
www.allitebooks.com

http://www.allitebooks.org

Drupal 7 Mobile Web Development
Beginner's Guide

Transform your existing Drupal site into one that is
completely compatible with mobile and tablet devices

Tom Stovall

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Drupal 7 Mobile Web Development
Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2012

Production Reference: 1020312

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-562-7

www.packtpub.com

Cover Image by Charwak A (charwak86@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Tom Stovall

Reviewers

Sumit Kataria

Trevor James

Michael Peacock

Acquisition Editor

Sarah Cullington

Lead Technical Editor

Hithesh Uchil

Technical Editors

Vrinda Amberkar

Mehreen Shaikh

Copy Editors

Leonard D'Silva

Neha Shetty

Project Coordinator

Kushal Bhardwaj

Proofreaders

Bernadette Watkins

Ting Baker

Indexers

Rekha Nair

Monica Ajmera Mehta

Hemangini Bari

Graphics

Manu Joseph

Production Coordinator

Melwyn D'sa

Cover Work

Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Tom Stovall got a Timex Sinclair 1000 in 1982 from his mom for his birthday and the first
night he slept with it under his pillow. Both school teachers, his mom and dad always made
sure he had access to computers and today's programming chops owe their origins to those
lazy summers spent in front of whatever hardware he could beg, borrow, or use when no
one was looking.

Tom started doing websites in 1995, then with PERL, later with PHP. He was the principal
front-end developer on Performance.gov, a cost-tracking, Drupal-based website for REI
Systems, Inc and the President's Office of Management and Budget during it's year-long
development cycle. He now works for Apigee, Inc in Palo Alto, CA developing Drupal
sites in support of their enterprise API product and is the maintainer on several Drupal
contrib modules.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sumit Kataria is a software engineer and technology enthusiast who trusts in open source
software. He possesses both a deep knowledge of Drupal programming and magical mobile
application development skills that allow him to make Drupal and mobile sing together in
beautiful harmony.

Sumit has done more than 15 iPhone/iPad/Android apps using Drupal as a base system.
He has worked with Lullabot and CivicActions building several Drupal-integrated mobile
applications, including the Drupalize.Me app and Do It With Drupal conference app.

Sumit is very passionate about everything he does and tries to bring the same enthusiasm
to his projects. He has been a presenter at four DrupalCons and several DrupalCamps,
advocating Drupal as a mobile application cloud-based backend. He was a Google Summer
of Code student for Drupal in 2008, and in 2011, he managed the whole Drupal Summer of
Code program.

When Sumit is not working on Drupal/mobile, he enjoys traveling and exploring new
places. Sumit lives in New Delhi, India. Find him on LinkedIn or Twitter as @sumitk or
on IRC as sumitk.

www.allitebooks.com

http://www.linkedin.com/in/sumitkataria
http://www.allitebooks.org

Trevor James is a Drupal developer based in Middletown, MD, USA. Trevor has been
designing websites for 15 years using a combination of PHP, HTML, XHTML, CSS and
ColdFusion, and has been using Drupal intensively for 5 years. Trevor's focus is on building
web applications and portals for education, non-profit, medical systems, and small
business environments.

He is interested in best methods of integrating web services with Drupal sites; optimizing
Drupal site performance, and using Drupal content types, views, panels, and other contributed
modules to develop front end interfaces that support data intensive websites. He loves
teaching people about Drupal and how to use this excellent open source content management
framework. He is also an active member of the drupal.org community of developers and
frequently supports other Drupal users and developers via the drupal.org forums.

Trevor authored the Packt book, Drupal Web Services, published in November 2010. For
more on this title, visit
http://www.packtpub.com/drupal-web-services/book.

Trevor co-authored the Packt title, Drupal 6 Performance Tips, published in February 2010.
For more on this title, visit https://www.packtpub.com/drupal-6-performance-
tips-to-maximize-and-optimize-your-framework/book.

Much thanks to the Packt editorial team for giving Tom Stovall the green
light for this book, a much anticipated addition to the ever-growing Drupal
library. Tom is a devoted and passionate Drupal developer and this text
shows all of his enthusiasm and knowledge of the Drupal project. We stand
to learn a lot, not only about mobile development, but also about Drupal
from Tom's contributions here. Thanks Tom for taking the time to write this
excellent resource.

As with my own book authoring, the reviewing process takes a great deal
of time, so I'd like to thank my family for allowing me the time out from
other daily family obligations to devote to the review process. Thanks to
my wife, Veronica, and our lovely twin daughters, Francesca and Clare.

www.allitebooks.com

http://www.packtpub.com/drupal-web-services/book
https://www.packtpub.com/drupal-6-performance-tips-
https://www.packtpub.com/drupal-6-performance-tips-
http://www.allitebooks.org

Michael Peacock is a web developer and Zend Certified Engineer from Newcastle, UK with
a degree in Software Engineering from the University of Durham.

After working as Managing Director and Lead Developer and overseeing the development
team at the web agency he co-founded almost five years ago, Michael stepped back from
the business and now acts as Senior/Lead Web Developer on the telemetry project for Smith
Electric Vehicles.

Michael loves working on web-related projects and is currently incubating a number of
ideas for launch through his latest venture, Central Apps Limited (www.centralapps.
co.uk). When he isn't developing or writing, Michael can often be found at user groups and
conferences talking about web-related technologies, including large-scale data problems,
innovative technologies, continuous integration, and automated deployment.

He is the author of Drupal 7 Social Networking, PHP 5 Social Networking, PHP 5 E-Commerce
Development, Drupal 6 Social Networking, Selling online with Drupal e-Commerce, and
Building Websites with TYPO3. Other publications Michael has been involved with include
Mobile Web Development and Drupal for Education and E-Learning. He was a technical
reviewer for both of these books.

You can follow Michael on Twitter at www.twitter.com/michaelpeacock or find out
more about him through his blog, www.michaelpeacock.co.uk.

www.allitebooks.com

http://www.centralapps.co.uk
http://www.centralapps.co.uk
http://www.twitter.com/michaelpeacock
http://www.michaelpeacock.co.uk
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

I'd like to dedicate this book to my mom, Sheila Stovall, who took me to my first computer
show at the University of South Florida when I was in grade school and triggered a life-long

obsession with technology that continues to this day.

- Tom Stovall

Table of Contents
Preface 1

Chapter 1: When is a Phone Not a Phone? 7
"Dumb" phones 8
"Smart-er" phones 9
Smart phones 10
Tablets 11
WebKit 12
Mobile-ize me! 12
What is mobile? 13
The "One Design" myth 13
Mobile simulators 14
Time for action – installing an Android development package 14
iOS 16
Time for action – installing the Mac OS developer's package 17
Summary 20

Chapter 2: Setting up a Local Development Environment 21
Drupallo's Pizza Kitchen 22
Averting disaster 23
A word about platforms 24
Time for action – downloading the SCM client for Mac 25
Cygwin and GIT for Microsoft Windows 28
Time for action – installing a development environment using Windows
and Cygwin 28
Text editors for Mac OS X and Microsoft Windows 33
Serving web pages on your computer 33
MAMP 34
Time for action – configuring our first virtual host 35
Time for action – changing the default configuration for MAMP 39

Table of Contents

[ii]

WAMP (Windows, Apache, MySQL, and PHP) 41
Time for action – installing WAMP 41
Drush and Drush Make 45
Time for action – installing Drush and Drush Make for Mac OS X 45
Time for action – installing Drush for Windows 46
Building a Drupal website with Drush Make 47
Time for action – building a Drupal install from a make file 50
The local database 51
Time for action – creating a database 51
Summary 58

Chapter 3: Selecting the Right Domain for your Mobile Site 59
Once upon a website… 60
One ring to rule them all 62

Domain Access versus Multisite 63
Time for action – installing Domain Access module 63

Domain management 64
Time for action – configuring Apache 64
Bootstrapping the domain 67
Time for action – bootstrapping the Domain Access module 67
Introduction to the Features module 70
Time for action – installing and creating your first feature 70
Time for action – updating the feature with new settings 74
Deployment—best practices 77
Time for action – code check-in and deployment 78

Pushing out features 81
Time for action – check in your features module 81
Summary 83

Chapter 4: Introduction to a Theme 85
Progressive Enhancement 86

HTML5 and the simplified DOCTYPE 87
New HTML5 semantic elements 89

Drupal 6 versus Drupal 7 theming 89
Time for action – installing the default mobile theme 93
The simple life 95
Media queries 96
Time for action – personalizing the mobile theme 97
Redirecting mobile clients 101
Time for action – writing JavaScript redirection for our theme 102
Give them what you think they need until they tell you what they want 105

Table of Contents

[iii]

Behave yourself 106
Drupal behaviors 107

Time for action – redirection with a cookie to remember state 108
Summary 112

Chapter 5: A Home with a View 115
The Context and Display suite modules 116
Time for action – creating a mobile-friendly home page 117
Pushing changes from one environment to another 125
Time for action – updating the Home Page feature 125
The menu 129
Time for action – creating the menu content types 130
Bundling up the changes 136
Time for action – bundling the changes into a package 136
Summary 140

Chapter 6: The Elephant in the Room: Audio, Video, and Flash Media 141
Flash and iOS 141
Incorporating video into your web content 142
Time for action – embedding media files 143
Time for action – adding content 147

A word about encoding 150
"I did it my way" 151

Charting and graphs 152
Time for action – graphing a view 153
Summary 157

Chapter 7: Location, Location, Location 159
Geolocation 160
The navigator.geolocation object 160
Time for action – adding location data to nodes 161
From address to longitude and latitude 175
Time for action – geocoding a node's location data 176
The close2u module 177
Time for action – downloding and enabling the close2u module 178
Finishing the page 190
Time for action – finding the closest franchise the hard way 190
Summary 197

Chapter 8: Services with a Smile 199
Using Drupal to power your native application 200
Time for action – creating a REST service 201
Time for action – testing your new REST service 203

Table of Contents

[iv]

APIs: The future of the interactive web 208
Customized services 209
Time for action – custom REST service formatter 209
jQuery Mobile 212
Time for action – using jQM as our base theme 213
jQuery Mobile JavaScript Events 219
Time for action – the AJAX login form 219
Summary 222

Chapter 9: Putting it Together 223
Display Suite 224
Hooks, styles, and build modes 224
Time for action – retheming nodes for our jQuery mobile theme 230
Time for action – adding theming to the rendered node 236
Beyond core menu items 240
Time for action – customized menu attributes 240
Fonts 242
Time for action – adding fonts 244
Summary 251

Chapter 10: Tabula Rasa: Nurturing your Site for Tablets 253
The human touch 254
The event-driven model 254
Touch and go 256
The main event 257
Time for action – adding a swipe advance to the home page 257
The changing landscape (or portrait) 260
"Starting over" or "Everything you know about designing websites is wrong" 261
Wire framing made easy 262
Drupal 7 Commerce module 263
Time for action – the one true theme 264
Time for action – creating a product 268
A room with a viewport 273
Time for action – setting the viewport with JavaScript 273
Time for action – advanced media queries for tablets 274
Summary 278

Table of Contents

[v]

 Chapter 11: A Home in the Clouds 279
Problems introduced by modern websites 280
Amazon Web Services (AWS) 281
Time for action – setting up AWS and RightScale 283
Time for action – using an AMI to create a server 289
Time for action – Jenkins builds our site 298
Summary 303

Appendix: Pop Quiz Answers 305

Index 309

Preface
It's not an overstatement to say that handhelds have changed the world. What was, just 10
years ago, simply a phone is now the center of your online life and, for many users, their
primary Internet device. The power of the smart phone is shaking up the world from Main
Street and Wall Street to Pennsylvania Avenue and Downing Street.

Drupal is the perfect platform on which to build a mobile strategy. The power of millions of
developers world-wide ensures that there's no problem you face that has not already been
overcome by multiple developers and solved with any one of the hundreds of thousands of
Drupal contributed projects.

What this book covers
Chapter 1, When is a Phone Not a Phone?, explains what we mean when we say "mobile."
In this chapter, we'll take a look at the mobile platforms in use today and how they behave
and render today's HTML standards.

Chapter 2, Setting up a Local Development Environment, teaches you to work in a team
environment with version control and to create a local version of our site on Windows or
Mac OS with Drush, Drush Make and a make file, and our standard open source PHP *AMP
stack. It outlines a team workflow of building the code locally and pushing it to the live site.

Chapter 3, Selecting the Right Domain for your Mobile Site, guides you through setting up the
Domain Access and Drupal Behaviors modules that redirect mobile and desktop browsers to
the version of the website most appropriate for their client. In this chapter, we will learn to
share content across sites without resorting to a multisite install.

Chapter 4, Introduction to a Theme, introduces the idea of progressive enhancement with
CSS. In this chapter, we'll create a very simple HTML5 theme that will serve mobile clients
with CSS Media Queries until a highly customized one can be devised.

Preface

[2]

Chapter 5, A Home with a View, demonstates the use of Context and Image Styles to create a
customized view for the home page. In this chapter, we'll create a mobile-friendly menu and
bundle it up into a feature that can push the new content to your live site in one fell swoop.

Chapter 6, The Elephant in the Room: Audio, Video, and Flash Media, teaches you to create
a compelling audio and video experience without using Flash. It teaches you to create data
visualization using data we've pulled from a View and the HighCharts JavaScript library.

Chapter 7, Location, Location, Location helps you to set up location services and cover some
common use cases, as well as some uncommon ones using GMap, Location, Open Layers and
Map Box.

Chapter 8, Services with a Smile, explores the Services module which serves up pieces of
node content from a REST and/or SOAP API. In this chapter, we will leverage this module to
add some interesting interactivity to our example site.

Chapter 9, Putting it Together, guides you in addding some advanced theming to your site
and making the site more responsive to the various devices that will be accessing it.

Chapter 10, Tabula Rasa: Nurturing your site for tablets, explores the emerging tablet market
and covers special design considerations and conventions for designing for tablet use.

Chapter 11, A Home in the Clouds, explores team deployment solutions such as Hudson/
Jenkins, Features integration hooks and breaks down the go-live process to something that's
repeatable and, with any luck at all, scriptable.

Appendix, Pop Quiz Answers, contains the answers to all the pop quiz questions for all
the chapters.

What you need for this book
You'll need a Mac or PC to develop your website. Optionally, you might want to get an
Amazon AWS account for the chapter on deployment.

Who this book is for
This book is for the aspiring website developer as well as more experienced developers.

Conventions
In this book, you will find several headings appearing frequently. To give clear instructions
of how to complete a procedure or task, we use:

Preface

[3]

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Go to http://developer.java.com and
search for the JDK developer download. It will be a .exe file. Run the installer "

A block of code is set as follows:

 <VirtualHost *:80>
 ServerName dpk.local
 DocumentRoot "C:\cygwin\home\[YOUR USER NAME]\sites\dpk"
 <Directory "C:\cygwin\home\[YOUR USER NAME]\sites\dpk">
 Options Includes FollowSymLinks
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
 </VirtualHost>

http://developer.java.com

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

core = "7.x"
dependencies[] = "context"
dependencies[] = "views"
description = "Home page view"
features[context][] = "Home Page"
features[ctools][] = "context:context:3"
features[ctools][] = "views:views_default:3.0"
features[views_view][] = "home"
name = "Drupallos Homepage"

Any command-line input or output is written as follows:

cd ~/Sites
git clone git://github.com/drupal4mobile/dpk.git

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "We then need to create an
Android Virtual Device. Click on the Virtual devices tab and then click on the New button".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
The code for this book is stored on GitHub at http://github.com/drupal4mobile/dpk
and we'll use the GIT version control system throughout the book. I've organized the code for
each chapter into a branch on GitHub. As this code is progressive from beginning to end, you
can obtain the code for each chapter by checking out the GIT branch for that chapter. Feel
free to fork any code on the repository and use it as you see fit. Any code in this book should
be considered open source and released under the same license as Drupal.

After this book's publication I will attempt to take some of the custom modules used in the
book to Drupal contrib module status. If I am successful, I will note such a change in the
dpk.make file in the root of the install directory.

Also, you can download the example code files for all Packt books you have purchased from
your account at http://www.PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the errata submission form link, and entering
the details of your errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded on our website, or added to any list of existing errata, under
the Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
When is a Phone Not a Phone?

On January 9, 2007, Steve Jobs addressed a group of adoring Mac heads at the annual
MacWorld conference. He talked about how Nokia had pioneered the mobile phone
industry and created some of the best mobile phones in the market. He talked about
how Blackberry had changed the world by creating devices that excelled at getting e-mails
anywhere in the world securely and quickly, allowing you to respond to them instantly. He
talked about how desktop computers were fantastic for browsing the Web, but no one had
quite captured that desktop browsing experience in a handheld. Steve then showed the
world the first iPhone—the world's first phone, e-mail, and mobile Internet device. The
moment I saw it, I knew I had to have one.

I am, and have been an unabashed Apple fan. Both my parents were teachers and were
able to check out Apple computers from the school library during the summer. This meant
that I spent almost every summer of grade school in front of a monitor with the Apple
logo on it. The iPhone was the culmination of all of those summers' enthusiasm times
one thousand.

I went to the Tampa Apple Store after work on the day of the launch and I was the first
one on my block to have a new iPhone. The data speed was excruciatingly slow and the
phone dropped calls more than a freshman football player drops passes, but the device
revolutionized what we thought a handheld could be. And with each release, the iPhone
continued to get better. As it had done three decades earlier with the personal computer
industry and two decades earlier with the GUI, Apple had ignited innovation in the
handheld space that the world would never be the same.

Some five years later, it's impossible to imagine a Friday night without texting your friends
and getting information on which restaurant in the area serves the best Persian Kebob, and
then sharing the location with them all, so they meet you there without a single phone call
exchanged between you. We live in a handheld world and many a pundit has stated,
"If you don't have a mobile strategy, you don't have a strategy".

When is a Phone Not a Phone?

[8]

So, what is your mobile strategy? Whether you sell cupcakes on Main Street to 12-years-old
girls, or servers to wall street traders, Drupal gives you a framework to create a first-class
mobile website.

Drupal is an open source piece of software installed on servers that allows you to manage
content for a website through a web-based interface. You can pair your content with one
or more themes, which will wrap the content in the HTML design of your choice.

There are tons of better CMSs out there, both paid and open source. What makes Drupal
what it is today are two basic things—one is the hundreds of thousands of developers
contributing modules to the Drupal framework. Second is Drupal's approach. Drupal
approaches web development as a series of Lego™ blocks, each one building on the other
until the entity becomes greater than the sum of the parts. This book will attempt to
demystify the process.

So what is it that you hope to accomplish with your mobile site? The chances are that it's
one of the following three general goals:

 � Broadcast message: Includes either news or information. Allows you to share
information about your business or non-profit with current or future customers.

 � Interaction: Allows your customers to find you, contact you, or in other ways,
interact with you.

 � Location portal: For example, find the best Kebob in Arlington, Virginia.

What you hope to accomplish will give you a better idea of who your audience is and what
type of hardware they might have.

"Dumb" phones
In the beginning mobile telephones were large bricks that needed constant charging and
had a very limited range. By the year 2000, Nokia and Motorola had most of the US Phone
market selling what we now call "dumb" phones. Dumb phones were dubbed, thus, as
a reaction to newer "smart" phones. They usually have a single color screen and a 12-
key standard phone keypad with a power on and off button and maybe one or two other
function keys. You can accomplish text input with a combination of presses on the keypad.
The phone's secondary features such as storing phone numbers and texting are usually
accomplished through a series of menus. The browsers on these phones use a protocol
called Wireless Application Protocol (WAP). WAP was evolved by necessity on these "dumb"
phones in the early 2000s. WAP breaks up the content into a series of menus and text
cards, and you can use the menus to navigate through the text cards to achieve something
approaching a wireless Internet experience. Unless you know for sure that your audience

Chapter 1

[9]

is using WAP-only phones, you can probably choose to disregard it and author your site in
HTML only. This book will only touch briefly on the WAP protocol and will turn most of its
attention to full HTML sites, as the vast majority of mobile web traffic in the US and Europe
are smartphones using WebKit-based full-HTML browsers.

However, there are some places where "dumb" phones in the US excel and are readily
accepted. These include the following:

 � Government jobs that require that your cell phone does not have a camera

 � Many Health and Human Services buildings that deal with minors and much of
the court system has security in place that doesn't allow cameras in the building

If you have a cell phone with a camera, it's confiscated by the security guards and given back
to you when you exit. After having my cell phone confiscated at the door on a trip to traffic
court recently, I noticed many of the lawyers in the building were carrying phones that look
like they were from another era. As long as security measures such as these are in effect,
there will always be a market for the circa 2001-era "dumb" phone with a T9 keyboard and
a WAP web browser.

"Smart-er" phones
So between the "dumb" phone and today's high-end smart phones are what the
industry calls "Smart-er" phones. They usually have color screens and a keyboard that
enables faster SMS communication, but don't have the processing power or storage
capability of a fully-fledged smart phone. Recently, cheap Android-based smart phones
have supplanted these phones, but there are still a few of them in the market. They
mostly use the WAP protocol that the dumb phones use, but with a few exceptions.

When is a Phone Not a Phone?

[10]

So, as with dumb phones, unless you know for sure that your audience is using these devices,
you can eschew WAP and turn your attention toward building sites with standard HTML.

Smart phones
About a year after the iPhone was released, word leaked out onto some blogger sites that
Google was creating an open source operating system for phones. Based on Linux, the
new OS would be made available free of charge to handset manufacturers and would also
offer some of the advanced functions available to iPhone owners. Google would also allow
developers to submit their applications to a common market where users of the OS could
purchase and download these. The industry was instantly a buzz. Android adoption started
out slow, but as the OS improved, more and more manufacturers started releasing phones
with their tweaked version of the Android OS. The touch screens and features on a par
with the iPhone at a fraction of the cost and on the carrier of their choice drove Android to
success and made millions for Google in search revenue. More than that, it gave the iPhone
some competition—and competition almost always drives innovation.

Chapter 1

[11]

Android's greatest strength was also its greatest weakness. Anyone could alter the OS and
put it on their handset, which means that programmers had to contend with changes in the
configuration from a multitude of hardware sources. When writing custom applications for
the handheld, testing, and vetting each of the hardware configurations was, and continues
to be, a nightmare for Android developers. And the submission process for applications to
the Android App Store was not nearly as streamlined as for Apple's App Store. But creating
a truly cross-hardware version of your application needn't be a lesson in patience.

Tablets
Just as earth-shattering as the iPhone announcement was Apple's release of the iPad. Tablet
computing has been around for a number of years, but with a stripped down version of
Windows as its OS. Many users rejected tablets as they considered them reductive—"less"
of a computer than their desktop—and they never really caught on.

The iPad was all about more. It was like an iPhone, but more than that. Like a laptop,
but without a clumsy fold-out keyboard and the battery lasts for 10 hours.

Since then a myriad of Android tablet-style devices have been released with a varying
amount of sales success, but as of the date of this book's printing, the iPad remains king
of the tablet world and will for a number of years in the future. There's some marketing
research to suggest consumers are buying tablets in situations where they normally would
have bought a laptop for $500, and with the emergence of cloud computing, it makes sense
to forgo a bulky laptop in favor of a lightweight tablet.

Now, I have replaced my laptop with a 3G iPad that is always connected wherever I go. It's
possible for me to travel for days without touching my laptop and do almost everything I
could do with it, including administering servers, writing code, and authoring this book.

The emergence of the tablet is one of those decade-definer events along with the social
networking, the Internet, and the personal computer before it, that would change the
landscape of computing in ways that no one could predict.

www.allitebooks.com

http://www.allitebooks.org

When is a Phone Not a Phone?

[12]

WebKit
Although the Android platform and iPhone differ greatly, there's one very important
similarity—their web browser. Both OSs have their web browsers based on the open
source WebKit project.

In 2001, Apple needed a small, lightweight web browser for it's new Mac OS X operating
system. They chose a little-known open source project called KHTML for its clean code,
support of web standards, and minuscule (for a web browser) codebase. KHTML was
basically a set of libraries you could use to render HTML documents in Windows. From the
KHTML project, Apple spun off the WebKit and created their Safari web browser, and a few
years later, Google created their Chrome browser from the same set of libraries. Because
of its modern compact rendering engine, Safari was able to leapfrog Firefox and Internet
Explorer in its support for emerging standards. It became the logical choice for both Apple
and Google's handheld operating systems. When Blackberry updated its operating system
to enable touch screens, they also chose the WebKit rendering engine, so when you're
developing for mobile browsers, with a few exceptions, you're basically developing for
WebKit, which makes life significantly easier than developing sites for the desktop. WebKit
boasts some of the best rendering of CSS and HTML and some of the fastest JavaScript of
any web browser.

Mobile-ize me!
But more often than not, you purchased this book because you have a particular website in
mind that you need to "make mobile". I encourage you to rethink parts of your website that
no longer make sense in light of a mobile paradigm. Things such as hover-based navigation,
photo galleries of large-sized images, music, flash, or high-speed repeating animation on the
home page will frustrate your mobile users for reasons we will make clear. So to "mobile-ize"
your website, you may need to do more than just come up with some slick tricks and
mobile-friendly CSS to make the mobile experience of your site first-rate.

Throughout this book, we will be working through an example website. Chapter 2, Setting
up a Local Development Environment, will get the example set up, but if you have an existing
site, feel free to set up a development environment of your own and add mobile additions
to your existing site. The book is set up to work through the example adding features
one-by-one, but the chapters will be generally self-contained and you can take them
a la carte.

All-in-all, there are about 6500 different web-capable mobile devices. We will attempt
to create a site that is viewable on the vast majority of those devices.

But all of this begs the question that is discussed in the section that follows.

Chapter 1

[13]

What is mobile?
Is mobile just a piece of hardware? We've talked about hardware, some of the software,
iOS versus Android, and WebKit versus WAP browsers. But what exactly is "mobile"?

Mobile is a context—the context of the user rather than the context of the computer. With
most computing, the assumption is made that it will be done on a desktop or laptop and
there will be a storage device, a display device, and multiple user inputs such as keyboards,
mice, and trackpads.

Mobile relinquishes those assumptions and assumes only the user. Nothing about the
device and screen may be assumed, because we could be talking about a mobile phone
with a four-line screen and WAP browser. Nothing about the keyboard can be assumed
because very few mobile phones have physical keyboards these days.

A "mobile" website must be adaptive and able to be displayed wherever and whenever
the user needs or wants to and cannot make any hardware or software assumptions.

And that is why, in my opinion, it should be a different website from your standard
desktop version.

The theme-ability of the content and agile nature of the CMS make Drupal a perfect tool
to solve some of these design challenges, as you will soon see.

The "One Design" myth
So there's a theory of design. It states that we should design the website so that all the
pieces work together in both a desktop context and in a mobile context. Use smaller design
pieces that are adaptable to small screens and use CSS that will optimize the display for
whatever the user chooses to view the website on. This is sort of a "one ring to rule them
all" mentality.

I would disagree with this strategy. Not only is this an incredibly difficult task for a designer,
but I think this approach overlooks a basic constraint. The ways in which we consume
information on a desktop machine and that on a handheld device are completely different.

I believe the act of reading itself is completely different for all. More than that, I find the
websites on which I'm most compelled to view content have two versions (a desktop version
and a mobile version).

Feel free to disagree with me, but this is primarily the approach we will be taking in this
book. And with Drupal as the CMS, you will see this approach becomes easy with the
addition of contributed modules that separate content and allow different themes and
JavaScript for different domain names.

When is a Phone Not a Phone?

[14]

For every rule there is an exception and there is, indeed, a place where the two-pronged site
approach breaks down. Designing a website for tablets requires aspects of mobile design, a
clear attention to touch events, and a design that's not quite tailored to the desktop and yet
not quite a mobile phone.

We will discuss the ways Drupal can power your tablet strategy and try to cover the gap
between the smaller mobile site and the full-version desktop site.

Mobile simulators
Before we set up a development environment, we need to set up a simulation of our mobile
devices. We do that with either of the two packages—the Android development package or
the XCode/iOS development package. XCode is available for Mac OS X only, but the Android
development environment is Java-based and will work with any modern OS that has a Java
Development Kit installed.

Time for action – installing an Android development package
1. To download and install the Android development package, go to java.com and

download the Java Development Kit (JDK). Just having a regular Java package
installed is not enough. You need to install the developer tools, too. Go to
http://developer.java.com and search for the JDK developer download.
It will be a .exe file. Run the installer:

2. Once JDK developer is installed, the next step is to get the Android development
tools. These are available at http://developer.android.com. Download the
.exe version of the Windows installer.

http://developer.java.com
http://developer.java.com
http://developer.android.com

Chapter 1

[15]

3. After the first Android installer runs, it will launch the Android Software
Development Kit (SDK) and Android Virtual Device (AVD) manager. Yes, I know
these are a lot of acronyms. Java developers love their three-letter acronyms. The
SDK and AVD manager will ask to download the various android platform-specific
APIs. Go ahead and choose the default options. Android will go through a series of
downloads and install them after they are downloaded:

4. We then need to create an Android Virtual Device. Click on the Virtual devices tab
and then click on the New button. Let's create one for Phone emulation and one
for tablet.

5. Name the first one phone and select Android 2.3.3-API Level 10 (which is the latest,
at present).

6. Choose a screen size. The QVGA skin should work for most phones. Then click on the
Create AVD button to launch the Virtual Device:

When is a Phone Not a Phone?

[16]

What just happened?
One of the current problems with the Android platform is called fragmentation. This means
that there are a lot of devices that have been sold with various versions of the software
on them. As Google produces new distributions of Android, some devices get the updated
versions and some do not. Depending on how much the device manufacturer and carrier
have customized the Android software, they may make the decision that it's in their best
interest to force the user to upgrade to a different device rather than to distribute the
updated software to existing devices.

As a developer, if you create an Android application, you have a situation where there are
hundreds (maybe thousands) of different combinations of hardware and software to test
with your application. In addition, because of the open source nature of the Android OS,
each manufacturer of hardware has the ability to alter the Android experience. This includes
adding applications that showcase their hardware's features and adding APIs that allow
their phones to connect to special networks or services that only they offer. As if that wasn't
enough, phone hardware manufacturers often alter the hardware or software of a phone
in response to a request from the phone carrier. Verizon is known for not allowing certain
phone features to be used without their permission or to be used in a way that allows
Verizon to charge for the service.

The myriad of combinations of hardware, hardware manufacturer additions, Android-based
OS versions, and carrier additions has the ability to make potential Android developers
homicidal. Google is taking steps to minimize fragmentation, but at present, we have a
hodge-podge of customer conditions that can only be described as "less than optimal". This
makes mobile web development that much more compelling because the version of WebKit
that ships with them has very little differences between the various software updates.

iOS
As a platform, iOS has the same problem with fragmentation that Android does. Their
application development has a tendency to be a bit tyrannical. No software can be installed
on an Apple device without first being submitted to the Apple's application review process.
Legend has it that Steve Jobs' insistence on Apple's control over the user experience was a big
stumbling block for Verizon and Sprint in the early days of developing the first iPhone and it led
to them pairing with AT&T in the US for its initial release. Once the iPhone released and was
being sold very well, AT&T asked Apple to limit the amount of YouTube videos or the quality
that could be played on an iPhone. Apple's response was something to the effect of "No, we're
not dumbing down our user experience for you." Apple's laser beam focus on the user and
user experience is simultaneously iOS's biggest draw and its greatest developer gripe.

Screenshot 5627_02_021

Chapter 1

[17]

There's an active community who regularly jailbreaks iOS devices, or rather enables
applications from other sources to be installed. In terms of numbers, it represents a very
small proportion of total iOS device users and there's always the possibility that jailbreaking
your iOS device could lead to "bricking" (Apple rendering the device useless or "like a brick").
And bricking your iPhone is, most assuredly, not covered under the warranty.

All software on an Apple device is written in Objective C. This is a dialect of the very popular
and proven C programming language that's pretty much only used by Apple. When faced
with learning a completely new programming language and Apple's API additions to the
language, combined with Apple's App Store policy and the fact that any application you
develop has no guarantee that it will be accepted and appear in Apple's App Store, many
developers, again, turn to the mobile web.

Mobile websites need only a URL to be visible from any iOS device. But the quirks of the
iOS web browser—Mobile Safari—make for a lot of trial and error JavaScript and CSS.
Fortunately, Apple has mobile web simulation software available with its iOS developer
toolkit that will allow us to preview our site before uploading our changes to the live version.

Time for action – installing the Mac OS developer's package
1. In order to download and install the Mac OS developer's package, you first need

to register with Apple as a developer. Go to http://developer.apple.com/
programs/register/.

2. If you have an iTunes username and password, you're welcome to use it or create
a new one specifically for your development work. There are two options. You can
register as an iOS developer, which costs $99 for a year and allows you to submit
iOS applications to the iOS App Store. If you're not planning on doing any iOS
development, you can simply download XCode 4 from the Mac App Store.

http://developer.apple.com/programs/register/
http://developer.apple.com/programs/register/

When is a Phone Not a Phone?

[18]

3. Once you've gone through the free registration at Apple's site, launch the Mac App
Store and search for xcode.

4. Once XCode is installed, you can use the Mac's computer-wide search to find the iOS
Simulator, as shown in the following screenshot:

Chapter 1

[19]

5. Launch it and click on the Mobile Safari icon in the bottom tray. Go to
http://dpk.local. It should appear in your desktop browser, as shown
in the following screenshot:

What just happened?
Debugging CSS and JavaScript for web pages is never easy. It's made even more difficult with
the proliferation of desktop operating systems and, now, handheld and mobile operating
systems. No matter which browser claims to have "emulation" or modes that simulate
this other browser or that, it's not a substitute for looking at the web page in the actual
browsers. Debugging pages in Internet Explorer, requires an install of Windows XP and the
browser itself. Don't settle for anything less. With handheld devices, you really need a virtual
environment where the handheld OS is running a real version of the browser.

In this exercise, we created such a virtual environment. The XCode package creates the
environment for the iPhone and iPad, and the Android development environment creates
the virtual machine for any OS capable of running Java.

http://dpk.local
http://dpk.local

When is a Phone Not a Phone?

[20]

Summary
The changing mobile landscape requires a web content management system able to
creatively address the problems of modern websites. Drupal is just such a CMS. I stated it
earlier in the chapter, but it bears repeating—Drupal's worldwide developer base ensures
that any problem you ever attempt to solve has been solved by multiple other developers
in several different contexts.

The first task at hand is to set up a mobile simulator so we can view web pages as they
appear on the device. We did that by installing an Android simulation environment on
Windows and XCode from Apple's Mac App Store.

In the next chapter, we will take a look at our example site and get a sane development
environment in which we'll build this fantastic mobile site.

We're going to outline a workflow that will allow developers in teams to work with Drupal
in a way that allows everyone to do their jobs without stepping on anyone's feet, and at the
same time, minimizing the amount of overhead work any developer needs to do. Ready to
go? Let's get started!

2
Setting up a Local Development

Environment

Working on a server, especially a server that is serving live traffic, is a little like
walking a tightrope with no net. Only do it if you're willing to risk head trauma.
This book attempts to introduce best practices to your development process.
Frequently, we'll venture off the topic of developing, specifically for mobile.
This will allow you to catch a glimpse of how, in a perfect world, a development
team produces a professional Drupal website locally. From there, we'll push the
new features the team has created up through different testing environments.
Finally, we'll go live with the new code, or "production" as we will be calling it.

In this chapter, we will cover the following:

 � Introduction to our example site, drupallospizzakitchen.com

 � Best practices for local and remote development

 � Source Control Management (SCM)

 � Cloning a copy of our development site's unique files locally

 � Some basic Drush commands

 � Using a Drush make file to set up a complete and functioning site with a few
simple commands

 � Installing an AMP stack to allow a local version of our website using WAMP for
Microsoft Windows and MAMP for Mac

Setting up a Local Development Environment

[22]

 � Resetting the Drupal root user's password in the database with an SQL command

 � Installing an iOS or Android mobile web simulator to test websites locally before
pushing them live on the Internet

So, let's get on with it.

Drupallo's Pizza Kitchen
Papa Vito Drupallo left Italy in the 1920s for New York with nothing but a tomato sauce
recipe and a dream. He set up a small Pizza Shop in Brooklyn where he served up classic
New York style pizza with old world flavor. Over the years, he passed the Drupallo's Pizza
Kitchen (DPK) recipes and location down from one generation to the next. But, by the third
generation, James Vincent (also known as Jimmy-V) Drupallo III was ready for some warmer
weather and an easier life. Jimmy packed up the family into the Dodge Caravan and left New
York for St. Petersburg, Florida. Jimmy runs Drupallo's Pizza Kitchen on St. Petersburg Beach
during the day and in his off time, devotes himself to enhancing the family's Sangria recipe
at their house a few blocks from the restaurant (the secret, of course, is soaking the fruit in
brandy, but you didn't hear that from me).

© iStockPhoto/Duncan Walker

Chapter 2

[23]

Just last year, Jimmy's son—Little Jimmy—created a great website for the business in Drupal,
and by chance, is allowing us to create a mobile version of the website as an example for this
book. We thank the Drupallo family for their gracious hospitality and be sure we'll come in
for a slice and some Sangria next time we're in town.

Little Jimmy learned the art of tossing pizza dough from his father and makes some of the
best New York style pizza crust in central Florida. His web development skills, however, are
self-taught, so Little Jimmy doesn't even know about many of the best practices used in more
structured corporate environments.

We'll introduce Little Jimmy to a development workflow that will ensure he never puts the
family website at risk, and produces the best possible website on his local machine, before
pushing the new features up to the live website for the world to see.

The Drupallo family's reputation goes into every slice of their pizza and is on the line with
each page view of the website.

Averting disaster
Up until now, Jimmy (Little Jimmy, not Jimmy-V) has primarily developed the website on
his own. He uses an FTP program to work directly off the server and the changes that he
makes are essentially live as he makes them. He's now adding a few other developers (us)
to help him out with the "mobile-izing" of his website, so he'll need to get everyone on
the same page.

As previously stated, having multiple developers working off the same server is a recipe
for disaster. Let's say you edit a file on the server. Another developer then uploads a newer
version of the same file. A third developer uploads a newer version with your change but
not the second change. The situation quickly becomes unsustainable. One solution to this
is Source Code Management. Source Code Management (SCM) is a way of storing files that
allows them to be progressively altered and stored in a way that allows everyone to access
every revision of every file.

The two major SCM systems in use today are Subversion (SVN) and GIT. SVN is the older
and more established version management system. However, recently, the entire Drupal
community has moved to GIT, so for this example, we will use GIT. The primary difference
between the two is that Subversion has a single-parent structure. There's an SVN repository
that is authoritative for any given project. Every other instance is a "local checkout," and
every time code is committed, the changes must be checked into the primary parent
repository. It is a tree that has a single trunk.

Setting up a Local Development Environment

[24]

GIT is known as a distributed version management system. Each GIT repository has no
dependency on network access or any other repository. You can check files in and commit
them to your local version without updating any remote version. The emphasis with GIT is on
speed and non-linear development. It's very easy to branch a GIT repository (take the project
in a completely new direction). GIT also has the concept of pushes and pulls. When you're
making a change and you want the change to be reflected in all copies of the repository, you
push your changes out. When you're gathering changes others have made, you're pulling
data from one or more origins.

There are several commercial SCM suites available and many corporate programming
environments purchase commercial software and have it tailored to their specific
development needs. For our project and our needs, GIT will be more than sufficient.

So, the question now becomes, what do we manage? It seems silly to version manage the
entire Drupal installation because everything, with the exception of a few files from the
theme and custom modules, can be downloaded directly from drupal.org and remains
unchanged from the version management system drupal.org.

Well, that problem is solved by a system called Drush and Drush's companion project, Drush
Make. With Drush and Drush Make, we can describe a version of the Drupal core and a
series of projects (modules) and libraries that make our own custom distribution of Drupal.

You may think that this is a lot of "command-line stuff", particularly if you're a frontend
developer and used to using a GUI for all of your work. But stay with me; I promise there's
a method to my madness and the time you spend learning the command line will pay off. In
the final chapter, we'll show you how to roll that distribution with deployment scripts and
create Drupal instances that build themselves with a few clicks of the mouse.

A distribution, or distro, is a series of open source projects assembled into a
working group for a single purpose, so that it may be distributed and re-used.
Ubuntu and Red Hat are distros of Linux, the open source operating system
from Linus Torvalds. Drupal has several popular distributions and, in fact,
many developers create their own distro for use in their projects with many of
the modules and libraries they consistently use.

A word about platforms
Before we begin, it needs to be noted that the tools for Drupal development work best
on Unix-based systems, for example, Mac OS X and Linux. Most of the tools themselves
were built in Linux and then back-ported to Microsoft Windows, so there will be gaps
in their compatibility with Windows. We will give examples for Microsoft Windows, but
based on your version of Windows and the software you already have on the computer,
it would be easy for a Windows local development buildout to go horribly wrong. Try to

Chapter 2

[25]

follow the examples as closely as possible and don't skip steps. Google is your best ally for
troubleshooting build errors.

The only other caveat is that the iDevice simulator is only available for the Mac OS. Google's
Android tools are Java-based and will work on either desktop platform. As a Mac OS X
user, you will only need to test your site with the iPhone and iPad simulator, and Microsoft
Windows developers can feel confident testing only with the Android simulator's web
browser. The version of WebKit that's on Android is sufficiently close to the same one that's
on the iPhone. Pages that work well on Mobile Safari should work equally well on Android's
web browser.

This book assumes that if you are technically astute enough to use Linux, you understand the
differences between Mac OS X and Linux and can translate Mac instructions into linux-ese.

Time for action – downloading the SCM client for Mac
1. Navigate to http://git-scm.com/download and click on the Mac OSX link.

2. Select the package to install and the installer will start:

http://git-scm.com/download

Setting up a Local Development Environment

[26]

3. After the installation finishes, right-click on the setup git PATH for
non-terminal programs.sh script and choose Open With. Select the
Terminal application. If the Terminal application doesn't appear in your Choose
Application list, you can select other and find it on your Mac. You can find it easily
by typing terminal into the Search box, as shown in the following screenshot:

It should be under Applications | Utilities. After it executes, you can close
this window:

Chapter 2

[27]

4. Open a new terminal window by going to Shell | New Window and enter the
following command:

which git

The output, in response, should be /usr/bin/git. If you do not get the correct
output, you have missed one of the previous steps. If this should happen, go back
and repeat the previous steps.

5. Open your home directory. Under /users/YOURUSERNAME, there's a folder
called Sites.

6. Now, open a new terminal window by going to Shell | New Window.

7. In the new window, enter the following:

cd ~/Sites

git clone git://github.com/drupal4mobile/dpk.git

What just happened?
In the preceding example, cd stands for "change directory". By entering this command,
we moved into the directory that we created a few steps back.

GIT clone creates a local copy of the repository of the files for this site. In the directory,
there should be several files that we will use to recreate the DPK website.

Congratulations! You've installed GIT and cloned your first repository. If you were successful,
inside the dpk folder there should be a dpk.make file, an info.php, and a sites folder.

Setting up a Local Development Environment

[28]

Cygwin and GIT for Microsoft Windows
First of all, if you're a Mac or Linux user, there is no need for you to read this section. Skip
down to the Text editors for Mac OS X and Microsoft Windows section. This is for Windows
users only. Second, you must have administrative access to your machine in order to do any
of the installations in this book. Almost all of these installations require you to be a Windows
Administrative user for the local machine.

Time for action – installing a development environment
using Windows and Cygwin

1. Download the installer from http://www.cygwin.com. Be sure to save the
setup.exe installer somewhere you remember. You may need to run it again if
another program requires a library that you didn't install on the first go-around:

http://www.cygwin.com

Chapter 2

[29]

2. The installer takes you through several steps. For each step, choose the default
option until you get to the Select Packages screen:

3. The Select Package screen (shown in the following screenshot) allows you to select
which packages will be installed. After the installation, you can return to this screen
to add or remove packages:

Setting up a Local Development Environment

[30]

4. As shown in the following screenshot, enter git in the Search box and select the GIT
packages to install:

If the package is not installed, in the New column, you will see the Skip button.
Clicking on Skip will show the version number to be installed and the Bin? checkbox
will be checked. Bin stands for binary and Src stands for source. There is no need to
install the source. Using this method, mark the following packages for installation:

 � git

 � tar

 � gzip

 � bzip2

 � ncurses

 � ImageMagick

 � zip

 � unzip

 � curl

 � libcurl

 � libcurl4

Chapter 2

[31]

 � libcurl-devel

 � wget

5. Click on the Next button and the installation will begin:

6. Once Cygwin has completely installed, go to Start | All Programs | Cygwin | Cygwin
Bash Shell. The first time the terminal is launched, it will write several files that will
help the command line to find the programs you need. When you have a blinking
cursor, you can verify if GIT has been installed by entering the which git command.
The output should be /usr/bin/git.

www.allitebooks.com

http://www.allitebooks.org

Setting up a Local Development Environment

[32]

7. Now, it's time to clone your first GIT repository. Enter the following commands into
the shell:

cd ~/

mkdir sites

cd sites

git clone http://github.com/0drupal4mobile/dpk.git

What just happened?
In many Unix-based operating systems, you have the ability to open what is called a "shell".
In simple terms, a shell is a command-line interface with the computer's operating system.
Microsoft Windows has one, but it's proprietary. It's Microsoft's own shell, and out of
the box, it doesn't work with some of the basic utilities provided in open source Unix-like
alternatives, such as Linux and Mac OS X's BSD shell.

Cygwin is a project for Microsoft Windows that brings the open source utilities to Microsoft
Windows. It allows Windows to use many of the tools available to Linux and Mac OS X shell.

In this exercise, we installed Cygwin and added some libraries that we will need later in the
book. Once Cygwin was installed and started, we used GIT to clone the repository where the
code for our example project is stored.

GitHub, if you've never heard of it, mixes GIT version control with some of the functionality
of a social network. It's a kind of "Facebook for nerds". We've chosen to host our code there
because it's a great place to host public projects "in the cloud". They also have a paid service
that allows you to host private projects. The idea is that you never have to configure any of
the base software that runs the servers and you never have to worry about backing up
your project.

Chapter 2

[33]

Congratulations! You've installed GIT and cloned your first repository. Inside the dpk folder,
there should now be three items: dpk.make, info.php, and a sites folder.

Text editors for Mac OS X and Microsoft Windows
Developers get very attached to their text editors. You learn the keyboard shortcuts and how
to extend commands over the course of a few projects and your productivity takes a hit if you
have to switch. In many development shops, there's a company-supplied text editor, but you're
free to use the one you prefer. Before we get into some sort of text editor "West Side Story,"
with Sharks on one side and Jets on the other, please take these text editor recommendations
as they are given. You're free to edit with whichever editor you feel most comfortable.

A good text editor can make all the difference when it comes to speed. That's why I prefer
TextMate (http://macromates.com/) for Mac OS X and its companion, E-TextEditor
(http://e-texteditor.com) for Microsoft Windows. I find them to be incredibly
powerful and extendible in the programming language of your choice. If you don't have a
good text editor, download one of these and use the trial version. I'll wager you'll be willing
to buy the full version before the end of the book.

If you already have a text editor that you use and love, you're probably technically astute
enough to translate any editor-specific parts of the book into the commands for your editor.

Also (and this is the general consensus of most people I know who program for a living)
if you say your text editor is Adobe Dreamweaver, you will be laughed out of nerd school.
Dreamweaver was great for crafting from start to finish HTML pages back when HTML
was only just HTML, but it's completely inappropriate for coding the complex mix of HTML
elements, JavaScript, and PHP that make up a standard Drupal install.

Serving web pages on your computer
LAMP is an acronym for Linux, Apache, MySQL, and PHP/Perl. It has become the world-wide
standard for easily code-able, approachable web development and is the platform on which
Drupal was built. Once upon a time, serving web pages required several server technicians,
specialized in administering complex Unix installations. But not anymore!

Setting up a web server isn't rocket science. It takes a few simple open source tools that can
be easily downloaded and installed. This makes it easy to run Drupal locally and push your
changes to servers out on the Internet.

http://macromates.com
http://e-texteditor.com

Setting up a Local Development Environment

[34]

Setting up a local version of Apache and PHP used to take the better part of a day. Now there
are installers that will do it for Windows or Mac with a few clicks. WAMP—acronym for
Windows, Apache, MySQL, and PHP—for Windows and MAMP—acronym for Macintosh,
Apache, MySQL, and PHP—are single-file installers that put the power of a web server on
your local machine. If you're using any recent version of the Mac OS, it comes with Apache
and PHP already installed. If you're adept at configuring them and understanding how to
set them up for virtual hosting of multiple domains, knock yourself out. You've no need to
read this section any further. It should also be noted that to preview websites on an iPad
or iPhone, you'll need a Mac. The iOS developer tools aren't available for Windows.

If you're a Windows geek, you may be tempted to want to set up PHP to run
with Microsoft Windows' built-in web server, IIS. However, IIS is completely
inappropriate for a Drupal install, even a local one.

Furthermore, as someone who has had to work on Drupal sites served from a
Windows-based server, I don't recommend Windows for anything other than development
and then, only if you have to. There's a bunch of reasons why, but making the case is out of
the scope of this book. Trust 15 years of web development experience. Using a Unix-based
environment for as much of the process as possible will make your life more trouble-free
and you will have less time wasted in making it work with Windows.

MAMP
MAMP is the acronym for Mac OS X, Apache, MySQL, and PHP. The Mac download of the
MAMP version comes in two flavors, namely, the free version and the Pro version. If all you
want to do is develop these examples, you can do so with the free version. If you're going to
develop multiple sites and will need to quickly and easily switch between them, you'll want
the Pro version. For whichever package you choose, download and run the installer as you
would do for any other Mac program and then we'll configure our first virtual host. For the
example, we'll be using the Pro version. If you're following along, the Pro version is free for
15 days.

Chapter 2

[35]

Downloading the example code

The code for this book is stored on GitHub at http://github.com/
drupal4mobile/dpk and we'll use the GIT version control system
throughout the book. I've organized the code for each chapter into a branch
on GitHub. As this code is progressive from beginning to end, you can obtain
the code for each chapter by checking out the GIT branch for that chapter. Feel
free to fork any code on the repository and use it as you see fit. Any code in this
book should be considered open source and released under the same license as
Drupal.

After this book's publication I will attempt to take some of the custom modules
used in the book to Drupal contrib module status. If I am successful, I will note
such a change in the dpk.make file in the root of the install directory.

Also, you can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.com/
support and register to have the files e-mailed directly to you.

Time for action – configuring our first virtual host
We're going to configure our local web server to display dpk.local. You must be an
administrator on your machine to finish this task.

1. Go to the Apple menu | System Preferences | Sharing. Make sure Web Sharing is
disabled. This is the Mac OS Default install of Apache. We want to disable it in favor
of the MAMP one. If you've never done web development on your local machine,
you should not have a copy of MySQL installed. If you do, you should know that you
do. Uninstall and/or disable your computer's current MySQL instance:

Setting up a Local Development Environment

[36]

2. Launch the MAMP Pro application. As shown in the following screenshot, there are
two main panels (Server and Hosts) and several subpanels under each main panel.
Click on the Server panel and then on the General subtab. Click on the Default Ports
button. If you have administrative access to your machine, you can change the user
to www/mysql. This means the computer will run the processes of the web server
as generic users created specifically for those processes. If you don't know what
administrative access, is or are pretty sure you don't have it, feel free to run the web
server under your username. Uncheck the Start Apache and MySQL when starting
MAMP PRO and Stop Apache and MySQL when quitting MAMP PRO checkboxes
and make sure the Start apache and MySQL on System Startup checkbox is checked:

3. Click on the PHP panel and choose a version of PHP. You will see a 5.2.x and a 5.3.x
version. If you're not sure which version to use, just use the 5.3.x version. Click on
the Apply button in the bottom-right-hand corner to apply all settings, which will
restart the servers.

Chapter 2

[37]

5.2.x versus 5.3.x
For the examples in this book, you're free to use PHP 5.2 or 5.3. The latest core of
both Drupal 6 and Drupal 7 is 5.3 clean, so there's no reason not to use the latest
version unless you know you are going to be using a module that demands the
older version and is incompatible with 5.3. Because 5.3 has some optimizations
and 5.2 does not, with 5.3 you get the above 10 percent speed bump.

4. Click on Hosts. At the bottom of the virtual host list, there is a + (plus sign). Click on
the + (plus sign). This will create a new item in the virtual host list. Name that item
dpk.local. In the area labeled as Aliases, add m.dpk.local as an alias.

Make sure the Local name resolution checkbox is checked.

Setting up a Local Development Environment

[38]

5. Now, choose the dpk folder you created earlier: /Users/<YOURUSERNAME>/Sites/
dpk. Click on Save.

6. At the top of the MAMP Pro window, there's a button labeled Restart services.
Click on that button to restart Apache and MySQL.

7. In the Safari browser, go to http://dpk.local/info.php:

http://dpk.local

Chapter 2

[39]

What just happened?
Apache is a program on your computer that serves web pages to the outside world. It is the
most successful open source project in the short history of open source software. Apache
runs some 50 percent of the active domains on the Web.

Virtual hosts are Apache's way of serving multiple websites out of multiple directories off the
same computer and on the same IP address.

In this exercise, we've shut down the Mac's default install of Apache favoring our own. We
created a virtual host named dpk.local and configured Apache to serve web pages out
of the directory we created with the DPK website we cloned in the last exercise. If you've
completed all these steps correctly, you should be greeted with a PHP info page.

One thing to note here is your PHP version. It's at the top of the page you just
viewed. In this example, it's 5.3.6. Wherever the PHP version 5.3.6 is used in
any of the examples in the rest of this chapter, please substitute your version.

But there are a few problems we have to correct. Some of the default settings for MAMP need
to be changed in order for Drupal to function correctly. We'll need to do that by editing the
default configuration files for both PHP and MySQL. Fortunately, MAMP makes this very easy.

Time for action – changing the default configuration for MAMP
1. Launch MAMP Pro.

2. Go to File | Edit Template | PHP | 5.3.6 (your version may be different. It's the 5.3
that's the important part, not the last number):

Setting up a Local Development Environment

[40]

3. On the left-hand side of the text editor are line numbers. Around line 230, you'll
find three lines: max_execution_time, max_input_time, and memory_limit.
Change their values as follows:

max_execution_time = 999;
max_input_time = 999;

memory_limit = 256M;

4. Save and close the file after altering the values.

5. Go to File | Edit Template | MySQL my.cnf.

6. As shown in the preceding screenshot, raise the max_allowed_packet size to 32M,
raise the net_buffer_length, read_buffer_size, and read_rnd_buffer_size each to
2048K. Save and close the file.

7. Using the red button at the top right of the MAMP window, stop and start the
server's services.

8. Navigate again to http://dpk.local/info.php. Look for the memory_limit
value on the page. It should be the same as the value you set in step 3, 256M.

http://dpk.local/info.php

Chapter 2

[41]

What just happened?
The default settings for MySQL and PHP are a bit on the conservative side. We changed some
of the defaults to allow Drupal some more memory to play in and gave MySQL some more
cache for it to communicate with PHP more efficiently. We then restarted the server to see
our settings take effect.

WAMP (Windows, Apache, MySQL, and PHP)
Again, if you have a Mac, you can skip the instructions in this section.

As with everything, things on Microsoft Windows are a bit more complex. You'll need to
download and install the WAMP package, but the GUI to configure virtual hosts is not nearly
as intuitive.

Time for action – installing WAMP
1. Download the WAMP installer from http://www.wampserver.com/. The default

site is in French. Click on the ENGLISH link to get the English version of the site.
In the English version, there is a link to download the latest version of the WAMP
server. Once it is downloaded, run the installer.

2. Run the installer in the root directory of your C: drive. Believe me, you'll be happier
installing everything there:

http://www.wampserver.com/

Setting up a Local Development Environment

[42]

3. Step through the remaining screens of the install wizard using the default choices.

4. Go ahead and start up the WAMP server, if it hasn't already been started for you.
You should see the W icon in your system tray.

5. Right-clicking on the W icon gives you the WAMP server menu, as shown in the
following screenshot:

6. In Windows Explorer, navigate to C:\wamp\bin\apache\Apache{VERSION}\
conf where VERSION is your Apache version number.

7. Right-click on the httpd.conf file and select Edit with e (or whatever your favorite
text editor is).

Chapter 2

[43]

8. Uncomment the Virtual hosts inclusion line (number 467 in our version of Apache).
This will allow us to add virtual hosts to Apache without further changes to the
httpd.conf file.

9. Inside the conf folder, there is another folder called extras. Open the
extras folder.

10. Right-click on vhosts.conf and select Edit with e.

11. Add the following lines at the bottom, then save and close the file:

 <VirtualHost *:80>
 ServerName dpk.local
 DocumentRoot "C:\cygwin\home\[YOUR USER NAME]\sites\dpk"
 <Directory "C:\cygwin\home\[YOUR USER NAME]\sites\dpk">
 Options Includes FollowSymLinks
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
 </VirtualHost>

12. From the WAMP icon in your taskbar, choose Restart All Services.

13. Right-click on the E Text Editor icon, select Run as and run it as an administrator.

14. Choose File | Open.

15. Navigate to C:\Windows\System32\drivers\etc and open the hosts text file.
Add the following line:

127.0.0.1 dpk.local

16. Save and close the file. Exit out of the editor.

Setting up a Local Development Environment

[44]

17. Open your web browser of choice and go to http://dpk.local/info.php.
You should be greeted by a PHP info page, as shown in the following screenshot:

What just happened?
The series of directives we just added to the Apache file allow pages to be served on your
local machine. The first line tells Apache we'll be serving on Port 80, which is the default port
for web servers. The second line gives the server the name dpk.local. The third line points
the server towards the document root we created in a previous step. The next five lines tell
Apache to make special considerations for the dpk folder and allow us to serve web pages
out of that directory. For security purposes, we deny Apache the ability to serve web pages
out of most of the hard drive by default and each site we create has to have an exception
created to that rule.

http://dpk.local/info.php

Chapter 2

[45]

One thing you will need for the next chapter is your PHP version. It should be at the top of
the info page at the end of this exercise. For this example, it's 5.3.8.

Drush and Drush Make
Drush is a command-line shell and Unix scripting interface for Drupal. These few words
from the Drush's README.txt file (http://drupal.org/project/drush) only hint at
the power Drush gives you over a Drupal website. Simple tasks such as clearing the Drupal
cache and backing up the database become scriptable and allow you to set up jobs to do
them automatically. Complex tasks such as checking out code and syncing databases across
a development environment become child's play, and you can do them with a few simple
keyboard commands.

If you are a designer and are relatively new to web development, you might have a lot
of reasons to fear using the command line. The ideas involved are not complex. Embrace
the command line and it will simplify many of the common tasks you find complex and
time consuming.

Drush Make (http://drupal.org/project/drush_make) adds the functionality of
being able to describe a Drupal site with a few information files, download the files it needs,
install the files, run any necessary database updates, and check the unique code
out of a version management system, thus "making" a website.

Drush and Drush Make are Drupal version agnostic. They don't depend on a particular
version. The latest version of both will work with Drupal 6 or Drupal 7.

If you are using version 5.0 or later of Drush, Drush Make has been integrated into the
Drush core and there is no need to install Drush Make as a separate package.

Time for action – installing Drush and Drush Make for Mac OS X
Open the Mac OS X terminal and enter the following commands. Your PHP version may be
different. Substitute your PHP version for the version number in the command:

echo "export PATH=/Applications/MAMP/Library/bin:/Applications/MAMP/
bin/php/php5.3.6/bin:$PATH" >> .bash_profile
export PATH=/Applications/MAMP/Library/bin:/Applications/MAMP/bin/php/
php5.3.6/bin:$PATH
sudo mv /Applications/MAMP/bin/php/php5.3.6/conf/pear.conf /
Applications/MAMP/bin/php/php5.3.6/conf/backup_pear.conf
sudo pear upgrade
sudo pear install console_table
sudo pear channel-discover pear.drush.org
sudo pear install drush/drush

http://drupal.org/project/drush

Setting up a Local Development Environment

[46]

cd ~/
mkdir .drush
cd .drush
git clone --branch 6.x-2.x http://git.drupal.org/project/drush_make.
git
which drush

The output on the console should be something like as follows:

/Applications/MAMP/bin/php/php5.3.6/bin/drush

The correct answer is any answer other than "Not found".

What just happened?
We first added the new php and mysql path to the .bash_profile. We then added the
paths to the active profile of the terminal window. The third line moves the default pear.
conf file out of the way because there's an issue with the version that ships with MAMP. We
then upgrade all the pear modules to the latest version. Drush requires the console_table
PEAR library. The second pear command installs it. We then added the Drush pear channel
and installed Drush from the pear channel. We then cloned the drush_make repository in
our home folder in a folder called ~/.drush. This is the default location for Drush aliases
and settings for any given user.

After we installed Drush and Drush Make, we double-checked the installation by showing the
Drush install, which is now in the executable path.

Time for action – installing Drush for Windows
1. For Microsoft Windows, choose Start | All Programs | Cygwin, right-click on Cygwin

Terminal, select Run as and then run it as an administrator. Enter the following
commands:

mkpasswd -l > /etc/passwd
mkgroup -l > /etc/group

2. Close the terminal window and navigate to http://drush.ws/drush_windows_
installer in the web browser of your choice and download the Drush Windows
installer.

3. Once downloaded, run the Drush Windows installer.

4. Open a terminal window and enter the following commands:

cd ~/
mkdir .drush
cd .drush

http://drush.ws/drush_windows_installer
http://git.drupal.org/project/drush_make.git

Chapter 2

[47]

git clone --branch 6.x-2.x http://git.drupal.org/project/drush_
make.git
which drush

The console should answer /cygdrive/c/ProgramData/Propeople/Drush/drush or
something similar. The correct answer is any answer other than "Not found".

What just happened?
First, we used the Cygwin terminal as a root to set up permissions for our users.

Next, we set up the user's profiles and we ran the Drush Windows installer. The installer
put the latest version of Drush in the executable path. After Drush was installed, we installed
Drush Make.

Congratulations, you now have a working Drush environment. Let's build a website!

Building a Drupal website with Drush Make
First, let's take a look at the .make file for this website and learn a little about what each line
is telling Drush Make to do. In the dpk directory that you created in a previous step, open
the file dpk.make in a text editor of your choice. You should see the following code:

core = 7.x
api = 2
;core
""projects[drupal][type] = "core"
projects[drupal][download][type] = "git"
projects[drupal][download][tag] = "7.9"
projects[drupal][download][url] = "http://git.drupal.org/project/
drupal. git"""

The first few lines seem easy enough. We're telling the drush_make command that we're
using Drupal 7.0 core, Drush Make API 2, and then giving drush_make a specific method for
downloading the Drupal 7.0 core. Notice that, in this instance, we've linked the project to a
specific filename and a specific version of Drupal.

The first law of Drupal states, "Thou shalt not hack the core". The second law is
similar; it states, "Seriously, dude, don't hack the core. Yes, this means you".

Some time ago, Drupal dropped using "versions" on its GIT code checkins and switched to
tagging. Code is checked into the master branch and tagged with the correct release ID,
which, at the time of writing, is 7.9. We have adopted that tagging here by adding it to the
make file.

http://git.drupal.org/project/drush_make.git

Setting up a Local Development Environment

[48]

Putting a clean download of the build and contrib modules in the make file enforces that
convention. If you ever need to patch a contrib module or (may the heavens forbid) patch
the core, you can write the patch into your make file, so that the code downloads and then
is patched by the patchfile of choice:

 ; Contrib projects
projects[admin_menu][subdir] = "contrib"
projects[addressfield][subdir] = "contrib"
projects[backup_migrate][subdir] = "contrib"
projects[contentapi][subdir] = "contrib"
projects[contentapi][version] = "1.0-alpha2"
projects[ckeditor][subdir] = "contrib"
projects[commerce][subdir] = "contrib"
projects[commerce_custom_line_items][subdir] = "contrib"
projects[commerce_custom_line_items][version] = '1.x-dev'
projects[context][subdir] = "contrib"
projects[ctools][subdir] = "contrib"
projects[diff][subdir] = 'contrib'
projects[domain][subdir] = "contrib"
projects[domain_ctools][subdir] = "contrib"
projects[domain_ctools][version] = "1.1"

Projects that you download from drupal.org are called contrib modules. Modules you
create for a specific project are called custom modules. The best practice is to put these
modules in different directories. Each one of these contrib modules has a "project name"
in the first set of brackets. This project name corresponds to its project name on drupal.
org. You can enter http://drupal.org/project/PROJECTNAME into your web browser
for any of these contrib modules and get the page with the latest information about that
contributed module.

The [subdir] value tells Drush Make, once it has downloaded the archive containing the
project, to unpack the project inside the sites/all/modules/contrib directory.

The [version] value is, of course, the version number. In a .make file, it is best to use
no version number because make assumes the latest release for the core version you're
building. This ensures that the latest modules version is downloaded every time a build
is performed. However it sometimes becomes necessary to link a project with a specific
modules version. In that instance, module versions can be specified in one of two ways.
First, by major release number, which is specified by an unquoted number (for example,
3 or 4). Module versions can also be specified as a development version and the "extension"
can be added, but in this case, the module version must be quoted and the Drupal version
must be left out. For example, 3.x-dev in this make file would specify the module version
number 7.0-3.x-dev, because the make file has been declared a Drupal 7 core and the
module has been declared 3.x-dev. In either case, if you can get away with it, leave the
version number out and have Drush Make download the latest stable version.

http://drupal.org/project/PROJECTNAME
http://drupal.org/project/PROJECTNAME

Chapter 2

[49]

In between the time this book is written and the time you're actually reading it, many
of these modules will be updated several times and have newer (hopefully more stable)
versions of their contributed modules. We want each one of these contrib modules
to have the benefit of the latest bug and security fixes without actually breaking the
functionality of our site. So, we specify a primary version and let Drush Make follow the
recommendations of the contrib module maintainers on which is the most stable release.
At any time, we're free to go into any of these versions and "lock in" a specific number,
if we believe downloading any other will break site functionality; but for now, we're going
to stick with this type of version numbering in our make file.

But, why is the linking different for core? Core releases can require major database updates
and sometimes break compatibility with contrib modules. For the core release, we need to
be very purposeful about how and when we upgrade our core modules:

; jQuery Cycle
libraries[jquery_cycle][download][type] = "get"
libraries[jquery_cycle][download][url] = "http://www.malsup.com/
jquery/cycle/release/jquery.cycle.zip?v2.86"
libraries[jquery_cycle][directory_name] = "jquery.cycle"
libraries[jquery_cycle][destination] = "libraries"
libraries[json2][download][type] = 'git'
libraries[json2][download][url] = "https://github.com/
douglascrockford/JSON-js"
libraries[json2][directory_name] = "json2"
libraries[json2][destination] = "libraries"

Third-party libraries are a part of almost all modern websites. Drush Make allows you to
specify which libraries you want to include in the build and how to get them. Because many
of these libraries have version-specific features you're using on your site, you're probably
going to want to link them to specific versions so that you'll get the features for which your
site has been designed.

Ok, so let's run the make file.

Setting up a Local Development Environment

[50]

Time for action – building a Drupal install from a make file
1. Open a terminal window and change the directory to your DPK directory using the

cd command we created earlier.

2. Then enter drush make dpk.make. Drush will ask you if you want to build in the
current directory. Enter y for yes and then return twice. Your output should be
similar to the following screenshot:

Chapter 2

[51]

What just happened?
Drush Make used the .make file to go to the drupal.org repository and download clean
fresh versions of the Drupal core and all the modules listed for use with this site:

In addition, the make file pulled copies of the listed libraries and stored them under sites/
default/libraries.

The local database
We need to create a local copy of the website database and alter the Drupal connection
settings to properly connect. To do that, we can use phpMyAdmin that was installed with
 the MAMP/WAMP package, earlier.

Time for action – creating a database
Drupal stores its data and much of its configuration in a database. In the code you checked
out from GitHub, there are database backups for each of the chapters in this book. You can
restore the website back to the way it was at any given point in the progression of the site
via the databases that are in the Backup and Migrate module's database backups.

Setting up a Local Development Environment

[52]

1. Open the phpMyAdmin page in your default web browser on the Mac OS by
launching MAMP Pro. Go to Server | MySQL and click on the button labeled
Launch phpMyAdmin, as shown in the following screenshot:

In Windows, choose the WAMP tray icon and click on phpMyAdmin, as shown
in the following screenshot:

Chapter 2

[53]

2. Once you have the window, create a new database and call it simply dpk.
Make sure the encoding is utf8_unicode_ci, as shown in the following
screenshot:

3. We want to take a database snapshot file that we've downloaded from the
repository and do a one-time restore of our site's database. In the window of the
new database you've just created, click on the Import button. You will see a file
dialog box.

4. Choose sites/private/backup_migrate/manual/SNAPSHOT-CHAPTER2.
mysql. Then click on Go and the database will fill up with the file's content.

5. The only thing that's left is to give Drupal a way to connect to the MySQL database.
I've provided two setting files that should work with the default WAMP and MAMP
installations in sites/default. Copy the one that works with your platform to
settings.php and then go to http://dpk.local/ and you should be presented
with the Drupal login screen, as shown in the following screenshots:

http://dpk.local/

Setting up a Local Development Environment

[54]

6. One more task to complete and we should be ready to go. We need to change
the Drupal user's password to something you'll remember.

7. Open a command line and change the directory to your Drupal site installation.
Enter the following command:

drush user-password admin --password="NEWPASSWORD"

Chapter 2

[55]

What just happened?
The Drush command changes a user's password quickly and easily.

If you ever forget your admin password, this is a quick and easy way to reset
the admin user's password on just about any Drupal database.

Now, try logging in with the username as admin and the new password. You should be able
to click content and get a list of content for the site.

Now, let's take a quiz to review what we've learned throughout this chapter.

Setting up a Local Development Environment

[56]

Pop quiz
1. SCM stands for:

a. Shared Coastal Memories

b. Standard Code Management

c. Source Code Management

d. None of the above

2. Examples of SCM are:

a. GIT

b. Subversion

c. Mercurial

d. All of the above

3. In the acronyms LAMP, WAMP, and MAMP, the M stands for:

a. Misty

b. Mountains

c. Monitors

d. MySQL

4. When you make a change to Apache's configuration file, what must you do to see
the change in action?

a. Restart the Apache service

b. Stop the service completely

c. Nothing

d. None of the above

5. Drupal modules included in the base Drupal install are said to be:

a. Well written code

b. Part of core

c. The contrib modules

d. Under the astrological sign of cancer

Chapter 2

[57]

6. The command-line utility that will allow you to clear the cache in your Drupal site
is called:

a. Rush

b. Windsong

c. Grupal

d. Drush

7. The module for the command line that allows you to build a Drupal install from a
single file is called:

a. drush_can

b. drush_minister

c. drush_drupal

d. drush_make

8. Drupal modules created by members of the Drupal community and listed on
drupal.org are called:

a. Contrib modules

b. Under the astrological sign of Capricorn

c. Of questionable parentage

9. In a make file, you should number module version numbers:

a. By the days of the week when the module was coded

b. You should leave out the version number and let drush_make download
the latest stable release

c. The Drupal core number plus the maintainer's first child's birthday

d. None of the above

10. A virtual host:

a. Is created in Apache's config file

b. Allows many hostnames to be served on a computer

c. Has an associated port number and host name

d. All of the above

Setting up a Local Development Environment

[58]

Summary
In this chapter, we installed the pieces of our development environment and set ourselves
up for success for the rest of the chapters of the book. Then, we put the pieces together.
We covered the following:

 � We installed GIT Source Code Management (SCM).

 � We downloaded the source code for our example website from GitHub.

 � For Mac, we installed an all-in-one LAMP solution that will allow us to quickly deploy
local versions of our websites and serve them on virtual hosts on our own machine.

 � For Windows, we installed Cygwin so that our scripting tools will work with
Windows' limited shell utilities. We installed a standard WAMP solution to allow
PHP-based websites on our Windows machine to develop locally.

 � We installed the Drupal scripting layer, Drush.

 � We installed Drush's companion module (Drush Make) that allows us to create an
entire Drupal installation with one single file.

 � We built a Drupal install from our codebase, that is, Drush and Drush Make.

 � We installed a new database for our Drupal site.

 � We changed the admin user's password using Drush.

We've got our example site installed and we've got our development environment set up.
Now, it's time to move on to some buildout!

3
Selecting the Right Domain for your

Mobile Site

What does it mean to make a mobile website? For that matter, what does the
word "mobile" mean? Increasingly, tablet computers have helped to blur the
line between the traditional desktop web browser and handheld devices. In
addition to our tablet viewers, we'll need to make sure our desktop viewers still
maintain the highest quality of website experience while giving our handheld
users the most full-featured website experience that is possible with their
device. There are a few different ways to get there.

In this chapter, we will:

 � Learn about the ways in which we can sabotage non-desktop users with outdated
desktop design patterns

 � Learn about .mobi domains

 � Learn about modules that allow us to serve the same content on different host
domains with different Drupal themes

 � Back up our work in the database to a local directory with the Backup and Migrate
module.

 � Learn about the best practices on exporting the settings functionality into
a "feature"

 � Check our new feature into version management and deploy it to a User Acceptance
Testing (UAT) environment

So let's get on with it.

Selecting the Right Domain for your Mobile Site

[60]

Once upon a website…
When Little Jimmy started the DPK website, he really didn't know anything about "design"
per se, but knew a little bit about setting up Drupal and maintaining the website once it
was set up. He asked his friend, Claire Romano, to help him with the design. Claire had a
few years of design school and has a small design shop she runs out of her home when not
caring for her children. Claire primarily does "print" design—flyers, newspaper ads, and so
on. She created a Photoshop .psd file of the DPK home page and Little Jimmy did his best
at adapting the .psd files and creating the DPK theme. But let's take a look at Jimmy's work
and view it through the screen of a handheld.

Let's launch our handheld emulator and point the web browser to http://dpk.local
and take a look at what we see there:

Our handhelds and tablets have a few problems with the design, which we can see more
or less immediately:

 � First and foremost is the navigation. Jimmy did the animated hovers in Adobe Flash
and many handheld devices (especially the Apple devices) just can't display Flash
content (More on that in Chapter 9, Putting it Together). Having Flash navigation
completely blocks handheld users who don't have Flash from navigating your
website. Luckily, Jimmy put a secondary navigation at the bottom of the page
or the website would be completely useless.

Chapter 3

[61]

 � Notice the GIF text. It looks nice, but it's unavailable to mobile clients to read. For a
handheld user to dial the number and order a pizza or get a map to the address, they'll
have to memorize the phone number, change applications, and dial the number by
hand. This could have been avoided by just displaying the phone number and address
in text with the proper semantic markup, so the handheld would recognize it as a
phone number and address. Most handheld devices have "detectors" for those kinds
of information and such information can be made clickable. When a user clicks on a
detected address or a phone number, it opens the appropriate application with the
data already entered. No need to memorize the number, as the handheld dials it for
you. The map application brings up the address automatically.

 � The hover state items are revealed only when you "hover" over them. On a
touchscreen, there is no equivalent for hovering. These hover state items are
unusable on a handheld.

 � The MENU link at the top navigation links to a 2 MB download of the PDF version
of the menu. On a handheld, if my data limit for the month is 200 MB and I click
on your menu link, I've used 1 percent of my monthly allotment just to figure out
if the restaurant serves Calamari. If it's the end of the month and I'm close to my
bandwidth limit, downloading this menu might result in overage charges. If the user
is downloading a file, it's common courtesy to let them know what type of file it is
and how big the download is. Also, we need a plain HTML alternative to the 2 MB
file download.

 � One thing that makes sense when you hear it but might not be so obvious is the large
"billboard" photo. This is a 100 K+ photo and really doesn't need to be shown on a
handheld; or maybe it needs to be shown in a different size and/or aspect ratio. Either
way, it's unacceptable to have a 100 K+ image on a home page being viewed by a
handheld. Similarly, for the photos that pop up in a lightbox, we'll need to adjust the
way they're viewed. Right now, the lightbox is a little less than "handheld friendly".

 � In the ABOUT page, much of the content is in a lovely font in a GIF/JPEG image. This
looks fantastic on a large screen, but the handheld needs to zoom to read small text.
In addition, zooming, in this case, doesn't make the small text more legible, because
it's in an image format. Also, when zoomed, the text doesn't automatically wrap so
that the whole paragraph is legible in the handheld's screen. It requires the user to
scroll to read a single line of text. This is less than optimal. Not to mention the fact
that the text in the image is completely invisible to search engines.

 � Notice the "billboard'' photos. The first issue is their aspect ratio. Having photos of
this size on the homepage will make everything else on the page so small as to be
illegible. Second is the sheer file size. Having multiple 100 K+ photos on the homepage
is probably a payload and the average person doesn't want to download that.

Selecting the Right Domain for your Mobile Site

[62]

Some of these issues can be solved by using simple CSS or markup additions to the theme
template (which we'll discuss in Chapter 4, Introduction to a Theme). Some are going to require
something more. But there's a larger philosophical question to answer. We've designed this
experience for a desktop user. Is it acceptable to compromise the experience of the desktop for
the sake of the handheld or vice versa? I would say "No, it's not acceptable to compromise the
design, look, or feel of one use case for another, no matter the validity of either. This is not a
universal opinion."

One ring to rule them all
Many developers, particularly the more philosophical of our ilk, would say that you need
to design a single markup solution that will work with both mobile handhelds and with the
desktop browsers and be able to fit on a screen of any size. And, I guess in a perfect world,
we'd polish a design so that it works on a screen of every size, and keep revisiting it as new
technology emerges, to ensure that it has an optimal user experience on every new piece of
technology. We do not, however, live in a perfect world. In my estimation, that view is a little
unrealistic and, again, in my opinion, doesn't lead to the best user experience. It's unrealistic
because universal designs take significantly more time to create and debug, and on many
projects, the client simply isn't willing to invest that kind of money for something that will
pay off minimally. Also, from a UI perspective, the ways in which we consume information on
a handheld and on a desktop browser are completely different. Therefore, the user design
should be different.

In Chapter 10, Tabula Rasa: Nurturing your Site for Tablets, we will discuss where
and when this strategy breaks down. If you own a tablet computer, you will already have
experienced it by being redirected to a mobile site when the screen is more than
able to handle the desktop design.

But, in point of fact, the way we consume information on a small-screen handheld is radically
different from our desktop computers. Not only do we use the information in different ways,
but we need different pieces of information. Each use case offers a specific type of user
looking for specific data and it's our job, as the web developer, to get them to that data in
the most expeditious manner possible using the best their device has to offer. That's why I
believe it is to your benefit to have multiple site designs for multiple purposes, to sniff out
the most obvious intent and then to offer links to the other site designs, if the user would
prefer using them.

More than that, the search for the one true design that will work on every device is the
search for the Holy Grail. It will never be found and will never end. As a developer, I desire
closure, if for no other reason than to get paid for the project.

Chapter 3

[63]

In 2005, the Internet Committee for Assigned Names and Numbers (ICANN) saw the
development of the mobile web as an opportunity and created the .mobi top-level domain.
Any address that you can get a .com domain for, you can now get as a .mobi. Whether you
create a .mobi site or move your mobile site to a subdomain of the primary domain, such
as m.drupallospizzakitchen.com is up to you. The issues surrounding the secondary
domain are the same regardless of the hostname.

When I told Little Jimmy about the .mobi top-level domain, he went ahead and reserved
DrupallosPizzaKitchen.mobi, so we're covered. But right now, the .mobi domain
is pointed to the current web server and the same site serves on both domain names. We
know that we're going to want the same content on both domains, but with two different
themes. In addition, there might be some coupons that are only available to mobile users
to encourage pizza delivery, so there needs to be some scheme of telling Drupal what to do
with requests coming in for the .mobi domain versus requests for the .com address. On our
local version, we will use the m.<website> URL pattern to signify the local version. You're
free to use either or both on your live site. But how do you get content on your new URL?
The answer is by entering the Domain Access module.

Domain Access versus Multisite
Drupal already has, built into the core, a mechanism for hosting multiple sites out of a single
Drupal installation. This is commonly called multisite installs. You can create folders inside
your Sites folder with the hostnames and each folder can have its own custom modules
and settings.php file.

What we want to do here is a bit different than simply hosting two sites from a single core
and module install. We want the two sites to share everything with the possible exception
of themes. What domain access does is that it gives you options for content and theme
segregation. The Drupal website project is actually called the Domain module, but it's
commonly referred to as Domain Access module. We will use the names interchangeably.

Let's install the Domain Access module and take a look at it.

Time for action – installing Domain Access module
In Mac OS X, go to Applications | Utilities | Terminal.app. In Windows, go to Start | All
Programs | Cygwin Bash Shell. Enter the following commands:

cd ~/Sites/dpk

drush dl domain domain_views domain_ctools

drush pm-enable domain domain_views

Selecting the Right Domain for your Mobile Site

[64]

What just happened?
The first command moved us into the directory where the Drupal installation resides. The
second command downloaded the Domain module from the Drupal website. The third
command enabled the module. We did all of this from the command line, but you could
have just as easily downloaded the module by hand, dropped it into sites/all/modules/
contrib, and then used the Drupal admin screens to enable the module. But typing these
three lines seems easier to me. Do it in whichever way you feel most comfortable.

We're installing two modules here; these are the Domain and Domain Views. Domain
allows Drupal to segregate content based on the URL and Domain Views adds the fields
to the view for adding and excluding that content in a view. Domain CTools allows domain
settings to be exported.

Domain management
Now, the first part of domain management is to get the domain registered and pointed to
the server in question. We're going to do this locally and we'll go over how to do it on the
server when we roll out our changes to the live site.

Server Alias is an Apache directive for virtual hosts. It allows Apache to
serve multiple domains on a single virtual host. As its name suggests, server
alias adds a second hostname to a named virtual host.

Time for action – configuring Apache
First, we need to establish the second URL locally, which means configuring Apache to
respond and then configuring the development host to resolve.

For Mac, follow these steps:

1. Launch MAMP Pro.

2. Under the entry for DPK.LOCAL, add the site alias as m.dpk.local.

3. Click on the Apply button:

Chapter 3

[65]

MAMP will warn you that it needs to restart Apache and MySQL. It will then do so.
You may need to put in your administrator's username and password to approve the
restarting of services.

For Windows, follow these steps:

1. Edit the Apache's vhosts.conf file, adding the highlighted line in the following
code to the dpk.local virtual host definition:

ServerAlias m.dpk.local

<VirtualHost *:80>
 ServerName dpk.local
 ServerAlias m.dpk.local

 DocumentRoot "/Users/stovak/Sites/dpk"

 <Directory "/Users/stovak/Sites/dpk">
 Options Indexes Includes FollowSymLinks
 AllowOverride All
 Order allow,deny
 Allow from all

Selecting the Right Domain for your Mobile Site

[66]

 </Directory>

</VirtualHost>

2. Right-click on the E editor icon in the programs menu, select Run as and then run
as administrator.

3. As shown in the following screenshot, add 127.0.0.1 dpk.local to C:\
windows\system32\drivers\etc\hosts:

4. Restart Apache using the context menu in the tray.

Chapter 3

[67]

Now that Apache is configured, open the browser and go to http://m.dpk.local.
You should be presented with the same site as the one on the primary URL.

What just happened?
We need to make Apache respond to the URL, m.dpk.local. Doing that requires two
different parts. The local name resolution, which takes place in the local hosts file, and the
Apache configuration. Adding a "server alias" to Apache makes it reuse the virtual host for
a second URL. On the Mac OS, the configuration application takes care of the heavy lifting
behind the scenes. On Windows, we did these two tasks by hand.

Bootstrapping the domain
In order to function correctly, the Domain Access module needs a bootstrap in the Drupal
installation's settings.php file. Let's add that.

Bootstrapping is a process by which the base code is loaded for a specific
environment. The bootstrap for an OS loads a basic amount of code, so that it is
able to function, but not the entire load of the OS. With Drupal, there's a file called
bootstrap.php in the site's root. When included in your script, everything that
Drupal needs to execute the functions will be loaded by the script. Many simple
backend scripting functions of Drush are executed by simply loading a bootstrap
from your installation and executing Drupal functions from there.

Time for action – bootstrapping the Domain Access module
1. Edit the sites/default/settings.php file, adding the following line. You may

have to edit this file as an administrator. TextMate on the Mac may ask you for a
Username and Password of an administrator for the machine. On the PC, right-click
on the E editor icon and choose to run as administrator, as you did in the Time for
action – installing the Domain Access module section and enter the following line:

include DRUPAL_ROOT . '/sites/all/modules/contrib/domain/settings.
inc';

2. First, go to the development URL, http://dpk.local. If you're not logged in as
the administrator, log in now.

http://m.dpk.local
http://dpk.local

Selecting the Right Domain for your Mobile Site

[68]

3. First, we need to enable all the modules in the Domain Access suite. Go to Modules
and find the Domain Access section. Enable them all for now. We'll turn off the ones
we don't need when we make the changes to the site live:

4. On the line with the primary Domain Access module, there are two links, namely,
Permissions and Configure. Click on the Configure link.

Chapter 3

[69]

5. Make sure the primary domain value is dpk.local and not the m.dpk.local URL.

6. Save these settings and then click on Domain List. It should list your primary domain
that you just saved.

7. We need to add the mobile domain. Click on Create Domain.

8. Under the Domain column, enter m.dpk.local. Under the Site name column,
put Drupallo's Pizza Kitchen Mobile Site, or some such descriptive text. Save
the new domain.

9. Now, we have two domains. Add the local version, as we did before, and your
domain list should look like the one shown in the preceding screenshot.

What just happened?
We added both the live site and the development local version to the Domain list as active
domains so that Drupal could distinguish traffic on each domain and treat it accordingly.
In the next chapter, we'll assign a theme to the mobile domain and begin the process of
dividing content.

Until then, let's take a look at some of the other obvious issues with the home page, starting
with the address link.

Selecting the Right Domain for your Mobile Site

[70]

For now, we need to do one more thing. Package up this site and get it ready to move up to
the live site. For that, we're going to need a relatively new module called Features.

Introduction to the Features module
Features is a relatively new concept in the Drupal universe. The idea behind the Features
module is that, for Drupal websites, it's very difficult to version manage the settings in the
database without doing a full database backup and then restore. So what we'd prefer to do
is just export the stuff we're checking into Version Management and create a standalone
module to install those new settings into any Drupal site. Strongarm is the module that
allows features to talk to system variables. Let's install and enable them both.

Time for action – installing and creating your first feature
The Features module bundles functionality into an easily installable package. Let's
create one.

1. In Mac OS X, go to Applications | Utilities | Terminal.app. In Windows, go to Start |
All Programs | Cygwin Command Shell. Enter the following commands:

cd ~/Sites/dpk

drush dl features strongarm

drush pm-enable –y features strongarm

2. Go to Structure | Features | Create feature.

3. As shown in the screenshot that follows, let's name this feature Drupallos
Homepage and give it a description as Home page view. The version number needs
to be 7.x-1.0-beta1 for the reasons we discussed in Chapter 2, Setting up a Local
Development Environment.

4. Now, under Edit components, choose Views. Underneath will be a listing of all
of the views that are currently part of the site; select home (home). Click on the
Download feature button and the feature will be downloaded as a tarball to your
hard drive.

Chapter 3

[71]

5. In your local install, if the folder sites/all/modules/features does not
exist, create it and unpack the contents of the new feature module into the
newly created folder:

Selecting the Right Domain for your Mobile Site

[72]

6. Open a browser window and go to http://dpk.local. Choose Structure then
Features. You should see the new feature in the Features module list (see the
screenshot that follows).

7. Enable the feature by checking its checkbox and then clicking on the Save
settings button:

What just happened?
Jimmy originally created the home page view to return nodes of the "billboard" content
type, and using the jQuery Cycle Plugin, cycle through the billboard images. We want to
make sure that any changes we make to this view:

 � Get version managed so we can revert to it if the client doesn't like the change

 � Get pushed from our local environment to the staging environment and then
on to the production server, so we don't have to make the changes by hand on
every server

The Features module was created to allow us to do just this.

In the first command, we used Drush to download and install the new Features module.

Next, we used the Features module to create a feature for our home page view. The
following screenshot allows us to take a look at the files in that module:

For those of you who have ever looked at a Drupal module's structure, the .info and
.module files should be familiar to you. The .module file contains a single line of code
and it's as follows:

include_once('drupallos_domains.features.inc');

http://dpk.local

Chapter 3

[73]

The .info file contains some things that might be familiar and some things that might not.
Let's go through it line-by-line. The first line of code is as follows:

core = "7.x"

This line tells Drupal that it works with the 7.x version of the core. The next line of the code
tells Drupal that it has a dependency on the views module:

dependencies[] = "views"

The next line of code is the description field we entered when we created the module:

description = "Home page view"

The next line of code is a message to ctools to load and use the Strongarm module to
process the variables below:

features[ctools][] = "views:views_default:3.0"

The next line of code is a listing of the view we're managing. If there were multiple views
in this feature, there would be multiple values here:

features[views_view][] = "home"

The next line of code is the name variable we set when creating the feature:

'name = "Drupallos Homepage"

The next line puts the features under the Features package. When you have a larger site and
start to have 10 to 15 features, it's helpful to put them into groups for better management.

package = "Features"

The next line of code specifies a machine-readable version of the name we entered when we
created the feature.

project = "drupallos_homepage"

The last line of code shows the version we set when we created the feature.

version = "7.x-1.0-beta1"

Features has created for us two more include files, features.inc and views_default.
inc. The features.inc file includes a single function:

function drupallos_homepage_views_api() {
 list($module, $api) = func_get_args();
 if ($module == "views" && $api == "views_default") {
 return array("version" | 3.0);
 }
}

Selecting the Right Domain for your Mobile Site

[74]

This function tells views how to use and which version of the views plugin to use.

The .views_default.inc file contains the meat and potatoes of our feature. If you take
a look at the file, there's only one function that begins and ends as such:

function drupallos_homepage_views_default_views() {
 $export = array();
…

 return $export;
}

This code takes all of the settings in our local home view and puts them in code so that
when the feature is installed on another site, the other site will have an exact copy of our
view. Each line of the views feature code sets a value for our view that can be edited via the
Views GUI. If you've built a view from scratch and you take a look at the settings, the settings
should look familiar to you.

Also notice that, for each of our view displays, there's a corresponding series of lines that
begin with:

 $handler = $view->new_display('page', 'Page', 'page');

Time for action – updating the feature with new settings
Let's try updating the feature:

1. Go to Structure | Views | Home.

2. Add a block by going to Displays | Add | Block.

3. Save the view with the Save button at the top right. All of the default values are fine.

Chapter 3

[75]

4. Go back to Structure | Features. You will notice that the State column value is
no longer Default but Overridden (see the following screenshot). Click on the
Overridden state:

5. The features information shows you that the views in this feature have been
overridden. Click on Overridden again to see the differences.

Selecting the Right Domain for your Mobile Site

[76]

6. A list of differences shows the new "handler" block we just added:

7. Now, open a terminal and change the directory to your site directory
(~/Sites/dpk)

8. Enter the following command:

drush features-update drupallos_homepage

9. Drush will ask you if you want to update the feature. It will let you know that a
feature with the name drupallos_homepage exists and will ask: Would you like
to overwrite it?. Enter y for yes.

10. Hop back over to our browser, refresh the page, and take another look at our view.
You'll see that the state is now Default instead of Overridden.

11. Taking a look at the .views_default.inc file in the module reveals the new block
handler we created when editing the view.

12. You may install this module on another website (or our live site). This will prevent
the view from being deleted and also will add our new block view we just created
without any admin changes to the view itself.

What just happened?
How many times have you deleted a view accidentally, only to have to spend 45 minutes
recreating it? How many times have you made changes to a view and needed those changes
either on another site or on another environment in the project workflow? Features solves
a myriad of development problems with its fantastic Dark Magic. When a change is made
to the site's structure you use Drush to update the feature and it takes the change you just
made on the site and moves it to your code. Once the feature is in your code, the view can

Chapter 3

[77]

never be deleted. You can easily add the view to another website by copying the feature to
another sites/all/modules/features folder.

Features-based App Stores:

With the advent of App Stores such as the Apple App Store and Android Market,
an idea being floated around the Drupal community is one of an "App Store" for
Drupal-based bundled features that you add to your site via downloading Drush.
Notice that all the features have a value called XML Update URL, which could
easily be linked to a remote App Store that provides updates to the features on
a regular basis. One can only hope that this strategy is successful because it may
be the tipping point for Drupal to truly be the default choice for much of the
content-managed sites in the world.

The missing piece of our development puzzle is deployment. How do we get the code we're
working on, onto the live site in the easiest way, at the same time, managing the risk of
putting new code out onto the Internet?

Have a go hero – adding hooks to the feature
If you've ever created a customized module, you know that you interact with the Drupal core
by using a series of hooks, which are functions named in a correct pattern to be executed at
the occurrence of a Drupal event.

Because features are, themselves, custom modules, you can add a hook for your content
type. For this exercise, add a hook to your new Drupal feature module that will check values
when a node is saved.

Deployment—best practices
Little Jimmy had a conversation with Big Daddy Jimmy about us helping out with the mobile
work and they both agreed that we should probably go through a testing and acceptance
phase, where they take a look at the development we've done and test the site before it
goes live. Big Jimmy has enlisted his wife Adrianna and a few of Adrianna's friends to look
over the site for mistakes as well as our designer, Claire Romano, who will probably have
some feedback about the way the design is implemented.

We completely and wholeheartedly agree, so we're going to set up a UAT server so that the
Jimmys and the entire team can take a look at the changes and sign off on them before they
go public.

Selecting the Right Domain for your Mobile Site

[78]

For the purposes of this example, we're going to simulate the UAT environment locally with
new URLs on our local install, but you could just as easily add a remote host and create your
own UAT on your remote host. Or better yet, as we've done with this book's code repository,
host the code in the cloud on GitHub or a similar service (such as BeanStalk). Not only will
your code be protected from hardware failure, but also you'll have a common place for
access for all developers for the project.

If you remember correctly, we checked this code out of the DPK GitHub project. We'll need
to specifically not push our code out there because that code is offered by Packt to buyers of
the book. We want this new code just in our UAT environment until it's tested and ready to
go. Best testing practices say the code is assumed to be bad until tested. Do not assume any
change is good until it's completely tested and signed off, either by the client or the project
manager in charge.

Let me say one more word about testing by telling you what it is not. Testing is not a critique
of the design (for example, one may say, "I like blue; I don't like green"). At this point in the
project, you should be well past the design stage and the design should be established and
set. Testing is making sure the page works in every available browser in as many versions
as is in scope and that the design implementation is as close to the design as the browser
allows. You should at least test in the latest version of Internet Explorer plus one version
older, latest version of Firefox, and either Chrome or Safari. As we go farther in the mobile
device themes, you'll want to recruit your friends' various cell phones and carriers to help
you test on a variety of mobile devices, including the iPhone and iPad simulator you installed
in Chapter 1, When is a Phone Not a Phone?

Now let's check in our code.

Time for action – code check-in and deployment
Our make file is out-of-date and so is our latest database backup. Throughout this chapter,
we've added a few modules. Now, we need to update the make file to reflect the changes:

1. In the command prompt on Mac, enter mate ~/Sites/dpk (or whatever site root
you're using). From the Windows Cygwin command line, substitute e for mate: e
~/Sites/dpk.

2. Your text editor will open up with a project view of the entire folders of the site.

3. Double-click on the dpk.make file in the root directory. As shown in the following
screenshot, reveal the contents of under sites/all/modules/contrib and line
them up side-by-side so you can compare the two lists. This is a good way to make
sure your .make file includes all the contrib modules you've recently installed:

Chapter 3

[79]

4. Add any missing modules. You can get the module's base version number by
revealing the contents of the module folder and double-clicking on the .info file.
The version number will be listed in the .info file. Add the following lines:

projects[domain][subdir] = "contrib"
projects[domain][version] = 2
projects[domain_ctools][subdir] = "contrib"
projects[domain_ctools][version] = 1
projects[domain_views][subdir] = "contrib"
projects[domain_views][version] = 1

5. Open a terminal window and change the directory to your site root (~/Sites/dpk).

6. Enter the following commands and keep the terminal window open:

> git add dpk.make

> git commit –m "adding missing modules"

Selecting the Right Domain for your Mobile Site

[80]

7. Now we create the UAT instance. You can do this locally or on a remote server.
Open a new terminal window. In the separate terminal window, enter the following
commands:

> cd ~/Sites

> git clone ~/Sites/dpk ~/Sites/uat.drupallospizzakitchen.com

8. In your web browser, go to the development URL, http://dpk.local. If you're
still not logged in, log in as the administrator. Choose Configuration | Backup and
Migrate from the admin menu.

9. Under the Backup tab, choose Quick Backup of the Default Database to the Manual
Backups Directory using Default Settings. Click on the Backup Now button.

10. On the resulting screen will be the new file created by the backup. Highlight the
name with the mouse, right-click on it, and copy the name to the clipboard.

11. Open a terminal window and change the directory to your site root (~/Sites/dpk).

12. Enter the following commands. You can paste the filename you just copied to the
end of the first line:

> git add sites/private/backup_migrate/manual/ [paste the filename
you just copied]

> git commit –m 'current database backup'

http://dpk.make

Chapter 3

[81]

What just happened?
GIT is a distributed version management system. What that means is that there's no one "big
daddy" repository for any code set. Every repository has the ability to be both a pusher and a
puller from other clones. We checked out code into the development repository. If this were
a real project, we'd have hosted the project on GitHub and then pushed our updated code
out to the cloud GitHub host.

However, what you really don't want to do is to deploy from a make file. Because between
the time you check code in and the time you build the code there may be changes introduced
that are not accounted for. That's why it's my polite suggestion that deployment environments
use the rsync command to copy a deployment from a tested lower environment. That way
no code enters the production stream that hasn't been thoroughly tested and your UAT and
Production environments are an exact copy of the development snapshot.

We then used the Backup and Migrate module to create a local backup of the Drupal
database. We added that database to the version management payload and committed it to
the local repository. If UAT and Production environments have no unique data, you can do a
database update during deployment. Most of the time, your production database should not
be updated and you'll need to add any deployed nodes to your feature.

Pushing out features
Now, let's add that new features module and push it up to UAT.

Time for action – check in your features module
Open a terminal window, go to your development site root (~/Sites/dpk), and enter the
following lines:

> git add sites/all/modules/features/drupallos_homepage/*

> git commit –m 'adding homepage view module'

> cd ~/Sites/uat.drupallospizzakitchen.com

> git pull

What just happened?
The first line of code added the next drupallos_homepage module to the local
development version of the repository. The second line committed the changes to the
repository locally. The third line changed us over to the "remote" version of the repository.
The fourth line pulled all the changes we just checked in to the UAT repository.

www.allitebooks.com

http://www.allitebooks.org

Selecting the Right Domain for your Mobile Site

[82]

You could repeat these commands on a remote server and have a working make file and
codebase to set up a UAT server. We won't go into detail with the steps involved in setting up
the UAT server because it's exactly the same as setting up our local development, but here
they are:

1. Run the drush make dpk.make command on the .make file, as you did in Chapter
1, When is a Phone Not a Phone?

2. Create a new database and put the connection settings in settings.php.

3. Restore the latest database backup to the new empty database.

4. Add the new UAT hostnames to the domain access "alias" list for each of the
primary domains.

Pop quiz
1. Which module segregates content based on the hostname?

a. Views

b. CCK

c. Fields API

d. Domain Access

e. None of the Above

2. For what daemon or service is ServerAlias a directive?

a. Apache

b. Linux

c. MySQL

d. PHP

3. Bootstrapping mainly concerns itself with:

a. Starting up an environment's basic functions

b. Killing all processes on a running virtual host

c. Creating virtual hosts

d. Backing up databases

Chapter 3

[83]

4. Apache and the Domains module can handle how many domains?

a. 1

b. 3

c. 10

d. For as many or as few as your server can handle traffic

5. We package similar Drupal structural items in a feature:

a. So the structures can be version-managed

b. So the structures can be copied easily

c. Both a and b

d. Neither a nor b

6. Views cannot be version-managed.

a. True

b. False

Summary
We learned a lot in this chapter about managing development environments, domains,
and features.

Specifically, we:

 � Used Drush to download and install the Domain and other related modules

 � Configured the Domain and related modules locally and were able to segregate
content on the two domains

 � Backed up the database to a local directory with the Backup and Migrate module

 � Built our first Feature module

 � Checked our changes into version management and updated a "remote" server with
our changes

Now that we've learned about managing and changing this environment, we're ready to start
working on the mobile theme.

4
Introduction to a Theme

The British have an expression that aptly describes the current state of Drupal
7 theming for mobile. The phrase "the dog's dinner", while of unknown origin,
has come to mean "a recipe fit only for the mouth as a last resort". Much of
the work that was done to retrofit Drupal 6 for mobile isn't needed in Drupal
7, but Drupal 7 is still new enough that the heavy hitters of the module world
are being ported to Drupal 7 without much thought as to the changes Drupal 7
brings to the job of theming. In fact, many of the modules that were commonly
used in Drupal 6 simply aren't ready for a live Drupal 7 site. We will attempt to
make sense of this "dog's dinner" and get a "working mobile site" up quickly.
We'll then, in a later chapter, go back and refine the mobile site to make it more
graceful and tailored to our client's needs.

In this chapter, we will:

 � Introduce the changes which HTML5 brings to theming

 � Review the concepts of the "mobile theme"

 � Learn about redirection and guessing the intent of a browser

 � Progressively enhance our mobile site

So let's get on with it...

Introduction to a Theme

[86]

Progressive Enhancement
Grandpa Fiorello Drupallo still has his e-Machines PC, running Windows 2000 that he bought
in 1999. It hasn't broken down and it still "gets the Internet" very well, thank you, so why
should he buy a new one? Why indeed! In this economy, with prices the way they are? Little
Jimmy tried to get grandpa a new one for Christmas, but grandpa is insistent. He likes his
old machine and is quite comfortable with it running and working the way it does. Problem
is, it's still running IE 6 and when grandpa views Drupallo's website, he wants to see a great
looking site on his ancient (in Internet terms) web browser.

The bane of every frontend web developer's experience is Internet Explorer (IE), more
specifically, IE 6 and IE 7. They have consistently given the worst browser experience, the
worst standards support, and the worst markup rendering. But the customers continue to
hold on to older equipment and fail to upgrade their software to the latest browser versions.
More often, the users are browsing with company-owned computers where they are reticent
or simply unable to upgrade the browser. Either that or they have their own Grandpa
Drupallo as one of their stakeholders.

With mobile, we are in the same conundrum. We have many users who don't want the
complexity or expense of a smart phone and who are content to use their five-year-old Nokia
phone until it completely dies. At the same time, from the statistics collection, we know that
the majority of mobile web traffic happens from WebKit-based browsers in Apple's iOS and
Google's Android phone operating systems.

When Little Jimmy began the project, he had the discussion with Big Daddy Jimmy about
how it would be very difficult to support older technology, but he was going to do his best to
make everything look really good, no matter what the customer was using. Big Daddy Jimmy
agreed to progressive enhancement, as it's called in the web development business. He
agreed, in theory.

Progressive Enhancement is the idea that the browser should display the page as best it can
and older browsers with less features simply "miss out" on the better looking page. In the
heat of the project, though, stakeholders start looking at web traffic statistics and see that
people using IE comprise a much higher percentage of the web traffic and begin to balk and
want a pixel-perfect experience.

The frontend developer uses CSS that rounds up the corners of squares and the project
manager demands that the site "looks wrong" in browsers that don't support the rounded
corners CSS3 property. The developer uses some CSS3 gradients to color the background of
a div and to provide the color spec of a solid color for browsers that don't support the
gradient. The project manager (or designer) then freaks out that the design looks flat in
the older browser.

Chapter 4

[87]

It is easy to get the project stakeholders to agree in theory to progressive enhancement,
but very few actually put this theory into practice. And thus we get page bloat with hundreds
of <div> tags within <div> tags within <div> tags, because the stakeholder demands
the design to be pixel-perfect to the mockup. I had one stakeholder that actually took a
screenshot in IE6 and put it in the Photoshop psd file as an onion skin to compare the
HTML render with the original mockup.

The web is not the print, the print is not the web, and the desktop web is not the mobile
web. Trying to make any one of these into the other does a disservice to each.

Big Jimmy agreed to progressive enhancement in theory, but when the website didn't look
quite right in Grandpa's web browser, Grandpa made Little Jimmy sit down for a "talk" and
Grandpa explained how he would be "very disappointed" if any of his friends looked at
this website and didn't see the quality, which he had worked on for all of his life, put into
the pies they make. To make peace in the family and to prevent any further patriarchal
disappointment, Jimmy agreed to make the site compatible with IE 6. Grandpa was pleased
and family dinners were considerably less adversarial.

Little Jimmy knows his grandmother has an older Nokia phone that doesn't show HTML
pages with any fidelity, but he also knows that there is a large audience of tourists who have
mobile phones, in the hotels around the pizzeria on the beach, that he would like to make
sure can view coupons and a menu, and hopefully get them to call in and order.

So how do you do it? How do you implement the progressive enhancement on an existing
site? I think the answer can be actually found in two priorities. First, make sure your mobile
customers are taken care of, and then implement a design that puts mobile first and then
adds desktop compatibility on top of the good mobile strategy. We'll build it from the ground
up, starting at the new HTML5 DOCTYPE.

HTML5 and the simplified DOCTYPE
Drupal 7 takes the steps to make its generated HTML more HTML5-compliant and there is
currently a core initiative for Drupal 8 to be completely HTML5 clean (http://groups.
drupal.org/html5). So in the words of Maria VonTrapp, "Let's start at the beginning. It's
a very good place to start. When you read, you begin with A-B-C." When you begin with web
markup, you begin with the DOCTYPE.

The Document Type Definition or DOCTYPE is, or should be, the first element of any HTML
document. The DOCTYPE describes the way in which the markup, CSS, and the JavaScript
should be rendered by the browser's rendering engine. An improper form on the DOCTYPE
could lead to the poor rendering of standard CSS in some browsers.

Introduction to a Theme

[88]

During the late 90s, it was common in Microsoft IE for only XHTML pages to begin the
document with an XML declaration to aid in XML parsing:

<?xml version="1.0" encoding="UTF-8" ?>

This should never be used on any website. If there is an XML declaration at the beginning
of an HTML document, Internet Explorer versions 9 and below will render that document
in what's called "Quirks Mode". The Quirks Mode is an evil machination of Dark Forces that
provides for non-standard CSS rendering in IE. It is also my belief that its use will lead to
hunger and famine in many parts of the world, although direct cause-and-effect has not
been proven. The point is, it's never a good idea to start an HTML document with an XML
declaration. Someone's life may depend on it.

There are really only two DOCTYPE use cases that work best for modern HTML pages. The
first is the older XHTML Strict, which is quite verbose:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN""http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The second is the HTML5 simplified version:

<!DOCTYPE html>

The HTML5 version is much easier, isn't it? This is one of the many ways HTML5 simplifies
and clarifies markup while making it more semantic and descriptive of its content. This
DOCTYPE invokes standards-based CSS rendering on every browser in general use today,
including all versions of Internet Explorer:

 � Semantic web: The semantic web refers to a web of data that can be consumed
by other web entities, for example, search engines or news aggregators. A good
example is the new Resource Description Framework (RDF) for web pages that
allows information in a website to be read by other websites that aggregate the
headlines. Screen readers and accessibility assistance devices rely on good semantic
markup to help the visually challenged make sense of a web page. Search engines
understand more about web content if more semantic markup is used.

 � RDF: The RDF is a language for representing information about resources in the
World Wide Web. It is particularly intended for representing metadata about web
resources, such as the title, author, and modification date of a web page, copyright,
and licensing information about a web document, or the availability schedule for
some shared resource. However, by generalizing the concept of a web resource, RDF
can also be used to represent information about things that can be identified on the
web, even when they cannot be directly retrieved on the web. Examples include

Chapter 4

[89]

information about items available from online shopping facilities (for example,
information about specifications, prices, and availability), or the description of a web
user's preferences for information delivery (for more details, refer to the W3C RDF
Primer document at http://www.w3.org/TR/rdf-syntax/).

New HTML5 semantic elements
The other thing that HTML5 brings to the table is a slew of new markup elements, many of
which are semantic replacements to using the more generic <div> tag everywhere. These
are becoming, and will continue to become, more facilitating for mobiles as they will aid in
defining the information mobile phones will use to make more sense out of the page.

The problem with introducing new elements is the issue with versions of Internet Explorer
(and older versions of Firefox) that don't render the elements correctly. But since version
4.0, IE has had one interesting feature. You can create any element and use it in a stylesheet,
as long as the element is created by JavaScript before the page loads. So in order to get
HTML5 elements to render correctly in older versions of IE, you'll need a small JavaScript
that creates the elements in the head. There's a small JavaScript included on Google
Code that will help us with this, called the HTML5 Shim: http://code.google.com/p/
html5shim/.

It involves adding a single conditional JavaScript in the page head. It has been added already
to the DPK html.tpl.php file. We'll use a copy of that file for our new mobile theme, later
in the chapter.

Drupal 6 versus Drupal 7 theming
One of the primary ways Drupal 6 theming differs from Drupal 7 theming is in the page.tpl
file. In Drupal 6, the page.tpl held the entire markup for the page and became the base of
all of the page's theming. In Drupal 7, that's divided into three different files, and all three
are optional to your theme. If you do not have any of the following three in your theme, the
default one will be used:

 � html.tpl.php: Holds the base html, DOCTYPE, head, and body tags

 � page.tpl.php: Everything that goes inside of the body tags

http://www.w3.org/TR/rdf-syntax/
http://code.google.com/p/html5shim/

Introduction to a Theme

[90]

 � node.tpl.php: Structure surrounding the content variable from the page.tpl.
php

Let's take a look at a base html.tpl.php file:

<?php print $doctype; ?>

<html lang="<?php print $language->language; ?>"
 dir="<?php print $language->dir; ?>"
 <?php print $rdf->version . $rdf->namespaces; ?>>

 <head <?php print $rdf->profile; ?>>
 <?php print $head; ?>
 <title><?php print $head_title; ?></title>
 <?php print $styles; ?>
 <?php print $scripts; ?>
 <!-- backwards HTML5 compatibility for IE -->
 <!--[if lt IE 9]>
 <script src="http://html5shim.googlecode.com/
 svn/trunk/html5.js"></script>
 <![endif]-->
 </head>

 <body class="<?php print $classes; ?>" <?php print
 $attributes;?>>

 <?php print $page_top; ?>
 <?php print $page; ?>
 <?php print $page_bottom; ?>

 </body>
</html>

Chapter 4

[91]

The first line allows Drupal to manage the DOCTYPE statement. The second line adds the
RDF additions to the HTML tag as well as the default Drupal translation. The <header> tag
is a standard Drupal 7 style and script, with RDF additions, if needed by Drupal. Notice the
inclusion of the conditional statements for backwards HTML5 compatibility for IE.

Conditional statements

Conditional statements are codes that are invisible to browsers other than IE.
You can use them to target specific versions of IE or a range of versions with
the if syntax in the first conditional statement. The statement, "if lt IE
9" gets translated to "if less than IE version 9". As of version 9, IE renders the
new HTML5 elements correctly.

Body classes and attributes will be handled in the pre-process functions in template.
php. The $page_top and $page_bottom variables are added for Drupal's overlays and the
admin menu and the $page variable hold the rendered content of the page.tpl.php file.
Let's look at a standard page.tpl.php file:

<?php echo render($page['header']); ?>
<header id="main-header" class="clearfix">
 <div class="container">
 <h1><?=l($site_name, "<front>");?></h1>
 <nav id="menu">
 <?php if ($primary_nav): print $primary_nav; endif; ?>
 <?php if ($secondary_nav): print $secondary_nav; endif; ?>
 </nav>
 <?php if (isset($main_menu)) { ?>
 <?= theme('links', $main_menu, array('class' => 'links',
 'id' =>'main')) ?>
 <?php } ?>
 <?php if (isset($secondary_menu)) { ?>
 <?= theme('links', $secondary_menu, array('class' => 'links',
 'id' => 'secondary')); ?>
 <?php } ?>
 <?=$search_form;?>
 </div>
</header>

The header consists of the site name, primary, and secondary menus as well as the search
form. Notice we have used the HTML5 <header> element to define the header rather than
the more generic <div> with a class or ID of <header>:

<section id="main" class="clearfix">
 <?php if ($page['sidebar_first']): ?>

Introduction to a Theme

[92]

 <aside id="sidebar-first" class="sidebar">
 <?=render($page['sidebar_first']); ?>
 </aside>
 <?php endif; ?>
 <?php print $breadcrumb; ?>
 <?php if ($page['highlighted']): ?>
 <div id="highlighted">
 <?=render($page['highlighted']); ?>
 </div>
 <?php endif; ?>

 <?php if ($tabs): ?>
 <div id="tabs-wrapper" class="clearfix">
 <?php endif; ?>
 <?=render($title_prefix); ?>
 <?=render($title_suffix); ?>
 <?php if ($tabs): ?>
 <?=render($tabs); ?></div>
 <?php endif; ?>
 <?php print render($tabs2); ?>
 <?=$messages; ?>
 <?=render($page['help']); ?>
 <?php if ($action_links): ?>
 <ul class="action-links">
 <?php print render($action_links); ?>

 <?php endif; ?>
 <article class="clearfix">
 <?php print render($page['content']); ?>
 </article>
 <?php if ($page['sidebar_second']): ?>
 <aside id="sidebar-second" class="sidebar">
 <?php print render($page['sidebar_second']); ?>
 </aside>
 <?php endif; ?>
</section>

The markup is pretty straightforward and very similar to the content area of a Drupal 6
page.tpl.php. Notice the addition of the new HTML5 elements header, article, and
section that add to the semantic description of the content on the page.

Chapter 4

[93]

More semantic > less semantic:

In the early days of search engines, we learned to do things such as put lots
of links to ourselves throughout the text so the search engine would think
lots of pages linked to our content. We put repeated text in the <meta>
tags and had <meta> tags with hundreds of words to try and come up with
every eventuality of searching combinations. This voodoo markup was what
was commonly meant by Search Engine Optimization (SEO). Google has
evolved the search engine since then. They've gotten better at looking at
content and there's one thing I promise – their ability to program their servers
to understand content is better than your ability to try to trick them. They have
more money and better programmers and are better at search theory than
you.

The current approach to SEO is to try to "describe" the content as entirely as
possible. What I mean by "describe" is that, as developers, we need to remove
as much inaccessible content as possible and to add semantic tags to help
search engines understand the context of the content as much as possible.
People will immediately close a window that doesn't have the content they
want. Don't try to trick Google to get page views because those type of page
views have no value to advertisers. The HTML5 structure tags like <header>,
<footer>, <article>, and <aside> will help with SEO and further
describe your content. The more accessible, semantically described content
you have, the more page views you will get.

The <footer> element appears at the bottom of the page and contains the <footer>
region for the theme and utilizes the new HTML5 <footer> element. Refer to the following
code snippet:

<footer id="main-footer" class="clearfix">
 <?php print $feed_icons ?>
 <?php print render($page['footer']); ?>
</footer>

Now let's install an even simpler theme for our new mobile site.

Time for action – installing the default mobile theme
1. Open a new terminal window, change the directory to your site root, and let's install

the mobile theme:

drush dl mobile
drush pm-enable mobile

2. Next open a browser window and go to the http://dpk.local website.

3. Choose Structure | Domains.

Introduction to a Theme

[94]

4. From the Domains list, choose the mobile domain's theme settings.

5. Change the theme to mobile.

6. Point the browser to the mobile domain (http://m.dpk.local) in this example.
You should see the simple theme:

What just happened?
The first line tells Drush to download (dl) the mobile theme. The second line tells Drush to
enable the module you just downloaded. After each of the enable commands, you'll need
to approve with a y for yes.

Then we assign a different theme to the mobile URL.

http://m.dpk.local

Chapter 4

[95]

The simple life
Let's take a look at the newly-downloaded mobile theme:

As you can see, the mobile theme is very simple—no custom CSS and no customized
JavaScript. Notice the lack of html.tpl.php. As mentioned before, the default
html.tpl.php is used.

What we need to do is add a link from the low resolution site to the high resolution one on
both sites. The mobile.info file looks something like this:

name = "Mobile"
description = "Ideal for small devices and/or for low-bandwidth
consumers."
core = 7.x
engine = phptemplate
regions[help] = Help
regions[navigation] = Navigation
regions[content] = Content
; Information added by Drupal.org packaging script on 2010-12-11
version = "7.x-1.x-dev"
core = "7.x"
project = "mobile"
datestamp = "1292026750"

The mobile template basically has three regions – "Help", "Navigation", and "Content".
The page.tpl looks like this:

<a href="<?php print url($_GET['q'], array('query' => NULL,
'fragment' => 'nav', 'absolute' => TRUE)); ?>"><?php print t('skip to
navigation');?>

 <?php print render($title_prefix); ?>
 <?php if ($title): ?><h2 class="title" id="page-title"><?php print
 $title; ?></h2><?php endif; ?>
 <?php print render($title_suffix); ?>

 <p id="help"><?php print render($page['help']); ?></p>
 <?php if ($messages != ""): ?>

Introduction to a Theme

[96]

 <div id="message"><?php print render($messages) ?></div>
 <?php endif; ?>
 <?php if ($tabs != ""): ?>
 <?php print render($tabs); ?>
 <?php endif; ?>

 <?php print render($page['content']); ?>

 <?php print render($page['navigation']); ?>

The first line is a link to quickly scroll to the bottom navigation. The next section is a
"headline" area, followed by the standard Drupal messages and tabs sections. Let's add
some CSS to this very basic theme.

Media queries
From the WC3 working draft of CSS3:

"A media query consists of a media type and zero or more expressions that
check for the conditions of particular media features. Among the media features
that can be used in media queries are width, height, and color. By using media
queries, presentations can be tailored to a specific range of output devices without
changing the content itself."

The sales pitch does that by using media queries, we can use the same markup on multiple
screen sizes and resolutions to produce the best possible design, given the current device.
But soon, as we will see, there's no silver bullet to mobile site design.

Media queries can be used in different ways. You can use them in the link tag to specify the
situations in which the CSS file should be loaded and used:

<link rel="stylesheet" media="screen and (min-device-width: 800px)"
href="example.css" />

This would load the referenced CSS only on screens with a device width of 800 px or
larger. They can also be used in the CSS itself with the @media rule, as shown in the
following code snippet:

<style>
 @media all and (orientation:portrait) { … }
 @media all and (orientation:landscape) { … }
</style>

Chapter 4

[97]

But what about Internet Explorer? Older versions don't work with these fancy new CSS3
directives. Well, actually, the absence of media queries is, in and of itself, a media query.
You can use the fact that a browser does not support media queries to supply default CSS
in the event the others fail.

Now, at this point, it would be tempting to go through the original site global.CSS and use
the media queries to design three or four screen use cases and call it a day. But honestly,
there's more to mobile web development than that. There are several reasons this is true:

 � If you have images on the page and the image is set to display:none, those
images are still downloaded

 � Adding mobile CSS doesn't fix issues with JavaScript load and execution times

 � The concern with using a mobile browser is not just how the information looks,
but what information shows and where it shows on the small screen

Time for action – personalizing the mobile theme
Let's copy the "mobile" theme into a new theme and make our changes to the new one:

1. Open a terminal window and change the directory to your site root:

cp –R sites/all/themes/mobile sites/all/themes/dpk_mobile

2. As shown in the following screenshot, you should now have three themes in the
sites/all/themes directory:

Rename the .info file to dpk_mobile.info. Edit the new dpk_mobile.info file,
changing the name variable to DPK Mobile, and add three new stylesheets:

name = "DPK Mobile"
stylesheets[all][] = css/global.css
stylesheets[screen and (orientation:landscape)][] = css/landscape.
css
stylesheets[screen and (orientation:portrait)][] = css/portrait.
css

Introduction to a Theme

[98]

3. Copy the HTML.tpl.php file from the DPK theme to the dpk_mobile theme.

4. Create a new folder called css inside the dpk_mobile theme directory.

5. Add three new empty files to the CSS folder: global.css, portrait.css, and
landscape.css:

6. Add the following rule to landscape.css:

header { border: 5px solid orange; }

7. Add the following rule to portrait.css:

header { border: 5px solid green; }

8. Open a browser window, go to http://dpk.local, and choose Appearance. The
new DPK mobile theme should be listed but disabled. Enable it by going to Structure
| Domains. Make the default mobile theme for the mobile domain the new DPK
Mobile theme we just created.

9. Copy the template.php file from the main theme to the mobile theme.

cp sites/all/themes/dpk/template.php sites/all/themes/dpk_mobile/
template.php

10. Change all the function names in template.php from dpk_ to dpk_mobile_.

11. Go to Configuration | Performance | Clear cache.

12. After a page refresh, the PHP notices should disappear.

What just happened?
First we copied all the files from the mobile theme project.

The conditional stylesheets are added to the site by the new entries to the mobile theme.
info file. When you view the source of the mobile site, you should see the new stylesheets
we just added to the theme; two of which have media queries. Refer to the following
code snippet:

http://dpk.local

Chapter 4

[99]

<style type="text/css" media="all">
 @import url("http://m.dpk.local/sites/all/themes/
 dpk_mobile/css/global.css?ln1wht");
</style>
<style type="text/css" media="screen and (orientation:landscape)">
 @import url("http://m.dpk.local/sites/all/themes/
 dpk_mobile/css/landscape.css?ln1wht");
</style>
<style type="text/css" media="screen and (orientation:portrait)">
 @import url("http://m.dpk.local/sites/all/themes/
 dpk_mobile/css/portrait.css?ln1wht");
</style>

If you open the iOS or Android simulator, launch the mobile browser and open the mobile
site URL. You can switch orientations from the Hardware menu. Notice how switching
orientations changes the color of the border around the graphic on the main page.

The functions in template.php are not as straightforward. If you've done any Drupal
theming, the dpk_mobile_preprocess_page function will look familiar to you. It is
implemented as it is in Drupal 6, only it is executed before page.tpl.php is processed.
Let's take a look at the search lines at the bottom of the function:

function dpk_mobile_preprocess_page(&$vars) {
 $search = Drupal_get_form('search_form', NULL, (isset($searchTerm)
 ? $searchTerm : ''));
 $search['basic']['keys']['#type'] = "search";
 $search['basic']['keys']['#size'] = "20";
 $search['basic']['keys']['#attributes']=array("placeholder" =>
 "search", "autocapitalize" => "off", "autocorrect" => "off");
}

Introduction to a Theme

[100]

There are several items to notice here. First, the ['#type'] = 'search'. <Input
type='search' /> is a new HTML5 element alternative to 'type=text'. It is one of the
ways HTML5 is "more semantic" than its predecessor. Also notice the placeholder attribute.
Placeholder is a new attribute for the form text fields that will put "grayed out" text
that disappears on focus. autocapitalize and autocorrect turn off the handheld's
automatic capitalization and text completion functions for this input control only.

We've also added a dpk_mobile_preprocess_html function that does similar things for
the html.tpl.php file. Refer to the following code snippet:

function dpk_mobile_preprocess_html(&$vars) {
 if (module_exists('rdf')) {
 $vars['doctype'] = '<!DOCTYPE html PUBLIC "-//W3C//DTD HTML+RDFa
 1.1//EN">' . "\n";
 $vars['rdf']->version = 'version="HTML+RDFa 1.1"';
 $vars['rdf']->namespaces = $vars['rdf_namespaces'];
 $vars['rdf']->profile = ' profile="' . $vars['grddl_profile'] .;
 } else {
 $vars['doctype'] = '<!DOCTYPE html>' . "\n";
 $vars['rdf']->version = '';
 $vars['rdf']->namespaces = '';
 $vars['rdf']->profile = '';
 }
}

In this function, we set the DOCTYPE and RDF information if the RDF module is enabled.
If the RDF module is not enabled, we use the simple HTML5 DOCTYPE declaration.

We've also added two other functions:

 � An html_head_altar hook: This function adds the meta information for the UTF8
character set.

function dpk_mobile_html_head_alter(&$head_elements) {
 $head_elements['system_meta_content_type']['#attributes'] =
 array(
 'charset' => 'utf-8'
);
}

 � The _preprocess_search_block_form hook is one last hook, changing the
type=text to type=search for any search form not caught by the page
preprocess hook. Sometimes the search form is used on other parts of the page
and we want to make sure when it is used that it's the HTML5 version and not the
more generic "text" version.

Chapter 4

[101]

Redirecting mobile clients
To create a better experience for our users, it is standard practice to scan the client for
certain criteria and redirect them to a site that would better serve their device. There are
basically two approaches for redirection. The first involves sniffing the "user agent".

The word request is defined as, "The act of asking for something to be given or done." A
client using a browser enters a URL into the address bar and we refer to that as a request.
The browser's host networking protocol then does a lookup on the domain name of the
address in the bar. Once the domain's IP has been resolved, it then makes a GET request of
the remainder of the URL, or the index, if there's nothing behind the domain. The browser
sends its identity along with the request in the form of a user agent string. Each browser will
have a slightly different user agent string. Here's one from a browser I'm currently using:

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/535.1+
(KHTML, like Gecko) Version/5.0.5 Safari/533.21.1

Just a day after I wrote this, Apple released an update changing the string to this:

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.42
(KHTML, like Gecko) Version/5.1 Safari/534.42

I also have several other browsers installed on my hard drive:

Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:2.0) Gecko/20100101
Firefox/4.0

Here's another one:

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30
(KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30

And these are just a few.

These strings tell the browser about the capabilities of the client making the request.
The problem is, for as many browsers and devices on the Internet, there are that many
user agent strings. Imagine every version of Windows ever published. Every possible
configuration; each one has its own user agent string. Every handheld and tablet has its
own string, and every time the software on any of them gets updated, the user agent string
changes slightly. As you can imagine, this makes sniffing this string difficult for a programmer,
with too many use cases to be able to do so with any accuracy. Enter a duo of open source
projects; browscap and wurfl. Both libraries operate on the same principle. They keep
track of all the different user agent strings and can allow you to perform redirection based
on a series of user agent string matches. They each have a companion Drupal module. The
libraries are constantly updated and you can set up a CRON task to download the latest
version of the libraries' base files when new versions are released.

Introduction to a Theme

[102]

But this brings us back the questions, "What is mobile?", "Why are we building this second
website anyway?", "Who should we redirect to?", "Under what conditions should they be
redirected?", and "What if the user prefers the full site on their mobile phone?", "Should
they not be able to get that version?"

The mobile_tools module implements much of the functionality we have developed
so far and also has a browscap redirect. There are a couple of reasons I don't like the
implementation. The first is because when you set mobile tools to redirect, it always redirects
the client to the mobile site if it thinks you're using a handheld. I think that this is a wrong
approach. I think the user should be redirected, but if they express a preference for one site
over the other, that preference should be honored. Indeed to my way of thinking, if you have a
"second URL" for handhelds, what you should target is the screen size. What you're really doing
with the two sites is making the website legible for two different screen sizes. Which brings me
to the second way to sniff for client redirection – through what's called "capabilities scan".

Until we get the unified theme designed, it's my belief that the two users can be
distinguished by simply using JavaScript to redirect, based on screen size. Anything under
500 pixels gets the small site. Anything over 500 pixels should get the full site, unless a user
expresses a preference for either.

So let's write some JavaScript that will perform redirection for our themes.

Time for action – writing JavaScript redirection for our theme
We'll add a global.js file and some Drupal behaviors to our theme to redirect our users,
as we anticipate they will want to be redirected:

1. First we'll add a global.js to both themes. Edit the .info file for each of the two
themes and add the following line:

scripts[] = js/global.js

2. Next, create a folder js and add an empty global.js file to the folder.

3. Go to Configuration | Performance and click the Clear cache button.

4. Go to both sites and verify that the global.js is now in the "head" as a
javascript include:

<script type="text/javascript" src="http://dpk.401k.local/sites/
all/modules/contrib/views_slideshow/contrib/views_slideshow_cycle/
js/views_slideshow_cycle.js?lnb1w2"></script>
<script type="text/javascript" src="http://dpk.401k.local/sites/
all/themes/dpk/js/global.js?lnb1w2"></script>
<script type="text/javascript" src="http://dpk.401k.local/sites/
all/modules/contrib/views/js/jquery.ui.dialog.patch.js?lnb1w2"></
script>

Chapter 4

[103]

5. Go to Structure | Blocks.

6. There should be a domain list navigator block in the disabled blocks list.
Click Configure.

7. Leave the Block title blank. Under paths, make sure they "link to the home page"
and change the Link theme to an Unordered list of links.

8. Go to People and then click the tab Permissions. Scroll down to the Domain content
section and there's a permission called Access domain navigation links. Make sure
all user roles are checked. We want the menu to show up for everyone. Scroll to the
bottom of the page and save the permissions you just changed.

9. Navigate back to your block's admin screen and under Region settings, put the
list in the Footer on the dpk (default theme) and put in the content section in
the DPK Mobile theme. Save the block, and on the next page, save your new
"blocks" configuration.

Introduction to a Theme

[104]

10. Now, at the bottom of the page, there should be two links to the two DPK domains,
namely, Drupallo's Pizza Kitchen and Drupallo's Pizza Kitchen Mobile site.

11. Add the following to global.css in both the dpk and DPK Mobile themes:

.block-domain-nav ul li
 { display: inline-block; border-left: 1px solid white;}
.block-domain-nav ul li:first-child
 { border-left: 0px none;}
.block-domain-nav ul li a
 { display: block; margin-left: 5px; padding-left: 5px; }
.block-domain-nav ul li:first-child a
 { margin-left: 0px; padding-left: 0px; }

Refresh the page and your footer should look like this:

What just happened?
Well, first, we created a global.js file for the theme. This will hold JavaScript that is
specific to the theme, mainly the re-routing scripts.

Second, we added that JavaScript to the .info file. The reason we do this is because Drupal
has some special "behind the scenes" handling of JavaScript files where it can compress all
the .js files into a single file, making it faster for loading and execution on the live site.

Next, we grabbed the jQuery "Cookie" plugin and cloned it in the Libraries folder (we'll
need to remember to add that to the .make file later) and then to the theme's .info file.

Next, we added off-the-shelf domain navigator from the domains module. We configured it
to list the domains at the bottom of the page on both the mobile and the full-site theme and
then styled the list accordingly.

So why did we add global JavaScript files to both themes? Well, yes, there is a method
to this madness.

Chapter 4

[105]

Give them what you think they need until they tell you
what they want
What we need to do now is come up with a series of rules to intelligently redirect browsers
to the website that we can intelligently discern they should have, and then allow them to
express a preference, if they care to do so. It is also important to me to be unobtrusive about
this redirection. To my way of thinking – giving a user a pop up that asks them to express a
preference is a bigger sin than giving them the wrong site. It's based on my core belief that
pop ups are the root of all that is evil in UI. Feel free to disagree.

The redirection flow, as described below, is based on my logic and doesn't represent any
definite way to do anything. Feel free to come up with a better way to do this. I'd love to
hear your ideas. Here are the use cases I came up with:

 � The majority of users, both desktop and mobile, will go to the main URL. Entering
the URL to the mobile site is, in and of itself, expressing a preference.

 � Desktop users should never be redirected. If no preference is expressed, users of
desktop and larger tablet browsers should get the desktop site. If they land on
the .com site, they get that site and are not redirected. If a desktop user lands on
the mobile site, this act expresses a preference for the mobile site. Give them the
mobile site with no redirect. If they then go back to the primary site, do not redirect.

 � If no preference is expressed, users of smaller-screen mobile devices should get the
low-end mobile version. If a mobile browser accesses the desktop site for the first
time, redirect them silently and give them the mobile site with a flag at the top of
the page telling them what we did.

 � If the mobile user clicks the link to go back to the site, from now until they express
another preference, the desktop site is preferred. Never redirect them again to the
mobile site, but allow them to see the link at the bottom of the page if they care to
express another preference. It's very annoying to be on a mobile site, as it doesn't
have the information you need, so you go to the full site. The full site loads, only to
be redirected again to the mobile one.

With these rules in mind, let's write some JavaScript that allows mobile users to be
redirected, but allows them to override the redirection when they express a preference.

For those of you who have written JavaScript before, it would be tempting to sit down and
write a quick jQuery function inside a jQuery onDocumentReady script. And that would
probably work without any issue. But you are using Drupal. And Drupal has a method for
adding scripts to the onDocumentReady process that allows items that are loaded via AJAX
to be processed incrementally to eliminate duplicate processing of JavaScript objects. It
won't be an issue with this particular script, but we'll code this script in the correct Drupal
way, to get into the habit of using Drupal behaviors.

Introduction to a Theme

[106]

Behave yourself
We live in a world where the static web page isn't what it used to be. Many times, there is
JavaScript activity on the page that loads new items into the DOM. If you have JavaScript
that processes the page, that processing needs to be done again on the newly-loaded items.
Many times, in carelessly written JavaScript, the processing happens multiple times for all
the items on the page each time new items are loaded into the DOM.

Document Object Model (DOM)

It is a cross-platform way of interacting with HTML. Once the page is loaded, the
browser is able to access every item on the page using the DOM of addressing. It
is looking at the web page through a JavaScript lens and is able to interact with
every item on the page through JavaScript.

Let's have a look at a hierarchical listing:

Each item in the listing has a "reveal" triangle. Each time we click on the triangle, we want to
show the children of the folder. But we don't want the whole page to load each time we want
to see children. The script we wrote scans the list, and then attaches a JavaScript behavior
to the triangle that makes an AJAX call to the server to load the children when the triangle is
clicked and load them in a way that shows them underneath the parent. Take a look at System
in the following screenshot. We have revealed the child Library underneath it:

Chapter 4

[107]

The problem is, the child (children) now needs the same "click-reveal" behavior attached to it
so we re-execute the same script. Now each one of the triangles has two behaviors attached
to it, so clicking one of the original items results in two AJAX calls and two copies of the
children loaded underneath the parent. You can see how quickly this can get out of control.

What we need is a way of executing JavaScript so that, on the initial page load, the whole
document is processed, but on each successive AJAX call, only the new nodes are processed.

Drupal behaviors
Drupal behaviors are a site-wide JavaScript convention that gives context to each script
so that behaviors are not mistaken and attached to a DOM object twice. Let's examine the
following small behavior:

Drupal.behaviors.displayChildrenOfFolder = {
 attach: function(context) {

 $(".module-name-folder:not(.module-name-processed)",
 context).click(function(){

 // There's a better way to do this ajax, but one concept at a
 time
 $("#container-for-children").load(URL, {
 success: function(blah, blah) {
 Drupal.attachBehaviors($("#container-for-children"))
 }
 });
 }).addClass(".module-name-processed");
 }
}

Introduction to a Theme

[108]

First thing we notice is that there is a global object called Drupal. All behaviors are methods
of Drupal.behaviors. The Drupal.behaviors are all called when Drupal executes
an AttachBehaviors. This happens on load, but we can trigger it too. When the page
loads, Drupal executes attach for all the methods in the Drupal.behaviors object and
it executes them within the context of the entire page. So, our jQuery script finds all of the
objects that do not have the class module-name-processed and processes them with
a click event listener. The click event listener then makes the AJAX call, but after the
call has succeeded and loaded the data into the child container, the script then runs the
Drupal.attachBehaviors on all of the newly-loaded HTML.

Now, you might be thinking, "What in the world does this have to do with the redirection
we need to do on the DPK site?" Well, nothing… except for the fact that we're going to use
Drupal behaviors and I wanted to make a case for why we code this way. We code this way
to avoid JavaScript event listener bloat and collisions with existing function names. On this
specific example, it isn't technically "necessary" to do it the right way, but it's always good to
know why we code to standard.

Now, let's write a Drupal behavior that will add a listener to the full site for mobile clients
and redirect, based on the rules we laid out.

Time for action – redirection with a cookie to remember state
So many times, when you make a choice or preference on the website, you return to the
website only to discover that the preference is lost. If you prefer one version of the website
to another and make that preference known by choosing, the website should store your
choice in a cookie and remember it when you come back. We are going to implement this
in Drupal:

1. Edit the sites/default/settings.php file. Search for cookie_domain.
Uncomment it out by deleting the # character at the start of the line and change
the cookie_domain value to dpk.local:

$cookie_domain = "dpk.local"

2. Edit the template.php of both sites, adding the highlighted lines to the
dpk_mobile_preprocess_html function:

function dpk_mobile_preprocess_html(&$vars) {

 global $cookie_domain;

 drupal_add_library("system", "jquery.cookie");

 drupal_add_js(array("cookie_domain" => $cookie_domain),
 "setting");
 if (module_exists('rdf')) {

Chapter 4

[109]

 $vars['doctype'] = '<!DOCTYPE html PUBLIC "-//W3C//DTD
 HTML+RDFa 1.1//EN">' . "\n";
 $vars['rdf']->version = 'version="HTML+RDFa 1.1"';
 $vars['rdf']->namespaces = $vars['rdf_namespaces'];
 $vars['rdf']->profile = ' profile="' . $vars['grddl_profile']
. '"';
 } else {
 $vars['doctype'] = '<!DOCTYPE html>' . "\n";
 $vars['rdf']->version = '';
 $vars['rdf']->namespaces = '';
 $vars['rdf']->profile = '';
 }
}

3. Edit the sites/all/themes/dpk/js/global.js file. Add the following lines:

Drupal.behaviors.mobileRedirect = {
 attach: function (context, settings) {
 if (Number(window.screen.width) <= 500 && jQuery.cookie("dpk
 -site-preference", { "domain": Drupal.settings.cookie_domain,
 "path": "/" }) != jQuery(".block-domain-nav .content ul li
 a.active").attr("href")) {
 jQuery.cookie("dpk-has-been-redirected", "YES",
 { "domain": Drupal.settings.cookie_domain, "path": "/" });
 document.location.href=jQuery(".block-domain-nav .content ul
 li a").not(".active").attr("href");
 }
 }
}

4. Edit the sites/all/themes/dpk_mobile/js/global.js file. Add the
following lines:

Drupal.behaviors.handleRedirect = {
 attach: function (context, settings) {
 if (jQuery.cookie("dpk-has-been-redirected", { "domain":
 Drupal.settings.cookie_domain, "path": "/" }) == "YES") {
 jQuery(document.createElement("div")).html("<h3>We've taken
 the liberty of redirecting you to our mobile site. Go
 back to our FULL site</h3>").prependTo("body");
 }
 }
}

function setCookieAndRedirect() {
 fullSite = jQuery(".block-domain-nav .content ul li

Introduction to a Theme

[110]

 a").not(".active").attr("href");
 jQuery.cookie("dpk-has-been-redirected", null);

 jQuery.cookie("dpk-site-preference", fullSite, { "domain":
 Drupal.settings.cookie_domain, "path": "/" });
 document.location.href=fullSite;
}

5. Open a command-line terminal and change the directory to your site's root. Add the
new files to your local GIT repository:

git add sites/all/themes/dpk_mobile
git add sites/all/themes/dpk
git commit –m 'new mobile theme'

6. Clear the site cache by either doing a drush cc all from the command line or
going to Configuration | Performance and clicking the Clear cache button.

What just happened?
Cookies are bits of information that are stored inside the browser. They are used for a lot of
different things. For security purposes, they are restricted to a single domain so, for instance,
no one can read your saved password for another website. The settings.php file contains
the default settings for the Drupal installation. What we are doing is making m.dpk.local
and dpk.local use the same cookie so they can see the message we are sending from the
full site.

The second item adds three lines to the HTML preprocess hook. We are declaring the
$cookie_domain variable we set in the settings.php to be global and available to this
function, then adding it to the Drupal.settings array. This is a JavaScript array that holds
a myriad of Drupal settings for JavaScript to be used on the site. The second line adds the
jquery.cookie library, so we can use it to set and retrieve cookie values.

The third item is a Drupal JavaScript behavior that does the redirection from the full site. It
looks at the screen width and, whether there is an expressed site preference, and if there is
no preference, and the screen width is under 500 pixels, it redirects to the mobile site and
sets the "I've just been redirected" cookie, so that the mobile site can warn the user.

The fourth is an addition to the mobile site's global.js that warns the user on redirect
that they have, indeed, been redirected. It also offers them the option to go back to the
original site and gives them a link.

The second function handles that link's click. The function sets the "I have a site preference"
cookie, unsets the "I have been redirected" cookie, and redirect the browser's URL to go
back to the full site.

Chapter 4

[111]

Then we should commit all our changes to GIT and clear Drupal's cache. If we deploy right now,
we'd do a git push to push our changes out to our website, but you would have to wait until
the next chapter, as we will adapt the home page design for both full site and mobile.

Pop quiz
1. The idea that web page design should start with the lowest common denominator

of functions and work upwards is called:

a. Search Engine Optimization

b. Module Creation

c. Progressive Enhancement

d. Structural Arrangement

2. The next major version of HTML markup is commonly referred to as:

a. HTML 4.02

b. HTML Extreme

c. HTML for IE

d. HTML5

3. HTML5 is ready to be used in browsers today:

a. True

b. False

4. The difference between Drupal 6 and Drupal 7 theming is:

a. There are three default templates instead of a single one

b. There are multiple hooks for new default templates

c. The RDF module ships with Drupal 7 and can be worked into the theme

d. Both a and b

e. All of the above

5. HTML5 has:

a. More semantic structure

b. New structural elements

c. New form controls

d. New text formatting structures

e. All of the above

f. None of the above

Introduction to a Theme

[112]

6. What is the Drupal global object JavaScript namespace variable name?

a. D

b. Drupal

c. Behaviors

d. Window

7. Coding to the Drupal JavaScript standard is important. Why?

a. To avoid duplicate event firing and event bloat

b. To keep functions from avoiding namespace collisions

c. Both a and b

d. Neither a nor b

8. Drupal JavaScript behaviors typically have two functions. What are they?

a. Attach and Detach

b. Catch and Release

c. Begin and End

d. Starsky and Hutch

Summary
We started out introducing you to the idea of progressive enhancement. Rather than
"degrading gracefully", web developers should start with the least common denominator
and build upon it until the website provides the best user experience for the browser
being used.

We then turned our attention to the new web standard HTML5 and its new simplified
DOCTYPE. Everything about HTML is designed to help build robust web-based applications
including new semantic elements, which we then saw put to good use in the basic Drupal
project "mobile", which is a theme targeted at mobile user websites. We downloaded,
mapped, and installed this mobile theme on our mobile URL.

We talked a bit about the new RDF standard for building websites that are SEO friendly
and how HTML5 helps with the semantic markup for RDF.

We then began the process of customizing our default mobile theme, that is, putting in
stylesheets for various aspect ratios of the document on handheld devices using media
queries in the theme's .info file.

Chapter 4

[113]

Finally, we used Drupal JavaScript behaviors to redirect handheld devices to the handheld
URL of our website.

We've learned the basics of customizing the theme for our mobile site. In the next chapter,
we will begin the process of customizing the content.

5
A Home with a View

Right now, the home page of our example site is, for the most part, static. It's a
view that returns a series of billboards in a jQuery Cycle slider. What we need
is a version of the home page that's aware of the domain it's on and responds
accordingly.

In this chapter, we will work again on the content of the site for the mobile by:

 � Adjusting the size of the home page graphics to support faster downloads and
smaller screens

 � Using sprites for the site's icon graphics to minimize request calls to the server

 � Moving content from a large PDF file to nodes and styling them using the Display
Suite module

 � Using node reference fields to group menu items

 � Creating a view to show the menu in the same format as the print version

So let's get on with it...

A Home with a View

[116]

The Context and Display suite modules
In the last chapter, we used the built-in Drupal block system to put the Domains link at the
bottom of the page. The built-in blocks system has the following problems. Some of these
problems are obvious and some are not as obvious:

 � The appearance and lack thereof can only be triggered by the path variable.

 � Caching of the block is done sitewide; so generally speaking, PHP results are
executed once and cached. They can't be individual to the logged-in user or even
individual to the request.

 � Because of the way Drupal builds a page, every block is built with every page view,
even if the block's path criteria isn't met. You wouldn't want any complex PHP to
execute with every page refresh action because on pages where it wasn't necessary,
it would greatly slow down the site.

 � Block views, because they are built once and cached, and do not change when the
page arguments change.

 � When used with the Domains module, the block is cached once per page load and
not per domain. The block will appear the same on every domain with the same
path, regardless of whether the content is specific to that domain or not.

The solution to most of these problems is the Context module. Context allows one or more
conditions to be met for a block to appear and those conditions may be a path or it may be
any one of several other conditions. In addition, the Context module has the ability to render
only those blocks which are necessary for page display.

The Context module also allows you to turn off the default Drupal block system triggers. That
way, the default block system doesn't try to build every block with every page view. If you
have complex blocks, this can speed up the page load time significantly. You can also have a
view block, that is specific to a domain, that only pulls content that belongs to that domain,
which in our case, is what we want to do.

The other module we're going to introduce you to is the Display suite module. Display
Suite was first introduced with Drupal 6 and has since been updated and the submodules
consolidated for Drupal 7. It is now integral to Drupal 7 with support for the new Entities API.

What Display Suite adds to Drupal is the ability to style nodes in multiple ways. The default
build modes in Drupal are Full and Teaser. Display Suite allows an infinite number of build
modes and allows the fields of the node to be styled and laid out in multiple ways in those
build modes.

Right now, the billboards on the home page are displayed in the full build mode. We'll create
a new build mode for the mobile site.

Chapter 5

[117]

Time for action – creating a mobile-friendly home page
Let's turn the home page image into a block and have it show lower resolution images on the
mobile home page:

1. Open a browser window and go to the main site. Make sure you're logged in.

2. The modules we're using—Display suite, Views, and Views slideshow—were
listed in our Drush Make file and should have downloaded with our initial build.
Let's verify that it's on. Navigate to Structure | Modules | List. Verify that all of the
Display Suite modules are checked and turned on.

3. Go to Structure | Display suite | View modes. Choose Add new view mode. Call it
Mobile. As shown in the following screenshot, select Nodes in the Entities section,
so that it will be used on nodes only. Save this configuration:

4. Go to Configuration | Image styles | Add a new style and call it mobile.

A Home with a View

[118]

5. You'll be presented with a screen where you can add adjustments to the image style
(see the following screenshot). Add a new Scale and crop adjustment. Enter 480 in
the width box and click on Update style:

6. Go to Structure | Display suite | Layout. The front page content types were created
by our client and should have been restored with the database you restored in
Chapter 2, Setting up a Local Development Environment. The front page items are
called billboard and under the node type, click on Manage display for the billboard.

7. At the bottom of the page, under Custom display settings | Use custom display
settings for the following view modes, select Mobile, and then click on Save.

8. After the page saves, you'll see a new Mobile tab underneath the tabs. Click on
Mobile to alter the node's mobile build mode.

9. At the bottom of the page, under Select a layout, choose Three-column stacked
- 20/50/25 (HTML5), and then click on Save. There should now be five regions—
Header, Left, Middle, Right, and Footer.

10. Drag the Image item up to the Header region and select mobile under Image style.
Save the settings.

Chapter 5

[119]

11. Go to Structure | Views. Edit the Home | Page view. The first display is the current
home page. As shown in the following screenshot, change the URL to old_home to
get it out of the way:

There should already be a "block" for this view. If not, create a default one.

A Home with a View

[120]

12. Under the Format: Slideshow area, click on settings. Under How should this block
be styled?, the first block will be the default settings for the view or All displays
(except where overridden). We do the same thing with the line underneath it:
Show: Display suite. The Display suite settings mode should be Full content.

13. Notice the settings section titled Access. Change the access mode to Domain and
choose the default or main Drupallos Pizza Kitchen domain. Both settings, again,
should apply to all the displays (except for the overridden ones).

Chapter 5

[121]

14. Create a second "block" display for this view (there should be two blocks and one
page view).

15. Click on Add | Block. When editing the new block, under Format, there will be
a Show: Display Suite area.

16. Click on Settings and change the Default view mode to Mobile, under How should
this block be styled?

17. The second block will be This block (override), under both Format and
Show settings.

A Home with a View

[122]

18. Notice the area titled Access. Access mode must already be Domain because that
is the default mode for the view. Click on Domains. Set the Access options setting
to This block (override). Uncheck the primary domain and check the mobile
domain, Drupallo's Pizza Kitchen Mobile Site. Click on Apply (this display)
to save these settings.

19. Go to Content | Add content | Basic page. As shown in the following screenshot,
label it as home. Under the Publish to section, check that the node is published on
both the primary and mobile sites. In the bottom tabs, make sure the URL alias is
simply home. Save the new page.

Chapter 5

[123]

20. Make sure that the Context module is installed and enabled. It should have been
downloaded with your original drush make command, but check it again. You can
do this by entering drush pm-list | grep 'context' from the command line or
by going to the Drupal administration menu and choosing Modules. The Context
module consists of three modules, Context, Context Layouts, and Context UI.
Make sure all three are enabled.

A Home with a View

[124]

21. Go to Structure | Context and then choose Add a new context. Name it something
logical such as Homepage. Under the Conditions section, pull down the option Path
and enter <front> in the resulting text area, as shown in the following screenshot.
Under the Reactions section, choose Blocks. On the right-hand side of the resulting
screen, a list of blocks will be displayed. Scroll to the bottom of the list and check
our two view blocks we just created. In the middle column under Content, click on
Add. Save the new context:

What just happened?
We first created a new build mode called Mobile. We used that build mode to show nodes in
a more abbreviated form. Next, we created a new Image style. To use it with our new build
mode, we chose to size down the image to 480 pixels, which is the maximum width of a
standard phone screen.

We then changed the Display Suite settings for the billboard content type in its Mobile
display mode to use the new image sizing.

We then moved the home page view to two new blocks: one for the full website, one for
the mobile site and restricted access, based on the domain.

Chapter 5

[125]

We added a blank page to serve as the home page for both sites. Contexts basically are made
up of two parts: Conditions and Reactions. We can match this page with several different
conditions. We can use the node ID or the URL path, or because this is the home page, we
can use <front> as our matching path condition. We used this path to show the view blocks
in the Content area.

Pushing changes from one environment to another
So now that we've made these changes on our machine, we need to get these changes to a
staging server for the client to see. So that means we have to repeat them again on a second
server, right? For most web developers, this is an unacceptable option. Programmers, by
nature, are a lazy bunch and would never duplicate work. And by programmers, I mean
mostly, me. I'm lazy, and any time I spend doing duplicate work is the time out of my life
that I will never get back. Well, either that or we could export a database and restore the
database on the new server!

There are many reasons why constantly updating the database on a live server from a staging
or local environment is a really bad idea. The first of which is that, most live sites have people
making changes on them that are happening in parallel with development. Let's say you had
user groups and forums on your site. You can't update the database, as all the user group
changes and postings would be lost. New users would have to re-register. For most websites,
this is an unacceptable compromise, and in general, creates a poor user experience.

I usually take for granted that users know these things, and if I am going over something that
is repetitive to you, I apologize, but there are newbie Drupal developers who will choose one
of those two really bad options when, in fact, there is another way.

The Features module gives us a way to push these changes from one environment to another
via code, rather than making the changes by hand or by database restoration.

Time for action – updating the Home Page feature
Let's update the feature with changes to the current functionality. Add the new context
functionality, download the updated feature, and take a look at the added code:

1. Open a terminal window and change the directory to the site root. Enter the
following commands:

drush features-update -y drupallos_homepage

A Home with a View

[126]

2. Open a browser window, choose Structure, and then Features. You should see the
Home Page feature listed (now in its default state). Click on Recreate. Under Edit
components, choose Context. You should see the Home Page context listed. Check
the Home Page context, and it will be added to the bundle:

3. Click on Download feature and the feature will download to your browser's
Downloads folder. Double-clicking on it should expand it (on a Windows machine,
you may have to install some other software). Copy drupallos_homepage.info
and drupallos_homepage.context.inc from the newly downloaded directory
to the sites/all/modules/features/drupallos_homepage folder. It's okay
to replace the current .info file with the newly downloaded one.

4. Open a browser window and log completely out of both the sites. You will see that
the mobile site has the Mobile view and the full site has the Hero view.

Chapter 5

[127]

If you have not logged out, you will see both views on both sites. When you're
logged in as administrator, you have the privileges, by default, to See all views
and See all domain content. These administrator privileges override the
domain access that we set up in this task.

What just happened?
Once we had altered the views accordingly, we updated the view's feature to save the new
settings to code with the Drush command, features-update. We will later check the
updated feature into version management. We then added the new context to the feature by
recreating it. Notice the difference between the downloaded folder and the original feature.
The following screenshot shows the original feature:

The following screenshot shows the new downloaded feature:

In the new downloaded feature, a file has been altered and a .context.inc file has been
added. Let's take a look at the .info file. Notice that the highlighted lines in the following
code snippet are different:

core = "7.x"
dependencies[] = "context"

dependencies[] = "views"
description = "Home page view"
features[context][] = "Home Page"

A Home with a View

[128]

features[ctools][] = "context:context:3"

features[ctools][] = "views:views_default:3.0"
features[views_view][] = "home"
name = "Drupallos Homepage"

The new context has been added and a CTools setting for the context has been added to
the features[ctools] property.

The context itself has been turned into a series of Drupal-style variables:

<?php
/**
 * @file
 * drupallos_homepage.context.inc
 */

/**
 * Implementation of hook_context_default_contexts().
 */
function drupallos_homepage_context_default_contexts() {
 $export = array();

 $context = new stdClass;
 $context->disabled = FALSE; /* Edit this to true to make a default
context disabled initially */
 $context->api_version = 3;
 $context->name = 'Home Page';
 $context->description = '';
 $context->tag = '';
 $context->conditions = array(
 'path' => array(
 'values' => array(
 '<front>' => '<front>',
),
),
);
 $context->reactions = array(
 'block' => array(
 'blocks' => array(
 'views-home-block_1' => array(
 'module' => 'views',
 'delta' => 'home-block_1',
 'region' => 'content',
 'weight' => '-10',
),

Chapter 5

[129]

 'views-home-block_2' => array(
 'module' => 'views',
 'delta' => 'home-block_2',
 'region' => 'content',
 'weight' => '-10',
),
),
),
);
 $context->condition_mode = 0;
 $export['Home Page'] = $context;

 return $export;
}

In the different settings we created with the GUI, the conditions and reactions have
been saved to a standard configuration object and wrapped in a function that conforms
to hook_context_default_contexts. More savvy programmers could use this as a
template to create multiple contexts without actually using the Drupal UI.

Now, let's turn our attention to other areas of the site content that need to be "mobile-ized".

The menu

In this part of the chapter and from this moment on in the book, we will talk
about the word "menu" in two different contexts.

In Drupal, menu items are snippits for navigation. The Menu module is
a Drupal core module that allows you to create navigation structures for
stringing together content in a hierarchical manner. In the restaurant world,
a menu or course is a list of items the restaurant serves. I will do my best to
make it clear to which menu I'm referring.

So many restaurants do it and, in their defense, it's the path of least resistance. Take
their current menu, turn it into a PDF file, and upload it to the website. Boom! The world
has a copy of the menu. But this can be problematic for mobile devices. Menu's PDF files,
typically, are larger than 2 MB, which, on a mobile phone, will be a very slow download.
Also, once the mobile phone downloads it, typically you're left with an 8.5 by 11 page
squeezed into a 480 pixel by 320 pixel screen, not an optimal scenario for legibility by
any stretch of the imagination.

A Home with a View

[130]

If we're going to have a truly mobile version of the website, we need a menu that's managed
by the CMS, so that the display on the full site will mimic the menu, and the display on the
mobile site will be legible on the phone:

The Drupallo's carryout menu is divided into sections: Appetizers, Soup and Salad, Pizza, and
Dinners and Specialties. We're going to want to keep those "sections" but develop a view to
list them and control the order in which they are listed.

Drupal has always maintained two content type fields, namely, body and title. You are then
free to add other fields with a widely-used module called the Content Construction Kit
(CCK). With Drupal 7, CCK's name is changed to Fields and it became part of the Drupal core.
If you are using Drupal 6, you will need to verify that CCK is installed and updated to the
latest version. If you're using Drupal 7, please verify that the Fields module is enabled.

Time for action – creating the menu content types
We need to add some new content types to handle menu items and the different way the
menu items are priced:

1. On the development site, after you are logged in as administrator, go to Structure |
Content types. Select Add new content type.

2. Create new content types as shown below with the listed fields. Each new content
type will have several "extra" fields provided, for example, Domain Access and URL
Path. Ignore these for now.

3. After you've created the content type, you add the fields by clicking on Manage
fields from the Content type list.

Chapter 5

[131]

4. There are two ways to add fields: Add new field and Add existing field. Field names
must be unique. If you need a field named the same thing on two different content
types, you can choose Add existing field, which effectively re-uses the field from
another content type.

The following table displays the fields for the Menu Item content type:

Label Name Field Widget

Title Title Node module element

Body body Long text and
summary

Text area with a
summary

Price field_price Decimal Text field

The following table displays the fields for the Pizza content type:

Label Name Field Widget

Title Title Node module element

Body body Long text and
summary

Text area with a
summary

Slice field_price Decimal Text field

14" Small field_small Decimal Text field

16" Medium field_medium Decimal Text field

18" Large field_large Decimal Text field

The following table displays the fields for the Soup content type:

Label Name Field Widget

Title Title Node module element

Body body Long text and
summary

Text area with a
summary

Cup field_cup Decimal Text field

Bowl field_bowl Decimal Text field

A Home with a View

[132]

The following table displays the fields for the Sandwich content type:

Label Name Field Widget

Title Title Node module element

Body body Long text and
summary

Text area with a
summary

Regular field_regular Decimal Text field

Foot Long field_foot_long Decimal Text field

5. Each content type, other than the Menu item group, has a title, body, and pricing
fields. After you've added the fields, choose Structure | Content types | Manage
display.

6. At the bottom of the page, there's a tab called Layout for content type in default.
Change that value to Two column stacked. Save the page settings. At the top of the
page, you should now see four regions, namely, Header, Left, Right, and Footer.

7. For each of the above content types, put Title in the Header region, Body in the Left
region, and Price fields in the Right region.

8. At the end of the row is a "gear" icon. Click the gear icon to reveal formatting
options for the Price field. If there are multiple pricing fields (for example, Sandwich,
Pizza, and so on) put them all in the Right region. You can control the vertical order
by dragging the right-hand handle. The Price field's vertical order should be the
same as the preceding table:

Chapter 5

[133]

9. Create the Menu item group content type, as you did earlier. Notice that the Items
field is a node reference field, not a text field:

The following table displays the fields for the Menu item group content type:

Label Name Field Widget

Title Title Node module element

Body Not used REMOVE REMOVE

Items field_items Node reference Autocomplete text field

Sort Weight field_sort_weight Integer Text field

10. At the bottom of the page, there's a tab called Layout for menu item in full. Change
that value to One column. Save the page settings. At the top of the page, you should
now see one region, Content. Move Title and Items up to the Content region.
Change the items' display options to Rendered node and in the view mode, select
Full content:

11. To import the content via the command line, open a terminal window, change the
directory to your site root, and enter the following commands:

drush dl uuid node_export
drush pm-enable uuid node_export
drush node-export-import --file=sites/default/content_imports/
chapter5.export

A Home with a View

[134]

To import the content via Drupal GUI, go to drupal.org and download the
node_export (http://drupal.org/project/node_export) and uuid
(http://drupal.org/project/uuid) modules. Copy the folders to sites/
all/modules/contrib. On the development site, when logged in as admin,
navigate to the Modules list. Check the box for both Node_export and UUID. Save
the module settings so that the modules are enabled. Go to Content | Add content |
Node export: Import. Then upload the file. I've created the .export file in sites/
default/content_imports/menu.export. Choose that file. Then click on Import:

12. Go to Content | Add content | Menu item group. Entitle this content object
Appetizers and under Items, begin typing Mozzarella. The node reference will
suggest the node named Mozzarella Triangles. Choose this suggestion by clicking
on it, as shown in the following screenshot:

http://drupal.org/project/node_export
http://drupal.org/project/uuid
http://drupal.org/project/uuid

Chapter 5

[135]

13. The field will now show the node name and the node ID, as shown in the following
screenshot. Click on Add another item and add the Bruschetta and Calamari items:

14. Create a Salads group. Add the Italian Antipasti, Grilled Chicken and Arugula Salad,
Chef Salad, and Caprese Salad items.

15. Create a Pizza group and add the Cheese and Each Topping nodes.

16. Create a Soup group and add the Italian Wedding, Pasta E Fagioli, and
Minestrone items.

17. Choose Structure | Views | Add new view. Label the view Menu and the menu
title and path should be simply menu. Click on Continue & Edit.

18. Add the Filter criteria as Content published = yes and Content type = Menu item
group. Add the Sort criteria: Content: Sort Weight.

19. Add a normal menu item. Call it Menu. Save the view.

 What just happened?
First, we created content types for all the different menu items. The differences in menu
items were primarily the pricing structure. Pizza is sold by the slice (14", 16", and 18" pie),
whereas soup is sold by the cup and bowl. Appetizers and salads have a single price, whereas
sandwiches have a 6" and foot long variety. We also created an organizing content object
called the Menu item group. The Menu item group type has a special kind of data field
called node reference. Node references are, simply put, pointers to other nodes.

We then created the Display suite builds for each of the new content objects. When we
created a build for the group content type, we specified that the node references be
displayed in their default Full build mode. When Display Suite puts together the node,
it will grab all of those related nodes and display them in the order they are referenced.

We then created a view that returned group objects and sorted them based on their weight.

Display suite is a powerful set of tools to control how nodes are displayed. We'll explain it in
more detail in Chapter 10, Tabula Rasa: Nurturing your Site for Tablets where we will learn
how to use it to optimize your mobile site.

A Home with a View

[136]

If you now go to http://dpk.local/menu, you should see a reasonably-nice, well-laid out
representation of the menu.

Bundling up the changes
In order to make these changes, we need to bundle them up into the Feature package
and check them into version management.

Time for action – bundling the changes into a package
Once the changes have been committed to code, they can be checked into an SCM and
version managed. As you evolve the site, you have the versions of the code going backward
and can always revert if the site takes a wrong direction:

http://dpk.local/menu

Chapter 5

[137]

1. Go to Structure | Features | Create feature. Name the new feature Drupallos
Menu and put a description, such as Menu content types and display suite settings.
The version number should be something similar to 7.x-1.0-beta1.

2. Under Edit components, choose the first Display suite option. Check all
the checkboxes for the node's Display suite settings to include them in the
Features package:

3. Now, select the Fields option. Check all of the fields you just created for the new
menu content types:

A Home with a View

[138]

4. Select Content types and select the newly-created content types relating to the
Menu page.

5. Choose Views and check the checkbox for the new Menu view:

6. Click on Download feature to download the newly-created feature package.
Once downloaded, copy it to sites/all/modules/features:

Chapter 5

[139]

7. Open a terminal window and change the directory to your site root. Enter the
following commands:

git add sites/all/modules/features/drupallos*

git commit –m 'menu and home page features'

What just happened?
When the features module creates a new bundle, it looks at all of the entities available
for it to export with various modules, groups them by module, and provides a nice selection
interface. As we select items for the features module to export, it adds them to a payload
list. When the mechanics of the export is actually done, features iterates through this
payload and uses the source module's CTools interface to export these items to files in a
private directory. features then tars up the file and sends it to the user's browser. It then
downloads this file to your desktop or Downloads folder.

We now have all of our settings and views rolled into a nice version-managed package. We
add it to the source code tree in sites/all/modules/features. Once there, we add it to
the list of items in Source Code Management with the GIT add command and then commit
our changes to the repository.

Have a go hero – adding the Print CSS file
Add a Print CSS file that allows the Menu page to be printed correctly on an 8.5 X 11
standard letter page.

Pop quiz
1. When there's a <div> tag with an <image> inside it, what is the behavior of the

<image> tag if that <div> tag's CSS or style tags are set to display:none?

a. It does not download and it does not display

b. It downloads but does not display

c. It downloads and displays

d. It waits for JavaScript to load to display

2. Drupal's default build modes for content nodes include:

a. Block

b. Teaser

c. Left and right

d. Full

e. Both b and d

A Home with a View

[140]

3. The Display suite module does the following:

a. Changes the <div> tags with the default layout classes around fields based
on content nodes

b. Turns blocks into nodes and vice versa

c. Gives node displays unlimited build modes to vary the display based
on context

d. Both a and c

e. All of the above

f. None of the above

4. The Context module does the following:

a. Changes nodes into blocks and vice versa

b. Consists of Conditions and Reactions to those conditions

c. Allows you to add blocks to pages outside of the standard block system

d. Renders blocks on the fly rather than rendering every block with every
page load

e. b, c, and d

5. The Features module does the following:

a. bundles functionality into a downloadable module

b. renames content types

c. themes content types

d. none of the above

Summary
First, we moved the view providing the current home page and replaced it with a blank
generic page. We created a block for each of the mobile and desktop sites, and changed the
view access settings to the proper home page block, shown on the proper website. We then
updated the feature for the home page and added it to version management so we can move
the changes to the live site.

Then, we moved the menu from a 2 MB PDF to a page with text, so that our users who don't
have the ability to read PDF files will know what good stuff Drupallos offers on its menu. We
then bundled the menu functionality into a feature and version managed the files.

In the next chapter, we'll go into further detail on planning a customized unified theme that
will work on all browsers, both mobile and desktop.

6
The Elephant in the Room: Audio,

Video, and Flash Media

From the beginning of the web, it was the Holy Grail. The ability to show
and distribute video over the web has been sought after, achieved, and
re-engineered multiple times.

In this chapter, we will:

 � Take a look at the current state of video embedding

 � Suggest strategies for managing video with Drupal

 � Introduce the Media module for Drupal 7

 � Take a look at the challenges when viewing different media on mobile devices

 � Walk through some Drupal strategies for embedding a mobile-friendly video

 � Learn to create mobile-friendly charts

But first, let's first look back at how we got to where we are now.

Flash and iOS
Whenever you deal with iOS plusses and minuses, there's one glaring omission that isn't
going to change any time in the near future. It's the lack of support for Adobe Flash. It is the
proverbial "elephant in the room" of every Apple Store.

The Elephant in the Room: Audio, Video, and Flash Media

[142]

Apple's original statement about Flash support wasn't that they were anti-Flash, but they
were pro open standards. Their argument was that with HTML5, time-based animation and
line-and-circle pen drawing was now possible with CSS, SVG, and the Canvas element. You
really didn't "need" Flash to get the effect you wanted with a website. That position has
pivoted and become a Holy War against Flash media on handhelds, the main reason being
battery life.

In some tests, you can get as much as 25 percent more battery life out of your laptop
computer by completely removing or disabling Adobe Flash in your web browsers. It is a
battery hog. Adobe has begun to address that and, to their credit, they have released a "lite"
version of the Flash plugin for the Android operating system, but that "lite" version can still
handle all video and audio on handhelds. The "lite" version of Flash also has some issues
with faster frame animations in Flash-based video games.

Then in late 2011, Adobe relented. They as much as admitted that Flash was never going to
be what they wanted it to be on mobile devices and stopped development of the mobile
version of Flash for Android. Shortly thereafter, Microsoft stated that their new Live Tiles
technology, the main technological push behind the next version of Windows, would not, in
it's native state, support any browser plugins. The Live Tiles would be built in pure HTML5
and CSS3.

And although, technically speaking, you don't "need" Flash on an iOS device to create the
project you want, there's still a ton of legacy Flash development that hasn't yet been ported
to HTML5.

Fortunately, though, one-by-one, online video providers are adjusting their code for mobile
to allow viewing of their content on both tablets and handhelds. The first, and most
significant convert, was Google and, by extension, YouTube.

Incorporating video into your web content
Big Jimmy has made the decision to run some advertising on local cable to help drum up
some more business on weekends. In addition, the business has decided to sponsor a young
girls' soccer team. For these reasons, we've been asked to help Little Jimmy come up with a
plan to host audio and video on the site. With all the work we've done on the mobile site,
there's no reason we should add the videos without having a plan for viewing these videos
on mobile devices.

Whenever you host a video, the first question to ask is do you want to host it yourself or use
a service such as YouTube or Vimeo. Unless there's a specific reason not to, the easiest path
to embedding a video on your website is via YouTube.

Chapter 6

[143]

Most people can't conceive of life before YouTube, but 15 years ago, web video was a
competing maze of incompatible formats and competing vendors. RealMedia was one of the
pioneers of web video. Microsoft and Apple's QuickTime had competing formats. Then came
YouTube.

YouTube made web video accessible to the masses by transcoding uploads and making them
playable by the Flash media plugin. Flash came pre-installed on many computers and the
website over about a two-year span built up a steady user base and was bought by Google
in 2006. Under Google's umbrella, the site has been both a creative and destructive force,
beginning and ending careers, businesses, institutions, and in some cases, governments.
It has, in many ways, changed the world.

But there are limits to the videos you can upload. YouTube has very strict content rules and
a limit of 10 minutes for a video's length. For that reason, many people use a paid video
hosting service such as Vimeo. There are Drupal contrib modules for hosting a video on
any one of 50+ services with a module called Media for Drupal 7, and it's called Embedded
Media in Drupal 6. They both work basically the same way. They allow you to create a
content type that has a field pointer to the media in question and then they write embedded
tags for that media.

As you may or may not know, most iOS mobile devices do not support Flash embedding,
so getting a video to appear correctly can be troublesome. That's where the MediaElement
modules come into play. MediaElement will write HTML5-compatible tags for your media.

Time for action – embedding media files
In order to embed media in Drupal, we need to add a few libraries and a module or two.
Let's set ourselves up.

1. Enter the following commands in a terminal window:

cd ~/Sites/dpk/sites/all/libraries

git clone git://github.com/johndyer/mediaelement.git

drush dl media media_youtube mediaelement

drush pm-enable media media_youtube media_internet mediaelement

2. Alternatively, you can download them by hand and install them into the sites/
all/modules/contrib folder of Drupal 7 and download the mediaelement
library to your sites/all/libraries folder.

The Elephant in the Room: Audio, Video, and Flash Media

[144]

3. Go to the modules folder and verify whether all the Media modules are enabled.
As shown in the following screenshot, Media, Media Internet Sources, and Media:
YouTube are listed in their own group, Media:

As shown in the following screenshot, the MediaElement.js module is listed under
Other. If you have other modules turned off, it may request that the dependencies
be turned on:

4. Now, navigate to Structure | Configuration | MediaElement.js. Check the checkbox
labeled as Enable MediaElement.js site wide and change the Domain-specific settings
to All domains. Save the changes by clicking on the Save configuration button.

Chapter 6

[145]

5. Navigate to Structure | Content Types and edit the Article content type.

6. As shown in the following screenshot, create a new field Media of the type
Multimedia asset:

The Elephant in the Room: Audio, Video, and Flash Media

[146]

7. Check all the options for Allowed URI schemes and Allowed Media Types, as shown
in the following screenshot, and save these settings:

What just happened?
In the first three steps, we downloaded and installed the media, media_internet,
media_youtube, and mediaelements modules. These modules are necessary for the
Fields API to accept online-embedded media. We ensure that they're enabled and we
configure MediaElement.js to use the media elements embedded script sitewide on both
our mobile and desktop sites. This will ensure we get consistent HTML5 embedding for
browsers that can handle it.

Incidentally, there's a series of modules called Embedded media for CCK that will do the
same thing for Drupal 6 and, in fact, the way these modules work was taken from the
embedded media suite.

We added one of the new media fields to our standard Article content type. We allowed
the new fields to display audio and video, but we could restrict the fields from displaying
either of these two media, using the Allowed media type checkboxes in the Media field
configuration page.

Chapter 6

[147]

We created a new node with a media embed. The way this works, Drupal downloads
the entire page to the sites/default/files area of the website and uses a regular
expression match to pull the embedded tags of the clips out of YouTube's download page.
If you're having trouble embedding media in that step, check to make sure your permissions
are correct for Drupal to be able to read and write files to that area.

Time for action – adding content
1. Navigate to Content | Add Content | Article.

2. Create an article with the values in the following table:

Heading Value

Title New York Pizza

Body 5 experts explain the reason New York pizza is the best in the world.

3. Click on Select Media and then click on the Web tab. Paste the following URL into
the field labeled as URL or Embed code and then click on Submit. If the video at the
following URL is not available, any YouTube video that can be embedded will do:

http://www.youtube.com/watch?v=TGs8LUZIgco

http://www.youtube.com/watch?v=TGs8LUZIgco

The Elephant in the Room: Audio, Video, and Flash Media

[148]

4. If all goes well, you should see a thumbnail of the clip, as shown in the
following screenshot:

5. Save the new node.

6. Navigate to Structure | Content Types | Article | Manage Display.

7. At the bottom of the page, click the Layout for article in default tab. Choose
One column and click on Apply.

Chapter 6

[149]

8. Drag the Title, Body, and Media fields into the Content area and make their labels
hidden, by selecting <Hidden> under the Label column. Save the new layout. In the
Media field, under Format column, select Media style: original.

9. Open a desktop browser window and go to http://dpk.local/content/new-
york-pizza. You should see the following:

http://dpk.local/content/new-york-pizza
http://dpk.local/content/new-york-pizza

The Elephant in the Room: Audio, Video, and Flash Media

[150]

10. Opening the same window in the iPhone or iPad Simulator will reveal something
akin to the following screenshot:

What just happened?
In Drupal 7, the Media module provides a framework for handling all types of media content
objects—audio, video, and images—whether they are hosted on your site or are pointers to
the content of another site.

A word about encoding
For text files on your computer's hard drive, it's easy to simply open those files in a text
editor and begin editing the content of the file. But audio and video files on your hard drive
are not that straightforward. They are basically a modern-day version of the grade-school
animation flip-book. Each video stream is a series of saved images; each is slightly different
than the one before and after that, when strung together at around 24 frames per second,
make up a moving image that the eye interprets as motion video. Each image is compressed
so that the entire image doesn't have to be saved, compressed and re-interpreted for each
video impression. Similarly, audio is an aural picture of tones that when strung together,
tone after tone, makes up a sonic image of the audio. For this reason, video files that have an
audio track are basically two streams strung together. Audio is compressed into formats, of
which, MP3 is arguably the most popular. The way each of these streams are compressed are
said to be the streams encoding format.

Chapter 6

[151]

One of the most contentious arguments on the Internet right now is the argument of which
encoding formats will HTML5's <audio> and <video> tags support. A coalition of software
companies has backed the MPEG4 format. MPEG at the moment is free, but it is owned by
the Motion Picture Expert's Group and is not an open source algorithm and the fear by many
open source advocates is that one day this group will begin charging for the privilege of using
their formats. Google has backed an encoding format they purchased and then open sourced
called WebM. They've built the WebM encoding format into Chrome and built a plugin for
Internet Explorer. The Mozilla foundation has backed Ogg Vorbis, which is a completely open
source encoding format but not widely used outside of open source operating systems.

So, I wrote all that to say that HTML5's <video> and <audio> tag is not a panacea. Differently
encoded videos will play in different browsers that support the video's encoding format. This
is yet another reason to use a video service because they will handle much of the heavy lifting
with regards to encoding the video into a format that each browser can understand.

"I did it my way"
Sometimes, YouTube won't cut it. Either for content or copyright reasons, the project's
requirements can preclude the service's terms. Sometimes you need to, in the words of
the immortal Frank Sinatra song, do it your way. Host the video yourself.

My first advice to you as a 15-year veteran of 1000+ websites is, "Don't do it".

My second advice to you is, "Seriously dude, don't do it". Use a service. The Embedded
Media module for Drupal 6 has support for just about any video service you would ever
care to use. One-by-one, those will be ported to the new Media module for Drupal 7.
Look for the new media module within a year of the publication date of this book to
support mostly every commercial video service on the Internet. I promise you that
you'll never do it as well as they do.

Users demand a lot from web video. The video has to start downloading and be viewed
more or less immediately and the image be of high-enough quality that the viewer can
understand what's going on in the video. You'll never be able to do that with your server as
well as someone who just does that with their server. Web video takes massive server and
bandwidth horsepower and constant attention to the hardware and network connections.
So, take my advice—unless you're prepared to hire multiple server administrators, burning
through the Hot Pockets and energy drinks in a basement somewhere to keep your
video servers up and running and your video downloads disruption-free and you have a
revenue stream that supports their salary, just use a service. Otherwise, no matter how
well-intentioned your website is, it's doomed to failure. If you're determined and I cannot
dissuade you, check out the Drupal distribution, Videola. It may be what you're looking for.

The Elephant in the Room: Audio, Video, and Flash Media

[152]

As Frank sang so many times, "Regrets… I've had a few…" Not a lot of people know this,
but one of his regrets is hosting his own web video. True story! Well, it's 90 percent true.

Charting and graphs
A great module called fusion charts takes data in a Drupal view and allows you display
a chart of the data. Here's the problem. It requires the Flash plugin to display the chart.

This is true for many of the charting solutions on the web today, with one notable
exception—Highcharts. The following screenshot shows the Home page of highcharts.com:

The talented programmers over at highcharts.com have created a JavaScript library that
takes data and displays it in charts, rendered with SVG on modern browsers and makes
those charts backward-compatible with older versions of IE via Microsoft's Vector Markup
Language (VML). This makes it ideal for mobiles. All of the major mobile iterations of WebKit
fully support SVG.

Chapter 6

[153]

Graphic Formats

Scalable Vector Graphics (SVG) is a family of XML-based specifications for
2D graphics based in part on Adobe's PostScript graphic language. In the late
90s, Adobe took what was then "old technology" for them, Illustrator version
3.0's graphic format, and began the process of creating the SVG standard.
The standard never really caught on and was usurped by Macromedia's Flash
format. Adobe then bought Macromedia primarily because Flash technology had
achieved many of the stated goals of SVG. Primarily, resolution independence
and a massive install base. Once SVG became an open standard, support was
written into the HTML5 draft. All mobile versions of WebKit have support for the
format.

Vector Markup Language (VML) is Microsoft's proprietary (and deprecated)
vector graphic format. There's an old joke. How many Microsoft technicians
does it take to change a light bulb? None; Microsoft just declared Darkness,
the new industry standard. Subject to both diminishing market share and
diminishing influence in the Internet community, Microsoft has seen the light
and is embracing HTML open standards and building them (albeit more slowly
than their rivals) into IE. Basically, the only implementation of VML is in Internet
Explorer versions 8 and under. It's used as backwards compatibility for SVG files
with scripting that does an XML transformation to change the SVG code into
VML. Going forward, IE will support SVG.

We'll create a simple example of how this module is used and generate a cross-browser,
mobile, and table-compatible graph.

Time for action – graphing a view
1. Navigate to http://highcharts.com/download and download the latest

version of the Highcharts JavaScript library. Unpack the latest version and put the
folder in sites/all/libraries. The module will look for the file sites/all/
libraries/highcharts/js/highcharts.js.

2. Open a terminal window and enter the following commands:

cd ~/Sites/dpk

drush dl highcharts

drush pm-enable highcharts

3. Navigate to Structure | Content Types | Add Content Type.

The Elephant in the Room: Audio, Video, and Flash Media

[154]

4. Create a new content type Pizza Sales with fields for Cheese, Pepperoni, Sausage,
and Supreme; all of the Integer type, as shown in the following screenshot:

5. Navigate to Structure | Views | Add new view. This view will show Content of type
Pizza Sales sorted by Title. Create a page display. With the title Sales and Path set to
Sales as an Unformatted list of fields. Click on Continue and edit:

Chapter 6

[155]

6. Under Format, choose Highcharts. Click Apply (all displays).

7. At the time of the writing of this book, the settings on the Highcharts module are
still in development. You can choose the columns to be incuded with the graph, the
type of graph, and the x-axis label. For this example, we used a simple bar graph. We
select the four fields, Cheese, Pepperoni, Sausage, and Supreme as our fields, with
the week as the label field.

8. Navigate to Content | Add content | Node export: import. Click on Upload a
File and navigate the file browser to the sites/default/content_imports
directory. There should be a chapter7.export file that you pulled down when you
pulled down the original code. Once the file is chosen, click on Import. The import
action will list the content nodes that have been created.

http://dpk.local/sales

The Elephant in the Room: Audio, Video, and Flash Media

[156]

9. Navigate to http://dpk.local/sales. It should look something like the
following diagram:

Pop quiz
1. What types of content does Drupal 7's Media module assist you with managing?

a. Photos

b. Video

c. Audio

d. All of the above

2. Fusion charts are available for Drupal 6, but have a client requirement of what
browser plugin?

a. Flash

b. RealMedia

c. Adobe Acrobat

d. None of the above

3. Highcharts uses which two vector graphic standards to create maps that are
mobile-ready?

a. VMS and SVG

b. FLV and MP4

c. PSD and JPG

d. JPG and TIF

http://dpk.local/sales

Chapter 6

[157]

4. The Highcharts JavaScript library is

a. Free to non-profit websites

b. Per-website license for commercial sites

c. Both a and b

d. Neither a nor b

Summary
Websites with audio and video attract more visitors. Drupal is perfect for embedding audio
and video from YouTube or from any number of video content providers. We've walked you
through how to add embedding fields to any content type. You can use those fields to add
audio and video objects to the Web content.

Charts and graphs are the life blood of business analysis. With Highcharts, Drupal gains a
cross-browser charting tool and allows you to use the power of CMS to manage statistical
analysis of business data.

In the next chapter, we'll look at Drupal's integration with location services and new open
source ways to embed maps into pages.

7
Location, Location, Location

Big Jimmy has been talking to some guys—franchise guys. Jimmy always had
visions of opening one or more locations, but never really had that "push" to
get the job done. The franchise guys are pushing him to open up a few more
locations in the Tampa Bay area to prove the validity of the "pizza kitchen"
concept. Then they want to turn the kitchen into a franchised restaurant and
start taking on investors and new store owners.

With this information in mind, Little Jimmy and I had a discussion about some
of the new information the website would need to accommodate in order to
keep pace with his father's dreams for the restaurant. We'll need to be able to
store location information about the different stores. We'll also want a list of
stores giving the customer the ability to find the store closest to them. Luckily,
Drupal can accommodate all of that and do it very well.

In this chapter, we'll:

 � Learn about the Location and GMap modules and how to use them as building
blocks to create a rich mobile (and desktop) user experience

 � Learn about the navigator.geolocation object

 � Add location information to node objects

 � Geocode a node's location data

A word about browsers

You will need to use Safari, Chrome, Firefox or Internet Explorer 9 or later in
order to work on the tasks in this chapter. The Geolocation API wasn't included
in IE until version 9. Safari, Chrome, and Firefox have had the Geolocation API
for a year or so now, so any version that's less than a year old should work.

Location, Location, Location

[160]

Geolocation
Your position on the earth can be derived in one of the two ways. The first being the GPS
satellite system. It's the system used in most cars and, lately, most smart phones. The GPS
satellites constantly bounces signals off the earth and there's a special receiver in the GPS
hardware that decodes that signal and uses it to determine longitude and latitude. The GPS
hardware then returns the coordinates to any software needing them.

The second way is a little bit more complex. All over the world, people have implemented
Wi-Fi networks and cell phone tower networks. Most of them are stationary and installed
in houses, businesses, cities, and roadsides across the country. In the same way that Google
Maps has cars traveling the country taking photos of street views, there are geolocation
companies that travel the country and take a census of the available Wi-Fi networks and
their relative signal strength and the geolocation of the Wi-Fi measuring device. All of the
cell phone towers in the US are already geocoded and their longitude and latitude locations
are known. Software can then, with an amazing degree of accuracy determine your location
from the Wi-Fi and cell networks and relative strengths available to your desktop, laptop
computer, or cell phone without any assistance from GPS-specific hardware.

For a year or so now, the desktop versions of Firefox and WebKit (Safari and Chrome) have
implemented the HTML5 geolocation interface for JavaScript using the second method. The
browsers will always warn the users about beginning a geolocation survey and allow the user
to opt out for privacy reasons.

That's why, as a web developer, it's frustrating to me that more web developers don't take
advantage of the geolocation JavaScript object when developing their websites, especially
when it comes to locating the physical location of their client or their client's stores.

The navigator.geolocation object
The JavaScript object that powers the desktop and handheld browser's location abilities
is the navigator.geolocation object. Because it can take time to make a call to the
geolocation hardware or website that will derive the location, using the object does not
stop the JavaScript execution. You hand the geolocation object a function to execute
once the location is derived and a function to execute on failure, and the JavaScript
execution continues while the geolocation object goes to work. We'll look more into
these calls in the Time for action – downloding and enabling the close2u module section.

First, let's create some nodes with the Location module and get them geocoded with
longitude and latitude coordinates.

Chapter 7

[161]

Time for action – adding location data to nodes
If you take a look at the Drupal Database, you'll notice that the location has its own database
table. Locations are separate database objects. They are then related to other Drupal data
entities such as nodes and users. We're going to add some location data from Google's Map
service to nodes in this example, but the location data could just as easily be linked to almost
any data entity that Drupal recognizes:

1. Open a terminal window and enter the following commands:

cd ~/Sites/dpk

drush dl gmap location

2. Navigate to http://code.google.com/apis/maps/signup.html:

http://code.google.com/apis/maps/signup.html

Location, Location, Location

[162]

3. As shown in the preceding screenshot, enter the URL of your test site (dpk.local)
and check the I have read and agree with the terms and conditions checkbox.
You're just using this site for development. You will need to obtain another API key
for any live site. Be sure that you actually agree to the terms and conditions if you
use the key on a live site. Click on the Generate API Key button and on the next
page, you will see a long API key, as shown in the following screenshot. Copy and
paste it somewhere, where you won't lose it:

Your API key will almost certainly be different from this one but will be a long
string of letters, numbers, and symbols like this.

4. Navigate to Admin | Modules and ensure that all of the modules in the Location
and GMap groups are enabled:

Chapter 7

[163]

5. Navigate to Configuration | Services | GMap and paste the API key in the Google
Maps API Key field:

6. Navigate to Admin | Content | Location. Make sure you select the Enable the
display of locations options:

7. Navigate to Structure | Content types | Add content type.

Location, Location, Location

[164]

8. We're going to call this content type Franchise (see the following screenshot).
Under Publishing options, select the Published option, and the Promoted to front
page option should be unchecked. Under Comment settings, select Hidden. Under
Locative information, change Minimum Number of Locations to 1 (with Maximum
number of locations set to 1). Save the new content type:

9. Now, navigate back to Admin | Structure | Content types. Under Locative
information, there are options to gather Postal code, City, State, Phone number,
Fax number and so on. Change them all to Allow:

Chapter 7

[165]

Location, Location, Location

[166]

10. At the bottom of the location information, we will have to hide the Coordinate
Chooser and check the Display location in teaser view and Display location in
full view checkboxes:

11. Once the content type is saved, navigate back to Structure | Content types |
Franchise | Manage fields.

12. Create a new field called Hours with the machine name as hours. Under Widget
Type, choose Text Field and under Hours fields settings change Number of Values
to Unlimited.

Chapter 7

[167]

Location, Location, Location

[168]

13. Navigate to Structure | Content types | Franchise | Manage display. In the Layout
for franchise in default tab, select Three column stacked - 25/50/25 (HTML5) under
Select a layout and then save the settings:

14. Click on the Add custom fields tab and then click on Add a code field. Call it
Location (Address). Check the Node entity. Add the following as the code value,
then save the field:

<?php
 $settings = variable_get('location_settings_node_' . $entity-
>type, array());
if (isset($entity->locations)) {
print drupal_render(location_display($settings, $entity-
>locations));
 }
?>

15. Move the Title and Hours fields to the Left region. Move the newly created Location
(Address) field to the Middle region. Save the node display:

Chapter 7

[169]

16. Choose Content | Add content | Node Export: Import. Click on Upload file. In
the sites/default/content_exports folder, there should be a file called
franchiese.export. Choose that file and click on Upload. Then click on Import:

Location, Location, Location

[170]

17. As shown in the following screenshot, Drupal will list the nodes that have
been imported:

18. Choose Structure | Views. Choose Add new view. Create a new view named
Locations showing Content of type Franchise. The display format should be
Extended GMap of teasers without links and without comments. Click on
Continue & edit:

Chapter 7

[171]

19. Under Add fields, select the Content: Nid option to add the Node ID field:

20. Beside the Format line is the current format GMap and a settings link. Click on the
settings link. In the Macro box, add the macro as follows:

[gmap |id=close2u|width=100%|height=600px]

21. Under Data Source select Location.module, and under Marker Handling select Use
single marker type.

Location, Location, Location

[172]

22. Under RMT field select Content: NID. Add a RMT callback path of close2u/marker.
Click on Apply (all displays) and save the view:

23. If all goes well, you should now be able to navigate to http://dpk.local/
locations and have a proper Google map with markers for the listed locations.
We'll address some of the map issues in the Time for action – geocoding a node's
location data and Time for action – downloading and enabling the close2u module
sections, but for now, your nodes are mapped:

http://dpk.local/locations

Chapter 7

[173]

What just happened?
The first thing to notice is the way we've done the Hours field. Different locations have
different hours. Some may need 3 lines to describe their regular hours, some may choose
to put all 7 days of the week on a separate line. We can accommodate that by adding a text
field and allowing unlimited values in that text field. When entering data for the Hours field,
you can click on Add another item to allow multiple entries:

The Location module saves the address and geolocation data, and then associates that data
with either a node or a user. You can enable the module to work with either. In this example,
we've given the Franchise content type the ability to attach one or more locations to the
nodes. We've then used a standard view and the GMap module to mash up those nodes into
a GMap.

Location, Location, Location

[174]

We've illustrated one of the simultaneously interesting and powerful things about Display
Suite's code fields. Display Suite allows you to create customized fields that will execute the
PHP code when a node is displayed. We created a Display Suite custom field that shows the
address with a Google Maps link. We added the location title and the hours. It is also easy to
white-screen your installation with a custom code that fails. Be very careful using this feature.

After we added the code field, we imported some sample data and then created a view that
places the newly created nodes on a GMap. We set some values in the macro field of the
GMap. These macros define the width and height of the map that is produced. There are
other options you can add to determine the look and feel of the maps that the Google API
produces. Those options are available in the Google API reference under the google.maps.
MapOptions object section (http://code.google.com/apis/maps/documentation/
javascript/reference.html#MapOptions). You should be able to set any map value
from that command line using the syntax shown. One we specifically did not set was the
MapCenter and the Zoom level. We'll set that a little later in this chapter, based on the user's
location data.

If you take a look at one of the nodes we've imported and scrolled down to the node's location
data, you'll see the address and a longitude and latitude value that allows Google to plot those
coordinates on a map. We'll use those coordinates in the Time for action – downloading and
enabling the close2u module section to gauge the distance from the user's location:

Chapter 7

[175]

From address to longitude and latitude
The addresses we've imported had longitude and latitude information encoded in their
associated node locations. But unless you regularly list longitude and latitude coordinates
with your addresses, you probably don't have this information at hand. You'll need to run
the addresses through a process called geocoding which sends the address to a service such
as Google Maps (or Yahoo! or Bing) and the map system returns a longitude and latitude
coordinate for the given address.

There are multiple services that provide geocoding and nothing says you have to use Google
or the module in this example. But for Drupal 7, at the time of this writing I found my options
limited, so I wrote a companion project for the Drupal 7 Location module that I call Location
Geocode Update. I hope by the time of this book's publication that this module will be a
full-fledged Drupal project, but for now it's a sandbox project. Sandbox projects are projects
developers create to try new things and use experimental code. The code in this module
works for this example and I look forward to sharing it with the Drupal community at large
as a full-fledged Drupal project.

Playing in the Sandbox

Drupal projects have several different phases. The first phase should be the
sandbox mode. For the geolocation module and the close2u module
I've created them as sandbox modules on drupal.org. You can find these
at http://drupal.org/sandbox/stovak/1262930 and http://
drupal.org/sandbox/stovak/1265648. Use sandbox modules at
your own risk. To install a project from the sandbox, you'll need to clone it
from the GIT repository. Most sandbox modules have the GIT repository URL.
Open the terminal window and change the directory to your project's sites/
all/modules/custom directory. If your project doesn't have one, create it.
Enter git clone SANDBOX_URL, where SANDBOX_URL is the GIT URL you
obtained from the sandbox project listing. GIT will create a local copy of the
sandbox. If the Drush commands to find the modules in this chapter fail, you
can obtain the latest version by cloning the drupal.org sandbox. To do this,
search for the module on drupal.org using the project name I've given you
and clone the project locally. Let's get started!

http://drupal.org/sandbox/stovak/1262930
http://drupal.org/sandbox/stovak/1262930
http://drupal.org/sandbox/stovak/1265648
http://drupal.org/sandbox/stovak/1265648

Location, Location, Location

[176]

Time for action – geocoding a node's location data
Geocoding address data is a simple call to Google's API. I've encapsulated the API calls into a
module that triggers on node save:

Fake addresses will return incorrect geocoding data and should not be used for
this example. We're testing the node's ability to add the longitude and latitude
data without looking them up. Also, note that in order for Google geocoding to
work correctly, you must provide a valid postal code for the given address.

1. Change the directory to your site's root directory and use Drush to install and enable
the module with the following commands:

cd ~/Sites/dpk
drush dl location_geocode_update
drush pm-enable location_geocode_update

2. Navigate to Modules | Admin and enable the Trigger module from core if it's not
already enabled.

3. Navigate to Admin | Content | Location. Check the Enable JIT geocoding checkbox.

4. Navigate to Structure | Triggers | Node. You will see several triggers listed with
an action list of possible actions. Under the first trigger, When either saving new
content or updating existing content, select the Update Latitude/Longitude action
and click on Assign. The new action should appear in the list.

5. Navigate to Content | Add content | Franchise.

6. Name the franchise as My Location.

7. Add the hours as 9AM – 5PM Mon-Fri.

8. Click on Location and add your address or an address you know is valid without
looking it up. Save the node:

Chapter 7

[177]

9. Drupal should take you to a full view of the newly added node. At the top, there
will be a selected View tab as well as Edit and maybe Export, too. Edit the node
and notice the address should now have longitude and latitude information:

What just happened?
The Triggers module allows actions to be triggered (get it?) on predefined events for pieces
of content. The Location Geocode Update module created a new action that we added to the
node create/update trigger. This trigger will allow any node that allows the location data to
be geocoded when saved or created.

The close2u module
The Google map we created in the Time for action – adding location data to nodes section
has a few problems. The first of which is the zoom magnification. It's way too far out. The
second is that the center of the map is traditionally the user's location. The third is that the
map itself doesn't have any user location data.

Location, Location, Location

[178]

I mentioned earlier that the JavaScript geolocation object has been available in browsers
for some time now. During the writing of this chapter, I couldn't actually find any Drupal
module that used client geolocation data from the browser; so, I wrote this simple module
that integrates with Views, GMap and the Drupal 7 Location modules to sort of re-imagine
the "store locator" page that so many websites have. It's a good example of how to create a
customized Drupal 7 module to solve many of the issues that exist with GMap and location
integration in Drupal 7. As of the writing of this chapter, the module is a sandbox module.
I hope to take it to full project status before the book is published. We'll step through the
module's code after the exercise to show you how the magic happens.

Let's get started!

Time for action – downloding and enabling the close2u module
The math to determine the distance between two objects on the earth is not simple. It's a
complex formula. Luckily, that's all been worked out in advance for us and the code is in the
location directory in a file called earth.inc. If you care to look that over, open up the file
and take a look. If not, just trust that it's there. This module uses earth.inc to produce SQL
that will sort objects by location:

1. Open a terminal window. Change the directory to your site root and use the drush
command to download and enable the close2u module. Note the words at the
beginning of the chapter with regards to sandbox modules.

cd ~/dpk/

drush dl close2u

drush pm-enable close2u

2. First, navigate to Structure | Views and edit the Locations view we created in the
Time for action – geocoding a node's location data section. Verify that the RMT
values match the following screenshot. The RMT field value needs to be set to
Content: Nid and the RMT callback path needs to be set to close2u/marker. Also
of note, we're going to be working with the created GMap directly, so under Macro,
make sure that the GMap ID value is close2u. Otherwise, our JavaScript won't be
able to find the map:

Chapter 7

[179]

Location, Location, Location

[180]

3. Navigate to Structure | Context | Add. Title this context as Locations. Under
Conditions, click on Views and then select the locations view we created earlier
along with it's page display (--Page). Under Reaction, click on Blocks. Check the
checkbox beside the Close To You – Find Nodes block, and besides Content click
on Add. Save the context.

4. Navigate to the Locations view and see if it doesn't look a little friendlier:

Chapter 7

[181]

What just happened?
Let's take a look at what this close2u module does and how it interacts with our view.

First, the view creates a block that can be placed on any page. If you're used to Drupal 6's
hook_block which provides all the information for a block in a single function, you should
understand Drupal 7's block system. It's been split up into the actions required to define a
block by adding the action to the hook name. For this block, we've created a hook_block_
info that defines the blocks for the module and hook_block_view, which does the heavy
lifting of putting the block together:

 function close2u_block_info($delta = 0) {
 $blocks = array();
 $blocks['find_node'] = array(
 'info' => t('Close To You - Find Nodes'),
 'status' => 1,
 'cache' => DRUPAL_NO_CACHE,
);

Location, Location, Location

[182]

return $blocks;
}

function close2u_block_view($delta = 0) {
 $block = array();
switch ($delta) {
default:
 $block['subject'] = "Close To You";
 $block['content'] = close2u_page($delta);
 }
return $block;
 }

close2u_block_view calls a function close2u_page to do the action that initiates
our block.

function close2u_page($delta) {
module_load_include('inc', 'uuid', 'uuid');
 $list_id = "close2u-" . uuid_generate();
drupal_add_js(array("close2u" => array("instances" => array($list_
id))), "setting");
drupal_add_js(drupal_get_path("module", "close2u") . '/close2u.js');
return theme("close2u_container", array("list_id" => $list_id, "delta"
=> $delta));
}

This function references the uuid module to create a unique ID for our block listing. Calling
drupal_add_js with an array and a second argument of setting will add this uuid to our
Drupal.settings object in JavaScript at the frontend. We'll use that in the file referenced
in the next line, close2u.js. We then theme the container that will hold the list of nodes
close to us. We've defined that the container in the hook theme and the file to generate the
HTML in the templates folder.

function close2u_theme() {
 $path = drupal_get_path("module", "close2u") . "/templates";
 $items = array();

 $items['close2u_container'] = array(
 "template" => "close2u_container",
 "arguments" => array("uuid" => NULL, "delta" => NULL),
 "path" => $path,
);
 $items['close2u_list_item'] = array(
 "template" => "close2u_list_item",
 "arguments" => array("result" => NULL),

Chapter 7

[183]

 "path" => $path,
);
return $items;
}

We've also defined a second theming function that we will use to theme the individual
items. Our theme file in the templates folder is called close2u_container.tpl.php.

<div class="close2u-enter-location-container" style="display:none;">
 <form action="/close2u/address" method="get" accept-charset="utf-8">
 <label for="close2u-enter-location-text">
Enter an Address or Postal Code</label>
 <input id="close2u-enter-location-text" name="close2u-enter-
location-text" placeholder="Enter an Address or Postal Code">
 <p><input type="submit" value="find →"></p>
 </form>
</div>
<div class='close2u-container' id='<?php echo $list_id;?>' rel='<?php
echo $delta; ?>'></div>

It creates a container for our JSON call and contains a form to enter an address if our client-
side geolocation fails.

The JavaScript file close2u.js defines the Drupal.behavior object that pulls all of this
together. Let's take a look at it function-by-function. The basis for all Drupal 7 Drupal.
behavior files are the attach and detach methods. We've talked about them in a
previous chapter so I won't go over their function. Sufficient to say, the attach method
gets everything started.

Drupal.behaviors.close2u = {
 attach: function(context) {
 if (Drupal.settings.close2u.origin == undefined) {
 if (navigator.geolocation) {
 Drupal.settings.close2u.origin = {
longitude: null,
latitude: null
};
 jQuery(Drupal.behaviors.close2u)
.bind("locationChange",
Drupal.behaviors.close2u.locationChangeHandler);
 navigator.geolocation.getCurrentPosition(
Drupal.behaviors.close2u.saveOrigin,
Drupal.behaviors.close2u.locationFail);
 Drupal.settings.close2u.watchId =
 navigator.geolocation.watchPosition(
Drupal.behaviors.close2u.saveOrigin);

Location, Location, Location

[184]

 } else {
 Drupal.behaviors.close2u.locationFail();
 }
 }
 },

In order to determine distance, you need an origin and a destination. The destinations are,
obviously, our node locations. The origin is the user. We'll be storing the user's origin in the
Drupal.settings object. If that origin has not been defined, the function attempts to create
it. If the browser supports geolocation, we define the latitude and longitude as null and bind
a location change event responder to the Drupal.behaviors.close2u object. If this
event is triggered, the locationChangeHandler function will attempt to handle the event.
navigator.geolocation.getCurrentPosition is the client-side call that attempts to
discern a location in the client's browser. The first function references execute if the attempt
is successful, the second, if it is unsuccessful. We then put a watchPosition on the client's
browser. If the client is using a handheld, it's helpful that we respond to their movements as
they get closer or farther away. If the client's browser does not support geolocation, execute
the same function as a failed geolocation call.

saveOrigin: function(position) {
 if (position) {
 Drupal.settings.close2u.origin = position.coords;
 Drupal.settings.close2u.origin.timestamp = position.timestamp;
 jQuery(Drupal.behaviors.close2u).trigger("locationChange");
 }
 },

The saveOrigin function responds to the Navigator.geolocation request.
It receives a position object that has the longitude and latitude coordinates as
well as some other information.

{
accuracy: 38
altitude: null
altitudeAccuracy: null
heading: null
latitude: 39.8624353
longitude: -76.0532586
speed: null
timestamp: 1315139386335
}

For some handhelds, you'll also get altitude, speed and other information about where you
are. We store this information in the Drupal.settings.close2u object and then trigger a
locationChange event on our behavior object. The locationChange event executes the
locationChangeHandler function.

Chapter 7

[185]

locationChangeHandler: function(evt) {
 if (Drupal.settings.close2u.origin.longitude != null && Drupal.
settings.close2u.origin.latitude != null) {

First, we make sure the longitude and latitude have values.

 jQuery.each(Drupal.settings.close2u.instances, function(idx,
value) {

We loop over the block instances for close2u. We store them in the instances object.

 url = jQuery("#"+value).attr("rel").replace(/_/g, "/");
 jQuery("#"+value).load("close2u/"+url, Drupal.settings.
close2u.origin, Drupal.behaviors.close2u.locationListHandler).
addClass("close2u-processed");
 });

For every instance, we execute a jQuery.loadajax request and give it the longitude and
latitude from our origin. We'll see the response to this request in a minute. We dispatch this
request and move on for it to load in the background.

 // gmap module integration
 if (Drupal.settings.gmap.close2u != undefined) {
 this.gmapObject = Drupal.gmap.getMap("close2u");
 //center and zoom
 this.gmapObject.map.setCenter(new GLatLng(Drupal.settings.
close2u.origin.latitude, Drupal.settings.close2u.origin.longitude));
 this.gmapObject.map.setZoom(11);
 }

We want to re-center the map so that the center is the user's location and then set the
setZoom value to around 10 or 11, which will give us a view of the metro area surrounding
the user's location.

if (Drupal.settings.gmap.close2u != undefined &&
 (Drupal.behaviors.close2u.markers == undefined ||
 Drupal.behaviors.close2u.markers.length == 0)) {
 Drupal.behaviors.close2u.markers = {};
 for(i in Drupal.behaviors.close2u.gmapObject.vars.markers) {
 Drupal.behaviors.close2u.markers[Drupal.behaviors.close2u.
gmapObject.vars.markers[i].rmt] = Drupal.behaviors.close2u.gmapObject.
vars.markers[i];
 }
 }
 } else {
 jQuery(".close2u-enter-location").show();
 }
 },

Location, Location, Location

[186]

When we created the view, we tell it to use the node ID as the RMT value for the pointer
click. This node ID value is stored in every marker object on the page, but we can't just do
a search for them. So we need an object that references the node ID so when the node IDs
are clicked on the page, we can highlight the marker.

In the close2u.module file, we've set up a hook_menu that will handle the .load request
for nodes close to the client.

function close2u_menu() {
 $items = array();
 $items['close2u'] = array(
 "page callback" => "close2u_page",
 "page arguments" => array(2),
 'access callback' => TRUE,
 "type" => MENU_CALLBACK,
);
 $items['close2u/find/node'] = array(
 "page callback" => "close2u_find",
 "page arguments" => array(2),
 'access callback' => TRUE,
 "type" => MENU_CALLBACK,
);
 $items['close2u/marker/%node'] = array(
 "page callback" => "close2u_marker_retrieve",
 "page arguments" => array(2),
 'access callback' => 'node_access',
 'access arguments' => array('view', 2),
 "type" => MENU_CALLBACK,
);
return $items;
}

The close2u/find/node menu item will respond to our jQuery.load request by
triggering the close2u_find function. Let's take this line by line.

//default search is nodes, but you can also search for users by type =
'uid'
function close2u_find($type = "node", $origin = NULL) {
 $toReturn = "<ul class='close2u-list'>";
if ($origin == NULL) {
if (isset($_REQUEST['longitude']) &&isset($_REQUEST["latitude"])) {
 $origin = $_REQUEST;
 }
elseif (property_exists($GLOBALS, "origin")) {
global $origin;

Chapter 7

[187]

 }
else {
drupal_set_message("in order to find something close to you, I must
have an origin. Set \$GLOBALS\[\'origin\'\] or use as second argument
to close2u_find.", "error");
return FALSE;
 }
 }

We begin the list to be returned, and we set the origin, if it's not already set.

 $query = db_select("location", "l")->fields("l", array("lid",
"longitude", "latitude"));

Using Drupal 7's new database API, we create a database query object that will get details of
the location field:

module_load_include("inc", "location", "earth");
 $query->addExpression(earth_distance_sql($origin['longitude'],
$origin['latitude']), "distance");

Calculating the distance is not as simple as subtracting one value from the other. The earth
is a sphere and we calculate distance along the outside of that globe in a unit called radians.
There's some complex math at work so we add a calculated field called distance, with the
math contained in the earth functions of the location module. The earth.inc include has
all of that worked out in advance for us.

 $query->join("location_instance", "li", "li.lid = l.lid");
 $query->fields("li");
 $max_distance = (array_key_exists($origin['max_distance']) ?
 $origin['max_distance'] : variable_get("close2u_default_max_
distance", NULL)
);
if ($max_distance != NULL) {
 $query->having("distance < :max_distance ", array(
 ":max_distance" => $max_distance,
));
 }

We can add a max_distance to the request if we want to exclude nodes that are over a
certain distance from the origin. For this experiment, I have the default max_distance
set to null. Eventually, we should write a hook_block_config function that sets the
system variable, close2u_default_max_distance and by the time of publication of this
book, the module may have that. But for development purposes, we always want to show
something in the results no matter how far it is from the user.

 $query->orderBy("distance");

Location, Location, Location

[188]

Sort the returned objects by the calculated distance.

 $query->range(0, 20);

Limit the results to 20 nodes.

 $foreign_alias = substr($type, 0, 1);
 $foreign_key = $foreign_alias . "id";
 $join_clause = "li." . $foreign_key . " = " . $foreign_alias . "."
 . $foreign_key";
 $query->join($type, $foreign_alias, $join_clause);

So, this is a little complicated. We want to use a query that will work for either users or
nodes so we create a join based on the word "node" and do a SQL join on the nodes table to
get the node ID (nid).

 $results = $query->execute();

The preceding command executes the query.

while ($result = $results->fetchObject()) {
 $result->node = node_load($result->nid);
 $toReturn .= theme("close2u_list_item", array("result" =>
$result));
 }

Retrieve and theme the results.

$toReturn .= "";
echo $toReturn;
exit();
}

Close the list, print the list, and echo the results. We then want to stop execution because we
don't need the entire page's HTML, just the list itself.

In our JavaScript file, we process the incoming list when it loads:

locationListHandler: function(evt) {
 jQuery(".close2u-list-item")
 .not(".close2u-list-item-processed")
 .find("a.close2u-click-marker")
 .click(Drupal.behaviors.close2u.locationListItemClickHandler)
 .attr("href", "javscript:;")
 .addClass("close2u-list-item-processed");
 //first in list should be closes, click it.
 jQuery(".close2u-list-item:first-child a").click();
},

Chapter 7

[189]

We select the list items that have not yet been processed. Select the link inside the list
item and on click, give them a function to handle the click. We remove the direct link to the
location's node and trigger the click action of the first one, or rather the one that's closest to
the user's location.

locationListItemClickHandler: function(evt) {
 if(evt) evt.preventDefault();
 google.maps.Event.trigger(Drupal.behaviors.close2u.
markers[jQuery(this)
 .parent().attr("rel")].marker, "click");
 return false;
 },

In any event handler, the function's arguments are an event object. For this event, we want
to prevent the default action and substitute our own triggers. When a location is clicked, we
trigger the event of its complimentary marker being clicked. The Google Map fires another
AJAX request to the close2u module that we've described in the RMTcallback path setting
(close2u/marker) and append the node ID to that request. The request will be close2u/
marker/32 for node ID as 32. The receiver of that function is very simple:

function close2u_marker_retrieve($node) {
 echo drupal_render(node_view($node, "marker"));
 exit();
}

Grab the Node ID from the URL and view it in the marker build mode. Wait! There is
no marker build mode! Well that's defined by the last two functions in the module:

function close2u_ctools_plugin_api() {
list($module, $api) = func_get_args();
if ($module == "ds" && $api == "ds") {
return array("version" => "1");
 }
}
function close2u_ds_view_modes_info() {
 $export = array();

 $ds_view_mode = new stdClass;
 $ds_view_mode->api_version = 1;
 $ds_view_mode->view_mode = 'marker';
 $ds_view_mode->label = 'Marker';
 $ds_view_mode->entities = array(
 'node' => 'node',
);
 $export['mobile'] = $ds_view_mode;

return $export;
}

Location, Location, Location

[190]

These two functions implement a new Display Suite build mode called Marker. The first
function tells CTools which version of the Display Suite API to use. The second creates the
build mode and returns it to Display Suite for using on every node. Every node will now be
able to have its own "marker" display in Display Suite. If there's no specific marker display,
Display Suite will show the default build.

Finishing the page
We still have a couple of lingering issues with the page. The first of which is that we haven't
really coded any alternative to geolocation. What about browsers that don't support the
navigator.geolocation object or people in witness protection programs that ask you to
click Don't Allow when you give them a location dialog? We have to plan for not being able
to use the geolocation in the browser. Let's create that code together now.

Time for action – finding the closest franchise the hard way
There are multiple reasons to code for situations where the location object is not available.
Older versions of Internet Explorer and some marginal browsers do not support it. But there
will also be times when the location is found incorrectly or you may want to find franchise
locations that are not near the the computer or the handheld's current location. In these
cases, the dependance on this feature is an inconvenience to the user. We need to write the
code for that use case:

1. Create a form in the templates/close2u_container.tpl.php file to handle
user input of location data. Add the following lines to the top of the template:

<div class="close2u-enter-location-container"
style="display:none;">
 <form action="/close2u/address" method="get" accept-
charset="utf-8" id="close2u-enter-location" name="close2u-enter-
location">
 <label for="close2u-enter-location-text">Enter an Address or
Postal Code</label>
 <input id="close2u-enter-location-text" name="close2u-enter-
location-text" placeholder="Enter an Address or Postal Code">
 <input type="hidden" name="list_id" value="<?php echo $list_
id;?>" id="list_id" class="close2u-enter-location-list-id">
 <p><input type="submit" value="find →"></p>
 </form>
</div>

Chapter 7

[191]

2. Edit the close2u.js file as follows. Delete the alert("location fail!");
line and add the following lines to the locationFail function to show the location
form. Bind a submit event to the form so it can be submitted via AJAX:

 jQuery(".close2u-enter-location-container")
 .show()
 .find("form")
 .submit(Drupal.behaviors.close2u.userEnterLocationHandler);
 },

3. Edit the close2u.js file as follows. Create a
userEnterLocationHandlerfunction to handle user-submitted location data
and send it to the close2u module:

 userEnterLocationHandler: function(evt) {
 if (evt) evt.preventDefault();
 jQuery.getJSON(jQuery(this).attr("action"), jQuery(this).
serialize(), Drupal.behaviors.close2u.saveOrigin);
 return false;
 }

4. Create an entry in the hook_menu for the function that will mimic the call to the
geolocation object:

function close2u_menu() {
 $items = array();
 $items['close2u'] = array(
 "page callback" => "close2u_page",
 "page arguments" => array(2),
 'access callback' => TRUE,
 "type" => MENU_CALLBACK,
);
 $items['close2u/find/node'] = array(
 "page callback" => "close2u_find",
 "page arguments" => array(2),
 'access callback' => TRUE,
 "type" => MENU_CALLBACK,
);
 $items['close2u/marker/%node'] = array(
 "page callback" => "close2u_marker_retrieve",
 "page arguments" => array(2),
 'access callback' => 'node_access',
 'access arguments' => array('view', 2),
 "type" => MENU_CALLBACK,
);
 $items['close2u/address'] = array(

Location, Location, Location

[192]

 "page callback" => "close2u_address_entry",

 "page arguments" => array(2),

 'access callback' => TRUE,

 "type" => MENU_CALLBACK,

);

return $items;
}

5. Edit the close2u module. Create the function to mimic the call to the
geolocation object:

function close2u_address_entry() {
 module_load_include("module", "gmap", "gmap");
module_load_include("inc", "location", "geocoding/google");
 $response = google_geocode_location(array("street" => $_
REQUEST['close2u-enter-location-text']));
 if (is_array($response)) {
 jsonjsonechojson_encode(array("coords" => array("longitude"=>
(float)$response['lon'], "latitude" => (float)$response['lat']),
"timestamp" => time(), "list_id" => $_REQUEST['list_id']));
 } else {
 jsonjsonechojson_encode(array("error" => "<h1>Google is unable
to find the location you entered.</h1>"));
 }
 exit();
}

6. Alter the saveOrigin function in close2u.js to handle error messages:

 saveOrigin: function(position) {
 if (position) {
 if (position.error != undefined) {
 $("#"+position.list_id).html(position.error);
 } else {
 Drupal.settings.close2u.origin = position.coords;
 Drupal.settings.close2u.origin.timestamp = position.
timestamp;
 jQuery(Drupal.behaviors.close2u).
trigger("locationChange");
 }
 }
 },

Chapter 7

[193]

7. Edit the sites/all/themes/dpk/css/styles.css file and add the
following lines:

.close2u-list {
 -moz-column-count: 4;
 -moz-column-gap: 1em;
 -webkit-column-count: 4;
 -webkit-column-gap: 1em;
 column-count: 4;
 column-gap: 1em;
 }

8. Edit the sites/all/themes/dpk_mobile/css/global.css and add the
following lines:

.close2u-list {
 -moz-column-count: 2;
 -moz-column-gap: 1em;
 -webkit-column-count: 2;
 -webkit-column-gap: 1em;
 column-count: 2;
 column-gap: 1em;
 }

9. Navigate to http://dpk.local/locations. If the browser asks if you want
to allow it to use geolocation, click on Don't Allow. You should see something
like what is seen in the following screenshot:

http://dpk.local/locations

Location, Location, Location

[194]

10. Enter 22202 into the Enter an Address or Postal Code text field and click on find:

What just happened?
In the first step, we created a standard HTML form to send address data to the module
for use in geocoding. In the second step, we intercepted the form's submit event and
submitted the form via AJAX in exchange for a JSON object.

Step 4 creates a hook_menu that will call a function, close2u_address_entry. In the
function, in step 5, we mimic the activity of the geolocation object by returning an object
with its longitude and latitude values. If there's a problem with geocoding the address, we
get an error.

In step 6, we alter the saveOrigin JavaScript function to handle error objects as well as
geolocation responses.

Chapter 7

[195]

Finally, we added some CSS code that adds columns to the list of responses. It cleans
up the look a little bit. It adds four columns for the desktop version and two columns
for the handheld.

Taking a look at this page on your mobile device you can see how well everything we've done
works with mobiles. If you click the Google Map links, the links should open in the mobile
device's default maps application. The following screenshot is of the desktop version:

Location, Location, Location

[196]

The following screenshot is of the mobile version:

Pop quiz
1. The JavaScript object that allows you to read a browser's position is:

a. location.storage

b. navigator.geolocation

c. window.location.href

d. document.location.href

2. The module that allows you to map locations returned in a view is:

a. views_location

b. gmap

c. google_maps

d. locale

Chapter 7

[197]

3. Address-based locations must first have longitude and latitude added to their data
to place the items on a map:

a. True

b. False

4. The process of adding longitude and latitude to an address is called:

a. Mapping

b. Geocoding

c. Location sharing

d. Spelunking

5. You can use PHP to display a field in Display Suite by adding a:

a. PHP file to the module

b. New template

c. Code field

d. None of the above

6. To calculate the distance between two objects:

a. You simply subtract the longitude and latitude values of one from the other

b. Distance cannot be calculated by any method

c. Use a complex set of radian math to figure the distance given the curve of
the earth

d. None of the above

Summary
In this chapter, we've learned a lot about the Location and GMap modules and how to use
them as building blocks to create a rich mobile (and desktop) user experience. We added
location information to node objects and then produced a view of those objects. We've
geocoded addresses and learned how to get by, when automatic geolocation isn't available
to the client.

In the next chapter, we'll take a look at the Services module and other ways to retrieve data
from Drupal with API calls.

8
Services with a Smile

As completely awesome as web applications are, there are still things that a
web application cannot do. The JavaScript APIs, such as file uploading, still
image capturing, and video and audio capturing are still not written in the
HTML5 spec and are likely to take at least another year or so from the date
of writing this book.

For this chapter, we are going to primarily concern ourselves with a REST
interface and JSON data, but the services module accommodates XML-RPC and
several other protocols and hopefully if you have an odd protocol, by the end of
this chapter you will feel comfortable enough to write your own protocol and/
or interface.

So with that in mind, in this chapter we will cover the following topics:

 � Enabling the Services module

 � Enabling a standard REST service

 � Learning how to retrieve multiple types of data (JSON, XML, and so on)

 � Retrieving nodes via the REST request

 � Authenticating a user via the REST request

 � Creating a user via the REST request

 � Creating a customized REST service

 � Using a customized REST service to power a jQuery mobile site

Note that for some of these exercises, you will need a copy of Firefox and
a plugin called POSTER (https://addons.mozilla.org/en-US/
firefox/addon/poster/). It will allow you to test the REST interface.

https://addons.mozilla.org/en-US/firefox/addon/poster/
https://addons.mozilla.org/en-US/firefox/addon/poster/

Services with a Smile

[200]

Using Drupal to power your native application
The first big native application that I remember using was Facebook. The mobile Facebook
application was awesome and allowed you to do almost everything that the website did, but
with an interface specially designed for interaction on a hand-held device. Indeed, as popular
as Facebook at the time already was, putting a tool that powerful in the hands of iPhone
owners all over the world helped Facebook, quite literally, change the world.

For some applications, it may be necessary to write a custom native application for the
handhelds to interact with your Drupal website. Android Market and the Apple AppStore
have made billions for their respective companies by creating an ecosystem of native hand-
held applications. For this application to interact with an Internet-based backend, it's usually
better to pick a single method of communication and use that method throughout your
application so that you can write a single interface to call and interpret requests to and from
the backend site. For this series of examples we will use REST and JSON responses, but as
you will see, Services module accepts many different protocols and can respond with a few
different encodings.

Jargon watch

XML (eXtensible Markup Language): In simple words, XML was designed
to transport data so as to retain integrity across platforms, programming
languages, spoken and written languages, and server platforms.

AJAX (Asynchronous JavaScript and XML): A development pattern pioneered
by Google and Microsoft where the client's browser exchanges information
with the server. Originally that information was in XML form and needed to
parse down from XML on both the client and the server side. However, it has
come to mean any asynchronous exchange of data and its current preferred
response is JSON.

JSON (JavaScript Object Notation): A way of storing data so that it can be
executed by a JavaScript interpreter and return a proper JavaScript variable
object. The values of this object can be accessed by the script. Direct JSON
encoding/decoding was added to PHP in version 5.2 and many AJAX.

JSONP (JSON with Padding): There are security issues with handing off JSON
among domain names. Sometimes it is helpful to "pad" the JSON with a
function call that will execute once the object is loaded on the client-side.

REST (Representational State Transfer): A way of writing web services that
allow the creating, reading, updating, and deleting (CRUD) of records by
getting and posting data to and from a website's URL, as well as adding several
other customized web-data transactions such as put and delete. REST provides
a consistent and stateless interface to allow clients to interact with website
data. REST is the foundation of modern mobile applications and the way they
communicate with the Internet at large.

Chapter 8

[201]

XML-RPC (XML-based Remote Procedure Call): It passes the XML-based data
to and from a website's resource with the intent of some sort of server process
acting on that data. XML data is parsed on both the ends and translated into
server actions and data storage.

API (Application Programming Interface): An API allows multiple platforms and
applications to speak a common programming language for the exchange of
data and the acting of both client and server processes on exchanged data.

Let us enable the Services module and take a look at how it works.

Time for action – creating a REST service
Version 2.x and 3.x of the Services module vary greatly. We will be using 3.x for all the
following examples.

1. In order to download and enable the Services and Services_rest modules,
open a terminal window and enter the following commands:

cd ~/Sites/dpk

drush dl services

drush pm-enable services rest_server

2. Navigate to Admin | Structure | Services. Click on the Add New Service.
Name the new service as rest. Choose REST as the Server and enter rest for Path
to endpoint as well. Check the Session authentication checkbox to allow session
authentication. Click on the Save button to save the new service, as shown in the
following screenshot:

Services with a Smile

[202]

3. Saving the service will take you back to the services list. From the list choose Edit
Resources, as shown in the following screenshot:

4. Enable the node and user resources and save the changes.

5. Click on the Server tab. Make sure that all the response formatters and the request
interpreters are enabled. Save the server settings.

6. Navigate to http://dpk.local/rest, as shown in the following screenshot.
You now have the basic REST services enabled for the site:

What just happened?
We first downloaded, installed, and enabled the Services module. The Services module has
two default protocols: XML-RPC and REST.

http://dpk.local/rest

Chapter 8

[203]

We then created a REST endpoint at the http://dpk.local/rest URL by enabling the
node and user resources.

Time for action – testing your new REST service
Let us test the new REST resource with some REST calls.

1. Navigate to Admin | Content and click Edit on the first item in the list. The URL
should contain that item's node ID. Remember this node ID. The node ID for this URL
is 111. Yours will be different:

2. If you have not downloaded Mozilla Firefox yet, then go to http://getfirefox.
com and install the Poster Firefox add-on at https://addons.mozilla.org/en-
US/firefox/addon/poster/.

3. Launch Firefox and choose Tools | Poster. Under URL enter this link: http://
dpk.local/rest/node/ and then the node ID that you have obtained from step
1, which in this case is 111. Now the node URL is http://dpk.local/rest/
node/111. This is shown in the following screenshot:

http://dpk.local/rest
http://getfirefox.com
https://addons.mozilla.org/en-US/firefox/addon/poster/
https://addons.mozilla.org/en-US/firefox/addon/poster/
http://dpk.local/rest/node/
http://dpk.local/rest/node/
http://dpk.local/rest/node/111

Services with a Smile

[204]

4. After you have entered the address, click on the GET button. If your node service
is set up correctly, it will respond with an XML containing different properties of
the node:

5. What is returned is basically all the properties you would get, had you done a
node_load(NODE_ID) from within the Drupal API. Add the extension .json
to the URL so that it becomes http://dpk.local/rest/node/111.json.
Predictably, what is returned is the JSON data instead of the XML data. The same
data, but with two different formatters:

http://dpk.local/rest/node/111.json

Chapter 8

[205]

6. Open a new window and navigate back to the website. If you are still logged in, log
out by accessing http://dpk.local/logout.

Services with a Smile

[206]

7. Move back to the Poster window. Change the URL to http://dpk.local/rest/
user/login.json. Click on the Parameters tab and enter username as the Name,
and the username of your Drupal admin user. Click on the Add/Change button. Type
password in the first box and in the second box, the password of your admin user.
Now, click on the Add/Change button:

8. Click on the Content to Send tab. Click on the Body from Parameters button. The
username and password you just entered should show up in the body in a serialized
string, as shown in the following screenshot:

http://dpk.local/rest/user/login.json

Chapter 8

[207]

9. Click on the POST button and the following will be shown:

10. This is the response to a successful login API call.

What just happened?
After we created a services endpoint, we began testing that endpoint for responses. By
changing the extension of the URL that we were requesting, we can change the way data
is sent back to us. The default format is XML, but we can change that to JSON easily by
appending .json to the URL string.

In the last part of the exercise, we actually logged in via the REST service and obtained
a session ID. We can use similar calls to log in a user and allow them access to privileged
services, such as content editing and posting comments. We will talk a little more about
this later in the chapter.

Services with a Smile

[208]

APIs: The future of the interactive web
The Federal Communication Commission's (FCC) website was consistently voted the worst
website in the government for many years. The problems were obvious to any casual visitor.
Content was divided into the FCC's bureaus and departments. In order to find the information
that you needed, you had to know which department and bureau handled your specific
concern, which most people didn't know. The top-down regimented governmental design
with little or no search functionality made for a horrible user experience for new visitors.

In 2010, the Seabourne group received the bid to help with the redesign. However, it turned
out that the internal politics of managing the website was what dictated the current design.
Managers of the bureaus could not agree on formats for data interchange and getting
something posted to the website was a Herculean task that involved multiple calls to
multiple departments.

Taking a "top-down" approach and dictating that all bureaus and departments store their
data in a compatible format or create some sort of conversion algorithm, the Seabourne
group created a content API for the new website that allowed different departments to
authenticate and post data to the website using the tools they had at their disposal. The new
website that went live in early 2011 featured a faceted search based on Drupal's Apache Solr
implementation and many departments can now post and retrieve live data using the backend
content API. What is more, the agency can now open its data to other consumers to combine
the data in new and interesting ways. A few of those ways are posted on the website
(http://www.fcc.gov/) if you care to see more.

Imagine a world where interacting with the government was as easy as getting and posting
requests to a predictable API. As a programmer/developer/UI enthusiast, how much
innovation would you be able to bring to the user interactions? You don't have to dream
too much to understand the power of a published API and what that can do to change your
business and its customers.

The smart guys at Seabourne have been kind enough to open source the module they
created for the website. The ContentAPI module allows a direct interface with the content
of your website, and using this module you can open your site data to other programs
reusing every node on the site in other contexts.

What does that have to do with us? Well, what we have done with this Services module
is create an API to this website's data. APIs turn data into a common format, which is
globally accessible by any application. Even if your website is just content, you can benefit
by enabling an API to your website. Facebook's API enabled the success of games such as
Farmville and Words with friends. Much of Google's success can be attributed to its open
APIs and self-service style framework.

http://www.fcc.gov/

Chapter 8

[209]

Using this new services framework we can create a mobile web interface that uses JSON calls
to navigate to the content of the site.

However, before we do that, in the last example we created a custom module that when
requested, returned a snippet of rendered HTML when we clicked on a marker on the map.
Let us change that module to work with the Services module.

Customized services
Services are a great way of exposing data to the web through an API. However, what if it
is not the type of data that we need, or what if we need node data, but we need it in a
rendered form? In a few short lines of code, we can create a customized service that will
return rendered nodes in a specified build mode.

In order to interact with the REST server we can basically use two hooks:

 � hook_rest_server_request_parsers_alter

 � hook_rest_server_response_formatters_alter

The parsers_alter hook modifies data going into the REST server, and the
formatters_alter hook allows you to change data coming out of the REST
server. Let us now write a formatter.

Time for action – custom REST service formatter
This formatter can be genericized to return the node in any format that you choose.

1. Make a new folder in your website's sites/all/modules/custom folder. If
the custom folder does not exist then create one. Call the new folder rendered_
node. Create three empty text files inside the rendered_node folder named as:
rendered_node.info, rendered_node.module and rendered_node.inc. You
can do this from the command line with the command touch, or you can do it with
your favorite text editor.

2. Add the following lines to rendered_node.info:

name = Rendered Node
description = Service to return rendered nodes
package = Services
core = 7.x
php = 5.x

files[] = rendered_node.inc

Services with a Smile

[210]

3. Add the following lines to rendered_node.module:

<?php

function rendered_node_rest_server_response_formatters_
alter(&$formatters) {

 // Add a html response format.
 $formatters['html'] = array(
 'mime types' => array('text/html'),
 'view' => 'RESTRenderedNode',
 'view arguments' => array('format' => 'html'),
 'file' => 'rendered_node.inc'
);

}

4. Add the following lines to rendered_node.inc:

<?php

classRESTRenderedNode extends RESTServerView {

 public function render() {
 switch ($this->arguments['format']) {
 case 'html':
 return $this->render_html($this->model);
 }
 return '';
 }

 public function render_html($data) {
 if (isset($_REQUEST['build'])) {
 $build = $_REQUEST['build'];
 }
 else {
 $build = "full";
 }
 echo drupal_render(node_view($data, $build));
 }
}

Chapter 8

[211]

5. Clear the site's cache and enable the module.

6. Navigate to Structure | Services | List and under the active REST server, choose
Edit Resources.

7. Under the Server configuration there should be a new html response formatter.
Make sure it is enabled.

8. Using the node from the previous example, navigate to http://dpk.local/
rest/node/NODE_ID.html substituting the node ID wherever appropriate:

What just happened?
We created a standard module with the .info file and a .module file. We used the
rest_server_response_formatters_alter hook to add an HTML formatter for
the REST server. The .inc file does the heavy lifting for the formatter. It is a responder
class based on the RESTServerView class. Basically, it retrieves the node data from the
argument and renders it based on the build. Default build is a "full" build, but we can use
?build=BUILDTYPE in the URL to change the display suite build type.

http://dpk.local/rest/node/NODE_ID.html

Services with a Smile

[212]

Using these tools, you should be able to construct services for even the most complex
of native applications, but in many cases, as in the case of the Pizza Kitchen, the cost of
developing a native application is out of reach. In these situations, it may be helpful to
construct a website that functions like a native application. That is where the jQuery
Mobile comes in.

Have a go hero – creating REST service formatter
Create a REST service formatter that returns the node_export code to push the site content
from one site to another using the Feeds module. Create a Feeds reader that will import the
content into another site.

jQuery Mobile
More than a year ago, a project to bring jQuery into the touch-screen world had begun.
This was the beginning of what is now known as the jQuery Mobile (jQM). jQM provides
a touch-optimized interface for modern touch-screen devices at the same time limiting the
amount of bandwidth that is needed to refresh the page. jQM also provides default theming
that mimics a mobile device's native application look-and-feel and makes form elements
more "touch-screen friendly" in the handheld's native browser.

Tim Cosgrove and Brian McMurray undertook an effort to bring this project into the Drupal
space. The result is a module and base theme, jQuery Mobile and jqm respectively, that are
fantastic starting points for using jQuery Mobile on your Drupal site.

jQM makes extensive use of the data-* attributes in HTML 5 markup to work its dark magic.
HTML5 spec states that any attribute that begins with the word "data-" will be ignored by
the browser. The browser does not try to interpret the data for layout or styling. jQM uses
these attributes to define parts of the page for markup and then provides app-like transitions
between loaded "page"s.

Default behavior for standard jQM links it to fetch the page via AJAX, search the page for the
data-role="page" element and append that to the current HTML document's body. Using
this method, if you have a JavaScript on one page that does not appear on the home page or
if your Drupal.settings variable has different values on the new page, then they will be
ignored. For those pages that load their own JavaScript and CSS, we will need to link them
with the data-ajax="false" property set. This will keep jQuery from trying to load the
page without all of its components in place.

The sample core of a jQM page looks something like this:

<div data-role="page">
 <div data-role="header">Single page</div>
 <div data-role="content">…</div>

Chapter 8

[213]

 <div data-role="footer">Footer content</div>
</div>

Using this markup you will get a screen similar to the following screenshot:

jQM has five default themes (A–E). You can use any of the five in combination with each
other in dialogs, headers, footers, and body content:

Time for action – using jQM as our base theme
jQuery mobile is a theme and a module. We will need to install both.

1. Open a terminal and enter the following commands:

cd ~/Sites/dpk

drush dl jqm jquerymobile

drush pm-enable jquerymobile

cd sites/all/libraries

git clone git://github.com/jquery/jquery-mobile.git

Services with a Smile

[214]

cd jquerymobile

make

export VER=`cat version.txt`

cp compiled/jquery.mobile.js "jquery.mobile-${VER}.js"

cp -R compiled/images .

cp -R themes/default/images .

drush vset jquerymobile_current_version `cat version.txt`

ln -s `pwd` ../../modules/contrib/jquerymobile

Carat v/s single quote v/s double quote

In shell scripting, the carat mark (the key typically placed to the left of the
number 1 on your keyboard), the single quote (to the right of the semi-
colon), and the double quote are not used interchangeably. The carat mark
is used as "execute the command enclosed and return the result". In the
preceding export command, `cat version.txt` reads the file named
as version.txt and returns the contents of the file to the screen, which
is captured by the carat-quote and returned into the VER variable. On the
fourth-last line, the double quote does a variable substitution on the ${VER}
variable and returns the value with the string to rename the file with the
version number. The single quote is used to quote items without variable and
control-key substitutions. Double quote is used on items where there are
escape or variable substitutions. Be careful while using the quote when you
are typing these commands.

2. At this point Drush will ask you if you are sure that you want to set this
variable. Choose 1 to indicate "yes". Your folder should now look similar
to the following screenshot:

Chapter 8

[215]

3. Navigate to Configure | Appearance | List and enable the jQM theme.

4. Add the following line to sites/all/themes/dpk_mobile/dpk_mobile.info:

base theme = jqm

5. If you look in the new jqm theme, there is a folder called templates. Copy this
folder to your dpk_mobile theme folder. page.tpl and html.tpl already exist in
the theme. Move them into the templates folder overwriting the files that we just
copied. You should have your previous page.tpl and html.tpl with several new
templates for node, comment, and block.

6. On the full-site, navigate to Admin | Appearance | Settings | Themes | DPK
Mobile. Under the item jQM settings, change all the options to b and save the
theme settings:

7. Delete everything in page.tpl.php and replace it with the following lines of code
(leaving out my explanation lines):

<?php
// $Id:$
global $user;
?>
<div data-role="page" id="<?php print $jqm_page_id ?>" data-
 theme="<?php print $page_data_theme ?>" >

Notice the data-role and data-theme attributes. data-role attribute enables
every page to act like a jQM "Page". data-theme takes its value from the settings of
the theme. We will discuss this more in a minute:

<header data-role="header" data-position-"inline">

Services with a Smile

[216]

I would like an iPhone-style header across the top. The jQM role for this is
simply header:

<?php if (!$is_front): ?>
 <?=l("home", "<front>", array("attributes" => array("data-
role"
 => "button", "data-icon" => "back", "class" => "ui-btn-
left")));?>
<?phpendif; ?>

If we are not on the home page, add a Home button. Notice that the use of data-
role and data-icon are combined with the jQuery UI styling class of ui-btn-
left, which will float the button to the left-side of the header:

<h1><?php print $title ? $title : $site_name; ?></h1>
 <?php if ($user->uid == 0) { ?>
 <ahref="#login" data-role="button" data-icon="gear" class="ui-
btn-right" data-rel="dialog">Login
 <?php } else { ?>
 <ahref="/user/logout" data-role="button" data-icon="gear"
class="ui-btn-right" data-rel="dialog" data-ajax="false">Logout</
a>
 <?php } ?>
</header><!-- /data-role="header" -->

If the user is not logged in, add a Login button. If the user is logged in, add a Logout
button. The Drupal logout page is a simple cookie that is destroyed, and then
redirected back to the home page. We will need to specifically prohibit this page
from loading via AJAX. In order to do that, we have added a data-ajax="false"
property:

<?php if (isset($tabs) && $tabs): ?>
<nav data-role="navbar">
<?php print render($tabs); ?>
</nav><!-- /navbar -->
<?phpendif; ?>

For standard Drupal editing tabs, render them as a data-role="navbar":

<article data-role="content" data-theme="<?php print $jqm_content_
data_theme ?>">
<?php if ($show_messages&& $messages): ?>
 <div class="ui-body ui-body-e">
 <?php print $messages; ?>
 </div>
<?phpendif; ?>

Chapter 8

[217]

Theming the messages pane with ui-body-e will give it a yellow "Post-It" look:

<?php print render($page['content']) ?>
<?php print render($page['content_bottom']); ?>
</article><!-- /data-role="content" -->

<footer data-role="footer" class="footer">
<h1>Footer Content</h1>
<?php print render($page['footer']) ?>

</footer><!-- /data-role="footer" -->

</div><!-- /data-role="page" -->

<!-- /page.tpl.boundary -->

Finish the standard page and close the tags.

8. Navigate to Configure | Blocks and then click on the DPK Mobile theme. Make
the Main menu active in the Content region. Click on the Save button to save the
block configuration:

Services with a Smile

[218]

9. Navigate to Configure | Development | Performance and clear the Drupal
Site cache.

10. Navigate to the mobile site and your page should look similar to the
following screenshot:

What just happened?
We edited the page.tpl.php file of our mobile theme and added the jQuery Mobile
functionality—first, by making the jQM theme our base theme, then by adding elements
to the page.tpl that allows the jQuery Mobile to make sense to the page. jQuery Mobile
scans the page and looks for data-* properties or elements to let it know what to do with
the elements that it finds. We also added a login page to the bottom of the main page
template. On AJAX-loaded sub-pages this login request will be ignored. We added a link
to that login form in the top header. After the user is logged in, the link will show up as a
Logout link.

Chapter 8

[219]

This is a great improvement in the look and feel for our page, but it has still got some
problems. Click on the login form and try to log in. Once you submit the login form, Drupal
tries to redirect you back to the home page for a successful log in and jQuery mobile doesn't
understand the redirect. Let us use what we learned about logging in via a Services AJAX call
to submit this login form. We will then transit the user back to the current page.

Have a go hero
On another site you are working on making a JavaScript call that retrieves content from this
site and re-uses it on the second site. As the DPK site is local to your computer, it should only
appear when you view the site locally. Make sure there is no visible JavaScript error when it
fails for everyone else.

jQuery Mobile JavaScript Events
jQuery Mobile adds jQuery's legendary ease of use in crafting event listeners to the touch-
screen space. With jQM on the page, we get all of the gestures mobile users are familiar with
added to jQuery's event binding. Gestures such as tap, swipe, and tap-hold can be used to
trigger user events on the page. In addition, we can bind them to accelerometer events such
orientation change. Understanding that each HTML page can have multiple jQuery Mobile
data-role="page" elements, we can use jQM's events to bind actions before those
"pages" show, after they are shown, on page init, and so on.

What we need to do, is lasso that login form, submit it via AJAX, and redirect the user back
to the front page. Let us get started.

Time for action – the AJAX login form
Add the following lines to the following files:

1. To the bottom of the sites/all/themes/dpk_mobile/templates/page.tpl.
php file, add the following lines:

<?php if ($user->uid == 0) { ?>
<div data-role="page" id="login" data-theme="<?php print $page_
data_theme ?>">
 <header data-role="header" data-position-"inline">
 <h1>User Login</h1>
 </header>
 <div data-role="content" data-theme="<?php print $page_data_
theme ?>">
 <?php $form = drupal_get_form("user_login");
$form['#attributes']['data-ajax'] = "false"; echo drupal_
render($form); ?>

Services with a Smile

[220]

 <div class="ui-body ui-body-e" style="display:none;" id="form-
errors"></div>
 </div>
</div>
<?php } ?>

2. Edit the sites/all/themes/dpk_mobile/js/global.js file by adding the
following lines:

Drupal.behaviors.jQMPageInit = {
 attach: function(context) {
 $("#user-login").not(".jQMPageInit-processed").
submit(function(evt){
 if (evt) { evt.preventDefault(); }
 toSubmit = {
 "username": $(this).find("#edit-name").val(),
 "password": $(this).find("#edit-pass").val()
 }
 $.ajax({
 url: "/rest/user/login.json",
 dataType: "json",
 data: toSubmit,
 type: "post",
 error: function(jqXHR, textStatus, errorThrown) {
 $("#form-errors").html("There was an error logging you
in").show();
 },
 complete: function(jqXHR, textStatus){
 document.location.href = "/";
 }
 });
 }).addClass("jQMPageInit-processed");
 $("#user-logout").not(".jQMPageInit-processed").
click(function(evt) {
 if (evt) { evt.preventDefault(); }
 $.mobile.showPageLoadingMsg();
 document.location.href = "/user/logout";

 }).addClass("jQMPageInit-processed");
 },
 detach: function(context){
 }
 }

http://m.dpk.local

Chapter 8

[221]

3. Navigate to http://m.dpk.local. The login/logout process should work
as expected.

What just happened?
Most of the normal Drupal interaction is circumvented by the jQuery Mobile in favor of AJAX
loads. In this example, we are taking the normal login process and making it AJAX-ified. We
create a login form that is a jQuery Mobile role=dialog at the bottom of the page. It will
pop-up when the user clicks on the Login button. We intercept the form's normal interaction
by telling jQuery mobile ajax=false. We then construct a Drupal.behavior JavaScript
method and attach it to our form's submit action.

The login method grabs the username and password from the form and submits it via an
AJAX call. If there is an error, we have added an errors area to the bottom of the form and
themed it with the Post-It style jQM Yellow theme.

We do the same interception with the logout form. We use the $.mobile.
showPageLoadingMsg() method to throw up a "this computer is doing something"
spinner for those times when an impatient user meets a slow server and does a simple
page redirect to the user logout URL.

Pop quiz
1. The module that provides a REST interface to Drupal's core content is called:

a. Services

b. Views

c. Displays

d. jQuery update

2. API stands for

a. All Pieces Included

b. Application Programming Interface

c. Alter Public Instantiation

d. None of the above

3. The REST programming pattern

a. Provides a stateless interface with the web server's content

b. Is the foundation of modern mobile applications

c. Uses the get, put, post, and delete verbs acting on server-based nouns

d. All of the above

http://m.dpk.local

Services with a Smile

[222]

4. HTML attributes that begin with the word "data-" are:

a. Ignored

b. The value is readable by a jQuery call

c. Used to power jQuery Mobile

d. All of the above

5. In order to read an attribute of a tag with the class name selected with a jQuery,
we use the line:

a. jQuery(".selector").val();

b. jQuery(".selector").attr("attribute");

c. jQuery(".selector").parent();

d. jQuery(".selector").load();

Summary
In this chapter we enabled the Services module and began using Drupal's services via
methods other than the standard loading of a page. This process can be used as the
backend to create powerful native applications for iPhones and Androids using standard
messaging protocols.

Sometimes the expense of creating and maintaining a native application is beyond the
reach of the client. For those instances, we started creating a jQuery Mobile site based
on the Drupal theme and module.

Using this foundation, we can build a native application based on open standards and
freely-available software. In the next chapter, we will work on some fit-and-finish items
for your mobile web app.

9
Putting it Together

Having just the vision's no solution
Everything depends on execution
The art of making art
is putting it together…
-Stephen Sondheim from "Sunday in the Park with George."

In the last few chapters we saw a lot of tools that help in making a really great
mobile site. However, now that we have the tools to make it great, how do we
go about putting it all together?

In this chapter, we are going to start putting the disparate pieces into a real, live, workable
mobile site. In this chapter we will cover:

 � Analyzing the way a working Display Suite site is set up

 � Understanding build modes

 � Creating a new build mode

 � Creating a custom field

 � Customizing properties of menu items

 � Creating a customized build mode for our content API

 � Adding custom web-downloadable fonts to our website

First, let's discuss a module that we have briefly touched on, but let's now go a little deeper
into Display Suite.

Putting it Together

[224]

Display Suite
Display Suite (DS) is the module that made Drupal more powerful than any other previous
content management suite for me. We have talked a little about it in the previous chapters
and even written some code for it, but let me go into a little more detail here.

Build mode: When a node's information is retrieved by Drupal, the node's
display is "built" by Drupal's rendering engine. The build process wraps the
viewable elements in HTML tags. This way of building a node's display is
called the build mode. Out of the box, Drupal comes with two build modes:
Full and Teaser.

In the early days of Drupal, nodes were visible basically in two ways: Teaser and Full views.
CCK gave you control over what was visible in that view on the "display" screen. You could
hide CCK elements in one view and have them visible in another. If your field referenced
a photo, you could use ImageMagick or GD to resize the photo on the fly to the correct
dimensions. However, this screen was ultimately limited to just the two modes of display.
DS changed that. It allows you to have unlimited build modes for every content type. In
addition, you could create a build mode for comments and user objects. With Drupal 7 and
the new Entity API, DS allows you to theme data entities. We will discuss more on entities
later in the chapter. For now, let's take a look at how DS works its magic.

Hooks, styles, and build modes
What is DS? At its core, it consists of two main things. First, it takes node, user, or comment
properties and wraps them in DIV's with specific class names and patterns. In the first
chapter, we mentioned that Drupal's modules extend the core by implementing a series of
"hooks" that allow you to name a function correctly and have that function executed at a
certain time with certain data. For instance, a hook that you can probably get familiar with
right away would be hook_preprocess_page. This hook allows you to alter variables on
your page.tpl before the final output is rendered. DS uses some node, user, and comment
hooks to take the data from the database, wrap it in DIVs with predefined classes, and
substitute it for what is normally returned as the rendered node. DS also adds a CSS file to
the Drupal base CSS that has some default layouts for those predefined classes. Let's take
a look at some nodes that have been themed with DS and the markup that it generates.
Performance.gov is a Drupal-based government site that is built on Drupal 6, but will help
illustrate the powerful way in which DS lays out the nodes. Consider the following page:

Chapter 9

[225]

This is a full display of the overview content type. Overview is used as the <front> page
for each of the site's different areas of focus. There are nine areas of focus that are split
into hostnames with the Domains module as we did in Chapter 3. Each domain has its own
overview. The overview data seems deceptively simple with a title, a body, and a featured
story node reference field.

Note that this is a Drupal 6 website. The screen looks slightly different in Drupal
7, but the principles are the same.

Putting it Together

[226]

The Feature Story field points to one or more of the featured story content types. Featured
stories are published across all domains, which allow different areas of focus to share the
featured story content. The DS layout also seems deceptively simple, which is shown in the
following screenshot:

As you can see, the Subtitle and Full Body CCK fields are in the Middle region and the
Feature Story is in the Right region. We have also created a customized build mode for
featured stories called Teaser with Image. We have told DS that wherever the overview is
displayed, display the Feature Story in the Teaser With Image mode and put it in the right
region. The generated markup looks similar to the following screenshot:

Chapter 9

[227]

In this case, DS has wrapped the build in a buildmode-full container. Node data
is wrapped up with a container DIV that has a generic node class, the content type
node-type-overview, and a specific node-id class node_98. The middle region has a
wrapper and container DIV, nd-region-middle-wrapper, as well as two classes that give
it space for the right-hand sidebar nd-one-sidebar and nd-sidebar-right. The middle
region's container DIV has two field wrapper DIV's. If there had been multiple entries in
the field, DS would have wrapped those entries in a field-items container DIV. Sub Title
and Full Body just have one database entry. Now, notice the nd-region-right DIV.

Putting it Together

[228]

Inside that there is a field-feature-story container with the featured story in
the buildmode we described in the DS setting: Teaser_with_image. Featured Story's
teaser_with_image buildmode looks similar to the following screenshot:

We have put the node title, the feature story image, and body properties in the Header
region, which results in line numbers 19-32 of the markup. All of the fields are stacked
in the Header region. We also have places in the site that display the feature story in a
teaser without an image and link it directly to the full version of feature stories—all with
different layouts, and without writing any markup or CSS. We estimated that by using DS
we eliminated 40% of the CSS that we would normally have to write for a project. DS is a
fantastic way to rapidly layout nodes with little or no custom code. Let's take a look at some
of the default CSS that is present in the DS. This is the Drupal 6 version that powers the
preceding example page:

/* $Id:nd_regions.css,v 1.1.2.3 2010/05/31 12:16:09 swentelExp $ */
.nd-region-header{clear:both;}
.nd-region-left{display:inline;float:left;}
.nd-region-middle-wrapper
{display:inline;float:left;width:100%;margin-right:-100%;}
.nd-region-right{display:inline;float:right;}
.nd-region-footer{clear:both;}

Chapter 9

[229]

/* default region dimensions */
.nd-region-left
{width:25%;}
.nd-region-right
{width:25%;}

/* middle region */
.nd-no-sidebars .nd-region-middle
{}
.nd-sidebar-left .nd-region-middle
{margin-left:25%;}
.nd-sidebar-right .nd-region-middle
{margin-right:25%;}
.nd-two-sidebars .nd-region-middle
{margin-left:25%;margin-right:25%;}

/* Fix for IE */
.nd-no-sidebars{display:block;float:none;margin-right:0;width:auto;}
.nd-sidebar-right{*display:inline;*float:right;*width:100%;*margin-
left:-100%;}

How does it work? Well, in Drupal 6, DS assumes a five region node with header, left, middle,
right, and footer.

.nd-region-header

.nd-region-footer

.buildmode

.node

clear:both;.nd-middle-wrapper

Width:25%

Display:inline

Float:left;

Width:50%

Margin-left: 100%;

Margin-right :-100%;

display:inline;

float:left;

Width:25%

Display:inline

Float:left;

.nd-region-left .nd-region-middle .nd-region-right

clear:both;

clear:both;

Putting it Together

[230]

The middle wrapper's margins are 100 percent on its sides to eliminate problems with older
versions of Internet Explorer. Default behavior of Display Suite is to not render any region
that does not have content. This can be overridden with the Render all regions plugin.

In Drupal 7, there are multiple layouts that one can choose from:

The word stacked indicates a header on top and footer at the bottom. Hence in Drupal 7 we
have the choice from one to four columns, equal or 50/25 width, and stacked or not stacked.
There is also a three column option with an HTML5 markup that will use header, section, and
footer elements instead of DIVs. Honestly, I don't know if I agree with the use of the HTML5
header and footer elements used this way, but this option is available if you care to take
advantage of it.

Time for action – retheming nodes for our jQuery mobile theme
We need to re-do the menu so that it looks good with our new jQuery mobile theme. Let's
get started:

1. Create a new folder in the dpk theme. Call it templates. Move page.tpl.php and
html.tpl.php into the folder. Create a new file in the folder called views-view-
list--menu--page.tpl.php with the following code as its contents:

<div class="menu-item-list">
<?php if (!empty($title)) : ?>
<h3><?php print $title; ?></h3>
<?php endif; ?>
<?php foreach ($view->result as $id => $row){
 echo drupal_render(node_view(node_load($row->nid), "full"));
 } ?>
</div>

Chapter 9

[231]

2. Create a new file in the dpk_mobile theme's templates folder called views-view-
list--menu--page.tpl.php with the following code as its contents:

<div class="menu-item-list">
<?php if (!empty($title)) : ?>
<h3><?php print $title; ?></h3>
<?php endif; ?>
<ul data-role="listview" data-theme="c" data-inset="true">
<?php foreach ($view->result as $id => $row){
 $group = node_load($row->nid); ?>
 <li data-role="list-divider" role='heading'>
 <h3><?php print($group->title); ?></h3>

 <?php foreach($group->field_items['und'] as $ref){ ?>
 <li data-role="list-item" role='heading'>
 <a href="/rest/node/<?php echo $ref['nid'];
?>?build=mobile" data-rel="dialog" data-transition="pop">
 <?php print(node_load($ref['nid'])->title); ?>

 <?php } ?>
 <?php } ?>

</div>

3. Navigate to Structure | Views and edit the Menu View that creates our list of menu
item groups. Under the Show item, click on Content and change it to Fields. Under
the Fields list, add Content: NID and remove any other components that might be
there. Your view's first column should look similar to the following screenshot:

Putting it Together

[232]

4. In the third column of the page display is a tab called Advanced. Click on the
Advanced tab, and in the resulting panel, click on the Theme Information button.

5. In the resulting overlay, there are four theming levels. Under the Style output level,
the first item might be in bold. What we want is the fourth item to be in bold, which
also coincides with the file that you have just created in the dpk theme. If this
filename does not appear here then click on the Rescan template files button. The
views should find the new template that you have added to the theme. If the fourth
item is not in bold, go back and double check the name of the files that you created
in step 1. They should be exact for views to find them:

Chapter 9

[233]

6. Once the DPK theme has found the new template, switch to the DPK Mobile theme
and rescan to make sure views has found the template for that theme. Once both
the themes have been discovered in the new template, click on the OK button in
the overlay and then Save your view in the top right-hand corner of the page:

7. Navigate to Configuration | Development | Performance and click on the Clear all
Caches button.

Putting it Together

[234]

8. In one browser window navigate to the desktop site's menu page at
http://dpk.local/menu. In another window, navigate to the mobile site's
menu page at http://m.dpk.local/menu. The desktop site should be
unchanged, while the mobile site should look something similar to the
following screenshot:

Wait! Your menu items look different from mine! We will discuss more about this in a
minute. For now, let's just get this page working.

http://dpk.local/menu
http://m.dpk.local/menu

Chapter 9

[235]

What just happened?
In our desktop site, we are using Display Suite to theme our view results. We want to
keep doing that for the desktop site, but add some markup to the mobile site so that the
jQuery mobile can transform it into a pretty list. View templates have very specific naming
conventions for very specific theming levels. We themed and named the files so that the
resulting code would theme the list of results. The first view theming template iterates
through the results of the view and themes them with a standard full view. In that template,
we have combined several actions into a single line:

echo drupal_render(node_view(node_load($row->nid), "full"));

The Iteration $ref holds a single row of view results. We changed our view to only give
us the node ID in the view results. We are using node_load to load the view from the
node ID, node_view to allow Display Suite to theme the resulting node as a full build,
and drupal_render to render the HTML for that build, all with a single line of PHP.
However, the mobile template works a little differently.

In our mobile template, we first create the UL tag with data-role="listview".
Remember our view returns menu_group nodes, and on that group node there is a field
called Items that lists the menu items for the group. We loaded the group node and made its
title a list item with data-role="list-divider". Then, we added list items underneath
the divider for each referenced node. Notice each node's link URL: /rest/node/<?php
echo $ref['nid']; ?>?build=mobile. We want to link to the REST services' node
endpoint and grab the node data with JSON. We have again consolidated commands with
the statement:

print(node_load($ref['nid'])->title);

What this statement does is it loads the node with the given node ID and from the
resulting object just prints the title. Also, notice that we have made the links for
data-rel="dialog" data-transition="pop". This will pop-up a dialog with
the resulting node in it when clicked, or rather touched.

However, when you click on the menu items, nothing shows up in the pop-up. Why is that
happening? Well, jQuery Mobile looks for a data-role="page" structure on the resulting
page to show in the dialog. We do not have a data-role="page" element in our rendered
node service that we created in the last chapter. Let's add this element to the module.

Have a go hero – adding a CSS3-based page transactions
Add CSS3-based page transitions to the jQuery mobile theme.

Putting it Together

[236]

Time for action – adding theming to the rendered node
Let's create a function to return the rendered nodes as a service.

1. Edit sites/all/modules/custom/rendered_node/rendered_node.module and add
the highlighted lines:

<?php

function rendered_node_theme() {

 return array(

 "rendered_node_content" => array(

 "arguments" => array("node" => null, "build" => null),

 "template" => "rendered_node_content"

)

);

}

function rendered_node_rest_server_response_formatters_
alter(&$formatters) {

 // Add an html response format.
 $formatters['html'] = array(
 'mime types' => array('text/html'),
 'view' => 'RESTRenderedNode',
 'view arguments' => array('format' => 'html'),
 'file' => 'rendered_node.inc'
);

}

2. Edit sites/all/modules/custom/rendered_node/rendered_node.inc.
Delete the "render_html" function entirely and change the render function as
highlighted.

class RESTRenderedNode extends RESTServerView {

 public function render() {
 switch ($this->arguments['format']) {
 case 'html':
 if (isset($_REQUEST['build'])) {

 $build = $_REQUEST['build'];

 } else {

Chapter 9

[237]

 $build = "full";

 }

 return theme("rendered_node_content", array("node" => $this-
>model,

 "build" => $build));

 }
 return '';
 }

}

3. Create a new file:

sites/all/modules/custom/rendered_node/rendered_node_content.
tpl.php with the following contents:
<div data-role="page" data-theme="b">
 <header data-role="header" role="banner" data-theme="b">
 <h1><?php echo $node->title; ?></h1>
 </header>
 <article data-role="content" role="content" data-theme="d">
 <?php echo drupal_render(node_view($node, $build)); ?>
 </article>
</div>

4. Navigate to Configuration | Development | Performance and click on the Clear all
Caches button.

5. Navigate to Admin | Structure | Layout | Display Suite. On the line that says Menu
item, click on the Manage Display option.

Putting it Together

[238]

6. Scroll to the bottom of the page. In the bottom tabs region there is a tab called
Custom display settings. Check the box labeled Mobile and click on the Save button,
as shown in the following screenshot:

7. At the top of the page underneath the Manage Display tab, you should now see a
Mobile Option. Click on the Mobile option.

8. Again, scroll to the bottom tab and click on the tab labeled Layout for the menu
item in Mobile. Choose One column and click on the Apply button. If Apply is not
available, then click on the Save button:

Chapter 9

[239]

9. On the lines labeled Body and Price, change their Region from Disabled to Content.
Click on the Save button to save the new settings.

10. Repeat steps 5 to 8 for content types Pizza, Sandwich, and Soup. For items where
the price is in alternative fields, make sure you add all the price fields.

11. Refresh the menu page and you will find that, when you click on a menu item, the
resulting pop-up looks something similar to the following screenshot:

Putting it Together

[240]

What just happened?
The code that we have written for the new view template causes jQuery Mobile to make
AJAX calls to the Services module's REST endpoint asking for a node that is themed in HTML.
We created a theming function for our Services endpoint that adds some markup to allow
jQuery mobile to load the node into a jQM dialog. We then created mobile builds of all our
menu item nodes to make sure that the title is not duplicated on the themed node. We have
put the node title in our View template and will not need it in the node's build.

We have come a long way in our mobile theme in a very short time, but we need to make
sure that the Locations page does not load with jQuery mobile's AJAX API. In order to
accomplish this, we will have to write some code that alters how menu items are written.

Have a go hero – adding an API hook
Add an API hook to correctly render a User's homepage (e.g. user/USERNAME/view).

Beyond core menu items
Drupal's menu structure did not get a major renovation since version 5.0. I am hoping that
this will change with Drupal 8, but I am not holding my breath. Until then, we will have to put
up with a witches brew of add-on menu functionality. One such module is Menu Attributes.
How many times have you wanted each menu item to have a unique ID? Menu attributes
solve that problem. How many times have you wanted to add extra classes to menu items?
Menu Attributes solve this problem as well. What Menu Attributes does is extend the
functionality of menu items to allow a series of standard markup choices to be changed
on a per-menu-item basis. However, it is much better than just that.

Menu Attributes adds its own hooks, so that you can add your own attributes to menu
attributes' configuration options. Consider that at the beginning of this book you probably
did not know that the data-role and data-theme properties exist and as little as a
year ago, they did not exist at all. This is fantastic news! We can add some of our data-*
properties to Menu Attributes with a little bit of hook magic. Let's get started!

Time for action – customized menu attributes
Let's install the Menu Attributes module and create a custom module with a new hook.
We will explain how and why this works:

1. Open a command-line terminal and enter the following commands:

cd ~/Sites/dpk

drush dl menu_attributes

Chapter 9

[241]

drush pm-enable menu_attributes

mkdir sites/all/modules/custom/jqm_menu_hooks

touch sites/all/modules/custom/jqm_menu_hooks/jqm_menu_hooks.
module

touch sites/all/modules/custom/jqm_menu_hooks/jqm_menu_hooks.info

2. Add the following lines to the empty file at sites/all/modules/custom/jqm_
menu_hooks/jqm_menu_hooks.module:

<?php

functionjqm_menu_hooks_menu_attribute_info() {
 $info = array();

 $info['data-ajax'] = array(
 'label' => t('jQuery Mobile data-ajax=FALSE'),
 'description' => t('Prevent the menu item from loading via
 ajax in the jQuery mobile environment. Default is true.
 Checking this box makes the value false.'),
 "form" => array(
 '#type' => "checkbox",
 '#default_value' => false,
 "#return_value" => "false"
)
);

 return $info;
}

3. Add the following lines to the empty file at: sites/all/modules/custom/jqm_
menu_hooks/jqm_menu_hooks.info:

name = jQueryMobile Menu Hooks
description = "Adds options to menu items related to jQuery
Mobile."
version = VERSION
core = 7.x
version = "7.x-1.x-dev"
project = "jquerymobile"
dependencies[] = jquerymobile

Putting it Together

[242]

4. Hop back over to the terminal window and type the following commands:

drush pm-enable jqm_menu_hooks

drush cc all

5. Navigate to Structure | Menus | Main Menu | List Links and edit the Locations link.
There should be a new area called Menu Item Attributes. In that area, click on the
checkbox for data-ajax=false. Click on the Save button to save the menu item.

6. If you refresh the mobile site and view the source, the Locations menu item will now
have the data-ajax="false" property. When you click the Locations item in the
menu, the Locations page will load and all the JavaScript will work.

What just happened?
The Menu Attributes module creates a Drupal hook, namely hook_menu_attribute_
info. If you look in the Menu Attributes module, you will see that in menu_attributes_
info there is a call to module_invoke. What module_invoke does is, it goes out to
every installed Drupal module and finds out which ones have functions with the name the
function invokes. It then sends the given data to those module's functions. This is how hooks
are created. Returning a form item with that hook will add that option to the options that
Menu Attributes tracks for menu items. We do not have to worry about storing the values or
anything else because Menu Attributes takes care of the data after that. If you ever see Nick
Schoonens at DrupalCon make sure that you buy him a beer for a very well written module
with properly implemented module hooks.

There are just a few more minor details we need to clean up before we can call this mobile
theme done.

Fonts
Any discussion of modern custom theming would not be complete without a discussion of
fonts. About 10 years ago I had to break it to designer after designer, that when you do a
web design, you could either have the font you wanted in a GIF, or you could have editable
text, but you could not have both. More recently, that has changed.

Starting in about 2000, web browser coders started attempting to create a vision for how
to make downloadable fonts more sensible. It was a balancing act. You didn't want to put
your nice new font out on the web for just anyone to download, but at the same time, you
wanted the browser to be able to download a typeface, or a subset of a typeface, on the
fly and render text in the font. There were a lot of competing standards. Adobe advocated
their PostScript format, but the file sizes were very large. Microsoft extended the TrueType
font standard to allow embedding in Word documents and in web pages through Internet
Explorer. TrueType, however, was a licensed format.

Chapter 9

[243]

Open source browser creators like Mozilla and kHTML/WebKit embraced more open
formats, none of which ever really took off. About 2007 when everyone sort of "decided"
on OpenType as the standard going forward, the font manufacturers began licensing
commercial fonts for "web embedding". The URL's on which the downloadable fonts could
be used would be programmed in the font itself making downloading it and attempting to
use it on a desktop machine useless. In the meantime, older browsers (for example, Internet
Explorer) can make use of existing technology by using downloadable TrueType fonts. The
long and the short of it is that web page font embedding is now a reality. There is even a
format that is supported in Mobile Safari and Mobile Webkit on Android.

Browser Font Standard Supported

Internet Explorer Embedded OpenType (EOT)

Firefox Truetype, Opentype, and .WOFF

Webkit/Safari/Chrome Truetype, Opentype and .WOFF

Mobile Safari/Mobile Webkit SVG

However, here is the thing: for as large as images are, fonts are sometimes even larger.
Certain languages of some fonts can be as much as 500KB+ and to download three or four
weights for a web page would make it impossibly slow for some users.

Hence, my advice to you is to be judicious with the fonts that you embed and to make sure
you have obtained the proper licensing. Google has a series of web fonts that are open
source and using them incurs no licensing fees. However, most designers want to use their
favorite version of Future or Helvetica, which has this certain look. In that case, there are
several services that will license fonts for embedding in a very cost-effective way. Fonts.
com Web fonts (webfonts.fonts.com) and Typekit (https://typekit.com/) are
two very viable options. Typekit is owned by Adobe and Fonts.com is owned by Monotype.
Between the two of them, they cover most of the named fonts that designers love to use
and the great thing about the Drupal module is that you can use them by themselves, with
each other, or in any combination. Your only limit is what your users are willing to tolerate in
terms of download times.

The Drupal module that enables font-embedding with a myriad of different services is called
Font Your Face. Let's install it and dress up some of our headlines.

Putting it Together

[244]

Time for action – adding fonts
We will be using webfonts.fonts.com for our font provider. Google has some free fonts
that you can use. Also, the Drupal module supports several different providers:

1. Navigate to http://webfonts.fonts.com and sign up for a free account.
You will need to put in your e-mail address and they will send you an e-mail
to verify your e-mail address.

2. Once your account e-mail address is verified, navigate to MyAccount | Account
Summary. There is a panel called Get your authentication key (shown in the following
screenshot). Click on the Generate link to generate the key and click on the Save
button to save it. Copy it to the clipboard and save it. You will need it once we get
to the Drupal portion.

3. Create a New Project at http://webfonts.fonts.com with your DPK URLs
as being the URLs of the website: dpk.local and m.dpk.local.

You use the pattern matching in the URLs for anything except your primary
domain. Your primary domain must be listed with no wildcards, otherwise
your fonts will not import.

http://webfonts.fonts.com
http://webfonts.fonts.com

Chapter 9

[245]

4. Add a font to the project. I have added Helvetica Black to make the headlines
stand out. It does not matter which one you add, just do not forget the name.
Once added, at the top of the page, you will see a small dialog that says You have
unpublished changes to this project. Click on it and publish the changes. Anytime
you add or remove fonts from your project, you will need to publish the changes
before you are able to use them in Drupal:

5. Open a terminal and enter the following commands:

cd ~/Sites/dpk

drush dl fontyourface

drush pm-enable fontyourface fonts_com google_fonts_api

6. In the desktop version of the DPK site, navigate to Configure | User Interface | Font
Your Face settings. Enter the Fonts.com user interface token in the space provided.
Click on the Update Fonts.com button. Now, click on the Import Fonts.com button.
If you have published your font project on Fonts.com, it should import, however
many fonts you have added to the project.

Putting it Together

[246]

7. Click on the Import Google button. It will import about a bajillion Google fonts. It
doesn't hurt to have the fonts "imported." They only show up on the front end once
they are embedded:

8. Navigate to Appearance | Font Your Face and click on the Browse fonts to embed
button. You can choose a few Google fonts if you have low standards or you can
search for the one that you added from Fonts.com:

Chapter 9

[247]

9. Once found, click on the font name, select Embed, and click on the Save button.
In the English-speaking world, you always want to import the Latin version of
your fonts. Cyrillic and Greek fonts only need be imported if you need them for
those languages.

10. If you view the source on the DPK pages now, you will see a new Javascript file:

<script type="text/javascript" src="http://fast.fonts.com/jsapi/
YOUR_PROJECT_ID.js"></script>

Putting it Together

[248]

11. Edit sites/all/themes/dpk/css/styles.css. Change the text as highlighted
on line number 38. Make sure the font-family property matches the font-family
property in the List in Drupal.

h1,
h2,
h3,
h4,
h5,
h6 {
margin: 0;
padding: 0;
font-weight: normal;
font-family: "Helvetica W01 Blk", Helvetica, Arial, sans-serif;

}

12. Edit sites/all/themes/dpk_mobile/css/styles.css adding the highlighted
lines, again, taking care that your font-family name matches the Drupal list item.

body { font: normal 10pt/12pt Helvetica, Arial, Sans-Serif; color:
#666; }
p { font: normal 10pt/12pt Helvetica, Arial, Sans-Serif; color:
#666; margin: .25em 0;}
h1 { font-family:"Helvetica W01 Blk", sans-serif; font-size: 2em;
}

h2 { font-family:"Helvetica W01 Blk", sans-serif; font-size:
1.5em; }

h3 { font-family:"Helvetica W01 Blk", sans-serif; font-size:
1.25em; }

13. Navigate to the mobile site and it should look similar to the following screenshot.
Notice that the H1, H2, and H3 items will be in the new font face:

Chapter 9

[249]

What just happened?
The Font-Your-Face module adds an interface to Drupal with several major font-embedding
sources. We added the module and connected it to an account at Fonts.com. The module
embeds code that downloads fonts for all web browsers and renders the fonts in the
browser on the fly with the page. The fonts work on mobiles as well as desktop browsers.

Again, I feel the need to warn you. Be judicious with your font downloading. It can add to
a page's download time significantly.

Putting it Together

[250]

Pop Quiz
1. Display Suite adds the following functionality to Drupal:

a. The ability to have an unlimited number of node build modes

b. The ability of content types to vary layout and add code-based fields

c. The ability of node reference fields to display nodes in a specific build mode
when referenced

d. The ability to a Allow modes to have multi-column layouts with little
or no templating

e. All of the above

2. jQuery Mobile library:

a. Adds touch events to the jQuery library

b. Adds iPhone-style theming to the page

c. Both 1 & 2

d. Neither 1 nor 2

3. In order to Add data-* properties to menu items:

a. It cannot be done

b. You must install the custom menu attributes module and write a hook

c. You must reconfigure the views module

d. You must clear the Drupal menu cache

4. Which web font technology does Firefox support?

a. EOT

b. WOFF

c. SVG

d. OpenType

e. Both 2 and 4

f. None of the above

Chapter 9

[251]

5. Which web font technology does Internet Explorer support?

a. EOT

b. WOFF

c. SVG

d. OpenType

e. Both 2 and 4

f. None of the above

6. Which web font technology does iPhone support?

a. EOT

b. WOFF

c. SVG

d. OpenType

e. Both 2 and 4

f. None of the above

Summary
In this chapter, we pulled together different elements of the mobile theme to extend a
unified jQuery Mobile look and feel to our site. We learned more about how Display Suite
themes its nodes and outputs generic DIV tags with classes in order to allow column grids
with little or no CSS creation on our part.

We changed our menu page view, so that we could use what we had learned about the
Display Suite and to put into practice the great AJAX features that jQuery mobile has to offer.

We fixed the Location menu item so that it would load in the browser correctly without
using AJAX.

Lastly, we added some fonts beyond the five web-safe fonts, which we are all used to using.
Finally, our jQuery mobile site looks good now!

10
Tabula Rasa: Nurturing your

Site for Tablets

Contrary to popular belief, tablet computing didn't begin with the iPad. In 1983,
Radio Shack introduced the TRS-80 Model 100. It was a white, slate-like, all-
in-one computer with an 8-line LCD screen and a full QWERTY keyboard, and it
cost about 1,000 USD. Apple introduced the Newton and its laptop-like cousin,
the eMate, in the mid 90s and it had an instant cult following. The handwriting-
recognition feature was revolutionary for the time, although still lacking in its
ability to be used day-to-day.

Palm had several experimental Palm Pilots that were larger than the standard
handheld, but never made the technology a shipping product until HP bought
the company and they released the HP Touchpad to compete with the iPad.
Hewlett Packard and Toshiba had been selling tablet style Windows-based
machines for several years before the iPad premiered. Windows-based tablets
were sold to vertical markets such as hospitals and medical clinics for specific
pieces of software. It's interesting to note that those software packages are
now struggling to remake their software for Android and iOS tablets.

In this chapter, we'll learn about the tablet revolution. We'll look at how the tablet is
changing both desktop and mobile computing and making us re-think some of our choices
for multiple designs and multiple URLs for our website.

Tabula Rasa: Nurturing your Site for Tablets

[254]

In this chapter, we'll:

 � Examine touch events and go over the differences between touch events and
mouse-click events

 � Learn to add touch events to our jQuery cycle on the home page

 � Take a look at the adaptive web page designs and begin the process of adapting
a design for three layouts—phone, tablets, and desktop

 � Learn to set the viewport with JavaScript

This chapter may seem a little iPad-heavy. However, iPad web traffic is about 50 times that
of its nearest competitor. How long it will retain this lead is debatable and only time will tell.
No one, however, can argue that the success of the iPad ignited sales and a re-imagination of
just what exactly a tablet computer could do and the markets they could address. There is no
industry on earth that will not be impacted by lower-cost, tablet-style ubiquitous computing.

The human touch
There's a reason touchscreen interfaces were rarely used before Apple re-invented them in
the iPhone. It's because programming them is very difficult. With a mouse-driven interface
you have a single point of contact: the mouse's pointer. With a touchscreen, you potentially
have ten points of contact, each one with a separate motion. And you also have to deal with
limiting spurious input when the user accidentally touches the tablet when they didn't mean
to. Does the user's swipe downward mean they want to scroll the page or to drag a single
page element? The questions go on to infinity.

With this chapter, we stand on the shoulders of those giants who have done the heavy
lifting and given us a JavaScript interface that registers touch and gestures for use in our
web pages. Many Bothans died to bring us this information.

To understand the tablet is to understand the touch interface, and in order to understand the
touch interface, we need to learn how touch events differ from mouse events. But that begs
the question: what is an event?

The event-driven model
Many developers use JavaScript-based events and have not even the slightest clue as to what
they can do or their power. In addition, many developers get into situations where they don't
know why their events are misfiring or, worse yet, bubbling to other event handlers and
causing a cascade of event activity.

Chapter 10

[255]

As you may or may not know, an HTML document is made up of a series of tags organized in
a hierarchical structure called the HTML document. In JavaScript, this document is referred
to through the reserved word document. Simple enough, right? Well, what if I want to
interact with the tag inside of a document, and not the document as a whole? Well, for that
we need a way of addressing nested items inside the main <html> tag. For that, we use the
Document Object Model (DOM).

DOM is a cross-platform and language-independent convention for
representing and interacting with objects in HTML, XHTML, and XML
documents. Aspects of the DOM (such as its elements) may be addressed and
manipulated within the syntax of the programming language in use. The public
interface of a DOM is specified in its Application Programming Interface (API).
For more details on DOM, refer to the Wikipedia document at:

http://en.wikipedia.org/wiki/Document_Object_Model

The body of that document then becomes document.body. The head of the document,
likewise, becomes document.head. Now, what happens when your mouse interacts with
this web page? This is said to be a DOM event. When you click, the elements that are the
receivers of that action are said to propagate the event through the DOM. In the early days,
Microsoft and Netscape/Firefox had competing ways of handling those events. But they
finally gave way to the modern W3C's standard, which unifies the two ways and, even more
importantly, jQuery has done a lot to standardize the way we think about events and event
handling. In most browsers today, mouse events are pretty standardized, as we are now
more than 20 years into the mouse-enabled computing era:

For tablets and touchscreen phones, obviously, there is no mouse. There are only your
fingers to serve the purpose of the mouse. And here's where things get simultaneously
complicated as well as simple.

http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/XHTML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Document_Object_Model

Tabula Rasa: Nurturing your Site for Tablets

[256]

Touch and go
Much of what we talk about as touch interaction is made up of two distinct types of
touches—single touches and gestures. A single touch is exactly that. One finger placed on
the screen from the start till the end. A gesture is defined as one or more fingers touching
the surface of the area and accompanied by a specific motion: Touch + Motion. To open most
tablets, you swipe your finger across a specific area. To scroll inside a div element, you use
two fingers pushing up and down. In fact, scrolling itself is a gesture and tablets only respond
to the scroll event once it's over. We will cover more on that later.

Gestures have redefined user interaction. I wonder how long it took for someone to figure
out that the zoom in and zoom out is best accomplished with a pinch of the fingers? It seems
so obvious once you do it and it immediately becomes second nature. My mom was pinching
to zoom on her iPhone within the first 5 minutes of owning it.

Touch events are very similar to multiple mouse events without a hover state. There is no
response from the device when a finger is over the device but has not pressed down. There
is an effort on the part of many mobile OS makers to simulate the hover event by allowing
the hover event to trigger with the first click, and the click event to trigger with the second
click on the same object. I would advise against using it for any meaningful user interaction
as it is inconsistently implemented, and many times the single click triggers the link as well as
the hover-reveal in drop-down menus.

Not using the hover event to guide users through navigation changes the way we interact with
a web page. Much of the work we've done to guide users through our pages is based on the
hover-response event model to clue users in on where links are. We have to get beyond that.

Drop-down menus quickly become frustrating at the second and third levels, especially if the
click and hover events were incorrectly implemented in the desktop browser. Forward and
back buttons are rendered obsolete by a forward and backwards swipe gesture.

Chapter 10

[257]

The main event
There are basically three touch events—touchstart, touchmove, and touchend. Gesture
events are, likewise: gesturestart, gesturemove, and gestureend. All gestures register
a touch event but not all touch events register gestures. Gestures are registered when
multiple fingers make contact with the touch surface and register significant location change
in a concerted effort, such as two or more fingers swiping, a pinch action, and so on.

In general, I've found it a good practice to use touch events to register finger actions; but it
is required to return null on a touch event when there are multiple fingers involved and to
handle such events with gestures.

jQuery mobile has a nice suite of touch events built into its core that we can hook into. But
jQuery and jQuery mobile sometimes fall short of the interaction we want to have for our
users, so we'll outline best practices for adding customized user touch events to both the full
and mobile version of the demo site.

Let's get started…

Time for action – adding a swipe advance to the home page
The JavaScript to handle touch events is a little tricky; so, pay attention:

1. Add the following lines to both sites/all/themes/dpk/js/global.js and
sites/all/themes/dpk_mobile/js/global.js:

Drupal.settings.isTouchDevice = function() {
 return "ontouchstart" in window;
}

if (Drupal.settings.isTouchDevice()) {
 Drupal.behaviors.jQueryMobileSlideShowTouchAdvance = {
 attach: function(context, settings) {
 self = Drupal.behaviors.jQueryMobileSlideShowTouchAdvance;
jQuery.each(jQuery(".views_slideshow_cycle_main.
viewsSlideshowCycle-processed"), function(idx, value) {
 value.addEventListener("touchstart", self.
handleTouchStart);
 jQuery(value).addClass("views-slideshow-mobile-
processed");
 })
 jQuery(self).bind("swipe", self.handleSwipe);
 },
 detach: function() { }, original: { x: 0, y: 0}, changed: { x:
0, y: 0}, direction: { x: "", y: "" }, fired: false,

Tabula Rasa: Nurturing your Site for Tablets

[258]

 handleTouchStart: function(evt) {
 self = Drupal.behaviors.jQueryMobileSlideShowTouchAdvance;
 if (evt.touches) {
 if (evt.targetTouches.length != 1) { return false; }
 if (evt.touches.length) { evt.preventDefault(); evt.
stopPropagation() }
 self.original = { x: evt.touches[0].clientX, y: evt.
touches[0].clientY }
 self.target = jQuery(this).attr("id").replace("views_
slideshow_cycle_main_", "");
 Drupal.viewsSlideshow.action({ "action": "pause",
"slideshowID": self.target });
 evt.target.addEventListener("touchmove", self.
handleTouchMove);
 evt.target.addEventListener("touchend", self.
handleTouchEnd);
 }
 },
 handleTouchMove: function(evt) {
 self = Drupal.behaviors.jQueryMobileSlideShowTouchAdvance;
 self.changed = {
 x: (evt.touches.length) ? evt.touches[0].clientX:
evt.changedTouches[0].clientX,
 y: (evt.touches.length) ? evt.touches[0].clientY:
evt.changedTouches[0].clientY
 };
 h = parseInt(self.original.x - self.changed.x), v =
parseInt(self.original.y - self.changed.y);
 if (h !== 0) { self.direction.x = (h < 0) ? "right":"left";
}
 if (v !== 0) { self.direction.y = (v < 0) ? "up": "down"; }
 jQuery(self).trigger("swipe");
 },
 handleTouchEnd: function(evt) {
 self = Drupal.behaviors.jQueryMobileSlideShowTouchAdvance;
 evt.target.removeEventListener("touchmove", self.
handleTouchMove);
 evt.target.removeEventListener("touchend", self.
handleTouchEnd);
 self.fired = false;
 },
 handleSwipe: function(evt) {
 self = Drupal.behaviors.jQueryMobileSlideShowTouchAdvance;
 if (evt != undefined && self.fired == false) {
 Drupal.viewsSlideshow.action({ "action": (self.direction.x
== "left")?"nextSlide":"previousSlide", "slideshowID": self.target

Chapter 10

[259]

});
 self.fired = true; //only fire advance once per touch
 }
 }
 }
}

2. Clear Drupal's cache by either navigating to Configuration | Performance
and clicking on the Clear cache button or entering these lines in a terminal:

cd ~/sites/dpk/

drush cc all

3. Navigate to either home page with a touch-enabled device and you should
be able to advance the home page slideshow with your fingers.

What just happened?
Let's take a look at how this code works. First, we have a function, isTouchDevice. This
function returns true/false values if touch events are enabled on the browser. We use
an if statement to wall off the touchscreen code, so browsers that aren't capable don't
register an error. The Drupal behavior jQueryMobileSlideShowTouchAdvance has
the attach and detach functions to satisfy the Drupal behavior API. In each function, we
locally assign the self variable with the value of the entire object. We'll use this in place
of the this keyword. In the Drupal behavior object, this can sometimes ambiguously
refer to the entire object, or to the current sub-object. In this case, we want the reference
to be to just the sub-object so we assign it to self. The attach function grabs all
slideshow_cycle div elements in a jQuery each loop. The iteration of the loop adds an
event listener to the div tag. It's important to note that the event listener is not bound with
jQuery event binding. jQuery event binding does not yet support touch events. There's an
effort to add them, but they are not in the general release that is used with Drupal 7. We
must then add them with the browser native function, AddEventListener. We use the
handleTouchStart method to respond to the touchstart event. We will add touchend
and touchmove events after the touchstart is triggered.

The other event that we're adding listens to this object for the swipe event. This is a custom
event we will create that will be triggered when a swipe action happens. We will cover more
on that shortly.

The detach function is used to add cleanup to items when they are removed from the
DOM. Currently, we have no interaction that removes items from the DOM and therefore
no cleanup that's necessary for that removal to take place.

Next, we add some defaults—original, changed, direction, and fired. We'll use
those properties in our event response methods.

Tabula Rasa: Nurturing your Site for Tablets

[260]

HandleTouchStart event is fired when the finger first touches the surface. We make sure
the evt.touches object has value and is only one touch. We want to disregard touches
that are gestures. Also, we use preventDefault and stopPropagation on the event to
keep it from bubbling up to other items in the DOM. self.original is the variable that
will hold the touch's original coordinates. We store the values for touch[0]. We also name
the target by getting the DOM ID of the cycle containing the div element. We can use string
transforms on that ID to obtain the ID of the jQuery cycle being touched and will use that
value when we send messages to the slideshow, based on the touch actions, like we do in
the next line. We tell the slideshow to pause normal activity while we figure out what the
user wants. To figure that out, we add touchmove and touchend events listening to the
div element. handleTouchMove figures out the changed touch value. It does so by looking
at the ClientX and ClientY values in the touch event.

Some browsers support the changedTouches value which will do some calculations on how
much the touch has changed since the last event was triggered. If it's available, we use it, or
we use the value of the X and Y coordinates in the touch event's touches array. We do some
subtraction against the original touch to find out how much the touch has changed and in
what direction. We use self.direction to store the direction of the change. We store the
direction in and tell the world that a swipe has begun on our div element by triggering a
custom event on our self object.

If you remember correctly, we used the handleSwipe method to respond to the swipe
event. In handleSwipe we make sure the event has not already fired. If it hasn't, we use
that swipe event to trigger a next or previous action on our jQuery cycle slideshow. Once
we've fired the event, we change the self.fired to true so it will only fire once per touch.

In the touchend responder, HandleTouchEnd, we remove both the touchmove and
touchend responders and reset the fired state.

But adding the touch events to both the desktop and the mobile themes begs the question,
"Into which category does the table fall?"

Have a go hero – adding a swipe gesture
Add a swipe gesture event to the Menu Item page that allows you to scroll through
menu items.

The changing landscape (or portrait)
So, if you remember, back in Chapter 4, Introduction to a Theme, we decided to go with two
sites, one for mobile one for desktop. This is where that choice breaks down. Are tablets
desktops or should they use the standard site? When does a screen size become a tablet
versus a mobile phone? And are those distinctions increasingly irrelevant? The answer to
the last question is, most assuredly, yes. This is where a new design comes into play.

Chapter 10

[261]

Responsive web design is a design discipline that believes that the same markup should be
used for both desktop and mobile screens, with the browser managing the display of items,
rather than the user choosing an experience. If the screen is smaller, the layout adjusts and
content emphasis remains.

Conversely, the popularity of Internet-connected game consoles and DVI ports on large
screen televisions gives us yet another paradigm for web pages—the large screen. I sit in
front of a 72" TV screen and connect it to either my laptop or iPad and I have a browsing
experience that is more passive, but completely immersive.

Right now, I bet you're thinking, "So which is it Mr Author, two sites or one?" Well, both,
actually. In some cases, with some interactions it will be necessary to do two site themes
and maintain them both. In some cases, when you can start from scratch, you can do a
design that can work on every browser screen size. Let's start over and put responsive design
principals to work with what we already know about media queries and touch interfaces.

"Starting over" or "Everything you know about designing
websites is wrong"
Responsive web design forces the designer to start over—to forget the artificial limitations
of the size that print imposes and to start with a blank canvas. Once that blank canvas is
in place, though, how do you fill it? How do you create "The One True Design" (cue the
theme music)?

This book is not a treatise on how to create the perfect design. For that, I can recommend
A Book Apart and anything published by smashingmagazine.com. Currently, they are at
the forefront of this movement and regularly publish ideas and information that is helpful
without too much technical jargon.

No, this book is more about giving you strategies to implement the designs you're given or
that you create using Drupal. In point of fact, responsive design, at the time of writing,
is in its infancy and will change significantly over the next 10 years, as new technology forces
us to rethink our assumptions about what books, television, and movies are and what the
Web is.

So suffice to say, it begins with content. Prioritizing content is the job of the designer. Items
you want the user to perceive first, second, and third are the organizing structure of your
responsive design makeover. In most instances, it's helpful to present the web developer
with four views of the website.

Tabula Rasa: Nurturing your Site for Tablets

[262]

Wire framing made easy
Start with wireframes. A great wire framing tool is called Balsamiq. It has a purposefully
"rough" look to all of the elements you use. That way, it makes you focus on the elements
and leave the design for a later stage. It's also helpful for focusing clients on the elements.
Many times the stake holders see a mockup and immediately begin the discussion of "I like
blue but I don't like green/I like this font, but don't like that one." It can be difficult to move
the stake holders out of this mindset, but presenting them with black-and-white chalk-style
drawings of website elements can, in many cases, be helpful. Balsamiq is a great tool for
doing just that:

These were created with Balsamiq but could have been created in almost any primitive
drawing program. There are many free ones as well as the more specialized pay ones. A
simple layout like this is very easy to plan and implement. But very few of the websites you
develop will ever be this simple. Let's take for instance that the menu item we have not,
as yet, implemented, is for online ordering. How does that work? What do those screens
look like? At this point we have a Menu page but, as per this mockup, that menu page will
become the online ordering section. How do we move these menu items we created in
Chapter 3, Selecting the Right Domain for your Mobile Site, to a place where they can be put
in an order and paid for? And more importantly, how does each location know what was
ordered from their location?

These are questions that come up in the mockup and requirements phase and whether you
are building the site yourself or being given requirements from a superior, or a client, you
now have a better idea of the challenges you will face implementing the single design for
this site.

Again, this book will focus on the implementation more than the design phase. With that,
we've been given these mockups for the new online ordering system. The following mockup
diagram is for adding an order:

Chapter 10

[263]

The following mockup diagram is for placing an order:

We'll implement these mockups using the Drupal 7 Commerce module. The Commerce
module is just a series of customized data entities and views that we can use as the building
blocks of our commerce portion. We'll theme the views in the standard Drupal way but with
an eye to multi-width screens, lack of hover state, and keeping in mind "hit zones" with fingers
on small mobile devices. We'll also add some location awareness to assist with the delivery
process. Once an order is placed, an e-mail will need to be sent to the correct franchise
notifying them of the pizza order and initiating the process of getting it out the door.

Drupal 7 Commerce module
There are some things you need to know about the Commerce module before we begin.
There are several steps to creating a product to be sold and then getting that product into
a cart to checkout.

The first step is to create the product type. The product type is a kind of a content type for
nodes. It defines the basic structure and fields that the item will have.

Tabula Rasa: Nurturing your Site for Tablets

[264]

Once you've created the product type you can create products of that type. Simply to the
nodes themselves, products are instances of their product type. Each product may have
variations that will affect the price, such as size, and in the case of a pizza, it's toppings.

Once you've created the product type and have products of that type, you can create a cart
line item to receive that product into the cart. The cart line item will allow you to show what
product options are applied to that specific product instance.

Now that the product portion is created, you need to connect it with the rest of the Drupal
universe. That's where product references come in. The product reference field is a field type
that can be added to a note to connect it to a product. You can then add a link to the product
to add it to the cart, as we will do in the Time for action – the one true theme section:

Product type Product Cart line item Node product
reference field

Analogous to content types for
nodes. Defines the fields and
options for a given product
group.

Analogous to nodes but with
pricing and features that may or
may not alter pricing.

Shopping cart
container that
holds information
about what
product options
were selected by
the user as well as
pricing based on
those options.

Allows nodes
to point
to product
entities.
Connects
products with
the rest of the
Drupal nodes.

Confused? It may make more sense when you see it in action. We've got a lot of work to do.
Ready to begin?

Time for action – the one true theme
Let's download, install, and configure the Drupal Commerce module:

1. Open a terminal window and enter the following command:

drush dl rules addressfield commerce commerce_custom_line_items

2. It doesn't make sense to enable all of the modules that come with Drupal
Commerce with Drush, so just navigate to Sites | Modules and ensure that all
of the following modules are enabled: Cart, Checkout, Commerce, Commerce
UI, Customer, Customer UI, Line Item, Line Item UI, Order, Order UI, Payment,
Payment Method Example, Payment UI, Price, Product, Product Pricing, Product
Pricing UI, Product Reference, Product UI, Tax, Tax UI, Commerce Custom
Line Items.

Chapter 10

[265]

3. Navigate to Store | Products | Product types | Add product type. Name our first
product type Pizza. Save the product type and then click on Manage Fields.

4. Under Add new field, add a field called Size with the machine name field_size and
the List (text) type displayed with the Checkboxes/radio buttons widget. Click on
Save. On the Pizza settings screen, make the Allowed values field as follows. Then
click on Save:

0|Large
16|Medium
14|Small

5. On the final settings page, make the Size field as a required field with the default
value of Large. Under Attribute field settings make sure Enable this field to function
as an attribute field on Add to Cart forms is checked and use the radio buttons
widget. Save the new field.

6. Create a new field called Toppings with the machine name field_toppings and the
List (text) type displayed with the Checkboxes/radio buttons widget. Click on Save.
Use the following settings for the Allowed values field, and then click on Save:

0|Cheese Only
ANC|Anchovies
BAC|Bacon
BAN|Banana Peppers
BAS|Fresh Basil
BOL|Black Olives
BRO|Broccoli
EGG|Eggplant
GAR|Fresh Garlic
GOL|Green Olives
GPP|Green Peppers
HAM|Ham
JAP|Jalepenos
MBL|Meatballs
MUS|Mushrooms
ONN|Onion
PEP|Pepperoni
PIN|Pineapple
SAU|Sausage
SPN|Spinach
TOM|Tomatoes

Tabula Rasa: Nurturing your Site for Tablets

[266]

7. On the final settings page, make the Size field a required field with the default value
of Large. Under Attribute field settings, make sure Enable this field to function as
an attribute field on Add to Cart forms is checked and use the radio buttons widget.
Save the new field:

8. In the top right-hand corner, click on MANAGE DISPLAY. Underneath this tab are
the currently active build modes. You may have just the default mode or you may
have several build modes. At the bottom, there's an item called Layout for pizza in
default. This panel controls which build modes you plan to customize:

Chapter 10

[267]

9. The second vertical tab controls the layout for the build mode you are currently
editing. The default build mode will be used for any display that is not customized:

10. Starting with the default build mode, select Three column stacked – equal width
under the Select a layout section and click on Save. The presentation area should
now have five regions, Header, Left, Middle, Right, and Footer. Drag the Product
SKU to the Left region, Title to the Middle region, and Price to the Right region.
Drag Size and Toppings to the Footer region as shown in the following screenshot,
and save the display settings:

Do this for each active build mode. You can worry about further customizations later.

Tabula Rasa: Nurturing your Site for Tablets

[268]

What just happened?
Remember our four-panel grid from the start of the exercise? I'll repeat it again so you don't
have to keep looking back:

Product type Product Cart line item Node product reference field

Analogous to
content types for
nodes. Defines the
fields and options
for a given product
group.

Analogous to
nodes but with
pricing and
features that may
or may not alter
pricing.

Shopping cart container
that holds information
about what product
options were selected by
the user as well as pricing
based on those options.

Allows nodes to point to
product entities and create
an Add to cart button/form.
Connects products with the rest
of the Drupal nodes.

After the modules are installed and enabled, the first thing we did was define a product type.
Before you create a node, you have to create a content type. This is the same concept. The
product type serves as the prototype for a series of products with similar features. In this
case, we basically have two features: Size and Toppings. We created the size and topping
options in the product type. We set up the Display Suite settings for our new product type
making sure that we display the size and toppings attributes.

Time for action – creating a product
Now, we need to create a product to be able to show the product on the frontend:

 1. Navigate to Store | Products | Add product | Create Pizza.

2. Give the new product the following values then click on Save product, as shown
in the screenshot:

Fields Values

Product SKU PIZ

Title Pizza

Status Active

Size Large

Toppings Cheese Only

Chapter 10

[269]

3. Navigate to Store | Configuration | Line item types | Add line item type. Name the
new line item type Pizza, check the This is a Product-type Line Item checkbox, and
change the Add form submit value to Add to order. Click on Save line item type and
then click on Manage fields.

4. Under the Add an existing field section, click on the Select an existing field pull-
down menu and select field_size. Add the label Size and the form widget as Check
boxes/radio buttons, then click on Save. Make this field required with a default
value as Large. Check the Add to cart form settings checkbox. It can have the value
as 1, and the allowed values should be filled in from the Product type listing. They
should be the same as in step 4 in the Time for action – the one true theme section.
Save the field.

5. Under Add an existing field section, click on the Select an existing field pull-down
menu and select Toppings. Add the label as Toppings and the form widget as Check
boxes/radio buttons then click on Save. Make this field as required with a default
value of Cheese Only. Check the Add to cart form checkbox. It can have unlimited
values and the allowed values should be filled in from the Product type listing. They
should be the same as in step 6 in the Time for action – the one true theme section.
Save the field.

Tabula Rasa: Nurturing your Site for Tablets

[270]

6. Navigate to Structure | Content Types | Pizza | Manage fields. Add a new field with
the label Product reference and a machine name of field_product_ref of the type
Product Reference using the Autocomplete text field widget. On the settings page
check the Render fields from the referenced Products when viewing this entity
checkbox. Save settings for the new field:

7. Click on the Manage display tab of the Pizza content type. Using the handlebars
beside the fields, replicate the same build mode settings and layout from steps 9 to
11 from the Time for action – the one true theme section—Three column stacked,
with Toppings and Size in the Footer region. Once you've moved the Product
Reference up, for Format, choose Add to Cart form. Move the old pricing fields to
the Disabled section. Our product pricing will replace them:

Chapter 10

[271]

8. Click on the line labeled Product Reference. On the select menu labeled Add to Cart
line item type, select Pizza, and then click on Update:

9. Navigate to Admin | Content and filter the list so that you see only items of the
Pizza type. Edit the Each topping node and under Publishing options, uncheck the
Published checkbox. Save the node.

10. Edit the Cheese Pizza node. Delete the values out of the Price field and, in the
Product Reference field, begin entering Pizza. The auto-complete feature will finish
your typing with the Pizza product you created in Steps 13 and 14 in the earlier
exercise. Add the following line to the body of the node:

Each toping: add $1.35/$1.65/$1.90 for SM/MD/LG

11. Save the node's display settings.

12. Hop over to your text editor and open the sites/all/themes/dpk/css/
styles.css file. Add the following lines:

 .form-item .form-checkboxes {
 -moz-column-count: 5; -moz-column-gap: 1em;
 -webkit-column-count: 5; -webkit-column-gap: 1em;
 column-count: 5; column-gap: 1em; }
 .form-item .form-radios { float:none; clear: both;
overflow:hidden; }
 .form-item .form-radios .form-type-radio { float:left; margin-
left: 10px; }
 .form-item .form-radios .form-type-radio:first-child { margin-
left: 0px; }
 .node.node-menu-item-group { border: 0px none;}
 .node-menu-item-group > h2 { margin: 0px 0px -15px 20px; }
 .node-menu-item-group > h2 a { background: white; padding: 0px
.5em .5em .5em; }
 .node-menu-item-group .content { padding: 2em; border: 1px solid
#666; }

Tabula Rasa: Nurturing your Site for Tablets

[272]

13. Clear the Drupal cache.

14. Navigate to the Menu page, and your Pizza section should now look similar to the
following screenshot:

What just happened?
We created a product for the type, Pizza. The Pizza product's default size is Large with
Cheese Only as the default topping.

Once we have the product type and the product, we then created the cart line item. This
storage bucket holds user-chosen products once they are added to the cart. We created a
customized line item just for pizza that will hold the toppings and size that the user has chosen.

Now that we have these three, we need to connect the behind-the-scenes product with the
node system where Drupal displays the bulk of its content. We do that through the Product
Reference field. We added a Product Reference field to our content objects that show up
on our Menu page, in this case, Cheese Pizza. We adjusted the Display Suite settings for our
Pizza node and unpublished the node that explains the pricing structure for extra toppings.
Once we have Display Suite set up correctly and the product's backend connected to the
node frontend, we are able to see the Add to Cart form with all the toppings and sizes.

Now that we have the basics of how to create cart items, let's work out some strategies
for implementing the mockups.

Have a go hero – adding a PayPal payment option
Add a PayPal payment option to the checkout process. When the checkout process is
finished, add an e-mail to both the customer and the correct franchise that is responsible
for delivery.

Chapter 10

[273]

A room with a viewport
Since their earliest version, mobile browsers have been able to do something desktop
browsers cannot and that was scaling the screen. They've had to do this because screen real
estate on handhelds is at a premium. Before the iPhone perfected the pinch to zoom, you
could use keys on Nokia and Blackberry browsers to zoom into and out of a rendered HTML
screen. Most mobile browsers assume that standard HTML documents are meant to have
a width of 980 pixels. Fortunately, you can control the width of the rendered screen with a
<meta> tag. You can set the viewport scale at the optimum width for whatever screen on
which its being viewed. I usually set the viewport at the optimum for the 320 by 480 pixels
screen and use JavaScript to change the settings if the screen is larger.

Let's take a look at the settings in the html.tpl.php file:

<meta name="viewport" content="width=760, initial-scale=0.74, minimum-
scale=0.4">

We can use JavaScript to adjust this setting when the screen calls for it.

Time for action – setting the viewport with JavaScript
Edit the sites/all/themes/dpk/js/global.js file. Add the following lines:

Drupal.behaviors.browsers = {
 attach: function(context, settings) {
 if (Drupal.settings.isTouchDevice()) {
 // default is iPad settings, if phone, swap it out
 if ($(window).width() <= 480) {
 $("meta[name=viewport]").attr("content",
"width=device-width, initial-scale=1, maximum-scale=1")
 }
 }
},
detach: function(context,settings){}
}

What just happened?
So the first item sets the <meta> tag, viewport with settings that are complimentary to
an iPad or large-format tablet. We set the width to 760 which will make the page visible
on the tablet and is squarely in the center of our middle width. If the screen size is less than
480 pixels, the JavaScript behavior trades out the viewport setting for the one that sets the
width of the viewport at the device's width.

Now, let's add back the media queried style sheets and implement the wireframe designs.

Tabula Rasa: Nurturing your Site for Tablets

[274]

Time for action – advanced media queries for tablets
1. Rename sites/all/themes/dpk/css/styles.css to sites/all/themes/

dpk/css/global.css. As shown in the following screenshot, add three more files
in that folder—global_480.css, global_800.css, and global_1024.css.

2. Edit the file, sites/all/themes/dpk/dpk.info. Add the highlighted lines in
the following code snippet:

stylesheets[all][] = css/global.css

stylesheets[print][] = css/print.css
stylesheets[screen and (max-width: 480px)][] = css/global_480.css

stylesheets[screen and (min-width: 481px) and (max-width: 1024px)]
[] = css/global_800.css

stylesheets[screen and (min-width: 1024px)][] = css/global_1024.
css

3. Edit the file, sites/all/themes/dpk/css/global.css. Change the lines as
shown in the following code snippet. Delete the min-width lines and add the
highlighted content:

/* With 3 columns, require a minimum width of 1000px to ensure
there is enough horizontal space. */
body.two-sidebars {
}
/* With 2 columns, require a minimum width of 800px. */
body.sidebar-first,
body.sidebar-second {
}

Chapter 10

[275]

/* We must define 100% width to avoid the body being too narrow
for near-empty pages */
#wrapper #container #center {
 float: left; /* LTR */
 width: 100%;
}

/* So we move the #center container over the sidebars to
compensate */
body.sidebar-first #center {
 margin-left: -15%; /* LTR */
}
body.sidebar-second #center {
 margin-right: -15%; /* LTR */
}
body.two-sidebars #center {
 margin: 0 -15%;
}

/* And add blanks left and right for the sidebars to fill */
body.sidebar-first #squeeze {
 margin-left: 15%; /* LTR */
}
body.sidebar-second #squeeze {
 margin-right: 15%; /* LTR */
}
body.two-sidebars #squeeze {
 margin: 0 15%;
}

footer { height: 100px; background: #333; text-align: center;
color: white; position: fixed; bottom: 0px; left: 0px; width:
100%; }

4. Add the following lines to sites/all/themes/dpk/css/global_480:

#views_slideshow_cycle_main_home-page { display:none; }
#main-header { height: 65px; }
#main-header .container { height: 65px; }
.search-form { top: 10px; right: 0px; }
#main-header h1 a { width: 150px; height: 55px;
 background: transparent url(../images/logo_sm.png) no-repeat
center center;
 }

Tabula Rasa: Nurturing your Site for Tablets

[276]

#commerce-checkout-form-checkout fieldset.cart_contents {
float:left; }
#commerce-checkout-form-checkout fieldset.customer_profile_billing
{ }
#commerce-checkout-form-checkout fieldset.customer_profile_billing
.fieldset-wrapper { display:none; }
#commerce-checkout-form-checkout fieldset.checkout-buttons {clear:
both; }

footer { position: fixed; bottom: 0px; left: 0px; width: 100%;
height: 40px; }

5. Open a WebKit-based browser or Firefox and visit http://dpk.local/menu.
Add a menu item to the cart. If you size the window up and down, the layout now
responds to size change, by making both the header and footer logos smaller and in
fixed position.

What just happened?
This is where the importance of semantic markup comes into play. Notice how the logo is not
an image, it's an <h1> and <a> tag with a background image, width, and height applied by CSS
rule. Well, because there's no hard image on the page as we size up and down we can swap out
the width and height on the <a> tag. Tricks such as these are the basis of responsive design.
We use CSS rules to describe the three base layouts of our site—phone, tablet, and desktop.

Pop quiz
1. The DOM is:

a. Cross-platform

b. Cross-language

c. A programmatic way of addressing HTML tags

d. None of the above

2. Commonly used mouse events are:

a. mouseenter, mouseleave,mouseup, mousedown

b. mousemove, mousestart, mouseend

c. mouseback, mouseforward, mouseadvance

d. None of the above

http://dpk.local/menu

Chapter 10

[277]

3. Commonly used touch events are:

a. touchenter and touchleave

b. touchup and touchdown

c. touchback and touchforward

d. touchstart and touchend and touchmove

4. Responsive design:

a. Seeks to have a single design for all screen sizes

b. Depends on media queries to serve the correct CSS

c. Both a and b

d. Neither a nor b

5. Drupal Commerce product types:

a. Are analogous to content types for nodes

b. Define the fields and options for a given product group

c. Both a and b

d. Neither a nor b

6. Drupal Commerce products are:

a. Analogous to nodes

b. Feature pricing

c. Features that may or may not alter pricing

d. All of the above

7. Drupal Commerce cart line items:

a. Add a shopping cart container that holds information about products

b. Understand which options were chosen by the user

c. Calculate pricing based on features and options

d. All of the above

8. Node product reference fields:

a. Point to products

b. Associate nodes with product entities

c. Are able to display an Add to Cart button

d. All of the above

Tabula Rasa: Nurturing your Site for Tablets

[278]

Summary
In this chapter, we examined touch events and went over the differences between touch
events and mouse-click events. We added touch events to our jQuery cycle on the home
page so that the user can advance the slideshow with their fingers.

We took a second look at adaptive web page designs and began the process of adapting a
design for three layouts. We added CSS for each layout and began the process of defining
the look and feel of each of the three use cases.

In the next chapter, we'll go over staging and then deploying a Drupal site in a way where
the web developer doesn't spend hours on configuring the server.

11
 A Home in the Clouds

At this point in the writing of this book, the earlier chapters of the book have
gone on sale in the raw form, and I am starting to get some user feedback.
Most of the newbies that have read, and used, the book have had a similar
reaction: "There is too much command line stuff. Why do we have to learn
Drush? Do we really need all the command line stuff to make the website work?
Why can't you make it a simple, easy-to-use web interface?"

Well, there is a reason why Drush and drush_make are powerful tools, and you
are going to see in this chapter how it all fits together. Also, you will see how
using a drush_make-based workflow will free you from many of the boring
repetitive tasks that occupy your day so many times, and impede development
as well as progress.

In this chapter, we will cover the following topics:

 � Understanding some of the problems with our current system of development

 � Setting up an Amazon virtual hosting account

 � Setting up an account with the RightSpace virtual host management

 � Creating a server pattern for our RightSpace host manager to clone the servers off it

 � Cloning a development server

 � Installing Jenkins on that server

 � Using Jenkins to deploy our code from GitHub

 � Using Jenkins to backup or restore our databases

 � Using Jenkins to sync our sandbox server to our production server

A Home in the Clouds

[280]

Problems introduced by modern websites
Once upon a time, web pages were a single HTML document. When you made them live,
you logged into a server you were sharing with 100 other websites, and uploaded the files
through the File Transfer Protocol (FTP). For each web page, you had maybe six, eight, or ten
images that needed to be uploaded to the images folder along with the web page. It was a
simpler time then.

But then technologies such as PHP, JavaScript, and CSS changed all that. It was no more that
a web page was confined to one page. Instead, you had multiple pages, and several files that
were shared across the multiple web pages. There were tons of image files for each web page,
and you had to take care to name each image so that it did not conflict with the naming of the
other images for other pages. You tried to establish commonalities among the pages. You may
have put your header and footer in a single file to aid with the organization. Your pages became
a mound of spaghetti code with inclusions from all over your document tree.

Then along came Drupal. It allowed you to concentrate on a single code tree, and share a
theming layer among all the pages. If you built custom functionality into the modules, you
could compartmentalize so that the look and feel of the site was consistent.

But now we have another series of problems:

 � Upgrading Drupal, and its contributed and core modules, when security updates
become available.

 � Staging your site for development and production so that the development site is
off limits to the search engines, prying eyes, and hackers, and the live site never gets
the experimental code that might bring it to its knees.

 � Testing functionality on devices like the phones and tablets as you are developing
your site on your local machine.

 � Syncing the code and database between the live site and the "staging" site and
multiple other environments.

 � You have seven clients, that is, all Drupal installations. All of them have servers on
different hosting providers with different configuration options on each server, but
you are just a single web developer. How do you manage that mess without an
entire operations department at your service?

All these problems have been solved in multiple ways by different developers all over the
world with multiple open source tools, and we should learn from their mistakes, and create
a development workflow that works for the project. We are going to suggest some strategies
that we hope will be helpful for using the latest in Cloud services, more specifically,
RightScale and Amazon. We will set up some accounts on Amazon or Rackspace and
RightScale to begin this process, and go through a sample server and code deployment.
But first, let's get some of our jargons out of the way.

Chapter 11

[281]

Amazon Web Services (AWS)
Amazon has been a sort of retail clearing house that allowed other retailers to list products
on their site. Over the years, they created some Application Programming Interfaces
(APIs) to allow access to other retailers to list the products, relay shipping, and fulfillment
information, so that customers of Amazon had a single frontend to glean all the information
about their orders.

Sometime around late 2001, Amazon took the business decision to take some of the web
services they were using in-house and make them available to the retailers, and to the
general public for sale. Based on this ideology, Amazon Web Services (AWS) was born.

AWS is an umbrella term that encompasses all their electronic offerings related to storage,
hosting, and content delivery over the web. Underneath the AWS banner, there are many
other acronyms for the various products they offer:

 � Simple Storage Service (S3): Think of this service as an elastic hard drive in the
cloud. It is a place to store backups from the servers and the files that need to be
made available to multiple locations safely and securely.

 � Elastic Computing Cloud (EC2): Recall the time when a server was a huge rack of
computers sitting in a closet in the office of your company somewhere? How many
times have there been issues where someone goes into the closet and turns off the
machine, or the air conditioner leaks and kills the server, or some other hard drive
failure, and the server dies only to leave the website down and the information
technology of your business stranded. Amazon has thousands of servers in server
farms all over the world and you can log in, select an operating system, and boot a
virtual server instance as you would boot any other server. We are going to do that
in just a minute, but we will cover a few more acronyms before we begin.

 � Electronic Billing Solutions (EBS) storage: When you create a virtual server
instance, storage of it is virtual, as well as lives and dies with the server. When the
server is terminated, the storage disappears into the cloud, as if it never existed.
Sometimes, we need to make the storage available to those servers that do not
disappear when the instance is terminated. For this, Amazon created EBS storage.
It is built on their S3 storage product, but made available to the server instances
easily, to allow the database backups and files to be copied from one server
instance to another.

 � Virtual Private Cloud: It allows server instances that are available only through
a secure Virtual Private Network (VPN) connection. This service is for those
applications that contain the data, and want to limit the interactions only to the
members of their virtual network.

A Home in the Clouds

[282]

Amazon is only one of many virtual server providers. We are using them for this example but
you could easily use Rackspace or Slicehost to create one or more small virtual servers for
development. The tool we are going to use, that is RightScale, will work with many different
virtual server providers. However, since most people these days have an Amazon account,
I figured that it would be the "path of least resistance" to add the AWS service to your
Amazon account for the purpose of this exercise, and you could do it without incurring a
large signup fee which brings us to the big disclaimer.

You will be charged if you use Amazon to create a server as instructed in this example,
as follows:

Amazon EC2 instances are all pay-per-use. You pay only for the time the server is running.
Pricing of Amazon, based on the examples we create here, is about two dollars per day in
the US. If you create the example, and immediately terminate all the servers, you should be
charged less than five dollars for the exercise. If you do not want to spend the money to do
the exercise, it is easy enough to follow without actually doing anything, or incurring any
charges. I will make it clear as to the point from where you will be charged.

So if you are ready, let's set up your Amazon Web Services account. It is free. You will only
be charged when you start launching the server instances. Ready? Here we go:

RightScale versus Puppet: RightScale is a commercial service that allows
you to create, clone, and manage multiple virtual servers in several different
commercial virtual server farms. RightScale is a feature with a limited free
version, and I believe they are planning to phase-in a limitation on the number
of servers that you can control as well. There is also an open source product that
will do similar things. The software is called Puppet (http://puppetlabs.
com). Puppet Labs is truly an open source software (OSS), that is, the software
is free, and the company makes money from the consulting and training. I
would not advise a deep dive into Puppet unless you have experienced some
training from the company. Puppet is primarily for experienced server operations
engineers. If you know people who are experienced in Puppet, you are more
than welcome to consult about this exercise with them, and they can probably
show you much better ways to do this using Puppet. RightScale was selected
for this exercise because it is very easy to use. If you continue to use RightScale,
you will eventually come up against a limitation of the free product, and you
can make a decision at that point as to whether to get a staff member trained in
Puppet, or spend the money on the commercial version of RightScale. Good luck
with either.

http://puppetlabs.com

Chapter 11

[283]

Time for action – setting up AWS and RightScale
1. Navigate to http://aws.amazon.com, and in the top right-hand corner, click

on the Create an AWS Account link. You will be asked to sign in to your Amazon
account, and indicate a form of payment for any charges you incur. You would not
be charged at this time. You will be charged when you launch the server instances,
later in the chapter. Amazon will dial the phone number connected to your Amazon
account, and ask for a Personal Identification Number (PIN) that will be displayed
on the screen. After the account is completely set up, you will get an e-mail
notification that it is ready to use:

2. Once your account is ready to use, select Sign in to the management console, and
then in the top right-hand corner, click on the name on the account, and then select
Security Credentials. There are three numbers on this page that you need. The first
is your Account Number.

http://aws.amazon.com
http://aws.amazon.com

A Home in the Clouds

[284]

3. The second is your Access Key ID. It is on a tab named Access Keys close to the
center of the page, as shown in the following screenshot:

4. The third is your Secret Access Key. In the area following the Secret Access Key,
there is a link that simply says Show. Click on the link, and your access key will
appear in a pop up. Copy these three numbers to some easily-accessible place:

You will need them while signing up for RightScale.

Chapter 11

[285]

5. The other thing you will need while signing up for RightScale is an X.509 Certificate:

6. The second tab on the tab group where you got the secret key is named as X.509
Certificates. When you click on Create, Amazon will give you two files to download,
which will be the keys to get into your virtual machines, and to change the settings
in your Amazon account. Treat these files like credit card numbers. Save them
somewhere as "important":

A Home in the Clouds

[286]

7. Once you have all the three numbers and both the certificates, navigate to http://
rightscale.com, and choose Create a Free Account in the top right-hand corner.
The account setup is straightforward. Once you have created an account and logged
in, you are presented with a dashboard. On the front of the dashboard are two large
buttons, one of which reads Connect to Cloud. Click on Connect to Cloud, and there
will be a place to add an Amazon or Rackspace account. Click on the green plus
beside AWS. In the first step, enter the Amazon Account Number, and the keys using
the information you got from the security credentials in the first step, as shown in
the following screenshot:

8. Next, Rightscale will create a new Secure Shell Key (SSH) pair, that is, SSH Key Pair.
An SSH key pair consists of a private and a public key that allows you to access the
servers created by RightScale. We will use this to log into the server later. Create one
using a logical name. Click on Continue:

http://rightscale.com

Chapter 11

[287]

9. Next, create a security group for your servers. Just go with the default ports.
Click on Continue:

10. In the resulting screen, you should see Your Clouds with all the the Amazon regions
flashing green. Click on the pencil beside one of the regions, as shown in the
following screenshot:

A Home in the Clouds

[288]

11. The next screenshot is the part where we upload the two X.509 certificates. Expand
the Show Advanced area. Open each one of them individually with a text editor, and
copy or paste the contents into the appropriate text area. Save the information, and
you will be returned to the clouds page with all the green light besides the Amazon
regions. Rightscale now has access to all your Amazon credentials, as shown in the
following screenshot:

What just happened?
We set up an account at Amazon Web Services, and then at RightScale, and gave RightScale
the access to our Amazon account with the ability to configure and launch server instances.
We do that through a system of X.509 Keys.

Chapter 11

[289]

We all know that when you use FTP, SFTP, or SSH to log into a server, you can do so with a
username and password. But passwords have some very obvious problems. Firstly, people
forget or lose them. Secondly, people pick those passwords that are easy to remember,
eventually turning out easy for other people to guess or figure out. So when you manage
more than ten servers, different environments, and different sites, the passwords start to
get unmanageable.

X.509 keys solve this problem by putting a key on your computer that will allow access to
the servers and accounts. Amazon uses these keys to identify the users and to authorize the
applications for users through their APIs. This key has two parts, a certificate and a key. Think
of them as identifying the client and server. If you have both, you can become both the
client and the server at your will. We gave RightScale both certificate and key so as to enable
a two-way communication from our RightScale account.

Time for action – using an AMI to create a server
Now that we have set up our account, let's create some servers: from the top menu on the
RightScale website, choose Design I MultiCloud Marketplace | MultiCloud Images, as shown
in the following screenshot:

A Home in the Clouds

[290]

1. In the resulting page, search for ubuntu. There are two Ubuntu 11.X images,
one for i386, and the other for x64. Select the 11.X for i386, as shown in the
following screenshot:

2. Click on Import to import the Ubuntu image into your usable templates, as follows:

Chapter 11

[291]

From the top menu on the RightScale website, choose Design | ServerTemplates |
New:

3. Name the new template dpk:

A Home in the Clouds

[292]

4. Click on Select an Image and select the image you just imported in the previous
step. Once selected, click on Save to save the new template:

5. From the Design Menu, select RightScripts | New:

6. In your text editor, open the file at the following link: sites/private/shell_
scripts/1_install_lamp.sh from the code base. Copy the contents of this file
into the Script field of the New RightScript. Click on the Identify button to identify
the custom variables used by the script, as shown in the following screenshot:

Chapter 11

[293]

7. Create a new RightScript for each of the other two items in that folder,
2_install_jenkins and 3_configure_install.sh:

A Home in the Clouds

[294]

8. Select Design | Server Templates. In the resulting screen, click on your dpk server
template to edit it. Click on the Scripts tab, and then click on Add Script. Find and
select the three scripts you just created. Add them in the order of their numbers
as 1, 2, and 3. They must run in this order for them to work, as shown in the
following screenshot:

9. Click on Add Server, as shown in the following screenshot:

Chapter 11

[295]

10. Select AWS US-East and the deployment group Default, as shown in the
following screenshot:

11. Confirm the details of your server instance. Create the server on one of the regions
close to your location. The SSH Key and Security Group(s) will be the ones you
created when you created your account on RightScale. If you do not have one,
create one here. Click on CONFIRM. Then on the next screen, click on Finish:

A Home in the Clouds

[296]

12. At the top of the next screen, there is a Launch button. This is the point at which you
begin being charged. From here onwards, charges will be incurred on your Amazon
account. If you are willing to proceed, click on Launch to launch the instance:

13. Confirm the e-mail address of your GitHub account, and then click on Launch:

14. For the next few minutes, RightScale will launch the server, and configure it
according to the script we have created. Once the server is operational, you will get
an e-mail from RightScale. This process could take up to an hour but usually takes
about ten to fifteen minutes.

15. Once the instance is running, navigate to Manage | Servers. You should see the
server you launched, and the state of this server should be operational. Click on the
name of the server, and then you will select the Info panel of this server. The first
value on the Info panel is the Public DNS name value. Copy this value, and paste it
into a browser:

Chapter 11

[297]

What just happened?
Once we had set up the account, we created a server template from an Ubuntu Linux image,
and a series of three scripts that do the heavy lifting of installing all the relevant open source
software. The first script installed the web server (called Apache), the database software,
MySQL, and the PHP scripting language and Drush. The second script installed a software
development product called Jenkins. Jenkins checked our code out of GitHub, copied it to
the web server, and ran drush_make for us. The third script configured Jenkins, and added
drush_make to its user.

Once we had defined the template, we launched our server instance. The scripts started
working and we had a working web server. We can now launch multiple versions of this
web instance with ease. All of them will be configured exactly the same as the other. It is
a perfect way to develop sandbox websites so that you have a sandbox server, one for the
User Acceptance Testing (UAT) and the other for the live site. Now let's actually populate the
server with the project we have been working on. Jenkins makes it easy. Let's get started:

A Home in the Clouds

[298]

Time for action – Jenkins builds our site
Now let's install Jenkins to handle our build process, as follows:

1. Use the public DNS value to navigate to the new server. Add or build to the URL.
If the URL is http://ec2-107-22-117-105.compute-1.amazonaws.com/,
it becomes http://ec2-107-22-117-105.compute-1.amazonaws.com/
build/, and the page will look something like this:

2. There is a job called RUN ME FIRST that sets the defaults for the other jobs to run
correctly. Click on the name, then in the job actions menu on the left-hand side of
the screen, click on Configure. About halfway down the page is a Build step followed
by the commands. Change the address and username values of your GitHub e-mail
address and your name, as follows:

git config --global user.email "YOUR_EMAIL@GOES.HERE"
git config --global user.name "Your Name"

http://ec2-107-22-117-105.compute-1.amazonaws.com/
http://ec2-107-22-117-105.compute-1.amazonaws.com/build/

Chapter 11

[299]

3. Scroll to the bottom of the page and save the job. In the job actions menu on the
left-hand side of the screen, click on Build Now.

4. Once you are done with the build, there will be a new build in the Build History.
If the build is successful, the dot beside the build will be blue. If the build is
unsuccessful, the build will be red:

A Home in the Clouds

[300]

5. In the job list, there is a job called DPK FULL BUILD. Click on the name of the build,
and then click on Build Now. As the building starts up, click on the Build History link
of this build. In the resulting page, click on Console Output. You can see the build as
it happens in the console output link:

6. After the build process is completed, go back to the main job list, and click on the
DPK Database Update job.

7. Click on Build Now. The database job will ask you for a URL of the database backup.
Use the default value. I have set the default value to be a database backup I know to
be in the file tree. Then click on Build.

8. Navigate to the public hostname of the server, and you should be able to see the
clone of a full DPK site:

Chapter 11

[301]

What just happened?
When the RightScale scripts built your server, I defined several jobs for Jenkins that were
included in the build. The first job we ran, RUN ME FIRST, had set the username for Jenkins
to be able to use GIT, and check out projects from the Version Control. The second job
was basically an automation of what we did in Chapter 3, Selecting the Right Domain for
your Mobile Site. We checked out the code, and did a drush_make build on the MAKE
file in the root directory. The third job was the bane of the existence of everyone, that is,
database restoration and backups. Newer developers seem to have a very difficult time
with the database connections, and the database server you are connecting to, making
the connection correct. This takes all of the guesswork out of it. It allows you to supply a
database dump out of the backup_migrate backups folder, and restore it. There is no
mess and no fuss.

A Home in the Clouds

[302]

There is one fair warning. Jenkins is a build server for development. It should not be installed
on a production server. You can set up a Jenkins job to resync your development server to a
remote production server. I have provided a sample one with this chapter in the Jenkins job
list. Instructions on how to set it up are in the description of the job. Your production server
should be set up, and secured, by an experienced operation server admin, as it is beyond
the scope of this book to do this.

Pop quiz
1. What are the features of Cloud Servers like Amazon EC2 and Rackspace?

a. They allow you to have your own server without owning any hardware

b. They are primarily "pay per use"

c. They can be created on demand

d. They can be all of the above

e. They are none of the above

2. RightScale is a product that can create, clone, and manage your Amazon and
Rackspace virtual server instances:

a. True

b. False

3. RightScale uses shell scripts to set up servers, and install software after launch:

a. True

b. False

4. What is Jenkins?

a. It is an open source software project

b. It is a server that you can use to "build" projects

c. It is a direct interface with the core kernel of the server

d. It can be both 1 and 2

e. It are none of the above

Chapter 11

[303]

Summary
In the final chapter of our journey together, we set up a workflow that allows the
developer to focus on development, and lets the development server create builds
from the source control.

We learned how hosting on the virtual servers can give us the power of having our own
server at a cost that is very affordable to the average client.

We used RightScale to quickly create a virtual server instance from a server template,
and had a working version of our site in a few minutes.

We used Jenkins to grab our changes from source control, and deploy them onto the server
quickly, as well as restore database backups from the Drupal backup_migrate manual
backups directory.

Setting up these tools to do the work for us frees us to work locally, and push the updates
out as they are tested and stable.

Pop Quiz Answers

Chapter 2: Setting up a Local Development Environment
1 2 3 4 5

c d d a b

6 7 8 9 10

d d a b d

Chapter 3: Selecting the Right Domain for your Mobile
Site

1 2 3 4 5 6

d a a d c b

Chapter 4: Introduction to a Theme
1 2 3 4

c d a e

5 6 7 8

e b c a

Pop Quiz Answers

[306]

Chapter 5: A Home with a View

1 2 3 4 5

b e d e a

Chapter 6: The Elephant in the Room: Audio, Video, and
Flash Media

1 2 3 4

d a a c

Chapter 7: Location, Location, Location
1 2 3 4 5 6

b b a b c c

Chapter 8: Services with a Smile
1 2 3 4 5

a b d d b

Chapter 9: Putting it Together
1 2 3 4 5 6

e c b e a c

Chapter 10: Tabula Rasa: Nurturing your Site for Tablets
1 2 3 4 5 6 7 8

c a d c c d d d

Appendix

[307]

Chapter 11: A Home in the Clouds
1 2 3 4

e a a d

Index
Symbols
$cookie_domain variable 110
$.mobile.showPageLoadingMsg() method 221
$page_bottom variable 91
$page_top variable 91
<audio> tag 151
<div> tags 87
<header> tag 91
<html> tag 255
<meta> tag 93, 273
<video> tag 151
.info file 73
.make file 82
.mobi domain 63
.mobi site 63
.mobi top-level domain 63
.module file 72
.psd file 60
_preprocess_search_block_form hook 100
5.2.x

versus 5.3.x 37

A
add command 139
AddEventListener function 259
AJAX 200
Amazon 282
Amazon Web Services. See AWS
AMI

used, to create server 289-296

Android Virtual Device. See AVD
Apache 39, 297
API 201
Application Programming Interface. See API
Asynchronous JavaScript and XML. See AJAX
attach function 259
attach method 183
AVD 15
AWS

about 281
setting up 283

B
Backup and Migrate module

about 81
used, to create local backup 80

Balsamiq
about 262
mockup diagram 262, 263

billboard 118
boostrap.php 67
bootstrapping, domain access module

about 67-69
boostrap.php 67
E editor icon 67

browscap redirect 102
browsers 159
Build History 299
buildmode 228
buildmode-full container 227
built-in blocks system

issues 116

[310]

C
carat quote 214
CCK 130
changedTouches value 260
charts

about 152
Highcharts 152

Chrome browser 243
close2u_find function 186
close2u module

about 177
downloading 178-190
enabling 178-190

Commerce module, for Drupal 7
about 263
one true theme 264
PayPal payment option, adding 272
product, creating 268-272
product type, creating 264

conditional statements 91
Connect to Cloud 286
Console Output 300
Content Construction Kit. See CCK
context module

about 116
context 123
context layouts 123
context UI 123

cookies 110
core menu items 240
Create a free Account 286
Create an AWS Account link 283
CRON task 101
ctools 73
customized services

about 209
custom REST service formatter 209-212

Cygwin
about 32
development environment, installing 28-32

D
D7, versus D6 theming

default mobile theme, installing 93, 94

data-* attributes 212
database

local backup, creating 80
desktop site 234
detach function 259
development environment installation

Cygwin, using 28-32
Windows, using 28-32

Display Suite (DS)
about 224
build mode 224
buildmode-full container 227
fonts 242, 243
fonts, adding 244-248
footer node 229
header node 229
hooks 224
left node 229
middle node 229
right node 229
Teaser With Image mode 226
working 224

display suite module 116, 135
display suite settings mode 120
distribution (distro) 24
DOCTYPE 87
Document Object Model. See DOM
DOM 106, 255
Document Type Definition. See DOCTYPE
domain access module

about 63
bootstrapping 67-69
commands 63
domain module 64
domain views module 64
installing, for Mac 64
installing, for Windows 65, 67
installing, steps 64

DOM event 255
double quote 214
DPK Database Update job 300
DPK FULL BUILD 300
DPK html.tpl.php file 89
DPK Mobile 233
dpk_mobile.info file 97
dpk_mobile_preprocess_page function 99

[311]

DPK website
about 60
URL 60

Drupallo’s Pizza Kitchen (DPK) 22
Drupal

about 8
new REST service, testing 203-207
REST service, creating 201-203
using 200

Drupal 6
Embedded Media 143

Drupal 7 theming
versus Drupal 6 theming 89

Drupal 7
html.tpl.php 89
node.tpl.php 90
page.tpl.php 89

Drupal behavior object 259
Drupal behaviors

about 107, 108
redirection, with cookie to remember state

108-110
Drupal Commerce module. See also Commerce

module, for Drupal 7
Drupal Commerce module

configuring 264-267
downloading 264
installing 264

drupallos_homepage module 81
drupal_render 235
Drupal-style variables 128, 129
Drupal website

building, Drush Make website used 47-49
building, from make file 50, 51

Drush
about 24, 45
installing, for Mac OS X 45
installing, for Windows 46

Drush Make
about 24, 45
installing, for Mac OS X 45
using, for Drupal website building 47-49

drush_make command 47
drush make dpk.make command 82
dumb phones 8, 9

E
EBS 281
EC2 281
E editor icon 67
Elastic Computing Cloud. See EC2
Electronic Billing Solutions. See EBS
Embedded Media 143
E-TextEditor 33
evt.touches 260
eXtensible Markup Language. See XML

F
features[ctools] property 128
features.inc file 73
features module

.info file 73

.module file 72
about 70
add command 139
changes, bundling into package 136-139
creating, steps 70-72
ctools 73
features-based app stores 77
features.inc file 73
hooks, adding 77
jQuery Cycle Plugin 72
Strongarm 70
updating 81
updating, with new settings 76
views_default.inc file 74
XML Update URL 77

features-update command 127
field-items container DIV 227
File Transfer Protocol. See FTP
Firefox browser 243
Flash

iOS 141, 142
fonts

adding 244-248
Fonts.com Web fonts

URL 243
Font Your Face 243
fragmentation 16
FTP 280

[312]

G
Geocode Update 175
geocoding

about 175
node’s location data 176

geolocation 160
gesture events

gestureend 257
gesturemove 257
gesturestart 257

GIT 24 81
global.js file

creating 102
graph

creating 153-156
graphic formats

SVG 153
VML 153

H
handhelds

designing issues 60, 61
handleSwipe method 260
HandleTouchEnd 260
handleTouchMove 260
HandleTouchStart event 260
handleTouchStart method 259
Highcharts

homepage 152
home page

downloaded feature 127
features[ctools] property 128
features-update command 127
hook_context_default_contexts 129
mobile friendly home page, creating 117-124
original feature 127
updated features, downloading 125-127

home Page context 126
hook_context_default_contexts 129
hook_menu_attribute_info 242
hook_preprocess_page 224
hooks

adding, to features module 77
HTML 255

HTML5
about 87
URL 87

HTML5 <footer> element 93
HTML5 <header> element 91
HTML5 semantic elements 89
HTML5 Shim

URL 89
HTML document 255
html_head_altar hook 100
html.tpl.php 89, 90, 230, 273

I
ICANN 63
Identify button 292
ImageMagick 224
Import button 53
Info panel 296
installation

WAMP 41- 44
interactive web 208
Internet Committee for assigned Names and

Numbers. See ICANN
Internet Explorer browser 243
Internet Explorer (IE) 86
iOS

about 16
Flash 141, 142
Mac OS developer’s package, installing 17, 19

iOS Simulator 18
isTouchDevice function 259

J
Java Development Kit. See JDK
JavaScript Object Notation. See JSON
JavaScript redirection

writing, for theme 102-104
JDK 14
Jenkins

Build History 299
Build Now 299
Console Output 300
DPK Database Update job 300
DPK FULL BUILD 300
installing, to handle build process 298
RUN ME FIRST job 298

[313]

jqm 212
jQM

about 212, 213
using, as base theme 213-219

jQuery Cycle Plugin 72
jQuery Mobile. See jQM
jQuery Mobile JavaScript Events

about 219
AJAX login form 219-221

jQueryMobileSlideShowTouchAdvance 259
jQuery mobile theme

nodes, retheming 230-234
jQuery onDocumentReady script 105
JSON 200
JSONP 200
JSON with Padding. See JSONP

K
KHTML 12

L
LAMP 33, 34
Launch button 296
Layout for content type in default tab 132
Linux, Apache, MySQL, and PHP/Perl. See LAMP
local database

about 51
creating 51-55

locationFail function 191

M
Mac

domain access module, installing 64
Macintosh, Apache, MySQL, and PHP. See

MAMP
Mac OS X

text editors 33
main event

about 257
swipe advance, adding to home page 257-259

make file
Drupal install, building 50, 51
updating 78, 80

MAMP
about 34
default configuration, changing 39-41
local web server, configuring 35-39

media queries, for tablets 274, 275
media query

about 96, 97
mobile theme, theming 97-100
using 96

menu attributes
about 240, 242
customizing 240, 242

menu_attributes_info 242
menu_group 235
menu item content type 131
menu item group content type

fields 133
menu item group type 135
menu module

about 129
content importing, via command line 133
content importing, via Drupal GUI 134
Layout for content type in default tab 132
menu content types, creating 130-132
menu item content type 131
menu item group content type, fields 133
menu item group type 135
node reference 135

Microsoft Windows
Cygwin 28
GIT 28
text editors 33

mobile
about 13
Android development package, installing 14
mobile-friendly home page, creating 117-124
stimulators, setting up 14-16

mobile clients
JavaScript redirection, writing for theme 102-

104
redirecting 101, 102

Mobile-ize me 12
mobile mode 124
mobile stimulators

Android development package, installing 14-16

[314]

mobile theme
about 95
personalizing 97-100

mobile theme project 98
mobile_tools module 102
Mobile Webkit browser 243
mobile website 59
module_invoke 242
multisite installs 63

N
navigator.geolocation object

about 160
geocoding 175
location data, adding to nodes 161-174

nd-one-sidebar 227
nd-region-middle-wrapper 227
nd-sidebar-right 227
node_load 235
node reference 135
nodes

retheming, for jQuery mobile theme 230-234
node’s location data

geocoding 176, 177
node.tpl.php 90
node_view 235

O
onDocumentReady process 105
One Design myth 13
open source software (OSS) 282
OpenType 243

P
page finishing

steps 190-197
page.tpl.php 89, 91, 230
Performance.gov

about 224
demo 225
Featured Story field points 226

Personal Identification Number. See PIN
Photoshop psd file 87
PIN 283

platforms
about 24, 25
SCM client for Mac, downloading 25-27

POSTER 199
product reference field 264
progressive enhancement

about 86
DOCTYPE 87
HTML5 87
HTML5 semantic elements 89

Public DNS name value 296
puppet

about 282
versus RightScale 282

puppet labs 282

Q
Quirks Mode 88

R
radians 187
RDF 88
redirection flow 105
render all regions plugin 230
rendered node

theming, adding 236-239
Representational State Transfer. See REST
request 101
Resource Description Framework. See RDF
responsive web design

about 261
starting over 261

REST 200
RightScale

Secure Shell Key (SSH) 286
setting up 285, 286
Show Advanced area 288
versus puppet 282

rsync command 81

S
S3 281
Safari browser 243
Sandbox

project, installing 175

[315]

saveOrigin function 192
Scalable Vector Graphics. See SVG
Scripts tab 294
SDK 15
Secret Access Key 284
Secure Shell Key. See SSH
Security Credentials 283
Security Group(s) 295
Select an Image 292
semantic web 88
server

Add server 294
creating, AMI used 289-296

server alias 64
Show Advanced area 288
Sign in to the management console 283
Simple Storage Service. See S3
single quote 214
slideshow_cycle div elements 259
Smart-er phones 9
smart phones 10, 11
Software Development Kit. See SDK
Source Code Management. See SCM
SSH 286
SSH Key 295
SSH Key Pair 286
Strongarm 70
Style output level 232
Subversion (SVN) 23
SVG 153
swipe event 259
swipe gesture

adding 260

T
tablet

about 11
designing issues 60, 61
event-driven model 254
main event 257
touch events 256
touchscreen interfaces 254
wireframing 262

teaser_with_image buildmode 228

text editors
for Mac OS X 33
for Microsoft Windows 33

TextMate 33
theming

adding, to rendered node 236-240
touchend event 260
touch events

about 256
touchend 257
touchmove 257
touchstart 257

touchmove event 260
Typekit

about 243
URL 243

U
UAT

hostnames, adding to domain access 82
instance, creating 80
server 82

ubuntu 290
User Acceptance Testing environment. See UAT
userEnterLocationHandlerfunction 191

V
Vector Markup Language. See VML
videos, incorporating into web content

about 142, 143
content, adding 147-150
encoding process 150-152
media files, embedding 143-147

viewport
about 273
media queries, for tablets 274, 275
setting, with JavaScript 273

views_default.inc file 74
views-view-list--menu--page.tpl.php 231
Virtual Private Cloud 281
Virtual Private Network. See VPN
VML 152, 153
VPN 281

[316]

W
W3C RDF Primer document

URL 89
WAMP

about 34, 41
installing 41-44

WAP 8
web content

videos, incorporating 142, 143
web embedding 243
WebKit 12
WebM 151
website

issues 280
Windows

domain access module, installing 65, 67

Windows, Apache, MySQL, and PHP. See WAMP
Wireless Application Protocol. See WAP

X
X.509 Certificate 285
X.509 key 289
XHTML 255
XML 200, 255
XML-based Remote Procedure Call. See XML-

RPC
XML-RPC 201
XML Update URL 77

Y
Your Clouds 287

Thank you for buying

Drupal 7 Mobile Web Development Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Drupal 7 Fields/CCK Beginner's Guide
ISBN: 978-1-84951-478-1 Paperback: 288 pages

Explore Drupal 7 fields/CCK and master their use

1. Step-by-step guide to building your own Drupal 7
website using the Drupal 7 fields system

2. Specifically written for Drupal 7 development and
site building

3. In-depth coverage of theming fields in Drupal 7

4. Discover the new fields system from the database
perspective

Drupal 7 First Look
ISBN: 978-1-84951-122-3 Paperback: 288 pages

Learn the new features of Drupal 7, how they work
and how they will impact you

1. Get to grips with all of the new features in Drupal 7

2. Upgrade your Drupal 6 site, themes, and modules to
Drupal 7

3. Explore the new Drupal 7 administration interface
and map your Drupal 6 administration interface to
the new Drupal 7 structure

4. Complete coverage of the DBTNG database layer
with usage examples and all API changes for both
Themes and Modules

Please check www.PacktPub.com for information on our titles

Drupal 7 Themes
ISBN: 978-1-84951-276-3 Paperback: 320 pages

Create new themes for your Drupal 7 site with a
clean layout and powerful CSS styling

1. Learn to create new Drupal 7 themes

2. No experience of Drupal theming required

3. Discover techniques and tools for creating and
modifying themes

4. The first book to guide you through the new
elements and themes available in Drupal 7

Drupal 7 Multilingual Sites
ISBN: 978-1-84951-818-5 Paperback: 100 pages

A hands-on, practical guide for configuring your
Drupal 7 website to handle all languages for your site
users

1. Prepare your Drupal site to handle content in
different languages easily

2. Apply the numerous multilingual modules to your
Drupal site and configure it for any number of
different languages

3. Organize the multilingual pieces into logical areas
for easier handling

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: When is a Phone Not a Phone?
	"Dumb" phones
	"Smart-er" phones
	Smart phones
	Tablets
	WebKit
	Mobile-ize me!
	What is mobile?
	The "One Design" myth
	Mobile simulators
	Time for action – installing an Android development package
	iOS
	Time for action – installing the Mac OS developer's package
	Summary

	Chapter 2: Setting up a Local Development Environment
	Drupallo's Pizza Kitchen
	Averting disaster
	A word about platforms
	Time for action – downloading the SCM client for Mac
	Cygwin and GIT for Microsoft Windows
	Time for action – installing a development environment using Windows and Cygwin
	Text editors for Mac OS X and Microsoft Windows
	Serving web pages on your computer
	MAMP
	Time for action – configuring our first virtual host
	Time for action – changing the default configuration for MAMP
	WAMP (Windows, Apache, MySQL, and PHP)
	Time for action –installing WAMP
	Drush and Drush Make
	Time for action – installing Drush and Drush Make for Mac OS X
	Time for action – installing Drush for Windows
	Building a Drupal website with Drush Make
	Time for action – building a Drupal install from a make file
	The local database
	Time for action – creating a database
	Summary

	Chapter 3: Selecting the Right Domain for your Mobile Site
	Once upon a website…
	One ring to rule them all
	Domain Access versus Multisite

	Time for action – installing Domain Access module
	Domain management

	Time for action – configuring Apache
	Bootstrapping the domain
	Time for action – bootstrapping the Domain Access module
	Introduction to the Features module
	Time for action – installing and creating your first feature
	Time for action – updating the feature with new settings
	Deployment—best practices
	Time for action – code check-in and deployment
	Pushing out features

	Time for action – check in your features module
	Summary

	Chapter 4: Introduction to a Theme
	Progressive Enhancement
	HTML5 and the simplified DOCTYPE
	New HTML5 semantic elements

	Drupal 6 versus Drupal 7 theming
	Time for action – installing the default mobile theme
	The simple life
	Media queries
	Time for action – personalizing the mobile theme
	Redirecting mobile clients
	Time for action – writing JavaScript redirection for our theme
	Give them what you think they need until they tell you what they want
	Behave yourself
	Drupal behaviors

	Time for action – redirection with a cookie to remember state
	Summary

	Chapter 5: A Home with a View
	The Context and Display suite modules
	Time for action – creating a mobile-friendly home page
	Pushing changes from one environment to another
	Time for action – updating the Home Page feature
	The menu
	Time for action – creating the menu content types
	Bundling up the changes
	Time for action – bundling the changes into a package
	Summary

	Chapter 6: The Elephant in the Room: Audio, Video, and Flash Media
	Flash and iOS
	Incorporating video into your web content
	Time for action – embedding media files
	Time for action – adding content
	A word about encoding
	"I did it my way"

	Charting and graphs
	Time for action – graphing a view
	Summary

	Chapter 7: Location Location Location!
	Geolocation
	The navigator.geolocation object
	Time for action – adding location data to nodes
	From address to longitude and latitude
	Time for action – geocoding a node's location data
	The close2u module
	Time for action – downloding and enabling the close2u module
	Finishing the page
	Time for action – finding the closest franchise the hard way
	Summary

	Chapter 8: Services with a Smile
	Using Drupal to power your native application
	Time for action – creating a REST service
	Time for action – testing your new REST service
	APIs: The future of the interactive web
	Customized services
	Time for action – custom REST service formatter
	jQuery Mobile
	Time for action – using jQM as our base theme
	jQuery Mobile JavaScript Events
	Time for action – the AJAX login form
	Summary

	Chapter 9: Putting it Together
	Display Suite
	Hooks, styles, and build modes
	Time for action – retheming nodes for our jQuery mobile theme
	Time for action – adding theming to the rendered node
	Beyond core menu items
	Time for action – customized menu attributes
	Fonts
	Time for action – adding fonts
	Summary

	Chapter 10: Tabula Rasa: Nurturing your Site for Tablets
	The human touch
	The event-driven model
	Touch and go
	The main event
	Time for action – adding a swipe advance to the home page
	The changing landscape (or portrait)
	"Starting over" or "Everything you know about designing websites is wrong"
	Wire framing made easy
	Drupal 7 Commerce module
	Time for action – the one true theme
	Time for action – creating a product
	A room with a viewport
	Time for action – setting the viewport with JavaScript
	Time for action – advanced media queries for tablets
	Summary

	 Chapter 11: A Home in the Clouds
	Problems introduced by modern websites
	Amazon Web Services (AWS)
	Time for action – setting up AWS and RightScale
	Time for action – using an AMI to create a server
	Time for action – Jenkins builds our site
	Summary

	Pop Quiz Answers
	Index

