
www.allitebooks.com

http://www.allitebooks.org

IT Inventory and Resource
Management with OCS
Inventory NG 1.02

Eliminate inventorying dilemmas by implementing
a free & feasible IT Inventory solution

Barzan "Tony" Antal

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

IT Inventory and Resource Management with OCS
Inventory NG 1.02

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2010

Production Reference: 1070510

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-10-0

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Barzan "Tony" Antal

Reviewer
Jeff Prater

Acquisition Editor
Dilip Venkatesh

Development Editor
Neha Patwari

Technical Editors
Hyacintha D'Souza

Smita Solanki

Copy Editor
Leonard D'Silva

Indexer
Monica Ajmera Mehta

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Priya Mukherji

Project Coordinator
Ashwin Shetty

Proofreader
Lesley Harrison

Graphics
Geetanjali Sawant

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Barzan "Tony" Antal is a system administrator and network technician at a
significant company that delivers industrial software, system integration, and IT
solutions. He is also a professional technical writer with over 150 articles published
across a large portfolio of prestigious websites covering topics of computer hardware,
IT news, networking, security, software development, SEO/SEM, Web, and
other technologies.

The author has acquired a diverse experience in the fields of IT&C by passionately
pursuing and attempting to apply everything as many times as possible in the real
world. He is a strong believer in practicality, and his down-to-earth approach helps
him out as a consultant providing assistance and finding customized feasible solutions.
During his writing endeavors, this aching for viability always shines through.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

First and foremost, I'd like to thank the outrageous support from my parents and
close friends. My girlfriend, Dea, for accepting my way of dealing with everything
in life. Special thanks to Gabor Bernat, I'm grateful for those well-thought comments
regarding the manuscript. My colleague, Ceclan Sandor, for keeping up with support
over time. Alina D., Lehel M., and Szilard N. for their encouragements and believing
in me.

A huge thank you to my technical reviewer—Jeff Prater, you cannot imagine the
impact your input has had on this book. You have definitely gone beyond the call
of duty while reviewing and researching. Robert Dunham, for kick-starting me in
my writing endeavors many years ago. If it wasn't for you, I wouldn't be a published
author now.

Moreover, I'd like to thank the professional and entirely author-centric team
from Packt Publishing, especially Ashwin Shetty, Dilip Venkatesh, Duane Moraes,
Hyacintha D'Souza, Neha Patwari, Priya Mukherji, Smita Solanki and everyone else.
All of your hard work made this book possible. My sincere thanks for putting up
with my hectic schedule.

Lastly, I consider this book as a tribute to the developers of OCS Inventory NG,
GLPI, and the Open Source community. I also appreciate the readers of this book
and truly hope that my work helps a great deal in succeeding to fulfill their IT
inventory demands.

And finally, thanks James Payne for understanding my lack of activity from the
Shed. Oh, and of course, everyone from the DevHardware Forums—You guys
are fantastic!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Jeff Prater is the Director of Technology for the Houston County District Attorney's
Office in Perry, Georgia. His expertise and knowledge of modern technologies
gave him the opportunity to transform an inefficient government department into
an efficient, modeled prosecutor's office through the introduction of a document
and case management system. In 2007, the Houston County District Attorney's
office became the first paperless prosecutor's office in the state of Georgia. Because
of his success with government automation and efficiency technologies, he was
given the opportunity to speak at the National District Attorneys Association 2007
Annual Conference at the National Advocacy Center, University of South Carolina.
To compliment his career in technology, Jeff also writes technical articles for Ziff
Davis Enterprise/Developer Shed aimed at individuals with limited technology
experience. In his free time, Jeff enjoys spending time with his wife, Beth, and his
newborn daughter, Leah.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction to IT Inventory and Resource Management 7

Inventorying requirements in the real world 8
A feasible solution to avoid inevitable havoc 8
Streamlining software auditing and license management 9
More uses of an integrated IT inventory solution 10
Gathering relevant inventory information 11
Overall inventory demands to enhance usability 11

Centralization: Introducing the client-server model 13
Example of the client-server model—an Internet forum 13
The client-server model versus the peer-to-peer paradigm 14

IT inventorying based on the client-server model 15
How does OCS Inventory NG meet our needs? 15

Brief overview on OCS Inventory NG's architecture 16
Rough performance evaluation of OCS-NG 17
Meeting our inventory demands 17
Set of functions and what it brings to the table 19

Taking a glance at the OCS-NG web interface 20
An incentive on functionalities 21

Summary 24
Chapter 2: Setting up an OCS Inventory NG Management Server 25

Getting ready for the OCS-NG installation 26
Setting up prerequisite software on Linux flavors 27

Demystifying package management 28
The everlasting dilemma of solving dependency hell 28

Getting familiar with your distribution's package manager 29
Yum on RPM-based Linux distributions 30
APT and Aptitude/Synaptic on Debian and its derivates 31

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Installing Apache, MySQL, and PHP/Perl on Linux systems 33
Installing the AMP stack with yum 33
Installing AMP stack with apt 35
Installing AMP stack with emerge on Gentoo 35
Installing the AMP stack with an XAMPP precompiled package 36

Setting up the necessary modules on Linux systems 37
Setting up the OCS-NG management server on
Linux operating systems 38

Installing OCS-NG server via an RPM package 39
Installing OCS-NG server via installation script 41

Downloading and extracting the OCS-NG server package 42
Running the installation script and checking prerequisites 44
The real work behind the scenes of the script 50

Setting up the OCS-NG management server on
Windows operating systems 55

XAMPP for Windows, the warm-up stage 55
Warning: XAMPP 1.6.8-1.7.1—a known issue and solution 58

Launching the OCS-NG integrated installation 59
A pragmatic look at initial configuration 60
Summary 62

Chapter 3: The Zen of Agent Deployment 63
Behind the scenes: How agents earn their living 64
Choosing the best agent type 65

Demystifying the LocalSystem account of Windows OS 66
Choosing the best deployment method 68
Deploying agents on Windows operating systems 69

Getting familiar with command-line arguments 70
Manual installation strategies 72
Using OcsLogon.exe to deploy via GPO or login scripts 76

Using the packager to create the deployable agent 77
Getting the agent package on the OCS-NG server 78
Deployment via Active Directory GPOs 79
Initiating deployment with OcsLogon.exe via login script 82

Unattended installation via the PsExec.exe tool 84
Deploying agents on Linux operating systems 85

Installing agents on Linux with user interaction 86
Installing agents on Linux without user interaction 88

Deploying agents on Mac OS X operating systems 89
Deploying agents on mobile devices 91
Summary 92

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 4: Finding your Way through OCS-NG Features 95
Getting familiar with the OCS-NG web interface 96

Logging in 96
Looking around and examining the view 97
Elaborating the overview section of statistics 98
Getting to know the blue query toolbar 102

Understanding the first two queries 102
Demystifying TAG-based repartitioning 103
Understanding the other three queries 104

Getting to know the administrative toolbar 106
Preliminary configuration tips and best practices 112

Explaining configuration parameters 113
Maintaining a clean inventory: Solving common pitfalls
and eliminating redundancies 115
Implementing the Registry query function 117
Uploading inventory data of hosts that are not networked 118
Working with the inventory 120
Summary 122

Chapter 5: Investigating the Process of Gathering Inventory Data 123
Going beyond the retrieval mechanism 124
Using the IP Query function 133
Summary 135

Chapter 6: Package Deployment through OCS-NG 137
Getting to know the package deployment function 138
Creating a package: Step-by-step approach 140
Server requirements for effortless deployment 143
Package activation and going beyond deployment 144
Affecting packages: Getting the packages through 148
Managing the rules of affectations 150
Securing the process with SSL certificates 151

Working with self-signed certificates 152
Working with PKIs that have certificate authority 155
Getting the certificates deployed on agents 155

Summary 157
Chapter 7: Integrating OCS-NG with GLPI 159

Introducing GLPI: IT asset management on steroids 160
Getting familiar with the web interface of GLPI 162
Setting up GLPI on top of our OCS-NG server 164
Configuring GLPI to integrate with the OCS-NG mode 168
Extending GLPI with plugins 170

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Using GLPI to track and manage inventory assets 172
Carrying out administrative tasks with GLPI 176
Generating reports and statistics with GLPI 178
License tracking and software auditing with GLPI 180
Helpdesk and issue tracking functions of GLPI 182
Summary 185

Chapter 8: Best Practices on Inventorying with OCS-NG 187
Backing up and restoring the OCS-NG database 188

Dumping the database with mysqldump 188
Dumping the database with phpMyAdmin 189
Restoring SQL dump files via MySQL's CLI 191
Automating and scheduling dumping backups via scripts 192

Adding the scheduled job into crontab on Linux OS 192
Writing the batch script and adding into Windows Scheduler 193

Tweaking the OCS-NG server for performance 194
Useful scripts that make our everyday life easier 196

Implementing PHP notification-sender scripts 197
Extending OCS-NG inventory via .vbs scripts 198
Uninstalling the OCS agent via batch script 199

Best practices on retrieving model-specific data of various computer
hardware components 200

Retrieving model-specific data of HDDs 201
Retrieving model-specific data of RAM memory modules 204

Updating OCS-NG agents on clients (when needed) 208
Updating the Windows agent 208
Updating the UNIX agent 209

Updating OCS-NG central server (when needed) 210
Summary 211

Table of Contents

[v]

Chapter 9: Troubleshoot Confidently—Find Solutions
and Workarounds 213

Keeping an eye on the behavior of agents 214
A closer look at the agent's logfile 214

Troubleshooting problems related to agents 218
Forcing an agent to report inventory 219

Solving administration console-based issues 222
Solving MySQL limitations the right way 222
Solving PHP limitations the right way 223

Identifying and fixing issues on the server backend 226
Communication server fails to write a logfile on Linux 228

Diagnosing uncommon pitfalls—asking for help 229
Summary 231

Appendix: Keeping Pace with Version Updates—Glancing
over the changelog of the Latest Release 233

Analyzing the changelog 234
Index 237

Preface
OCS Inventory NG is a cross-platform, open source inventory, and asset management
solution. It brings more than plentiful features to the table to satisfy the business needs
of small-to-large organizations with up to tens of thousands of computers. However, to
put this inventory solution to optimum use requires a lot of skill.

This book will lead you through the steps of implementing OCS-NG until you master
working with it. This book aims at reducing efforts involved in resource management.
The solution gives a robust foundation on top of which we can implement other
third-party applications, plugins, and much more.

This book begins with the basics—it explains what IT inventorying needs are to be
met in the real world. Then, it covers a step-by-step approach to everything you need
to know to set up and implement OCS-NG as a centralized inventory solution to meet
all these requirements. It delves deeper into carrying out inventory tasks with
every chapter.

You will learn how to choose the best agent type and deployment method. We
discuss the process of gathering inventory data and cover techniques for creating
and deploying packages. You will also learn how to acquire added benefits with
the use of plugins. We discuss best practices on inventorying and troubleshooting
agent-related problems. The book presents real-world inventorying scenarios along
with their solutions. You will basically learn how to use OCS-NG to get the most out
of it.

As a conclusion, if you want to learn about a free solution that fulfills inventorying
necessities of the real world, then this is the book for you.

A practical guide on how to set up, configure, and work with OCS Inventory
NG—a cross-platform, open source inventory solution.

Preface

[2]

What this book covers
Chapter 1, Introduction to IT Inventory and Resource Management presents the
importance of IT inventory within any organization or company. It describes
some of the must-have features that an automated and centralized solution
should provide. OCS Inventory NG comes into the picture saving the
day and selecting many of those checkboxes.

Chapter 2, Setting up an OCS Inventory NG Management Server explains the server
role requirements of an OCS-NG management server and leads the user through
the steps of setting up the requisite software on the chosen platform. Once the
system is ready, OCS-NG is installed and configured to collaborate with the
agents that will soon be deployed.

Chapter 3, The Zen of Agent Deployment helps you understand the types of agents
and the various ways agents can be deployed on client machines. This chapter
presents operating system-specific strategies to automate the deployment of
agents. Additional components that are required are thoroughly explained.

Chapter 4, Finding your Way through OCS-NG Features exposes the diversified
features that OCS-NG sports and gives a rundown on each of them. From this
chapter, you will learn how gathering from clients happens, how to sort the results,
and accomplish all kinds of administrative tasks with the fresh inventory database.

Chapter 5, Investigating the Process of Gathering Inventory Data goes further beyond
the actual mechanism of retrieving information and focuses on how to optimize
and tweak this process as well as find leakages. Administrators can determine
which devices are inventoried, how frequently they are inventoried, locate hosts
that are not inventoried, and resolve synchronization issues.

Chapter 6, Package Deployment through OCS-NG takes a practical look at package
deployment and command execution functionalities on inventoried clients. These
increase the usefulness of our centralized inventory suite. This chapter opens to
view the different ways in which you can do this as well as how to specify on
which clients this can be done.

Chapter 7, Integrating OCS-NG with GLPI adds the icing on the cake by introducing
integration possibilities with other tools. This chapter gives you the edge by explaining
how GLPI empowers our OCS-NG inventory. Opting for GLPI on top of OCS-NG is
akin to functionalities on steroids, and you will learn how to make it work.

Chapter 8, Best Practices on Inventorying with OCS-NG deals with all-around repetitive
tasks related to IT inventories and management needs and how to get them solved
with our setup. This chapter deals with some best practices and other tips of backing
up the database. It also deals with everyday situations that can happen and need to
be resolved seamlessly.

Preface

[3]

Chapter 9, Troubleshoot Confidently—Find Solutions and Workarounds continues the
string of practical tips and tricks and good-to-know strategies. This chapter covers
identifying issues, diagnosing common problems, troubleshooting them, and finding
solutions for them.

Appendix, Keeping Pace with Version Updates—Glancing over the changelog of the Latest
Release gives a brief overview on how to read changelogs, explains us what they are,
and why they are useful to us. Their relevancy is quite high as every open source
project has a changelog.

What you need for this book
OCS Inventory NG runs on top of the popular Apache web server, using MySQL's
InnoDB engine and the PHP server-side scripting language. In order to install the
OCS-NG management server, the system must have these prerequisites installed
and configured.

There is an integrated pack that sets up all of the components we must have for a
fully functional web server. This package is available for Windows, Linux, Solaris,
and Mac OS X operating systems. It's called XAMPP. The developers of OCS-NG
thought about making the process seamless on Windows machines. The Win32
installation kit of OCS-NG includes this integrated pack and sets up the
prerequisites during the setup process.

The OCS Inventory NG management server consists of the following four server roles:

•	 Database server: It requires MySQL 4.1 or a higher version that uses the
InnoDB engine

•	 Communication server: It requires Apache web server 1.3 or higher and
some Perl modules (which we are going to present in a minute)

•	 Deployment server: It requires any web server (Apache works here too)
•	 Administration console: It needs Apache Web Server, PHP 4.3 or higher,

and some additional ZIP and GD support

Apart from those main server components, the following modules are necessary:

•	 Apache server needs to be 1.3.X, 2.0.X+ with the following modules:
	° Mod_perl version 1.29+
	° Mod_php version 4.3.2+

•	 PHP 4.3.2+ with extensions:
	° ZIP library of ZIP file functions and support
	° GD library of image functions

Preface

[4]

•	 PERL 5.6+ with the following modules:
	° XML::Simple version 2.12+
	° Compress::Zlib version 1.33+
	° DBI version 1.40+
	° DBD::MySQL version 2.9004+
	° Apache::DBI version 0.93
	° Net::IP version 1.21+
	° SOAP::Lite version 0.66+

•	 MySQL 4.1+ with following engine:
	° InnoDB

•	 Any sort of make utility to control the generation of executables and similar
important files from an application's source code files

	° For example: GNU make.

Who this book is for
The book targets an audience of system administrators and IT professionals who are
required to implement, configure, customize, and work with IT inventory and asset
management solutions.

The book does not presume any prior knowledge of inventory management.
It only requires a solid grasp of the client-server model and familiarity with the
chosen operating system along with the necessary web server and database server
terminologies. Anyone with an interest in inventorying IT assets and solving
real-world resource management dilemmas will enjoy this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "For example, installing a package is done
by typing yum install package-name."

Preface

[5]

A block of code is set as follows:

memory_limit = 96M
post_max_size = 64M
upload_max_filesize = 64M

Any command-line input or output is written as follows:

openssl req -new -key server.key -out server.csr

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
the Next button moves you to the next screen.”

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to IT Inventory
and Resource Management

In the past decade or so, we have begun to realize that computers are an indispensable
necessity. They're around us everywhere, from the computers in our comfortable
households to rovers from other planets. Currently, it is not uncommon at all to have
more than a few dozen office computers and other pieces of IT equipment in the
infrastructure of a small company that does nothing directly related to that
specific area.

It should not surprise anyone that in the case of business environments, there has to
be some streamlined inventory, especially when we consider that the network might
have a total of several hundred, if not thousands, of workstation computers, servers,
portable devices, and other office equipment such as printers, scanners, and other
networking components.

Resource management, in its essence, when viewed from an IT perspective,
provides a method to gather and store all kinds of information about items in our
infrastructure. Later on it supports means to further maintain the said inventory.
Moreover, it performs routine tasks based on the collected data such as generating
reports, locating relevant information easily (like where is a specific memory module
with the model number you're looking for), auditing the type of software installed
on workstation computers, and more.

Our plan of action for this chapter is going to be pretty straightforward; we will
analyze the IT inventorying needs and some general requisites when it comes to
managing those assets. What's more, we'll be presenting the client-server model that
is the underlying foundation on which most centralized management solutions are
working. This is when OCS Inventory NG pops into the picture saving the day.
Soon we will see why.

Introduction to IT Inventory and Resource Management

[8]

Throughout this book, we will adopting a step-by-step approach to build up our
full-fledged OCS-NG, become familiar with its set of features, and excel in fulfilling
our inventorying needs on all levels. Once the groundwork is done, we can further
discuss more on best practices and learn how to troubleshoot confidently. Moreover,
we can present a future possibility to empower what we've already done by building
on top of it another asset management system that provides even more functionalities.

We will learn about OCS Inventory NG soon. For now, it's to realize that it's an
open source project. No matter how successful a company is, open source solutions
are always appreciated by the IT staff and management. Open source projects are
preferred as long as they are actively developed, fairly popular, well documented,
provides community support, and meets the needs of the company. Among others,
open source projects end up modular and flexible.

Inventorying requirements in the real
world
One of the general requirements of an IT inventory is to be efficient and practical.
The entire process should be seamless to the clients and should require limited
(or no) user interaction. Once set up, it just needs to be automated to update
the inventory database, based on the latest changes, without requiring manual
intervention. Thereafter, the collage of data gathered is ought to be organized and
labeled the way we want.

Businesses everywhere have come to realize that process integration is the best method
for querying, standardizing, and organizing information about the infrastructure.
The age of hi-tech computing made this possible by speeding up routine tasks and
saving up employee time, eliminating bureaucracy and unnecessary filing of papers
that all lead to frustration and waste of resources. Implementing integrated processes
can change the structure and behavior of an organization, but finding the correct
integration often becomes a dilemma.

A feasible solution to avoid inevitable havoc
Drifting back to the case of the IT department, the necessity of having an integrated
and centralized solution to manage numerous systems and other hardware equipment
becomes obvious. The higher the number of systems, the bigger the volume to be
managed, the more easily the situation can get out of control, thus leading to a crisis.
Everyone runs around in panic like headless zombies trying to figure out who can
be held responsible, and what can be done in order to avoid such scenarios.

Chapter 1

[9]

Taking a rational approach as soon as possible can improve the stability of entire
organizations. Chances are you already know this, but usually system administrators
tend to dislike working with papers, filling in forms, storing them purely for archiving
needs, and then when they least expect it, finding relevant information. A system like
that won't make anyone happy.

A centralized repository in the form of a database gives almost instant access to results
whenever such a query happens. Its actual state of always being up-to-date and
reflecting the actual state of the infrastructure can be guaranteed by implementing
an updating mechanism.

Later on, once the database is in a healthy state and the process is integrated, tried, and
proven, it won't make any significant difference whether you are managing dozens
of computers or thousands. A well-designed integrated process is future-proof and
scalable. Thus it won't become a setback if and when the company decides to expand.

Streamlining software auditing and license
management
As mentioned earlier, it is important to understand that auditing workstation
machines cannot be neglected. In certain environments, the users or employees have
limited access and work within a sort of enclosed program area, and they can do
little to nothing outside of their specialization. There are situations that arise when
the employees are supposed to have administrative access and full permissions. It is
for the good of both the user and the company to monitor and pay attention to what
happens within each and every computer.

Having an up to par auditing mechanism can integrate the license management system
as well. The persons responsible for this can track the total amount of licenses used
and owned by the company, can calculate balance, can notify when this number is
about to run out, and so on. It isn't uncommon at all to automate the purchasing of
licenses either.

The license management process description varies from firm to firm, but usually it's
something similar to the following: the user requests for a license, the supervisor
agrees, and the request is sent to the relevant IT staff. After this step, the license
request gets analyzed. Based on the result, it is either handed out or
ordered/acquired if necessary.

Introduction to IT Inventory and Resource Management

[10]

If the process is not automated, all this would involve paperwork, and soon you
will see frustrated employees running back and forth through departments asking
who else needs to sign this paper. The process of automating and printing the end
result is elegant and takes no trouble. The responsible department can then store
the printed document for archiving purposes, if required. However, the key of the
process lies in integration. Inventorying can help here too.

More uses of an integrated IT inventory
solution
The count of office consumables can also be tracked and maintained. This is a trickier
process because it cannot be done totally unattended, unless by installing some sort of
sensor to track the count of printer cartridges inside office furniture or the warehouse.
However, you can update this field each time the item in question gets restocked.

A centralized method for tracking consumables means the responsible parties can
get notified before running out of stock. Once again, this step eliminates unexpected
scenarios and unnecessary tasks.

The beauty of centralized management solutions in the IT world is that if it is done
correctly, then it can open doors to numerous other activities as well. For example, in
the case of workstation PCs, the integrated process can be expanded into providing
remote administration and similar other activities to be carried out remotely on the
client machine.

Package deployment and execution of scripts are just few distinctive examples.
Think of it as, license is granted, the package is deployed, and the script is run to
ensure proper registration of the application, if required. System administrators
can usually help fix common issues of employees through remote execution of
scripts. Surely, there are other means to administer the machines, but we're
focusing on all-in-one integrated solutions.

Another possibility is integrating the help-desk and ticketing system within the
centralized inventory's management control panel as well. In this way, when
an employee asks for help or reports a hardware issue, the system administrator
can take a look at what's inside that system (hardware specifications, software
installed, and so on.).Therefore, the system administrator gets to know the
situation beforehand and thus use the right tools to troubleshoot the issue.

Chapter 1

[11]

Gathering relevant inventory information
We can conclude that in order to have a complete inventory which we can build
on and implement other IT-related and administrative tasks, we need, at least,
the following:

•	 Collecting relevant hardware information in case of workstation computers
	° Manufacturer, serial number, model number of every

component
	° When applicable, some of the following: Revision number,

size, speed, memory, type, description, designation,
connection port, interface, slot number, driver, MAC and IP
address, and so on

•	 Collecting installed software/OS (licensing) information
	° Operating system: Name, version, and registration

information
	° Application name, publisher, version, location
	° Customqueries from the Windows registry (if applicable)

•	 Collecting information about networking equipment and office peripherals

	° Manufacturer, serial number, model, type of component, and
so on

•	 MAC and IP address

	° When applicable: Revision, firmware, total uptime, and so on

Overall inventory demands to enhance
usability
Now let's create a list of criteria that we want our IT inventory solution to meet.
In the previous paragraph, we enumerated some of the must-have data that cannot
be left out from our inventory. Likewise, we have expectancies regarding how the
process works.

From the perspective of your users, the process must be transparent and the
background software must not become a resource hog. The bandwidth usage that
is required to communicate with the centralized management server should be
minimal. The inventorying mechanism must be automatic and discover on its own
every item within the environment. Once everything is recorded, the copy stored in
the database must always be kept up-to-date and backed up.

Introduction to IT Inventory and Resource Management

[12]

The inventorying client that sweeps through the entire network should be
cross-platform. As always, everyone likes an intuitive and fast user interface.
This is especially important when managing inventories and working with large
volumes of data. The control panel or management center is the place where we
can organize, label, and work with the gathered information. If the interface is too
complex or overcrowded, it leads to frustration.

The way information is queried from the database and displayed on screen must
be snappy so that we don't have to wait and get bored to tears while some rotating
hourglass is animated.

In addition, we want integrated backup functions. It's always possible to manually
create database dumps or backup points, but if we can do so directly from the
interface, it's much easier and possible for non-IT proficient individuals as well.

Assuming that the web interface can be configured to be accessed by multiple
users having different permissions and rights, it can become quite a useful tool for
employees working in non-IT departments such as accounting and management.
The process of inventorying becomes streamlined, and everyone can work with the
inventory information to get their share of tasks done.

In a corporate environment, it might happen quite often that an employee receives
a new computer and the older computer is received by another user having different
needs. The inventory must be able to automatically detect and diagnose these
situations and track the history of a machine.

The ability to custom specify, define, and set labels to the inventoried items is really
important. When done professionally, companies might agree upon some naming
convention to label inventoried items. An example of this is the following: pc001 in
case of workstation computers, nt001 for networking equipment, sv001 for servers,
ph001 for phones, pr001 for printers, and so on.

This means that we need such functionalities from our IT inventory solution
to track these inventory IDs as well. Should you want to take this idea further,
you can generate and print barcodes, and stick those on the side of those items.
A feature-laden IT inventory can systematize the way tasks are carried out within
an organization.

Summing these up, we have looked upon the most common inventorying
requirements that each one of us is facing within a corporate environment. These are
the necessities, and the solution we require to implement so that our needs are met. In
order to understand how it's going to accomplish our demands, we will talk about the
client-server model. Once we know that, we are going to overview how OCS-NG ticks
those inventory-requisite checkboxes.

Chapter 1

[13]

Centralization: Introducing the
client-server model
Ever since distributed applications appeared, the client-server model has become
popular. In the simplest terms, the server is a computer (usually, a high performing
one) running the service that centralizes some kind of information. It's also able to
receive connections from clients, process their requests, and give them the results
whenever necessary.

Clients establish a connection with the server in order to request or upload some
content. This communication model describes one of the most basic relationship and
architecture. Typically, servers can simultaneously accept and process requests. This
is done with multithreading programming. Other times, the queries are so fast that
sequential execution is enough.

The communication between clients and the server can happen either through the
Internet in case of wide area network (WAN) or just locally when it's limited to the
local area network (LAN). When necessary to enhance scalability, it is possible to
incorporate more than one server in the client-server model. The servers will be part
of a pool and they can share the load between each other. Thus a balanced workload
and bandwidth is achieved.

Example of the client-server model—an
Internet forum
The service that runs on the servers is a computer application. It usually uses elements
of other services. Let's consider the example of a PHP-based web application: forums
or bulletin boards. Everyone knows those. The forum application is the service running
on the server, and the clients are the members visiting the site, posting, reading posts,
and so on.

The forum service cannot run on its own. It needs a set of other vital server
components. A web server is necessary to listen, accept, and serve HTTP requests
from visitors. In the case of users, the web browser can formulate the HTTP requests,
establish the communication with the target web server, and retrieve its HTTP
responses. This is how web surfing can be explained from a client-server
architecture perspective.

Introduction to IT Inventory and Resource Management

[14]

Nevertheless, this is not sufficient for the forum script to function properly. It is
heavily dependent on a database service as well. This is the place where the data is
stored. If the script is PHP based, then the PHP service is also a prerequisite so that
the dynamically generated web pages can be processed. While, other services may
also be required, for the sake of keeping things simple and to present the basis of a
client-server architecture, these services will suffice.

The client-server model versus the
peer-to-peer paradigm
The client-server model has its share of advantages and drawbacks when compared
with other similar models such as the peer-to-peer paradigm. First and foremost, the
client-server model is based on having only one place where the data is stored, on the
server. This provides enhanced security and management. The server can be tightly
secured, firewalled, and powered by high-performing components. In addtion, the
sever has access to plenty of system resources, is backed up regularly, and must be
maintained appropriately.

The data is centralized, and this gives a safer infrastructure to maintain an
error-free copy of the actual data on the side of every client. From the client's
perspective, the server can be replaced, upgraded, or migrated on another server,
without being affected. They know the path and destination of how to reach the
server. If the migration or the maintenance is carried out properly, clients will not
even be aware of that.

The peer-to-peer (P2P) paradigm takes a different approach to the client-server
model. The model presumes that every end point can act both as a server and client
likewise. Undoubtedly this brings the advantage of greater scalability and flexibility.
But it is tougher and time-consuming to maintain an actual up-to-date copy of the
database on every end-point client.

The P2P paradigm solves the possibility of network traffic congestion as there's
no dedicated server to get overloaded. Ultimately, this is not a magic pill either as
all of the clients creating so much cross-talk contributes to increased all-around
network traffic.

On the other hand, the client-server model does not provide such a high degree of
robustness. If and when the server fails on a hardware level, until it gets replaced,
repaired, or fixed, clients won't be able to connect and get any data out of the
management server at all. However, there are various workarounds to enhance
the uptime of servers and ensure their balanced workflow. Redundancy can also
be implemented within the model if it is truly necessary.

Chapter 1

[15]

IT inventorying based on the client-server model
Each of the paradigms mentioned have their share of best fit scenarios where
using one in favor of the other is a better decision. In case of IT inventorying and
resource management solutions, the first model-which is the client-server model,
centralization is a better approach. The chance of overloading the server is lower
because the volume of data that is exchanged is really low, a few kilobytes at most.
The bandwidth usage is light.

Most importantly, the server-client model yields immediate access to the actual
information stored (that is secured) in the database. Centralization is an
advantage here.

How does OCS Inventory NG meet our
needs?
OCS Inventory NG stands for Open Computer and Software Inventory Next
Generation, and it is the name of an open source project that was started back in
late 2005. The project matured into the first final release in the beginning of the year
2007. It's an undertaking that is still actively maintained, fully documented, and has
support forums. It has all of the requirements that an open source application should
have in order to be competitive.

There is a tricky part when it comes to open source solutions. Proposing them and
getting them accepted by the management requires quite a bit of research. One
side of the coin is that it is always favorable as everyone appreciates cutting down
licensing costs. The problem with such a solution is that you cannot always take for
granted their future support.

In order to make an educated guess as to whether an open source solution could be
beneficial for the company, we need to look at the following criteria: how frequently
is the project updated, check the download count, what is the feedback of the
community, how thorough is the documentation, and how active is the
support community?.

OCS-NG occupies a dominant position when it comes to open source projects in the
area of inventorying computers and software.

Introduction to IT Inventory and Resource Management

[16]

Brief overview on OCS Inventory NG's
architecture
The architecture of OCS-NG is based on the client-server model. The client program
is called a network agent. These agents need to be deployed on the client computers
that we want to include in our inventory.

The management server is composed of four individual server roles: the database
server, communication server, deployment server, and the administration console
server. More often than not, these can be run from the same machine.

OCS Inventory NG is cross-platform and supports most Unices, BSD derivates
(including Mac OS X), and all kinds of Windows-based operating systems. The
server can also be run on either platform. As it is an open source project, it's based
on the popular LAMP or WAMP solution stack. This means that the main server-side
prerequisites are Apache web server, MySQL database server, and PHP server. These
are also the viable components of a fully functional web server.

The network agents communicate with the management server under standardized
HTTP protocols. The data that is exchanged is then formatted under XML
conventions. The following screenshot gives a general overview of the way clients
communicate with the management server's sub-server components:

Unix inventory

agent

Windows inventory

agent

http

Administrator with

Web browser

Unix inventory

agent

Windows inventory

agent

Windows inventory

agent

Management Server

Communication

server

Deployment

server

Administration

console

Database

server

https

http

Chapter 1

[17]

Rough performance evaluation of OCS-NG
The data that is collected in the case of a fully-inventoried computer adds up to
something around 5KB. That is a small amount, and it will neither overload the
server nor create network congestion. It is often said that around one million
systems can be inventoried daily on a 3GHz bi-Xeon processor based server
with 4 GB of RAM without any issues.

Any modest old-generation server should suffice for the inventory of few thousand
systems. When scalability is necessary such as over 10,000-20,000 inventoried
systems, it is recommended to split those 4 server-role components on two
individual servers.

Should this be the case, the database server needs to be installed on the same
machine with the communication server and on another system with the
administration server and the deployment server with a database replica.
Any other combination is also possible.

Although distributing the server components is possible, very rarely do we really
need to do that. In this day and age, we can seamlessly virtualize up to four or more
servers on any dual or quad-core new generation computer. OCS-NG's management
server can be one of those virtual machines. If necessary, distributing server
components in the future is possible.

Meeting our inventory demands
First and foremost, OCS Inventory NG network agents are able to collect all of the
must-have attributes of a client computer and many more. Let's do a quick checkup
on these:

•	 BIOS:
	° System serial number, manufacturer, and model
	° Bios manufacturer, version, and date

•	 Processors:
	° Type, count (how many of them), manufacturer, speed,

and cache

•	 Memory:
	° Physical memory type, manufacturer, capacity, and

slot number
	° Total physical memory
	° Total swap/paging memory

www.allitebooks.com

http://www.allitebooks.org

Introduction to IT Inventory and Resource Management

[18]

•	 Video:
	° Video adapter: Chipset/model, manufacturer, memory size,

speed, and screen resolution
	° Display monitor: Manufacturer, description, refresh rate,

type, serial number, and caption

•	 Storage/removable devices:
	° Manufacturer, model, size, type, speed—all when applicable
	° Drive letter, filesystem type, partition/volume size, free space

•	 Network adapters/telephony:
	° Manufacturer, model, type, speed, and description
	° MAC and IP address, mask and IP gateway, DHCP

server used
•	 Miscellaneous hardware:

	° Input devices: Keyboard, mouse, and pointing device
	° Sound devices: Manufacturer name, type, and description
	° System slots: Name, type, and designation
	° System ports: Type, name, caption, and description

•	 Software information:

	° Operating system: Name, version, comments, and
registration info

	° Installed software: Name, publisher, version (from Add /
Remove software or Programs and Features menu)

	° Custom-specified registry queries (applicable to Windows OS)

Not only computers, but also networking components can be used for inventorying.
OCS Inventory NG detects and collects network-specific information about these
(such as MAC address and IP address, subnet mask, and so on.). Later on, we can
set labels and organize them appropriately.

The place where OCS-NG comes as a surprise is its unique capability to make
an inventory of hosts that are not on the network. The network agent can be
run manually on these offline hosts and are then imported into the centralized
management server.

Chapter 1

[19]

One of its features includes intelligent auto-discovering functionalities and its
ability to detect hosts that have not been inventoried. It is based on popular network
diagnosing and auditing tools such as nmap. The algorithm can decide whether it's
an actual workstation computer or rather just a printer. If it's the former, then the
agent needs to be deployed. The network scanning is not done by the management
server. It is delegated to network agents.

In this way, the network is never overcrowded or congested. If the management
server itself scans for populated networks spanning throughout different subnets,
the process would be disastrous. In this way, the process is seamless and simply
practical. Another interesting part is the election mechanism based on which the
server is able to decide the most suited client to carry out the discovery. A rough
sketch of this in action can be seen in the next figure:

disc.

Management

Server

discovers

Server delegates the task

of discovering other clients

to network agents; these can

find uninventoried clients

in their neighborhood.

pc12 pc11 pc10
pc09

pc08pc07pc04pc03

pc02 pc01 pc05
pcDB

disc. disc.
disc.

disc.
disc. disc.

disc.

disc.

disc.

discovers

Set of functions and what it brings to the table
At this moment, we're fully aware that the kind information that the network agents
are getting into the database are relevant and more than enough for our inventorying
needs. Nevertheless, we won't stop here. It's time to analyze and present its web
interface. We will also shed a bit of light on the set of features it supports out of the
box without any plugins or other mods yet. There will be a time for those too.

Introduction to IT Inventory and Resource Management

[20]

Taking a glance at the OCS-NG web interface
The web interface of OCS Inventory NG is slightly old-fashioned. One direct
advantage of this is that the interface is really snappy. Queries are displayed
quickly, and the UI won't lag.

The other side of the coin is that intuitiveness is not the interface's strongest point.
Getting used to it might take a while. At least it does not make you feel that the
interface is overcrowded. However, the location and naming of buttons leaves
plenty of room for improvement. Some people might prefer to see captions below
the shortcuts as the meaning of the icons is not always obvious. After the first few
minutes, we will easily get used to them.

A picture is worth thousands of words, so let's exemplify our claims.

The buttons that appear in the previous screenshot from left to right are
the following:

•	 All computers
•	 Tag/Number of PC repartition
•	 Groups
•	 All softwares
•	 Search with various criteria

In the same fashion, in this case, the buttons in the previous screenshot stand for the
following features:

•	 Deployment
•	 Security
•	 Dictionary
•	 Agent
•	 Configuration (this one is intuitive!)
•	 Registry (self-explanatory)

Chapter 1

[21]

•	 Admin Info
•	 Duplicates
•	 Label File configuration
•	 Users
•	 Local Import
•	 Help

When you click on the name of the specific icon, the drop-down menu appears right
below on the cursor.

All in all, the web interface is not that bad after all. We must accept that the strongest
point lies in its snappiness, and the wealth of information that is presented in a
fraction of a second rather than its design or intuitiveness.

We appreciate its overall simplicity and its quick response time. We are often
struggling with new generation Java-based and AJAX-based overcrowded interfaces
of network equipment that seem slow as hell. So, we'll choose OCS Inventory NG's
UI over those anytime!

An incentive on functionalities
Now that we are familiar with the look of the web admin panel of OCS Inventory
NG, let's find out the kinds of functionalities that are hiding beyond those icons.

Firstly, we have the All computers option to enumerate the entire inventory. We can
customize the type of columns we want to track. One of the most common
configurations is the following setup: Tag, Last Inventory, Computer, User, RAM,
and CPU. This seems intuitive and could suffice for most usages. Whenever necessary,
we can fine-tune this by adding or removing columns from the following possibilities:

•	 Bios Manufacturer, Bios Version, Bios Date
•	 CPU number (stands for core number), CPU Type
•	 Company
•	 Description
•	 Domain
•	 Fidelity
•	 IP address
•	 Last come
•	 Manufacturer, Model
•	 OS Version

Introduction to IT Inventory and Resource Management

[22]

•	 Owner
•	 Quality
•	 Serial number
•	 Service pack
•	 Swap
•	 User Agent, User Domain
•	 Win Product ID, Win Product Key

This gives us a global view of the inventory. Should we want to find more about a
specific computer, we click on its name. Then, we are redirected to a dedicated page
for that item.

The following two images give us a sense of what to expect.

What's more, we can also find details about the hardware components inside the
computer, details about the software applications installed, and even investigate
the behavior of IpDiscover. This is how the automatic network diagnosis feature is
called. We're going to get in depth of this concept in a later chapter as we progress
and build our inventory.

There are situations when we need to repartition and categorize computers into
several groups based on some attributes. This is when the TAG-based repartitioning
feature comes out as a winner. We can configure network clients to submit the

Chapter 1

[23]

inventory data accompanied with TAG information. This option is practical when
departments or different sites are inventoried in the same database. A simple tag
makes all the difference.

The searching functionalities are impressive. We're able to forge any kind of query
using parameters such as processor speed, manufacturer, IP address, OS version,
and the ones mentioned earlier. The modifiers are EXACTLY, DIFFERENTLY, or
LIKE. In this way, we can build complex search queries in a rather simple fashion.

Check out the following example. Let's find Windows-based Test machines in that
IP range.

From the OCS-NG web interface, we can set up users with different levels of access.
This is one of our inventory requirements as well. Lots of other functionalities
are worth mentioning, such as categorizing software applications, and setting up
ignored ones, which do not matter from our point of view (for example, freeware
and open source applications do not require licensing).

The package deployment and remote execution functionalities might be appreciated
by some. They won't make or break the deal of choosing OCS-NG anyway. The
real benefit comes from its lightweight structure and the intelligent auto-discover
routines. On top of these, the modular build of the inventory makes it possible for
further extensions.

Until now, we have seen that OCS-NG seems to meet all of the inventorying
demands we specified earlier. This means that we're beginning a journey
to build an entire fully-fledged inventorying solution from ground up.

We can guarantee a practical ride!

Introduction to IT Inventory and Resource Management

[24]

Summary
In this introductory chapter, we have kick started our venture to understand and
solve IT inventory requirements that exist in almost every firm in the real world.
We presented the practical uses of having a mature inventory coupled with a healthy
database ready to serve requests. No doubt we have realized that implementing such
an integrated process is a necessary method before the situation gets out of control.

Together we created a list of criteria and expectations that we demand from our
integrated inventory solution. By having all of these in place, the way work is
done inside an organization becomes streamlined. Moreover, we can eliminate
unnecessary paperwork. The responsible parties that will be managing their own
departments will be able to get their tasks done even more efficiently.

We have realized that centralization is the best solution for an inventory and asset
management system. After analyzing and comparing two of the most popular
networking and distributed computing paradigms with each other, we backed up
our suppositions. We have learned the mechanism of the client-server model as well
as the peer-to-peer paradigm architecture.

We have set the scene for the book by presenting an incentive on OCS Inventory
NG and overviewing the set of features it brings to the table. Moreover, we can
tackle this situation further and build from ground up our OCS-NG inventory
on a step-by-step basis.

So let's go ahead and begin setting up our OCS-NG central management server.

Setting up an OCS Inventory
NG Management Server

There's one fantastic analogy to building servers, even though it might seem
hilarious. The process is like architecture, for example, building a house. Shocking,
isn't it? Yes! Nevertheless, it makes sense. First, we need a rock solid foundation.
Depending on your point of view, this can either be the hardware platform or the
server software backend platform.

The foundation requires the necessary materials. These are akin to software
prerequisites in case of software application, for example, Perl modules. When
the foundation is laid, and when it seems to be solid (meaning the material is
conglomerated), which means every module and component gets along well
with the other items, we can say we are ready to begin building the house.
The house itself can stand for the application we're going to install.

Right now, the house we're going to install is the OCS Inventory NG management
server. The foundation is a well-rounded AMP stack web server with the necessary
modules. After the house is built, and assuming it does not fall apart right away
(meaning no errors), the final step before moving in is its interior design.

Naturally, the interior design of fresh homes represents the initial configuration of
server variables. Getting the fences up consists of setting passwords and eliminating
security flaws. Now, depending on how large our family gets, we might find out
that the way we designed our home is not appropriate. The groundsill might be
weak, and the home can prove to be small and uncomfortable. Jokes aside, it's
self-explanatory how this analogy continues.

In this chapter, let's get the following tasks done:

•	 Get to know the platform on which OCS-NG management server runs
•	 Set up the software prerequisites on Linux distributions

Setting up an OCS Inventory NG Management Server

[26]

•	 Install the OCS Inventory NG management server on Linux distributions
•	 Learn the installation on Windows with the help of an integrated

installation kit
•	 Carry out some initial configuration and get the server ready for agents.

Getting ready for the OCS-NG installation
The OCS-NG management server encloses all of the four server roles that our
inventory solution entails. It is the centralized heart of the inventory. In this chapter,
we're going to look through the necessary steps to prepare our system in order to
fulfill the general requirements of running OCS-NG management server. As it is a
cross-platform project, we will cover the installation on specific Linux flavors and
on a Windows server operating system.

The actual installation process is console based on Linux environments. It is
verbosely logged, and the steps can be easily followed. It is straightforward. On
Microsoft Windows operating systems, there is a de facto standard Win32 setup-like
installation wizard.

OCS Inventory NG runs on top of the popular Apache web server, using MySQL's
InnoDB engine and the PHP server-side scripting language. In order to install the
OCS-NG management server, the system must have these prerequisites installed
and configured.

On Linux distributions, we'll look into a brief overview of the steps involved for
installation. This checkup helps us to refresh our memory. Under most circumstances,
should you desire to install OCS-NG on a Linux server, this suggests that you are
familiar with working in Linux/Unix environments. Therefore, setting up basic server
roles should not cause you any problems.

There is an integrated pack that sets up all of the components we must have for a
fully functional web server. This package is available for Windows, Linux, Solaris,
and Mac OS X operating systems. It's called XAMPP. The developers of OCS-NG
thought about making the process seamless on Windows machines. The Win32
installation kit of OCS-NG includes this integrated pack and sets up the prerequisites
during the setup process.

Regardless of which platform we choose to install the OCS-NG management
server on, the next step is the initial configuration. After fiddling with a few
security pointers, we can finally declare that our server is pretty much ready
for further action. Thus, our objective is met.

This is our action plan for this chapter!

Chapter 2

[27]

Setting up prerequisite software on Linux
flavors
The OCS Inventory NG management server consists of the following four server roles:

•	 Database server: It requires MySQL 4.1 or a higher version that uses the
InnoDB engine

•	 Communication server: It requires Apache web server 1.3 or higher and
some Perl modules (which we are going to present in a minute)

•	 Deployment server: It requires any web server (Apache works here too)
•	 Administration console: It needs Apache Web Server, PHP 4.3 or higher,

and some additional ZIP and GD support

From now on, in the case of software versions, the "+" suffix at the
end of version numbers is akin with the "or higher" expression. For
example, MySQL 4.1+ means MySQL with at least version number
4.1 or higher.

Apart from those main server components, the following modules are necessary:

•	 Apache server needs to be 1.3.X, 2.0.X+ with the following modules:
	° Mod_perl version 1.29+
	° Mod_php version 4.3.2+

•	 PHP 4.3.2+ with extensions:
	° ZIP library of ZIP file functions and support
	° GD library of image functions

•	 PERL 5.6+ with the following modules:
	° XML::Simple version 2.12+
	° Compress::Zlib version 1.33+
	° DBI version 1.40+
	° DBD::MySQL version 2.9004+
	° Apache::DBI version 0.93
	° Net::IP version 1.21+
	° SOAP::Lite version 0.66+

Setting up an OCS Inventory NG Management Server

[28]

•	 MySQL 4.1+ with following engine:
	° InnoDB

•	 Any sort of make utility to control the generation of executables and similar
important files from an application's source code files

	° For example: GNU make.

The list might look overwhelming at first. However, in the real world, setting up
these components isn't any hassle at all. Almost every Linux distribution comes
with these (and many more) server roles that can be enabled easily during setup
or after. The addition of these modules and certain extensions can be done in less
than five minutes.

The process of installing new applications inside a Linux environment is usually
assisted by package management software. These are distribution-specific utilities
that download software packages from maintained repositories and automate the
installation process. If all goes well, "dependency hell" is avoided seamlessly. From
the user's point of view, these package managers handle everything. As a result, they
are confused with installers.

Demystifying package management
The overall list of tasks that a package manager is responsible for performing is quite
long. Firstly, these tools track and organize libraries and other applications present
on the operating system. They know each and every program that is installed, their
version, where they are installed, the packages they are dependent upon, and more.

Ever since the evolution of Linux operating system, newcomers to this world were
terrified of the "dependency hell." As we all know, Linux brings lots of options
when it comes to the kind of software we can choose from. There are hundreds of
applications for every simple task. Usually these applications rely on already created
libraries, but a problem arises when there are numerous versions of a certain library.
It is hard to keep track of them manually.

The everlasting dilemma of solving dependency
hell
Years ago, users were required to resolve this "dependency hell" themselves. This
meant figuring out the list of dependencies in case of a software. Somehow, one
had to find those necessary packages and libraries (that is, download them from
the Web), and set them up. Once these were done, one had to try to install the
application again. New dependency problems might have appeared again.
Rinse and repeat. It was a long-winded process.

Chapter 2

[29]

Package management software was designed to automate all of the preceding
installations. Each distribution has an official repository of certified software, which
is pretty much guaranteed to work on the said operating system. The dependencies
is resolved really fast. The required libraries are downloaded from the repository
as well.

This solution works fantastically in the case of popular applications as these are
all officially supported. From a pragmatic point of view, this method is not a magic
pill. It is not possible to officially support and certify all of the software that exists.
In rare cases, the user still needs to struggle and fight with dependencies like our
forefathers did.

Nevertheless, the management server of OCS-NG requires tried and proven open
source server components. LAMP is the acronym for Linux, Apache, MySQL, and
PHP/Perl. This software stack is one of the most widely recognized bundles with
regards to setting up a general-purpose web server. This means that no matter what
distribution you've chosen, these server components are going to be available via
their official repos.

Before we actually begin to set up Apache, MySQL, and PHP/Perl on our Linux
distro, we are going to look into some of the most common package managers.
Once we know how to work with each, installing those server daemons and
packages is child's play.

Getting familiar with your distribution's
package manager
Nowadays, most Linux distributions come with at least one full-fledged package
manager. By default, these connect and grab those binary packages from officially
supported software repositories. Most package management software achieves
the same functionality under a different layout, shape, form, or by using a
different approach.

As a memory refresher, we cannot forget that installing packages and/or updating
our Linux distributions requires root access. Despite the controversy it created, some
distros allow the installation of signed packages from their official repository even
without a root password, but in most cases we need root access to do administrative
tasks on an operating system. Therefore, working under our favorite package
manager also requires root access.

Setting up an OCS Inventory NG Management Server

[30]

Yum on RPM-based Linux distributions
One of the most widely implemented package managers these days is yum. Yum
comes from Yellowdog Updater. It is RPM-compatible and, thus, it is equipped in
most distributions that support RPM packages. By its nature, yum is console based,
but there are many graphical user interface (GUI) frontends available.

The advantage of using package management software such as yum comes mainly
from making the update procedure really trivial. Every time a new package is
installed via yum, it is stored in your software/package database. When a new
version is released and added to the repository, you can find out whether you're
lagging behind and update it if required. Nevertheless, not every repository is
always up-to-date. This is to be kept in mind.

Opting for software that is distributed via package management comes with a certain
guarantee. In case of really popular software packages, like the server components
we are going to install soon (Apache Web Server, MySQL, and PHP/PERL), this is
critical. Their installation becomes seamless, and they are guaranteed to work on
your specific distributions. If you're running an old Linux distro, then you'll get an
old version of those too.

The following Linux distributions are equipped with yum right from scratch:

•	 Red Hat Enterprise Linux
•	 Fedora/Fedora Core
•	 Mandrake/Mandriva
•	 CentOS
•	 SuSE Linux/openSUSE
•	 Yellow Dog Linux
•	 And others

Working with yum is quite easy. For example, installing a package is done by typing
yum install package-name. To check whether an update is available for a package,
we type yum update package-name. Without specifying a package-name, type yum
update, it checks and updates each of them if updates are ready. In order to find
out if a package is installed or not, we can simply type yum list installed
package-name.

Then there are situations when we aren't sure of a package's full name. In such
cases, we type yum list perl* and this way it enumerates every package that
begins with perl. We can use wildcards. Removing packages can be done with
yum remove package-name.

For more information and other useful tips on how to fully use yum, type man yum.

Chapter 2

[31]

APT and Aptitude/Synaptic on Debian and its
derivates
Advanced Packaging Tool (APT), was designed as a package manager user interface
for Debian-based Linux distributions. Initially, it was just a frontend for dpkg, which
is the core package manager on Debian derivates; it works with .deb packages.

For a moment, let's think of a pyramid. On the lowest layer, there is dpkg. It is the
core of Debian package management. It is the tool that provides the functionality to
install, remove, and extract information out of .deb packages. On top of dpkg sits
APT. It is a friendlier interface. It is well designed, and it provides robust means to
find out the best possible order for packages necessary to be installed or removed
for great performance.

Some enthusiasts swear by APT, and they claim it's one of the main reasons
why they stick with Debian variants. Over the years, APT was extended, and
it now supports RPMs too.

Drifting back to our pyramid, on the top layer we can find Aptitude or Synaptic.
These are graphical user interfaces to the previously mentioned APT. They provide
a comfortable frontend and powerful searching features. Aptitude also has a
command-line interface (CLI). Should you want to find more information about
these applications, type man followed by command name. Right now, let's learn
about the most frequently used APT commands.

The most basic APT command deals with installing packages, we can do this with
apt-get install packagename. We can remove the said package with apt-get
remove packagename. Upgrading packages can be achieved with apt-get –u
upgrade, where the –u argument tells the system to print out the packages that
are going to be updated.

As mentioned earlier, APT was ported to RPM and the tool that deals with RPM
packages is called APT-RPM. The rest of the commands and arguments are similar.
The configuration of APT can be quite complex, depending on your needs. Be sure
to check the manual.

The following list contains a few Linux distributions that support APT:

•	 Debian GNU/Linux
•	 Ubuntu
•	 Conectiva (APT-RPM, they did the port to RPM)
•	 Mandrake
•	 SuSE

Setting up an OCS Inventory NG Management Server

[32]

•	 Sun Solaris
•	 Red Hat
•	 PLD
•	 Vine Linux
•	 ALT Linux
•	 Yellow Dog Linux
•	 And others

Emerge and Portage, the heart of Gentoo Linux
Gentoo Linux takes a different approach when considering a package management
system. Originally developed on the idea of FreeBSD ports, Gentoo's powerful
package manager is called Portage. Portage works with ebuilds, which are bash
scripts that deal with the installation of applications. In essence, the process
encapsulates the tasks of downloading the sources, configuring, making,
compiling, and finally installing them appropriately.

Emerge is the utility that works with Portage. Using emerge is a double-edged
sword. While it comes with lots of advantages, it can become quite complex at
the same time. What we need to know is how to use emerge to install some of the
necessary prerequisite packages in order to have our platform ready for OCS-NG
management server. Should you really want to get your feet wet with Portage,
there's plenty of documentation.

There are more than 25,000 ebuilds available through Gentoo official mirror servers.
We can synchronize our local repository with these mirror servers by executing
the emerge --sync command. This updates the repository with the latest version
packages. We can grab a package by typing emerge packagename. This downloads
the respective ebuild(s) and starts the installation process. Usually, the compiling
steps are (or can be) lengthy.

Despite the original approach of not supporting binary packages, Portage does
contain Pre Compiled Binary Packages (PCBP) for really popular applications
that are time consuming to compile. No user fancies waiting for hours just to get
a complex application suite like OpenOffice.org up and running. We can add
the --bin argument to search for an available binary package. If there's one,
then emerge utility will get that instead of the ebuild.

Chapter 2

[33]

Installing Apache, MySQL, and PHP/Perl
on Linux systems
We want to install Apache, MySQL, and PHP/PERL (also known as AMP solution
stack) on our Linux system as our OCS-NG inventory is going to run on top of these.
Apache is the web server daemon, and it's going to provide a web-based user interface
for us too. MySQL will serve database requests, and it's the heart of the inventory after
all. In order to provide dynamic content, we also need PHP and Perl interpreters.

After having learnt how to use package managers of various Linux distributions,
let's put our knowledge to some practical use. We will focus on yum, then APT,
and finally emerge.

Installing the AMP stack with yum
First things first, we can install all packages with one simple command line
as follows:

yum –y install httpd php mysql mysql-server php-mysql

Now that we have these basic packages installed, we can check whether there are
updates available for them by using the yum check-update httpd command In
order to find out which version we installed, we can type the following command:

rpm –qa | grep –i httpd

Then, if an update is available, we can simply type yum update httpd to update
the package. This command can be applied to every package. Here httpd was used
for exemplification.

When we're trying to get all of the necessary packages with that one-liner yum
command, what happens if our Linux distribution already comes with some of these
packages installed? Well, the yum utility is fairly smart and can decide if there's a
higher version for some of them. It also checks and resolves the dependencies.

We can update each package manually with the yum update packagename, but
it is a bit pointless to do it that way. Instead, we just command the installation of
those packages, and the installer figures out if they are already on the machine and
what to do in that situation.

Setting up an OCS Inventory NG Management Server

[34]

Check out the next screenshot. Some packages are updates while others are
already up-to-date.

The previous screenshot shows only one-third of the process. The entire downloading,
updating, and cleanup processes are skipped. What matters is that it handles updates
seamlessly. Each action is verbosely logged. It should not require user interaction.

You can check the version of MySQL installed by using the following command:

mysql –V

mysql Ver 14.14 Distrib 5.1.42, for redhat-linux-gnu (i386) using
readline 5.1

We need to add them as services so that they start automatically with the
operating system:

chkconfig httpd on

chkconfig mysqld on

Let's manually start the services now, as we don't want to reboot.

service httpd start

Starting httpd: [OK]

service mysqld start

Starting MySQL: [OK]

Chapter 2

[35]

Now, we need to specify the MySQL root password. Here's how to do this:

mysqladmin -u root password 'password-goes-here'

Do not ignore the simple quotes, as the password goes inside those apostrophe marks.

As a rule of thumb, it is recommended to execute the mysql_secure_installation
shell script. This bash script is shipped with MySQL packages, and it performs the
following initial security configurations:

•	 Changes root password, if applicable. We did that earlier.
•	 Removes the anonymous user access.
•	 Disables root login from remote access (only allowed from 'localhost').
•	 Removes the default sample database.

Installing AMP stack with apt
First, we will install the Apache2 web server daemon using the following command:

apt-get install apache2

Next, we will install the rest of PHP 5 packages using the following command:

apt-get php5 libapache2-mod-php5 php5-cli php5-common php5-cgi php5-gd

MySQL related packages are then installed using the following command:

apt-get install mysql-client mysql-common mysql-server php5-mysql

In case, we do not specify the version number, such as PHP 5, the latest
version is picked by the package management software. Therefore, as
an example, php also suffices.

Once they are installed, we recommend running the mysql_secure_installation
shell script here too. If you decide not to run it, then at least don't forget to set the
root password.

Installing AMP stack with emerge on Gentoo
Here's how we install Amp stack under Gentoo with Emerge:

First we add Apache2 and MySQL to the USE flag in /etc/make.conf:

 # emacs -nw /etc/make.conf

Setting up an OCS Inventory NG Management Server

[36]

Now we execute the emerge utility:

emerge –av apache

emerge –av mysql

emerge –av php

emerge –av mod_perl

Let's add them as services to start on each restart:

rc-update add apache2 default

rc-update add mysql default

We need to enable PHP 5 in our Apache2 config file:

nano –w /etc/conf.d/apache2

at the end of "APACHE2_OPTS=" line add "-D PHP5"

It should be noted that the –av argument stands for
ask and verbose functionalities.

Working with Gentoo Linux sometimes requires patience. Generally, if one runs a
distro like Gentoo, some sort of experience with that environment is assumed. Thus,
should you struggle getting an AMP stack set up together, don't hesitate to research
for information. There are step-by-step guides available that are dedicated to that topic.

Installing the AMP stack with an XAMPP
precompiled package
XAMPP is an open source project that contains an Apache distribution containing
other critical web server elements such as MySQL server, PHP, and Perl. It also
installs some good-to-have applications such as PhpMyAdmin, ProFTPd (FTP
server). The installation requires downloading, extracting, and installing. The
script is automated.

For more information, please visit the project's official web page at:

http://www.apachefriends.org/en/xampp-linux.html

You can download XAMPP from the previously mentioned site as well. It comes
with installation instructions.

http://www.apachefriends.org/en/xampp-linux.html

Chapter 2

[37]

Setting up the necessary modules on
Linux systems
Besides having a functional AMP stack, our web server needs a few additional
modules. These are Perl modules, some of which deal with compression, while
others provide extension means (SOAP). Getting these installed requires just a
minute's work.

Here's how we can do this using the following commands in yum:

yum install perl-XML-Simple

yum install perl-Compress-Zlib

yum install perl-DBI

yum install perl-DBD-MySQL

yum install perl-Apache-DBI

yum install perl-Net-IP

yum install perl-SOAP-Lite

We can do the same with APT as well by using the following commands:

apt-get install libxml-simple-perl

apt-get install libcompress-zlib-perl

apt-get install libdbi-perl

apt-get install libdbd-mysql-perl

apt-get install libapache-dbi-perl

apt-get install libnet-ip-perl

apt-get install libsoap-lite-perl

cpan -i XML::Entities

And in the case of Portage, we run the following emerge commands:

emerge dev-perl/XML-Simple

emerge perl-core/IO-Compress

emerge dev-perl/Apache-DBI

emerge dev-perl/Net-IP

emerge dev-perl/SOAP-Lite

emerge app-portage/g-cpan

g-cpan -i XML::Entities

www.allitebooks.com

http://www.allitebooks.org

Setting up an OCS Inventory NG Management Server

[38]

As a final note, it does not matter if some of the modules are already installed. Running
the commands just mentioned on either package management system won't do any
harm. They will be checked, and if they are found to be present, a warning will be
printed on the screen.

The SOAP-related modules are optional. They can be installed when needed later
on, too.

Setting up the OCS-NG management
server on Linux operating systems
Before we begin, let's initiate a terminal session at the Linux server. This is going to
be the server on which we will install the OCS-NG server. It is recommended to start
an encrypted shell such as SSH. You may even work locally on the server, if possible.

We are going to look into two individual ways of installing the OCS-NG
management server. You may pick either. The first installation modality will be
via RPMs. Ever since OCS-NG has become popular and recognized in the open
source community, several Linux distributions have started to include it into their
package repository. The advantage of this is that they are officially supported, fully
maintained, and kind of guaranteed to work.

While installing software, when there's an RPM, it takes barely one line of command,
and the process is fully automated. The second modality that we will cover is slightly
longer, as the user is required to download and extract the latest OCS-NG server
archive. The user can then follow the instructions throughout the verbosely logged
and interactive setup.

We agree that whenever possible, using RPMs to install and remove packages is
generally recommended. In this way, you are keeping things consistent, and the
software database is updated and reflects the overall state of all your applications.
One thing is clear, we won't get into the source code versus RPM debate here. It's
pretty long winded.

What really matters is that we know the real installation modality, if and when you
fail to find an RPM package based on the version of OCS-NG you want to install.

Although these software repositories seem to be quite up-to-date, keep in mind that
they are always lagging behind their official releases. Moreover, as you find yourself
getting familiar with the entire OCS-NG architecture, you will want to try and play
around with beta and release candidate versions.

Chapter 2

[39]

Then again, we might also use a Linux distribution that is not RPM based. Summing
these issues up, it is important to know both installation modalities. If you're using
one of the popular distributions that support RPMs such as Red Hat, Fedora, SUSE,
Mandriva, and others, opting for this keeps things integral. But perhaps in the official
repo, there's an older version of OCS-NG. We consider it's worth taking those few
minutes to install OCS-NG without precompiled packages. This is entirely your
choice. We can make an inventory on either.

Another key point needs to be mentioned: OCS-NG is based on web technologies.
It does not need to be compiled. A lot of people are terrified of having to compile
source code in order to install an application. The OCS-NG installation package
needs to be extracted and copied where you want. Once this step is done, you just
launch the shell script.

Now that we know what to expect, let's get down to the real deal.

Installing OCS-NG server via an RPM package
Every time we look forward to installing an application via precompiled packages,
we have to first ask our package management software repository what to do with
the package (search, install, check the version, and so on). In case of OCS-NG, when it
comes to these packages, most repositories are called ocsinventory.

Therefore, provided that we're dealing with Yum, we run the following query:

#yum search ocsinventory

Loaded plugins: refresh-packagekit

======================Matched: ocsinventory=====================

ocsinventory.noarch : Open Computer and Software Inventory Next
Generation

ocsinventory-agent.noarch : Open Computer and Software Inventory NG
client

ocsinventory-ipdiscover.i386 : Open Computer and Software Inventory NG
client

ocsinventory-reports.noarch : OCS Inventory NG - Communication server

ocsinventory-server.noarch : OCS Inventory NG - Communication server

Setting up an OCS Inventory NG Management Server

[40]

Based on the previous output, we have found out that there is some kind of
ocsinventory package inside the yum repository of our distribution. In order
to find out more details regarding the version, release, size, and so on, we are
going to run the yum info ocsinventory command. The output can be seen
in the following screenshot. Version 1.02.1 is available.

Now, we're quite lucky because the version found inside the repository matches the
latest stable version released. This means that we can get the OCS-NG management
server up and running just like installing any other application by running the
following query:

yum install ocsinventory.

As always, this command resolves the dependencies and proceeds to install
the software. We're going to be asked to confirm the transaction summary
(six packages are needed for this).

There is another modality when we want to get an RPM package that matches
the version number of our Linux distribution. We can give a try to RPM packet
search engines. RPM PBone is just an example. You can find Pbone at
http://rpm.pbone.net/. There are others like Rpmfind, which you can
find at http://www.rpmfind.net/.

Luckily, for those who love to deal with RPMs, there's an enthusiast and developer
called Remi who maintains an RPM repository dedicated to OCS Inventory-NG
and GLPI. We will cover the latter in a future chapter when we get to extensions
and how to integrate OCS-NG with other tools. Remi has a blog at http://blog.
famillecollet.com/pages/OCS-GLPI-en where he has also posted instructions.

On this link, we can find instructions on how to install OCS-NG via RPMs provided
by Remi as well. We can either configure our package management system to look

Chapter 2

[41]

into his repository, or we can just download the RPM packages ourselves and get
them installed.

Check out his entire RPM collection. Keep in mind, these are not officially
maintained. The community is thankful to Remi for his work and dedication.

http://rpms.famillecollet.com/

Here's a quick example on how to download and install Remi's release for Fedora 11:

#wget http://rpms.famillecollet.com/remi-release-11.rpm

#rpm -Uvh remi-release-11.rpm

Should we choose to install one of Remi's releases without a package management
system like yum or APT, there's a preliminary step. The RPM validity check requires
the GNU Privacy Guard (GnuPG or GPG) of Remi to be imported. For instructions
on how to do this, you can refer to the following link:

http://blog.famillecollet.com/pages/Config-en

The command is rpm --import RPM-GPG-KEY-remi after we downloaded the key.

These modalities should suffice, if you really opt for getting OCS-NG up and
running via precompiled RPM packages. However, if we end up struggling to find
the right version from repositories, then we don't need to worry. The script-based
installation is the way to go.

Installing OCS-NG server via installation
script
The installation script automates the setup procedure. The user is required to be
present as the setup is interactive. Depending on the configuration we are trying
to work with, we can install all of the server roles of OCS-NG on the same server.

In most cases, you don't really need a distributed setup where two or more servers are
dedicated just for inventorying needs. A few million computers can be inventoried
with today's modern servers. Any modest computer (not even a real dedicated server)
can deal with thousands of inventories by itself.

These rather shy performance requirements also mean that the OCS-NG
management server can be made virtual. Nowadays, most companies have server
needs that are virtual and centralized. Should this be one of your concerns, it does
work well with OCS-NG too.

Setting up an OCS Inventory NG Management Server

[42]

As with every other software, it is strongly recommended to use
the latest final and stable release for production use. In case of test
environments, beta versions and release candidates are alright. In
scenarios where unknown behavior cannot be allowed: for example,
production use, always choose fully tested stable versions.

The real benefit of opting for the script-based installation comes mainly from the fact
that we are getting the latest versions right from the OCS-NG developers. We have
the liberty to choose whichever version to install on whatever Linux distribution (or
Windows), and as the installation of OCS-NG does not require compiling of sources,
it goes smoothly.

Downloading and extracting the OCS-NG server
package
The first step of the installation process is grabbing the latest version of the
OCS-NG. Point your favorite browser to the Downloads section of the official
OCS-NG website:

http://www.ocsinventory-ng.org/index.php?page=downloads

On the left side of the web page, you can see the versions enumerated from newest
to the oldest. At the time of writing this book, the latest version is 1.02.1. Don't be
led into doubt, as this does not mean that the product is in its early development
stages. This is one of the project's traits, slowly increasing in version numbers. As
of November 6, 2009, a new beta 2.1.3 version was released and is going through
initial testing. For now, we'll work with 1.02.1.

Download the OCS Inventory NG server in a .tar.gz archived format. You should
find the file in the following format:

 OCSNG_UNIX_SERVER-1.02.1.tar.gz.

wget http://downloads.sourceforge.net/project/ocsinventory/OCS%20
Inventory%20NG/1.02/OCSNG_UNIX_SERVER-1.02.1.tar.gz

Chapter 2

[43]

ls –l

-rw-r--r-- 1 root root 1488981 2009-05-30 11:21 OCSNG_UNIX_SERVER-
1.02.1.tar.gz

The next step is extraction. The archive contains a folder so we don't need to create it.

tar -xvzf OCSNG_UNIX_SERVER-1.02.1.tar.gz

As you can see, we have used the tar command with –xvzf options to extract the
archive. Tar is one of the most basic GNU archiving tool in Linux. The specified
parameters stand for the following: -x for to extract, -v for verbose logging, -z
for gzip to process the archiving through gzip and ungzip, and finally -f is followed
by the target filename.

The following directory is created: OCSNG_UNIX_SERVER-1.02.1 (version dependent)

#ls -l

drwxr-xr-x 5 root root 4096 2009-05-30 10:53 OCSNG_UNIX_SERVER-1.02.1

Alright, the chances are we have not encountered any problems. It is time take a
peek into the extracted folder.

#cd OCSNG_UNIX_SERVER-1.02.1

#ls -l

total 132

drwxr-xr-x 5 root root 4096 2009-05-30 10:53 Apache

-rw-r--r-- 1 root root 36923 2009-05-30 10:52 ChangeLog

drwxr-xr-x 3 root root 4096 2009-05-30 10:53 dtd

-rw-r--r-- 1 root root 17987 2009-05-30 10:52 LICENSE.txt

drwxr-xr-x 9 root root 4096 2009-05-30 10:53 ocsreports

-rw-r--r-- 1 root root 3946 2009-05-30 10:52 README

-rwxr-xr-x 1 root root 54851 2009-05-30 10:52 setup.sh

The LICENSE.txt is the GNU Public License (GPL) v2 of End User License
Agreement (EULA). As always, we should not proceed further without reading the
license thoroughly. Fortunately for many of us, we're quite familiar with the GNU
Public License (GPL) v2 already.

Setting up an OCS Inventory NG Management Server

[44]

The README file is a short description of the OCS Inventory NG setup procedure. A
More detailed documentation is available on the online wiki from the OCS Inventory
NG's website:

http://wiki.ocsinventory-ng.org/

It is available in the following languages: English, French, Spanish, Deutsch,
and Italian.

The setup.sh is a console-based installation shell script that requires user interaction.

We are going to execute this script with either ./setup.sh or sh setup.sh.

Warning:
Do not attempt to take a coffee break now—your participation
will be required!

Running the installation script and checking
prerequisites
When we hit Enter to the launching command, we are greeted by the OCS Inventory
NG welcome screen in the terminal window.

A caution related to upgrading is pointed out, as shown in the following figure:

Any earlier Apache configuration needs to be wiped out when upgrading the
communication server from 1.0 RC2. Assuming this is our first installation, we
ignore it.

Chapter 2

[45]

The installation script checks the existence of MySQL on the server and then
queries its version number. You should pass this step as we did with the
prerequisites earlier.

Your MySQL client seems to be part of MySQL version 5.1.

Your computer seems to be running MySQL 4.1 or higher, good ;-)

Now, we are asked to specify our MySQL database network information. Where it
is located? If it's on the same server, then we hit Enter for localhost.

Which host is running database server [localhost] ?

OK, database server is running on host localhost ;-)

On which port does it run? If it's set to the default port 3306, then we hit Enter
here too.

On which port is running database server [3306] ?

OK, database server is running on port 3306 ;-)

Once the database configuration is gathered, it asks for the Apache web daemon.
Assuming the daemon is binary on the default path: /usr/sbin/httpd, we hit Enter.

Where is Apache daemon binary [/usr/sbin/httpd] ?

OK, using Apache daemon /usr/sbin/httpd ;-)

Now comes the main configuration file of Apache. Unless modified, it's on the
default path.

Where is Apache main configuration file [/etc/httpd/conf/httpd.conf] ?

OK, using Apache main configuration file /etc/httpd/conf/httpd.conf ;-)

Setting up an OCS Inventory NG Management Server

[46]

The right permissions also need to be set. In order to do this, the script asks for
the Apache user account and user group. By default, these are both apache.

Which user account is running Apache web server [apache] ?

OK, Apache is running under user account apache ;-)

Which user group is running Apache web server [apache] ?

OK, Apache is running under users group apache ;-)

Moving on, the script automatically detects the Apache Include configuration
directory. This is the place where the OCS Inventory NG configuration file is also
placed. The user is asked for confirmation of the Apache Include configuration
folder. If there are multiple installations of Apache and the installer gets confused,
then just hit Enter on default.

Setup found Apache Include configuration directory in /etc/httpd/conf.d/.

Setup will put OCS Inventory NG Apache configuration in this directory.

Where is Apache Include configuration directory [/etc/httpd/conf.d/] ?

OK, Apache Include configuration directory /etc/httpd/conf.d/ found ;-)

Chapter 2

[47]

After these two main components of the LAMP solution stack are configured, we're
finally getting to the last letter of the acronym. The script asks for the path of the PERL
interpreter. It should be automatically detected. Just hit Enter, unless you know it's at
another place.

Found PERL Intrepreter at </usr/bin/perl> ;-)

Where is PERL Intrepreter binary [/usr/bin/perl] ?

OK, using PERL Intrepreter /usr/bin/perl ;-)

We know that there are different ways to set up the roles of OCS-NG management
server such as distributed setups where the communication server is on another
server. This is when you're asked whether you want to install the communication
server on the same machine as well. If so, then hit y for yes.

Do you wish to setup Communication server on this computer ([y]/n)?y

Right away, the setup automatically detects the make utility. Now it won't ask
for confirmation.

OK, Make utility found at </usr/bin/make> ;-)

Mod_perl is an amazing Perl interpreter for your Apache web server. This mod is
required for OCS Inventory NG's communication server to function properly. The
installation script will try to detect the presence of mod_perl along with its version.

Checking for Apache mod_perl version 1.99_22 or higher

Checking for Apache mod_perl version 1.99_21 or previous

Setting up an OCS Inventory NG Management Server

[48]

If all goes well, the setup recognizes its version. Chances are it's going to be 1.99_22+.

Checking for Apache mod_perl version 1.99_22 or higher

Found that mod_perl version 1.99_22 or higher is available.

OK, Apache is using mod_perl version 1.99_22 or higher ;-)

However, don't worry if it cannot auto-detect the correct version. The following
output may be presented on your terminal screen:

Setup is unable to determine your Apache mod_perl version.

Apache must have module mod_perl enabled. As configuration differs from

mod_perl 1.99_21 or previous AND mod_perl 1.99_22 or higher, Setup must

know which release Apache is using.

You can find which release you are using by running the following command

 - On RPM enabled OS, rpm -q mod_perl

 - On DPKG enabled OS, dpkg -l libapache*-mod-perl*

Enter 1 for mod_perl 1.99_21 or previous.

Enter 2 for mod_perl 1.99_22 and higher.

Which version of Apache mod_perl the computer is running ([1]/2) ?2

Chapter 2

[49]

You can find out your correct version of mod_perl by following the instruction
which is as follows:

[root@fedorabox tony]# rpm -q mod_perl
mod_perl-2.0.4-7.i386

We have chosen the second option as our version is higher than 1.99.2. If you don't
have mod_perl installed, then it's not too late to fix this problem. Fire up another
terminal/console shell on your Linux server, and using your package management
software, grab it.

There are a few more steps in the installation. Now, we are asked where the
server should place the communication server's logs. It defaults to a rather
self-explanatory path.

Where to put Communication server log directory [/var/log/ocsinventory-
server] ?

OK, Communication server will put logs into directory /var/log/
ocsinventory-server ;-)

The installation is going to check those prerequisite Perl modules we talked
about earlier.

Checking for DBI PERL module...
Found that PERL module DBI is available.
Checking for Apache::DBI PERL module...
Found that PERL module Apache::DBI is available.
Checking for DBD::mysql PERL module...
Found that PERL module DBD::mysql is available.
Checking for Compress::Zlib PERL module...
Found that PERL module Compress::Zlib is available.
Checking for XML::Simple PERL module...
Found that PERL module XML::Simple is available.
Checking for Net::IP PERL module...
Found that PERL module Net::IP is available.

Setting up an OCS Inventory NG Management Server

[50]

It also checks for optional ones. These are not necessary unless the Simple Object
Access Protocol (SOAP) web service functionality is required. In a nutshell, SOAP
is an XML-based protocol that simplifies information exchange over HTTP. SOAP
opens up numerous doors for further extensions and easy data access through
third-party applications. We will learn more about this in Chapter 7, Integrating
OCS-NG with GLPI when we discuss extensions and plugins.

Checking for SOAP::Lite PERL module...

Found that PERL module SOAP::Lite is available.

Checking for XML::Entities PERL module...

Found that PERL module XML::Entities is available.

The real work behind the scenes of the script
Once this step is over, the installation script begins the real work, which is as follows:

•	 Configures Communication server Perl modules
•	 Checks if the kit is complete
•	 Writes the Makefile for Apache::Ocsinventory
•	 Prepares Communication server Perl modules
•	 Installs Communication server Perl modules
•	 Creates Communication server log directory
•	 Fixes file permissions on the log directory, configures log rotation
•	 Configures Apache web server

Chapter 2

[51]

The setup can ensure that mod_perl is loaded up before the OCS-NG
Communication server is launched. This requires some renaming, and
the user is asked for confirmation. Hit y for yes.

To ensure Apache loads mod_perl before OCS Inventory NG Communication
Server, Setup can name Communication Server Apache configuration file
'z-ocsinventory-server.conf' instead of 'ocsinventory-server.conf'.

Do you allow Setup renaming Communication Server Apache configuration
file

to 'z-ocsinventory-server.conf' ([y]/n) ?y

Setting up an OCS Inventory NG Management Server

[52]

Finally, the script arrives to the last component of the OCS-NG management
server suite. It asks you whether you desire to set up the Administration Server
(Web Administration Console) on the same machine. Unless you're looking for
a distributed setup, say y forYes.

Do you wish to setup Administration Server (Web Administration Console)

on this computer ([y]/n)?y

Another caution is thrown on the terminal screen. Ignore it if you are installing it
for the first time as we're doing now. Either way, the script verbosely explains the
situation and asks you what to do. If you are upgrading, you will know the tasks
to carry out.

Chapter 2

[53]

After we get past that caution, we are asked where to copy the Administration Server
static files.

Where to copy Administration Server static files for PHP Web Console

[/usr/share/ocsinventory-reports] ?

OK, using directory /usr/share/ocsinventory-reports to install static
files ;-)

Where to create writable/cache directories for deployement packages and

IPDiscover [/var/lib/ocsinventory-reports] ?

OK, writable/cache directory is /var/lib/ocsinventory-reports ;-)

Setting up an OCS Inventory NG Management Server

[54]

The script checks those necessary Perl modules again. We're skipping that part now.

Once they are alright, as a final step, it copies and fixes the permissions for the
new files.

Creating PHP directory /usr/share/ocsinventory-reports/ocsreports.

Copying PHP files to /usr/share/ocsinventory-reports/ocsreports.

Fixing permissions on directory /usr/share/ocsinventory-reports/
ocsreports.

Creating database configuration file /usr/share/ocsinventory-reports/
ocsreports/dbconfig.inc.php.

Creating IPDiscover directory /var/lib/ocsinventory-reports/ipd.

Fixing permissions on directory /var/lib/ocsinventory-reports/ipd.

Creating packages directory /var/lib/ocsinventory-reports/download.

Fixing permissions on directory /var/lib/ocsinventory-reports/download.

Configuring IPDISCOVER-UTIL Perl script.

Installing IPDISCOVER-UTIL Perl script.

Fixing permissions on IPDISCOVER-UTIL Perl script.

Writing Administration server configuration to file /etc/httpd/conf.d//
ocsinventory-reports.conf

Chapter 2

[55]

The installation script quits specifying where the log file was saved and stresses on
the fact that one should not forget to restart the Apache web server daemon. Before
doing that, you are advised to revise the config file as follows:

/etc/httpd/conf.d/ocsinventory-reports.conf

Setting up the OCS-NG management
server on Windows operating systems
Over the years, people from all walks of life got familiar with the Microsoft Windows
OS. The reason for that is simple; their focus lay on the standard definition of user
friendliness. No matter what the task to be carried out using Windows was, it
needed to be automated, wizard based, and intuitive with a beautiful user interface.

The same goes for software installations. We expect wizards and we expect to be able
to go through the stages of an application's setup just by clicking Next, accepting the
license agreement, filling out some text fields, browsing for the target location, and
eventually ticking some checkboxes identifying what we really need. However, this
last step is hidden under the name of advanced or expert mode. For the average user,
the typical configuration should suffice.

Regardless of the application type and what purpose it's going to serve, most people
would expect such an installation using Windows. Those expectations were instilled
into consumers. As such, developers are conforming to those desires. Right now,
we want to install OCS Inventory NG management server. As we know, it
requires the AMP stack (Apache web server, MySQL relational database system,
and PHP/Perl interpreters).

XAMPP for Windows, the warm-up stage
It should not surprise anyone that developers thought about finding integrated
solutions to provide seamless modalities to set up such an AMP suite. That is how
the XAMPP suite was born. It is an automated setup that sets up an AMP solution
stack and some other useful tools. It supports Windows 2000, Server 2003, XP (SP2
and SP3), Server 2008, as well as Vista and Windows 7. Besides, it's also available
for Linux, Solaris, and OS X.

The latest version of XAMPP for Windows at the time of writing is 1.7.2. It was
tested and it indeed is fully functional on Windows 7. Should you encounter
problems while installing one of the XAMPP versions, then please head over
to the support forums. The project is fairly well documented, and there's a little
dedicated English section within the forums.

Setting up an OCS Inventory NG Management Server

[56]

XAMPP 1.7.2 is a collection of the following software products:

•	 Apache 2.2.12 (IPv6 enabled) + OpenSSL 0.9.8k
•	 MySQL 5.1.37 + PBXT engine
•	 PHP 5.3.0
•	 phpMyAdmin 3.2.0.1
•	 Webalizer 2.21-02 + GeoIP lite
•	 FileZilla FTP Server 0.9.32
•	 msmtp 1.4.17

From these components, we need the first three. Unless we don't ever plan to run an
FTP server from this machine, installing Filezilla FTP Server is optional. The rest of
the tools may turn out useful.

We know what you're thinking about right now; in the beginning of this chapter,
we were mumbling about an integrated installation package that sets up everything
seamlessly. While that is true, it may not be the best decision after all. Let's demystify
the situation.

OCS-NG developers integrated the XAMPP package into their installation kit. This
gesture is to be appreciated as it helps most people to get the inventory server up and
running under Windows OS. The only drawback of the situation is that XAMPP is
more often updated than OCS-NG. Since that integrated setup suite was developed,
more than a few XAMPP versions were released. This does not mean that the older
version isn't enough to set up OCS-NG.

In the case of web servers and relational database systems, it is important to always
be on the bleeding edge by having up-to-date releases. We don't want to risk having
some uninvited guests from the dark side of wild-wild-web. The latest OCS-NG 1.02.1
setup incorporates the XAMPP 1.6.6a. It is a few releases behind the current stable
1.7.2 one.

Please visit the OCS-NG download section at the official web page:

http://www.ocsinventory-ng.org/index.php?page=downloads

Chapter 2

[57]

On downloading, if we go ahead and execute the setup, the following warning
pops up:

From the previous screenshot, we realize that indeed the setup comes with XAMPP
1.6.6a. In situations where the OCS-NG management server is not going to be
located in a DMZ (demilitarized zone), meaning out there on the Internet available
to everyone, this may not result in problems. The truth be told, this should never
happen. An inventorying system and asset management suite should only be
available on the intranet.

However, in the case of really large companies where the intranet gets wide enough
and different people have access to specific areas, the situation can get tricky again.
Most security flaws are thoroughly discussed, exposed (to the public), but fixed right
away. This means that if you stick with an older but vulnerable version, anyone can
exploit the said security hole; but if you update to the latest and patched release, the
problem is solved.

All in all, the decision is ours. We can go through the integrated setup and choose to
install XAMPP 1.6.6a along with the OCS-NG server, or we can download and install
the latest XAMPP version beforehand. Once XAMPP is up and running, we can set
up OCS Inventory NG server, and the installation wizard detects its presence and
won't pop up that warning message.

You can download the latest version of XAMPP for Windows from the following link:

http://www.apachefriends.org/en/xampp-windows.html

We recommend downloading the self-extract archive (.exe format), but either one
is alright. Once it's downloaded, we are asked where to unpack it. Let's give a
common path like:

%WINDIR%\%PROGRAMFILES%\xampp

Setting up an OCS Inventory NG Management Server

[58]

After the archive is unpacked, an automated script is executed. Our interaction
might be required, but the instructions are straightforward and the actions are
verbosely logged.

We can control the status of those services via the XAMPP control panel. That is also
the place from where we can administer those roles as well. Either way, if we can see
that Apache and MySQL are started and their status is OK ,we can install the OCS
Inventory NG server.

Warning: XAMPP 1.6.8-1.7.1—a known issue and
solution
There's one final warning regarding XAMPP 1.6.8 or higher version. There was a rather
unfinished migration from mod_perl 5.8 and 5.10 and they have forgotten to rebuild
the MySQL support for 5.10. This is further detailed in a forum post by dliroulet who
is an OCS-NG team member and developer. Check out the following post:

http://forums.ocsinventory-ng.org/viewtopic.php?id=4598

Should you experience problems with the XAMPP 1.7.2 version or higher, there
is a known solution. Some necessary Perl 5.10 modules need to be recompiled.
Fortunately, EBH (who is also a forum member) posted for us the recompiled
package in an archive. We just download and extract into the XAMPP folder!

We can download the updated modules from the following link:

http://oslinux.free.fr/xampp_1.7.1_perl510_update_modules_for_OCS_
inventoryNG1.02.1.zip

They are also mirrored at the following address:

http://www.primeranks.net/storage/ocsng/xampp_1.7.1_perl510_update_
modules_for_OCS_inventoryNG1.02.1.zip

You should not experience problems with XAMPP 1.7.2 and OCS-NG 1.02.1. However,
no matter what, you now know what can be done if such a situation occurs.

http://forums.ocsinventory-ng.org/viewtopic.php?id=4598
http://oslinux.free.fr/xampp_1.7.1_perl510_update_modules_for_OCS_inventoryNG1.02.1.zip

Chapter 2

[59]

Launching the OCS-NG integrated installation
Launching the setup wizard automatically detects the presence of Apache web
server along with the required Perl module. This way, it goes further, and the
warning message box will not pop up anymore. We click Next and then accept the
license agreement once we have gone through the text. After this, the window where
we need to choose our install type is displayed. The choices are double: either with
or without XAMPP Web Server.

Assuming we have installed XAMPP earlier, then the XAMPP Web Server component
will be unticked by default, and only the OCS Inventory NG Server will be chosen to
be installed. This kind of install is around 3.5 MB.

On the other hand, if you decided to remain with the integrated XAMPP 1.6.6a, then
the setup automatically checks that component as well. This latter situation can be
seen in the following screenshot:

Keep in the mind that you cannot even start the setup without XAMPP! So
that means that one way or another, you must install XAMPP earlier than the
OCS-NG server.

An integrated installation (XAMPP and OCS-NG server) takes up to 70 MB of disk
space. The setup is fast, regardless of whether we choose to install XAMPP or not
this time. Once this is done, the following link is opened in a new browser window:

http://localhost/ocsreports/install.php

This link is valid in situations where all four server components of OCS-NG were
installed on the same system. This means the installation has finished and there are
just a few steps left from having the full-fledged OCS-NG management server ready.

Setting up an OCS Inventory NG Management Server

[60]

The XAMPP status can be tracked from the Security section as well. This is the web
page through which we can administer the installed services.

http://localhost/xampp/index.php

As a final step, it is important to set the root password for MySQL.

http://localhost/security/xamppsecurity.php

A pragmatic look at initial configuration
Arriving at this stage means that we have installed the OCS-NG management server.
If we had chosen to install the server on Linux, then we would need to fire up our
favorite browser and visit the following link. On Windows installations, a new
browser is redirected to the following URL:

http://localhost/ocsreports/install.php

This is when we need to specify the MySQL database log in information for our
inventory solution. This is important as it must be able to communicate with the
database. The user must have the eligible rights to create databases and tables.
Under normal circumstances, this user is root. The password is the one we
specified earlier. Hostname is localhost, if the MySQL server runs on the
same machine as the OCS-NG server (like we did).

This step creates a new database called ocsweb, and a new MySQL user ocs with
password ocs. The database schema is created according to the specifications OCS-NG

Chapter 2

[61]

is able to work with. It is he user ocs through which our Communication server and
Administration server components can exchange information with each other.

Don't worry about security right now, we will discuss it in a later chapter. We
can find all of these located in the dbconfig.inc.php file. When we decide to use
another user or a password (most importantly) for that user, we will know which
file we need to fiddle with.

During this process, everything is verbosely logged as well. Pay attention to the
output presented on the web page. The necessary tasks should be carried out
without hassles. We are asked to fill in a TAG (if you choose to use that feature),
but let's ignore that for now.

As such, we're going to leave that field empty. It is quite annoying as a pop up will
appear on the very first run of every client agent later on. TAG can be used silently
as well. When we will discuss the TAG field, we will cover methods which can be
used to do this elegantly.

Once everything is done, we can log into the administration console by clicking on
the blue hyperlink that redirects our browser to http://localhost/ocsreports,
the initial username is admin with the password admin. We should change these
as soon as possible.

Enjoy the administration console. It's a place where you will spend a great deal
of time.

Setting up an OCS Inventory NG Management Server

[62]

Congratulations! This means that your OCS-NG server has been successfully installed.

Summary
In this chapter, we learnt how to set up the OCS-NG management server. At first,
we examined the architectural requirements of the server. We understood how the
central management server is composed out of four components: communication
server, database server, deployment server, and administration console.

The management server can be installed on Linux distributions and Microsoft
Windows operating systems. We were required to get into package management
systems and learn how to deal with packages and dependencies. This is usually
tricky, and unfortunately, some people have had their share of bad experience
equivalent to dependency hell.

Once we got to know some of the most popular package management systems,
we could then set up the required AMP stack solution rather easily. This web
server served as the foundation of the OCS-NG server.

Enthusiastically, as we were fulfilling the prerequisite checks, we moved on
to install the OCS-NG management server. We have looked into two possible
modalities on how to do this on Linux and one integrated solution to do this
on Windows. We made sure that regardless of our chosen platform, the server
got up and running with flying colors.

Now that we have finally put together our OCS-NG management server, it's time
to get familiar with agent deployment. Agents will fill our inventory with useful
data. After all, that is what inventorying is about—retrieving and storing data.
By now, we have a centralized place to store data. Let's move on to learn how
to deploy clients to gather data.

The Zen of Agent
Deployment

So far, we have set up the OCS Inventory NG central management server, but its
database is lacking in content. The database without information is just as worthless
as a deserted factory without employees and work to do. Agents will be serving
the purpose of gathering inventory data, and then providing them to the OCS-NG
management server.

In this chapter, our sole focus will be on agents. Thanks to the rather diversified
operating system compatibility range, we have numerous scenarios to look into.
There are also more than a few techniques to get these agents on the client machines.
It is important to realize the key differences in order to make the right decision that
best fits the situation.

Throughout this chapter, we will learn how to accomplish the following tasks:

•	 Rationalize what happens behind the scenes of agents
•	 Understand the differences between agent types
•	 Find out about the deployment modalities on various operating systems
•	 Decide the right agent type and deployment modality for your configuration
•	 Acquire step-by-step information on carrying out those deployment methods
•	 Comprehend the know-how of getting agents up and running not only on

Windows, Linux, and Mac OS X client machines, but also on mobile devices

The Zen of Agent Deployment

[64]

Behind the scenes: How agents earn
their living
The inventory software that runs on client machines is not called an agent
just by pure coincidence. If we look up the definition of the noun 'agent',
we end up with something like this: a representative who acts on behalf
of other persons or organizations.

No doubt, the inventory agent fulfils that status quo. The organization for which
the agent works is the central management server. Their work is clearly defined;
they gather information, and send them back to the central server. They can also
act as spies on identifying other hosts that are not inventoried. Network discovery
is covered in Chapter 5, Investigating the Process of Gathering Inventory Data.

Besides these tasks, the agent also serves as a key position with regards to package
deployment. When this situation occurs, the agent can ask for the file information from
the deployment server, request the package, and prepare it for deployment execution.

We have enumerated the tasks of agents in terms of priority. The first and foremost
task is sending in the inventory data, if it is required to do so. The task of identifying
hosts that are not scanned from the network is the second most useful. It enhances
network detection and reduces the bandwidth usage by adding distributed scanning
into the mix. The server would otherwise be overwhelmed to scan the entire network,
all by itself.

Package deployment is an optional feature of the OCS-NG inventory. In those
configurations, where this functionality is not required, agents are not required
to execute this task.

In situations that are networked, there is some kind of connectivity between the
agents and the central management server; the agents always initiate the contact first.
We can imagine this as the agent initiating the communication. This way, we do not
need to open a port on the firewall and neither set up port forwarding. If browsing
works, then this works too.

Communications happens through the HTTP and HTTPS protocols. On client
machines, when the executables are monitored for outgoing traffic (by some kind of
firewall), we might need to allow traffic to go back and forth from the OCS inventory
agent file.

After the agent contacts the central management server, it replies with the task(s) to
do, just like the big boss of an organization for which the agent is secretly working
for. There are situations when there's nothing to do for the agent, and in these
cases, the central server does not assign any of the tasks. This means that there is no
mission available.

Chapter 3

[65]

The agent always maintains an up-to-date inventory stored in an XML format.
This is stored locally. After each communication query is initiated by the agent, the
management server checks whether the inventory stored of that client is out of date
or not. This is specified with the frequency value and a server-side variable on the
OCS-NG server.

The value is specified in days, and it is used to determine how old the inventory is.
We will learn about it in the next chapter. The deal is that once the last inventory
date gets older than this value, the task of sending in the new inventory data is
assigned to the client agent. Once received, the mission is carried out right away
and the new inventory is sent in. The other tasks (network discovery and package
deployment) are assigned in the same fashion.

There are exceptions to every situation. Inventorying is also possible on those
machines that are not connected to the network where the OCS-NG server lies. For
example, the client machines might be offline or might initiate a connection on user
request. These require offline inventory mechanisms. The agent works in the same
way. It gathers and stores the data locally. On hosts, that are not networked, it just
won't be able to send them into the server.

In these situations, we need to manually transfer the inventory file (.OCS extension)
to the central management server, and then manually import the file via the
administration console.

Choosing the best agent type
In most production environments and organizations in the past decade, there were
numerous Microsoft Windows-based operating systems. In order to satisfy the
multitude of requirements, there are two possible agent types when it comes to
Windows agents. The most recommended agent is the service type. This stands for
installing the agent as a standard Windows service. As such, it is executed on each
startup like the other services.

Another possibility is opting for the standalone agent type. This solution is
best fit for those scenarios where the client machine is not networked, and it is not
supposed to contact and provide the central management server with the gathered
inventory. It may rarely happen that due to some side company regulations, we are
not allowed to install more services. The same situation applies to laptops that are in
the field the majority of the time. In these cases, opting for this kind of agent is
our only solution.

The Zen of Agent Deployment

[66]

The standalone agent gathers and saves the inventory locally. The exported results
can then be imported. Should we require an update to the database, we need to
execute again the standalone agent on the said computer so that it refreshes the
inventory, and then we'll head over to import again. This can also be scheduled
and automated. We're going to discuss this in detail in a later chapter when we
get into inventorying client hosts that are not networked.

In short, unless the host is not able to network or strict company policies are
restricting the installation of new Windows service, we should always choose
the first route.

Setting up the agent as a service has many benefits:

•	 Hosts are inventoried even when users are not logged in. Should
the employee be on vacation, the machine is still inventoried on a
predefined basis.

•	 Package deployment functionality is possible. It happens in the background,
and it will not require user interaction. The employee can work seamlessly.

By default, the service is installed to be launched under the LocalSystem account.

Demystifying the LocalSystem account of
Windows OS
Years ago, most system level services were run under the LocalSystem account. It
was the only account that provided such privileges. It was the most powerful as
well. Later on, Microsoft implemented two derivates of the almighty System account:
LocalService and NetworkService. Depending on their needs, services are now run
under either of these. The OCS-NG client agent has remained under the almighty
LocalSystem account.

These accounts are all predefined local accounts. LocalSystem is the only account
that can access the security database located at HKLM\Security inside the Windows
registry. Other than these, it has unrestricted access to local resources. It has enough
privileges to bring down a system to its knees (or worse), if the server is a harmful one.

LocalService and NetworkService are limited privileges accounts. The latter provides
more security by protecting local resources, but it won't protect remote ones. Services
logged in under the NetworkService account are authenticated using the computer's
account within the domain. In this way, if they try to access remote shares, the
policy that determines this eligibility is determined on the system that initiates
the connection.

Chapter 3

[67]

In case of LocalService accounts, the services are authenticated as no one—technically,
it is a kind of anonymous connection. Should the same service running under
LocalService want to access remote shares, the requests are only allowed if the shares
are available to everyone. As you can see, the LocalService makes it tougher to take
over remote clients.

For more information regarding how to tighten down these security
permissions, please refer to the following Microsoft documentation. It
is a comprehensive guide on how services are working, how to strip
their privileges from the token, and so on. Refer to the document titled
Services and Service Accounts Security Planning Guide at:
http://technet.microsoft.com/en-us/library/cc170953.aspx

As mentioned earlier, the OCS-NG agent is set under the powerful SYSTEM account.
One side of the coin is that it won't struggle to gather the necessary inventory data
and it gets its job done. However, if we are security conscious and we want to tighten
down these permissions, we need to follow the previously mentioned Microsoft's
planning guide.

In a robust environment, which is otherwise firewalled, protected, and monitored
against miscellaneous behavior, the chances are really slim (close to none) that the
OCS-NG agent will be exploited in order to access some unrestricted network
resource. Thus, we do not consider this as a priority at all. It is just food for thought.
It does not mean that leaving the service under that account will open a dangerous
security hole.

The real deal is to know how to deal with SYSTEM accounts, like in the case
of unknown services, things can get messy fast. That was the reason why we
demystified them. In our case now, the OCS-NG agent is popular, and under
no means has malicious attempts.

Another option is to create a special log on account for service, if used within a
domain environment. Neither of these is the best option that universally applies to
every kind of situation. Ultimately, it depends on the environment, and these are all
options. We need to make the best use of each of these options, read that Microsoft
guide on security planning regarding services and design the best approach. In the
end, it's always up to us to tighten our security.

The Zen of Agent Deployment

[68]

Choosing the best deployment method
As always, we are given different methods to deploy the agents. We know that in
the case of large environments, we long for remote and unattended solutions. No
one can expect us to run through offices, and press the same buttons on every
machine in order to install a certain application. That would be funny, imagine
the system administrators skating through halls and departments on rollerblades.
All jokes aside, point taken!

Then there are those situations where there are just a few computers to be managed,
and asking for outstanding remote deployment solutions is just silly. The entire
process of understanding, setting up, and getting around such a deployment method
would be more time consuming than just doing it through a brute-force search.

Therefore, we are given more than a few options in this case too. We can install
the OCS-NG agent manually. We can do the manual install on either the service
version or the standalone type as well. This requires user interaction. On Windows
machines, this means going through the steps of the installation wizard using the
de facto standard: Next, Agree, Next, Next, Install, Finish style.

Then, we have the more interesting remote deployment methods. One of the ways
is to use the Active Directory Group Policy Objects (GPOs), and set up a new policy
or edit an existing one. What we want to accomplish is to find the appropriate policy's
Script section. Soon, we will find out how to include the script here. Depending on the
type of policy, the script is going to be executed either on the start of a computer or
when the user logs in.

The other modality is pushing the deployment via login scripts. Yes, this is a slight
variation to the technique just mentioned, which works best if the computer startup
policy is used (this way it does not require a user to log in).You can set up login
scripts via Active Directory GPOs too, but right now we're discussing session login
scripts. These require the user to log in. We set these up on the domain controller.
We'll see how we do this later on.

A final solution, considering remote deployment is to opt for third-party tools.
The first thought that comes to mind for most system administrators is PsExec
of PsTools. On the right section, we will see how to use this third-party tool to
execute remote commands.

There are also a few best practices when using these methods. How can we know
whether the agent would be set up or not? We create some sort of feedback files,
or we push the scripts via PsExec during business hours on all computers that are
currently online. We monitor the output and will know all the computers that are
offline. Then, we can use either of the previously mentioned methods (computer
startup scripts or login scripts) to set up the agent.

Chapter 3

[69]

There is no best solution to how to set up the agent. It depends on our particular
setup. If we have just a handful of computers, we might opt for the manual
installation. The wizard has just a few steps, it's light weight and really fast.
In the case of populated environments, we can opt for remote solutions.
Otherwise, the process is time consuming.

It is a matter of preference which method we opt for. If you have a domain, you can
use domain login scripts or computer startup scripts. It's also quite handy to use
a combination of all of the methods.

We will now look into each of the solutions in greater detail.

Deploying agents on Windows operating
systems
The first step, when we want to install an application is to download the latest
version. We head over to the official OCS Inventory NG website and locate the latest
Win32 agent binaries in the archived format in the Download section. At the time
of writing, the latest final version of the agent is 1.02, also known as internal version
4.0.5.4.

The archive is named in the following way: OCSNG_WINDOWS_AGENT_1.02.zip,
where the last digits stand for the version number. Its size is around 2.5MB. Once it
is downloaded and extracted, we find the following files:

•	 ocsagent.exe: Installs the standalone agent
•	 OcsAgentSetup.exe: Launches the installation wizard (service type)
•	 OcsLogon.exe: Downloads the binaries from the communication server, or

if it's already installed, the agent is launched again (it can install both types)
•	 Changelog: Contains the change log of the latest modifications
•	 LICENSE.txt: The GPL v2 License

There are various command-line arguments that are supported, which are discussed
in the next section.

The Zen of Agent Deployment

[70]

Getting familiar with command-line
arguments
At first, we have the OcsAgentSetup.exe. It's the installation wizard. Under
normal circumstances, we just follow the installation steps, and the agent is set
up seamlessly. However, we can use one or more of the following wizard-specific
argument switches:

•	 /S: This option is used to execute silent mode as this disables user interaction.
•	 /UPGRADE: This option upgrades the service agent (if an upgrade is needed).
•	 /NOSPLASH: This option disables the splash screen.
•	 /NoOcs_ContactLnk: This option eliminates the Ocs-Contact link from the

Start menu.
•	 /D=path: This option is used to specify a custom install folder, quotes are

not supported

	° Warning: This must be the last parameter (if using more
than one).

At this point, do not worry if some of the command-line switches
seem confusing. We're listing all of them for future reference.
As progress is made, each one of them will be debunked and
discussed in detail.

Besides the aforementioned switches, all of the command-line switches of the agent
are also supported, which are listed as follows:

•	 /server:name_of_ocs_server: Specifies the name of the OCS management
server.

•	 /np: No proxy, disables the proxies defined in the Internet Explorer settings.
•	 /pnum:XX: Here XX is the port number via which HTTP communication is

possible and the web server can be contacted. In the case of caching proxies
(that is Squid) that could be 3128 or other proxies on 8080.

	° By default, port 80 is used (use this option to specify
other ports).

•	 /local: This option executes the agent in the local inventory mode. It gathers
and saves the inventory data in a [hostname].ocs format in the agent folder.

	° The results are stored in a compressed XML format.

Chapter 3

[71]

	° The agent does not try to contact the OCS-NG communication
server.

•	 /file: This saves everything just like using the /local tag, but it contacts
the communication server. This one is useful when we need the file for
future use.

•	 /xml: Just like the previous one, it creates a file but in a non-compressed
XML format.

	° If used in conjunction with /local, the agent won't contact
the server.

	° If used without the /local tag, the agent contacts the
communication server.

•	 /nosoftware: When this option is used, the agent will not report the
installed software.

•	 /notag: When this option is used, the agent will not require the TAG value.
•	 /tag:my_tag: Here my_tag stands for the custom-specified TAG value.
•	 /hkcu: The agent looks into the HKCU registry hive for installed software.
•	 /debug: A useful command which enables logging. A file called

[hostname].log will be created.
•	 /force: When this option is used, the agent will be forced to send in the

inventory data.
	° This is required when the database needs to be updated

right away, and we cannot allow waiting for the frequency
countdown again.

•	 /uid: When this option is used, the agent generates a new user ID.
•	 /dmi: When a computer serial number cannot be retrieved through WMI,

the agent will opt for using DMI tables via the BiosInfo.exe tool.
•	 /biosfunc: Just like the previous switch, but it forces the agent to use

BIOS functions
•	 /conf:configfile: Here configfile specifies the configuration file.

	° By default, the Ocsinventory.dat is taken as the
configuration file.

•	 /test: This argument tests the HTTP connection.
	° It is meant to be used in correlation with /debug, /np, or

/pnum.

	° If all goes well, an ok.ok file is created in the agent's
directory.

The Zen of Agent Deployment

[72]

•	 /fastip: In this way, the agent checks only five IPs if elected by the server as
the IPDISCOVER host. This tag should never be used for production use.

•	 /ipdisc:X: This mode forces the agent to run the IpDiscover feature on the
network number X, but only if the server asks for an inventory.

	° To ensure that it is going to be executed, it needs to be used
with the /force tag. In this way, the agent will contact the
server and perform the aforementioned steps.

In addition to the already extensive list of command-line switches, we need
to add a few more command-line switches, which can be used with the
OcsLogon.exe launcher:

•	 /DEPLOY:XXXX: This switch specifies the agent version number
•	 /INSTALL: This one picks the service agent type instead of the standalone
•	 /PATH:path: This option specifies the installation path

Manual installation strategies
Both agent types can be installed manually. The setup wizard installs the
service type.

In the beginning of this chapter, we were given a hint of what to expect. The manual
installation sports a standard Windows installation wizard. Of course, you can
opt for command-line switches in order to enable its silent mode, but let's not get
ahead of ourselves. Assuming we have downloaded and unpacked the latest stable
version of the OCS-NG agent for Win32 operating systems, we then execute the
OcsAgentSetup.exe file.

The following screenshot shows the first screen of the setup wizard.

Chapter 3

[73]

The next screen should not surprise anyone. The license agreement will be displayed
inside that textbox. In our case, the license is the GPL v2.

After accepting the license, the next screen finally shows some options.

The first field to fill in is the Server Address of the OCS-NG management server. The
second field, that is, Server Port, requires the HTTP port through which it can be
accessed. The checkboxes stand for those command-line switch arguments we enlisted
earlier. Then, there's an entire field left for Miscellaneous arguments.

The Zen of Agent Deployment

[74]

In the example mentioned, we have selected the Enable log file, Immediately launch
inventory, the No OCS_Contact shortcut link, and added the /NOSPLASH tag.
The OCS_Contact shortcut is a shortcut that appears in the Windows start menu.
It points to %PATH%\Ocs_contact.exe /S and has the following shortcut icon. It is
a harmless shortcut, but some people might not like it due to the presence of a new
application on their machine. On an enterprise level, silence is required. The
OCS_contact shortcut can be seen in the following screenshot:

Now that we have configured the agent according to our needs, we can click Next.
The wizard proceeds to ask us for the destination path. Here we either browse to
specify a custom path or just hit Enter by moving forward—leaving the default
%ProgramFiles%\OCS Inventory Agent folder. The size of the fully-installed
agent is 3.40 MB.

Once the wizard has finished the installation, you can check whether the service
was installed. Here's one way we can check this. Go to Start | Run | services.msc,
browse through the list of services, and find OCS INVENTORY SERVICE. Its
Description is OCS Inventory NG Service: Automatic inventory and software
deployment system. If all went well, it should already be Started (at the Service
status). Its Startup type is set to Automatic.

Chapter 3

[75]

Should we examine the Properties of the service, we will see a screen similar to the
following screenshot:

We have selected the Immediately launch inventory checkbox during the setup,
so this means that, by now, our system should be inventoried and the management
server has provided us with the gathered data. We can check the [hostname].
logfile located inside the agent's directory. All of the tasks carried out are
verbosely logged and are self-explanatory.

Should we want to execute an unattended installation of the wizard, we will use
the silent command-line argument (/s). Everything will go smoothly as long as
we specify all of the other necessary parameters (like server name, port number,
no proxies if need be, and so on).

OcsAgentSetup.exe /s /server:name_of_OCS_server /pnum:80 /np /now /
debug

Nevertheless, if we want to install the standalone agent, then we are going to use
the other manual deployment solution. We will execute the OcsAgent.exe
executable along with the /local argument. The setup will try to install the agent
to the C:\ocs-ng directory. If it does not have sufficient privileges, then it tries to
install the agent in the temporary folder of the user, under which it is executed.
Thus, it is advised to launch it with administrative rights.

The setup of the standalone agent will ask where to store the exported inventory
results. When we are launching for the first time, the wizard will ask us to specify
the TAG. Unless we want to use TAG-based categorization, we can leave this field
empty. Chapter 4, Finding your Way through OCS-NG Features will look into TAG
repartition. Now, let's leave it blank just for testing.

The Zen of Agent Deployment

[76]

The standalone agent can be rerun later on using the Ocsinventory.exe /local
execution. This means that we can set up a schedule or make an unattended script
for those machines that are not networked, and on which the standalone agent is the
only solution. Then, we will refresh the inventory after a certain period of time, and
manually import the result files.

Using OcsLogon.exe to deploy via GPO or
login scripts
In order to understand how this remote agent deployment solution works, we first
need to explain what OcsLogon.exe is about. It is a launcher tool. It is basically
designed to work inside login scripts and Active Directory Group Policy Objects
(GPOs). Once executed on a client machine, it checks whether the agent is installed or
not. If not, it then proceeds to install the agent. Otherwise, the agent is just launched.

The launcher downloads the latest binaries from the communication server if it finds
out that the agent is not installed on the client machine. The launcher can set up both
agent types. The only way to differentiate between these is by using the /install
command-line switch. By doing so, we are opting for the service type agent. On the
contrary, the standalone agent is set up.

The way it contacts the communication server is described here. At first, it is assumed
that we should have the ocsinventory-ng DNS name defined in our DNS server.
That hostname should point to our OCS-NG central management server (also the
communication server, or tune it appropriately in case of distributed configurations).

There is another solution to provide the path to the communication server if we do not
plan to add that DNS name within our scopes. The OcsLogon.exe executable can be
renamed so that its filename (excluding the .exe extension) points to the OCS server. It
can either be called as the server's correct hostname if it appears inside DNS and can be
resolved appropriately or by simply using the IP address. Here are a few examples:

•	 ocs-server.mydomain.co.uk.exe

	° The ocs-server.mydomain.co.uk points to your OCS server

•	 10.10.10.05.exe

	° In this case, the 10.10.10.05 is the IP address of the
OCS server

As you can see, the launcher will strip off the .exe executable part and consider the
rest as the path to the server. Therefore, let's not forget to name this file accordingly,
if we cannot set up the DNS ocsinventory-ng to point to our OCS server, and, of
course, if we plan to use the launcher to remotely deploy the agent on client machines.

Chapter 3

[77]

Memory refresher: The OcsLogon.exe launcher supports all of the
command-line switches we mentioned earlier. Please go back a few
pages, when in doubt.

Now that we know how the OcsLogon.exe launcher works, let's find out how the
dedicated agent packager works. Right after that, we need to discuss the preliminary
steps of getting the agent uploaded on the communication server. This can be
done via the administration console. Either kind of service type can be installed
as command-line switches are supported. It all depends on the agent package you
prepare for deployment.

Using the packager to create the deployable agent
The development team behind OCS-NG created a so-called OCS Inventory NG
Packager utility. This tool works together with the Windows service internals and
is able to register anything as a service, even without administrator privileges. The
admin account is specified prior to creating the package. The installer will run under
that account. It was designed to package the OcsLogin.exe launcher according to
your agent preference.

Once the package is installed, it's called OcsPackage.exe, and it means that we
can hook it up on the OCS-NG communication server. The final step is deploying
the package.

Let's not get ahead of ourselves now. We can download the packager from the same
OCS NG repository on SourceForge. Check the following URL:

http://sourceforge.net/projects/ocsinventory/files/OCS%20Inventory%20NG

The latest packager at the time of writing is the 1.02. Download and extract it.

Inside we will find only one executable. Its interface is straightforward.

The Zen of Agent Deployment

[78]

The Exe file is going to be the OcsAgentSetup.exe. We discussed its command-line
switches, and we know that it is much more than just a GUI installation wizard. It
can be scripted, run in silent mode, with specific commands, and thus, it's exactly
what we need.

We can use SSL certificates to check the server prior deployment. This means
that clients are given certificates which can act as fingerprints to authenticate the
deployment server. This is critical as package deployment and remote command
execution is practically an open door for exploits and malicious undertakings. In this
way, we can always be sure that the source server of packages is not compromised.
Clients can test this themselves.

Finally, the last step, which is the most important one, is that we need to specify the
account through which the installer runs. In the case of a domain, this account must
have administrative privileges on the local machine to install new services and copy
files. As such, it's recommended to create a special account dedicated to this task that
has the necessary privileges.

Using the domain admin account is dangerous, but it works (please refer to the
Microsoft service security planning guide linked earlier in this chapter). It depends
on how the overall security is tightened and monitored. It can be any other account
with local administrative rights. The same applies in the case of workstations.

The next window asks for the destination where the packaged end result is placed.

Getting the agent package on the OCS-NG server
The OcsPackage.exe needs to be uploaded on the OCS-NG server. We're going to
do this by logging into the administration console. Keep in mind that this time, we
won't get into each and every functionality that lies there because that is what the
next chapter will cover. Right now we are taking an action-oriented approach.

We point our browser to the OCS-NG administration console interface's URL:

http://ocsinventory-ng/ocsreports

In the previous path, ocsinventory-ng stands for the OCS-NG server name. If we
haven't changed our admin user and password yet, then we log in with admin and
admin. On the Users toolbar, we can find the predefined users, edit them, and set up
new ones. Once we are in, we will navigate to the agent toolbar, it's the fourth icon
on the right (the longest) toolbar. It looks like two gears working.

Chapter 3

[79]

Alright, now we're already seeing the path to the source of the package we just
created. On uploading the OcsPackage.exe, the agent is practically ready to be
deployed.This means that the OCS-NG communication server can serve the
requests of agents. Deployment happens in the following fashion:

•	 OcsLauncher.exe is executed on the client computer
	° It's the launcher we mentioned earlier

•	 It requests the OcsPackage.exe (the agent) from the communication server
•	 Once downloaded, the OcsPackage.exe is executed

	° It logs into the specified account and runs the agent installer

As you can see, the OCS-NG Packager can be used to install and set up other files
as well. The OcsLauncher.exe just checks whether an agent exists on the client
machine. If it finds it installed, it executes it. If no agent can be found, it proceeds
to request one from the OCS-NG server, and depending on the specified flags it
sets up either of the agent types.

It downloads the entire OcsPackage.exe just as it was uploaded on the OCS-NG
server. Therefore, if we want to build in more files, then we can use the Packager's
Select Additional Files option to add them. In this way, once it logs into the specified
account, along with the OcsAgentSetup.exe, the other files are downloaded to the
client machine.

We can also remotely execute Visual Basic script files (.vbs). We add the
Cscript.exe path to the Exe file. Add our .vbs script via the Select Additional
Files option, and finally write script.vbs /B in the command-line options.

Deployment via Active Directory GPOs
It is beyond the scope of this book to explain what Active Directory is about or
what group policies are about. As such, we will assume the following; if we want
to use these deployment methodologies, we can deduce that we have some kind of
familiarity with these Microsoft administration technologies.

If you are managing such a tiny environment that these concepts are unknown
to you, but still want to get your feet wet with remote agent deployment, then
we wholeheartedly recommend the PsExec solution that's going to be covered
in the following pages.

Here we're going to create a login script and enforce it via group policies.

The Zen of Agent Deployment

[80]

Now that we're past the general assumptions, let's launch the Active Directory Users
and Computers MMC snap-in. Start | Run| dsa.msc. Find your Active Directory
domain or organizational unit that you are managing. For the sake of keeping things
simple and uniform, let's call our domain mydomain.com. Once you selected your
domain, right-click and select Properties.

Out of those tabs, let's navigate to the Group Policy tab. There we can find our policies
(if there are any). We can either edit an existing one or create a new one. Whichever
option we pick, there are two main categories, namely, computer policies and user
policies. The former is computer specific, and in our case, they are executed when
the computer starts up. The latter is user specific, and requires some user to log in.

Nowadays, there is a new MMC snap-in called gpmc.msc—Group Policy
Management. This tool is installed by default on Windows Server 2008 operating
systems but not on Windows 2003 or earlier. This snap-in gives us a slightly
more advanced interface. It lists the forest, inside which we can pick our domain
mydomain.com.

Here we are going to find our organization units and Group Policy Objects. When
we expand the GPO field by clicking on the '-' (minus), all of our policies will be
displayed (if there are any). We can also monitor which ones are enforced, which are
linked, and so on. This is also the place of security filtering, such as deciding whether
the policy applies to specific users, groups, or computers. Under most circumstances,
this is Authenticated Users.

Chapter 3

[81]

Without trying to sound like an Active Directory tutorial, let's focus on how to edit
such a policy with this new GPMC snap-in. Right-click on one of the existing policies
or create a new one. The Group Policy Management Editor will pop up as a new
window. From this point onwards, everything remains the same. We have computer
and user policies too.

Scripts that are inside computer policies are called Startup and Shutdown scripts.
These are executed on computer startup and shutdown. What matters to us right
now is the startup category. That's where we should place the inventory agent.

The scripts that are inside user policies are called Logon and Logoff scripts. The
reason for that is self-explanatory, these are executed when a user either logs in or
logs off. The agent can be deployed this way too, though in most situations it's not
an ideal option.

The following screenshot gives us a sense of where to find these scripts inside
the GPO:

Now, let's right-click on the Scripts (Startup/Shutdown) right inside the Windows
Settings tree. We pick Startup and select Properties. A new window will be displayed,
and we can see our already existing startup scripts (if there are any). Before we head
over to add a new script, click on the Show Files button. It will bring up an Explorer
window showing the destination where these scripts are located.

The Zen of Agent Deployment

[82]

This is where we are going to copy our OcsLogon.exe launcher. Let's not forget
that there are situations when this file gets renamed. If that's the case, then copy the
renamed launcher. Once the file is stored there, you can click on Add on the Startup
Scripts window. This will bring up a new window where you can specify the path
of the new script. As we just copied there, you can easily specify this.

The command-line arguments can be added to the special parameters field. These are
additionally added at the end of the launcher, just like if it were done manually. This
means that if we want to install the service type agent, now is the time to specify the
/install command-line switch. Also add the /S, /DEBUG, and other parameters.

The following screenshot shows a simplified version of the tasks that were mentioned:

Should we opt for the login scripts instead of startup scripts, it can be done in a similar
fashion. Instead of messing with computer policies, we fiddle with user policies.

Keep in mind that deploying scripts via Active Directory GPOs is not the only solution.

Initiating deployment with OcsLogon.exe via login
script
At first glance, these two solutions are similar. The previous modality was based
on policies. This meant we could enforce different policies on Organizational
Units(OUs) based on whatever criteria we wanted. This has given us flexibility,
which is necessary in specific cases, but there are those situations when we don't
want to use group policies. For example, if we have just one domain, and we're
looking for a solution to deploy the agents based on users.

Chapter 3

[83]

This time, we want to set up a session login script across our domain.

The first step is to copy the OcsLogon.exe launcher to a place on the network that is
going to be readable by everyone from the domain. It's advised to set up that location
as shared to Authenticated Users. The script that we're going to create will download
the launcher from this path. That's why it is critical to be available (readable).

The script can be either a traditional batch file or vbscript. What we want to
do is quite trivial. We want to execute the launcher from that path using a few
command-line switches.

Here's an example where the renamed launcher is on file-serv at the
ocsagent-kit folder:

\\file-serv\ocsagent-kit\10.10.10.05.exe /debug /np /install /s

This line can be thrown into a batch script, with an @echo off in the first line in order
to prevent echoing on the display. In this way, no output will be presented, just a
flashing command/terminal box at most. The extension must be .bat as expected.

Once the script is done, the next step is to copy into our primary domain
controller's scripts folder. This is along the lines of the c:\windows\sysvol\
sysvol\<mydomain.com>\scripts path.

Now, fire up the Active Directory Users and Computers MMC snap-in (dsa.msc). Find
your users within the domain tree, and then link the scripts to each of them. We can
do this by clicking Properties, and then we have the following alternatives. We either
set it up as a User Profile | Logon Script: [specify the path] using Browse, or at the
Environment tab, we check the box Start the following program at logon and add
our script.

As you can see, this modality is much more recommended when there are just a
handful of users. We pick those users, set the agent up as a login script, and we
are done with it. We can add the creation of response files, such as create ok.txt
on some predetermined folder. The script checks whether this ok.txt exists, and
if yes, then the agent is already installed, and it is not executed anymore. You can
also check this manually.

Command execution, via scripts, opens up lots of doors. In corporate environments,
usually there are login and logoff scripts, and users are categorized into different
organizational units. We might also have dozens of groups, but it's not that hard
to decide which options are better. The best practice is to use a combination of the
previously mentioned solutions. Furthermore, we can mix in a little bit of PsExec.
This is what we're going to cover right now.

The Zen of Agent Deployment

[84]

Unattended installation via the PsExec.exe
tool
Chances are that we cannot find a system administrator that has managed
a predominantly Windows-based environment and hasn't heard about the
PsTools suite. This collection of command-line tools is useful to get most of the
administrative tasks done. It was originally developed by a Sysinternals, but then
it was taken over by Microsoft. Check out the suite's page at:

http://technet.microsoft.com/en-us/sysinternals/bb896649.aspx

PsExec is one component of the PsTools package. It's a telnet-like replacement that
was specifically designed for remote execution of processes on client computers. It
allows full interaction with applications. We can literally launch any command on a
remote system, while having the output displayed on our screen. That is, if we have
sufficient privileges.

We can download the entire PsTools suite directly from the following URL:

http://download.sysinternals.com/Files/PsTools.zip

It does not require an installation on client machines. We simply download, extract,
and fire up a command prompt under administrative privileges, and find the path
where we unpacked PsTools. Launch PsExec, and a descriptive help is printed out.
Examine its command-line switches. Then decide the kind of deployment you're
looking for.

A few examples of how to perform specific deployments are given as follows:

•	 Sweep through the domain and deploy the agent on already logged on hosts:
PsExec.exe * –s \\file-serv\ocsagent-kit\OcsLauncher.exe /debug
/np /install /s

•	 Install the agent on a specific computer:
PsExec.exe \\Sarah-PC –s \\file-serv\ocsagent-kit\OcsLauncher.exe
/install /s

•	 Deploy the agent on a list of computers by using a text file to specify them:

PsExec.exe @hosts.txt –s –u mydomain\domainadmin \\file-serv\
ocsagent-kit\OcsLauncher.exe /debug /np /install /s

The previous command will ask for the domain admin password. Nothing will appear,
and you will need to type in the password and hit Enter. The hosts.txt should be on
the same folder from where you are executing the PsExec. This file is an ordinary text
file where each computer name appears on a separate new line.

Chapter 3

[85]

We can think of various other scenarios. We can log the output into a text file,
should we somehow not be able to monitor the output. We can do this by adding
the > log.txt at the end of the PsExec command. This copies all the output into
the text file. Keep in mind that by doing so, we will prohibit the printing of any
output on the display as well.

In the previous section, Unattended installation via PsExec.exe tool, we mentioned a little
about the best practices in deployment. Let's say we launch the remote execution of the
agent installation during business hours on all of the already logged in users. We will
create a response file, monitor the output, and find out the hosts that were offline.

We can also opt to create a text file that contains all of the hosts within our domain
(list all hosts into a text file), and then run the command on the file. The results can be
printed into a logfile using the > operator. In this way, we will know which computers
were skipped. These were, presumably, unavailable. Alright, so what's next?

We set up a logon script via AD GPOs or session login script for those users sitting
beside those hosts. The said script should create a feedback that we can monitor later
on in order to decide what happened.

Finally, we can also opt to use PsExec's targeted deployment on those specific hosts
that were skipped until this point. There are lots of other alternatives as well.

Deploying agents on Linux operating
systems
Installing the agent on Linux operating systems can be done locally. Should we have
an already implemented remote execution solution on those machines, we can use
them. Either way, if we are performing the installation locally, we also have two
possibilities. We have an interactive setup and an automated and unattended setup
without user interaction.

The chances are that we can find ocsinventory-agent in our distribution's software
repository. If we prefer that the installation be lead by the software package manager,
then we can first verify whether the agent exists, and if so, what kind of version it is.

By now, we should be familiar with our distribution's package manager:

•	 Installing OCS Inventory NG agent with YUM:
yum install ocsinventory-agent

•	 Installing OCS Inventory NG Agent with APT-GET:
apt-get install ocsinventory-agent

The Zen of Agent Deployment

[86]

If we cannot find the ocsinventory-agent package, we can try ocsinventory-client.

There is no real advantage of this modality other than keeping our software repo
consistent. The manual installation shell is script-based such that it automatically
checks the prerequisite modules. If some are not found, it is able to set them up.

The only drawback is that if the modules are found in an older version than the
minimum requirement. In this scenario, the setup cannot upgrade, but this situation
is unlikely to happen in this day and age. These bare minimum dependencies are
quite old.

We are going to cover those two installation possibilities, namely, interactive and
scripted install. The first one requires user interaction, while the latter is unattended.
Either setup solution creates a verbosely logged setup log. We can use this for
troubleshooting, if it is required.

The first step is downloading the latest agent archive from the official website's
download section. Of course, we are redirected to the SourceForge repository. We
are going to make sure that we select the Linux agent. In our case, the exact URL
used is:

http://sourceforge.net/projects/ocsinventory/files/OCS%20Inventory%20
NG/1.02/OCSNG_WINDOWS_AGENT_1.02.zip/download

The file is named in the following fashion: OCSNG_LINUX_AGENT_1.02.tar.gz,
where 1.02 is the version number. We can download with wget or via your favorite
browser and then open up a shell to extract the archive.

$tar –xvzf OCSNG_LINUX_AGENT_1.02.tar.gz

From this step, we are going to discuss the distinctive installations. The setups are
similar for both scenarios: when the computer is networked (meaning it can reach the
OCS-NG central server via HTTP) and hosts that are not networked (the inventory is
stored locally).

Installing agents on Linux with user
interaction
Open up a new shell terminal window and get into the folder where the agent
was unpacked.

We can execute the setup shell script with the following command:

#sh setup.sh

http://sourceforge.net/projects/ocsinventory/files/OCS Inventory NG/1.02/OCSNG_WINDOWS_AGENT_1.02.zip/download

Chapter 3

[87]

Right away, the setup begins. The first question is, which method we will use to
generate and store the inventory, meaning, whether the computer is networked or
not. The first option applies for networked hosts (http), while the second stores the
inventory locally. We use the latter for hosts that are not networked when we upload
the inventory file manually.

If we opt for the first, we are asked information about the OCS-NG
communication server such as where it is located (for example, server address:
http://ocsinventory-ng) and what is the server port (default HTTP port: 80).
We can then specify a TAG value if we want to take advantage of the TAG-based
repartition (separately inventories computers based on TAGs, ideally to
differentiate offices from various locations, and so on).

Once these are answered, the server begins to check for the dependencies. It verifies
the existence of the PERL interpreter, C/C++ compiler, and some kind of make utility
(such as the GNU make). The following module dependencies are checked:

•	 Compress::Zlib PERL module
•	 XML::Simple PERL module
•	 Net::IP PERL module
•	 LWP::UserAgent PERL module
•	 Digest::MD5 PERL module
•	 Net::SSLeay PERL module
•	 dmidecode binary

dmidecode is a Linux tool to decode the computer's DMI (SMBIOS)
table into a human-readable format. The SMBIOS table contains
hardware-specific information (serial number, manufacturer, model,
and so on).

If these are verified (or chosen to be installed), the setup moves to the
following steps:

•	 Compiles the IpDiscover binary
•	 Configures, builds, and installs the OCS-NG agent Perl module
•	 Creates the /usr/sbin/ocsinv symbolic link
•	 Creates the logging directory, sets up the daily log rotation

	° Default log folder: /var/log/ocsinventory-NG
	° Default log rotation file: /etc/logrotate.d/ocsinventory-

client

www.allitebooks.com

http://www.allitebooks.org

The Zen of Agent Deployment

[88]

•	 Creates the OCS-NG agent configuration file
	° By default on /etc/ocsinventory-client/ocsinv.conf

•	 On the same path as the configuration file, it sets up the administrative
info file

	° ocsinv.admfile: It stores TAG and other values
•	 Sets up the cron task for daily execution of the agent
•	 Launches the OCS Inventory NG agent for the first time

The entire process is verbosely logged, and each step is detailed and printed on screen
as well. If there are problems, its cause is almost always clearly explained. On another
note, let's also present an example of the ocsinv.conf configuration file:

 <CONF>
 <DEVICEID>OCS_AGENT_DEVICE_ID-2009-11-20-23-51-24</DEVICEID>
 <DMIVERSION>2.9</DMIVERSION>
 <IPDISCOVER_VERSION>3</IPDISCOVER_VERSION>
 <OCSFSERVER>10.11.22.33:80</OCSFSERVER>
 </CONF>

Installing agents on Linux without user
interaction
The same installation bash shell script can be run in silent mode. This silent mode does
not require user interaction. As such, we need to supply the answers to those questions
as arguments when calling the setup shell. Here's an example with the arguments:

sh setup.sh <SETUP DEPENDENCIES> <SRV ADDRESS> [<SRV PORT> <TAG
VALUE>]

Here is an example of how this should look:

sh setup.sh 1 10.11.22.33 80 mytag_name

The <SETUP DEPENDENCIES> value must be either 1 or 0 (without < >'s). This
binary value is specified if we want the automated installation of all required
dependencies. If we are unsure of their existence, we need to pick 1. The <SRV
ADDRESS> is self-explanatory. We can type the DNS name of the server if it can
be resolved or the IP address. In the case of computers that are not networked,
we type local there (without quotations marks).

The rest of the arguments are optional. The HTTP port through which the
communication server can be reached can be specified. By default, this is 80.
TAG is obviously optional.

Chapter 3

[89]

The entire setup procedure is similar; each step is totally the same as the one
discussed earlier such as the interactive setup. Therefore, once it is finished, the
ocsinv symbolic link is created. Thus, we can manually execute the agent using
that link. The configuration and log files can be found on the same path as well.

We need to mention the support for the following agent switches under Linux:

•	 -local: It specifies the local inventory, and it won't send in the
inventory results.

•	 -xml: Using this switch, the output can be obtained in an uncompressed
XML format. Here, we are asked for the path.

•	 -tag=chosen_tag: This switch is used to specify a tag.
•	 -nosoft: This switch is used so that it won't check for any installed software.
•	 -force: This switch forces the agent to send in the results to the OCS-NG

server.
•	 -info: This switch prints details about the agent execution on the screen.
•	 -debug: This switch enables the debug mode, logging becomes more verbose.

Installing the OCS agent with the shell script is trivial. We also have the option to
use the Unified Unix agent (it comes with a detailed readme) that supports Linux,
Solaris, and AIX.

Deploying agents on Mac OS X operating
systems
The OCS inventory agent installation on Mac OS X operating systems requires
minimal effort. We can download a ready-to-run PKG precompiled package.
The installation using PKGs takes just a single command execution. It is similar
to installing RPMs or DEBs on Linux and Debian-based distributions.

Once the installation is finished, we need to edit the configuration file. Who else will
provide the OCS-NG central server's address if not us? But before we get there, let's
see where we can download that PKG. The first option is to navigate to the official
OCS-NG inventory download section. Here we can download the prepackaged Unix
Unified agent for Mac OS X 10.3.9 (Panther) or higher from the following link:

http://www.ocsinventory-ng.org/index.php?page=1-02-1

The Zen of Agent Deployment

[90]

In the download section, we can also find a so-called Mac OS X installation builder.
As its name suggests, it is a tool that creates installations. We can supply in advance
the required information such as OCS management server address and even
certificates, if required. The installer PKG is created. Then we can install it in the
same fashion as we're used to.

When asked for a certificate, we can supply a blank file, for example,
named cacert.pem. The inventory will work, although the SSL
certificate will not be verified as the one given is empty. This is a
drawback when package deployment is needed.

The configuration file can be found as ocsinv.conf, and we can edit it later on too.

sudo vi ocsinv.conf

The installation path of OCS agent on Mac OS X is on /etc/ocsinventory-client.

As always, the agent can be executed manually. In this way, we are forcing an
immediate inventory. The following command under Mac OS X is used to do this:

sudo php /usr/local/sbin/ocs_mac_agent.php

Please check the kind of tasks you have in the cron tab. By default, the installation
package of Mac OS X agents installs the agent in the /Applications and sets it up
as a daemon. The worst thing you can do is to set up another daily cron, even though
the agent is run on every system startup. This is not that bad, especially in the case
of workstation computers that are not rebooted. Nevertheless, this is just a pointer,
so we're closely watching our actions.

In case of troubleshooting, we can find the logfile at /var/log/httpd/error.log.
Please do find the problem (such as server gives a 500 error, perhaps a problem with
the database, and so on). After a successful execution, the client will respond with
an HTTP 200 message. The 200 OK means Request is OK. Error messages often
sport 500 as that stands for Internal Server Error. For a full overview of HTTP error
messages, refer to the following URL:

http://www.w3schools.com/TAGS/ref_httpmessages.asp

As soon as we get a successful inventory run, we realize that it's time to automate
the process, especially if the computer is networked. We need to add a new task
into the cron tab. Inventorying is usually advised to be run daily or 2-3 times a
week. It is possible to run the task more often, but this is rarely required.
Under most circumstances, once a day suffices.

Chapter 3

[91]

Here's an example of a daily cron scheduled on 21:15. The agent is launched. We can
edit the cron tab file using the crontab –e command. We need a new line like this:

15 21 * * * /usr/local/sbin/ocs_mac_agent.php

Deploying agents on mobile devices
It is a rather neglected process to make an inventory of mobile devices as well. This
should not be the case with OCS-NG as we have this option too. We can set up the
agents on mobile devices running Windows mobile platforms (version 5, 6+) and
Java platforms.

On the devices running Java, we need to have a working Java virtual machine
(JVM) supporting JDK version 1.4 or higher. Here we can mention IBM's J9 JDK or
phoneME, the open source project that aims to bring support for Java technologies
on cell phones.

Let's not get ahead of ourselves now, should you need more information, check out
the following link.

https://phoneme.dev.java.net/

For handsets based on Windows Mobile, ActiveSync is required on the computer.
The successor of ActiveSync is Windows Mobile Device Center. One of these utilities
is required for data synchronization between a computer host and a mobile device.

Getting these requirements installed and enabled are the preliminary steps.
There is a lot of documentation available, and if we plan on doing something
like this, the chances are that we already have these resolved. These should
not give us headaches.

The name of the project that resulted in the porting of the inventory agent to mobile
phones is called OCS Inventory Mobile. It was possible thanks to the OpenMobileIS,
an open source Java framework for mobile applications. For more information,
please check out the following link:

http://www.openmobileis.org/

Alright, now that we know how the ported agent came to life, let's see from
where we can download, and how to install on either Java-based handsets or
WM platforms.

http://ocsinventory.svn.sourceforge.net/viewvc/ocsinventory/trunk/
mobile_devices/

https://phoneme.dev.java.net/

The Zen of Agent Deployment

[92]

In order to install the mobile agent on Java platforms, we need to generate a JAR
file. We can either download a version that is hosted by someone, or we can make
our own JAR exportation. To do this, we will need to download a Java IDE, such as
Eclipse, checkout the official OCS Inventory SVN, and then we can export the project
as JAR. Other Java editors work too.

The JAR file can be launched through the virtual machine on your system. Usually this
command is something along the lines of Java jar path/ocsmobile.jar doSynchro.
Please refer to the user guide of your JVM. We can also check the following mobile
installation guide:

http://www.ubikis.com/OCSInventory/HowToOCSmobile.pdf

There is a file called NetDevice.dll, and it should be placed on the same directory
where the JAR file is. The location of the configuration file is server.properties in
the conf folder right inside the OCS folder. That's where we set the IP address of the
OCS-NG central server. Thereafter, each mobile agent execution can be done using
the JAR file.

The installation on Windows mobile-based smartphones is even more trivial.
The setup has an installation wizard totally similar to the one we presented
earlier for Windows agent. The wizard asks us for the OCS-NG communication
server's address.

Once we supply the required information, we can configure the location of the
installation files on the computer machine that will serve as the synchronization host.
We are given an option to select the components to be installed. The typical setup
should suffice for most configurations. Summing this up, once the setup is finished,
we can hook up the mobile device to the host computer, and initiate the inventorying
process. Everything is seamless.

Summary
Throughout this chapter, we elaborated agent deployment. First, we analyzed what
happens behind the scenes when agents are inventorying, and how they do their
work in order to serve the central server. As every situation can be different, we have
two agent types as well as numerous modalities to hook up our machines with one
of those agents.

We can install agents on all kinds of platforms, starting from Microsoft Windows
up to Linux distributions, Solaris, Mac OS X, and even mobile devices. We can either
opt for interactive setups or simply automated installations with the help of scripts and
remote deployment tools. In a corporate environment, it's important to deploy in
the background.

Chapter 3

[93]

The agent is a piece of software that supports command-line switches as parameters.
We have enlisted and explained each of these arguments. There are certain scenarios
when we want to use a combination of these to achieve a specific purpose. During
the installation process, we might experience hassles and we need to know where
to start. Once we found out how to log verbosely, from troubleshooting to finding
answers is just a step.

No doubt it is a fantastic benefit that the agent can be set up on virtually any kind of
operating system, but we must agree that in most cases, the Windows-based agent
will be most commonly used. It shouldn't surprise anyone that Microsoft Windows
is the predominant operating system on workstation machines. Due to this, we have
covered more deployment possibilities for Windows hosts (especially remote ones).

In order to back up the above assumptions, let's rely on the official download counts
of the latest agent version. We should take them with a grain of salt as agents can be
downloaded from other places (though, unlikely in large numbers), and in the case
of multi-computer environments, each agent type is grabbed only once.

The Windows agent was downloaded over 48,300 times, while the Linux agent slightly
over 16,000 times. The Mac OS X download count is around 3,500. The numbers speak
for themselves. We can always glance over and see these numbers for ourselves

By now, we have a fully functional OCS-NG central management server, and we
have just deployed our agents across our environment. Our database has grown
from nothing into an organized inventory. We are going to move on, and look into
the functionalities of the OCS-NG inventory platform. There are important features
to debunk. The next chapter covers the ways to accomplish all-around administrative
tasks with our inventory.

Finding your Way through
OCS-NG Features

Our inventory platform is already set up by now. The central OCS-NG inventory
server is up and running, and agents have been deployed throughout our network.
No doubt, this means that we have plenty of entries in our database. Now, we need
to learn to work with the inventory, how to perform administrative tasks, and how
to get the most out of each function.

This chapter, deals with the user interface of the web-based OCS-NG admin and user
console. Each toolbar item will be explained, and by the end of this chapter, we will
know where to find the most common functionalities. At first, we log in using the
default admin user, then we change its password (if we haven't done that already),
and finally we set up more users. Once this is done, we can get into best practices
and administrative tasks.

In this chapter, we will get to learn about the following:

•	 Achieve familiarity with the user interface of the web administration console
•	 Get around to do some preliminary configuration best practices
•	 Understand TAG-based repartitioning and its implementation to our needs
•	 Find out how to maintain a clean inventory, and solve common pitfalls
•	 Generate reports, and search for software and other inventory-related data
•	 Implement and get the most out of registry query function
•	 Upload the inventory data of computers that are not networked

Finding your Way through OCS-NG Features

[96]

In a nutshell, our area of action is going to be the web-based user interface of
OCS-NG. We need to understand how to carry out those tasks inside a web browser.
As a matter of fact, this is the chapter that gets into the real deal. So far, we have laid
out the preliminary steps in order to build the inventory platform from ground up.
Right now, we will see how to use its features, and see the advantages of having
such an inventory at our hands.

With all of this said, let's kick-start our journey, and learn to use the OCS-NG
web interface.

Getting familiar with the OCS-NG web
interface
Fire up your favorite web browser and point it to the following URL of the
OCS-NG server:

http://<ocs-servername>/ocsreports

If we are accessing the OCS-NG web interface from the same machine from where
the server daemon is run, we can access the administration console using the localhost
instead of using the ocs-servername in the hyperlink syntax previously mentioned.
Otherwise, the hostname gets resolved. We can also opt for the IP address of the server
instead of hostnames.

Logging in
The login screen will pop up. It will ask for the User and Password. By default, there
is only one predefined user who has administrative privileges. The username is admin
and the password is also admin. Type these into the empty text fields and log in.

Chapter 4

[97]

The password of the predefined admin user can be changed, but that is not what we're
going to do. Soon, we will deal with some preliminary configurations, and learn how
to set up new users. Next, we can set up new users with appropriate access rights, and
delete the predefined admin account. Everyone knows that OCS-NG is among many
web-based applications that comes (by default) with the admin for User and admin for
Password credentials.

In the upper-right corner of the login screen, we can find the language bar right
below the place where the version number is displayed. Multilingual support is
appreciated. Over the course of this book, we are obviously going to work with
the English user interface.

Make sure you pick your language because the tiny icons in the toolbar will be
applied. Also, if you find spelling mistakes, don't forget to send in suggestions
for improvements.

Looking around and examining the view
Now that we have successfully logged in, let's look around, and examine the
administrative interface. As a side note, chances are we are using a decent modern
browser with JavaScript support, and of course, we have also enabled this support.

The main interface can be split into the following main components:

1. Logout/Change password toolbar: It is placed on the upper-right corner.
2. Query toolbar: This is the blue background toolbar with five options.
3. Administration toolbar: This is the orange-yellowish toolbar with 12 options.
4. A middle section that sports six sub-tabs, and by default it shows some

general statistics about the inventory. The Activity tab is displayed as the
first tab in the middle section.

Finding your Way through OCS-NG Features

[98]

Each of the toolbars can be easily identified and are also marked accordingly in the
following screenshot:

Although the shortcuts might not seem intuitive, once you get familiar with them
and get into the pace of working inside the web console, you will get used to them.
For starters, it helps that a comment tooltip appears if you move your mouse pointer
over one of those shortcuts inside a toolbar. We will examine each of them in a while.

Elaborating the overview section of statistics
The overview section in the middle of those six tabs provides a general reach for
most reports regarding inventory numbers. We can also fine-tune some configuration
variables, and alter the behavior of these displayed statistics so that they are organized.
Furthermore, we can set up new messages, and display them on a specific group of
hosts, if not on each of them.

The SOFTWARE tab displays the number of different operating systems that
were inventoried as well as agent types. The following screenshot shows the
SOFTWARE tab:

Chapter 4

[99]

Useful tip:
Every time there is some text or a number displayed in blue color,
it means that it is a hyperlink, and this applies to the OCS web
console too. At the click of a mouse it enlists details regarding that
number. In the screenshot previously shown, for example, if we
click on 2 it will enumerate both of those agent types!

The next tab we will present now is the ELSE tab. Don't worry, we won't skip the
HARDWARE tab.

This tab displays generic information about everything else that does not meet
the criteria of earlier tabs such as ACTIVITY, SOFTWARE, and HARDWARE.
Here, we can find out how many workgroups were found, the number of TAGs we
implemented into repartitioning, as well as the count of different IP subnets within
our infrastructure. Should we have package-related errors or pending deployments,
they will be reported as well.

The next screenshot gives a sense of what to expect from the ELSE tab:

The HARDWARE tab prints detailed statistics about hardware specifications. For
example, we can find how many different processors and resolutions can be found
within our entire inventory. We also have some general numbers such as those
below or above specific values for memories, hard disk size, and processor sizes.

Finding your Way through OCS-NG Features

[100]

Of course, we won't be using these statistics every day, but in case a rare situation
pops up, we can pull these numbers out with a big grin on our faces. The following
screenshot shows the HARDWARE tab:

The next tab of this middle section is the CONFIG tab as we covered ELSE earlier.
Here, we will find the advanced configuration regarding this middle section. We can
add and/or remove fields from general statistics that are laid out inside ACTIVITY,
SOFTWARE, HARDWARE, and ELSE tabs. We can configure this in the statistics
middle section.

Should we add more fields into this section, then the opportunity to configure
and set values that are specific to those fields will also appear exactly in the same
fashion as PROC_MINI, PROC_MAX, and other options. The next screenshot
presents these options:

Chapter 4

[101]

The MESSAGES panel is used for creating messages that we can send to
specific groups.

The MESSAGES panel is shown in the next screenshot:

Finding your Way through OCS-NG Features

[102]

Finally, let's also cover the first tab: ACTIVITY. This tab is displayed by default
every time we log into the OCS-NG web interface. It gives a general overview of
our inventory database. The ACTIVITY tab is shown in the following screenshot:

We will see over time that there is no toolbar or menu item that brings up this
middle section. If we further navigate the interface, for example, if we click on the
CONFIG tab, we cannot go back to the main interface that brings up the middle
section anymore. Do we need to log in again in order to see it? No way!

At any time, we can bring up the middle section by clicking on the OCS-NG
Inventory top logo on the upper-left corner of the page or by clicking on the OCS
next generation Inventory at the title of the page in the center. Both are hyperlinks
to the following URL:

http://<ocs-servername>/ocsreports/index.php?first

Getting to know the blue query toolbar
This query toolbar is situated on the left side, and its background is in blue. The
shortcuts are self-explanatory, but we will do our best to give you a run down on
each functionality.

Understanding the first two queries
The first icon represents All computers, and it basically lists all of the inventory
contents. We can customize how many rows are displayed (by default it is 20). We
can also set the order and type of columns that we want to display. For example,
in the following screenshot we've opted for: Tag, Last inventory, Computer, User,
RAM (MB), and CPU (MHz). We can set any field there out of dozen of attributes.

Chapter 4

[103]

We can remove one of the columns by clicking on the red X icon to the right of the
column name. On the other hand, every time we add a new column, it gets attached to
the right side. If we want to swap the order between RAM column and CPU column,
we must first remove the RAM column, and then the CPU column. As CPU column
gets into its left place of its previous neighbor, we again add the RAM column such
that it gets attached onto the right, so it becomes CPU's column right side neighbor.

Useful tip:
When we configure these columns and rows based settings according
to our requirements, we don't need to worry as they are saved between
user sessions. Logging in again will maintain your customized view.

Demystifying TAG-based repartitioning
The second icon in the toolbar represents TAG/Number of PC Repartition.

Now, we are going to take a quick break and explain what TAG-based PC repartition
is all about. Right away, we will continue our coverage of each menu function.

In a nutshell, this feature adds the possibility of site-based categorization. In the case
of a company that has eight locations/sites or perhaps four locations each with two
floors, we can repartition the hosts based on some TAGs. For example, LOC1_FL1,
LOC1_FL2, LOC2_FL1, and so on. There are many other uses for TAGs as well, of
which location repartitioning is just one.

Finding your Way through OCS-NG Features

[104]

The TAG / Number of PC Repartition query is shown in the next screenshot:

In our example, we have these eight TAGs. From the previous screenshot, we can see
the computers are enumerated based on their TAGs, such as LOC1_FL1 has 42 hosts,
the second tag has 33 hosts, the third has 67, the fourth has 79, and so on. Should we
click on one of those numbers, we are redirected to the SEARCH function, which
basically searches for and prints out the results in the following syntax; all of the
hosts having exactly that tag.

Understanding the other three queries
The third shortcut from the toolbar represents Groups. This is the place where we
can deal with Groups. The DYNAMICS GROUPS and SERVERS GROUP are
displayed. We can also set up new STATICS GROUPS. Just like the other toolbar
items, this one also does a query. The next screenshot shows the Groups query:

Chapter 4

[105]

The fourth icon in the toolbar represents All softwares. This one is a fancy tool that
helps searching within software. We can search for software applications using their
beginning letter or using their exact names (such as finding Notepad++), or add
another factor into the search queries, when their count is lower, equal, or higher
than a value.

The previous screenshot was a sample of clicking the letter N meaning listing all
software that are found starting with the letter N. Of course, we have shown only
the top five of the results.

The last query item from the toolbar stands for Search with various criteria. This is
the interface pane where we can build up custom search queries based on literally
any of those inventoried attributes. The list is really exhaustive, but the real benefit of
this is that no matter how complex our search query might become, we know it can
be dealt with.

Using the drop-down box we can add parameters to search for. The common altering
operators are the following: EXACTLY, DIFFERENT, LIKE, BEFORE, AFTER,
SMALLER, BIGGER, BETWEEN, and other SQL query-like operators. Thankfully,
due to user friendly interface and mechanism, we don't need any SQL knowledge to
use the search function.

The Search with various criteria query is shown in the following screenshot:

Finding your Way through OCS-NG Features

[106]

In the previous screenshot, we put together a sample query. We searched for hosts
that were Always inventoried, where their Last inventory is EXACTLY 11/26/2009,
Manufacturer is EXACTLY ASUS, and the Model is DIFFERENT to 12345, and
the Processor Speed is BIGGER than 1200. It is as simple as that, but please pay
attention to those Enabled checkboxes.

We have covered the query toolbar. Next is the orange-yellowish
administrative toolbar.

Getting to know the administrative toolbar
This toolbar is situated on the right side of the web interface. We will enumerate the
tiny toolbar icons as we're going to give a run down on each of them.

The toolbar is composed of 12 items. Two of them sport a drop-down menu with
even more functionalities. The others are click-to-go shortcuts. If we move our mouse
pointer on top of one, here again a tooltip appears explaining what it's going to do.
The various items that compose the administrative toolbar are described as follows:

1. Deployment: This option deals with Deployment. It has a drop-down menu
and this is the place where we can Build, Activate, and customize the Rules of
affectation of the packages we are planning to deploy.

The following screenshot shows the three options of the drop-down menu:

Chapter 4

[107]

The next screenshot gives a brief overview on New package building mechanism:

2. Security: Under this item, we can find Network information and Config. We
can find which hosts are inventoried, where IpDiscover lies, the ranges, and subnets
that are inventoried or not, and so on. We can edit the fields, set up new subnets, and
so on.

The following screenshot shows the Security Menu:

3. Dictionary: Here we find a software related Dictionary, meaning we can search
for software, and specify which are to be ignored or left unchanged. The others
are pulled under the NEW tab. This is important in case of licensed applications.

If we want to custom track the count of some licenses, we may prefer to leave those
software UNCHANGED. As such, we need to add them into that category. On the
other hand, we should ignore service packs, common trial/demo software, .NET
Framework, codec packs, flash/video players, and stuff that we don't care about.

Finding your Way through OCS-NG Features

[108]

The next screenshot shows the options of the Dictionary menu:

We can also track MS Office suites regardless of their version number. This option is
really useful when we integrate GLPI as asset management software on top of our
OCS-NG inventory platform. This is discussed thoroughly in Chapter 7, Integrating
OCS-NG with GLPI.

4. Agent: Here we upload new agent packages. We covered this in the previous
chapter that was dedicated to agent deployment.

The following screenshot shows the interface where we can submit new agents.

5. Configuration: Here we find another drop-down menu.

Chapter 4

[109]

The first option is Config. This one leads to server-based configurations, and from
this place we can tune the behavior of agents as well. Many of the options we
can work with here are related to the following: Inventory, server, IpDiscover,
Deployment, Groups, Registry, Redistribution Servers, Inventory files, Filters,
Webservice, Interface.

Let's view the following screenshot of the Config pane:

The previous screenshot shows only one-eleventh (1/11) of the Config pane as only
the Inventory tab is displayed. Here we can see the inventory-specific variables.

In a later section, we will cover these configuration options too. Right now, we can
surf through them in order to achieve familiarity. So, if and when such a situation
occurs we will know where to look.

The Blacklist option is the second from the drop-down menu. Here we can blacklist
MAC addresses and serial numbers. MAC addresses such as 00:00:00:00:00:00,
FF:FF:FF:FF:FF:FF, 44:45:53:54:00:00, 44:45:53:54:61:6F, and so on should be
blacklisted. There are many other addresses that are not valid Ethernet addresses or
we recognize them as VMware, VirtualBox, or other virtualization software's virtual
network adapters.

Finding your Way through OCS-NG Features

[110]

The Language file is the third option from the drop-down menu, and this is where
we can edit the translated definition files of each message box and line. You can give
it a go.

6. Registry: This option pulls up the Registry query function. We will cover
this later.

The following screenshot displays the Registry query function:

7. Admininfo: We can add/remove Administrative data to/from the administrative
info table.

The next screenshot shows the AdminInfo query function:

8. Duplicates: This is where we can deal with redundancies, check their summary, see
which hosts are duplicates, and ultimately merge them according to our preferences.

This function is thoroughly explained in the Maintaining a clean inventory: Solving
common pitfalls, eliminating redundancies section later in this chapter.

9. Label file configuration: We can specify new label files here.

Chapter 4

[111]

The next screenshot shows the Label file configuration function:

10. User: This is where we can add and/or remove users. Here we can specify user
privileges. Removing users is done by clicking on the red X at the end of each row
from the table.

The following screenshot shows the User function:

11. Local import: This is where we can upload inventory files of hosts that are
not networked.

The following screenshot shows the Local import function:

12. Help: This option basically opens up a new tab inside your browser, and loads up
the Wiki URL of OCS-NG at:

http://wiki.ocsinventory-ng.org/

Finding your Way through OCS-NG Features

[112]

Summing these up, we have covered in short both toolbars. There's just one tiny
two-option toolbar left on the upper-right corner. The power down button shortcut
with the red background can be used to logout and the button next to it is used to
change the password of the currently authenticated user. The latter is represented
by a key that is turning in a lock.

Now let's move forward and look at some preliminary configuration tips.

Preliminary configuration tips and best
practices
The first and foremost best configuration practice is to get rid of the default admin
account. This is something that is generally applicable everywhere. The problem is
that everyone knows the default account password, so if we don't change it, let alone
delete the account altogether, some malicious users could get access to our database.
The following screenshot shows the Add a new user function:

We navigate to the Users icon on the administrative toolbar. Then we add a new
User. At first we should add an Administrator. Once this is done, we can specify
many other users with either User or Local user privileges. The difference between
User and Local user is that the latter is limited to viewing only particular TAG-based
hosts (if this feature is activated, of course). Moreover, the User has global viewing
rights to the database.

If we use TAGs to delimit separate locations of the company, then this function
makes sense.

Chapter 4

[113]

Explaining configuration parameters
In this chapter's Getting to know the administrative toolbar section we briefly presented
the Configuration menu option and its Config sub-pane. We mentioned that there
are many variables that we can configure.

The time has come for us to glance over the definition of these config parameters. We
are going to consider tweaking these according to our needs only if we understand
their use. Over the course of this book, we will hand out performance tips here and
there when the situation seems right for those occasions.

Now, we want to have a complete list for reference usage.

The original meaning of each variable was posted on the Wiki
documentation of OCS-NG at http://wiki.ocsinventory-ng.
org/index.php/Documentation:Administration

Variable Description
AUTO_DUPLICATE_LVL Duplicate computer detection. Select which values

to use in duplicate detection. If multiple values are
selected, they all must match for two machine records
to be considered duplicate.

DEPLOY Activates or disables the automatic deployment of new
agents.

DOWNLOAD Activates or disables the package deployment feature.
Turning off DOWNLOAD stops this functionality on the
server and on the agents. With DOWNLOAD off, once
agents will have contacted OCS server, they will stop
the current download without cleaning packages.

DOWNLOAD_CYCLE_LATENCY Time in seconds to wait between each download cycle.
DOWNLOAD_FRAG_LATENCY Time in seconds to wait between each fragment

download.

DOWNLOAD_PERIOD_LATENCY Time in seconds to wait between each download
period.

DOWNLOAD_PERIOD_LENGTH Number of cycles per period.

DOWNLOAD_TIMEOUT Validity in days of a package on an agent. If the time
used to download a package is over the DOWNLOAD_
TIMEOUT days, the package will be cleaned and
ERR_TIMEOUT will be sent to the ocs server.

Finding your Way through OCS-NG Features

[114]

Variable Description
FREQUENCY Specify the frequency in days of inventories.
INVENTORY_DIFF Enable or disable differential inventory to speed up the

server. With differential inventory, only changes are
stored by the server, not the full inventory

INVENTORY_TRANSACTION Enable or disable database transactions on the server.
With transaction, an inventory is stored only if all the
data has been processed correctly.

IPDISCOVER Specify the number of agents that will run the IP
discovery feature for each gateway (subnet). If you
leave the default value of two, this means that the
Communication server will ask the two most active
computers on each subnet to run the IP discovery
feature. If you set it to 0, IP discovery will be disabled.

IPDISCOVER_LATENCY Agent will pause for many seconds between each IP
address scan during IP discovery.

IPDISCOVER_MAX_ALIVE Maximum number of days between two inventories
for an IP Discovery- enabled computer to hold its
status of IP Discovery computer. An IP Discovery-
enabled computer will lose its status if it has not been
seen by the Communication server for more days than
the number of days defined in this setting. Another
computer in the same sub network will then be
designated.

LOCAL_PORT Port of the OCS-NG central server.
LOCAL_SERVER IP address/DNS name of OCS-NG central server.
LOGLEVEL Enable or disable detailed log for the Communication

server. If enabled, the server will write logs to the
file ocsinventory-NG log in directory /var/log/
ocsinventory-NG for Linux and \xampp\apache\
logs for Windows.

PROLOG_FREQ Controls how often the windows service agent runs.
Specified in number of hours 1-24. The agent will
contact the OCS server every PROLOG_FREQ hours.
The agent will not send an inventory if the inventory
is not older than FREQUENCY days.

REGISTRY Activates or disables the Registry query function (for
Windows agent only).

TRACE_DELETED Activates the tracking of deleted/renamed computers
for integration with GLPI. Enable this feature only
if you use integration with GLPI asset management
software.

UPDATE Not used, always set to OFF.

Chapter 4

[115]

Maintaining a clean inventory: Solving
common pitfalls and eliminating
redundancies
One of the most common difficulties of inventories of all kinds is trying to keep
them clean. Using the categorization mechanism, and automatically pulling out
information can be more reliable than human-introduced data. However, algorithms
cannot think rationally enough to comprehend some real world situations (unless
they are programmed of course).

The eighth icon of the administrative toolbar on the right is called Duplicates.
Let's go beyond that feature and understand how it works. Once loaded, it displays
a summary.

The next screenshot shows the Redundancy function:

As we can see, there are some redundancy problems we need to address. The agents
pull out relevant information that we can use to identify hosts uniquely, such as
hostname, PC serial number, and MAC address. While the serial number of some
hosts might be the same (manufacturers or OEMs don't fill in those appropriate
fields correctly), we must accept that the likelihood of both the MAC address and
hostname matching is quite low.

We have the following options for dealing with redundancies. First, we can
organize these duplicates according to the aforementioned variables. It is generally
recommended to pick a coupled summary, something like Hostname + Mac address,
but that depends on infrastructure specific particularities.

Finding your Way through OCS-NG Features

[116]

The next screenshot shows the Redundancy summary option:

After choosing one of the options, the results are displayed. We can then examine
each of them, and decide the right way to merge them (or not). In the preceding
example, we will present two computers that are present as duplicates. This is
because they both have a VMware virtual machine running, which is identified
and inventoried once again. We can recognize this due to the 00:50:56:C0:00:08
ever-present MAC address.

From experience, we know that it stands for the VMware Virtual Ethernet Adapter.
There are many other possibilities why redundancies might appear. For example, if
a machine is migrated or given to another employee, and let's assume this process
involves changing the hostname in your infrastructure, as a result, it is going to be
inventoried again under a different hostname (new entry), but with an identical
serial number and MAC address.

In order to identify the reality behind such a duplicate entry, it is advisable to check
the PC's specifications. By clicking on the blue hyperlink (hostname), a new tab
opens up with loads of information. Then we can navigate to the Network icon to
find out more.

Chapter 4

[117]

Continuing with the previous example, we look up one of the machines. We see the
following screenshot:

A while ago we mentioned the ability to include entries into the blacklist. In this
case, we blacklisted those two VMware MAC addresses. The green mark next to the
description Vmware, Inc. stands for removing those entries from the blacklist. The
physical MAC address of the host is not blacklisted. Clicking on the red sign would
blacklist it.

Implementing the Registry query function
The OCS-NG agent does an amazing job to pull out, and identify the installed
software. In this way, we get to have an inventory filled with applications on every
machine. It helps the process of software auditing and licensing, but that is not enough.

There are certain situations, when we may want to customize the way we track some
registry keys. This is when the Registry query function pops into the picture. Thanks
to this feature, we are able to manually specify the keys inside the registry hives that
we plan to track. Sometimes, we may want to audit some fields due to malicious
content. Other times we may want a second check for software that might not have
been installed as they should have been.

The following screenshot shows the Registry requests function:

Finding your Way through OCS-NG Features

[118]

The previous example is just for exemplification purpose. We can seamlessly identify
games made by Blizzard Entertainment without registry querying too. The same
goes for Valve's Steam, but it gives a sense of how to set up a new query.

We can set up queries for the Run fields in order to pull out the processes that are
running on the hosts. This might help when troubleshooting malware and other
malicious programs. Moreover, sometimes we are required to pull out ,and verify
the product IDs or license information. Almost always, this type of information is
stored within the registry. Otherwise, it is stored inside a file that we can get our
hands on remotely anyway.

The summary of the Registry query function is shown in the following screenshot:

The '*' is a wildcard that means 'for all'.

Uploading inventory data of hosts that
are not networked
It might not seem that probable, but actually there are some hosts that might not
be always connected to the network. There are various valid reasons for that. In the
previous chapter, we covered how to set up and run an agent locally on hosts that are
not networked.

The only drawback of this situation is that we need to import the inventory
file manually. This file has the .ocs extension and has the following syntax:
COMPNAME-2009-12-03-05-04-03.ocs. There are two methods which could be used
to import this file. The first method is using the OCS web interface. The administrator
logs in, selects the Local import function (11th of the 12 icons on the yellow toolbar),
and browses for the path of the file. After clicking Send, it gets imported.

The Local import function is shown in the next screenshot:

Chapter 4

[119]

When dealing with routine administrative tasks manually, the thought of
automating and scheduling the tasks comes to the mind of every system
administrator. Fortunately, for us, the developers thought about implementing
a Perl and batch script to aid the importing.

As expected, the Perl script can be used when the OCS-NG management server
runs on Linux operating systems. The batch script works fine on Windows-based
OCS-NG central servers. We can locate these scripts in the following directories,
respectively:

•	 The Perl script on Linux distributions:
/usr/local/ocsinventory-NG/Ocsinventory_local.pl

•	 The batch script on Windows systems:
C:\<INSTALLDIR>\binutils\local_import.bat

The script can be launched in two ways. In either way, we specify the file to be
imported, and by doing so, it uploads the file (along with its accurate path) we
specified as an argument. Otherwise, we launch the script without any parameters,
and this way it checks its own directory and imports as many .ocs inventory files it
can find there (its own folder) into the database.

Therefore, on most setups we can think about automating the whole process. If the
host computers are not networked, there still has to be some kind of access to the
machine. Either the data gets copied weekly to a thumb drive or has limited mail
access on schedules that are already defined and sends a mail to the administrator
with the .ocs files. The real deal is that somehow the administrator gets all of the
files stored at the same place.

Once this is done, perhaps on a specified schedule that occurs always at the same
time, the script is executed to import all of the files from its directory. A log can be
generated, and the administrator can be notified on how the importing process was
carried out.

The script displays an output that counts the sum of the successful imports and
errors, as shown below:

Successly inventoried : 7

Errors : 0

Finding your Way through OCS-NG Features

[120]

Working with the inventory
As obvious as it seems, we have built and want to maintain a full-fledged inventory
platform with the ability to gather and store data in a centralized solution.
Ultimately, that is the goal of inventorying and asset management. The OCS-NG
agents, are pulling out a huge amount of information that is stored in the central
database. Through the OCS-NG web interface we have a user-friendly manner to
access and work with this data.

Imagine how hard it would be to generate SQL queries inside some database
interpreter. That would not really be a seamless inventory interface. The web
interface does all of these behind the scenes. We just need to learn its functions
and features.

Besides those five query functions that we talked about earlier, which are present
on the blue toolbar on the left, the inventory is much more capable of performing
other functions as well. As mentioned earlier, every time we click on a hyperlink,
such as a hostname, a new browser tab is opened up. This tab loads up plenty of
relevant information about the said host. Here's a quick screenshot:

The previous screenshot is a brief summary. We have the following options in the
next screenshot:

Chapter 4

[121]

1. Processor(s)
2. Memory
3. Storage
4. Disk(s)
5. Video Card
6. Sound
7. Network(s)
8. Controller(s)
9. Slot(s)
10. Port(s)
11. Administrative Data
12. Customization
13. BIOS
14. Software
15. Deployment
16. Registry
17. Monitor(s)
18. Input Device(s)
19. Printer(s)
20. Modem(s)

We can surf through every component and find out every tidbit of information that
the agent was able to pull out regarding that. On the bottom of every page, we find
these two icons:

The first function pops up the print window. It's useful when we want to print the
kind of information that is displayed. On the other hand, the second icon means
"show everything". This is really useful. The query is really fast, and it barely takes
a few milliseconds as long as you don't mind scrolling down through long pages.
This way we can see all of the inventoried data regarding that host displayed on the
screen, without being limited to specific areas.

Finding your Way through OCS-NG Features

[122]

Summary
The focus of this chapter was to achieve familiarity with the user interface of the
OCS web console. First, we explained what each toolbar icon does, the kind of
functionalities that are hidden beyond those tiny images, and so on. Practically,
we can do almost anything inside the web console; even tune server-side variables
that affect the behavior of the inventory. It's important to take some time to be
comfortable surfing through toolbars.

We then elaborated on some configuration best practices and tips. We learned how
to set up new users with privileged access rights. Then we introduced and explained
the concept of TAG-based repartition. In case of medium-to-large organizations,
this is a huge need, but if it's implemented appropriately it helps in case of small
infrastructures as well. If the functionality is incorporated into OCS-NG, why not
learn to use it the right way?

Practice has taught us that some preventive measures are to be taken in order to
maintain a clean and ordered inventory. We not only discussed the techniques of
eliminating redundancies, but we also understood why they happened, and how
to solve other common pitfalls.

Furthermore, we got into overviewing the Registry query function. While the
inventory agent does a great job on locating software on client machines, sometimes
we want to be able to track specific registry keys and values. The examples we
brought were mainly software based, but technically, we can track any field inside
the registry.

Moving ahead, we also learned where to import the inventory data of hosts that are
not networked. Once this is done and supposedly our inventory is clean, we got to
spend some time understanding how to carry out common tasks. We elaborated tiny
bits of how to search for software, generate reports, find out the hardware specs of
inventoried hosts, and so on. After all, this is why we wanted to set up an inventory
solution from the start!

In the next chapter, we will get into the depths of IpDiscover. We plan to go
beyond the inventorying mechanism in order to fully comprehend how elevation
happens. After these, we are able to make well-thought decisions on how to tune
the retrieving process.

Investigating the Process of
Gathering Inventory Data

At this point, our inventory is all set up and doing its job. Hosts appear in the
database, and we have learned how to work with the results that we gathered, but
what exactly happens behind the scenes? How can we identify the possible flaws of
the system and recognize why some hosts remain uninventoried? Now we should go
beyond this retrieving process.

In this chapter, we will explore the IpDiscover process. Elevation is the heart of the
mechanism of this process. Based on some important criteria, the server is able to
decide which client machine would be the best fit to delegate the discovery task.
Each host, if activated as an IpDiscover computer, will scan its own subnet, and the
results are sent back to server.

In this chapter, we will learn about the following:

•	 Understanding the IpDiscover process and demystifying the
election mechanism

•	 Fine-tuning server-side variables to alter the discovery process
•	 Categorizing subnetworks by defining names and unique IDs
•	 Analyzing inventoried hosts and understanding the quality and

fidelity columns
•	 Locating uninventoried hosts, determining their status, and finding and

solving issues
•	 Managing and registering known hosts
•	 Using the IP Query function to find out details about the target host

Investigating the Process of Gathering Inventory Data

[124]

Although our inventory might seem complete and functional, becoming proficient
in using OCS Inventory NG does not stop there. By default, the server delegates
discovery tasks to the clients, and these clients do their job quite well. However, in
the case of complex network topologies that use diversified hosts, the chances are
that the default configuration might omit some hosts and/or networks during the
initial discovery process.

Our goal in this chapter is to present the meshing gears of the inventory. By the
end of this chapter, we will know how to tweak the process of gathering data. The
chances are we will also have a cleaner and more organized inventory without holes.

Going beyond the retrieval mechanism
OCS Inventory NG was designed to work seamlessly in infrastructures with tens of
thousands of hosts. The central management server would be overwhelmed without
any doubt if it had to scan, query, and gather the inventory data from all of the
hosts at the same time. That is why the developers implemented a task delegation
mechanism. We explained this mechanism in a nutshell in Chapter 1, Introduction to IT
Inventory and Resource Management. Basically, in order to alleviate the network load,
the central server delegates the task of discovering other hosts to other clients that
are known to be faithful and also the most active.

What do we mean by this? The client agents are becoming slaves of the management
server. The server rates these agents based on how frequently they contact the server.
These variables are called as Fidelity and Quality. We will explain these in greater
detail a bit later. Right now, what matters is that the server tracks all the activities of
the agent.

This was rather obvious until now. Moving on, the server is able to delegate the task
of discovering other hosts to a faithful agent that seems appropriate. These delegated
agents are chosen using the elevation mechanism. The elevation mechanism
evaluates the agents by checking the following parameters:

•	 Fidelity: The total number of connections from the host to the
communication server

•	 Quality: The host to server connection (average calculated in days)
•	 Netmask: The subnet mask of the host, which can be at the most of class B

(255.255.x.x)
•	 Lastdate: The last date of inventory data sent to the server (quality

was computed)
•	 Operating system: Must be MS Windows-based or based on a

Linux distribution

Chapter 5

[125]

Based on the mentioned criteria, the server decides when to activate a specific host
as an IpDiscover host. This entire process is called IpDiscover. Once a host behaves
as an important delegated host, it scans its own subnet for uninventoried hosts. The
computer will ignore the frequency server-side variable of inventorying and send
in data more frequently.

After all, the quality of a host is the determining factor of its IpDiscover capability.
It is always dynamically recalculated, and if another host turns out with a better
quality rate, it will replace its predecessor. The Lastdate is crucial as an IpDiscover
host might go down for a longer period of time, but with a great quality rating. By
default, the server-side variable, on which this Lastdate is checked, is 7 days. If it's
passed, another host is chosen.

These IpDiscover options can be configured from the Configuration menu of the
administration (yellow) toolbar. From the drop-down menu, we pick the Config
and then the IpDiscover tab. The variables are explained in green and are for
exemplification purposes, as shown in the following screenshot:

Investigating the Process of Gathering Inventory Data

[126]

The IPDISCOVER option must be turned ON to enable this function. The number
of computers to be delegated with scanning tasks must also be specified. This is on
a per network basis. With the IPDISCOVER_BETTER_THRESHOLD variable, we
can configure the minimal difference between an already elected host and another
one that just sent in data. If this difference is exceeded, the IpDiscover activated
agent is replaced with the new one.

The IPDISCOVER_LATENCY specifies how much time the agents will wait between
scanning IP addresses. The default is 100 milliseconds. This suits most infrastructures.
The IPDISCOVER_MAX_ALIVE variable sets that amount (in days). If that amount
is exceeded, then the host loses its status, and another agent is picked to scan the said
sub-network further on. The IPDISCOVER_NO_POSTPONE option disables time
(ON/OFF option); thus, it enables or disables whether to postpone the first election.

Enabling the IPDISCOVER_USE_GROUPS option gives us the opportunity to
customize group-based rules according to which agents are designed as IpDiscover
hosts. We might have a group of computers that might not be suitable as hosts, but
it is likely that their quality variable would be so high that the server might elevate
them soon. With this option, we can eliminate this possibility.

Now that we know how computers are evaluated and designed as IpDiscover hosts,
let's also find out how these agents can scan their own subnetwork. First off all, such
a host determines the primary network interface through which it can communicate.
Once that is done, it tries to contact every host through Address Resolution Protocol
(ARP) in order to investigate their existence.

Each host will answer from its segment that it is available. In order to reduce the
network load, a predefined amount of delay is specified as latency, which we have
covered earlier.

Obviously, if a host can be resolved through ARP, but it does not have an
inventory agent installed and/or for whatever reason it could not contact
the OCS communication server, it means that host is an uninventoried host.
The rest that are functional are inventoried.

We can query and analyze these hosts. Besides the server-side-based IpDiscover
configuration parameters, the other functions can be found from the Security menu
of the administration (yellow) toolbar. This is the second icon and it looks like a
firewall. In some languages, it's translated as "IpDiscover" whereas mot-a-mot in
English, it is known to be "Security".

Chapter 5

[127]

This option loads up a new page inside the administration console with two
or three options:

•	 Network information
•	 IP Query (only available when OCS-NG runs on top of Linux servers)
•	 Config

The Network information gives a general overview of the structure of the OCS-NG
inventory infrastructure. We can see how many hosts are inventoried, uninventoried,
how many hosts per gateway are designed and identified as IpDiscover-activated
hosts. This count is in every case a hyperlink and clicking on it brings up a search
query for those hosts. Clicking on 2 in the IpDiscover column narrows the search
to display only those two.

Just after the heading, we can also see in parentheses the total count of uninventoried
network interfaces. In a huge infrastructure, with complex topology, this count can
be as high as thousands, but the inventory is complete and organized all the time.

Investigating the Process of Gathering Inventory Data

[128]

Clicking on the -> Click to edit <- hyperlinks that are located in the first column
is basically the same as going to the Security | Config | Subnet names from the
administration toolbar.

The Config option also brings up two possibilities, as we can see from the
following screenshot:

Both of these deal with configuration. Here we define, add, or remove, Network
devices types and Subnet names. Organizing and linking these to the hosts is done
on the previous pane (Network information). First let's add some devices here so
that we end up with some device types to work with.

Defining network device types is beneficial to maintain an organized and neat
inventory. In order to remove the benefit of doubt, when we examine the massive
list of uninventoried hosts, we need to know for sure which hosts are legitimately
non-inventoriable.

This varies from infrastructure to infrastructure. Sometimes we might not want
to keep track and make an inventory of networking equipment such as routers,
switches, access points, printers, and so on. Then again comes industrial automation
devices such as motion control sensors, PLC Systems, SCADA systems, robots, and
others. Even though these devices are connected to the network, we cannot make an
inventory of them as no agents are supported. The following screenshot shows how
we define network types:

Chapter 5

[129]

Adding new device types is trivial. Just type in the name and hit Send. A quick list
will be populated right below showing the device types that we added.
If we want to delete one of them, we click on the red X icon at the end of a row.

In the same fashion, we can also add a new subnet name. The real importance of
these is due to the Uid. We can sort out and categorize them, later on, when we
carry out the querying and analyzing of the overall structure of our inventory based
on these Uids. It's useful if we have, say, N different subnets, and we name these
appropriately, so we know which Uid stands for which.

As we saw in the case of the network device types, the subnet list is populated right
below. The more subnet names we define, the bigger the list becomes. In order to
exemplify this, we created the following three subnet names. We can remove one
of them with the red cross here too. This is shown in the next screenshot:

Investigating the Process of Gathering Inventory Data

[130]

This sums it up for the Config pane of the Security menu option. Alright, but for
what have we defined these? That's right, it's time to implement these changes.
We go back to the Network information pane (first option) of the Security menu.

Surprisingly, we see that there is a drop-down box with Uids. The Show everything
list is quite long, and it does not give an organized view of the structure. In the case
of small companies, this is fine and the view is holistic, but at times, things can get
disorganized. From this drop-down box, if we choose, say, Uid 2, then only hosts
that are specified are displayed.

The following screenshot shows the Network information menu:

In the next example, only the Uid with the value 2 is displayed. given_subnet_name
is the name we specified when defining the subnet with that Uid.

We have seen where we use subnet names, but what about those network device types
we defined? As we need to link these to individual hosts, we will initiate a query. This
search query can be done from the Network information pane, if we click on any of
those hyperlinked (blue color) numbers of the Non-inventoried column.

Chapter 5

[131]

The result of such a query is presented in the next screenshot:

As you can see, we have two Canon Inc. manufactured devices (Are they printers?
What do you think?), two Cisco Systems, Inc. devices (network equipment), and the
rest are Vmware, Inc. virtual machines. The Register column has those cubes on the
left of the red crosses. That is where we can link a networking type that we specified
with one of those devices.

The IP address, MAC address, and DNS name are crucial columns to determine
whether that device really stands for what we want to name it. The chances are we
have some company policy to implement the DNS name of the printers and network
devices, so we can easily recognize their true identity. Now, we will click on the first
Canon's cube.

Investigating the Process of Gathering Inventory Data

[132]

A pane is displayed, as shown in the next screenshot:

The MAC address field cannot be edited (obviously), the Description is taken from
the DNS name (we can type anything in there), and at the Type field, we can pick
any of those device types that we defined earlier. Of course, we pick printers. We
send this information and that's all. Later on, we will know that this Canon is part
of the printers group, and it won't create suspicions on why it's still not inventoried.

Let's analyze the Quality and Fidelity columns of the following inventoried hosts.
This is shown in the next screenshot:

The higher the fidelity count, the lower will be the quality. The quality stands for the
amount of days it requires (averaged) for the agent to contact the client. This is why
the more frequently the agent succeeds in contacting the client, the quality value gets
closer to zero.

Chapter 5

[133]

Using the IP Query function
Assuming we have installed the OCS-NG server on a Linux distribution, we
might also have the third option of the Security menu. This tool scans a manually
specified host for a rather exhaustive list of details. It can also find out if the host was
inventoried and/or just discovered. It determines the operating system (if available),
DNS, and NetBIOS name.

The web interface of IP Query is basically a frontend to the IPDISCOVER-UTIL Perl
script. That is why it is only available on Linux machines due to the Perl interpreter.
Of course, there are workarounds for this too. It is based on the world-class security
scanner and notorious penetration testing/security auditing tool, nmap. You can
find more information about nmap from the following link:

http://nmap.org/

Alright, so we know that the heart of the IP Query function is nmap, but it has a few
other requisite components as well, which are as follows:

•	 nmblookup (part of the samba suite, tested on 3.0.7/3.0.10)
•	 Perl module Net::IP
•	 Perl module DBI
•	 Perl module DBD::mysql
•	 Perl module XML::Simple

We need to specify the IP address and mask to carry out the scan. The output is
shown in the next screenshot:

Investigating the Process of Gathering Inventory Data

[134]

A final warning regarding ipdiscover-util.pl (Perl script); it requires write access
(permissions) to the root directory. This warning message might appear in red. If
we are running it on the Linux/Unix platform and we still cannot see the IP Query
option from the Security pane, then write access permissions might be the cause for
this warning message. Let's set the appropriate directory permissions by using the
following commands:

#chown -R 775 /var/www/html/ocsreports

#chown -R 775 /var/www/html/ipd

Let's check out the results of running the previous commands:

#ls -l

drwxrwxr-x 2 root apache 4096 Oct 30 16:51 ipd

drwxrwxr-x 9 root apache 4096 Jan 26 14:07 ocsreports

Once the permissions are set, this warning message will disappear when looking at
hosts that are not inventoried, and the IP Query option will also appear under the
Security pane.

We can also verify the configured parameter under the Config | Interface tab. Look
for the IPDISCOVER_IPD_DIR folder. This stands for the IpDiscover folder. As
expected, it should point to the location where we actually have the IPD located.

The beauty of the IP Query function is that once it is working fine, it also adds a little
Analyze function next to uninventoried hosts. This way, we can scan one of those
hosts by clicking on it, instead of noting its network address and running a manual
IP Query.

Chapter 5

[135]

Summary
Throughout this chapter, we focused on the mechanism that fuels the OCS-NG
inventory. We learned what separates the uninventoried hosts from inventoried
ones, and how to track as well as analyze these. We elaborated on the IpDiscover
process by explaining the elevation mechanism as well. Now, we know how some
of the hosts become IpDiscover activated.

As there are no two identical infrastructures, we might be required to tweak those
server-side variables that alter the behavior of IpDiscover. Thankfully, those
parameters make sense and are clearly documented. In order to keep our inventory
organized, we might want to define network types and name our subnets. These
custom names and Uids can then be used to categorize the queries' results.

Finally, we have seen how the IP Query function works on Linux platforms that have
the OCS-NG central management servers enabled. It's a useful Perl script based on
nmap and other tools. The web interface makes a really straightforward interface.

The next chapter covers the nuts and bolts of package deployment and remote
execution. In the next chapter, we will see how to get the most out of our OCS-NG
inventory, how to create and deploy packages, customize this process, add another
layer of security by involving certificates, and finally, how to monitor and troubleshoot
the process (if required).

Package Deployment through
OCS-NG

Having arrived at this point simply means that our inventory is together and we
know how to use most of its built-in functions to get inventory-related tasks done.
Each chapter, until this point, covered areas of our inventory solution that are
required to fully comprehend and help us get our jobs done. Now we are going to
continue our journey by presenting one distinctive functionality of OCS-NG: package
deployment and remote execution.

It is not one of the most significant features of the inventory solution, but it is one
of those functions which people expect to see support for. In the IT world, when
there's a centralized server and many agents, we all want to see some kind of remote
execution of commands. This is just an extension of the agents working for the
server. Carrying out these sort of tasks remotely (deploying and launching packages)
cannot be neglected.

The developers included support for this feature because the infrastructure of the
OCS Inventory NG allows for remote execution of tasks. This built-in functionality is
not frequently used as there are remote execution and deployment solutions already
implemented within most environments. However, it's good to know about it, just in
case it is needed.

In this chapter, we will see how to get the following tasks done:

•	 Learn to use the package deployment function
•	 How to build and activate packages
•	 Set up rules of affectation, and pick target computers for the packages
•	 Work with SSL certificates to enhance the security of deployment
•	 Monitor the progress and status of the deployments

Package Deployment through OCS-NG

[138]

Therefore, the goal of this chapter is to learn how to use this function. We must know
that it is an in-built feature, and the mechanism of our inventory has this capability.
When such a situation arises, we shouldn't struggle to find our way around. Each
functionality of OCS-NG must be covered in sufficient detail in order to analyze
when it is worthwhile to use a particular functionality in favor of other methods
or solutions.

Getting to know the package deployment
function
It should not surprise anyone that in this chapter, we are also going to spend most
of our time using the web administration console of OCS-NG. For the first step, we
need to fire up our browser and log in to the web interface. In Chapter 4, Finding your
Way through OCS-NG Features, we read a rundown on each function of OCS-NG, and
we presented glimpses of the package deployment menu.

It is located as the first icon of the yellow action bar. It is called Deployment, and we
have three options under this drop-down menu. Their names are self-explanatory;
the Build option deals with building a package, the Activate option manages the
activation of those already existing packages (if there are any), and with the final
option, we can set up, modify, and remove Rules of affectation.

Here's a screenshot of the Deployment menu:

What happens behind the scenes when a package is about to be deployed? Firstly,
when we create the package, it is stored on the deployment or central management
server. Building a package assumes completing important factors of the process.
Each package must have a priority and an action linked to it. The priorities are
considered when more than one package needs to be deployed. These numbers
range from zero (0) to ten (10).

Zero (0) is the highest priority, and respectively ten (10) is the lowest possible
priority. As expected, the default priority is five (5). Let's assume that there are three

Chapter 6

[139]

packages which are about to be deployed at the same time, say with priorities: three,
five, and eight. The corresponding order will be three (3), then five (5), and finally
the one with priority eight (8).

There are three kinds of action that can be linked to a package:

•	 Store
•	 Launch
•	 Execute

While the store might seem obvious, the other two might be confusing at first.

Storing a package on a target computer means getting the package through to its
destination, copying on the destination, and then extracting its content. Packages are
either ZIP or TAR.GZ. The store action does not link with any other kind of action
other than storing the package on the client machine. It does not execute, launch, or
deal with the contents of the package. No command can be specified here. The only
thing we need to set is the destination path.

Launching a package upon deployment refers to the action of launching an
executable, which can be found inside the package (ZIP or TAR.GZ archive). Opting
for this action requires specifying the name of the executable that must be included
in the archive. This file can be executed with or without parameters. The content of
the package is extracted into a temporary folder. The launch action allows retrieving
the result code of the process.

Executing a package, once again, deals with execution of the specified command
once the package is deployed on the client computer. However, the executable is
not required to be inside the archive. This means that we can execute operating
system-specific commands or any other third-party tool or application that is
already on the target machine. Another major difference is the unavailability to
retrieve result code of the executed command. The said command can be executed
with or without parameters as it does not make a difference.

The obvious advantages of the store versus the other two actions are clear. We often
want to get some files on the target computers. There are no other actions required to
be taken other than getting those files through, that's all. The store action is simple.

The launch action is powerful when we deploy executables or self-extracting
installers. Most third-party application installers support command-line parameters.
As such, we can greatly benefit from their silent execution (for example, /silent) in
the background. A little later, we will present two free installer systems that we can
use to build our installers.

Package Deployment through OCS-NG

[140]

The most significant advantage of the execution action is the ability to run a
command that is not just an executable inside the archived package. In essence, this
is what we call remote command execution functionality of OCS-NG. The rest deals
with package deployment. For this very reason, it gets the package through and
works with its content. This execution action allows execution of commands without
deploying anything.

For example, we might want to run a command that configures something on the
remote machine in the background. Technically, we can do anything related to
remote execution that other third-party tools support. It is up to us to decide when
to use which, as other solutions (such as PsExec on Windows) have grown upon us
over the years.

Every time we create a package, the OCS-NG system includes an info XML file that
describes the package, including which action is linked to it. Besides this information
file, a reference is made in the database. When we activate and/or affect a package or
when the communication server asks to retrieve one of the packages, these tasks deal
with that reference number. Moreover, each package can be split into N fragments.
When we build the package, we can specify the fragment size.

Creating a package: Step-by-step
approach
In this section, we will present a few steps through which we create a package.
The Package builder can be found under the Deployment menu on the yellow
action bar. The first option from the drop-down menu is called Build. It loads
up the Package builder, as shown in the following screenshot:

Chapter 6

[141]

Each package needs to have a Name. This is for identification purposes so that later
on we can recognize the package we are referring to and working with. Let's not
forget to enter something relevant to the package we are planning to deploy. The
Operating system must also be specified: WINDOWS or Unix/Linux. Now, the only
supported Protocol is the HTTP. Future development might expand the range of
protocol support.

The Priority can be set from 0-10, and it works as explained earlier. Next to the File
field, we have the Browse button. Using this button, we need to point to the archive
we want to deploy. In the Action field, we can choose from the three previously
mentioned actions. If we choose Store, then we need to set the Path. If we choose
Launch or Execute, then we need to specify the parameters and/or commands
(or executable) to execute.

The User notifications are self-explanatory. In cases where we need a totally silent
process, we can select No for both the Warn user and Installation completion
needs user action options. The second option asks for user confirmation, and thus
it requires user interaction.

Practically, the latter specifies whether the setup requires the user to go through
some steps of the installation such as selecting an install path, picking some options,
filling in information, and so on. This means user interaction. If this is the kind of
application we are planning to deploy and launch, then it is critical to enable this by
choosing Yes.

The Warn user functionality is more simplistic but nonetheless useful. Should we opt
for that, we need to add text that will appear in a pop-up message box. Moreover, we
can choose how long this window will be displayed and if the user needs to (or can)
launch the deployment process right away, delay, or cancel it.

After clicking Send, we go on to the next step.

The Package builder creates a brief overview and generates the Unique identifier
of the package. This is the reference number and finally digests an MD5 sum in
hexadecimal. In the Fragments size field, we have to specify the size of fragments.
The package is split into numerous fragments that reduces the overall network load
and adds another layer of practicality by downloading only those fragments which
fail to get downloaded (if there are failed ones).

Package Deployment through OCS-NG

[142]

An example of this step can be seen in the following screenshot:

The Fragments size is 512 KB. The file we are about to deploy is the speedfan setup
kit, and it is approximately 1.7 MB, thus we got 4 fragments.

Once that is done, we can hit the Submit Query right away. This is when the
package is created, and it is copied to the central management server/deployment
server in the OCS-NG folder (for example, /var/lib/ocs-inventory-reports/
download/uniq_id_goes_here).

The success notification is shown in the next screenshot:

The Unique identifier is basically the timestamp, and this is the folder to which
the package is copied on the Apache web server.

It should be mentioned here that in the case of command execution, when in the
Action field Execute is chosen, the second window with the fragment size is not
displayed. From now on, there is no package to be split into fragments. In these
occasions, only the XML file called info is created and copied into the timestamp
folder on the central server. The info file has all the necessary information to
execute the said command remotely.

Chapter 6

[143]

Let's see the contents of the package we previously created. As a memory refresher,
we had chosen the Launch action, and we had split the package into 512 KB
fragments. The administration web console calculated the total count of fragments
(four pieces), and decided to split it using the 445 KB size in order to make them
almost equal fragments.

The info file contains the package-specific information, which is useful for the
agents on client computers. This file contains information such as which executable
to launch? Are there any parameters? How to build the entire package (packet size,
and so on.), the MD5 sum to verify integrity, and so on?

Server requirements for effortless
deployment
There are a few important server requirement points that we need to address. These
should be checked before we head further as they can create lots of headaches.

First, we need to check if the web administration console is running through the
PHP engine. When we create a package and browse for the source file, this needs
to be uploaded to the server. This uploading happens via PHP POST. For small files,
this won't create problems, but in order to be sure, we need to check the file upload
settings in the PHP.ini config file.

Please look into the official PHP documentation for more accurate and in-depth
information as this depends on what version you are running. On PHP5, the
configuration file is named php5.ini. The older PHP 4 versions are just defaulting
on php.ini.

The config variables that we need to deal with (modify or add those lines) are given
as follows:

memory_limit = 96M
post_max_size = 64M
upload_max_filesize = 64M

Package Deployment through OCS-NG

[144]

This kind of setup allows the maximum size of one POST instruction (post_max_
size) to be 64 MB. The upload_max_filesize will also be 64 MB. The memory limit
(memory_limit) of PHP reaches up to 96 MB. In most circumstances, these options
are alright during the modern computing era. If we are unsure of what we're doing,
then we can open up security holes by making our PHP engine vulnerable to buffer
overflowing, and/or open doors for miscellaneous activities.

Getting aggressive with server variables is acceptable, if the OCS-NG central
management server is running inside the local network and it does not have access to
the world outside, assuming, of course, that we have a robust monitoring solution and
we know exactly what happens inside the environment. Some attacks do come from
the inside. On the other hand, a bad script (or erroneous) upload can also lock up the
PHP engine if those variables are not fine-tuned. That's why those limits are useful.

Those variables can be set via the settings.ini file as well using the
following commands:

ini_set('memory_limit', '96M');
ini_set('post_max_size', '64M');
ini_set('upload_max_filesize', '64M')

Another warning regarding deployment is that the deployment server (in our case,
the central OCS-NG server) is required to be SSL-enabled. The deployment info
XML file is secured via SSL certificates. As with everything else that works based on
certificates, on the server, we must generate the prerequisite certificate files, and then
spread the private keys throughout the agents. The agents must have a copy of the
certificate to be eligible for deployment. Soon, in this chapter, we will cover every
tidbit regarding this.

Package activation and going beyond
deployment
Now, let's see how we can activate packages. So far we have learned how to create
packages; the next step is activating them. Activating a package means setting up
server-specific information through which agents are able to pull out the packages.
For exemplification purposes, we created a package called speedfan. It has Priority 7
and is composed of 4 fragments.

Chapter 6

[145]

When we navigate to the Activate option from the Deployment menu of the orange
administrative toolbar, the following page loads up:

The table in the previous screenshot is split into two segments to enhance
print readability.

A while ago, we described the process of deploying a package. As a first step, this
info XML file is downloaded by agents through an HTTP Transfer Protocol Secure
(HTTP over SSL, abbreviated as HTTPS). This file is really important because if
someone tampers with this, the entire deployment can not only be broken, but also
manipulated; thus, altering its behavior, injecting the execution of hazardous remote
commands, and so on.

Once this info file is downloaded by agents, it proceeds further. The agent
understands the syntax of this information file, and if it's a remote command
execution, it does not ask for further fragments as there is no package to be
downloaded. In other cases, it knows how many fragments to retrieve, what
is their MD5 sum, their size, and so on. The agent will then grab these fragments
and build up the package. This happens through normal HTTP.

The package activation window gives an overview of how many hosts are not
notified, how many are successfully deployed, and how many have encountered
some kind of error.

Package Deployment through OCS-NG

[146]

Activating a package can be done by clicking on that double-ended arrow mark under
the Activate column. It loads up the page, as shown in the following screenshot:

Here we need to set up the URL of the server that sports the info XML file (HTTPS
server, the one with SSL), and the URL of the server on which the fragments are
stored (normal HTTP server). If we are using a non-distributed OCS-NG setup, then
both URLs are the path of our OCS-NG central server.

The URL we type in the text field needs to be either hostname or IP based. This is the
path through which the agents will contact the server(s) to pull out those files. As we
can see, the unique identifier (timestamp) folder is already attached as a suffix at the
end of the text-field. This is because we only need to type in the following:

 Httpsurl: ocs-server/download

Fragments url: ocs-server/download

Otherwise, we need to type in the following:

Httpsurl: 192.168.1.10:443/download
Fragments url: 192.168.1.10:80/download

Let's not forget that we can use custom ports after the semicolon. The /download
folder must also be specified as the package fragments and the info XML file is
stored inside this folder on the Apache web server's root.

When we click on Send, the administration console verifies whether those URLs
are valid and that the necessary files can be found under those paths.

There is a little Stats icon that deals with statistics. It brings up some percentage-
based statistics regarding the number of hosts that are either not notified yet, have
already been notified but encountered an error, or simply succeeded the deployment
of the package.

Chapter 6

[147]

The deployment notification status can be one of the following:

•	 WAITING NOTIFICATION: Server is waiting for agent communication
in order to notify that there is something to download.

•	 NOTIFIED: Agent has been notified that there is something to download.
Now, it is waiting for the result code.

•	 SUCCESS [code]: Agent has successfully downloaded the package and
launched the command or stored extracted data.

•	 ERR_ALREADY_SETUP: Package was previously installed successfully
on this computer.

•	 ERR_BAD_ID: Agent is unable to download the package because it cannot
find the package ID on a deployment server.

•	 ERR_BAD_DIGEST: Downloaded data has bad digest, so agent does not
execute associated command.

•	 ERR_DOWNLOAD_PACK: Agent was unable to uncompress the
downloaded ZIP or TAR.GZ file.

•	 ERR_BUILD: Agent was unable to rebuild the package fragments.
•	 ERR_EXECUTE: Agent was unable to execute the associated

package command.
•	 ERR_CLEAN: Agent was unable to clean downloaded package.
•	 ERR_TIMEOUT: Agent was unable to download package during

DOWNLOAD_TIMEOUT days.
•	 ERR_ABORTED: User canceled package command execution (you've chosen

to notify him/her, and allowed him to cancel command execution).

We also have a few possibilities to carry out some of the following tasks:

•	 Validating success: This will remove those hosts that have the success
status as we don't need to deal with them anymore. They can be removed
from statistics.

•	 Unaffect not notified: This will unaffect the package on those hosts that did
not contact the OCS-NG central server since it was affected. The package is
not inactivated, nor deleted from the server. The deployment order is just
canceled on unaffected but notified client computers.

•	 Validate all: This will remove all of the hosts from the statistics; it's the same
as clicking validating success and then unaffect not notified.

We can click on each status line to find out more information regarding that status.
Moreover, we need to validate often to clear up the deployment database's log.

Package Deployment through OCS-NG

[148]

Affecting packages: Getting the
packages through
When one or more packages have been activated, we can finally move to the final
step and get them affected on one/more client computers. This can be done in
various ways. One way is to affect some packages on these hosts one-by-one, but
this process is time consuming, and it is only useful when we want to deploy on
only one of the machines.

An alternative approach is affecting a package on multiple computers. In this case,
we are going to use the query toolbar, and perform some sort of search based on
various criteria. We can use the TAG-based search, if we want to affect packages
on every machine that is located in a TAG specified location.

For example, we can also build up some custom search query. The choice is ours. What
is most important is that we have the following Deploy option at the end of the query,
right below the listed table. An example of this is shown in the next screenshot:

We already know that by using the query toolbar, we can generate table-based
queries. At the bottom of these tables, we can locate the Mass processing mini
toolbar with Config, Deploy, and Delete functions.

Clicking on the Deploy link loads up the Affect a package page. On this page, all
the packages that are already activated are displayed. Remember, we first activate
a package, and then we affect them based on which computers we are planning to
deploy the said package.

In the previous example, we could see some part of a search query that returned 24
hosts. We clicked on Deploy, and it brought up the page on which we only have
one package that was activated earlier. It's that speedfan package. We click on
the Deploy icon, which is a tiny little cube under the Deploy column. If there are
multiple activated packages, then we click on Deploy of the appropriate row for the
package we want to affect.

Chapter 6

[149]

An example where it calculates how many hosts were in the processed query is
shown in the next screenshot:

As mentioned earlier, we can also deploy a package on just one of the inventoried
clients. We can do this by bringing up the full inventory screen of such a host. On
this page, we have multiple actions to click, but we will click on the Config icon
(the tool icon on the toolbar), as shown in the next screenshot:

The web console then prints out the configuration information of the agent, but at
the bottom of the table, we can find the Add package option. This loads up the same
screenshot, as seen previously, but with Affect a package on 1 Computer text. The rest
of the process is similar. The following screenshot shows the Add package option:

The mechanism of deployment is quite straightforward. Once a package has been
affected on a host, the next time its agent contacts the OCS-NG communication
server, it gets notified by the server that it has a pending package. The status changes
from non-notified to a notified one. Before this, we can see under the Config page
(where we added the package) the "status: WAITING NOTIFICATION."

Package Deployment through OCS-NG

[150]

This situation can be explained. If we affect a package on a host at hour 23, the
client will start the download the next time PROLOG_FREQ is defined. If there are
more packages, they will be downloaded the next time the PROLOG_FREQ occurs.
The priorities are always taken into account (say, the first one has the priority 1,
and the other, 5).

Managing the rules of affectations
The rules of affectations deal with automatic affectation of packages. These are
useful in the case of redistribution servers when we opt for a distributed OCS-NG
inventory setup, but there might be exceptions to this. This is the third option of the
Deployment menu (first icon of the yellow admin toolbar). By default, there is no
rule. It is shown in the following screenshot:

Should we want to add a rule, the interface is intuitive. Each rule needs to
have a priority. This benefits scenarios in which multiple rules are meant to be
implemented. Under most circumstances, the syntax of an affectation rule is: if
MACHINE VALUE equals ''='', does not equal "<>", or is LIKE, SERVER VALUE,
both the MACHINE VALUE and SERVER VALUE can have one of the following
options: NAME, @IP, IPSUBNET, DOMAIN, and USER.

The next screenshot shows how to define an affectation rule:

Chapter 6

[151]

Setting up more than one redistribution server might require rules of affectations.
Imagine the following situation. We have a redistribution server per IP subnet or
DNS domain. The rule that deals with such a configuration is similar to the
following lines:

Machine Value IPSUBNET = Server Value IPSUBNET

The rule should make sense as it checks whether the machine's IPSUBNET equals to
the server's IPSUBNET. In the case of DNS domain, we of course select the DOMAIN
variable. On another note, if there is no distribution server within the same DOMAIN/
IPSUBNET, then the agent will use the central OCS-NG management server.

Finally, don't forget that if we want to use redistribution servers, it needs to be
specified in the OCS Configuration Redistribution menu. At the beginning of this
book, we kind of assumed a centralized suite, not a distributed one. This information
should be more than enough to make our way around, if we feel the need to
implement this.

Securing the process with SSL
certificates
Now, we will cover the internal working of SSL certificates. As explained earlier,
these are required as they enhance the security of deployment. Those info XML files
are grabbed through HTTP over SSL protocol. We have two options to set up such a
necessary SSL system.

Either we are going to work with self-signed certificates, or we opt for a more
refined solution via the typical Public Key Infrastructure (PKI) scheme, having the
certificate signed by a certificate authority (CA). In the very essence, the public key is
linked with an identity. After that, anyone can verify whether that key really belongs
to that identity. Therefore, it acts as a digital signature.

Describing in detail how the PKI scheme works is beyond the scope of our book.
Chances are if you want to opt for the second methodology (that is having signed
the certificates by a CA), then you either have an internal PKI or, you may have got
yours issued by a commercial signer such as VeriSign or Thawte. We will see that
even if you want to use this option, there is a free certificate authority at CAcert.org.

In the mean time, self-signed certificates should suffice for most environments.
One of the key points to be careful about is the certificate validity period. As the
generated certificates need to be spread around on the clients, we should set up
an extended time. Otherwise, we need to repeat the process of deploying
certificates quite often (each time they expire).

Package Deployment through OCS-NG

[152]

Apache web servers are shipped with sample scripts to generate SSL certificates.
OpenSSL is a free, open source toolkit sporting SSL-related features that work well.
Check out the following URL:

http://www.openssl.org/

Let's see an example of how to generate a certificate with OpenSSL using the
following commands:

 openssl genrsa -out server.key 1024

openssl req -new -key server.key -out server.csr

The first command generates an RSA server private key and a CSR
certification request.

CSR stands for Certificate Signing Request. RSA is a public-key
cryptography algorithm, and its name comes from Rivest, Shamir,
and Andleman.

We will see this in more detail in the next section, Working with self-signed certificates

Working with self-signed certificates
We can generate and self-sign our certificates. The OpenSSL toolkit allows us to
carry out these tasks, and the certificates created by OpenSSL are robust and secure
enough for testing or internal usage.

Generating and self-signing a certificate can be done using the following command:

openssl genrsa -des3 -out server.key 1024

This command generates the server.key, which is a 1024-bit RSA private key. The
algorithm is Triple-DES encryption. The format will be in Privacy Enhanced Mail
(PEM), which is in plain and simple readable ASCII but it is encrypted in Triple-DES.

More information regarding PEM can be found by visiting the
following link:
http://en.wikipedia.org/wiki/Privacy-enhanced_
Electronic_Mail

Now, we will run the following command:

 Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

Chapter 6

[153]

The next step is generating the CSR certificate signing request. Once this is done, we
can either self-sign it ourselves or issue it to a signing requestor service as mentioned
earlier. The latter is the ideal situation. These services can verify the real identity of
the requestor and if they match, then they sign the certificate. As such, the certificate
becomes signed by the said CA authority. First, let's see how we can generate that
CSR file by typing the following command:

openssl req -new -key server.key -out server.csr

Once this is executed, OpenSSL will ask you for the X.509 attributes. Those
variables need to be filled in and attached to the certificate. The common name
must be the server hostname that is going to be protected (for example,
ocs-server.mydomain.com).

The list of X.509 attributes is as follows:

•	 Country name (two letter code)
•	 State or province name (full name)
•	 Locality name (for example, city)
•	 Organization name
•	 Organization unit name
•	 Common name
•	 E-mail address

After completing the previous steps, the CSR file is generated. As we opted for the
Triple-DES encryption algorithm when generating the private RSA server key, we
end up having to enter the passphrase each time the web server is started. Therefore,
we need to remove the Triple-DES encryption. Alternatively, of course, we could
have just neglected that option (-des3) when we generated the key in the first step.

Let's create a backup of our server key and then remove the Triple-DES encryption
using the following command:

 cp server.key server.key.bak

openssl rsa -in server.key.bak -out server.key

The server.key does not have the Triple-DES encryption anymore. The server.
key.bak still has it. We need to specify the owners and permissions so that the
unencrypted RSA private key does not get in the wrong hands (say, allow only root
access). As always, in case of internal usage, these kinds of strategies might work as
long as we are very careful.

Package Deployment through OCS-NG

[154]

Finally, let's self-sign the certificate. This is what we have been waiting for! We can
do this by running the following command:

openssl -x509 -req -outform PEM -days 730 -new -key server.key -out
server.crt

A general prerequisite for Apache is mod_ssl, but we dealt with that in Chapter 2,
Setting up an OCS-NG Management Server. Therefore, we just copy the certificates in
the Apache config folder by typing the following commands:

 cp server.crt /etc/httpd/conf/ssl.crt
cp server.key /etc/httpd/conf/ssl.key

Verify the path of these certificates inside the mod_ssl configuration
(httpd.conf), and check whether the engine for this virtual host is enabled.
If not, set these accordingly.

See the following examples of commands:

 <VirtualHost _default_:443>
 SSLEngine on
 SSLCertificateFile /etc/httpd/conf/ssl.crt/server.crt
 SSLCertificateKeyFile /etc/httpd/conf/ssl.key/server.key

</VirtualHost>

In our example, we have set the previously mentioned lines for our virtual host.

Now let's restart the Apache web server daemon using the following command:

/etc/init.d/apache2 restart or /etc/init.d/httpd restart

This can also be done on a Windows operating system. The XAMPP Apache Web
server suite comes with a script that generates self-signed certificates. The script
automates the process as we have the same OpenSSL toolkit in the \bin\ folder
of the \xampp.

...\xampp\apache\makecert.bat

This means that, technically, we can follow the same steps as presented earlier
under Windows as well, but if there is a script that does the entire job for us, we
can use it. By default, it creates a key that is valid for 365 days (one year). You can
edit this part of the .bat script. Keep in mind that the script also asks you for those
X.509 directive attributes.

Once it is finished, the certificates are already installed as well. We just need
to restart the Apache 2 service (that is all). As soon as you do that, our server
is ready for deployment.

The server.crt needs to be renamed to cacert.pem and copied to each
agent's folder.

Chapter 6

[155]

Working with PKIs that have certificate
authority
The only major difference between signing a certificate ourselves or sending it to a
CA is that we don't self-sign the CSR file. The first step of generating the RSA private
key is similar. Once that is done, we generate the CSR file, which means the second
step is exactly same. Instead of creating the CRT (self-signed) file, we send the
request to the appropriate certificate authority.

The validity test is usually receiving an activation link in your e-mail, then on
clicking on the link, you pass the test. As a result, you end up with the CRT file
signed by the certificate authority. The remaining steps can be carried out in the
same fashion. Both of the keys (RSA private key and signed CRT) need to be copied
to the appropriate places. The mod_ssl configuration part needs to be checked (see
paths), and Apache 2 needs to be restarted.

Pay attention to the SSLCACertificateFile variable, and comment out (with '#')
the previous line (remember, we previously used SSLCertificateFile when we
self-signed).

SSLCACertificateFile /usr/share/ssl/certs/ca_root.crt

On a Windows operating system, we can generate both the RSA private key and the
CSR request using the following command. Fire up a command-line window, and
browse to the \xampp\bin\ path, then run the openssl command like this:

\xampp\bin\openssl req -newkey rsa:1024 -outform PEM -out server.csr
-keyout server.key -keyform PEM -days 730 –nodes

The ca_root.crt file needs to be renamed as cacert.pem and copied into the install
folder of agents on every host. This can be done with a simple PsExec command or
login script. The agents will match that certificate with the server certificate.

Getting the certificates deployed on agents
Regardless of the solution we have chosen, the signed certificates need to be
deployed on the agent's installation folder on every host. If we self-sign our
certificates, then we will end up renaming the server.crt file to cacert.pem.
If the certificate is signed by a CA, then the file we receive, that is ca_root.crt,
and this root key gets renamed to cacert.pem.

The name of the certificate must be exactly cacert.pem. This is the name of the
file that the agent will look into for its installation folder. If it is not found, then
no certificate can be used.

Package Deployment through OCS-NG

[156]

One of the easiest solutions to get the certificate file on every client's install folder
is to ship the agents with this certificate included when we first set them up on the
client machines. In these situations, we can use the OCS-NG packager to create a
bundled agent installer with the certificate file as well, but this is not the only option.

We can use a login script or select our favorite remote execution tool. The script
needs to be stored locally on one of the servers, then the login script would check for
the existence of the cacert.pem file. If it is found, it does nothing; if it is not found,
then it copies from that publicly available path into the agent's install folder. Once
again, we are talking about internal usage. Let's run the following commands:

if exist "%ProgramFiles%\OCS Inventory Agent\cacert.pem" goto SCRIPT_END

cp \\public_serv\shared_folder\cacert.pem "%PROGRAMDIR%\OCS Inventory
Agent"

:SCRIPT_END

The preceding script checks for the existence of the cacert.pem file. It is using
%ProgramDir% environment variables to get the exact path of the program files. If
it is found, then it jumps to the Script_End label. This label begins (and ends) at
the end of the batch file. It literally does nothing. Otherwise, it copies from shared_
folder of public_serv and shares the said cacert.pem file with the OCS inventory
agent installation folder. Using a remote execution tool, such as PsExec, this can be
done with a similar command line:

psexec \\targetmachine -u domain\administrator -p password -n 20 -c -f
get_cert.bat

We could also try to write a Windows Script Host (WSH) visual basic shell script.
The previous command PsExec we just saw gets the said get_cert.bat file on \\
targetmachine\Admin$ and executes it.

Finally, the xcopy command could be used as well, if all we want is to just copy. This
may not be one of the most robust solutions, but if the file is found, it won't overwrite,
provided that we do not specify such an option when executing the command.

It would be better if we were to write a similar batch script as follows:

..@echo off

..set source=%1

..for /F ""tokens=1-3"" %%f in (targets.txt) do (

....net use \\%%f /u:%%g %%h

....xcopy /z %1 \\%%f\targetdir

....net use \\%%f /d

..)

Chapter 6

[157]

This one works with targets.txt from which it gets the IP address (or hostname) of
the computers and the username/password that it needs to log in. If we have a local
administrator on these machines, chances are they are the same. This script can be
used without any mods.

The targets.txt will look something like this:

 192.168.1.24 localadmin localpass

 192.168.1.28 localadmin localpass

192.168.1.37 localadmin localpass

These are just sample scripts, and we should do our best to modify them appropriately.
The key behind this is that we open up the network share, and then we are able to
copy the file to it. It's as simple as that! The script can be modified, so it only asks once
for the administrator username and password. All in all, here we're given plenty of
options to get the certificate on agents

Summary
In this chapter, we got into the nuts and bolts of package deployment and remote
command execution functionalities of the OCS Inventory NG suite. It's a client-server
(agent) model and remote execution is possible via those agents running on every
inventoried client computer.

Over the course of this chapter, we learned how to create a package, the kind of steps
we need to go through in order to build one. Once a package is done, it needs to be
activated. To add a layer of security, the OCS-NG deployment mechanism is secured
with HTTP over SSL. The metadata info XML file is retrieved via HTTPS protocol.

While a package is activated, it does not mean it has been deployed yet. As such, we
learned how to select the target computers on which an already activated package
will be deployed. This technique is called affecting the package on hosts.

Finally, we learned how to generate SSL certificates and get them either signed
or self-sign them ourselves. We pondered on a few solutions to get the certificates
on agents.

The next chapter will literally be the icing on the cake as it discusses GLPI. Our
inventory solution is already powerful and feature laden. Yes, that's true, but there
is always room for improvement. Chapter 7, Integrating OCS-NG with GLPI explains
how to integrate OCS-NG with other tools. GLPI will be running on top of our
inventory and adds even more features.

Integrating OCS-NG with
GLPI

OCS Inventory NG is a powerful inventory platform that has plenty of capabilities
right out of the box. As we progressed with the book, we learnt how to build the server
foundation and spread the agents across the infrastructure. Each chapter discussed
some aspects of OCS-NG, and we gradually got into the depths of it. The structure
of the inventory that OCS-NG creates opens up possibilities for extensions.

Everything that the agents gather is stored in the OCS-NG database. This means
that by taking one step further, there could be applications that run on top of our
database, using the data that is already acquired and stored. In this chapter, we will
present and overview the benefits of GLPI. This is an open source application that is
an IT Information Resource Manager. It deals with the organization and management
of all kinds of IT assets.

We will see how this extension can make our lives easier by supercharging our
already robust and feature-laden OCS-NG inventory suite. It doesn't change
anything. OCS-NG can be used individually. GLPI builds up its own database from
ground up by importing the data of OCS-NG. Thereafter, it is able to synchronize to
keep the content up-to-date.

In this chapter, we will cover the following topics:

•	 Introduce GLPI overviewing and what it brings to the table
•	 How to set up GLPI and configure it to import OCS-NG database
•	 Learn to use the features of GLPI to track and manage IT assets
•	 Understand the report generation mechanism and see how to view statistics

Integrating OCS-NG with GLPI

[160]

•	 Carry out administrative tasks inside GLPI, fine-tune its configs, and set
up users

•	 Get the most out of software license and issue tracking/helpdesk functions
•	 Go one step further and see how GLPI can also be extended with plugins

By now, we already have a sense of the tasks we can do with the help of GLPI.
Tedious tasks such as administering an inventory can become easier with this
combo of OCS-NG and GLPI. Throughout this chapter, we will try to cover most
of its aspects. However, the suite is extensive enough that we cannot possibly cover
each tidbit within a chapter.

Introducing GLPI: IT asset management
on steroids
It goes without saying that inside any IT-centric environments, the hardware
components need to be organized and administered. These assets, such as computers,
monitors, phones, and so on need to be tracked, inventoried, monitored, and
maintained. Some kind of application is required to track everything and update their
status while servicing. GLPI comes to serve this scope, aside from many others as well.

The name of this application is a four-letter acronym of Gestion Libre de Parc
Informatique. It is an open source project of French origin. The project's website
can be accessed at http://www.glpi-project.org/.

GLPI is a robust and well-rounded product. It is used all over the world, and at the
time of writing, over 1,650 entities reported publicly that they are using GLPI in their
IT department. According to the reported numbers, almost one million computers
are administered.

Therefore, these should make us sufficiently confident to rely on this application.
If in doubt, you can give it a try. If you don't like it, feel free to uninstall it without
harming your existing OCS-NG data. It's as simple as that! It does not cost
anything—just a few minutes.

In essence, GLPI has an administration interface that provides easy access to tasks
that deal with its database. As it is an IT Information Resource Management software
suite, we need to build its database. This database is going to be the inventory. Once
this database reflects the reality, we can do anything within the admin console.

Chapter 7

[161]

The somewhat tougher job is creating the database, right? We can manually add
entries, set up templates according to which we pre-specify some form field values,
and so on. But these are still exhaustive. The good news is that we already have
an inventory database. GLPI can mass import the OCS-NG inventory into its own
database format. This way, the actual OCS-NG database remains intact but allows
you to use GLPI.

This can be done seamlessly with an OCS mass importer plugin. We will cover this as
we arrive to that part. Right now, let's focus on the benefits of using yet another asset
manager suite as well. For some of you, this dilemma might pop up. As we have seen,
OCS-NG already fulfils our needs, so why should we bother with another resource
manager? To keep them updated, synchronized, and all that? Good question.

Well, it is up to us to decide by weighing the benefits. The overall setup of GLPI
should not take more than five minutes as the AMP (memory refresher: Apache,
MySQL, PHP) solution stack is ready. It's not heavy on resources, so we can install it
on the central OCS-NG server. If we opted for a distributed OCS-NG configuration,
decide on which server you set up to balance out the load. By itself, GLPI needs an
Apache2 web server with PHP support and MySQL.

Drifting back to its set of features, aside from an extensive list of inventoried assets, we
can also associate the items with extra information such as location, costs, technicians
who are responsible, and so on. We can include vendors and manufacturers and
then link them together. All these help the IT department's staff to organize a rather
diversified environment.

Tracking the status of an asset is valuable. We can flag these as faulty, sent to
servicing, or asked for an RMA. By having associated to the appropriate vendor, we
can query its contact information (such as name, phone number, address, and so on)
right away. If we have more than one supplier (say, one dozen), then taking note of
everything is a huge deal.

Consumables are yet another sticky area that is quickly delegated from IT
departments. Tracking the different types of consumables is often handled by
assistants or suppliers. However, if we have a centralized solution, we can get
notifications such as when our stock is running out, from which vendor to order,
and so on. Everything can get easier. The location fields are especially useful in the
case of large companies (multiple floors or dozens of offices).

Should we have the same type of multifunctional printers on every floor, we can
easily label these accordingly in the location field. Such as the printer003 inventory
number is situated "on the back of fourth floor, in front of the PR department."

Integrating OCS-NG with GLPI

[162]

The incorporated helpdesk and issue tracking functionalities are somewhat expected.
If we have an application with which we track and manage IT assets, then
implementing the helpdesk isn't far away. GLPI is multi-user by its nature. We
can set up user levels such as administrator, technician, and user. The users can
post issues and/or request service. The GLPI platform handles the notification of
administrators and technicians automatically.

At first, if no rules are set up, the administrator receives the ticket and needs
to deploy the task to one of the technicians. Once the ticket is associated with
a technician, its status can be further tracked by both the technicians and the
administrators—obviously, the issuer user as well. The follow-ups are received
only by the technician if set up that way.

The notification system is not only used in the case of helpdesk tickets, but also in
running out consumables as mentioned earlier. The GLPI suite sports enhanced
license tracking features. One way is automatically detecting the software running
on a machine (this is imported via OCS-NG), but the advanced way is monitoring
the usage of licenses. We often have N kinds of software licenses; tracking their
count seamlessly is necessary.

Some licenses are volume license, others are OEMs. Some licenses are life-long, while
others are timeline based. GLPI can deal with all of them, and if we set up the count
of licenses within our portfolio accordingly, then we can receive notifications when
their count is running low or they are soon to expire.

Generating reports and statistics is something that a system administrator needs to
know from where to pull out. We're required to generate reports on maintenance
histories, user logons, status of assets, financial contracts, and basically anything
else. GLPI supports various export formats for these reports such as PDF, CSV, SLK,
or XML.

Its search function is advanced as well. We can search based on any column information,
including status, vendor, history, and all of these "new" variables when compared to
OCS-NG. When displaying results, we can widely configure the fields to fit our needs.

Getting familiar with the web interface of
GLPI
The user interface of GLPI is straightforward. It comes in 22 languages.

The main menu bar is long and sports seven drop-down menu items. In the next
screenshot, we can see four of these menu options. In order to maintain visibility, we
have split everything into two segments. In a printed book layout, we cannot really go
further than 800 pixels in width. In real life, you will see everything merged together.

Chapter 7

[163]

The following screenshot shows the left part of the toolbar with the first four
menu items:

The Inventory is where we can deal with the inventory per se. This is where we
add, remove, edit, or search for inventoried assets. The place where we track and
manage the assets is also here. The Assistance option is also self-explanatory. Under
this drop-down menu, the Helpdesk, Tracking, as well as Planning and Statistics
functions are situated. Planning is nothing more or less than a basic scheduler.

The Management part is where the "paperwork" would go. Under this option, we
can find the Contacts, Suppliers, Contracts, and Documents functions. We set up
and modify valuable information related to these items. On the Tools option, we find
Notes, our Knowledge base repo, Reservations, Reports (where we generate them),
and OCSNG-related direct tools.

The second part of the toolbar, as shown in the next screenshot, is situated right next
to the part of the screen shown in the previous screenshot.

Integrating OCS-NG with GLPI

[164]

Here we find the other three menu options: Plugins, Administration, and Setup.

Under the Plugins menu, we find the name of the plugins we have installed and
activated. Not every plugin will have its own menu option under that drop-down
menu. In our case, we have a few plugins, but only those two have their own menus:
Cacti and Objects management. Under basic setups, there is nothing under Plugins.
This is to be expected.

The Administration menu is where administrative tasks are rolled into. This is
where we set up users, or import them via LDAP, add and/or modify groups,
entities, rules, dictionaries, profiles, transference; reach data (backup and restore)
and logs-related tasks.

The final Setup is where we configure the display of GLPI, document types,
how OCS-NG mode is set, and lots of configuration regarding notifications,
authentication, and so on.

Setting up GLPI on top of our OCS-NG
server
There are a few prerequisite server components as mentioned earlier. This section will
assume that our intention is to install GLPI on a server that has the full AMP solution
stack installed, configured, and running. The standard solution that is supported by
most distribution communities is installing software via their official repositories.

Chapter 7

[165]

On various Linux distributions, this is possible in the case of GLPI too. There are
some repos that contain the OCS-NG + GLPI combo as one package. If you prefer to
use the package manager to keep things consistent, then just check out your list of
supported applications. If GLPI is present and its version is at least recent, then we
say go for it. Choose the method that you find the most comfortable.

The latest version of GLPI can be found at http://www.glpi-project.org/spip.
php?article41. If the site changes its structure, we can still rely on the main page,
and then click on the Downloads section. Don't be scared if the site loads up in
French at first. On the top-right corner, we can select either French or English.

The latest version at the time of writing is 0.72.3. It's archived in TGZ (tar.gz).

We can download it via the basic wget command or with our favorite browser.
We can find all of the project archives in the following folder available online:

http://www.glpi-project.org/IMG/gz/

As such, we can download the currently latest version with the following command:

#wget http://www.glpi-project.org/IMG/gz/glpi-0.72.3.tar.gz

And we extract the contents into the /var/www folder or to your web server's root
folder, by using the following command:

#tar xzvf glpi-0.72.3.tar.gz

The setup has an automated installation script that is web based. The installation
process begins when we visit the URL http://our-server/glpi for the first time.
Once it finishes, and assuming the setup finishes successfully, it won't reappear again.

But before we type in that URL and start the setup, a few points need to be
mentioned. The setup needs to create and work within the MySQL server. It needs to
create its own database. We need a user with sufficient privileges to do so. The script
also needs to write to setting files, document files, session files, and even cron files.

In order to meet these requirements, we are going to give '777' permissions to two
folders as follows:

#chmod 777 config/ files/

By now, we should have everything ready to launch the setup.

Nevertheless, the installation script asks for the root administrator of MySQL to
create its own database. We allow this by launching the setup at this time and then
supplying it with the required username and password (root and its password)
or we do this before. Alternatively, we could supply the required username and
password before launching the setup.

Integrating OCS-NG with GLPI

[166]

The more secure approach is by creating the database ourselves. This way, we
can be sure of what we are doing. We also set up two new users, one with more
permissions to be able to write inside the GLPI database and another one to use for
OCS synchronization. The latter user will have only minimum "read" rights on the
ocsweb database.

The installation instruction from the Remi's blog gives us an example of this:

http://blog.famillecollet.com/pages/OCS-GLPI-en

The following MySQL command snippet performs the the tasks just mentioned:

mysql -u root -p rootsecret
mysql> CREATE USER 'glpi'@'%' IDENTIFIED BY 'glpisecret';
mysql> GRANT USAGE ON *.* TO 'glpi'@'%' IDENTIFIED BY 'glpisecret';
mysql> CREATE DATABASE IF NOT EXISTS `glpi` ;
mysql> GRANT ALL PRIVILEGES ON `glpi`.* TO 'glpi'@'%';
mysql> CREATE USER 'synchro'@'%' IDENTIFIED BY 'syncsecret';
mysql> GRANT USAGE ON *.* TO 'synchro'@'%' IDENTIFIED BY 'syncsecret';
mysql> GRANT SELECT ON `ocsweb`.* TO 'synchro'@'%';
mysql> GRANT DELETE ON `ocsweb`.`deleted_equiv` TO 'synchro'@'%';
mysql> GRANT UPDATE (`CHECKSUM`) ON `ocsweb`.`hardware` TO 'synchro'@'%';
mysql> FLUSH PRIVILEGES;
mysql> exit

A few notes regarding the previous sample: The name of the database we create for
GLPI is called glpi. The first user is going to be called glpi and it has glpisecret
as the password. This user will have all privileges on the glpi database. The other
user we create, that is, the synchro user, will have limited privileges (usage, select,
delete, and update) on ocsweb database. The password of the synchro user is
syncsecret. At the beginning of the script, the root and rootsecret are the root
user and password to launch the MySQL shell.

Please don't forget to replace these passwords with the actual ones! Do not attempt
to create these two users with those sample passwords.

Moving on, we can now finally execute the web-based installation script. We can do
this by navigating to the following URL:

http://our-server/glpi

The installation page loads up. The first page asks us to select our language. The
default language is English. We click on OK and the next step follows. The license
agreement is displayed, and once we go through it, we should accept it. The setup
then continues.

Chapter 7

[167]

We are asked whether we want to install or update GLPI. Unless we are updating
from a previous version of GLPI, we need to pick installation. This way, the data
imported by GLPI will be the default one (for example, users). Moving on, the setup
script will check the compatibility with your server environment. This is when it
checks those permissions, the existence of PHP parser, MySQL extension, sufficient
memory, and so on.

Everything should be alright. If this is not the case, then the notes are clear enough
for us to recognize what's the trouble, where and how to fix it. Assuming this
succeeded, we click on Continue, and the setup follows along.

This is the page where we need to supply the database connection parameters. If the
MySQL server is located on the same server where we are installing GLPI, then we
write "hostname" to the MySQL server field. The MySQL user and password fields
need to be filled appropriately. If we followed a safer approach, like the one from
Remi's guide, then we need to enter the glpi user and its password.

The next step asks for the database connection details. We can create a new one or use
an existing one. Once again, if we have already created the glpi database, then we
select this. Otherwise, we let it create a new database called glpi or anything else.

Next, the setup tests the connection and it finishes the configuration files. The setup
is verbosely logged, so we know what has happened in the background. The final
step just displays the default logins. The admin account is glpi/glpi.

Alright, the setup is finished. Now, by visiting the URL of http://our-serv/glpi,
the setup is not going to be displayed anymore. The following login screen greets us:

Integrating OCS-NG with GLPI

[168]

Configuring GLPI to integrate with the
OCS-NG mode
At the beginning of this chapter, we presented GLPI as an individual resource
manager of IT assets. By default, the OCS-NG mode integration is not enabled. This
means that we need to activate this OCS-NG mode and then configure the database
connection parameters.

First, let's navigate to the Setup from the top menu bar and then pick General.

The following window loads up. Right now our purpose is to activate the
OCSNG Mode. We can find this under the Restrictions tab. There are lots of other
configuration variables, and depending on your preferences, you can take a glance
at them.

The following screenshot explains what we are talking about:

Moving on, we need to configure the database connection parameters.

We navigate within the toolbar to the Setup | OCSNG Mode. Now we select Yes
in the Acivate OCSNG mode field after which we have to click on the Hostname.

A new page is displayed that asks for the name of the OCS server (we can
type anything), the hostname of the OCS database (ocsweb, if default), and
the username/password credentials.

Once we type in these details and select Post, the connection to the OCS-NG database
will be tested. It also checks whether the configuration and version of OCS-NG is valid.

Chapter 7

[169]

We can see how to configure these on our sample setup, shown as follows:

We should also go through the other tabs of this menu. The Import Options specifies
the way GLPI imports data from OCS. Items can be managed globally or unit-wise
as is. Managing items globally is known as "global import" while the latter is known
as "unit import". This is the place where we can limit the import of specific OCS-NG
TAG items. Say, we have different locations, the central OCS server is the same, but
we want to import only one location.

In the General informations, we can select the type of data we want to import,
including computer and components specifications and even OCS administrative data.

Under the Link tab, we can configure how automatic connections are created.
We can set up the existence parameter of a computer. A link means associating a
computer from GLPI with the same computer of OCS-NG. This way, the changes
are reflected in GLPI.

Now we can go to the Tools menu and select OCS-NG. We can set the OCS-NG
server address to localhost in our case because both GLPI and OCS-NG run from the
same physical server machine.

Integrating OCS-NG with GLPI

[170]

Extending GLPI with plugins
GLPI is a modular application and it allows the usage of plugins. The tricky part is
that the plugins are officially supported, meaning you cannot really get your hands
on plugins that are not supported. However, with this comes the guarantee that
they will work without any problems. We can find an updated list of plugins at the
following URL:

http://plugins.glpi-project.org/spip.php?lang=en

Right now there are a total of 87 plugins ranging on various areas such as Inventory,
Network, Management, Reports, Data, Export, Helpdesk, Import, Calendar,
Appliances, Buying, Entities, Graphs, Logs, Meta-plugin, Snort, Syslog-ng, Web,
Accounts, and Ocs-ng.

When we select a plugin, we can find its description, state, languages, and lots of
other vital information. The details of the OCS Import plugin are attached below it,
which is by far the most frequently used plugin. It deals with automation import of
OCS-NG.

Of course, we can use the manual import or rely on the pseudo-cron job that the
GLPI does by default, but there are dedicated OCS-NG import plugins as well.
The pseudo-cron job is launched (to synchronize) each time there is activity on
the remote end.

Chapter 7

[171]

When we download a plugin, it comes inside a .tar.gz archive. Uncompressing this
archive leads to a subfolder that is the name of the plugin. The contents of the plugin
are inside that directory. Thereafter, every plugin will have its own directory. There is
a plugins folder inside the /glpi/ folder. On default, this is on the following path:

/var/www/glpi/plugins/

We are required to extract and copy each plugin within its own folder inside the
plugins folder. This process should make sense, as it's quite straightforward. Once
we placed the plugin inside, we need to log in again to GLPI—this means log out
and log in. Every time we log in to GLPI, it re-checks the contents of the plugins
folder and refreshes its list.

By navigating to the Setup | Plugins from the top menu bar, the following list
is displayed on the screen:

This list changes from setup-to-setup. Our example here has six plugins inside the
folder. It is important that the newly extracted/copied plugin appears within the
list. Then we can work with it. We have a few actions available: install; then activate
or deactivate, or uninstall. Obviously, when to use which action is self-explanatory.
When you install a plugin, it means that its setup is launched, its requirements are
checked, and so on—but it isn't functional.

At first launch, after a new plugin is installed, when we navigate to the Setup |
Plugins, we might be greeted with a message that notifies us that our newly installed
plugin needs to be configured. Then, clicking on its hyperlink leads us to the initial
configuration. The Select a plugin to configure message appears and your plugin
appears as the choice.

The advanced plugin configuration page can be reached from Administration
Setup | Plugins, and then click on the name of the plugin. It should be noted
that not every plugin has an entry here. Only those plugins that have configuration
options have an entry.

Integrating OCS-NG with GLPI

[172]

Always check out the official plugin repository as it happens that some of the
plugins get depreciated after the release of a new version. Their functionality might
be implemented into GLPI by standard or simply the plugins structure doesn't fit the
changes introduced into GLPI. If this is the case, then the plugin may or may not be
developed again in order to release a new version.

Using GLPI to track and manage
inventory assets
The way we use GLPI depends on our needs. The framework is flexible enough, and
it ends up just as useful as we make it. Should we decide to use only 10 to 20 percent
of its capabilities and features, then we might claim that GLPI isn't worth the time. It
all depends on our requirements. This chapter focuses on describing the possibilities
and features that GLPI sports. We then know where to find them and how to use
them, if we want to.

Logging into the central web console gives us a welcome screen. This is customizable
as well. We can select the kind of things we want to see inside personal views. Either
way, the global view usually gives a sufficient idea of what has happened since our
last login.

Check out the following screenshot for such an example:

Chapter 7

[173]

We can find an up-to-date status of contracts, tickets, additions (new entries into
the database), planning (remember—this is the scheduler), personal notes, and
latest events.

In order to configure what and how many items to display at pretty much
anywhere in GLPI, we can set these parameters at Administration | Setup |
Display Configuration.

There are two kinds of notes that we can work with, namely, personal and public
ones. Super admins can set up public notes and every user can see them, while
the personal ones are private and hence are visible only to you. These notes can
be added into the planner.

In our day-to-day lives, we are only going to view the inventory. Yeah, that's
right. Why would we want to create an inventory if not to view and administer it?
There are multiple ways we can visualize the inventory, based on our (searched)
parameters. We can also configure the behavior of displayed tables.

We can modify and alter the inventoried variables of each item, one-by-one, or
perform some massive actions on a selected list. The entire user interface is intuitive.

A descriptive user guide on the central console can be found at the GLPI wiki:

http://www.glpi-project.org/wiki/doku.php?id=en:manual:admin:centralh
elp_en_gb

The following is a screenshot of an inventory page. This is just the left side of
the entries.

Integrating OCS-NG with GLPI

[174]

And here is the right side of the inventory page. Due to resolution restrictions, we
have split the screenshot into two segments. We can add/remove columns in order
to fine-tune to our needs the kind of variables we're always looking for. Our setup is
quite common and suffices for most environments.

We are not trying to explain how to use GLPI, but rather briefly, we are giving an
idea of the useful tasks that can be done with it, which may or may not be done that
easily with OCS-NG alone. So we skip many "how to use" elements. Please refer
to the official GLPI documentation (known as Doku/Wiki) and make sure you go
through it:

http://www.glpi-project.org/wiki/doku.php?id=en:welcome

Another interesting concept that GLPI does amazingly is the detection of connections.
We call these direct connections, and they mean a connection of a peripheral
component or device to a computer. It detects the connection of monitors, printers,
cameras, phones, and so on. We can manage these connections as well as track the
history of a device.

The network connections are handled in the same way. GLPI calls these as network
ports and it assigns to them an IP and MAC address. When they are interconnected,
we can see which port is connected to which—usually this is the case of a computer
and a switch, for example. It supports the addition of VLANs as well.

Chapter 7

[175]

The beauty of software management is thanks to the enhanced license tracking
functions. We can do basic software auditing with OCS-NG, but the automatic
count of licenses and their management and other such things is only possible
if we use GLPI. This is going to be covered in a later section.

Apart from figuring out what kind of equipment is connected to a computer
(by following the connections) or auditing the software that someone installs
(software management) we can also track the lifecycle of a machine. This is
vital from an inventorying perspective.

At first, the device (for example, a computer) is collected and placed into the
inventory. GLPI grabs all of its characteristics, and we can link more information to
the item as well. Generally, we have the choice to monitor the following parameters
apart from technical specifications:

•	 Management information: User, group, responsible technician, location,
inventory number, and so on

•	 Network information: Network, port, MAC address, IP address, VLAN,
and so on

•	 Financial information: Acquisition date, warranty time, amortisation,
supplier, vendor, vendor's contact information, contract info, licenses data,
and so on

The management of duplicates eliminates the possibility of redundancy. If a computer
gets replaced, GLPI auto-detects this by constantly checking the parameters of the
computer name, serial number, and MAC address. Should a duplicate be detected,
we are asked for a merge action. Computers do not disappear from the inventory.

If a computer is removed from activity, meaning it 'dies', then its status won't get
updated any more, but it does not get deleted. Nothing will happen to it. We can find
out historical data regarding it at any time. If we want to delete a machine, then we
can do so by sending the item into the trash. Fortunately, this does not delete either, it
marks the item as 'deleted' but we can still bring these back to life and query for these.

The tracking of consumables and cartridges is beneficial. It is important that when
we define a cartridge type, we also specify and take into account with which printer
it is compatible. First, we define the type of consumables, and then we can add
different models of that element under that category. The financial information can
be associated per element.

The default threshold for consumables and cartridges count can be set at
Setup | General. However, this value can be modified for each type of
consumable individually.

Integrating OCS-NG with GLPI

[176]

Carrying out administrative tasks with
GLPI
The most important administrative tasks deal with users. GLPI is a multi-user
environment. Therefore, we need to set up the users. The default users are
recommended to be removed as well, except the helpdesk one. There are four
kinds of user levels:

•	 Super Admin: No holds barred full access
•	 Admin: All permissions to everything except "Setup"
•	 Normal: Read-only access to every part of GLPI
•	 Post-only: Helpdesk section + Reservation + Viewing the FAQ

As expected, we have the possibility to add users manually. However, if we want to
implement and use GLPI on the organization scale, then we have to set up each user.
If we don't plan to use the helpdesk and tracking feature, then perhaps this might
not be necessary. Carefully evaluate the needs. If only the IT department members
and financial department/management staff wants access, then those few people can
be set up manually.

Let's navigate to the Administration | Users drop-down menu. Here, we can set up
new users, list the existing ones, and modify their attributes.

The following screenshot gives a sense of what to expect. As a cherry on the top of
the cake, we can monitor and audit the history of a user—what did he/she do, when,
and how. This is great—it gives another layer of security by allowing us to take a
glance at technicians.

Chapter 7

[177]

Alright, moving on with the multiple user import scenario, thankfully there are
solutions. GLPI supports LDAP authentication. This also makes it possible for
Microsoft Active Directory. Once enabled, the users are created (imported) inside
the GLPI database too. The beauty of this is that we can log in via the GLPI users or
via the LDAP authentication mechanism. This entire bravado needs the PHP's LDAP
module on server.

In order to implement this, let's jump to the following on the menu bar: Setup |
Authentication | External Authentication. The entire process of how to do this, the
different kinds of connection modes that are highly depending on your LDAP/AD
structure are all documented in the GLPI Wiki. For more details, please refer to the
following URL:

http://www.glpi-project.org/wiki/doku.php?id=en:ldap

Another administrative task apart from the management of users is taking care of
backup. It is plain and simple common sense that inventories need to be backed up.
This applies to the physical world as well—building gets on fire, documents get
compromised, and you name it. It's better to be safe than sorry. GLPI incorporates
an inbuilt SQL dump function.

We can find this at Administration | Data. It can create two kinds of dumps, SQL
and XML. The SQL dump is pretty simple—it's the same one, and we could do with
a one-liner MySQL command to dump the GLPI database from a console terminal on
the server. The second one is in an XML format. The advantage of using the inbuilt
backup is that we can perform these tasks, assuming we're privileged to do so, inside
a web browser.

Most administrators like to be in charge of updates. In the Extending GLPI with plugins
section, we explained how the "pseudo-cron" job synchronizes GLPI with OCS-NG.
It detects when there is some activity and then launches the task. We can set a task
for this in crontab instead of needing to rely on that ambiguous activity-detection
rate. GLPI comes with a PHP script that does this synchronization—it's called cron.
php. It is scheduled to run every five minutes.

*/5 * * * * /usr/bin/php5 /var/www/monsite.com/glpi/front/cron.php &>/
dev/null

Integrating OCS-NG with GLPI

[178]

Generating reports and statistics with
GLPI
A centralized inventory solution must have the ability to generate reports. Statistics
are also useful in certain situations, if we need to bring up some points and back up
our assumptions. Statistics are largely focused on helpdesk and issue tracking.

The report generation can be found under the Tools | Reports menu.

Statistics can be displayed from Assistance | Statistics.

We have a few predefined default report styles. For example, we can create reports
for financial information, history of hardware information, or installed software.
Depending on the amount of parameters we fill into our inventory, the parameters
based on which we can create reports is also higher.

Unless asked for specific kinds of reports, we frequently use the following ones:
reports based on duplicate computers, detailed license reports, and by license
expiration dates. The financial reports, including contracts, location trees, and so
on might be asked by higher management. And as such, it's quick for the system
administrator to create them.

The following screenshot exemplifies the report generation page:

Chapter 7

[179]

The statistics are dealing with tickets. Basically, we have lots of criteria upon
which we can pull out statistics. The main categories are—global statistics, by
user, by technician, by company, title, category, priority, and so on. These are
the determining elements according to which the statistic is queried.

From the list of possible statistics, we have the following choices:

•	 Total number of tickets
•	 Number of unsolved tickets
•	 Average problem solving delay
•	 Maximum problem solving delay
•	 Real average ticket solving duration
•	 Real maximum problem solving delay
•	 Minimum delay of ticket handling time
•	 Average delay of ticket handling time

Statistics are composed by a summary table and/or an additional graph.

Check out a quick screenshot on a test scenario where we added five new tickets
in March.

In the next screenshot, we can see a summary table. The Average resolution delay is
0 seconds as we added already solved tickets for this example.

Integrating OCS-NG with GLPI

[180]

License tracking and software auditing
with GLPI
GLPI has enhanced license tracking functionalities. In essence, it grabs the software list,
which is installed per computer from the OCS-NG database, and then administers this
list of software applications (along with licenses, if it's the case) itself.

Tracking licenses are possible as it auto-detects and categorizes the applications. It is
able to decide and associate a said license with its application. The applications are
recognized by their names and manufacturers. GLPI uses dictionaries to do this.

The dictionary can use either the OCS's incorporated one or the one that comes with
GLPI. We can opt for either of these. These dictionaries contain rules based on which
applications are recognized and associated with their manufacturer.

The more complete a dictionary is, the higher is the likelihood of recognizing every
application correctly. We can add our entries as well. It's based on criteria, such
as if the name of the program begins with, say, "Microsoft", then it's a Microsoft
Corporation product. Fortunately, both dictionaries are vast, so regardless of which
dictionary we decide to use, it will likely recognize most applications.

OCS-NG has three main categories of software: New, Unchanged, and Ignored.
GLPI imports the software that appear within the Unchanged category. By default,
OCS adds every application into the New category. We can manually set up the
ignored pieces of software into the Ignored group. All that we need to care about is
maintaining the software we want to manage within the Unchanged group. In this
way, they get imported into GLPI.

Furthermore, we also have the option to create custom groups. Either way, the way
we organize this is up to us. What matters is once the software are pulled out from
OCS into GLPI, they can be administered from GLPI.

The next step is adding some license count in order to see summaries. But first we
need to understand how licenses are managed. There are a few kinds of licenses:

•	 global (these are valid for the entire site—unlimited installs allowed)
•	 standard (has a serial number and an expiration date)
•	 free (the keyword 'free' is specified at the serial field—unlimited installs)
•	 "to buy" (no license available; new software, license needs to be bought)

Additionally, we can categorize software if they are part of OEM, bought, or upgrade
(such as extending the expiration date) licenses as well. Licenses can be moved back
and forth.

Chapter 7

[181]

For example, some workstations inside a specific department might get a new
license. This step requires unglobalizing the previous license group, then we can pick
the licenses we want to move to the newly created license. The same can be applied
when an application changes from a paid (license) version to the free one (perhaps
light edition). We don't want to track its license anymore, so we move them to a new
"free" license.

The interface of GLPI calculates and displays the number of installations and
matches these with the specified number of licenses. We can see the following
in action in the next screenshot:

There are situations when we use a wide range of versions of an application but
from a licensing point of view, they are the same. An example of this is version 1.7
and 1.8 of some piece of software. The license we acquired is valid for both versions.
On some workstations, we might still have the older version and on the new rigs the
latest. The dictionary of OCS-NG comes to the rescue. This is when we can benefit
of categories.

In OCS-NG, we create a new category where those applications would be placed
(regardless of version number). This category would appear along with the default
ones: New, Unchanged, and Ignored. However, let's not forget that GLPI imports
the full data of the software listed in the Unchanged section. The new section we
created is just good for those two applications that don't need version number
differentiation.

Integrating OCS-NG with GLPI

[182]

To sum it up, the greatest benefit of this software management capability is the
automated license tracking mechanism. We can specify our dozens of licenses, their
number, including their types, then the software take count of installations. We can
specify our status on licenses at any time (how many to buy, still available, and so on).

Conducting software audits is also possible with GLPI in a similar fashion. This does
not mean we won't use OCS-NG any more. That couldn't be farther from the truth.

Helpdesk and issue tracking functions
of GLPI
The issue tracking and helpdesk features can be found under the Assistance section
of the top menu. The first one is simply called "tracking" functions, but it deals with
tickets. The interface allows two kinds of searching mechanisms: basic and advanced.
There are lots of criteria and parameters based on which the results are queried.
Tickets are used to report issues, ask for servicing/help, and helpdesk-related tasks.

At the Helpdesk section, we can add tickets. This form can be loaded up by any user.
The previous Tracking is only possible for technicians and administrators. Tickets
can be added both retroactively (meaning historical, just for archiving purposes)
or as new ones.

Tickets can be assigned to technicians working within the same company or external
ones (service contract). This step assumes that we added more than the required
companies to that category. The planner is used to schedule intervention of tickets,
if this option is enabled.

Users with the least privileges are post-only users. These can only post "follow-ups"
to an already existing ticket. Basically, their area of eligibility is reduced only to the
helpdesk. At the Setup | General Setup, this option can be modified. Notification
options are at Setup | Notifications | Notification Options.

There is a status linked to each ticket. This can be one of the following: new,
assigned, planned, on hold/standby, unsolved but closed, and closed ticket
(and solved).

Chapter 7

[183]

The following screenshot shows the system in action—posting a new ticket:

The status of a ticket can be modified by a user with sufficient privileges at any time.
This includes reopening a closed ticket. Tickets can only be deleted if their status is
closed. Should we intentionally want to delete a ticket, we first need to close it and
then delete it.

The advanced search mechanism lets us specify each of the parameters.

Integrating OCS-NG with GLPI

[184]

As expected, each ticket is identified by its ID. Apart from that, tickets have a status,
as previously mentioned (there cannot be a ticket without a status), requester, and
priority level. Additional parameters assigned are technician, opening and closing
date, last update, description, and tracking information. You could also have
supplier, material, and category.

Please refer to the GLPI wiki documentation in order to understand how costs
work within the helpdesk system. There are multiple types of costs and all of these
combined have an effect on the total cost of ownership (TCO). Therefore, it's vital to
understand the concepts and use them accordingly. See the Assistance Section at the
following URL:

http://www.glpi-project.org/wiki/doku.php?id=en:manual:admin:centralh
elp_en_gb

The page which shows a general overview of current tickets can be seen in the
following screenshot. Due to width-space restrictions, the image was split into two
segments at the middle (between requester and assigned columns) and merged on
top of each other. The basic information, which is reported of a ticket, is sufficient.
This column setup can also be altered.

By combining the planner into the helpdesk and tracking mechanism, make this into
a feature-laden ticketing system. It should suffice for most environments. Of course,
by now, every corporation and organization has its own ticketing solution, one that
was implemented within their infrastructure for years and has been present ever
since, but this is still worth considering an option. The obvious advantage is directly
working with inventory.

Chapter 7

[185]

Summary
The course of this chapter was flexible. Our purpose was to present the capabilities
of GLPI and give a sense of what it is able to do. It is a valuable extension and it fully
integrates into our OCS-NG platform. And if it does not mess up anything, why
not give it a go and play around with it? Thus, we have seen how to set it up and
configure briefly.

We presented most of its features, while always bringing up associations from the
real-world. This way, we can see when and how and if we need to use some of those
functions within our environment. GLPI can also be extended by the use of plugins.
Sometimes we are asked to create reports, and if such a situation happens, we need
to get those papers printed as fast as possible. GLPI has an inbuilt mechanism to
generate all kinds of reports.

Once we get the hang of GLPI, we endeavored into carrying out administrative tasks
with it and how to manage the database to get the most out of it. It incorporates an
advanced helpdesk and issue-tracking feature. We have seen how to use these. The
same goes for the enhanced license tracking function. There were little reminders
that we need to consider in order to eliminate possible problems. Tracking licenses
automatically is great.

The purpose of this chapter was to give a taste of GLPI. It is beyond
the scope of this book to have an extensive GLPI manual-style
chapter that covers every tidbit of this application. By all means, you
are advised to use the documentation of GLPI as reference material:
http://www.glpi-project.org/wiki/doku.php.

The next chapter deals with all-around repetitive tasks related to IT inventories and
management needs and how to get them solved with our setup. It presents useful
scripts and the "know-how" of working with this combo for years in a production
environment. We will see some best practices and other backing up tips of the
database. In short, we will witness a collection of probable scenarios that can
happen and need to be resolved seamlessly.

Best Practices on
Inventorying with OCS-NG

One of the most significant challenges of inventorying in the real world is keeping
the inventory up-to-date and clean. We want inventories of all kinds—whether it is
an IT assets inventory or the stock of a hypermarket retailer to be easy to work with.
We do not want to keep an inventory just for the sake of having one. We would
rather be able to pull out reports and carry out administrative tasks on the imported
data. That is the key.

OCS Inventory NG marks most of the requirement checkboxes of our inventorying
needs but, as with anything else in the world, there are best practices to follow.
Sometimes the obvious tasks can be misleading, while the rather complex issues can
be narrowed down to simple steps that make sense. In this chapter, we will shed a
bit of light on these topics.

Furthermore, we need to look into the updating mechanism of OCS-NG inventory
suite. The development team releases updates frequently (not that often, but updates
are carried out progressively, whenever necessary). Right now, the latest agent
update adds official support for Windows 7. By the end of this chapter, we'll tackle
a bit on how to update both the central management server of OCS-NG as well as
the agents on clients.

During this chapter, our focus will lie specifically on the following:

•	 Learning how to back up and restore the OCS-NG database
•	 Writing trivial backup scripts for scheduling, which deal with

backup archiving
•	 Looking into OCS-NG management server tuning to tweak for

better performance

Best Practices on Inventorying with OCS-NG

[188]

•	 Understanding why we cannot retrieve some model-specific data of
hardware components; trying to find a working solution (this depends
on the environment)

•	 Carrying out administrative tasks via scripts, thus speeding up our
everyday tasks

•	 Getting around to update the OCS-NG management server, if needed
•	 Mastering the art of updating the agents on client computers—even remotely!

This chapter is a distillation of the experience gained through daily usage of
OCS-NG.

Backing up and restoring the OCS-NG
database
Each time we deal with data, experience has taught us that we can't underestimate
the slight chances of hardware failover or any other sort of "all hell breaks loose"
events. In database administration, our data is organized into tables. Everyone
knows that the content of these tables can be dumped. Dumping is a technical
term and in plain and simple English it means "exporting" the data into a file.

This exported file can be saved and stored at some safe place. It is generally
advisable to store these important backups at a remote location. Many companies
exchange backups between locations (if they have more than one) or pay for an
expert service that does this for them. The key is to have the backed up drives
(or tapes) stored at a different location, that is, by common sense, somewhat safe
from natural catastrophes.

Of course, these are general backup guidelines as the OCS-NG database is not that
crucial compared to the other services a company uses, but if we're dealing with
backups, we shouldn't neglect these either. An entire dump of a database with
details of a few thousand computers is less than two megabytes.

Dumping the database with mysqldump
MySQL is the database management software on top of which OCS-NG runs.
This means that we can use the popular utilities such as phpMyAdmin to manage
and carry out administrative tasks with our databases. But there's no need to go
that far for our needs. The MySQL server comes with a standard command-line
utility—mysqldump that allows us to dump the content of a database into a
.sql file.

Chapter 8

[189]

Here is a quick command-line example that backs up our OCS-NG database:

mysqldump --add-drop-table --complete-insert --extended-insert --quote-
names --host=localhost --user="ocs-user" --password="pass" ocsweb > /
backup/mysql/mysqldump_ocsweb.sql

Keep in mind that in the preceding sample, ocs-user is the MySQL user that has
administrative privileges to work with the database. Generally, we can assume
that this user is root, and the pass string needs to be replaced with the password
of the previously mentioned user. This command dumps the ocsweb database into
mysqldump_ocsweb.sql file.

As we all know from the earlier chapters, ocsweb is our default OCS-NG database.

If our setup deals with another database, then let's not forget to backup accordingly.
To make things even neater, we can compress the backup file on-the-fly. We are
going to add the following command at the end of our last two-liner code sample.
We will be using the pipe operator '|'. It looks like this:

mysqldump --add-drop-table --complete-insert --extended-insert --quote-
names --host=localhost --user="ocs-user" --password="pass" ocsweb | bzip2
-c > mysqldump_ocsweb.sql.bz2

Dumping the database with phpMyAdmin
Over the years phpMyAdmin has become one of the most widely used MySQL
third-party tools. It provides a seamless user-friendly web interface to databases.
Backing up the database is done with a few clicks. The same process when importing
and so on.

However, phpMyAdmin has some limitations. By its very nature of being web based
and working with PHP posts, it depends on your PHP configuration variables. As
such, sometimes (by default), it is not able to work with really large databases. In
those cases, we need to split up the queries into segments, or, of course, tune our
PHP configuration to allow us to work with large sizes.

Best Practices on Inventorying with OCS-NG

[190]

In order to dump a database, we click on Export of the menu, and the following
screen appears:

In the last screenshot, we can see the fields we should deal with. First, we need to
select the database(s) we are planning to export. In our case, that is ocsweb. We pick
SQL. The next step is to Save as file, as that is what we want. And eventually set up
a template for naming the file and pick a compression. The __SERVER__ template
yields the result of localhost.sql.bzip2 if bzipped compression is chosen as well,
and the ocsweb is on the same server from which phpMyAdmin runs. This is the
reason why localhost appears in the filename.

We can use the __DB__ template to name the file similarly to the
database (ocsweb).

Chapter 8

[191]

If our database gets large enough to cause troubles, then we can either fine-tune
the variables from PHP.ini to allow us to work with larger files, or set a "maximum
length of created queries" on the backup page of phpMyAdmin. In the first case,
we need to check for the post_max_size and upload_max_filesize. If we pick
the second variable to split the dump files, then we should reduce the number of
queries until it suits the limitations.

Importing the dumped SQL file can be done via the Import from the menu. We
browse for the location of the file and let phpMyAdmin do its work.

Restoring SQL dump files via MySQL's CLI
The structure of a .sql dump file is standard, and we can import it via any other
tool or the basic command-line interface (CLI) of MySQL. The dump file is a
compilation of SQL commands that build up the database scheme in an exactly
identical way to the backed up database. They also fill it up with the data contained
within the tables (obviously).

In order to import such a dump file, we just need to execute the .sql file that
we saved. It has all of the necessary commands to bring the database to that state.
We first bring the MySQL command-line interpreter by typing the following in
a terminal console:

$mysql –u root –p ocsweb

As a next step, the utility asks for the root password, and the interpreter loads up.

mysql>source <location_of_the_SQL_file>

We need to give the source of the SQL dump file. It executes and sets up the scheme
and tables. As a final step, once everything is finished, we can quit by typing exit.

Regardless of what tool we opt for to import, the results of those dump backup files,
such as MySQL administrator or phpMyAdmin, are the same either way.

In the case of Windows operating systems, we can find the command-line tools
of MySQL in the folder of \xampp\mysql\bin\—depending on where XAMPP
is located, and if we picked XAMPP as our Apache-MySQL-PHP combo suite.

Best Practices on Inventorying with OCS-NG

[192]

Automating and scheduling dumping backups
via scripts
In the earlier pages, we saw how we can manually export and import SQL dump
files. Nevertheless, the final question is how we could somehow automate the
backup task. In the case of Linux operating systems, we write a tiny script and put it
into crontab. Likewise, on Windows systems, we write a .bat/.vbs script to execute
the command we want (mysqldump with our arguments) and place that script into
Windows Scheduler.

Adding the scheduled job into crontab on Linux OS
As a matter of fact, we don't even need a script in case of Linux. We can write the
entire dumping command in one line and set that as a cron job. Check it out below:

30 10 * * * mysqldump --user=ocs-user --password=pass --host=127.0.0.1
ocsweb > /var/backups/ocsweb-`/bin/date +\%Y\%m\%d`

As a memory refresher, in the next screenshot, we can see a quick sketch on crontab's
scheduling syntax. Those asterisks mean "any" value, while we can also delimit more
values by a comma. For example, every second day, we'd write something like this:
55 22 * * 1,3,5 task_goes_here. This translates into Monday, Wednesday, and
Friday, every month, and on 22:55 (10 pm and 55 minutes).

The previous cron job is launched every day at 10:30, and it backs up the ocsweb
database from the 127.0.0.1 server (localhost) under the ocs-user with its pass
passkey. Please be aware of the escape character delimiting the /bin/date file
naming template.

This script cron job generates the following kind of output dump files:

/var/backups/ocsweb-20100201—in this case it is 2010, February, 1.

Chapter 8

[193]

Writing the batch script and adding into Windows
Scheduler
There are numerous ways in which we could write a script that does this trivial task.
In a nutshell, we want to first retrieve the date in order to delimit into segments. Once
this step is done, we can call the mysqldump with the required arguments. It dumps
depending on the file template we created, which includes the actual date in its name.
It's as simple as this! Let's do it!

Open a text editor, copy the following, edit wherever necessary, and save it as .bat.

@echo off
SET Dmp="%ProgramFiles%\OCS Inventory NG\xampp\mysql\bin\mysqldump.
exe"
FOR /f "tokens=2 delims= " %%D in ('echo %DATE:/=%') do SET
Dateprefix=%%D
%Dmp% --add-drop-table --complete-insert --extended-insert --quote-
names --host=localhost --user=root –password=password-goes-here ocsweb
> d:\backup\ocsweb_%Dateprefix%.sql

This script begins with turning off echo—this way, nothing is written on the output
message console, unless it's intentionally echoed. The second line sets up a Dmp
variable that points to the mysqldump.exe—it can be found within the \xampp\
mysql\bin folder. It retrieves the current date and sets up the Dateprefix variable
according to the required format of date. And finally, it calls the dumping command
with the necessary arguments.

As a final step, we can add this into Windows Scheduler. Add a new task as follows:

Best Practices on Inventorying with OCS-NG

[194]

Before we finish, we'd like to also mention a few other GUI tools for MySQL
that might be useful when importing the dumped SQL files. However, we always
recommend using the command-line interpreter of MySQL. Once you get the hang
of it, it's really easy to work with. Anyway, check out the following freeware
third-party MySQL frontends:

•	 MySQL Workbench (http://www.mysql.com/products/workbench/)
•	 Toad® for MySQL (http://www.quest.com/toad-for-mysql/)
•	 Aqua Data Studio (http://www.aquafold.com/)
•	 HeidiSQL (http://www.heidisql.com/)
•	 Sequel Pro (http://code.google.com/p/sequel-pro/)

The latter runs on Mac OS X platforms. There are many others, just Google for more…

Tweaking the OCS-NG server for
performance
One of the most significant advantages of OCS Inventory NG comes mainly from
its performance. The inventory for every machine is really lightweight thanks to its
XML syntax. It requires little-to-no CPU processing power. This way, it does not put
any load on most of today's processors. However, in the case of large environments,
it needs a relatively beefy server with a big RAM size.

Keep in mind that the software was designed in 2005. Back then, most mid-sized
enterprise servers had around or less than 3GB of RAM. We should not forget about
the 32-bit limitations as well. The official documentation states that when working
with inventories with as many as 70,000 clients, they needed 3GB of memory. They
also picked a distributed setup that spread across 3x 2.8GHz Xeon servers.

Nowadays, one new generation server can cope with such a similar load, assuming
it has more or at least 4GB of RAM—preferably 8GB. But if we dedicate such a
workhorse power for OCS inventory, then our hardware platform will be ready to
support up to 100,000 clients, and even more with the right tweaks. In the case of the
small-to-mid size environments, even a half-ancient machine is more than enough.

OCS-NG can make an inventory of hundreds and even thousands of machines
powered by a rather old generation Pentium 4 processor dating back to 2002-2004
with 1-2GB of RAM. After all, if your inventory target is not over 2,000-3,000 clients,
then probably any kind of computer that you get is good enough—here we include
remaining computers from the basement.

http://www.mysql.com/products/workbench/
http://www.quest.com/toad-for-mysql/
http://www.aquafold.com/
http://www.heidisql.com/
http://code.google.com/p/sequel-pro/

Chapter 8

[195]

Nevertheless, this is not a reason to waste resources. Tweaking MySQL databases
always leads to increased performance no matter which new backend technology our
server shows off. It is also relatively understandable that we might want to virtualize
OCS-NG.

Tweaking the OCS-NG server is basically tuning MySQL and Apache. Some
correlation needs to be set between maximum simultaneous connections. This
makes sense because, if we increase the HTTP requests of the communication
server without increasing the MySQL connection amount (maximum allowed),
then it won't be able to answer each of those requests.

We must point out that, by default, MySQL is limited to 100 connections. This
variable is called max_connections. This needs to be tuned in correlation with
Apache's Maxclients directive. This parameter defines how many simultaneous
connections can be served. As soon as this value is surpassed, the rest of the queries
are queued.

It is important to know how much load our server can handle. Increasing these
variables without proper testing can lead to server instabilities. We can play around
with values as high as 128-200 on a 2-4GB system. Dynamic web applications can
load the server more than static content (images, texts, and so on.). The improper
tuning of these values can lead to a symptom called thrashing. That's when traffic
spike or bottlenecks can occur.

Thrashing is basically the excessive amount of virtual memory swapping that can take
place without doing any real work. This can happen when too many new connections
are requested and the older requested connections (thus, forked new processes per
each connection) cannot be served.

As such, the server runs out of its physical memory and starts to allocate those
new connections while swapping. The process goes on and on as the values are
misconfigured. In the case of OCS-NG, we might not see this happening, but it is
one of those issues we should always be careful about. Content management
systems (CMSs) are notoriously popular for these thrashing symptoms.

If we are sure our platform can handle the load, then we can go as high as 512 for
those upper limits. As long as we monitor the logs of our server daemons and know
what's happening behind the scenes—and we feel comfortable troubleshooting,
benchmarking, and tuning our server backend for performance—then these should
not yield problems.

Best Practices on Inventorying with OCS-NG

[196]

The official MySQL documentation gives general guidelines when tuning our
MySQL daemons for performance, depending on how much memory our server
has. Check out the following table:

The entire list of tuning parameters of MySQL can be found at the following URL:

http://dev.mysql.com/doc/refman/5.0/en/server-parameters.html

The following few articles are also worth checking out:

http://www.devshed.com/c/a/MySQL/MySQL-Server-Tuning-Tips-and-Tricks/

http://www.devshed.com/c/a/MySQL/MySQL-Benchmarking-Tools-and-
Utilities/

http://ebergen.net/wordpress/2006/03/06/3-minute-mysql-tuning/

Useful scripts that make our everyday life
easier
OCS Inventory NG by itself gives a huge portfolio of functions that help us during
our daily routine tasks. One of the most frequent similar scenarios is generating
reports of all kinds, depending on such criteria. The OCS-NG web interface does this
natively, we just pick the elements (columns) and add the operators (and operands,
if needed). The reports are generated right away. We can export the results of the
inventory in comma-separated values (CSV).

This is all great when we want to manually create reports based on the requested
criteria. For example, find all computers with less than 2GB of disk space or the
ones with less than 1GB of RAM. We build up the query and we're done with it.

Chapter 8

[197]

However, there are situations when we would like to be notified when a situation
like this happens. In a real world implementation of this, let's imagine that we want
to monitor the hardware specification changes/differences. The chances are quite
slim that someone might change the processor, but replacing (or removing) one of
the memory modules is entirely viable (though highly unlikely within a remotely
moral community).

The same goes with hard drives in case of multiple HDD setups (or replacing them).

The integration of OCS-NG with GLPI was covered in Chapter 7, Integrating OCS-NG
with GLPI. GLPI brings these features, but what if we don't want to implement GLPI.
If, until this point, OCS-NG satisfied all of our inventory requirements, and we did
not want to specifically use GLPI's ticketing/helpdesk and software license/tracking
functionalities, then sticking with an OCS-NG setup is fine.

Implementing PHP notification-sender scripts
Thereafter, a practical solution is writing a PHP script that solves our problem. We
want to take a snapshot of the current hardware configuration (hardware table from
ocsweb database) and then compare it with the previous snapshot that we have
taken yesterday (a day before). If changes are found, then we report these to some
predetermined e-mail addresses. We export the results (that is, differences) into a
CSV file so that we can attach them to our notifications.

As soon as the identification is done, the old snapshot is overwritten with the current
one (the one we did today) and the execution of the script is complete. This gets
scheduled to be run every day.

The notification messages are similar to the following:

Computer name $computername last logged into by user $userid RAM has
changed from $snapram to $currentram

Computer name $computername last logged into by user $userid used to have
$snapdskcnt hard drives and now has $curdskcnt

This idea was thoroughly implemented and developed by Mike Seigafuse. We can
find and download the PHP script called ocsdiff.php directly from his website:

http://seigafuse.com/2008/12/19/ocs-diff-script/

It also needs an ocsdiff_conf.php script that can be found under this link too:

http://seigafuse.com/2007/07/26/daily-diskspace-alerts-using-ocs-
inventory-ng/

Best Practices on Inventorying with OCS-NG

[198]

At the last link, we can also find a threshold notifier for disk space below a threshold.
This is useful in case of servers, but we can, technically, monitor any kind of computer.
Both, the diskreport.php and the ocsdiff.php scripts(the aforementioned
differentiator) are based on the ocsdiff_conf.php script. The latter PHP file serves
the purpose of the configuration PHP header. Inside this file, we specify the variables
of OCS-NG for our setup and e-mails.

diskreport.php is the daily disk report checker and notification sender. We
implement either or both of them in the same way. We set up a new folder at
/var/www/html/ocsreports, which we might name anything, but it's advisable
to name it something self-explanatory (like reports).

Final reminder:
Do not forget to set the same permissions and ownership for that folder.

Extending OCS-NG inventory via .vbs scripts
The OCS-NG development team added this feature starting from agent version 4061.
The OCS agent supports the addition of various .vbs scripts, which we write into
the final XML file that it sends to the OCS-NG central server. Basically, the standard
STDOUT output (that is, Wscript.Echo) is added into the XML that the agent will
send to the OCS-NG server.

This VBS scripting function is explained in the official wiki documentation of
OCS-NG at:

http://wiki.ocsinventory-ng.org/index.php/Admin_center:Windows_
Scripting

We need to use the same XML-specific syntax that OCS agents use to deliver the
inventory to the central server. For example, the last logged user is delimited inside
the <HARDWARE> and </HARDWARE> tags. Of course, the <LASTLOGGEDUSER> and </
LASTLOGGEDUSER> is where the actual name of the user name goes.

Before trying to make such a script from scratch, we should check out the XML file
our agent creates and use its syntax to format the output via our VBS/WSH script.
Finally, the output is passed on to the server accordingly and it gets imported into
the inventory.

A script can be found on the aforementioned wiki page. It's about the last logged
on user.

Chapter 8

[199]

Uninstalling the OCS agent via batch script
The title of this section might seem counterintuitive at first. Why would we want to
uninstall the OCS agent from one or more of our client computers? Regardless of the
reason, we need to know how to do it remotely. Remote execution comes to mind. In
addition, we want a silent uninstall. We can create a batch script that does this.

On Windows machines, the following script silently uninstalls the OCS agent:

 #File uninstall_agent.bat

 cd %programfiles%

 cd OCS Inventory Agent

 if exist uninst.exe call uninst.exe /S

 del *.* /s /q

 cd ..

 rmdir "OCS Inventory Agent" /s /q

 #File schedule_uninst.bat

 copy uninstall_agent.bat C:\

 for /f (tokens=1) %%a in ('time /T') do set /A heure=%%a + 1

 at %heure%:10 "C:\uninstall_agent.bat"

We can publish this script via the Package Deployment functionality of OCS-NG. The
next step is creating an archive of the two files, that is, uninstall_agent.bat and
schedule_uninst.bat files. Then, we set up a new package of the launch type
(explained in Chapter 6, Package Deployment through OCS-NG). The command we're
going to launch is the schedule_uninst.bat. The final step is activating the package.
We need to select the client machines on which we want this script to be deployed.

The algorithm, in the simplest terms, is the following: the script is deployed
and the remote client machine launches the scheduling batch. Accordingly, the
other uninstall batch script is copied to the root C:\ volume. It then launches the
uninstaller script after at least 11 minutes, but less than 1 hour 10 minutes. This
way, the deployment of the agent is ensured.

For more information regarding this solution, please refer to the following OCS-NG
wiki link:

http://wiki.ocsinventory-ng.org/index.php/Tools:Uninstall_agent

Another option is just remotely executing the first uninstall_agent.bat script via
psexec as follows:

psexec @comps.txt -u mydomain\domainadmin -c -n 10 uninstall_agent.bat

Best Practices on Inventorying with OCS-NG

[200]

Once again, we supply the name of the computers in a comps.txt file. The
timeout of each remote execution is 10 seconds. If it times out, the host is
surely unreachable.

On Linux operating systems, we can execute the following command:

#rm -Rf /etc/ocsinventory-client /usr/sbin/ipdiscover /bin/ocsinv /usr/
sbin/ocsinventory-client.pl /bin/ocsinv /etc/logrotate.d/ocsinventory-
client

Best practices on retrieving
model-specific data of various
computer hardware components
In the real world, inventories needs be as complete as possible. In the case of IT
assets, it is especially important to retrieve and archive all sorts of model-specific
data of hardware components. Specifically, we want the manufacturer, model
number, serial number, and if possible, firmware and other hardware specifications.
These are useful when dealing with automated administration of warranties.

Typically, the warranties of hardware components are given out according to their
serial number. In other cases, it's per manufacturer and model number. This depends
on our infrastructure and the retailer suppliers for those IT assets. If we have hundreds
of similar pre-made builds, then we might not necessarily care about the individual
warranty period of each component. But should we have built the computers
ourselves, then we do.

In the case of hard drives, sometimes we also need to know the exact firmware.
Not that long ago, it had happened that one of the popular hard drive manufacturers
released their latest HDD models with a rather buggy firmware. The issue was
widely documented, and they released a new fix right away. But in case of large
environments, who would have known for sure which computers had those
problematic HDD firmwares?

It is clear that we need some sort of script that retrieves the firmware of each HDD.
The rest is child's play for a system administrator. We can then deploy and remotely
execute the script or application across the entire domain. It is our choice whether
to opt for PsExec and other tools or the inbuilt package/command deployment of
OCS-NG. Alright, the idea was formed, and now we need to actually get down to
the implementation.

Chapter 8

[201]

Retrieving model-specific data of HDDs
Our instincts said that we could throw together an easy WSH VB script, based on
the appropriate WMIs; we could retrieve and echo the model-specific data we were
looking for. However, the results were not so promising. Therefore, we looked further.

WMI stands for Windows Management Instrumentation. It is a set
of extensions to the Windows Driver Model (WDM), and provides
an interface to the operating system through which instrumented
components provide information and notification. In our case, WMI
allows us to work with scripting languages and query
hardware-specific information directly.

Fortunately, we found the CodeProject article Get Physical HDD Serial Number without
WMI at http://www.codeproject.com/KB/mcpp/DriveInfoEx.aspx.

The author of the source code and article, Decebal Mihailescu, explains quite
thoroughly how to use the code. We can use any .NET language (at least 2.0
Framework). The code he posted returns all of the model-specific data within a
collection. The way we organize and deal with the rest is up to us. We can format
the output and pick the ones we want.

Therefore, we do not have to deal with the inner-workings of the application. We
just implement the collection it returns when we retrieve the data. Even though
the level of the project is quite advanced, the implementation part does not require
higher than an intermediate level of programming. We opted for C Sharp (C#)
programming language.

Once the project is compiled, we will get our .exe and the .dll files. The dynamic
link library contains the unmanaged code with which we are going to work. It is
not necessary for us to understand how it works on the algorithmic level. It does
low-level calls to the hard drive via DeviceIoControl API. The code is object oriented
and that's why building on top of the foundation is rather easy, as one function fills
up the collection.

Now that we are throwing together an application like this, we need to look ahead
and think out of the box. As we're going to remotely execute this tiny program
across every machine of the domain, the output will be logged in a text file. In order
to ease the logging and searching, it would be awesome to retrieve the name of the
computer and IP address. Print these out along with the model-specific information.
Then put some delimiters.

Best Practices on Inventorying with OCS-NG

[202]

Check out the next screenshot. This is a snippet of the output log of the application that
we have put together in less than 30 minutes based on that CodeProject publication.

Here is a quick implementation of the things we mentioned. Things might seem a bit
complex at first. The source code is rather simple, but if you don't have C# experience,
then this part of the chapter might have caught you off-guard. Either way, we will
supply the source code of this project along with a ready-to-run executable.

DriveListEx m_list;

m_list = new DriveListEx();
m_list.Load();

string currUser = System.Security.Principal.WindowsIdentity.
GetCurrent().Name.ToString();
string currComp = Environment.MachineName;
IPHostEntry ipEntry = Dns.GetHostEntry(currComp);
IPAddress[] addr = ipEntry.AddressList;

Console.WriteLine("Running the script on the following machine: {0} @
{1}", currUser, currComp);
Console.WriteLine("IP Address of the machine: {0}", addr[0].
ToString());
Console.WriteLine(" ");
Console.WriteLine("Querying Hard Disk Drive Information...");
Console.WriteLine(" ");
Thread.Sleep(500); // sleep to ensure querying finishes

Chapter 8

[203]

if (m_list.Count < 1)
{ // nothing to do if there are no disk drives detected
Console.WriteLine("Could not find any disk drive attached to the
system.");
Console.WriteLine("Nothing left to do. Done."); }
Console.WriteLine("Found {0} disk drive(s) in the system.", m_list.
Count);
Console.WriteLine(" ");

for (int i = 0; i < m_list.Count; i++)
{
Console.WriteLine("Information of the disk drive number {0} [{1}]",
i+1, currComp);
Console.WriteLine("-------------------------------------");

Console.WriteLine("Entire size: {0} bytes, meaning {1} GB",m_list[i].
DriveSize/10,m_list[i].DriveSize/1000000000);
Console.WriteLine("Buffer size: {0} bytes, meaning {1} MB",m_list[i].
BufferSize,m_list[i].BufferSize/1000000);
Console.WriteLine("Model no:{0}",m_list[i].ModelNumber);
Console.WriteLine("Drive type: {0}",m_list[i].DriveType);
Console.WriteLine("Firmware:{0}",m_list[i].RevisionNumber);
Console.WriteLine("Serial number: {0}\n",m_list[i].SerialNumber);
}

Console.WriteLine("Successful execution on {0} [{1}]. Done.",
currComp, addr[0].ToString());

You can find the implementation of this project at the following URL:

http://www.primeranks.net/storage/queryhdd

Our implementation is compiled into QueryHDD.exe. You can grab the executable.

Please keep in mind that this would not have been possible without
the contribution of the author to the CodeProject. Respect the Code
Project Open License (CPOL).
The original link is http://www.codeproject.com/KB/mcpp/
DriveInfoEx.aspx, and you should always use this as a starting
point. I do not claim any ownership of the code sample. My goal is
to share this as a viable option to get our job done.

Best Practices on Inventorying with OCS-NG

[204]

If we want to remotely execute this application, let's call it QueryHDD, then we
first need to deploy its DriveInfoEx.dll file too on every machine. We copy that
file on a public share within our intranet, and run the following script remotely
across the domain:

copy /Y "\\serv_name\path_here\QueryHDD\DriveInfoEx.dll" %WINDIR%\
system32

Running this script via PsExec on every machine of the domain simply copies the
dynamic link library files from that public share to the %WINDIR%\System32 folder
of local machines. The computers are ready for our mass execution of QueryHDD.

psexec @allcomps.txt -u mydomain\domainadmin -c -n 10 QueryHDD.exe >
logging.txt

The last command launches the QueryHDD.exe on every machine name within the
allcomps.txt file. If we want to execute it on every machine of the domain, then
we can use the wildcard of PsExec, namely, two back slashes and one asterisk *

The output is logged into logging.txt and the –n 10 gives a 10 seconds timeout per
computer. Hosts that are unavailable (shutdown or unreachable) are timed out after
10 seconds.

I have published an article on ASP Free based on our QueryHDD implementation
and how it solves our real world inventorying needs. For further information, check
it out!

The article is titled Inventorying HDDs Remotely on Windows. If you want to look
into this implementation, then that article should provide you with a more thorough
overview.

http://www.aspfree.com/c/a/Windows-Security/Inventorying-HDDs-
Remotely-on-Windows/

Retrieving model-specific data of RAM
memory modules
The same situation happens in the case of memory modules. Retrieving the model
number, manufacturer, and serial number of RAM modules can be a tricky process.
In theory, it is quite seamless. We have a dedicated WMI abstraction that queries
the SMBIOS and returns all of model-specific data. However, in the real world,
unfortunately, it isn't like this.

Chapter 8

[205]

A quick Google search leads to dozens of WSH scripts that retrieve information
about the memory modules. Sometimes, these work fine, but on other occasions,
they retrieve "null" on lots of fields. Within our company, around 75 percent of the
machines failed to retrieve the manufacturer, let alone the model number and/or
serial number.

There are those exceptions when the memory module manufacturer does a poor job
at filling in the Serial presence detect (SPD) information into the EEPROM of the
chips. This is when we physically retrieve the SPD data via low-level calls and get
0x0000000 as the serial number.

Either way, if we want to mess around with these scripts, here is one
WMI-based script.

Set objWMIService = GetObject(_
"winmgmts:{impersonationLevel=impersonate}" _
& "!root\cimv2")
Set colItems = objWMIService.ExecQuery("Select * from Win32_
PhysicalMemory",,48)
For Each objItem in colItems
myVar = ""
If Not IsNull(objItem.Capacity) Then
myVar = myVar + "Capacity: " & formatnumber(objItem.Capacity) & VBCr
End if
If Not IsNull(objItem.Manufacturer) Then
myVar = myVar + "Manufacturer: " &objItem.Manufacturer&VBCr
End if
If Not IsNull(objItem.DeviceLocator) Then
myVar = myVar + "DeviceLocator:"&objItem.DeviceLocator&VBCr
End if
If Not IsNull(objItem.BankLabel) Then
myVar = myVar + "Bank Label: " & objItem.BankLabel & VBCr
End if
If Not IsNull(objItem.PartNumber) Then
myVar = myVar + "Part Number: " & objItem.PartNumber & VBCr
End if
If Not IsNull(objItem.Speed) Then
myVar = myVar + "Speed: " & objItem.Speed & VBCr
End if
Wscript.Echo myVar
Next

Best Practices on Inventorying with OCS-NG

[206]

As we can see, the script does not print out if one of the returned fields is Null. On my
workstation machine, the results were not so great. We got the capacity, device locator,
memory type (0?), and their speed (667 MHz). It failed to retrieve the manufacturer
and the part number. It displays the message boxes one-by-one but we merged them
in the following screenshot:

On some machines, the preceding script works fine. Nonetheless, sometimes it just
does not suffice. Thankfully, we have found a CodeProject that targets this issue
once again.

http://www.codeproject.com/KB/system/SMBIOS_Peek.aspx

The author, wjfrancis, realized that the WMI approach does not return many of the
missing SPD data of memory modules. He explains why this limitation occurs and
presents his workaround. In the CodeProject article, he shows us the C++ project that
dumps the entire (literally!) content of the SMBIOS. This means tons of information.

It is amazing if we want to go so in depth. Nevertheless, if our sole purpose is just
retrieving memory-specific SPD information via the SMBIOS, then it is quite overkill
for us. If we run the script remotely on hundreds of computers, then the output log
would be huge. The entire SMBIOS dump for one machine is already many pages long.

Therefore, we can fine-tune the source code of the posted CodeProject application. If
we open up the source file, we find the following functions being called:

show_bios_information();
show_system_information();
show_system_enclosure();
show_processor_information();
show_cache_information();
show_system_slots();
show_physical_memory_array();
show_memory_device(); // this is _only_ line we need
show_memory_array_mapped_address();
show_system_boot_information();

Chapter 8

[207]

Unless we want some other information, we can comment out all of the other
function calls and leave the show_memory_device() alone. Another option is to
implement a parameter choice based on which we can select, namely, mode 1 or
mode 2. Mode 1 would be our memory-related SMBIOS dump, while mode 2 would
be the original complete dump.

Commenting out a line of code can be done by adding // at the beginning of the
line (one line at a time) or delimiting the segment of code between the tags /* and
*/. The former tag will be at the beginning and end with the latter tag. This way,
the delimited part is simply ignored. This is what is meant by "comment out" in the
context of software development.

This is up to us, and the results are either way promising.

Executing script on computer name: SUSANPC
total width: 64; data width: 64
size: 2048 megabytes
form factor: DIMM; memory type: DDR2
device locator: J1MY
bank locator: CHAN A DIMM 0
additional memory details: synchronous
speed: 800 mhz
manufacturer: 0x7F7F7F7FCB000000
serial number: 0x8D2A19DB
Finished. Successful execution on computer name: SUSANPC

Please keep in mind that this would not have been possible without
the contribution of the author to the CodeProject. Respect the CPOL
(CodeProject Open License).
The original link is http://www.codeproject.com/KB/system/
SMBIOS_Peek.aspx, and you should always use that as a starting
point. I do not claim any ownership of the code sample. My goal is to
share this as a viable option to get our job done.

From the previous output, we can see that the serial numbers and manufacturer
fields were reported accordingly. We recommend using an identification utility
like CPU-Z or some other third-party utilities to test each module manufacturer
independently, at least once. This way, we can figure out which kind of HEX
value matches the manufacturers.

Best Practices on Inventorying with OCS-NG

[208]

Within our organization, the most dominant memory manufacturers are the following:

0x7F9800000—Kingston

0x7F7F7F7FCB—A-Data

I have published an article based on this PeekSMB implementation and how it
gives a solution to memory auditing needs. For further information, check it out
at http://www.aspfree.com/c/a/Windows-Security/Inventorying-RAMs-
Remotely-on-Windows/. The article is titled Inventorying RAMs Remotely on
Windows and it's on ASP Free (DevShed).

Updating OCS-NG agents on clients
(when needed)
Just like with anything else, we need to check the official website of OCS-NG often.
New versions and updates are released from time to time. Generally, these updates
are not frequent at all, but when they do happen, we need to know how to approach
the process.

The latest Windows agent at the time of writing is 4061.1. The UNIX unified
agent is 1.1.2. The method for installing newer agents is similar to the way we
could update from earlier versions to the current version. We have two (or more)
reasonable options for updates.

There is a widely documented bug with Win32 agent versions lower than 4030.
There was no silent uninstall available in those versions. As soon as an update was
attempted, the uninstall dialog box would pop up. There is no way to eliminate
this, except for automating the user click through the uninstall process (with AutoIt,
for example). The agent client versions lower than 4030 date back to early 2007's.
Reading this book in 2010 (or later), the chances are slim that you will have to deal
with those versions anymore. It has been fixed.

Updating the Windows agent
First, let's cover the typical agent updating process on Windows operating systems.

As mentioned earlier, we have at least the following two methods of updating the
agents. Which one we choose depends on our OCS-NG setup. If we use the agent set
up as a Windows service, then we can use the package deployment mechanism of
OCS-NG. The other option is using the OcsLogon launcher to force an update. Either
way works fine.

Chapter 8

[209]

The package deployment method requires us to create an archive (.zip) with the
update file titled OcsAgentSetup.exe. This setup is the latest agent client that we
download from the official OCS-NG website's Downloads section. We pick the
execute kind of package when we create the package (remember, deployment
package types from Chapter 6, Package Deployment through OCS-NG). Moving on,
we execute the executable with the necessary arguments as follows:

OcsAgentSetup.exe /S /UPGRADE /NOSPLASH /SERVER:ocs_serv_address /DEBUG

Feel free to include additional arguments, if need be such as /NP (no proxy), /PNUM:
xxx (port no), and so on.

Refer to Chapter 2, Setting up an OCS Inventory NG Management Server for the
complete list of switches supported by agents.

Another option is specifying the /DEPLOY:version via OcsLauncher. The version
number stands for those 4-digit version numbers, for example, 4061 (latest). This
way, the client will download and install the appropriate version number agent
from the server.

Let's not forget that we can use the web-based administration console of OCS-NG to
upload agent version archives (.zip) to the communication server. These are called
update_xxxx.zip. As in the previous example, xxxx represents the version number.

As another extra modality, we can use PsExec to update the clients. The same agent
setup can be launched via PsExec remotely as long as the switches are similar to the
one we created earlier when we opted for the package deployment function.

Updating the UNIX agent
On Linux operating systems, the process might be a little more time consuming
as there are no practical remote "reinstall" or "upgrade" solutions. Almost all of
the possibilities focus on deploying the package onto the machine and then
running the setup.sh agent installer script manually.

As of the latest agent version (1.0+), we have package deployment functionality
under Linux as well. This means that we can generate the same package as we
did under Windows. However, there is one difference. We will execute the
setup.sh install script via those command-line switches that we require.
This way, the updating can become unattended.

If this option fails, we can force a remote uninstall of the agent. Once that is done,
we can use our methods to get the installer script deployed onto the machine and
then run it via our command-line switches. In a nutshell, all that we want is just
getting the installer script to be executed via our arguments on the Linux machine.
The rest are just details.

Best Practices on Inventorying with OCS-NG

[210]

Updating OCS-NG central server (when
needed)
OCS Inventory NG is a healthy project that is still supported and has a dedicated
small team of developers behind it. While updates are not that frequent, this doesn't
mean that there are no updates. There are rarely major updates concerning the OCS
management server or communication server. However, when that happens, we
need to know how to install the update.

First of all, let's consider a safety tip. We need to back up our database. Yes, back it
up! NOW! Read that sentence again. This is crucial as newer updates always bring a
little bit of schema update and change the structure of our OCS database (ocsweb, in
our case). The steps for backing up the database were explained at the beginning of
this chapter.

Moving on, we download the latest OCS-NG central server archive and extract it
into the /var/www/ocsreports/ folder depending on our configuration (or \xampp\
ocsreports\). We overwrite our files and move on. From this step, there are two
little distinctions comparing a Linux OS versus Windows Server (with XAMPP).

In the case of Linux based operating systems, we need to follow the instructions
of the install script. As expected, we will skip the Perl modules and all of these
preliminary steps, unless they are specifically required to be updated as well.
Either way, the install script will know what to do. Once it is done, we navigate
to http://ocs-server/ocsreports. The same old page loads up when we started
our OCS-NG installation for the first time.

It will automatically update the database schema and other table-specific
information if required and finally verifies if everything is fine and ready
to go. Then it asks the user to input the MySQL database information. As a
final step, the updating is already finished!

Under Windows operating systems, we launch the OCS setup wizard. By default, it
should auto-detect that there is an already existing OCS installation on the computer.
Therefore, it will not select the XAMPP components and also completes the path of
the OCS installation directory. Verify these and only if they're fine, move on. Keep in
mind, it is pointless to update and mess with XAMPP components if we update only
OCS-NG.

The rest of the procedure is the same. It updates the database schema and
everything else. The process is verbosely logged within your web browser via
dynamically-generated PHP pages. Should there be errors, their reason is clearly
pointed out. But if you are updating, you should not encounter any of them. The
final step asks for MySQL information.

Chapter 8

[211]

Updating the OCS-NG central server is following the same fashion of installing a
fresh new OCS-NG server, except it updates the database schema and does other tiny
fixes so that the new server components match with the database (tables, data, and so
on) that was created with the older version.

Summary
Over the course of this chapter, we presented a distillation of best practices. These
are either useful when implemented in the real world and save us lot of time or are
well-learned lessons, which we recommend not going through anymore.

At first, we went through the various backing up modalities. System administrators
have a saying and it goes like this—Backups that are not automated are not done. (Source:
http://www.fief.org/sysadmin/). This law could not be truer. Knowing this, we
designed automated backup scripts. This way we can sleep well knowing that our
job is done.

Moreover, we discussed MySQL database tuning and how to squeeze every drop of
performance out of our OCS-NG inventory platform. We have dealt with common
setups, hardware specifications, and software-based variables that can be tweaked.
We have also overviewed a few scripts that can make the daily life of a system
administrator easier: notification sender, .vbs scripting extension to OCS, and
remote agent uninstaller.

Before ending the chapter, we decided to show one of the everlasting frustrations
when inventorying and auditing hardware components. Sometimes grabbing
important data is hardly seamless. We identified some problematic situations and
tried to find solutions. We did succeed. Finally, we have seen how to update agents
and eventually, if need be, the OCS-NG central server management as well.

Moving on, the next chapter continues the string of practical tips and tricks and
good-to-know strategies. It helps in identifying issues, diagnosing common pitfalls,
how to troubleshoot them, and finding solutions. Technically, we will focus on
finding out when some agents aren't doing their job and how to get them back on
track. We're going to deal with all sorts of other problems, from the admin console
up to the server backend.

Troubleshoot Confidently—
Find Solutions and

Workarounds
Over the course of this book, we have touched every area of our complete
inventorying solution. We all know the adage "if it works, don't fix it", but the
truth is we still need to be familiar with the troubleshooting methods beforehand.
This gives us confidence while presenting the solution to the superiors, getting the
idea accepted, and ultimately—which matters the most—the on-field experience and
the "know-how".

There are several problematic situations that need to be addressed. What
happens if some agents are not sending in their inventory? Where should we
begin troubleshooting? What if the admin console throws MySQL errors? And
what if we're facing issues, and the error logs are filling up? We should not lose
hope. Verbose logging is great. It can help us big time!

As an incentive, here's a quick glance at what we are going to cover in this chapter:

•	 Learn how to keep an eye on the behavior of agents
•	 Diagnose and troubleshoot agent-related problems
•	 Look into several ways to solve the admin console-based issues
•	 Identify and fix issues of the server backend, if need be
•	 Understand how to ask for help the "right way" (for example,

providing logs)
•	 Read about practical workarounds to not so common situations

Troubleshoot Confidently—Find Solutions and Workarounds

[214]

This chapter deals with headache alleviations. We cover techniques and methods
that help us to diagnose situations and detect problems. Once these issues are
identified, we will look into ways to solve them. Most of the time, these errors are
common and they are fairly well documented. This chapter strives to be a reference
for these kinds of struggles.

Nevertheless, we know that when it comes to administration, sometimes we are
just meant to be striving with the most bogus and unknown situations. We have
all been there: those errors that throw seemingly pointless messages, or things that
simply refuse to work appropriately. Thus, we are presenting a feasible solution for
these kinds of situations too. Our purpose is to gather all appropriate and relevant
information and then ask for help via the forums.

Keeping an eye on the behavior of agents
There are situations when everything seems to work alright, agents are uploading
their inventory, the server backend accepts the connections and handles the queries
appropriately, but then we recognize some client agent is not reporting status. There
are more than a handful of reasons why an agent does not upload its inventory to the
OCS-NG server and logging is the key to keep an eye on their behavior.

A closer look at the agent's logfile
Thankfully, OCS-NG has inbuilt logging mechanisms. Using the /debug
parameter when launching the agent forces it to automatically create the logfile.
This can be found in the directory of the agent under the following naming scheme:
hostname.log, where the hostname stands for the name of the computer on which
the agent runs.

In the case of Linux agents, the parameter is –debug and the logfile can be located
in the /var/log/ocsinventory-client folder. The filename is called the same as
hostname.log.

The logfile is quite verbose. Here is the beginning of a sample agent logfile:

HTTP SERVER: Connection WITHOUT proxy
TAG FORCE: Tag forced by /tag, value is <TAG-NAME>
WMI Connect: Trying to connect to WMI namespace root\cimv2 on device
<Localhost>...OK.
Registry Connect: Trying to connect to HKEY_LOCAL_MACHINE on device
<Localhost>...OK.
CHECKINGS: read <COMP_NAME-2009-12-17-08-22-47> and <00:14:54:9F:DA:27
00:42:BC:35:C7:5D> in ocsinventory.dat
IpHlpAPI GetNetworkAdapters...

Chapter 9

[215]

IpHlpAPI GetNetworkAdapters: Calling GetIfTable to determine network
adapter properties...OK
IpHlpAPI GetNetworkAdapters: Calling GetAdapterInfo to determine IP
Infos...OK
IpHlpAPI GetNetworkAdapters: OK (2 objects).
CHECKINGS: write <COMP_NAME-2009-12-17-08-22-47> and <00:14:54:9F:DA:2
700:42:BC:35:C7:5D> in ocsinventory.dat
HTTP SERVER: Creating CInternetSession to get inventory parameters...
OK.
HTTP SERVER: Getting HTTP Connection to server ocsng-serv.mydomain.org
port 80 using no authentication...OK.
HTTP SERVER: Sending prolog query...HTTP status 200 OK
OK.
HTTP SERVER: Receiving prolog response...OK.

These are the preliminary steps at the beginning of an agent's first launch. It connects
to the OCS-NG server, but to do that first, it needs to grab the network adapter
information. Once this is done, it grabs the prolog variable from the server, and after
a successful query retrieval, it sets this value to the agent config file and moves ahead
with the inventory.

This is when the agent begins to build up the inventory XML. It first queries the
logged in username, last logged in user, its operating system, and later on via WMI,
all of the hardware components, software, and so on. The inventory is then built
ground up.

A sample of this part can be seen as follows. This section is in the middle of the logfile.

Retrieving Device informations...
getUserName: Trying to get logged on User ID...
getUserName: Will using Process32...OK
User found (explorer): john.doe.
Registry NT GetLastLoggerUser: Trying to get the last user who'd been
logged in...OK (john.doe).
WMI GetOS: Trying to find Win32_OperatingSystem WMI objects...OK
(Microsoft Windows XP Professional 5.1.2600 Service Pack 3 2 1).
WMI GetDomainOrWorkgroup: Trying to find Win32_ComputerSystem WMI
objects...OK (mydomain.org)
Registry NT GetDomainOrWorkgroup...OK (MYDOMAIN).
WMI GetBiosInfo: Trying to find Win32_ComputerSystem WMI objects...OK
(INTEL_ D946GZIS)
WMI GetBiosInfo: Trying to find Win32_Bios WMI objects...OK (Intel
Corp.)
WMI GetProcessors: Trying to find Win32_Processor WMI objects...
Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz 2401 (x86 Family 6
Model 15 Stepping 6). OK
WMI GetProcessors: 2 processor(s) found.

Troubleshoot Confidently—Find Solutions and Workarounds

[216]

getMemory...Physical: 3478777856 bytes, Swap: 4905226240 bytes. OK
[--part cut out--]
WMI GetSystemPorts: OK
WMI GetSystemSlots: Trying to find Win32_SystemSlot WMI objects...OK
(7 objects)
WMI GetSystemControllers: Trying to find Win32_FloppyController WMI
objects...Failed because no Win32_FloppyController object!
WMI GetSystemControllers: Trying to find Win32_IDEController WMI
objects...OK (5 objects)
WMI GetSystemControllers: Trying to find Win32_SCSIController WMI
objects...OK (1 objects)

As expected, the inventorying process is not finished yet. There is still plenty of other
information to retrieve, just that we have purposefully selected the last snippet as a
sample to demonstrate a few key elements of the logfile. It is indeed verbose. Every
WMI object query is logged on a step-by-step basis (each line). Their results are on
the right of the key, for example, OK, and in parentheses, the retrieved values or their
count. In the case of failed queries, for example, no floppy controllers found in the
previous situation, they are specified as well.

Next the agent retrieves the leftover information such as software, network
information, product keys, and licensing information (via registry queries—HKLM
hive); and finishes the inventory. It opens up the previous inventory state (if there
is any) and compares it with the current state. In the case of changes, it updates the
inventory XML file.

Let's exemplify this part from the agent logfile:

Trying to open database on folder <C:\Program Files\OCS Inventory
Agent\> with XML...OK.
Reading last inventory state file...
XML Read last inventory state from file <C:\Program Files\OCS
Inventory Agent\last_state>...OK
Checking last inventory state...
 Logical drives inventory state changed.
 Video adapters inventory state changed.
 Inventory changed since last run.
XML Update Device properties...
 XML Update Logical Drives...
 XML Update Logical Drives: OK (4 objects).
 XML Update Softwares...
 XML Update Softwares: OK (304 objects).
[--part cut out--]
 XML Update Video Adapters...
 XML Update Video Adapters: OK (1 objects).
XML Update Device properties: OK.
WMI Disconnect: Disconnected from WMI namespace.

Chapter 9

[217]

In a nutshell, this is how the inventory is built up. Now, the next step is sending
it in. The agent will open up an HTTP connection towards the server, send it in,
wait for feedback, and finally check whether there is something new to download
(for example, a new agent version).

HTTP SERVER: Creating CInternetSession to send inventory results...OK.
HTTP SERVER: Getting HTTP Connection to server ocsng-serv.mydomain.org
port 80 using no authentication...OK
HTTP SERVER: INV : SEND received, sending inventory...HTTP status 200
OK
OK.
HTTP SERVER: INV : no account info update
HTTP SERVER: Closing HTTP connection....OK.
DOWNLOAD: Download is off
Writing last inventory state file...
 XML Write new inventory state to file <C:\Program Files\OCS
Inventory Agent\last_state>...OK
Execution duration: 01:25:34.

Under a successful execution, this is the fashion through which the inventorying is
logged. Generally, there are two kinds of problems that might occur. At first, the
agent cannot contact the OCS-NG communication server for whatever reason. This
is specified at the beginning when it tries to initialize the connection the first time.
HTTP status/errors are printed in the log. Thus, we can see the notorious errors such
as HTTP 500, 404, 301, and so on.

The second situation can happen at the end when it tries to send the inventory. If there
are some missing modules from the OCS-NG server, for example, XML interpreter,
then it cannot retrieve and understand the inventory the agent is trying to send in. If
this is the case, then the same error should happen on every agent, obviously.

Regardless of what errors we are getting, especially in the case of internal errors such
as HTTP 500, we need to look into the Apache logfile (error.log) that is located, by
default, on the following path: /var/log/httpd. Under Windows, this is located at
the directory: C:\xampp\apache\logs\. The filename is the same error.log.

If all goes well, by now, we should be familiar with the agent logging. This means
that we are ready to move on to troubleshooting. We are going to cover some of the
most frequent agent-related problems—how they appear in the logs, along with
solutions to fix them.

As a final note, in case of Linux agents, the parameter that forces logging is --debug
instead of the /debug one on Windows agents. Please refer to Chapter 3, The Zen of
Agent Deployment for a complete list of agent switch parameters. There are many
of them!

Troubleshoot Confidently—Find Solutions and Workarounds

[218]

Troubleshooting problems related to
agents
As mentioned earlier, quite often, there are connection-related issues, for example,
the agent cannot establish a connection with the OCS-NG server. This can happen
because of various reasons. First, there is a proxy required, and the agent is launched
with the /NP parameter; thus, it sets "no proxy" mode and fails the connection. Linux
agents have the –NP parameter.

By default, the agent retrieves the proxy address set in Internet Explorer (IE) under
Windows. This means that if there is a required proxy to go outside and surf the Net,
but that proxy is not required to reach the internal OCS-NG communication server,
which is within the intranet, then the agent will fail again. In this situation, we need
to specify the /NP switch to disable proxy detection. It ignores the one set in IE and
things will work.

In the situations we just discussed, the connection times out as the destination is
unreachable. Based on our network topologies, we must know whether or not we
need a proxy (if we have any) to reach the OCS-NG communication server from
workstation computers.

Another possible error occurs when the OCS-NG server is not configured
accordingly. We can see this from the following log sample:

HTTP SERVER: Connection WITHOUT proxy
HTTP SERVER: Creating CInternetSession to get inventory parameters...
OK.
HTTP SERVER: Connecting to server ocsng-serv.mydomain.org 80...OK.
HTTP SERVER: Sending prolog query...
HTTP SERVER: The server ocsng-serv.mydomain.org is not a well
configured OCS server
HTTP ERROR:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
 <head>
 [--part cut out--]
 </head>
 <body>

The cut out part is where the Apache web server automatically responds with an
HTTP Error 500 as there is an internal server error. Under most circumstances, this is
the "generic" error, as the OCS-NG server cannot be found, and hence the server will
not answer in an understandable language for the agent. This means it can detect
whether or not the address you specified runs an OCS-NG server.

Chapter 9

[219]

The communication between agents and the OCS-NG central communication server
happens via a pre-determined protocol (syntax, semantics, and so on), and if those
are not kept, the communication fails and is reported as an "internal server error",
as the responses do not match the required kind of answers. The easiest way to
determine their real cause is by looking at the Apache HTTP logfile (errors.log).

While the HTTP Error 500 is the most common one, it's not the only one. We can
face any of the possible HTTP status codes. Not all of them are errors either. When
initiating the connection, the status OK, HTTP code 200 means everything is fine.
But there are situations when we face the 404 or the 301 error.

For a detailed list of HTTP status codes, check out the following URL:

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Whenever struggling with an error message, we need to try debugging the config file
of the Apache web server, that is, apache_config. This is where lots of directives are
set, and if there are duplicates or mistaken variables, it can easily become a source
of many issues. For example, error 301 appears when there are multiple redirections
and the /ocsinventory directory already exists. We need to set where the directive
points and determine why the conflict happens. We can either rename that folder or
sort out the Apache directive.

Nevertheless, the error 404 might hit us in the face when we least expect it—especially
when we rush through the Apache installation and initial configuration. This error
means that it cannot find the /ocsinventory directory. Often, the directory might be
there physically but the Apache configuration file remains the default and does not
match our specific configuration. Of course, then it cannot locate the required folder.

Forcing an agent to report inventory
When we are troubleshooting a specific computer's agent, we want to see the results
of our modifications right away. No one wants to wait for the agent to try again by
itself (prolog_freq/tto_wait variables), and then who knows when we might
see some results. The solution here is to force the agent to contact the OCS-NG
communication server and report its inventory data. This can be done by creating
a batch script.

Here's an example on Microsoft Windows:

@ECHO off
NET Stop "OCS INVENTORY"
COPY /Y "\\path-here\service.ini" "C:\Program Files\OCS Inventory
Agent"
NET Start "OCS INVENTORY"
PAUSE

Troubleshoot Confidently—Find Solutions and Workarounds

[220]

This script is launched on the remote client and then it retrieves a pre-configured
service.ini file from a shared/network host. It stops the OCS Inventory service,
copies that file, and restarts the service. The service will then read its newly copied
configuration file and act accordingly. Let's call this batch script as force-ocs.bat.

The most important component of the newly configured service.ini file is the
TTO_WAIT variable. It equals zero. This value traces the countdown to the next run in
seconds. This means that the service is going to launch the OCSInventory.exe right
away. For further information, refer to Chapter 3, The Zen of Agent Deployment where
we discussed agent switches.

By default, the PROLOG_FREQ is set to 10. This means 10 (ten) hours until it contacts
the OCS-NG server for the first time. On first installations (the first time the agent
reaches the OCS server), this value is always the same unless we replace the config
file. A common misconception is that administrators set a low PROLOG_FREQ value
in the web-based admin console, and they expect the agents to send in their data
right away.

However, it does not work like that. The agents will wait patiently for those 10 hours
(value set by default), contact the OCS server, retrieve the configurations we set
via the admin console, and then update the newly configured PROLOG_FREQ. They
will send in their inventory data, and from that point onwards, the current actual
configuration variables are set.

Drifting back on topic, here's our modified service.ini file for the batch script
just mentioned:

[OCS_SERVICE]
NoProxy=1
Server=ocsng-serv.mydomain.org
Pnum=80
Miscellaneous= /tag:"tag-name" /SERVER:ocsng-serv.mydomain.org /
PNUM:80 /NP /DEBUG
PROLOG_FREQ=24
OLD_PROLOG_FREQ=24
TTO_WAIT=0
auth_user=none
auth_pwd=none

This script launches the OCS service with the new configuration file. However, there
are some situations when there is a problem with the service. It does not fail because
of the configuration but rather because there are not enough privileges to run that
service. The question whether the user has local admin rights or not varies from
situation to situation. Therefore, we need to debug this with Event Viewer.

Chapter 9

[221]

The Event Viewer is a useful MMC snap-in. We can launch this by either navigating
through the Control Panel | System and Maintenance | Administrative Tools. It
resides inside that folder or we launch the eventvwr command from Start | Run.

Once it's up and running, we want to check the application-related logs. The events
are categorized such as Application, Security, System, and so on. We want the first
one. The next step is sorting the queried results within the table based on Source.
This way, we can check all of the logs related to OCS inventory service at the same
place. The source field contains the name of the application, that's why we are
sorting it that way.

Here's a quick glance at a segment of the Event Viewer focused on what we
need. Double-clicking on an event brings up the details regarding the event
for that said issue.

We need to check what happens when the OCS Inventory Service is about to
start. This is logged in the Event Viewer. So, we should not forget about reminding
ourselves to look into the Event Viewer in the case of Windows machines. In the case
of Linux, there are logs everywhere, and if the service refuses to start, we will know
that right away. Apart from that, the Apache HTTP logs are totally the same and this
also applies to the OCS agent logs.

Here's a screenshot from when we double-clicked on the event from 2/21/2010:

Troubleshoot Confidently—Find Solutions and Workarounds

[222]

Solving administration console-based
issues
The backend of the administration console is based—as we very well know—on
PHP and MySQL. The web server platform is Apache. In most situations, when
we do have some problems, they are almost always related to either Apache not
working accordingly or PHP not being able to execute the scripts. The MySQL
part can also be troublesome if the OCS-NG server was not set up correctly.

Generally, once the web-based administration console is set up, things will always
go fine. The chances are slim that it will refuse to work from one day to another.
Therefore, on the scale of likelihood of issues, these stand on quite a low level. The
agents can act strangely more frequently than the administration console.

By default, every server component has some built-in limitations. These are alright
for most situations, but if our queries end up larger than normal or if we try to
upload a slightly larger sized package for remote deployment, then we might
hit another limitation. These limitations are not pointless, but in most cases they
conserve bandwidth, reduce server load, and alleviate the possibility of hang-ups
due to bad commands.

Solving MySQL limitations the right way
Let's discuss some common MySQL limitations at first. The way these upper caps
or limitations are implemented are quite simple. They are specified as server-side
variables in the MySQL configuration file. As such, let's fire up our favorite text
editor and load up the MySQL config file. This file can be found as my.cfg
(or my.ini under certain circumstances).

Under Windows operating systems, this configuration file resides under the
\xampp\mysql\bin\ folder. On Linux, we can grep for their correct location.

Here is a complete list of server-side variables from the official
MySQL documentation:

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html

The logging mechanism is intelligent enough, so when we face a server-side problem
caused by such a limitation, the error log tells us which variable causes the issue. For
example, the following error message can be thrown at us: Got a packet bigger than
'max_allowed_packet' bytes. Without any doubt, it really tells us the problematic value.

Chapter 9

[223]

This was just an example, but it can happen. By default, the size for the
max_allowed_packet variable is set to 1MB. The official OCS-NG documentation
recommends 4MB. In this day and age, we can easily increase this tenfold if not on the
hundreds scale. Nevertheless, well written SQL code should not meet this limitation if
it is not working with the importation of large databases (over few gigabytes+).

The max_allowed_packet variable applies both ways. The default for the client
side is 16MB and it suffices for almost every situation. In the case of OCS-NG,
that's a 100 percent. The server-side variable is the only one that should be upped
a bit from the default 1MB. It is pointless to increase it that much if the client side is
not tuned accordingly. MySQL 5.1 has the limitation of 1GB when it comes to
setting the highest value for that variable.

In the configuration file, find the following part and set the variable accordingly:

[mysqld]
max_allowed_packet=16M

This is one of the many errors that MySQL might report while working alongside the
administration console. We described the process of troubleshooting, understanding
and interpreting the error message, and pinpointing the exact location (source) of the
error. We should always refer to the official MySQL documentation first, and then,
for further clarification, we can check other sources. The process is the same for any
other error like this.

Solving PHP limitations the right way
Similar to MySQL data packet limitations, PHP also suffers from similar limitations.
These problems are the ones most people encounter at first when struggling to manage
their own blogs, photo albums, CMS, or other PHP-driven web-based applications.
PHP has well thought "max" limitations in order to minimize the chances of a server
getting overloaded due to poorly written script or malicious ones.

The issues we will cover in this part are related to the package deployment
functionality of OCS-NG, but they are reported via the administration console or we
can grab notice of them after an action that we did from within the administration
console. When we upload packages, these limitations come into play if our packet
sizes are larger than the predefined limits.

The PHP configuration file is called php.ini and there are at least two modalities to
find where this file resides. The first is to grep for it (or using find) or use the simple
Windows-based file search in case of Microsoft operating systems. The .ini file can
be at /usr/bin/php5/bin and also at /etc/php5. This is under Linux. Try running
the following command:

find / -name php.ini

Troubleshoot Confidently—Find Solutions and Workarounds

[224]

The other solution is much neater and actually gives us the entire dump of PHP
configuration options and variables. This is a sure-fire method. The command is
called phpinfo(), but we need to call it from within an HTML page with PHP
code—like this:

<?php phpinfo(); ?>

Create any .php file with the previous line of code, save it, and copy it anywhere
on the web server's folder. Now navigate with the browser to that file—say we
named it phpreport.html. Then we open up that link. The following table
appears on the screen:

The sample screenshot is from a PHPini() execution on a PHP 5.2.8 on Windows 7.

The table is much longer, but we have cut out the variables section. They are listed
in a two-column fashion, the left side showing the variable name and on the right its
value. The default values need to be tuned to enhance the file uploading capabilities
(>2 MB).

The official documentation for the PHP.ini core variables can be found at the
following URL:

http://php.net/manual/en/ini.core.php

Chapter 9

[225]

We need to fine-tune (read as: increase from the default values) the following variables:

•	 upload_max_filesize: The maximum file size we want to upload, it is
self-explanatory.

•	 max_input_time: Recommended value is -1 to disable this input time.
•	 memory_limit: OCS-NG recommends 16M, we can go for 32M or even 64M.

The error message this throws is: Allowed memory size of ___ bytes
exhausted.

•	 max_execution_time: Recommended value is -1 to disable this input time.
The error message this throws is: Maximum execution time of __ secs
exceeded.

•	 post_max_size: Maximum packet size we want to deploy plus 1MB
for headers.

Due to additional overhead involved (for example, encoding MIME headers) when
uploading packages, OCS-NG recommends that you set the post_max_size variable
to 1MB larger than your upload_max_filesize variable. For example, if you set
upload_max_filesize = 200M, you would need to set post_max_size = 201M.

There is one final pointer regarding larger file uploads. Apache has a configuration
directive that is called LimitRequestBody. By default, this value is set to 512KB.
This value is really low and due to that, some Linux distributions are pre-shipping
configured variables of this directive, but we cannot take this for granted. It is much
better to override this limitation or disable it entirely. Please find the following
directive within the Apache configuration:

#LimitRequestBody

In the previous example, we placed the hash (#) in front of the line. This way, that
line is ignored as a hash sign indicates a comment in the Apache configuration file.
Alright, now we explained how to fix it, but what's the purpose of this value? It
specifies the maximum length of a POST data. This is a global rule, and applies to
any sort of data transfer, regardless of scripting language, protocol, or target server.

Keep in mind that if we want to specify a limitation, then this value can go from 0
(unlimited) to 2147483647 (which is exactly 2GB). For more information, check the
following URL:

http://httpd.apache.org/docs/1.3/mod/core.html#limitrequestbody

Troubleshoot Confidently—Find Solutions and Workarounds

[226]

Identifying and fixing issues on the
server backend
This section is going to be a distillation of server-related issues and recommended
solutions, which occur frequently on standard OCS-NG installations. Keep in mind
that over the years these were the common troubles that most users struggled with.
As such, it's more likely to face these issues once again than some undocumented
weird scenario. Just remember that logging is everything and immerse yourself
within logfiles.

First and foremost, we might struggle with connection problems via the
OCS-NG server.

At the moment, the OCS-NG communication server does not support SSL connections.
This means that if your Apache is configured to use SSL with the communication
server, you will experience problems. The deployment server is using SSL. This was
a feature proposed a while back but was then placed on hold. As of the latest rumors,
the development team might have started implementing this functionality, but it is not
a priority.

The second chapter of this book covered the installation of the necessary modules
for Apache in great detail. We might still run into situations where an Apache
error is thrown regarding a mod requirement. Here we are listing a few of these
error messages:

Unknown directive PerlRequire /path-goes-here/…/some-startup.pl

The PerlRequire directive executes the startup Perl script. This preloads the
module mod_perl. This is where it fails and this means that mod_perl is not installed
or loaded. We can query the version of mod_perl by typing rpm -q mod_perl. Now,
this depends on the package manager we are using. Either way, we can also GREP
for mod_perl.

Having the mod_perl module installed is not enough. We need to enable the
automatic loading of this module within the Apache configuration file (httpd.conf).
Please find the following line and uncomment if it's commented out (# hash sign is
the comment):

LoadModule perl_module modules/mod_perl.so

If, for whatever reason this, line cannot be found, then write it. This enables the
mod_perl.

Chapter 9

[227]

After this step, Apache needs to be restarted—follow the logs closely for
further information.

Other possible causes of problems are due to rushing into and/or not knowing
exactly the exact version of mod_perl module we are using. Consequently, we end
up misconfiguring the OCS-NG server during installation. If we select the older type
of mod_perl version, then it's going to throw lots of Apache errors regarding not
being able to find some perl modules such as the compat.pm.

To be honest, this error is highly unlikely because nowadays it's quite hard to grab,
install, and use such an old mod_perl version that is lower than 1.999_21. This
is why, by default, the installation script of OCS-NG already picks the mod_perl
version 2.

If you checked the version of your mod_perl, you can query the environment
variable's value by typing in OCS_MOD_PERL_VERSION, and if it's 2, then this isn't
a problem. If it's 1 and you have the VERSION_MP 2, then this is the root of your
problem. Find the following in the ocsinventory.conf file:

Which version of mod_perl we are using
For mod_perl <= 1.999_21, replace VERSION_MP by 1
For mod_perl > 1.999_21, replace VERSION_MP by 2
PerlSetEnv OCS_MODPERL_VERSION 2

In order to help us troubleshoot problems with OCS-NG server, we need to
enable detailed logging. This can be done in the web-based Administration
Console. Navigate to the Config drop-down menu option from the yellow
action bar, and then select Config.

You will be directed to a page similar to the one that appears in the next screenshot.
The variable we need is located under the second tab called server. What we're
looking for is called LOGLEVEL, and we need to enable that for detailed logging.

Troubleshoot Confidently—Find Solutions and Workarounds

[228]

Another cause for problems is permissions. Here is the table from the official
OCS-NG documentation:

You can find this at the following URL.

http://wiki.ocsinventory-ng.org/index.php/Documentation:Errors#Commun
ication_server_errors

The official documentation has plenty of frequent problems addressed, and you can
read about these in the link just mentioned. Pay special attention to the FAQ section. It
deals with common situations like what's the cause of an issue if you see such errors.

Communication server fails to write a logfile
on Linux
Alright, we have been talking about logfiles here and there, but sometimes this is the
actual problem. The Communication server might yell at us asking for help in panic
that it cannot open the logfile. The reason for this is either because the path is invalid
or because it doesn't have sufficient privileges. The exact error message is shown as
follows and it appears within the Apache logs. Obviously, the communication server
fails to create the logfile.

Cannot open log file: __path-goes-here__

Chapter 9

[229]

This error can be easily debugged. There is an environment variable that we have
set during the OCS-NG Server installation procedure. Please refer to Chapter 2,
Setting up an OCS Inventory NG Management Server. This value can be found within
the ocsinventory.conf configuration file. Locate the config file and open it. Then,
search for the OCS_LOGPATH variable.

PerlSetEnv OCS_LOGPATH "/var/log/ocsinventory-NG"

As expected, we need to verify what is wrong with that path—or if there isn't anything
specified, then please do write one! Logging is not just necessary, it's an absolute must!
If the path seems alright, we need to check the directory permissions. The Apache
web server is the communication server, so it must have sufficient privileges (logging
means writing access!—that is akin to -rwxrwx-r-x at least).

We can check the permissions by listing the content of that directory with the
notoriously popular ls -l command. A full reference on Linux file permissions
can be found at the following URL:

http://www.zzee.com/solutions/linux-permissions.shtml

Setting permissions can be done with chmod. Definitely we won't struggle with that!

Diagnosing uncommon pitfalls—asking
for help
We have all been there. Sometimes we might face such a weird situation that
despite all of our efforts, we cannot solve it by ourselves. That's the beauty of
communities and helping each other as more eyes can be more attentive to
details and the know-how and experience is merged together. The OCS-NG
site offers support forums that are active.

As the members of the community are not able to troubleshoot and debug on your
setup and infrastructure, it is extremely important to provide the maximum amount
of information you can. This means gathering all of the logfile outputs, including
agents (those that are struggling), communication server logs, Apache logs, and
even the configuration files. The specification details of your platform and version
numbers are required.

Keep in mind that the vast majority of the community is from France. English for
most people is their second if not third (or even more) language. This means their
answers might not always sound so clear and understandable. Don't be afraid to
ask for clarifications. They are always doing their best to provide meaningful
replies if they can help.

Troubleshoot Confidently—Find Solutions and Workarounds

[230]

On another note, the forums are split into three major categories:

•	 Divers: This category is about general discussions, newspaper articles, and
so on

•	 Help in English: This is the support forums in the English
language categorized

•	 Aide en Français: These are in French and categorized just like the
English ones

It might seem a bit hilarious at first, but Google Translate or any other alternative
works surprisingly well with French-to-English translations. The French support
forums can be translated on the fly and then browsing, surfing, knowing what
happens inside those forums is possible as well. This means we can use this extra
option and find solutions even faster. Thus, we may think it feels weird—but
let's not neglect this opportunity.

The threads are organized into those different sub-forums based on categorization
of issues such as the following ones:

•	 OCS Inventory NG Server for Unix
•	 OCS Inventory NG Server for Windows
•	 OCS Inventory NG Agent for Unix
•	 OCS Inventory NG Agent for Windows
•	 Mobile devices management
•	 Administration Console
•	 Package Deployment
•	 IPdiscover
•	 Active Contributions
•	 OCS Inventory NG and GLPI
•	 Developers

As soon as we join the community, we should always search for some key terms
regarding our problem. It is likely that someone has already faced your issue, and
after similar struggles, somehow found a solution. We can learn from each other's
mistakes, especially in the world of IT where things seem so straightforward and
normal but can behave differently when we least expect.

The forums have a dedicated topic for the OCS-NG with GLPI integration. Same
goes for the GLPI forums which were already covered in sufficient depth in Chapter
7, Integrating OCS-NG with GLPI. For more information, we can always refer to either
of the forums when striving with issues.

Chapter 9

[231]

Never lose hope! Do try some global search engine queries as well, maybe you
are lucky and someone blogged about your issue. On another note, apart from the
support forums, you can always ask for help from the OCS Inventory NG partner
companies. They provide consultancy and expertise related to the OCS-NG platform.
Find the entire list of service partners at the following URL:

http://www.ocsinventory-ng.org/index.php?page=service-partners

Contrary to popular belief or what anyone might think at first, these service partners
were elected based only on their competence—nothing to do with financial support.
In order to become a partner, these companies completed a questionnaire and the
OCS-NG development team granted them their partnership title.

As a conclusion, this means we can ask for a reference or their services at any time
when we require them. The service partners are building, deploying, and managing
OCS-NG solutions.

Summary
This chapter delimited the kind of problems we can encounter. Soon enough, we get
to know the ropes of possible issues of each component of the OCS-NG inventory
solution and how to begin with troubleshooting in the respective situations. Logging
is without any doubt the most important practice that any application can do. During
this chapter, we presented where the logs are stored and how to take the magnifying
glass on them.

We started out with probably the most common problem. We understood how to
identify those computer clients that do not send in their inventory. When managing
a significant number of machines—more than a dozen—we need to recognize when
some of the devices are skipped. When we administer just a handful of clients,
leakages are obvious.

The likelihood of running into issues with agents is evidently higher than with the
main server backend. The reason for this is mostly because we have to deal with
hundreds, if not tens of thousands, of agents on different machines running various
operating systems on numerous platforms. All can be a source of trouble.

Once we knew how to analyze the behavior of agents, then finding solutions was just
a few steps away. The inbuilt debugging functionality helps a great deal. Usually, the
problems can be narrowed down to the agents not being able to contact the central
OCS-NG server. Understanding the HTTP errors returned by Apache was necessary.

Troubleshoot Confidently—Find Solutions and Workarounds

[232]

Moving on, the server backend is not immune to problems. We carried out
some possible roots of problems, such as permissions, missing modules, or bad
configuration tags. The administration console is a PHP-based web interface that
queries the MySQL server. As such, there are many factors in the game that can go
wrong. Queries can go wrong (PHP can refuse to work accordingly). We explained
these packet and protocol-related issues.

Summing these up, this chapter was a definite problem-oriented one with a sense
of practicality. Our target was to give modalities that develop into a habit when
diagnosing and fixing issues with the OCS-NG inventory platform. This is the
universal essence of troubleshooting everywhere: finding solutions or workarounds
in limited time.

Keeping Pace with Version
Updates—Glancing over the

changelog of the Latest
Release

The version number of OCS Inventory NG that appears on the cover of this book,
and which is discussed in great detail during the book, is 1.02. This version was one
of the longest standing stable versions. Exactly when I had finished the book, and
the chapters were pretty much wrapped up, the development team released a newer
version, which is 1.3.

The development team finally increased the version number by a seemingly large
increment. In this appendix, we are going to analyze and go beyond the changelog of
this release. As we will see, there are no major changes when it comes to installation,
implementation, and usability. Nothing really changes except for a bunch of bug
fixes and a set of additions that provide better compatibility with the latest hardware
and software.

Definition of changelog:
This is a file that contains a log of every change that is made during
the lifetime of a project. It includes all of the bug fixes, additions, and
new functions brought to the project accompanied with their date/
time and version number. Sometimes, we might come across these
files named as changes or news on the Wikipedia reference link at:
http://en.wikipedia.org/wiki/Changelog

http://en.wikipedia.org/wiki/Changelog

Keeping Pace with Version Updates—Glancing over the changelog of the Latest Release

[234]

What we want to point out is that this version number change should not make us
tremble in fear. Everything that we read about and learnt in this book applies to the
good old 1.02.x and the latest 1.3 as well. Nevertheless, it should make us happy to see
that the team behind OCS-NG is still heavily involved and active in the development
of this project. These are clear signs that the heart of the project is still beating.

At the time of writing this appendix (April 20, 2010), the latest version of OCS
Inventory NG is 1.3.1 (released on February 17, 2010). Visit the official website
of OCS Inventory NG, and check the latest version at:

http://www.ocsinventory-ng.org/

Analyzing the changelog
Once we download the archive of the latest release, we extract the files. We can locate
the following two files that contain the detailed logging of individual project files:

•	 ChangeLog-ocsreports
•	 ChangeLog-server

Please check out the screenshot below to see what we are talking about.

The ocsrepcorts file deals with the web-based user interface of OCS-NG. Basically,
it contains the changes that are made to the administration interface. As their names
suggest, the server file is the log file of the changes suffered by the server backend of
OCS-NG. By this, we mean the MySQL related queries, fixing security vulnerabilities,
adding support for new functions, and so on. As expected, the server changelog is ten
times larger.

Let's see what the changelog looks like from the inside by taking a look at an
example of the following excerpt of the ChangeLog-ocsreports file:

Appendix

[235]

The syntax of the log is quite simple. It starts with the date when the change
occurred. It then continues with the name of the developer that introduced the
change along with their contact information. Next, the change is described. The
previously mentioned example is quite self-explanatory. Sometimes, the descriptions
of these changes are understandable for the public as well, but that is not always
the case.

Here's another important change that is relevant to the public, and it's documented
as shown in the following screenshot:

Especially in case of bug fixes or issues, only the developers know what that specific
part applies to, why they phrased that description like that, and what exactly that
change deals with. In those cases, we should leave them alone. They are not meant
for the general public, unless we are planning to get involved in development as
volunteers. Thus, do not worry if you are reading the changelogs and find something
you do not understand!

Keeping Pace with Version Updates—Glancing over the changelog of the Latest Release

[236]

Alright, but then why are we explaining how to analyze changelogs, and why are we
bothered about them? Answering that question is simple. Major changes that either
directly or indirectly affect the public and the community of users are detailed and
explained—always! This means that when new features are introduced, they are
documented. In case of fixes or additions that alter the behavior of the software, we
can find these to be mentioned.

The previously mentioned description of changelogs is pretty general to every open
source project. The developers of OCS-NG are doing a great job of explaining each
modification, even if it's just in a few words. The descriptions make sense and when
there's a major one, it can get few sentences long.

It is important to understand how to read changelogs as their use is quite
preponderant, especially as more and more open source projects are
gaining popularity.

As a conclusion to this appendix, this new version did not bring anything new to
the table that would alter the behavior of OCS-NG. Everything we learned about
OCS-NG up to now during the entire course of this book still applies to this new
version, and we could pretty much say that it's going to be valid for the entire
course of the project.

Good luck with your OCS Inventory NG setup. This book should be used as a
reference material along with the official documentation, even after the inventory
is up and running.

I'm sure that you won't regret going on the path of OCS-NG. It sports one of the
most flexible and modular platforms for inventorying and a simple agent-querying
mechanism that works for all kinds of IT-related assets. Eventually, when integrated
with GLPI, it becomes a powerful all-in-one suite that brings to the table out of the
box solutions for most inventory necessities.

Let me hand out a few final goodbye points:

•	 Visit the forums, and don't hesitate to ask for help
•	 Check at least once a month whether there's a new release on the official site
•	 Do not skimp on the scheduling of automated backups stored somewhere else
•	 Whenever you face errors, check the logs and locate the cause of the trouble
•	 Once found—try search engines for the exact phrase

Index
Symbols
/biosfunc, command-line switches 71
/conf:configfile, command-line switches 71
/debug, command-line switches 71
/debug parameter 214
/DEPLOY:XXXX, command-line switches 72
/dmi, command-line switches 71
/D=path, wizard-specific argument switch

70
/fastip, command-line switches 72
/file, command-line switches 71
/force, command-line switches 71
/hkcu, command-line switches 71
/INSTALL, command-line switches 72
/ipdisc:X, command-line switches 72
/local, command-line switches 70
/NoOcs_ContactLnk, wizard-specific argu-

ment switch 70
/nosoftware, command-line switches 71
/NOSPLASH, wizard-specific argument

switch 70
/notag, command-line switches 71
/np, command-line switches 70
/NP parameter 218
/PATH:path, command-line switches 72
/pnum:XX, command-line switches 70
/server:name_of_ocs_server, command-line

switches 70
/S, wizard-specific argument switch 70
/tag:my_tag, command-line switches 71
/test, command-line switches 71
/uid, command-line switches 71
/UPGRADE, wizard-specific argument

switch 70
.vbs scripts

used, for extending OCS-NG inventory 198
/xml, command-line switches 71

A
Active Directory Group Policy Objects

(GPOs) 68
Address Resolution Protocol (ARP) 126
administration console 27
administration console-based issues

solving 222
administrative tasks, GLPI

backup 177
carrying out 176
user levels 176
users, setting up 176

administrative toolbar, OCS-NG web
interface

about 106
Admininfo 110
configuration 108, 109
deployment 106
dictionary 107, 108
duplicates 110
help 111
label file configuration 110
local import 111
registry 110
security 107
user 111

Advanced Packaging Tool. See APT
agent

about 64
deploying, on Linux operating systems 85
deploying, on Mac OS X operating systems

89, 90

[238]

deploying, on mobile devices 91, 92
deploying, on Windows operating systems

69
deployment method, selecting 68
forcing, to report inventory 219-221
inventory agent 64
issues, troubleshooting 218, 219
Linux agents 214
log files 214
sample agent log file 214-216
service type 65
setting up as service, benefits 66
standalone agent type 65
type, selecting 65

agent, deploying on Windows operating
systems

/D=path, command-line arguments 70
/NoOcs_ContactLnk, command-line

arguments 70
/NOSPLASH, command-line arguments 70
/S, command-line arguments 70
/UPGRADE, command-line arguments 70
agent, deploying on Windows operating

systemssteps 69
agent package, getting on OCS-NG server

78, 79
command-line arguments 70
command-line switches 70-72
deployable agent creating, packager used

77, 78
manual installation strategies 72-74
OCS Inventory NG agent installing, with

APT-GET 85
OCS Inventory NG agent installing, with

YUM 85
OcsLogon.exe using, via GPO or login

scripts 76, 77
OcsLogon.exe via login script, deployment

initiating with 82, 83
unattended installation, via PsExec.exe tool

84, 85
via Active Directory GPOs 79-82

agents, deploying on Linux operating
systems

distribution's package manager 85
installing on Linux, without user interaction

88, 89

installing on Linux, with user interaction
86-88

agents, deploying on Mac OS X operating
systems

200 OK 90
cron, example 91
Mac OS X installation builder 90
OCS agent, installation path 90
PKG precompiled package, downloading

89
AMP stack

installing, with APT 35
installing, with emerge on Gentoo 35, 36
installing, with XAMPP precompiled pack-

age 36
installing, with yum 33, 34, 35

Apache2 web server daemon
installing, command used 35

APT
Linux distributions 31
on Debian 31
used, for installing AMP stack 35

APT command 31
Aptitude

on Debian 31
AUTO_DUPLICATE_LVL 113

B
backup, GLPI administrative tasks 177
batch script

used, for uninstalling OCS agents 199, 200
writing 193

blue query toolbar. See query toolbar, OCS-
NG web interface

C
centralized repository 9
certificate authority (CA) 151
Certificate Signing Request (CSR) 152
changelog

analyzing 234
ChangeLog-ocsreports file, example 234,

235
defining 233
latest release 233

Changelog file 69

[239]

clients
OCS-NG agents, updating 208

client-server model
about 13
based, IT invertory 15
example 13, 14
versus peer-to-peer paradigm 14

Code Project Open License (CPOL) 203
command-line interface (CLI) 31
comma-separated values (CSV) 196
communication server 27
computer hardware components

model-specific data, retrieving 200
configuration parameters, OCS-NG web

interface
AUTO_DUPLICATE_LVL 113
DEPLOY 113
DOWNLOAD 113
DOWNLOAD_CYCLE_LATENCY 113
DOWNLOAD_FRAG_LATENCY 113
DOWNLOAD_PERIOD_LATENCY 113
DOWNLOAD_PERIOD_LENGTH 113
DOWNLOAD_TIMEOUT 113
FREQUENCY 114
INVENTORY_DIFF 114
INVENTORY_TRANSACTION 114
IPDISCOVER 114
IPDISCOVER_LATENCY 114
IPDISCOVER_MAX_ALIVE 114
LOCAL_PORT 114
LOCAL_SERVER 114
LOGLEVEL 114
PROLOG_FREQ 114
REGISTRY 114
TRACE_DELETED 114
UPDATE 114

Content management systems (CMSs) 195

D
database

dumping, with mysqldump 188, 189
dumping, with phpMyAdmin 189-191

database server 27
DEPLOY 113
deployment notification status 147

deployment server 27
dmidecode 87
DMZ (demilitarized zone) 57
DOWNLOAD 113
DOWNLOAD_CYCLE_LATENCY 113
DOWNLOAD_FRAG_LATENCY 113
DOWNLOAD_PERIOD_LATENCY 113
DOWNLOAD_PERIOD_LENGTH 113
DOWNLOAD_TIMEOUT 113

E
elevation mechanism, parameters

fidelity 124
Lastdate 124
Netmask 124
Operating system 124
quality 124

Emerge 32
emerge on Gentoo

used, for installing AMP stack 35, 36
emerge --sync command 32
eventvwr command 221
executing action 139, 140

F
fidelity 124
forums, categories

Aide en Français 230
divers 230
help in english 230

FREQUENCY 114

G
Gestion Libre de Parc Informatique. See

GLPI
GLPI

about 160
administration interface 160
administrative tasks, carrying out 176
cartridges, tracking 175
category, creating 181
configuring, to integrate with OCS-NG

mode 168, 169
connections, detecting 174
consumables, tracking 175

[240]

extending, with plugins 170, 171
features 161
financial information 175
helpdesk, feature 162, 182-184
issue tracking, feature 162, 182-184
licenses 162
licenses, tracking 180
license, types 180
management information 175
network connections 174
network information 175
notification system 162
report, generating 178
setting up, on OCS-NG server 164-167
software, auditing 180
software, categories 180
software management 175
statistics 179
used, to manage inventory assets 172-174
used, to track inventory assets 172-174
version, downloading 165
web interface 162, 163

GLPI setup, on OCS-NG server
about 164-167

GNU PGP (GPG key) 41
GUI (graphical user interface) 30

H
HDDs

model-specific data, retrieving 201-204
helpdesk, GLPI 182-184

I
installation, OCS-NG management server

about 26
on Linux operating systems 38, 39
on Windows operating systems 55
platforms 26

installation script
used, for installing OCS-NG server 41, 42

inventory
working with 120

inventory assets
managing, GLPI used 172-174
tracking, GLPI used 172-174

inventory data of hosts
uploading 118, 119

IpDiscover
about 22, 125
Address Resolution Protocol (ARP) 126
Config option 128
IPDiISCOVER_BETTER_THRESHOLD

variable 126
IPDISCOVER_LATENCY 126
IPDISCOVER_MAX_ALIVE variable 126
IPDISCOVER_NO_POSTPONE option 126
IPDiscover_USE_GROUPS option 126
MAC address field 132
network device types, defining 128
Network information menu 130
options 125, 126
security menu 126
subnet name, adding 129
subnet name, removing 129

IPDISCOVER 114
IPDiISCOVER_BETTER_THRESHOLD

variable 126
IPDISCOVER_LATENCY 114, 126
IPDISCOVER_MAX_ALIVE variable

114, 126
IPDISCOVER_NO_POSTPONE option 126
IPDiscover_USE_GROUPS option 126
IP Query function

about 133
components, requisites 133
directory permissions, setting 134
nmap 133

issue tracking, GLPI 182-184
IT inventory

auditing mechanism 9
centralized management solution 10
centralized repository 9
client-server model based 15
hardware information, gathering 11
help-desk, integrating with 10
information, gathering 11
installed software/OS (licensing)

information, gathering 11
integrated IT inventory solution, uses 10
license management process 9
needs 11, 12

[241]

networking equipment and office
peripherals information, gathering 11

requisites 8
solution 8, 9
ticketing system, integrating with 10

J
J9 JDK 91
Java virtual machine (JVM) 91

L
Label file configuration function 111
LAMP 29
LAN 13
Lastdate 124
latest release

changelog 233
launching action 139
LICENSE.txt file 69
license, types

free 180
global 180
standard 180
to buy 180

Linux agents
--debug, parameter 217
-debug, parameter 214
log file 214

Linux operating systems
agents, deploying 85
AMP stack installing, with APT 35
AMP stack installing, with emerge on

Gentoo 35, 36
AMP stack installing, with XAMPP

precompiled package 36
AMP stack installing, with yum 33-35
modules, setting up 37
OCS-NG management server, setting up

38, 39
software prerequisites 27, 28

Linux OS
scheduled job, adding into crontab 192

local area network. See LAN
local import function 118
LOCAL_PORT 114
LOCAL_SERVER 114

LocalService 66
LocalSystem account, Windows OS

demystifying 66, 67
LOGLEVEL 114

M
MAC address field 132
Mac OS X operating systems

agents, deploying 89
management server, OCS Inventory NG 16
Maxclients directive 195
mobile devices

agents, deploying 91, 92
mod_perl module 226, 227
model-specific data

of computer hardware components,
retrieving 200

of HDDs, retrieving 201-204
of RAM Memory Modules, retrieving

204-207
MySQL

GUI tools 194
limitations, solving 222, 223
tuning parameters, list 196

mysqldump
database, dumping with 188, 189

MySQL's CLI
used, for restoring SQL dump files 191

N
Netmask 124
network agent, OCS Inventory NG 16
NetworkService 66
nmap tool 19

O
ocsagent.exe file 69
OCS agents

uninstalling, via batch script 199, 200
OcsAgentSetup.exe file 69, 72
ocsinventory 39
OCS Inventory Mobile 91
ocsinventory-ng 76
OCS Inventory NG

about 7, 15

[242]

architecture, overview 16
demands 17, 19
extending, via .vbs scripts 198
functionalities 21-23
latest release, URL 234
nmap tool 19
performance, evolution 17
PHP notification-sender scripts, implement-

ing 197, 198
scripts 196
web interface 20, 21

OCS Inventory NG, architecture
management server 16
network agent 16

OCS Inventory NG Packager utility 77
OcsLogon.exe

agent package, getting on OCS-NG server
78, 79

deployable agent creating, packager used
77, 78

deployment, via Active Directory GPOs
79-82

deployment, via login script 82, 83
launcher 77
using to deploy, via GPO or login scripts

76, 77
OCS-NG agents

inventory, working with 120, 121
on clients, updating 208
Registry query function, implementing

117, 118
OCS-NG agents on clients

UNIX agent, updating 209
updating 208
Windows agent, updating 208

OCS-NG central server
updating 210, 211

OCS-NG database
backing up 188, 189
batch script, adding into Windows

Scheduler 193
batch script, writing 193
dumping backups automating, via scripts

192
dumping backups scheduling, via scripts

192
dumping, with mysqldump 188, 189

dumping, with phpMyAdmin 189-191
scheduled job, adding into crontab on

Linux OS 192
SQL dump files restoring, via MySQL's CLI

191
OCS-NG inventory

package deployment 64
OCS-NG management server

administration console 27
communication server 27
database server 27
deployment server 27
modules 27, 28
setting up, on Linux operating systems

38, 39
setting up, on Windows operating systems

55
OCS-NG management server, installing on

Linux operating systems
via installation script 41, 42
via RPM package 39-41

OCS-NG management server setup, on
Linux operating systems

initial configuration 60, 61
OCS-NG server installation, via installation

script 41, 42
OCS-NG server installation, via RPM

package 39-41
OCS-NG management server setup, on

Windows operating systems
about 55
initial configuration 60, 61
OCS-NG integrated installation, launching

59
XAMPP 1.6.8-1.7.1, issues 58
XAMPP 1.6.8-1.7.1, solution 58
XAMPP, for Windows 55-57

OCS-NG mode integration
GLPI, configuring 168

OCS-NG server
GLPI, setting up 164-167
tweaking, for performance 194, 195

OCS-NG server installation, via installation
script

about 41, 42
installation script, running 44-50
installation script, working 50-54

[243]

OCS-NG server package, downloading
42, 43

OCS-NG server package, installing 42
prerequisites, checking 44-50

OCS-NG site
forums 229
forums, categories 230
sub-forums 230

OCS-NG web interface
about 96
administrative interface 97
administrative toolbar 97, 106
common pitfalls, solving 115
configuration parameters 113
logging in 96, 97
logout/change password toolbar 97
main interface, components 97
overview section 98
query toolbar 97, 102
redundancies, eliminating 115, 116
registry query function, implementing 117,

118
tips 112

OCSocsrepcorts file
lates 234

Open Computer and Software Inventory
Next Generation. See OCS Inventory
NG

operating system 124
Organizational Units(OUs) 82, 83
overview section, OCS-NG web interface

about 98
ACTIVITY tab 102
CONFIG tab 100
ELSE tab 99
HARDWARE tab 99
MESSAGES panel 101
SOFTWARE tab 98

P
P2P paradigm. See peer-to-peer paradigm
package, activating

about 144-146
deployment notification status 147

package, creating
action field 141

contents, viewing 143
fragments size field option 141
installation completion need user action

option 141
MD5 option 141
name option 141
operating system option 141
package builder 140
path option 141
priority option 141
protocol option 141
steps 140, 141
submit query 142
Unique identifier option 141
user notifications 141
warn user option 141

package deployment method 209
package deployment, OCS-NG

about 138
deployment, activate option 138
deployment, build option 138
deployment, rules of affectation option 138
executing action 139, 140
launching action 139
server, requisites 143, 144
storing action 139

package manager software
about 28
yum 30

packages
affecting 149, 150
affecting, on multiple computers 148
rules of affectations option, managing 150,

151
PCBP 32
peer-to-peer paradigm

versus client-server model 14
PerlRequire directive 226
phoneME 91
PHP

limitations, solving 223-225
phpinfo() command 224
phpMyAdmin

database, dumping with 189-191
PHP notification-sender scripts

implementing 197, 198

[244]

PKIs
working with 155

plugins
used, for extending GLPI 170, 171

Portage 32
Pre Compiled Binary Packages. See PCBP
Privacy Enhanced Mail (PEM) 152
PROLOG_FREQ 114
PsExec 68, 84, 85
PsTools 68, 84
Public Key Infrastructure. See PKIs

Q
quality 124
query toolbar, OCS-NG web interface

about 102
All computers query 102, 103
All softwares query 105
columns, removing 103
Groups query 104
Search with various criteria query 105
TAG/Number of PC Repartition query 103,

104

R
RAM Memory Modules

model-specific data, retrieving 204-208
Redundancy function 115
Registry query function

about 110
implementing 117, 118

Remi
GNU PGP (GPG key) 41

reports
generating, with GLPI 178

resource management 7
rpm --import RPM-GPG-KEY-remi com-

mand 41
RPM package

used, for installing OCS-NG server 39-41
rules of affectations option

managing 150, 151

S
SEARCH function 104
server backend

issues, fixing 227, 228
issues, identifying 226

service agent type 65
service partners

URL 231
Services and Service Accounts Security

Planning Guide
URL 67

Simple Object Access Protocol (SOAP) web
service 50

software, categories
ignored 180
new 180
unchanged 180

software prerequisite, on Linux
distributions

Advanced Packaging Tool (APT), on Debi-
an-based Linux distributions 31, 32

Emerge 32
modules 27, 28
OCS Inventory NG management server,

roles 27
package manager software 28, 29
Portage 32
setting up 27
yum on RPM-based Linux distributions 30
yum, package manager software 30

SQL dump files
restoring, MySQL's CLI used 191

SSL certificates
about 151, 152
deploying, on agents 155-157
PKIs, working with 155
self-signed certificates, working with

152-154
standalone agent type 65
statistics

generating, with GLPI 179
storing action

about 139
versus launching option and executing

option 139

[245]

plugins menu 164
setup menu 164
tools option 163

web interface, OCS Inventory NG 20, 21
wide area network. See WAN
Windows agent, OCS-NG agents on clients

updating 208
Windows Driver Model (WDM) 201
Windows Management Instrumentation

(WMI) 201
Windows Mobile Device Center 91
Windows operating systems

agents, deploying 69
OCS-NG management server, setting up 55

Windows OS
LocalSystem account, demystifying 66, 67

X
XAMPP

for windows 55, 56
for windows, URL 57

XAMPP 1.6.8-1.7.1
issues 58
solution 58

XAMPP precompiled package
used, for installing AMP stack 36

Y
Yellowdog Updater 30
yum

used, for installing AMP stack 33-35
yum check-update httpd command 33
yum command 33
yum info ocsinventory command 40
yum, package manager software

on RPM-based Linux distributions 30

Synaptic
on Debian 31

T
TAG-based repartitioning 22
total cost of ownership (TCO) 184
TRACE_DELETED 114
trashing 195
TTO_WAIT variable 220

U
UNIX agent, OCS-NG agents on clients

updating 209
UPDATE 114
User function 111
user levels, GLPI administrative tasks

admin 176
normal 176
post-only 176
super admin 176

V
VBS scripting function

URL 198

W
WAN 113
web interface, GLPI

about 162
administration menu 164
assistance option 163
inventory part 163
main menu bar 162
management part 163

Thank you for buying
IT Inventory and Resource Management with OCS Inventory NG 1.02

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

SAP Business ONE
Implementation
ISBN: 978-1-847196-38-5 Paperback: 320 pages

Bring the power of SAP Enterprise Resource Planning
to your small-midsize business

1. Get SAP B1 up and running quickly, optimize
your business, inventory, and manage your
warehouse

2. Understand how to run reports and take
advantage of real-time information

3. Complete an express implementation from start
to finish

4. Real-world examples with step-by-step
explanations

iReport 3.7
ISBN: 978-1-847198-80-8 Paperback: 236 pages

Learn how to use iReport to create, design, format,
and export reports!

1. A step-by-step, example-oriented tutorial
with lots of screenshots to guide the reader
seamlessly through the book

2. Generate enterprise-level reports using
iReport 3.7

3. Give your reports a professional look with built
in templates

4. Create master/detail reports easily with the
sub-report feature

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: Introduction to IT Inventory and Resource Management
	Inventorying requirements in the real world
	A feasible solution to avoid inevitable havoc
	Streamlining software auditing and license management
	More uses of an integrated IT inventory solution
	Gathering relevant inventory information
	Overall inventory demands to enhance usability

	Centralization: introducing the
client-server model
	Example of the client-server model—an Internet forum
	The client-server model versus the
peer-to-peer paradigm
	IT inventorying based on the client-server model

	How does OCS Inventory NG meet our needs?
	Brief overview on OCS Inventory NG's architecture
	Rough performance evaluation of OCS-NG
	Meeting our inventory demands
	Set of functions and what it brings to the table
	Taking a glance at the OCS-NG web interface
	An incentive on functionalities

	Summary

	Chapter 2: Setting up an OCS Inventory NG Management Server
	Getting ready for the OCS-NG installation
	Setting up prerequisite software on Linux flavors
	Demystifying package management
	The everlasting dilemma of solving dependency hell

	Getting familiar with your distribution's package manager
	Yum on RPM-based Linux distributions
	APT and Aptitude/Synaptic on Debian and its derivates

	Installing Apache, MySQL, and PHP/Perl on Linux systems
	Installing the AMP stack with yum
	Installing AMP stack with apt
	Installing AMP stack with emerge on Gentoo
	Installing the AMP stack with an XAMPP precompiled package

	Setting up the necessary modules on Linux systems
	Setting up the OCS-NG management server on Linux operating systems
	Installing OCS-NG server via an RPM package
	Installing OCS-NG server via installation script
	Downloading and extracting the OCS-NG server package
	Running the installation script and checking prerequisites
	The real work behind the scenes of the script

	Setting up the OCS-NG management server on Windows operating systems
	XAMPP for Windows, the warm-up stage
	Warning: XAMPP 1.6.8-1.7.1—known issue and solution

	Launching the OCS-NG integrated installation

	A pragmatic look at initial configuration
	Summary

	Chapter 3:The Zen of Agent Deployment
	Behind the scenes: How agents earn their living
	Choosing the best agent type
	Demystifying the LocalSystem account of Windows OS

	Choosing the best deployment method
	Deploying agents on Windows operating systems
	Getting familiar with command-line arguments
	Manual installation strategies
	Using OcsLogon.exe to deploy via GPO or login scripts
	Using the packager to create the deployable agent
	Getting the agent package on the OCS-NG server
	Deployment via Active Directory GPOs
	Initiating deployment with OcsLogon.exe via login script

	Unattended installation via the PsExec.exe tool

	Deploying agents on Linux operating systems
	Installing agents on Linux with user interaction
	Installing agents on Linux without user interaction

	Deploying agents on Mac OS X operating systems
	Deploying agents on mobile devices
	Summary

	Chapter 4: Finding your Way through OCS-NG Features
	Getting familiar with the OCS-NG web interface
	Logging in
	Looking around and examining the view
	Elaborating the overview section of statistics
	Getting to know the blue query toolbar
	Understanding the first two queries
	Demystifying TAG based repartitioning
	Understanding the other three queries

	Getting to know the administrative toolbar

	Preliminary configuration tips and best practices
	Explaining configuration parameters

	Maintaining a clean inventory: Solving common pitfalls and eliminating
redundancies
	Implementing the Registry query function
	Uploading inventory data of hosts that are not networked
	Working with the inventory
	Summary

	Chapter 5: Investigating the Process of Gathering Inventory Data
	Going beyond the retrieving mechanism
	Using the IP Query function
	Summary

	Chapter 6: Package Deployment through OCS-NG
	Getting to know the package deployment function
	Creating a package: step-by-step
approach
	Server requirements for effortless
deployment
	Package activation and going beyond
deployment
	Affecting packages: getting the packages through
	Managing the rules of affectations
	Securing the process with SSL
certificates
	Working with self-signed certificates
	Working with PKIs that have certificate authority
	Getting the certificates deployed on agents

	Summary

	Chapter 7: Integrating OCS-NG with GLPI
	Introducing GLPI: IT asset management on steroids
	Getting familiar with the web interface of GLPI
	Setting up GLPI on top of our OCS-NG server
	Configuring GLPI to integrate with the OCS-NG mode
	Extending GLPI with plugins
	Using GLPI to track and manage
inventory assets
	Carrying out administrative tasks with GLPI
	Generating reports and statistics with GLPI
	License tracking and software auditing with GLPI
	Helpdesk and issue tracking functions
of GLPI
	Summary

	Chapter 8: Best Practices on Inventorying with OCS-NG
	Backing up and restoring the OCS-NG database
	Dumping the database with mysqldump
	Dumping the database with phpMyAdmin
	Restoring SQL dump files via MySQL's CLI
	Automating and scheduling dumping backups via scripts
	Adding the scheduled job into crontab on Linux OS
	Writing the batch script and adding into Windows Scheduler

	Tweaking the OCS-NG server for
performance
	Useful scripts that make our everyday life easier
	Implementing PHP notification-sender scripts
	Extending OCS-NG inventory via .vbs scripts
	Uninstalling the OCS agent via batch script

	Best practices on retrieving
model-specific data of various
computer hardware components
	Retrieving model-specific data of HDDs
	Retrieving model-specific data of RAM memory modules

	Updating OCS-NG agents on clients (when needed)
	Updating the Windows agent
	Updating the UNIX agent

	Updating OCS-NG central server (when needed)
	Summary

	Chapter 9:Troubleshoot Confidently—Find Solutions and Workarounds
	Keeping an eye on the behavior of agents
	A closer look at the agent's logfile

	Troubleshooting problems related to agents
	Forcing an agent to report inventory

	Solving administration console-based
issues
	Solving MySQL limitations the right way
	Solving PHP limitations the right way

	Identifying and fixing issues on the
server backend
	Communication server fails to write a logfile on Linux

	Diagnosing uncommon pitfalls—asking for help
	Summary

	Appendix: Keeping Pace with Version Updates—Glancing over the changelog of the Latest Release
	Analyzing the changelog

	Index

