Playground's debug area after
we executed the previously shown code. The following screenshot shows the results
displayed at the right-hand side of the lines of code in the Playground:

I'm initializing a new Circle instance with a radius value of 20.0.
I'm destroying the Circle instance with a radius value of 20.0.
20.0

Note that it is extremely easy to code a function that creates an instance and uses it
to call a method because we don't have to worry about removing the instance from
memory. The automatic reference counting mechanism does the necessary cleanup
work for us.

Structures, Classes, and Instances

[46]

Exercises
Now that you understand an instance's life cycle, it is time to spend some time in the
Playground creating new classes and instances:

•	 Exercise 1: Create a new Employee class with a custom initializer that
requires two string arguments: firstName and lastName. Use the arguments
to initialize properties with the same names as the arguments. Display a
message with the values for firstName and lastName when an instance of
the class is created. Display a message with the values for firstName and
lastName when an instance of the class is destroyed.
Create an instance of the Employee class and assign it to a variable. Check the
messages printed in the Playground's Debug area. Assign a new instance of
the Employee class to the previously defined variable. Check the messages
printed in the Playground's Debug area.

•	 Exercise 2: Create a function that receives two string arguments: firstName
and lastName. Create an instance of the previously defined Employee class
with the received arguments as parameters for the creation of the instance.
Use the instance properties to print a message with the first name followed
by a space and the last name. You will be able to create a method and add
it to the Employee class later to perform the same task. However, first, you
must understand how you can work with the properties defined in a class.

Test your knowledge
1.	 Swift uses one of the following mechanisms to automatically deallocate the

memory used by instances that aren't referenced anymore:
1.	 Automatic Random Garbage Collector.
2.	 Automatic Reference Counting.
3.	 Automatic Instance Map Reduce.

2.	 Swift executes an instance's deinitializer:
1.	 Before the instance is deallocated from memory.
2.	 After the instance is deallocated from memory.
3.	 After the instance memory is allocated.

Chapter 2

[47]

3.	 A deinitializer:
1.	 Can still access all of the instance's resources.
2.	 Can only access the instance's methods but no properties.
3.	 Cannot access any of the instance's resources.

4.	 Swift allows us to define:
1.	 Only one initializer per class.
2.	 A main initializer and two optional secondary initializers.
3.	 Many initializers with different arguments.

5.	 Each time we create an instance:
1.	 We must use argument labels.
2.	 We can optionally use argument labels.
3.	 We don't need to use argument labels.

Summary
In this chapter, you learned about an object's life cycle. You also learned how
object initializers and deinitializers work. We declared our first class to generate a
blueprint for objects. We customized object initializers and deinitializers and tested
their personalized behavior in action with live examples in Swift's Playground. We
understood how they work in combination with automatic reference counting.

Now that you have learned to start creating classes and instances, we are ready to
share, protect, use and hide data with the data encapsulation features included in
Swift, which is the topic of the next chapter.

[49]

Encapsulation of Data
with Properties

In this chapter, you will learn about all the elements that might compose a class.
We will start organizing data in blueprints that generate instances. We will work
with examples to understand how to encapsulate and hide data by working with
properties combined with access control. In addition, you will learn about properties,
methods, and mutable versus immutable classes.

Understanding the elements that
compose a class
So far, we worked with a very simple class and many instances of this class in the
Playground. Now, it is time to dive deep into the different members of a class.

The following list enumerates the most common element types that you can include
in a class definition in Swift and their equivalents in other programming languages.
We already worked with a few of these elements:

•	 Initializers: These are equivalent to constructors in other programming
languages

•	 Deinitializer: This is equivalent to destructors in other programming
languages

•	 Type properties: These are equivalent to class fields or class attributes in
other programming languages

•	 Type methods: These are equivalent to class methods in other programming
languages

•	 Subscripts: These are also known as shortcuts

Encapsulation of Data with Properties

[50]

•	 Instance properties: This is equivalent to instance fields or instance attributes
in other programming languages

•	 Instance methods: This is equivalent to instance functions in other
programming languages

•	 Nested types: These are types that only exist within the class in which we
define them

We already learned how basic initializers and deinitializers work in the previous
chapter. So far, we used an instance-stored property to encapsulate data in our
instances. We could access the instance property without any kind of restrictions as a
variable within an instance.

However, as it happens sometimes in real-world situations, restrictions are necessary
to avoid serious problems. Sometimes, we want to restrict access or transform
specific instance properties into read-only attributes. We can combine the restrictions
with computed properties that can define getters and/or setters.

Computed properties can define get and/or set methods, also known as
getters and setters. Setters allow us to control how values are set; that is,
these methods are used to change the values of related properties. Getters
allow us to control the values that we return when computed properties
are accessed. Getters don't change the values of related properties.

Sometimes, all the members of a class share the same attribute, and we don't need to
have a specific value for each instance. For example, the superhero types have some
profile values, such as the average strength, average running speed, attack power, and
defense power. We can define the following type properties to store the values that are
shared by all the instances: averageStrength, averageRunningSpeed, attackPower,
and defensePower. All the instances have access to the same type properties and their
values. However, it is also possible to apply restrictions to their access.

It is also possible to define methods that don't require an instance of a specific
class to be called; therefore, you can invoke them by specifying both the class and
method names. These methods are known as type methods, operate on a class as a
whole, and have access to type properties, but they don't have access to any instance
members, such as instance properties or methods, because there is no instance at
all. Type methods are useful when you want to include methods related to a class
and don't want to generate an instance to call them. Type methods are also known
as static or class methods. However, we have to pay attention to the keyword we
use to declare type methods in Swift, because a type method declared with the
static keyword has a different behavior than a type method declared with the
class keyword. We will understand their difference as we move forward with the
examples in this and the forthcoming chapters.

Chapter 3

[51]

Declaring stored properties
When we design classes, we want to make sure that all the necessary data is
available to the methods that will operate on this data; therefore, we encapsulate
data. However, we just want relevant information to be visible to the users of our
classes that will create instances, change values of accessible properties, and call the
available methods. Thus, we want to hide or protect some data that is just needed for
internal use. We don't want to make accidental changes to sensitive data.

For example, when we create a new instance of any superhero, we can use both its
name and birth year as two parameters for the constructor. The constructor initializes
the values of two properties: name and birthYear. The following lines show a
sample code that declares the SuperHero class:

class SuperHero {
 var name: String
 var birthYear: Int

 init(name: String, birthYear: Int) {
 self.name = name
 self.birthYear = birthYear
 }
}

The next lines create two instances that initialize the values of the two properties and
then use the print function to display their values in the Playground:

var antMan = SuperHero(name: "Ant-Man", birthYear: 1975)
print(antMan.name)
print(antMan.birthYear)
var ironMan = SuperHero(name: "Iron-Man", birthYear: 1982)
print(ironMan.name)
print(ironMan.birthYear)

Encapsulation of Data with Properties

[52]

The following screenshot shows the results of the declaration of the class and the
execution of the lines in the Playground:

We don't want a user of our SuperHero class to be able to change a superhero's name
after an instance is initialized because the name is not supposed to change. There is a
simple way to achieve this goal in our previously declared class. We can use the let
keyword to define an immutable name stored property of type string instead of using
the var keyword. We can also replace the var keyword with let when we define
the birthYear stored property because the birth year will never change after we
initialize a superhero instance.

The following lines show the new code that declares the SuperHero class with two
stored immutable properties: name and birthYear. Note that the initializer code
hasn't changed, and it is possible to initialize both the immutable stored properties
with the same code:

class SuperHero {
 let name: String
 let birthYear: Int

 init(name: String, birthYear: Int) {
 self.name = name
 self.birthYear = birthYear
 }
}

Chapter 3

[53]

The next lines create an instance that initializes the values of the two immutable
stored properties and then use the print function to display their values in the
Playground. Then, two lines of code try to assign a new value to both properties and
fail to do so because they are immutable properties:

var antMan = SuperHero(name: "Ant-Man", birthYear: 1975)
print(antMan.name)
print(antMan.birthYear)

antMan.name = "Batman"
antMan.birthYear = 1976

The Playground displays the following two error messages for the last two lines, as
shown in the next screenshot:

•	 Cannot assign to property: 'name' is a 'let' constant
•	 Cannot assign to property: 'birthYear' is a 'let' constant

When we use the let keyword to declare a stored property,
we can initialize the property, but it becomes immutable—
that is, a constant—after its initialization.

Encapsulation of Data with Properties

[54]

Generating computed properties with
setters and getters
As previously explained, we don't want a user of our superhero class to be able to
change a superhero's birth year after an instance is initialized because the superhero
won't be born again at a different date. In fact, we want to calculate and make the
superhero's age available to users. We use an approximated age in order to keep
the focus on the properties and don't complicate our lives with the manipulation of
complete dates and the NSDate class.

We can define a property called age with a getter method but without a setter method;
that is, we will create a read-only computed property. This way, it is possible to retrieve
the superhero's age, but we cannot change it because there isn't a setter defined for the
property. The getter method returns the result of calculating the superhero's age based
on the current year and the value of the birthYear stored property.

The following lines show the new version of the SuperHero class with the new age
calculated read-only property. Note that the code for the getter method appears after
the property declaration with its type and the get keyword. All the lines enclosed
in curly brackets after the get keyword define the code that will be executed when
we request the value for the age property. The method creates a new instance of the
NSDate class, date, and retrieves the current calendar, calendar. Then, the method
retrieves the year, month and date components for date and returns the difference
between the current year and the value of the birthYear property:

class SuperHero {
 let name: String
 let birthYear: Int

 var age: Int {
 get {
 let date = NSDate()
 let calendar = NSCalendar.currentCalendar()
 let components = calendar.components([.Year, .Month, .Day]
, fromDate: date)

 return components.year - birthYear
 }
 }

 init(name: String, birthYear: Int) {
 self.name = name
 self.birthYear = birthYear
 }
}

Chapter 3

[55]

We must use the var keyword to declare computed properties,
such as the previously defined age computed property.

The next lines create an instance that initializes the values of the two immutable
stored properties and then use the print function to display the value of the age
calculated property in the Playground. Then, a line of code tries to assign a new
value to the age property and fails to do so because the property doesn't declare a
setter method:

var antMan = SuperHero(name: "Ant-Man", birthYear: 1975)
print(antMan.age)
var ironMan = SuperHero(name: "Iron-Man", birthYear: 1982)
print(ironMan.age)

antMan.age = 32

The Playground displays the following error message for the last line, as shown in
the next screenshot:

Cannot assign to property: 'age' is a get-only property

Encapsulation of Data with Properties

[56]

A computed property with a getter method and without a
setter method is known as a get-only property.

Later, we will decide that it would be nice to allow the user to customize a superhero
and allow it to change either its age or birth year. We can add a setter method to the
age property with code that calculates the birth year based on the specified age and
assigns this value to the birthYear property. Of course, the first thing we need to do
is replace the let keyword with var when we define the birthYear stored property
as we want it to become a mutable property.

The following lines show the new version of the SuperHero class with the new
age calculated property. Note that the code for the setter method appears after the
code for the getter method within the curly brackets that enclose the getter and
setter declarations. We can place the setter method before the getter method. All the
lines enclosed in curly brackets after the set keyword define the code that will be
executed when we assign a new value to the age property, and the implicit name
for the new value is newValue. So, the code enclosed in curly brackets after the set
keyword receives the value that will be assigned to the property in the newValue
argument. As we didn't specify a different name for the implicit argument, we can
access the value using the newValue argument. Note that we don't see the argument
name in the code; it is a default convention in Swift:

class SuperHero {
 let name: String
 var birthYear: Int

 var age: Int {
 get {
 let date = NSDate()
 let calendar = NSCalendar.currentCalendar()
 let components = calendar.components([.Year] , fromDate:
date)

 return components.year - birthYear
 }
 set {
 let date = NSDate()
 let calendar = NSCalendar.currentCalendar()

Chapter 3

[57]

 let components = calendar.components([.Year] , fromDate:
date)

 self.birthYear = components.year - newValue
 }
 }

 init(name: String, birthYear: Int) {
 self.name = name
 self.birthYear = birthYear
 }
}

The setter method creates a new instance of the NSDate class, date, and retrieves the
current calendar, calendar. Then, the method retrieves the year component for date
and returns the difference between the current year, components.year, and the new
age value that is specified: newValue.

The next lines create two instances of the SuperHero class, assign a value to the age
computed property, and then use the print function to display the value of both the
age calculated property and the birthYear stored property in the Playground:

var antMan = SuperHero(name: "Ant-Man", birthYear: 1975)
print(antMan.age)
var ironMan = SuperHero(name: "Iron-Man", birthYear: 1982)
print(ironMan.age)

antMan.age = 32
print(antMan.age)
print(antMan.birthYear)

ironMan.age = 45
print(ironMan.age)
print(ironMan.birthYear)

Encapsulation of Data with Properties

[58]

As a result of assigning a new value to the age computed property, its setter method
changes the value of the birthYear stored property, as shown in the following
screenshot:

Chapter 3

[59]

Both the getter and setter methods use the same code to retrieve the current year.
We can add a get-only property that retrieves the current year and call it from both
the getter and setter methods for the age computed property. We will declare the
function as a get-only property for the SuperHero class. We know that this class isn't
the best place for this get-only property as it would be better to have it added to a
date-related class, such as the NSDate class. We will be able to do so later after we
learn additional things.

The following lines show the new version of the SuperHero class with the new
currentYear calculated property. Note that the code for both the setter and getter
methods for the age property are simpler because they use the new currentYear
calculated property instead of repeating code:

class SuperHero {
 let name: String
 var birthYear: Int

 var age: Int {
 get {
 return currentYear - birthYear
 }
 set {
 birthYear = currentYear - newValue
 }
 }

 var currentYear: Int {
 get {
 let date = NSDate()
 let calendar = NSCalendar.currentCalendar()
 let components = calendar.components([.Year] , fromDate:
date)

 return components.year
 }
 }

 init(name: String, birthYear: Int) {
 self.name = name
 self.birthYear = birthYear
 }
}

Encapsulation of Data with Properties

[60]

Declarations that use the let keyword cannot be computed
properties; therefore, we must always use the var keyword
when we declare computed properties, even when they are
get-only properties.

The next lines create two instances of the SuperHero class, assign a value to the age
computed property, and then use the print function to display the value of both the
age calculated property and the birthYear stored property in the Playground:

var superBoy = SuperHero(name: "Super-Boy", birthYear: 2008)
print(superBoy.age)
var superGirl = SuperHero(name: "Super-Girl", birthYear: 2009)
print(superGirl.age)

superBoy.age = 9
print(superBoy.age)
print(superBoy.birthYear)

superGirl.age = 8
print(superGirl.age)
print(superGirl.birthYear)

print(superBoy.currentYear)
print(superGirl.currentYear)

Chapter 3

[61]

Note the number of times that each property's getter and setter methods are executed
in the Playground. In this case, the currentYear getter method is executed eight
times, as shown in the following screenshot:

Encapsulation of Data with Properties

[62]

The recently added currentYear computed property is get-only; therefore, we
won't add a set clause to it. We can simplify the code that declares this property by
omitting the get clause, as shown in the following lines:

var currentYear: Int {
 let date = NSDate()
 let calendar = NSCalendar.currentCalendar()
 let components = calendar.components([.Year] , fromDate: date)

 return components.year
}

We only have to specify the get clause when we
provide a set clause for the property.

Combining setters, getters, and a related
property
Sometimes, we want to have more control over the values that are set to properties
and retrieved from them, and we can take advantage of getters and setters to do so.
In fact, we can combine a getter and setter, which generate a computed property and
a related property that stores the computed value, and access protection mechanisms
to prevent the user from making changes to the related property and force him to
always use the computed property.

The superhero's sneakers might change over time. However, we always have to
make sure that the sneakers' name is an uppercase string. We can define a sneakers
property with a getter method that always converts the string value to an uppercase
string and stores it in a private sneakersField property.

Whenever we assign a value to the sneakers property, the setter method is called
under the hood with the value to be assigned as an argument. Whenever we specify
the sneakers property in any expression, the getter method is called under the hood
to retrieve the actual value. The following lines show a new version of the SuperHero
class that adds a sneakers calculated property. Note that the code doesn't include the
age and currentYear properties to avoid repeating the code that we analyzed before:

public class SuperHero {
 public let name: String

Chapter 3

[63]

 public var birthYear: Int

 private var sneakersField = "NOT SPECIFIED"

 public var sneakers: String {
 get {
 return sneakersField
 }
 set {
 sneakersField = newValue.uppercaseString
 }
 }

 init(name: String, birthYear: Int, sneakers: String) {
 self.name = name
 self.birthYear = birthYear
 self.sneakers = sneakers
 }
}

The new version of the class is declared as public class; therefore, we declared
name, birthYear, and sneakers as public properties. We should also declare both
the age and currentYear properties that don't appear in the previous code as
public. This way, when someone creates instances of the SuperHero class outside
the source file that declares it, he will be able to access the public members—that is,
the public properties have declared. However, the code declares the sneakersField
property as a private property; therefore, only the code included in the same source
file that declared the SuperHero class will be able to access this property. This way,
the sneakersField property will be hidden for those who create instances of the
SuperHero class outside of the source file that declares it.

When we declare the sneakersField private property, we will specify its initial
value as "NOT SPECIFIED" and not declare its type because the type-inference
mechanism determines that it is of type String based on the initial value. The
following line of code is equivalent to the second line of code. We used the first line
for the declaration to simplify our code and avoid redundancy whenever possible:

private var sneakersField = "NOT SPECIFIED"
private var sneakersField: String = "NOT SPECIFIED"

We should take advantage of the type inference mechanism
included in Swift as much as possible to reduce unnecessary
boilerplate code.

Encapsulation of Data with Properties

[64]

The initializer for the class added a new argument that provides an initial value for
the new sneakers property. The next lines create two instances of the SuperHero
class, assign a value to the sneakers computed property, and then use the print
function to display the value of the property in the Playground. In both cases,
we will initialize sneakers with a string that the setter method converts to an
uppercase string. Thus, when we print the values returned by the getter method,
the Playground will print the uppercase string that is stored in the sneakerField
private property:

var superBoy = SuperHero(name: "Super-Boy", birthYear: 2008, sneakers:
"Running 2016")
print(superBoy.sneakers)
var superGirl = SuperHero(name: "Super-Girl", birthYear: 2009,
sneakers: "Jumping Super Girl")
print(superGirl.sneakers)

Note the number of times that each property's getter and setter methods are executed
in the Playground. In this case, the sneakers getter method is executed two times, as
shown in the following screenshot:

Chapter 3

[65]

We can combine a property with the getter and setter methods
along with access protection mechanisms and a related property
that acts as an underlying field to have absolute control on how
values are set to and retrieved from the underlying field.

Understanding property observers
Each superhero has a running speed score that determines how fast he will move
when running; therefore, we will add a public runningSpeedScore property. We
will change the initializer code to set an initial value for the new property. However,
this new property has some specific requirements.

Whenever the running speed score is about to change, it will be necessary to trigger
a few actions. In addition, we have to trigger other actions after the value for this
property changes. We might consider adding code to a setter method combined with
a related property, run a code before we set the new value to the related property,
and then run a code after we set the new value. However, Swift allows us to take
advantage of property observers that make it easier to run code before and after the
running speed score changes.

We can define a public runningSpeedScore property with both the willSet and
didSet methods. After we create an instance of the new version of the SuperHero
class and initialize the new property with its initial value, the code in the willSet
method will be executed when we assign a new value to the property and before
Swift sets the new value to the property. Thus, at the time the willSet method
executes the code, the property still has the previous value, and we can access the
new value that will be set by checking the value of the newValue implicit parameter.

Then, when Swift changes the value of the property, the didSet method will be
executed. Thus, at the time the didSet method executes the code, the property has
the new value.

The code defined in the willSet and/or didSet methods
only runs when we change the value of the property after its
initial value is set. Thus, property observers don't run when the
property is initialized.

Encapsulation of Data with Properties

[66]

The following lines show the code that defines the new public runningSpeedScore
property with the property observers and the new code for the initializer. Note
that the code for the rest of the class isn't included in order to avoid repeating the
previous code:

public var runningSpeedScore: Int {
 willSet {
 print("The current value for running speed score is:\
(runningSpeedScore)")
 print("I will set the new value for running speed score to: \
(newValue)")
 }
 didSet {
 print("I have set the new value for running speed score to: \
(runningSpeedScore)")
 }
}

init(name: String, birthYear: Int, sneakers: String,
runningSpeedScore: Int) {
 self.name = name
 self.birthYear = birthYear
 self.runningSpeedScore = runningSpeedScore
 self.sneakers = sneakers
}

The willSet method prints the current value for runningSpeedScore and
the new value that will be set to this property and received in the newValue
implicit parameter. The didSet method prints the new value that is set to the
runningSpeedScore property.

Swift makes it easy to insert the value of an expression into
a string by placing the expression within parentheses after a
backslash (\). We took advantage of this syntax in the previous
code to print the values of both runningSpeedScore and
newValue as part of a message string.

The initializer for the class added a new argument that provides an initial value
for the new runningSpeedScore property. The next lines create an instance of the
SuperHero class and assign a value to the runningSpeedScore property. Note that
both the willSet and didSet methods were executed only once because the code
didn't run when we initialized the value for the property:

var superBoy = SuperHero(name: "Super-Boy", birthYear: 2008, sneakers:
"Running 2016", runningSpeedScore: 5)

Chapter 3

[67]

print(superBoy.sneakers)
superBoy.runningSpeedScore = 7

The Playground displays a message indicating the current value for the property
before the new value that is set, that will be set, and finally, that was set, as shown in
the next screenshot:

When we take advantage of property observers, we cannot use getters
and/or setters at the same time. Thus, we cannot define getter and/or
setter methods when we use the willSet and/or didSet methods
for a property. Swift doesn't make it possible to combine them.

We can use the didSet method to keep the value of a property in a valid range. For
example, we can define the runningSpeedScore property with a didSet method
that transforms the values lower than 0 to 0 and values higher than 50 to 50. The
following code will do the job. We have to replace the previous code that declared
the runningSpeedScore property with the new code:

public var runningSpeedScore: Int {
 didSet {
 if (runningSpeedScore < 0) {
 runningSpeedScore = 0
 } else if (runningSpeedScore > 50) {
 runningSpeedScore = 50
 }
 }
}

Encapsulation of Data with Properties

[68]

The next lines create an instance of the SuperHero class and try to assign different
values to the runningSpeedScore property. After we specified -5 as the desired
value for the runningSpeedScore property, we printed its actual value, and the
result was 0. After we specified 200, the actual printed value was 50. Finally, after
we specified 6, the actual printer value was 6, as shown in the next screenshot. The
code in the didSet method did its job; we can control all the values accepted for the
property. Note that the didSet method doesn't execute one more time when we set
the new value for the property within the didSet method.

We can use the didSet method when we want to validate the values accepted for
a property after it is initialized. Remember that the didSet method isn't executed
when the property is initialized. Thus, if we execute the following lines, the printed
value will be 135, and the property will be initialized with an invalid value:

var superBoy = SuperHero(name: "Super-Boy", birthYear: 2008, sneakers:
"Running 2016", runningSpeedScore: 135)
print(superBoy.runningSpeedScore)

Chapter 3

[69]

Transforming values with setters and
getters
We can define a property with a setter method that transforms the values that will
be set as valid values for a related property. The getter method would just need to
return the value of the related property to generate a property that will always have
valid values, even when it is initialized. This way, we can make sure that whenever
we require the property value, we will retrieve a valid value.

The following code replaces the previously declared runningSpeedScore property
declaration that worked with a property observer—specifically, a didSet method. In
this case, the setter transforms the values lower than 0 to 0 and values higher than
50 to 50. The setter stores either the transformed or original value that is in a valid
range in the related runningSpeedScoreField property. The getter returns the value
of the related runningSpeedScoreField property—that is, the private property that
always stores a valid value. We have to replace the previous code that declared the
runningSpeedScore property with the new code:

private var runningSpeedScoreField: Int = 0
public var runningSpeedScore: Int {
 get {
 return runningSpeedScoreField
 }
 set {
 if (newValue < 0) {
 runningSpeedScoreField = 0
 } else if (newValue > 50) {
 runningSpeedScoreField = 50
 } else {
 runningSpeedScoreField = newValue
 }
 }
}

Now, let's execute the following lines in the Playground:

var superBoy = SuperHero(name: "Super-Boy", birthYear: 2008, sneakers:
"Running 2016", runningSpeedScore: 135)
print(superBoy.runningSpeedScore)

Encapsulation of Data with Properties

[70]

If we execute the following lines, the printed value will be 50, and the property
will be initialized with a valid value because the code defined in the setter method
will transform 135 into the maximum accepted value, which is 50, as seen in the
following screenshot:

When we initialize a property that has a setter method, Swift
calls the setter for the initialization value.

Using type properties to create values
shared by all the instances of a class
The LionSuperHero class is a blueprint for lions that are superheroes. This class
should inherit from the SuperHero class, but we will forget about inheritance and
other super types of superheroes for a while and use the LionSuperHero class to
understand the difference between type and instance properties.

Chapter 3

[71]

We will define the following type properties to store the values that are shared by all
the members of the lion superhero group:

•	 averageStrength: This is the average strength for the superhero group.
•	 averageRunningSpeed: This is the average running speed for the superhero

group.
•	 attackPower: This is the attack power score for the superhero group.
•	 defensePower: This is the defense power score for the superhero group.
•	 warriorScore: This is the score that combines the previously mentioned

values in a single value that determines the warrior score for the superhero
group. It is a calculated type property.

The following lines create a LionSuperHero class, declare the previously enumerated
type properties, and two additional instance public properties, namely name and
runningSpeedScore:

public class LionSuperHero {

 public static var averageStrength: Int = 10
 public static var averageRunningSpeed: Int = 9
 public static var attackPower: Int = 10
 public static var defensePower: Int = 6
 public static var warriorScore: Int {
 return (averageStrength * 3) + (attackPower * 3) +
(averageRunningSpeed * 2) + (defensePower * 2)
 }

 public let name: String

 private var runningSpeedScoreField: Int = 0
 public var runningSpeedScore: Int {
 get {
 return runningSpeedScoreField
 }
 set {
 if (newValue < 0) {
 runningSpeedScoreField = 0
 } else if (newValue > 50) {
 runningSpeedScoreField = 50
 } else {
 runningSpeedScoreField = newValue
 }
 }

Encapsulation of Data with Properties

[72]

 }

 init(name: String, runningSpeedScore: Int) {
 self.name = name
 self.runningSpeedScore = runningSpeedScore
 }
}

The code initializes each type property in the same line that declares the field. The
only difference between a type and instance property is the inclusion of the static
keyword to indicate that we want to create a type property.

The following line prints the value of the previously declared averageStrength type
property. Note that we didn't create any instance of the LionSuperHero class and
that we specified the type property name after the class name and a dot:

print(LionSuperHero.averageStrength)

Swift doesn't allow us to access a type property from an instance; therefore, we
always have to use a class name to access a type property.

You can assign a new value to any type property declared with the static and var
keywords. For example, the following lines assign 9 to the averageStrength type
property and print the new value:

LionSuperHero.averageStrength = 9
print(LionSuperHero.averageStrength)

The following screenshot shows the results of executing the preceding code in the
Playground:

Chapter 3

[73]

We can easily convert a type property into an immutable type property by replacing
the var keyword with the let one. For example, we don't want the class users to
change the attack power for the superhero group; therefore, we can change the line
that declared the attackPower type property with the following line that creates an
immutable type property or read-only class constant:

public static let attackPower: Int = 10

Encapsulation of Data with Properties

[74]

The warriorScore type property is a calculated type property that only defines a
getter method; therefore, it is a read-only calculated type property. Note that the
declaration uses the simplified version of a property that has just a getter method
and simply returns the calculated value after the type (Int):

public static var warriorScore: Int {
 return (averageStrength * 3) + (attackPower * 3) +
(averageRunningSpeed * 2) + (defensePower * 2)
}

The next lines are equivalent to the previous warriorScore type property
declaration. In this case, the declaration uses the get method instead of just returning
the calculated value:

public static var warriorScore: Int {
 get {
 return (averageStrength * 3) + (attackPower * 3) +
(averageRunningSpeed * 2) + (defensePower * 2)
 }
}

The following line prints the value for this type property:

print(LionSuperHero.warriorScore)

The following lines create a new instance of the LionSuperHero class and use the
value for the averageRunningSpeed type property in a sum that specifies the value
for the runningSpeedScore argument:

var superTom = LionSuperHero(name: "Tom", runningSpeedScore:
LionSuperHero.averageRunningSpeed + 1)

Creating mutable classes
So far, we worked with different type of properties. When we declare stored instance
properties with the var keyword, we create a mutable instance property, which
means that we can change their values for each new instance we create. When we
create an instance of a class that defines many public-stored properties, we create a
mutable object, which is an object that can change its state.

Chapter 3

[75]

For example, let's think about a class named MutableVector3D that represents a
mutable 3D vector with three public-stored properties: x, y, and z. We can create a
new MutableVector3D instance and initialize the x, y, and z attributes. Then, we
can call the sum method with the delta values for x, y, and z as arguments. The delta
values specify the difference between the existing and new or desired value. So, for
example, if we specify a positive value of 30 in the deltaX parameter, it means we
want to add 30 to the X value. The following lines declare the MutableVector3D class
that represents the mutable version of a 3D vector in Swift:

public class MutableVector3D {
 public var x: Float
 public var y: Float
 public var z: Float

 init(x: Float, y: Float, z: Float) {
 self.x = x
 self.y = y
 self.z = z
 }

 public func sum(deltaX: Float, deltaY: Float, deltaZ: Float) {
 x += deltaX
 y += deltaY
 z += deltaZ
 }

 public func printValues() {
 print("X: \(self.x), Y: \(self.y), Z: \(self.z))")
 }
}

Note that the declaration of the sum instance method uses the func keyword,
specifies the arguments with their types enclosed in parentheses, and then declares
the body for the method enclosed in curly brackets. The public sum instance method
receives the delta values for x, y, and z (deltaX, deltaY and deltaZ) and mutates
the object, which means that the method changes the values of x, y, and z. The public
printValues method prints the values of the three instance-stored properties: x, y,
and z.

Encapsulation of Data with Properties

[76]

The following lines create a new MutableVector3D instance method called
myMutableVector, initialized with the values for the x, y, and z properties. Then,
the code calls the sum method with the delta values for x, y, and z as arguments
and finally calls the printValues method to check the new values after the object
mutated with the call to the sum method:

var myMutableVector = MutableVector3D(x: 30, y: 50, z: 70)
myMutableVector.sum(20, deltaY: 30, deltaZ: 15)
myMutableVector.printValues()

The results of the execution in the Playground are shown in the following screenshot:

The initial values for the myMutableVector fields are 30 for x, 50 for y, and 70 for z.
The sum method changes the values of the three instance-stored properties; therefore,
the object state mutates as follows:

•	 myMutableVector.X mutates from 30 to 30 + 20 = 50
•	 myMutableVector.Y mutates from 50 to 50 + 30 = 80
•	 myMutableVector.Z mutates from 70 to 70 + 15 = 85

The values for the myMutableVector fields after the call to the sum method are 50
for x, 80 for y, and 85 for z. We can say that the method mutated the object's state;
therefore, myMutableVector is a mutable object and an instance of a mutable class.

Chapter 3

[77]

It's a very common requirement to generate a 3D vector with all the values initialized
to 0—that is, x = 0, y = 0, and z = 0. A 3D vector with these values is known as
an origin vector. We can add a type method to the MutableVector3D class named
originVector to generate a new instance of the class initialized with all the values
in 0. Type methods are also known as class or static methods in other object-oriented
programming languages. It is necessary to add the class keyword before the func
keyword to generate a type method instead of an instance. The following lines define
the originVector type method:

public class func originVector() -> MutableVector3D {
 return MutableVector3D(x: 0, y: 0, z: 0)
}

The preceding method returns a new instance of the MutableVector3D class
with 0 as the initial value for all the three elements. The following lines call the
originVector type method to generate a 3D vector, the sum method for the
generated instance, and finally, the printValues method to check the values for the
three elements on the Playground:

var myMutableVector2 = MutableVector3D.originVector()
myMutableVector2.sum(5, deltaY: 10, deltaZ: 15)
myMutableVector2.printValues()

The following screenshot shows the results of executing the preceding code in the
Playground:

Encapsulation of Data with Properties

[78]

Building immutable classes
Mutability is very important in object-oriented programming. In fact, whenever we
expose mutable properties, we create a class that will generate mutable instances.
However, sometimes a mutable object can become a problem, and in certain
situations, we want to avoid the objects to change their state. For example, when
we work with concurrent code, an object that cannot change its state solves many
concurrency problems and avoids potential bugs.

For example, we can create an immutable version of the previous MutableVector3D
class to represent an immutable 3D vector. The new ImmutableVector3D class has
three immutable instance properties declared with the let keyword instead of the
previously used var keyword: x, y, and z. We can create a new ImmutableVector3D
instance and initialize the immutable instance properties. Then, we can call the sum
method with the delta values for x, y, and z as arguments.

The sum public instance method receives the delta values for x, y, and z (deltaX,
deltaY, and deltaZ), and returns a new instance of the same class with the values of
x, y, and z initialized with the results of the sum. The following lines show the code
of the ImmutableVector3D class:

public class ImmutableVector3D {
 public let x: Float
 public let y: Float
 public let z: Float

 init(x: Float, y: Float, z: Float) {
 self.x = x
 self.y = y
 self.z = z
 }

 public func sum(deltaX: Float, deltaY: Float, deltaZ: Float) ->
ImmutableVector3D {
 return ImmutableVector3D(x: x + deltaX, y: y + deltaY, z: z +
deltaZ)
 }

 public func printValues() {
 print("X: \(self.x), Y: \(self.y), Z: \(self.z))")
 }

 public class func equalElementsVector(initialValue: Float) ->
ImmutableVector3D {

Chapter 3

[79]

 return ImmutableVector3D(x: initialValue, y: initialValue, z:
initialValue)
 }
 public class func originVector() -> ImmutableVector3D {
 return equalElementsVector(0)
 }
}

In the new ImmutableVector3D class, the sum method returns a new instance of the
ImmutableVector3D class—that is, the current class. In this case, the originVector
type method returns the results of calling the equalElementsVector type method
with 0 as an argument.

The equalElementsVector type method receives an initialValue argument for all
the elements of the 3D vector, creates an instance of the actual class, and initializes
all the elements with the received unique value. The originVector type method
demonstrates how we can call another type method within a type method. Note that
both the type methods specify the returned type with -> followed by the type name
(ImmutableVector3D) after the arguments enclosed in parentheses. The following
line shows the declaration for the equalElementsVector type method with the
specified return type:

public class func equalElementsVector(initialValue: Float) ->
ImmutableVector3D {

The following lines call the originVector type method to generate an immutable 3D
vector named vector0 and the sum method for the generated instance and save the
returned instance in the new vector1 variable. The call to the sum method generates
a new instance and doesn't mutate the existing object:

var vector0 = ImmutableVector3D.originVector()
var vector1 = vector0.sum(5, deltaX: 10, deltaY: 15)
vector1.printValues()

The code doesn't allow the users of the ImmutableVector3D class
to change the values of the x, y, and z properties declared with the
let keyword. The code doesn't compile if you try to assign a new
value to any of these properties after they were initialized. Thus,
we can say that the ImmutableVector3D class is 100 percent
immutable.

www.allitebooks.com

http://www.allitebooks.org

Encapsulation of Data with Properties

[80]

Finally, the code calls the printValues method for the returned instance (vector1)
to check the values for the three elements on the Playground, as shown in the
following screenshot:

Chapter 3

[81]

The immutable version adds an overhead compared with the mutable version
because it is necessary to create a new instance of the class as a result of calling the
sum method. The previously analyzed mutable version just changed the values for
the attributes, and it wasn't necessary to generate a new instance. Obviously, the
immutable version has both a memory and performance overhead. However, when
we work with concurrent code, it makes sense to pay for the extra overhead to avoid
potential issues caused by mutable objects. We just have to make sure we analyze
the advantages and tradeoffs in order to decide which is the most convenient way of
coding our specific classes.

Exercises
Now that you understand instance properties, type properties, and methods, it is
time to spend some time in the Playground creating new classes and instances:

•	 Exercise 1: Create the mutable versions of the following three classes that we
analyzed in Chapter 1, Objects from the Real World to Playground:

°° Equilateral triangle (The EquilateralTriangle class)
°° Square (The Square class)
°° Regular hexagon (The RegularHexagon class)

•	 Exercise 2: Create the immutable versions of the previously created classes

Test your knowledge
1.	 You use the static var keywords to declare a:

1.	 Type property.
2.	 Instance property.
3.	 Read-only computed instance property.

2.	 You use the static let keywords to declare a:
1.	 Mutable type property.
2.	 Immutable instance property.
3.	 Immutable type property.

Encapsulation of Data with Properties

[82]

3.	 An instance-stored property:
1.	 Has its own and independent value for each instance of a class.
2.	 Has the same value for all the instances of a class.
3.	 Has the same value for all the instances of a class, unless it is accessed

through the class name followed by dot and the property name.

4.	 A class that exposes mutable properties will:
1.	 Generate immutable instances.
2.	 Generate mutable instances.
3.	 Generate mutable classes but immutable instances.

5.	 An instance method:
1.	 Cannot access instance properties.
2.	 Can access instance properties.
3.	 Can access only type properties.

Summary
In this chapter, you learned about the different members of a class or blueprint.
We worked with instance properties, type properties, instance methods, and type
methods. We worked with stored properties, getters, setters, and property observers,
and we took advantage of access modifiers to hide data.

We worked with superheroes and defined the shared properties of a specific type of
lion superhero using type properties. We also worked with mutable and immutable
versions of a 3D vector. You also understood the difference between mutable and
immutable classes.

Now that you have learned to encapsulate data with properties, you are ready to
create class hierarchies to abstract and specialize behavior, which is the topic of the
next chapter.

[83]

Inheritance, Abstraction,
and Specialization

In this chapter, you will learn about one of the most important topics of object-
oriented programming: inheritance. We will work with examples on how to
create class hierarchies, override methods, overload methods, work with inherited
initializers, and overload operators. In addition, you will learn about polymorphism
and basic typecasting.

Creating class hierarchies to abstract
and specialize behavior
So far, we created classes to generate blueprints for real-life objects. Now, it is time to
take advantage of the more advanced features of object-oriented programming and
start designing a hierarchy of classes instead of working with isolated classes. First,
we will design all the classes that we need based on the requirements, and then, we
will use the features available in Swift to code the design.

We worked with classes to represent superheroes. Now, let's imagine that we have
to develop a very complex app that requires us to work with hundreds of types
of domestic animals. We already know that the app will start working with the
following four domestic animal species:

•	 Dog (Canis lupus familiaris)
•	 Guinea pig (Cavia porcellus)
•	 Domestic canary (Serinus canaria domestica)
•	 Cat (Felis silvestris catus)

Inheritance, Abstraction, and Specialization

[84]

The previous list provides the scientific name for each domestic animal species. Of
course, we will work with the most common name for each species and just have the
scientific name as a type property. Thus, we won't have a complex class name, such
as CanipsLupusFamiliaris, but we will use Dog instead.

Initially, we have to work with a limited number of breeds for the previously
enumerated four domestic animal species. Additionally, in the future, it will be
necessary to work with other members of the listed domestic animal species, other
domestic mammals, and even reptiles and birds that don't belong to the domestic
animal species. Thus, our object-oriented design must be ready to be expanded
for the future requirements. In fact, you will understand how object-oriented
programming makes it easy to expand an existing design for future requirements.

Of course, we don't want our object-oriented design to model a complete
representation of the animal kingdom and its classification. We just want to create
the necessary classes to have a flexible model that can be easily expanded. The
animal kingdom is extremely complex, and we will keep our focus in just a few
members of this huge family.

The examples will also allow you to understand that object-oriented
programming doesn't sacrifice flexibility. We can start with a simple
class hierarchy that can be expanded as the application's complexity
increases and we have more information about new requirements.

In this case, we will need many classes to represent a complex classification of
animals and their breeds. The following list enumerates the classes that we will
create and their descriptions:

•	 Animal: This is a class that generalizes all the members of the animal
kingdom. Dogs, guinea pigs, domestic canaries, cats, reptiles, and birds have
one thing in common: they are animals. Thus, it makes sense to create a class
that will be the baseline for the different classes of animals that we may have
to represent in our object-oriented design.

•	 Mammal: This is a class that generalizes all the mammalian animals. Mammals
are different from reptiles, amphibians, birds, and insects. As we already
know that we will also have to model reptiles and birds, we will create a
Mammal class at this level.

Chapter 4

[85]

•	 Bird: This is a class that generalizes all birds. Birds are different from
mammals, reptiles, amphibians, and insects. We already know that we will
also have to model reptiles and birds. In fact, a domestic canary is a bird, so
we will create a Bird class at the same level as Mammal.

•	 DomesticMammal: This is a subclass of Mammal. The tiger (Panthera tigris) is
the largest and heaviest living species of the cat family. A tiger is a cat, but it
is completely different from a domestic cat. The initial requirements tell us
that we will work with both domestic and wild animals, so we will create a
class that generalizes all domestic mammal animals. In the future, we will
have a WildMammal subclass that will generalize all the wild mammalian
animals.

•	 DomesticBird: The ostrich (Struthio camelus) is the largest living bird.
However, obviously, an ostrich is completely different from a domestic
canary. As we will work with both domestic and wild birds, we will create
a class that generalizes all domestic birds. In the future, we will have a
WildBird class that will generalize all wild birds.

•	 Dog: We could go on specializing the DomesticMammal class with additional
subclasses until we reach a Dog class. For example, we might create a
CanidCarnivorianDomesticMammal subclass and then make the Dog class
inherit from it. However, the kind of app we have to develop doesn't require
any intermediary class between DomesticMammal and Dog. At this level
we will also have a Cat class. The Dog class generalizes the properties and
methods required for a dog in our application. Subclasses of the Dog class
will represent the different families of the dog breed. For example, one of the
main differences between a dog and a cat in our application domain is that a
dog barks and a cat meows.

•	 Cat: The Cat class generalizes the properties and methods required for a cat
in our application. Subclasses of the Cat class will represent the different
families of the cat breed. In this case, we create a class to represent domestic
cats, so Cat is a subclass of DomesticMammal.

•	 GuineaPig: The GuineaPig class generalizes all the properties and methods
required for a guinea pig in our application.

•	 TerrierDog: Each dog breed belongs to a family. We will work with a huge
amount of dog breeds, and some profile values determined by their family
are very important for our application. Thus, we will create a subclass of
Dog for each family. In this case, the sample TerrierDog class represents the
Terrier family.

Inheritance, Abstraction, and Specialization

[86]

•	 SmoothFoxTerrier: Finally, a subclass of a dog breed family class will
represent a specific dog breed that belongs to the family. Its breed determines
the dog's looks and behavior. A dog that belongs to the Smooth Fox Terrier
breed is completely different from a dog that belongs to the Tibetan Spaniel
breed. Thus, we will create instances of the classes at this level to give life
to each dog in our application. In this case, the SmoothFoxTerrier class
models an animal, a mammal, domestic mammal, dog, and Terrier family
dog—specifically, a dog that belongs to the Smooth Fox Terrier breed.

•	 DomesticCanary: The DomesticCanary class generalizes the properties and
methods required for a domestic canary in our application.

Each class listed in the previous list represents a specialization of the previous
class—that is, its superclass, parent class, or superset—as shown in the following
table:

Superclass, parent class, or superset Subclass, child class, or subset
Animal Mammal

Animal Bird

Mammal DomesticMammal

Bird DomesticBird

DomesticMammal Dog

DomesticMammal Cat

DomesticMammal GuineaPig

DomesticBird DomesticCanary

Dog TerrierDog

TerrierDog SmoothFoxTerrier

Our application requires many members of the Terrier family, so the
SmoothFoxTerrier class will not be the only subclass of TerrierDog. In the future,
we will have the following three additional subclasses of TerrierDog:

•	 AiredaleTerrier: This is the Airedale Terrier breed
•	 BullTerrier: This is the Bull Terrier breed
•	 CairnTerrier: This is the Cairn Terrier breed

Chapter 4

[87]

The following UML diagram shows the previous classes organized in a class
hierarchy:

Inheritance, Abstraction, and Specialization

[88]

Understanding inheritance
When a class inherits from another class, it inherits all the elements that compose the
parent class, which is also known as a superclass. The class that inherits the elements
is known as a subclass. For example, the Mammal subclass inherits all the properties,
instance fields or instance attributes, and class fields or class attributes defined in the
Animal superclass.

The Animal abstract class is the baseline for our class hierarchy. We say that it is an
abstract class because we shouldn't create instances of the Animal class; instead, we
must create instances of the specific subclasses of Animal. However, we must take
into account that Swift doesn't allow us to declare a class as an abstract class.

We require each Animal to specify its age, so we will have to specify the age when
we create any Animal—that is, any instance of any Animal subclass. The class will
define an age property and display a message whenever an animal is created. The
class defines three type properties that specify the number of legs, the average
number of children, and the ability to fly. The first two type properties will be
initialized to 0, and the last one to false. The subclasses will have to set appropriate
values for these type properties. The Animal class defines the following three
instance methods:

•	 Print legs: This prints a representation of the specified number of legs.
Guinea pigs have legs that are very different from the ones that dogs have.

•	 Print children: This prints a representation of the specific average number of
children.

•	 Print age: This prints the animal's age.

In addition, we want to be able to compare the age of the different Animal instances
using the following operators:

•	 Less than (<)
•	 Less than or equal to (<=)
•	 Greater than (>)
•	 Greater than or equal to (>=)

We have to print a message whenever we create any Animal instance. We won't
create instances of the Animal class but those of its different subclasses. When
we inherit from a class, we also inherit its initializer, so we can call the inherited
initializer to run the initialization code for the base class. This way, it is possible to
know when an instance of Animal is created, even when it is a class that we don't
use to create instances. In fact, all the instances of the subclasses of Animal will be
instances of Animal too.

Chapter 4

[89]

The Mammal class inherits from Animal. We require each Mammal class to specify its
age and whether it is pregnant or not when creating an instance. The class inherits
the age property from the Animal superclass, so it is only necessary to add a property
to specify whether it is pregnant or not. Note that we will not specify the gender
at any time in order to keep things simple. If we added gender, we would need a
validation to avoid a male being pregnant. Right now, our focus is on inheritance.
The class displays a message whenever a mammalian animal is created—that is,
whenever its initializer is executed.

Each class inherits from one class, so each new class we will
define has just one superclass. In this case, we will always
work with single inheritance.

The DomesticMammal class inherits from Mammal. We require each DomesticMammal
class to specify its name and favorite toy. Any domestic mammal has a name and
it always picks a favorite toy. Sometimes, the favorite toy is not exactly the toy we
would like them to pick (our shoes, sneakers, or electronic devices), but let's keep the
focus on our classes. It is necessary to add a read-only property to allow access to the
name and a read/write property for the favorite toy. You never change the name of a
domestic mammal, but you can force it to change its favorite toy. The class displays a
message whenever a domestic mammalian animal is created.

The talk instance method will display a message indicating the domestic mammal's
name concatenated with the word talk. Each subclass must make the specific
domestic mammal talk in a different way. A parrot can really talk, but we will
consider a dog's bark and a cat's meow as if they were talking.

The Dog class inherits from DomesticMammal and specifies 4 as the value for the
number of legs. The Animal class, that is the Mammal superclass, defined this type
attribute with 0 as the value, but Dog overwrites the inherited attribute with 4. The
class displays a message whenever a dog is created. The average number of children
will be specified in each subclass of Dog that determines a dog breed.

We want the dogs to be able to bark, so we need a bark method. The method has to
allow a dog to do the following things:

•	 Bark happily just once
•	 Bark happily a specific number of times
•	 Bark happily at another domestic mammal with a name just once
•	 Bark happily at another domestic mammal with a name a specific

number of times
•	 Bark angrily just once

Inheritance, Abstraction, and Specialization

[90]

•	 Bark angrily a specific number of times
•	 Bark angrily at another domestic mammal with a name just once
•	 Bark angrily at another domestic mammal with a name a specific number of

times

We can have just one bark method with optional arguments or many bark methods.
Swift provides many mechanisms to solve the challenges of the different ways in
which a dog must be able to bark.

When we call the talk method for any dog, we want it to bark happily once. We
don't want to display the message defined in the talk method introduced in the
DomesticMammal class. Thus, the Dog class must overwrite the inherited talk
method with its own definition.

We want to know the breed and breed family to which a dog belongs. Thus, we
will define both the breed and breed family type properties. Each subclass of Dog
must specify the appropriate values for these type properties. In addition, two type
methods will allow us to print the dog's breed and breed family.

The TerrierDog class inherits from Dog and specifies Terrier as the value for the
breed family. The class displays a message whenever a TerrierDog class is created.

Finally, the SmoothFoxTerrier class inherits from TerrierDog and specifies Smooth
Fox Terrier as the value for the breed. The class displays a message whenever a
SmoothFoxTerrier class is created.

First, we will create a base Animal class in Swift, and then, we will use simple
inheritance to create the subclasses. We will override methods and overload
comparison operators to be able to compare different instances of a specific class and
its subclasses. We will take advantage of polymorphism, which is a very important
feature in object-oriented programming.

Declaring classes that inherit from
another class
The following lines show the code for the Animal base class in Swift. The class
header doesn't specify a base class, so this class will become our base class for the
other classes:

public class Animal {
 public static var numberOfLegs: Int {
 get {

Chapter 4

[91]

 return 0;

 }
 }
 public static var averageNumberOfChildren: Int {
 get {
 return 0;
 }
 }

 public static var abilityToFly: Bool {
 get {
 return false;
 }
 }

 public var age: Int

 init(age : Int) {
 self.age = age
 print("Animal created")
 }

 public static func printALeg() {
 preconditionFailure("The pringALeg method must be overriden")
 }

 public func printLegs() {
 for _ in 0..<self.dynamicType.numberOfLegs {
 self.dynamicType.printALeg()
 }
 print(String())

 }

 public static func printAChild() {
 preconditionFailure("The printChild method must be overriden")
 }

 public func printChildren() {
 for _ in 0..<self.dynamicType.averageNumberOfChildren {
 self.dynamicType.printAChild()
 }
 print(String())

Inheritance, Abstraction, and Specialization

[92]

 }

 public func printAge() {
 print("I am \(age) years old.")
 }
}

The preceding class declares two read-only type-computed properties and both
return 0 as their value: numberOfLegs and averageNumberOfChildren. In addition,
the class declares another read-only type computed property that returns false
as its value: abilityToFly. We will be able to return different values for these
properties in the different subclasses of Animal.

The initializer requires an age value to create an instance of the class and prints
a message indicating that an animal is created. The class declares an age stored
instance property. It defines the following three instance methods:

•	 printAge: This displays the age based on the age value
•	 printALeg: This uses preconditionFailure to indicate that each subclass

must override this type method with a specific implementation that prints a
single leg for the animal

•	 printAChild: This uses preconditionFailure to indicate that each subclass
must override this type method with a specific implementation that prints a
single child for the animal.

In addition, the class declares the following two type methods:

•	 printLegs: This calls the printALeg method the number of times specified
in the numberOfLegs type property. The method uses the dynamicType
expression to retrieve the runtime type as a value and access the type
property for the specific type that we used to created the instance.

•	 printChildren: This calls the printAChild method the number of times
specified in the averageNumberOfChildren type property. As it happened in
the pringLegs property, the code uses the dynamicType expression to access
the necessary type property.

If we execute the following line in the Playground after declaring the Animal class,
Swift will generate a fatal error and indicate that the printAChild type method must
be overridden, as shown in the subsequent screenshot:

Animal.printAChild()

Chapter 4

[93]

We have to add additional functions to allow us to compare the ages of different
Animal instances using operators. We will add the necessary code to perform this
task later.

The following lines show the code for the Mammal class that inherits from Animal.
Note the class keyword followed by the class name Mammal, a colon (:), and
Animal, which is the superclass from which it inherits, in the class definition:

public class Mammal: Animal {
 public var isPregnant: Bool = false

 private func initialize(isPregnant: Bool) {
 self.isPregnant = isPregnant
 print("Mammal created")
 }

 public override init(age: Int) {

Inheritance, Abstraction, and Specialization

[94]

 super.init(age: age)
 initialize(false)
 }

 public init(age: Int, isPregnant: Bool) {
 super.init(age: age)
 initialize(isPregnant)
 }
}

The Mammal class inherits the members from the previously declared Animal class
and adds a new Bool stored property initialized with the default false value. Note
that this class declares two initializers. One of the initializers requires an age value to
create an instance of the class, as it happened with the Animal initializer. The other
initializer requires the age and isPregnant values. If we create an instance of this
class with just one age argument, Swift will use the first initializer. If we create an
instance of this class with two arguments—an Int value for age and a Bool value
for isPregnant—Swift will use the second initializer. Thus, we have overloaded
the initializer and provided two different initializers. Of course, we could also take
advantage of optional parameters. However, in this case, we want to overload
initializers.

The two initializers use the super keyword to call the inherited init method
from the base class or superclass—that is, the init method defined in the Animal
class. Once the superclass' initializer finishes its execution, each initializer calls the
initialize private method that initializes the isPregnant stored property with the
value received as an argument or the default false value in case it isn't specified.

We will use base to reference the superclass.

One of the initializers uses the override keyword to override the initializer with
the same declaration that is included in the superclass. We already had an initializer
with an age argument of type Int in the Animal superclass. The other initializer
doesn't require the override keyword because there is no initializer declared in the
Animal superclass with the same arguments.

Chapter 4

[95]

The following lines create an instance of the Mammal class in the Playground using
the initializer that just requires an age argument:

var bat = Mammal(age: 3)
bat.printAge()
print(bat.isPregnant)

The following lines show the results of the preceding lines. When the superclass
initializer is executed, it prints Animal created, and after this happens, the
initializer defined in the Mammal class prints Mammal created. The call to the
printAge method defined in the Animal superclass prints the actual value of the age
property in this instance of the Mammal class. Finally, a line prints the value of the
isPregnant property that was initialized with false because we didn't specify a
value for it:

Animal created
Mammal created
I am 3 years old.
false

The following lines create another instance of the Mammal class in the Playground
using the initializer that requires two arguments—age and isPregnant:

var cat = Mammal(age: 6, isPregnant: true)
cat.printAge()
print(cat.isPregnant)

The following lines show the results of the preceding lines. The last line prints the
value of the isPregnant property that was initialized with true in the initializer
defined in the Mammal class:

Animal created
Mammal created
I am 6 years old.
true

Inheritance, Abstraction, and Specialization

[96]

The following screenshot shows the results of executing the preceding code in the
Playground:

Overriding and overloading methods
Swift allows us to define a method with the same name many times with different
arguments. This feature is known as method overloading. In some cases, as in our
previous example, we can overload the initializer. However, it is very important to
mention that a similar effect might be achieved with optional parameters or default
values for specific arguments.

For example, we can take advantage of method overloading to define multiple
versions of the bark method that we have to define in the Dog class. However, it is
very important to avoid code duplication when we overload methods.

Chapter 4

[97]

Sometimes, we define a method in a class, and we know that a subclass might need
to provide a different version of the method. When a subclass provides a different
implementation of a method defined in a superclass with the same name, arguments,
and return type, we say that we are overriding a method. When we override a
method, the implementation in the subclass overwrites the code provided in the
superclass.

It is also possible to override methods related to properties,
such as getters and setters, and other members of a class in
the subclasses.

The following lines show the code for the DomesticMammal class that inherits from
Mammal. Note the class keyword followed by the class name DomesticMammal, a
colon (:), and Mammal, which is the superclass from which it inherits, in the class
definition:

public class DomesticMammal: Mammal {
 public var name = String()
 public var favoriteToy = String()

 private func initialize(name: String, favoriteToy: String) {
 self.name = name
 self.favoriteToy = favoriteToy
 print("DomesticMammal created")
 }

 public init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age)
 initialize(name, favoriteToy: favoriteToy)
 }

 public init(age: Int, isPregnant: Bool, name: String, favoriteToy:
String) {
 super.init(age: age, isPregnant: isPregnant)
 initialize(name, favoriteToy: favoriteToy)
 }

 public func talk() {
 print("\(name): talks")
 }
}

Inheritance, Abstraction, and Specialization

[98]

The preceding class declares two initializers. One of them requires age, name,
and favoriteToy to create an instance of a class. The other initializer adds an
isPregnant argument. As it happened in the Mammal class, the code within each
initializer uses super.init to call the appropriate superclass' initializer. In one
case, we just need the age value received as an argument, and in the other case, it is
also necessary to add the isPregnant value. Once the superclass' initializer finishes
its execution, the initializers call the initialize private method that initializes
the name and favoriteToy properties. After the method finishes initializing the
properties, it prints a message indicating that a DomesticMammal class is created. The
following lines show both initializer declarations:

public init(age: Int, name: String, favoriteToy: String) {
public init(age: Int, isPregnant: Bool, name: String, favoriteToy:
String) {

The class defines two stored properties: name and favoriteToy. The talk instance
method displays a message with the name value followed by a colon (:) and talks.
Note that we will be able to override this method in any subclass of DomesticMammal
because each domestic mammal has a different way of talking.

The following lines create an instance of the DomesticMammal class in the
Playground using the initializer that requires three arguments—age, name, and
favoriteToy:

var scooby = DomesticMammal(age: 5, name: "Scooby", favoriteToy:
"Scarf")
scooby.printAge()
scooby.talk()
print(scooby.favoriteToy)
print(scooby.isPregnant)

The following lines show the results of the preceding lines. We can detect the
chained execution of the initializers in the base class (Animal), the superclass
(Mammal), and the class (DomesticMammal). The first line displays Animal created,
the second line displays Mammal created, and the third line displays Domestic
Mammal created. The call to the printAge method defined in the base class (Animal)
prints the actual value of the age property in this instance of the DomesticMammal
class. The call to the talk method displays the message that starts with the name
value. A line prints the value of the favoriteToy property that is defined in this
class, and then, another line prints the value of the inherited isPregnant property.
In this case, the value of the isPregnant property was initialized with false because
we didn't specify a value for it:

Animal created
Mammal created

Chapter 4

[99]

DomesticMammal created
I am 5 years old.
Scooby: talks
Scarf
false

The following lines create another instance of the DomesticMammal class in the
Playground using the initializer that requires four arguments—age, isPregnant,
name, and favoriteToy:

var lady = DomesticMammal(age: 6, isPregnant: true, name: "Lady",
favoriteToy: "Teddy")
lady.printAge()
lady.talk()
print(lady.favoriteToy)
print(lady.isPregnant)

The following lines show the results of the preceding lines. The last line prints the
value of the isPregnant property that was initialized with true in the initializer
defined in the Mammal class and called through the initializers' chain:

Animal created
Mammal created
DomesticMammal created
I am 6 years old.
Lady: talks
Teddy
true

Inheritance, Abstraction, and Specialization

[100]

The following screenshot shows the results of executing the preceding code in the
Playground:

Dogs are domestic mammals that have four legs, and so far, nobody has discovered
a dog breed with the ability to fly. When we define the Dog class that inherits from
DomesticMammal, we will want to override the numberOfLegs type property to make
its getter return 4 and make sure that the abilityToFly type property will always
return false in Dog and any of its subclasses.

Chapter 4

[101]

Overriding properties
First, we will try to override the numberOfLegs type property that the Dog class will
inherit from the Animal base class. We will face an issue and solve it. The following
lines show the code for a simplified version of the Dog class that inherits from
DomesticMammal and just tries to override the numberOfLegs type property:

public class Dog: DomesticMammal {
 public static override var numberOfLegs: Int {
 get {
 return 4;
 }
 }
}

After we enter the previous lines in the Playground, we will see the following error
message in the line that tries to override the numberOfLegs type property: error:
class var overrides a 'final' class var. The following screenshot shows the
error in the Playground:

When we declare either a type property or method with the static
keyword in a base class, it isn't possible to override it in a subclass.
Thus, if we want to enable either a type property or method to
be overridden in the subclasses, it is necessary to use the class
keyword instead of static when we declare them in the base class.

We have to change the declaration of the type properties declared in the Animal
class to use the class keyword instead of the static keyword. The following lines
show the first lines of code of the new version of the Animal class that replaces
the declaration of the type properties to make it possible to override them in its
subclasses. Note that the rest of the code for the class after the declaration of the
three type properties remains without changes:

public class Animal {
 public class var numberOfLegs: Int {
 get {
 return 0;

Inheritance, Abstraction, and Specialization

[102]

 }
 }
 public class var averageNumberOfChildren: Int {
 get {
 return 0;
 }
 }

 public class var abilityToFly: Bool {
 get {
 return false;
 }
 }

...

}

After we make the preceding changes to the Animal class, we will notice that
the Playground will remove the error message in the declaration of the type
property we declared in the Dog class. In fact, we didn't have to make changes to
the type property declaration in the Dog class to remove the error. However, we
must take into account that the usage of the static keyword when declaring the
numberOfLegs type property in the Dog class that overrides the inherited property
from the Animal class prevents subclasses of Dog from overriding this property.
When we use static for overridden type properties, we are indicating to Swift that
we don't want the type property to be overridden any more. In this case, it makes
sense because so far, all the dogs that have been discovered have four legs. Thus, any
Dog subclass won't need to specify a different value for this type property.

The following line prints the value for the overridden type property:

print(Dog.numberOfLegs)

The next screenshot shows the results of printing the overridden type property in the
Playground after we edited the type properties declaration in the Animal class:

Chapter 4

[103]

Controlling whether subclasses can or
cannot override members
The following lines show the code for the complete Dog class that inherits from
DomesticMammal. Note that the following code replaces the previous Dog class that
just declared an overridden type property:

public class Dog: DomesticMammal {
 public static override var numberOfLegs: Int {
 get {
 return 4;
 }
 }

 public static override var abilityToFly: Bool {
 get {
 return false;
 }
 }

 public var breed: String {

 get {
 return "Just a dog"
 }
 }

 public var breedFamily: String {

 get {
 return "Dog"
 }
 }

 private func initializeDog() {
 print("Dog created")
 }

 public override init(age: Int, name: String, favoriteToy: String)
{
 super.init(age: age, name: name, favoriteToy: favoriteToy)

Inheritance, Abstraction, and Specialization

[104]

 initializeDog()
 }

 public override init(age: Int, isPregnant: Bool, name: String,
favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
favoriteToy: favoriteToy)
 initializeDog()
 }

 public final func printBreed() {
 print(breed)
 }

 public final func printBreedFamily() {
 print(breedFamily)
 }

 public func printBark(times: Int, otherDomesticMammal:
DomesticMammal?, isAngry: Bool) {
 var bark = "\(name)"
 if let unwrappedOtherDomesticMammal = otherDomesticMammal {
 bark += " to \(unwrappedOtherDomesticMammal.name): "
 } else {
 bark += ": "
 }
 if isAngry {
 bark += "Grr "
 }
 for _ in 0 ..< times {
 bark += "Woof "
 }
 print(bark)
 }

 public func bark() {
 printBark(1, otherDomesticMammal: nil, isAngry: false)
 }

 public func bark(times: Int) {
 printBark(times, otherDomesticMammal: nil, isAngry: false)
 }

 public func bark(times: Int, otherDomesticMammal: DomesticMammal)
{

Chapter 4

[105]

 printBark(times, otherDomesticMammal: otherDomesticMammal,
isAngry: false)
 }

 public func bark(times: Int, otherDomesticMammal: DomesticMammal,
isAngry: Bool) {
 printBark(times, otherDomesticMammal: otherDomesticMammal,
isAngry: isAngry)
 }

 public override func talk() {
 bark()
 }
}

The Dog class overrides the talk method inherited from DomesticMammal. As
it happened with the overridden properties in other subclasses, we just add the
override keyword to the method declaration. The method doesn't invoke the
method with the same name for its superclass; that is, we don't use the super
keyword to invoke the talk method defined in DomesticMammal. The talk method
in the Dog class invokes the bark method without parameters because dogs don't
talk; they bark.

The bark method is overloaded with four declarations with different arguments. The
following lines show the four different declarations included within the class body:

public func bark()
public func bark(times: Int)
public func bark(times: Int, otherDomesticMammal: DomesticMammal)
public func bark(times: Int, otherDomesticMammal: DomesticMammal,
isAngry: Bool)

This way, we can call any of the defined bark methods based on the provided
arguments. The four methods end up invoking the printBark private method with
different default values for the arguments not provided in the call to bark. The
method builds and prints a message according to the specified number of times
(times), the optional destination domestic mammal (otherDomesticMammal), and
whether the dog is angry or not (isAngry).

The Dog class overrides the abilityToFly type property with the static keyword.
This way, subclasses of dog won't be able to override this type property to return a
different value because there is no known dog breed that can fly.

Inheritance, Abstraction, and Specialization

[106]

The class also declares two read-only computed properties: breed and breedFamily.
We will override their getters in the subclasses of Dog. The printBreed
instance method displays the value of the breed computed property, and the
printBreedFamily instance method displays the value of the breedFamily
computed property. We won't override these instance methods in the subclasses
because we just need to override the values of the properties to achieve our goals;
therefore, we declared both methods with the final keyword. The following lines
show the declarations of both methods with the final keyword, which prevents
subclasses from overriding these methods:

public final func printBreed()
public final func printBreedFamily()

If we call these instance methods from an instance of a subclass of Dog, they will
execute the code specified in the Dog class, but the code will use the value of the
properties overridden in the subclasses. Thus, we will see the messages displaying
the values of the properties as defined in the subclasses.

We want to override both the printALeg and printAChild type methods inherited
from Animal in a subclass of Dog. We declared both properties with the static
keyword, so we will only be able to override them if we replace this keyword with
class. The following lines show the code that replaces the declaration of both
properties in the Animal class. Note that the rest of the code for the class remains
without changes:

public class func printALeg() {
 preconditionFailure("The pringALeg method must be overriden")
}

public class func printAChild() {
 preconditionFailure("The printChild method must be overriden")
}

The following lines show the code for the TerrierDog class that inherits from Dog:

public class TerrierDog: Dog {
 public override class var averageNumberOfChildren: Int {
 get {
 return 5;
 }
 }

 public override var breed: String {

 get {

Chapter 4

[107]

 return "Terrier dog"
 }
 }

 public override var breedFamily: String {

 get {
 return "Terrier"
 }
 }

 private func initializeTerrierDog() {
 print("TerrierDog created")
 }

 public override init(age: Int, name: String, favoriteToy: String)
{
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeTerrierDog()
 }

 public override init(age: Int, isPregnant: Bool, name: String,
favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
favoriteToy: favoriteToy)
 initializeTerrierDog()
 }

 public override class func printALeg() {
 print("|", terminator: String())
 }

 public override class func printAChild() {
 // Print a dog's face emoji
 print(String(UnicodeScalar(0x01f436)), terminator: String())

 }
}

Inheritance, Abstraction, and Specialization

[108]

As it happened in the other subclasses that we coded, we have more than one
initializer defined for the class. In this case, one of the initializers requires age, name,
and favoriteToy to create an instance of the TerrierDog class, and we also have an
initializer that adds an isPregnant argument. Both initializers invoke the superclass'
initializer and then call the private initializeTerrierDog method. This method
prints a message indicating that a TerrierDog class is created. The class overrides
the getter methods to return "Terrier dog" and "Terrier" as the values for the
breed and breedFamily computed properties that were defined in the superclass
and overridden in this class.

In addition, the class overrides the getter method for the averageNumberOfChildren
type property. However, in this case, the overridden type property declaration
uses the class keyword because we want to enable subclasses of TerrierDog to
be able to override this type property. The Terrier family is huge, and some of the
members of this family have different average number of children.

The class also overrides both the printALeg and printAChild type methods
inherited from Animal. The printALeg method prints a pipe symbol (|), and the
printAChild method prints a dog's face emoji.

Working with typecasting and
polymorphism
We can use the same method—that is, the same name and arguments—to cause
different things to happen according to the class on which we invoke the method. In
object-oriented programming, this feature is known as polymorphism.

For example, consider that we defined a talk method in the Animal class. The
different subclasses of Animal must override this method to provide their own
implementation of talk.

The Dog class overrode this method to print the representation of a dog barking—
that is, a Woof message. On the other hand, a Cat class will override this method to
print the representation of a cat meowing—that is, a Meow message.

Now, let's think about a CartoonDog class that represents a dog that can really talk as
part of a cartoon. The CartoonDog class would override the talk method to print a
Hello message because the dog can really talk.

Thus, depending on the type of the instance, we will see a different result after
invoking the same method with the same arguments even when all of them are
subclasses of the same base class—that is, the Animal class.

Chapter 4

[109]

The following lines show the code for the SmoothFoxTerrier class that inherits from
TerrierDog:

public class SmoothFoxTerrier: TerrierDog {
 public override class var averageNumberOfChildren: Int {
 get {
 return 6;
 }
 }

 public override var breed: String {
 get {
 return "Smooth Fox Terrier dog"
 }
 }

 private func initializeSmoothFoxTerrier() {
 print("SmoothFoxTerrier created")
 }

 public override init(age: Int, name: String, favoriteToy: String)
{
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeSmoothFoxTerrier()
 }

 public override init(age: Int, isPregnant: Bool, name: String,
favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
favoriteToy: favoriteToy)
 initializeSmoothFoxTerrier()
 }

 public override class func printALeg() {
 print("!", terminator: String())
 }

 public override class func printAChild() {
 // Print Dog's face emoji
 print(String(UnicodeScalar(0x01f415)), terminator: String())
 }
}

Inheritance, Abstraction, and Specialization

[110]

The class has the same initializers that we coded for its superclass. Both
initializers invoke the initializers defined in the superclass and then call the
initializeSmoothFoxTerrier private method. The method prints a message
indicating that a SmoothFoxTerrier class is created. The class overrides the getter
method to return "Smooth Fox Terrier" for the breed computed property that
was defined in the Dog superclass and overridden in the TerrierDog superclass
and also in this class. In addition, the class overrides the getter method for the
averageNumberOfChildren type property to return 6.

The class also overrides both the printALeg and printAChild type methods
inherited from Animal and overridden in the TerrierDog superclass. The printALeg
method prints an exclamation mark symbol (!) and the printAChild method prints
a dog emoji different from the dog's face emoji that the method with the same name
overrode in the superclass printed.

After we code all the classes, we can write code in the Playground to create instances
of both the TerrierDog and SmoothFoxTerrier classes. The following are the first
lines that create an instance of the SmoothFoxTerrier class named tom and use one
of its initializers that doesn't require the isPregnant argument:

var tom = SmoothFoxTerrier(age: 5, name: "Tom", favoriteToy:
"Sneakers")
tom.printBreed()
tom.printBreedFamily()

The following lines show the messages displayed in the Playground after we enter
the previous code:

Animal created
Mammal created
DomesticMammal created
Dog created
TerrierDog created
SmoothFoxTerrier created
Smooth Fox Terrier
Terrier

Chapter 4

[111]

First, the Playground prints the messages displayed by each initializer that is
called. Remember that each initializer calls its base class initializer and prints
a message indicating that an instance of the class is created. We don't have six
different instances; we just have one instance that calls the chained initializers of
six different classes to perform all the necessary initialization to create an instance
of SmoothFoxTerrier. If we execute the following lines in the Playground, all of
them will display true as a result, because tom belongs to the Animal, Mammal,
DomesticMammal, Dog, TerrierDog, and SmoothFoxTerrier classes:

tom is Animal
tom is Mammal
tom is DomesticMammal
tom is Dog
tom is TerrierDog
tom is SmoothFoxTerrier

The following screenshot shows the results of executing the previous lines in the
Playground. Note that the Playground uses an icon to let us know that all the is tests
will always evaluate to true:

Inheritance, Abstraction, and Specialization

[112]

We coded the printBreed and printBreedFamily methods within the Dog
class, and we didn't override these methods in any of the subclasses. However,
we overrode the properties whose content these methods display: breed
and breedFamily. The TerrierDog class overrode both properties, and the
SmoothFoxTerrier class overrode the breed property again.

The following line creates an instance of the TerrierDog class named vanessa.
Note that in this case, we will create an instance of the superclass of the
SmoothFoxTerrier class and use the initializer that requires the isPregnant
argument:

var vanessa = TerrierDog(age: 6, isPregnant: true, name: "Vanessa",
favoriteToy: "Soda bottle")

The next lines call the printLegs and printChildren instance methods for tom, the
instance of SmoothFoxTerrier, and vanessa, which is the instance of TerrierDog:

tom.printLegs()
tom.printChildren()
vanessa.printLegs()
vanessa.printChildren()

We coded these methods in the Animal class, and we didn't override them in any
of its subclasses. Thus, when we call these methods for either tom or vanessa,
Swift will execute the code defined in the Animal class. The printLegs method
calls the printALeg type method for the type retrieved from the instance in which
we will call it as many times as the value for the numberOfLegs type property. The
printChildren method calls the printAChild type method for the type retrieved
from the instance in which we will call it as many times as the value for the
averageNumberOfChildren type property.

Both the TerrierDog and SmoothFoxTerrier classes overrode the
following members: the printALeg and printAChild type methods and the
averageNumberOfChildren type property. Thus, our call to the same methods will
produce different results. The following screenshot shows the output generated for
tom and vanessa. Note that tom prints four exclamation marks (!) to represent its
legs, while vanessa prints four pipes (|). Regarding children, tom prints six dog
emoji icons, while vanessa prints four dog's face emoji icons. Both instances run the
same code for the two type methods that we called. However, each class overrode
type properties that provide different values and cause the differences in the output:

Chapter 4

[113]

The following lines call the bark method for the instance named tom with a different
number of arguments. This way, we take advantage of the bark method that we
overloaded four times with different arguments. Remember that we coded the
four bark methods in the Dog class and the SmoothFoxTerrier class inherits the
overloaded methods from this superclass through its hierarchy tree:

tom.bark()
tom.bark(2)
tom.bark(2, otherDomesticMammal: vanessa)
tom.bark(3, otherDomesticMammal: vanessa, isAngry: true)

The following lines show the results of calling the methods with the different
arguments:

Tom: Woof
Tom: Woof Woof
Tom to Vanessa: Woof Woof
Tom to Vanessa: Grr Woof Woof Woof

Inheritance, Abstraction, and Specialization

[114]

If we go back to the code that declared the bark method in the Dog class in the
Playground, we will notice that the SmoothFoxTerrier class name is displayed on
the right-hand side for each method that we used from the Dog class:

The following lines show the code for the Cat class that inherits from
DomesticMammal:

public class Cat: DomesticMammal {
 public static override var numberOfLegs: Int {
 get {
 return 4;
 }

Chapter 4

[115]

 }

 public static override var abilityToFly: Bool {
 get {
 return false;
 }
 }

 public override class var averageNumberOfChildren: Int {
 get {
 return 6;
 }
 }

 private func initializeCat() {
 print("Cat created")
 }

 public override init(age: Int, name: String, favoriteToy: String)
{
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeCat()
 }

 public override init(age: Int, isPregnant: Bool, name: String,
favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
favoriteToy: favoriteToy)
 initializeCat()
 }

 public func printMeow(times: Int) {
 var meow = "\(name): "
 for _ in 0 ..< times {
 meow += "Meow "
 }
 print(meow)
 }

 public override func talk() {
 printMeow(1)
 }

 public override class func printALeg() {

Inheritance, Abstraction, and Specialization

[116]

 print("*_*", terminator: String())
 }

 public override class func printAChild() {
 // Print grinning cat face with smiling eyes emoji
 print(String(UnicodeScalar(0x01F638)), terminator: String())
 }
}

The Cat class overrides the talk method inherited from DomesticMammal. As it
happened with the overridden properties in other subclasses, we just added the
override keyword to the method declaration. The method doesn't invoke the
method with the same name for its superclass; that is, we don't use the super
keyword to invoke the talk method defined in DomesticMammal. The talk method
in the Cat class invokes the meow method with 1 as the number of times. The meow
method prints the representation of a cat meowing—that is, a Meow message—the
number of times specified in its times argument.

As it happened with other classes that we analyzed before, the class overrides the
getter method for the averageNumberOfChildren type property. The class also
overrides both the printALeg and printAChild type methods inherited from
Animal. The printALeg method prints *_*, and the printAChild method prints a
grinning cat face with a smiling eyes emoji.

The following lines show the code for the Bird class that inherits from Animal:

public class Bird: Animal {
 public var feathersColor: String = String()

 public static override var numberOfLegs: Int {
 get {
 return 2;
 }
 }

 private func initializeBird(feathersColor: String) {
 self.feathersColor = feathersColor
 print("Bird created")
 }

 public override init(age: Int) {
 super.init(age: age)

Chapter 4

[117]

 initializeBird("Undefined / Too many colors")
 }

 public init(age: Int, feathersColor: String) {
 super.init(age: age)
 initializeBird(feathersColor)
 }
}

The Bird class inherits the members from the previously declared Animal class and
adds a new String stored property initialized with the default empty string value.
The class overrides the numberOfLegs type property to return 2 and disables any
subclass' chance to override this type property again using the static keyword.
Note that this class declares two initializers, as it happened with the Mammal class
that also inherited from Animal. One of the initializers requires an age value to
create an instance of the class, as it happened with the Animal initializer. The other
initializer requires the age and feathersColor values. If we create an instance of
this class with just one age argument, Swift will use the first initializer. If we create
an instance of this class with two arguments, an Int value for age and a String
value for feathersColor, Swift will use the second initializer. Again, we overloaded
the initializer and provided two different initializers.

The two initializers use the super keyword to call the inherited init method from
the base class or superclass—that is, the init method defined in the Animal class.
Once the initialized code in the superclass finishes its execution, each initializer
calls the initializeBird private method that initializes the feathersColor stored
property with the value received as an argument or the default "Undefined / Too
many colors" value in case it isn't specified.

The following lines show the code for the DomesticBird class that inherits from
Bird. The preceding class simply adds a name stored property and allows the
initializers to specify the desired name for the domestic bird:

public class DomesticBird: Bird {
 public var name = String()

 private func initializeDomesticBird(name: String) {
 self.name = name
 print("DomesticBird created")
 }

 public init(age: Int, name: String) {
 super.init(age: age)

Inheritance, Abstraction, and Specialization

[118]

 initializeDomesticBird(name)
 }

 public init(age: Int, feathersColor: String, name: String) {
 super.init(age: age, feathersColor: feathersColor)
 initializeDomesticBird(name)
 }
}

The following lines show the code for the DomesticCanary class that inherits from
DomesticBird:

public class DomesticCanary: DomesticBird {
 public override class var averageNumberOfChildren: Int {
 get {
 return 5;
 }
 }

 private func initializeDomesticCanary() {
 print("DomesticCanary created")
 }

 public override init(age: Int, name: String) {
 super.init(age: age, name: name)
 initializeDomesticCanary()
 }

 public override init(age: Int, feathersColor: String, name:
String) {
 super.init(age: age, feathersColor: feathersColor, name: name)
 initializeDomesticCanary()
 }

 public override class func printALeg() {
 print("^", terminator: String())
 }

 public override class func printAChild() {
 // Print bird emoji
 print(String(UnicodeScalar(0x01F426)), terminator: String())
 }
}

Chapter 4

[119]

The class overrides the two initializers declared in the superclass to display a
message whenever we create an instance of the DomesticCanary class. In addition,
the class overrides the averageNumberOfChildren type property and the printALeg
and printAChild methods.

After we declare the new classes, we will create the following two functions outside
of any class declaration that receives an Animal instance as an argument—that is,
an Animal instance or an instance of any subclass of Animal. Each function calls a
different instance method defined in the Animal class:

public func printAnimalChildren(animal: Animal) {
 animal.printChildren()
}

public func printAnimalLegs(animal: Animal) {
 animal.printLegs()
}

Then, the following lines create instances of the next classes: TerrierDog, Cat,
and DomesticCanary. Then, a few lines call the printAnimalChildren and
printAnimalLegs functions with the instances as arguments:

var pluto = TerrierDog(age: 7, name: "Pluto", favoriteToy: "Teddy
bear")
var marie = Cat(age: 4, isPregnant: true, name: "Marie", favoriteToy:
"Tennis ball")
var tweety = DomesticCanary(age: 2, feathersColor: "Yellow", name:
"Tweety")

print("Meet their children")
print(pluto.name)
printAnimalChildren(pluto)
print(marie.name)
printAnimalChildren(marie)
print(tweety.name)
printAnimalChildren(tweety)

print("Look at their legs")
print(pluto.name)
printAnimalLegs(pluto)
print(marie.name)
printAnimalLegs(marie)
print(tweety.name)
printAnimalLegs(tweety)

Inheritance, Abstraction, and Specialization

[120]

The following screenshot shows the results of executing the previous lines in the
Playground. The three instances become an Animal argument for the different
methods. However, the values used for the properties aren't those declared in
the Animal class. The call to the printChildren and printLegs methods take
into account all the overridden members because each instance is an instance of a
subclass of Animal:

Both the functions can only access the members defined in the
Animal class for the instances that they receive as arguments
because their type within the function is Animal. We can unwrap
TerrierDog, Cat, and DomesticCanary that are received in the
animal argument if necessary. However, we will work with these
scenarios later as we cover more advanced topics.

Chapter 4

[121]

Now, we will create another function outside of any class declaration that receives a
DomesticMammal instance as an argument—that is, a DomesticMammal instance or an
instance of any subclass of DomesticMammal. The following function calls the talk
instance method defined in the DomesticMammal class:

public func makeDomesticMammalTalk(domesticMammal: DomesticMammal) {
 domesticMammal.talk()
}

Then, the following few lines call the makeDomesticMammalTalk function with the
TerrierDog and Cat instances as arguments:

makeDomesticMammalTalk(pluto)
makeDomesticMammalTalk(marie)

The call to the same method for a DomesticMammal instance received as an argument
produces different results because dogs bark and cats meow. However, both are
domestic mammals, and they produce specific sounds instead of talking. We defined
the representation of the sounds they produce in the Dog and Cat classes. The
following lines show the results of the two function calls:

Pluto: Woof
Marie: Meow

Taking advantage of operator
overloading
Swift allows us to redefine specific operators to work in a different way based on the
classes to which we apply them. For example, we can make comparison operators,
such as less than (<) and greater than (>), return the results of comparing the age
value when they are applied to instances of Dog.

The redefinition of operators to work in a specific way when
applied to instances of specific classes is known as operator
overloading. Swift allows us to overload operators through the
usage of operator functions.

An operator that works in one way when applied to an instance of a class might
work differently on instances of another class. We can also redefine the overloaded
operators to work on specific subclasses. For example, we can make the comparison
operators work in a different way in a superclass and its subclass.

Inheritance, Abstraction, and Specialization

[122]

We want to be able to compare the age of the different Animal instances using the
following binary operators in Swift:

•	 Less than (<)
•	 Less than or equal to (<=)
•	 Greater than (>)
•	 Greater than or equal to (>=)

We can overload operators in Swift to achieve our goals by declaring operator
functions with function names that match the operators to be overloaded and receive
Animal instances as arguments. In this case, the four operators are binary operators;
therefore, all the operator functions receive two input parameters of the Animal type
and return a Bool value. Swift invokes these functions under the hood whenever
we use the operators to compare instances of Animal. We have to declare operator
functions with the following names and specify two Animal arguments:

•	 <: This is invoked when we use the less than (<) operator
•	 <=: This is invoked when we use the less than or equal to (<=) operator
•	 >: This is invoked when we use the greater than (>) operator
•	 >=: This is invoked when we use the greater than or equal to (>=) operator

All the operator functions have the same declaration. Swift passes the instance
specified on the left-hand side of the operator as the first argument, usually named
left, and the instance on the right-hand side of the operator as the second argument,
which is usually named right. Thus, we have left and right as the arguments
for the operator functions, and we must return a Bool value with the result of the
application of the operator—in our case, with the result of the comparison operator
applied to the age property of each instance.

Let's consider that we have two instances of Animal, or any of its subclasses, named
animal1 and animal2. If we enter print(animal1 < animal2) in the Playground,
Swift will invoke the < operator function with left equal to animal1 and right
equal to animal2. Thus, we must return a Bool value indicating whether left.age
< right.age is equivalent to animal1.age < animal2.age.

Chapter 4

[123]

We must add the following lines to make it possible to compare the age of any
animal using the previously specified comparison operators:

public func < (left: Animal, right: Animal) -> Bool {
 return left.age < right.age
}

public func <= (left: Animal, right: Animal) -> Bool {
 return left.age <= right.age
}

public func > (left: Animal, right: Animal) -> Bool {
 return left.age > right.age
}

public func >= (left: Animal, right: Animal) -> Bool {
 return left.age >= right.age
}

The following lines use the four operators that will work with the Animal class
and its subclasses: greater than (>), less than (<), greater than or equal to (>=), and
less than or equal to (<=). Remember that we created operator functions that Swift
invokes under the hood whenever we use the operators. In this case, we will apply
the operators on instances of TerrierDog and Cat. The operators return the results
of comparing the age value of the different instances:

print(tom > pluto)
print(tom < pluto)
print(goofy >= tom)
print(tom <= goofy)

Inheritance, Abstraction, and Specialization

[124]

The following screenshot shows the four operator functions and the results of their
execution in the Playground when we use the operators in instances of TerrierDog
and Cat:

We also want to be able to increase value of the age property of the different Animal
instances using the following unary operators in Swift:

•	 Prefix increment (++): We will use the operator before the variable to which
it is applied (for example, ++pluto)

•	 Postfix increment (++): We will use the operator after the variable to which it
is applied (for example, pluto++)

In this case, both the operators use exactly the same characters; therefore, we must
use either the prefix or postfix keywords in each operator's function declaration.

Chapter 4

[125]

We have to declare operator functions with the following names and specify a single
Animal argument:

•	 prefix ++: This is invoked when we use the prefix increment (++) operator
•	 postfix ++: This is invoked when we use the postfix increment (++)

operator

All the operator functions have the same declaration. For the prefix operator, Swift
passes the instance specified on the right-hand side of the operator as the argument.
For the postfix operator, Swift passes the instance specified on the left-hand side of
the operator as the argument. Let's consider that we have two instances of Animal
or any of its subclasses named animal1 and animal2. If we enter ++animal1
in the Playground, Swift will invoke the prefix ++ operator function with the
single argument equal to animal1. If we enter animal2++ in the Playground, Swift
will invoke the postfix ++ operator function with the single argument equal to
animal2.

We must add the following lines to make it possible to use prefix and postfix ++
operators to increase the age of any animal:

public prefix func ++ (animal: Animal) {
 ++animal.age
}

public postfix func ++ (animal: Animal) {
 animal.age++
}

The following lines print the age for pluto—an instance of TerrierDog—and then
apply the prefix ++ operator, print the new age, apply the postfix ++ operator, and
print the new age. Remember that we created operator functions that Swift invokes
under the hood whenever we use these operators:

pluto.printAge()
pluto++
pluto.printAge()
++pluto
pluto.printAge()

The following lines show the output generated by the preceding code:

I am 7 years old.
I am 8 years old.
I am 9 years old.

Inheritance, Abstraction, and Specialization

[126]

The following screenshot shows the two operator functions and their execution in
the Playground when we use the operators in the instance of the TerrierDog class:

Declaring operator functions for specific
subclasses
We already declared an operator function that allows any instance of Animal or its
subclasses to use the postfix increment (++) operator. However, sometimes we want
to specify a different behavior for one of the subclasses and its subclasses.

For example, we might want to express the age of dogs in the age value that is
equivalent to humans. We can declare an operator function for the postfix increment
(++) operator that receives a Dog instance as an argument and increments the age
value 7 years instead of just one. The following lines show the code that achieves this
goal:

public postfix func ++ (dog: Dog) {
 dog.age += 7
}

Chapter 4

[127]

The following lines create an instance of the SmoothFoxTerrier class named goofy,
print the age for goofy, apply the postfix ++ operator, and print the new age. Because
SmoothFoxTerrier is a subclass of Dog, Swift invokes the operator function that
receives a Dog instance instead of invoking the one that receives an Animal instance
as an argument. As a result of this, the operator function adds 7 to the age value
instead of 1:

var goofy = SmoothFoxTerrier(age: 7, name: "Goofy", favoriteToy:
"Scarf")
goofy.printAge()
goofy++
goofy.printAge()

Then, the following code prints the age of a Cat instance named marie, applies the
postfix ++ operator and prints the new age. In this case, marie belongs to the Cat
instance, and Cat isn't a subclass of Dog. For this reason, Swift invokes the operator
function that receives an Animal instance as an argument. Thus, the operator
function adds just 1 to the age value:

marie.printAge()
marie++
marie.printAge()

The following lines show the results of the previous lines:

Animal created
Mammal created
DomesticMammal created
Dog created
TerrierDog created
SmoothFoxTerrier created
I am 7 years old.
I am 14 years old.
I am 21 years old.
I am 4 years old.
I am 5 years old.

Inheritance, Abstraction, and Specialization

[128]

Exercises
Create operator functions to allow us to determine whether two DomesticMammal
instances are equal or not with the == and != operators. We will consider the
instances to be equal when their age, name, and favoriteToy properties have the
same value.

Create the following three new subclasses of the TerrierDog class:

•	 AiredaleTerrier: This is an Airedale Terrier breed
•	 BullTerrier: This is a Bull Terrier breed
•	 CairnTerrier: This is a Cairn Terrier breed

Add the necessary code to these classes to print text that represents the children in
a different way than we did for the SmoothFoxTerrier class. Test the results by
creating an instance of each of these classes and calling the printChildren method.

Test your knowledge
1.	 When you use the static var keywords to declare a type property:

1.	 You cannot override the type property in the subclasses.
2.	 You can override the type property in the subclasses.
3.	 You can override the type property only in the superclass.

2.	 When you use the class var keywords to declare a type property:
1.	 You cannot override the type property in the subclasses.
2.	 You can override the type property in the subclasses.
3.	 You can override the type property only in the superclass.

3.	 When you use the final keyword to declare an instance method:
1.	 You cannot override the instance method in the subclasses.
2.	 You can override the instance method in the subclasses.
3.	 You can override the instance method only once—that is, in just one

subclass.

Chapter 4

[129]

4.	 Polymorphism means:
1.	 We can call the same method—that is, the same name and

arguments—in instances of classes that aren't included in the same
hierarchy tree.

2.	 We can use the same method—that is, the same name and
arguments—to cause different things to happen according to the class
on which we invoke the method.

3.	 We must declare the same method—that is, the same name and
arguments—to enable a class to become a subclass of its superclass.

5.	 We can redefine specific operators by declaring:
1.	 A type method with a name that matches the operator symbols in the

appropriate class.
2.	 An instance method with a name that matches the operator symbols

in the appropriate class.
3.	 An operator function with a name that matches the operator symbols.

Summary
In this chapter, you learned how to take advantage of simple inheritance to specialize
a base class. We designed many classes from top to bottom using chained initializers,
type properties, computed properties, stored properties, and methods. Then, we
coded most of these classes in the interactive Playground, taking advantage of
different mechanisms provided by Swift.

We took advantage of operator functions to overload operators that we could use
with the instances of our classes. We overrode and overloaded initializers, type
properties, and methods. We took advantage of one of the most exciting object-
oriented features: polymorphism.

Now that we have learned to work with inheritance, abstraction, and specialization,
we are ready to work with protocols, which is the topic of the next chapter.

[131]

Contract Programming
with Protocols

In this chapter, we will work with more complex scenarios in which we will have to
use instances that belong to more than one blueprint. We use contract programming
by taking advantage of protocols.

We will work with examples on how to define protocols, their different kinds of
requirements, and then to declare classes that adopt the protocols. We will use the
multiple inheritance of protocols and many useful ways of taking advantage of this
object-oriented concept, also known as interfaces in other programming languages,
such as Java and C#.

Understanding how protocols work in
combination with classes
We have to work with two different types of characters: comic and game characters. A
comic character has a nickname and must be able to draw speech balloons and thought
balloons. The speech balloon might have another comic character as a destination.

A game character has a full name and must be able to perform the following tasks:

•	 Draw itself in a specific 2D position indicated by the x and y coordinates
•	 Move itself to a specific 2D position indicated by the x and y coordinates
•	 Check whether it intersects with another game character

Contract Programming with Protocols

[132]

We will work with objects that can be both a comic character and a game character.
However, we will also work with objects that will just be either a comic or game
character. Neither the game nor the comic character has a generic way of performing
the previously described tasks. Thus, each object that declares itself as a comic
character must define the tasks related to speech and thought balloons. Each object
that declares itself as a game character must define how to draw itself, move, and
check whether it intersects with another game character.

An angry dog is a comic character that has a specific way of drawing speech and
thought balloons. An angry cat is both a comic and game character, so it defines all
the tasks required by both character types.

The angry cat is a very versatile character, and it can use different costumes to
participate in either games or comics with different names. An angry cat can also be
an alien, a wizard, or a knight:

•	 An alien has a specific number of eyes and must be able to appear and
disappear.

•	 A wizard has a spell power score and can make an alien disappear.
•	 A knight has sword power and weight values and can unsheathe his sword.

A common task for the knight is to unsheathe his sword and point it to an
alien as a target.

We need base blueprints to represent a comic character and a game character.
Then, each class that represents any of these types of characters can provide its
implementation of the methods. In this case, comic and game characters are very
different, and they don't perform similar tasks that might lead to confusion and
problems for multiple inheritance. Thus, we can use multiple inheritance to create
an angry cat class that implements both comic and game character blueprints.
In some cases, multiple inheritance is not convenient because similar blueprints
might have methods with the same names, and it can be extremely confusing to
use multiple inheritance.

In addition, we can use multiple inheritance to combine the angry cat class with an
alien, wizard, and knight. This way, we will have an angry cat alien, an angry cat
wizard, and an angry cat knight. We will be able to use any of them, the angry cat
alien, angry cat wizard, or angry cat knight, as either a comic or game character.

Our goals are simple, but we face a little problem: Swift doesn't support the multiple
inheritance of classes. Instead, we can use multiple inheritance with protocols or
combine protocols with classes. So, we will use protocols and classes to fulfill our
previous requirements.

Chapter 5

[133]

You can think of a protocol as a special case of an abstract class that defines the
initializers, properties, and methods that a class must implement to be considered a
member of the group identified with the protocol name.

If you have worked with other programming languages, such
as Java and C#, you can think of protocols as the Swift version
of interfaces.

For example, we can create an Alien protocol that specifies the following elements:

•	 A numberOfEyes property
•	 A parameterless method named appear
•	 A parameterless method named disappear

Once we define a protocol, we create a new type; therefore, we can use it to specify
the required type for an argument. This way, instead of using classes as types, we
will use protocols as types, and we can use an instance of any class that conforms to
the specific protocol as an argument. For example, if we use Alien as the required
type for an argument, we can pass an instance of any class that conforms to the
Alien protocol as an argument.

However, you must take into account some limitations of the protocols compared
with classes. Protocols cannot specify accessibility modifiers in any members.
Protocols can declare requirements for the following members:

•	 Properties
•	 Methods
•	 Mutating methods
•	 Initializers
•	 Failable initializers

Declaring protocols
Now, it is time to code the protocols in Swift. We will code the following five protocols:

•	 ComicCharacter

•	 GameCharacter

•	 Alien

•	 Wizard

•	 Knight

Contract Programming with Protocols

[134]

The following UML diagram shows the five protocols that we will code in Swift with
their required properties and methods included in the diagram:

Chapter 5

[135]

The following lines show the code for the ComicCharacter protocol. The public
modifier followed by the protocol keyword and the protocol name, ComicCharacter,
composes the protocol declaration. As it happens with class declarations, the protocol
body is enclosed in curly brackets ({}):

public protocol ComicCharacter {
 var nickName: String { get set }

 func drawSpeechBalloon(message: String)
 func drawSpeechBalloon(destination: ComicCharacter, message:
String)
 func drawThoughtBalloon(message: String)
}

The protocols declare a nickName read/write String stored property
requirement, a drawSpeechBaloon method requirement overloaded twice, and a
drawThoughtBalloon method requirement. The protocol includes only the method
declaration because the classes that implement the ComicCharacter protocol
will be responsible for providing the implementation of the two overloads of the
drawSpeechBalloon and drawThoughtBalloon methods. Note that there is no
method body.

The following lines show the code for the GameCharacter protocol:

public protocol GameCharacter {
 var fullName: String { get set }
 var score: UInt { get set }
 var x: UInt { get set }
 var y: UInt { get set }

 func draw(x: UInt, y: UInt)
 func move(x: UInt, y: UInt)
 func isIntersectingWith(otherCharacter: GameCharacter) -> Bool
}

In this case, the protocol declaration includes four read/write stored property
requirements: fullName, score, x, and y. In addition, the declaration includes three
method requirements: draw, move, and IsIntersectingWith. Note that we don't
include access modifiers in either the properties or the methods.

We cannot add access modifiers to the different members
of a protocol.

Contract Programming with Protocols

[136]

The following lines show the code for the Alien protocol:

public protocol Alien {
 var numberOfEyes: Int { get set }

 func appear()
 func disappear()
}

In this case, the protocol declaration includes a property requirement,
numberOfEyes, and two method requirements: appear and disappear. Note that we
don't include the code for either the getter or setter methods of the numberOfEyes
property. As it happens with the methods, the classes that implement the Alien
protocol is responsible for providing the implementation of the getter and setter
methods for the numberOfEyes property. We will create classes that implement the
Alien protocol later in this chapter.

The following lines show the code for the Wizard protocol:

public protocol Wizard {
 var spellPower { get set }
 func disappearAlien(alien: Alien)
}

In this case, the protocol declaration includes a property requirement, spellPower,
and a method requirement, disappearAlien. As it happened in other method
requirement declarations included in the previously declared protocols, we use a
protocol name as the type of an argument within a method requirement declaration.
In this case, the alien argument for the disappearAlien method requirement
declaration is Alien. Thus, we will be able to call the method with any class that
conforms to the Alien protocol.

The following lines show the code for the Knight protocol:

public protocol Knight {
 var swordPower: Int { get set }
 var swordWeight: Int { get set }

 func unsheathSword()
 func unsheathSword(target: Alien)
}

In this case, the protocol declaration includes two property requirements,
swordPower and swordWeight, and an unsheathSword method requirement
overloaded twice.

Chapter 5

[137]

Declaring classes that adopt protocols
Now, we will declare a class that specifies that it conforms to the ComicCharacter
protocol in its declaration in the Playground. Instead of specifying a superclass, the
class declaration includes the name of the previously declared ComicCharacter
protocol after the class name (AngryDog) and the colon (:). We can read the class
declaration as "the AngryDog class conforms to the ComicCharacter protocol."

However, the class doesn't implement any of the required properties and methods
specified in the protocol, so it doesn't really conform to the ComicCharacter
protocol, as shown in the following:

public class AngryDog: ComicCharacter {

}

The Playground execution will fail because the AngryDog class doesn't conform to
the ComicCharacter protocol, so the Swift compiler generates the following errors
and notes:

error: type 'AngryDog' does not conform to protocol 'ComicCharacter'
public class AngryDog: ComicCharacter {
 ^
note: protocol requires property 'nickName' with type 'String'
 var nickName: String { get set }
 ^
note: protocol requires function 'drawSpeechBalloon' with type
'(String) -> ()'
 func drawSpeechBalloon(message: String)
 ^
note: protocol requires function 'drawSpeechBalloon(_:message:)' with
type '(ComicCharacter, message: String) -> ()'
 func drawSpeechBalloon(destination: ComicCharacter, message:
String)
 ^
note: protocol requires function 'drawThoughtBalloon' with type
'(String) -> ()'
 func drawThoughtBalloon(message: String)
 ^

Now, we will replace the previous declaration of the empty AngryDog class with a
class that tries to conform to the ComicCharacter protocol, but it still doesn't achieve
its goal. The following lines show the new code for the AngryDog class:

public class AngryDog: ComicCharacter {
 var nickName: String = String()

Contract Programming with Protocols

[138]

 func speak(message: String) {
 print("\(nickName) -> \"\(message)\"")
 }

 func think(message: String) {
 print("\(nickName) -> ***\(message)***")
 }

 func drawSpeechBalloon(message: String) {
 speak(message);
 }

 func drawSpeechBalloon(destination: ComicCharacter, message:
String) {
 speak("\(destination.nickName), \(message)")
 }

 func drawThoughtBalloon(message: String) {
 think(message)
 }

 init (nickName: String) {
 self.nickName = nickName
 }
}

The Playground execution will fail because the AngryDog class doesn't conform to
the ComicCharacter protocol; therefore, the Swift compiler generates the following
errors and notes:

error: property 'nickName' must be declared public because it matches
a requirement in public protocol 'ComicCharacter'
 var nickName: String = String()
 ^
 public
error: method 'drawSpeechBalloon' must be declared public because it
matches a requirement in public protocol 'ComicCharacter'
 func drawSpeechBalloon(message: String) {
 ^
 public
error: method 'drawSpeechBalloon(_:message:)' must be declared public
because it matches a requirement in public protocol 'ComicCharacter'
 func drawSpeechBalloon(destination: ComicCharacter, message:
String) {
 ^

Chapter 5

[139]

error: method 'drawThoughtBalloon' must be declared public because it
matches a requirement in public protocol 'ComicCharacter'
 func drawThoughtBalloon(message: String) {
 ^
 public

The public ComicCharacter protocol specifies property and method requirements.
Thus, when we declare a class that doesn't declare the required properties and
methods as public, the Swift compiler generates errors and indicates that they have
to be declared public to match the protocol requirements.

Whenever we declare a class that specifies that it conforms to
a protocol, it must fulfill all the requirements specified in the
protocol. If it doesn't, the Swift compiler will throw errors
indicating which requirements aren't fulfilled, as it happened
in the previous example. When we work with protocols, the
Swift compiler makes sure that the requirements specified in
protocols are honored in any class that conforms to them.

Finally, we will replace the previous declaration of the AngryDog class with a class
that really conforms to the ComicCharacter protocol. The following lines show the
new code for the AngryDog class:

public class AngryDog: ComicCharacter {
 public var nickName: String = String()

 private func speak(message: String) {
 print("\(nickName) -> \"\(message)\"")
 }

 private func think(message: String) {
 print("\(nickName) -> ***\(message)***")
 }

 public func drawSpeechBalloon(message: String) {
 speak(message);
 }

 public func drawSpeechBalloon(destination: ComicCharacter,
message: String) {
 speak("\(destination.nickName), \(message)")
 }

 public func drawThoughtBalloon(message: String) {
 think(message)

Contract Programming with Protocols

[140]

 }

 init (nickName: String) {
 self.nickName = nickName
 }
}

The AngryDog class declares an initializer that assigns the value of the required
nickName argument to the nickName stored property. In this case, the ComicCharacter
protocol doesn't include any initializer requirement, so the AngryDog class can specify
any desired initializer without restrictions.

The class declares the code for the two versions of the drawSpeechBalloon method.
Both methods call the private speak method that prints a message with a specific
format that includes the nickName value as a prefix. In addition, the class declares
the code for the drawThoughtBalloon method that invokes the private think
method that also prints a message including the nickName value as a prefix.

The AngryDog class implements the property and methods declared in the
ComicCharacter protocol. However, the class also declares two private
members—specifically two private methods.

As long as we implement all the members declared in the
protocol or protocols listed in the class declaration, we can
add any desired additional member to the class.

Now, we will declare another class that implements the same protocol that the
AngryDog class implemented—that is, the ComicCharacter protocol. The following
lines show the code for the AngryCat class:

public class AngryCat: ComicCharacter {
 public var nickName: String = String()

 public var age: UInt = 0

 public func drawSpeechBalloon(message: String) {
 if (age > 5) {
 print("\(nickName) -> \"Meow \(message)\"")
 } else {
 print("\(nickName) -> \"Meeeooow Meeeooow \(message)\"")
 }
 }

 public func drawSpeechBalloon(destination: ComicCharacter,
message: String)

Chapter 5

[141]

 {
 print("\(destination.nickName) === \(nickName) ---> \"\
(message)\"")
 }

 public func drawThoughtBalloon(message: String) {
 print("\(nickName) thinks: \(message)")
 }

 init (nickName: String, age: UInt) {
 self.nickName = nickName
 self.age = age
 }
}

The AngryCat class declares an initializer that assigns the value of the required
nickName and age arguments to the nickName and age stored properties. The class
declares the code for the two versions of the drawSpeechBalloon method. The
version that requires only a message argument uses the value of the age property to
generate a different message when the age value is greater than 5. In addition, the
class declares the code for the drawThoughtBalloon method.

The AngryCat class implements the property and method requirements declared
in the ComicCharacter protocol. However, the class also declares an additional
property, age, that isn't required by the protocol.

If we remove the public keyword in the line that declares the nickName stored
property within the AngryCat class, the class won't implement all the required
members of the ComicCharacter protocol as public members; therefore, it won't
conform to the protocol:

var nickName: String = String()

The Playground execution will fail because the AngryCat class doesn't conform
to the ComicCharacter protocol anymore, so the Swift compiler generates the
following error:

error: property 'nickName' must be declared public because it matches
a requirement in public protocol 'ComicCharacter'
 var nickName: String = String()
 ^
 public

Contract Programming with Protocols

[142]

Thus, the compiler enforces us to implement all the members of a protocol in all the
classes that we indicate that conform to a protocol. If we add the public keyword
again to the line that declares the nickName property, we will be able to execute the
code in the Playground without compiler errors:

public var nickName: String = String()

Protocols in Swift allow us to make sure that the classes that
implement them define all the members specified in the protocol.
If they don't, the code won't compile.

In this case, the ComicCharacter protocol didn't specify any initializer requirements,
so each class that conforms to the protocol can define its initializer without any
constraint. AngryDog and AngryCat declare initializers with a different number
of arguments.

Taking advantage of the multiple
inheritance of protocols
Swift doesn't allow us to declare a class with multiple base classes or superclasses,
so there is no support for multiple inheritance of classes. A subclass can inherit just
from one class. However, a class can conform to one or more protocols. In addition,
we can declare classes that inherit from a superclass and conform to one or more
protocols. Thus, we can combine class-based inheritance with protocols.

We want the AngryCat class to conform to both the ComicCharacter and
GameCharacter protocols. Thus, we want to use any AngryCat instance as both a comic
character and a game character. In order to do so, we must change the class declaration
and add the GameCharacter protocol to the list of protocols that the class conforms to
and declare all the members included in this added protocol within the class.

The following lines show the new class declaration that specifies that the AngryCat
class conforms to both, the ComicCharacter and the GameCharacter protocols:

public class AngryCat: ComicCharacter, GameCharacter {

After changing the class declaration, the Playground execution will fail because the
AngryCat class doesn't implement the members required by the GameCharacter
protocol. The Swift compiler generates the following errors and notes:

error: type 'AngryCat' does not conform to protocol 'GameCharacter'
public class AngryCat: ComicCharacter, GameCharacter {
 ^

Chapter 5

[143]

note: protocol requires property 'fullName' with type 'String'
 var fullName: String { get set }
 ^
note: protocol requires property 'score' with type 'UInt'
 var score: UInt { get set }
 ^
note: protocol requires property 'x' with type 'UInt'
 var x: UInt { get set }
 ^
note: protocol requires property 'y' with type 'UInt'
 var y: UInt { get set }
 ^
note: protocol requires function 'draw(_:y:)' with type '(UInt, y:
UInt) -> ()'
 func draw(x: UInt, y: UInt)
 ^
note: protocol requires function 'move(_:y:)' with type '(UInt, y:
UInt) -> ()'
 func move(x: UInt, y: UInt)
 ^
note: protocol requires function 'isIntersectingWith' with type
'(GameCharacter) -> Bool'
 func isIntersectingWith(otherCharacter: GameCharacter) -> Bool
 ^

We have to add the following lines to the body of the AngryCat class to implement
the stored properties specified in the GameCharacter protocol:

public var score: UInt = 0
public var fullName: String = String()
public var x: UInt = 0
public var y: UInt = 0

We have to add the following lines to the body of the AngryCat class to implement
the methods specified in the GameCharacter protocol:

public func draw(x: UInt, y: UInt) {
 self.x = x
 self.y = y
 print("Drawing AngryCat \(fullName) at x: \(x), y: \(y)")
}

public func move(x: UInt, y: UInt) {
 self.x = y
 self.y = y
 print("Moving AngryCat \(fullName) to x: \(x), y: \(y)")

Contract Programming with Protocols

[144]

}

public func isIntersectingWith(otherCharacter: GameCharacter) -> Bool
{
 return ((x == otherCharacter.x) && (y == otherCharacter.y))
}

Now, the AngryCat class declares the code for the three public methods required
to conform to the GameCharacter protocol: draw, move, and isIntersectingWith.
Finally, it is necessary to replace the previous initializer with a new one that requires
additional arguments and sets the initial values of the recently added stored
properties. The following lines show the code for the new initializer:

init (nickName: String, age: UInt, fullName: String, initialScore:
UInt, x: UInt, y: UInt) {
 self.nickName = nickName
 self.age = age
 self.fullName = fullName
 self.score = initialScore
 self.x = x
 self.y = y
}

The new initializer assigns the value of the additional required fullName,
initialScore, x, and y arguments to the fullName, score, x, and y properties.
Thus, we will need to specify more arguments whenever we want to create an
instance of the AngryCat class.

Combining inheritance and protocols
We can combine class inheritance with protocol conformance. The following lines
show the code for a new AngryCatAlien class that inherits from the AngryCat class
and conforms to the Alien protocol. Note that the class declaration includes the
superclass (AngryCat) and the implemented protocol (Alien) separated by a comma
after the colon (:):

public class AngryCatAlien : AngryCat, Alien {
 public var numberOfEyes: Int = 0

 init (nickName: String, age: UInt, fullName: String, initialScore:
UInt, x: UInt, y: UInt, numberOfEyes: Int) {
 super.init(nickName: nickName, age: age, fullName: fullName,
initialScore: initialScore, x: x, y: y)
 self.numberOfEyes = numberOfEyes
 }

Chapter 5

[145]

 public func appear() {
 print("I'm \(fullName) and you can see my \(numberOfEyes)
eyes.")
 }

 public func disappear() {
 print("\(fullName) disappears.")
 }
}

As a result of the previous code, we have a new class named AngryCatAlien that
conforms to the following three protocols:

•	 ComicCharacter: This is implemented by the AngryCat superclass and
inherited by AngryCatAlien

•	 GameCharacter: This is implemented by the AngryCat superclass and
inherited by AngryCatAlien

•	 Alien: This is implemented by AngryCatAlien

The initializer adds a numberOfEyes argument to the argument list defined in the
base initializer—that is, the initializer defined in the AngryCat superclass. In this
case, the initializer calls the base initializer (self.init) and then initializes the
numberOfEyes property with the value received in the numberOfEyes argument. The
class implements the appear and disappear methods required by the Alien protocol.

The following lines show the code for a new AngryCatWizard class that inherits
from the AngryCat class and implements the Wizard protocol. Note that the class
declaration includes the superclass (AngryCat) and the implemented protocol
(Wizard) separated by a comma after the colon (:):

public class AngryCatWizard: AngryCat, Wizard {
 public var spellPower: Int = 0

 public func disappearAlien(alien: Alien) {
 print("\(fullName) uses his \(spellPower) spell power to make
the alien with \(alien.numberOfEyes) eyes disappear.")
 }

 init (nickName: String, age: UInt, fullName: String, initialScore:
UInt, x: UInt, y: UInt, spellPower: Int) {
 super.init(nickName: nickName, age: age, fullName: fullName,
initialScore: initialScore, x: x, y: y)
 self.spellPower = spellPower
 }
}

Contract Programming with Protocols

[146]

As it happened with the AngryCatAlien class, the new AngryCatWizard class
implements three protocols. Two of these protocols are implemented by the AngryCat
superclass and inherited by AngryCatWizard: ComicCharacter and GameCharacter.
The AngryCatWizard class adds the implementation of the Wizard protocol.

The initializer adds a spellPower argument to the argument list defined in the
base constructor (super.init), which is the constructor defined in the AngryCat
superclass. The constructor calls the base constructor and then initializes the
spellPower property with the value received in the spellPower argument. The class
implements the disappearAlien method required by the Wizard protocol.

The disappearAlien method receives an Alien as an argument. Thus, any instance
of AngryCatAlien would qualify as an argument for this method—that is, any
instance of any class that conforms to the Alien protocol.

The following lines show the code for a new AngryCatKnight class that inherits
from the AngryCat class and implements the Knight protocol. Note that the class
declaration includes the superclass (AngryCat) and implemented protocol (Knight)
separated by a comma after the colon (:):

public class AngryCatKnight : AngryCat, Knight {
 public var swordPower: Int = 0
 public var swordWeight: Int = 0

 private func writeLinesAboutTheSword() {
 print("\(fullName) unsheaths his sword.")
 print("Sword power: \(swordPower). Sword weight: \
(swordWeight).")
 }

 public func unsheathSword() {
 writeLinesAboutTheSword()
 }

 public func unsheathSword(target: Alien) {
 writeLinesAboutTheSword()
 print("The sword targets an alien with \(target.numberOfEyes)
eyes.")
 }

 init (nickName: String, age: UInt, fullName: String, initialScore:
UInt, x: UInt, y: UInt, swordPower: Int, swordWeight: Int) {
 super.init(nickName: nickName, age: age, fullName: fullName,
initialScore: initialScore, x: x, y: y)

Chapter 5

[147]

 self.swordPower = swordPower
 self.swordWeight = swordWeight
 }
}

As it happened with the two previously coded classes that are inherited from
the AngryCat class and conformed to protocols, the new AngryCatKnight class
implements three protocols. Two of these protocols are implemented by the AngryCat
superclass and inherited by AngryCatKnight: ComicCharacter and GameCharacter.
The AngryCatKnight class adds the implementation of the Knight protocol.

The initializer adds the swordPower and swordWeight arguments to the argument
list defined in the base initializer (base.init), which is the constructor defined in the
AngryCat superclass. The initializer calls the base initializer (base.init) and then
initializes the swordPower and swordWeight properties with the values received in
the swordPower and swordHeight arguments.

The class implements the two versions of the unsheathSword method required by
the Knight protocol. Both methods call the private writeLinesAboutTheSword
method and the overloaded version that receives an Alien as an argument prints an
additional message about the alien that the sword has as a target—specifically, the
number of eyes.

The following table summarizes the list of protocols to which each of the classes we
created conform to:

Class name Conforms to the following protocol(s)
AngryDog ComicCharacter

AngryCat ComicCharacter and GameCharacter
AngryCatAlien ComicCharacter, GameCharacter, and Alien
AngryCatWizard ComicCharacter, GameCharacter, and Wizard
AngryCatKnight ComicCharacter, GameCharacter, and Knight

Contract Programming with Protocols

[148]

The following simplified UML diagram shows the hierarchy tree for the classes and
their relationship with the protocols:

Chapter 5

[149]

The following UML diagram shows the protocols and the classes with their
properties and methods. We can use the diagram to understand all the things that we
will analyze with the next code samples based on the usage of these classes and the
previously defined protocols:

Contract Programming with Protocols

[150]

The following lines create one instance of each of the previously created classes:

var angryDog1 = AngryDog(nickName: "Bailey")
var angryCat1 = AngryCat(nickName: "Bella", age: 3, fullName: "Mrs.
Bella", initialScore: 20, x: 10, y: 10)
var angryCatAlien1 = AngryCatAlien(nickName: "Lucy", age: 4, fullName:
"Mrs. Lucy", initialScore: 50, x: 20, y: 10, numberOfEyes: 3)
var angryCatWizard1 = AngryCatWizard(nickName: "Daisy", age: 4,
fullName: "Mrs. Daisy", initialScore: 50, x: 20, y: 10, spellPower: 6)
var angryCatKnight1 = AngryCatKnight(nickName: "Maggie", age: 3,
fullName: "Mrs. Maggy", initialScore: 1300, x: 40, y: 10, swordPower:
7, swordWeight: 5)

The following table summarizes the instance name and its class name:

Instance name Class name
angryDog1 AngryDog

angryCat1 AngryCat

angryCatAlien1 AngryCatAlien

angryCatWizard1 AngryCatWizard

angryCatKnight AngryCatKnight

Now, we will evaluate many expressions that use the is keyword to determine
whether the instances are an instance of the specified class or conform to a specific
protocol. Note that all the expressions are evaluated to true because each instance
has the type specified on the right-hand side after the is keyword as the main class,
its superclass, or conforms to the protocol.

For example, angryCatWizard1 is an instance of AngryCatWizard. In addition,
angryCatWizard1 belongs to AngryCat because AngryCat is the superclass of
the AngryCatWizard class. It is also true that angryCatWizard1 conforms to
three protocols: ComicCharacter, GameCharacter, and Wizard. The superclass
of AngryCatWizard—that is, AngryCat—conforms to two of these protocols:
ComicCharacter and GameCharacter. Therefore, AngryCatWizard inherits the
protocol conformance. Finally, the AngryCatWizard class not only inherits from
AngryCat, but also conforms to the Wizard protocol.

If we execute the following lines in the Playground, all of them will print true
as a result:

print(angryDog1 is AngryDog)
print(angryDog1 is ComicCharacter)

print(angryCat1 is AngryCat)
print(angryCat1 is ComicCharacter)

Chapter 5

[151]

print(angryCat1 is GameCharacter)

print(angryCatAlien1 is AngryCat)
print(angryCatAlien1 is AngryCatAlien)
print(angryCatAlien1 is ComicCharacter)
print(angryCatAlien1 is GameCharacter)
print(angryCatAlien1 is Alien)

print(angryCatWizard1 is AngryCat)
print(angryCatWizard1 is AngryCatWizard)
print(angryCatWizard1 is ComicCharacter)
print(angryCatWizard1 is GameCharacter)
print(angryCatWizard1 is Wizard)

print(angryCatKnight1 is AngryCat)
print(angryCatKnight1 is AngryCatKnight)
print(angryCatKnight1 is ComicCharacter)
print(angryCatKnight1 is GameCharacter)
print(angryCatKnight1 is Knight)

The following screenshot shows the results of executing the previous lines in the
Playground. Note that the Playground uses a warning icon to let us know that all the
expressions that include the is keyword will always be evaluated to true. In these
cases, the compiler generates a warning:

Contract Programming with Protocols

[152]

Working with methods that receive
protocols as arguments
Now, we will create additional instances of the previous classes and call methods
that specified their required arguments with protocol names instead of class names.
We will understand what happens under the hood when we use protocols as types.

In the following code, the first two lines of code create two instances of the
AngryDog class named brian and merlin. Then, the code calls the two versions
of the drawSpeechBalloon method for brian. The second call to this method
passes merlin as the ComicCharacter argument because merlin is an instance of
AngryDog, which is a class that implements the ComicCharacter protocol:

var brian = AngryDog(nickName: "Brian")
var merlin = AngryDog(nickName: "Merlin")
brian.drawSpeechBalloon("Hello, my name is \(brian.nickName)")
brian.drawSpeechBalloon(merlin, message: "How do you do?")
merlin.drawThoughtBalloon("Who are you? I think.")

Bear in mind that when we work with protocols, we use
them to specify the argument types instead of using class
names. Multiple classes might implement a single protocol, so
instances of different classes might qualify as an argument of
a specific protocol.

The following code creates an instance of the AngryCat class named garfield. Its
nickName value is "Garfield". The next line calls the drawSpeechBalloon method
for the new instance to introduce Garfield in the comic, and then brian calls the
drawSpeechBalloon method and passes garfield as the ComicCharacter argument
because garfield is an instance of AngryCat, which is a class that implements the
ComicCharacter protocol. Thus, we can also use instances of AngryCat whenever
we need a ComicCharacter argument:

var garfield = AngryCat(nickName: "Garfield", age: 10, fullName: "Mr.
Garfield", initialScore: 0, x: 10, y: 20)
garfield.drawSpeechBalloon("Hello, my name is \(garfield.nickName)")
brian.drawSpeechBalloon(garfield, message: "Hello \(garfield.
nickName)")

Chapter 5

[153]

The following code creates an instance of the AngryCatAlien class named
misterAlien. Its nickName value is "Alien". The next line checks whether the call to
the isIntersectingWith method with garfield as a parameter returns true. The
method requires a ComicCharacter argument, so we can use garfield. The method
will return true because the x and y properties of both instances have the same
value. The line within the if block calls the move method for misterAlien. Then, the
code calls the appear method:

var misterAlien = AngryCatAlien(nickName: "Alien", age: 120, fullName:
"Mr. Alien", initialScore: 0, x: 10, y: 20, numberOfEyes: 3)
if (misterAlien.isIntersectingWith(garfield)) {
 misterAlien.move(garfield.X + 20, y: garfield.Y + 20);
}
misterAlien.appear();

The following code creates an instance of the AngryCatWizard class named gandalf.
Its nickName value is "Gandalf". The next lines call the draw method and then the
disappearAlien method with misterAlien as a parameter. The method requires
an Alien argument, so we can use misterAlien, which is the previously created
instance of AngryCatAlien that implements the Alien protocol. Then, a call to the
Appear method for misterAlien makes the alien with three eyes appear again:

var gandalf = AngryCatWizard(nickName: "Gandalf", age: 75, fullName:
"Mr. Gandalf", initialScore: 10000, x: 30, y: 40, spellPower: 100)
gandalf.draw(gandalf.x, y: gandalf.y)
gandalf.disappearAlien(misterAlien)
misterAlien.appear()

The following code creates an instance of the AngryCatKnight class named camelot.
Its nickName value is "Camelot". The next lines call the draw method and then the
unsheathSword method with misterAlien as a parameter. The method requires
an Alien argument, so we can use misterAlien, the previously created instance of
AngryCatAlien that implements the Alien protocol:

var camelot = AngryCatKnight(nickName: "Camelot", age: 35, fullName:
"Sir Camelot", initialScore: 5000, x: 50, y: 50, swordPower: 100,
swordWeight: 30)
camelot.draw(camelot.x, y: camelot.y)
camelot.unsheathSword(misterAlien)

Contract Programming with Protocols

[154]

Finally, the code calls the drawThoughtBalloon and drawSpeechBalloon methods for
misterAlien. We can do this because misterAlien is an instance of AngryCatAlien,
and this class inherits the conformance to the ComicCharacter protocol from its
AngryCat superclass. The call to the drawSpeechBalloon method passes camelot as
the ComicCharacter argument because camelot is an instance of AngryCatKnight,
which is a class that also inherits the conformance to the ComicCharacter protocol
from its AngryCat superclass. Thus, we can also use instances of AngryCatKnight
whenever we need a ComicCharacter argument, as follows:

misterAlien.drawThoughtBalloon("I must be friendly or I'm dead...");
misterAlien.drawSpeechBalloon(camelot, message: "Pleased to meet you,
Sir.");

After you execute the previous lines in the Playground, you will see the following
text output:

Brian -> "Hello, my name is Brian"
Brian -> "Merlin, How do you do?"
Merlin -> ***Who are you? I think.***
Garfield -> "Meow Hello, my name is Garfield"
Brian -> "Garfield, Hello Garfield"
Moving AngryCat Mr. Alien to x: 30, y: 40
I'm Mr. Alien and you can see my 3 eyes.
Drawing AngryCat Mr. Gandalf at x: 30, y: 40
Mr. Gandalf uses his 100 spell power to make the alien with 3 eyes
disappear.
I'm Mr. Alien and you can see my 3 eyes.
Drawing AngryCat Sir Camelot at x: 50, y: 50
Sir Camelot unsheaths his sword.
Sword power: 100. Sword weight: 30.
The sword targets an alien with 3 eyes.
Alien thinks: I must be friendly or I'm dead...
Camelot === Alien ---> "Pleased to meet you, Sir."

Chapter 5

[155]

The next screenshot shows the code and the results of executing it in the Playground:

Downcasting with protocols and classes
The ComicCharacter protocol defines one of the method requirements for
the drawSpeechBalloon method with destination as an argument of the
ComicCharacter type, which is the same type that the protocol defined. The
following is the first line in our sample code that called this method:

brian.drawSpeechBalloon(merlin, message: "How do you do?")

We called the method defined within the AngryDog class because brian is an instance
of AngryDog. We passed an AngryDog instance, merlin, to the destination argument.
The method works with the destination argument as an instance that conforms
to the ComicCharacter protocol; therefore, whenever we reference the destination
variable, we will only be able to see what the ComicCharacter type defines.

Contract Programming with Protocols

[156]

We can easily understand what happens under the hood when Swift downcasts
a type from its original type to a target type, such as a protocol to which the class
conforms. In this case, AngryDog is downcast to ComicCharacter. If we enter the
following code in the Playground, Xcode will enumerate the members for the
AngryDog instance named merlin:

merlin.

Xcode will display the following members:

Void drawSpeechBalloon(destination: ComicCharacter, message: String)
Void drawSpeechBalloon(message: String)
Void drawThoughtBalloon(message: String)
String nickName
Void speak(message: String)
Void think(message: String)

The following screenshot shows the members enumerated in the Playground for
merlin, which is an AngryDog instance:

If we enter the following code in the Playground, the as downcast operator forces
the downcast to the ComicCharacter protocol type; therefore, Xcode will only
enumerate the members for the AngryDog instance named merlin that are required
members in the ComicCharacter protocol:

(merlin as ComicCharacter).

Xcode will display the following members:

Void drawSpeechBalloon(destination: ComicCharacter, message: String)
Void drawSpeechBalloon(message: String)
Void drawThoughtBalloon(message: String)
String nickName

Chapter 5

[157]

Note that the two methods that are defined in the AngryDog class but aren't required
in the ComicCharacter protocol aren't visible: speak and think. The following
screenshot shows the members enumerated in the Playground for merlin downcast
to ComicCharacter:

Now, let's analyze another scenario in which an instance is downcast to one of the
protocols to which it conforms. The GameCharacter protocol defines a method
requirement for the isIntersectingWith method with otherCharacter as an
argument of the GameCharacter type, which is the same type that the protocol
defined. The following is the first line in our sample code that called this method:

if (misterAlien.isIntersectingWith(garfield)) {

We called the method defined within the AngryCat class because misterAlien is
an instance of AngryCatAlien that inherits the method implementation from the
AngryCat class. We passed an AngryCat instance, garfield, to the otherCharacter
argument. The method works with the otherCharacter argument as an instance
that conforms to the GameCharacter protocol; therefore, whenever we reference the
destination variable, we will only be able to see what the GameCharacter type defines.

In this case, AngryCat is downcast to GameCharacter. If we enter the following code
in the Playground, Xcode will enumerate the members for the AngryCat instance
named garfield:

garfield.

Xcode will display the following members:

UInt age
Void draw(x: UInt, y: UInt)
Void drawSpeechBalloon(destination: ComicCharacter, message: String)
Void drawSpeechBalloon(message: String)
Void drawThoughtBalloon(message: String)
String fullName
Bool isIntersectingWith(otherCharacter: GameCharacter)
Void move(x: UInt, y: UInt)
String nickName
UInt score
UInt x
UInt y

Contract Programming with Protocols

[158]

The following screenshot shows the first members enumerated in the Playground for
garfield, which is an AngryCat instance:

If we enter the following code in the Playground, the as downcast operator forces
the downcast to the GameCharacter protocol type; therefore, Xcode will only
enumerate the members for the AngryCat instance named garfield that are
required members in the GameCharacter protocol:

(garfield as GameCharacter).

Xcode will display the following members:

Void draw(x: UInt, y: UInt)
String fullName
Bool isIntersectingWith(otherCharacter: GameCharacter)
Void move(x: UInt, y: UInt)
UInt score
UInt x
UInt y

Note that the list of members has been reduced to the properties and members
required in the GameCharacter protocol. The following screenshot shows the
members enumerated in the Playground for garfield downcast to GameCharacter:

Chapter 5

[159]

We can use the as operator to force a cast of the previous expression to the original
type—that is, to the AngryCat type. This way, Xcode will enumerate all the members
of the AngryCat instance again:

((garfield as GameCharacter) as AngryCat).

Xcode will display the following members—that is, all the members that Xcode
enumerated when we worked with garfield—without any kind of casting:

UInt age
Void draw(x: UInt, y: UInt)
Void drawSpeechBalloon(destination: ComicCharacter, message: String)
Void drawSpeechBalloon(message: String)
Void drawThoughtBalloon(message: String)
String fullName
Bool isIntersectingWith(otherCharacter: GameCharacter)
Void move(x: UInt, y: UInt)
String nickName
UInt score
UInt x
UInt y

The following screenshot shows the first members enumerated in the Playground for
garfield downcast to GameCharacter and then casted back to an AngryCat instance:

Treating instances of a protocol type as
a different subclass
Now, we will take advantage of the possibility that Swift offers us to extend
an existing class to add specific members. In this case, we will add an instance
method to the previously defined AngryCat class. The following lines add the
doSomethingWithAnAngryCat method to the existing AngryCat class:

public extension AngryCat {
 public func doSomethingWithAnAngryCat(cat: AngryCat) {

Contract Programming with Protocols

[160]

 if let angryCatAlien = cat as? AngryCatAlien {
 angryCatAlien.appear()
 } else if let angryCatKnight = cat as? AngryCatKnight {
 angryCatKnight.unsheathSword()
 } else if let angryCatWizard = cat as? AngryCatWizard {
 print("My spell power is \(angryCatWizard.spellPower)")
 } else {
 print("This AngryCat doesn't have cool skills.")
 }
 }
}

The doSomethingWithAnAngryCat method receives an AngryCat instance (cat) and
uses the conditional type casting operator (as?) to return an optional value of the type
that it tries to cast a subclass of AngryCat. In case cat is an instance of AngryCatAlien
or of any potential subclass of AngryCatAlien, the first type cast succeeds and the
code calls the appear method for the cat type cast to an AngryCatAlien instance,
which is saved in the angryCatAlien reference constant, as follows:

if let angryCatAlien = cat as? AngryCatAlien {
 angryCatAlien.appear()

In case the conditional type cast to AngryCatAlien fails, the code uses the
conditional type casting operator (as?) and tries to cast cat to AngryCatKnight. In
case cat is an instance of AngryCatKnight or an instance of any potential subclass
of AngryCatKnight, the conditional type cast succeeds, and the code calls the
unsheathSword method for the cat type cast to an AngryCatKnight instance, which
is saved in the angryCatKnight reference constant:

} else if let angryCatKnight = cat as? AngryCatKnight {
 angryCatKnight.unsheathSword()

In case the conditional type cast to AngryCatKnight fails, the code uses the
conditional type casting operator (as?) and tries to cast cat to AngryCatWizard.
In case cat is an instance of AngryCatWizard or of any potential subclass of
AngryCatWizard, the conditional type cast succeeds, and the code prints a message
indicating the spellPower value for the cat type cast to an AngryCatWizard
instance, which is saved in the angryCatWizard reference constant, as follows:

} else if let angryCatWizard = cat as? AngryCatWizard {
 print("My spell power is \(angryCatWizard.spellPower)")

Chapter 5

[161]

Finally, if the last conditional type cast to AngryCatKnight fails, it means that the
cat instance just belongs to AngryCat, so the code prints a message indicating that
AngryCat doesn't have cool skills.

Whenever type casting fails, we must use the conditional form
(as?) of the type cast operator.

Now, we will take advantage of the instance method added to the AngryCat class
and call it in instances of AngryCat and its subclasses that we created before we
declared the extension. We will call the method for the AngryCat instance named
garfield and use it with the following arguments:

•	 misterAlien: This is an instance of the AngryCatAlien class
•	 camelot: This is an instance of the AngryCatKnight class
•	 gandalf: This is an instance of the AngryCatWizard class
•	 garfield: This is an instance of the AngryCat class

The following four lines call the doSomethingWithAnAngryCat method in the
Playground with the previously enumerated arguments:

garfield.doSomethingWithAnAngryCat(misterAlien)
garfield.doSomethingWithAnAngryCat(camelot)
garfield.doSomethingWithAnAngryCat(gandalf)
garfield.doSomethingWithAnAngryCat(garfield)

The next lines show the output generated in the Playground. Each call triggers a
different type cast and calls a method of the type cast instance:

I'm Mr. Alien and you can see my 3 eyes.
Sir Camelot unsheaths his sword.
Sword power: 100. Sword weight: 30.
My spell power is 100
This AngryCat doesn't have cool skills.

Contract Programming with Protocols

[162]

The following screenshot shows that the execution of the four methods generates
the doSomethingWithAnAngryCat method to execute code in each usage of the
conditional type cast operator. Note the values displayed on the right-hand side of
each line included within the curly braces after each conditional type cast. The lines
that call the methods just display the type cast instance types, AngryCatAlien and
AngryCatKnight, and the lines that call the print method display the generated
output on the right-hand side.

Specifying requirements for properties
In the previous chapter, we worked with simple inheritance to specialize animals.
Now, we will go back to this example and refactor it to use protocols that allow us to
take advantage of multiple inheritance.

The decision to work with contract-based programming appears with a new
requirement, which is the need to make domestic birds and other domestic animals
different from domestic mammals which talk and have a favorite toy. We already
had a talk method and a favoriteToy property defined in the DomesticMammal
class. However, now that we know how to work with protocols, we don't want to
introduce duplicate code, and we want to be able to generalize what is required to be
domestic, with a specific protocol for this.

Chapter 5

[163]

We will define the following six protocols and take advantage of inheritance in
protocols; that is, we will have protocols that inherit from other protocols, as follows:

•	 AbstractAnimal: This defines the requirements for an animal.
•	 AbstractDomestic: This defines the requirements that make an

animal be considered a domestic one. However, it doesn't inherit from
AbstractAnimal.

•	 AbstractMammal: This defines the requirements for a mammal. The protocol
inherits from AbstractAnimal.

•	 AbstractBird: This defines the requirements for birds. The protocol inherits
from AbstractAnimal.

•	 AbstractDog: This defines the requirements for dogs. The protocol inherits
from AbstractMammal.

•	 AbstractCat: This defines the requirements for cats. The protocol inherits
from AbstracMammal.

In this case, we will use the Abstract prefix to differentiate protocols from classes.
All the protocols' names start with Abstract. However, take into account that this is
not a common convention in Swift. We want to create an Animal class, so we cannot
have a protocol with the same name.

The following lines show the code that declares the AbstractAnimal protocol:

public protocol AbstractAnimal {
 static var numberOfLegs: Int { get }
 static var averageNumberOfChildren: Int { get }
 static var abilityToFly: Bool { get }

 var age: Int { get set }

 static func printALeg()
 static func printAChild()

 func printLegs()
 func printChildren()
 func printAge()
}

Contract Programming with Protocols

[164]

The AbstractAnimal protocol requires type properties, stored properties, type
methods, and instance methods. First, we will focus on both the type and stored
property requirements. The first lines define the type property requirements. We can
only use the static keyword to specify a type property requirement, but we can
use either static or class when we implement the type property in the class that
conforms to the protocol. The usage of the static keyword doesn't have the same
meaning that this keyword has when we use it in classes; that is, we can still declare
type properties that can be overridden in the classes that conform to the protocol.
In fact, that is exactly what we will do when we create the class that conforms to the
AbstractAnimal protocol.

In this case, we want the three type properties to be in a read-only format, so we only
include the get keyword after the desired type for the type property. The following
line shows the type property requirement for numerOfLegs with the get keyword
that makes it a read-only type property:

static var numberOfLegs: Int { get }

We always have to specify the required type in each property
requirement.

The protocol defines a stored property requirement named age with both the
get and set keywords; therefore, this stored property must be a read-write
stored property. Each class that conforms to the protocol can decide whether it is
convenient to declare explicit getter and setter methods or just declare a stored
property without providing these methods. Both cases are valid implementations
because the protocol just requires a read/write stored property. The following line
shows the stored property requirement for age:

var age: Int { get set }

Specifying requirements for methods
The AbstractAnimal protocol requires two type methods: printALeg and
printAChild. As explained with the type property requirements, we can only use
the static keyword to specify a type method requirement, but we can use either
static or class when we implement the type method in the class that conforms to
the protocol. The usage of the static keyword doesn't have the same meaning that
this keyword has when we use it in classes; that is, we can still declare type methods
that can be overridden in the classes that conform to the protocol by declaring them
with the class keyword in the respective classes. The following line shows the type
method requirement for printALeg:

static func printALeg()

Chapter 5

[165]

The protocol defines three parameterless methods: printLegs, printChildren, and
printAge. The method requirements use the func keyword followed by the method
name and its arguments, as if we were writing the method declaration for a class
but without the method body. The following line shows the method requirement
for printLegs:

func printLegs()

The following lines show the code that declares the AbstractDomestic protocol:

public protocol AbstractDomestic {
 var name: String { get set }
 var favoriteToy: String { get set }

 func talk()
}

The AbstractDomestic protocol requires two read/write stored properties: name
and favoriteToy. In addition, the protocol defines a method requirement for a
parameterless talk instance method. Note that the AbstractDomestic protocol doesn't
inherit from the AbstractAnimal protocol, so we can combine the conformance to other
protocols with AbstractDomestic to create a specific domestic version.

The following lines show the code that declares the AbstractMammal protocol:

public protocol AbstractMammal: AbstractAnimal {
 var isPregnant: Bool { get set }
}

The AbstractMammal protocol inherits from the AbstractAnimal protocol and just
adds the requirement for a single read/write stored property: isPregnant.

The following lines show the code that declares the AbstractDog protocol:

public protocol AbstractDog: AbstractMammal {
 var breed: String { get }
 var breedFamily: String { get }

 func printBreed()
 func printBreedFamily()
 func bark()
 func bark(times: Int)
 func bark(times: Int, otherDomestic: AbstractDomestic)
 func bark(times: Int, otherDomestic: AbstractDomestic, isAngry:
Bool)
 func printBark(times: Int, otherDomestic: AbstractDomestic?,
isAngry: Bool)
}

Contract Programming with Protocols

[166]

The AbstractDog protocol inherits from the AbstractMammal protocol and adds
two read-only stored properties: breed and breedFamily. In addition, the protocol
adds many method requirements. There are many overloaded method requirements
with the same name (bark) and different arguments. Thus, the class or classes that
implement the AbstractDog protocol must implement all the specified overloads
for the bark method. Note that the otherDomestic argument is of a protocol type
(AbstractDomestic), so any instance of a class that conforms to this protocol can be
used as an argument.

The following lines show the code that declares the AbstractCat protocol:

public protocol AbstractCat: AbstractMammal {
 func printMeow(times: Int)
}

The AbstractCat protocol inherits from the AbstractMammal protocol and adds a
printMeow method requirement that receives a times Int argument.

The following lines show the code that declares the AbstractBird protocol:

public protocol AbstractBird: AbstractMammal {
 var feathersColor: String { get set }
}

The AbstractBird protocol inherits from the AbstractMammal protocol and
adds a feathersColor read/write stored property requirement. However, wait;
we said that we needed birds to talk and have a favorite toy. The AbstractBird
class doesn't include a requirement for either a talk method or a favoriteToy
property, and it doesn't inherit. However, we will create a class that implements
both the AbstractBird and the AbstractDomestic protocols, and we will be
able to use a domestic bird that talks as an argument in any method that requires
AbstractDomestic.

Combining class inheritance with
protocol inheritance
So far, we have created many protocols for our animals. Some of these protocols inherit
from other protocols; therefore, we have a protocol hierarchy tree. Now, it is time to
combine class inheritance with protocol inheritance to recreate our animal classes.

Chapter 5

[167]

The following lines show the new version of the Animal class that conforms to the
AbstractAnimal protocol:

public class Animal: AbstractAnimal {
 public class var numberOfLegs: Int {
 get {
 return 0;
 }
 }
 public class var averageNumberOfChildren: Int {
 get {
 return 0;
 }
 }

 public class var abilityToFly: Bool {
 get {
 return false;
 }
 }

 public var age: Int

 init(age : Int) {
 self.age = age
 print("Animal created")
 }

 public class func printALeg() {
 preconditionFailure("The pringALeg method must be overriden")
 }

 public func printLegs() {
 for _ in 0..<self.dynamicType.numberOfLegs {
 self.dynamicType.printALeg()
 }
 print(String())
 }

 public class func printAChild() {
 preconditionFailure("The printChild method must be overriden")
 }

 public func printChildren() {

Contract Programming with Protocols

[168]

 for _ in 0..<self.dynamicType.averageNumberOfChildren {
 self.dynamicType.printAChild()
 }
 print(String())
 }

 public func printAge() {
 print("I am \(age) years old.")
 }
}

The following lines show the new version of the Mammal class that inherits from the
Animal class and conforms to the AbstractMammal protocol:

public class Mammal: Animal, AbstractMammal {
 public var isPregnant: Bool = false

 private func initialize(isPregnant: Bool) {
 self.isPregnant = isPregnant
 print("Mammal created")
 }

 public override init(age: Int) {
 super.init(age: age)
 initialize(false)
 }

 public init(age: Int, isPregnant: Bool) {
 super.init(age: age)
 initialize(isPregnant)
 }
}

The following lines show the new version of the DomesticMammal class that inherits
from the Mammal class and conforms to the AbstractDomestic protocol. Remember
that the AbstractDomestic protocol doesn't inherit from any other protocol:

public class DomesticMammal: Mammal, AbstractDomestic {
 public var name = String()
 public var favoriteToy = String()

 private func initialize(name: String, favoriteToy: String) {
 self.name = name
 self.favoriteToy = favoriteToy
 print("DomesticMammal created")

Chapter 5

[169]

 }

 public init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age)
 initialize(name, favoriteToy: favoriteToy)
 }

 public init(age: Int, isPregnant: Bool, name: String, favoriteToy:
String) {
 super.init(age: age, isPregnant: isPregnant)
 initialize(name, favoriteToy: favoriteToy)
 }

 public func talk() {
 print("\(name): talks")
 }
}

The following lines show the new version of the Dog class that inherits from the
DomesticMammal class and conforms to the AbstractDog protocol:

public class Dog: DomesticMammal, AbstractDog {
 public static override var numberOfLegs: Int {
 get {
 return 4;
 }
 }

 public static override var abilityToFly: Bool {
 get {
 return false;
 }
 }

 public var breed: String {
 get {
 return "Just a dog"
 }
 }

 public var breedFamily: String {
 get {
 return "Dog"
 }
 }

Contract Programming with Protocols

[170]

 private func initializeDog() {
 print("Dog created")
 }

 public override init(age: Int, name: String, favoriteToy: String)
{
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeDog()
 }

 public override init(age: Int, isPregnant: Bool, name: String,
favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
favoriteToy: favoriteToy)
 initializeDog()
 }

 public final func printBreed() {
 print(breed)
 }

 public final func printBreedFamily() {
 print(breedFamily)
 }

 public func printBark(times: Int, otherDomestic:
AbstractDomestic?, isAngry: Bool) {
 var bark = "\(name)"
 if let unwrappedOtherDomestic = otherDomestic {
 bark += " to \(unwrappedOtherDomestic.name): "
 } else {
 bark += ": "
 }
 if isAngry {
 bark += "Grr "
 }
 for _ in 0 ..< times {
 bark += "Woof "
 }
 print(bark)
 }

 public func bark() {
 printBark(1, otherDomestic: nil, isAngry: false)
 }

 public func bark(times: Int) {

Chapter 5

[171]

 printBark(times, otherDomestic: nil, isAngry: false)
 }

 public func bark(times: Int, otherDomestic: AbstractDomestic) {
 printBark(times, otherDomestic: otherDomestic, isAngry: false)
 }

 public func bark(times: Int, otherDomestic: AbstractDomestic,
isAngry: Bool) {
 printBark(times, otherDomestic: otherDomestic, isAngry:
isAngry)
 }

 public override func talk() {
 bark()
 }
}

The previous version had overloaded bark methods that required an
otherDomesticMammal argument of the DomesticMammal type. The printBark
method required an optional otherDomesticMammal argument of the
DomesticMammal? type. The new version of the overloaded bark methods replaces
the otherDomesticMammal argument with otherDomestic of the AbstractDomestic
type. This way, it is possible to pass any class that implements the AbstractDomestic
protocol. The new version of the printBark method requires an optional
otherDomestic argument of the AbstractDomestic type. These changes allow
dogs to bark at any other domestic animal, such as the domestic bird we will create
later. The previous version was only capable of barking at other domestic mammals.
However, in real-life scenarios, dogs do bark at birds.

It is not necessary to make any changes to the classes that inherit from Dog:
TerrierDog and SmoothFoxTerrier. These classes remain with the same code.

The following lines show the new version of the Cat class that inherits from the
DomesticMammal class and conforms to the AbstractCat protocol:

public class Cat: DomesticMammal, AbstractCat {
 public static override var numberOfLegs: Int {
 get {
 return 4;
 }
 }

 public static override var abilityToFly: Bool {
 get {
 return false;

Contract Programming with Protocols

[172]

 }
 }

 public override class var averageNumberOfChildren: Int {
 get {
 return 6;
 }
 }

 private func initializeCat() {
 print("Cat created")
 }

 public override init(age: Int, name: String, favoriteToy: String)
{
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeCat()
 }

 public override init(age: Int, isPregnant: Bool, name: String,
favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
favoriteToy: favoriteToy)
 initializeCat()
 }

 public func printMeow(times: Int) {
 var meow = "\(name): "
 for _ in 0 ..< times {
 meow += "Meow "
 }
 print(meow)
 }

 public override func talk() {
 printMeow(1)
 }

 public override class func printALeg() {
 print("*_*", terminator: String())
 }

 public override class func printAChild() {
 // Print grinning cat face with smiling eyes emoji
 print(String(UnicodeScalar(0x01F638)), terminator: String())
 }
}

Chapter 5

[173]

The following lines show the new version of the Bird class that inherits from the
Animal class and conforms to the AbstractBird protocol:

public class Bird: Animal, AbstractBird {
 public var feathersColor: String = String()

 public static override var numberOfLegs: Int {
 get {
 return 2;
 }
 }

 private func initializeBird(feathersColor: String) {
 self.feathersColor = feathersColor
 print("Bird created")
 }

 public override init(age: Int) {
 super.init(age: age)
 initializeBird("Undefined / Too many colors")
 }

 public init(age: Int, feathersColor: String) {
 super.init(age: age)
 initializeBird(feathersColor)
 }
}

The following lines show the new version of the DomesticBird class that inherits
from the Bird class and conforms to the AbstractDomestic protocol. Remember
that the AbstractDomestic protocol doesn't inherit from any other protocol:

public class DomesticBird: Bird, AbstractDomestic {
 public var name = String()
 public var favoriteToy = String()

 private func initializeDomesticBird(name: String, favoriteToy:
String) {
 self.name = name
 self.favoriteToy = favoriteToy
 print("DomesticBird created")
 }

 public func talk() {
 print("\(name): Tweet Tweet")

Contract Programming with Protocols

[174]

 }

 public init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age)
 initializeDomesticBird(name, favoriteToy: favoriteToy)
 }

 public init(age: Int, feathersColor: String, name: String,
favoriteToy: String) {
 super.init(age: age, feathersColor: feathersColor)
 initializeDomesticBird(name, favoriteToy: favoriteToy)
 }
}

The new DomesticBird class adds the favoriteToy stored property and talk
method to conform to the AbstractDomestic protocol. In addition, the initializers
add new parameters to make it possible to assign an initial value to favoriteToy.

The following lines show the new version of the DomesticCanary class that inherits
from the DomesticBird class:

public class DomesticCanary: DomesticBird {
 public override class var averageNumberOfChildren: Int {
 get {
 return 5;
 }
 }

 private func initializeDomesticCanary() {
 print("DomesticCanary created")
 }

 public override init(age: Int, name: String, favoriteToy: String)
{
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeDomesticCanary()
 }

 public override init(age: Int, feathersColor: String, name:
String, favoriteToy: String) {
 super.init(age: age, feathersColor: feathersColor, name: name,
favoriteToy: favoriteToy)
 initializeDomesticCanary()
 }

Chapter 5

[175]

 public override class func printALeg() {
 print("^", terminator: String())
 }

 public override class func printAChild() {
 // Print bird emoji
 print(String(UnicodeScalar(0x01F426)), terminator: String())
 }
}

The DomesticCanary class changes the initializers to match the edits made in its
superclass.

The following table summarizes the list of protocols to which each of the new
versions of the classes we created conform:

Class name Conforms to the following protocol(s)
Animal AbstractAnimal

Mammal AbstractAnimal and AbstractMammal
DomesticMammal AbstractAnimal, AbstractMammal, and

AbstractDomestic

Dog AbstractAnimal, AbstractMammal,
AbstractDomestic, and AbstractDog

TerrierDog AbstractAnimal, AbstractMammal,
AbstractDomestic, and AbstractDog

SmoothFoxTerrier AbstractAnimal, AbstractMammal,
AbstractDomestic, and AbstractDog

Cat AbstractAnimal, AbstractMammal,
AbstractDomestic, and AbstractCat

Bird AbstractAnimal and AbstractBird
DomesticBird AbstractAnimal, AbstractBird, and

AbstractDomestic

Contract Programming with Protocols

[176]

The following simplified UML diagram shows the hierarchy tree for the protocols
and classes and their relationships:

Chapter 5

[177]

The following lines create an instance of Dog named pluto, an instance of Cat named
marie, and an instance of DomesticCanary named tweety. Then, the next lines call
the talk method for the three instances and make pluto bark at tweety. It is possible
to use tweety as the otherDomestic argument for the bark method because it is an
instance of DomesticCanary, and it conforms to the AbstractDomestic protocol:

var pluto = Dog(age: 7, name: "Pluto", favoriteToy: "Teddy bear")
var marie = Cat(age: 4, isPregnant: true, name: "Marie", favoriteToy:
"Tennis ball")
var tweety = DomesticCanary(age: 2, feathersColor: "Yellow", name:
"Tweety", favoriteToy: "Small bell")

tweety.talk()
pluto.bark(3, otherDomestic: tweety)
marie.talk()
pluto.talk()

The following lines show the output generated by the last four lines of code:

Tweety: Tweet Tweet
Pluto to Tweety: Woof Woof Woof
Marie: Meow
Pluto: Woof

If we execute the following lines in the Playground, all of them will display
true as a result because tweety is an instance of a class that conforms to three
protocols: AbstractAnimal, AbstractBird, and AbstractDomestic. In addition,
tweety belongs to Animal, Bird, DomesticMammal, Dog, TerrierDog, and
SmoothFoxTerrier.

tweety is AbstractAnimal
tweety is AbstractBird
tweety is AbstractDomestic
tweety is Animal
tweety is Bird
tweety is DomesticBird
tweety is DomesticCanary

Contract Programming with Protocols

[178]

The following screenshot shows the results of executing the previous lines in the
Playground. Note that the Playground uses an icon to let us know that all the is
tests will always be evaluated to true:

Exercises
Create the following protocols to solve the problem explained in Chapter 1, Objects
from the Real World to Playground:

•	 AbstractShape

•	 AbstractRegularPolygon

•	 AbstractEllipse

•	 AbstractRectangle

•	 AbstractCircle

After you create the protocols, create the classes that implement them based on the
specifications explained in Chapter 1, Objects from the Real World to Playground.

Chapter 5

[179]

The following table summarizes the list of protocols to which each of the classes you
must create will conform:

Class name Conforms to the following protocol(s)
Shape AbstractShape

Rectangle AbstractRectangle and AbstractShape
RegularPolygon AbstractRegularPolygon and AbstractShape
Ellipse AbstractEllipse and AbstractShape
Circle AbstractCircle and AbstractShape
EquilateralTriangle AbstractRegularPolygon and AbstractShape
Square AbstractRegularPolygon and AbstractShape
RegularHexagon AbstractRegularPolygon and AbstractShape

Test your knowledge
1.	 A class can conform to:

1.	 Only one protocol.
2.	 One or more protocols.
3.	 A maximum of two protocols.

2.	 When a class conforms to a protocol:
1.	 It cannot inherit from a class.
2.	 It can inherit from an abstract class.
3.	 It can also inherit from a class.

3.	 A protocol:
1.	 Can inherit from another protocol.
2.	 Can inherit from a class.
3.	 Cannot inherit from another protocol.

4.	 A protocol:
1.	 Is a type.
2.	 Is a method.
3.	 Is the base class for other classes.

Contract Programming with Protocols

[180]

5.	 When we specify a protocol as the type for an argument:
1.	 We can use any type method that conforms to the specified protocol

as an argument.
2.	 We can use any protocol that conforms to the specified protocol as

an argument.
3.	 We can use any instance of a class that conforms to the specified

protocol as an argument.

Summary
In this chapter, you learned about the declaration and combination of multiple
blueprints to generate a single instance. We declared protocols with different types
of requirements. Then, we created many classes that conformed to these protocols.

We worked with type casting to understand how protocols work as types. Finally,
we combined protocols with classes to take advantage of multiple inheritance in
Swift. We combined inheritance for protocols and classes.

Now that you have learned about protocols, multiple inheritance, and
contract-based programming, we are ready to maximize code reuse with generic
code and parametric polymorphism.

[181]

Maximization of Code Reuse
with Generic Code

In this chapter, you will learn about parametric polymorphism and how Swift
implements this object-oriented concept through the possibility to write generic code.
We will use classes that work with one and two constrained generic types.

In addition, we will learn to combine generic code with inheritance and multiple
inheritance to demonstrate the usage of generic code in real-life situations in which
the code becomes more complex than the usage of a simple generic class.

Understanding parametric polymorphism
and generic code
Let's imagine we want to organize a party of specific animals. We don't want to mix
cats with dogs because the party would end up with the dogs chasing cats. We want
a party, and we don't want intruders. However, at the same time, we want to take
advantage of the procedures we create to organize the party and replicate them with
frogs in another party; it would be a party of frogs. We want to reuse the procedures
for either dogs or frogs. However, in future, we will probably want to use them with
other animals, such as parrots, lions, tigers, and horses.

In the previous chapter, we learned to work with protocols. We can declare a protocol
to specify the requirements for an animal and then take advantage of Swift features to
write generic code that works with any class that implements the protocol. Parametric
polymorphism allows us to write generic and reusable code that can work with values
without depending on the type while keeping the full static-type safety.

Maximization of Code Reuse with Generic Code

[182]

We can take advantage of parametric polymorphism in Swift through generics,
also known as generic programming. Once we declare a protocol that specifies the
requirements for an animal, we can create a class that works with any instance that
conforms to this protocol. This way, we can reuse the code that generates a party of
dogs and create a party of frogs, parrots, or any other animal—that is, a party of any
instance of a class that conforms to the animal protocol.

Other strongly typed programming languages, such as C# and
Java, allow us to work with parametric polymorphism through
generics. In case you worked with these programming languages,
you will find that the Swift syntax is very similar. The main
difference is that Swift uses protocols instead of interfaces.

Other programming languages work with a different philosophy known as duck
typing, where the presence of certain attributes or properties and methods make
an object suitable to its usage as a specific animal. With duck typing, if we require
animals to have a name property and provide sing and dance methods, we can
consider any object an animal as long as it provides the required name property and
both the sing and dance methods. Any instance that provides the required property
and methods can be used as an animal.

Let's think about the following situation: we see a bird. The bird quacks, swims, and
walks like a duck, so we can call this bird a duck. Very similar examples related to a
bird and duck generate the duck typing name. We don't need additional information
to work with the bird as a duck. Python, JavaScript, and Ruby are examples of
languages where duck typing is extremely popular.

We can also work with duck typing in Swift. However, it
requires many workarounds, and it is not the most natural way
of working in Swift. Thus, we will focus our efforts on writing
generic code with parametric polymorphism through generics.

Chapter 6

[183]

Declaring a protocol to be used as
a constraint
We will create an AnimalProtocol protocol to specify the requirements that a type
must meet in order to be considered an animal. Then, we will create an Animal base
class that conforms to this protocol, and then, we will specialize this class in three
subclasses: Dog, Frog, and Lion. Then, we will create a Party class that will be able
to work with instances of any class that conforms to the AnimalProtocol protocol
through generics. We will work with a party of dogs, one of frogs, and another of lions.

Then, we will create a DeeJayProtocol protocol and generate a HorseDeeJay class
that conforms to this new protocol. We will create a subclass of the Party class named
PartyWithDeeJay that will use generics to work with instances of any type that
conforms to the AnimalProtoocol protocol and instances of any type that conforms to
the DeeJaypProtocol interface. We will work with a party of dogs with a DJ.

In this case, we will use the Protocol suffix to make it easy to
differentiate protocols from classes in our sample code for this
chapter. However, take into account that this is not a convention for
Swift code. It just makes it easier to understand how generics work.

Now, it is time to code one of the protocols that will be used as a constraint later
when we define the class that takes advantage of generics. The following lines
show the code for the AnimalProtocol protocol. The public modifier followed
by the protocol keyword and the protocol name, AnimalProtocol, composes the
protocol declaration:

public protocol AnimalProtocol {
 var name: String { get }

 init (name: String)

 func dance()
 func say(message: String)
 func sayGoodbye(destination: AnimalProtocol)
 func sayWelcome(destination: AnimalProtocol)
 func sing()
}

Maximization of Code Reuse with Generic Code

[184]

The protocol declares a read-only name String stored property and five method
requirements: dance, say, sayGoodbye, sayWelcome, and sing. As you learned in
the previous chapter, the protocol includes only the method declaration because the
classes that conform to the AnimalProtocol protocol are responsible for providing
the implementation of the name stored property and the other five methods.

In addition, the protocol specifies an initializer requirement. The initializer requires a
name argument, so we will make sure that we will be able to create an instance of any
class that conforms to this protocol by providing a value to a name argument during
initialization. The following line specifies the initializer requirement:

init (name: String)

Declaring a class that conforms to
multiple protocols
Now, we will declare a class named Animal that conforms to both the previously
defined AnimalProtocol protocol and the Equatable protocol. The latter is a
fundamental type in Swift. In order to conform to the Equatable protocol, we must
implement the == operator function for the Animal class to determine the equality
of the instances after we declare the class. This way, we will be able to determine the
equality of instances of classes that implement the AnimalProtocol protocol. We can
read the class declaration as "the Animal class implements both the AnimalProtocol
and Equatable protocols." Take a look at the following code:

public class Animal: AnimalProtocol, Equatable {
 public let name: String

 public var danceCharacters: String {
 get {
 return String()
 }
 }

 public var spelledSound1: String {
 get {
 return String()
 }
 }

 public var spelledSound2: String {
 get {
 return String()

Chapter 6

[185]

 }
 }

 public var spelledSound3: String {
 get {
 return String()
 }
 }

 public required init(name: String) {
 self.name = name
 }

 public func dance() {
 print("\(name) dances \(danceCharacters)")
 }

 public func say(message: String) {
 print("\(name) says: \(message)")
 }

 public func sayGoodbye(destination: AnimalProtocol) {
 print("\(name) says goodbye to \(destination.name): \
(spelledSound1) \(spelledSound2) \(spelledSound3)")
 }

 public func sayWelcome(destination: AnimalProtocol) {
 print("\(name) welcomes \(destination.name): \
(spelledSound2)")
 }

 public func sing() {
 let spelledSingSound = spelledSound1 + " ";
 let separator = ". "
 var song = "\(name) sings: "

 for _ in 1...3 {
 song += spelledSingSound
 }
 song += separator
 for _ in 1...2 {
 song += spelledSingSound
 }
 song += separator

Maximization of Code Reuse with Generic Code

[186]

 song += spelledSingSound
 song += separator

 print(song)
 }
}

public func ==(left: Animal, right: Animal) -> Bool {
 return ((left.dynamicType == right.dynamicType) && (left.name ==
right.name))
}

The Animal class declares an initializer that assigns the value of the required name
argument to the read-only name stored property. Note that the initializer declaration
uses the required keyword because it implements the initializer requirement
specified in the AnimalProtocol protocol:

public required init(name: String) {

The class declared the following four String computed read-only properties. All of
them define a getter method that returns an empty string and that the subclasses will
override with the appropriate strings according to the animal:

•	 danceCharacters

•	 spelledSound1

•	 spelledSound2

•	 spelledSound2

The dance method uses the value retrieved from the danceCharacters property
to print a message indicating that the animal is dancing. The say method prints
the message received as an argument. Both the sayWelcome and sayGoodbye
methods receive AnimalProtocol as an argument that they use to print the name
of the destination of the message. The sayWelcome method uses a combination of
the strings retrieved from spelledSound1 and spelledSound3 to say welcome
to another animal. The sayGoodbye method uses the string retrieved from
spelledSound2 to say goodbye to another animal.

The == operator function receives two Animal instances as arguments and checks
whether the value of the name property and type for both instances are the same. In
a more complex scenario, we might want to code this method to compare the values
of more properties to determine the equality. In our case, we will assume that the
same animal with the same name is exactly the same animal. For example, two frogs
named Kermit are considered to be one frog. Remember that we needed to write the
== operator function to make the Animal class conform to the Equatable protocol.

Chapter 6

[187]

If we comment out the lines that declare the == operator function, the Animal class
won't conform to the Equatable protocol anymore:

/* public func ==(left: Animal, right: Animal) -> Bool {
 return ((left.dynamicType == right.dynamicType) && (left.name ==
right.name))
} */

After we comment out the previous lines, the execution in the Playground will fail,
and we will see a long list of errors that include the following ones:

error: type 'Animal' does not conform to protocol 'Equatable'
public class Animal: AnimalProtocol, Equatable {
 ^
Swift.Equatable:28:8: note: protocol requires function '==' with type
'(Animal, Animal) -> Bool'
 func ==(lhs: Self, rhs: Self) -> Bool

Swift indicates to us that the class doesn't conform to the Equatable protocol and
specifies the function that the protocol requires and its declaration. However, the
additional generated errors might confuse us.

The following screenshot shows the Playground with the generated errors after we
comment out the previous lines that declared the == operator function:

Maximization of Code Reuse with Generic Code

[188]

Now that we have checked the results of removing the lines that declared the ==
operator function, we can uncomment it, and the Animal class will conform to the
Equatable protocol again.

Declaring subclasses that inherit the
conformance to protocols
We have an Animal class that conforms to both, the AnimalProtocol and Equatable
protocols. Now, we will create a subclass of Animal, a Dog class that overrides the
string computed properties defined in the Animal class to provide the appropriate
values for a dog:

public class Dog: Animal {
 public override var spelledSound1: String {
 get {
 return "Woof"
 }
 }

 public override var spelledSound2: String {
 get {
 return "Wooooof"
 }
 }

 public override var spelledSound3: String {
 get {
 return "Grr"
 }
 }

 public override var danceCharacters: String {
 get {
 return "/-\\ \\-\\ /-/"
 }
 }
}

With just a few additional lines of code, we will create another subclass of Animal,
which is a Frog class that also overrides the string's read-only properties defined in
the Animal class to provide the appropriate values for a frog, as follows:

public class Frog: Animal {
 public override var spelledSound1: String {
 get {

Chapter 6

[189]

 return "Ribbit"
 }
 }

 public override var spelledSound2: String {
 get {
 return "Croak"
 }
 }

 public override var spelledSound3: String {
 get {
 return "Croooaaak"
 }
 }

 public override var danceCharacters: String {
 get {
 return "/|\\ \\|/ ^ ^ "
 }
 }
}

Finally, we will create another subclass of Animal, which is a Lion class that also
overrides the string's read-only properties defined in the Animal class to provide the
appropriate values for a lion, as follows:

public class Lion: Animal {
 public override var spelledSound1: String {
 get {
 return "Roar"
 }
 }

 public override var spelledSound2: String {
 get {
 return "Rrroarrr"
 }
 }

 public override var spelledSound3: String {
 get {
 return "Rrrrrrroarrrrrr"
 }
 }

Maximization of Code Reuse with Generic Code

[190]

 public override var danceCharacters: String {
 get {
 return "*-* ** *|* ** "
 }
 }
}

We have three classes that inherit the conformance to protocols from its base class,
which is Animal. The following three classes conform to both, the AnimalProtocol
and Equatable protocols, without including the conformance within the class
declaration but inheriting it:

•	 Dog

•	 Frog

•	 Lion

Declaring a class that works with
a constrained generic type
The following lines declare a PartyError enum that conforms to the ErrorType
protocol. This way, we will be able to throw a specific exception in the next class
that we will create:

public enum PartyError: ErrorType {
 case InsufficientMembersToRemoveLeader
 case InsufficientMembersToVoteLeader
}

The following lines declare a Party class that takes advantage of generics to work
with many types. The class name is followed by a less than sign (<), a T that identifies
the generic type parameter, a colon (:), and a protocol name that the T generic type
parameter must conform to, which is the AnimalProtocol protocol. Then, the where
keyword, followed by T (which identified the type) and a colon (:) that indicates
that the T generic type parameter has to be a type that also conforms to another
protocol—that is, the Equatable protocol. Finally, the greater than sign (>) ends
the type constraints declaration that is included within angle brackets (< >). The
following code highlights the lines that use the T generic type parameter:

public class Party<T: AnimalProtocol where T: Equatable> {
 private var members = [T]()

 public var leader: T

Chapter 6

[191]

 init(leader: T) {
 self.leader = leader
 members.append(leader)
 }

 public func addMember(member: T) {
 members.append(member)
 leader.sayWelcome(member)
 }

 public func removeMember(member: T) throws -> T? {
 if (member == leader) {
 throw PartyError.InsufficientMembersToRemoveLeader
 }
 if let memberIndex = members.indexOf(member) {
 let removedMember = members.removeAtIndex(memberIndex)
 removedMember.sayGoodbye(leader)
 return removedMember
 } else {
 return T?.None
 }
 }

 public func dance() {
 for (_, member) in members.enumerate() {
 member.dance()
 }
 }

 public func sing() {
 for (_, member) in members.enumerate() {
 member.sing()
 }
 }

 public func voteLeader() throws {
 if (members.count == 1) {
 throw PartyError.InsufficientMembersToVoteLeader
 }

 var newLeader = leader
 while (newLeader == leader) {

Maximization of Code Reuse with Generic Code

[192]

 let randomLeaderIndex = Int(arc4random_
uniform(UInt32(members.count)
 newLeader = members[randomLeaderIndex]
 }

 leader.say("\(newLeader.name) has been voted as our new party
leader.")
 newLeader.dance()
 leader = newLeader
 }
}

Now, we will analyze many code snippets to understand how the code included in
the Party<T> class works. The following line starts the class body, declares a private
Array<T> of the type specified by T and initializes it with an empty Array<T>. Array
uses generics to specify the type of the elements that will be accepted and added
to the array. In this case, we will use the array shorthand [T] that is equivalent
to Array<T>—that is, an array of elements whose type is T or conforms to the T
protocol, as follows:

private var members = [T]()

The previous line is equivalent to the following line:

private var members = Array<T>()

The following line declares a public Leader property whose type is T:

public var leader: T

The following lines declare an initializer that receives a leader argument whose type
is T. The argument specifies the first party leader and also the first member of the
party—that is, the first element added of members Array<T>:

init(leader: T) {
 self.leader = leader
 members.append(leader)
}

Chapter 6

[193]

The following lines declare the addMember method that receives a member argument
whose type is T. The code adds the member received as an argument to members
Array<T> and calls the leader.sayWelcome method with member as an argument to
make the party leader welcome the new member:

public func addMember(member: T) {
 members.append(member)
 leader.sayWelcome(member)
}

The following lines declare the removeMember method that receives a member
argument whose type is T, returns an optional T (T?), and throws exceptions.
The throws keyword after the method arguments and before the returned type
indicates that the method can throw exceptions. The code checks whether the
member to be removed is the party leader. The method throws a PartyError.
InsufficientMembersToRemoveLeader exception in case the member is the party
leader. The code returns an optional T (T?) that returns the result of calling the
removeAtIndex method of the members Array<T> with the member received as an
argument and calls the sayGoodbye method for the successfully removed member.
This way, the member that leaves the party says goodbye to the party leader. In case
the member isn't removed, the method returns None—specifically, T?.None:

public func removeMember(member: T) throws -> T? {
 if (member == leader) {
 throw PartyError.InsufficientMembersToRemoveLeader
 }
 if let memberIndex = members.indexOf(member) {
 let removedMember = members.removeAtIndex(memberIndex)
 removedMember.sayGoodbye(leader)
 return removedMember
 } else {
 return T?.None
 }
}

The following lines declare the dance method that calls the method with the same
name for each member of members Array<T>. As we don't use the final keyword in
the declaration, we will be able to override this method in a future subclass:

public func dance() {
 for (_, member) in members.enumerate() {
 member.dance()
 }
}

Maximization of Code Reuse with Generic Code

[194]

The following lines declare the sing method that calls the method with the same
name for each member of members Array<T>. We will also be able to override this
method in a future subclass:

public func sing() {
 for (_, member) in members.enumerate() {
 member.sing()
 }
}

Finally, the following lines declare the voteLeader method that throws exceptions.
As it happened in another method, the throws keyword after the method
arguments indicates that the method can throw exceptions. The code makes
sure that there are at least two members in members Array<T> when we call this
method. In case we just have one member, the method throws a PartyError.
InsufficientMembersToVoteLeader exception. If we have at least two members, the
code generates a new random leader for the party that is different from the existing
one. The code calls the say method for the actual leader to make it explain to the other
party members that another leader is voted. Finally, the code calls the dance method
for the new leader and sets the new value to the leader stored property:

public func voteLeader() throws {
 if (members.count == 1) {
 throw PartyError.InsufficientMembersToVoteLeader
 }

 var newLeader = leader
 while (newLeader == leader) {
 let randomLeaderIndex = Int(arc4random_uniform(UInt32(members.
count)))
 newLeader = members[randomLeaderIndex]
 }

 leader.say("\(newLeader.name) has been voted as our new party
leader.")
 newLeader.dance()
 leader = newLeader
}

Chapter 6

[195]

Using a generic class for multiple types
We can create instances of the Party<T> class by replacing the T generic type parameter
with any type name that conforms to the constraints specified in the declaration of
the Party<T> class. So far, we have three concrete classes that implement both the
AnimalProtocol and Equatable protocols: Dog, Frog, and Lion. Thus, we can use Dog
to create an instance of Party<Dog>—that is, a Party instance of Dog objects.

The following code shows the lines that create four instances of the Dog class: jake,
duke, lady, and dakota. Then, the code creates a Party<Dog> instance named
dogsParty and passes jake as the leader argument to the initializer. This way, we
will create a party of dogs, and Jake is the party leader:

var jake = Dog(name: "Jake")
var duke = Dog(name: "Duke")
var lady = Dog(name: "Lady")
var dakota = Dog(name: "Dakota")
var dogsParty = Party<Dog>(leader: jake)

The dogsParty instance will only accept a Dog instance for all the arguments in
which the class definition uses the generic type parameter named T. The following
lines add the previously created three instances of Dog to the dogs' party by calling
the addMember method:

dogsParty.addMember(duke)
dogsParty.addMember(lady)
dogsParty.addMember(dakota)

The following lines call the dance method to make all the dogs dance, remove a
member that isn't the party leader, vote a new leader, and finally call the sing
method to make all the dogs sing. We will add the try keyword before the calls to
removeMember and voteLeader because these methods can throw exceptions. In this
case, we don't check the result returned by removeMember:

dogsParty.dance()
try dogsParty.removeMember(duke)
try dogsParty.voteLeader()
dogsParty.sing()

Maximization of Code Reuse with Generic Code

[196]

The following lines create an instance of the Dog class named coby. Then, the code
calls the removeMember method and prints a message in case the method returns an
instance of Dog. If the optional Dog (Dog?) returned by the method does not contain
a value, the code prints a message indicating that the dog isn't removed. Because we
haven't added Coby to the dog's party, it won't be removed. Then, we will use similar
code to remove lady. In case she was selected as the random leader, the method
will throw an exception. In case she wasn't selected, the code will print a message
indicating that lady is removed. Remember that the removeMember method returns
T?, which in this case is translated into a Dog? return type:

var coby = Dog(name: "Coby")
if let removedMember = try dogsParty.removeMember(coby) {
 print("\(removedMember.name) has been removed")
} else {
 print("\(coby.name) hasn't been removed")
}
if let removedMember = try dogsParty.removeMember(lady) {
 print("\(removedMember.name) has been removed")
} else {
 print("\(lady.name) hasn't been removed")
}

The following lines show the output after we run the preceding code snippets in
the Playground. However, don't forget that there is a random selection of the new
leader, and the results will vary in each execution:

Jake welcomes Duke: Wooooof
Jake welcomes Lady: Wooooof
Jake welcomes Dakota: Wooooof
Jake dances /-\ \-\ /-/
Duke dances /-\ \-\ /-/
Lady dances /-\ \-\ /-/
Dakota dances /-\ \-\ /-/
Duke says goodbye to Jake: Woof Wooooof Grr
Jake says: Dakota has been voted as our new party leader.
Dakota dances /-\ \-\ /-/
Jake sings: Woof Woof Woof . Woof Woof . Woof .
Lady sings: Woof Woof Woof . Woof Woof . Woof .
Dakota sings: Woof Woof Woof . Woof Woof . Woof .
Coby hasn't been removed
Lady says goodbye to Dakota: Woof Wooooof Grr
Lady has been removed

Chapter 6

[197]

The following screenshot shows the Playground with the execution results:

We can use Frog to create an instance of Party<Frog>. The following code creates
four instances of the Frog class: frog1, frog2, frog3, and frog4. Then, the code
creates a Party<Frog> instance named frogsParty and passes frog1 as the leader
argument. This way, we can create a party of frogs, and Frog #1 is their party leader:

var frog1 = Frog(name: "Frog #1")
var frog2 = Frog(name: "Frog #2")

Maximization of Code Reuse with Generic Code

[198]

var frog3 = Frog(name: "Frog #3")
var frog4 = Frog(name: "Frog #4")
var frogsParty = Party<Frog>(leader: frog1)

The frogsParty instance will only accept a Frog instance for all the arguments in
which the class definition uses the generic type parameter named T. The following
lines add the previously created three instances of Frog to the frogs' party by calling
the addMember method:

frogsParty.addMember(frog2)
frogsParty.addMember(frog3)
frogsParty.addMember(frog4)

The following lines call the dance method to make all the frogs dance, remove
a member that isn't the party leader, vote a new leader, and finally call the sing
method to make all the frogs sing:

frogsParty.dance()
try frogsParty.removeMember(frog3)
try frogsParty.voteLeader()
frogsParty.sing()

The following lines show the output after we run the preceding code snippets in the
Playground. However, don't forget that there is a random selection of the new frog's
party leader, and the results will vary in each execution:

Frog #1 welcomes Frog #2: Croak
Frog #1 welcomes Frog #3: Croak
Frog #1 welcomes Frog #4: Croak
Frog #1 dances /|\ \|/ ^ ^
Frog #2 dances /|\ \|/ ^ ^
Frog #3 dances /|\ \|/ ^ ^
Frog #4 dances /|\ \|/ ^ ^
Frog #3 says goodbye to Frog #1: Ribbit Croak Croooaaak
Frog #1 says: Frog #2 has been voted as our new party leader.
Frog #2 dances /|\ \|/ ^ ^
Frog #1 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .
Frog #2 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .
Frog #4 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Chapter 6

[199]

The following screenshot shows the Playground with the execution results:

We can use Lion to create an instance of Party<Lion>. The following code creates
three instances of the Lion class: simba, nala, and mufasa. Then, the code creates
a Party<Lion> instance named lionsParty and passes simba as the leader
argument. This way, we can create a party of lions, and Simba is the party leader:

var simba = Lion(name: "Simba")
var nala = Lion(name: "Nala")
var mufasa = Lion(name: "Mufasa")
var lionsParty = Party<Lion>(leader: simba)

Maximization of Code Reuse with Generic Code

[200]

The lionsParty instance will only accept a Lion instance for all the arguments in
which the class definition uses the generic type parameter named T. The following
lines add the previously created two instances of Lion to the lions' party by calling
the addMember method:

lionsParty.addMember(nala)
lionsParty.addMember(mufasa)

The following lines call the sing method and then the dance method to make all
the lions sing and dance. Then, the code calls the voteLeader method to select a
new random leader and finally tries to remove nala from the party by calling the
removeMember method:

lionsParty.sing()
lionsParty.dance()
try lionsParty.voteLeader()
try lionsParty.removeMember(nala)

The following lines show the output after we run the preceding code snippets in the
Playground:

Simba welcomes Nala: Rrroarrr
Simba welcomes Mufasa: Rrroarrr
Simba sings: Roar Roar Roar . Roar Roar . Roar .
Nala sings: Roar Roar Roar . Roar Roar . Roar .
Mufasa sings: Roar Roar Roar . Roar Roar . Roar .
Simba dances *-* ** *|* **
Nala dances *-* ** *|* **
Mufasa dances *-* ** *|* **
Simba says: Mufasa has been voted as our new party leader.
Mufasa dances *-* ** *|* **
Nala says goodbye to Mufasa: Roar Rrroarrr Rrrrrrroarrrrrr

Chapter 6

[201]

The following screenshot shows the Playground with the execution results:

If we try to call the addMember method with the wrong type for an instance of
Party<Lion>, the code won't compile because Swift cannot convert an instance of
Dog to the required argument type (Lion). Thus, the following line won't be executed
in the Playground because lady is an instance of Dog:

lionsParty.addMember(lady)

Combining initializer requirements in
protocols with generic types
We included an initializer requirement when we declared the AnimalProtocol
protocol, so we know the necessary arguments to create an instance of any class that
conforms to this protocol. We will add a new method that creates an instance of the
generic type T and adds it to the party members in Party<T> class.

Maximization of Code Reuse with Generic Code

[202]

The following lines show the code for the new createAndAddMember method that
receives a name String argument and returns an instance of the generic type T.
We add the method to the body after the Party<T: AnimalProtocol where T:
Equatable> { public class declaration:

public func createAndAddMember(name: String) -> T {
 let newMember = T(name: name)
 addMember(newMember)

 return newMember
}

The method uses the generic type T and passes the name argument to create a
new instance called newMember. Then, the code calls the addMember method with
newMember as an argument and finally returns the recently created instance.

The following lines call the recently added createAndAddMember method to
create and add a new Lion instance with the name initialized to King to the
lionsParty Party<Lion> instance. Then, the next line calls the say method for
the returned instance:

let king = lionsParty.createAndAddMember("King")
king.say("My name is King")

The next lines show the output generated when we enter the previous lines at the
end of our Playground:

Simba welcomes King: Rrroarrr
King says: My name is King

Declaring associated types in protocols
Now, we want to declare a PartyProtocol protocol and make the generic Party<T>
class conform to this new protocol. The main challenge is to specify the type for both
the method arguments and returned values. In the generic class, we will use the
generic type parameter, but protocols don't allow us to use them.

Associated types allow us to solve the problem. We can declare one or more associated
types as part of the protocol definition. In this case, we just need one associated type to
provide us with a placeholder name—also known as alias—to a type that we will use
as part of the protocol and that will be specified during the protocol implementation—
that is, when we declare a class that conforms to the protocol. It is just necessary to use
the typealias keyword followed by the desired name for the associated type, and
then, we can use the name in our requirements' declarations.

Chapter 6

[203]

The following lines show the declaration of the PartyProtocol protocol. We must
declare the protocol before the public class Party<T: AnimalProtocol where
T: Equatable>: PartyProtocol { line that starts the declaration of the Party<T>
class that we want to edit to make it conform to this new protocol:

public protocol PartyProtocol {
 typealias MemberType

 init(leader: MemberType)

 func createAndAddMember(name: String) -> MemberType
 func addMember(member: MemberType)
 func removeMember(member: MemberType) throws -> MemberType?
 func dance()
 func sing()
 func voteLeader() throws
}

The first line within the protocol body declares an associated type named
MemberType. Then, the initializer and method requirements use MemberType to
specify the type that the generic class that conforms to this protocol will replace with
the generic type parameter name.

The following code shows the first lines of the new declaration of the Party<T> class
that conforms to the recently created PartyProtocol. After the type constraints
included within angle brackets (< >), the class declaration adds a colon (:) followed
by the protocol to which the generic class conforms: PartyProtocol. As we specified
an initializer requirement in the PartyProtocol protocol, we have to add public
required as a prefix before the init declaration. The rest of the code for the class
remains without changes:

public class Party<T: AnimalProtocol where T: Equatable>:
PartyProtocol {
 private var members = [T]()

 public var leader: T

 public required init(leader: T) {
 self.leader = leader
 members.append(leader)
 }

/* The rest of the code for the class remains without changes */

}

Maximization of Code Reuse with Generic Code

[204]

The usage of an associated type in the protocol declaration
allows us to create a protocol that can be implemented with
a class that uses generics.

Creating shortcuts with subscripts
We want to create a shortcut to access the members of the party. Subscripts are
very useful to generate shortcuts to access members of any array, collection, list,
or sequence. Subscripts can define getter and/or setter methods that receive the
argument specified in the subscript declaration. In this case, we will add a read-only
subscript to allow us to retrieve a member of the party through its index value. Thus,
the subscript will only define a getter method.

We will use UInt as the type for the index argument because we don't want negative
integer values, and the getter for the subscript will return an optional type. In case
the index value received is an invalid value, the getter will return None.

First, we will add the following line to the PartyProtocol protocol body:

 subscript(index: UInt) -> MemberType? { get }

We included the subscript keyword followed by the argument name and its required
type—which is the returned type, MemberType?—and the requirement for just a getter
method, get. The requirements for the getter and/or setter methods are included with
the same syntax we used for properties' requirements in protocols. Remember that
MemberType is the associated type we added to the PartyProtocol protocol.

Now, we have to add the code that implements the previously defined subscript
in the Party<T> class. We must add the following code after the public class
Party<T: AnimalProtocol where T: Equatable>: PartyProtocol { line that
starts the declaration of the Party<T> class that we want to edit to make it conform
to the changes in the PartyProtocol protocol:

public subscript(index: UInt) -> T? {
 get {
 if (index <= UInt(members.count - 1)) {
 return members[Int(index)]
 } else {
 return T?.None
 }
 }
}

Chapter 6

[205]

After making the preceding changes, we can specify an UInt value enclosed
in square brackets after an instance of Party<T> to retrieve an instance of
T—specifically T?—from the party. The following lines show examples of its usage
with the Party<Lion> instance named lionsParty. The first two lines retrieve
a Lion instance and print the value for its name property because the array has a
member both at index 0 and index 1. However, the array doesn't have a member at
index 50, so the else condition will be executed in this case:

if let lion = lionsParty[0] {
 print(lion.name)
}
if let lion = lionsParty[1] {
 print(lion.name)
}
if let lion = lionsParty[50] {
 print(lion.name)
} else {
 print("There is no lion with that index value")
}

The following lines show the output generated in the Playground after making the
changes to the PartyProtocol protocol and the Party<T> class and executing the
preceding code:

Simba
Nala
There is no lion with that index value

The following screenshot shows the Playground with the execution results:

Maximization of Code Reuse with Generic Code

[206]

Declaring a class that works with two
constrained generic types
Now, it is time to code another protocol that will be used as a constraint later when
we define another class that takes advantage of generics with two constrained
generic types. The following lines show the code for the DeeJayProtocol protocol.
The public modifier followed by the protocol keyword and the protocol name,
DeeJayProtocol, composes the protocol declaration, as follows:

public protocol DeeJayProtocol {
 var name: String { get }

 init(name: String)

 func playMusicToDance()
 func playMusicToSing()
}

The protocol declares a name String read-only stored property and two method
requirements: playMusicToDance and playMusicToSing. As you learned in the
previous chapter, the protocol includes only the method declaration because the
classes that conform to the DeejayProtocol protocol will be responsible for providing
the implementation of the name stored property and the other two methods.

In addition, the protocol specifies an initializer requirement. The initializer requires
a name argument; therefore, we will make sure that we will be able to create an
instance of any class that conforms to this protocol by providing a value to a name
argument during the initialization.

Now, we will declare a class named HorseDeeJay that conforms to the previously
defined DeeJayProtocol protocol. We can read the class declaration as "the
HorseDeeJay class implements the DeeJayProtocol protocol." Take a look at the
following code:

public class HorseDeeJay: DeeJayProtocol {
 public let name: String

 public required init(name: String) {
 self.name = name
 }

 public func playMusicToDance() {
 print("My name is \(name). Let's Dance.")
 // Multiple musical notes emoji icon

Chapter 6

[207]

 print(String(UnicodeScalar(0x01F3B6)))
 // Dancer emoji icon
 print(String(UnicodeScalar(0x01F483)))
 }

 public func playMusicToSing() {
 print("Time to sing!")
 // Guitar emoji icon
 print(String(UnicodeScalar(0x01F3B8)))
 }
}

The HorseDeeJay class declares an initializer that assigns the value of the required
name argument to the name read-only stored property. The class declares a name
read-only stored property.

The playMusicToDance method prints a message that displays the horse DJ name
and invites the party members to dance. Then, it prints the multiple musical notes
and dancer emoji icons. The playMusicToSing method prints a message that invites
the party members to sing. Then, it prints a guitar emoji icon.

The following lines declare a subclass of the previously created Party<T> class that
takes advantage of generics to work with two constrained types. The type constraints
declaration is included within angle brackets (< >). In this case, we have two generic
type parameters: T and K. The generic type parameter named T must conform to
the AnimalProtocol protocol and also the Equatable protocol, as it happened in
the Party<T> superclass. The generic type parameter named T must conform to the
DeeJayProtocol protocol. The where keyword allows us to add a second constraint
to the generic type parameter named T. This way, the class specifies constraints for
both the T and K generic type parameters. Don't forget that we are talking about a
subclass of Party<T>. The following code highlights the lines that use the K generic
type parameter:

public class PartyWithDeeJay<T: AnimalProtocol, K: DeeJayProtocol
where T: Equatable>: Party<T> {
 public var deeJay: K

 init(leader: T, deeJay: K) {
 self.deeJay = deeJay
 super.init(leader: leader)
 }

 public override func dance() {
 deeJay.playMusicToDance()
 super.dance()

Maximization of Code Reuse with Generic Code

[208]

 }

 public override func sing() {
 deeJay.playMusicToSing()
 super.sing()
 }
}

Now, we will analyze many code snippets to understand how the code included in
the PartyWithDeeJay<T, K> class works. The following line starts the class body
and declares a public deeJay stored property of the type specified by K:

 public var deeJay: K

The following lines declare an initializer that receives two arguments—leader and
deeJay—whose types are T and K. The arguments specify the first party leader, the
first member of the party, and the DJ that will make the party members dance and
sing. Note that the initializer calls the initializer defined in its superclass—that is, the
Party<T> init method—with leader as an argument:

init(leader: T, deeJay: K) {
 self.deeJay = deeJay
 super.init(leader: leader)
}

The following lines declare a dance method that overrides the method with
the same declaration included in the superclass. The code calls the deeJay.
playMusicToDance method and then the super.dance method—that is, the dance
method defined in the Party<T> superclass:

public override func dance() {
 deeJay.playMusicToDance()
 super.dance()
}

Finally, the following lines declare a sing method that overrides the method
with the same declaration included in the superclass. The code calls the deeJay.
PlayMusicToSing method and then calls the super.sing method—that is, the sing
method defined in the Party<T> superclass:

public override func sing() {
 deeJay.playMusicToSing()
 super.sing()
}

Chapter 6

[209]

Using a generic class with two generic
type parameters
We can create instances of the PartyWithDeeJay<T, K> class by replacing both the
T and K generic type parameters with any type names that conform to the constraints
specified in the declaration of the PartyWithDeeJay<T, K> class. We have three
concrete classes that implement both the AnimalProtocol and Equatable protocols:
Dog, Frog, and Lion. We have one class that conforms to the DeeJayProtocol
protocol: HorseDeeJay. Thus, we can use Dog and HorseDeeJay to create an instance
of PartyWithDeeJay<Dog, HorseDeeJay>.

The following lines create a HorseDeeJay instance named silver. Then, the code
creates a PartyWithDeeJay<Dog, HorseDeeJay> instance named silverParty and
passes jake and silver as arguments. This way, we can create a party of dogs with
a horse DJ, where Jake is the party leader, and Silver is the DJ:

var silver = HorseDeeJay(name: "Silver")
var silverParty = PartyWithDeeJay<Dog, HorseDeeJay>(leader: jake,
deeJay: silver)

The silverParty instance will only accept a Dog instance for all the arguments in
which the class definition uses the generic type parameter named T. The following
lines add the previously created three instances of Dog to the party by calling the
addMember method:

silverParty.addMember(duke)
silverParty.addMember(lady)
silverParty.addMember(dakota)

The following lines call the dance method to make the DJ invite all the dogs to dance
and then make them dance. Then, the code removes a member that isn't the party
leader, votes on a new leader, and finally calls the sing method to make the DJ invite
all the dogs to sing and then make them sing:

silverParty.dance()
try silverParty.removeMember(duke)
try silverParty.voteLeader()
silverParty.sing()

Maximization of Code Reuse with Generic Code

[210]

The following lines show the generated output after we run the added code.
The lines don't include the emoji icons:

Jake welcomes Duke: Wooooof
Jake welcomes Lady: Wooooof
Jake welcomes Dakota: Wooooof
My name is Silver. Let's Dance.
Jake dances /-\ \-\ /-/
Duke dances /-\ \-\ /-/
Lady dances /-\ \-\ /-/
Dakota dances /-\ \-\ /-/
Duke says goodbye to Jake: Woof Wooooof Grr
Jake says: Lady has been voted as our new party leader.
Lady dances /-\ \-\ /-/
Time to sing!
Jake sings: Woof Woof Woof . Woof Woof . Woof .
Lady sings: Woof Woof Woof . Woof Woof . Woof .
Dakota sings: Woof Woof Woof . Woof Woof . Woof .
My name is Silver. Let's Dance.
Jake dances /-\ \-\ /-/
Duke dances /-\ \-\ /-/
Lady dances /-\ \-\ /-/
Dakota dances /-\ \-\ /-/
Duke says goodbye to Jake: Woof Grr Woof
Jake says: Lady has been voted as our new party leader.
Lady dances /-\ \-\ /-/
Time to sing!
Jake sings: Woof Woof Woof . Woof Woof . Woof .
Lady sings: Woof Woof Woof . Woof Woof . Woof .
Dakota sings: Woof Woof Woof . Woof Woof . Woof .

Chapter 6

[211]

The following screenshot shows the Playground with the execution results, including
the emoji icons:

The following lines create a PartyWithDeeJay<Frog, HorseDeeJay> instance
named silverAndFrogsParty and passes frog1 and silver as arguments. This
way, we can create a party of frogs with a horse DJ, where Frog #1 is the party
leader, and Silver is the DJ:

var silverAndFrogsParty = PartyWithDeeJay<Frog, HorseDeeJay>(leader:
frog1, deeJay: silver)

Maximization of Code Reuse with Generic Code

[212]

The silverAndFrogsParty instance will only accept a Frog instance for all the
arguments in which the class definition uses the generic type parameter named T.
The following lines add the previously created two instances of Frog to the party by
calling the addMember method:

silverAndFrogsParty.addMember(frog2)
silverAndFrogsParty.addMember(frog3)

The following lines call the dance method to make the DJ invite all the dogs to dance
and then make them dance. Finally, the code calls the sing method to make the DJ
invite all the dogs to sing and then make them sing:

silverAndFrogsParty.dance()
silverAndFrogsParty.sing()

The following lines show the generated output after we run the added code. The
lines don't include the emoji icons:

Frog #1 welcomes Frog #2: Croak
Frog #1 welcomes Frog #3: Croak
My name is Silver. Let's Dance.
Frog #1 dances /|\ \|/ ^ ^
Frog #2 dances /|\ \|/ ^ ^
Frog #3 dances /|\ \|/ ^ ^
Time to sing!
Frog #1 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .
Frog #2 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .
Frog #3 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

The following screenshot shows the Playground with the execution results, including
the emoji icons:

Chapter 6

[213]

Inheriting and adding associated types
in protocols
Now, we want to declare a PartyWithDeeJayProtocol protocol and make the
generic PartyWithDeeJay<T, K> class conform to this new protocol. We will make
this protocol inherit from the previously created PartyProtocol that defined a
MemberType associated type. Thus, the PartyWithDeeJayProtocol protocol will
inherit this associated type. We have to specify another associated type that will be
specified during the protocol implementation—that is, when we declare the class
that conforms to the new protocol.

The following lines show the declaration of the PartyWithDeeJayProtocol protocol
that inherits from the PartyProtocol protocol. We must declare the protocol before
the public class PartyWithDeeJay<T: AnimalProtocol, K: DeeJayProtocol
where T: Equatable>: Party<T> line that starts the declaration of the Party<T,
K> class that we want to edit to make it conform to this new protocol:

public protocol PartyWithDeeJayProtocol: PartyProtocol {
 typealias DeeJayType

 init(leader: MemberType, deeJay: DeeJayType)
}

The first line within the protocol body declares an associated type named DeeJayType.
Then, the initializer requirement uses the inherited MemberType type typealias
and the new DeeJayType typealias to specify the types that the generic class that
conforms to this protocol will replace with the generic type parameter names.

The following code shows the first lines of the new declaration of the Party<T, K>
class that conforms to the recently created PartyWithDeeJayProtocol protocol.
After the type constraints included within angle brackets (< >) and the colon (:)
followed by the class from which the class inherits, Party<T>, the class declaration
adds a comma (,), followed by the protocol to which the generic class conforms:
PartyWithDeeJayProtocol. As we specified an initializer requirement in the
PartyWithDeeJayProtocol protocol, we have to add public required as a prefix
before the init declaration. The rest of the code for the class remains without changes:

public class PartyWithDeeJay<T: AnimalProtocol, K: DeeJayProtocol
where T: Equatable>: Party<T>, PartyWithDeeJayProtocol {
 public var deeJay: K

 public required init(leader: T, deeJay: K) {
 self.deeJay = deeJay
 super.init(leader: leader)

Maximization of Code Reuse with Generic Code

[214]

 }

 public override func dance() {
 deeJay.playMusicToDance()
 super.dance()
 }

 public override func sing() {
 deeJay.playMusicToSing()
 super.sing()
 }
}

Generalizing existing classes with
generics
In Chapter 3, Encapsulation of Data with Properties, we created a class to represent a
mutable 3D vector named MutableVector3D and a class to represent an immutable
version of a 3D vector named ImmutableVector3D.

Both versions were capable of working with 3D vectors with Float values for x, y,
and z. We now realize that we also have to work with 3D vectors with Double values
for x, y, and z in both classes. We definitely don't want to create two new classes,
such as MutableDoubleVector3D and ImmutableDoubleVector3D. We can take
advantage of generics to create two classes capable of working with elements of any
floating point type supported in Swift—that is, either Float, Float80, or Double.

We want to create the following two classes:

•	 MutableVector3D<T>

•	 ImmutableVector3D<T>

It seems to be a pretty simple task. We just have to replace Float with the generic
type parameter, T, and change the class declaration to include the generic type
constraint. However, we face a big problem: we don't have protocols that allow us to
easily build the generic type constraint.

The three floating point types supported in Swift conform to FloatingPointType;
therefore, our first approach might be to include this protocol name in the generic
type constraint. This solution won't work in either the MutableVector3D<T> or
ImmutableVector3D<T> class. However, it is important to understand why it
doesn't work.

Chapter 6

[215]

The following lines show the code for the new MutableVector3D<T> class that will
generate an error that we will solve later. Note that the code doesn't work, and the
highlighted lines within the sum method will generate errors:

public class MutableVector3D<T: FloatingPointType> {
 public var x: T
 public var y: T
 public var z: T

 init(x: T, y: T, z: T) {
 self.x = x
 self.y = y
 self.z = z
 }

 public func sum(deltaX: T, deltaY: T, deltaZ: T) {
 x += deltaX
 y += deltaY
 z += deltaZ
 }

 public func printValues() {
 print("X: \(self.x), Y: \(self.y), Z: \(self.z))")
 }
}

After we enter the previous code in the Playground, it will generate the
following errors:

error: binary operator '+=' cannot be applied to two 'T' operands
 x += deltaX
 ~ ^ ~~~~~~
error: binary operator '+=' cannot be applied to two 'T' operands
 y += deltaY
 ~ ^ ~~~~~~
error: binary operator '+=' cannot be applied to two 'T' operands
 z += deltaZ
 ~ ^ ~~~~~~

Maximization of Code Reuse with Generic Code

[216]

The following screenshot shows the Playground with the generated errors:

The generated errors make it easy to understand the problem. The
FloatingPointType protocol doesn't require the += operator, so we cannot apply
the += operator to the T operands that just conform to this protocol.

Now, let's try to generate the ImmutableVector3D<T> class and check whether
it works with a similar approach. The following lines show the code for the new
ImmutableVector3D<T> class that will generate a different error that we will solve
later. Note that the code doesn't work, and the highlighted line will generate an error:

public class ImmutableVector3D<T: FloatingPointType> {
 public let x: T
 public let y: T
 public let z: T

 init(x: T, y: T, z: T) {
 self.x = x
 self.y = y
 self.z = z
 }

 public func sum(deltaX: T, deltaY: T, deltaZ: T) ->
ImmutableVector3D<T> {
 return ImmutableVector3D<T>(x: x + deltaX, y: y + deltaY, z: z
+ deltaZ)

Chapter 6

[217]

 }

 public func printValues() {
 print("X: \(self.x), Y: \(self.y), Z: \(self.z))")
 }

 public class func equalElementsVector(initialValue: T) ->
ImmutableVector3D<T> {
 return ImmutableVector3D<T>(x: initialValue, y: initialValue,
z: initialValue)
 }
 public class func originVector() -> ImmutableVector3D<T> {
 return equalElementsVector(T(0))
 }
}

After we enter the previous code in the Playground, it will generate the
following error:

error: binary operator '+' cannot be applied to two 'T' operands
 return ImmutableVector3D<T>(x: x + deltaX, y: y + deltaY, z: z
+ deltaZ)
 ~ ^ ~~~~~~

The following screenshot shows the Playground with the generated error:

Maximization of Code Reuse with Generic Code

[218]

As in the previous case, the generated error makes it easy to understand the problem.
The FloatingPointType protocol doesn't require the + operator, so we cannot apply
the + operator to the T operands that just conform to this protocol.

Basically, we need all the floating point types to do the following:

•	 Provide an initializer that creates an instance initialized to zero
•	 Implement the + operator
•	 Implement the += operator

We just need to create a protocol that specifies these requirements and extends all
the floating point types we want to be used as types in our MutableVector3D<T>
and ImmutableVector3D<T> classes. We must extend these types to conform to the
new protocol.

The following lines show the code that declares the new NumericForVector
protocol:

public protocol NumericForVector {
 init()

 func +(lhs: Self, rhs: Self) -> Self
 func +=(inout lhs: Self, rhs: Self)
}

The protocol declares an initializer without arguments. All the numeric types provide
an initializer without arguments to generate a value of the type initialized to zero. It is
exactly what we need to initialize our Immutable3DVector to an origin vector.

Then, the protocol declares the + function that represents the + operator. The
function requires two arguments, lhs and rhs, which are acronyms for left-hand
side and right-hand side, to specify the values on the left-hand side and right-hand
side of the operator. Both arguments are of the Self type.

In protocols, Self means the actual type that implements the
protocol, and it is different from self with a lowercase s that
we use in methods and that refers to the actual instance. The +
function returns Self, so the implementation of this function in
Double receives two Double arguments and returns a Double
argument with the result of the sum of the two received values.
The implementation of this function in Float receives two Float
arguments and returns a Float argument with the result of the
sum of the the two received values.

Chapter 6

[219]

Finally, the protocol declares the += function that represents the += operator. The
function requires two arguments: lhs and rhs. In this case, the first argument is
an in/out parameter as it includes the inout keyword at the start of the parameter
definition. Thus, Swift passes the value of lhs and the function can modify it and
pass it back out of the function to replace the original value. Both arguments are of
the Self type and the += function returns Self.

Now, we have to extend all the floating point types we want to be used as types in
our MutableVector3D<T> and ImmutableVector3D<T> classes to make it conform to
the recently created NumericForVector protocol, as follows:

extension Double: NumericForVector { }
extension Float: NumericForVector { }
extension Float80: NumericForVector { }

We don't need to add code to make Double, Float, and Float80 conform to the new
NumericForVector protocol because the three types already implement the necessary
actions to conform to the protocol. We need to have a protocol that groups all the
requirements to use it as a type constraint for the generic type in our two classes.

The following lines show the code for the new MutableVector3D<T> class that
works as expected:

public class MutableVector3D<T: NumericForVector> {
 public var x: T
 public var y: T
 public var z: T

 init(x: T, y: T, z: T) {
 self.x = x
 self.y = y
 self.z = z
 }

 public func sum(deltaX: T, deltaY: T, deltaZ: T) {
 x += deltaX
 y += deltaY
 z += deltaZ
 }

 public func printValues() {
 print("X: \(self.x), Y: \(self.y), Z: \(self.z))")
 }
}

Maximization of Code Reuse with Generic Code

[220]

The class name is followed by a less than sign (<), a T that identifies the generic type
parameter, a colon (:), and a protocol name that the T generic type parameter must
conform to—that is, the NumericForVector protocol. The protocol specifies the
requirement for a += function; therefore, the sum method can apply this operator
to the stored properties (x, y, and z) and delta arguments (deltaX, deltaY, and
deltaZ), all of them of the T type.

The following lines show the code for the new ImmutableVector3D<T> class that
works as expected:

public class ImmutableVector3D<T: NumericForVector> {
 public let x: T
 public let y: T
 public let z: T

 init(x: T, y: T, z: T) {
 self.x = x
 self.y = y
 self.z = z
 }

 public func sum(deltaX: T, deltaY: T, deltaZ: T) ->
ImmutableVector3D<T> {
 return ImmutableVector3D<T>(x: x + deltaX, y: y + deltaY, z: z
+ deltaZ)
 }

 public func printValues() {
 print("X: \(self.x), Y: \(self.y), Z: \(self.z)")
 }

 public class func equalElementsVector(initialValue: T) ->
ImmutableVector3D<T> {
 return ImmutableVector3D<T>(x: initialValue, y: initialValue,
z: initialValue)
 }

 public class func originVector() -> ImmutableVector3D<T> {
 let zero = T()
 return equalElementsVector(zero)
 }
}

Chapter 6

[221]

The class name is followed by a less than sign (<), a T that identifies the generic type
parameter, a colon (:), and a protocol name that the T generic type parameter must
conform to—that is, the NumericForVector protocol. The protocol specifies the
requirement for a + function, so the sum method can apply this operator to the stored
properties (x, y, and z) and delta arguments (deltaX, deltaY, and deltaZ) to use the
results as arguments to create a new instance of ImmutableVector3D<T>.

The originVector type method calls the initializer without arguments to create a
value of the T type initialized to zero. We can use this initializer because we specified
it as a requirement in the NumericForVector protocol.

Now, we can create instances of any of the following:

•	 MutableVector3D<Double>

•	 MutableVector3D<Float>

•	 MutableVector3D<Float80>

•	 ImmutableVector3D<Double>

•	 ImmutableVector3D<Float>

•	 ImmutableVector3D<Float80>

The following lines create instances of the previously enumerated—that is, both
MutableVector3D and ImmutableVector3D—with the generic type parameter set to
Double, Float, and Float80. The code also calls the sum and printValues methods
for each instance:

let mutableVector0 = MutableVector3D<Double>(x: 10.1, y: 10.2, z:
10.3)
mutableVector0.sum(3.4, deltaY: 4.52, deltaZ: 3.32)
mutableVector0.printValues()

let mutableVector1 = MutableVector3D<Float>(x: 3.456, y: 9.231, z:
3.324)
mutableVector1.sum(3.411, deltaY: 4.232, deltaZ: 3.465)
mutableVector1.printValues()

let mutableVector2 = MutableVector3D<Float80>(x: 7.2345, y: 2.3489, z:
1.3485)
mutableVector2.sum(3.4113, deltaY: 1.2332, deltaZ: 1.3482)
mutableVector2.printValues()

let immutableVector0 = ImmutableVector3D<Double>(x: 10.1, y: 10.2, z:
10.3)
let immutableVector1 = immutableVector0.sum(3.4, deltaY: 4.52, deltaZ:
3.32)

Maximization of Code Reuse with Generic Code

[222]

immutableVector1.printValues()

let immutableVector2 = ImmutableVector3D<Float>(x: 3.456, y: 9.231, z:
3.324)
let immutableVector3 = immutableVector2.sum(3.411, deltaY: 4.232,
deltaZ: 3.465)
immutableVector3.printValues()

let immutableVector4 = ImmutableVector3D<Float80>(x: 7.2345, y:
2.3489, z: 1.3485)
let immutableVector5 = immutableVector4.sum(3.4113, deltaY: 1.2332,
deltaZ: 1.3482)
immutableVector5.printValues()

The following lines show the output generated by the preceding code:

X: 13.5, Y: 14.72, Z: 13.62)
X: 6.867, Y: 13.463, Z: 6.789)
X: 10.6458, Y: 3.5821, Z: 2.6967)
X: 13.5, Y: 14.72, Z: 13.62
X: 6.867, Y: 13.463, Z: 6.789
X: 10.6458, Y: 3.5821, Z: 2.6967

The following screenshot shows the Playground with the types generated in each
line specified on the right-hand side:

Chapter 6

[223]

Extending base types to conform to
custom protocols
Now, we want to be able to use any of the integer types as types in our
MutableVector3D<T> and ImmutableVector3D<T> classes. We just need to
extend the desired types to make them conform to the previously created
NumericForVector protocol.

We want to make the two classes capable of working with elements of any integer
type supported in Swift—that is, any of the following types:

•	 Int

•	 Int16

•	 Int32

•	 Int64

•	 Int8

•	 UInt

•	 UInt16

•	 UInt32

•	 UInt64

•	 UInt8

The following lines extend the previously enumerated types to conform to the
NumericForVector protocol:

// Signed integers
extension Int: NumericForVector { }
extension UInt: NumericForVector { }
extension Int16: NumericForVector { }
extension Int32: NumericForVector { }
extension Int64: NumericForVector { }
extension Int8: NumericForVector { }

// Unsigned integers
extension UInt16: NumericForVector { }
extension UInt32: NumericForVector { }
extension UInt64: NumericForVector { }
extension UInt8: NumericForVector { }

Maximization of Code Reuse with Generic Code

[224]

As it happened when we extended Double, Float, and Float80 to conform to
the NumericForVector protocol, we don't need to add any code to these new
supported types because they already implement the necessary actions to conform
to the protocol. Now, the two classes are capable of working with the integer types
supported by Swift apart from the floating point types.

The following lines create instances of MutableVector3D and ImmutableVector3D
with the generic type parameter set to Int and UInt. The code also calls the sum and
printValues methods for each instance:

let mutableVector4 = MutableVector3D<Int>(x: -10, y: -11, z: -12)
mutableVector4.sum(7, deltaY: 8, deltaZ: 9)
mutableVector4.printValues()

let mutableVector5 = MutableVector3D<UInt>(x: 10, y: 11, z: 12)
mutableVector5.sum(7, deltaY: 8, deltaZ: 9)
mutableVector5.printValues()

let immutableVector6 = ImmutableVector3D<Int>(x: -7, y: -2, z: -1)
let immutableVector7 = immutableVector6.sum(3, deltaY: 12, deltaZ: 14)
immutableVector7.printValues()

let immutableVector8 = ImmutableVector3D<UInt>(x: 7, y: 2, z: 1)
let immutableVector9 = immutableVector8.sum(3, deltaY: 12, deltaZ: 14)
immutableVector9.printValues()

The following lines show the output generated by the preceding code:

X: -3, Y: -3, Z: -3)
X: 17, Y: 19, Z: 21)
X: -4, Y: 10, Z: 13
X: 10, Y: 14, Z: 15

The following screenshot shows the Playground with the types generated in each
line specified on the right-hand side:

Chapter 6

[225]

Test your knowledge
1.	 When we declare protocols, the Self keyword signifies:

1.	 The type that implements the protocol.
2.	 The instance of a class that conforms to the protocol.
3.	 The instance of a struct that conforms to the protocol.

2.	 Generics allow us to declare a class that:
1.	 Can use a generic type only as the type for stored and type

properties.
2.	 Can use a genric type only as an argument for its initializers.
3.	 Can work with many generic types.

Maximization of Code Reuse with Generic Code

[226]

3.	 The public class ImmutableVector3D<T: FloatingPointType>
line means:

1.	 The generic type constraint specifies that T must conform to the
ImmutableVector3D protocol or belong to the ImmutableVector3D
class hierarchy.

2.	 The generic type constraint specifies that T must conform to the
FloatingPointType protocol or belong to the FloatingPointType
class hierarchy.

3.	 The class is a subclass of FloatingPointType.

4.	 The public class Party<T: AnimalProtocol where T: Equatable>
line means:

1.	 The generic type constraint specifies that T must conform to both the
AnimalProtocol and Equatable protocols.

2.	 The generic type constraint specifies that T must conform to either the
AnimalProtocol or Equatable protocol.

3.	 The class is a subclass of both the AnimalProtocol and Equatable
classes.

5.	 The typealias keyword followed by the desired name allows us to declare:

1.	 The generic type constraints, which is equivalent to the where keyword.
2.	 An associated type for a protocol.
3.	 An alias name for the protocol name.

Exercises
Add the following operators to work with both MutableVector3D<T> and
ImmutableVector3D<T>:

•	 ==: This determines whether all the elements that compose a 3D vector (x, y,
and z) are equal.

•	 +: This sums each element that composes a 3D vector and saves the result in
each element or in the new returned instance according to the class version
(mutable or immutable). The new x must have the result of the left-hand side
x + right-hand side x, the new y must be that of left-hand side y + right-hand
side y, and the new z must be that of left-hand side z + right-hand side z.

Chapter 6

[227]

In Chapter 4, Inheritance, Abstraction, and Specialization we created an Animal class
and then defined specific operator functions to allow us to use operators with
instances of this class. Redefine this class to conform to both the Comparable and
Equatable protocols.

The following lines show the source code for the Equatable protocol:

public protocol Equatable {
 @warn_unused_result
 public func ==(lhs: Self, rhs: Self) -> Bool
}

The following lines show the source code for the Comparable protocol, which
inherits from the Equatable protocol.

public protocol Comparable : Equatable {
 @warn_unused_result
 public func <(lhs: Self, rhs: Self) -> Bool
 @warn_unused_result
 public func <=(lhs: Self, rhs: Self) -> Bool
 @warn_unused_result
 public func >=(lhs: Self, rhs: Self) -> Bool
 @warn_unused_result
 public func >(lhs: Self, rhs: Self) -> Bool
}

Implement all the necessary operator functions to make the Animal class conform to
both the protocols.

Summary
In this chapter, you learned how to maximize code reuse by writing code capable of
working with objects of different types—that is, instances of classes that conform to
specific protocols or whose class hierarchy includes specific superclasses. We worked
with protocols and generics. We created classes capable of working with one or two
constrained generic types.

We combined inheritance, protocols, and extensions to maximize the reusability of
code. We could make classes work with many different types.

Now that we have learned about parametric polymorphism and generics, we are
ready to combine object-oriented programming and functional programming, which
is the topic of the next chapter.

[229]

Object-Oriented Programming
and Functional Programming

In this chapter, we will refactor an existing code that doesn't use an object-oriented
programming approach and make it easier to understand, expand, and maintain. We
will discuss functional programming and how Swift implements many functional
programming concepts. We will work with many examples of how to mix functional
programming with object-oriented programming.

Refactoring code to take advantage of
object-oriented programming
Sometimes, we are extremely lucky and have the possibility to follow best practices
as we kick off a project. If we start writing object-oriented code from scratch, we can
take advantage of all the features that we used in our examples throughout the book.
As the requirements evolve, we might need to further generalize or specialize the
blueprints. However, as we started our project with an object-oriented approach and
by organizing our code, it is easier to make adjustments to the code.

Most of the time, we aren't extremely lucky and have to work on projects that don't
follow best practices, and we, in the name of agility, generate pieces of code that
perform similar tasks but without decent organization. Instead of following the same
bad practices that generate error-prone, repetitive, and difficult-to-maintain code,
we can use the features provided by Xcode and additional helper tools to refactor
existing code and generate object-oriented code that promotes code reuse and allows
us to reduce maintenance headaches.

Object-Oriented Programming and Functional Programming

[230]

For example, imagine that we have to develop a universal app that allows us to work
with 3D models and render them on the device screen. The requirements specify
that the first 3D models that we will have to render are two: a sphere and a cube.
The application must allow us to change the parameters of a perspective camera
that allows us to see a specific part of the 3D world rendered on a 2D screen (refer to
Figure 1 and Figure 2):

•	 The X, Y, and Z positions
•	 The X, Y, and Z directions
•	 The X, Y, and Z up vectors

In addition, the application must allow us to change the values for the following
parameters:

•	 The perspective field of view in degrees: This value determines the angle
for the perspective camera's lens. A low value for this angle narrows the
view. Thus, the models will appear larger in the lens with a perspective field
of view of 45 degrees. A high value for this angle widens the view, so the
models appear smaller in the visible part of the 3D world.

Chapter 7

[231]

•	 The near clipping plane: The 3D region, which is visible on the 2D screen,
is formed by a clipped pyramid called a frustum. This value controls the
position of the plane that slices the top of the pyramid and determines the
nearest part of the 3D world that the camera will render on the 2D screen. As
the value is expressed taking into account the Z-axis, it is a good idea to add
code to check whether we are entering a valid value for this parameter.

•	 The far clipping plane: This value controls the position of the plane that
slices the back of the pyramid and determines the more distant part of the
3D world that the camera will render on the 2D screen. The value is also
expressed taking into account the Z -axis; therefore, it is a good idea to add
code to check whether we are entering a valid value for this parameter.

In addition, we can change the color of a directional light—that is, one that casts light
in a specific direction, similar to sunlight.

Imagine that other developers started working on the project and generated a single
Swift file with a class wrapper that declares many type methods that render a cube
and a sphere. These functions receive all the necessary parameters to render each
3D figure—including the X, Y, and Z positions—determine the 3D figure's size, and
configure the camera and directional light:

Object-Oriented Programming and Functional Programming

[232]

The following lines show an example of the declaration of a SphereAndCube
class with two type methods: renderSphere and renderCube. As we might guess
from the type method names, the first one renders a sphere, and the second one
renders a cube:

public class SphereAndCube {
 public static func renderSphere(
 x: Int, y: Int, z: Int, radius: Int,
 cameraX: Int, cameraY: Int, cameraZ: Int,
 cameraDirectionX: Int, cameraDirectionY: Int,
cameraDirectionZ: Int,
 cameraVectorX: Int, cameraVectorY: Int, cameraVectorZ: Int,
 cameraPerspectiveFieldOfView: Int,
 cameraNearClippingPlane: Int,
 cameraFarClippingPlane: Int,
 directionalLightX: Int, directionalLightY: Int,
directionalLightZ: Int,
 directionalLightColor: Int) {
 print("Creating camera at X:\(cameraX), Y:\(cameraY), Z:\
(cameraZ)")
 print("Setting camera direction to X:\(cameraDirectionX),
Y:\(cameraDirectionY), Z:\(cameraDirectionZ)")
 print("Setting camera vector to X:\(cameraVectorX), Y:\
(cameraVectorY), Z:\(cameraVectorZ)")
 print("Setting camera perspective field of view to: \
(cameraPerspectiveFieldOfView)")
 print("Setting camera near clipping plane to: \
(cameraNearClippingPlane)")
 print("Setting camera far clipping plane to: \
(cameraFarClippingPlane)")
 print("Creating directional light at X:\
(directionalLightX), Y:\(directionalLightY), Z:\(directionalLightZ).
Light color is \(directionalLightColor)")
 print("Drawing sphere at X:\(x), Y:\(y), Z:\(z)")
 }

 public static func renderCube(
 x: Int, y: Int, z: Int, edgeLength: Int,
 cameraX: Int, cameraY: Int, cameraZ: Int,
 cameraDirectionX: Int, cameraDirectionY: Int,
cameraDirectionZ: Int,
 cameraVectorX: Int, cameraVectorY: Int, cameraVectorZ: Int,
 cameraPerspectiveFieldOfView: Int,
 cameraNearClippingPlane: Int,
 cameraFarClippingPlane: Int,

Chapter 7

[233]

 directionalLightX: Int, directionalLightY: Int,
directionalLightZ: Int,
 directionalLightColor: Int) {
 print("Creating camera at X:\(cameraX), Y:\(cameraY), Z:\
(cameraZ)")
 print("Setting camera direction to X:\(cameraDirectionX),
Y:\(cameraDirectionY), Z:\(cameraDirectionZ)")
 print("Setting camera vector to X:\(cameraVectorX), Y:\
(cameraVectorY), Z:\(cameraVectorZ)")
 print("Setting camera perspective field of view to: \
(cameraPerspectiveFieldOfView)")
 print("Setting camera near clipping plane to: \
(cameraNearClippingPlane)")
 print("Setting camera far clipping plane to: \
(cameraFarClippingPlane)")
 print("Creating directional light at X:\
(directionalLightX), Y:\(directionalLightY), Z:\(directionalLightZ).
Light color is \(directionalLightColor)")
 print("Drawing cube at X:\(x), Y:\(y), Z:\(z)")
 }
}

Each type method requires a huge number of parameters. Let's imagine that we have
the requirement to add code to render additional shapes and add different types of
cameras and lights. The code can easily become a really big mess, repetitive, and
difficult to maintain.

In Chapter 3, Encapsulation of Data with Properties, we worked with both mutable
and immutable versions of a class that represented a 3D vector. Then, we learned
to overload operators and take advantage of generics. We created an improved
version of both the mutable and immutable versions of the 3D vector in Chapter 6,
Maximization of Code Reuse with Generic Code.

The first change we can make is to work with MutableVector3D<Int> instead of
working with separate X, Y, and Z values. However, we won't use the same code we
created in the previous chapter because we want a different behavior. We will create
a new version of the NumericForVector protocol that will allow us to specify all the
requirements that any numeric type must implement in order to use it as the generic
type parameter for the new MutableVector3D class. In this case, we will just include
a parameterless initializer. However, we will need to add many operators as we
expand the ImmutableVector3D class. Therefore, in this case, we will just include the
protocol to have our code ready for future requirements.

Object-Oriented Programming and Functional Programming

[234]

The following lines show the code that declares the new NumericForVector
protocol:

public protocol NumericForVector {
 init()
}

Now, we have to extend the existing Int type that we want to use for our
ImmutableVector3D<T> class to make it conform to the recently created
NumericForVector protocol:

extension Int: NumericForVector { }

The following lines show the code for the new ImmutableVector3D<T> class:

public class MutableVector3D<T: NumericForVector> {
 public var x: T
 public var y: T
 public var z: T

 public var stringRepresentation: String {
 get {
 return String("X: \(self.x), Y: \(self.y), Z: \(self.z)")
 }
 }

 init(x: T, y: T, z: T) {
 self.x = x
 self.y = y
 self.z = z
 }

 public class func equalElementsVector(initialValue: T) ->
MutableVector3D<T> {
 return MutableVector3D<T>(x: initialValue, y: initialValue, z:
initialValue)
 }

 public class func originVector() -> MutableVector3D<T> {
 let zero = T()
 return equalElementsVector(zero)
 }
}

Chapter 7

[235]

The code doesn't overload operators because we want to keep our focus on the
refactoring process. The class declares a stringRepresentation read-only
computed property of the String type that returns a string with the values for the
x, y, and z constants. The SphereAndCube.renderSphere and SphereAndCube.
renderCube type methods print the values for the x, y, and z coordinates of many
elements that compose the scene. We will generalize the generation of the string
representation that will allow us to print the values.

We will create a simple protocol named SceneElementProtocol to specify the
requirements for scene elements, as follows:

public protocol SceneElementProtocol {
 var location: MutableVector3D<Int> { get set }

 init(location: MutableVector3D<Int>)
}

The following lines declare the SceneElement class that adopts the previously
defined SceneElementProtocol protocol. The class represents a 3D element that is
part of a scene and has a location specified with MutableVector3D<Int>. It is the
base class for all the scene elements that require a location in the 3D space:

public class SceneElement: SceneElementProtocol {
 public var location: MutableVector3D<Int>
}

The following lines declare another abstract class named Light that is a subclass
of the previously defined SceneElement class. The class represents a 3D light and
is the base class for all the lights that might be included in a scene. In this case,
the class declaration is empty, and we only declare it because we know that there
will be many types of lights, and we want to be able to generalize the common
requirements for all types of lights in the future. We are preparing the code for
further enhancements:

public class Light: SceneElement {

}

The following lines declare a subclass of Light named DirectionalLight. The class
represents a directional light and adds a color stored property. In this case, we don't
add validations for the property setters just to make the example simple. However,
we already know how to do it:

public class DirectionalLight: Light
{

Object-Oriented Programming and Functional Programming

[236]

 public var color: Int

 init(location: MutableVector3D<Int>, color: Int) {
 self.color = color
 super.init(location: location)
 }
}

The following lines declare a class named Camera that inherits from SceneElement.
The class represents a 3D camera. It is the base class for all cameras. In this case,
the class declaration is empty, and we only declare it because we know that there
will be many types of cameras. Also, we want to be able to generalize the common
requirements for all types of cameras in the future as we did for the lights:

public class Camera: SceneElement {

}

The following lines declare a subclass of Camera named PerspectiveCamera.
The class represents a perspective camera and adds the following
ImmutableVector3D<Int> stored properties: direction and vector. In
addition, the class adds the following three stored properties: fieldOfView,
nearClippingPlane, and farClippingPlane:

public class PerspectiveCamera: Camera {
 public var direction: MutableVector3D<Int>
 public var vector: MutableVector3D<Int>
 public var fieldOfView: Int
 public var nearClippingPlane: Int
 public var farClippingPlane: Int

 init(location: MutableVector3D<Int>, direction:
MutableVector3D<Int>, vector: MutableVector3D<Int>, fieldOfView: Int,
nearClippingPlane: Int, farClippingPlane: Int) {
 self.direction = direction
 self.vector = vector
 self.fieldOfView = fieldOfView
 self.nearClippingPlane = nearClippingPlane
 self.farClippingPlane = farClippingPlane
 super.init(location: location)
 }
}

Chapter 7

[237]

The following lines declare a class named Shape that inherits from SceneElement.
The class represents a 3D shape and is the base class for all the 3D shapes. The class
defines a render method that receives a Camera instance and an array of Light
instances. Each subclass that implements a specific shape will be able to override the
empty render method to render a specific shape:

public class Shape: SceneElement
{
 public func render(camera: Camera, lights: [Light]) {

 }
}

The following lines declare a Sphere class, a subclass of Shape that adds a radius
property and overrides the render method defined in its superclass to render a sphere:

public class Sphere: Shape {
 public var radius: Int

 init(location: MutableVector3D<Int>, radius: Int) {
 self.radius = radius
 super.init(location: location)
 }

 public override func render(camera: Camera, lights: [Light]) {
 print("Drawing sphere at \(location.stringRepresentation)")
 }
}

The following lines declare a Cube class, a subclass of Shape that adds an
edgeLength property and overrides the render method defined in its superclass to
render a cube:

public class Cube: Shape {
 public var edgeLength: Int

 init(location: MutableVector3D<Int>, edgeLength: Int) {
 self.edgeLength = edgeLength
 super.init(location: location)
 }

 public override func render(camera: Camera, lights: [Light]) {
 print("Drawing cube at \(location.stringRepresentation)")
 }
}

Object-Oriented Programming and Functional Programming

[238]

Finally, the following lines declare the Scene class that represents the scene to be
rendered. The class defines an activeCamera private stored property that holds a
Camera instance. The lights private stored property is an array of Light instances,
and the shapes private stored property is an array of Shape instances that compose
the scene. The addLight method adds a Light instance to the lights array. The
addShape method adds a Shape instance to the shapes array. Finally, the render
method prints some details about the scene that is set up based on the types of
camera and lights. Then, this method calls the render method for each of the Shape
instances included in the shapes array and passes the activeCamera and lights
arrays as arguments:

public class Scene {
 private var lights = [Light]()
 private var shapes = [Shape]()
 private var activeCamera: Camera

 init(initialCamera: Camera) {
 activeCamera = initialCamera
 }

 public func addLight(light: Light) {
 lights.append(light)
 }

 public func addShape(shape: Shape) {
 shapes.append(shape)
 }

 public func render() {
 print("Creating camera at \(activeCamera.location.
stringRepresentation)")
 if let perspectiveCamera = activeCamera as? PerspectiveCamera
{
 print("Setting camera direction to \(perspectiveCamera.
direction.stringRepresentation)")
 print("Setting camera vector to \(perspectiveCamera.
vector.stringRepresentation)")
 print("Setting camera perspective field of view to: \
(perspectiveCamera.fieldOfView)")
 print("Setting camera near clipping plane to: \
(perspectiveCamera.nearClippingPlane)")
 print("Setting camera far clipping plane to: \
(perspectiveCamera.farClippingPlane)")
 }
 for light in lights {
 if let directionalLight = light as? DirectionalLight {

Chapter 7

[239]

 print("Creating directional light at \
(directionalLight.location.stringRepresentation). Light color is \
(directionalLight.color)")
 } else {
 print("Creating light at \(light.location.
stringRepresentation)")
 }
 }

 for shape in shapes {
 shape.render(activeCamera, lights: lights)
 }
 }
}

After we create the previously shown classes, we can enter the following code in the
Playground:

var camera = PerspectiveCamera(location: MutableVector3D<Int>.
equalElementsVector(30),
 direction: MutableVector3D<Int>(x: 50, y: 0, z: 0),
 vector: MutableVector3D<Int>(x: 4, y: 5, z: 2),
 fieldOfView: 90, nearClippingPlane: 20, farClippingPlane: 40)
var sphere = Sphere(location: MutableVector3D<Int>(x: 20, y: 20, z:
20), radius: 8)
var cube = Cube(location: MutableVector3D<Int>.
equalElementsVector(10), edgeLength: 5)
var light = DirectionalLight(location: MutableVector3D<Int>(x: 2, y:
2, z: 5), color: 235)

var scene = Scene(initialCamera: camera)
scene.addShape(sphere)
scene.addShape(cube)
scene.addLight(light)

scene.render()

The code is very easy to understand and read. We will create a PerspectiveCamera
instance with the necessary parameters and then create two shapes: Sphere and
Cube. Finally, we will create DirectionalLight with all the necessary parameters
and Scene with the previously created PerspectiveCamera as the initial camera.
Then, we will add the shapes and light to the scene and call the render method to
render the scene. The following lines show the generated output:

Creating camera at X: 30, Y: 30, Z: 30
Setting camera direction to X: 50, Y: 0, Z: 0
Setting camera vector to X: 4, Y: 5, Z: 2
Setting camera perspective field of view to: 90

Object-Oriented Programming and Functional Programming

[240]

Setting camera near clipping plane to: 20
Setting camera far clipping plane to: 40
Creating directional light at X: 2, Y: 2, Z: 5. Light color is 235
Drawing sphere at X: 20, Y: 20, Z: 20
Drawing cube at X: 10, Y: 10, Z: 10

Now, compare the previous code with the following lines that call the
SphereAndCube.renderSphere and SphereAndCube.renderCube methods with
more than a dozen parameters:

SphereAndCube.renderCube(10, y: 20, z: 30, edgeLength: 50,
cameraX: 25, cameraY: 25, cameraZ: 70, cameraDirectionX: 30,
cameraDirectionY: 20, cameraDirectionZ: 35, cameraVectorX: 11,
cameraVectorY: 15, cameraVectorZ: 25, cameraPerspectiveFieldOfView:
140, cameraNearClippingPlane: 150, cameraFarClippingPlane: 160,
directionalLightX: 30, directionalLightY: 30, directionalLightZ: 25,
directionalLightColor: 156)

SphereAndCube.renderSphere(10, y: 15, z: 25, radius: 32,
cameraX: 25, cameraY: 35, cameraZ: 10, cameraDirectionX: 30,
cameraDirectionY: 35, cameraDirectionZ: 10, cameraVectorX: 62,
cameraVectorY: 5, cameraVectorZ: 2, cameraPerspectiveFieldOfView:
7, cameraNearClippingPlane: 20, cameraFarClippingPlane: 30,
directionalLightX: 5, directionalLightY: 4, directionalLightZ: 7,
directionalLightColor: 232)

The following screenshot shows the object-oriented version and the call to the
two type methods. The object-oriented version is definitely easier to read and
understand. In addition, there is almost always a lot less code duplication:

Chapter 7

[241]

The object-oriented version requires a higher amount of code. However, it is easier
to understand and expand based on future requirements. In addition, the object-
oriented version reuses many pieces of code. If you need to add a new type of light,
shape, or camera, you know where to add the pieces of code, which classes to create,
and which methods to change.

Understanding functions as first-class
citizens
Swift is a multiparadigm programming language, and one of its supported
programming paradigms is functional programming. Functional programming
favors immutable data and, therefore, avoids state changes. The code written with a
functional programming style is as declarative as possible, and it is focused on what
it does instead of how it must do it.

As it happens in many modern programming languages, functions are first-class
citizens in Swift. You can use functions as arguments for other functions or methods.
We can easily understand this concept with a simple example: array filtering.
However, take into account that we will start by writing imperative code with
functions as first-class citizens, and then, we will create a new version for this code
that uses a functional approach in Swift through a filter operation.

The following lines declare the applyFunctionToNumbers function that receives
an array of Int and numbers and a function type, condition. The function type
specifies the parameter types and the return types for the function. In this case,
condition specifies a function type that receives Int and returns a Bool value. The
function executes the received function, condition, for each element in the input
array and adds the element to an output array whenever the result of the called
function is true. This way, only the elements that meet the specified condition will
appear in the resulting array of Int:

func applyFunctionToNumbers(numbers: [Int], condition: Int -> Bool) ->
[Int] {
 var returnNumbers = [Int]()
 for number in numbers {
 if condition(number) {
 returnNumbers.append(number)
 }
 }

 return returnNumbers
}

Object-Oriented Programming and Functional Programming

[242]

The following line declares a divisibleBy5 function that receives Int and returns
Bool, indicating whether the received number is divisible by 5 or not:

func divisibleBy5(number: Int) -> Bool {
 return number % 5 == 0
}

The function type for the divisibleBy5 function is equal to the function type
specified in the condition argument for the applyFunctionToNumbers function.
The following lines show the function type specified in the condition argument
followed by the divisibleBy5 function declaration. The function type specified in
the condition argument matches the function type for the divisibleBy5 function:

condition: Int -> Bool
func divisibleBy5(number: Int) -> Bool

The following two lines declare an array of Int initialized with 10 numbers and
call the applyFunctionToNumbers function with the array of Int and the
divisibleBy5 function as the arguments. The divisibleBy5Numbers array of Int
will have the following values after the applyFunctionToNumber function runs:
[10, 20, 30, 40, 50, 60].

var numbers = [10, 20, 30, 40, 50, 60, 63, 73, 43, 89]
var divisibleBy5Numbers = applyFunction(numbers, divisibleBy10)

The following screenshot shows the results of executing the previous lines in the
Playground:

Chapter 7

[243]

Working with function types within
classes
The following lines declare a myFunction variable with a function type—specifically,
a function that receives an Int argument and returns a Bool value. The variable
works in the same way as an argument that specifies a function type for a function:

var myFunction: (Int -> Bool)
myFunction = divisibleBy5
let myNumber = 20
print("Is \(myNumber) divisible by 5: \(myFunction(myNumber))")

Then, the code assigns the divisibleBy5 function to myFunction. It is very
important to understand that the line doesn't call the divisibleBy5 function and
save the result of this call in the myFunction variable. Instead, it just assigns the
function to the variable that has a function type. The lack of a parenthesis after the
function name makes the difference.

Then, the code prints whether the Int value specified in the myNumber constant is
divisible by 5 or not using the myFunction variable to call the referenced function
with myNumber as an argument.

The following screenshot shows the results of executing the previous lines in the
Playground. Note that the result of executing myFunction = divisibleBy5 displays
an Int -> Bool type on the right-hand side:

Type inference also works with functions, so we might replace the two lines that
declared the myFunction variable and assigned the divisibleBy5 function with the
following single line:

var myFunction = divisibleBy5

Object-Oriented Programming and Functional Programming

[244]

So far, we worked with function types in functions. We can definitely take advantage
of function types in object-oriented code. For example, the following lines show the
code for a new NumberWorker class that declares the applyFunctionToNumbers
method with a function type as a parameter type:

public class NumbersWorker {
 private var numbers = [Int]()

 init(numbers: [Int]) {
 self.numbers = numbers
 }

 public func applyFunctionToNumbers(condition: Int -> Bool) ->
[Int] {
 var returnNumbers = [Int]()
 for number in numbers {
 if condition(number) {
 returnNumbers.append(number)
 }
 }

 return returnNumbers
 }
}

The following lines show the code for the NumberFunctions class that defines the
isNumberDivisibleBy5 type method. We will use this type method as an argument
when we call the applyFunctionToNumbers method:

public class NumberFunctions {
 public static func isNumberDivisibleBy5(number: Int) -> Bool {
 return number % 5 == 0
 }
}

The next lines create a numbersList array of Int and then pass it as an
argument to the initializer of the NumbersWorker class. The last line calls the
worker.applyFunctionToNumbers method with the NumberFunctions.
isNumberDivisibleBy5 type method as an argument:

var numbersList = [-60, -59, -48, -35, -25, -10, 11, 12, 13, 14, 15]
var worker = NumbersWorker(numbers: numbersList)
worker.applyFunctionToNumbers(NumberFunctions.isNumberDivisibleBy5)

Chapter 7

[245]

In this case, we used a type method as the argument for a
method that specified a function type as a parameter type.
We can also use an instance method as an argument that
requires a function type.

The following screenshot shows the result of executing the previous lines in the
Playground:

Creating a functional version of array
filtering
The collections included in Swift allow us the use of higher order functions—that
is, functions that take other functions and use them to perform transformations on
datasets. For example, an array provides us with the filter, map, and reduce methods.

Object-Oriented Programming and Functional Programming

[246]

As previously explained, the preceding code represents an imperative version of
array filtering. We can achieve the same goal with a functional approach using the
filter method included in all the types that conform to the SequenceType protocol.
The Array<Element> struct conforms to the SequenceType protocol and many
other protocols.

As it happens in most modern languages, Swift supports closures,
which are also known as anonymous functions. Closures are
self-contained blocks of functionality that we can pass around
and use within our code as functions without names. Closures
automatically capture everything we reference, such as variables
and functions that aren't defined within the closure. Closures in
Swift are similar to blocks in Objective-C.

The following lines use a closure as an argument for the filter method to generate
the array with the numbers divisible by 5. The closure is the code surrounded with
braces ({}) and uses the in keyword to separate the argument (number: Int) and
the return type (Bool) for the closure from its body:

var filteredNumers = numbersList.filter({
 (number: Int) -> Bool in
 return NumberFunctions.isNumberDivisibleBy5(number)
})

The code calls the filter method for the previously defined numbersList
Array<Int>. This method creates and returns a new Array<Int> that contains
only the elements of numbersList Array<Int> for which the Bool value returned
by the specified closure returns true. In this case, the closure receives a number
value of the Int type and returns the result of calling the NumberFunctions.
isNumberDivisibleBy5 type method with number as an argument.

The following lines add a new filterNumbersByCondition method to the existing
NumbersWorker class. The method specifies a function type for the condition
argument and then uses the function type within the closure that the filter method
calls. This way, we are able to call this method with the function name that we want
to receive an Int value and return Bool to evaluate which members of the original
array are returned in the resulting array:

public func filterNumbersByCondition(condition: Int -> Bool) -> [Int]
{
 return numbersList.filter({
 (number: Int) -> Bool in
 return condition(number)
 })
}

Chapter 7

[247]

The next lines create a numbersList2 array of Int and then pass it as an
argument to the initializer of the NumbersWorker class. The last line calls the
worker2.applyFunctionToNumbers method with the NumberFunctions.
isNumberDivisibleBy5 type method as an argument:

var numbersList2 = [-30, -29, -47, 10, 30, 50, 80]
var worker2 = NumbersWorker(numbers: numbersList)
worker2.applyFunctionToNumbers(NumberFunctions.isNumberDivisibleBy5)

The following screenshot shows the results of executing the previous lines in the
Playground:

Writing equivalent closures with
simplified code
It is possible to omit the type for the closure's parameter and return type. The
following lines show a simplified version of the previously shown code that
generates the same result. Note that the closure code is really simplified and doesn't
even include the return statement because it uses an implicit return. Swift evaluates
the code we write after the in keyword and returns its evaluation as if we included
the return statement before the expression. Swift infers the return type:

public func filterNumbersByCondition(condition: Int -> Bool) -> [Int]
{
 return numbersList.filter({
 (number) in condition(number)
 })
}

Object-Oriented Programming and Functional Programming

[248]

We can go a step further and use the argument shorthand notation. This way, the
closure omits the type for the parameters and its return type, takes advantage of
implicit returns, and also uses the argument shorthand notation. The dollar sign
followed by the argument number identifies each of the arguments for the closure. In
this case, there is only one argument, so we will use $0 to reference it. Obviously, $1
would reference a second argument, $2 would reference a third argument, and so on:

public func filterNumbersByCondition(condition: Int -> Bool) -> [Int]
{
 return numbersList.filter({ condition($0) })
}

The following three pieces of code are equivalent and produce the same results. The
first two versions make it easier to understand that the closure receives a number
argument because we use a specific name for it:

return numbersList.filter({
 (number: Int) -> Bool in
 return condition(number)
})

return numbersList.filter({
 (number) in condition(number)
})

return numbersList.filter({
 return condition($0)
})

Creating a data repository with generics
and protocols
Now, we want to create a repository that provides us with entities so that we
can apply the functional programming features included in Swift to retrieve and
process data from these entities. First, we will create an EntityProtocol protocol
that defines the requirements for an entity. We want any class that conforms to
this protocol to have a read-only id property of the Int type to provide a unique
identifier for the entity:

public protocol EntityProtocol {
 var id: Int { get }
}

Chapter 7

[249]

The next lines create a Repository<T> generic class that specifies that T must conform
to the recently created EntityProtocol protocol in the generic type constraint. The
class declares a getAll method that we will override in the subclasses:

public class Repository<T: EntityProtocol> {
 public func getAll() -> [T] {
 return [T]()
 }
}

The next lines create the Entity class, which is the base class for all the entities. The
class conforms to the EntityProtocol protocol and defines a read-only id property
of the Int type:

public class Entity: EntityProtocol {
 public let id: Int

 init(id: Int) {
 self.id = id
 }
}

The next lines create the Game class, which is a subclass of Entity that conforms
to the CustomStringConvertible protocol. The class adds the following stored
properties: name, highestScore, and playedCount. The CustomStringConvertible
protocol requires the class to implement a description calculated property that
Swift uses whenever we write values to the output string. This way, whenever we
use print and specify an instance of the Game class, Swift will print the value for the
description calculated property:

public class Game: Entity, CustomStringConvertible {
 public var name: String
 public var highestScore: Int
 public var playedCount: Int

 public var description: String {
 get {
 return "id: \(id), name: \"\(name)\", highestScore: \
(highestScore), playedCount: \(playedCount)"
 }
 }

 init(id: Int, name: String, highestScore: Int, playedCount: Int) {
 self.name = name
 self.highestScore = highestScore
 self.playedCount = playedCount

Object-Oriented Programming and Functional Programming

[250]

 super.init(id: id)
 }
}

The following lines create the GameRepository class, a subclass of
Repository<Game>. The class overrides the getAll method declared in the generic
superclass—that is, in the Repository<T> class. In this case, the method returns
an array of Game, Array<Game> specified with the [Game] shortcut. The overridden
method creates 10 Game instances and appends them to an array of Game that the
method returns as a result. Note that we use underscores as separators to make
it easier to read integer numbers. For example, instead of writing 3050, we write
3_050, and it is equivalent to 3050. This way, we can easily realize that it is three
thousand and fifty:

public class GameRepository: Repository<Game> {
 public override func getAll() -> [Game] {
 var gamesList = [Game]()

 gamesList.append(Game(id: 1, name: "Invaders 2016",
highestScore: 1050, playedCount: 3_050))

 gamesList.append(Game(id: 2, name: "Minecraft", highestScore:
3741050, playedCount: 780_009_992))

 gamesList.append(Game(id: 3, name: "Minecraft Story Mode",
highestScore: 67881050, playedCount: 304_506_506))

 gamesList.append(Game(id: 4, name: "Soccer Warriors",
highestScore: 10_025, playedCount: 320_450))

 gamesList.append(Game(id: 5, name: "The Walking Dead Stories",
highestScore: 1_450_708, playedCount: 75_405_350))

 gamesList.append(Game(id: 6, name: "Once Upon a Time in
Wonderland", highestScore: 1_050_320, playedCount: 7_052))

 gamesList.append(Game(id: 7, name: "Cars Forever",
highestScore: 6_705_203, playedCount: 850_021))

 gamesList.append(Game(id: 8, name: "Jake & Peter Pan",
highestScore: 4_023_134, playedCount: 350_230))

 gamesList.append(Game(id: 9, name: "Kong Strikes Back",
highestScore: 1_050_230, playedCount: 450_050))

Chapter 7

[251]

 gamesList.append(Game(id: 10, name: "Mario Kart 2016",
highestScore: 10_572_340, playedCount: 3_760_879))

 return gamesList
 }
}

The following lines create an instance of GameRepository and call the forEach
method for the array of Game returned by the getAll method. The forEach method
calls a body on each element in the array, as is done in a for in loop. The closure
specified as an argument for the forEach method calls the print method with the
Game instance as an argument. This way, Swift uses the description computed
property to generate a String representation for each Game instance:

var gameRepository = GameRepository()
gameRepository.getAll().forEach({ (game) in print(game) })

The following lines show the output generated by the preceding code:

id: 1, name: "Invaders 2016", highestScore: 1050, playedCount: 3050
id: 2, name: "Minecraft", highestScore: 3741050, playedCount:
780009992
id: 3, name: "Minecraft Story Mode", highestScore: 67881050,
playedCount: 304506506
id: 4, name: "Soccer Warriors", highestScore: 10025, playedCount:
320450
id: 5, name: "The Walking Dead Stories", highestScore: 1450708,
playedCount: 75405350
id: 6, name: "Once Upon a Time in Wonderland", highestScore: 1050320,
playedCount: 7052
id: 7, name: "Cars Forever", highestScore: 6705203, playedCount:
850021
id: 8, name: "Jake & Peter Pan", highestScore: 4023134, playedCount:
350230
id: 9, name: "Kong Strikes Back", highestScore: 1050230, playedCount:
450050
id: 10, name: "Mario Kart 2016", highestScore: 10572340, playedCount:
3760879

Object-Oriented Programming and Functional Programming

[252]

The following screenshot shows the result of executing the previous lines in the
Playground:

The following line uses the argument shorthand notation, which is equivalent to the
last line, and produces the same result:

gameRepository.getAll().forEach({ print($0) })

Chapter 7

[253]

Filtering arrays with complex conditions
We can use our new repository to restrict the results retrieved from more complex
data. In this case, the getAll method returns an array of Game instances that we can
use with the filter method to retrieve only the games that match certain conditions.
The following lines declare a new getGamesWithHighestScoreGreaterThan
method for our previously coded GameRepository class:

public func getGamesWithHighestScoreGreaterThan(score: Int) -> [Game]
{
 return getAll().filter({ (game) in game.highestScore > score })
}

The getGamesWithHighestScoreGreaterThan method receives a score: Int
argument and returns Array<Game>. The code calls the getAll and filter methods
for the result with a closure that specifies the required condition for the games
in the array to be returned in the new array. In this case, only the games whose
highestScore value is greater than the score value received as an argument will
appear in the resulting Array<Game>.

The following lines use the GameRepository instance called gameRepository to call
the previously added method and then chain a call to forEach to print all the games
whose highestScore value is greater than 5,000,000:

gameRepository.getGamesWithHighestScoreGreaterThan(5_000_000).forEach(
{ print($0) })

The following lines show the output generated using the preceding code:

id: 3, name: "Minecraft Story Mode", highestScore: 67881050,
playedCount: 304506506
id: 7, name: "Cars Forever", highestScore: 6705203, playedCount:
850021
id: 10, name: "Mario Kart 2016", highestScore: 10572340, playedCount:
3760879

The next code shows two versions of the getGamesWithHighestScoreGreaterThan
method that are equivalent and produce the same results:

public func getGamesWithHighestScoreGreaterThan(score: Int) -> [Game]
{
 return getAll().filter({
 (game: Game) -> Bool in
 game.highestScore > score })
}

Object-Oriented Programming and Functional Programming

[254]

public func getGamesWithHighestScoreGreaterThan(score: Int) -> [Game]
{
 return getAll().filter({ $0.highestScore > score })
}

The following lines declare a new getGamesWithPrefix method for our previously
coded GameRepository class:

public func getGamesWithPrefix(prefix: String) -> [Game] {
 return getAll().filter({ game in game.name.hasPrefix(prefix) })
}

The getGamesWithPrefix method receives a prefix String argument and returns
an Array<Game>. The code calls the getAll method and calls the filter method
for the result with a closure that specifies the required condition for the games in
the array to be returned in the new array. In this case, only the games whose name
includes the string specified in the prefix value and is received as an argument or
prefix will appear in the resulting Array<Game>.

The following line uses the GameRepository instance called gameRepository to call
the previously added method and then chains a call to forEach to print all the games
whose name starts with "Mi":

gameRepository.getGamesWithPrefix("Mi").forEach({ print($0) })

The following lines show the output generated by the preceding code:

id: 2, name: "Minecraft", highestScore: 3741050, playedCount:
780009992
id: 3, name: "Minecraft Story Mode", highestScore: 67881050,
playedCount: 304506506

The next code shows two versions of the getGamesWithPrefix method that are
equivalent and produce the same results:

public func getGamesWithPrefix(prefix: String) -> [Game] {
 return getAll().filter({
 (game: Game) -> Bool in
 game.name.hasPrefix(prefix)
 })
}

public func getGamesWithPrefix(prefix: String) -> [Game] {
 return getAll().filter({ $0.name.hasPrefix(prefix) })
}

Chapter 7

[255]

So far, we used the filter method to generate a new Array<Game>. Sometimes,
we just want to retrieve a single element from an Array or a similar collection, and
we also want to specify a more complex condition. The following lines declare a
new getGameByHighestScoreAndPlayedCount method for our previously coded
GameRepository class:

public func getGameByHighestScoreAndPlayedCount(highestScore: Int,
playedCount: Int) -> Game? {
 return getAll().filter({ game in game.highestScore == highestScore
&& game.playedCount == playedCount }).first
}

The getGameByHighestScoreAndPlayedCount method receives two Int arguments:
highestScore and playedCount. The method returns an optional Game—that is,
Game?. The code calls the getAll and filter methods for the result with a closure
that specifies the required condition for the games in the array to be returned in
the new array. In this case, only the games whose highestScore and playedCount
values are equal to the values received as arguments with the same names will
appear in the Array<Game> generated by the call to the filter method. Then, the
call to the first method returns the first element in the generated array or nil if no
elements are found.

The following lines use the GameRepository instance called gameRepository to call the
previously added method to retrieve two games that match the specified highestScore
and playedCount values. The method returns a Game?; therefore, the code checks
whether the result is a Game instance or not in each call using if statements:

if let game0 = gameRepository.
getGameByHighestScoreAndPlayedCount(4023134, playedCount: 350230) {
 print(game0)
} else {
 print("No game found with the specified criteria")
}
if let game1 = gameRepository.getGameByHighestScoreAndPlayedCount(30,
playedCount: 40) {
 print(game1)
} else {
 print("No game found with the specified criteria")
}

The following lines show the output generated with the preceding code. In the first
call, there was a game that matched the search criteria. In the second call, there is no
Game instance included in the array that matches the search criteria:

id: 8, name: "Jake & Peter Pan", highestScore: 4023134, playedCount:
350230
No game found with the specified criteria

Object-Oriented Programming and Functional Programming

[256]

The next code shows two versions of the getGameByHighestScoreAndPlayedCount
method that are equivalent and produce the same results:

public func getGameByHighestScoreAndPlayedCount(highestScore: Int,
playedCount: Int) -> Game? {
 return getAll().filter({
 (game: Game) -> Bool in
 game.highestScore == highestScore && game.playedCount ==
playedCount
 }).first
}

public func getGameByHighestScoreAndPlayedCount(highestScore: Int,
playedCount: Int) -> Game? {
 return getAll().filter({ $0.highestScore == highestScore &&
$0.playedCount == playedCount }).first
}

Using map to transform values
The map method takes a closure as an argument, calls it for each item in the array,
and returns a mapped value for the item. The returned mapped value can be of a
different type from the item's type.

The following lines declare a new getGamesNames method for our previously coded
GameRepository class that performs the simplest map operation:

public func getGamesNames() -> [String] {
 return getAll().map({ game in game.name.uppercaseString })
}

The getGamesNames parameterless method returns Array<String>. The code calls
the getAll method and calls the map method for the result with a closure that returns
the name value for each game converted to uppercase. This way, the map method
transforms each Game instance into a String with its name converted to uppercase.
The result is an Array<String> generated by the call to the map method.

The following line uses the GameRepository instance called gameRepository to call
the previously added getGamesNames method and then chains a call to forEach to
print all the game names converted to uppercase strings:

gameRepository.getGamesNames().forEach({ print($0) })

Chapter 7

[257]

The following lines show the output generated by the preceding code:

INVADERS 2016
MINECRAFT
MINECRAFT STORY MODE
SOCCER WARRIORS
THE WALKING DEAD STORIES
ONCE UPON A TIME IN WONDERLAND
CARS FOREVER
JAKE & PETER PAN
KONG STRIKES BACK
MARIO KART 2016

The next code shows two versions of the getGamesNames method that are equivalent
and produce the same results:

public func getGamesNames() -> [String] {
 return getAll().map({
 (game: Game) -> String in
 game.name.uppercaseString
 })
}

public func getGamesNames() -> [String] {
 return getAll().map({ $0.name.uppercaseString })
}

Swift supports tuples that group multiple values into a single compound value. The
following lines declare a new getUpperAndLowerCaseGamesNames method for our
previously coded GameRepository class that performs a map operation that returns a
tuple—specifically, a tuple that groups two string values into a single compound value:

public func getUpperAndLowerCaseGamesNames() -> [(upper: String,
lower: String)] {
 return getAll().map({
 game -> (String, String) in
 (game.name.uppercaseString, game.name.lowercaseString)
 })
}

Object-Oriented Programming and Functional Programming

[258]

The getUpperAndLowerCaseGamesNames parameterless method returns a tuple with
two named String values: [(upper: String, lower: String). The first string
element in the tuple is named upper, and the second one is named lower. The code
calls the getAll and map method for the result with a closure that returns a tuple
with the first element equal to the name value for each game converted to uppercase
and the second element with the value converted to lower case. This way, the map
method transforms each Game instance into a (String, String) tuple with its name
converted to uppercase and lowercase and stored in a compound value. The result is
(String, String) generated by the call to the map method. The method declaration
specifies names for each element in the returned tuple, so we will be able to access its
members through these specified names.

The following line uses the GameRepository instance called gameRepository to
call the previously added getUpperAndLowerCaseGamesNames method and then
chains a call to forEach to print the upper and lower elements of the tuple separated
by a hyphen:

gameRepository.getUpperAndLowerCaseGamesNames().forEach({ print($0.
upper, " - ", $0.lower) })

The following lines show the output generated by the preceding code:

INVADERS 2016 - invaders 2016
MINECRAFT - minecraft
MINECRAFT STORY MODE - minecraft story mode
SOCCER WARRIORS - soccer warriors
THE WALKING DEAD STORIES - the walking dead stories
ONCE UPON A TIME IN WONDERLAND - once upon a time in wonderland
CARS FOREVER - cars forever
JAKE & PETER PAN - jake & peter pan
KONG STRIKES BACK - kong strikes back
MARIO KART 2016 - mario kart 2016

The following lines would produce the same results by accessing the tuple elements
with .0 and .1 for the first and second elements instead of using the upper and
lower names:

gameRepository.getUpperAndLowerCaseGamesNames().forEach({ print($0.0,
" - ", $0.1) })

Swift allows us to access tuple elements with a dot followed by
the element number. The element number starts in 0. However, it
is usually convenient to provide names to the elements in order
to make the code easier to understand and maintain.

Chapter 7

[259]

We can also easily iterate through the upper and lower pairs using a for loop:

for (upper, lower) in gameRepository.getUpperAndLowerCaseGamesNames()
{
 print("UPPER: \(upper), lower: \(lower)")
}

The next lines show the results of executing the previous for loop:

UPPER: INVADERS 2016, lower: invaders 2016
UPPER: MINECRAFT, lower: minecraft
UPPER: MINECRAFT STORY MODE, lower: minecraft story mode
UPPER: SOCCER WARRIORS, lower: soccer warriors
UPPER: THE WALKING DEAD STORIES, lower: the walking dead stories
UPPER: ONCE UPON A TIME IN WONDERLAND, lower: once upon a time in
wonderland
UPPER: CARS FOREVER, lower: cars forever
UPPER: JAKE & PETER PAN, lower: jake & peter pan
UPPER: KONG STRIKES BACK, lower: kong strikes back
UPPER: MARIO KART 2016, lower: mario kart 2016

Combining map with reduce
The following lines show an imperative code version of a for in loop that calculates
the sum of all the highestScore values for the games:

var sum = 0
for game in gameRepository.getAll() {
 sum += game.highestScore
}
print(sum)

The code is very easy to understand. The sum variable has a starting value of 0, and
each iteration of the for in loop retrieves a Game instance from the Array<Game>
returned by the gameRepository.getAll method and increases the value of the sum
variable with the value of the highestScore property.

We can combine the map and reduce operations to create a functional version of the
previous imperative code to calculate the sum of all the highestScore values for the
games. The next lines chain a call to map to a call to reduce to achieve this goal. Take
a look at the following code:

let highestScoreSum = gameRepository.getAll().map({ $0.highestScore
}).reduce(0, combine: {
 sum, highestScore in

Object-Oriented Programming and Functional Programming

[260]

 return sum + highestScore
})
print(highestScoreSum)

First, the code uses the call to map to transform an Array<Game> into an Array<Int>
with the values specified in the highestScore stored property. Then, the code
calls the reduce method that receives two arguments: the initial value for an
accumulated value and a combine closure that will be repeatedly called with the
accumulated value. The method returns the results of the repeated calls to the
combine closure.

The closure specified in the combine argument receives sum and highestScore
and returns the sum of both values. Thus, the closure returns the sum of the total
accumulated so far plus the highestScore value that is processed. We can add a
print statement to display the values for both sum and highestScore within the
closure specified in the combine argument. The following lines show a new version
of the previous code that adds the line with the print statement:

let highestScoreSum2 = gameRepository.getAll().map({ $0.highestScore
}).reduce(0, combine: {
 sum, highestScore in
 print("sum value: \(sum), highestScore value: \(highestScore)")
 return sum + highestScore
})
print(highestScoreSum2)

The following lines show the results for the previous line, where we can see how
the sum value starts with the initial value specified in the initial argument
for the reduce method and accumulates the sum completed so far. Finally, the
highestScoreSum2 variable holds the sum of all the highestScore values—that is,
the last value of sum, 85,912,770 plus the last highestScore value, 10,572,340. The
result is 96,485,110:

sum value: 0, highestScore value: 1050
sum value: 1050, highestScore value: 3741050
sum value: 3742100, highestScore value: 67881050
sum value: 71623150, highestScore value: 10025
sum value: 71633175, highestScore value: 1450708
sum value: 73083883, highestScore value: 1050320
sum value: 74134203, highestScore value: 6705203
sum value: 80839406, highestScore value: 4023134
sum value: 84862540, highestScore value: 1050230
sum value: 85912770, highestScore value: 10572340
96485110

Chapter 7

[261]

The following screenshot shows the results of executing the previous lines in the
Playground:

In the previous code, we had to pass a closure expression to the reduce method as
the method's final argument, and the closure expression is long. We can write it as
a trailing closure—that is, a closure expression written after the closing parenthesis
of the method call and outside of it. The following lines show a new version of the
previous code that uses a trailing closure. Note that the call to reduce seems to include
just one argument: 0. However, the code included within curly braces after the method
call is the combine argument for reduce. Take a look at the following lines:

let highestScoreSum3 = gameRepository.getAll().map({ $0.highestScore
}).reduce(0) {

Object-Oriented Programming and Functional Programming

[262]

 sum, highestScore in
 print("sum value: \(sum), highestScore value: \(highestScore)")
 return sum + highestScore
}

Chaining filter, map, and reduce
We can chain filter, map, and reduce. The following lines declare a new
calculateGamesHighestScoresSum method for our previously coded
GameRepository class that chains filter, map, and reduce calls:

public func calculateGamesHighestScoresSum(minPlayedCount: Int) -> Int
{
 return getAll().filter({ $0.playedCount >= minPlayedCount }).map({
$0.highestScore }).reduce(0) {
 sum, highestScore in
 return sum + highestScore
 }
}

The calculateGamesHighestScoresSum method receives a minPlayedCount
argument of the Int type and returns an Int value. The code calls the getAll and
filter methods to generate a new Array<Game> with only the Game instances,
whose playedCount value is greater than or equal to the value specified in the
minPlayedCount argument. The code calls the map method to transform an
Array<Game> into an Array<Int> with the values specified in the highestScore
stored property. Then, the code calls the reduce method with the initial value for
the accumulated value set to 0 and a trailing closure that performs the sum task for
highestScore that we analyzed in the previous example.

The following line uses the GameRepository instance called gameRepository to call
the previously added calculateGamesHighestScoresSum method to calculate the
sum of the highestScores for the games that were played at least 500,000 times:

let highestScoreSumFor500000 = gameRepository.
calculateGamesHighestScoresSum(500_000)

Solving algorithms with reduce
We can chain solve algorithms with reduce by following a functional approach. The
following lines declare a new getSeparatedGamesNames method for our previously
coded GameRepository class that solves an algorithm by calling the reduce method:

public func getSeparatedGamesNames(separator: String) -> String {
 let gamesNames = getGamesNames()

Chapter 7

[263]

 return gamesNames.reduce("") {
 concatenatedGameNames, gameName in
 print(concatenatedGameNames)
 let separatorOrEmpty = (gameName == gamesNames.last) ? "" :
separator
 return "\(concatenatedGameNames)\(gameName)\
(separatorOrEmpty)"
 }
}

The getSeparatedGamesNames method receives a separator argument of the
String type and returns a String value. The code calls the getGamesNames method
and saves the result in the gamesNames reference constant. Then, the code calls the
reduce method with an empty string as the initial value for an accumulated value.
The code uses a trailing closure to specify the closure expression for combine.

The trailing closure receives concatenatedGameNames and gameName. First, the
closure prints the value of concatenatedGameNames. This way, we will be able to
understand how the algorithm completes the concatenated game names in each
execution. Then, an expression determines whether the string specified in separator
or an empty string has to be used as a separator. In case the gameName is equal to
the last game in the Array<String>, the code uses an empty string because the
last game shouldn't have the separator after it. Finally, the code returns a string
composed of the names concatenated so far, concatenatedGameNames; the game
name that is being concatenated, gameName; and the separator or an empty string,
separatorOrEmpty.

The following line uses the GameRepository instance called gameRepository to call
the previously added getSeparatedGamesNames method to generate a string with all
the uppercase game names separated by a semicolon followed by a space:

print(gameRepository.getSeparatedGamesNames("; "))

The following lines show the results for the previous line where we can see how
the concatenated game names start with the initial value specified in the initial
argument for the reduce method and accumulates the strings generated so far.
Finally, the value returned by the getSeparatedGamesNames method includes all the
game names in uppercase separated by a semicolon and followed by a space:

INVADERS 2016;
INVADERS 2016; MINECRAFT;
INVADERS 2016; MINECRAFT; MINECRAFT STORY MODE;
INVADERS 2016; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS;
INVADERS 2016; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES;

Object-Oriented Programming and Functional Programming

[264]

INVADERS 2016; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES; ONCE UPON A TIME IN WONDERLAND;
INVADERS 2016; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES; ONCE UPON A TIME IN WONDERLAND; CARS FOREVER;
INVADERS 2016; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES; ONCE UPON A TIME IN WONDERLAND; CARS FOREVER;
JAKE & PETER PAN;
INVADERS 2016; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES; ONCE UPON A TIME IN WONDERLAND; CARS FOREVER;
JAKE & PETER PAN; KONG STRIKES BACK;
INVADERS 2016; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES; ONCE UPON A TIME IN WONDERLAND; CARS FOREVER;
JAKE & PETER PAN; KONG STRIKES BACK; MARIO KART 2016

The following screenshot shows the results of executing the previous lines in the
Playground:

Exercises
Add new methods to the GameRepository class we created in this chapter. Make
sure you create a new method to solve each algorithm and that you use a functional
programming approach:

•	 Retrieve all the games whose average score is lower than a maximum
average score received as an argument.

•	 Generate a string with the first letter of each game name followed by the highest
score value. Use a hyphen as a separator for each game name and highest score
value pair. That last value pair shouldn't include a hyphen after it.

•	 Calculate the minimum playedCount value.
•	 Calculate the maximum playedCount value.

Chapter 7

[265]

Test your knowledge
1.	 The { (game: Game) -> Bool in game.highestScore == highestScore

&& game.playedCount == playedCount } closure is equivalent to:
1.	 { $0.highestScore == highestScore && $1.playedCount ==

playedCount }

2.	 { $0.highestScore == highestScore && $0.playedCount
== playedCount }

3.	 { 0 -> 0.highestScore == highestScore && 0.playedCount
== playedCount }

2.	 The closure { return condition($0) } is equivalent to:
1.	 { (number: Int) -> Bool in return condition(number)

}

2.	 { (number -> Bool) -> Int in condition <- (number) }

3.	 { 0 -> condition(number) }

3.	 A function type specifies:
1.	 The parameter and return types for the function.
2.	 Only the parameter names required for the function.
3.	 The required function name and the return value without any details

about the parameters.

4.	 Which of the following lines declare a variable with a function type:
1.	 var condition: { 0 -> Int -> Bool }

2.	 var condition: Int $0 returns Bool

3.	 var condition: (Int -> Bool)

5.	 After we assign a tuple to a variable with this line var tuple: (key:
String, value: String) = ("Name", "Garfield"), which of the
following lines access the first string element in the tuple—that is, the value
named key?

1.	 tuple.$0

2.	 tuple.1

3.	 tuple.0

Object-Oriented Programming and Functional Programming

[266]

Summary
In this chapter, you learned how to refactor existing code to take full advantage
of object-oriented code. We prepared the code for future requirements, reduced
maintenance cost, and maximized code reuse.

We worked with many functional programming features included in Swift
and combined them with everything we discussed so far about object-oriented
programming. We analyzed the differences between imperative and functional
programming approaches for many algorithms.

Now that you have learned about refactoring code to take advantage of
object-oriented programming and include functional programming pieces in
our object-oriented code, we are ready to extend and build object-oriented code,
which is the topic of the next chapter.

[267]

Extending and Building
Object-Oriented Code

In this chapter, we will put together many pieces of the object-oriented puzzle. We
will take advantage of extensions to add features to classes, protocols, and types that
we can't modify through source code editing. We will interact with a simple object-
oriented data repository through Picker View and consider how object-oriented code
is everywhere in an iOS app.

Putting together all the pieces of the
object-oriented puzzle
In Chapter 1, Objects from the Real World to Playground, you learned how to recognize
objects from real-life situations. We understood that working with objects makes
it easier to write code that is easier to understand and reuse. You learned how to
recognize real-world elements and translate them into the different components
of the object-oriented paradigm supported in Swift: classes, protocols, properties,
methods, and instances.

We discussed that classes represent blueprints or templates to generate the objects,
which are also known as instances. We designed a few classes with properties
and methods that represent blueprints for real-life objects. Then, we improved
the initial design by taking advantage of the power of abstraction and specialized
different classes.

Extending and Building Object-Oriented Code

[268]

In Chapter 2, Structures, Classes, and Instances, you learned about an object's life
cycle. We worked with many examples to understand how object initializers and
deinitializers work. We declared our first class to generate a blueprint for objects.
We customized object initializers and deinitializers and tested their personalized
behavior in action with live examples in Swift's Playground. We considered how
they work in combination with automatic reference counting.

In Chapter 3, Encapsulation of Data with Properties, you learned the different members
of a class and how they are reflected in members of the instances generated from a
class. We worked with instance properties, type properties, instance methods, and
type methods. We worked with stored properties, getters, setters, and property
observers, and we took advantage of access modifiers to hide data. We also worked
with mutable and immutable versions of a 3D vector. We discussed the difference
between mutable and immutable classes. Immutable classes are extremely useful
when we work with concurrent code.

In Chapter 4, Inheritance, Abstraction, and Specialization, you learned how to take
advantage of simple inheritance to specialize a base class. We designed many
classes from top to bottom using chained initializers, type properties, computed
properties, stored properties, and methods. Then, we coded most of these classes in
the interactive Playground, taking advantage of different mechanisms provided by
Swift. We took advantage of operator functions to overload operators that we could
use with the instances of our classes. We overrode and overloaded initializers, type
properties, and methods. We also took advantage of one of the most exciting object-
oriented features: polymorphism.

In Chapter 5, Contract Programming with Protocols, you learned that Swift works with
protocols in combination with classes. The only way to have multiple inheritance
in Swift is through the usage of protocols. You learned about the declaration and
combination of multiple blueprints to generate a single instance. We declared
protocols with different types of requirements. Then, we created many classes
that conform to these protocols. We worked with type casting to take a look at
how protocols work as types. Finally, we combined protocols with classes to take
advantage of multiple inheritance in Swift. We combined inheritance for protocols
and inheritance for classes.

In Chapter 6, Maximization of Code Reuse with Generic Code, you learned how to
maximize code reuse by writing code capable of working with objects of different
types—that is, instances of classes that conform to specific protocols or whose class
hierarchy includes specific superclasses. We worked with protocols and generics. We
also created classes capable of working with one or two constrained generic types.
We combined inheritance, protocols, and extensions to maximize the reusability
of code. We also made classes work with many different types. Generics are very
important to maximizing code reuse in Swift.

Chapter 8

[269]

In Chapter 7, Object-Oriented Programming and Functional Programming, you learned
how to refactor existing code to take full advantage of object-oriented code.
We prepared the code for future requirements, reduced maintenance cost, and
maximized code reuse. We worked with many functional programming features
included in Swift, and we combined them with everything we discussed so far about
object-oriented programming. We analyzed the differences between imperative and
functional programming approaches for many algorithms.

Now, you will learn how to extend the existing classes to achieve our goals.

Adding methods with extensions
Sometimes, we would like to add methods to an existing class. We already know
how to do this; we just need to go to its Swift source file and add a new method
within the class body. However, sometimes, we cannot access the source code for the
class, or it isn't convenient to make changes to it. A typical example of this situation
is a class, struct, or any other type that is part of the standard language elements.
For example, we might want to add a method that we can call in any Int value to
initialize either a 2D or 3D point with all its elements set to the Int value.

The following lines declare a simple Point2D class that represents a
mutable 2D point with the x and y elements. The class conforms to the
CustomStringConvertible protocol; therefore, it declares a description computed
property that returns a string representation for the 2D point:

public class Point2D: CustomStringConvertible {
 public var x: Int
 public var y: Int

 public var valuesAsDescription: String {
 return "x: \(x), y: \(y)"
 }

 public var description: String {
 get {
 return "(\(valuesAsDescription))"
 }
 }

 init(x: Int, y: Int) {
 self.x = x
 self.y = y
 }
}

Extending and Building Object-Oriented Code

[270]

The Point2D class declares two stored properties: x and y. The valueAsDescription
computed property returns a string with the values for x and y without a
parenthesis. The description computed property encloses the value returned by
valueAsDescription in parentheses.

The following lines declare a Point3D class that inherits from the previously created
Point2D class and add a z element to the inherited x and y elements:

public class Point3D: Point2D {
 public var z: Int

 public override var valuesAsDescription: String {
 return "\(super.valuesAsDescription), z:\(z)"
 }

 init(x: Int, y: Int, z: Int) {
 self.z = z
 super.init(x: x, y: y)
 }
}

The Point3D class declares the z stored property and overrides the
valueAsDescription computed property to concatenate the value of the z stored
property to the string value of this property in the superclass. This way, the
description computed property declared in the Point2D superclass will generate
the values for x, y, and z enclosed within parentheses.

Now that we have a Point2D class and a Point3D class, we want to extend the
Int type to provide methods that generate instances of these classes with all their
elements initialized with the Int value. Specifically, we want to be able to write the
following line to generate a Point2D instance with the x and y values initialized to 3:

Var point2D1 = 3.toPoint2D()

In addition, we want to be able to write the following line to generate a Point3D
instance with the x, y, and z values initialized to 5:

var point3D1 = 5.toPoint3D()

The following lines use the extension keyword to add two methods to the Int
standard type—toPoint2D and toPoint3D:

extension Int {
 public func toPoint2D() -> Point2D {
 return Point2D(x: self, y: self)
 }

Chapter 8

[271]

 public func toPoint3D() -> Point3D {
 return Point3D(x: self, y: self, z: self)
 }
}

The toPoint2D method returns a new instance of Point2D with the x and y
arguments of the initializer set to self. In this case, self represents the actual value
for Int. The toPoint3D method returns a new instance of Point3D with the x, y, and
z arguments of the initializer set to self.

The following lines use the previously added methods to create instances of both
Point2D and Point3D:

print(3.toPoint2D())
print(5.toPoint2D())
print(3.toPoint3D())
print(5.toPoint3D())

The following lines show the output generated by the preceding code:

(x: 3, y: 3)
(x: 5, y: 5)
(x: 3, y: 3, z:3)
(x: 5, y: 5, z:5)

The following screenshot shows the results of executing the previous lines in
the Playground:

Extending and Building Object-Oriented Code

[272]

If you have some experience with Objective-C, you will notice that
extensions in Swift are very similar to categories in Objective-C.
However, one of the main differences is that extensions in Swift
do not have names.

Now, let's imagine that both the Point2D and Point3D classes are included in an
external framework or library and that we aren't able to access the source code. Our
code needs to convert instances of Point3D to a (Int, Int, Int) tuple. It is a nice
feature to generate a tuple with named elements. As we consider that we cannot
access the source code, we can use the extension keyword to add a toTuple method
to the Point3D class. This way, we can easily convert a Point3D instance to a tuple.
The following lines do the job:

extension Point3D {
 public func toTuple() -> (x: Int, y: Int, z: Int) {
 return (x: x, y: y, z: z)
 }
}

The following lines create an instance of the Point3D class and then call the recently
added toTuple method to generate a tuple composed of three Int values (Int,
Int, Int). Then, the code prints the string representation of the generated tuple.
The next line uses a let statement to retrieve the three elements from the tuple
generated by another call to the toTuple method. Then, the code prints the values
for the three retrieved elements. The last two lines use the element names (x, y, and
z) and numbers (0, 1, and 2) to access the generated tuple values:

var point3D1 = Point3D(x: 10, y: 20, z: 15)
var point3D1Tuple = point3D1.toTuple()
print(point3D1Tuple)
let (point3D1x, point3D1y, point3D1z) = point3D1.toTuple()
print(point3D1x, point3D1y, point3D1z)
print(point3D1Tuple.x, point3D1Tuple.y, point3D1Tuple.z)
print(point3D1Tuple.0, point3D1Tuple.1, point3D1Tuple.2)

The following lines show the output generated by the preceding code.

(10, 20, 15)
10 20 15
10 20 15
10 20 15

Chapter 8

[273]

The following screenshot shows the result of executing the previous lines in the
Playground:

Adding computed properties to a base
type with extensions
Swift allows us to add both computed instance properties and computed type
properties to an existing type. These are the only types of properties that we can add
to an existing type, so we cannot add simpler stored properties using extensions.

When you need to perform calculations with values that have an associated unit
of measurement, it is very common to make mistakes by mixing different units
of measurement. It is also common to perform incorrect conversions between the
different units that generate wrong results. Swift doesn't allow us to associate
a specific numerical value with a unit of measurement. However, we can add
computed properties to provide some information about the units of measurement
for a specific domain.

We worked with units when we analyzed the object-oriented
approach of the HealthKit framework in Chapter 1, Objects from the
Real World to Playground. However, in this case, we just want to
simplify a sum operation with a specific resistance unit.

Extending and Building Object-Oriented Code

[274]

The need to associate quantities with units of measurement in any programming
language is easy to understand even in the most basic math and physics problems.
One of the simplest calculations is to sum two values that have an associated base
unit. For example, say that you have two electrical resistance values. One of the
values is measured in ohms and the other in kilo-ohms. To sum the values, you must
choose the desired unit and convert one of the values to the chosen unit. If you want
the result to be expressed in ohms, you must convert the value in kilo-ohms to ohms,
sum the two values expressed in ohms, and provide the result in ohms.

The following code uses variables with a suffix that defines the specific unit being
used in each case. You have probably used or seen similar conventions. The suffixes
make the code less error-prone because you easily understand that r1InOhms holds
a value in ohms, and r2InKohms holds a value in kilo-ohms. Thus, there is a line that
assigns the result of converting the r2InKohms value to ohms to the new r2InOhms
variable. The last line calculates the sum and holds the result in ohms because both
variables hold values in the same unit of measurement:

var r1InOhms = 500.0
var r2InKohms = 5.2
var r2InOhms = r2InKohms * 1e3
var r1PlusR2InOhms = r1InOhms + r2InOhms

Obviously, the code is still error-prone because there won't be any exception thrown
or syntax error if a developer adds the following line to sum ohms and kilo-ohms
without performing the necessary conversions:

// The following line produces a wrong result
var r3InOhms = r1InOhms + r2InKohms

There is no rule that assures that all the variables included in the sum operation must
use the same suffix—that is, the same unit. There aren't invalid operations between
variables that hold values with incompatible units. For example, you might sum a
voltage value to a resistance value, and the code won't produce any error or warning.

The following lines use the extension keyword to add three get-only computed
properties to the Double standard type: ohm, kohm, and mohm:

extension Double {
 public var ohm: Double { return self }
 public var kohm: Double { return self * 1e3 }
 public var mohm: Double { return self * 1e6 }
}

Chapter 8

[275]

The ohm get-only computed property returns self—that is, the actual value for
Double. The kohm get-only computed property returns self multiplied by 1,000. In
this case, the code uses the exponential notation, where 1e3 means 10 to the third
power—that is, 10 * 10 * 10. Finally, the mohm get-only computed property returns
self multiplied by 1,000,000. In this case, the code uses the exponential notation
where 1e6 means 10 to the sixth power—that is, 10 * 10 * 10 * 10 * 10 * 10.

After we add the previous extensions, we want to perform the following calculation:
500 ohms + 5.2 KOhms + 3.1 MOhms. If we convert all the values to ohms and express
the result in ohms, we must calculate 500 ohms + 5,200 ohms + 3,100,000 ohms. We
can declare three variables with the number followed by a dot and the extension
we created to convert the number to the value in a baseline ohm unit. The extension
methods will return a Double number that will be always converted to ohms. Then,
we can easily calculate the total resistance value in ohms by computing the sum of
the three variables.

The following lines declare three variables, and each one uses the get-only computed
property to specify the specific unit in which the original value is expressed: ohm,
kohm, or mhom. Then, the code prints the real values stored in the three variables:
resistance1, resistance2, and resistance3. The three values are stored in ohms
because the get-only computed property returns the result of the conversion of each
unit to ohms. Then, the code computes the sum of the three variables and stores the
result expressed in ohms in the totalResistance variable:

var resistance1 = 500.0.ohm
var resistance2 = 5.2.kohm
var resistance3 = 3.1.mohm
print("resistance1 in ohms: \(resistance1)")
print("resistance2 in ohms: \(resistance2)")
print("resistance3 in ohms: \(resistance3)")

var totalResistance = resistance1 + resistance2 + resistance3

print("Total resistance in ohms: \(totalResistance)")

The following lines show the output generated after executing the preceding code:

resistance1 in ohms: 500.0
resistance2 in ohms: 5200.0
resistance3 in ohms: 3100000.0
Total resistance in ohms: 3105700.0

Extending and Building Object-Oriented Code

[276]

The following screenshot shows the results of executing the previous lines in the
Playground:

We can take advantage of Swift's flexibility with property names and use the
Greek omega letter (Ω) instead of the ohm word in each of the get-only computed
properties. You can easily insert the Greek omega letter in OS X by pressing Alt
+ Z. The following lines use the extension keyword again to add three get-only
computed properties to the Double standard type—Ω, KΩ, and MΩ:

extension Double {
 public var Ω: Double { return self }
 public var KΩ: Double { return self * 1e3 }
 public var MΩ: Double { return self * 1e6 }
}

The following lines declare three variables, and each one uses the get-only computed
property to specify the specific unit in which the original value is expressed: Ω, KΩ, or
MΩ. Then, the code prints the real values stored in the three variables—resistance4,
resistance5, and resistance6—then it computes the sum, and prints the result.
The code looks really nice because it is easy to understand the unit in which each
resistance value is expressed:

var resistance4 = 500.0.Ω
var resistance5 = 5.2.KΩ

Chapter 8

[277]

var resistance6 = 3.1.MΩ
print("resistance4 in Ω: \(resistance4)")
print("resistance5 in Ω: \(resistance5)")
print("resistance6 in Ω: \(resistance6)")

var totalResistance456 = resistance4 + resistance5 + resistance6

print("Total resistance in Ω: \(totalResistance456)")

The following lines show the output generated after executing the preceding code:

resistance4 in Ω: 500.0
resistance5 in Ω: 5200.0
resistance6 in Ω: 3100000.0
Total resistance in Ω: 3105700.0

The following screenshot shows the results of executing the previous lines in
the Playground:

Extending and Building Object-Oriented Code

[278]

Declaring new convenience initializers
with extensions
So far, we always worked with one specific type of initializer for all the classes:
designated initializers. These are the primary initializers for a class in Swift, and they
make sure that all the properties are initialized. In fact, every class must have at least
one designated initializer. However, it is important to note that a class can satisfy
this requirement by inheriting a designated initializer from its superclass.

There is another type of initializer known as convenience initializer that acts
as a secondary initializer and always ends up calling a designated initializer.
Convenience initializers are optional, so any class can declare one or more
convenience initializers to provide initializers that cover specific use cases or more
convenient shortcuts to create instances of a class.

Now, imagine that we cannot access the code for the previously declared Point3D
class. We are working on an app, and we discover too many use cases in which
we have to create an instance of a Point3D class based on the values found on any
of the following:

•	 A tuple with three Int values (Int, Int, Int)
•	 A single Int value that should be used to initialize x, y, and z
•	 The x and y properties in a Point2D instance and an Int value that adds

the z component

Swift allows us to add convenience initializers when we extend
classes. It isn't possible to add designated initializers using the
extend keyword.

The following lines use the extension keyword to add three convenience initializers
to the existing Point3D class:

extension Point3D {
 convenience init(tuple: (Int, Int, Int)) {
 self.init(x: tuple.0, y: tuple.1, z: tuple.2)
 }

 convenience init(singleValue: Int) {
 self.init(x: singleValue, y: singleValue, z: singleValue)
 }

 convenience init(point2D: Point2D, z: Int) {

Chapter 8

[279]

 self.init(x: point2D.x, y: point2D.y, z: z)
 }
}

The convenience keyword before init indicates to Swift that we are declaring
a convenience initializer instead of the default designated initializer. The first
convenience initializer receives a tuple argument of type (Int, Int, Int) and calls
the designated initializer for the class using self.init and providing the values for
the three required arguments: x, y, and z. The second convenience initializer receives
a singleValue argument of the Int type and calls the designated initializer for the
class with singleValue for the three required arguments. The third convenience
initializer receives two arguments: point2D and z. The first argument is of the
Point2D type, and the second is of type Int. The convenience initializer calls the
designated initializer for the class with point2D.x for x, point2D.y for y, and z for z.

The following lines use the recently added convenience initializers to create instances
of the Point3D class and print their description:

var tuple1 = (10, 20, 30)
var tuple2 = (5, 10, 15)

var point3D3 = Point3D(tuple: tuple1)
var point3D4 = Point3D(tuple: tuple2)
print(point3D3)
print(point3D4)

var point3D5 = Point3D(singleValue: 5)
print(point3D5)

var point2D6 = Point2D(x: 10, y: 11)
var point3D6 = Point3D(point2D: point2D6, z: 12)
print(point3D6)

The following lines show the output generated after executing the preceding code:

(x: 10, y: 20, z:30)
(x: 5, y: 10, z:15)
(x: 5, y: 5, z:5)
(x: 10, y: 11, z:12)

Extending and Building Object-Oriented Code

[280]

The following screenshot shows the results of executing the previous lines in the
Playground:

Defining subscripts with extensions
Let's consider that we still cannot access the code for the previously declared
Point3D class. We are working on an app, and we discover that it would be nice to
access the x, y, and z values of a Point3D instance with [0], [1], and [2]. We can
easily add a subscript by extending the Point3D class.

The following lines use the extension keyword to a subscript to the existing
Point3D class:

extension Point3D {
 public subscript(index: Int) -> Int? {
 switch index {

Chapter 8

[281]

 case 0: return x
 case 1: return y
 case 2: return z
 default: return nil
 }
 }
}

The following lines use the recently added subscript to access the elements of a
Point3D instance:

var point3D7 = Point3D(x: 10, y: 15, z: 4)
if let point3D7X = point3D7[0] {
 print("X or [0]: \(point3D7X)")
}
if let point3D7Y = point3D7[1] {
 print("Y or [1]: \(point3D7Y)")
}
if let point3D7Z = point3D7[2] {
 print("Z or [2]: \(point3D7Z)")
}

The following lines show the output generated after executing the preceding code:

X or [0]: 10
Y or [1]: 15
Z or [2]: 4

Working with object-oriented code in apps
So far, we created and extended classes in the Playground. In fact, we could execute
the same sample code in the Swift REPL. The Swift REPL is a read-eval-print loop,
also known as an interactive language shell, where we can enter expressions or
pieces of code, make Swift evaluate them, and prints the results.

Now, we will create a simple iOS app based on the Single View Application template
with Xcode. We will recognize the usage of object-oriented code included in the
template—that is, before we add components and code to the app. Then, we will take
advantage of the GameRepository class we created in the previous chapter and use it
to populate a UI element.

Extending and Building Object-Oriented Code

[282]

Navigate to File | New | Project… in Xcode. Then, navigate to iOS | Application
on the left-hand side of the Choose a template for your new project dialog box.
Select Single View Application on the right-hand side and click on Next, as shown
in the following screenshot:

Enter Chapter 8 in Product Name and select Swift in language and Universal in
Devices, as shown in the next screenshot. This way, we will create an app that can
run on both iPad and iPhone devices. Then, click on Next:

Chapter 8

[283]

Select the desired folder in which you want to create the new project folder, make
sure Don't add to any project or workspace is selected in the Add to drop-down list
in case this option is shown in the dialog box, and click on Create. Xcode will create
the new project and all the related files. The following screenshot shows the project
navigator located on the left-hand side of the Xcode window:

Extending and Building Object-Oriented Code

[284]

Now, let's take a look at the initial code for the two Swift source files included in the
Chapter8 module:

•	 AppDelegate.swift: This declares the AppDelegate class, and it is the entry
point to our application

•	 ViewController.swift: This declares the ViewController class
The following lines show the initial code for the AppDelegate.swift source file that
declares the AppDelegate class without the comments that the template includes in
each method:

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool {

 return true
 }

 func applicationWillResignActive(application: UIApplication) {

 }

 func applicationDidEnterBackground(application: UIApplication) {

 }

 func applicationWillEnterForeground(application: UIApplication) {

 }

 func applicationDidBecomeActive(application: UIApplication) {

 }

 func applicationWillTerminate(application: UIApplication) {

 }
}

Chapter 8

[285]

The @UIApplicationMain attribute included at the top of the declaration of the
AppDelegate class indicates that the class is designated as the delegate of the shared
UIApplication object in any iOS app. The AppDelegate class is a subclass of the
UIResponder class and conforms to the UIApplicationDelegate protocol. The
class declares a window stored property of the UIWindow type optional (UIWindow?)
and six instance methods. All the methods receive an application argument of the
UIApplication type, which is another subclass of UIResponder. The application
argument will always be the same instance of UIApplication that represents the
current iOS app—that is, our app. The application method receives a second
argument named launchOptions that provides a dictionary with keys indicating the
reason that your app was launched for. This method is the only one that has code
and just returns true.

The following lines show the initial code for the ViewController.swift source file
that declares the ViewController class without the comments that the template
includes in each method:

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }
}

The ViewController class is a subclass of the UIViewController class
and overrides two parameterless instance methods: viewDidLoad and
didReceiveMemoryWarning. Both methods include a line of code that calls the
method with the same name in its superclass.

It is important to take into account that the UIViewController class—that is,
the superclass for ViewController—is a subclass of the UIResponder class
and conforms to the following protocols: NSCoding, UIAppearanceContainer,
UITraitEnvironment, UIContentContainer, and UIFocusEnvironment.

Extending and Building Object-Oriented Code

[286]

We just created a new project based on a template, and we are already working
with classes that have superclasses, conform to protocols, declare stored properties,
define instance methods, and override inherited instance methods. Everything you
learned in the previous chapters is extremely useful to adding object-oriented code
to the initial templates for any kind of app or application, and it is also useful to
understand how to interact with the different object-oriented frameworks based on
our targets.

Click on Main.storyboard in the Project Navigator on the left-hand side of the
Xcode window. The editor will switch to a design view that displays how the view
will look. Click on View Controller under View Controller Scene. Make sure that
you see the Utilities pane on the right-hand side and check the values for Identity
Inspector. The value for Class will be ViewController under Custom Class, as
shown in the following screenshot:

The previously introduced ViewController class is the custom class associated with
the View Controller tab in the main storyboard for the iOS app. We will add code to
this class later.

Now, we want to add and connect a simple UI element that will allow us to make
a selection from multiple choices—specifically a UIPickerView instance. A picker
view uses a spinning-wheel or slot-machine metaphor to show one or more sets
of values. We can select the desired values by rotating the wheels and making the
desired row of values align with a selection indicator.

Chapter 8

[287]

Make sure that the Object Library tab is visible in Library View, which Xcode
displays in the bottom half of the Utilities pane on the right-hand side. You just need
to click on the Show the Object Library button at the top of the bottom half. Click on
the Filter textbox located at the bottom and type Picker. Object Library will display
all the objects that contain Picker, and one of them is Picker View, as shown in the
following screenshot:

Extending and Building Object-Oriented Code

[288]

Drag Picker View from the previously shown list to the rectangle that defines the
view in the preview. This way, we will have a Picker View component on the view
in the main storyboard, as shown in the following screenshot. Note that the class is
UIPickerView:

We added a Picker View component on the view. Now, we have to expose
the component to make it accessible through code in the previously analyzed
ViewController class.

Navigate to View | Assistant Editor | Show Assistant Editor in the Xcode menu or
simply click on the button with two intersecting circles in the upper-right corner (the
second button). Xcode will display the source code for the ViewController class on
the right-hand side of the view preview for the main storyboard.

Chapter 8

[289]

Press the Ctrl key and hold it while you drag the recently added Picker View
component from the view to the blank line after the ViewController class
declaration. Xcode will display a line and a tooltip with the following legend at the
position to which you are dragging the mouse: Insert Outlet or Outlet Collection.
Release the Ctrl key, and Xcode will display a pop-up dialog box asking us for a
name for the new property and IBOutlet that it will create. Enter picker in the
Name textbox and then click on Connect:

After we click on the Connect button, the following highlighted line will appear
within the ViewController class body:

class ViewController: UIViewController {

 @IBOutlet weak var picker: UIPickerView!

The new line uses the @IBOutlet decorator to indicate the outlet connection. The line
declares a picker stored property as a weak reference to an implicitly unwrapped
optional UIPickerView. The weak keyword indicates Swift to use a weak reference
that allows the possibility of the object that the property points to become nil.

The exclamation mark (!) after the UIPickerView class name indicates that Xcode
wants Swift to treat picker as an implicitly unwrapped optional UIPickerView
class. This way, the optional will be automatically unwrapped whenever the
property is used. However, if it points to nil, it will trigger a runtime error.

Extending and Building Object-Oriented Code

[290]

You will notice there are two small circles on the left-hand side of the new line of
code. If you let the cursor hover over this small icon, Xcode will highlight the Picker
View component in the view connected to this property. If you click on the icon,
Xcode will display a tooltip with the story board name, Main.storyboard, and the
related component, Picker, as shown in the following screenshot:

We can easily interact with the Picker View component through the recently added
picker property in our ViewController class.

Adding an object-oriented data
repository to a project
Now, we will add one protocol and many classes we created in the previous chapter
to generate the GameRepository class. We want to display a list of game names in
the Picker View. We will add the following Swift source files in the project within
the Chapter8 group:

•	 EntityProtocol.swift

•	 Entity.swift

•	 Repository.swift

•	 Game.swift

•	 GameRepository.swift

Chapter 8

[291]

Click on the Chapter8 group in Project Navigator (the icon represents a folder). Do
not confuse it with the Chapter8 project that is the parent for the Chapter8 group.
Navigate to File | New | File… and select Swift File as the template for your new
file. Then, click on Next and enter EntityProtocol in the Save As textbox. Make
sure that Chapter8 with the folder icon is selected in the Group drop-down menu,
as shown in the next screenshot, and then click on Create. Swift will add the new
EntityProtocol.swift source file to the Chapter8 group within the Chapter8 project:

Add the following code for the recently created EntityProtocol.swift source file:

public protocol EntityProtocol {
 var id: Int { get }
}

Follow the previously explained steps to add a new Entity.swift source file to the
Chapter8 group within the Chapter8 project. Add the following code to the new
source file:

public class Entity: EntityProtocol {
 public let id: Int

 init(id: Int) {
 self.id = id
 }
}

Extending and Building Object-Oriented Code

[292]

Follow the previously explained steps to add a new Repository.swift source file to
the Chapter8 group within the Chapter8 project. Add the following code to the new
source file:

public class Repository<T: EntityProtocol> {
 public func getAll() -> [T] {
 return [T]()
 }
}

Follow the previously explained steps to add a new Game.swift source file to the
Chapter8 group within the Chapter8 project. Add the following code to the new
source file:

public class Game: Entity, CustomStringConvertible {
 public var name: String
 public var highestScore: Int
 public var playedCount: Int

 public var description: String {
 get {
 return "id: \(id), name: \"\(name)\", highestScore: \
(highestScore), playedCount: \(playedCount)"
 }
 }

 init(id: Int, name: String, highestScore: Int, playedCount: Int) {
 self.name = name
 self.highestScore = highestScore
 self.playedCount = playedCount
 super.init(id: id)
 }
}

Chapter 8

[293]

Follow the previously explained steps to add a new GameRepository.swift source
file to the Chapter8 group within the Chapter8 project. Add the following code to
the new source file:

public class GameRepository: Repository<Game> {
 public override func getAll() -> [Game] {
 var gamesList = [Game]()

 gamesList.append(Game(id: 1, name: "Invaders 2016",
highestScore: 1050, playedCount: 3_050))

 gamesList.append(Game(id: 2, name: "Minecraft", highestScore:
3741050, playedCount: 780_009_992))

 gamesList.append(Game(id: 3, name: "Minecraft Story Mode",
highestScore: 67881050, playedCount: 304_506_506))

 gamesList.append(Game(id: 4, name: "Soccer Warriors",
highestScore: 10_025, playedCount: 320_450))

 gamesList.append(Game(id: 5, name: "The Walking Dead Stories",
highestScore: 1_450_708, playedCount: 75_405_350))

 gamesList.append(Game(id: 6, name: "Once Upon a Time in
Wonderland", highestScore: 1_050_320, playedCount: 7_052))

 gamesList.append(Game(id: 7, name: "Cars Forever",
highestScore: 6_705_203, playedCount: 850_021))

 gamesList.append(Game(id: 8, name: "Jake & Peter Pan",
highestScore: 4_023_134, playedCount: 350_230))

 gamesList.append(Game(id: 9, name: "Kong Strikes Back",
highestScore: 1_050_230, playedCount: 450_050))

 gamesList.append(Game(id: 10, name: "Mario Kart 2016",
highestScore: 10_572_340, playedCount: 3_760_879))

 return gamesList
 }
}

Extending and Building Object-Oriented Code

[294]

We have added all the necessary source files to include the protocol and the classes
that allow us to work with the GameRepository class in our app. The following
screenshot shows the Project Navigator with all the new files added to the Chapter8
group. In this case, we will add all the files to the same group. However, in more
complex apps, it would be convenient to split the files in different groups to have a
better organization of the code:

Interacting with an object-oriented data
repository through Picker View
Now, we have to add code to the ViewController class in the ViewController.
swift source file to make the class conform to two additional protocols:
UIPickerViewDataSource and UIPickerViewDelegate. The conformance to the
UIPickerViewDataSource protocol allows us to use the class as a data source for the
UIPickerView class that represents the Picker View component. The conformance
to the UIPickerViewDelegate protocol allows us to handle the events raised by the
UIPickerView class.

The following lines show the new code for the ViewController class:

class ViewController: UIViewController, UIPickerViewDelegate,
UIPickerViewDataSource {

 @IBOutlet weak var picker: UIPickerView!

Chapter 8

[295]

 private var gamesList: [Game] = [Game]()

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically
from a nib.
 picker.delegate = self
 picker.dataSource = self

 let gameRepository = GameRepository()
 gamesList = gameRepository.getAll()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 func numberOfComponentsInPickerView(pickerView: UIPickerView) ->
Int {
 // Return the number of columns of data
 return 1
 }

 func pickerView(pickerView: UIPickerView, numberOfRowsInComponent
component: Int) -> Int {
 // Return the number of rows of data
 return gamesList.count
 }

 func pickerView(pickerView: UIPickerView, titleForRow row: Int,
forComponent component: Int) -> String? {
 // Return the data for the row. In this case, we don't have
columns
 return gamesList[row].name
 }

 func pickerView(pickerView: UIPickerView, didSelectRow row: Int,
inComponent component: Int) {
 // Retrieve the game for the selected row
 let selectedGame = gamesList[row]
 print("Selected game name: \(selectedGame.name). Highest
score: \(selectedGame.highestScore)")
 }
}

Extending and Building Object-Oriented Code

[296]

We made changes to the class declaration to make it conform to the two additional
protocols. We declared a private gamesList stored property of the Array<Game>
type. We used the [Game] shortcut for this type. We then added the following lines
to the overridden viewDidLoad method:

picker.delegate = self
picker.dataSource = self

let gameRepository = GameRepository()
gamesList = gameRepository.getAll()

The code assigns the current instance of the ViewController class identified by self
to the picker.delegate property. We can do this because the ViewController
class conforms to the UIPickerViewDelegate protocol. Then, the code assigns
the current instance of the ViewController class to the picker.dataSource
property. We can do this because the ViewController class conforms to the
UIPickerViewDataSource protocol. This way, we can specify the data source and
delegate for Picker View.

Then, we will create an instance of the GameRepository class and save Array<Game>
with the list of games returned by the getAll method in the gamesList property.
This way, we will be able to use gamesList later.

Then, we implemented two methods declared in the UIPickerViewDataSource
protocol:

•	 func numberOfComponentsInPickerView(pickerView: UIPickerView)
-> Int: This returns the number of columns to display in Picker View. In
this case, we just want to display the name for each game, so we added code
to this method to return 1.

•	 func pickerView(pickerView: UIPickerView,
numberOfRowsInComponent component: Int) -> Int: This returns the
number of rows to be displayed in each component or column. In this case,
we just have one column, and we will display the number of games included
in gamesList Array<Game>. Thus, we added code to this method to return
gamesList.count.

Finally, we implemented two methods declared in the UIPickerViewDelegate
protocol:

•	 func pickerView(pickerView: UIPickerView, titleForRow row: Int,
forComponent component: Int) -> String?: This returns the data for
the row to be displayed in Picker View. In this case, we just want to display
the name for each game, so we added code to this method to return the name
property for the gamesList element at the received row value.

Chapter 8

[297]

•	 func pickerView(pickerView: UIPickerView, didSelectRow row:
Int, inComponent component: Int): Whenever the user makes a
change to the Picker View selection, this method is executed, and the row
argument includes the value for the selected row. We use the row value to
retrieve the Game instance corresponding to the same index value for the
gamesList array and then call print to display the selected game name and
highestScore property values on the target output.

Now, we can debug the iOS app on an installed iOS simulator, such as an iPhone 6s
Plus. Click on the Play button in the upper-left corner of the Xcode window. Once
the simulator launches and the app begins its execution, you will see the Picker
View component displaying all the game names. When we select a game in the
Picker View, the target output will display the selected game name and its highest
score, as shown in the following screenshot:

Extending and Building Object-Oriented Code

[298]

Go to the Xcode editor for the ViewController.swift source file and move the
cursor to the following line in the ViewController class:

print("Selected game name: \(selectedGame.name). Highest score: \
(selectedGame.highestScore)")

Navigate to Debug | Breakpoint | Add Breakpoint at Current Line. Go back to
the simulator and select a different game name from Picker View. Xcode will hit the
break point, and we will be able to inspect the value for the selectedGame constant
that references an instance of Game. The debugger will display the ID property as
part of Chapter8.Entity because this property is inherited from the Entity class.
The values for the other properties defined in the Game class are listed after the id
property, as shown in the following screenshot:

In this case, we have just a few Game instances in the game list. However, we must
take into account that sometimes, it won't be convenient to have all the instances
alive in case they have a big impact on memory consumption. We can transform the
data from the instances to instances that have less memory footprint and retrieve the
entire instances by a related ID when we change the selection in Picker View. For
example, we can generate instances that only have a few stored properties instead of
working with instances with all the properties. In this case, the Game instance doesn't
have too many properties. However, in other cases, we might have instances that
have dozens of properties, and many of them might be other instances with dozens
of properties.

Object-oriented code is great. However, we don't have to forget
memory footprint as the number of required instances to keep
alive increases in certain use cases. In our previous example, it
doesn't make sense to transform the Game instances into simpler
values because the code won't cause any memory issues.

Chapter 8

[299]

Exercises
Use the recently created iOS app as the baseline and extend it to provide the
following features:

•	 Add a text box to allow the user to enter the text that the game names must
match in order to be displayed as an option in View Picker

•	 After the user selects a game in View Picker, display a new view that shows
the highest score and the played count for the chosen game

Test your knowledge
1.	 We can add the following type of initializers to a class with extensions:

1.	 Convenience initializers.
2.	 Designated initializers.
3.	 Primary initializers.

2.	 We can add the following type of properties to a class with extensions:
1.	 Read/write stored type properties.
2.	 Primary properties.
3.	 Computed instance properties and computed type properties.

3.	 Convenience initializers are:
1.	 Optional.
2.	 Required.
3.	 Required only in superclasses.

4.	 A convenience initializer acts as:
1.	 A required initializer that doesn't need to call any other initializer.
2.	 A secondary initializer that doesn't need to call any other initializer.
3.	 A secondary initializer that always ends up calling a designated

initializer.

5.	 If we declare the type for a property as UIPickerView!, Swift will treat the
property as:

1.	 An implicitly wrapped optional.
2.	 An implicitly unwrapped optional.
3.	 An exact equivalent of UIPickerView?.

Extending and Building Object-Oriented Code

[300]

Summary
In this chapter, you learned how to add methods, computed properties, convenience
initializers, and scripts using extensions and without editing the original source code
for the original classes or types. Then, we analyzed the initial object-oriented code in
the Single View Application template for an iOS app.

We added a simple UI element to the template and then we added classes that we
tested in the Swift Playground in the previous chapter. We interacted with a simple
object-oriented data repository through Picker View and discussed how object-
oriented code is everywhere in an iOS app.

Now that you have learned to write object-oriented code in Swift, you are ready to
use everything you learned in real-life applications that will not only rock, but also
maximize code reuse and simplify maintenance.

[301]

Exercise Answers

Chapter 1, Objects from the Real World to
Playground

Q1 3
Q2 2
Q3 1
Q4 2
Q5 3

Chapter 2, Structures, Classes, and Instances

Q1 2
Q2 1
Q3 1
Q4 3
Q5 1

Exercise Answers

[302]

Chapter 3, Encapsulation of Data with Properties

Q1 1
Q2 3
Q3 1
Q4 2
Q5 2

Chapter 4, Inheritance, Abstraction, and
Specialization

Q1 1
Q2 2
Q3 1
Q4 2
Q5 3

Chapter 5, Contract Programming with Protocols

Q1 2
Q2 3
Q3 1
Q4 1
Q5 3

Chapter 6, Maximization of Code Reuse with
Generic Code

Q1 1
Q2 3
Q3 2
Q4 1
Q5 2

Appendix

[303]

Chapter 7, Object-Oriented Programming and
Functional Programming

Q1 2
Q2 1
Q3 1
Q4 3
Q5 3

Chapter 8, Extending and Building Object-Oriented
Code

Q1 1
Q2 3
Q3 1
Q4 3
Q5 2

[305]

Index
A
actions

recognizing, to create methods 17, 18
API objects

working with, in Xcode Playground 26-30
array filtering

functional version, creating 245-247
arrays

filtering, with complex conditions 253-256
associated types

adding, in protocols 213
declaring, in protocols 202-204
inheriting, in protocols 213

attributes 14
automatic reference counting

(ARC) 33, 36, 37

B
base types

extending, to conform custom
protocols 223, 224

C
classes

about 33, 34
declaring 37
declaring, that inherit from another

class 90-96
declaring, that works with two constrained

generic types 206-208
downcasting with 155-159
existing classes, generalizing with

generics 214-222

generating, to create objects 11-14
instances, creating 45
organizing, UML diagrams used 20-25

class hierarchies
creating 83-86

class inheritance
combining, with protocol

inheritance 166-177
code

refactoring 229-241
computed properties

adding to base type, with
extensions 273-277

generating, with getters 54-60
generating, with setters 54-62

constants
recognizing, to create properties 14-16

constrained generic type
class, declaring 190-194

D
data repository

creating, with generics 248-252
creating, with protocols 248-252

deinitialization
about 36
customizing 41-44

deinitializer 49

E
equivalent closures

writing, with simplified code 247, 248

[306]

extensions
computed properties, adding to

base type 273-277
convenience initializers,

declaring 278, 279
used, for adding methods 269-272
used, for defining subscripts 280, 281

F
fields 14
filter

chaining 262
functions

about 241, 242
function types, within classes 243, 244

G
generic class

using, for multiple types 195-201
using, with two generic type

parameters 209-212
generic code 181, 182
getters

about 50
combining 62-65
used, for generating computed

properties 54-62
used, for transforming values 69

I
immutable classes

building 78-81
inheritance

about 88-90
and protocols, combining 144-151

initialization
about 34, 35
customizing 38-40

initializers
about 49
convenience initializers, declaring with

extensions 278, 279
instance methods 50
instance properties 50
instances 33, 34

Integrated Development Environment
(IDE) 1

M
map

chaining 262
combining, with reduce 259-261
used, for transforming values 256-259

methods 17
adding, with extensions 269-272
downcasting with 155-159
overloading 96-100
overriding 96-100
protocols, receiving as arguments 152-155
requirements, specifying 164-166

mutable classes
creating 74-77

N
nested types 50

O
object-oriented code

in apps, working with 281-290
object-oriented data repository

adding, to project 290-294
interacting with, Picker View used 294-298

objects
capturing, from real world 4-11

operator functions
declaring, for specific subclasses 126, 127

operator overloading 121-126

P
parametric polymorphism 181, 182
Picker View

used, for interacting with object-oriented
data repository 294-298

polymorphism 108-121
properties

about 14
overriding 101, 102
requirements, specifying 162-164

property observers 65-68

[307]

protocols
and inheritance, combining 144-151
associated types, adding 213
associated types, inheriting 213
class, declaring that conforms to multiple

protocols 184-188
classes, declaring 137-142, 186-188
custom protocols, conforming 223, 224
declaring 133-136
declaring, to be used as constraint 183
initializer requirements, combining with

generic types 201, 202
instances, treating as different

subclass 159-161
multiple inheritance 142, 144
subclasses, declaring 188-190
working, in combination with

classes 131-133

R
reduce

chaining 262
map, combining 259-261
used, for solving algorithms 262, 263

S
setters

about 50
combining 62-65
used, for generating computed

properties 54-62
used, for transforming values 69, 70

stored properties
declaring 51-53

structures 33, 34

subclass
about 88
declaring, that inherit conformance

to protocols 188-190
members overriding, controlling 103-108

subscripts
about 49
defining, extensions used 280, 281
used, for creating shortcuts 204, 205

T
typecasting

working with 108-121
type methods 49, 50
type properties

about 49
used, for creating values 70-74

U
Unified Modeling Language (UML)

about 16
UML diagrams, used for organizing

classes 20-25
User eXperiences (UXs) 4
User Interfaces (UIs) 4

V
values

transforming, with getters 69, 70
transforming, with setters 69, 70

variables
recognizing, to create properties 14-16

X
Xcode Playground 2

Thank you for buying
Object–Oriented Programming with Swift 2

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering Swift 2
ISBN: 978-1-78588-603-4 Paperback: 408 pages

Dive into the latest release of the Swift programming
language with this advanced Apple development book
for creating exceptional iOS and OS X applications

1.	 Harness the latest and most advanced features
of Swift 2 to develop quality iOS and OSX
applications.

2.	 Comprehensive coverage of all the advanced
features of Swift and guidance on advanced
design techniques.

3.	 Dive deep into protocol extensions, learn new
error handling model, and use featured Swift
design patterns to write more efficient code.

Swift 2 Design Patterns
ISBN: 978-1-78588-761-1 Paperback: 224 pages

Build robust and scalable iOS and Mac OS X game
applications

1.	 Learn to use and implement the 23 Gang of
Four design patterns using Swift 2.

2.	 Design and architect your code for Swift
application development.

3.	 Understand the role, generic UML design, and
participants in the class diagram of the pattern by
implementing them in a step-by-step approach.

Please check www.PacktPub.com for information on our titles

Swift High Performance
ISBN: 978-1-78528-220-1 Paperback: 212 pages

Leverage Swift and enhance your code to take your
applications to the next level

1.	 Build solid, high performance applications
in Swift.

2.	 Increase your efficiency by getting to grips with
concurrency and parallel programming.

3.	 Use Swift to design performance-oriented
solutions.

Learning Object-Oriented
Programming
ISBN: 978-1-78528-963-7 Paperback: 280 pages

Explore and crack the OOP code in Python,
JavaScript, and C#

1.	 Write reusable code that defines and makes
objects interact with one another.

2.	 Discover the differences in inheritance and
polymorphism in Python, JavaScript, and C#.

3.	 Capture objects from real-world elements and
create object-oriented code that represents them.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Objects from the Real World to the Playground
	Installing the required software
	Capturing objects from the real world
	Generating classes to create objects
	Recognizing variables and constants to create properties
	Recognizing actions to create methods
	Organizing classes with UML diagrams
	Working with API objects in the Xcode Playground
	Exercises
	Test your knowledge
	Summary

	Chapter 2
: Structures, Classes,
and Instances
	Understanding structures, classes, and instances
	Understanding initialization and its customization
	Understanding deinitialization and its customization
	Understanding automatic reference counting
	Declaring classes
	Customizing initialization
	Customizing deinitialization
	Creating the instances of classes
	Exercises
	Test your knowledge
	Summary

	Chapter 3
: Encapsulation of Data
with Properties
	Understanding the elements that compose a class
	Declaring stored properties
	Generating computed properties with setters and getters
	Combining setters, getters, and a related property
	Understanding property observers
	Transforming values with setters and getters
	Using type properties to create values shared by all the instances of a class
	Creating mutable classes
	Building immutable classes
	Exercises
	Test your knowledge
	Summary

	Chapter 4
: Inheritance, Abstraction,
and Specialization
	Creating class hierarchies to abstract and specialize behavior
	Understanding inheritance
	Declaring classes that inherit from another class
	Overriding and overloading methods
	Overriding properties
	Controlling whether subclasses can or cannot override members
	Working with typecasting and polymorphism
	Taking advantage of operator overloading
	Declaring operator functions for specific subclasses
	Exercises
	Test your knowledge
	Summary

	Chapter 5
: Contract Programming
with Protocols
	Understanding how protocols work in combination with classes
	Declaring protocols
	Declaring classes that adopt protocols
	Taking advantage of the multiple inheritance of protocols
	Combining inheritance and protocols
	Working with methods that receive protocols as arguments
	Downcasting with protocols and classes
	Treating instances of a protocol type as
a different subclass
	Specifying requirements for properties
	Specifying requirements for methods
	Combining class inheritance with protocol inheritance
	Exercises
	Test your knowledge
	Summary

	Chapter 6
: Maximization of Code Reuse with Generic Code
	Understanding parametric polymorphism and generic code
	Declaring a protocol to be used as
a constraint
	Declaring a class that conforms to multiple protocols
	Declaring subclasses that inherit the conformance to protocols
	Declaring a class that works with
a constrained generic type
	Using a generic class for multiple types
	Combining initializer requirements in protocols with generic types
	Declaring associated types in protocols
	Creating shortcuts with subscripts
	Declaring a class that works with two constrained generic types
	Using a generic class with two generic type parameters
	Inheriting and adding associated types
in protocols
	Generalizing existing classes with generics
	Extending base types to conform to custom protocols
	Test your knowledge
	Exercises
	Summary

	Chapter 7
: Object-Oriented and Functional Programming
	Refactoring code to take advantage of object-oriented programming
	Understanding functions as first-class citizens
	Working with function types within classes
	Creating a functional version of array filtering
	Writing equivalent closures with simplified code
	Creating a data repository with generics and protocols
	Filtering arrays with complex conditions
	Using map to transform values
	Combining map with reduce
	Chaining filter, map, and reduce
	Solving algorithms with reduce
	Exercises
	Test your knowledge
	Summary

	Chapter 8
: Extending and Building Object-Oriented Code
	Putting together all the pieces of the object-oriented puzzle
	Adding methods with extensions
	Adding computed properties to a base type with extensions
	Declaring new convenience initializers with extensions
	Defining subscripts with extensions
	Working with object-oriented code in apps
	Adding an object-oriented data repository to a project
	Interacting with an object-oriented data repository through Picker View
	Exercises
	Test your knowledge
	Summary

	Appendix: Exercise Answers
	Chapter 1, Objects from the Real World to Playground
	Chapter 2, Structures, Classes, and Instances
	Chapter 3, Encapsulation of Data with Properties
	Chapter 4, Inheritance, Abstraction, and Specialization
	Chapter 5, Contract Programming with Protocols
	Chapter 6, Maximization of Code Reuse with Generic Code
	Chapter 7, Object-Oriented Programming and Functional Programming
	Chapter 8, Protection and Organization of Code

	Index

