
M A N N I N G

Patrick Lee

www.allitebooks.com

http://www.allitebooks.org

CoffeeScript in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CoffeeScript in Action

PATRICK LEE

M A N N I N G
SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Renae Gregoire, Jennifer Stout
20 Baldwin Road Copyeditor: Linda Recktenwald
PO Box 261 Proofreaders: Andy Carroll, Katie Tennant
Shelter Island, NY 11964 Technical proofreader: Doug Warren

Typesetter: Dennis Dalinnik
Illustrator: Nick Marino

Cover designer: Marija Tudor

ISBN: 9781617290626
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 FOUNDATIONS . ..1

1 ■ The road to CoffeeScript 3

2 ■ Simplified syntax 13

3 ■ First-class functions 45

4 ■ Dynamic objects 76

PART 2 COMPOSITION ..105
5 ■ Composing objects 107

6 ■ Composing functions 144

7 ■ Style and semantics 179

8 ■ Metaprogramming 214

9 ■ Composing the asynchronous 241

PART 3 APPLICATIONS...267
10 ■ Driving with tests 269

11 ■ In the browser 299

12 ■ Modules and builds 321
v

13 ■ ECMAScript and the future of CoffeeScript 353

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
preface xv
acknowledgments xvi
about this book xvii
about the cover illustration xxi

PART 1 FOUNDATIONS. ...1

1 The road to CoffeeScript 3
1.1 Why CoffeeScript? 4
1.2 Running CoffeeScript 5
1.3 JavaScript 6

C 6 ■ Scheme 7 ■ Self 7

1.4 Evolving JavaScript 8
A little story about language 8 ■ The lesson for JavaScript 9

1.5 Creating CoffeeScript 9
Designing new syntax 9 ■ Achieving new syntax 11

1.6 Summary 12
vii

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

2 Simplified syntax 13
2.1 Your first program 14

Comparing CoffeeScript to JavaScript 14

2.2 Simple expressions 16
Literal values 16 ■ Variables 18

2.3 Operators 18
Essentials 19 ■ Types, existential, and
combining operators 23 ■ Exercises 25

2.4 Statements 25
Anatomy 25 ■ Statements as expressions 26
Pure statements 30 ■ Exercise 31

2.5 Strings 31
Methods 31 ■ Interpolation 32 ■ Exercise 33

2.6 Arrays 33
length, join, slice, and concat 34 ■ in 35
Ranges 35 ■ Comprehensions 36 ■ Exercise 39

2.7 Heres for comments, docs, and regexes 39
Comments 39 ■ Heredocs 40 ■ Heregexes 41

2.8 Putting it together 41
Running in a browser 41 ■ Running on the command line 42

2.9 Summary 44

3 First-class functions 45
3.1 Computation 46

Basics 46 ■ Custom operations 47 ■ Anatomy 48
Comparison: JavaScript and CoffeeScript 52 ■ Exercises 52

3.2 Events 53
Browser events 53 ■ Using timeouts and intervals
to create events 54

3.3 I/O 56
Ajax 56 ■ Event-driven file reading with Node.js 57
Event-driven file serving with Node.js 58 ■ Exercises 59

3.4 Higher-order functions 59
Invoking other functions 60 ■ Example: Counting words

in a file 61 ■ Functions as arguments 62 ■ Exercises 65

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

3.5 Scope 66
Lexical function scope 66 ■ No block scope 66
Implicit variable declarations 67 ■ Nesting 68

3.6 Closures 70
Global state problems 70 ■ Functions as return values 70
Extended example: using closure 72

3.7 Putting it together 73
3.8 Summary 75

4 Dynamic objects 76
4.1 Syntax 77

Literals 77 ■ Properties 77 ■ YAML-style syntax 78

4.2 Key-value stores 78
Data 79 ■ Key-values for named arguments 82 ■ Exercises 84

4.3 Comprehensions 85
Object comprehensions 85 ■ Example 87

4.4 Structured data 89
JSON 89 ■ Trees 89

4.5 Binding 91
this 91 ■ The fat arrow 94

4.6 Prototypes 96
Copy 96 ■ Object creation 97 ■ Exercises 98

4.7 Behavior 98
Refactor 99 ■ Exercise 100

4.8 Classes 100
Declaration 101 ■ Object identity 102 ■ Exercises 103

4.9 Putting it together 103
4.10 Summary 104

PART 2 COMPOSITION...105

5 Composing objects 107
5.1 Being classical 108

Raw data 108 ■ Class abstractions 109

5.2 Class inheritance 112

extends 112 ■ How does it work? 114

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

5.3 Class variables and properties 116
Usage 117 ■ Declaring (to keep things together) 119
Exercise 122

5.4 Overriding and super 122
Overriding 122 ■ super 123

5.5 Modifying prototypes 125
How class declarations work 125 ■ How methods work 126
Dynamic classes 127

5.6 Extending built-ins 130
Built-in constructor prototypes 130 ■ Extending date 131
Don’t modify objects you don’t own 134

5.7 Mixins 135
Class inheritance can be awkward 135 ■ Writing a mixin 136
Example: enumerable mixin 137 ■ Mixins from null 139

5.8 Putting it together 140
Exercise 143

5.9 Summary 143

6 Composing functions 144
6.1 Clarity 145

Functions are descriptions 145 ■ Where arguments
need parentheses 146 ■ Higher-order functions revisited 147

6.2 State and mutability 152
Variables, assignment, and side effects 152 ■ Local state and
shared state 153 ■ Encapsulating state with objects 156
World state 157

6.3 Abstraction 159
Extracting common code 159 ■ Adding common code 163
Recursion 165

6.4 Combinators 168
Compose 169 ■ Before and after 170 ■ Around 172
Working with objects 173 ■ Asynchronous combinators 176

6.5 Summary 178

7 Style and semantics 179
7.1 Rest and spread parameters 180
Rest 180 ■ Spread 181

CONTENTS xi

7.2 Destructuring 183
Arrays 183 ■ Objects 184 ■ Object shorthand 185
Array destructuring expansion 187 ■ Exercises 187
Putting it together 187

7.3 No nulls 188
Null soak 189 ■ Conditional assignment 191

7.4 No types—the duck test 193
Don’t rely on typeof, instanceof, or constructor 194
How to use duck typing 195

7.5 When to use comprehensions (and when not to) 199
map 200 ■ filter 201 ■ reduce 201 ■ Defining functions
inside comprehensions 202

7.6 Fluent interfaces 203
Why create them? 203 ■ The indentation problem 205
Creating fluent interfaces 207 ■ Chain 208

7.7 Ambiguity 209
Whitespace and indentation 209 ■ Implicit variables 212

7.8 Summary 213

8 Metaprogramming 214
8.1 Literate CoffeeScript 215

The .litcoffee file extension 215

8.2 Domain-specific languages 218
External DSLs 218 ■ Internal DSLs 219
Object literals 219 ■ Fluent interfaces 221
Function passing 222 ■ Constructing a DSL 223

8.3 How the compiler works 226
Tokenizing 228 ■ Rewriting 229 ■ The abstract
syntax tree 230

8.4 Bending code to your ideas 232
Can you just eval? 232 ■ Rewriting the token stream 234
Using the abstract syntax tree 236 ■ It’s just JavaScript 238

8.5 Summary 240

9 Composing the asynchronous 241
9.1 Data processing 242

Reading 242 ■ Sorting 243 ■ Performance 246

Decorate, sort, undecorate 247

CONTENTSxii

9.2 Event loops 248
Events and blackouts 249 ■ Infinite time 251

9.3 Event emitters 252
User events 252 ■ Data as events 253 ■ Using event
emitters in Node.js 254 ■ Events as data 256

9.4 Event composition 257
Lazy data handling 257 ■ Lazy event handling 259
Composing event streams 260 ■ Client side 263
Multiple event sources 265

9.5 Summary 266

PART 3 APPLICATIONS ...267

10 Driving with tests 269
10.1 No tests? Disaster awaits 270
10.2 How to write tests 271

Assertions 272 ■ How to unit test 273
Rinse and repeat 274 ■ Feedback 276

10.3 Dependencies 278
Why dependencies make testing difficult 278 ■ Test doubles 279
Avoiding dependency injection hell 284

10.4 Testing the asynchronous 286
Live with it 286 ■ Remove it 286 ■ Expect it 287
Exercise 290

10.5 System tests 290
10.6 Test suites 291

Setups and teardowns 292 ■ Test helpers and runners 293
Watchers 295

10.7 Summary 297

11 In the browser 299
11.1 Getting started 300

Manual compilation 301 ■ Browser compilation 301
Automatic compilation 301

11.2 Communicating with the outside world 302
Using XMLHttpRequest 302 ■ Dynamic script insertion 303

Going real time with WebSocket 305

CONTENTS xiii

11.3 Cross-browser compatibility 306
Polyfilling host objects 307 ■ Polyfilling language features 309

11.4 Creating a user interface 309
Retained mode with the DOM 310 ■ Immediate mode with
HTML5 canvas 311

11.5 Creating animations 314
Retained mode 315 ■ Immediate mode 315

11.6 Structuring programs 317
Abstraction and APIs 317 ■ Dealing with time 319

11.7 Summary 320

12 Modules and builds 321
12.1 Server-side modules (on Node.js) 322

Creating and requiring 323 ■ Exporting 324
No file extensions 325 ■ The module cache 326
Putting it together 328 ■ Indexes 332

12.2 Build automation with Cake 333
Cake and build tasks 334 ■ Test tasks 336
Task dependencies 338

12.3 Client-side modules (in a web browser) 339
Making modules work in a browser 340 ■ How to write
a module system 342 ■ Tests 344

12.4 Application deployment 345
Creating an artifact (something that’s easy to deploy) 346
Creating a manifest (something that tells your artifact
where it is) 346

12.5 The final Cakefile 349
Tidying up 349

12.6 Summary 352

13 ECMAScript and the future of CoffeeScript 353
13.1 CoffeeScript in the context of JavaScript 354

A better JavaScript through CoffeeScript 354 ■ Future JavaScript
features that CoffeeScript has today 355

13.2 ECMAScript 5 357
Runtime support 357 ■ Object.create 358 ■ JSON 358
Property descriptors 361 ■ Putting it together 363

Strict mode 366

CONTENTSxiv

13.3 ECMAScript 6 366
Modules 367 ■ const and let 368 ■ Sets, Maps,
and WeakMaps 369 ■ Proxies 371 ■ Comprehensions,
iterators, and generators 373

13.4 Source maps for debugging 376
Why source maps? 376 ■ Getting started with source maps 376

13.5 Summary 378

appendix A Reserved words 379
appendix B Answers to exercises 381
appendix C Popular libraries 391

index 395

preface
I’ve long thought that the things that will ultimately resonate the most with people don’t
reveal themselves immediately. Instead, they might initially present themselves as slightly
interesting but not striking. I’ve seen this with music, film, literature, and every other
aspect of human experience that I’ve looked at for any substantial amount of time. I’ve
also seen this with at least two programming languages, JavaScript and CoffeeScript.

 My early reaction to JavaScript was dismissive. Strangely, or not, years later I would be
working almost exclusively in it. My early reaction to CoffeeScript was also dismissive.
“Here we go,” I thought. “Yet another tool created because people don’t understand
JavaScript!” I was wrong about CoffeeScript just like I was wrong about JavaScript.

 CoffeeScript is not about avoiding JavaScript—it is about understanding JavaScript.
This applies to both people who are already familiar with JavaScript and people who are
not familiar with JavaScript. Learning CoffeeScript helps people to understand Java-
Script. At the same time, for many people it makes writing JavaScript programs simpler
and more enjoyable, which means that it makes sense for them to use CoffeeScript
instead of JavaScript.
xv

acknowledgments
Thanks to Jeremy Ashkenas for creating CoffeeScript. Thanks to Michael Stephens at
Manning for picking up a book on CoffeeScript, and to my editors at Manning—Bert
Bates, James Hatheway, Jennifer Stout, and Renae Gregoire—who worked with me
at various stages of manuscript development. Thanks also to Kevin Sullivan, Linda
Recktenwald, Andy Carroll, Katie Tennant, and Mary Piergies, as well as technical
proofreader Doug Warren, who worked with me during production—I was very
impressed. Finally, thanks to publisher Marjan Bace for having patience with a book
that took much longer to complete than anybody had initially expected.

 Thanks to all the family, friends, and colleagues who read and provided feedback
on early drafts. Thanks to the ThoughtWorks Sydney office for their patience with me
while I balanced consulting with authoring.

 Thanks to Nick Marino for the illustrations that brought Agtron and Scruffy to life,
and for making sense of my sometimes-bizarre scripts.

 Thanks also to the MEAP readers who provided feedback on the chapters as they
were being written, and to the following reviewers who read the chapters at various
stages during the development of the manuscript: Andrew Broman, Brett Veenstra, Carl
Witty, Carlos Santiago, Cleland Early, Daniel Bretoi, David Hunter, Guy Mackenzie, Ian
Phillips, Jeff Foster, John Shea, Julian Parry, Ken Chien, Logan Johnson, Musannif Zahir,
Olivier Broqueville, Peter Fries, Phily Austria, Robert Henley, and Sergey Seletskyy, and
to Tim Moore and Mikkel Bergmann (who provided many important insights).

 Finally, a special thanks to those who had to stand living with me while I wrote:
thanks to Kandy and to Leigh.
xvi

about this book
This is a language book. It doesn’t try to comprehensively detail libraries, frameworks,
or other ancillary matters. Instead, it concentrates only on teaching the CoffeeScript
programming language from syntax, through composition, to building, testing, and
deploying applications. Although this book is full of complete, working programs,
they’re all manufactured (contrived, if you will) slaves to the core goal of helping you
learn to program in CoffeeScript. You’ll find this book to be a useful reference
because of its breadth and depth, but it isn’t comprehensive. The web made compre-
hensive programming references obsolete long ago.

 If you want to learn the CoffeeScript language, then this book is for you. If, instead,
you want to eschew that learning in favor of ready-made instructions for using Coffee-
Script with one framework or another, then this is probably not the book for you.
Although references to popular frameworks are given, this book concentrates on Coffee-
Script as a language. This book balances server-side and client-side uses of CoffeeScript
as appropriate to each individual topic.

Roadmap
This book follows a three-act structure in which you, the hero, journey to the heart of
CoffeeScript before emerging with a thorough grasp of it.

 Part 1 sets up your core understanding of the language. When you begin your
apprenticeship in chapter 1, you’ll learn the motivations for creating CoffeeScript and
why you are embarking on your journey. In chapter 2 you’ll be immersed in the syntax
xvii

ABOUT THIS BOOKxviii

of the language and begin to absorb it. In chapter 3 you’ll learn about functions from
the ground up, and in chapter 4 you’ll do the same with objects.

 In part 2 you’ll learn how to wield your new understanding of CoffeeScript. Chap-
ter 5 will have you pulling apart objects and putting them together, and chapter 6 will
have you creating functions from functions, and from functions that create functions.
In chapter 7 you’ll hone your craft, technique, and style. After that comes chapter 8,
which leads you right to the heart of CoffeeScript where you’ll learn to change the
language itself. Finally prepared, in chapter 9 you’ll enter the dragon’s lair of asyn-
chronous programs.

 In part 3 your travels will take you further from home where you’ll learn how to
build entire applications. This starts in chapter 10 where you’ll learn about test-driven
development. In chapter 11 you’ll learn about building user interfaces for web brows-
ers. In chapter 12 you’ll wrap everything up by building and packaging applications,
ready for the world to see. Finally, chapter 13 looks at the future and where you, the
journeyman, are headed with CoffeeScript.

Prerequisites
This book doesn’t assume any knowledge of CoffeeScript. Although some familiarity
with JavaScript will make things easier, no level of JavaScript experience is assumed.
What is assumed is some experience with programming (any language will do) and a
basic grasp of web development concepts. Finally, although the Node.js platform is
used throughout the book, no prior knowledge of Node.js is assumed.

Code conventions
Any source code listings inline within the text, such as read 'book', are formatted
using a fixed-width font. Blocks of code are also formatted in a fixed-width font,
separated from page content:

read = (material) ->
 console.log "Reading #{material}"

read 'CoffeeScript in Action'

Within blocks of code, a # character at the start of a line indicates that what follows the
is the result of evaluating the immediately preceding line:

read = (material) ->
 console.log "Reading #{material}"

read 'CoffeeScript in Action'
Reading CoffeeScript in Action

In this way, all of the code snippets can be pasted directly into a CoffeeScript prompt,
where the output you see should match the comment. A similar approach is taken
with JavaScript code snippets where # is replaced with //:

'Raw' + ' JavaScript'

// 'Raw JavaScript'

ABOUT THIS BOOK xix

Formatted code snippets can be copied and pasted from HTML files, one for each
chapter, which are available for download from the publisher’s website and also from
links inside eBook versions of CoffeeScript in Action.

 Invoking programs on the command line is shown by prefixing each line with a >.
Expected output is prefixed with a #:

> coffee -e "console.log(3 + 4);"
7

Being prefixed with a >, the command-line examples have the disadvantage that they
can’t be pasted directly into a prompt. Occasionally, to provide a clear distinction
between general command lines and the prompt for a particular program, the listing
is prefixed with the name of the program prompt followed by a >:

node>

Before you can run any of this code, you need to have CoffeeScript installed.

Installing CoffeeScript
This book assumes that you have Node.js installed. To install Node.js, visit the website
at http://nodejs.org and follow the instructions for your system. Once you have
Node.js installed, you’ll be able to run Node.js from the command line:

> node

This will land you in the Node.js prompt, into which you can enter raw JavaScript:

node> 1 + 2;
// 3

To exit, enter Ctrl-C twice:

node> <CTRL-C>
// (^C again to quit)
node> <CTRL-C>
>

Installing Node.js also installs npm (Node packaged modules), which you’ll use for
installing packages. Use npm to install CoffeeScript for all users on your system:

> npm install –g coffee-script

You now have CoffeeScript installed. Enter coffee into your command line:

> coffee

This launches you into a CoffeeScript prompt that will be your constant companion
throughout this book. The command has other functionality besides the prompt,
which you can see via --help:

> coffee --help

This will list the options. The meaning of particular options is given later in this book
where needed, but not all options are covered.
 As with Node.js, to exit this prompt, enter Ctrl-C twice.

http://nodejs.org

ABOUT THIS BOOKxx

Code downloads
All of the book’s listings are available in the downloadable code from the publisher’s
website at www.manning.com/CoffeeScriptinAction and also on GitHub at https://
github.com/boundvariable/coffeescript-in-action. When you obtain the download-
able code, go to the directory containing it and run the command npm install. Sup-
pose you have the downloadable code at ~/src/coffeescript-in-action:

> cd ~/src/coffeescript-in-action
> npm install

You’ll see npm install some packages that you’ll need. Once that’s done, you’re ready
to start running the listings.

 The downloadable code is organized into directories corresponding to chapter
numbers, with each chapter folder containing a “listings” folder with files named to
correspond to listing numbers for that chapter. Where possible, code listings are
standalone programs, and you can run them by passing them to the coffee com-
mand. Suppose you wanted to run the imaginary listing 77 from chapter 77:

> coffee 77/listings/77.coffee

Some code listings in the book are complete programs that aren’t made to run on the
command line but require a browser to run. In those cases, a command-line server
program that will enable you to run them is provided either as one of the listings or
along with the listings. Wherever that is the case, instructions are provided for run-
ning the server.

Exercises
Throughout the book you’ll find some recommended exercises designed to help you
better understand the concepts presented. The exercises range from small and closely
defined to more open-ended exercises intended for exploration.

Author Online
Purchase of CoffeeScript in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and other users. To access the forum and
subscribe to it, point your web browser to www.manning.com/CoffeeScriptinAction.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog among individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-

ble from the publisher’s website as long as the book is in print.

http://www.manning.com/CoffeeScriptinAction
http://www.manning.com/CoffeeScriptinAction
https://github.com/boundvariable/coffeescript-in-action
https://github.com/boundvariable/coffeescript-in-action
https://github.com/boundvariable/coffeescript-in-action
www.manning.com/CoffeeScriptinAction
www.manning.com/CoffeeScriptinAction

about the cover illustration
The figure on the cover of CoffeeScript in Action is captioned “Man from Dalj, Slavo-
nia, Croatia.” The illustration is taken from a reproduction of an album of Croatian
traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published
by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were
obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated
in the Roman core of the medieval center of the town: the ruins of Emperor Diocle-
tian’s retirement palace from around AD 304. The book includes finely colored illus-
trations of figures from different regions of Croatia, accompanied by descriptions of
the costumes and of everyday life.

 Dalj is a village in eastern Croatia, on the border with Serbia, near the confluence
of the Drava and Danube rivers. The figure on the cover is wearing a black woolen
jacket over black woolen pants, both richly embroidered in the red and blue colors
typical for this region.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.
xxi

http://en.wikipedia.org/wiki/Drava
http://en.wikipedia.org/wiki/Danube

Part 1

Foundations

Although there are many theories about exactly how the process works,
learning a new language is known to involve comprehensible input, comprehen-
sible output, and reflection for you, the learner. This part of the book provides
many opportunities for all three, and you’ll get the most benefit if you take
advantage of all those opportunities not only by reading the content and the
code but also by running and experimenting with the examples, doing the exer-
cises, and taking some time to consider the deeper implications of the underly-
ing concepts.

Because this part covers CoffeeScript language fundamentals, your current experience
level with CoffeeScript (and to an extent JavaScript) will affect how quickly you take it in.

The road to CoffeeScript
CoffeeScript is a small, general-purpose programming language. It was created by
Jeremy Ashkenas and first released in 2009. It’s a compiled language: you write
your program in CoffeeScript and then use the compiler to translate it to an
equivalent JavaScript program. When you run your program, it’s the compiled
JavaScript that runs. Think of your CoffeeScript programs as being JavaScript
programs underneath.

 There are many programming languages that can compile to JavaScript, so
many that they might even outnumber the programming languages that don’t com-
pile to JavaScript. CoffeeScript is rare among these languages because it keeps the
core structure and semantics of JavaScript intact. CoffeeScript is essentially Java-
Script. If it’s essentially JavaScript though, why bother to use CoffeeScript? What’s
the benefit?

This chapter covers
■ Why CoffeeScript matters
■ How to get started
■ The evolution of JavaScript
■ Adapting to evolution by using CoffeeScript
Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch01-code.html

4 CHAPTER 1 The road to CoffeeScript

1.1 Why CoffeeScript?
CoffeeScript is a simple language, and there are two simple reasons for learning it.
First, it fixes some problems in JavaScript that are unpleasant to work with. Second,
understanding CoffeeScript will help you learn new ways of using JavaScript, and new
ways of programming in general.

 JavaScript is an elegant programming language with some unfortunate gnarled
edges. It has problems that other popular programming languages don’t have. Layers
of these problems obscure the simple elegance of JavaScript and any programs you
write with it. The goal of CoffeeScript is to peel back those layers. Think of your
JavaScript programs as being CoffeeScript programs underneath.

 Why CoffeeScript? One reason is that it can help you to make smaller and easier-
to-understand programs that are easier to maintain. You say you don’t have a problem
with programs being large, difficult to understand, and difficult to maintain? Meet
Agtron and Scruffy (figure 1.1).

 Agtron and Scruffy have recently started working on a massive JavaScript program.
This program contains more lines of JavaScript than Scruffy cares to count (though
Agtron informs Scruffy that when he last looked it was 532,565). Agtron and Scruffy
both consider the application they inherited to be disgusting. Scruffy thinks it’s dis-
gusting because he can’t figure out what’s going on. Agtron thinks it’s disgusting
because he can figure out what’s going on. Why is the program disgusting? Because
it’s too big and the different components are too complicated and intertwined. The
program is incomprehensible. Understanding how any of it works requires under-
standing of how all of it works.

 How might CoffeeScript help? By simplifying JavaScript syntax and making each
line easier to comprehend. That simplicity of expression will encourage you to
compose programs that are, in turn, simpler and easier to comprehend. Your pro-
grams will become less complicated and not so intertwined. Simplifying small
things, like syntax, can lead to simpler big things, like programs. Although it’s not a
panacea (it’s possible to write incomprehensible garbage in CoffeeScript), learning

Figure 1.1 Meet

Agtron and Scruffy.

5Running CoffeeScript

CoffeeScript will help you to write better programs. It’s time to get started, time to
write some CoffeeScript.

1.2 Running CoffeeScript
One thing you need to get out of the way is to make sure you’re ready to start
experimenting with CoffeeScript. Assuming you already have CoffeeScript installed
(if not, refer to the “About this book” section before this chapter), open a console
or terminal, type the word coffee, and press Enter. You see a prompt:

coffee>

You’re now in the CoffeeScript REPL (pronounced like ripple but with an e instead of
an i). Now enter some CoffeeScript and press Enter again:

coffee> 'CoffeeScript!'
'CoffeeScript!'

That’s it, you’ve written CoffeeScript. To exit the REPL, press Ctrl-D (that’s the Ctrl
and D keys pressed simultaneously), and you’ll be back to your regular command
line. Why is it called a REPL? It stands for Read-Eval-Print Loop, and that’s exactly
what it does:

coffee> 'CoffeeScript!' # Read 'CoffeeScript!'
 # Evaluate 'CoffeeScript!'
'CoffeeScript!' # Print the evaluation of 'CoffeeScript!'
coffee> # Loop (to start again)

By default, the CoffeeScript REPL will read only one line at a time before evaluating.
In some cases you might want to evaluate two lines at a time. To do this, press Ctrl-V,
and you’ll see the prompt change. Now, regardless of how many times you press Enter,
the REPL will continue to read until you press Ctrl-V again, at which point it will
evaluate, print, and resume the loop:
coffee> CTRL-V

------> 'CoffeeScript!' # Read
......
......
...... CTRL-V # Eval
'CoffeeScript!' # Print
coffee> # Loop

Now that you’re familiar with the REPL, any time you are working with a single-line
snippet of CoffeeScript, you can enter it into the REPL and see it evaluated:

'CoffeeScript!'
'CoffeeScript!'

When you see a snippet of CoffeeScript that requires the multiline mode, press Ctrl-V
first and then type or paste it in, and finally press Ctrl-V again to see it evaluated.

 Although the REPL is fun, and it will often be your companion as you learn Coffee-

Script, you didn’t come here for a lesson on how to use your keyboard. No, you came

6 CHAPTER 1 The road to CoffeeScript

to learn about CoffeeScript, how to use it, and what it means. To begin, you want to
know where you are and how you got here. How did you get here? The answer starts
with a small historical detour, beginning with JavaScript.

1.3 JavaScript
To understand CoffeeScript and how it relates to JavaScript, you first need to know
about some other languages that influenced JavaScript. Programming language influ-
ences can come in many forms, but the ones of significance in your understanding of
CoffeeScript and JavaScript are the ones that led to the style, semantics, and syntax.
The first influence for JavaScript in these three areas (and your starting place) is the C
programming language and a humble little character called the curly brace.

1.3.1 C

The C programming language is one of the most widely used, and enduring, general-
purpose programming languages of all time. JavaScript deliberately looks like the C pro-
gramming language with many syntactical similarities. One of the most obvious simi-
larities is the use of curly braces, { and }, to indicate the beginning and end of each
block of code. JavaScript is not alone in sharing this syntax with C—many mainstream
programming languages look like C. Why should it matter that JavaScript borrows syn-
tax from C? It matters because the story of a programming language (like the story of
any language) is, in many regards, a social one. Here’s one account of that story.

 Anybody who studied computer science when grunge music was popular knew that
all the cool kids were using C with curly braces and that C programming was real pro-
gramming, involving things like managing memory and manipulating strings as arrays
of char pointers. The C programming language was the most grown-up thing to write
besides assembly language, and the computer science departments in universities
around the world were full of youth. Finally, and perhaps most importantly, most com-
puter games at the time were written in C, and all those young people wanted to write
computer games.

 The schools of computer science were motivated to produce graduates who could
get jobs, so the three most popular languages at the time were often taught. All three
of these languages—C, C++, and Java—have curly braces. There were many less-popular
languages with different styles, syntax, semantics, and ideas, but things found in unpop-
ular places are easily ignored—regardless of whether they’re good or bad. That’s why
JavaScript looks like the C programming language.

 Despite being dressed in a curly-brace suit and semicolon top hat to look like C,
JavaScript took two core ideas from other languages called Scheme and Self. As it hap-
pens, neither Scheme nor Self was quite so popular or looked very much like C, C++,
or Java. So, although JavaScript looks very much like C, some of the core ideas are very
much unlike C. To understand the friction this causes, you need to look closer at these
two languages, Scheme and Self.

7JavaScript

1.3.2 Scheme

Scheme is a general-purpose programming language created by Guy Steele and Gerald
Sussman. It’s considered a dialect of the programming language Lisp, which the late
John McCarthy created when he was a young man. Lisp dialects don’t look like the C
programming language at all.

 Over time, the popularity of Lisp dialects waned while the popularity of the C pro-
gramming language grew. Finally, when Brendan Eich created the C-resembling
JavaScript language to be used in the web browser of a company called Netscape, all of
McCarthy’s hair was gray. Lisp dialects might have been moderately popular choices
for programming languages when men in rock bands had perms, but they were no
longer popular by the time Eich created JavaScript. Because they weren’t popular,
there was no way that JavaScript was going to look like one of them. But Lisp con-
tained some powerful programming ideas that JavaScript needed, so, syntax aside,
there was nothing preventing it from being inspired by Lisp.

 The ideas that JavaScript takes from Scheme have foundations in a mathematical
system called lambda calculus. In terms of modern computer programming, some of
these ideas fall under the term functional programming, which is the style of program-
ming encouraged by Scheme. Functional programming very loosely means pro-
gramming with functions (which you’ll start to learn about in chapter 3). How about
C? The style of programming encouraged by C is called imperative programming.
JavaScript has the syntax of C, but it was inspired, in a small but important way, by
the functional style of Scheme.

 While the popularity of Lisp and the functional programming style was declining,
another programming style called object-oriented programming was starting to gain popu-
larity. An object-oriented language called Self was the basis of a core idea in JavaScript
called prototypes.

1.3.3 Self

The Self programming language was created as a research project by David Ungar and
Randall Smith based on a programming concept known as prototypes. Being based on
prototypes, Self was very different from the popular object-oriented languages of the
time (such as C++ and Java) that were based on classes. You’ll learn more about classes
and prototypes in later chapters, but for now, think of classes as being a more rigid
and static approach, and prototypes as a more fluid and dynamic approach.

 Self also had a different style than the other popular object-oriented languages of
the time by preferring a small but powerful set of operations to more numerous and
elaborate ones. This style was a direct inspiration in the creation of JavaScript, which
took not only the idea of prototypes from Self but also this idea of having a small set of
powerful primitive tools as a primary design goal. So, although JavaScript looks more
like Java or C++ than it does Self, it has some core ideas taken directly from Self. It
looks one way but acts another.
www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 The road to CoffeeScript

 Although JavaScript looks like C (the syntax and to some extent the style and
semantics), some of the key ideas (and to some extent the style and semantics) are
borrowed from Self and Scheme. What happens when a language has many compet-
ing factors?

1.4 Evolving JavaScript
The inherent friction between the competing ideas behind JavaScript’s creation is
compounded by it now being the most widely used programming language in the
world. The social aspect of JavaScript as a programming language has more influenc-
ing factors than most other programming languages, and the widespread use of Java-
Script serves to amplify all of the influences. This is important in understanding the
future of JavaScript because the people who use any language (JavaScript or otherwise)
are those who shape it over time. To illustrate, consider a brief account of a particu-
lar spoken language.

1.4.1 A little story about language

Sometime around the fifth century, a West Germanic tribe invaded Britain and brought
with them their language. As a result, the existing languages of the region (Celtic and
Cornish) were mostly replaced with the West Germanic dialect of the invaders, leaving
only a hint of Celtic and Cornish in modern English today. A few hundred years
later some Vikings, who spoke a Scandinavian language, colonized parts of Northern
Britain. They needed to speak the local language (now a West Germanic dialect) in
order to trade with nearby people, but they didn’t know it very well, so they spoke a
simplified, broken version of it. The broken way they spoke the language changed
the way everybody else spoke it, the language evolved as a result.

 Later, in the eleventh century, the Norman French conquered England, and William
the Conqueror became the king of England. During the Norman occupancy the offi-
cial language of the region was Norman French, but English was still spoken by the
commoners on the streets and on their farms. This is why English farm animals such
as cows and pigs have one name, but the meats used in the restaurants by people
speaking Norman French have other names such as beef and pork. The entire history
of English is like this. When the printing press was invented, it had only the Latin
alphabet, so English was changed again, one of the changes being to replace the
thorn, þ, with the digraph th.

 Now, you might think that a community doesn’t shape a constructed programming
language like JavaScript in the same way it shapes a spoken language like English, but
a language that isn’t shaped by a community is a dead language. A language can ini-
tially be constructed, but eventually it either evolves and changes as part of a commu-
nity or it perishes. Just consider any one of the thousands of constructed spoken
languages created in the history of mankind. Even Esperanto, perhaps the best-known
constructed language, has today fewer than 1,000 native speakers.

9Creating CoffeeScript

1.4.2 The lesson for JavaScript
As the unavoidable language of the web, as the language used to create experiences in
the web browser from its very inception, JavaScript is a melting pot of different language
ideas. It’s not a language used exclusively by JavaScript programmers; it’s a language fre-
quently used by people who typically program in another language. JavaScript is a lan-
guage used by people who don’t necessarily understand (or want to understand) every
subtle nuance. Because of all these different people who use JavaScript, it has necessarily
changed substantially over time. At least, the way it is used, the techniques, and the types
of things written in JavaScript have changed substantially. Not the syntax, though; that
hasn’t changed much at all.

 JavaScript was created in about the time it takes to get over a cold. The short time
frame in which JavaScript was created (and subsequently standardized) led to some
problems being set into the language—problems that are still in the process of being
fixed many years later. So, take a language that was created in a matter of days, add in
some competing ideas, give it to a whole lot of people who don’t know it very well, and
what happens? You can fill in the rest of that story yourself.

 How does CoffeeScript fit into this picture? CoffeeScript changes JavaScript’s syn-
tax. CoffeeScript simplifies JavaScript so that it expresses those key ideas borrowed
from Self and Scheme, as understood by users of the language today. In doing so, it
also fixes some of the problems caused by JavaScript’s quick birth. Sure, as with all
things, these changes come with their own unique set of trade-offs. To see if those
trade-offs are right for you, it’s time to see what CoffeeScript does to JavaScript syntax
and how it arrived at the changes that it did. Doing this starts with a simple thought
experiment. What syntax can be taken away from a JavaScript program while still leav-
ing the meaning intact?

1.5 Creating CoffeeScript
CoffeeScript starts with an experiment to remove as much nonessential syntax from
JavaScript as possible. By working through that experiment, you can begin to under-
stand CoffeeScript syntax and see how it differs from JavaScript. Relax if your Java-
Script is still rusty at this point; just follow along and look at the syntax.

1.5.1 Designing new syntax
To arrive at CoffeeScript syntax, start with a small JavaScript program and see what
can be removed without changing the meaning of the program. An uninteresting pro-
gram serves this purpose well, so consider a function to square two numbers:

var square = function (x) {
 return x * x;
};

How much of the syntax is necessary? For a start, you can remove the semicolons:

var square = function (x) {
 return x * x

}

10 CHAPTER 1 The road to CoffeeScript

You can also remove the C-inspired curly braces:

var square = function (x)
 return x * x

You can also remove the var statement by making it implicit instead of explicit:

square = function (x)
 return x * x

The same applies to the return statement. Remove that also:

square = function (x)
 x * x

Finally, the function keyword is important and used frequently, but suppose you
replace it with something that doesn’t take so long to read or type:

square = (x) ->
 x * x

Now you have CoffeeScript. Think of it as JavaScript after a little bit of spring cleaning
(see figure 1.2). Most Ruby or Python developers will immediately find this new syntax
comfortable and familiar, whereas most C, C++, or Java programmers will immediately
find it alien. But the familiarity of the syntax isn’t important. What is important is how
the new syntax fits how people think about the programs written using it. Why?
Because a more natural syntax can not only make your life as a programmer easier; it
Figure 1.2 Agtron and Scruffy doing some spring cleaning of the JavaScript syntax

11Creating CoffeeScript

can also help you start to think differently about your programs by letting you concen-
trate on other things—like the problems you’re trying to solve with the language. In
that way, learning CoffeeScript can help you learn new ways of programming.

1.5.2 Achieving new syntax

Deciding on the syntax that you want is a good start. What you need now is some way for
the new CoffeeScript syntax to actually work. In order for your CoffeeScript program to
execute as a JavaScript program, you need something that can take CoffeeScript,

square = (x) ->
 x * x

and turn it into the equivalent executable JavaScript:

var square = function (x) {
 return x * x;
};

That’s exactly what a compiler is for, and it’s exactly what the CoffeeScript compiler
does. On the command line again, if you have a file called square.coffee containing
the CoffeeScript, then you convert it to a JavaScript file like so:

> coffee –c square.coffee

Once that’s done, you’ll have a new file called square.js containing your newly com-
piled JavaScript program. That leaves just one question: If the CoffeeScript program
must be compiled first, then how does the REPL work? Well, it’s read-eval-print, right?
The CoffeeScript is simply compiled before evaluation:

square = (x) -> x * x # Read
 # Compile to JavaScript
 # Evaluate the resulting JavaScript
[Function] # Print

 # Loop

square 2 # Read
 # Compile to JavaScript
 # Evaluate the resulting JavaScript
4 # Print

 # Loop

Without needing to fully understand the CoffeeScript shown here, you see that it
can be converted to JavaScript on the fly as you enter it into the REPL. Whether
entered into the REPL or written to a file to be compiled later, all of your Coffee-
Script is converted to JavaScript before it runs. The CoffeeScript compiler gives you
the CoffeeScript syntax that makes it easy for you to express your program the way
you want.

12 CHAPTER 1 The road to CoffeeScript

1.6 Summary
CoffeeScript is the JavaScript you’re already using—just with a new syntax. Remember
those Vikings? They changed English forever because they didn’t know or care how to
handle the nuances of the language. The same goes for JavaScript, the most widely
used programming language in the world. It won’t remain unchanged in the face of
all the different people who are starting to use it, and recent revisions to the language
specification that take inspiration from the community (and CoffeeScript in at least
one case) are clear evidence of that. Whether you plan to stick with JavaScript syntax
at all costs or you’re looking to move away from it, you’ll be better off for your new
understanding of CoffeeScript. Read on in the next chapter when you’re ready to take
a deeper look at the syntax.

Simplified syntax
Before going to a country where you don’t speak the language, you might spend
some time listening to the language to get a feel for it or maybe learn some essen-
tial canned phrases to help you get around. Think of CoffeeScript in the same
way. As you’re immersed in the syntax of CoffeeScript, you’ll start to build your
understanding.

 In this chapter, you’ll learn about expressions, operators, and statements, as
well as how they work in CoffeeScript and how they’re related to the JavaScript
equivalents. You’ll explore fundamental building blocks of CoffeeScript pro-
grams with strings, arrays, comments, and regular expressions. You’ll begin with
a program.

This chapter covers
■ Basic syntax and structure
■ Expressions and operators
■ An introduction to strings, arrays, objects,

and functions
■ How to run CoffeeScript programs
Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch02-code.html

14 CHAPTER 2 Simplified syntax

2.1 Your first program
Imagine a small program that controls a coffee machine (called the Barista). This cof-
fee machine serves different styles of coffee, some with milk and some without, but it
doesn’t serve any coffee styles containing milk after midday. Now imagine you find an
existing implementation of this CoffeeScript program, as shown in the following listing.

houseRoast = null

hasMilk = (style) ->
 switch style
 when "latte", "cappuccino"
 yes
 else
 no

makeCoffee = (requestedStyle) ->
 style = requestedStyle || 'Espresso'
 if houseRoast?
 "#{houseRoast} #{style}"
 else
 style

barista = (style) ->
 time = (new Date()).getHours()
 if hasMilk(style) and time > 12 then "No!"
 else
 coffee = makeCoffee style
 "Enjoy your #{coffee}!"

You don’t yet fully grasp CoffeeScript, but already you can get a feel for the basic struc-
ture. An equivalent JavaScript program has a very similar structure but slightly differ-
ent syntax, as you’ll see in listing 2.2. Compare these programs side by side and you’ll
begin to understand the syntax features that CoffeeScript removes and appreciate why
it removes them.

2.1.1 Comparing CoffeeScript to JavaScript

The CoffeeScript implementation of the coffee machine appears side by side with an
equivalent JavaScript implementation in the next listing. See how many differences

Listing 2.1 The coffee machine

Why remove?
Claude Debussy is quoted as saying that “music is the space between the notes.”
CoffeeScript syntax is defined as much by what is missing as by what is present. Part
of the thought experiment behind CoffeeScript is to take patterns written frequently
in JavaScript, look at them, and ask, “How much of this is necessary?”

A function to
determine if a style
of coffee has milk

A function to make
the coffee; returns
a string

A function
that coffee is
requested from
you can spot.

Top

ind

Indenta
in

func

Ind

I

15Your first program

When you compare the CoffeeScript and JavaScript in listing 2.2, you’ll notice four
key things that CoffeeScript is missing. It has no var statements, semicolons, return
statements, or curly braces.

VAR STATEMENTS

In JavaScript, unless you’re in strict mode it’s possible to accidentally assign variables
on the global object, in the global scope. If you don’t know what that means, for now
just know it’s a bad thing. CoffeeScript always defines new variables in the current
scope, protecting you from this unfortunate feature in JavaScript.

SEMICOLONS

In CoffeeScript there are no semicolons.1 Although they’re allowed, you never need
them, and they shouldn’t be used.

Listing 2.2 Comparing CoffeeScript to JavaScript

CoffeeScript JavaScript

hasMilk = (style) ->
 switch style
 when "latte", "cappuccino"
 yes
 else
 no

makeCoffee = (style) ->
 style || 'Espresso'

barista = (style) ->
 now = new Date()
 time = now.getHours()
 if hasMilk(style) and time > 12
 "No!"
 else
 coffee = makeCoffee style
 "Enjoy your #{coffee}!"

barista "latte"

var hasMilk = function (style) {
 switch (style) {
 case "latte":
 case "cappuccino":
 return true;
 default:
 return false;
 }
};

var makeCoffee = function (style) {
 return style || 'Espresso';
};

var barista = function (style) {
 var now = new Date();
 var time = now.getHours();
 var coffee;
 if (hasMilk(style) && time > 12) {
 return "No!";
 } else {
 coffee = makeCoffee(style);
 return "Enjoy your "+coffee+"!";
 }
};

barista("latte");

1 Sure, ECMA-262 says that JavaScript parsers should do automatic semicolon insertion, but the potential for

 level,
not

ented

tion
side
tion

entation
inside if

ndentation
inside else

Returns either “No!” or “Enjoy your
latte!” depending on the time of day

JavaScript
requires var
declaration
errors in JavaScript has resulted in frequent advice to always use them.

16 CHAPTER 2 Simplified syntax

RETURN STATEMENTS

The return keyword is absent from CoffeeScript. In CoffeeScript the last expres-
sion in the function is returned without any return statement. This is called an
implicit return. Although required occasionally, explicit return statements are rarely
used in CoffeeScript.

CURLY BRACES

In CoffeeScript there are no curly braces used to mark out blocks of code. In order to
remove the need for curly braces and other block-delimiting characters, newlines and
the indentation level for each line of code are meaningful. This is referred to as signif-
icant whitespace or sometimes as the offside rule.2 Indentation matters in CoffeeScript
programs, so you must be careful to indent consistently. Always use either two, three,
or four spaces in CoffeeScript. Two spaces is the most common. If you use mixed
indentation (sometimes using two, sometimes using five, sometimes using four), then
your CoffeeScript might still compile, but it will almost certainly not do what you want
it to. Almost all CoffeeScript programs you’ll find in the wild use spaces. Using tabs is
not recommended.

 As you now turn your attention to expressions and some basic language features of
CoffeeScript, keep the rules about var, semicolons, return statements, and curly
braces in the back of your mind until you encounter them again. Unfortunately, read-
ing about basic language features is a little bit like reciting the alphabet or playing
musical scales. On the upside, once you see these basic features, you’re better pre-
pared for the real fun stuff.

2.2 Simple expressions
An expression is something that can be evaluated. An expression has a value. Almost
everything in CoffeeScript is an expression. CoffeeScript even goes to some effort to
make some things expressions that aren’t expressions in the underlying JavaScript.
This emphasis on expressions means that they’re a good place to start exploring the
syntax of CoffeeScript—starting with small expressions and moving on to larger ones.

 All of the examples in this section can be run on the CoffeeScript Read-Eval-Print
Loop (REPL). Start your REPL:

> coffee
coffee>

Ready?

2.2.1 Literal values

The smallest expressions in CoffeeScript are ones that evaluate to themselves. When
you type them into the REPL and press Enter, you see the same thing shown on the

2 Significant indentation will already be familiar to Python and F# programmers and anybody who has used

HAML or SASS.

17Simple expressions

next line. These expressions are called literal values, and the notation used to write
them is called literal notation :

0
2.4
'Chuck Norris'
'Bruce Lee'
'Espresso'
"Bender Bending Rodríguez"
true
null
/script/
{actor: 'Chuck Norris'}
{movie: "Delta Force"}
[0,1,1,2,3]

The CoffeeScript literal values shown here are exactly the same in JavaScript. Not all
literal values are the same though, so everybody (even seasoned JavaScript program-
mers) needs to learn something about literal values in CoffeeScript.

FUNCTION

One very important expression that’s different from JavaScript is the function literal :

(x) -> x

In JavaScript, the function literal requires a bit more typing:

function (x) { return x; }

Functions are used all the time in both JavaScript and CoffeeScript. Removing the
function keyword, curly braces, and return statements for CoffeeScript reduces the
amount of boilerplate and gives your code greater prominence over language syntax.

OBJECT

The curly braces on an object are optional in CoffeeScript:

movie: "Delta Force"
{ movie: "Delta Force"}

BOOLEAN ALIASES

CoffeeScript has aliases for the literal values true and false:

on
true
yes
true
off
false
no
false

REGULAR EXPRESSIONS

Like JavaScript, a regular expression literal in CoffeeScript begins and ends with a for-
ward slash /:

/abc/

Number literal

String
literal Boolean

literal

null
Regular
expression
literalObject literal Array

literal
/abc/

18 CHAPTER 2 Simplified syntax

Unlike JavaScript, though, a regular expression must not start with a literal space:

/ abc/
error: unexpected /

Once you have expressions, you need a way to name things. You need variables.

2.2.2 Variables

Names that refer to local values are called variables. A name should contain only let-
ters, numbers, and underscores. Other characters are permitted, such as π (pi) and
$ (dollar sign), but you don’t need them. A variable name must not be one of the
reserved names. A list of reserved words that you can’t use for names is in appendix A.

UNDEFINED

When you use a name that hasn’t had any value assigned to it, you get an error telling
you that the name is not defined:

pegasus
ReferenceError: pegasus is not defined

Names that aren’t defined have a special type called undefined. To define a variable,
you assign a value to a name. This causes the variable to reference that value:

answer = 42
neighborOfTheBeast = 668
blameItOnTheBoogie = yes
texasRanger = {actor: 'Chuck Norris'}

When you evaluate a variable, you get the value referenced by it:

answer
42

If you assign a new value to the variable, the name will then evaluate to that new value:

texasRanger = true
texasRanger
true

In CoffeeScript you can assign anything you want to a variable regardless of what was
previously assigned to it. Any language that allows this is called dynamically typed.

 To create a variable, you have to assign a value to it. When you do that, you use
an operator.

2.3 Operators
Simple expressions are important, but in order to do things with those expressions
(like assign a value to a variable) you need some operators to go with them. Coffee-
Script has many operators that work exactly the same as they do in JavaScript:

+ - ! / % > < >= <= . && || *

Other operators from JavaScript, such as the ternary operator, are either different or

unavailable in CoffeeScript, so for the time being you should avoid using them.

19Operators

 It’s now time to look at the essential operators that provide basic syntax to Coffee-
Script, some of the new operators that CoffeeScript introduces, and how operators are
used to combine expressions. All of the examples in this section can be run on the Coffee-
Script REPL. Type them all into the REPL, see the results, and experiment with them.

2.3.1 Essentials

Some operators come from JavaScript with only minor changes and, in some cases,
aliases. The operator precedence rules are unchanged from JavaScript.

ASSIGNMENT

This operator is provided by the = symbol. Use it when you need to assign a value to
a name:

wuss = 'A weak or ineffectual person'
chuckNorris = 'Chuck Norris'

CoffeeScript doesn’t let you accidentally declare global variable names—you don’t want
global variables.

NEGATION

This operator is provided by ! or the alias not. Use it to get true or false depending
on whether the value is truthy or falsy:

!true
false

EQUALITY AND INEQUALITY

These operators are provided by ==, !=, or the aliases is and isnt, respectively. Use
them to determine whether two values are equal or not:

chuckNorris = 'Chuck Norris'
weak = 'weak'
chuckNorris is weak
false
chuckNorris isnt weak
true

Be careful; isnt and is not are not the same thing in CoffeeScript:

5 isnt 6
true
5 is not 6

Falsy values
The values null, false, '', undefined, and 0 are called falsy values in CoffeeScript
because they have the value false when coerced to a boolean, such as when used
in an if clause. All other values in CoffeeScript will have the value true, making
them truthy. You can observe this on the REPL by evaluating each of them prefixed
with !!, such as !!'', which will give you false.

Means 5 and 6 are
not the same value

Means 5 is the same

false value as not 6

20 CHAPTER 2 Simplified syntax

The lesson is to avoid using is not in CoffeeScript and instead use isnt to test for
inequality.

TYPE COERCION

Unlike in JavaScript, the equality and inequality operators in CoffeeScript aren’t type
coercive. They’re equivalent to === and !== in JavaScript:

'' == false
false

What does it mean that these operators aren’t type coercive? Well, if the equality opera-
tor in CoffeeScript were type coercive, then the expression 1 == '1' would evaluate to
true because the operator would try coercing the values when it compares them:

1 == '1'
false

In CoffeeScript the equality operator requires that both sides have the same value, not
that they can be coerced into the same value. If you want a value to be coerced, then
you should do it yourself. Read on to find out how.

ADD AND SUBTRACT

These operators are provided by + and -. Use + only with numbers or strings:

3 + 3
6
'string' + ' concatenation'
'string concatenation'

When you add a string to a number, the + operator will coerce the number to a string:

4 + '3'
'43'

Use - only with numbers,

3 - 3
0

not with strings, which will evaluate to the primitive value that means not a number (NaN):

'apples' – 'oranges'
NaN

If you get NaN, it usually means something has gone wrong.

MULTIPLY AND DIVIDE

These operators are provided by * and /. Use them with numbers. They work exactly
the same as in JavaScript:

3*3
9

When you multiply a string by a number, the * operator will attempt to coerce the
string into a number:

'3'*3

9

21Operators

If the string can’t be coerced into a number, then you get NaN:

'bork'*3
NaN

You tried to multiply a string by a number and something went wrong.

MODULO

Modulo is the division remainder. Use it to see if a number is evenly divisible by
another number:

3%2
1

4%2
0

not (3%2)
false

not (4%2)
true

COMPARISON

These operators are provided by <, >, <=, and >=. Use them when you want to compare
number values or string values:

42 > 0
true

42 >= 42
true

Numbers are compared exactly how you’d expect:

time = 13
time > 12
true

Strings are too. They’re compared alphabetically:

'Aardvark' < 'Zebra'
true

When you try to compare things that can’t reasonably be compared, you get false:

2 > 'giraffe'
false

THE GUARD (LOGICAL AND)
This operator is provided by && or the alias and. You use it when you want to evaluate
an expression only if another expression is true:

chuckNorris is weak and pickFight

You evaluate the guard by first looking to the left of the and operator:

chuckNorris is weak
false

22 CHAPTER 2 Simplified syntax

If that evaluates to false, the expression to the right of the and operator isn’t evalu-
ated. The value of the expression then will be the value of the left-hand side:

chuckNorris is weak and pickFight
false

THE DEFAULT (LOGICAL OR)
The counterpart of the guard, default, is provided by || or the alias or. You use it to
evaluate an expression only if another expression is false:

runAway = 'Running away!'
chuckNorris is weak or runAway

The coffee machine program uses the default operator to provide a default style
of coffee:

makeCoffee = (requestedStyle) ->
 requestedStyle || 'Espresso'

makeCoffee()
'Espresso'

Evaluate the default in your head by first looking to the left of the or:

chuckNorris is weak
false

When that evaluates to false, the expression to the right of the or is evaluated:

runaway
'Running away!'

That’s the opposite of how the guard operator works.

FUNCTION INVOCATION

A function is invoked by placing a value after it. Consider the makeCoffee function:

makeCoffee = (style) ->
 style || 'Espresso'

Invoke it with the value 'Cappuccino':

makeCoffee 'Cappuccino'
'Cappuccino'

The last value evaluated in a function is the value you get when that function is
invoked. In this example, 'Cappuccino' is the last value evaluated. Function values
are covered in depth in chapter 3.

NEW

You use the new operator to get an instance of a class of object. Following are the date
and time when this sentence was first written:

new Date()

Sun, 21 Aug 2011 00:14:34 GMT

23Operators

PROPERTY ACCESS

This operator is provided by . or by []. You use them to access a property on an object:

texasRanger = actor: 'Chuck Norris'
texasRanger.actor
'Chuck Norris'

Square brackets are useful when you have the property name in a value:

movie = title: 'Way of the Dragon', star: 'Bruce Lee'
myPropertyName = 'title'
movie[myPropertyName]
'Way of the Dragon'

A date object has a getHours property that can be used to get the hours part of a date.
You can invoke that function on the date object created using the new operator:

now = new Date()
Sun, 21 Aug 2011 00:14:34 GMT
now.getHours()
0

Objects and properties are covered in depth in chapter 4. You can now turn your eyes
to types of things in CoffeeScript.

2.3.2 Types, existential, and combining operators

CoffeeScript has some operators that are not in JavaScript. These operators provide
cleaner syntax for some common JavaScript idioms. One of these, called the existen-
tial operator, is useful for expressions such as “is there a house roast?”

houseRoast?

To understand the existential operator, you need to understand undefined, null,
and types.

UNDEFINED

A variable that hasn’t been assigned a value doesn’t reference anything and so has the
value undefined. When you evaluate an undefined value, you get a reference error (as
you saw earlier with Pegasus):

pegasus
ReferenceError: pegasus is not defined

NULL

A variable that is defined can have the null value. The null value is equal to itself:

reference = null
reference == null
true

TYPES

CoffeeScript is dynamically and weakly typed, which means that the typeof operator
was never going to be particularly useful. Also, the type of null is object:

typeof null

An object defining a
single property, actor

An object defining
two properties:
title and star
'object'

24 CHAPTER 2 Simplified syntax

This problem in JavaScript makes typeof barely worth the pixels it appears on.
 Programmers who normally use a language that’s statically typed need to suspend

disbelief as they learn how to solve the same problems without types. Techniques for
doing so are covered in chapter 7. For now, remember that CoffeeScript is dynami-
cally and weakly typed:

dynamicAndWeak = '3'
weakAndDynamic = 5
dynamicAndWeak + weakAndDynamic
'35'
dynamicAndWeak = 3
dynamicAndWeak + weakAndDynamic
8

There are no type declarations, and the types of variables can change (remember, this is
dynamic typing). Also, the addition operator works differently in the two examples
because of type coercion (this is known as weak typing). Don’t rely on types in CoffeeScript.

EXISTENTIAL OPERATOR

The existential operator is provided by ?. You use it to evaluate whether something is
defined and has a value other than null assigned to it:

pegasus?
false
roundSquare?
false
pegasus = 'Horse with wings'
pegasus?
true

When something hasn’t been defined, it has the undefined type:

typeof roundSquare
'undefined'

But undefined has an uncomfortable place in JavaScript, and type checks should gener-
ally be avoided. Here’s a common phrase from JavaScript:

typeof pegasus !== "undefined" and pegasus !== null
#false

With the existential operator, you have a simpler way to express the same thing:

pegasus?
false

CoffeeScript has other more advanced but less commonly used operators that are cov-
ered in chapter 7. For now, you can get by just fine with the basic operators.

COMBINING EXPRESSIONS

Operators can be used as parts of expressions, and one expression can be made up of
multiple expressions. Operators are used to connect expressions, and connecting expres-

5 is coerced by +
operator to ‘5’

Used to reference a string,
now references a number
sions using operators results in another expression, as shown in figure 2.1.

25Statements

2.3.3 Exercises

To learn CoffeeScript, you need to write CoffeeScript. At the end of some sections in
this book is a set of exercises for you to attempt. The answers to the exercises for all
sections are in appendix B.

 Suppose you just obtained two items, a torch and an umbrella. One of the items
you purchased, and the other was a gift, but you’re not sure which is which. Both of
these are objects:

torch = {}
umbrella = {}

Either the torch or the umbrella has a price property, but the other does not.
Write an expression for the combined cost of the torch and umbrella. Hint: Use the
default operator.

2.4 Statements
Expressions and operators are important, but you’ll also need to use statements to
work effectively in CoffeeScript. Statements are executed but don’t produce a value.
When expressions are executed, they do produce a value:

balance = 1000
while balance > 0
 balance = balance – 100

Here, the while keyword is a statement, so it doesn’t have a value but is an instruction
only. In comparison, balance – 100 is an expression and it has a value. That value is
assigned to the variable balance.

 In CoffeeScript you should always prefer expressions because expressions will lead
to simpler programs—you’ll learn more about that in later chapters. This section
takes some common statements from JavaScript and demonstrates how they’re used in
CoffeeScript as part of an expression. Before getting to the individual examples, you’ll
look at the basic syntactic parts, or anatomy, of an expression.

2.4.1 Anatomy

Things that are only statements in JavaScript can be used as expressions in CoffeeScript.
An example of this is the if statement, as shown by figure 2.2.

 In JavaScript an if-else block like this can’t be used as an expression. In Coffee-

chuckNorris is and pickFightweak

Expression

Operator Operator

Expression Expression

Expression

Figure 2.1 Expression
anatomy
Script it can be.

26 CHAPTER 2 Simplified syntax

2.4.2 Statements as expressions

Things that are only statements in other languages, including JavaScript, can be
used in CoffeeScript as expressions for the values they produce. Ruby program-
mers and Lisp programmers will be familiar with the idea that everything is an
expression, but if you come from a language that doesn’t do this, then it’s time for
some reeducation.

IF STATEMENTS

These are provided by if and optional else keywords. Use them when you want dif-
ferent things to be evaluated, depending on whether a particular value is true or false:

if raining
 'Stay inside'
else
 'Go out'

You can imagine the equivalent JavaScript. It has parentheses and curly braces. More
importantly, though, an if block is also an expression in CoffeeScript; it has a value
and can be assigned to a variable:

raining = true

activity = if raining
 'Stay inside'
 else
 'Go out'

activity
'Stay inside'

Don’t use ternary expressions
CoffeeScript compiles an if statement used in an expression to use JavaScript’s ter-
nary expression. The ternary operator looks like raining ? 'Go out':'Stay inside'.
If you’re a JavaScript developer, don’t use the ternary operator directly in Coffee-
Script—it won’t work.

Expression

Expression

Expression

if raining

'Stay inside'

else

'Go out'

The equivalent JavaScript is a pure statement

Statement / expression in CoffeeScript

Figure 2.2 Expression and
statement anatomy

27Statements

SWITCH STATEMENTS

These are provided by the switch and when keywords, with the default option using
the else keyword. Use them when you want different things to be evaluated depend-
ing on the value of an expression. The switch is often a good replacement for multiple
if, else blocks:

connectJackNumber = (number) ->
 "Connecting jack #{number}"

receiver = 'Betty'

switch receiver
 when 'Betty'
 connectJackNumber 4
 when 'Sandra'
 connectJackNumber 22
 when 'Toby'
 connectJackNumber 9
 else
 'I am sorry, your call cannot be connected'

'Connecting jack 4'

You can use a switch block in an expression in the same way you can use an if block
in an expression:

month = 3
monthName = switch month
 when 1
 'January'
 when 2
 'February'
 when 3
 'March'
 when 4
 'April'
 else
 'Some other month'

monthName
'March'

Use a switch to determine if a style of coffee has milk in it:

style = 'latte'
milk = switch style
 when "latte", "cappuccino"
 yes
 else
 no

milk
true

Only one block of the switch is evaluated (there is no fall-through). A switch at the

end of a function returns the evaluation of one block:

www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2 Simplified syntax

hasMilk = (style) ->
 switch style
 when "latte", "cappuccino"
 yes
 else
 no

hasMilk 'espresso'
false

The when keyword takes multiple options, each separated by a comma. If there is no
else clause and none of the when clauses are matched, then evaluating the switch
expression results in the value undefined:

pseudonym = 'Thomas Veil'

identity = switch pseudonym
 when 'Richard Bachman'
 'Stephen King'
 when 'Ringo Starr'
 'Richard Starkey'

identity

LOOPS

Loops are provided by the while, until, or loop keywords. Use them to do something,
such as clean, repeatedly:

clean = (what) ->
 if what is 'House'
 'Now cleaning house'
 else
 'Now cleaning everything'

clean 'House'
'Now cleaning house'

You can continue cleaning the house while a variable messy is truthy:

messy = true
while messy
 clean 'House'
 messy = false

Or you can use an until statement. Suppose you have a variable spotless that is
truthy when things are clean. You can use that instead of while:

spotless = false
until spotless
 clean 'Everything'
 spotless = true

Some things never end, though, and that’s what the loop keyword is for:

loop clean 'Everything'

Match multiple
options.

identity is declared but has the
value undefined. Evaluating it on
the REPL results in an empty line.

This particular while loop exits the first
time around. Without assigning true to
the messy variable, the loop won’t exit.

This until loop exits the first time
around. Without assigning true to the
spotless variable, the loop won’t exit.

If you run this on the REPL, it will
eventually exit with FATAL ERROR: JS

Allocation failed - process out of memory.

29Statements

Loops are expressions, so they have a value, and if you have a loop that terminates,
you can get the value:

x = 0
evenNumbers = while x < 6
 x = x + 1
 x * 2

evenNumbers
[2, 4, 6, 8, 10, 12]

Most likely you won’t use these looping constructs in CoffeeScript very often. They are
there if you need them, though.

 Finally, if you really need to, you can get out of a while, until, or for by using the
break keyword. If you aren’t familiar with the break keyword, then happily move on.

EXCEPTION BLOCKS

These are provided by the try, catch, and finally keywords. Use them to deal with
exceptional circumstances inside a block of code. You should use the finally block to
clean up after yourself. Exceptions are created with the throw statement. A try can
also have a catch, a finally, or both:

flyAway = (animal) ->
 if animal is 'pig'
 throw 'Pigs cannot fly'
 else
 'Fly away!'

peter = 'pig'
try
 flyAway peter
catch error
 error
finally
 'Clean up!'

Of course, pigs don’t fly, so any attempt to make one fly is an exceptional circum-
stance. In this example, if the animal is 'pig', then the catch block is evaluated,
resulting in 'Pigs cannot fly'.

 A try...catch also works as an expression. If no exception is thrown, then the
value of the try is the value of the try expression:

charlotte = 'spider'
whatHappened = try
 flyAway charlotte
catch error
 error

whatHappened
Fly away!

On the other hand, if an exception is thrown, then the value of the entire expression

is the value of the catch:

30 CHAPTER 2 Simplified syntax

whatHappened = try
 flyAway peter
catch error
 error

whatHappened
Pigs cannot fly

Any variables assigned in a try, catch, or finally will be defined:

try definedOutsideTheTry = true
definedOutsideTheTry
true

Finally, while it is possible, as shown here, to write a try without a catch, it’s generally
not a good idea to ignore exceptions. Deal with them.

INLINE BLOCKS

These are provided by the then keyword immediately after an if, case, or catch key-
word to supply an expression as a block without a newline or indentation:

year = 1983
if year is 1983 then hair = 'perm'

hair
'perm'

Or for a while:

while messy then clean 'Everything'

Or inside a switch:

lastDigit = 4
daySuffix = switch lastDigit
 when 1 then 'st'
 when 2 then 'nd'
 when 3 then 'rd'
 else 'th'

An inline then is useful when the expression is small:

time = 15
allowed = if time < 12 then 'Yes' else 'No!'
allowed
'No!'

SUFFIX IF
An if statement can also go after an expression:

hair = 'permed' if year is 1983

Putting the if statement after the expression is more readable in some circumstances,
so you should decide which version to use based on context.

2.4.3 Pure statements

If a statement isn’t used as part of an expression but is used only to tell the computer

to do something, then that’s a pure statement. Some statements in JavaScript are only

31Strings

for control flow—there’s no way for CoffeeScript to provide an expression version of
those statements.

BREAK, CONTINUE, RETURN

The break, continue, and return statements can’t be used as expressions. You might
occasionally need return, but you should avoid break and continue. You might see
this common idiom in other programming languages for reading line by line:

loop
 line = reader.readLine()
 if not line then break

Although it’s possible to do that, it’s not how you do things in CoffeeScript. In gen-
eral, avoid using break, continue, or return. Use expressions instead.

2.4.4 Exercise

Suppose you have a variable animal that contains a string with the singular name for
one of the animals: antelope, baboon, badger, cobra, or crocodile. Write some code to
get the collective name for the animal. The collective names for the possible animals
in the same order are herd, rumpus, cete, quiver, and bask:

animal = 'crocodile'
<rest of answer goes here>
collective
bask

2.5 Strings
It’s possible to write CoffeeScript programs using only expressions containing the lit-
eral values already shown, but other language features and libraries provide conve-
nient ways to do common tasks. Every program deals with text at some point, so it’s
useful to have some more string tools in your string toolbox. This section demon-
strates some of the built-in string methods from JavaScript that are useful in Coffee-
Script. This section also introduces string interpolation, which provides an elegant
way to use variables inside strings.

2.5.1 Methods

CoffeeScript strings have all of the same built-in methods as JavaScript strings. Here
are some of the most useful string methods.

SEARCHING

Use the search method on a string to find another string within:

'haystack'.search 'needle'
-1

'haystack'.search 'hay'
0

'haystack'.search 'stack'

Loop over the lines of the file
until there are no lines left.
3

32 CHAPTER 2 Simplified syntax

The number returned by search is the index in the string at which the match starts. If
it returns -1, then no match was found. If it returns 0, the match starts at the begin-
ning of the string.

 Suppose you have all of the coffee drinks you serve containing milk in a string:

'latte,mocha,cappuccino,flat white,eiskaffee'

How do you write a new hasMilk function to use instead of a switch?

milkDrinks = 'latté,mocha,cappuccino,flat white,eiskaffee'

hasMilk = (style) ->
 milkDrinks.search(style) isnt -1

hasMilk 'mocha'
true

hasMilk 'espresso romano'
false

REPLACING

You use the replace method on a string when you want to replace one substring
with another:

'haystack'.replace 'hay', 'needle'
'needlestack'

Suppose you want to fix the spelling of a coffee drink:

milkDrinks.replace 'latté', 'latte'

UPPERCASE AND LOWERCASE

There’s a convenient way to convert a string to either all lowercase or all uppercase:

'Cappuccino'.toLowerCase()
'cappuccino'

'I am shouting!'.toUpperCase()
'I AM SHOUTING!'

SPLITTING

Use split when you want to split a string into an array of strings. You can split a string
on the comma character using the /,/ regular expression literal:

'Banana,Banana'.split /,/
['Banana', 'Banana']

'latte,mocha,cappuccino,flat white,eiskaffee'.split /,/
['latte', 'mocha', 'cappuccino', 'flat white', 'eiskaffee']

That’s enough string methods for now. On to something that JavaScript doesn’t have.

2.5.2 Interpolation

Suppose you’re displaying a web page to a user, and you want to include their name in
the web page. You have the name in a variable:
userName = 'Scruffy'

33Arrays

Use interpolation. Provided by #{} inside double-quoted string literals, interpolation
injects values into a string:

"Affirmative, Dave. I read you."

Use string interpolation to replace Dave with the actual username:

"Affirmative, #{userName}. I read you."

You might do the same with a style of coffee:

coffee = 'Ristresso'
"Enjoy your #{coffee}!"
'Enjoy your Ristresso!'

Without interpolation you’d have to add strings, which is tedious:

"Affirmative," + userName + ". I read you."

Imagine that you want to write a program that displays the string “Hi, my name is
Scruffy. Today is Tuesday,” where Tuesday is replaced with the current day of the week:

userName = 'Scruffy'

dayOfWeek = new Date().getDay()

dayName = switch dayOfWeek
 when 0 then 'Sunday'
 when 1 then 'Monday'
 when 2 then 'Tuesday'
 when 3 then 'Wednesday'
 when 4 then 'Thursday'
 when 5 then 'Friday'
 when 6 then 'Saturday'

"Hi, my name is #{userName}. Today is #{dayName}."

2.5.3 Exercise

Get the collective animal name to be output in a string like the following:

"The collective of cobra is quiver"

2.6 Arrays
An array is an ordered set of values where a particular value is retrieved using the
index of the value in the array. So far you’ve seen array literals in the form [1,2,3].
There are some features of arrays in CoffeeScript that you need to know, in particular,
ranges and comprehensions. Just as there are features that make working with strings
easier, there are features that make working with arrays easier.

 Items in an array are accessed in order by using square brackets, with the first item
being 0:

macgyverTools = ['Swiss Army knife', 'duct tape']
macgyverTools[0]

Use the getDay method
of a date to get the day
as a number.

Switch on the
number to get the
name of the day.

Use string
interpolation to
display the message.
'Swiss Army knife'

34 CHAPTER 2 Simplified syntax

macgyverTools[1]
'duct tape'

This section covers the basic use of arrays, how to transform them, how to extract val-
ues from them, and how to comprehend their contents.

2.6.1 length, join, slice, and concat
It’s now time to explore some built-in properties and methods from JavaScript for
arrays that you’ll commonly need. None of them modify the original array.

LENGTH

All arrays have a length property that returns one greater than the index of the last
item in the array:

fence = ['fence pail', 'fence pail']
fence.length
2

An item at any position in an array will affect the length of that array:

fence[999] = 'fence pail'
fence.length
1000

JOIN

Use join to convert an array into a string. It takes a string to use as the joining text
between each item:

['double', 'barreled'].join '-'
'double-barreled'

SLICE

Use slice to extract part of an array:

['good', 'bad', 'ugly'].slice 0, 2
['good', 'bad']

When you use slice, the first number is the start index and the second number is the
finish index. The item at the finish index isn’t included in the result:

[0,1,2,3,4,5].slice 0,1
[0]

[0,1,2,3,4,5].slice 3,5
[3,4]

CONCAT

Use concat to join two arrays together:

['mythril', 'energon'].concat ['nitron', 'durasteel', 'unobtanium']
['mythril', 'energon', 'nitron', 'durasteel', 'unobtanium']

The array methods described don’t modify the existing array:

potatoes = ['coliban', 'desiree', 'kipfler']

saladPotatoes = potatoes.slice 2,3
saladPotatoes

['kipfler']

35Arrays

potatoes
['coliban', 'desiree', 'kipfler']

potatoes.join 'mayonnnaise'

potatoes
['coliban', 'desiree', 'kipfler']

potatoes.concat ['pumpkin']

potatoes
['coliban', 'desiree', 'kipfler']

Enough potatoes. Time to look at the in operator.

2.6.2 in
In CoffeeScript the in operator has particular meaning for arrays. In JavaScript the in
operator is used for objects, but in CoffeeScript it’s used for arrays (the of operator is
used for objects). Be mindful of that difference.

CONTAINS

This is provided by in for an array. Use it to determine if an array contains a particu-
lar value:

'to be' in ['to be', 'not to be']
true

living = 'the present'
living in ['the past', 'the present']
true

Suppose you split a string of beverages containing milk into an array:

milkBeverages = 'latte,mocha,cappuccino'.split /,/

The in operator shows if a particular beverage is present:

'mocha' in milkBeverages

2.6.3 Ranges
Ranges are provided by two or three dots between two numbers. Use a range when
you need a short way of expressing an array containing a sequence of numerical val-
ues. Use two dots to include the upper bound:

[1..10]
[1,2,3,4,5,6,7,8,9,10]

[5..1]
[5,4,3,2,1]

Use three dots to exclude the upper bound:

[1...10]
[1,2,3,4,5,6,7,8,9]

Range extraction also provides an alternative to the slice method for getting part of
an array:

['good', 'bad', 'ugly'][0..1]

['good', 'bad']

36 CHAPTER 2 Simplified syntax

2.6.4 Comprehensions

Comprehensions provide a way to look at the array of things (such as ingredients in a
recipe) and to manipulate the values without having to use loops. CoffeeScript pro-
vides a rich set of comprehensions that can apply to either arrays or objects.

FOR...IN... COMPREHENSION

Array comprehensions allow you to evaluate an expression for each item in an array.
Here’s a one-line comprehension that’s easy to experiment with on the REPL:

number for number in [9,0,2,1,0]
[9,0,2,1,0]

Using the name number in the comprehension declares it as a variable. You can use
any variable name you like:

x for x in [9,0,2,1,0]
[9,0,2,1,0]

However, it is best to use a different variable name just for the constructor (you’ll
learn more about why later on). Now use a comprehension to add 1 to every item in
the array:

number + 1 for number in [9,0,2,1,0]
[10,1,3,2,1]

Use a comprehension to convert every item to a 0:

0 for number in [9,0,2,1,0]
[0,0,0,0,0]

The name after the for keyword in a comprehension creates a variable with that
name. It’s possible to access the variable outside of the comprehension:

letter for letter in ['x','y','z']
[x,y,z]

letter
'z'

But it’s a very bad idea to do so. Leave comprehension variables in the comprehen-
sions where they belong.

USING COMPREHENSIONS

Imagine you’re making a chocolate cake. You have the ingredients supplied as an
array of strings:

ingredients = [
 'block of dark chocolate'
 'stick butter'
 'cup of water'
 'cup of brown sugar'
 'packet of flour'
 'egg'

]

37Arrays

Suppose you want to make a cake that’s twice as big. Make a new ingredients list that
puts 2x in front of all of the ingredients:

doubleIngredients = ("2x #{ingredient}" for ingredient in ingredients)

doubleIngredients
[
'2x block of dark chocolate'
'2x stick butter'
'2x cup of water'
'2x cup of brown sugar'
'2x packet of flour'
'2x egg'
]

How do you mix all these ingredients? Suppose you have a mix function:

mix = (ingredient) ->
 "Put #{ingredient} in the bowl"

Invoke it for each item in the array:

instructions = (mix ingredient for ingredient in doubleIngredients)

Here, the function mix is invoked with the value of each ingredient and the result of
all that is assigned to the instructions variable that now references an array:

[
 'Put 2x block of dark chocolate in the bowl'
 'Put 2x stick butter in the bowl'
 'Put 2x cup of water in the bowl'
 'Put 2x cup of brown sugar in the bowl'
 'Put 2x packet of flour in the bowl'
 'Put 2x egg in the bowl'
]

Notice the absence of loops. Comprehensions can simplify your code. Remember the
switch statement from listing 2.1?

hasMilk = (style) ->
 switch style
 when 'latte', 'cappuccino', 'mocha'
 yes
 else
 no

Suppose you have some coffee styles in an array:

styles = ['cappuccino', 'mocha', 'latte', 'espresso']

Create a new comprehension with the result of invoking hasMilk for each item in
the array:

hasMilk style for style in styles
[true, true, true, false]

You can see Agtron use a comprehension when replying to Scruffy’s array of beverages

in figure 2.3.

38 CHAPTER 2 Simplified syntax

THE WHEN COMPREHENSION GUARD

A when at the end of a comprehension works like a guard; to make a flourless choco-
late cake, you remove the flour from the ingredients:

mix = (ingredient) -> "Mixing #{ingredient}"
for ingredient in ingredients when ingredient.search('flour') < 0
 mix ingredient

Similarly, to get only the even numbers from a range of numbers, use a for..in com-
prehension with a when guard against odd numbers:

num for num in [1..10] when not (num%2)
[2, 4, 6, 8, 10]

THE BY COMPREHENSION GUARD

Use by to perform an array comprehension in jumps. For example, people experi-
menting with something called polyphasic sleep might sleep every six hours:

day = [0..23]
sleep = (hour) -> "Sleeping at #{hour}"
sleep hour for hour in day by 6
['Sleeping at 0','Sleeping at 6','Sleeping at 12','Sleeping at 18']

Suppose you want to select every second person in an array; you can use the by key-
word to do so:

person for person in ['Kingpin', 'Galactus', 'Thanos', 'Doomsday'] by 2

Figure 2.3 Don’t repeat yourself. Use a comprehension.
['Kingpin', 'Thanos']

39Heres for comments, docs, and regexes

MULTIPLY AN ARRAY

Suppose you have an array of your lucky numbers:

luckyNumbers = [3,4,8,2,1,8]

How do you multiply every item in the array by 2? Here’s the wrong answer:

i = 0
twiceAsLucky = []

while i != luckyNumbers.length
 twiceAsLucky[i] = luckyNumbers[i]*2
 i = i + 1
[1,2,3,4,5,6]

twiceAsLucky
[6,8,16,4,2,16]

You can write a more concise solution using a comprehension:

number * 2 for number in luckyNumbers

Comprehensions help you to write simpler code that matches your intentions without
having to worry about intermediate variables and loop counters.

2.6.5 Exercise

Suppose you have a string containing animal names:

animals = 'baboons badgers antelopes cobras crocodiles'

Write a program to output the following:

['A rumpus of baboons',
 'A cete of badgers',
 'A herd of antelopes',
 'A quiver of cobras',
 'A bask of crocodiles']

2.7 Heres for comments, docs, and regexes
CoffeeScript provides variants of strings, comments, and regular expression literals
that can contain whitespace, such as newlines. All of these are indicated with syntax
similar to their nonwhitespace counterparts but have a triple of the character for
opening and closing the literal. Because they can contain literal whitespace, here-
docs, herecomments, and heregexes are useful where formatting needs to be pre-
served and also for retaining clarity in code that would be difficult to read if the
whitespace wasn’t preserved.

2.7.1 Comments

Standard comments use a single # and continue to the end of the line:

This is a comment

Depending on your REPL version,
this while loop might even generate
REPL output that you don’t need!
These standard CoffeeScript comments aren’t included in the compiled JavaScript.

40 CHAPTER 2 Simplified syntax

HERECOMMENTS

The CoffeeScript block comment called the herecomment is included as a block comment
in the compiled JavaScript. Start and finish a block comment with three consecutive
hashes (###):

###
This is a herecomment
It will be a block comment in the generated JavaScript
###

This herecomment will appear in the compiled JavaScript as a block comment:

/*
This is a herecomment
It will be a block comment in the generated JavaScript
*/

2.7.2 Heredocs

These are written as literal strings that contain literal whitespace. Use a heredoc when
your text maintains whitespace for formatting:

'''
This
String
Contains
Whitespace
'''

Aside from maintaining whitespace, heredocs work like any other string literal. They
can be assigned to a variable:

stanza = '''
Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Could frame thy fearful symmetry?
'''

When used with double-quoted strings, heredocs support string interpolation:

title = 'Tiny HTML5 document'
doc = """
<!doctype html>
<title>#{title}</title>
<body>
"""

doc
'<!doctype html>\n<title>Tiny HTML5 document</title>\n<body>'

The literal newlines in the heredoc appear as \n newline characters in a string when

the heredoc is evaluated.

41Putting it together

2.7.3 Heregexes

CoffeeScript has the same regular expression support as the underlying JavaScript
runtime with regular expression literals contained within single forward slashes:

/[0-9]/

CoffeeScript also supports a notation for regular expressions containing whitespace
such as newlines. These heregexes are written between triple forward slashes; they’re
useful when writing more complicated regular expressions that have a reputation for
being impenetrable to understanding:

leadingWhitespace = ///
 ^\s\s* # start and pre-check optimizations for performance
///g

Syntax and language features are important, but they don’t write programs for you. In
the next section, you’ll write a toy program and run it in the two environments that
will be used the most in this book: web browsers and Node.js.

2.8 Putting it together
To learn a programming language, you need to write programs with it. By looking at
a program here, you’ll also get context and examples for housekeeping, such as how
to run the program once it’s written.

 Some of the code listings in this section might use techniques that are unfamiliar
to you. Those techniques will be clear to you after chapter 3.

2.8.1 Running in a browser

To run CoffeeScript programs in a web browser, you should compile them to
JavaScript and then include the JavaScript file in your HTML document. Suppose you
have the barista program in a file called barista.coffee. First, go to the command line
and use coffee to compile the script:

> coffee –c barista.coffee

This generates a barista.js file that you then include in an HTML document as a script:

<!doctype html>
<title>Barista</title>
<body>
<form id='order'>
<input id='request' />
<input type='submit' value ='order' />
</form>
The barista.
<div id='response'></div>
</body>
<script src='barista.js'></script>

</html>

42 CHAPTER 2 Simplified syntax

If you load that file in your web browser, then the barista.js script is executed. In the
following listing you see a browser-based implementation of the barista program. The
browser version has the house roast specified at the top of the file.

houseRoast = 'Yirgacheffe'

hasMilk = (style) ->
 switch style.toLowerCase()
 when 'latte', 'cappuccino', 'mocha'
 yes
 else
 no

makeCoffee = (requestedStyle) ->
 style = requestedStyle || 'Espresso'
 console.log houseRoast
 if houseRoast?
 "#{houseRoast} #{style}"
 else
 style

barista = (style) ->
 time = (new Date()).getHours()
 if hasMilk(style) and time > 12 then "No!"
 else
 coffee = makeCoffee style
 "Enjoy your #{coffee}!"

order = document.querySelector '#order'
request = document.querySelector '#request'
response = document.querySelector '#response'

order.onsubmit = ->
 response.innerHTML = barista(request.value)
 false

This program accepts the coffee order from an input field and displays the response
in the web page.

2.8.2 Running on the command line

If you run CoffeeScript from a standard install on the command line and provide a
CoffeeScript file (such as the one from listing 2.4), then the program in the file will
be executed:

> coffee 2.4.coffee
You need to specify an order.

Listing 2.3 A browser barista (barista.coffee)

Find the parts
of the HTML document
that you need to interact
with. Assign references to
them to variables.

When the order element
(a form) is submitted,

then evaluate the
following function.

Use innerHTML to set the
content of the response element
to be the order response.

Return false from the function so
that the order form doesn’t submit.

43Putting it together

The output of the program indicates that you need to specify an order. You do that
with arguments.

PROGRAM ARGUMENTS

Any Node.js program run on the command line has access to the command-line
arguments passed to it via the process. The first command-line argument is available
at process.argv[2]. Suppose the program is invoked as follows:

> coffee 2.4.coffee 'Cappuccino'

Here, the program process.argv[2] is 'Cappuccino'. What happened to argv[0]
and argv[1]? They’re reserved for other properties. The process.argv[0] is the run-
time (in this case, coffee) and the process.argv[1] is the filesystem path for the pro-
gram executed (in this case, the full path to the 2.4.coffee file).

THE FILESYSTEM MODULE

The other essential task in a Node.js program is to read files. For example, suppose
your command-line barista program needs to read the house roast from a file before
serving a coffee. To do this in Node, you’ll require the filesystem module:

fs = require 'fs'

At this point you don’t need to know much about how the module system works. It’s
covered in depth in chapter 12. Back to the program, though; in the next listing you
see a full implementation of the command-line barista program.

fs = require 'fs'

houseRoast = null

hasMilk = (style) ->
 switch style.toLowerCase()
 when "latte", "cappuccino"
 yes
 else
 no

makeCoffee = (requestedStyle) ->
 style = requestedStyle || 'Espresso'
 if houseRoast?
 "#{houseRoast} #{style}"
 else
 style

barista = (style) ->
 time = (new Date()).getHours()
 if hasMilk(style) and time > 12 then "No!"
 else
 coffee = makeCoffee style
 "Enjoy your #{coffee}!"

Listing 2.4 A command-line barista

44 CHAPTER 2 Simplified syntax

main = ->
 requestedCoffee = process.argv[2]
 if !requestedCoffee?
 console.log 'You need to specify an order'
 else
 fs.readFile 'house_roast.txt', 'utf-8', (err, data) ->
 if data then houseRoast = data.replace /\n/, ''
 console.log barista(requestedCoffee)

main()

The program in listing 2.4 expects to find a file called house_roast.txt that contains
the name of the house roast. Suppose that file contains Yirgacheffe and that it’s cur-
rently before midday. Here’s some sample output:

> coffee 2.4.coffee
You need to specify an order.

> coffee 2.4.coffee 'Ristretto'
Enjoy your Yirgacheffe Ristretto!

The output you’ll get when you invoke the program depends on the order and the
time of day; experiment with it and explore how it works. The programs in listings 2.3
and 2.4 use some concepts in CoffeeScript and related to CoffeeScript (such as asyn-
chronous programs and web browsers) that you might not yet fully grasp. That’s fine;
the following chapters will lead you to a better understanding of these concepts.

2.9 Summary
You’ve learned a lot of syntax in this second chapter. It was important to immerse you in
the syntax so that you could begin to get used to it. You’ve learned that CoffeeScript
makes programs easier to understand by emphasizing expressions, cleaning syntax by
removing unnecessary characters, and providing succinct alternatives to some common
JavaScript idioms (such as dealing with null and undefined values). In the next chapter
you’ll start to really do things with CoffeeScript. The next chapter is about functions.

Read the command-
line input.

Read the file
containing the house
roast and set it.

Call the barista
program with the
command-line argument.

First-class functions
If you asked a dozen JavaScript programmers what they thought JavaScript got
wrong, you’d probably get a dozen different answers. If you asked those same dozen
people what JavaScript got right, they’d probably all answer, “First-class functions.”
What does it mean that JavaScript has first-class functions, why does it matter, and
how does CoffeeScript make functions even better? All will be answered in good
time. First, though, what exactly is a function?

 A function defines a transformation of input values called parameters to an output
value called the return value. You define a function in CoffeeScript with literal nota-
tion using an arrow:

->

This chapter covers
■ Functions for representing computation
■ Functions for events and event-driven I/O
■ An introduction to higher-order functions
■ Variable scope and closures
Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch03-code.html

46 CHAPTER 3 First-class functions

That isn’t a very useful function, though. It has no parameters and no return value.
The function parameters go to the left of the arrow, and the function body goes to the
right of the arrow:

(a, b) -> a + b

When you invoke a function, you provide arguments, and the function transforms them
to produce an output value:

add = (a, b) -> a + b

add 2, 3
5

Notice how this function is assigned to the variable add? That’s an important detail
that underpins most of this chapter. You see, functions don’t just produce values; they
are values. This means that a function can produce a function as its return value and
take a function as an argument. This idea that functions are values is referred to as
functions being first-class and leads to the powerful technique of gluing functions
together, called function composition.

 How does this relate to JavaScript? Functions are just as powerful in JavaScript, but
unfortunately functions in JavaScript have some problems. CoffeeScript aims to address
these problems and improve the syntax. In this chapter you’ll learn how to use func-
tions for events, callbacks, and higher-order programming and why CoffeeScript syn-
tax is a clearer way to describe functions than the equivalent JavaScript.

3.1 Computation
Imagine your friends Agtron and Scruffy are having a party, and you’ve been tasked
with writing a program to count the number of confirmed attendees. When the pro-
gram counts the attendees for you, it performs a computation. Think of functions as
being little computers—they perform computations. To grasp this metaphor, you
need to start with some basics.

3.1.1 Basics

You can multiply the numbers 3 and 4 using the multiplication operator:

3 * 4
12

Here’s a function to perform the same operation:

threeTimesFour = -> 3 * 4
[Function]

When this function is invoked, it evaluates the expressions in the body of the function:

threeTimesFour()

BodyParameters

Declaring a function literal evaluates to a
function, shown on the REPL as [Function]
12

47Computation

The last expression evaluated inside the function is the evaluation of the function itself:

journey = ->
 'A call to adventure'
 'Crossing the chasm'
 'Transformation'
 'Atonement'
 'Back home'

journey()
'Back home'

That threeTimesFour function isn’t very useful, though. How do you multiply any two
numbers? By using function parameters:

multiply = (a, b) -> a * b
multiply(2, 7)
14

Multiplication is rather boring, though, especially when there’s already an operator to
do it for you. What are functions good for then? The real power of functions starts
when you use them to define new things that don’t have operators. Why? Because
when you define things that don’t have operators, you create your own language.

3.1.2 Custom operations

Consider a function to covert gigabytes to megabytes:

gigabytesToMegabytes = (gigabytes) -> gigabytes * 1024

This function defines an operation that isn’t built into the language. Try it:

gigabytesToMegabytes 7
7168

What sorts of things do you define in a language? That depends on the problem
you’re solving.

KEEPING TRACK OF ATTENDEES

Time to get back to counting the list of party attendees. Imagine a list of confirmed
attendees is emailed to you with the name of each confirmed attendee separated from
the next by a comma. The list is too long to print here, but the first part of the list
looks like this:

'Batman,Joker,Wolverine,Sabertooth,The Green Lantern,Sinestro'

Sounds like a fun party. Anyway, you don’t want to manually count the new list every
time it arrives in your inbox. How do you write a program to count the list for you?

 CoffeeScript doesn’t have a built-in operator or method to count the number of
comma-separated words in a string, but it’s possible to count them by using the split
method for strings that you saw in chapter 2. Split the string into an array of strings,

Remember, to enter an expression that spans
multiple lines into the REPL, you press Ctrl-V
to start and Ctrl-V when you’ve finished.

The result of invoking the function is the
string ‘Back home’, which is the last
expression in the function body.

Here the names a and b inside the parentheses
are known as either parameters or arguments.
and then use the array’s length property. Try it on the REPL:

48 CHAPTER 3 First-class functions

text = 'Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday'
daysInWeek = text.split(/,/)
daysInWeek.length
7

text = 'Spring,Summer,Autumn,Winter'
seasons = text.split(/,/)
seasons.length
4

If you’re a masochist, then you’ll happily do that over and over again, and over and
over again, every time you have another string. Otherwise, you can write a program to
count the words and use that program each time you want to count. The following list-
ing contains a CoffeeScript program that runs on Node.js and counts the number of
words in a comma-separated string. It reads arguments from the command line using
process.argv, which you saw in chapter 2.

text = process.argv[2]

if text
 words = text.split /,/
 console.log "#{words.length} partygoers"
else
 console.log 'usage: coffee 3.1.coffee [text]'

Use this program from the command line by typing coffee followed by the name of
the file and then the arguments to the program:

coffee listing.3.1.coffee Batman,Joker,Wolverine,Sabertooth

What does this have to do with functions? Well, functions are a bit like miniprograms.
Consider a function that counts comma-separated words in a string:

countWords = (text) -> text.split(/,/).length
[Function]

Enter the one-line countWords function into your REPL and experiment:

countWords 'sight,smell,taste,touch,hearing'
5

countWords 'morning,noon,night'
3

Functions can do anything—think of the possibilities! Before writing more functions,
though, you should review their different parts.

3.1.3 Anatomy
As you’ve seen, a function is written with parameters in parentheses on the left side of
an arrow and the function body on the right. But not many functions will fit on one
line. If the function body requires multiple lines, then you put the function body under-

Listing 3.1 Counting words

Split the string on the
comma character to
get an array of words.Use the length

property of
the array.

Get the argument
provided to the program.

Count the
partygoers.

No string
provided. Exit.

Evaluates to a function.
neath, with each line of code indented one level. Refer to figure 3.1.

49Computation

INVOCATION

When you write the variable name of a function followed by one or more values, then
the function is invoked:

countWords 'north,east,south,west'
4

Any function is invoked when followed by parameters or parentheses, even a function
that’s not assigned to a variable:

(-> 42)()
42

The significance of this odd-looking bit of syntax is explored later in the chapter.

ARGUMENTS

A function takes any number of values as arguments with a comma separating each argu-
ment from the next. These arguments specify values for the function parameters. Why do
you need more than one argument? Well, consider a string of words separated by colons:

beerStyles = 'Porter:Pilsner:Stout:Lager:Bock'

The existing countWords function expects words separated by commas, so it doesn’t
work for this string. To solve this, add a second parameter to the function that you can
use to pass a second argument to the function. This second argument specifies the
character to use as the delimiter between each word:

countWords = (text, delimiter) ->
 words = text.split delimiter
 words.length

Now the function works for strings delimited by different characters:

countWords('Josie:Melody:Valerie:Alexandra', ':')
4

countWords('halloween/scream/maniac', '/')
3

countWords('re#brown#tag#table', '#')
4

countWords(beerStyles, ':')
5

Assigned
to variable

Return value

Indented
function
body

Arguments Function arrow

a = base * height / 2

'The area is #{a}'

area = (base, height) ->

Figure 3.1 Anatomy
of a function

Split the string using the character
supplied in the argument.
All those parentheses, though; are they necessary? No.

50 CHAPTER 3 First-class functions

PARENTHESES

Parentheses around arguments are optional:

planets = 'Mercury,Venus,Earth,Mars,Jupiter,Saturn,Uranus,Neptune'
countWords(planets)
8

countWords planets
8

But parentheses aren’t optional when you invoke a function without any arguments:

sayHello = -> 'Hello!'
sayHello()
'Hello!

Without parentheses or arguments, the function itself is being evaluated, instead of
the result of invoking the function:

sayHello
[Function]

In general, you should omit parentheses where possible.

IMPLICIT RETURN

The return value for a function is the last expression evaluated when the function is
invoked. In JavaScript a function requires an explicit return statement indicating the
return value. If there is no such statement, then the return value is undefined:

returnsUndefined = function(a,b) {
 a + b;
};

returnsUndefined();
// undefined

In CoffeeScript the only way to return undefined from a function is on purpose, by
having it as the last expression evaluated:

returnsUndefined = ->
 return undefined

returnsUndefined()
undefined

RETURN FROM INSIDE EXPRESSION

Remember the countWords function?

countWords = (text, delimiter) ->
 words = text.split delimiter
 words.length

The last expression evaluated is words.length. Suppose that this function doesn’t
quite do what you need it to—it has several problems. The first is that it gives an incor-
rect result for an empty string:

countWords '', ':'

Invoke countWords
with one argument.

Evaluates to
a function.

In JavaScript the result of
invoking a function that
has no return statement
is undefined.

In CoffeeScript a function
returns undefined only if
you make it.
1

51Computation

It does that because that’s how the split method works. Normally for countWords,
the way that split works is fine for a single word:

'abc'.split /,/
['abc']

But an empty string looks just like a single word:

''.split /,/
['']

To fix the empty string problem in countWords, add an if inside it to check whether
the text argument is empty or not:

countWords = (text, delimiter) ->
 if text
 words = text.split(delimiter || /,/)
 words.length
 else
 0

countWords ''
0

How does this affect the last expression in the function body? It now depends on whether
the if or the else branch is evaluated. If the string is empty, then the else branch is eval-
uated1 and the last expression is 0. If the string is not empty, then the if branch is
evaluated and the last expression is words.length.

EXPLICIT RETURN STATEMENT

You can return early from a function by using the return keyword followed by an expres-
sion. An alternative version of countWords with an explicit return statement follows:

count = (text, delimiter) ->
 return 0 unless text
 words = text.split(delimiter || /,/)
 words.length

The unless keyword you see here isn’t used all that often in CoffeeScript, but it’s very
handy and commonly used when returning early from a function. It’s time for a quick
detour about how unless works.

UNLESS

Putting unless after an expression has the opposite effect of putting if after an
expression. This means that the following two expressions are equivalent:

eat berries if not poisonous

eat berries unless poisonous

1 The else branch is evaluated when text is an empty string because an empty string is a falsy value. Remem-

If text is a
non-empty string

Else 0

Logs 0 to
console

Return 0 unless text is
a non-empty string.
ber, the falsy values are null, false, 0, and ''.

52 CHAPTER 3 First-class functions

If the expression after the unless keyword is falsy, then the expression before the
unless keyword won’t be evaluated.

 Back on track now, how does the CoffeeScript function syntax compare to the
equivalent JavaScript?

3.1.4 Comparison: JavaScript and CoffeeScript

The next listing presents a side-by-side comparison of JavaScript and CoffeeScript for
the latest countWords function. Variable names have been shortened to avoid clutter
in the example.

CoffeeScript has less syntax than JavaScript for defining functions. Implicit returns
aren’t just syntax, though; they also help you think differently about how you write func-
tions. In CoffeeScript, invoked functions have a value by default. This is a change in the
semantics of functions that helps you more readily think of functions as expressions.

WHERE ARE THE NAMED FUNCTIONS?
JavaScript has named functions written by writing the function keyword followed by a
name and a function definition:

function obi(wan) {
 return wan;
};

obi('kenobi');

CoffeeScript, preferring expressions, does not have named functions but only function
values assigned to variables.

3.1.5 Exercises

Use these exercises to ensure you understand functions as computations:

■ Write a version of countWords that uses space for the word delimiter and
ignores words shorter than three letters.

■ Write a function that creates a new space-delimited string of words containing

Listing 3.2 Count words comparison

CoffeeScript JavaScript

countWords = (s, del) ->
 if s
 words = s.split del
 words.length
 else
 0

var countWords = function (s, del) {
 var words;
 if (s) {
 words = s.split(del);
 return words.length;
 } else {
 return 0;
 }
}

JavaScript
example
only every second word in the original space-delimited string. For example,

e
ed

53Events

misquote = """we like only like think like when like we like are like
confronted like with like a like problem"""
everyOtherWord misquote

should return
'we only think when we are confronted with a problem'

That covers the core ideas behind functions. In order to get to more advanced usage,
you now need to look at some real-world problems, warts and all, which will take you
on the scenic route to uncovering the power of functions. With your patience in hand,
you’ll begin with events.

3.2 Events
Web browsers and Node.js have an event-driven programming model. The core idea
of event-driven programming is that program flow reacts to events as they occur
instead of prescribing the order in which things must occur. It’s a bit like the differ-
ence between sitting in a pizza shop, watching your pizza get cooked, and having it
home delivered. The home-delivered pizza is event driven—when the pizza is ready
(the ready event), you will receive it, without having to wait around.

 In CoffeeScript, functions are used to handle events. A function is registered as an
event handler so that when the event occurs, the function is invoked. You’ll see that in
this section by looking at creating and handling events with callbacks.

PREREQUISITE: RUNNING ON THE CLIENT Some parts of this section require that
some CoffeeScript be embedded in an HTML document. Go back to the end
of the previous chapter if you need a refresher on how to do that.

3.2.1 Browser events
A quick recap of the program you’ve been writing for Scruffy and Agtron’s party is in order.
So far you can count the number of guests attending the party by reading the attendee list
from a file called partygoers.txt. Next, you need to create a website for the party that always
shows the current attendee count. Scruffy started creating a site for the party, but he had
to abandon the project at the last minute to tour Greenland as a xylophonist. Luckily, he
had already started on it. You already have an HTML document:

<!doctype html>
<html>
<title>How many people are coming?</title>
<script src='attendees.js'></script>
<body>
<div id='how-many-attendees'>How many attendees?</div>
</body>
</html>

You want to replace the words How many attendees? with the current attendees count.
Scruffy also left you some code that shows how to update the content:

document.querySelector('#how-many-attendees').innerHTML = 55

To get your CoffeeScript program to run in th
browser when you load this document, you ne
to first compile it to a file called attendees.js.

The element
that will hold the
attendee count.

Update the
content 'How many

attendees?' with 55.

54 CHAPTER 3 First-class functions

So, how do you update the content with the latest attendees? Forget about web
browsers entirely for a minute and think about whether you’ve seen anything so far
in CoffeeScript to do that. You haven’t, but you’re about to see something that gets
you part of the way. It’s called setInterval.

DOCUMENT.QUERYSELECTOR? The document.querySelector method is part
of the Document Object Model (DOM) API that you use to manipulate things
in a web browser. You’ll find more about browsers in chapter 11.

3.2.2 Using timeouts and intervals to create events

Inside a browser there’s a global setInterval method. It’s a global method because
you can invoke it anywhere in your program. The setInterval method is used to
make something happen repeatedly, which is exactly what you want for updating the
attendees count. First, though, there’s another global method called setTimeout
that’s easier for you to experiment with.

 The setTimeout method takes two arguments. The first argument is the function
to be invoked, and the second argument is the duration (in milliseconds) from the
current time that you want the function to be invoked. Try it on the REPL:

partyMessage = -> console.log "It's party time!"
setTimeout partyMessage, 1000
... 1 second later
It's party time!

The setInterval method works the same way, except that it invokes the function
repeatedly. If you enter that into the REPL, then it will continue to be invoked until
you exit the REPL or clear the interval.

interval = setInterval partyMessage, 1000
... 1 second later
It's party time!
... 1 second later
It's party time!
and so on...
clearInterval interval

What does this have to do with functions and events? Continuing the scenic route, it’s
all about callbacks.

GLOBAL METHODS The setTimeout method belongs to a global object. The
global object in a web browser is typically the browser’s window object. Other
environments have different global objects. Consult the reference for the spe-
cific environment.

CALLBACKS

A callback is a function that’s invoked from somewhere else. You see, normally you
invoke a function yourself, whenever you feel the need:

partyMessage()

1000 milliseconds
is 1 second.

To stop the interval,
you use clearInterval.
It's party time!

55Events

A function used as a callback is different. Instead of invoking the function, imagine
giving it to Scruffy and asking him to invoke it later. That’s a callback. Similarly, when
you invoke setTimeout with partyMessage, you’re telling setTimeout to invoke it
later. You’re using the partyMessage function as a callback.

 These callback functions have a very important feature—they’re asynchronous. What
does that mean? To find out, try setTimeout partyMessage on the REPL again, but
this time make the duration 5 seconds and enter the expression 1+1 before you see
the party message appear. Be quick!

setTimeout partyMessage, 5000
1 + 1
2

... 5 seconds later
It's party time!

Notice how the REPL evaluated the expression 1+1 before the timeout was complete?
That’s why asynchronous callbacks are important; you can go off and do other things
while you’re waiting for the response. That’s exactly what Agtron does in figure 3.2 as
he waits for Scruffy to call back.

 If you created a timeout or interval that you decide you don’t want, you use
clearTimeout or clearInterval to clear it:

timeout = setTimeout partyMessage, 1000
clearTimeout timeout

The partyMessage callback won’t be
invoked because the timeout was cleared.
Figure 3.2 Callbacks are asynchronous.

s on
ust

s.js
ed in
ent.
56 CHAPTER 3 First-class functions

Back to the task, use setInterval to update the attendee count in the HTML docu-
ment every second:

updateAttendeesCount = ->
 document.querySelector('#how-many-attendees').innerHTML 55

setInterval updateAttendeesCount, 1000

Updating with the value 55 every second isn’t exactly what you need, though. Where
does the actual attendee count come from? Just as you haven’t seen anything in Coffee-
Script to do something repeatedly, you also haven’t seen anything2 to read input or
write output (called I/O). Indeed, there is no way built into the language to do I/O in
CoffeeScript (or JavaScript). What do you use instead? You use callback functions.

3.3 I/O
Continuing the scenic route to the power of functions, you’re presented with a new
problem: there’s no easy, built-in way to do I/O in CoffeeScript (or JavaScript). What
can you do? The strategy so far for parts of the language you want but that are not
built in has been to define a functions for them. It’s the same with I/O; you define a
function that specifies how to handle data resulting from I/O.

 This method of doing I/O seems tedious at first but has two advantages. First, it
means that I/O is asynchronous (something you’ll learn much more about in chapter 9),
and second, it means you don’t have to look at the details of how the I/O is imple-
mented. Instead, you concentrate on the callback function. But before you can ignore
a detail, you need to appreciate what it is you’re ignoring. The I/O details for fetching
data in a web browser are commonly grouped under the term Ajax.

3.3.1 Ajax

Remember that party attendees website? You want the count to update every second,
but so far you have no way to actually get the attendee count. Suppose the attendee
count is available somewhere on the web; it doesn’t matter where. To get that data
into the website you use Ajax to fetch it. Time for a bit of wishful thinking: suppose
you already have a get function that does the Ajax for you and that this get function
accepts a callback function as an argument:

url = "http://www.coffeescriptinaction.com/3/data.js"
get url, (response) ->
 console.log response

Figure 3.3 demonstrates how this works across the network.
 The sequence diagram in figure 3.3 is more complicated than the callback you

write. Now, the data.js file contains the number of party attendees and you can get the
contents of that file with the get method, which does some Ajax for you. All this means

You can’t just run thi
the REPL. First, you m
use the compiler to
generate an attendee
file that can be includ
Scruffy’s HTML docum

Use the get function to
dispatch a request.
2 Excluding a brief encounter with fs.readFile in listing 2.4.

57I/O

that you can use setInterval to regularly trigger a fetch of the latest attendee every
second and display that in the HTML page. Here’s the document again:

<!doctype html>
<title>How many people are coming?</title>
<script src='attendees.js'></script>
<body>
<div id='how-many-attendees'>How many attendees?</div>
</body>
</html>

Finally, here’s the client-side script that brings all of this together:

showAttendees = ->
 url = "http://www.coffeescriptinaction.com/3/data.js"
 get url, (response) ->
 outputElement = document.querySelector("#how-many-attendees")
 outputElement.innerHTML = "#{response} attendees!"

setInterval(showAttendees, 1000)

It took a while to get there, but that’s how things work in a web browser. How about on
Node.js then? Luckily, it works the same way.

3.3.2 Event-driven file reading with Node.js

Now imagine that you receive a new file called partygoers.txt containing the attendee
list every time it changes and that you have access to this file. You already have a way to
fetch the attendee count from a web browser, but how do you write a web server that
serves up the attendee count by reading it from a file? Reading a file in Node.js looks
a lot like the Ajax you just wrote:

fs = require 'fs'

readAttendeesList = (error, fileContents) ->
 console.log fileContents

fs.readFile 'partygoers.txt', readAttendeesList

Great, now you can read the attendee file. The next step will be to serve the attendee
count on the web somewhere so that the website can fetch it using Ajax. Before mov-

Define callback callback = (res) ->

console.log res

1

Send request2

Response received # Done!

callback 'Done!'

3
Figure 3.3 A callback from
an external server

The callback
inserts the
contents of
data.js into
the web page.

Request that showAttendees be
invoked every 1000 milliseconds.

Require the Node.js
filesystem module fs.

Invoke fs.readFile with the file
to read and a callback function
to be invoked when it’s done.
ing on, though, you might want to spend some time experimenting with file reading

58 CHAPTER 3 First-class functions

to become comfortable with it. Writing a version of a small utility called cat will help
you do that.

A CAT PROGRAM

In the following listing is a simple program that’s similar to the cat utility found on
Unix-like operating systems. This program prints the contents of a file.

fs = require 'fs'

file = process.argv[2]
fs.readFile file, 'utf-8', (error, contents) ->
 if error
 console.log error
 else
 console.log contents

Ready to continue and serve a web page using Node.js? Ready for the surprise (or
not)? Serving a website involves callback functions.

3.3.3 Event-driven file serving with Node.js

In the next listing, you see a web application that watches a local file for changes and
displays the most recent value in a web page. When the file changes, the contents are
read in and then assigned to a variable. The value of that variable is then used in the
response to HTTP requests.

fs = require 'fs'
http = require 'http'

sourceFile = 'myfile'
fileContents = 'File not read yet.'

readSourceFile = ->
 fs.readFile sourceFile, 'utf-8', (error, data) ->
 if error
 console.log error
 else
 fileContents = data

fs.watchFile sourceFile, readSourceFile

server = http.createServer (request, response) ->
 response.end fileContents

server.listen 8080, '127.0.0.1'

This program uses events for reading a file, for watching a file for changes, and for
responding to incoming HTTP request events. Every one of these events is handled by

Listing 3.3 Cat utility

Listing 3.4 Serve the current contents of a file

The readFile call needs to know what
encoding the file has; use utf-8.

If there’s an error
reading the file, just
console.log the error.

console.log the
file if no error.

Require the filesystem
and HTTP modules.

Set some vars
for the app.

Function that
asynchronously
reads the
source file.

Attach the file reader
to file change events.

Listen on HTTP
requests with
event handler.
a callback function defined in the program.

59Higher-order functions

 Although the module system is covered in depth in chapter 12, you’ll see two
modules used in this chapter. They are the filesystem module (fs) and the HTTP
module (http).

FILESYSTEM MODULE

The Node.js filesystem module fs provides reading from and writing to local files. In
listing 3.4 the fs.readFile method, which you’ve already seen, is used in addition to
the fs.watchFile method.

 The fs.watchFile method takes a file and callback function. The file is polled for
changes; when a change is detected, the callback is invoked. The polling is imple-
mented by Node.js interfacing with the operating system.

HTTP MODULE

The Node.js HTTP module provides low-level methods for making HTTP requests and
serving HTTP responses. In listing 3.4 a server is created using http.createServer
and then told to listen for incoming request events on port 8080 on the host
127.0.0.1.

3.3.4 Exercises

Use these exercises to build your confidence working with programs that contain
functions:

■ Add a word-counting function to the file-serving code in listing 3.4 so that the
web server responds with the number of attendees to the party, given the follow-
ing attendees list:

'Talos,Gnut,Torg,Ash,Beta,Max,Bender'

■ See what happens when you change the list of attendees in the file being
watched from the previous exercise.

This ends the scenic route you took to understanding how central functions work in
CoffeeScript. In order to achieve anything of practical value (like serving a website),
you have to use callback functions. Functions are important, so you must become pro-
ficient at using them. This begins with the idea of higher-order functions.

3.4 Higher-order functions
Remember, functions are values. A function can be invoked by another function, sup-
plied as an argument to another function, and be the return value of a function. Using
these techniques, functions can be glued together. A function that glues together other
functions, composing them, is a higher-order function.

 Suppose you do roughly the same thing every day, a typical example being Monday:

monday = ->
 wake()
 work()

 sleep()

60 CHAPTER 3 First-class functions

But on Thursday you go to train with your javelin-catching team:

thursday = ->
 wake()
 work()
 catchJavelins()
 sleep()

You could have a single function that switched on the day:

activities = (day) ->
 switch day
 when 'thursday' then catchJavelins()

But now you will be forever updating the activities function. Instead, how about a
day function that looks like the following?

day = (freeTime) ->
 wake()
 work()
 freeTime()
 sleep()

Now you can define thursday using day and catchJavelins:

thursday = day catchJavelins

Now only thursday has to care about javelin catching. By using the catchJavelins
function as a value composing thursday, you’ve made your life a little easier. This
composition stuff sounds useful! How else can you compose with functions?

3.4.1 Invoking other functions

Imagine you want to check the attendee list to see if a particular person is attending.
How do you write a program for that? You might think to start by using the search
method on a string that you learned in chapter 2 (remember, search returns the
value -1 if it doesn’t find a match). Consider a contains function that searches a
string of comma-separated words:

contains = (text, word) -> (text.search word) isnt -1
randomWords = 'door,comeuppance,jacuzzi,tent,hippocampus,gallivant'

contains randomWords, 'tent'
true

Unfortunately, this contains function returns the wrong value for the word camp
because the word hippocampus contains the word camp:

contains randomWords, 'camp'
#true

In case you missed the memo, false positives are not a design feature. You already have
a function that splits these strings into individual words, so back to word counting—
here’s a one-liner:

Remember, the isnt keyword is
the CoffeeScript alias for !==.
wordCount = (text, delimiter) -> text.split(delimiter).length

61Higher-order functions

Use this as the starting point for a correct contains function.

REUSE

To avoid duplication, you want to reuse this wordCount function, but sadly, it currently
does too much for you to be able to reuse it. You need a function that splits the string
into an array. So, take out the split and make it a separate function:

split = (text, delimiter) -> text.split delimiter

Now you can define wordCount as a function that invokes split:

wordCount = (text, delimiter) ->
 words = split(text, delimiter)
 words.length

Now define contains as a function that invokes split and uses the in operator on the
array returned by the split function:

contains = (text, delimiter, word) ->
 words = split(text, delimiter)
 word in words

Because you’re now looking for an actual word occurrence in an array instead of a
match across the entire string, this new version of contains works correctly with the
word camp:

contains randomWords, ',', 'camp'
false

Invoking the split function from inside the contains function demonstrates another
function composition—invoking one function from another.

3.4.2 Example: Counting words in a file

Counting words in comma-separated strings can be extended to a more general word-
counting program similar to the wc utility on Unix-like operating systems. Here’s a
Node.js program for counting the number of words in a file. It demonstrates the tech-
niques used so far, as well as revisiting array comprehensions.

fs = require 'fs'

split = (text) ->
 text.split /\W/g

count = (text) ->
 parts = split text
 words = (word for word in parts when word.trim().length > 0)
 words.length

countMany = (texts) ->
 sum = 0
 for text in texts
 sum = sum + count text

Listing 3.5 Counting words

Split a string
into words.

Count array.

Count in many
strings of text.
 sum

62 CHAPTER 3 First-class functions

countWordsInFile = (fileName) ->
 stream = fs.createReadStream fileName
 stream.setEncoding 'ascii'
 wordCount = 0
 stream.on 'data', (data) ->
 lines = data.split /\n/gm
 wordCount = wordCount + countMany lines
 stream.on 'close', () ->
 console.log "#{wordCount} words"

file = process.argv[2]

if file
 countWordsInFile file
else
 console.log 'usage: coffee wordcount.coffee [file]'

WHERE’S REDUCE? If you’re thinking that the countMany function could have
just reduced the array instead of iterating manually, you’re correct. If you
don’t know what reduce is, then that’s fine too; carry on.

3.4.3 Functions as arguments

Good news! You’ve already seen functions used as arguments. For example, the
setTimeout method takes a function as an argument:

invokeLater = -> console.log 'Please invoke in one second'
setTimeout invokeLater, 1000

This has uses other than callback functions, though.

SUMMING AN ARRAY

Just when you thought you had the party attendee count page covered, there’s a prob-
lem. People are allowed to bring friends to the party, and those friends aren’t being
included in the attendee list. Instead, you’re now getting emailed another guests file
containing the number of friends each person is bringing. Like the attendee list, the
guest list is too long to print here, but it’s in this format:

'1,2,0,2,8,0,1,3'

You already have a split function to split comma-separated strings, but you’ll need a
way to add up the numbers returned. To do this you’ll need a sum function that works
as follows:

numbers = [1,2,0,2,8,0,1,3]
sum numbers
17

You haven’t written the function yet, but that’s how it should work.

Read the file in as a
stream and perform
a word count on
each stream.

Get the filename from
command-line argument.

Handle
command line.

63Higher-order functions

WRITING ACCUMULATE

One way to add the numbers in an array is by keeping a total and adding each one in turn:

sum = (numbers) ->
 total = 0
 for number in numbers
 total = total + number
 total

sum [1..5]
15

Suppose you want to multiply the numbers instead of sum them. Do you write another
function?

multiply = (initial, numbers) ->
 total = initial or 1
 for number in numbers
 total = total * number
 total

The multiply function looks almost exactly like the sum function! Now suppose
you want to flatten an array of arrays so that [[1,2],[2,2],[4,2]] will become
[1,2,2,2,4,2]. How do you do that? You could write yet another function that looks
just like the last two:

flatten = (arrays) ->
 total = []
 for array in arrays
 total = total.concat array
 total

Now you have three similar functions. That’s two too many. Instead of having different
variants of the same function, if only you could avoid this repetition and have the
common parts of the three functions in one place and the differences in another.
Indeed you can! Extract the common parts of add, multiply, and flatten into a sin-
gle function that takes another function as an argument. The function passed in as
the argument will perform the parts that are different. Now, instead of using specific
add, multiply, and flatten functions, you’ve abstracted away the common parts and
made an accumulate function:

accumulate = (initial, numbers, accumulator) ->
 total = initial or 0
 for number in numbers
 total = accumulator total, number
 total

Inside accumulate, instead of there being a primitive operator such as + or *, you see the
name of the argument, accumulator. Use the new accumulate function to sum an array:

sum = (acc, current) -> acc + current
accumulate(0, [5,5,5], sum)

Use a for comprehension to
accumulate the total by adding
each number in the range to
the total as it goes through.

Can’t start with a total of 0 if
multiplying: 0x1x2x3x4x5 is 0.

The concat method returns a new
array of the two arrays combined.

Add initial value and
accumulator arguments.

The total needs to be initialized;
use 0 as the default.

The accumulator function is
invoked inside the comprehension.

Define a sum
accumulator.

Invoke accumulate
with initial of 0, an
array of numbers, and
15 the sum function.

64 CHAPTER 3 First-class functions

Now use the accumulate function to flatten an array:

flatten = (acc,current) -> acc.concat current
accumulate([], [[1,3],[2,8]], flatten)
[1,3,2,8]

Try to visualize this accumulate function to understand how it works.

VISUALIZING ACCUMULATE

Suppose you want to manually add the numbers from 1 through 5. Insert an addition
operator between the numbers, as in figure 3.4.

 When you use the accumulate function, you’re doing the same thing, except that
instead of an operator you insert a function between the numbers, as in figure 3.5.

 You might visualize it as folding the function into the array. In some programming
languages it’s actually called fold, and when the function is inserted to the left (as in
figure 3.5), it’s called fold left or foldl.

RECURSION! If you think that the flatten function shown won’t completely
flatten deeply nested arrays such as [1,[3,[4,5]]], then you’re correct. Using
recursion will be explored in chapter 6.

Before you had three similar functions to add, multiply, and flatten an array. Now
you have one accumulate function that’s an abstraction of the general idea of accu-
mulating, or folding a function into an array or other data structure. The next
important concept to learn for functions is scope. First, though, a quick mention of
some syntax called default arguments that will tidy up some of what you’ve seen in
this section.

1

Array of numbers

2 3 4 5

1

Sum array of numbers

sum: 1 3 6 10 15

2+ + + +3 4 5
Figure 3.4 Summing numbers
with operator

1

Sum array of numbers

sum

(0,1)

#2

sum = (acc, curr) -> acc + curr

2 3 4 5

sum

(1,2)

#3

sum

(3,3)

#6

sum

(6,4)

#10

sum

(10,5)

#15
Figure 3.5 Summing numbers
by folding in a function

65Higher-order functions

STRATEGY PATTERN If you have a background in design patterns from object-
oriented programming languages, you might recognize that the way a func-
tion is passed in here is essentially a lightweight strategy pattern. If you don’t
know design patterns, you’ve just learned your first one!

DEFAULT ARGUMENT VALUES

The accumulate function uses a default value of 0 for the total. Instead of having to do
this in the body of the function, you can use a default argument value. So, instead of

accumulate = (initial, numbers, accumulator) ->
 total = initial or 0
 # <rest of function omitted>

you can use

accumulate = (initial=0, numbers, accumulator) ->
 total = initial
 # <rest of function omitted>

Try a basic version of this on the REPL:

logArgument = (logMe='default') -> console.log logMe
logArgument()
'default'

logArgument('not the default')
'not the default'

3.4.4 Exercises

It’s time for some exercises to help you explore the concepts you’ve just learned:

■ Use accumulate to create a sumFractions function that will sum fractions sup-
plied as strings and return a fraction as a string. For example,

sumFractions ['2/6', '1/4']

should return '7/12' or an equivalent fraction such as '14/24'.
■ Write a keep function that takes an array and returns a new array containing

only the element of the array that meets a condition supplied by a function.
For example,

greaterThan3 = (n) -> n > 3
keep [1,2,3,4], greaterThan3

should return an array containing the single value 4.

The next important composition technique involves using functions as return values
and a concept called closures. In order to get there, you must first understand how the
scope rules work inside functions.

66 CHAPTER 3 First-class functions

3.5 Scope
Remember earlier when you defined a function called accumulate? Suppose this
function is in a program you wrote and that one day your colleague Robin works on
the program and adds this doozy to it:

accumulate = yes

Your program is broken and many of your tests fail. Just as individual programs have
their own variables, you need a way to isolate individual components of your program
so that a variable name in one part of the program doesn’t accidentally overwrite or
clobber the same variable name in another part of the program. You need scope.

3.5.1 Lexical function scope

All variables are lexically scoped to the body of a function and are defined only inside
that function. In this section you’ll see that implicit variable definitions in Coffee-
Script can help prevent name collisions and global variables that can be a common
affliction in JavaScript programs.

 Functions are like programs with their own variables. If you first define a variable
inside a function, then it can’t be used outside the function:

scoped = ->
 secret = 'A secret'

secret
ReferenceError: secret is not defined

A variable that’s scoped to a function is undefined outside of the function. This means
you can have one part of the program where you use the name accumulate for one
variable and another part of the program where Robin uses the name accumulate for
a different variable:

subProgramOne = ->
 accumulate = (initial, numbers, accumulator) ->
 total = initial or 0
 for number in numbers
 total = accumulator total, number
 total

subProgramTwo = ->
 accumulate = yes

The two uses of accumulate in this example are different variables; functions pro-
vide scope.

3.5.2 No block scope

Function scope is the only lexical scope rule in CoffeeScript; there is no block scope.
If subProgramOne and subProgramTwo are there only to provide scope, then there is

secret is defined
inside function
no reason to assign them to variables. You can invoke a function literal directly:

67Scope

(->
 name = 'Ren'
)()

(->
 name = 'Stimpy'
)()

This syntax is a bit clunky, so CoffeeScript provides an alternative way to invoke a func-
tion using the do keyword:

do ->
 name = 'Ren'

do ->
 name = 'Stimpy'

Putting the do keyword in front of a function has the same result as putting parenthe-
ses after one—invoking it.

3.5.3 Implicit variable declarations

As described, lexical function scope in CoffeeScript works exactly the same as it does
in JavaScript. There’s one crucial difference between CoffeeScript and JavaScript,
though: in CoffeeScript all variable declarations are implicit. Variable declarations in
JavaScript are explicit because to create a variable you need to use the var keyword:

var scope = function () {
 var x = 1;
 y = 2;
};

What happens in JavaScript when you assign a value to a variable that has not been
explicitly scoped to the function with var? The variable is declared globally for you.3

This is a massive problem in a browser environment where scripts from many sources
that have potentially never been tested together are loaded into a single webpage
sharing a single global scope.

 It was one thing for Robin to accidentally clobber your variable; it’s another thing
for a website running your script to load another script that accidentally or even delib-
erately clobbers your variables. The previous example would be written in Coffee-
Script as

scope = ->
 x = 1
 y = 2

The variables will be defined in the current function scope implicitly. It’s not possible
to create a global variable unless you’re explicitly trying to.

The variable x is explicitly scoped
to the function by the var keyword.

The variable y is not scoped to the function because
there is no var y anywhere in the function.
3 The fifth edition of the ECMAScript specification can help with this problem in JavaScript. See chapter 13.

68 CHAPTER 3 First-class functions

 CoffeeScript variables don’t require a var keyword; when an assignment to a variable
is made, the name is first looked for in the current scope. If it isn’t found, then it’s cre-
ated in the current scope. Because it isn’t possible to create a new local variable that
already exists in an outer scope, CoffeeScript is said to not have variable shadowing:

outer = 1
do ->
 outer = 2
 inner = 1
outer
2
inner
ReferenceError

Implicit variable definition in CoffeeScript means that variables can’t accidentally be
defined on the global scope. CoffeeScript goes one step further, though; in order to
stop variables being placed in the global scope at all, the CoffeeScript compiler wraps
the code in each compiled file in a scope, essentially doing this:

do ->
 # <your program here>

Except your CoffeeScript program is compiled to JavaScript, so it’s actually wrapped
in this:

(function() {
 // <your compiled program goes here>
}).call(this);

This does the same thing—creates a scope—but it uses the call method on the func-
tion and passes this as the argument. Both call and this are still relevant to Coffee-
Script; if you don’t already know them from JavaScript, this is covered in chapter 4
and call is covered in chapter 6.

3.5.4 Nesting

Functions are first-class values. Not only can you call a function from another function
and pass a function to another function, but you can also define a function inside
another function where lexical function scope rules still apply. This means that a func-
tion defined inside a function has access to all the variables in the outer function.

 Consider the existing array flatten function and how you invoke your accumulate
function with it:

flatten = (acc,current) -> acc.concat current
accumulate([], [[1,3],[2,8]], flatten)

Any time you need to flatten an array, you’ll need to remember two functions; that’s
one more than you need. Instead, define a single function that combines them:

flattenArray = (array) ->
 flatten = (acc,current) -> acc.concat current

New variable declared

Assignment to
existing variable

New variable
declared

Function defined inside
 accumulate([], array, flatten)
another function

69Scope

flattenArray [[1,3],[2,8]]
[1,3,2,8]

To explore this, consider the following example that uses the existential operator to
demonstrate which variables are defined where:

layerOne = ->
 first = yes
 second?
 third?
 layerTwo = ->
 second = yes
 first?
 third?
 layerThree = ->
 third = yes
 second?
 first?

The same rules apply no matter how far down you go. A lexical function scopes all the
way down.

ARGUMENT SCOPE

Function arguments follow the same lexical scoping rules as function variables, with
the exception that arguments with the same name will shadow. Compare this example

jones = (x) ->
 smith = (y) ->
 x
 y

with the following:

jones = (x) ->
 smith = (x,y) ->
 x
 y

Although you have access to the arguments passed to a containing function, if you use
the same argument name for a function scoped inside that containing function, then
the inner function won’t have access to the outer function argument. The name of an
argument will shadow the name of a variable or argument in an outer scope.

FUNCTIONS AS RETURN VALUES

Perhaps you’re thinking at this point that as awesome as this all sounds, nested scopes
don’t seem to buy you much. Why would you want to nest functions like this? You’re
about to find out.

 You see, there’s one more thing you can do with functions as values: you can return
a function from a function. Pause for a minute and think what might happen to the
scoped variables when a function is returned from a function:

close = ->
 closedOver = 1

False

False

True

False

True

True

x argument
to jones y argument

to smith

x argument
to smith y argument

to smith

Return a function that

 -> closedOver uses closedOver variable

70 CHAPTER 3 First-class functions

closure = close()
closure()

This is your introduction to closures.

3.6 Closures
To newcomers, the idea of closures is often shrouded in mystery, so it’s useful to first
look at where they come from. Peter Landin coined the term closure, with the meaning
used in CoffeeScript, in 1964 when he was implementing a virtual machine called the
SECD4 machine. Strictly speaking, it means that functions close over the free variables
in their lexical scope. This has some profound importance that you need to see in
action to appreciate. In this section you’ll learn how closures work and how they not
only help you get away from problematic global state but also provide a new composi-
tion technique when functions are used as return values.

3.6.1 Global state problems

In listing 3.4 you saw the contents of a file stored in a variable after it was read, so that
it could be used by another function. Suppose you have two files, tweedle.dum and
tweedle.dee, and you always want to serve the contents of the one that was most
recently modified. Suppose you want to implement this as a function that will serve
the most recently modified file:

serveMostRecentFile 'tweedle.dum', 'tweedle.dee'

This will involve another piece of function glue—functions as return values.

3.6.2 Functions as return values

Suppose now you don’t want to just serve the most recent file. Instead, you want to use
the most recent file’s contents somewhere else in your program. As it’s written now,
though, because you’ve contained the variables inside a scope, you’re unable to access
them in other parts of your program. You need a way to expose a specific variable
from a scope to other parts of your program, without resorting to a global variable. To
do this, you write another function. This function is going to use a new piece of pro-
gramming glue that you’ve not seen yet, by using a function as the return value from a
function. In order to get there and understand what’s happening, it’s worth first look-
ing at a simple example of the concept to see how it works.

ABSTRACT EXAMPLE

A simple, abstract example that illustrates the concept of returning a function from a
function is a good place to start:

Invoke a function,
returning a functionWhat will

this return?
4 SECD stands for Stack Environment Code Dump.

71Closures

makeIncrementer = ->
 n = 0
 ->
 n = n + 1
 n

When you invoke makeIncrementer, you get back a function that increments the value
of the variable n and returns the value:

incrementer = makeIncrementer()
incrementer()
1

incrementer()
2

IS IT AN OBJECT? If closures are new to you but you’re comfortable with
objects, then you might think of a closure as an object. Suppose you had an
incrementer object with a single method called increment that incremented
an internal value and returned it. This would be essentially the same thing as
the closure demonstrated in this section.

The returned function has access to the variables scoped to makeIncrementer. The
returned function closes over the variables in scope, resulting in closure. Each time
makeIncrementer is invoked, a new closure is created, meaning you can have several
of them:

up = makeIncrementer()
oneMore = makeIncrementer()
up()
1

up()
2

up()
3

oneMore()
1

APPLIED EXAMPLE

This same technique can be used to create a function that will always return the con-
tents of the most recently modified of two files:

makeMostRecent = (file1, file2) ->
 mostRecent = 'Nothing read yet.'

 sourceFileWatcher = (fileName) ->
 sourceFileReader = ->
 fs.readFile fileName, 'utf-8', (error, data) ->
 mostRecent = data

Initialize the variable.

Return a function
from this function.Increment the

variable n.Return n.
 fs.watch fileName, sourceFileReader

72 CHAPTER 3 First-class functions

 sourceFileWatcher file1
 sourceFileWatcher file2

 getMostRecent = ->
 mostRecent

This function can be used like so:

mostRecentTweedle = makeMostRecent 'tweedle.dee', 'tweedle.dum'

If tweedle.dee has been changed most recently and it contained

Contrariwise

then invoking the returned function will produce that text:

mostRecentTweedle()
Contrariwise

The mostRecent variable is a free variable inside the getMostRecent function because
it’s not defined inside its function but inside the outer makeMostRecent function.
Directly inside makeMostRecent, the mostRecent variable is a bound variable.

 Closure says that free variables are closed over by a function that has them avail-
able via lexical scope, meaning that the function assigned to getMostRecent always
has access to the mostRecent variable regardless of when or where it’s invoked. As a
result, even though the makeMostRecent function has already been invoked, the func-
tion returned from it still has access to its bound variables, via closure.

CLOSURE AND ARGUMENTS

Function arguments are also closed over:

closedOverArgument = (x) ->
 -> x

five = closedOverArgument 5

nine = closedOverArgument 9

five()
5

nine()
9

In that sense, the arguments to a function act like locally defined variables. The scop-
ing rules for arguments are the same as for variables with the exception that argument
names shadow names in outer functions, whereas variable names don’t.

3.6.3 Extended example: using closure

The new watchedFileReader function allows you to now solve the problem without
having to have a global variable to share state around the program. Here’s a modifica-
tion of the program from listing 3.4 that uses closures and serves the combined con-

If you try this and see something starting with <Buffer…,then that’s
okay. The file has just been saved in a different file encoding than the
UTF-8 encoding expected by sourceFileWatcher. You can ignore file
encodings in this chapter.
tents of multiple files.

73Putting it together

fs = require 'fs'
http = require 'http'

makeMostRecent = (file1, file2) ->
 mostRecent = 'Nothing read yet.'

 sourceFileWatcher = (fileName) ->
 sourceFileReader = ->
 fs.readFile fileName, 'utf-8', (error, data) ->
 mostRecent = data
 fs.watch fileName, sourceFileReader

 sourceFileWatcher file1
 sourceFileWatcher file2

 getMostRecent = ->
 mostRecent

makeServer = ->
 mostRecent = makeMostRecent 'file1.txt', 'file2.txt'

 server = http.createServer (request, response) ->
 response.write mostRecent()
 response.end()

 server.listen '8080', '127.0.0.1'

server = makeServer()

Using closure, you’ve been able to isolate two parts of your program and provide a way
to get data from one part of a program to another.

3.7 Putting it together
You’ve looked at functions as discrete parts of a program that use values as arguments,
contain expressions, and return values. You’ve also looked at functions themselves as
values and at some of the powerful abstraction techniques that provides. All of this was
done in the context of creating a website for Agtron and Scruffy’s party. Finally, you
have all of the building blocks to create the full solution.

 The following listing provides the program to serve a web page with the total num-
ber of guests at Scruffy and Agtron’s party using the techniques and concepts from
this chapter. Note that this listing requires the compiler to be available as a module, so
to run it you first need to run npm install coffee-script from the command line in
the folder you want to run it from. Exactly what modules are and what npm install
does are covered in chapter 12. For now, on to the listing.

fs = require 'fs'
http = require 'http'

Listing 3.6 Serve multiple files

Listing 3.7 The party website

The earlier
makeMostRecent
function

Use
makeMostRecent
inside server

Create server

Variables with

coffee = require 'coffee-script' application state.

74 CHAPTER 3 First-class functions

attendees = 0
friends = 0

split = (text) ->
 text.split /,/g

accumulate = (initial, numbers, accumulator) ->
 total = initial or 0
 for number in numbers
 total = accumulator total, number
 total

sum = (accum, current) -> accum + current

attendeesCounter = (data) ->
 attendees = data.split(/,/).length

friendsCounter = (data) ->
 numbers = (parseInt(string, 0) for string in split data)
 friends = accumulate(0, numbers, sum)

readFile = (file, strategy) ->
 fs.readFile file, 'utf-8', (error, response) ->
 throw error if error
 strategy response

countUsingFile = (file, strategy) ->
 readFile file, strategy
 fs.watch file, (-> readFile file, strategy)

init = ->
 countUsingFile 'partygoers.txt', attendeesCounter
 countUsingFile 'friends.txt', friendsCounter

 server = http.createServer (request, response) ->
 switch request.url
 when '/'
 response.writeHead 200, 'Content-Type': 'text/html'
 response.end view
 when '/count'
 response.writeHead 200, 'Content-Type': 'text/plain'
 response.end "#{attendees + friends}"
 server.listen 8080, '127.0.0.1'
 console.log 'Now running at http://127.0.0.1:8080'

 clientScript = coffee.compile '''
 get = (path, callback) ->
 req = new XMLHttpRequest()
 req.onload = (e) -> callback req.responseText
 req.open 'get', path
 req.send()

 showAttendees = ->
 out = document.querySelector '#how-many-attendees'
 get '/count', (response) ->
 out.innerHTML = "#{response} attendees!"

 showAttendees()
 setInterval showAttendees, 1000

Count attendees in a string
like ren,stimpy,horse.

Count friends in
a string like 1,2,3.

Read file and call
strategy function
with response.

Read file immediately
and watch it for
changes.

Set up the two source
files. Sample files are
provided in the
downloadable source.

Listen handler
on port 8080.

Client/browser
CoffeeScript.
 '''

75Summary

 view = """
 <!doctype html>
 <title>How many people are coming?</title>
 <body>
 <div id='how-many-attendees'></div>
 <script>
 #{clientScript}
 </script>
 </body>
 </html>
 """

init()

This entire program is more complicated than anything you’ve seen before in Coffee-
Script. But everything in it is either a general syntactic feature of CoffeeScript or a
technique for using functions that you’ve learned in this chapter. It’s apparent,
though, that if this program were to get larger, then new tools and techniques for
composing functions and programs and new ways of thinking about how to design
them would be needed. For now, though, you have enough to start writing applica-
tions, from functions all the way down.

3.8 Summary
Functions are first-class values in CoffeeScript. They’re used for structuring programs
at several levels and allow you to group together multiple expressions, treating them
like a single expression. By assigning function values to a variable, you have names for
functions that you use to organize programs.

 First-class functions used as callbacks are a fundamental I/O technique used both
in the browser and on the client. You’ve seen repeatedly how this technique works in
different contexts and how it allows I/O to be treated with the same techniques
whether it’s local file access or across a network. This idea has some important impli-
cations and advantages that will be explored later on.

 Functions are combined by invoking them inside other functions, by passing them
as arguments to other functions, and by using functions as return values from other
functions. By gluing functions together, you can use them to create abstractions of
other functions, as you saw in the accumulator function.

 Closure provides a way to isolate parts of a program by containing the variables
defined within them, and by passing closures around in your programs you can use
them to carry data. In one sense, closures provide some of the features that you’ll see
objects provide in the next chapter but with a different conceptual model and a differ-
ent sweet spot for where they’re used.

 Finally, CoffeeScript blends ideas from different programming languages. Although
it supports some important functional programming techniques, it also supports tech-
niques from object-based languages. You’ll see those techniques in the next chapter.

HTML document as
heredoc, rendered
by HTTP handler.

Dynamic objects
JavaScript objects are simple and powerful, but because they don’t work quite like
objects in other popular programming languages, they’re often wrongly perceived
as confusing and underpowered. With simplified and familiar syntax, CoffeeScript
both eliminates the confusion and better exposes the inherent power of objects.
Before diving in, though, what exactly is an object?

Objects are collections of named properties where each name maps to a value.
The value of a property can be any valid CoffeeScript value. You write an empty
object with a set of curly braces:

{}

That is an object, in literal notation. The literal notation for objects is small and con-
venient. It’s used in the source code of programs to represent data and as a format
for transferring data on the web.

This chapter covers
■ Objects as data
■ Object comprehensions
■ An introduction to prototypes
■ An introduction to classes
Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch04-code.html

77Syntax

 Beyond being simple property containers, objects are also used for managing state
and structuring programs. Objects in CoffeeScript are based on a concept called proto-
types, which have the advantages of being dynamic and flexible but the disadvantages
of being uncommon in other programming languages and unfamiliar to most pro-
grammers. It’s classes, and not prototypes, that are a familiar concept in other program-
ming languages, so CoffeeScript provides class syntax that allows programs to be
structured using more familiar class-based techniques.

 In this chapter you’ll learn the syntax for defining objects, how object properties
and values work as key-value stores, how to write comprehensions for objects, how to
structure data using objects, how prototypes work, how functions are bound to objects,
and finally how common behavior among many objects is efficiently achieved with
CoffeeScript’s class syntax.

4.1 Syntax
CoffeeScript has some types that you’ve encountered already. They are numbers,
strings, booleans, functions, null, and undefined. Everything else is an object. Objects
with properties and values are declared using either the literal brace notation familiar
to JavaScript developers or a minimalist CoffeeScript syntax, described in this section.

4.1.1 Literals

One way to get a brand-new empty object, assigned to a variable, is with an object literal:

brandSpankingNewObject = {}
anotherOne = {}

To impress your friends, immediately start referring to this as ex nihilo object creation.
Ex nihilo is a Latin term that means “out of nothing.” An object created using the lit-
eral notation isn’t created from something else—it’s just there, out of nothing.

4.1.2 Properties

Objects contain properties. Each property has a name and associated value. An object
with one property title and value 'Way of the Dragon' looks like this:

{title: 'Way of the Dragon'}

A colon is used to separate the property name and value. When an object has more
than one property, commas separate subsequent properties:

{title: 'Way of the Dragon', star: 'Bruce Lee'}

There is no restriction on the types of values that can be object properties. For exam-
ple, a property can be an array:

{title: 'Way of the Dragon', actors: ['Bruce Lee', 'Chuck Norris']}

Or it can be another object. Here, the info property contains an object with properties
named budget and released:
{title: 'Way of the Dragon', info: {budget: '$130000', released: '1972'}}

www.allitebooks.com

http://www.allitebooks.org

78 CHAPTER 4 Dynamic objects

Because an object is a value, it can be assigned to a variable:

movie = {title: 'Way of the Dragon'}

4.1.3 YAML-style syntax

YAML (rhymes with camel) is a data format that uses significant whitespace, making it
a natural fit for CoffeeScript. Objects are written either in the JavaScript style with
curly braces and commas or with a syntax similar to YAML. Consider this valid Coffee-
Script object:

{title: 'Enter the Dragon', info: {budget: '$850000', released: '1973'}}

It can also be expressed in the new YAML-style syntax:

title: 'Enter the Dragon'
info:
 budget: '$850000'
 released: '1973'

Either is acceptable, though the YAML-style syntax is more commonly used inside Coffee-
Script programs, with the curly brace style often used when transferring data. The fol-
lowing listing shows a syntax comparison of two object literals related to Scruffy’s
favorite television show, Futurama.

That covers what objects look like; how about what they’re used for? To start, the con-
venient literal notation for objects in CoffeeScript is useful for representing data such
as key-value stores.

4.2 Key-value stores
A key-value store associates a set of keys with a set of values, each key being associated
with one value. In CoffeeScript, objects are often used as key-value stores, similar to how

Listing 4.1 Comparison of YAML literal with brace literal notation

YAML object literals Brace object literals
futurama =
 characters: [
 'Fry'
 'Leela'
 'Bender'
 'The Professor'
 'Scruffy'
]
 quotes: [
 'Good news everyone!'
 'Bite my shiny metal'
]

futurama = {
 characters: [
 'Fry',
 'Leela',
 'Bender',
 'The Professor',
 'Scruffy'
],
 quotes: [
 'Good news everyone!'
 'Bite my shiny metal'
]
}

Both sides declare a
variable with the name
futurama that contains
two properties named
characters and quotes.

The value of the
characters property is

an array containing five
strings and the quotes
property is an array

with two strings.
a hash is used in Ruby, a hash table is used in Java, or a dictionary is used in Python.

79Key-value stores

 Objects in CoffeeScript aren’t hash tables in the strict sense of the word, but they
are effective as key-value stores. In particular, the convenient object literal syntax
and lack of ceremony make them very effective key-value stores. In this section you’ll
see how objects as key-value stores are used as data in a program and to name func-
tion arguments.

4.2.1 Data

Imagine you have phone numbers of your friends
written on a piece of paper (figure 4.1). You want to
write a program that stores these numbers and allows
you to add new numbers, change existing numbers,
and check whether you have the number for a partic-
ular person. How do you express what you see on the
paper in CoffeeScript?

 Express the list of phone numbers as an object
with person names as the property names and phone
numbers as the values. The object that you express as
a key-value store looks similar to the paper version.
Here it’s assigned to a variable:

phoneNumbers =
 hannibal: '555-5551'
 darth: '555-5552'
 hal9000: 'disconnected'
 freddy: '555-5554'
 'T-800': '555-5555'

Now that you have the object in your program, how do you use it?

ACCESSING PROPERTIES

Use dot notation on the object with the property name to get the corresponding
value. For example, to call Darth, get his phone number by using the key darth on the
object referenced by the phoneNumbers variable:

phoneNumbers.darth
'555-5552'

Calling Hal to ask him if he’s feeling better is similar:

phoneNumbers.hal9000
'disconnected'

This dot notation doesn’t always work, though. Some properties don’t play nice.

QUOTED PROPERTY NAMES AND SQUARE BRACKETS

How do you get the phone number for T-800? This doesn’t work:

phoneNumbers.T-800

hannibal: 555-5551

darth: 555-5552

hal 9000: disconnected

freddy: 555-5554

T�800: 555-5555

Figure 4.1 Phone numbers

YAML-style object syntax
used, no curly braces

Quoted property because
T-800 isn’t a valid name
NaN

80 CHAPTER 4 Dynamic objects

Why doesn’t it work? Look at it again:

phoneNumbers.T - 800

You can’t use the minus symbol to access a property name because minus means sub-
traction. Instead, to use a property that’s not a valid name, you put quotes around the
property and square brackets around the quotes:

phoneNumbers['T-800']
'555-5555'

Although properties that aren’t valid names can’t be accessed with dot notation, any
property can be accessed using square brackets:

phoneNumbers['freddy']
'555-5554'

In general, dot notation is easier to read, so it should be preferred for accessing any
properties that don’t contain special characters; that is, unless the property name is in
a variable.

PROPERTY NAMES FROM VARIABLES

Because the property name inside the square brackets is a string, it can be provided by
a variable:

friendToCall = 'hannibal'
phoneNumbers[friendToCall]
'555-5551'

friendToCall = 'darth'
phoneNumbers[friendToCall]
'555-5552'

The name of the key can be generated dynamically. If you aren’t familiar with dynamic
languages, leave that idea to settle for a little while before continuing.

ADDING A PROPERTY

By default, any objects you create are open, meaning they can be changed. Add a new
phone number to your list by assignment:

phoneNumbers.kevin = '555-5556'
phoneNumbers['Agent Smith'] = '555-5557'

Now the object has those new friends in it, as if it were written like this:

phoneNumbers =
 hannibal: '555-5551'
 darth: '555-5552'
 hal9000: 'disconnected'
 freddy: '555-5554'
 'T-800': '555-5555'
 'kevin': '555-5556'

 'Agent Smith': '555-5557'

81Key-value stores

Be careful because, although the numbers that were just added are shown at the end
of the object, there’s no requirement that object properties be in any particular order.
Always consider object properties to be unordered.

CHANGING A PROPERTY

Properties can also be changed:

phoneNumbers.hannibal = '555-5525'
phoneNumbers.hannibal
'555-55525'

Suppose you don’t know what properties are in an object. You don’t want to add to or
change an object without knowing what properties it has.

CHECKING FOR A PROPERTY NAME

If you want to check if an object contains a property, use the of operator:

'hal9000' of phoneNumbers
true

'skeletor' of phoneNumbers
false

That covers basic object creation and manipulation. In listing 4.2 you see these object
features together in a working phone book application. This listing uses some tech-
niques you haven’t seen yet, but those techniques are explained later in this chapter.
The program, which runs on Node.js, doesn’t persist changes to the phone book;
each time you run it, the phone book will be reset.

phonebook =
 numbers:
 hannibal: '555-5551'
 darth: '555-5552'
 hal9000: 'disconnected'
 freddy: '555-5554'
 'T-800': '555-5555'
 list: ->
 "#{name}: #{number}" for name, number of @numbers
 add: (name, number) ->
 if not (name of @numbers)
 @numbers[name] = number
 get: (name) ->
 if name of @numbers
 "#{name}: #{@numbers[name]}"
 else
 "#{name} not found"

console.log "Phonebook. Commands are add get list and exit."

process.stdin.setEncoding 'utf8'

Listing 4.2 A simple phone book

The numbers object
as a property of
phonebook.

The methods of
the phonebook
object.

Read user commands entered into the console

stdin = process.openStdin() while the program is running by using stdin.

82 CHAPTER 4 Dynamic objects

stdin.on 'data', (chunk) ->
 args = chunk.split(' ')
 command = args[0].trim()
 name = args[1].trim() if args[1]
 number = args[2].trim() if args[2]
 switch command
 when 'add'
 res = phonebook.add(name, number) if name and number
 console.log res
 when 'get'
 console.log phonebook.get(name) if name
 when 'list'
 console.log phonebook.list()
 when 'exit'
 process.exit 1

What does listing 4.2 do when it runs? Try it on the REPL. When you start the pro-
gram, it will wait for input:

> coffee phonebook.coffee
Phonebook. Commands are add, get, list and exit.

Now, list all the numbers by typing list and pressing Enter. You’ll see the following:

hannibal: 555-5551
darth: 555-5552
hal9000: disconnected
freddy: 555-5554
T-800: 555-5555

To get a specific number, type get followed by the name you want and press Enter:

> get freddy
freddy: 555-5554

To add a new number or change an existing one, enter add followed by the name and
then the number. That number will be added or changed and the new value logged to
the console:

> add kevin 555-5556
kevin: 555-556

Of course, the key-value feature of CoffeeScript objects isn’t just for creating phone books.

4.2.2 Key-values for named arguments

Imagine you’re purchasing a Maserati (to keep your Ferrari from getting lonely) and
that there are different options available to you for customizing it. Suppose that the
order process is represented as a single function that passes an argument with your
requested color:

orderMaserati = (color) ->
 """Order summary
 - Make: Gran Turismo S
 - Color: #{color}

Listen on input
events.

Get the individual
arguments, trimming
any whitespace.

Switch based on
the command
entered.

Returning formatted output using
a whitespace-preserving heredoc

String interpolation
 """
into heredoc

83Key-value stores

The orderMaserati function takes a single argument color and returns a string using
a whitespace-preserving heredoc with the color inserted into the string via string inter-
polation (see section 2.5.2). Scruffy likes metallic black, or Nero Carbonio as Maserati
calls it, so he orders that:

orderMaserati 'Nero Carbonio'
Order summary:
- Make: Gran Turismo S
- Color: Nero Carbonio

Maserati lets you customize more than just the color, though. How will the order func-
tion handle other options?

MULTIPLE ARGUMENTS

Suppose the interior color is also an option; the function definition gets more
complicated:

orderMaserati = (exteriorColor, interiorColor) ->
 """Order summary:
 - Make: Gran Turismo

 Options:
 - Exterior color: #{exteriorColor}
 - Interior color: #{interiorColor}
 """

As the number of options and hence arguments grows, this will get unwieldy very
quickly. How many arguments are too many?

TOO MANY ARGUMENTS

Perhaps the second argument doesn’t seem so bad. How about a third?

orderMaserati = (exteriorColor, interiorColor, wheelRims) ->
 """Order summary:
 Make: Gran Turismo

 Options:
 Exterior color: #{exteriorColor}
 Interior color: #{interiorColor}
 Wheel rims: #{options.wheelRims}
 """

The next time you use this function, you’ll find yourself wondering, was it the interior or
exterior color that went first? That’s no way to live. Instead, you need a way to pass any
number of arguments into a function and not have to remember the order. You do
this with an object.

AN OPTIONS ARGUMENT

Instead of having to pass each argument to the function in a particular order, use an
object as a key-value store to pass all the options as one argument:

orderMaserati = (options) ->
 """Order summary:

 Make: Gran Turismo

84 CHAPTER 4 Dynamic objects

 Options:
 Exterior color: #{options.exterior}
 Interior color: #{options.interior}
 Interior trim: #{options.trim}
 Wheel rims: #{options.rims}
 """

Try to invoke this version of the function on the REPL:

orderMaserati exterior:'red', interior:'red', trim:'walnut', wheels:'18'

Your REPL might not show the line breaks and whitespace correctly, but the output is
as follows:

Order summary:
Make: Gran Turismo

Options:
Exterior color: red
Interior color: red
Interior trim: walnut
Wheel rims: 18

Using an object as an options argument saves you from having to remember too many
things when several configuration parameters have to be passed to a function. When
you find yourself adding another similar argument for the third time, you should con-
sider using an object. An object used this way for arguments is similar to named argu-
ments in other programming languages. Actually, with CoffeeScript you can make it
look even better, but that’s a lesson saved for chapter 7.

THREE STRIKES REFACTOR Doing the same thing in your program three times
should be your pain threshold for repetition before you use or create a new
abstraction to avoid the duplication.

4.2.3 Exercises

Spend some time exploring objects as key-value stores by completing the following:

■ Change listing 4.2 to add an edit command that allows existing phone book
entries to be changed.

■ Write a function that uses an options argument containing CSS property names
and values and sets them as style properties on an object. Invoking the function
should look like this:

element = {}
styles =
 width: '10px'
 color: 'red'
css element, styles
element.style.width
'10px'
element.style.color

'red'

http://127.0.0.1:8080
http://127.0.0.1:8080/personal/1
http://127.0.0.1:8080/business/1
http://127.0.0.1:8080/personal/1

85Comprehensions

With objects as key-value stores providing such a convenient way for you to put data in
your CoffeeScript, you’d expect equally convenient ways to actually do things with that
data. There are; one of them is called comprehensions.

4.3 Comprehensions
When you first encountered comprehensions (see section 2.6.4), they were used for
arrays. Objects have comprehensions too, and they’re very useful. Imagine you have a
website with two pages. You want to track how many views each page on your website
gets and the total number of views for all pages. Your website pages live on real URLs,
but for the sake of simplicity here, suppose they’re just called ren and stimpy. Now, if
the ren page has so far received 30 views and the stimpy page 10 views, that can be rep-
resented with an object literal as follows:

views =
 'ren': 30
 'stimpy': 10

As you’ve seen, storing a property on the object is done with assignment. Use this to
increment the count:

views.ren = views.ren + 1

What you want to do is add up the existing views. You do that with a comprehension.
In this section you’ll learn how to use comprehensions to transform the properties
and values of an object into other properties and values.

4.3.1 Object comprehensions

You saw previously that comprehensions allow you to deal with the elements of an
array without having to write a bunch of boilerplate and iterate manually through
every single thing in the array one by one, again and again and again. Here’s a refresher
in case you forgot:

number + 1 for number in [1,2,3,4,5]
[2,3,4,5,6]

Object comprehensions in CoffeeScript work similarly to how array comprehensions
work. They have a basic format similar to array comprehensions, except they use the
word of:

expression for property of object

What does an object comprehension do? The following listing is a side-by-side com-
parison with the conceptually equivalent (but not compiled) JavaScript for...in loop.

http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080

86 CHAPTER 4 Dynamic objects

In the basic case of listing 4.3 the JavaScript version is fine. How about getting an array
of property names, though? Compare that in the next listing.

The JavaScript version uses multiple statements and has to micromanage the state of
the variables properties and prop. The CoffeeScript version does not.

COMPREHENDING PROPERTIES

The property names of an object are returned as an array using a comprehension:

name for name of {bob: 152, john: 139, tracy: 209}
['bob', 'john', 'tracy']

Where is that useful? Well, imagine now that your website has four pages named by
the paths to those pages. It looks like this:

views =
 '/reviews/pool-of-radiance': 121
 '/reviews/summer-games': 90
 '/reviews/wasteland': 139
 '/reviews/impossible-mission': 76

A list of pages from this object is obtained using the following comprehension:

page for page of views

This results in an array containing the page names:

['/reviews/pool-of-radiance'
 '/reviews/summer-games'
 '/reviews/wasteland'

Listing 4.3 Comprehension compared to for...in loop

CoffeeScript JavaScript
movie =
 title: 'From Dusk till Dawn'
 released: '1996'
 director: 'Robert Rodriguez'
 writer: 'Quentin Tarantino'

for property of movie
 console.log property

var movie = {
 title: 'From Dusk till Dawn',
 released: '1996',
 director: 'Robert Rodriguez',
 writer: 'Quentin Tarantino'
}

for (var property in movie) {
 console.log(property);
}

Listing 4.4 Comprehension as expression

CoffeeScript JavaScript
properties = (prop for prop of movie) var properties = [];

for (var prop in movie) {
 properties.push(prop);
}

 '/reviews/impossible-mission']

87Comprehensions

COMPREHENDING VALUES

To get the property values from an object instead of the property names, use a slightly
different comprehension format:

value for property, value of object

For example:

score for name, score of {bob: 152, john: 139, tracy: 209}
[152, 139, 209]

The number of views for each page is obtained using the comprehension

count for page, count of views

for the four pages described earlier. This results in an array containing the page views
for those pages:

[121, 90, 139, 76]

ALTERNATIVE FORMAT

So far you’ve seen comprehensions written on a single line:

expression for property, value of object

But it’s also possible to have the expression indented underneath:

for property, value of object
 expression

When you do that, the expression is evaluated for each property in the object. For exam-
ple, consider a comprehension to collect and sum the view count for all of the pages:

sum = 0
for page, count of views
 sum = sum + count
[121, 211, 350, 426]

Use the indented style when the expression is long and needs to be on a separate line
for readability. Now it’s time to see all of this in action.

4.3.2 Example

To keep track of how many views each page gets, you need a function to increment
the value stored against an individual page. Then, to get the total number of views
for all pages, you’ll need a function that sums all of the values of the object. The
next listing is a first implementation of this program. A detailed discussion follows
the listing.

views = {}

viewsIncrement = (key) ->
 views[key] ?= 0

Listing 4.5 Page views

The views object,
created ex nihilo

An increment
helper function
 views[key] = views[key] + 1

88 CHAPTER 4 Dynamic objects

total = ->
 sum = 0
 for own page, count of views
 sum = sum + count
 sum

REDUCE! If you were expecting the sum to be done inside the total function
with a reduce on the array, then rest assured that you can and should use
Array.reduce in CoffeeScript.

Before moving along to more uses of objects, notice in listing 4.5 that there’s a bit of
syntax that looks a little foreign. What is the ?= in views[key] ?= 0 used for?

DEALING WITH UNDEFINED PROPERTIES

Suppose the views object doesn’t yet have any properties. If there’s a page called
donatello that receives a view, how do you increment a donatello property that doesn’t
exist? The long way to do it is to first use the existential operator to see if it exists, and
then initialize it if it doesn’t:

if !views['donatello']?
 views['donatello'] = 1

This is a common pattern, so there’s a shorter version of it called existential assignment.
Put an existential operator in front of the assignment operator:

views['donatello'] ?= 0

You’ll notice that the viewsIncrement function takes the name of the property as the
argument key, which it uses as the property name. The specific case of donatello is
then generalized:

views[key] =? 0

There’s one other foreign word, though; what does that own keyword in listing 4.5 do?

OWN PROPERTIES

The total function adds an own to the comprehension, immediately after the for
keyword:

for own url, count of views

Objects can get properties that weren’t defined directly on them but somewhere else
on the prototype chain. The prototype chain is described later in this chapter, but for
now, be mindful that when an object is used as a key-value store, the comprehensions
in that object should always include the own keyword.

TIP If you’re using an object as a key-value store, always use own inside com-
prehensions on that object.

So far you’ve seen objects used for their key-value properties. By using objects as val-

A total function
to add up the
page views
ues, you can represent other structured data in CoffeeScript.

89Structured data

4.4 Structured data
Objects are useful not only for flat key-value data stores but also for data that has mul-
tiple levels (such as in listing 4.6). What’s the difference? In a flat key-value store, each
key maps to a single number, string, or boolean value (or even null or undefined). In
contrast, when one of the keys maps to an object or array, then data can be nested.
Think of the difference between a phone book that has names relating only to num-
bers and a phone book that has names relating to numbers, addresses, and birthdays.
In this section you’ll see how to use objects as values in other objects and how this
means they can be used for structured data such as trees.

4.4.1 JSON

Imagine you wanted to get the status updates related to a particular topic from a pop-
ular social network. When you request data from the social network web service, the
response you get back might look something like what’s shown in the next listing.

response = {
 "results": {
 "23446": {
 "user": "Guard",
 "text": "Found them? In Mercia?! The coconut's tropical!"
 },
 "23445": {
 "user": "Arthur",
 "text": "We found them."
 },
 "23443": {
 "user": "Guard",
 "text": "Where'd you get the coconuts?"
 }
 }
}

This format is called JavaScript Object Notation (JSON). Being the language of the
web, JavaScript’s syntax for representing structured data has become a popular format
for data interchange on the web. JSON is a subset of the literal syntax for objects in
JavaScript. This means that valid JSON is a valid object literal in JavaScript and in
CoffeeScript. But not every valid object literal is valid JSON. You can expect many web
services to offer JSON as one of the supported data formats they provide.

4.4.2 Trees

The data that contains the status updates has a tree structure. For phone numbers,
each property is mapped to a single string, shown in figure 4.2.

 The response that you get back from the web service isn’t a flat structure. The

Listing 4.6 JSON status updates

The object has been
fetched and assigned to
the variable response.
object has a property results with a value that is itself an object with three properties

90 CHAPTER 4 Dynamic objects

defined, each of which has a value that’s another object. This data looks more like a
tree, as shown in figure 4.3.

 You’ll frequently encounter tree structures when writing CoffeeScript programs.
Not only is any JSON data received by your application a tree structure, but HTML doc-
uments, with their nested elements, are also trees.

ACCESSING VALUES

For the response variable shown in listing 4.6, the value of the results property can
be obtained with the familiar dot notation:

response.results

{ "23443":
{ user: "Guard",
text: "Where\'d you get the coconuts?" },
"23445":
{ user: "Arthur",
text: "We found them." },
"23446":
{ user: "Guard",
text: "Found them? In Mercia?! The coconut\'s tropical!" }
}

To access an object farther down the tree, you can use another dot to refine the selection:

response.results['23443'].user
"Guard"

response.results['23445'].text
"We found them."

response.results['23446']
{user: "Guard", text: "Found them? In Mercia?! The coconut\'s tropical!"}

{ }
hannibal darth hal9000

�555-5551 �555-5552 �disconnected
Figure 4.2 Object as map
from names to numbers

{

{

}

}

23443 23445 23446

user text

{ }
user text

{ }
user text

Figure 4.3 Object

as tree

91Binding

You’ve seen CoffeeScript objects used as data and transformed with comprehensions.
You’ll need to do more with objects, though, and in CoffeeScript this means your
objects will need to work with your functions. One piece of glue used with objects and
functions is the binding of functions to objects.

4.5 Binding
When working with objects, you’ll need some way to refer to them. One important way
this is achieved in CoffeeScript is with binding. Binding in CoffeeScript works the
same as in JavaScript, with the important addition of new syntax that makes it easier to
deal with.

 If you’re coming from other programming languages, the way binding works in
JavaScript and CoffeeScript can be counter to your expectations. For that reason, it’s
important to start at the beginning and take it slowly. First, remember that a first-class
value function can be the value of an object property:

yourObject =
 someFunction: ->

When a function is accessed as a property of an object and invoked, then the object
takes on a special behavior; it becomes this inside the function invocation:

yourObject.someFunction()

If you look at it, because of the presence of the property access, yourObject is the
object on which the function was invoked. Another way to put it is to say that
yourObject is the receiver of the function call (it’s receiving the current message).
That’s not quite the whole story, though. Binding can be a little nuanced for the begin-
ner, so to get to a full understanding, it’s once again necessary to take a scenic route.

 In this section you’ll see why a dynamic this is useful and how to use it. You’ll also
see where a dynamic this isn’t useful and how you can stop this from being dynamic
by using the fat arrow. That’s a head-spinning sentence! Sit back, relax, and take the
scenic route. What is this?

4.5.1 this

Imagine you have an element in an HTML document and you want to change the con-
tents of the element when it’s clicked. This venerable problem, which you’ve seen
before, has been around since the beginning of JavaScript. Here’s the minimal

Wait a minute!
If you’re thinking that a chain of object calls is a train wreck, then you’re correct in
the case of a method call returning another object that is then modified. In this case,
though, the object is being used purely as data. All of the data is self-contained, and
there’s no indirection occurring.
HTML5 document:

92 CHAPTER 4 Dynamic objects

<!doctype html>
<title>How many people are coming?</title>
<body>
<div id='#some-element'>Change this text</div>

Now suppose you assign a click handler:

someElement = document.querySelector('#some-element')
someElement.onclick = ->
 someElement.innerHTML 'Got clicked!'

That works okay, but what if there are two elements?

<!doctype html>
<title>How many people are coming?</title>
<body>
<div id='#some-element'>Change this text</div>
<div id='#some-other-element'>Change this text</div>

Now your handlers will look like this:

someElement = document.querySelector('#some-element')
someOtherElement = document.querySelector('#some-other-element')

someElement.onclick = ->
 someElement.innerHTML = 'Got clicked!'

someOtherElement.onclick = ->
 someOtherElement.innerHTML = 'Got clicked!'

You can smell the duplication! If the behavior is the same when the two elements are
clicked, then you should be able to define one function that handles both events. How
can you write a single function that works for both events?

ELEMENTS ARE RECEIVERS

Every time a function is invoked, some object is the receiver for that function invoca-
tion. In many cases, the receiver is unimportant to you, but when you’re handling an
event, the object that’s receiving the event is important. When a function is handling a
click event on an element in an HTML document, then the receiver is the element
that was clicked, as shown in figure 4.4.

 Inside the handling function, the receiver is available using the @ symbol or the
this keyword. It can be helpful to think of @ in terms of the object you are at or this

innerHTML vs. html()
The innerHTML property is a standard property according to the W3C specification.
If you are familiar with jQuery, you will know that it defines an html method that can
be used to set the HTML content of a DOM element. In either case, it’s a library
method that allows you to change something about an object in an HTML document.
Objects in HTML documents are special objects called host objects that you will learn
more about in chapter 11.
in terms of this object that is being used, right now.

93Binding

Using the receiver, you can now rewrite the duplicated event handlers so that instead
of having two handlers you can have just one. First, rewrite one event handler to use
the receiver. Instead of this

someElement.onclick = ->
 someElement.innerHTML = 'Got clicked!'

it will look like this:

someElement.onclick = ->
 this.innerHTML = 'Got clicked!'

But this can get tedious to type, so CoffeeScript syntax lets you write it with @:

someElement.onclick = ->
 @innerHTML = 'Got clicked!'

Although you can put a dot after @, it’s unnecessary:

@.innerHTML 'Got clicked!'

Use this technique to create a click-handling function that you can attach to both
elements:

markAsClicked = ->
 @innerHTML = 'Got clicked!'

someElement.onclick = markAsClicked
someOtherElement.onclick = markAsClicked

The value of the receiver can be subtle. It’s time to review.

HOW TO KNOW WHAT THE RECEIVER IS
If you want to determine what the value of this is going to be, think about which
object is the receiver. In the case of the previous click event, consider that the onclick
function has been invoked on the element:

document.querySelector('#some-element').onclick = ->

login

password

scruffy

submit

∗∗∗∗∗∗∗∗∗∗

receiver

<!doctype html>

<title>Receiver</title>

<body>

<form>

<label>Login</label>

<input type=text>

<label>password</label>

<input type=password>

<input id=example type=submit>

document.querySelector('#example').onclick ->
@“click”

Figure 4.4 The receiver
of a click event

Leave out the dot after @.
It’s unnecessary.

Common click-
handling function

Attach to click event
of two elements
value of expression is the receiver the event

94 CHAPTER 4 Dynamic objects

One strategy, then, is to look at the dot in front of wherever the function has been
assigned. In general, though, the best way to tell the value of this is to ask yourself,
“Who is receiving this event?”

 Sometimes you don’t want the object that’s the receiver of the function. Some-
times you want some other object. That’s what the fat arrow is for.

4.5.2 The fat arrow

Imagine you now want the text on your HTML element to be changed to “Got clicked”
after one second, instead of immediately. To do this, you first attach a click handler and
then invoke setTimeout inside it, passing it a function and a number of milliseconds:

someElement.onclick = ->
 setTimeout ->
 @innerHTML 'Got clicked'
 , 1000

Try that in your browser; it doesn’t work. That’s because the function being invoked is
the one that you gave as an argument to setTimeout.

 Take a step away from this specific example for a moment and consider it in a more
abstract sense. Think of an object with two properties, one being a single method that
returns the object itself:

noumenon =
 value: 'noumenon',
 itself: -> @

When you invoke the itself method, it will return the original object. This means
you can get the value by first invoking the itself method to get the object back again
and then access the property:

noumenon.itself().value
'noumenon'

This example is contrived, but having a method return the object it was called on is a
powerful technique (explored in chapter 7). The important thing to consider here is
what happens if the function is used somewhere else:

detachedFromObject = noumenon.itself

detachedFromObject()
'undefined'

The value of this is different. It’s undefined! The same will happen if you assign the
function to the property of another object and make it a method of that object:

other =
 value: 'other'

other.itself = noumenon.itself

other.itself().value

When this is invoked, @ will
refer to the global object.

Object property that
contains string Object property that

contains function
'other'

95Binding

Remember that functions are first-class values? This is the price you have to pay for all
that expressive power with dynamic object binding. There’s no such thing as a free lunch.

 In CoffeeScript, a function never belongs to an object in the same way that meth-
ods belong to objects in other object-oriented languages. Instead, a function is
bound dynamically to the receiving object when invoked. If you pass what you think
is a method of an object as a callback function, you’re passing a bare-naked first-
class function.

 If it’s still not completely clear, you can experiment with a version of this exam-
ple on the REPL. First, change the itself method to console.log so you can see
what’s happening:

noumenon.itself = -> console.log @value

Now pass the function to setTimeout:

setTimeout noumenon.itself, 1000
'undefined'

As before, the function is being invoked with a different receiver. In the case of
setTimout, because it’s a global method, the function will be invoked with that global
object as the receiver. The question is, with a dynamic receiver object, how do you get
a reference to your original object inside a function when it’s used as a callback or
otherwise called with some different object as the receiver?

USING SCOPE

One way to get a reference to the element that you want is by using function scope.
For example, the function that’s being invoked by setTimeout is lexically inside the
function invoked as the click handler. Closure means that any variables defined in
the outer function will be visible to the inner function:

someElement.onclick = ->
 clickedElement = @
 setTimeout ->
 clickedElement.innerHTML 'Got clicked'
 , 1000

When you assign the @ reference to a variable, the other function defined inside the
scope has access to it.

USING THE FAT ARROW

The fat arrow provides a way to keep a lexical reference to this without having to use
an intermediate variable such as clickedElement in the previous example. Control-
ling the value of the receiver is called function binding. Using a fat arrow, you can
rewrite the previous example:

someElement.onclick = ->
 setTimeout =>
 this.innerHTML 'Got clicked'

Assign this to
a variable.

Use the variable in the function
passed to setTimeout.

The fat arrow binds
the value of this.
 , 1000

96 CHAPTER 4 Dynamic objects

The fat arrow causes the function to have this bound lexically at the point in the code
where it appears. This has uses other than handling browse events, which you’ll learn
more about later, after you’ve learned more about objects.

 So ends the scenic route through binding. From here, you move on to the founda-
tion of CoffeeScript objects: prototypes.

4.6 Prototypes
CoffeeScript is a prototype-based language. Every object (except null—you’ll learn
why later) has a link to another object called its prototype. Properties defined on the
prototype of an object are also available on the object itself. A prototype-based object
system will be unfamiliar to those who’re used to the class-based object systems found
in most popular programming languages because it supports object creation and
inheritance without requiring any classes at all.

 In this section you’ll learn what it means to create a new object using an existing
object as the prototype and how an object inherits properties from its prototype. To
understand this, it’s important to distinguish inheritance from copying.

4.6.1 Copy

Back when people wore leg warmers, fluorescent clothes, and their hair in a perm,
music was distributed on small plastic cartridges called cassettes. Imagine your friend
Corey has lent you a cassette he made that contains some of his favorite songs:

cassette =
 title: "Awesome songs. To the max!"
 duration: "10:34"
 released: "1988"
 track1: "Safety Dance - Men Without Hats"
 track2: "Funkytown - Lipps, Inc"
 track3: "Electric Avenue - Eddy Grant"
 track4: "We Built This City - Starship"

MAKING A COPY

You really like the cassette and decide to create a copy of it:

cassetteCopy = {}
for own property, value of cassette
 cassetteCopy[property] = value

Your cassette now has all of the tracks from Corey’s cassette:

cassetteCopy.track3
"Electric Avenue – Eddy Grant"

You give Corey his cassette back and he decides to add another song:

cassette.track5 = "Rock Me Amadeus - Falco"

Sadly, your copy does not have the new song:

cassetteCopy.track5?

false

97Prototypes

If only there were a way to have a cassette that would automatically have access to any
updates from Corey’s cassette. There is—use Corey’s cassette as the prototype for your
own cassette.

4.6.2 Object creation

When you use one object as the prototype of another object, the properties from
the prototype aren’t copied; instead, they’re found via lookup when the property is
accessed. Creating an object by using an existing object as the prototype causes the
new object to have a permanent link back to the prototype. A copy of an object
doesn’t have this feature.

 The Object.create method is one way to create an object using an existing object
as its prototype. When a property is accessed on the new object but isn’t found, the
prototype link is followed and the property is looked for on the prototype object. The
property is inherited from the prototype.

In terms of the cassette, imagine that instead of copying it, you have a small wireless
music device that can link itself to Corey’s cassette. Once you’ve linked the device,
playing it will cause it to communicate with Corey’s cassette and play the tracks on
there. Create this device in CoffeeScript:

musicDevice = Object.create cassette

Now you automatically get updates from Corey’s cassette:

cassette.track6 = "Sledgehammer – Peter Gabriel"
musicDevice.track6 is "Sledgehammer – Peter Gabriel"
true

The prototype link goes in only one direction. Changing a track directly on musicDevice
will update it but won’t affect the cassette:

musicDevice.track1 = "Toy Soldiers - Markita"
musicDevice.track1 is "Toy Soldiers - Markita"
true

The original cassette remains unchanged:

cassette.track1 is "Safety Dance - Men Without Hats"

Object.create
Although the Object.create method is part of the fifth edition of the ECMAScript
standard, it isn’t available in all environments. In particular, versions of Internet Explorer
prior to IE9 don’t have Object.create. A version of Object.create that you can
use when targeting environments that don’t have one built in is found in chapter 11.
Exactly what Object.create does is also covered in that chapter.
true

98 CHAPTER 4 Dynamic objects

In a similar fashion, adding a new track to musicDevice won’t affect cassette:

musicDevice.track7 = " Buffalo Stance - Neneh Cherry"
cassette.track7?
false

You can see the dynamic nature of the relationship between objects and their prototypes
in figure 4.5. Creating objects from other objects is a simple but powerful mechanism.

4.6.3 Exercises

Time to recap what you know about prototypes:

■ Create another music device with musicDevice as its prototype.
■ Add a new song to Corey’s cassette. Can you access it on the new music

device? Why?
■ Add a new song to musicDevice. Can you access it on the new music device?

Why?

4.7 Behavior
So far the objects presented have contained only data. When you created an object to
hold data about page views, you also created a helper function that acted on the data
structure. If a function is going to change an object, there’s a very good chance that it

Figure 4.5 A prototype example
should belong to the object. In general, objects should be responsible for their own

99Behavior

data. This means the views object should own the data it contains and be responsible
for manipulating it. As you’ve learned, a function is called a method when it’s called
against an object. The methods of an object provide the behavior of that object.

 In this section you’ll learn that creating objects from a prototype can lead to more
elegant code. First, consider the page views program from section 4.3.2 and what will
happen when you need to extend it.

4.7.1 Refactor

In the first page views program (listing 4.5), there’s a single views object. Both the
increment function and the total function act on the views object by knowing which
variable it’s assigned to. If you wanted to track views for two different websites, then
you could manually create two views objects:

businessViews = {}
pleasureViews = {}

Then you could change increment and total so that the object they’re acting on is
passed in as an argument:

increment = (recipient, key) ->
 recipient[key] ?= 0
 recipient[key] = recipient[key] + 1

total = (recipient) ->
 sum = 0
 for own page of recipient
 sum = sum + 1
 sum

Then to add a view to businessViews, you’d do this:

increment businessViews, '/products/fade-o-meter/enterprise-edition'

Now increment is modifying the businessViews object. To be clear, you should avoid
state where possible, as chapter 6 will help you to understand. If you really need state,
then it’s best to contain the state and have the object that owns the state be responsible
for changing it. With that in mind, here’s a new version of the page views code.

views =
 clear: ->
 @pages = {}
 increment: (key) ->
 @pages ?= {}
 @pages[key] ?= 0
 @pages[key] = @pages[key] + 1
 total: ->
 sum = 0
 for own page, count of @pages
 sum = sum + count

Listing 4.7 Page views revisited

The recipient
argument is the
object to use.

@ is the this reference
to the receiving object.

Initialize the pages property on the
specific object on the first call to
increment. It’s important that a
property that keeps state does not
live on the prototype. The prototype
should contain common behavior.
 sum

100 CHAPTER 4 Dynamic objects

Now create two view counters:

businessViews = Object.create views
personalViews = Object.create views

If you increment the value for just one URL on that object 100 times, then the total is
100. But the other object maintains its own state separately. It isn’t affected by incre-
ments to the first object:

for i in [1..100] by 1
 businessViews.increment '/product-details/2454'

businessViews.total()
100

personalViews.total()
0

METHODS

When a function is invoked on an object (when that object is this), call it a method.
The views prototype has three methods: clear, increment, and total.

 The views prototype has a clear method that sets the pages property to an empty
object. If using existing objects as prototypes creates objects, then existing state on
those objects may need to be removed. There are other techniques for managing
this, from classes and constructors, which you’ll learn about in the next section, to
separation of state from behavior with other techniques, which are covered in chap-
ters 6 and 7.

 Objects in CoffeeScript are open by default. Having used prototypal inheritance to
set up the object relationships, a method can be made available to both of the views
objects by updating the prototype. Here’s a pages method that will return the number
of pages that have views against them:

views.pagesTotal = ->
 (url for own url of @).length
businessViews.pagesTotal()

4.7.2 Exercise

Some of the pages on your website aren’t interesting and you don’t want to track
them. Add an ignore method to views from listing 4.7 that takes the name of a page
and adds it to an array of pages that shouldn’t be tracked.

4.8 Classes
The prototype-based object system in CoffeeScript (and JavaScript) is minimal and
low-level, not providing some of the built-in comforts for structuring objects that some
other languages have. Although there are many techniques for managing objects
using prototypes, and you’ll learn several of them in upcoming chapters, classes are
one well-known technique for managing objects. CoffeeScript has dedicated syntax

for creating and using classes on top of the underlying prototype-based object system.

101Classes

 The clear method on views is a potential initialization step you may want to do for
many objects. The underlying JavaScript uses a constructor function for this purpose.
When used with the new keyword, a constructor function creates and initializes an
object in JavaScript:

function Views () {
 this.pages = {};
}
businessViews = new Views();

Unfortunately, constructor functions in JavaScript are awkward and confusing. Regard-
less, if you’re creating many of the same sorts of objects, you’ll want three features: a
simple declarative syntax for defining them, a way to specify a constructor function for
initialization, and optimized performance when creating a large number of objects.
That’s what classes in CoffeeScript give you.

 In this section you’ll see how to use this syntax to declare classes. You’ll also see
that objects aren’t equal, regardless of whether they were created from the same class.
First, how do you declare a class?

4.8.1 Declaration

CoffeeScript provides a class syntax that cleans up some of the awkwardness in
JavaScript constructors and handles setting up links to prototype objects. If you were
writing a system that was capturing the views for many different sites and wanted to
define a class for views, it could be implemented as shown in the following listing.

class Views
 constructor: ->
 @pages = {}
 increment: (key) ->
 @pages[key] ?= 0
 @pages[key] = @pages[key] + 1
 total: () ->
 sum = 0
 for own url, count of @pages
 sum = sum + count
 sum

businessViews = new Views
personalViews = new Views

Comparing listing 4.8 to the prototype-based version from listing 4.7, you’ll notice
some new keywords: class, constructor, and new.

CLASS DECLARATION

The class keyword, followed by a class name, begins the declaration of a class. A class
declaration contains methods defining what an object created from the class does.
The smallest valid definition of a class is just the class keyword with a name:

Listing 4.8 A page views class

Class declaration
constructor
method

increment
method

total
method

Creating two objects
using the Views class
class Empty

102 CHAPTER 4 Dynamic objects

NEW OPERATOR

Objects can be created from a class using the new operator:

empty = new Empty

CONSTRUCTOR METHOD

The constructor method for a class is a function that’s called whenever a new object
is created from the class. When a new object is created from the Views class,

newViewsObject = new Views

then the constructor is called, in this case assigning an empty object to the pages
property of the new object.

 The example in listing 4.8 is similar to that in listing 4.7. The conceptual differ-
ence is that instead of creating an object out of another object, you create an object
out of a class. This means you’ve now learned three ways to create objects in Coffee-
Script: ex nihilo, using another object, and using a class.

 If you’re wondering at this stage how classes and constructors relate to the underly-
ing JavaScript, then try compiling the examples in this section and having a look. The
veil will be lifted in chapter 5, where the relationship of CoffeeScript syntax to the
JavaScript object model is explored in detail.

4.8.2 Object identity

Objects are never equal to each other; an object is equal only to itself:

businessViews is personalViews
false

Equality will be true for variables referencing objects only if they refer to the same object:

objectReferenceOne = {}
objectReferenceTwo = objectReferenceOne
objectReferenceTwo is objectReferenceOne
true

Two objects created from the same class are not equal:

class Black
green = new Black

Now green is a new Black but it is never the new Black:

green is new Black
false

Similarly, businessViews and personalViews aren’t equal because they don’t refer-
ence the same object:

businessViews is personalViews
false

103Putting it together

4.8.3 Exercises

Try these exercises to help you understand classes in CoffeeScript:

■ Define a class for a GranTurismo object with a constructor that takes an options
object as an argument and assigns all of the options supplied as properties on
@ (this).

■ Add a summary method to the GranTurismo class that returns a summary of the
options passed to the constructor as a string.

4.9 Putting it together
Listing 4.9 provides the full page view application. To view the current hit count for
both personal and business, run the application from the command line:

> coffee 4.9.coffee

Once the application is running, visit the application homepage at http://127.0.0.1:8080/
in your browser, and you’ll see the text “Personal: 0 Business: 0.” Now, each time you
visit a URL path such as /personal/1 or /business/1 in your browser, the hit will be
recorded. Go ahead and visit /personal/1 five times and then visit the application
homepage again. You’ll see “Personal: 5 Business: 0.”

http = require 'http'

class Views
 constructor: ->
 @pages = {}
 increment: (key) ->
 @pages[key] ?= 0
 @pages[key] = @pages[key] + 1
 total: ->
 sum = 0
 for own url, count of @pages
 sum = sum + count
 sum

businessViews = new Views
personalViews = new Views

Prototypes or classes?
It depends. For the page views example, the objects are all going to have the same
functionality and they don’t need to change while the programming is running. Given
that, when the page views example is extended into a full web application later, the
first approach will be class-based.

Listing 4.9 Page views web application

http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/personal/1
http://127.0.0.1:8080/business/1
http://127.0.0.1:8080/business/1
http://127.0.0.1:8080/personal/1
http://127.0.0.1:8080/personal/1

104 CHAPTER 4 Dynamic objects

server = http.createServer (request, response) ->
 renderHit = (against) ->
 against.increment request.url
 response.writeHead 200, 'Content-Type': 'text/html'
 response.end "recorded"

 if request.url is '/'
 response.writeHead 200, 'Content-Type': 'text/html'
 response.end """
 Personal: #{personalViews.total()}
 Business: #{businessViews.total()}
 """
 else if /\/business\/.*/.test request.url
 renderHit businessViews
 else if /\/personal\/.*/.test request.url
 renderHit personalViews
 else
 response.writeHead 404, 'Content-Type': 'text/html'
 response.end "404"

server.listen 8080, '127.0.0.1'

The class syntax used in listing 4.9 isn’t the only way to write this application. It’s simply
one approach that you’ve seen emerge from the CoffeeScript syntax and object system
throughout this chapter.

4.10 Summary
JavaScript has a powerful object literal syntax that makes objects effective as generic
data containers. The power of this literal syntax is evident in the rising popularity of
JSON as a data exchange format for web applications. CoffeeScript takes full advan-
tage of this syntax and, if you don’t like using curly braces even for object literals, the
YAML-style syntax provides an even more succinct alternative.

 The prototype-based object model has always been misunderstood in JavaScript. By
exploring prototypes first and coming to CoffeeScript’s class syntax later as an orga-
nizing technique, you have a glimpse into the conceptual elegance of the little-known
world of prototype-based object systems.

 In the next chapter you’ll look deeper into the JavaScript object model and see
how CoffeeScript syntax exposes the elegance and expressiveness within, without get-
ting in your way. At the same time you’ll learn composition techniques and patterns
for both prototype-based and class-based approaches.

Part 2

Composition

Having learned how to use CoffeeScript, you’ll now learn how to use
CoffeeScript well. Using a language well means learning how to effectively com-
pose programs, so this part of the book is about learning to express your pro-
grams at a higher level and about learning some more advanced idioms that will
make your programs easier to write and to comprehend.

 Because learning to do things well requires dealing with challenges, some of the topics
covered later in this part will require closer reading, and the examples may require more
experimentation. To provide you with context for these topics, some of the listings need to be
quite long. Take some time to absorb them.

Composing objects
In the previous chapter you traveled the road from object literals to prototypes
and then classes. Along the way you started to build an understanding of how
objects work in CoffeeScript. Now it’s time to reverse course by first defining
some classes of your own and then slowly taking them apart to see the objects and
prototypes that underpin them. This will give you the complete picture of objects
in CoffeeScript.

 You’ll begin the exploration with classical objects and class inheritance, fol-
lowed by methods and other class properties and an explanation of the super key-
word. Then you’ll learn how to modify objects, classes, and prototypes. Finally, this
chapter ends by teaching you what mixins are and how to use them. The flexible
syntax and object model of CoffeeScript make writing mixins elegant, even though
they’re not a built-in language feature. First up, classes and classical objects.

This chapter covers
■ Structuring code with classes and inheritance
■ Using prototypes for dynamic flexibility
■ Extending your program with mixins
Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch05-code.html

108 CHAPTER 5 Composing objects

5.1 Being classical
Although objects in CoffeeScript are fundamentally prototype-based, the prototype-
based approach that you learned about in chapter 4 is uncommon in programming
languages. The class-based approach, where objects are created using classes, is com-
mon. So if classes are common, they must be good for something, right? Yes, they are.
Classes are natural and convenient for declaring common properties and methods to
be shared by multiple objects.

 As you saw in the previous chapter, CoffeeScript provides the convenience of
classes by providing class syntax on top of objects and prototypes. How does Coffee-
Script do that and what are the trade-offs? Read on to find out.

5.1.1 Raw data

Imagine that Agtron wants to open an online shop to sell digital cameras. Unsurpris-
ingly, he has asked you to write the program to do that. Figure 5.1 demonstrates the
shop homepage that he wants.

 Where to start? To sell the cameras, you’ll need to know which cameras to sell and
how many are in stock. Sample data containing this information has been supplied to
you as an object:

data =
 X100:
 description: "A really cool camera"
 stock: 5
 X1:
 description: "An awesome camera"
 stock: 6

The sample data has information for two cameras, an X100 and an X1. Each camera
has a description and a stock count. Sure, the data could be used in a program
without any classes, but classes buy you an abstraction by separating your data from
your program.

Figure 5.1 Agtron’s
shop homepage

.

109Being classical

5.1.2 Class abstractions

To learn why classes are useful, start without any abstraction and see what happens. Take
the camera data and display each camera as a string suitable for display on the web page:

"X100: a camera (5 in stock)"

Then create an array of these strings using a comprehension (see section 4.3 if you
need a refresher on comprehensions):

for own name, info of data
 "#{name}: #{info.description} (#{info.stock} in stock)"

["X100: A really cool camera (5 in stock)",
"X1: An awesome camera (6 in stock)"]

Now imagine that Agtron wants users to purchase cameras by clicking them. Modify
the comprehension to create an element in the document, add the camera data, and
then add a click handler. Doing this in a web browser looks like the following (note
that the following example does not work in your REPL):

purchase = (product) ->

for own name, info of data
 elem = document.createElement "li"
 elem.innerHTML = "#{name}: #{info.description} (#{info.stock} in stock)"
 elem.onclick = purchase name

This is getting more complicated: there are more things for your brain to keep track of
and more things for you to worry about. Regardless, you can struggle through, so far.

 Now suppose Agtron also wants the stock counts to be updated after each purchase
request. What will you do? Add some more lines to the comprehension and make it
harder to understand? No. As a program grows, instead of piling junk upon junk, you
require more abstractions to help you manage things. Time to try classes.

 A camera class describes how cameras work. In your program, camera objects
are created, rendered onto a web page, and purchased. The following listing shows
a Camera class with a constructor for creating cameras, a render method, and a
purchase method.

class Camera
 constructor: (name, info) ->
 @name = name
 @info = info
 render: ->
 "#{@name}: #{@info.description} (#{@info.stock} in stock)"
 purchase: ->

Listing 5.1 A simple Camera class

The implementation of the purchase
function isn’t important at this point. Create an element

for the camera.

Put the camera content
into the element.

Attach a handler
for the click event.

The constructor function that’s
invoked when a new instance is
created from the class. The render method

that displays the
camera as a string

The actual implementation of the purchase

method is omitted in this listing.

110 CHAPTER 5 Composing objects

The new keyword in front of a class name invokes the class constructor. When a
constructor is invoked with the new keyword, an object is created and given to the
constructor, where you can access it using the @ symbol. When you new a Camera,

x1 = new Camera 'X1', {
 description: 'An awesome camera', stock: 5
}

the object returned has name and info properties assigned to it by the constructor:

x1.name
#'X1'
x1.info
#{description: "An awesome camera", stock: 5}

The object returned also has the methods, such as render, from the class declaration:

x1.render()
"Camera: X1: An Awesome camera (5)"

It’s worth reiterating at this point that a method in CoffeeScript is really just a prop-
erty containing a function. Evaluate it and see:

x1.render
[Function]

Evaluating a method name without invoking it will produce the function value itself.

You now have a description of how cameras work. How about the other things in the
program? The shop is more than cameras. The shop receives all of the camera data
and uses it to create all of the camera objects. The Shop class is a place to declare the
shop behavior. Remember, when you plan to have many objects with the same behav-
ior, a class is a convenient place to describe that behavior

class Shop
 constructor: (data) ->
 for name, info of data
 new Camera name, info

with the sample data that you have:

data =
 X100:
 description: "A really cool camera"
 stock: 5
 X1:
 description: "An awesome camera"

Private or public?
Many object-oriented languages divide object methods into those that are private and
those that are public (and sometimes other options such as privileged). The Java-
Script object model has only public properties. To hide information in JavaScript, you
need to use function scope.

Class
describes
behavior

Object
describes data
 stock: 6

111Being classical

Now, create a new shop by invoking the constructor with the data:

shop = new Shop data

You have two instances of the Camera class—both created by the Shop constructor.
What does this look like in the context of a real program? In listing 5.2 the Camera and
Shop classes are fleshed out to implement the first version of the online shop.

IMPORTANT: HOW TO RUN THE LISTINGS

Listings 5.2, 5.3, 5.4, 5.5, 5.8, 5.10, and 5.11 demonstrate different object-based tech-
niques in CoffeeScript using a small client-side program. The final listing, 5.13, is a
small server-side program intended to run each of these different listings. To experi-
ment with the code in the listings, invoke listing 5.13 from the command line with the
listing number for the client-side program:

> coffee 5.13.coffee 5.2
=> Visit http://localhost:8080/ in your browser

Any changes you make to the listings will be automatically reflected in the client script
delivered to the browser. So if you make a change to a client-side script and refresh
the browser window, you’ll see the result of your changes.

 In the next listing the Shop class fetches raw JSON (see section 4.4.1) from a
remote server and uses it to create cameras. The http and get functions use some
browser APIs that you need not be familiar with here. Experiment with the listing to
understand how the application fits together.

http = (method, src, callback) ->
 handler = ->
 if @readyState is 4 and @status is 200
 unless @responseText is null
 callback JSON.parse @responseText

 client = new XMLHttpRequest
 client.onreadystatechange = handler
 client.open method, src
 client.send()

get = (src, callback) ->
 http "GET", src, callback

post = (src, callback) ->
 http "POST", src, callback

class Camera
 constructor: (name, info) ->
 @name = name
 @info = info
 @view = document.createElement 'div'
 @view.className = "camera"
 document.body.appendChild @view
 @view.onclick = =>
 @purchase()

Listing 5.2 Agtron’s camera shop client application (version 1)

Run the server with listing
5.2 as the client script.

http function for
making Ajax requests
to the server

get function for making GET
Ajax requests to the server

post function for making POST
Ajax requests to the server

Camera class with constructor,
render method that writes to the
web page, and purchase method
 @render()

112 CHAPTER 5 Composing objects

 render: ->
 @view.innerHTML = "#{@name} (#{@info.stock} stock)"

 purchase: ->
 if @info.stock > 0
 post "/json/purchase/camera/#{@name}", (res) =>
 if res.status is "success"
 @info = res.update
 @render()

class Shop
 constructor: ->
 get '/json/list/camera', (data) ->
 for own name, info of data
 new Camera name, info

shop = new Shop

In the Camera and Shop classes, this program has clear descriptions for the behavior of
products and shops.

 As the program grows, you’ll find that you have different classes of similar objects
and that you’re duplicating methods across different classes. How will you deal with
this? One technique is class inheritance.

5.2 Class inheritance
In class-based object-oriented languages, the most common technique for organizing
classes of objects with some things in common is called class inheritance. But Coffee-
Script isn’t a traditional class-based language. It’s a prototype-based language where
objects inherit properties from their prototype (see chapter 4 if you need a refresher
on prototypes). If CoffeeScript isn’t a class-based language, can you do class-based
inheritance? Yes, by using the extends keyword.

5.2.1 extends

Imagine now that Agtron wants to sell more than cameras. He also wants to sell skate-
boards. Cameras and skateboards are different, so you can’t use the same class for
both of them. You could copy and paste the Camera class, rename a few things to cre-
ate a Skateboard class, and then modify the Camera class to add a megapixel count.
You could, but you don’t. Instead you use extends.

DECLARING EXTENDS

Given that cameras and skateboards are different products, you define a Product class:

class Product

Cameras and skateboards can be defined as products by saying their classes extend the
Product class:

class Camera extends Product
class Robot extends Product

Camera class with
constructor, render
method that writes
to the web page, and
purchase method

Shop class for initializing
the application and creating
all the cameras
class Skateboard extends Product

113Class inheritance

The keyword extends in a class declaration means what it says. If the Product class is
declared with a purchase method and the Skateboard class extends it,

class Product
 constructor: (name, info) ->
 @name = name
 @info = info

 render: ->
 "#{@name}: #{@info.description} (#{@info.stock} in stock)"

 purchase: ->
 if @info.stock > 0
 post "/json/purchase/camera/#{@name}", (res) =>
 if res.status is "success"
 @info = res.update
 @render()

class Skateboard extends Product

when you new a Skateboard, it has a render method:

skateOMatic = new Skateboard "Skate-o-matic", {
 description: "It's a skateboard"
 stock: 1
}

skateOMatic.render()
Skate-o-matic: "It\'s a skateboard (1 in stock)"

Now that you have a Product class, you can modify Camera without affecting skate-
boards or anything else that extends a product. Add a mexapixels method in the
class declaration for Camera:

class Camera extends Product
 megapixels: ->
 @info.megapixels || 'Unknown'

When you create a camera and a skateboard, the camera has a megapixels method
but the skateboard does not:

x11 = new Camera "x11", {
 description: "The future of photography",
 stock: 4,
 megapixels: 20
}

sk8orama = new Skateboard "Sk8orama", {
 description: "A trendy skateboard",
 stock: 4
}

x11.megapixels?
true

x11.megapixels()

constructor from
Camera class

render method
from Camera class

purchase
method from
Camera class

Use the default operator
(section 2.3.1).
20

114 CHAPTER 5 Composing objects

sk8orama.megapixels?
false

If CoffeeScript is not class-based, how does it do class inheritance? It’s all in the
compiler, and classes in CoffeeScript are just syntax. They are syntactic sugar for
the prototype-based objects underneath. Something is called syntactic sugar when
it makes it a bit easier or sweeter for a specific thing in a programming language.
Many people, including Scruffy in figure 5.2, have tried to add classes in JavaScript
without any syntactic sugar. None of them caught on very much. Without sugar
they’re unpalatable.

 The syntactic sugar CoffeeScript provides for classes makes it easier to write classes
in a language that’s really prototype-based.

5.2.2 How does it work?

At this point you may expect a side-by-side comparison of CoffeeScript class syntax
with the compiled JavaScript to show you what’s going on. In this case, though, the
raw JavaScript actually confuses the matter, so it’s too early to think about the com-
piler. Instead of looking at everything the compiler does, consider a product object:

product =
 render: ->
 purchase: ->

This product object has two properties. How do you make lots of them? With a function.
Figure 5.2 Sometimes you need a little sugar.

Th
func
ident
listi

an

om
115Class inheritance

construct = (prototype, name, info) ->
 object = Object.create prototype
 object.name = name
 object.info = info
 object

clock = construct product, 'clock', stock: 5

You have two things: a prototypical product and a function that constructs product
objects. A class declaration achieves the same thing in a different way:

class Product
 constructor: ->
 render: ->
 purchase: ->

How does extends fit into this picture? Suppose you took the earlier product object
(not the class) and created a new object from it:

camera = Object.create product
camera.megapixels = ->

Now if you use construct on this camera object, you can create other camera objects:

x11 = construct camera, '', stock: 6

This x11 object inherits from camera, which in turn inherits from product. The
extends keyword in a class declaration works in much the same way. It makes the pro-
totype of one class inherit from the prototype for another class. The way that an object
inherits from a prototype object that in turn inherits from another prototype is com-
monly referred to as the prototype chain.

 In listing 5.3 the client application from listing 5.2 has been enhanced with an
inheritance hierarchy using extends. To create objects from different classes, the Shop
constructor has been modified to look at the data source and to new the appropriate
class. Parts of the full program that are identical to listing 5.2 have been omitted from
this listing.

http function omitted – see listing 5.2
get function omitted – see listing 5.2
post function omitted – see listing 5.2

class Product
 constructor: (name, info) ->
 @name = name
 @info = info
 @view = document.createElement 'div'
 @view.className = "product"
 document.body.appendChild @view
 @view.onclick = =>
 @purchase()

Listing 5.3 Agtron’s shop client application with multiple product categories

Create a new object with
the provided prototype.

Add some properties
to the new object. Return the

new object.

Create a product with the name
clock using the construct function.

The constructor

The description of the
product prototype

e http
tion is
ical to
ng 5.2
d has
been
itted
here.

The get and post functions are
also identical to listing 5.2 and
have been omitted here.

Product
constructor.
 @render()

116 CHAPTER 5 Composing objects

 render: ->
 renderInfo = (key,val) ->
 "<div>#{key}: #{val}</div>"
 displayInfo = (renderInfo(key, val) for own key, val of @info)
 @view.innerHTML = "#{@name} #{displayInfo.join ''}"

 purchase: ->
 if @info.stock > 0
 post "/json/purchase/#{@purchaseCategory}/#{@name}", (res) =>
 if res.status is "success"
 @info = res.update
 @render()

class Camera extends Product
 purchaseCategory: 'camera'
 megapixels: -> @info.megapixels || "Unknown"

class Skateboard extends Product
 purchaseCategory: 'skateboard'
 length: -> @info.length || "Unknown"

class Shop
 constructor: ->
 get '/json/list', (data) ->
 for own category of data
 for own name, info of data[category]
 switch category
 when 'camera'
 new Camera name, info
 when 'skateboard'
 new Skateboard name, info

shop = new Shop

You’ve now extended a class to share some behavior and keep some other behavior
distinct using class inheritance. When working with classes, though, there are times
when you have behavior that’s related to a class of objects but belongs to the class
itself. Declaring these behaviors is simple to do in CoffeeScript. You’re about to find
out how.

5.3 Class variables and properties
So far all of the properties you’ve defined with classes belong to instances of classes.
This means they’re properties found on instances of the class:

class Product
 render: ->

instanceOfProduct = new Product
instanceOfProduct.render

Some properties don’t make sense as instances of the class. Some properties make more
sense as properties of the class itself. Imagine all of the products sold in Agtron’s shop
are faulty and need to be recalled. It’s easy to invoke recall on the Product class:

Product
instance
methods.

Shop constructor creates
an instance of the
appropriate class based
on the data source.

render method
defined on class

render method invoked as property
of an instance of the Product class
Product.recall()

117Class variables and properties

It’s not so easy to hunt down all of the products ever constructed and invoke recall
on each one. You might argue that it more accurately reflects the real world for things
like product recalls to be much more complicated, but you like simplicity. Class prop-
erties can be a simple and useful technique.

THESE ARE CLASS METHODS, RIGHT? Class properties in CoffeeScript can serve
similar purposes to class methods in Ruby, Smalltalk, or Objective-C and even
static methods in Java or C++.

5.3.1 Usage

Imagine now that Agtron wants a product search feature on his website so that people
can find products by name. When a user searches for shark repellant, they should be
shown a list of all shark repellant products that Agtron has for sale. The search feature
will have an input field where users can enter a search term. Agtron’s design for the
new homepage is shown in figure 5.3.

 In order to find a specific product, you need to keep a reference to each of the
product objects. An array of objects does this nicely. Each object in the array has a
name property and corresponding value:

products = [
 name: "Shark repellant"
 ,
 name: "Duct tape"
]

Here’s a crude brute-force find function for this array:

find = (query) ->
 (product for product in products when product.name is query)

Use this find function by calling it with a product name:

find "Duct tape"
[{ name: 'Duct tape' }]

Figure 5.3 Agtron’s shop

Notice there are no curly braces in
this object definition? Significant
indentation has been used instead.
with product search

118 CHAPTER 5 Composing objects

The products you already have in the client code for Agtron’s shop are objects with
name properties, so a similar find function will work. But you do not yet have an array
of all the products created. Where should the array of product references go? How
about in the Shop constructor?

class Shop
 constructor: (data) ->
 products = []
 for own name, info of data
 products.push new Product(name, info)

But that assumes that an instance of the Shop class creates every instance of Product.
Awesome, until somebody news a Product outside of the shop and it’s never found.
Given that find is about products, why not put it on the Product class?

Product.find('Pixelmator-X21')
[Camera { name="Pixelmator-X21", info={...} }]

The Product class can have a property like an object because it is an object.

CLASS METHODS

Any class is an object and has properties just like any other object. To specify a class
method named find, just assign a function as the find property directly on the class:

Product.find = (query) ->
 (product for product in products when product.name is query)

For that to work you need somewhere to define the product variable. You don’t want
an evil global variable; you want a variable that lives with the Product class. You want a
class variable.

CLASS VARIABLES

All variables are function-scoped so you’re surprised to see what happens when a new
variable is assigned in the body of a class declaration:

class SecretAgent
 secretWord = "antiquing"

secretWord?
false

Class variables are scoped to the class body. The class body has a variable scope like
a function (as you’ll see later, when compiled to JavaScript the class declaration really
is a function). They look a little bit like instance properties; be careful to notice
the distinction.

CLASS VARIABLES VS. INSTANCE PROPERTIES

Variables always use the = operator, whereas object properties use the : operator:

class SecretAgent
 secretWord = "antiquing"

The secretWord variable isn’t
defined outside the class body.

Class variable
 licensedToKill: yes
Instance property

119Class variables and properties

Methods can access class variables because they’re inside the class declaration with them:

class SecretAgent
 secretWord = "antiquing"
 greet: (word) ->
 if word is secretWord
 "Hello, how are you?"

bob = new SecretAgent
bob.greet "antiquing"
"Hello, how are you?"

You now have a place to keep the product variable inside the Product class. Unfortu-
nately, that also also makes it invisible to your Product.find class method:

class Product
 products

Product.find = (query) ->
 (product for product in products when product.name is query)

The find method is not declared inside the class. The class body has a function scope,
so the find method must be defined inside it in order to see the product variable.
How do you define it inside the class body so that all the things related to the class are
defined in one place?

5.3.2 Declaring (to keep things together)

Inside a constructor, @ refers to the new object being constructed. Inside an instance
method, @ refers to the instance by default. That much you know. Directly inside the
class declaration, @ refers to the class itself. The @ keyword is used to define the find
property on the Product class:

class Product
 @find = (what) ->
 "#{what} not found"

Product.find "zombie survival kit"
"zombie survival kit not found"

Remember that @ is dynamic; the object it refers to depends on how the function is
invoked. Inside the class body the class body itself has been invoked. Yes, the class
body works like a function. It’s still too soon to see why, and besides you now have a
solution for Product.find:

class Product
 instances = []
 @find = (query) ->
 (product for product in instances when product.name is query)
 constructor: (name) ->
 instances = instances.concat [@]

Class variable.

This method can see the
class variable because
it’s in the same scope.

Class variable is defined
in current scope.

Class variable
isn’t visible
outside.

Directly inside the class
declaration, @ refers to
the class.

Class variable

Class method

Adding the new instance to the array of instances
using the array concat method (section 2.6.1)
 @name = name

s
120 CHAPTER 5 Composing objects

Now, by using a class variable and a class method, you have a solution that finds a product:

new Product "Green", {}
Product.find 'Green'
[{ name: 'Green' }]

It’s time to tie this back to the overall shop program. A new version of the client appli-
cation, this time with the Product.find, is in listing 5.4. An input field has been
added to the HTML document, which provides an interface for users to enter the
name of the product they want to find. As with previous listings, some functions and
methods that are identical to earlier listings are omitted. The following listing can be
run using listing 5.13.

http, get and post functions omitted – see listing 5.2

class Product
 products = []

 @find = (query) ->
 for product in products
 product.unmark()
 for product in products when product.name is query
 product.mark()
 product

 constructor: (name, info) ->
 products.push @
 @name = name
 @info = info
 @view = document.createElement 'div'
 @view.className = "product"
 document.body.appendChild @view
 @view.onclick = =>
 @purchase()
 @render()

 render: ->
 show = ("<div>#{key}: #{val}</div>" for own key, val of @info).join ''
 @view.innerHTML = "#{@name} #{show}"

 purchase: ->
 if @info.stock > 0
 post "/json/purchase/#{@purchaseCategory}/#{@name}", (res) =>
 if res.status is "success"
 @info = res.update
 @render()

 mark: ->
 @view.style.border = "1px solid black"

 unmark: ->
 @view.style.border = "none"

class Camera omitted – see listing 5.3

Listing 5.4 Agtron’s shop client application with find

The products
class variable.

The find class
method invokes
mark and unmark
methods that
change the view.

The constructor
also renders
onto the view.

The render method
displays all the keys
and values of the
info object.

The purchase
method send
a request
and updates
the view via
render.

The mark and unmark
methods make the search
result visible on the view.
class Skateboard omitted – see listing 5.3

121Class variables and properties

class Shop
 constructor: ->
 @view = document.createElement 'input'
 @view.onchange = ->
 Product.find @value
 document.body.appendChild @view
 @render()
 get '/json/list', (data) ->
 for own category of data
 for own name, info of data[category]
 switch category
 when 'camera'
 new Camera name, info
 when 'skateboard'
 new Skateboard name, info

 render: ->
 @view.innerHTML = ""

shop = new Shop

Notice that some parts of the program are becoming a bit difficult to follow. The view
(which manipulates things displayed in the browser) takes up a lot of room in the pro-
gram and obscures the other parts of the program. There’s a way to move those parts
of the code somewhere else where they won’t get in the way, and you will learn about
it later in the chapter. Before moving on, though, there’s one more thing you need to
know about class properties.

CLASS PROPERTY INHERITANCE

If a Product class has an existing find method, then a Camera class that extends Product
will inherit that existing find method:

products = [
 name: "Shark repellant"
 ,
 name: "Duct tape"
]

class Product

Product.find = (query) ->
 (product for product in products when product.name is query)

class Camera extends Product

Camera.find?
true

Add a class property to Product dynamically after Camera has already extended Product.
The Camera class doesn’t get the class property:

class Product

class Camera extends Product

Product.find = (what) -> "#{what} not found"
Product.find?

The Shop class needs
to determine which
class to construct
based on the data.
true

122 CHAPTER 5 Composing objects

Camera.find?
false

The class declaration isn’t dynamic. To modify a class at runtime, you need to start
thinking in prototypes.

5.3.3 Exercise
Write a Camera.alphabetical class method that returns an array of all the cameras
sorted alphabetically by name.

 So far in this chapter you’ve declared and extended classes and added properties
and methods to both instances and classes. In some cases, though, you don’t simply
want to add behavior—you want to change it. To do this you need to know what hap-
pens when you redefine something that you’ve inherited and how to get back the orig-
inal after you’ve redefined it.

5.4 Overriding and super
You can change the property of an object any time, just by assigning something to it.
What about a class, though? Assigning a new value to a class property works the same
as any object:

class Human

Human.rights = ['Life', 'Liberty', 'the pursuit of happiness']
Human.rights
['Life', 'Liberty', 'the pursuit of happiness']

Human.rights = Human.rights.concat ['To party']
Human.rights
['Life', 'Liberty', 'the pursuit of happiness', 'To party']

Class methods are just properties on a class. How about instance methods? What hap-
pens when you write a class declaration that defines an instance method that’s already
inherited from another class through extends?

5.4.1 Overriding
Imagine now that Agtron wants cameras to look different than other products on the
shop website. He wants them to have a photo gallery next to their product descrip-
tion. The Gallery class has a constructor and a render method:

class Gallery
 constructor: ->
 render: ->

Using the constructor, a new gallery is created with each new camera:

class Camera
 constructor: ->
 @gallery = new Gallery

When the camera renders, it will need to invoke the render method on the gallery.
This means the Camera class needs a different render method from other products.

Put this method inside the class declaration:

123Overriding and super

class Camera extends Product
 render: ->
 @view.innerHTML = """
 #{@name}: #{@info.stock}
 {@gallery.render()}
 """

The constructor and the render method have both been overridden:

class Camera extends Product
 constructor: (name, info) ->
 @name = name
 @info = info
 @gallery = new Gallery
 render: ->
 @view.innerHTML = """
 #{@name}: #{@info.stock}
 {@gallery.render()}
 """

To override a method that you got from extending a class, declare a new version in the
new class. Sounds too easy, and it is. What happens when you create some cameras
and try to find them?

class Product

Product.find = (query) ->
 (product for product in products when product.name is query)

class Camera extends Product

x1 = new Camera 'X1', {}
Product.find 'X1'
[]

The camera was not found! The list of product instances is updated inside the Product
constructor. Once you define a new constructor for the Camera class, the Product con-
structor won’t be invoked when you new a Camera. No Camera instances will be added
to the array. There’s a solution to this problem: the super keyword.

5.4.2 super

When Camera extends Product, invoking super inside a method invokes the corre-
sponding inherited method. Suppose that the markup on cameras is massive and they
sell at twice the product cost:

class Product
 constructor: (name, cost) ->
 @name = name
 @cost = cost
 price: ->
 @cost

class Camera extends Product
 markup = 2

 price: ->

A heredoc to output the name and the gallery.
The gallery output is generated by the render
method of the gallery object.

Create a gallery from
the Gallery class.

Get the gallery
to render.
 super()*markup

124 CHAPTER 5 Composing objects

Create a Camera and invoke the price method:

camera = new Camera 'X10', 10
camera.price()
20

You can use super with any method call, including a constructor. If you haven’t over-
ridden a method, then the same inherited method that super invokes will be invoked
automatically via the prototype. The next listing shows an in-context use of super to
call the Product constructor from the Camera constructor. As with other listings in this
chapter, you can’t run listing 5.5 from the REPL; you need to run it with listing 5.13.

http, get and post functions omitted from this listing

class Gallery
 constructor: (@photos) ->
 render: ->
 images = for photo in @photos
 ""
 "<ul class='gallery'>#{images.join ''}"

class Product
 constructor: (name, info) ->
 @name = name
 @info = info
 @view = document.createElement 'div'
 @view.className = 'product'
 document.querySelector('.page').appendChild @view
 @render()
 render: ->
 @view.innerHTML = "#{@name}: #{@info.stock}"

class Camera extends Product
 constructor: (name, info) ->
 @gallery = new Gallery info.gallery
 super name, info
 @view.className += ' camera'
 render: ->
 @view.innerHTML = """
 #{@name} (#{@info.stock})
 #{@gallery.render()}
 """

class Shop
 constructor: ->
 @view = document.createElement 'div'
 document.querySelector('.page').appendChild @view
 document.querySelector('.page').className += ' l55'
 @render()
 get '/json/list', (data) ->
 for own category of data
 for own name, info of data[category]

Listing 5.5 Agtron’s shop client application with camera gallery

A Gallery class that
only renders some
placeholder text.

The Product
constructor that the
Camera constructor
invokes.

The Camera constructor
invokes the Product
constructor via super.
 switch category

125Modifying prototypes

 when 'camera'
 new Camera name, info
 else
 new Product name, info

 render: () ->
 @view.innerHTML = ""

shop = new Shop

In listing 5.5 you notice that passing all of the arguments for a constructor through to
the super constructor is repetitive. CoffeeScript also provides super as a keyword for
this situation:

class Gallery

class Camera extends Product
 constructor: (name, info) ->
 @gallery = new Gallery
 super

pixelmatic = new Camera 'The Pixelmatic 5000', {}
pixelmatic.name
'The Pixelmatic 5000'

Now you know that the CoffeeScript class sugar has been hiding things from you and
that syntactic sugar is a language convenience that makes some common expressions
easier. When you need to break away from classes, you’ll have to dive back down into
objects and prototypes, leaving the sugar behind. So, when do you need to break away
from classes?

5.5 Modifying prototypes
Remember, there are plain, old objects and prototype links underneath your classes.
In this section you’ll learn how CoffeeScript’s class declarations work by seeing the
actual JavaScript they compile to. You’ll also learn what you can do to classes and their
instances when you start dynamically modifying their prototypes.

5.5.1 How class declarations work

Imagine now that Agtron has extra stock of some products, and he wants to offer
special deals on them. If you know beforehand that Agtron is offering special deals
on Cameras with the name 'Lacia', then you can handle the special deal in the
class declaration:

class Camera
 render: ->
 if /'Lacia'/.test @name
 "Special deal"

It’s not going to be that easy. Agtron wants to change the special deals dynamically.

If the name of this object
looks like 'Lacia', then
it’s on special.
You don’t know in advance what’s going to be discounted, so you can’t declare it in

126 CHAPTER 5 Composing objects

the class. You’ll need to extend the class dynamically. To learn how to extend a class
dynamically, you need to learn how classes really work. It’s finally time to see the
JavaScript that the CoffeeScript compiler creates from a class declaration.

 The compiled JavaScript for a CoffeeScript class is shown in the following listing.
As always, CoffeeScript is on the left and compiled JavaScript is on the right.

Inside a CoffeeScript class you see functions. That explains the variable scope. Coffee-
Script classes have a variable scope like functions because they are functions. One sec-
ond, though; where did the constructor go?

CONSTRUCTOR FUNCTIONS

In JavaScript a constructor is a function that creates a new object and links it to a
prototype object. In addition to the prototype, all objects have a reference to their
constructor function. In JavaScript when you use the new keyword in front of a
function, an object is created and the function is invoked with the this keyword
inside the function (known as @ in CoffeeScript) referring to the new object. In list-
ings 5.6 and 5.7 the CoffeeScript class constructor corresponds to a constructor
function in JavaScript.

 Raw constructor functions still work in CoffeeScript:

SteamShovel = (name) ->
 @name = name

 steamShovel = new SteamShovel 'Gus'
 steamShovel.name
 # 'Gus'

 steamShovel.constructor
 # [Function]

Any object created using a function as a constructor has a constructor property that
references the function. How about methods then? How do they work?

5.5.2 How methods work

The listing that follows shows the compiled JavaScript output for a CoffeeScript class

Listing 5.6 CoffeeScript class and compilation to JavaScript

CoffeeScript JavaScript

class Simple
 constructor: ->
 @name = "simple object"

simple = new Simple

var Simple = (function() {
 function Simple() {
 this.name = 'simple';
 }
 return Simple;
})();

simple = new Simple();

An ordinary
function

The function used
as a constructor

The same function again, accessed via
constructor property on an instance
with a constructor and one method.

127Modifying prototypes

The object referenced by SteamShovel.prototype is the prototypical steam shovel.
The speak method is created by assigning it as a property on the prototypical steam
shovel. You can tell a constructor function which object to use as the prototype for
future objects:

SteamShovel.prototype = {}

CoffeeScript classes are syntactic sugar for prototypes and constructor functions. This
means you can change properties on the prototype:

SteamShovel.prototype.grumpy = yes

Now all of the objects created using the SteamShovel constructor have a grumpy prop-
erty, inherited via the prototype chain:

gus.grumpy
true

This turns out to be useful for dynamically modifying objects and classes.

5.5.3 Dynamic classes

By adding a property to the prototype, you’re adding it to all the objects that use it
without touching the class declaration:

class Example
example = new Example
Example.prototype.justAdded = -> "just added!"

example.justAdded()
"just added!"

You probably remember doing something similar with raw objects in section 4.6 using
Object.create. Now you’re doing exactly the same thing by accessing the prototype

Listing 5.7 CoffeeScript class, constructor, and method compilation

CoffeeScript JavaScript

class SteamShovel
 constructor (name) ->
 @name = name
 speak: ->
 "Hurry up!"

gus = new SteamShovel
gus.speak()
Hurry up!

var SteamShovel = (function() {
 function SteamShovel(name) {
 this.name = name;
 }
 SteamShovel.prototype.speak =
 function() {
 return "Hurry up!";
 };
 return SteamShovel;
 };
gus = new SteamShovel();
gus.speak();
for a whole class of objects by modifying the prototype object via the class.

128 CHAPTER 5 Composing objects

PROTOTYPE SHORTHAND

CoffeeScript has a more convenient shorthand syntax for accessing the prototype
using two consecutive colons, so that

Example::justAdded = -> "just added!"

is equivalent to

Example.prototype.justAdded = -> "just added!"

Understanding what the CoffeeScript compiler does when you write a class means
you’re able to modify a class dynamically by modifying the object it uses as the proto-
type for constructed objects. The next listing demonstrates this in action.

http omitted from this listing
get omitted from this listing
post omitted from this listing

class Product
 constructor: (name, info) ->
 @name = name
 @info = info
 @view = document.createElement 'div'
 @view.className = "product #{@category}"
 document.querySelector('.page').appendChild @view
 @view.onclick = =>
 @purchase()
 @render()

 render: ->
 @view.innerHTML = @template()

 purchase: ->
 if @info.stock > 0
 post "/json/purchase/#{@category}/#{@name}", (res) =>
 if res.status is "success"
 @info = res.update
 @render()

 template: =>
 """
 <h2>#{@name}</h2>
 <dl class='info'>
 <dt>Stock</dt>
 <dd>#{@info.stock}</dd>
 <dt>Specials?</dt>
 <dd>#{@specials.join(',') || 'No'}</dd>
 </dl>
 """

class Camera extends Product
 category: 'camera'
 megapixels: -> @info.megapixels || "Unknown"

class Skateboard extends Product
 category: 'skateboard'

Listing 5.8 Agtron’s shop client application with specials
 length: -> @info.length || "Unknown"

129Modifying prototypes

class Shop
 constructor: ->
 unless Product::specials?
 Product::specials = []
 @view = document.createElement 'div'
 @render()
 get '/json/list', (data) ->
 for own category of data
 for own name, info of data[category]
 if info.special?
 Product::specials.push info.special
 switch category
 when 'camera'
 new Camera name, info
 when 'skateboard'
 new Skateboard name, info

 render: ->
 @view.innerHTML = ""

shop = new Shop

At this point it’s also informative to show an example of the actual JSON data being
used. Here’s an example of this JSON.

{
 'camera': {
 'Fuji-X100': {
 'description': 'a camera',
 'stock': 5,
 'arrives': 'December 25, 2012 00:00',
 'megapixels': 12.3
 }
 },
 'skateboard': {
 'Powell-Peralta': {
 'description': 'a skateboard',
 'stock': 3,
 'arrives': 'December 25, 2012 00:00',
 'length': '23.3 inches'
 }
 }
}

Being JSON, the Shop constructor is able to easily use this data as an object. Remem-
ber, JSON is valid syntax for an object in JavaScript and in CoffeeScript. Inside a
CoffeeScript program, the data from listing 5.9 can also be represented with signifi-
cant indentation:

products =
 camera:
 'Fuji-X100':
 description: 'a camera'

Listing 5.9 Product listings with specials

The Shop constructor dynamically adds
a property to the Product prototype.

The Shop constructor also adds
all the specials to the specials
property of the Product prototype.
 stock: 5

130 CHAPTER 5 Composing objects

 arrives: 'December 25, 2012 00:00'
 megapixels: 12.3
 skateboard:
 'Powell-Peralta':
 description: 'a skateboard'
 stock: 3
 arrives: 'December 25, 2012 00:00'
 length: '23.3 inches'

Through the prototype of a class you’re able to modify the properties and behavior of
many objects at the same time. This can be done not only with your own classes and
objects but also with other objects and classes. Remember, the default for all objects is
that they’re open to modification. This means you can modify and extend anything,
including built-in objects such as the prototypical array.

OBJECTS OPEN BY DEFAULT? Objects being open means you can change a
property on any regular object that you have a reference to. The fifth edition
of the ECMAScript standard makes it possible to freeze or seal an object,
preventing it from being modified (see chapter 13).

5.6 Extending built-ins
You’ve seen that classes in CoffeeScript are syntactic sugar. They make working with
constructors and prototypes easier. There are constructors for objects other than
classes you define. Consider an array, an object, and a string:

object = {}
array = []
string = ''

Objects, arrays, and strings each have their own constructor functions. Instead of
using the literal notation, it’s possible, if generally pointless, to create objects, arrays,
and strings using constructors:

object = new Object
array = new Array
string = new String

The prototypes of these objects provide the methods available to all objects, arrays,
and strings. In a sense, there’s a built-in Object class, an Array class, and a String
class. But you now know that classes are really a syntactic convenience in CoffeeScript,
so it’s more accurate to talk of built-in prototypes and constructor functions.

 By modifying built-in prototypes, you can change the behavior of the built-in lan-
guage. This is a powerful and dangerous technique. In this section you’ll learn how
you can use it and why it should be treated with caution.

5.6.1 Built-in constructor prototypes

The built-in constructors provided to you will depend on the runtime you’re using.

The constructors you’re most likely to encounter are Object, Array, String, Date,

131Extending built-ins

and RegExp.1 All of these built-in constructors have prototypes that you can modify.
For example, consider the join method on an array:

['yin','yang'].join 'and'
'yin and yang'

This is a function assigned to the join property of the array prototype, meaning that
you have access to it and can change it through Array::join:

Array::join = -> "Array::join was redefined"
['yin','yang'].join 'and'
"Array::join this was overridden"

You can quite easily break built-in code by assigning silly functions to prototypes.
That’s not all there is to them.

5.6.2 Extending date

Agtron now tells you that he wants to display the date when new stock arrives. This will
make the homepage look like figure 5.4.

 The stock arrival date is returned in the JSON from the server as a string like this:

"October 13, 1975 11:13:00"

This is a standard date format that the JavaScript runtime can read.2 You can create a
date from it fairly easily using the built-in Date class (otherwise known as the Date
constructor function):

new Date "October 13, 1975 11:13:00"

1 A full list of the standard constructors specified by ECMAScript 5 is included in appendix A.

Figure 5.4 Agtron’s shop with
stock arrival dates
2 See IETF RFC 1123 http://tools.ietf.org/html/rfc1123.

http://tools.ietf.org/html/rfc1123

132 CHAPTER 5 Composing objects

But Agtron wants it to display how many days from today that is. You think that “how
many days from today?” is a question you should be able to ask of any date:

productAvailable = new Date "October 13, 1975 11:13:00"
productAvailable.daysFromToday()

Because Date is a constructor, you have access to the prototype for all the date objects.
Modify the Date prototype and add a daysFromToday method:

Date::daysFromToday = ->
 millisecondsInDay = 86400000
 today = new Date
 diff = @ - today
 Math.floor diff/millisecondsInDay

Travel back in time and imagine that today is January 20, 2012. How many days until
Christmas Day 2012?

christmas = new Date "December 25, 2012 00:00"
christmas.daysFromToday()
#339

A WARNING ABOUT DATES Because this executes in a web browser, it will use
the time on the user’s computer. Potential issues with date in a browser, such
as time zones and clock drift, are beyond the scope of this chapter and not
discussed here.

In the next listing you see how to apply this to the client application for Agtron’s shop.

http omitted
get omitted
put omitted

Date::daysFromToday = ->
 millisecondsInDay = 86400000
 today = new Date
 diff = @ - today
 Math.floor diff/millisecondsInDay

class Product
 products = []

 @find = (query) ->
 for product in products
 product.unmark()
 for product in products when product.name is query
 product.mark()
 product

 constructor: (name, info) ->
 products.push @
 @name = name
 @info = info

Listing 5.10 Agtron’s shop client application with stock arrivals

December 25, 2012, is in the past,
so if you run this example now
you will get a negative value.

The daysFromToday
method added to the
built-in Date prototype
 @view = document.createElement 'div'

133Extending built-ins

 @view.className = "product #{@category}"
 document.querySelector('.page').appendChild @view
 @view.onclick = =>
 @purchase()
 @render()

 render: ->
 @view.innerHTML = @template()

 purchase: ->
 if @info.stock > 0
 post "/json/purchase/#{@purchaseCategory}/#{@name}", (res) =>
 if res.status is "success"
 @info = res.update
 @render()

 template: =>
 """
 <h2>#{@name}</h2>
 <dl class='info'>
 <dt>Stock</dt> <dd>#{@info.stock}</dd>
 <dt>New stock arrives in</dt>
 <dd>#{new Date(@info.arrives).daysFromToday()} days</dd>
 </dl>
 """

 mark: ->
 @view.style.border = "1px solid black";

 unmark: ->
 @view.style.border = "none";

class Camera extends Product
 category: 'camera'
 megapixels: -> @info.megapixels || "Unknown"

class Skateboard extends Product
 category: 'skateboard'
 length: -> @info.length || "Unknown"

class Shop
 constructor: ->
 unless Product::specials?
 Product::specials = []
 @view = document.createElement 'div'
 @render()
 get '/json/list', (data) ->
 for own category of data
 for own name, info of data[category]
 if info.special?
 Product::specials.push info.special
 switch category
 when 'camera'
 new Camera name, info
 when 'skateboard'
 new Skateboard name, info

 render: ->

Using the
daysFromToday
method on an
object created
with the Date
constructor
 @view = document.createElement 'div'

134 CHAPTER 5 Composing objects

 document.querySelector('.page').appendChild @view
 @view.innerHTML = """
 <form class='search'>
 Search: <input id='search' type='text' />
 <button id='go'>Go</button>
 </form>
 """
 @search = document.querySelector '#search'
 @go = document.querySelector '#go'
 @go.onclick = =>
 Product.find @search.value
 false
 @search.onchange = ->
 Product.find @value
 false

shop = new Shop

Extending prototypes is a powerful technique that allows you to change the behavior
of any object in CoffeeScript. You have the power. Be careful how you use it.

5.6.3 Don’t modify objects you don’t own

By extending the built-in Date object, you’re changing it for the entire program. If
you’re writing a library that other people are going to use, then you’re changing
things for other people’s entire programs. You don’t know what those other people
are doing in their programs, so extending built-ins has a high potential for breaking
other people’s code. Modifying built-in prototypes is a bit like breaking into some-
body’s house and leaving stuff there. This works only if you’re Santa Claus.

 One alternative to modifying a built-in prototype is to write your own class that
extends the built-in and use that instead:

class ExtendedDate extends Date
 daysFromToday: ->
 millisecondsInDay = 86400000
 today = new Date
 diff = @ - today
 Math.floor diff/millisecondsInDay

You should trade the convenience of extending a built-in for its danger on a case-
by-case basis.

 You’ve seen how to declare a class that allows you to create objects from the class.
You’ve also seen how classes are just functions and prototypes when you lift the veil
and look underneath. Class convenience comes with some rigidity, meaning you go
back to raw prototypes when you need to dynamically extend things. This is an impor-
tant lesson worth repeating.

THE CLASS SWEET SPOT

If you’re mostly creating certain kinds of objects with some extensions, then use
classes. They work very well for that. If, however, your problem requires more dyna-

mism than structure, you will need to look outside classes.

135Mixins

 What if you had lots of objects that were all quite different but nonetheless had
some common behavior?

5.7 Mixins
A mixin is a class that contains (mixes together) a combination of methods from other
classes. Pure objects and prototypes provide flexibility, and classes provide structure.
Mixins are a popular technique in class-based languages to achieve some of the flexi-
bility that prototypes provide while still keeping the structure of classes. Although
there’s no dedicated syntax for mixins in CoffeeScript, they can be achieved without
much fuss. First though, when should you use mixins? When classes become awkward.

5.7.1 Class inheritance can be awkward
Image now that Agtron wants to add news announcements to the shop homepage.
This will make the homepage look like figure 5.5.

 You consider the classes you have in your system, and it looks like you have a small
problem. You have a Product class with a render method that’s used by all the objects
whose class definition extends Product. Now though, you have a new class, Announcement,
that certainly isn’t a Product—it’s awkward if you make it extend Product:

class Announcement
pigsFly = new Announcement
pigsFly.purchase()
Error

Still, you want to reuse the render method because it really is the same between Product
and Announcement. With your inheritance hat on, you think it might be a good idea to
just add another layer to the inheritance hierarchy:

class Renderer
class Product extends Renderer
class Camera extends Product

class Announcement extends Renderer

Figure 5.5 Agtron’s shop with

news announcements

136 CHAPTER 5 Composing objects

Trying to program like that in CoffeeScript is working against the grain. The objects
are dynamic and prototype-based at their core. Work with the language.

 Rendering is a function that you just happen to invoke on different objects, some
of them products and some of them announcements. The function doesn’t need to
belong to a particular class. You can define a render function anywhere in Coffee-
Script. The trouble is, when you can define it anywhere, you’re spoiled for choice. If
you can define it anywhere, where do you actually define it in practice, and how do
you keep related functions together? You want collections of related functions that
can be used with objects regardless of what class they were created from—if they were
created from a class at all! You want mixins.

5.7.2 Writing a mixin

The simplest way to write a mixin is by taking advantage of the properties as key-value
store objects. Define rendering behavior on a plain, old object:

htmlRenderer =
 render: ->
 unless @view?
 @view = document.createElement 'div'
 document.body.appendChild @view
 @view.innerHTML = """
 #{@name}
 #{@info}
 """

To add the render method to a class, you modify the class prototype:

class Donut
 constructor: (name,info) ->
 @name = name
 @info = info

Now add the render method:

Donut::render = htmlRenderer.render

This works, but it’s tedious. Remember, a mixin is a collection of related functions
that can be attached as methods to objects. Suppose you have a collection of three
functions:

dwarves =
 bashful: -> 'Bashful'
 doc: -> 'Doc'
 dopey: -> 'Dopey'

To mix dwarves into a FairyTale class, you add all of the functions to the class prototype:

class FairyTale
 for key, value of dwarves

An object created ex
nihilo with a render
property referring
to a function

Comprehension of the properties of the dwarves

 FairyTale::[key] = value object, adding them to the FairyTale prototype

137Mixins

You want a general solution, though, that will work for Camera and looks like so:

class Camera
 include @, htmlRenderer
ReferenceError: include is not defined

How can you make that work? The include function should add all of the properties
from the mixin to the class:

x1 = new Camera
x1.render()
#renders

That include function is implemented using a comprehension:

include = (klass, module) ->
 for key, value of module
 klass::[key] = value

Some people prefer to think in terms of classes. A Mixin class, from which you can cre-
ate instances that provide their own include method, is shown here.

class Mixin
 constructor: (methods) ->
 for name, body of methods
 @[name] = body
 include: (klass) ->
 for key, value of @
 klass::[key] = value

htmlRenderer = new Mixin
 render: -> "rendered"

class Camera
 htmlRenderer.include @

leica = new Camera()

leica.render()
#rendered

By comprehending the properties of an existing object and setting them as properties
on another object, you’re able to mix in behavior from one object to another. Note
that the mixin technique you’ve learned is static. Once the properties have been cop-
ied to the Camera class, further changes to the htmlRenderer object are not seen by
Camera instances. Mixins created in this way allow you to do a one-time copy of related
functions to another object. More sophisticated dynamic programming is demonstrated
in later chapters.

5.7.3 Example: enumerable mixin
Remember the accumulator from chapter 3 that you used to sum an array of num-
bers? Accumulating numbers wasn’t exciting, but it did demonstrate how to pass a

Listing 5.11 Mixin class

This is the syntax
you want. You just haven’t

implemented it yet.

render method
mixed in.

This include function copies all the properties from the
module argument to the prototype of the klass argument.

The include method copies the methods of
the current object to the supplied class.

Create a mixin.

Include the mixin into
the Camera class.

A Camera instance has a render
method added by the mixin.
function as an argument to another function:

s
y,

138 CHAPTER 5 Composing objects

accumulate = (initial, numbers, accumulator) ->
 total = initial or 0
 for number in numbers
 total = accumulator total, number
 total

sum = (acc, current) -> acc + current
accumulate 0, [5,5,5], sum
15

The accumulate function takes a sequence of numbers and accumulates the values to
a single value. Suppose Agtron wants to know the total stock count of all the products
on his site. The Product class had a list of instances:

class Product
 instances = []
 constructor: (stock) ->
 instances.push @
 @stock = stock

You want to use an accumulator to add up all the stock, but the variable instances is
behind the scope of the Product class. You have to accumulate from inside Product:

class Product
 instances = []
 constructor: (stock) ->
 instances.push @
 @stock = stock
 stock: ->
 stockAccumulator = (acc, current) -> acc + current.stock
 accumulate(0, instances, stockAccumulator)

The Product class now has a reference to an accumulate variable defined somewhere
else that isn’t really a core part of Product. If instead you create an enumerable mixin,
then you’ll have a cleaner solution:

enumerable =
 accumulate: (initial=0, accumulator, sequence) ->
 total = initial
 for element in sequence
 total = accumulator total, element
 total

Using this enumerable mixin, you can get the stock total:

include = (klass, module) ->
 for key, value of module
 klass[key] = value

class Product
 include Product, enumerable
 instances = []
 accumulator = (acc, current) ->
 acc + current.stock

The accumulate
function from
chapter 3

The enumerable mixin is
just an object containing
the accumulate function
as a property.

Mix in the
enumerable using
the include function.

The Product class know
the accumulator strateg
but it doesn’t know how
 @stockTotal = -> @accumulate(0, accumulator, instances) to enumerate.

139Mixins

 constructor: (stock) ->
 instances.push @
 @stock = stock

trinkets = new Product 12
valium = new Product 8
laser = new Product 3
Product.stockTotal()
23

This somewhat contrived example demonstrates how to keep enumeration out of the
Product class. Enumerating isn’t a core concern of a product, so it doesn’t really
belong there. Having an enumerable mixin also means that the accumulator can be
used in other places in your program.

5.7.4 Mixins from null
You were warned about modifying the prototypes for built-ins. Unfortunately, your
colleague Blaine didn’t get the memo, and he has modified the prototype for a built-
in inside your program. This is what Blaine did:

Object::antEater = ->
 "I'm an ant eater!"

What happens to the enumerable mixin? Not what you want:

antFarm = new Product { stock:1 }
antFarm.antEater()
"I'm an ant eater!"

All of the Product instances got an antEater method. Remember those warnings
about the dangers of extending built-in objects such as Object? People don’t always
pay attention to warnings. To avoid getting the new method, you have to guard the
comprehension with the own keyword (see chapter 4):

include = (klass, module) ->
 for own key, value of module
 klass[key] = value

This isn’t bulletproof. To guarantee that you don’t get properties you don't want, you
must explicitly make your mixin an object that’s removed from the prototype chain by
making it have null as the prototype. This is done either by passing Object.create
the value null as the object to create from

htmlRenderer = Object.create null

or by setting null as the prototype if you use a Mixin class:

class Mixin
 @:: = null
 constructor: (from, to) ->
 for key, val of from
 to[key] = val

The null value doesn’t have any properties and it doesn’t have a prototype. If you use

Add the own keyword to filter out
properties from the prototype chain.
it as a prototype, your object won’t inherit any properties from the prototype chain.

140 CHAPTER 5 Composing objects

5.8 Putting it together
A mixin is not only useful to solve Agtron’s stock counting problem but more gener-
ally can be used to clean up some of the aspects of the client program, such as the
view, that were embedded in the existing classes without belonging there. In the next
listing you see a client program for Agtron’s shop demonstrating the use of mixins to
clean up the rendering code. Like other listings in this chapter, this is an example
designed to run in a browser.

server =
 http: (method, src, callback) ->
 handler = ->
 if @readyState is 4 and @status is 200
 unless @responseText is null
 callback JSON.parse @responseText

 client = new XMLHttpRequest
 client.onreadystatechange = handler
 client.open method, src
 client.send()

 get: (src, callback) ->
 @http "GET", src, callback

 post: (src, callback) ->
 @http "POST", src, callback

class View
 @:: = null
 @include = (to, className) =>
 for key, val of @
 to::[key] = val
 @handler = (event, fn) ->
 @node[event] = fn
 @update = ->
 unless @node?
 @node = document.createElement 'div'
 @node.className = @constructor.name.toLowerCase()
 document.querySelector('.page').appendChild @node
 @node.innerHTML = @template()

class Product
 View.include @
 products = []
 @find = (query) ->
 (product for product in products when product.name is query)
 constructor: (@name, @info) ->
 products.push @
 @template = =>
 """
 #{@name}
 """
 @update()

Listing 5.12 Agtron’s shop client application

The View class, with null
as prototype, has only
class methods. It knows
how to include itself
into another object.

The Product class invokes the include
class method of View to use it as a mixin.

The Product class still retains the
template, which it assigns to new
products inside the constructor.
 @handler "onclick", @purchase

141Putting it together

 purchase: =>
 if @info.stock > 0
 server.post "/json/purchase/#{@category}/#{@name}", (res) =>
 if res.status is "success"
 @info = res.update
 @update()

class Camera extends Product
 category: 'camera'
 megapixels: -> @info.megapixels || "Unknown"

class Skateboard extends Product
 category: 'skateboard'
 length: -> @info.length || "Unknown"

class Shop
 View.include @
 constructor: ->
 @template = ->
 "<h1>News: #{@breakingNews}</h1>"

 server.get '/json/news', (news) =>
 @breakingNews = news.breaking
 @update()

 server.get '/json/list', (data) ->
 for own category of data
 for own name, info of data[category]
 switch category
 when 'camera'
 new Camera name, info
 when 'skateboard'
 new Skateboard name, info

shop = new Shop

Finally, in this listing you see the server-side component of the shop.

http = require 'http'
url = require 'url'
coffee = require 'coffee-script'

data = require('./data').all
news = require('./news').all

script = "./#{process.argv[2]}.coffee"
client = ""
require('fs').readFile script, 'utf-8', (err, data) ->
 if err then throw err
 client = data

css = ""
require('fs').readFile './client.css', 'utf-8', (err, data) ->
 if err then throw err

Listing 5.13 Agtron’s shop server application

The Shop also uses
the View as a mixin.

The Shop also still retains the
template. The templates are
used by the View mixin.

Load the
camera data.

Load the source
scripts and style
sheets ready to
serve to clients.
 css = data

st
d

r a
d
e,
142 CHAPTER 5 Composing objects

headers = (res, status, type) ->
 res.writeHead status, 'Content-Type': "text/#{type}"

view = """
<!doctype html>
<head>
<title>Agtron's Cameras</title>
<link rel='stylesheet' href='/css/client.css'></link>
</head>
<body>
<script src='/js/client.js'></script>
</body>
</html>
"""

server = http.createServer (req, res) ->
 path = url.parse(req.url).pathname
 if req.method == "POST"
 category = /^\/json\/purchase\/([^/]*)\/([^/]*)$/.exec(path)?[1]
 item = /^\/json\/purchase\/([^/]*)\/([^/]*)$/.exec(path)?[2]
 if category? and item? and data[category][item].stock > 0
 data[category][item].stock -= 1
 headers res, 200, 'json'
 res.write JSON.stringify
 status: 'success',
 update: data[category][item]
 else
 res.write JSON.stringify
 status: 'failure'
 res.end()
 return
 switch path
 when '/json/list'
 headers res, 200, 'json'
 res.end JSON.stringify data
 when '/json/list/camera'
 headers res, 200, 'json'
 cameras = data.camera
 res.end JSON.stringify data.camera
 when '/json/news'
 headers res, 200, 'json'
 res.end JSON.stringify news
 when '/js/client.js'
 headers res, 200, 'javascript'
 writeClientScript = (script) ->
 res.end coffee.compile(script)
 readClientScript writeClientScript
 when '/css/client.css'
 headers res, 200, 'css'
 res.end css
 when '/'
 headers res, 200, 'html'
 res.end view
 else
 if path.match /^\/images\/(.*)\.png$/gi

The page template could be
external, but it’s small
enough to be included here
for demonstration purposes.

If the reque
is a POST an
matches the
URL path fo
category an
product nam
then it’s a
purchase
request.

Use a switch on the url path
to determine what resource to
serve to a client. This covers the
homepage, the client CoffeeScript
compiled to JavaScript, the CSS,
and the 404 error page.
 fs.readFile ".#{path}", (err, data) ->

143Summary

 if err
 headers res, 404, 'image/png'
 res.end()
 else
 headers res, 200, 'image/png'
 res.end data, 'binary'
 else
 headers res, 404, 'html'
 res.end '404'

server.listen 8080, '127.0.0.1', ->
 console.log 'Visit http://localhost:8080/ in your browser'

It’s quite common for a web framework to be used to create an application such as the
one shown in listings 5.12 and 5.13. The web framework usually provides additional
tools to help separate the different parts of your program. But developing the entire
application from scratch has helped you to explore some common patterns for using
classes and prototypes in CoffeeScript.

5.8.1 Exercise

The server-side part of the shop application doesn’t use any of the techniques described
in this chapter. Write a new version that does use them and compare the two.

5.9 Summary
JavaScript and CoffeeScript are languages with prototype-based objects. JavaScript has
always had an uncomfortable relationship with classes. Many people have wanted to
add classes to JavaScript; the fourth edition of the ECMAScript specification even pro-
posed adding classes to the language, but that edition was abandoned. With the lib-
erty of making significant syntax changes, CoffeeScript can provide a class syntax that
will be familiar to developers from most of the popular class-based object-oriented lan-
guages in use today. As you saw in this chapter, the underlying prototype-based model
is flexible enough to provide classes.

 The choice of whether to use classes at all is up to you. Having learned how they
work and by extending them, you’ve learned more about prototypes. In some later
chapters you’ll compose objects without classes. Before doing that, though, you’ll
return to functions and discover techniques borrowed from functional programming
in the next chapter.

Use a switch on the url path
to determine what resource to
serve to a client. This covers the
homepage, the client CoffeeScript
compiled to JavaScript, the CSS,
and the 404 error page.

Composing functions
In contrast to what you learned about objects, you needn’t learn any more features
to compose programs with functions. Instead, you must learn how to create your
own features by putting together functions using the basic function glue that you
learned in chapter 3. This principle applies to trivial examples such as defining an
average function in terms of sum and divide functions and to nontrivial examples
that you’ll see in this chapter. To compose programs with functions, you must learn
principles and techniques, not features.

 Functions have inputs (arguments) and outputs (return values). In that sense,
they’re like pipes. You need to know not only the different ways of connecting
those pipes but also the principles and techniques you need to do so effectively.

 In this chapter you’ll learn why it’s important to break programs into small,
clear functions, and how variables and program state can get in the way of doing
that effectively. You’ll then learn about using functions to create abstractions to

This chapter covers
■ Using functions for program clarity
■ The problem with state
■ Using functions to create abstractions
■ Techniques for combining functions
Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch06-code.html

145Clarity

make programs smaller and more manageable. Next, you’ll learn about some com-
mon patterns of abstraction in combinators and, finally, about how function-
composition techniques are used to simplify typical CoffeeScript programs that are
heavy on callbacks. Before beginning, be aware that this chapter deals with some
abstract ideas and techniques that require close attention. With that in mind, first
things first—clarity.

6.1 Clarity
A function describes a computational process. It’s important that the process that the
function describes is represented clearly and accurately. You’ll begin with function
composition and then look at a specific problem and how to describe it with func-
tions. You’ll start with an optimization problem: how can Agtron maximize the profit
from his online store when sales figures vary depending on sales prices?

 By tracking purchases on his shop website, Agtron has found that when he sets the
price for the PhotomakerExtreme (a camera) at $200, he sells (on average) 50 per
day. For every $20 that he reduces the price, he sells an additional 10 units per day.
Each PhotomakerExtreme costs Agtron $100 from the wholesaler, and it costs $140
per day to run the website.

 To solve this problem by composing functions, you’ll define functions by describ-
ing what they do—using other functions.

6.1.1 Functions are descriptions

When you read the body of a function, the intention and meaning should be clear.
Suppose your esteemed colleague Mr. Rob Tuse has previously written a function to
evaluate the profit for a given price:

profit = (50+(20/10)*(200-price))*price-(140+(100*(50+((20/10)*(200-price)))))

Aside from clues that the words price and profit afford, can you tell what the func-
tion means? Can Rob? Not likely. How do you define profit to clearly indicate what
it is? Starting by thinking about the relationship. The profit for a sale price is the
revenue at that price minus the cost at that price:

profit = (salePrice) ->
 (revenue salePrice) – (cost salePrice)

This profit function won’t work yet because revenue and cost aren’t defined. The
next thing to do, then, is define them:

revenue = (salePrice) ->
 (numberSold salePrice) * salePrice

cost = (salePrice) ->
 overhead + (numberSold salePrice) * costPrice

146 CHAPTER 6 Composing functions

These revenue and cost functions won’t work until overhead, numberSold, and
costPrice are defined. Define them:

overhead = 140
costPrice = 100

numberSold = (salePrice) ->
 50 + 20/10 * (200 - salePrice)

There’s nothing left to define. You have a solution:

overhead = 140
costPrice = 100

numberSold = (salePrice) ->
 50 + 20/10 * (200 - salePrice)

revenue = (salePrice) ->
 (numberSold salePrice) * salePrice

cost = (salePrice) ->
 overhead + (numberSold salePrice) * costPrice

profit = (salePrice) ->
 (revenue salePrice) – (cost salePrice)

Functions can be defined anywhere, so numberSold, revenue, and cost could be
defined inside the profit function. When you do this, as shown in the following list-
ing, they’re scoped inside the profit function, meaning that they’re encapsulated.

profit = (salePrice) ->
 overhead = 140
 costPrice = 100
 numberSold = (salePrice) ->
 50 + 20/10 * (200 - salePrice)
 revenue = (salePrice) ->
 (numberSold salePrice) * salePrice
 cost = (salePrice) ->
 overhead + (numberSold salePrice) * costPrice

 (revenue salePrice) - (cost salePrice)

It’s easier to comprehend a program with good encapsulation. A program with poor
encapsulation is a bit like emptying all the boxes, jars, and packets from your pantry
into one big bucket. Good for making soup, but not much good for anything else.

 Before continuing, it’s time for an important lesson about parentheses.

6.1.2 Where arguments need parentheses

Remember that when you’re invoking a function with arguments, parentheses are
optional:

revenue salePrice

Listing 6.1 Profit from selling PhotomakerExtreme

The formula that Agtron worked
out for the number of items sold
at a given sale price

These variables are
scoped inside the
profit function.

These are effectively the same. The

revenue(salePrice) parentheses aren’t required.

147Clarity

But parentheses are sometimes necessary to indicate where the arguments end. Why?
Well, how do you think this expression is evaluated?

revenue salePrice – cost salePrice

To your eyes this example probably looks like it subtracts the cost at the sale price
from the revenue at the sale price. But that’s not how the CoffeeScript compiler sees
it, and the JavaScript you get might not be what you expect:

revenue(salePrice(-(cost(salePrice))));

Unfortunately, the CoffeeScript compiler can’t read your mind, and the JavaScript it
has produced has a syntax error. Parentheses are important to tell the compiler what
to do. You should add parentheses for the function invocations:

revenue(salePrice) - cost(salePrice)

Alternatively, you can put the parentheses on the outside :

(revenue salePrice) - (cost salePrice)

Whether you prefer the parentheses inside or outside, you should give ambiguous
expressions that contain function invocations parentheses to make them unambiguous.

 As a program grows, you don’t just keep writing more and more functions. Instead,
you often modify and adapt the functions you already have.

6.1.3 Higher-order functions revisited

In chapter 3 you learned the three basic ways that functions are glued together:

■ Invocation through variable reference
■ As an argument
■ As a return value

In listing 6.1 only the first of these was demonstrated. Next, you’ll see the other two
types of function glue used for generalizing and for partially applying a function.

 Agtron isn’t selling just PhotomakerExtreme cameras but other types of cameras
too. For those other cameras the overhead, costPrice, and numberSold are different
from those for the PhotomakerExtreme. The profit function in listing 6.1 doesn’t
work for other types of cameras. How can you generalize it to be used for other types?

GENERALIZING A FUNCTION

One way to make the profit function more generally useful is by making overhead,
costPrice, and numberSold arguments:

profit = (overhead, costPrice, numberSold, salePrice) ->
 revenue = (salePrice) ->
 (numberSold salePrice) * salePrice
 cost = (salePrice) ->
 overhead + (numberSold salePrice) * costPrice

Parentheses inside

Parentheses outside
 (revenue salePrice) – (cost salePrice)

How
argum

can
tol

before
pro
bec

 too ha
underst
148 CHAPTER 6 Composing functions

If the sale price is 100, the overhead is 10, the cost price is 40, and 10 products are
sold, then the profit is 590:

tenSold = -> 10
profit 10, 40, tenSold, 100
590

The number sold for a product depends on other values such as the sale price. This is
apparent when you use this new function for a photoPro camera and a pixelKing camera.

photoProOverhead = 140
photoProCostPrice = 100
photoProNumberSold = (salePrice) -> 50 + 20/10 * (200 - salePrice)

profit photoProOverhead, photoProCostPrice, photoProNumberSold, 162
7672

pixelKingOverhead = 140
pikelKingCostPrice = 100
pixelKingNumberSold = (salePrice) -> 50 + 20/10 * (200 - salePrice)

profit pixelKingOverhead, pixelKingCostPrice, pixelKingNumberSold, 200
14860

Flexibility has come at a price. The function now has four arguments, which is
unwieldy and a little confusing. Don’t wake up one day to realize that all of your func-
tions take nine arguments. Instead of a program made up of functions with more
arguments than you can easily comprehend, use another little bit of function glue—
the partial application—and return a function.

PARTIAL APPLICATION

The single-argument profit function was a good description of the profit for a given
price of a single camera type. Adding more arguments made it more generally useful
but obscured the meaning. How can you get a simple, single-argument profit func-
tion for different types of cameras?

photoProProfit 162
7672

pixelKingProfit 200
14860

To make this interface possible, change the profit function to return another func-
tion that accepts the single argument:

profit = (overhead, costPrice, numberSold) ->
 revenue = (salePrice) ->
 (numberSold salePrice) * salePrice
 cost = (salePrice) ->
 overhead + (numberSold salePrice) * costPrice
 (salePrice) ->
 (revenue salePrice) - (cost salePrice)

When invoked, this new profit function returns a function that will evaluate to the

many
ents
 you

erate
 your
gram
omes
rd to
and?

How can you make this
interface possible?

Take overhead, costPrice, and
numberSold as arguments.

Return a function that takes
salePrice as an argument.
profit for a specific camera (this time it’s a camera called the x1) when it is invoked:

149Clarity

x1Overhead = 140
x1CostPrice = 100
x1NumberSold = (salePrice) -> 50 + 20/10 * (200 - salePrice)

x1Profit = profit x1Overhead, x1CostPrice, x1NumberSold
x1Profit 162
7672

Why is this technique called partial application? Because only some of the arguments to
the function have been provided, so the arguments have been partially applied. In this
case the salePrice argument hasn’t yet been provided and hasn’t yet been applied.

 So far you’ve been working on defining profit without looking at the larger pro-
gram that it’s part of. What program is this profit function used for? Agtron is creat-
ing a web-based API for his online shop. The API provides information about users and
products. Information about a product is accessible from a URL:

http://www.agtronsemporium.com/api/product/photomakerExtreme

A GET request to the URL for a product responds with information about that product
in JSON format:

{
 "PhotomakerExtreme": {
 "manufacturer": "Photo Co",
 "stock": 3,
 "cost": 100,
 "base": {
 "price": 200,
 "sold": 50
 },
 "reduction": {
 "discount": 20,
 "additionalSold": 10
 }
 }
}

Consider in the next listing the program that Rob Tuse wrote to serve Agtron’s API
(from listing 6.1). Rob started to implement the profit but never finished (perhaps
because the program became too difficult to comprehend).

Important: Do not write like this

http = require 'http'
url = require 'url'

{users, products} = require './db'

server = http.createServer (req, res) ->
 path = url.parse(req.url).path
 parts = path.split /\//

Listing 6.2 How not to write a program

This photoProProfit
function can be
invoked whenever
you need it.

The information about
the base price and the
reduction will be
useful later.

This db dependency
is omitted here.
 switch parts[1]

http://localhost:9091
http://localhost:9092

150 CHAPTER 6 Composing functions

 when 'profit'
 res.writeHead 200, 'Content-Type': 'text/plain;charset=utf-8'
 if parts[2] and /^[0-9]+$/gi.test parts[2]
 price = parts[2]
 profit = (50+(20/10)*(200-price))*
 price-(140+(100*(50+((20/10)*(200-price)))))
 res.end (JSON.stringify { profit: profit parts[2] })
 else
 res.end JSON.stringify { profit: 0 }
 when 'user'
 res.writeHead 200, 'Content-Type': 'text/plain;charset=utf-8'
 if req.method is "GET"
 if parts[2] and /^[a-z]+$/gi.test parts[2]
 users.get parts[2], (error, user) ->
 res.end JSON.stringify user, 'utf8'
 else
 users.all (error, users) ->
 res.end JSON.stringify users, 'utf8'
 else if parts[2] and req.method is "POST"
 user = parts[2]
 requestBody = ''
 req.on 'data', (chunk) ->
 requestBody += chunk.toString()
 req.on 'end', ->
 pairs = requestBody.split /&/g
 decodedRequestBody = for pair in pairs
 o = {}
 splitPair = pair.split /\=/g
 o[splitPair[0]] = splitPair[1]
 o
 users.set user, decodedRequestBody, ->
 res.end 'success', 'utf8'
 else
 res.writeHead 404, 'Content-Type': 'text/plain;charset=utf-8'
 res.end '404'
 when 'product'
 res.writeHead 200, 'Content-Type': 'text/plain;charset=utf-8'
 if req.method is "GET"
 products.get parts[2], (product) ->
 res.end JSON.stringify product, 'utf8'
 else if parts[2] and req.method is "POST"
 product = parts[2]
 requestBody = ''
 req.on 'data', (chunk) ->
 requestBody += chunk.toString()
 req.on 'end', ->
 pairs = requestBody.split /&/g
 decodedRequestBody = for pair in pairs
 o = {}
 splitPair = pair.split /\=/g
 o[splitPair[0]] = splitPair[1]
 o
 product.set user, decodedRequestBody, ->
 res.end 'success', 'utf8'

Part of the program
you already addressed
 requestBody = ''

151Clarity

 req.on 'data', (chunk) ->
 requestBody += chunk.toString()
 req.on 'end', ->
 decodedRequestBody = requestBody
 res.end decodedRequestBody, 'utf8'
 else
 res.writeHead 404, 'Content-Type': 'text/plain;charset=utf-8'
 res.end '404'
 else
 res.writeHead 200, 'Content-Type': 'text/html;charset=utf-8'
 res.end 'The API'

server.listen 8080, '127.0.0.1'

Important: Do not write like this

The server function in listing 6.2 is more than 60 lines long. Ouch! Way too compli-
cated; if you write programs like that, you’ll get reactions like those of Scruffy and
Agtron in figure 6.1.

 Why did Rob write the program like that? He didn’t know any better. You do, and
you’ve already started to make the program easier to comprehend with the approach
you took for defining profit. First, you broke it down by defining it in terms of other
small functions. Then you made the solution more generic to work with different
products. The original function was hard to follow:

profit = (50+(20/10)*(200-price))*price-(140+(100*(50+((20/10)*(200-price)))))
Figure 6.1 How not to write programs

152 CHAPTER 6 Composing functions

Your new version of the same function is more generally useful and explains what
it means:

profit = (overhead, costPrice, numberSold, salePrice) ->
 revenue = (salePrice) ->
 (numberSold salePrice) * salePrice
 cost = (salePrice) ->
 overhead + (numberSold salePrice) * costPrice

 (revenue salePrice) – (cost salePrice)

The overhead, costPrice, numberSold, and salePrice are all values that you either
have or can work out using the information you have for a particular product. This
will be useful later in this chapter as you continue to make improvements to the origi-
nal program. First, though, you need to know about state.

 Gluing existing functions together and building up new functions (and entire
programs) are powerful techniques. When you see a programmer staring at the sky pro-
claiming an epiphany as the result of discovering functional programming, it’s usually
because of this idea of composing functions (or indeed programs) entirely from other
functions. Power requires discipline, particularly where it concerns state. It’s time to
think about state and why you shouldn’t create it where it doesn’t already exist.

6.2 State and mutability
Just because CoffeeScript allows you to compose functions doesn’t mean that any pro-
gram written in CoffeeScript is written in a functional style. A program can have lots
of functions and not be written in a functional style. To quote from Chuck Palahniuk’s
Fight Club, “Sticking feathers up your butt does not make you a chicken.”

 Functional-style programming in CoffeeScript means composing functions. As
you’ll see in this section, writing programs by composing functions becomes incredi-
bly difficult if the program manages a lot of explicit state. How does state get into a
program, and how can you deal with it? The most important thing to remember is that
you should avoid having variables containing state wherever possible. What does this mean
in practice, though? It’s time to find out by looking at variables and side effects,
objects, and external state.

6.2.1 Variables, assignment, and side effects

Variable assignment is at odds with functional programming. Sure, assignment looks
harmless enough,

state = on
state = off

until you discover what happens when you try to glue together functions that assign
variables. Consider the numberSold function that evaluates to the number of units
sold when invoked with a given sale price:

numberSold = (salePrice) -> Again, the formula that Agtron has worked out

 50 + 20/10 * (200 - salePrice) for the number of items sold at a given sale price

153State and mutability

Compare it to a calculateNumberSold function that returns the value and sets a variable:

numberSold = 0
calculateNumberSold = (salePrice) ->
 numberSold = 50 + 20/10 * (200 - salePrice)

These functions evaluate to the same value, but the calculateNumberSold function
assigns a value to an outer variable (a variable that’s not contained entirely within
the function):

calculateNumberSold 220
10

Consider now the calculateRevenue function that uses the numberSold variable:

calculateRevenue = (salePrice) ->
 numberSold * salePrice

Suppose you want to show Agtron a graph of the revenue for different cameras at dif-
ferent prices. To do this, you start by calculating the revenue for prices between 140
and 145 in a comprehension:

for price in [140..145]
 calculateRevenue price
[1400,1410,1420,1430,1440,1450]

Easy—except that the values are wrong and the graph will be wrong. The correct val-
ues are [23800,23688,23572,23452,23328,23200]. What went wrong? You forgot to
invoke calculateNumberSold:

for price in [140..145]
 calculateNumberSold price
 calculateRevenue price
[23800,23688,23572,23425,23328,23200]

It’s easy to forget in which order functions need to be evaluated. You also need to
consider two other factors: other people (such as your good friend Mr. Tuse) and
asynchronous programs.

6.2.2 Local state and shared state

Suppose calculateRevenue requests information from a database or makes a request
from a web service. This means that calculateRevenue is asynchronous, which you
know is very common in CoffeeScript programs. When things are asynchronous, your
program looks different, as shown in the following listing.

numberSold = 0

calculateNumberSold = (salePrice) ->
 numberSold = 50 + 20/10 * (200 - salePrice)

calculateRevenue = (salePrice, callback) ->

Listing 6.3 Local state and shared state

This assignment
is a side effect.

numberSold is
shared state.
 callback numberSold * salePrice

154 CHAPTER 6 Composing functions

revenueBetween = (start, finish) ->
 totals = []
 for price in [start..finish]
 calculateNumberSold price
 addToTotals = (result) ->
 totals.push result
 calculateRevenue price, addToTotals
 totals

revenueBetween 140, 145
[23800, 23688, 23572, 23452, 23328, 23200]

In listing 6.3 the totals variable is local to the revenueBetween function; other parts
of the program can’t assign a value to it. On the other hand, numberSold is shared by
all of the functions in the program because they’re all part of the same scope. This
can have disastrous consequences.

 Now imagine that calculateRevenue from listing 6.3 takes some time before it invokes
the callback because it has to wait for a database. Approximate this with a setTimeout call:

oneSecond = 1000
calculateRevenue = (callback) ->
 setTimeout ->
 callback numberSold * salePrice
 , oneSecond

You’re surprised when you find out what revenueBetween returns:

revenueBetween 140, 145
[]

You kept the totals in an array, assigned values to them, and returned the result. This
imperative solution needed things done in a particular order but didn’t enforce that
order—a move to asynchronous and the solution broke.

 There’s one instinctive and imperative way to solve this: by adding even more state
and going further down the rabbit hole!

numberSold = 0
calculateNumberSold = (salePrice) ->
 numberSold = 50 + 20/10 * (200 - salePrice)

calculateRevenue = (salePrice, callback) ->
 callback numberSold * salePrice

revenueBetween = (start, finish, callback) ->
 totals = []
 receivedResponses = 0
 expectedResponses = 0
 for price in [start..finish]
 calculateNumberSold price
 expectedResponses++
 addToTotals = (result) ->
 totals.push result
 receivedResponses++
 if receivedResponses == expectedResponses
 callback totals

totals is local
(to the function) state.

Add state by
keeping variables
for expected and
received responses.
 calculateRevenue price, addToTotals

155State and mutability

Does it work now? Sadly, no. The order of the values will depend on the order in
which the callbacks return. Sure, you’ll get the revenue values—just not in the order
you want!

 The problem becomes even worse if some other part of the program changes the
value of numberSold while an asynchronous part of your program is waiting. Remem-
ber, numberSold is shared state for several functions.

 Can revenueBetween get any more intertwined? Indeed it can. Suppose Mr. Tuse
modifies the function to also log a message, and for some inexplicable reason changes
the value of numberSold at the same time:

numberSold = 0

calculateNumberSold = (salePrice) ->
 numberSold = 50 + 20/10 * (200 - salePrice)

calculateRevenue = (salePrice, callback) ->
 callback numberSold * salePrice

log = (message) ->
 console.log message
 numberSold = 'uh oh'

revenueBetween = (start, finish, callback) ->
 totals = []
 receivedResponses = 0
 expectedResponses = 0
 for price in [start..finish]
 calculateNumberSold price
 expectedResponses++
 addToTotals = (result) ->
 totals.push result
 receivedResponses++
 if receivedResponses == expectedResponses
 callback totals
 else
 log 'waiting'
 calculateRevenue price, addToTotals

Now the program produces an array containing NaNs:

revenueBetween 140, 145
[22400, NaN, NaN, NaN, NaN, NaN]

Should you add more state to fix the problem? No. Please don’t. Instead, compose the
asynchronous functions, as you’ll learn to do later in this chapter. Think about a pro-
gram with hundreds of functions sharing hundreds of variables. How confident can
you be that everything is done in exactly the correct order? How hard is it to test that
they are? Avoid having variables containing state wherever possible.

 How about object-oriented programming, then? After all, CoffeeScript has objects
too. Object-oriented programming encapsulates state in objects. That’s a different
approach to functional programming. What works in CoffeeScript? Think about those

For some unknown
reason, Rob Tuse
has broken your
program state.
cameras; there used to be camera objects back in chapter 5, right? Where did they go?

156 CHAPTER 6 Composing functions

6.2.3 Encapsulating state with objects

One object-based solution uses a Camera class with profit, and all of the functions that
it uses are written as methods:

class Camera
 overhead: -> 140
 costPrice: -> 100
 profit: (salePrice) ->
 (@revenue salePrice) - (@cost salePrice)
 numberSold: (salePrice) ->
 50 + 20/10 * (200 - salePrice)
 revenue: (salePrice) ->
 (@numberSold salePrice) * salePrice
 cost: (salePrice) ->
 @overhead() + (@numberSold salePrice) * @costPrice()

phototaka500 = new Camera
phototaka500.profit 162
7672

Notice that in this case the object phototaka500 isn’t modified after it has been cre-
ated. No properties are set on the object; it’s all method calls, and none of the method
calls change any properties on the object. Contrast this with a different approach to
the same problem using objects, where methods are called for their side effects instead
of for their return values:

class Camera
 constructor: (@price) ->
 calculateRevenue: ->
 @revenue = (50 + (20 / 10) * (200 - @price)) * @price
 calculateCost: ->
 @cost = 140 + (100 * (50 + ((20 / 10) * (200 - @price))))
 calculateProfit: ->
 @calculateRevenue()
 @calculateCost()
 @profit = @revenue - @cost

phototaka500 = new Camera 162
phototaka500.calculateProfit()
console.log phototaka500.profit
7672

These two solutions produce the same result. The difference lies in the implementa-
tion. The first solution doesn’t set any properties on the instance, whereas the second
does. Consider for a minute which one is more like the following example that uses
variables and shared state:

revenue = 0
cost = 0
sold = 0

calculateRevenue = (salePrice) ->
 revenue = sold * salePrice

No instance
variables

profit, revenue, cost, and
price instance variables

Variables used to keep state
shared by the functions

157State and mutability

calculateCost = (salePrice) ->
 cost = 140 + sold * 100

calculateNumberSold = (salePrice) ->
 sold = 50 + 20/10 * (200 - salePrice)

calculateProfit = (salePrice) ->
 calculateNumberSold salePrice
 calculateRevenue salePrice
 calculateCost salePrice
 revenue – cost

The object approach using instance variables is more like the version with shared state
kept in variables. This style of programming is called imperative programming. All pro-
grams written in an imperative style have to answer the question of how to manage the
explicit state. In an object-oriented programming style, state is managed by keeping it
contained to individual objects. In a functional programming style, the state is essen-
tially managed by not putting it explicitly in the program at all.

State can’t always be avoided; there’s still state such as in a database or user inter-
face. You can’t keep track of how many users have visited your website unless there’s
state somewhere. Users can’t interact with a completely stateless interface. State
exists and your program has to deal with it. The question is, exactly when is state
necessary and where should it go?

6.2.4 World state

“Wait a minute,” says Scruffy. “It’s all well and good to take unnecessary state out of
the program, but the real world has state! Without state there’s no way to sell cameras
because there’s no stock count.” That’s right, Scruffy. There has to be state some-
where; the key is to isolate it and not to share it. In this case, suppose that the stock
level is kept in a database. Databases are good at dealing with state. The values in the
database are retrieved via callbacks:

db.stock 'ijuf', (error, response) ->
 # handling code here

This database call could be on the client side or server side. It doesn’t matter.

Functional programming and pure functions
A function that always returns the same value for the same arguments and that has
no side effects is called a pure function. Because it’s very easy to create a non-pure
function in CoffeeScript, it’s debatable to what extent it can be called a functional
programming language. But first-class functions in CoffeeScript mean that, at the
least, CoffeeScript supports functional-style programming.

158 CHAPTER 6 Composing functions

 In the next listing you see a comparison between keeping the state in your pro-
gram and letting the database keep it. When you run this listing, you’ll be able to
access one version on http://localhost:9091 and the other on http://localhost:9092.
Note that this listing uses an external db that’s not shown here.

http = require 'http'
db = (require './db').stock

stock = 30
serverOne = http.createServer (req, res) ->
 response = switch req.url
 when '/purchase'
 res.writeHead 200, 'Content-Type': 'text/plain;charset=utf8'
 if stock > 0
 stock = stock - 1
 "Purchased! There are #{stock} left."
 else
 'Sorry! no stock left!'
 else
 res.writeHead 404, 'Content-Type': 'text/plain;charset=utf8'
 'Go to /purchase'
 res.end response

serverTwo = http.createServer (req, res) ->
 purchase = (callback) ->
 db.decr 'stock', (error, response) ->
 if error
 callback 0
 else
 callback response

 render = (stock) ->
 res.writeHead 200, 'Content-Type': 'text/plain;charset=utf8'
 response = if stock > 0
 "Purchased! There are #{stock} left."
 else
 'Sorry! no stock left'
 res.end response

 switch req.url
 when '/purchase'
 purchase render
 else
 res.writeHead 404, 'Content-Type': 'text/plain;charset=utf8'
 res.end 'Go to /purchase'

serverOne.listen 9091, '127.0.0.1'
serverTwo.listen 9092, '127.0.0.1'

To put it loosely, state is somebody else’s problem. This also applies for state about the
client; instead of keeping state about the client inside your application, it should be

Listing 6.4 State in program or external?

A server
keeping
state

A server
using a
database
to keep
state
transferred to your application by the client.

http://localhost:9091
http://localhost:9091
http://localhost:9091
http://localhost:9092
http://localhost:9092

159Abstraction

Function composition and functional programming in general don’t work well
when programs have explicit mutable state contained in variables or objects. You’ve
learned that in order to be effective with function composition, you should avoid
state in variables and objects wherever possible. When you do avoid state, you can
glue functions together explicitly and also create abstractions. Functions can glue
other functions together.

6.3 Abstraction
Abstractions can be created from an existing program by carving off small pieces and
improving those—removing duplication as you go. In this section you’ll continue to
improve listing 6.2 by creating abstractions and removing duplication.

6.3.1 Extracting common code

In listing 6.2 much of the duplicated code should have either never happened or
been refactored once it became apparent. How does it become apparent? Well, con-
sider what the program actually does.

 The API you’re creating for Agtron’s shop is a thin wrapper for accessing some
information in key-value store databases. The databases have two operations, set and
get. The set operation takes a key, a value, and a callback function. The get opera-
tion takes a key and a callback. For example, the user data is loaded from the database
in the same way that product data is loaded from the database:

users.get parts[2], (error, user) ->
 res.end JSON.stringify user, 'utf8'

products.get parts[2], (product) ->
 res.end JSON.stringify product, 'utf8'

There’s no meaningful name describing what these sections of the program do, so
you start by naming them:

loadUserData = (user, callback) ->
 users.get user, (data) ->
 callback data

loadProductData = (product, callback) ->
 products.get product, (data) ->
 callback data

If you didn’t notice before that the code was repetitive, you definitely notice now. The

Concurrency?
One problem with shared state is the trouble it creates for concurrent systems. If
state depends heavily on things happening in a particular order, then a system where
many things are happening at once is a challenge. CoffeeScript programs run on an
event loop and only ever do one thing at a time, so the concurrency challenges aren’t
the same as in a threaded environment. That said, state is still a problem.
saveUserData and saveProductData functions are almost exactly the same.

160 CHAPTER 6 Composing functions

 Instead of having variations of the same basic function appear repeatedly in your
program, create an abstraction and eliminate the duplication:

makeLoadData = (db) ->
 (entry, callback) ->
 db.get entry, (data) ->
 callback data

makeSaveData = (type) ->
 (entry, value, callback) ->
 db.set entry, value, callback?()

Both of these functions return functions. What are they used for? With these two func-
tions you can create a loadUserData function and a saveUserData function:

loadUserData = makeLoadData 'user'
saveUserData = makeSaveData 'user'

You can use the makeLoadData function to create a function for loadAnythingData,
literally:

loadAnythingData = makeLoadData 'anything'

The makeLoadData and makeSaveData functions are abstractions that allow you to
create individual functions that are useful in specific circumstances. Now look at
makeLoadData and makeSaveData; they’re basically the same. Extract the common
parts to a single function:

makeDbOperator = (db) ->
 (operation) ->
 (entry, value=null, callback) ->
 db[operation] entry, value, (error, data) ->
 callback? error, data

This function returns a function that returns a function. When you see an abstraction
by itself, it becomes apparent if it’s more complicated than it needs to be. You revise
makeDbOperator to make it simpler:

makeDbOperator = (db) ->
 (operation) ->
 (entry, params...) ->
 db[operation] entry, params...

When you added global variable assignments to your program, you got an immediate
payoff, but it hurt you in the long run. Identifying and writing abstractions is the oppo-
site. A little bit of effort now to create the right abstraction saves you pain in the long
run. You can now generate load and save functions for different data types from this
single makeDbOperator function:

loadProductData = (makeDbOperator 'product') 'get'
saveProductData = (makeDbOperator 'product') 'set'

saveProductData 'photonify1100', 'data for the photonify1100'
loadProductData 'photonify1100'

Putting the existential operator in front of
a callback prevents an error from
occurring if the callback argument is not
passed in when the function is invoked.
You’ll see more about advanced use of the
existential operator in the next chapter.
'data for the photonify1100'

161Abstraction

Writing a program always involves refining the abstractions as you go. When functions
are the basic building block, this is done with the same basic function glue: invoking a
function, passing a function as an argument, and returning a function.

 By refining the abstractions in your program over time, you end up with a program
that communicates what it does and that’s easier to modify. Even better, it’s the start of
a library. To develop a really useful library, instead of starting with an idea for a library,
extract it from a real project as an abstraction of ideas in that project. In listing 6.5 you
can see the new version of the program.

 When you run this new version of the program, you can view information about a
specific product (such as the x1) by visiting the URL http://localhost:8080/product/x1.
To see the profit for that same product at a given price point of 200, visit the URL
http://localhost:8080/product/x1/profit?price=200.

 The listing that follows is left deliberately without any annotations. The purpose of this is
to show how far small named functions can go to make a program self-explanatory.
Spend a bit more time to pore over this listing and learn how it works.

http = require 'http'
url = require 'url'

{products, users} = require './db'

withCompleteBody = (req, callback) ->
 body = ''
 req.on 'data', (chunk) ->
 body += chunk.toString()
 request.on 'end', -> callback body

paramsAsObject = (params) ->
 pairs = params.split /&/g
 result = {}
 for pair in pairs
 splitPair = pair.split /\=/g
 result[splitPair[0]] = splitPair[1]
 result

header = (response, status, contentType='text/plain;charset=utf-8') ->
 response.writeHead status, 'Content-Type': contentType

httpRequestMatch = (request, method) -> request.method is method
isGet = (request) -> httpRequestMatch request, "GET"
isPost = (request) -> httpRequestMatch request, "POST"

render = (response, content) ->
 header response, 200
 response.end content, 'utf8'

renderAsJson = (response, object) -> render response, JSON.stringify object

notFound = (response) ->
 header response, 404

Listing 6.5 The improved program
 response.end 'not found', 'utf8'

http://localhost:8080/product/x1
http://localhost:8080/product/x1
http://localhost:8080/product/x1/profit?price=200
http://localhost:8080/product/x1/profit?price=200

162 CHAPTER 6 Composing functions

handleProfitRequest = (request, response, price, costPrice, overhead) ->
 valid = (price) -> price and /^[0-9]+$/gi.test price
 if valid price
 renderAsJson response, profit: profit price, costPrice, overhead
 else
 renderAsJson response, profit: 0

makeDbOperator = (db) ->
 (operation) ->
 (entry, params...) ->
 db[operation] entry, params...

makeRequestHandler = (load, save) ->
 rendersIfFound = (response) ->
 (error, data) ->
 if error
 notFound response
 else
 renderAsJson response, data

 (request, response, name) ->
 if isGet request
 load name, rendersIfFound response
 else if isPost request
 withCompleteBody request, ->
 save name, rendersIfFound response
 else
 notFound response

numberSold = (salePrice) ->
 50 + 20/10 * (200 - salePrice)

profit = (salePrice, costPrice, overhead) ->
 revenue = (salePrice) ->
 (numberSold salePrice) * salePrice
 cost = (salePrice) ->
 overhead + (numberSold salePrice) * costPrice
 (revenue salePrice) - (cost salePrice)

loadProductData = (makeDbOperator products) 'get'
saveProductData = (makeDbOperator products) 'set'
loadUserData = (makeDbOperator users) 'get'
saveUserData = (makeDbOperator users) 'set'

handleUserRequest = makeRequestHandler loadUserData, saveUserData
handleProductRequest = makeRequestHandler loadProductData, saveProductData

onProductDataLoaded = (error, data) ->
 price = (parseInt (query.split '=')[1], 10)
 handleProfitRequest request,response,price,data.costPrice,data.overhead

apiServer = (request, response) ->
 path = url.parse(request.url).path
 query = url.parse(request.url).query
 parts = path.split /\//
 switch parts[1]
 when 'user'
 handleUserRequest request, response, parts[2]

 when 'product'if parts.length == 4 and /^profit/.test parts[3]

163Abstraction

 loadProductData parts[2], onProductDataLoaded
 else
 handleProductRequest request, response, parts[2]
 else
 notFound response

server = http.createServer(apiServer).listen 8080, '127.0.0.1'

exports.server = server

In terms of the total number of lines, this program is no shorter; it would be possible
to make it substantially shorter with different abstractions, but in this case communi-
cating the intention of every part of the program is preferred to brevity. Choose tech-
niques appropriate for your circumstances.

 Abstraction isn’t always about extracting common code. Sometimes you need to
change multiple things in a program at once. Instead of writing it in three places
when you obviously don’t need to, you can start with the abstraction.

6.3.2 Adding common code

Imagine Scruffy calls you at 2:00 a.m. to inform you that the server for Agtron’s online
store was running so hot that it burst into flames. Sure, nothing that dramatic really
happens to you, but consider that your server is having problems because it’s using
too much processing power, and you learn that the culprit is the database. Your pro-
gram is making too many requests to the database, so you need to reduce the number
of requests it receives. Here are the last 10 lines from the database log:

request GET 'All work and no play'
response 'makes Jack a dull boy' (5 ms)
request GET 'All work and no play'
response 'makes Jack a dull boy' (4 ms)
request GET 'All work and no play'
response 'makes Jack a dull boy' (2 ms)
request GET 'All work and no play'
response 'makes Jack a dull boy' (5 ms)
request GET 'All work and no play'
response 'makes Jack a dull boy' (5 ms)

That’s right; your program is constantly asking the database to fetch the same value.
You might imagine that a clever database would cache the responses for you. You
might imagine that, but all the while the server is on fire. What can you do?

SPECIFIC CACHE

You recognize that by caching the previous response you can avoid making another
request to the database if you need the same value twice in a row. It’s tempting to just
add caching to the makeDbOperator function, but where do you add it?

makeDbOperator = (db) ->
 (operation) ->
 (entry, params...) ->

 db[operation] entry, params...

164 CHAPTER 6 Composing functions

You only want to cache loading of data, not saving of data, and the makeDbOperator
abstraction doesn’t know anything about loading and saving. This is a clear indication
that makeDbOperator is the wrong place to implement this caching; if it has to know
the difference between a load and a save, it has to know too much. The correct place
to implement the caching is where you define loadProductData:

productDataCache = Object.create null
loadProductData = (name, callback) ->
 cachedCall = (makeDbOperator products) 'get'
 if productDataCache.hasOwnProperty name
 console.log 'cache hit'
 console.log productDataCache[name]...
 callback productDataCache[name]...
 else
 cachedCall name, (results...) ->
 productDataCache[name] = results

What if you need to cache something else in the future? You need a function that can
cache any function.

GENERAL CACHE

As with previous examples, you can extract such a general function from the specific
solution you already have. Note that for simplicity this solution is intended to work by
using the first argument as the key and the last argument as the callback:

withCachedCallback = (fn) ->
 cache = Object.create null
 (params...) ->
 key = params[0]
 callback = params[params.length - 1]
 if key of cache
 callback cache[key]...
 else
 paramsCopy = params[..]
 paramsCopy[params.length-1] = (params...) ->
 cache[key] = params
 callback params...
 fn paramsCopy...

Now you can define a cached loadProductData by using withCachedCallback:

loadProductData = withCachedCallback ((makeDbOperator products) 'get')

This function will now cache each response forever. If you want it to cache items for a
fixed time, you need to store each cache item with an expiry time:

withExpiringCachedCallback = (fn, ttl) ->
 cache = Object.create null
 (params...) ->
 key = params[0]
 callback = params[params.length - 1]
 if cache[key]?.expires > Date.now()

Remember from the previous
chapter that passing null to
Object.create means that the
created object has null as a
prototype and so doesn’t inherit
any properties you don’t want.
 callback cache[key].entry...

165Abstraction

 else
 paramsCopy = params[..]
 paramsCopy[params.length - 1] = (params...) ->
 console.log params
 cache[key] =
 entry: params
 expires: Date.now() + ttl
 console.log cache[key]
 callback params...
 fn paramsCopy...

This caching technique can be applied in a general sense to any function, where it is
known as memoization.

MEMOIZATION

Caching the evaluation of a function with specific arguments is called memoization.
You’ve seen it used specifically to cache the loading of some data. To reinforce the
concept, it’s worth also seeing a more abstract numerical example. Though not practi-
cal or exciting, memoizing a factorial function is a good way to understand this:

factorial = (n) ->
 if n is 0 then 1
 else
 n * (factorial n - 1)

factorial 0
1

factorial 4
24
factorial 5
120

The value of factorial 5 is actually the value of factorial 4 multiplied by 5. This
means that once factorial 4 has been evaluated, then 4 × 3 × 2 × 1 has already been
done once, so factorial 5 could use the value already worked out instead of working
the whole thing out again. Memoization is useful to avoid repeating the same evalua-
tion. There’s something else interesting about the definition of factorial: it invokes
itself. This is called recursion, and like memoization it’s useful not only for things like
factorials but also for problems you actually have.

6.3.3 Recursion
Imagine now that the database is having more problems, and half of all requests to the
users database result in a timeout. Data is retrieved from the database by invoking
users.get with a callback function. When the request succeeds, you get data back as the
second argument to the callback. You can see this happening by logging to the console:

logUserDataFor = (user) ->
 users.get user, (error, data) ->
 if error then console.log 'An error occurred'
 else console.log 'Got the data'

logUserDataFor 'fred'

4 × 3 × 2 × 1

5 × 4 × 3 × 2 × 1
'Got the data'

166 CHAPTER 6 Composing functions

When a timeout occurs, the callback is invoked with an error as the first argument:

logUserDataFor 'fred'
'An error occurred'

Ideally you’d have a database that doesn’t suffer frequent timeouts, but suppose the
database can’t be replaced. The only way to fix the problem is to change the program
so that if the database request fails, it will retry until it gets a response. How do you do
this? The first retry is easy to write; just put it directly in the callback:

logUserDataFor = (user) ->
 users.get user, (error, data) ->
 if error then users.get user, (error, data) ->
 if error then console.log 'An error occurred both times'
 else 'Got the data (on the second attempt)'
 else console.log 'Got the data'

How about the second retry or the third, fourth, or tenth retry? You certainly don’t
want to nest 10 retries (that would be so horrendous that it’s not even shown here).
Take a look at the alternative:

logUserDataFor = (user) ->
 dbRequest = ->
 users.get user, (error, data) ->
 if error then dbRequest()
 else console.log 'Got the data'
 dbRequest()

If the database finally responds the fourth time it’s called, you’ll see that logged:

logUserDataFor 'fred'
'An error occurred'
'An error occurred'
'An error occurred'
'Got the data'

It’s called recursion when a function invokes itself, either directly or indirectly.
Although the recursive logUserDataFor function works, it’s a bit heavy-handed.
Instead of trying the request again until the end of time (or the program is termi-
nated), retry a failed database request once every second for the next 5 seconds
before giving up:

logUserDataFor = (user) ->
 dbRequest = (attempt) ->
 users.get user, (error, data) ->
 if error and attempt < 5
 setTimeout ->
 (dbRequest attempt + 1), 1000
 else console.log 'Got the data'
 dbRequest()

That’s not the end of your woes. It’s not just the users database that suffers timeouts.

dbRequest is invoked
by a callback defined
inside dbRequest.
Suppose that all the databases suffer timeouts, and worse, other services that your

167Abstraction

program relies on have timeouts too. Instead of writing the same thing repeatedly,
create an abstraction that can retry a failed request for any callback-based service:

advanceTime = (time, advanceBy) ->
 new Date time*1 + advanceBy

retryFor = (duration, interval) ->
 start = new Date
 retry = (fn, finalCallback) ->
 attempt = new Date
 if attempt < (advanceTime start, duration)
 proxyCallback = (error, data) ->
 if error
 console.log "Error: Retry in #{interval}"
 setTimeout ->
 retry fn, finalCallback
 , interval
 else
 finalCallback error, data
 fn proxyCallback
 else
 console.log "Gave up after #{duration}"

The retryFor function returns a function that takes a single function argument and
expects to be able to invoke that function attachment with a callback. To use the
retryFor function to load user data, you first need to create a function that has all
other arguments applied except the callback:

seconds = (n) ->
 1000*n

getUserData = (user) ->
 (callback) ->
 users.get user, callback

getUserDataForFred = getUserData 'fred'

retryForFiveSeconds = (retryFor (seconds 5), (seconds 1))
retryForFiveSeconds getUserDataForFred, (error, data) ->
 console.log data

If the database finally responds after three attempts, then the console output will
reflect that:

Error: Retry in 1000
Error: Retry in 1000
Error: Retry in 1000
Success

With recursion you can solve complicated problems with a small amount of code. Unfortu-
nately, there’s no such thing as a free lunch. A programming language that supports
recursive functions must deal with the nature of recursion—it looks infinite.

This function expects a date and a number to
advance the date by. The date is multiplied by
1 so that it is treated as a number to be used
for the addition operator.

The retry
function
invokes itself.

168 CHAPTER 6 Composing functions

INFINITE RECURSION, TAIL CALLS, AND THE STACK

Programs that make heavy use of recursion have a problem in JavaScript and
CoffeeScript—they can run out of memory. Why? When you invoke a function stack,
memory is allocated:

memoryEater = ->
memoryEater()

Only once the function returns is the memory allocated for it reclaimed. That’s a
problem with a recursive function because, before returning, a recursive function
invokes itself. You can see this in action on the CoffeeScript REPL, which uses the V8
runtime. This will warn you when you’ve exceeded the maximum call stack size:

memoryEater = -> memoryEater()
memoryEater()
RangeError: Maximum call stack size exceeded

The memoryEater function is infinitely recursive because it always invokes itself. An infi-
nitely recursive function will cause some runtimes to become unresponsive while they
continue trying to allocate more and more memory.

 A recursive function can run out of memory even without being infinitely recur-
sive. This makes recursive functions a problem because they can run out of stack quite
easily. Recursion doesn’t have to suffer this problem, though; consider the following
recursive function:

tenThousandCalls = (depth) ->
 if depth < 10000
 (tenThousandCalls depth + 1)

Just by looking at it you can tell that it will invoke itself 10,000 times and then complete.
If you were a computer, you could figure out before you invoke the function what it’s
going to do and how much memory you need (or don’t need) to allocate. A JavaScript
runtime can do the same thing. Where the recursive call is the last expression in the
function body (the tail position), then the function is called tail recursive. If the runtime
recognizes this, it’s possible to optimize the amount of memory it allocates. When a run-
time can optimize for these types of recursive functions, then it’s said to have tail-call
optimization or proper tail calls. Although CoffeeScript programs don’t currently have this
optimization, it’s part of the next edition of the ECMAScript specification.

6.4 Combinators
So far you’ve written functions and created abstractions from those functions. Now
that you have abstractions, you can create abstractions from those too. Combinators
are abstractions of different ways of putting together functions. Until now, to compose
programs using functions you’ve explicitly glued them together by invocation, through
arguments, and as return values.

 You don’t have to do things explicitly—combinators go a step beyond this. What
happens when you compose functions without thinking about invocation, arguments,

Memory is allocated
for the function.
and return values at all?

169Combinators

6.4.1 Compose

Agtron has to pay tax (that’s one thing you don’t need to imagine). To calculate the
tax, you first need to add up the profit for all of the products and then invoke a tax
function with that value.1 If you did this imperatively (with commands), you’d make
all the individual calculations in sequence:

profit = ->

tax = (amount) ->
 amount / 3

netProfit = (products) ->
 profits = (profit product) for product in products
 profits.reduce (acc, p) -> acc + p

netProfitForProducts = netProfit products
taxForProducts = tax netProfitForProducts

Imagine now that you also need to evaluate a loyalty discount for a user. To do this
imperatively, you first work out the total amount they’ve spent and then use that value
to determine the loyalty category:

userSpend = (user) ->
 spend = 100

loyaltyDiscount = (spend) ->
 if spend < 1000 then 0
 else if spend < 5000 then 5
 else if spend < 10000 then 10
 else if spend < 50000 then 20
 else if spend > 50000 then 40

fredSpend = userSpend fred
loyaltyDiscountForFred = loyaltyDiscount fredSpend

Function abstraction is about identifying patterns. What’s the pattern common to deter-
mining tax and determining a loyalty discount? They both invoke one function with an
initial value and then invoke a second function with the result from the first function:

initialValue = 5
intermediateValue = firstFunction initialValue
finalValue = secondFunction intermediateValue

Why is the intermediate value there? It doesn’t make the program any clearer.
Remove it:

initialValue = 5
secondFunction (firstFunction initialValue)

1 In practice, the arithmetic operators in JavaScript and CoffeeScript aren’t good when working with decimal
values because JavaScript’s numbers use floating-point arithmetic, which isn’t accurate for decimal values. If

Omitted. The profit function
appears elsewhere.

See the footnote about
floating-point arithmetic.
you need to do arithmetic with decimal values, you should find an appropriate library for decimal arithmetic.

n

ent
s
t.
170 CHAPTER 6 Composing functions

The same applies to calculating the tax. Instead of doing each calculation individually,

netProfitForProducts = netProfit products
taxForProducts = tax netProfitForProducts

you can put them together:

taxForProducts = tax (netProfit products)

So far, nothing earth-shattering. Think for a second, though; instead of assigning the
result to a variable, what does a function that evaluates the final value look like?

taxForProducts = (products) -> tax (netProfit products)

You do this often, so you should get to know it properly by learning what it’s called. It’s
called compose:

compose = (f, g) -> (x) -> f g x

This little compose function lets you join together any two functions:

taxForProducts = compose tax, netProfit
loyaltyDiscountForUser = compose loyaltyDiscount, userSpend

Naturally, it also works for trivial little cases that you wouldn’t really want to do unless
you were trying to learn how to compose:

addFive = (x) -> x + 5
multiplyByThree = (x) -> x * 3
multiplyByThreeAndThenAddFive = compose addFive, multiplyByThree
multiplyByThreeAndThenAddFive 10
35

Remember that functions are a bit like pipes. You can explicitly take output from one
pipe and use it as the input to another pipe, or you can just connect the pipes together.
Compose isn’t the only way you might want to connect functions together. In figure 6.2
you can see compose, as well as the other basic combinators before, after, and around
that will be discussed in this section.

 First on the menu are before and after. Dig in.

6.4.2 Before and after

Suppose Agtron needs to meet some incredibly bizarre bureaucracy requirements and
tells you that you have to log every product that’s sold to an external service. You don’t
have to worry about the service itself, because there’s an existing auditLog function
that does it for you.

 There’s an existing sale function, so you could just chuck an invocation of auditLog
in there:

sale = (user, product) ->
 auditLog "Sold #{product} to #{user}"

This looks scary, but it’s the classic way to
express compose. You’ll get used to it, one day.

The function o
the right (the
second argum
to compose) i
evaluated firs
 # Some other stuff happens here

171Combinators

Then Agtron tells you that you also need to log refunds, so you run along and add an
auditLog there too:

refund = (user, product) ->
 auditLog "Refund for #{product} to #{user}"
 # Some other stuff happens here

Then Agtron tells you that you also need to log ... you know where this is headed and
that it will quickly get tedious. What if instead you could add the logging code from
the outside so that you could create a new auditedRefund function easily?

auditedRefund = withAuditLog refund

Or perhaps even assign a new function to the existing refund variable?

refund = withAuditLog refund

You can do this with the help of before. First, you need to implement it:

before = (decoration) ->
 (base) ->
 (params...) ->
 decoration params...
 base params...

Now you can define the withAuditLog function:

withAuditLog = before (params...) ->

(compose A, B)

A B

(before A, B)

B

A

(after A, B)

B

A

(around A, B)

A

B
Figure 6.2 Visualizing compose,
before, after, and around

If you aren’t familiar with these dots, they’re for rest and spread
parameters and they help you deal with an arbitrary number of
arguments. You’ll learn more about them in the next chapter.
 auditLog params...

172 CHAPTER 6 Composing functions

You could also implement withAuditLog to use after instead of before. The differ-
ence is only in the order in which the functions are invoked. The definition for after
is similar to that for before:

after = (decoration) ->
 (base) ->
 (params...) ->
 result = base params...
 decoration params...
 result

The combinators after and before don’t change the behavior of the function that
they wrap. When you need to change the return value, or the invocation of the
wrapped function, then you need to use around.

6.4.3 Around
This one is fun. Suppose that the database is changed so that you need to open and
close the connection to the database for each operation you do. For every place in the
program where you do a set of database operations, you need to put an openConnection
and a closeConnection around them:

openConnection()
doSomethingToTheDb()
doSomethingElseToTheDb()
closeConnection()

You quickly tire of adding the same two lines of code throughout your program. Worse,
sometimes the database fails to open, and you have to graft on a fix for that too:

dbConnectionIsOpen = openConnection()
if dbConnectionIsOpen
 doSomethingToTheDb()
 doSomethingElseToTheDb()
 closeConnection()

Instead of directly invoking the database open and close functions everywhere, you
can use around:

around = (decoration) ->
 (base) ->
 (params...) ->
 callback = -> base params...
 decoration ([callback].concat params)...

A function that’s placed around another executes code both before and after it:

withOpenDb = around (dbActivity) ->
 openDbConnection()
 dbActivity()
 closeDbConnection()

Now you can use withOpenDb everywhere:

getUserData = withOpenDb (users) ->

 users.get 'user123'

173Combinators

Around doesn't just get invoked and discarded: it can control whether or not the func-
tion it wraps is invoked at all. If openDbConnection evaluates to false when the data-
base fails to open, then the database activity can be skipped:

withOpenDb = around (dbActivity) ->
 if openDbConnection()
 dbActivity()
 closeDbConnection()

That makes around quite powerful and dangerous. It’s possible to implement combina-
tors that have even more power (and that are even more dangerous), such as modify-
ing the arguments to the wrapped function and controlling the return value of the
created function.

 Functions are often used as methods in CoffeeScript, so generic functions that cre-
ate other functions need to work correctly when those functions are methods. What
happens when these combinators are used with methods?

6.4.4 Working with objects

The tricky thing about method objects is referencing this (a.k.a. @). Suppose you
have a program that controls the movement of a toy robot. The program must start
the toy robot engine before making it move. The program also needs to stop the
engine once it is done moving the toy robot. This is essentially the same problem as
the previous database example, except that in this case, Robot is a class already imple-
mented by Rob Tuse:

class Robot
 constructor: (@at=0) ->
 position: ->
 @at
 move: (displacement) ->
 @at += displacement
 startEngine: -> console.log 'start engine'
 stopEngine: -> console.log 'stop engine'
 forward: ->
 @startEngine()
 @move 1
 @stopEngine()
 reverse: ->
 @startEngine()
 @move -1
 @stopEngine()

You can see that that’s repetitive. Instead of repeating the same code at the start and at
the end of all the methods, you could use the existing around function to wrap all of
the methods. Unfortunately, everything breaks when you change the Robot class to
use the around defined so far:

174 CHAPTER 6 Composing functions

class Robot
 withRunningEngine = around (action) ->
 @startEngine()
 action()
 @stopEngine()
 constructor: (@at=0) ->
 position: ->
 @at
 move: (displacement) ->
 console.log 'move'
 @at += displacement
 startEngine: -> console.log 'start engine'
 stopEngine: -> console.log 'stop engine'
 forward: withRunningEngine ->
 @move 1
 reverse: withRunningEngine ->
 @move -1

bender = new Robot
bender.forward()
bender.forward()
TypeError: Object #<Object> has no method 'startEngine'

It doesn’t work because when the function is invoked indirectly, the @ reference is lost.
Normally in CoffeeScript you use the fat arrow => to lexically bind the @ reference for
a function. In this case, though, you don’t want to lexically bind the @, but dynamically
bind it.

CALL AND APPLY

Luckily, the Function prototype has two methods, call and apply, that can help you in
the rare instances where neither the arrow (->) nor fat arrow (=>) provide what you
need. Both call and apply allow you to invoke any function with a specific this bound.

 With call you can invoke a function with a specific this and a set number of argu-
ments. Here’s a modified example:

airplane =
 startEngine: -> 'Engine started!'

withRunningEngine = (first, second) ->
 @startEngine()
 "#{first} then #{second}"

withRunningEngine 'Take-off', 'Fly'
Object #<Object> has no method 'startEngine'

withRunningEngine.call airplane, 'Take-off', 'Fly'
'Take-off then Fly'

With apply you can invoke a function with a specific this and an array of arguments:

withRunningEngine.apply airplane, ['Take-off', 'Fly']
'Take-off then Fly'

Although the addition of the fat arrow to CoffeeScript removes many of the common

uses of call and apply found in JavaScript, there are still occasions, such as now,

175Combinators

when you’ll find them useful. Using apply you can create new versions of before,
after, and around that can play nicely with methods. These new versions are shown in
the next listing.

before = (decoration) ->
 (base) ->
 (params...) ->
 decoration.apply @, params
 base.apply @, params

after = (decoration) ->
 (base) ->
 (params...) ->
 result = base.apply @, params
 decoration.apply @, params
 result

around = (decoration) ->
 (base) ->
 (params...) ->
 result = undefined
 func = =>
 result = base.apply @, params
 decoration.apply @, ([func].concat params)
 result

With this new version of around, the robots can move again:

bender = new Robot 3
bender.forward()
start engine
move
stop engine
4

bender.forward()
start engine
move
stop engine
5

bender.reverse()
start engine
move
stop engine
4

bender.position()
4

It takes some time to get used to these programming concepts. At first, it’s best to
lightly use techniques that you’re less familiar with, until you can learn to use them

Listing 6.6 Before, after, and around with function binding
effectively and without creating a mess.

176 CHAPTER 6 Composing functions

 These combinator functions are useful, but so far you’ve used them only with syn-
chronous things. Much of your program is asynchronous and uses callbacks. Will
these techniques work for asynchronous code?

6.4.5 Asynchronous combinators

Asynchronous functions that accept callbacks are more difficult to compose than
functions that are used purely for their evaluation. So far you’ve looked at using com-
binators for a synchronous database and for synchronous robots. The real world isn’t
so kind. Most of your CoffeeScript programming will be asynchronous.

 Consider what happens when multiple asynchronous function calls must be called
in order. Start with a fake asynchronous function that requires a callback:

forward = (callback) ->
 setTimeout callback, 1000

You might have seen this written when the function needs to be called five times in
sequence:

forward ->
 forward ->
 forward ->
 forward ->
 forward ->
 console.log 'done!'

The nasty-looking cascade you see here is a common affliction in asynchronous pro-
grams. Surely there’s a way to defeat this problem by composing functions. To simplify
things, consider two standalone asynchronous functions, start and forward:

start = (callback) ->
 console.log 'started'
 setTimeout callback, 200

forward = (callback) ->
 console.log 'moved forward'
 setTimeout callback, 200

How do you compose these asynchronous functions? The standard compose doesn’t work
because it expects to use the evaluation of one function as the argument to another:

startThenForward = compose forward, start
startThenForward (res) ->
 console.log res
TypeError: undefined is not a function

You need a different composeAsync for asynchronous functions. Take a deep breath.

composeAsync = (f, g) -> (x) -> g -> f x

Doing this will
get painful very
quickly.

This async version of compose looks
even scarier. Again, though, it’s the
classic way to express this combinator,

so it’s best if you learn to get used to it.

177Combinators

This version works, although it’s limited to functions that don’t take any arguments
other than a single callback:

startThenForward = composeAsync forward, start
startThenForward ->
 console.log 'done'
started
moved forward
done

When the asynchronous functions have arguments other than a callback, things
become more interesting. In the next listing you see asynchronous versions of before
and after that Agtron has provided. Take an even deeper breath and then spend
some time experimenting with them and dissecting them so that you begin to under-
stand how they work.

beforeAsync = (decoration) ->
 (base) ->
 (params..., callback) ->
 result = undefined
 applyBase = =>
 result = base.apply @, (params.concat callback)
 decoration.apply @, (params.concat applyBase)
 result

afterAsync = (decoration) ->
 (base) ->
 (params..., callback) ->
 decorated = (params...) =>
 decoration.apply @, (params.concat -> (callback.apply @, params))
 base.apply @, (params.concat decorated)

There are other ways to deal with resources that are accessed asynchronously, such as
treating them as streams of data, as you’ll learn about in chapter 9.

Later on, over coffee (robots drink coffee too), Agtron tells you what his philosophy
professor once told him, “Our understanding of the world often gets tangled up until

Listing 6.7 Asynchronous before and after

Continuations
This concept of passing in the rest of your program as a callback is similar to some-
thing called continuation-passing style. One of the criticisms of CoffeeScript in its
current state is that callbacks all have to be nested. The asynchronous composition
techniques presented here and the techniques shown in chapter 9 go a long way
to helping solve that problem. Further, in chapter 13 you’ll see how JavaScript, and
hence CoffeeScript, is evolving to have better language techniques for dealing with
asynchronous code.
eventually it becomes one big knot. Philosophy is about teasing out those knots and

178 CHAPTER 6 Composing functions

untangling things so that you have simple explanations of things.” The same thing
applies to the world of a program. Sometimes things get tangled up. If you pull harder
on the knot, you make it worse. If you do surgery on the knot by cutting it, you can
break the entire universe. The point is to instead tease out the tangles and make your
program less intertwined. The techniques you’ve seen can help you to tease out some
of the knots in your program.

6.5 Summary
Function composition is built on just a few basic techniques for gluing functions
together. But the simplicity and flexibility of this approach allow you to construct your
own programming abstractions. By naming a function, you’re growing the program-
ming language yourself. By creating abstractions, you make it easier to construct simi-
lar parts of a language without having to write the same program over and over again.
You’ve learned the techniques: keeping programs clear by naming functions, avoiding
state, creating abstractions, creating abstractions of abstractions, and then also using
these techniques to deal with callback functions in asynchronous programs.

 In the next chapter you’ll look at programming style in CoffeeScript, advanced
syntax, and some gotchas.

Style and semantics
In chapter 2 you took a highway drive through the CoffeeScript syntactic land-
scape. CoffeeScript is a small language, so the drive didn’t take you very long. That
said, chapter 2 was deliberately fast-paced, and at the speed you were going, some
details were necessarily postponed for later. Well, later has arrived.

 To understand the full breadth of CoffeeScript programs you’ll find in the wild,
you need to appreciate some subtler syntactic and semantic aspects of the language
that require a bit more care and attention to grasp. These aspects—covered in this
chapter—are spread and rest parameters, destructuring assignment, semantic issues
around types and dealing with null values, effective use of comprehensions, fluent
interfaces, and finally the nuances of dealing with significant indentation. First up,

This chapter covers
■ Rest and spread parameters
■ Destructuring assignment
■ Dealing with types
■ Effective comprehensions
■ Fluent interfaces
■ Nuances of significant whitespace
rest and spread parameters.

Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch07-code.html

180 CHAPTER 7 Style and semantics

7.1 Rest and spread parameters
Imagine you’re displaying a table of teams in a competition ordered by the number of
points they have (figure 7.1). When a team moves up in the rankings, you highlight
the row containing that team.

 Suppose you already have a highlight function that takes a name, finds it, and
highlights it by invoking color and find functions that have been implemented
elsewhere:

highlight = (name) ->
 color find(name), 'yellow'

Suppose now that your colleague Bobby Tables wants to use the highlight function
with multiple names. He changes it to work with an array:

highlight = (names) ->
 for name in names
 color find(name), 'yellow'

Unfortunately, by changing the function Bobby has broken all the other places in
your program where highlight is invoked with a single name. Sure, this might be lit-
tle more than a minor inconvenience, but it’s an inconvenience that you can avoid
entirely by using some syntactic sugar called rest parameters.

7.1.1 Rest

The rest parameter puts multiple function parameters into an array.1 A rest parameter
is a name followed by an ellipsis (three dots), and it can be used to create a better
highlight function:

highlight = (names...) ->
 for name in names
 color find(name), 'yellow'

The arguments object
Experienced JavaScript developers will be familiar with the arguments object and the
problems it poses by not inheriting from the array prototype. The good news is that
rest parameters in CoffeeScript mean that you never have to use the arguments
object again.

Figure 7.1 Table
of teams ranked
by points
1 If you’re familiar with Ruby or Perl, you might be familiar with the splat, which serves the same purpose.

181Rest and spread parameters

When the highlight function is invoked, then names is an array containing as many
elements as there are arguments:

highlight()
highlight 'taipans'
highlight 'taipans', 'wolverines', 'sabertooths'

Suppose now that you want the highlight function to color the first team (identified
by the first parameter) gold and color all the other teams (identified by the other param-
eters) blue. How do you do that? By putting the ellipsis on the second parameter:

highlight = (first, rest...) ->
 color find first 'gold'
 for name in rest
 color find(name), 'blue'

highlight 'taipans', 'sabertooths', 'wolverines'

Using rest parameters, you can convert multiple function parameters into a single
array. Using spread parameters, you can do the reverse—convert a single array into
multiple parameters.

7.1.2 Spread
Now that the highlight function takes individual arguments, what do you do when
you have an array of names? Suppose you have the teams ranked in an array, top
team first:

teams = ['wolverines', 'sabertooths', 'mongooses']

You want to pass the first item (called the head of the array) as one parameter and
the remaining items (called the tail) as the remaining parameters. Doing that manu-
ally is clumsy:

highlight teams[0], teams[1], teams[2]

Your fingers would be sore from typing after a hundred team names or so. The alter-
native is to spread the teams in the array across the function parameters:

highlight teams...

Compare two different invocations of the highlight function:

highlight teams
highlight teams...

Suppose now that you have an insert function that takes a spread, and you want to
invoke it from within another function that also takes a spread. Passing the name of
the rest parameters directly to insert doesn’t work:

insert = (teams...) ->

names will
be []. names will be

['taipans'].
names will be
['taipans', 'wolverines',
'sabertooths'].

Taipans will be colored gold;
sabertooths and wolverines
will be colored blue.

highlight is invoked with the
teams array as the first argument.

highlight is invoked with the teams array spread across
as many arguments as there are items in the array.

For demonstration, this insert function

 teams simply returns the names parameter.

182 CHAPTER 7 Style and semantics

initialize = (teams...) ->
 insert teams

initialize 'wolverines', 'sabertooths', 'mongooses'
[['wolverines','sabertooths', 'mongooses']]

The rest parameter for insert ends up as an array wrapped in an array—definitely
not what you wanted. But using the spread you can get the result you need:

initialize = (teams...) ->
 insert teams...

initialize 'wolverines', 'sabertooths', 'mongooses'
['wolverines','sabertooths', 'mongooses']

Using rest and spread in combination, you can make a flexible and elegant program
to highlight the team names in the table. This program appears in the following list-
ing. Note that this listing is intended to run in a web browser; you can use the server
from listing 7.5 to achieve that.

find = (name) ->
 document.querySelector ".#{name}"

color = (element, color) ->
 element.style.background = color

insert = (teams...) ->
 root = document.querySelector '.teams'
 for team in teams
 element = document.createElement 'li'
 element.innerHTML = team
 element.className = team
 root.appendChild element

highlight = (first, rest...) ->
 color find(first), 'gold'
 for name in rest
 color find(name), 'blue'

initialize = (ranked) ->
 insert ranked...
 first = ranked.slice(0, 1)
 rest = ranked.slice 1
 highlight first, rest...

window.onload = ->
 initialize [
 'wolverines'
 'wildcats'
 'mongooses'
]

Although rest and spread are only small bits of syntactic sugar (remember, syntactic

Listing 7.1 Competition

Invoke insert with the name
of the rest parameter.

The find function uses the native document.querySelector
to find elements matching the class name.

Set the background color of the
element via a style property.

Add elements
to the page for
each team.

Highlight the first element
gold and then the rest blue
via a comprehension.

Initialize by inserting
the elements and then
highlighting.

Invoke initialize with
the array of teams
when the browser
window loads.
sugar makes things sweeter), they can make a big difference for code readability, which

183Destructuring

is a key motivation for many of the syntactic changes that CoffeeScript introduces to
JavaScript. Another one of those changes that you haven’t yet explored in detail is
called destructuring.

7.2 Destructuring
Like spread and rest parameters, destructuring assignment allows you to write with a
single, terse expression something that would normally require multiple expressions.
Think of rest and spread parameters on steroids—destructuring allows you to unpack
any array or object into variables or arguments.

7.2.1 Arrays

Suppose your program for the competition table needs to keep track of a particular
team (such as your favorite team) by making it the active team. Here’s a function that
Bobby Tables has already written to switch this active team:

makeToggler = (active, inactive) ->
 ->
 temporary = active
 active = inactive
 inactive = temporary
 [active, inactive]

toggler = makeToggler 'komodos', 'raptors'

toggler()
['raptors', 'komodos']

toggler()
['komodos', 'raptors']

That doesn’t seem very concise, does it? What’s the alternative? With destructuring
you can do away with so many expressions by assigning values to multiple variables in a
single expression:

active = 'komodos'
inactive = 'raptors'

[active, inactive] = [inactive, active]

active
raptors

inactive
komodos

Rewrite the toggle function to use array destructuring:

toggler = (a, b) ->
 -> [a,b] = [b,a]

toggle = toggler 'on', 'off'

toggle()
['off', 'on']

toggle()

Notice how three
variables are needed to
perform the switch.

Destructuring
assignment swaps
the variables.
['on', 'off']

184 CHAPTER 7 Style and semantics

Suppose that in another part of the team competition program you need to relegate
the team that finishes last. By using array destructuring you can avoid multiple and
confusing array shuffling and variable assignments:

relegate = (team) -> "#{team.name} got relegated"

rank = (array..., using) ->
 array.sort (first, second) ->
 first[using] < second[using]

competitors = [
 name: 'wildcats'
 points: 5
 ,
 name: 'bobcats'
 points: 3
]

[first, field..., last] = rank competitors..., 'points'

relegate last
'bobcats got relegated'

This gets you the same result but without shuffling values around multiple variables.
That’s a good result because every place you shuffle another variable or create a new
bit of state is a place where you might introduce an error. This doesn’t just apply to
arrays—objects can also be destructured.

7.2.2 Objects

Imagine that you have some data for all of the teams in the competition. All of the
data you need is inside an object, but it’s not exactly in the structure you want. Here’s
the current structure:

data =
 team2311:
 name: 'Honey Badgers'
 stats:
 scored: 22
 conceded: 22
 points: 11
 team4326:
 name: 'Mongooses'
 stats:
 scored: 14
 conceded: 19
 points: 8

Instead of the current structure, how do you get at the specific parts of the data struc-
ture that you need? You might pull the object apart manually:

For demonstration, just
display the name of the
team that got relegated.Rank an array on a

specific property.

You can omit the curly
braces in an array of objects
only if you comma-separate
them and indent with care.

Rank the competitors
array on the points
property.

185Destructuring

for id, team of data
 name = team.name
 points = team.stats.points
 {
 name: name
 points: points
 }

[{ name: 'Honey Badgers', points: 11 },
{ name: 'Mongooses', points: 8 }]

That’s no fun. With destructuring you can do it succinctly:

for id, team of data
 {name: team.name, points: team.stats.points}

[{ name: 'Honey Badgers', points: 11 },
{ name: 'Mongooses', points: 8 }]

One place where you see this object destructuring used frequently is at the start of a file
in a Node.js program:

{pad, trim, dirify} = require 'util'

Why? Because the require function returns an object, and manually unpacking the
object is tedious:

util = require 'util'
pad = util.pad
trim = util.trim
dirify = util.dirify

Exactly how the module system works is covered in detail in chapter 12, but what you
can see already is how destructuring is used to remove noise from a program and so
helps you to make it simpler.

 You’re not yet finished with making things simpler, though; CoffeeScript has another
bit of syntactic sugar for objects: the object shorthand.

7.2.3 Object shorthand

Consider a competition module that exposes a highlight and an initialize method:

makeCompetition = ->
 find = ->
 # function body omitted
 color = ->
 # function body omitted
 highlight = ->
 # function body omitted
 initialize = ->
 # function body omitted

 highlight: highlight,
 initialize: initialize

competition = makeCompetition()

Expose only the highlight and initialize functions as
public by assigning them to properties of the returned
object. Remember, you can leave the squigglies (curly
braces) off when writing object literals in CoffeeScript.
{ highlight: [Function], initialize: [Function] }

186 CHAPTER 7 Style and semantics

Here the variable names are the same as the property names on the object, so it’s
repetitive to write both:

highlight = ->
initialize = ->

object =
 highlight: highlight
 initialize: initialize

Instead of being repetitive, the object shorthand means you can pack variable values
back into an object based on their names:

makeCompetition = ->
 find = ->
 color = ->
 highlight = ->
 initialize = -> 'initialized'

 {highlight, initialize}

competition = makeCompetition()
competition.initialize()
'initialized'

The object shorthand also works when specifying parameters. Suppose makeCompetition
accepts an options argument containing the maxCompetitors and the sortOrder:

makeCompetition = (options) ->
 options.max
 options.sort

Although an options argument saves you from having an unwieldy number of argu-
ments to the function, the end result is often repetitive regardless. You can avoid that
by using object destructuring directly in the parameter list. An object in the parame-
ter definition will result in the object properties being destructured to individual
named parameters:

makeCompetition = ({max, sort}) ->
 {max, sort}

This is very handy; you now essentially have named parameters that can be supplied in
any order without needing an intermediate options parameter:

makeCompetition max: 5, sort: ->
{max: 5, sort: [Function]}

makeCompetition sort: (->), max: 5
{max: 5, sort: [Function]}

Although this is useful, you should think carefully before using destructuring and
make sure you aren’t making your program hard to read. These examples and the

Repetitive

Use object shorthand to
export the value of the
variable with the name.

The named arguments can
go in any order and the
effect will be the same.
issue of readability are revisited later in this chapter.

187Destructuring

7.2.4 Array destructuring expansion

Since CoffeeScript version 1.7, array destructuring also works with expansion. What
does that mean? Suppose you have an array of competitors:

competitors = [
 { name: 'wildcats', points: 3 }
 { name: 'tigers', points: 1 }
 { name: 'taipans', points: 5 }
]

How do you get just the first team and the last team? Prior to CoffeeScript 1.7 you
needed to name the first, last, and middle:

[first, middle..., last] = competitors
first
{ name: 'wildcats', points: 3 }

last
{ name: 'taipans', points: 5 }

Since 1.7, though, you can elide the middle and the result will be the same:

[first, ..., last] = competitors
first
{ name: 'wildcats', points: 3 }

last
{ name: 'taipans', points: 5 }

This is another small way in which CoffeeScript syntax can help you focus on just the
things that matter to you.

7.2.5 Exercises

Got the knack for destructuring? Try these exercises to find out:

■ Given an array of numbers such as [1,2,3,4,5,6], write a function that uses
destructuring and a comprehension to reverse each subsequent pair of num-
bers in the array so that, for example, [1,2,3,4,5,6] becomes [2,1,4,3,6,5]
and [1,2,1,2,1,2] becomes [2,1,2,1,2,1].

■ Suppose you’ve received some JSON containing a phone directory in a format
like this:

{"A":[{"name":"Andy", "phone":"5551111"},...],"B":[...],...}

Write a function that produces the last phone number for a given letter found
in the phone directory.

7.2.6 Putting it together

Now that you’ve completed some exercises, it’s time to see this new syntax in a program.
Rest and spread parameters and destructuring techniques for arrays and objects are
demonstrated in the competition program of the following listing. This listing is

intended to run in a web browser; you can use the server from listing 7.5 to achieve that.

188 CHAPTER 7 Style and semantics

makeCompetition = ({max, sort}) ->
 find = (name) ->
 document.querySelector ".#{name}"

 color = (element, color) ->
 element.style.background = color

 insert = (teams...) ->
 root = document.querySelector '.teams'
 for team in teams
 element = document.createElement 'li'
 element.innerHTML = "#{team.name} (#{team.points})"
 element.className = team.name
 root.appendChild element

 highlight = (first, rest...) ->
 color find(first.name), 'gold'
 for team in rest
 color find(team.name), 'blue'

 rank = (unranked) ->
 unranked.sort(sort).slice(0, max)

 initialize = (unranked) ->
 ranked = rank unranked
 insert ranked...
 first = ranked.slice(0, 1)[0]
 rest = ranked.slice 1
 highlight first, rest...

 { initialize }

sortOnPoints = (a, b) ->
 a.points > b.points

window.onload = ->
 competition = makeCompetition(max: 5, sort: sortOnPoints)
 competition.initialize [
 { name: 'wolverines', points: 22 }
 { name: 'wildcats', points: 11 }
 { name: 'mongooses', points: 33 }
 { name: 'raccoons', points: 12 }
 { name: 'badgers', points: 19 }
 { name: 'baboons', points: 16 }
]

CoffeeScript mixes syntax and semantics from JavaScript (both current and future
versions) as well as from other programming languages. Some things (such as destruc-
turing) are very useful, whereas other things are (or can be) less useful. Take null,
for example.

7.3 No nulls
When a variable or property is defined but doesn’t have a value, then it has the special
value null. The value null is the only value with typeof null in CoffeeScript. You

Listing 7.2 Competition with module pattern

A maker function that returns a competition
object. The arguments are named by using
object syntax in the function declaration.

Rank the competitors using the sort
method on the array prototype.

Return an object with an initialize
property and the value of the initialize
variable as the value. This is the shorthand
syntax for {initialize: initialize}.

The sorting strategy for the teams that will be
given to the competition; it sorts on points.

Pass in object as
named parameters
to the maker
function.
might ask what null is good for—that’s a good question. You see, the null value isn’t

189No nulls

a value you want. Instead, it usually means something has gone wrong. Remember the
existential operator used to determine if a variable is either undefined or null?

roundSquare?
false

Well, this existential operator can also be combined with the dot operator and the
assignment operator. In this section you’ll learn about these additional uses of
the existential operator and how they help you live with null.

7.3.1 Null soak

Imagine you’re writing an application that takes information about users and displays
it on a web page. The information for a given user is in an object:

user =
 name:
 title: 'Mr'
 first: 'Data'
 last: 'Object'
 contact:
 phone:
 home: '555 2234'
 mobile: '555 7766'
 email:
 primary: 'mrdataobject@coffeescriptinaction.com'

How do you access the home phone number for this user?

user.contact.phone.home
'555 2234'

Suppose that some of the user data is missing or incomplete. For example, consider a
user who doesn’t have any contact information:

user =
 name:
 first: 'Haveno'
 middle: 'Contact'
 last: 'Details'

Your program will throw an exception:

user.contact.phone.home
TypeError: cannot read property 'phone' of undefined

To avoid this, you might wrap the access to the data in a big condition:

if user.contact and user.contact.phone and user.contact.phone.home
 user.contact.phone.home

Or perhaps you might wrap it in a try block:

try
 user.contact.phone.home
catch e

 'no contact number'

190 CHAPTER 7 Style and semantics

Don’t do either. Instead, when rendering information about a user, either display the
information or not—don’t display an error, null, or undefined. Use the null soak oper-
ator (sometimes called the safe navigation operator) to soak null values and undefined
properties so you don’t have to test for them explicitly:

user?.contact?.phone?.home

This will suppress any errors when accessing the user data. An acceptable time to sup-
press these errors is when rendering data to a user. For example, suppose you have a
render function that uses a heredoc with interpolation to display the phone number
somewhere on a website:

render = (user) ->
 """
 <html>
 Home phone for #{user.name.first}: #{user.contact.phone.home}
 """

Imagine this render function is normally invoked when information about a user is
retrieved. Without using the null soak operator, the render function will cause an
error when a user property is missing:

user =
 name:
 first: 'Donot'
 last: 'Callme'

render user
TypeError: cannot read property 'phone' of undefined

You don’t want a render function to show an error to a user when data is missing.
Instead, you want to suppress internal errors when rendering. Think about it: users
don’t want to read all your internal errors. Avoid showing errors by using the null soak:

render = (user) ->
 """
 <html>
 Home phone for #{user?.name?.first}: #{user?.contact?.phone?.home}
 """

user = null
render user: null
<html>
Home phone for undefined: undefined

To display something other than undefined, you can use the default operator || to
specify a default value:

user = null
contact = user?.contact?.phone?.home || 'Not provided'
contact
Not provided
This allows you to present the information you need without an explicit conditional.

191No nulls

NULL SOAK IS NOT FOR ASSIGNMENT

Because null soak is so convenient, it’s tempting to use it with assignment:

user = {}
user?.contact?.phone?.home = '555 5555'

That’s a bad idea. What’s the result of the assignment? Is the value of user.contact
.phone.home now 5? No. The null was soaked immediately and user doesn’t even
have a contact property:

user.contact?
false

Don’t use null soak for property assignment. Only use it for safe access. Conditional
assignment, on the other hand, can be useful and safe for local variables.

7.3.2 Conditional assignment

Suppose you want to assign a value to a variable only if it does not already contain a
value. A simple way to do that is by combining the existential operator with assignment:

phone = undefined
phone ?= '555 5555'
phone
'555 5555'

phone = null
phone ?= '555 1111'
phone
'555 1111'

phone ?= 'something else'
phone
'555 1111'

Be careful, though; existential assignment isn’t for variables that haven’t been defined:

variableYouNeverDeclared ?= 'something'
error: the variable "variableYouNeverDeclared" can't be assigned with ?=

because it has not been declared before

In the next listing you once again see the competition rankings program. This time
the null soak is used to handle null values in the supplied data and when rendering
an HTML view. This listing is intended to run in a web browser; you can use the server
from listing 7.5 to achieve that.

makeCompetition = ({max, sort}) ->
 render = (team) ->
 """
 <tr class='#{team?.name||''}'>
 <td>#{team?.name||''}</td>
 <td>#{team?.points||''}</td>

Listing 7.3 Using null soak in a view

The view is just a lo-fi function called render.
Notice how the nulls are soaked in expressions
such as team?.goals?.scored and that the
default operator is used to output an empty
string as the default value.
 <td>#{team?.goals?.scored||''}</td>

192 CHAPTER 7 Style and semantics

 <td>#{team?.goals?.conceded||''}</td>
 </tr>
 """

 find = (name) ->
 document.querySelector ".#{name}"

 color = (element, color) ->
 element.style.background = color

 insert = (teams...) ->
 root = document.querySelector '.teams'
 for team in teams
 root.innerHTML += render team

 highlight = (first, rest...) ->
 color find(first.name), 'gold'
 for team in rest
 color find(team.name), 'blue'

 rank = (unranked) ->
 unranked.sort(sort).slice(0, max).reverse()

 initialize: (unranked) ->
 ranked = rank unranked
 insert ranked...
 first = ranked.slice(0, 1)[0]
 rest = ranked.slice 1
 highlight first, rest...

sortOnPoints = (a, b) ->
 a.points > b.points

window.onload = ->
 competition = makeCompetition max:5, sort: sortOnPoints
 competition.initialize [
 name: 'wolverines'
 points: 56
 goals:
 scored: 26
 conceded: 8
 ,
 name: 'wildcats'
 points: 53
 goals:
 scored: 32
 conceded: 19
 ,
 name: 'mongooses'
 points: 34
 goals:
 scored: 9
 conceded: 9
 ,
 name: 'raccoons'
 points: 0

The competition is initialized as
before except that now the data
has information about the goals
scored by individual teams.

The raccoons were disqualified
so they have zero points and
don’t have a goals property.
]

193No types—the duck test

Remember what the type of null is?

typeof null
null

There’s only one thing with a type of null and it’s the null value. As mentioned previ-
ously, there are languages with rich and powerful type systems. CoffeeScript isn’t one
of them, and types, including the null type, can be problematic.

7.4 No types—the duck test
CoffeeScript is dynamically and weakly typed. The most noticeable thing about the
typeof operator so far in your CoffeeScript travels should be its absence. When writ-
ing programs in CoffeeScript, there’s rarely any benefit to be gained from examining
types by using the typeof operator. Instead, use a technique called duck typing:

class Duck
 walk: ->
 quack: (distance) ->

daffy = new Duck

What can you do with a duck? You might put it on a leash and take it for a walk:

daffy.walk()

If it meets another duck, they might talk to each other:

donald = new Duck

donald.quack()
daffy.quack()

That’s great. Suppose you want to organize a duck race:

class DuckRace
 constructor: (@ducks) ->
 go: ->
 duck.walk() for duck in @ducks

This DuckRace doesn’t know if only ducks are competing. For example, a faster animal
such as a hare could enter the race:

class Hare
 run: ->
 walk: -> run()

hare = new Hare

race = new DuckRace [hare]

That’s unfair! How will you prevent non-ducks from entering the race? If you have
experience in a strongly typed language, then you might think that the typeof opera-

tor will do the trick.

194 CHAPTER 7 Style and semantics

7.4.1 Don’t rely on typeof, instanceof, or constructor

You want to be strict with entrants to the DuckRace and ensure that they’re all real, cer-
tified ducks, and your first thought is to use the typeof operator. Unfortunately, the
typeof operator in CoffeeScript isn’t very useful:

daffy = new Duck
typeof daffy
'object'

Almost everything in CoffeeScript is an object, so there’s really no point using typeof
here. So, you think that perhaps you can test to see if the object was created from the
Duck class by using the instanceof operator:

daffy instanceof Duck
true

Great, that’s a duck. Is instanceof the solution? No. What happens when you change
the DuckRace constructor to admit any objects that are instanceof Duck?

class DuckRace
 constructor (applicants) ->
 @ducks = d for d in applicants when d instanceof Duck
 go: ->
 duck.walk() for duck in @ducks

The race is run. Unfortunately, one of the ducks isn’t really a duck. It was a duck, but
it was turned into a snake by an evil warlock:

duck = new Duck
ultraDuckMarathon = new DuckRace [duck]

turnIntoSnake = ->
 duck.walk = null
 duck.slither = ->

turnIntoSnake duck

ultraDuckMarathon.go()
TypeError: Property walk of object #<AsianDuck> is not a function

You tried to use a type to solve your problem (via the instanceof operator) and the
result was a type error. Irony.

 The instanceof operator doesn’t promise anything. It doesn’t guarantee that an
object has a particular interface or works a particular way. It doesn’t tell you if some-
thing is a duck. All it tells you is which class or constructor the object was created with.
In a dynamic language like CoffeeScript, the class or constructor of an object doesn’t
guarantee anything about what the object actually does right now. The instanceof
operator is even more brittle because the result will change if you reassign a prototype:

class Duck
daffy = new Duck
Duck:: = class Snake

daffy instanceof Duck

The walk property of this duck
is assigned the value null. It no
longer knows how to walk.
false

195No types—the duck test

As a last resort you decide to use the constructor property:

class Duck
daffy = new Duck
daffy.constructor.name
Duck

That tells you the constructor for the daffy object. Again, though, this is a flawed
approach in a dynamic language like CoffeeScript. Suppose you create a duck without
using a class:

duck =
 walk: ->
 quack: ->

daffy = Object.create duck

Is daffy a duck? It was created from a prototypical duck. If the constructor.name is
the criteria for being a duck, then daffy isn’t a duck:

daffy.constructor.name
'Object'

So, with all of the different techniques for constructing and modifying objects in
CoffeeScript, it quickly becomes apparent that none of the approaches you try to
determine whether something is the correct type are going to work. What’s the alter-
native then? It’s called duck typing.

7.4.2 How to use duck typing

The principle behind duck typing is that if there’s no reliable way in the language to
be sure what interface an object implements, then you should rely on the interface
itself. Put simply, if it walks like a duck and quacks like a duck, then it’s a duck:

class DuckRace
 duck: (contestant) ->
 contestant.quack?.call and contestant.walk?.call
 constructor: (applicants...) ->
 @ducks = (applicant for applicant in applicants when @duck applicant)

duck =
 name: 'Daffy'
 quack: ->
 walk: ->

cow =
 name: 'Daisy'
 moo: ->
 walk: ->

race = new DuckRace duck, cow
race.ducks
[{ name: 'Daffy', quack: [Function], walk: [Function] }]

Without types, how do you have confidence that your program works correctly? You

If it has a call property,
then it can be invoked.
See section 6.4.4.
get confidence by writing tests. Good tests for the DuckRace class will show how it should

s
e

t

196 CHAPTER 7 Style and semantics

be used and demonstrate that it works correctly when used as intended. There’s more
about testing in chapter 10.

In listing 7.4 you see a new version of the competition program. This time teams can be
added dynamically. The competition organizes a tournament between teams where the
winner of each game is determined randomly. Without relying on a type system, any object
that can’t act like a team for the purposes of the competition is excluded. This listing is
intended to run in a web browser; you can use the server from listing 7.5 to achieve that.

makeCompetition = ({max, sort}) ->

 POINTS_FOR_WIN = 3
 POINTS_FOR_DRAW = 1
 GOALS_FOR_FORFEIT = 3

 render = (team) ->
 find = (name) ->
 color = (element, color) ->
 insert = (teams...) ->
 highlight = (first, rest...) ->
 rank = (unranked) ->

 competitive = (team) ->
 team?.players is 5 and team?.compete()?

 blankTally = (name) ->
 name: name
 points: 0
 goals:
 scored: 0
 conceded: 0

 roundRobin = (teams) ->
 results = {}
 for teamName, team of teams
 results[teamName] ?= blankTally teamName
 for opponentName, opponent of teams when opponent isnt team
 console.log "#{teamName} #{opponentName}"
 results[opponentName] ?= blankTally opponentName
 if competitive(team) and competitive(opponent)
 # omitted
 else if competitive team
 # omitted
 else if competitive opponent

Postel’s law
Be conservative in what you do; be liberal in what you accept from others.

Duck typing means you’re liberal in what you accept. What you accept only has to
adhere to an interface.

Listing 7.4 Competition

Uppercase constants as convention, but not really
constants (see chapter 13 for more on constants
and the const keyword in ECMAScript 6).

These functions appear
in listing 7.3 and are
omitted here for brevity.

Duck type. Determine if a team
has enough players and competes.

Provide a blank object
to tally scores on. The roundRobin function

loops through the teams
and plays them all against
each other once.

Code for adding the score
and goals is included in th
source. It’s omitted here
because it’s boring and no
helpful for understanding
 # omitted the concepts.

197No types—the duck test

 results

 run = (teams) ->
 scored = (results for team, results of roundRobin(teams))
 ranked = rank scored
 console.log ranked
 insert ranked...
 first = ranked.slice(0, 1)[0]
 rest = ranked.slice 1
 highlight first, rest...

 { run }

sortOnPoints = (a, b) ->
 a.points > b.points

class Team
 constructor: (@name) ->
 players: 5
 compete: ->
 Math.floor Math.random()*3

window.onload = ->
 competition = makeCompetition(max:5, sort: sortOnPoints)

 disqualified = new Team "Canaries"
 disqualified.compete = null

 bizarros = ->
 bizarros.players = 5
 bizarros.compete = -> 9

 competition.run {
 wolverines : new Team "Wolverines"
 penguins: { players: 5, compete: -> Math.floor Math.random()*3 }
 injured: injured
 sparrows: new Team "Sparrows"
 bizarros: bizarros
 }

No typeof is required. Instead, the teams are tested to see whether they have the
properties required for something to be considered a team for the purposes of the compe-
tition. Another function or module elsewhere in the program could have different
expectations of what a team is. Types are not built in. Instead, consider the local
requirements for objects and use them to determine whether all objects are suitable.

Surely typeof is used sometimes in CoffeeScript?
Yes. The typeof operator is sometimes useful for distinguishing between built-in
types. If you’re writing library code, you may have good reason to determine if some-
thing is typeof function, object, string, or number. For anything else, steer clear
of typeof.

Convert the
object into
an array of
its values.

The Team class.

A team created with the Team class that
doesn’t compete. Doesn’t meet the interface.

A function with the properties
added. Does meet the interface. A team created

with the Team
class that does
meet the interface.

An object literal that
meets the interface.

198 CHAPTER 7 Style and semantics

Duck typing is a way of thinking. In a dynamic language like CoffeeScript that doesn’t
enforce types, you don’t look at the type but instead look at the actual object you’re
dealing with. With duck typing you can express programs naturally in CoffeeScript.

 Finally, the following listing provides a server that you can use to experiment with
the browser code in listings 7.1 through 7.4.

http = require 'http'
fs = require 'fs'
coffee = require 'coffee-script'

render = (res, head, body) ->
 res.writeHead 200, 'Content-Type': 'text/html'
 res.end """
 <!doctype html>
 <html lang=en>
 <head>
 <meta charset=utf-8>
 <title>Chapter 7</title>
 <style type='text/css'>
 * { font-family: helvetica, arial, sans-serif; }
 body { font-size: 120%; }
 .teams td { padding: 5px; }
 </style>
 #{head}
 </head>
 <body>
 #{body}
 </body>
 </html>
 """

listing = (id) ->
 markup =
 1: """
 <ul class='teams'>
 """
 2: """
 <ul class='teams'>
 """
 3: """
 <table class='teams'>
 <thead>
 <tr>
 <th>Team</th><th>Points</th><th>Scored</th><th>Conceded</th>
 <tr>
 </thead>
 </table>"""
 4: """
 <table class='teams'>
 <thead>
 <tr>

Listing 7.5 The server
 <th>Team</th><th>Points</th><th>Scored</th><th>Conceded</th>

199When to use comprehensions (and when not to)

 <tr>
 </thead>
 </table>"""
 script =
 1: "<script src='1.js'></script>"
 2: "<script src='2.js'></script>"
 3: "<script src='3.js'></script>"
 4: "<script src='4.js'></script>"

 head: script[id], body: markup[id]

routes = {}

for n in [1..6]
 do ->
 listingNumber = n
 routes["/#{listingNumber}"] = (res) ->
 render res, listing(listingNumber).head, listing(listingNumber).body
 routes["/#{listingNumber}.js"] = (res) ->
 script res, listingNumber

server = http.createServer (req, res) ->
 handler = routes[req.url] or (res) ->
 render res, '', '''

 Listing 7.1
 Listing 7.2
 Listing 7.3
 Listing 7.4

 '''
 handler res

script = (res, listing) ->
 res.writeHead 200, 'Content-Type': 'application/javascript'
 fs.readFile "7.#{listing}.coffee", 'utf-8', (e, source) ->
 if e then res.end "/* #{e} */"
 else res.end coffee.compile source

server.listen 8080, '127.0.0.1'

So, what else did you zoom through in earlier chapters? Comprehensions! It’s now
time to revisit comprehensions and explore their use.

7.5 When to use comprehensions (and when not to)
Comprehensions provide a natural and powerful syntax for dealing with elements in
arrays and properties of objects. You’ll recognize this simple comprehension for
even numbers:

evens = (num for num in [1..10] when num%2 == 0)

A comprehension is much easier to read than a JavaScript for loop:

numbers = [1,2,3,4,5,6,7,8,9,10]

evens = []

200 CHAPTER 7 Style and semantics

for (var i = 0; i !== numbers.length; i++) {
 if(numbers[i]%2 === 0) {
 evens.push(numbers[i]);
}

That’s not really a fair comparison with JavaScript, though. In recent years it has
become more common in JavaScript to use array methods such as map, reduce, and
filter instead of for loops:

evens = numbers.filter(function(item) {
 return item%2 == 0;
});

This works in CoffeeScript too:

evens = numbers.filter (item) -> item%2 == 0

So, if the array methods work in CoffeeScript, should you use them or should you use
comprehensions? How do comprehensions compare to these array methods that Java-
Script programmers have become more comfortable with? You’ll explore that question
in this section, learning where comprehensions are appropriate and where they’re not.

7.5.1 map

The map method is used to take an array and map it to a different array. Suppose you
purchase a book for $10, a toaster for $50, and a printer for $200. The tax rate is 10%.
If you have these prices in an array, how do you calculate the tax paid on each item?
With a comprehension, you do this:

paid = [10, 50, 200]
taxes = (price*0.1 for price in paid)
[1, 5, 20]

In JavaScript this is done with the array map method (Array::map). This technique
can be expressed directly in CoffeeScript:

taxes = paid.map (item) -> item*0.1
[1, 5, 20]

Which one you use is largely a matter of preference.

Careful, the array methods are recent additions
New array methods such as map and filter are specified in the fifth edition of the
ECMAScript specification. Some older web browsers don’t support all features of
the fifth edition. A compatibility table for ECMAScript 5 features, such as the new
array methods, appears in table 13.2.

201When to use comprehensions (and when not to)

7.5.2 filter

Suppose you have an array of your friends’ addresses, and you want to know which
ones live in 'CoffeeVille':

friends = [
 { name: 'bob', location: 'CoffeeVille' },
 { name: 'tom', location: 'JavaLand' },
 { name: 'sam', location: 'PythonTown' },
 { name: 'jenny', location: 'RubyCity' }
]

You can find out with a filter:

friends.filter (friend) -> friend.location is 'CoffeeVille'

This looks similar when expressed using a comprehension:

friend for friend in friends when friend.location is 'CoffeeVille'

There’s no clear-cut winner. Does this means that comprehensions are overrated? Sup-
pose you have an array of your friends in a variable named mine:

mine = ['Greg Machine', 'Bronwyn Peters', 'Sylvia Rogers']

Consider this to be your set of friends. Now, suppose you spark up a conversation at a
party, and you want to know if you have any friends in common with the person you’re
talking to. Consider the set of their friends to be named yours; the solution with a
comprehension is elegant:

common = (friend for friend in mine when friend in yours)

It’s no coincidence that this set relationship is elegantly expressed using a comprehen-
sion because the syntax for comprehensions is based on a mathematical notation for
describing sets. So if you’re dealing with sets, comprehensions are a natural fit.

 How about the last of the three favorites of JavaScript programmers: reduce?

7.5.3 reduce

Imagine you’re a loan shark—people owe you money. How do you calculate the total
amount you’re owed? An array of two people who owe you money is easy to add up
just by looking at it or by explicitly adding the two values:

friends = [
 { name: 'bob', owes: 10 }
 { name: 'sam', owes: 15 }
]

total = friends[0].owes + friends[1].owes
25

What if you loaned money to a thousand people? You’d use a comprehension:

owed = 0
for friend in friends

 owed += friend.owes

202 CHAPTER 7 Style and semantics

The built-in Array::reduce also works:

owing = (initial, friend) ->
 if initial.owers then initial.owes + friend.owes
owed = friends.reduce owing

It isn’t clear if the comprehension is better. Comprehensions are useful, but they’re
not the only technique to consider. Comprehensions also have some gotchas you need
to be aware of. The first involves functions.

7.5.4 Defining functions inside comprehensions

When using comprehensions, you need to be careful about scoping because there’s a
mistake you can easily make even when you know how comprehensions work.2 In the
snippet that follows, what will be the output of the last line? You might be surprised at
the answer; try it on your REPL:

people = ['bill', 'ted']
greetings = {}

for person in people
 greetings[person] = ->
 "My name is #{person}"

greetings.bill()

Why does the final expression here evaluate to 'My name is ted'? You see, func-
tions have access to variables via lexical scope regardless of when they’re invoked.
Here, there’s only one person variable in scope. Once the comprehension has run,
it will contain the last value assigned to it and not the value it had when the function
was declared.

 If you really need to define a function inside a comprehension and have it access
some value from inside the comprehension, then you’ll need to create a new lexical
scope with another function:

people = ['bill', 'ted']
greetings = {}

for person in people
 do ->
 name = person
 greetings[name] = ->
 "My name is #{name}"

greetings.bill()
My name is bill

In contrast, if you use a forEach for this example, then you avoid the problem because
you’re creating a function scope by default:

people.forEach (name) -> greetings[name] = "My name is #{name}"

Now the function(s) assigned to greetings[name] will close
over the name variables created for each one. Revisit
chapter 3 later if you’re still not entirely comfortable with
closures and how they close over variables.
2 I made one of these mistakes while preparing the listings for this very chapter.

203Fluent interfaces

A comprehension that needs a scope probably shouldn’t be a comprehension.

The next piece of syntax used often in JavaScript that needs a discussion in relation to
CoffeeScript is the fluent interface. Used by many libraries, including the popular
jQuery, the fluent interface is a staple of any JavaScript diet.

7.6 Fluent interfaces
What’s a fluent interface? It’s a chain of method calls on a single object:

scruffy.eat().sleep().wake()

It’s a bit like a function composition (chapter 6) except that all the function calls act
on a particular object. In this section you’ll see why fluent interfaces are useful, how to
create them, the issues with indentation and side effects, and finally how to create a
fluent wrapper for an object that wasn’t designed to have one.

7.6.1 Why create them?

Imagine you’re helping Scruffy create some animations for an in-browser game called
turt.ly. He’s using an API that Agtron created that allows him to animate the turtle, but
he laments that the API is a smidge silly because the class it provides has only four
methods: forward, rotate, move, and swap:

class Turtle
 forward: (distance) ->
 # moves the turtle distance in the direction it is facing
 this
 rotate: (degrees) ->
 # rotates the turtle 90 degrees clockwise
 this
 move: ({direction, distance}) ->
 # moves the turtle in a given direction
 this
 stop: ->
 # stops the turtle

The forward method is invoked with an integer that specifies how far forward the tur-
tle should move. The rotate method takes an integer that is the number of degrees
that the turtle should rotate clockwise—by turning right. To make the turtle walk

A note on generators
Future versions of JavaScript (and by extension CoffeeScript) will include something
called generators (discussed in chapter 13) that will make comprehensions a more
powerful general programming tool. Until that day, though, limit comprehensions to
expressing set relationships and use more general-purpose programming constructs,
such as functions, elsewhere.

The reason for making the
methods evaluate to this is
explained later in this section.
around a 10 x 10 square, Scruffy has to give it seven commands:

204 CHAPTER 7 Style and semantics

turtle = new Turtle
turtle.forward 10
turtle.rotate()
turtle.forward 10
turtle.rotate()
turtle.forward 10
turtle.rotate()
turtle.forward 10

When asked about this, Agtron suggests that Scruffy can extend the API by adding a
square method to the prototype (see chapter 5):

Turtle::square = (size) ->
 @forward size
 @rotate()
 @forward size
 @rotate()
 @forward size
 @rotate()
 @forward size

Or with brevity:

Turtle::square = (size) ->
 for side in [1..4]
 @forward size
 @rotate 90

The square method has made making squares easier. But Scruffy still complains that
when he wants to draw two squares he has to keep “saying” turtle :

turtle = new Turtle
turtle.square 4
turtle.forward 8
turtle.square 4

He says this is how his math teacher used to talk to him:

Scruffy, pay attention.
Scruffy, stop monkeying around.
Scruffy, go stand outside.
Scruffy, go to the principal’s office.

How can you avoid sounding like Scruffy’s math teacher? In JavaScript you might be
tempted to use the with statement:

turtle = new Turtle();

with(turtle) {
 left();
 forward();
}

Notice that when adding a square
method, you use the @ symbol to
invoke a method on the turtle object
that the method was invoked on.

This example
is JavaScript.

exa
Jav
205Fluent interfaces

But the with statement hides variable scope and makes your program ambiguous:

address = '123 Turtle Beach Road';
with (turtle) {
 rotate(90);
 address = '55 Dolphin Place';
}

The with statement can make programs confusing. It’s been deprecated in JavaScript,
and CoffeeScript doesn’t have a with statement at all. Instead, fluent interfaces provide
a solution without the ambiguity. When used with CoffeeScript’s significant indenta-
tion, though, fluent interfaces do have potential for ambiguity. So before moving on,
it’s important to understand why that happens and how to avoid it.

7.6.2 The indentation problem
In CoffeeScript you need to be careful about indentation when using a fluent inter-
face. If you’re not careful, you might get some unexpected results. Imagine for a min-
ute that you wrote the CoffeeScript compiler—what would you consider to be the
meaning of chained syntax when parentheses are omitted?

turtle = new Turtle
turtle
.forward 2
.rotate 90
.forward 4

Should there be any difference between that and a chained syntax with different
indentation?

turtle
 .forward 2
 .rotate 90
 .forward 4

They compile to the same thing. Should they? Much more importantly, versions before
CoffeeScript 1.7 will compile both of these examples in a way you might not expect.
Here’s how CoffeeScript 1.6.3 compiles it:

turtle.forward(2..rotate(90..forward(4)));

That will result in the error Object 90 has no method forward in JavaScript. With the
potential for problems, what style should you use with fluent interfaces?

FLUENT INTERFACES WITH PARENTHESES

It’s safest to use fluent interfaces with parentheses and all flush left:

turtle = new Turtle
turtle
.forward(2)
.rotate(90)

This
mple is
aScript.

Is that the address variable
or the address property of
the turtle object?

What do you
expect this means?

What do you
expect this means?

Compiled JavaScript for
the previous examples.

Note that compilation will
put it on one line and add
.forward(4)
a semicolon at the end.

206 CHAPTER 7 Style and semantics

That said, indenting method calls in a fluent method call chain is very common in
other languages, so you’ll frequently see this written so:

turtle = new Turtle
turtle
 .forward(2)
 .rotate(90)
 .forward(4)

Although the former (flush left) is cleaner (semantically), you should get used to see-
ing the latter (indented) style. If you’re passing an object to a chained method, it’s
possible to skip the parentheses by indenting arguments:

NORTH = 0
turtle = new Turtle
turtle
.move
 direction: NORTH
 distance: 10
.stop()

This is helpful, and it helps to make the earlier competition examples easier to read:

makeCompetition
 max: 5
 sort: ->

makeCompetition
 sort: ->
 max: 5

This is useful for object parameters, but in most other cases you should avoid argu-
ments on newlines.

FLUENT INTERFACES WITHOUT PARENTHESES

The minimalist inside you thinks that a fluent interface with parentheses seems waste-
ful and looks exactly like the equivalent JavaScript:

turtle
.forward(3)
.rotate(90)
.forward(1)

The good news is that if you’re using CoffeeScript 1.7 or later, the compiler will recog-
nize fluent interfaces with parentheses omitted so that the same expression without
the parentheses has the same result:

turtle
.forward 3
.rotate 90
.forward 1

Since CoffeeScript 1.7 the preceding code will compile to the following JavaScript:

Invoking the move method with
an object that has direction and
distance properties
turtle.forward(2).rotate(90).forward(4); Compiled JavaScript

207Fluent interfaces

As long as you keep the indentation consistent, you can pick whichever indentation
level you prefer, and the compiler will close the parentheses on fluent call chains for
you, so the following also works:

turtle
 .forward 3
 .rotate 90
 .forward 1

You can think of the dot on the newline as closing all and only implicit calls. It does
not close other function calls:

wait = (duration, callback) ->
 setTimeout callback, duration

wait 5, ->
 turtle
 .forward 10
 .forward 3

In CoffeeScript 1.7 the function call and fluent chain compile as follows:

wait(5, function() {
 return turtle.forward(1).rotate(90);
});

Now, back to Scruffy’s API work and how a fluent interface makes life easier for him.

7.6.3 Creating fluent interfaces

If you’re creating an API from scratch, then a fluent interface requires a specific
usage of this (a.k.a. @). Remember, inside a method call, @ refers to the current
object (the receiver of the method call). Consider what it means to use @ as the final
value in a method:

class Turtle
 rotate: (degrees) ->
 # rotate the turtle
 @

Because @ on a line by itself at the end of a function looks a bit lonely, you’ll often see
the this keyword used instead:

class Turtle
 rotate: (degrees) ->
 # rotate the turtle
 this

Using this as the final value in a method returns the object that received the method
call. So, if you return this, then method calls can be chained:

turtle = new Turtle

A dot on a newline does not
close the callback function
passed to wait.

Compiled JavaScript.

It doesn’t matter how
the turtle is rotated.

Return the turtle.
turtle.rotate(90).rotate(90)

208 CHAPTER 7 Style and semantics

If you’re creating your own API, you can use this technique to make it fluent. You don’t
always write the API, though; oftentimes you only use it. For example, Scruffy didn’t write
the API for the turtle, but he has to use it. How can he use it with a fluent interface?

7.6.4 Chain

Not everything that can benefit from a fluent interface actually has one. Many of the
APIs provided by web browsers are like this. Take the canvas API, for example. The
canvas is covered in more detail in chapter 11, but for now you only need to know
that it provides some drawing capabilities to web browsers, a little bit like the turtle:

canvas = document.getElementById 'example'
context = canvas.getContext '2d'
context.fillRect 25, 25, 100, 100
context.strokeRect 50, 50, 50, 50

See how you have to repeat the context every time, just like Scruffy had to repeat
turtle? Instead of living with that, you can make your own fluent interface out of this
nonfluent interface. Remember that with statement from JavaScript? You can declare
something roughly similar in CoffeeScript using the apply method on a function:

using = (object, fn) -> fn.apply object

using turtle, ->
 @forward 2
 @rotate 90
 @forward 4

Close, but not quite the same. You (and Scruffy) really want a fluent interface that
chains method calls:

chain(turtle)
.forward(2)
.rotate(90)
.forward(4)

chain turtle
.forward 2
.rotate 90
.forward 4

To do this you need to create a chain function that takes an object and returns a flu-
ent interface of the object’s methods. This is one of those cases where you need
Agtron’s help. The implementation of chain that he helps you create and an example
of using it are shown in the following listing. If you don’t understand exactly how it
works, then it’s okay to move on and come back to it later.

Get an element to
use as the canvas. Create a context

to draw on.

Fill in a
rectangle.Stroke the outside

of the rectangle.

Before
CoffeeScript 1.7

CoffeeScript 1.7
and later

ties of
f which
e.Bind

variab
fun

Defin
on

that

in
ret

wrapp
th

fun
that th

can be
209Ambiguity

chain = (receiver) ->
 wrapper = Object.create receiver
 for key, value of wrapper
 if value?.call
 do ->
 proxied = value
 wrapper[key] = (args...) ->
 proxied.call receiver, args...
 wrapper

 wrapper

turtle =
 forward: (distance) ->
 console.log "moving forward by #{distance}"
 rotate: (degrees) ->
 console.log "rotating #{degrees} degrees"

chain(turtle)
.forward(5)
.rotate(90)

By providing some syntactic sugar, CoffeeScript can make more-advanced JavaScript
techniques a bit more manageable. This sugar doesn’t come for free, though; some-
times it can make things ambiguous.

7.7 Ambiguity
Removing parts can make things simpler, but it can also sometimes make them
ambiguous. Removing words and symbols from a programming language is no dif-
ferent. To effectively create simple programs, you need to understand where there’s
potential for ambiguity so that you can avoid it. In CoffeeScript the most common
areas where people accidentally create ambiguity are with significant indentation
and implicit variable declarations.

7.7.1 Whitespace and indentation

All whitespace looks the same. Lack of visual variety means that you need to take care
to make sure programs written in a language with significant indentation aren’t
ambiguous. You got a hint of this earlier with the turtle:

NORTH = 0

turtle
.move
 direction: NORTH
 distance: 10
.stop()

Listing 7.6 The chain function

Inherit from the receiving
object that provides the API.

Comprehend the proper
the wrapper object, all o
come from the prototyp

Duck typing: if the
value of the property
has a call method, then
treat it as a function.

Create a closure to
bind the local variable.

 the local
le to the
ction for
use later.

e a property
 the wrapper
’s a function.

This function calls the proxied
function with the argument
and with the receiver bound.

Fluent interface: return
the wrapper so that calls
can be chained.Fluent

terface:
urn the
er from
e chain

ction so
e chain

started.

The chained
method calls.

210 CHAPTER 7 Style and semantics

When reading this program, it’s important to notice that the move method is being
invoked with an object that has direction and distance properties. Now consider a
makeTurtle function that makes and returns an object:

makeTurtle = ->
 move: ->
 # move the turtle
 this
 stop: ->

Again, when reading the code you need to pay attention. It’s not just an object con-
taining a stop property that’s returned; it’s an object with a stop property and a move
property. How do you avoid this ambiguity?

ADD CHARACTERS TO AVOID AMBIGUITY

Suppose you have a function that returns an array of objects containing information
about your friends. It’s tempting to leave out all the squiggly braces and end up with
something like this:

friends = ->
 name: 'Bob'
 address: '12 Bob Street Bobville'
 ,
 name: 'Ralph'
 address: '11 Ralph Parade Ralphtown'

Sometimes, though, including the square and squiggly brackets makes it easier
to read:

friends = ->
 [{
 name: 'Bob'
 address: '12 Bob Street Bobville'
 },
 {
 name: 'Ralph'
 address: '11 Ralph Parade Ralphtown'
 }]

This might not seem to be in the spirit of CoffeeScript, but the general rule should
be that if you need to look at the compiled JavaScript to figure out if your Coffee-
Script syntax is correct, then there’s a good chance it’s ambiguous. How about those
parentheses?

ONLY FUNCTION DECLARATION PARENTHESES HAVE SPACES

When invoking a function, there should be no space before the first parenthesis.
No.Space.Ever! Although many syntax questions are a matter of taste, this one is not:

clarity = (important) ->

When declaring, spaces on
outside of the parentheses When invoking, no space

before the left parenthesis
clarity()

211Ambiguity

When invoking a function, having no parentheses or putting them around the outside
works fine:

(clarity 10)
clarity 10

But you should never put a space before the parentheses when invoking. It’s confusing,
broken, and looks too similar to a function being invoked with a callback argument:

clarity (10)
clarity (x) -> x

Finally, a note on subsequent function calls.

ADD PARENTHESES FOR SUBSEQUENT FUNCTION CALLS

Suppose you have three functions, x, y and z, and you invoke them as follows:

x y z 4

By glancing at it, in what order do you think they’re being invoked? Adding parenthe-
ses shows you:

x(y(z(2)))

Even if you got it right this time, it’s almost guaranteed that unparenthesized function
calls will catch you out in CoffeeScript at least once sometime in the future. To avoid
the problem, it’s best to add some parentheses any time the expression might be
ambiguous. Remember, you shouldn’t have to refer to the generated JavaScript to
understand what a CoffeeScript program is supposed to do. If it looks ambiguous,
then you need to rewrite it. As figure 7.2 shows, you should stick to common language

Parentheses outside

No parentheses

Don’t do this The clarity function being invoked with
another (likely a callback) function
Figure 7.2 Stick to common language patterns, but be careful of ambiguity.

212 CHAPTER 7 Style and semantics

idioms, but be mindful of anything that might be ambiguous to you later, to the com-
piler, or to other people who have to work on your program.

 One final area for potential confusion is in the way CoffeeScript implicitly declares
variables for you.

7.7.2 Implicit variables

Remember that variables are declared for you, implicitly, the first time a variable name
is used. If a variable name is already defined anywhere in the current lexical scope
(including outer functions), then that variable is used. This is unlike the var keyword
in JavaScript, which will create a variable in the current function scope regardless of
whether a variable with the same name exists somewhere in the current lexical scope
(such as an outer function). If your programs consist of small modules (as discussed
in chapter 12) and you don’t have deeply nested lexical scopes, then this implicit vari-
able declaration is unlikely to cause you any pain.

 If implicit variables become a problem for you, or if you simply don’t like implicit
variable declarations, then you can easily get around the absence of shadowing by tak-
ing advantage of the fact that function parameters always shadow and create local vari-
ables with a do expression:

x = 5

do (x) ->
 x = 3
 console.log x

console.log x

3
5

This approach gives you a new way of writing a function that has variable names that
shadow outer scopes:

shadowing = do (x) -> (y) ->
 x = 3
 x + y

shadowing 5
8

If you use a do expression in this way, then either there must be an outer variable that
you want to shadow by assignment inside the do expression or you must assign a value
in the parameters for the do expression:

do (notPreviouslyDefined) -> notPreviouslyDefined = 9
ReferenceError: notPreviouslyDefined is not defined

do (notPreviouslyDefined='') -> notPreviouslyDefined = 'It is now'
'It is now'

Outside the do expression, the variable is still not defined:

notPreviouslyDefined

Using a do expression, you can have an
explicit, local variable that can’t clobber
any outer variable when assigned.
ReferenceError: notPreviouslyDefined is not defined

213Summary

Unfortunately, the syntax to achieve variables that shadow is a little clunky by Coffee-
Script standards. Still, given that function parameters shadow the do expression, you
can have local variables and can even approximate a future feature of JavaScript called
let that you’ll learn about in chapter 13. Until then, that’s all there is on syntax.

7.8 Summary
CoffeeScript not only simplifies JavaScript’s core syntax but also provides some syntac-
tic sugar that can make programs easier to understand. Spread and rest parameters
and destructuring provide the means to write concise expressions where long and
confusing expressions (and statements) would otherwise be required. The syntax
changes that CoffeeScript makes to JavaScript make programming more expressive
and succinct.

 Although CoffeeScript changes JavaScript’s syntax dramatically, it makes only very
small changes to JavaScript’s semantics. You saw how to make the most natural use of
CoffeeScript’s dynamic types by learning to use duck typing.

 Finally, succinctness of expression is a trade-off, and there is some potential for
ambiguity in CoffeeScript. You learned how comprehensions and significant white-
space can be clarified and looked closely at how the common technique of fluent
interfaces can be applied in CoffeeScript programs.

 Moving on, as expressive and succinct as CoffeeScript is, the syntax and semantics
of CoffeeScript have been decided for you. To have full control over the expressive
power of the language you use, you need to be able to manipulate the language
itself—you need metaprogramming, and that’s exactly what the next chapter is about.

Metaprogramming
The term metaprogramming is often used to refer to any programming technique suf-
ficiently complicated that you should think thrice before using it. This chapter is
not about writing complicated programs. Metaprogramming is also often used to
refer to the use of metaobjects, where you create objects that create objects. This
chapter is not about programming metaobjects—you were already working with
metaobjects back in chapter 5. So, then, what is this chapter about?

 The most succinct description of metaprogramming is programs that write pro-
grams. That’s what this chapter is about. More importantly, this chapter is about
changing the way you think about your programs and the language you write them
in. To begin thinking differently, you’ll start by swapping programs with program
explanations through literate CoffeeScript. Next, you’ll explore the creation of mini-
programming languages as domain-specific languages (DSLs). Finally, you’ll look at

This chapter covers
■ Learning about literate CoffeeScript
■ Constructing domain-specific languages
■ Writing programs that write programs
■ Being metacircular: CoffeeScript in

CoffeeScript
Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch08-code.html

215Literate CoffeeScript

programs that write programs and at how you can change the language you work in by
using the CoffeeScript compiler from inside a CoffeeScript program.

8.1 Literate CoffeeScript
In literate programming, as first explained by Donald Knuth,1 the visible structure of
the program source isn’t the structure of the executable program. Instead, the visible
structure of the program is an explanation of the program in another language. Inter-
spersed code snippets make up the executable program. Inspired by the idea of liter-
ate programming, the CoffeeScript compiler supports source files where explanation
determines the structure of the source code.

 Imagine that Agtron is trying to organize a birthday party for Scruffy. He sends you
emails about it, but every time you leave your computer unattended, Scruffy reads
your email and finds out what’s going on. As a deterrent to Scruffy reading the emails,
Agtron wants a simple disguise for all of his emails so that Scruffy will have difficulty
reading them. One simple way to disguise messages is by using a cipher called Rot13.

 Rot13 is a simple letter-substitution cipher that replaces a letter with the letter 13 let-
ters after it in the alphabet. The built-in string utility for getting character codes can be
used. If the character is in the alphabet up to m, then add 13 to the character code. If
the character is after m in the alphabet, then subtract 13 from the character code. Char-
acters can be converted back using the built-in string method. A character is in a specific
range regardless of whether it’s uppercase or lowercase. Finally, converting a string is
done by converting all the characters and joining the results.

 With literate CoffeeScript you use the description of a program, such as a description of
Rot13, as the basis for the program itself. To differentiate them from regular CoffeeScript
programs, literate CoffeeScript programs are contained in files with a special extension.

8.1.1 The .litcoffee file extension

Source code contained in a file with a .litcoffee extension is considered a literate
CoffeeScript program by the compiler. The key difference between a regular Coffee-
Script program and a literate CoffeeScript program is that the comments and the pro-
gram are reversed. Instead of marking comments with #, you leave the comments raw
and indent all of the executable code:

1 Donald Knuth is a computer scientist who is sometimes referred to as the father of the analysis of algorithms.

hello.coffee hello.litcoffee

###
Log 'Hello world!' to the console
###

console.log 'Hello World!'

Log 'Hello world!' to the console

 console.log 'Hello World!'
His book Literate Programming was published in 1992.

216 CHAPTER 8 Metaprogramming

As a further example, consider a literate CoffeeScript program using an excerpt from
W. B. Yeats’s poem “The Wild Swans at Coole”:

W B Yeats
The Wild Swans at Coole

The trees are in their autumn beauty,

 trees = [{}, {}]
 for tree in trees
 tree.inAutumnBeauty = yes

The woodland paths are dry,

 paths = [{}, {}, {}]
 for path in paths
 path.dry = yes

Under the October twilight the water
Mirrors a still sky;

 octoberTwilight = {}
 stillSky = {}
 water =
 placeUnder: ->

 water.placeUnder octoberTwilight
 water.mirrors = stillSky

Upon the brimming water among the stones
Are nine-and-fifty swans.

 water.brimming = true
 water.stones = [{}, {}, {}, {}]

 class Swan
 x: 3

 for n in [1..59]
 water.stones.push new Swan

By writing the explanation first, you are forced to ponder how well the executable pro-
gram matches the explanation. In other words, writing the explanation first can change
how you think about your program.

Literate CoffeeScript files aren’t just for exploring poetry. A description of a program
can serve as the starting point for creating a literate-style CoffeeScript program. Back

Is it really literate programming?
Although Donald Knuth’s literate programming inspired literate CoffeeScript, impor-
tant aspects of Knuth’s description are missing. That shouldn’t discourage you from
taking full advantage of it, though.
to that Rot13 program then, how do you implement that with literate CoffeeScript?

Explan
the p
is flu

Impleme
of the p

is in
217Literate CoffeeScript

 Take the explanation of Rot13 and put it into a .litcoffee file. Then implement the
program by putting indented program source throughout the explanation. The follow-
ing listing shows a Rot13 program developed in exactly this way.

Rot13
A simple letter-substitution cipher that replaces a letter
with the letter 13 letters after it in the alphabet.

 charRot13 = (char) ->

The built-in string utility for getting character codes can be used

 charCode = char.charCodeAt(0)

If the character is in the alphabet up to 'm', then
add 13 to the character code

 charCodeRot13 = if charInRange char, 'a', 'm'
 charCode + 13

If the character is after 'm' in the alphabet, then
subtract 13 from the character code

 else if charInRange char, 'n', 'z'
 charCode - 13
 else
 charCode

Characters can be converted back using the built-in string method

 String.fromCharCode charCodeRot13

A character is in a specific range regardless of whether
it's uppercase or lowercase

 charInRange = (char, first, last) ->
 lowerCharCode = char.toLowerCase().charCodeAt(0)
 first.charCodeAt(0) <= lowerCharCode <= last.charCodeAt(0)

Converting a string is done by converting all the characters
and joining the results

 stringRot13 = (string) ->
 (charRot13 char for char in string).join ''

A literate CoffeeScript file is also valid syntax for Markdown. This means that any text
formatter that understands Markdown (there are many libraries for generating HTML
that understand Markdown) can turn your program into a nicely formatted document.

 If you prefer tests (discussed in chapter 10) and self-documenting code over com-
ments, then you might not find the style of literate CoffeeScript to suit your taste for
many programs. But even if literate CoffeeScript isn’t to your taste, you still share
the motivation to write programs that are well explained. That motivation also

Listing 8.1 Literate CoffeeScript Rot13

ation of
rogram
sh left.

ntation
rogram
dented.
drives the invention of domain-specific languages.

http://coffeescript.org/documentation/docs/coffee-script.html

218 CHAPTER 8 Metaprogramming

8.2 Domain-specific languages
CoffeeScript is a general-purpose programming language. It may be better suited to
some tasks than to others, but the intention is that it can be used to solve any pro-
gramming problem. In contrast, the intention of a DSL is to solve a particular type
of problem.

 This goes hand in hand with the idea that you should describe your program
how you like and then worry about the implementation later. The way you like to
describe your program may be a natural language such as English, a general-purpose
programming language like CoffeeScript, or a more focused DSL designed to solve
specific problems.

 In this section you’ll learn the difference between internal and external DSLs; dif-
ferent techniques for creating internal DSLs using object literals, fluent interfaces,
and functions; and finally how to approach the construction of an internal DSL.

8.2.1 External DSLs

Imagine for a minute that CSS doesn’t exist. How would you use CoffeeScript to style
elements in a simple HTML document?

<html>
<p>
It is very important that you understand this...
</p>

Making text contained in a element bold and red could be done by directly
manipulating those properties:

strongElements = document.getElementsByTagName 'strong'
for strongElement in StrongElements
 strongElement.fontWeight = 'bold'
 strongElement.color = 'red'

That would quickly get tedious. You could create a better syntax out of that, perhaps
by declaring style rules with objects and then using those objects to style the elements:

strongStyle:
 fontWeight: 'bold'
 color: 'red'

strongElements = document.getElementsByTagName 'strong'
for strongElement in StrongElements
 for styleName, styleValue of strongStyle
 strongElement[styleName] = styleValue

With the object syntax, you very quickly arrive at syntax very similar to CSS. The limited
vocabulary and small number of features make CSS a DSL. Although CSS is an entire
language (an external DSL), a mini-language with a limited vocabulary is often useful
in other contexts where an entire standalone language would be too time-consuming

to implement. For those cases, you can create internal DSLs.

http://en.wikipedia.org/wiki/E-mail
http://en.wikipedia.org/wiki/E-mail
http://en.wikipedia.org/wiki/E-mail

219Domain-specific languages

8.2.2 Internal DSLs
One well-known example of utilizing a DSL is the popular jQuery framework. Instead of
directly using the APIs designed for DOM manipulation, jQuery provides a DSL that sim-
plifies things. Another common use of an internal DSL is in a testing framework. For
example, suppose you want to test if an array contains a particular item. Using only the
assert module for Node.js works, but you might not find it expressive enough:

assert = require 'assert'

haystack = [1..900]
needle = 6
assert needle in haystack

How about testing that a string contains another string?

assert 'fundamental'.indexOf('fun') >= 0

That works too. But all your tests are phrased in terms of the assertion library, which
might not be very comprehensible to you when writing or reading tests. Testing
frameworks often hide these things behind a convenient DSL that makes sense in a
testing domain:

expect('fundamental').to.contain 'fun'

This is a minor shift, and for this example it’s actually more verbose. So why do it? It
makes life easier for users. The more control you have over the language, the more
power you have to create with it.

 The most common approach to creating DSLs in CoffeeScript comes from Java-
Script, and that’s to use a fluent interface. You don’t have to use a fluent interface,
though, because CoffeeScript syntax is sparse.

8.2.3 Object literals
With very little in the way of syntax, CoffeeScript object literals are a useful tool for
creating internal DSLs. Imagine Agtron standing next to your desk, coffee in hand.
“There’s a law,” he states, “known as Zawinski’s law, that ‘Every program attempts to
expand until it can read mail.’” If you’ll eventually need to write a program that deals
with email, you might as well get some practice now.

 Consider the format of the exchange between a client and a server using the Sim-
ple Mail Transfer Protocol (SMTP). In the following example, client requests are in
bold and server responses are in regular-weight font:

HELO coffeescriptinaction.com
250 OK
MAIL FROM: scruffy@coffeescriptinaction.com
250 OK - mail from <scruffy@coffeescriptinaction.com>
RCPT TO: agtron@coffeescriptinaction.com
250 OK - Recipient <agtron@coffeescriptinaction.com>
DATA
354 Send data. End with CRLF.CRLF
Hi Agtron. Just Scruffy testing SMTP.

The built-in assert module throws an
exception when an assertion fails. When it
succeeds, as it did here, then there’s no
output (the output is undefined).

An example of
communication
between a server and
client using SMTP
250 OK QUIT

220 CHAPTER 8 Metaprogramming

You might implement your SMTP library by emulating the protocol:

class Smtp
 constructor: ->
 connect: (host, port=25) ->
 send: (message, callback) ->

Would you expect users to adopt this interface?

smtp = new Smtp
smtp.connect 'coffeescriptinaction.com'
smtp.send 'MAIL FROM: scruffy@coffeescriptinaction.com', (response) ->
 if response.contains 'OK'
 smtp.send 'RCPT TO: agtron@coffeescriptinaction.com', (response) ->

What’s the problem with that? For one thing, it looks worse than the raw SMTP.
The users of your API don’t even care how SMTP works or indeed whether their
email is delivered using SMTP at all. Worse, you’re forcing users to either flatten
your API calls themselves or live in nested callback hell. Not good, but what can you
do instead?

 Have some empathy and approach the problem as a user. How should it look? How
do you want to define and send an email?

scruffysEmail = new Email
 to: ''
 from: ''
 body: '''

 '''

scruffysEmail.send()

This is simpler. Notice how any mention of SMTP is absent? A user doesn’t care about
how SMTP works; they just want to send an email. It’s up to the mail library to deter-
mine how to connect to SMTP. Instead of copying the format of the protocol, copy the
format that makes sense to people who use your library. Write the program in the lan-
guage of the user.

 The next listing shows this technique in action. This listing requires a depen-
dency called simplesmtp, so if you intend to run it directly, you should first install
the dependency:

> npm install simplesmtp

Once the dependency is installed, you can run the listing.

simplesmtp = require 'simplesmtp'

class Email
 SMTP_PORT = 25
 SMTP_SERVER = 'coffeescriptinaction.com'

Listing 8.2 An object literal–based DSL for email (email.coffee)

A library called simplesmtp is
used to handle SMTP details.

Class variables
(chapter 5).

Shorthand
constructor
 constructor: ({@to, @from, @subject, @body}) -> (chapter 5).

221Domain-specific languages

 send: ->
 @client = simplesmtp.connect SMTP_PORT, SMTP_SERVER
 @client.once 'idle', ->
 @client.useEnvelope
 from: @from
 to: @to

 @client.on 'message', ->
 client.write """
 From: #{@from}
 To: #{@to}
 Subject: #{@subject}

 #{@body}

 """
 client.end()

Using the library provided by listing 8.2 doesn’t require the user to know SMTP:

scruffysEmail = new Email
 to: 'agtron@coffeescriptinaction.com'
 from: 'scruffy@coffeescriptinaction.com'
 subject: 'Hi Agtron!'
 body: '''

 This is a test email.

 '''

scruffysEmail.send()
{ to: 'agtron@coffeescriptinaction.com',
from: 'scruffy@coffeescriptinaction.com',
subject: 'Hi Agtron!',
body: '\nThis is a test email. \n ' }
Error: connect ETIMEDOUT

Apart from object literals, what other ways are there to create a DSL in CoffeeScript?

8.2.4 Fluent interfaces

Object literal syntax works well for DSLs in CoffeeScript but not so well in JavaScript
because with all the braces ({}) and semicolons (;), JSON tends not to feel very much
like a language. This means that object literal DSLs are clunky in JavaScript, so if your
CoffeeScript library will be used from inside a JavaScript program (quite likely), you
should consider a different approach to your DSL by using a fluent interface (as dis-
cussed in chapter 7):

scruffysEmail = new Email
scruffysEmail
.to('agtron@coffeescriptinaction.com')
.from('scruffy@coffeescriptinaction.com')
.body '''

Hi Agtron!

The send method
uses simplesmtp to
connect, wait until
the connection is
ready, and then
send the message.

Invoke the constructor with
an object literal representing
the email to send.

There is no SMTP
server on the domain
coffeescriptinaction.com,
so this request will fail.
'''

o

ds
e
d.
222 CHAPTER 8 Metaprogramming

scruffysEmail.send (response) ->
 console.log response

An implementation of this fluent-style DSL appears in the following listing.

simplesmtp = require 'simplesmtp'

class Email
 SMTP_PORT = 25
 SMTP_SERVER = 'coffeescriptinaction.com'
 constructor: (options) ->
 ['from', 'to', 'subject', 'body'].forEach (key) =>
 @["_{key}"] = options?[key]
 @[key] = (newValue) ->
 @["_#{key}"] = newValue
 @

 send: ->
 client = simplesmtp.connect SMTP_PORT, SMTP_SERVER
 client.once 'idle', ->
 client.useEnvelope
 from: @_from
 to: @_to
 client.on 'message', ->
 client.write """
 From: "#{@_from}"
 To: #{@_to}
 Subject: #{@_subject}

 #{@_body}

 """
 client.end()
 @

scruffysEmail = new Email()

scruffysEmail
.to('agtron@coffeescriptinaction.com')
.from('scruffy@coffeescriptinaction.com')
.subject('Hi Agtron!')
.body '''

 This is a test email.

'''

scruffysEmail.send()

Finally, CoffeeScript syntax supports a third way to create nice-looking DSLs.

8.2.5 Function passing

The option of omitting parentheses from function calls means that a DSL can be created

Listing 8.3 A fluent interface–based DSL for email

This constructor makes the
fluent interface possible by
dynamically adding from, to,
subject, and body methods t
the instance of Email that’s
created. Each of these metho
sets a corresponding variabl
on the instance when invoke

Each dynamically added
method must return the
current object to enable
a fluent interface.

When sending the message,
properties on the object
that were set by invoking
the methods are used.

A fluent interface in action:
with an instance of Email, the
methods calls can be chained.
in CoffeeScript using function composition only (discussed in chapter 6). This has the

223Domain-specific languages

benefit of allowing a natural-looking DSL made entirely from function names. For exam-
ple, consider a send function that accepts another function as the parameter:

send = (next) ->
 http.send next()

email = ->

The syntax is appealing:

send email (body 'Hi Agtron') to 'agtron@coffeescriptinaction.com'

Unfortunately, a DSL that uses function composition only is generally limited to a sin-
gle line because of significant indentation. To get multiple lines, you might have to
resort to using parentheses and line-continuing backslashes:

send email \
(body 'Hi Agtron!')\
(to 'agtron@coffeescriptinaction.com')

That makes DSLs based purely on the techniques of function composition a bit clunky
in CoffeeScript. That said, there are other ways to use functions for DSLs more effec-
tively, one of which you’ll see in the examples that follow.

8.2.6 Constructing a DSL

The lack of syntactic noise in CoffeeScript has meant that people attracted to the
notion of writing DSLs have flocked to the language. Here are some examples of
domains for which DSLs have been created in CoffeeScript and an accompanying syn-
tax example that’s easily implemented in CoffeeScript. Implementing handlers for
HTTP requests has been omitted here simply because you have, by now, seen it so
many times that it would be rather uninteresting.

HTML
There are three basic ways that programmers deal with HTML from inside their own
languages: templates, hooks, and language DSLs that allow them to compose HTML
entirely inside their program. One way to compose HTML inside CoffeeScript is with a
small DSL:

loggedIn = -> true

doctype 5
html ->
 body ->
 ul class: 'info', ->
 li -> 'Logged in' if loggedIn()

Here’s the HTML generated by this CoffeeScript DSL (with newlines and indentation
added for readability):

<!DOCTYPE html>
<html>
 <body>
 <ul class='info'>

 Logged in

224 CHAPTER 8 Metaprogramming

The nice thing about this approach to HTML is that you have the full power of Coffee-
Script in your HTML. In the next listing you can see a basic implementation of this
HTML DSL that supports a subset of HTML elements.

doctype = (variant) ->
 switch variant
 when 5
 "<!DOCTYPE html>"

markup = (wrapper) ->
 (attributes..., descendents) ->
 attributesMarkup = if attributes.length is 1
 ' ' + ("#{name}='#{value}'" for name, value of attributes[0]).join ' '
 else
 ''
 "<#{wrapper}#{attributesMarkup}>#{descendents() || ''}</#{wrapper}>"

html = markup 'html'
body = markup 'body'
ul = markup 'ul'
li = markup 'li'

The implementation in listing 8.4 supports only a very small subset of elements. But it
does demonstrate how well the CoffeeScript syntax can be formed to match your
needs. A similar approach can be applied to CSS.

CSS
CSS has traditionally adhered to the principle of least power. Unfortunately, over time
least power has turned into insufficient power for many people. The most common
approach to tackling the problem has been writing CSS preprocessors such as Less
and Sass. CoffeeScript is also a preprocessor, so at a basic level, Sass is to CSS as Coffee-
Script is to JavaScript.

 An alternative approach to a preprocessor is to embed a DSL in CoffeeScript:

emphasis = ->
 fontWeight: 'bold'

css
 'ul':
 emphasis()
 '.x':
 fontSize: '2em'

The output from this DSL is corresponding CSS:

ul {
 font-weight: bold;
}
.x {
 font-size: 2em;

Listing 8.4 A basic DSL for HTML

In this example, only
a single doctype is
supported.

Attributes for the HTML element
are contained in all of the
parameters except for the last
one, which is always reserved for
a function containing any nested
HTML elements.

Invoke the css function
with the object literal
that follows.
}

le

y
d
225Domain-specific languages

The need to quote CSS selectors by putting them in strings makes the CoffeeScript
DSL more awkward than raw CSS. In the following listing you can see an implementa-
tion of a small DSL for CSS.

css = (raw) ->
 hyphenate = (property) ->
 dashThenUpperAsLower = (match, pre, upper) ->
 "#{pre}-#{upper.toLowerCase()}"
 property.replace /([a-z])([A-Z])/g, dashThenUpperAsLower

 output = (for selector, rules of raw #B
 rules = (for ruleName, ruleValue of rules
 "#{hyphenate ruleName}: #{ruleValue};"
).join '\n'
 """
 #{selector} {
 #{rules}
 }
 """
).join '\n'

The final novel DSL you will look at is an SQL DSL in CoffeeScript.

SQL
With CoffeeScript’s liberal syntax, it’s tempting to attempt an SQL DSL that looks just
like regular SQL by endlessly chaining functions:

SELECT '*' FROM 'users' WHERE 'name LIKE "%scruffy%"'

But SQL syntax is a little more complicated than you might think, and when you mix
that with CoffeeScript’s significant indentation, it can get ugly. The simplest way to
implement an SQL DSL in CoffeeScript is to use the object literal style:

query
 SELECT: '*'
 FROM: 'users'
 WHERE: 'name LIKE "%scruffy%"'

Remember, property values can be evaluated at runtime. This can be powerful, but it
might make your DSL too permissive:

query
 SELECT: '*'
 FROM: 'users'
 WHERE: "name LIKE '%#{session.user.name}%'"

What if session.user.name contains something that should never appear in an SQL
query? Correct handling of SQL connections, databases, and queries is complicated.
When you create a DSL, be careful that what you create is appropriate to the domain.

Listing 8.5 A basic DSL for CSS

CSS attributes use
dashes, but only
camel case is possib
in CoffeeScript. This
function converts
camel case propert
names to hyphenate
property names.

226 CHAPTER 8 Metaprogramming

 Writing internal DSLs not only means bending the language to fit your needs but
also means writing programs that target the needs of users, instead of focusing on
implementation details that users don’t care about. What could be better than a pro-
gram that’s easy to write? A program that you don’t have to write at all! How do you
achieve this? Instead of writing programs all the time, you write programs that write
other programs. There’s one program you already use that does this for you—it’s
called the CoffeeScript compiler.

8.3 How the compiler works
The CoffeeScript compiler is written in CoffeeScript. The first CoffeeScript compiler
was written in Ruby, but since version 0.5 the compiler has been implemented in Cof-
feeScript. That’s right, CoffeeScript is compiled using CoffeeScript, something you
should spend some time to ponder, as Scruffy does in figure 8.1. The diagram that
Scruffy is holding in figure 8.1 is called a Tombstone Diagram (or T-Diagram). If
you’re interested in exploring compilers outside of this chapter, then you’ll likely
come across more of them.

 Creating the initial compiler for a new language in an existing language and
then using the new language to create another compiler that can compile the new
language (and the compiler itself!) is known as bootstrapping a compiler. You need
to know this about the CoffeeScript compiler because you’re about to make some
changes to it.
Figure 8.1 The CoffeeScript compiler is written in CoffeeScript.

227How the compiler works

Imagine that one night you’re drinking a coffee and relaxing with Scruffy and
Agtron. Scruffy jokes that he’d like the function syntax for CoffeeScript to look like
lambda calculus:

I = (x) -> x
I = λx.x

Scruffy laments that if only he had real macros in CoffeeScript, he could do what he
likes. Agtron pauses, looks at Scruffy, and remarks, “Why don’t you just modify Coffee-
Script? You could call your custom extension ScruffyCoffee.”

In order to make changes to the CoffeeScript compiler, you first need to understand
what it does. As with many things in CoffeeScript, you can understand much of this by
experimentation on the REPL. At a high level, the CoffeeScript compiler understands
the CoffeeScript you provide it by first splitting it into tokens, performing some
rewrites on those tokens, and then creating an abstract syntax tree that’s a representa-
tion of your CoffeeScript program. Figure 8.2 demonstrates the high-level steps that
the CoffeeScript 1.6 compiler takes.

 To get a basic grasp of this process for CoffeeScript, consider the simple part of the
CoffeeScript syntax that Scruffy wants to change: function syntax. The basic expression

Use the source
The annotated source code for CoffeeScript is available online. Because CoffeeScript
is written in CoffeeScript, you will, by now, be able to read it comfortably:

http://coffeescript.org/documentation/docs/coffee-script.html

To navigate to other parts of the documented source, use the Jump To link at the top
right of the online CoffeeScript documentation pages.

The current CoffeeScript
function syntax The syntax Scruffy wants

CoffeeScript to support

CoffeeScript program

Token stream

CoffeeScript

tokenize

parse

compile

rewrite

Abstract syntax tree (AST)

JavaScript program Figure 8.2 The internal

JavaScript CoffeeScript compilation process

http://coffeescript.org/documentation/docs/coffee-script.html

228 CHAPTER 8 Metaprogramming

that you’ll examine in the CoffeeScript compiler is the identity function assigned to a
variable I:

I = (x) -> x

The first thing the compiler must do is convert this string (input stream) to tokens.

8.3.1 Tokenizing

During compilation, the first step is to use a lexer to covert the input into an array of
tokens known as the token stream. Consider the tokens that the identity function
assignment expression produces:

coffee = require 'coffee-script'

expression = 'I = (x) -> x'

coffee.tokens expression
[['IDENTIFIER', 'I'],
['=', '='],
['PARAM_START', '('],
['IDENTIFIER', 'x'],
['PARAM_END', ')'],
['->', '->'],
['INDENT', 2],
['IDENTIFIER', 'x'],
['OUTDENT', 2],
['TERMINATOR', '\n']]

The lexer has generated tokens that represent the string of CoffeeScript code it was
invoked with. Here’s a visual representation of how the tokens are broken down:

I = (x) -> x

When tokenizing, it’s common for a compiler to ignore some things like comments
and specific characters by not generating any tokens for them. Here, whitespace in
the middle of the line has been ignored. In addition to skipping characters, the
CoffeeScript compiler also modifies the token stream by adding tokens. Notice that
the INDENT and OUTDENT tokens don’t correspond to any indentation in the original

Compiler versions
The CoffeeScript compiler version described here is CoffeeScript 1.6.2, so depending
on the version of the compiler you have, the results you get when inspecting the com-
piler may be different (particularly regarding the things that get rewritten). But the gen-
eral structure of the compiler will be the same, regardless of the version you’re using.

These tokens have
been modified to
show only the token
types and values.

IDENTIFIER = PARAM_START IDENTIFIER PARAM_END -> INDENT IDENTIFIER OUTDENT
source string. The rewriter has added these tokens.

229How the compiler works

8.3.2 Rewriting

The myriad of syntax options in CoffeeScript means that tokenizing and building an
abstract syntax tree for everything is a complicated task. Because some of the syntax is
mostly convenience, CoffeeScript also has a rewriter that will modify the token stream.
The rewriting done by the compiler is described here.

IMPLICIT INDENTATION

One of the things that you’ve just seen is that the rewriter adds implicit indentation.
For example, when you write a function inline, the rewriter assumes that you meant it
with indentation:

I = (x) -> x

The [INDENT] in the token stream is placed before the function body:

I = (x) ->[INDENT]x

Notice that indentation doesn’t require a newline. Of course, in practice you always
think of indentation as being accompanied by a preceding newline because that’s the
only way you can write it.

NEWLINES

The rewriter also removes some leading and mid-expression newlines:

a = 1
b = 2

Any important newline, such as one that indicates the end of an expression (a termi-
nator) is preserved:

a = 1 \n a = 2 \n

Further rewrites are performed for braces and parentheses.

BRACES AND PARENTHESES

In most places, parentheses and braces are optional. This is convenient but can leave
room for some ambiguity. The simplest way for the compiler to deal with these issues
is with the rewriter:

I = (x) -> x

I 2

These common cases where parentheses are implicit and should be added are easy
to see:

I (2) \n

IDENTIFIER = NUMBER TERMINATOR IDENTIFIER = NUMBER TERMINATOR
IDENTIFIER CALL_START NUMBER CALL_END TERMINATOR

230 CHAPTER 8 Metaprogramming

But more complicated examples can be difficult to discern. How do you tokenize
this doozy?

f ->
 a
.g b, ->
 c
.h a

Probably you don’t tokenize it because you avoid writing code like that. Although
you have the option to avoid writing ambiguous code, the compiler doesn’t have the
same luxury. It must reliably accommodate the different styles, edge cases, and inci-
dentally complex syntax of many programmers. Thus, the full rewriter for braces
and parentheses is complicated. Finally, postfix conditionals need some special treat-
ment by the rewriter.

POSTFIX

A postfix conditional such as play 'football' unless injured is convenient syntactic
sugar but it poses a problem for the compiler, because it reads backwards. To deal with
this, the CoffeeScript compiler tags postfix conditionals:

play ('football') unless injured \n

Why does the CoffeeScript compiler do all this rewriting? Because rewriting simplifies
the next compilation step.

8.3.3 The abstract syntax tree

Once the compiler has a token stream, it’s ready to use it to create an abstract syntax
tree (AST). Whereas the token stream represents the syntax of the program, the AST
represents the meaning of the program in terms of the rules of the CoffeeScript gram-
mar. Going back to the simple function expression for which Scruffy wants to provide
an alternative syntax, what does the AST for that look like? To get the AST you invoke
coffee.nodes with either a string of CoffeeScript or a CoffeeScript token stream:

coffee = require 'coffee-script'

expression = 'I = (x) -> x'

tokens = coffee.tokens expression

coffee.nodes tokens
{ expressions:
[{ variable: [Object],
value: [Object],
context: undefined,
param: undefined,

IDENTIFIER CALL_START STRING CALL_END POST_IF IDENTIFIER TERMINATOR
subpattern: undefined }] }

231How the compiler works

The default string representation of an object on the REPL lacks some details impor-
tant for understanding what’s going on here. By using JSON.stringify and format-
ting the result, you can better see the AST:

console.log JSON.stringify coffee.nodes, null, 2

Now you see the AST object for the I = (x) -> x expression:

{
 "expressions": [
 {
 "variable": {
 "base": {
 "value": "I"
 },
 "properties": []
 },
 "value": {
 "params": [
 {
 "name": {
 "value": "x"
 }
 }
],
 "body": {
 "expressions": [
 {
 "base": {
 "value": "x"
 },
 "properties": []
 }
]
 },
 "bound": false
 }
 }
]
}

Figure 8.3 contains a graphical representation of this AST. It demonstrates a remark-
able uniformity and can give new insight into the nature of some expressions. For
example, a function is a value with params and a body.

 Now that you understand the tokens that are generated from your source code and
the AST that’s generated from the tokens, you’re equipped to modify either (or both)
of them to dynamically modify CoffeeScript source inside your CoffeeScript program.
What does this mean? It means you can shape your program source to better match
your ideas.

232 CHAPTER 8 Metaprogramming

8.4 Bending code to your ideas
To really create a language you need to be able to modify the syntax. Although the inter-
nal DSL-making potential of CoffeeScript means you can create mini-languages for
some tasks, you’re still fundamentally constrained to what CoffeeScript syntax accepts.

 In order to stretch the language itself, you need to be able to modify it. For a com-
piled language like CoffeeScript, that means you need to intercept the compiler
somehow. To do this you can either work with the compiler at the token or AST stage,
or you can place something before or after the compiler. The easiest (though not the
most sensible) way to do this is to just preprocess source code using eval.

8.4.1 Can you just eval?
JavaScript has an eval function that takes a string of JavaScript code and executes it in
the running program. The string of code is evaluated as if you had written it directly
into the program. For example, var declarations will go into the current scope. Try it
on the Node JavaScript REPL:

node> eval('var x = 2');
node> x
node> # 2

The use of eval is considered dangerous because the code is executed with the privi-
leges of the caller. This means that anything you eval can do anything that can be
done at the point the eval was invoked. The eval function is dangerous, but it’s cer-

expressions

[expression]

variable value

I = (x) -> x

base

value

I

properties

name[]

value

x []

expressions bound

base properties

value

x

params

[param]

[expression] false

body

Figure 8.3 An example
abstract syntax tree
tainly interesting.

233Bending code to your ideas

 The CoffeeScript compiler also has an eval method that compiles and evaluates a
string of program code. The difference with the eval provided by the CoffeeScript
compiler (apart from the fact that it evaluates CoffeeScript) is that by default it sand-
boxes the code that it evaluates by running it in a separate context. The evaluation of
the eval call is the evaluation of the code contained in the string:

coffee = require 'coffee-script'
coffee.eval '2'
2

evaluation = coffee.eval '2 + 4'
6

evaluation
6

But any variables in the evaled string are only defined in the sandbox:

coffee.eval '''
x = 1
y = 2
x + y'''
3

x
Reference Error: x is not defined

y
Reference Error: y is not defined

Still, the CoffeeScript eval allows you to execute arbitrary snippets of CoffeeScript
code at runtime. Further, because it’s a string that you pass to the eval function, you
can generate that string any way you like:

coffee = require 'coffee-script'

x = 42
y = coffee.eval "#{x} + 3"

y
45

This suggests an easy way to get Scruffy’s syntax. Use a regular expression to replace
his expression with an equivalent function:

coffee = require 'coffee-script'

scruffyCode = '''
I = λx.x
'''

coffeeCode = scruffyCode.replace /λ([a-zA-Z]+)[.]([a-zA-Z]+)/g, '($1) -> $2'
identity = coffee.eval coffeeCode
identity 2
#2

hello = identity (name) -> "Hello #{name}"

[Function]

234 CHAPTER 8 Metaprogramming

hello 'Scruffy'
'Hello Scruffy'

In the listing that follows, you can see a tiny command-line CoffeeScript program that
can execute a .scruffycoffee file using this technique. A .scruffycoffee file is simply a
CoffeeScript program that also supports Scruffy’s desired λ syntax.

fs = require 'fs'
coffee = require 'coffee-script'

evalScruffyCoffeeFile = (fileName) ->
 fs.readFile fileName, 'utf-8',(err, source) ->
 coffeeCode = source.replace /λ([a-zA-Z]+)[.]([a-zA-Z]+)/g,'($1) -> $2'
 coffee.eval coffeeCode

fileName = process.argv[2]
unless fileName
 console.log 'No file specified'
 process.exit()
evalScruffyCoffeeFile fileName

Imagine the possibilities when you can evaluate arbitrary snippets of code. Now, stop
imagining the possibilities and consider instead your responsibility to write compre-
hensible programs. Still, the presence of eval means you can metaprogram to your
heart’s content with just a bit of string interpolation. Apart from the dangers, Coffee-
Script isn’t very well suited for this.

 The regular expression and eval solution aren’t really workable, and the program
in listing 8.6 is very limited due to the simplicity of the regular expression. As you try
to make the regular expression more complete, you’ll realize that you’re essentially
just poorly reimplementing the CoffeeScript tokenizer for no good reason. Instead,
you’ll be better off modifying the token stream or the AST.

8.4.2 Rewriting the token stream

A slightly less quick-and-dirty way to metaprogram (compared to evaluating strings)
is to directly modify the token stream before the AST is generated. By doing that,
you’re adding your own rewriter to the compilation process. Remember Scruffy’s
desired syntax?

I = λx.x

How is it tokenized now?

I = λx . x \n

Your rewriter will need to see the λ symbol and know that it needs to rewrite the rest of

Listing 8.6 ScruffyCoffee with eval and regular expressions

Manipulating strings often means heavy use
of regular expressions. They’re powerful
and succinct, but for complicated tasks

they can become difficult (or impenetrable)
for others to read.

IDENTIFIER = IDENTIFIER . IDENTIFIER TERMINATOR
the expression to a function:

L
a

th

th

a

c

235Bending code to your ideas

coffee = require 'coffee-script'

scruffyCoffee = '''
I = λx.x
'''

tokens = coffee.compile scruffyCoffee

i = 0
while token = tokens[i]
 # handle token
 i++

In the next listing you can see a new implementation of ScruffyCoffee that uses a cus-
tom rewriter instead of a nasty-looking regular expression.

fs = require 'fs'
coffee = require 'coffee-script'

evalScruffyCoffeeFile = (fileName) ->
 fs.readFile fileName, 'utf-8', (error, scruffyCode) ->
 return if error
 tokens = coffee.tokens scruffyCode

 i = 0
 while token = tokens[i]
 isLambda = token[0] is 'IDENTIFIER' and /^λ[a-zA-Z]+$/.test token[1]
 if isLambda and tokens[i + 1][0] is '.'
 paramStart = ['PARAM_START', '(', {}]
 param = ['IDENTIFIER', token[1].replace(/λ/, ''), {}]
 paramEnd = ['PARAM_END', ')', {}]
 arrow = ['->', '->', {}]
 indent = ['INDENT', 2, generated: true]
 tokens.splice i, 2, paramStart, param, paramEnd, arrow, indent
 j = i
 while tokens[j][0] isnt 'TERMINATOR'
 j++
 outdent = ['OUTDENT', 2, generated: true]
 tokens.splice j, 0, outdent
 i = i + 3
 continue
 i++
 nodes = coffee.nodes tokens
 javaScript = nodes.compile()
 eval javaScript

fileName = process.argv[2]
process.exit 'No file specified' unless fileName
evalScruffyCoffeeFile fileName

Messing around with the token stream is difficult, potentially dangerous, and overall
not a whole lot of fun. Luckily, there’s a more structured representation of your Coffee-

Listing 8.7 Custom rewriter

If the token is a λ, then rewrite
expression to a function.

oop through
ll the tokens.
When a λ is

encountered,
e remainder

of the tokens
that make up
e expression

must be
converted to
n equivalent
CoffeeScript

function,
including the
orrect indent

levels.
Script program that you can manipulate—the AST.

236 CHAPTER 8 Metaprogramming

8.4.3 Using the abstract syntax tree

The next option available to you for implementing Scruffy’s lambda syntax is to mod-
ify the abstract syntax tree in place before generating JavaScript. The AST is excellent
for analyzing source code.

MODIFYING PROGRAMS

Imagine it’s opposites day and you want addition to replace subtraction (and vice
versa) in your CoffeeScript program. How can you swap them? By manipulating the
AST! First, use the compiler to generate an AST for the expression 2 + 1:

coffee = require 'coffee-script'
nodes = coffee.nodes '2 + 1'

The node for this addition expression has an operator and first and last proper-
ties representing the left and right sides of the operator, respectively:

addition = nodes.expressions[0]
addition.operator
'+'

addition.first.base.value
'2'

addition.second.base.value
'1'

When you compile these nodes you get the JavaScript you expect:

nodes.compile bare: true
'return 2 + 1;'

Now, if you change a node, you’ll change the compiled output:

addition.operator = '-'
nodes.compile bare: true
'return 2 - 1'

Great! You know how to manipulate the AST, but what can you actually do with that?

GENERATING CODE

Imagine you’re working in a team and they don’t write tests. In the following listing
you can see a basic implementation of using the AST to generate files that contain
tests for class methods. This same technique could be used dynamically to look at
code coverage.

fs = require 'fs'
coffee = require 'coffee-script'

capitalizeFirstLetter = (string) ->
 string.replace /^(.)/, (character) -> character.toUpperCase()

generateTestMethod = (name) ->

Listing 8.8 Generating method tests via the AST
 "test#{capitalizeFirstLetter name}: -> assert false"

237Bending code to your ideas

walkAst = (node) ->
 generated = "assert = require 'assert'"

 if node.body?.classBody
 className = node.variable.base.value
 methodTests = for expression in node.body.expressions
 if expression.base?.properties
 methodTestBodies = for objectProperties in expression.base.properties
 if objectProperties.value.body?
 generateTestMethod objectProperties.variable.base.value
 methodTestBodies.join '\n\n '
 methodTestsAsText = methodTests.join('').replace /^\n/, ''
 generated += """
 \n
 class Test#{className}
 #{methodTestsAsText}

 test = new Test#{className}
 for methodName of Test#{className}::
 test[methodName]()
 """

 expressions = node.expressions || []
 if expressions.length isnt 0
 for expression in node.expressions
 generated = walkAst expression
 generated

generateTestStubs = (source) ->
 nodes = coffee.nodes source
 walkAst nodes

generateTestFile = (fileName, callback) ->
 fs.readFile fileName, 'utf-8', (err, source) ->
 if err then callback 'No such file'
 testFileName = fileName.replace '.coffee', '_test.coffee'
 generatedTests = generateTestStubs source
 fs.writeFile "#{testFileName}", generatedTests, callback 'Done'

fileName = process.argv[2]

unless fileName
 console.log 'No file specified'
 process.exit()

generateTestFile fileName, (report) ->
 console.log report

Listing 8.8 works on a file containing a class. Consider a file called elephant.coffee
containing a class declaration:

class Elephant
 walk: ->
 'Walking now'
 forget: ->

 'I never forget'

238 CHAPTER 8 Metaprogramming

When listing 8.8 is invoked with elephant.coffee, it generates a corresponding test class:

> coffee 8.8.coffee elephant.coffee
> # Generated elephant_test.coffee

The generated test file contains test stubs for all of the methods on the class:

assert = require 'assert'

class TestElephant
 testWalk: -> assert false

 testForget: -> assert false

test = new TestElephant
for methodName of TestElephant::
 test[methodName]()

The AST is an excellent source of information about a program. Using the AST and a
corresponding grammar is how the CoffeeScript compiler generates your JavaScript
program. What’s a grammar? Agtron is glad you asked. The grammar is the defini-
tion for the semantic structure of the language. The grammar determines how the
parser interprets the token stream. All 1.x versions of the CoffeeScript compiler use
the Jison parser-generator (http://jison.org), so that’s a good place to start. If you
want a new language, you should probably start from a clean slate. At heart, Coffee-
Script is just JavaScript.

8.4.4 It’s just JavaScript

Amid all the excitement of modifying the CoffeeScript compiler to support whatever
syntax takes your fancy on a given day, it’s easy to lose sight of the wider ecosystem.
You see, it’s important that your CoffeeScript programs are still just JavaScript. Sure,
JavaScript is increasingly becoming a compilation target for a wide range of different
languages, but the power of CoffeeScript lies in only doing cleanups and being a small
step from JavaScript for those people who want minimal syntax and can live with sig-
nificant indentation.

 Thus, Scruffy’s syntax using the λ character is probably not something you’d do in
practice. But support for the upcoming JavaScript let syntax (discussed in chapter 13)
is something that you might want to add:

let x = 3
 console.log x
 # 3

console.log x
ReferenceError: x is not defined

Listing 8.9 shows Scruffy’s implementation of ScruffyCoffee that supports let by using
a rewriter. This listing is invoked with an input file containing a let expression:

if true
 let x = 2, y = 2
 console.log 'let expression'

 console.log 'wraps block in closure'

http://jison.org
http://jison.org

let

239Bending code to your ideas

The generated JavaScript uses a function closure to approximate a let:

var ok;

ok = require('assert').ok;

if (true) {
 (function(x, y) {
 console.log('let expression');
 return console.log('wraps block in closure');
 })(2, 2);
}

ok(typeof x === "undefined" || x === null);

ok(typeof y === "undefined" || y === null);

Scruffy achieved the function closure by rewriting the token stream so that the let
expression is replaced with a do that has the let variables as parameters. Any code at
the same level of indentation as the let is then scoped inside the let:

do (x = 2, y = 2) ->
 console.log 'let expression'
 console.log 'wraps block in closure'

Scruffy’s implementation of let is limited. It supports only one let per block and it
must be the first line. Also, because let is a word reserved by the CoffeeScript com-
piler, Scruffy had to rewrite the raw source before passing it to the tokenizer.

fs = require 'fs'
coffee = require 'coffee-script'

evalScruffyCoffeeFile = (fileName) ->
 fs.readFile fileName, 'utf-8', (error, scruffyCode) ->
 letReplacedScruffyCode = scruffyCode.replace /\slet\s/, ' $LET '
 return if error
 tokens = coffee.tokens letReplacedScruffyCode

 i = 0
 consumingLet = false
 waitingForOutdent = false
 while token = tokens[i]
 if token[0] is 'IDENTIFIER' and token[1] is '$LET'
 consumingLet = true
 doToken = ['UNARY', 'do', spaced: true]
 tokens.splice i, 1, doToken
 else if consumingLet
 if token[0] is 'CALL_START'
 paramStartToken = ['PARAM_START', '(', spaced: true]
 tokens[i + 1][2] = 0
 tokens.splice i, 1, paramStartToken
 if token[0] is 'CALL_END'
 paramEndToken = ['PARAM_END', ')', spaced: true]

Listing 8.9 Scruffy’s let implementation using a custom rewriter

Replace
keyword
with the
string
$LET.

If there is a $LET in
the token stream,
convert it to a do.

The let variables
are passed in as
parameters to
the do.
 functionArrowToken = ['->', '->', spaced: true]

240 CHAPTER 8 Metaprogramming

 indentToken = ['INDENT', 2, generated: true]
 tokens.splice i, 2, paramEndToken, functionArrowToken, indentToken
 consumingLet = false
 waitingForOutdent = true
 else if waitingForOutdent
 if token[0] is 'OUTDENT' or token[0] is 'TERMINATOR'
 outdentToken = ['OUTDENT', 2, generated: true]
 tokens.splice i, 0, outdentToken
 waitingForOutdent = false
 i++

 nodes = coffee.nodes tokens

 javaScript = nodes.compile()
 eval javaScript

fileName = process.argv[2]
process.exit 'No file specified' unless fileName
 evalScruffyCoffeeFile fileName

As before, modifying the token stream is possible, but it can be risky and is definitely
not for the faint of heart. Scruffy achieved his implementation of let by rewriting
source before tokenization and by rewriting the token stream, but it would also be
possible to manipulate the AST instead of using a token rewriter. It’s your language, so
for your circumstances it might make sense to completely change the syntax. You own
the language.

8.5 Summary
Writing programs that write programs is what metaprogramming is all about. In this
chapter you saw how literate CoffeeScript works and how it can change the way you
think about program source. You then saw how to adapt existing CoffeeScript syntax
and create domain-specific languages that provide a closer fit than plain CoffeeScript
for certain types of problems. Finally, you saw how to modify CoffeeScript itself from
inside a CoffeeScript program.

 While learning what works in CoffeeScript, you also saw that CoffeeScript isn’t a
Lisp. The CoffeeScript compiler is written in CoffeeScript, but it doesn’t have a meta-
circular evaluator, and the eval function is mostly a distraction. Another way that
CoffeeScript is not a Lisp is that it doesn’t have macros. That said, there are moves to
implement hygienic macros in JavaScript. If you’re interested in that, then you should
check out the sweet.js project (sweetjs.org). It’s also possible to create macros for
CoffeeScript, but that’s a lesson for another day.

 In the next chapter you’ll look at how the existing CoffeeScript syntax and seman-
tics work in asynchronous environments.

The body of
the do is

indented.

The next
unbalanced
outdent must
indicate the end
of the current
block. That’s
where the do
must also be
outdented.

Composing
the asynchronous
Remember imperative programs? They’re a bit like the list of chores that Scruffy’s
mum used to leave him:

Clean your room
Take out the trash
Do your homework
No games until you finish your chores!

Scruffy could do the chores in any order, but he couldn’t play until the chores were
finished. If everything is synchronous, then games just go after chores:

chores()
games()

This chapter covers
■ The limits of processing data synchronously
■ How an event loop works and why you need to

think asynchronously
■ Events as data and data as events
■ Event emitters and how to compose event

streams
Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch09-code.html

242 CHAPTER 9 Composing the asynchronous

You’ve learned about things that are asynchronous. If Scruffy pays Agtron to do his
chores, then he can start his games immediately. Unfortunately, if Agtron never fin-
ishes the chores, then Scruffy is in big trouble. You learned that the solution to this in
CoffeeScript is to use a callback:

chores games

This is the equivalent of Scruffy asking Agtron to tell him when the chores are done so
that he can start playing games. It’s also the programming model used in almost all
CoffeeScript programs.

 Asynchronous programming changes the way that programs are structured. Fur-
ther, not only are all programs in CoffeeScript asynchronous, but they also run on a
single event loop. This presents unique challenges when you’re writing programs.

 In this chapter you’ll start by processing some data synchronously and see how far
you can get before a synchronous approach breaks down. Then you’ll see how to write
programs using an asynchronous approach and learn how to manage the challenges
that asynchronous programming presents.

9.1 Data processing
All programs need to deal with data: reading data in, processing (usually), and writing
data out. Although the most common way to read, process, and write is synchronously,
the synchronous approach quickly breaks down in a CoffeeScript program due to the
nature of the event loop. In this section you’ll find out exactly why it breaks down and
what you can do about it.

 Imagine Agtron and Scruffy are organizing the World Volcano Mogul Skiing
Championship. You’re working with them to display the names of competitors, one
per second, on electronic billboards placed strategically across the volcano tops. The
names must be displayed in alphabetical order, but they’re supplied in random order
in a file called competitors with each line containing one competitor in the format
Competitor number: Last name, First name :

0212: Turnbill, Geralyn
0055: Spielvogel, Cierra
0072: Renyer, Connie
0011: Engholm, Ciara
0088: Gitting, Estrella

The entire file contains 1,500 names. To sort the names, you’ll first need to read the
file into an array. Suppose you’re using Node.js to do this, and that, without knowing
any better, you’re doing it synchronously. What happens?

9.1.1 Reading
It’s possible to read a file synchronously in Node.js and then convert the response to
an array:

fs = require 'fs'
raw = fs.readFileSync 'competitors', 'utf-8'

competitors = raw.split /\n/

243Data processing

But the standard approach is to read the file asynchronously and pass in a callback
that’s invoked when the file is read:

readFile = (file, callback) ->
 fs.readFile file, 'utf-8', (error, response) ->
 throw error if error
 callback response

Reading files asynchronously is the standard approach because doing things synchro-
nously can have disastrous consequences, as you’ll soon see.

 A function to get an array of the competitors asynchronously invokes the readFile
function with another callback function that converts the response to an array:

readFileAsArray = (file, callback) ->
 asArray = (data, delimiter) ->
 callback data.split(delimiter)
 readFile(file, asArray)

This function can be invoked with a callback that prints the resulting array:

readFileAsArray 'competitors', (result) ->
 console.log result
['0212: Turnbill, Geralyn'
'0055: Spielvogel, Cierra'
'0072: Renyer, Connie'
'0011: Engholm, Ciara'
'0088: Gitting, Estrella']

The asynchronous version might seem a bit inside out. So why bother doing things
asynchronously? To appreciate this technique, try processing the data from the file.

9.1.2 Sorting

Array::prototype has a built-in sort method. When invoked with no arguments, the
array is sorted in lexicographical order—like a dictionary:

[4,3,4,7,6].sort()
[3,4,4,6,7]

['aardvark', 'zebra', 'porcupine'].sort()
['aardvark', 'porcupine', 'zebra']

Suppose you have the array of competitors assigned to a competitors variable:

competitors.sort()
['0011: Engholm, Ciara',
'0055: Spielvogel, Cierra',
'0072: Renyer, Connie',
'0088: Gitting, Estrella',
'0212: Turnbill, Geralyn']

You don’t just want the competitors sorted lexicographically, though; you want them

Takes file to read
and callback

Splits string
on delimiter Invokes readFile with

file and strategy
sorted lexicographically by their last name.

244 CHAPTER 9 Composing the asynchronous

SORT COMPARATOR

To sort the competitors by last name, you first need a function that can compare com-
petitors on their last name. This function takes two competitor names, determines
their last names, and returns -1 if the first competitor should come first or 1 if the sec-
ond competitor should come first:

compareOnLastName = (competitors...) ->
 lastName = (s) ->
 s.split(/\s/g)[1]
 if lastName(competitors[0]) > lastName(competitors[1])
 1
 else
 -1

compareOnLastName "0212: Turnbill, Geralyn", "0072: Renyer, Connie"
1

When you invoke sort with compareOnLastName, the array is sorted, ordering
the elements:

competitors.sort compareOnLastName
["0011: Engholm, Ciara"
"0088: Gitting, Estrella"
"0072: Renyer, Connie"
"0455: Spielvogel, Cierra"
"0212: Turnbill, Geralyn"]

This sorting is synchronous. There’s no callback—no way to say “go off and sort this
array and let me know when it’s done.” It works, though, and a program that reads the
competitors file, sorts the competitors on last name, and serves the sorted array
wrapped in JSON ready to be used for the billboards is provided in the following listing.

fs = require 'fs'
http = require 'http'

readFile = (file, strategy) ->
 fs.readFile file, 'utf-8', (error, response) ->
 throw error if error

Array::sort is destructive
Note that sort is destructive. The original array is sorted in place and returned:

sortedCompetitors = competitors.sort()
sortedCompetitors is competitors
true

Being destructive means that the built-in sort isn’t well suited to function composi-
tion (discussed in chapter 6).

Listing 9.1 Displaying names sorted on a field inefficiently

Get the last name.

Compare the
strings on the
last name.
 strategy response

245Data processing

readFileAsArray = (file, delimiter, callback) ->
 asArray = (data) ->
 callback data.split(delimiter).slice(0,-1)
 readFile(file, asArray)

compareOnLastName = (a,b) ->
 lastName = (s) ->
 s.split(/\s+/g)[1].replace /,/, ','
 if !a or !b
 1
 else if lastName(a) >= lastName(b)
 1
 else
 -1

sortedCompetitorsFromFile = (fileName, callback) ->
 newline = /\n/gi
 readFileAsArray fileName, newline, (array) ->
 callback array.sort(compareOnLastName)

makeServer = ->
 responseData = ''
 server = http.createServer (request, response) ->
 response.writeHead 200, 'Content-Type': 'text/html'
 response.end JSON.stringify responseData
 server.listen 8888, '127.0.0.1'
 (data) ->
 responseData = data

main = (fileName) ->
 server = makeServer()

 loadData = ->
 console.log 'Loading data'
 sortedCompetitorsFromFile fileName, (data) ->
 console.log 'Data loaded'
 server data

 loadData()
 fs.watchFile fileName, loadData

if process.argv[2]
 main process.argv[2]
 console.log "starting server on port 8888"
else
 console.log "usage: coffee 9.1.coffee [file]"

Running the application with the competitors file containing 1,500 competitors serves
the resulting JSON at http://localhost:8888/:

> coffee listing.91.coffee competitors.txt
Loading data
Starting server on port 8888
Data loaded

If you visit this page in a web browser, you’ll see that the performance is fine. Noth-

Reads a file into an
array by splitting
on delimiter

Splits the
competitor strings
and compares

Reads the file as lines
and passes sorted
lines to callback

Uses closure
to keep data

loadData is invoked
immediately and passed
to file watcher

Deals with
program
arguments
ing to worry about; the array is being sorted synchronously but it’s not hurting the

246 CHAPTER 9 Composing the asynchronous

program—not yet anyway. It’s tempting early on to assume that you only need to think
asynchronous when reading things like files and network resources, but you soon find
out that this is wrong. Read on.

9.1.3 Performance

Imagine now that Scruffy informs you there are not 1,500 competitors as anticipated
but actually 150,000 competitors. He also says that he’s using the program you wrote,
and it takes a long time to sort the 150,000 competitors. The application freezes for
several seconds each time it loads data. You need to figure out what’s going on.

TIMING PROGRAMS

A crude but effective way to get a simple measurement of the time it takes for part of a
program to execute is by using the built-in Date objects. To evaluate the time differ-
ence between two Date objects, you use subtraction:

begin = new Date
end = new Date
difference = begin – end

With this, you can change the loadData function from listing 9.1 to show how long it
takes to load data:

loadData = ->
 start = new Date()
 console.log 'Loading and processing data'
 sortedCompetitorsFromFile fileName, (data) ->
 elapsed = new Date() - start
 console.log "Data loaded in #{elapsed/1000} seconds"
 server data

It takes less than one-tenth of a second for 1,500 competitors, but for 150,000 compet-
itors it takes 35 seconds! This is not simply due to sorting. Look how long it takes to
sort an array of 150,000 numbers:

random = (size) -> Math.floor Math.random()*size
random150000 = (random(150000) for number in [1..150000])

begin = new Date
random150000.sort()
end = new Date
console.log end - begin
50

The built-in Array::sort can sort 150,000 random numbers in milliseconds, not sec-
onds like your competitor sorting. The slow sorting is caused by the comparison func-
tion. Why? Because the compareOnLastName function is slow. When the array is sorted,
every item might need to be compared to every other item! That’s more comparisons
than you want to see written down, quite apart from the effect it has on the perfor-
mance of your program. To avoid this problem, your first thought is to optimize the

Create two objects
from Date class Subtract earlier date

from later date

Generating an array of
150,000 random numbers

50 milliseconds (time
will vary on different
computers)
sorting to be fast enough.

247Data processing

9.1.4 Decorate, sort, undecorate

It’s always faster to do nothing than to do something. Consider what the something is
that happens inside the compareOnLastName function:

compareOnLastName = (a,b) ->
 lastName = (s) ->
 s.split(/\s+/g)[1].replace /,/, ''
 if !a or !b
 1
 else if lastName(a) >= lastName(b)
 1
 else
 -1

Two last names are extracted for each comparison, which is expensive and unneces-
sary because the last name only needs to be determined once for each competitor. That
can be done before any sorting occurs. A technique known as decorate-sort-undecorate,
which uses this idea, is demonstrated here.

decorateSortUndecorate = (array, sortRule) ->
 decorate = (array) ->
 {original: item, sortOn: sortRule item} for item in array

 undecorate = (array) ->
 item.original for item in array

 comparator = (left, right) ->
 if left.sortOn > right.sortOn
 1
 else
 -1

 decorated = decorate array
 sorted = decorated.sort comparator
 undecorate sorted

The decorate function invoked with an array of strings containing competitor names
returns an object with a sortOn property. This property contains the string used to
compare the competitor to other competitors:

lastName = (s) -> s.split(/\s+/g)[1].replace /,/, ''
sortRule = (name) -> lastName name
decorate = (array) ->
 {original: item, sortOn: sortRule item} for item in array

decorate ['0011: Engholm, Ciara']
[{original: '0011: Engholm, Ciara', sortOn: 'Engholm'}]

The undecorate function does the reverse. It takes an object created by decorate and

Listing 9.2 Decorate-sort-undecorate

Last name occurs
after the first space.

Return 1 if either
last name is missing.

Convert the array
of strings to an
array of objects.

Inverse of the
decorate function.

Sort using the sortOn
property of the object created
by the decorate function.

Decorate
the array. Run the

sort.
Undecorate
the sorted
array.
returns the original string:

248 CHAPTER 9 Composing the asynchronous

undecorate = (array) ->
 item.original for item in array

undecorate [{original: '0011: Engholm, Ciara', sortOn: 'Engholm'}]
['0011: Engholm, Ciara']

Now you can sort the array much faster. An example comparison between the perfor-
mance with and without decorate-sort-decorate appears in table 9.1. Although actual
results will vary significantly across different environments and computers, the decorate-
sort-undecorate version is always substantially faster because it does less work.

Decorate-sort-undecorate is a useful technique. Eliminating repeated computation of
the same thing makes the array sorting perform fast enough to be acceptable without
making the program freeze for a long time. It’s just barely avoiding the problem, but
sometimes avoiding the problem is exactly the right approach.

 You can’t always avoid the problem, though. CoffeeScript programs run on an
event loop, and an event loop does only one thing at a time.

9.2 Event loops
CoffeeScript programs, whether on Node.js or in a web browser, are executed on a
single-threaded event loop where only one thing ever happens at a time. If you try to
make something happen (like evaluating a CoffeeScript expression) while something
else is happening, then the new thing will have to wait until the first thing is finished.
To keep your CoffeeScript program from locking up, you need to adopt particular
asynchronous programming techniques that are suited to a single-threaded event
loop. In this section you’ll learn how to do that.

 Imagine that your billboard code was so successful that Joe from Million Corpora-
tion phones you to say he wants to use it for the Intergalactic Volcano Mogul Skiing
Championships. He says there are approximately 1.5 million names. A decorate-sort-
undecorate version of the application with these 1.5 million names makes your pro-
gram unresponsive:

Loading and processing data
Starting server on port 8888
Data loaded in 5.482 seconds

Agtron happens to be walking past (his timing is impeccable). He looks at what you’re

Table 9.1 Performance improvement of decorate-sort-undecorate

Number of entries Decorate-sort-undecorate Original version

500 0.003 seconds 1.575 seconds

3,000 0.024 seconds 4.866 seconds

150,000 0.116 seconds 18.138 seconds
doing, smiles, and asks if he can show you something. He shows you what’s happening

249Event loops

while your program is sorting all those competitors by adding a setInterval intended
to log to the console once per second:

start = new Date()
setInterval ->
 console.log "Clock tick after #{(new Date()-start)/1000} seconds"
, 1000

You expect to see a clock tick each second, but that’s not what happens:

Loading and processing data
Starting server on port 8888
Data loaded in 4.636 seconds
Clock tick at 4.643 seconds
Clock tick at 4.643 seconds

The program does only one thing at a time. If it spends 5 seconds sorting an array, then
nothing else happens during those 5 seconds—the event loop experiences a blackout.
Then, once the event loop is free, you see two events that have been waiting to be han-
dled occur immediately one after the other.

9.2.1 Events and blackouts

When something happens that the event loop needs to handle, then the event loop
receives an event. For example, when you evaluated the setInterval call with a func-
tion and a delay of 1,000 milliseconds, you were requesting that an event occur on the
event loop in 1,000 milliseconds and for the function you supplied to be invoked as
the handler for the event:

setInterval ->
 console.log "Clock tick after #{(new Date()-start)/1000} seconds"
, 1000

Similarly, when you request a file to be read asynchronously, you’re asking the file to
be read outside of the event loop and for an event to be triggered on the event loop
once the file has been read. Again, the function you supply is the handler that will be
invoked when the event occurs:

fs.readFile 'myFile.txt', (err, data) ->
 console.log 'invoked as the handler when the event occurs'

Because an asynchronous file read occurs outside of the event loop, the time it takes
for the response to come back doesn’t affect the event loop. Other events can be han-
dled and other computations can be done until the response comes back. In figure 9.1
you can see other events being handled as they arrive on the event loop while asyn-
chronous requests are requested and the results are awaited.

 An event loop like the one in figure 9.1 is in good shape because nothing is block-
ing it. If it takes 2 seconds to get a response for a request back from a web service
somewhere on the other side of the world, that doesn’t matter because it’s happening

asynchronously. The program will carry on doing other things until the response

250 CHAPTER 9 Composing the asynchronous

comes back, at which point the response is added to the event queue and processed at
the next available time.

 What does an event loop in poor shape look like? Well, if a program spends a lot of
time processing something synchronously, such as sorting a list of a million or more
competitors, the event loop will be blocked for a long time and the program will experi-
ence a blackout while it waits for the synchronous operation to complete before doing
anything else. That’s exactly what happens if you try to read a massive file synchronously,

dataForMyMassiveFile = fs.readFileSync 'myMassiveFile.mpg'

or when you try to synchronously sort a million competitors by their last name. In fig-
ure 9.2 you see an event loop in a poor state with a synchronous, blocking operation

Event loop

Event

Event

EventEvent

Event

Request

Response

Asynchronous

Request

Response
Asynchronous

Figure 9.1 Asynchronous I/O
doesn’t block the event loop.

Event loop

Response

Request

Asynchronous

Event

Event

Event

Synchronous

Figure 9.2 Blocking the event

Event

Event loop stops the world.

251Event loops

on the event loop. Notice how nothing else happens during the synchronous block
and how two events that have had to wait for it to complete are handled shortly after.

 The event loop is the wrong place to do heavy processing. You can get away with
sorting 15,000 competitors if you do it efficiently and infrequently, but you won’t get
away with sorting millions of competitors. A program on the event loop must respond
quickly to incoming events. If it spends all the time processing things, that defeats the
purpose. Besides, some things aren’t just large—they’re infinite.

9.2.2 Infinite time

How do you deal with a data source that never ends? Think about how you kept track
of the most popular pages on a website in chapter 3. You didn’t try to load all of the
data; after all, that would be impossible because the data never finishes. Trying to load
it all at once is effectively the same as doing this:

loop 0

Not desirable. In figure 9.3 you can see Agtron and Scruffy play out what might hap-
pen if Agtron ran on an event loop.

 The solution when you have a source of data that doesn’t end (like a list of names
that keeps getting new names added to it) is to treat it as a source of events. This is
what event emitters are used for.

Figure 9.3 Don’t block the event loop—unless you like to wait.

252 CHAPTER 9 Composing the asynchronous

9.3 Event emitters
Website traffic is data that comes from users. Users are an excellent place to start look-
ing at event emitters. Imagine that you’re building a browser-based version of the
1972 classic Atari game Pong, as shown in figure 9.4. In this game the users control
the movement of the paddles up and down on the screen to hit the ball back and
forth across the screen.

 User data doesn’t stop until the game stops, so it’s effectively infinite. How is
it processed?

9.3.1 User events

Anything that’s done asynchronously on the event loop (like reading a file) causes an
event to be triggered when it’s done. There’s another important type of event that you
don’t request (not directly anyway) but that you definitely want to listen to and han-
dle. That type of event is the user event.

 How do you handle user events in a CoffeeScript program? By attaching a handler
to them. For example, start by attaching an event handler for keydown events:

UP = 38
DOWN = 40

paddle =
 up: ->
 down: ->

document.onkeydown = (event) ->
 switch event.keyCode
 when UP then paddle.up()
 when DOWN then paddle.down()

What does this have to do with reading data? Consider this sequence of keydown
events that occurred during a game of Pong:

Figure 9.4 In your version of
Pong, the user controls the
paddle with the keyboard.

38 and 40 are the keycodes for the up
and down arrow keys, respectively.

This paddle is for demonstration
only; it does nothing.

Assign a handler function to
be invoked when a keydown
event occurs.
UP, DOWN, DOWN, DOWN, UP, DOWN, UP, UP, UP

253Event emitters

It’s an array. It’s just that at the start of the game you don’t have any of the data, and at
the end of the game you have all the data. You don’t wait until all the keydown event
data arrives before doing anything—that wouldn’t make for a very fun game. You pro-
cess data as it arrives. The same can apply to any source of data; it can be treated as a
source of events.

9.3.2 Data as events

If you treat a data source as a source of events, you can read and process parts of it
asynchronously as each part arrives. Remember that blocking the event loop causes
other events to queue up, as happened when your program spent almost 5 seconds
waiting for some data to be loaded and processed:

Loading and processing data
Starting server on port 8888
Data loaded in 4.636 seconds
Clock tick at 4.643 seconds
Clock tick at 4.643 seconds

What does the data actually look like, though? Compare it to the keydown data from
the game of Pong:

competitor data
["0011: Engholm, Ciara", "0088: Gitting, Estrella", "0072: Renyer, Connie"]

keypress data
[UP, DOWN, DOWN, DOWN, UP, DOWN, UP, UP, UP]

They’re both arrays. So, if a source of events (an event emitter) can produce an array,
then you can use one to produce the competitor data. What does it look like if the
source of the competitor data is an event emitter? Consider a function that takes a
callback as a parameter that it invokes once per second with the value 'A competitor'.
New data is produced and passed to the callback asynchronously:

ONE_SECOND = 1000

start = new Date()
competitorEmitter = (callback) ->
 setInterval ->
 callback 'A competitor'
 , ONE_SECOND

receiver = (data) ->
 now = new Date()
 elapsed = now - start
 console.log "#{data} received after #{elapsed/ONE_SECOND} seconds"

competitorEmitter receiver

A competitor received after 0.995 seconds
A competitor received after 1.995 seconds
A competitor received after 2.995 seconds

A competitor received after 3.995 seconds

254 CHAPTER 9 Composing the asynchronous

This can also be wrapped up into a DataEmitter class:

class DataEmitter
 constructor: (interval) ->
 @listeners = []
 setInterval ->
 listener() for listener in listeners
 , interval
 ondata: (listener) ->
 listeners.push listener

emitter = new DataEmitter 1.5*ONE_SECOND

emitter.ondata ->
 console.log "Service responds at #{difference()} seconds past minute"

This event emitter is a fake, but it helps to show what an event emitter does. In Node.js
there’s an EventEmitter class in the core events module.

9.3.3 Using event emitters in Node.js

The EventEmitter in the core Node.js events module is a JavaScript class that you
can extend in your own CoffeeScript program:

{EventEmitter} = require 'events'

class CompetitorEmitter extends EventEmitter

If the CompetitorEmitter is going to emit competitors as it reads them, then it
doesn’t make sense for it to load the entire competitors source file in one go. Instead,
it should open the source file as a stream using createReadStream from the Node.js
core fs module:

fs = require 'fs'

sourceStream = fs.createReadStream 'competitors.txt'

The createReadStream method returns a Stream, which extends EventEmitter. It
allows a file to be read in chunks instead of waiting to load the whole file.

 The following listing contains a CompetitorsEmitter that reads the competitors
file and emits arrays of competitors while the file is being read.

fs = require 'fs'
{EventEmitter} = require 'events'

ONE_SECOND = 1000

lastName = (s) ->
 try
 s.split(/\s+/g)[1].replace /,/, ','
 catch e
 ''

undecorate = (array) ->

Listing 9.3 Sort competitors from stream

A fake DataEmitter
class for emitting
events on a schedule
 item.original for item in array

Re
as

rea

t

255Event emitters

class CompetitorsEmitter extends EventEmitter

 validCompetitor = (string) ->
 /^[0-9]+:\s[a-zA-Z],\s[a-zA-Z]\n/.test string

 lines = (data) ->
 chunk = data.split /\n/
 first = chunk[0]
 last = chunk[chunk.length-1]
 {chunk, first, last}

 insertionSort = (array, items) ->
 insertAt = 0
 for item in items
 toInsert = original: item, sortOn: lastName(item)
 for existing in array
 if toInsert.lastName > existing.lastName
 insertAt++
 array.splice insertAt, 0, toInsert

 constructor: (source) ->
 @competitors = []
 stream = fs.createReadStream source, {flags: 'r', encoding: 'utf-8'}
 stream.on 'data', (data) =>
 {chunk, first, last} = lines data
 if not validCompetitor last
 @remainder = last
 chunk.pop()
 if not validCompetitor first
 chunk[0] = @remainder + first
 insertionSort @competitors, chunk
 @emit 'data', @competitors

path = require 'path'
if !fs.existsSync 'competitors.15000.txt'
 console.error 'Error: File competitors.15000.txt not found'
 process.exit()

competitors = new CompetitorsEmitter 'competitors.15000.txt'
competitors.on 'data', (competitors) ->
 console.log "There are #{competitors.length} competitors"

start = new Date()
setInterval ->
 now = new Date()
 console.log "Tick at #{(now - start)/ONE_SECOND}"
, ONE_SECOND/10

When the program in listing 9.3 is executed, the events generated by setInterval
aren’t forced to wait long for the event loop. Note that for this program to run, you’ll
need a competitors.15000.txt file in the same format as the previous competitors files:

> coffee 9.3.coffee
There are 1468 competitors
There are 2937 competitors
There are 4406 competitors
Tick at 0.121

Check that competitor names
have the expected format.

Read the lines from
the data provided.

Sort the competitors
by inserting them in
the correct order as
they are received.

ad the file
 a stream
and then
d the line
from each

chunk of
he stream
received.
...

256 CHAPTER 9 Composing the asynchronous

Now that the data is being loaded as a stream and sorted as it arrives, the processing is
broken up into multiple blocks. This means that the event loop isn’t blocked for a
long, continuous time. Instead, the event loop is blocked for multiple smaller chunks
of time, as shown in figure 9.5 and by comparison to figure 9.3.

 There’s only one event loop, and the event loop is the wrong place to do data processing. It’s
reasonable to do some processing to generate responses to events, but anything that you
expect will take time should be done offline or handled outside of the event loop.

How does the solution in listing 9.4 perform with a list of 1.5 million names? It doesn’t
block the event loop for 5 seconds, but it does take minutes to complete (try to execute
it and go make yourself a coffee while you wait). Despite the slow performance, by
treating the data source as an event emitter you’re able to process the entire list with-
out blocking the event loop. The same approach works in reverse—just as data can be
treated as events, so can events be treated as data.

9.3.4 Events as data

Suppose now that the competitor data also contains the fastest time for each competi-
tor on a particular ski run:

0212: Turnbill, Geralyn, '12:13'
0055: Spielvogel, Cierra, '11:55'
0072: Renyer, Connie, '11:33'

Where should data processing be done?
If your application needs to process something that you know will take a long time,
then it simply has to be done outside the event loop. Send the processing some-
where else (to another program) with a callback so that it can be done asynchro-
nously, with your program being notified when it’s done.

Event loop

Event
Event

Response

Request

Asynchronous

Event

Event

Event

Figure 9.5 Don’t wait forever.
Treat input as a series of events
and process it as it arrives.
0011: Engholm, Ciara, '14:10'

257Event composition

You receive a call from Joe, who says that he wants to display only competitors who
have a best time faster than 12:00. It’s tempting to modify the existing code to add
the condition:

for item in chunk
 insertAt = 0
 if scoreBetterThan item, '12:00'
 toInsert = { original: item, sortOn: lastName(item) }
 for competitor in @competitors
 if toInsert.lastName > competitor.lastName
 insertAt++
 @competitors.splice insertAt, 0, toInsert

Wait a minute! What happens when Joe asks you to show only competitors with names
starting with J or those with competitor numbers starting with 02? Remember that the
data is really an array. It’s being loaded asynchronously, but it’s still an array. If it were
an array of data, you wouldn’t write a big for loop with a bunch of conditionals.
Instead, you’d use array methods such as filter. What would that look like?

fasterThan = (n) ->
 (z) ->
 z.time < n

lastNameStartsWith = (letter) ->
 (s) -> competitor.lastName[0] is letter

result = \
competitors
.filter(fasterThan '12:00')
.filter(lastNameStartsWith 'a')

If the data is really an array, then that’s how you’d like to process it. The problem is
that you don’t actually have the array—not yet anyway. Think about it, though; you
don’t need to process any of the data until the values are needed somewhere else in
the program. The manipulations that will be done on the data when it’s actually
needed can be defined up front, before any of the data is available. Treating a series of
asynchronous events as an array is an abstraction—one that makes it easier to com-
pose events in familiar ways.

9.4 Event composition
In this section you’ll see how to hide the plumbing of an event emitter to make it eas-
ier to compose events. This starts by learning to be lazy.

9.4.1 Lazy data handling

The data that you have now and the data that you’ll have as the result of a series of
events isn’t as different as you might think. In a sense, the difference is that an array is
an expression of the value:

How you’d like to be
able to filter events
['Geralyn Turnbull', 'Connie Renyer']

258 CHAPTER 9 Composing the asynchronous

Whereas the data that you don’t have yet is like a function that returns the data:

-> ['Geralyn Turnbull', 'Connie Renyer']

The first expression is the data itself; the second returns the data when invoked. This
makes a good starting place on the road to composing asynchronous events.

 Imagine that you need to do more with the list of names than just display them;
imagine that you want to put them into a phone book like the one from chapter 4:

phoneNumbers = [
 { name: 'hannibal', number: '555-5551', relationship: 'friend' }
 { name: 'darth', number: '555-5552', relationship: 'colleague' }
 { name: 'hal_9000', number: 'disconnected', relationship: 'friend' }
 { name: 'freddy', number: '555-5554', relationship: 'friend' }
 { name: 'T-800', number: '555-5555', relationship: 'colleague' }
]

To get an array containing only friends, you either use a comprehension with a when
clause or the Array::filter method. In this case, use filter:

relationshipIs = (relationship) ->
 (item) -> item.relationship is relationship

phoneNumbers
.filter(relationshipIs 'friend')

Suppose, though, that you don’t have the data but a function that returns the data:

getPhoneNumbers = -> phoneNumbers

You’ll remember writing fluent interfaces in chapter 7. Here goes another one; sup-
pose you call it withResultOf:

withResultOf(getPhoneNumbers)
.filter(relationshipIs 'friend')

The withResultOf function will need to return an object that has a filter method:

withResultOf = (fn) ->
 filter: ->

At some point in the program, you’ll need the actual data itself. Call this method that
returns the data evaluate:

withResultOf = (fn) ->
 runInOrder = []
 {
 filter: (filterFn) ->
 runInOrder.push (data) -> item for item in data when filterFn item
 @
 evaluate: ->
 data = fn()
 for processFn in runInOrder
 processFn data

Returning “this” to
allow chaining for
the fluent interface
 }

259Event composition

By now, this is a familiar pattern: some imperative code hidden behind a largely func-
tional interface:

withResultOf(getPhoneNumbers)
.filter(relationshipIs 'friend')
.evaluate()

[
{ name: 'hannibal', number: '555-5551', relationship: 'friend' },
{ name: 'hal_9000', number: 'disconnected', relationship: 'friend' },
{ name: 'freddy', number: '555-5554', relationship: 'friend' }
]

But you don’t have to evaluate it immediately. You might want to call it later or pass it
to another function. This is lazy because the computation is defined early, but the eval-
uation occurs only when evaluate is invoked. This is very different from just deter-
mining the computation later on.

 Just like a function, this event stream filter is now first-class. For example, one of
your work colleagues wants to sync live with your business contacts. You can easily send
him a filtered event stream:

withResultOf(getPhoneNumbers)
.filter(relationshipIs 'business')

When he wants to use it, he evaluates it and gets the values up to now, filtered:

suppliedContacts.evaluate()

That technique works for data streams or functions that actually return the values. But
when you look at your event-driven program, the functions don’t return the values at
all; they invoke a callback with the return value:

fs.readFile, 'filename', callback

So, how can you extend withResultOf to work for asynchronous functions that
invoke callbacks?

9.4.2 Lazy event handling

Consider again the data for the phone book. This time it’s not returned by a function
but instead passed as an argument to a callback:

phonebookData = (callback) ->
 callback [
 { name: 'hannibal', number: '555-5551', relationship: 'friend' }
 { name: 'darth', number: '555-5552', relationship: 'colleague' }
 { name: 'hal_9000', number: 'disconnected', relationship: 'friend' }
 { name: 'freddy', number: '555-5554', relationship: 'friend' }
 { name: 'T-800', number: '555-5555', relationship: 'colleague' }
]

If the phone book is an event emitter, then it’s still callback-driven, except that the
callback is called repeatedly as new data arrives:
phonebook.on 'data', callback

260 CHAPTER 9 Composing the asynchronous

The sequence of values produced by an event emitter is an array; you just don’t have
all of the values yet. Think of the array of keyboard commands that were produced
during the running game of Pong—it was also produced by an event emitter (a user):

[UP, DOWN, DOWN, DOWN, UP, DOWN, UP, UP, UP]

An event emitter generating the phone book doesn’t change what the data looks like.
Instead of letting the source of the data dictate how you use it, decide on the interface
you want first, and then figure out how to make it work.

9.4.3 Composing event streams

Suppose the phone book information is arriving asynchronously, with each subse-
quent chunk arriving as it becomes available. The source of the data is an event emit-
ter named phonebookEmitter that may or may not stop producing more events. Now
suppose that you want to filter the phone book to just friends. The interface that you
want is one that matches what you use for an array:

phonebook = \
withEvents(phonebookEmitter)
.filter(relationship 'friend')

You start by trying this on a different source of events so that you can control what’s
happening. Create your own event emitter that emits numbers:

{EventEmitter} = require 'events'

even = (number) -> number%2 is 0

emitter = new EventEmitter
evenNumberEvents = withEvents(emitter, 'number').filter(even)

emitter.emit 'number', 2
emitter.emit 'number', 5

When evaluate is invoked, you expect to get an array containing only the even numbers:

evenNumberEvents.evaluate()
[2]

If more events occur, then invoking evaluate again will show the even numbers up to
that point:

emitter.emit 'number', 4
emitter.emit 'number', 3

evenNumberEvents.evaluate()
[2,4]

The expression for the filtered events is like a function expression:

withEvents(emitter, 'number').filter(even)

It can be passed around inside a program without being evaluated. So how do you

implement it? In the next listing you see a working phone book application with

261Event composition

filtering capabilities. Note that this listing reads a file called phone_numbers.csv
that looks like this:

hannibal,555-5551,friend
darth,555-5552,colleague
hal_9000,disconnected,friend
freddy,555-5554,friend
T-800,555-5555,colleague
dolly,555-3322,associate

This phone_numbers.csv file is included with the book’s downloadable content.

fs = require 'fs'
{EventEmitter} = require 'events'

withEvents = (emitter, event) ->
 pipeline = []
 data = []

 reset = ->
 pipeline = []

 run = ->
 result = data
 for processor in pipeline
 if processor.filter?
 result = result.filter processor.filter
 else if processor.map?
 result = result.map processor.map
 result

 emitter.on event, (datum) ->
 data.push datum

 filter: (filter) ->
 pipeline.push {filter: filter}
 @
 map: (map) ->
 pipeline.push {map: map}
 @
 evaluate: ->
 result = run()
 reset()
 result

class CSVRowEmitter extends EventEmitter

 valid = (row) ->
 /[^,]+,[^,]+,[^,]+/.test row

 constructor: (source) ->
 @remainder = ''
 @numbers = []
 stream = fs.createReadStream source, {flags: 'r', encoding: 'utf-8'}
 stream.on 'data', (data) =>

Listing 9.4 Phone book with data loaded from event stream

Reset the event
“log” when started.

Process all the filters
and maps against
the event log.

Add event listeners
to the emitter.

Create the fluent
interface by returning
@ in the methods.

Extend EventEmitter
to emit rows from a
file in CSV format.
 chunk = data.split /\n/

262 CHAPTER 9 Composing the asynchronous

 firstRow = chunk[0]
 lastRow = chunk[chunk.length-1]
 if not valid firstRow and @remainder
 chunk[0] = @remainder + firstRow
 if not valid lastRow
 @remainder = lastRow
 chunk.pop()
 else @remainder = ''

 @emit('row', row) for row in chunk when valid row

class PhoneBook
 asObject = (row) ->
 [name, number, relationship] = row.split ','
 { name, number, relationship }

 asString = (data) ->
 "#{data.name}: #{data.number} (#{data.relationship})"

 print = (s) ->
 s.join '\n'

 relationshipIs = (relationship) ->
 (data) -> data.relationship is relationship

 nameIs = (name) ->
 (data) -> data.name is name

 constructor: (sourceCsv) ->
 csv = new CSVRowEmitter sourceCsv
 @numbers = withEvents(csv, 'row')

 list: (relationship) ->
 evaluated = \
 if relationship
 @numbers
 .map(asObject)
 .filter(relationshipIs relationship)
 .evaluate()
 else
 @numbers
 .map(asObject)
 .evaluate()

 print(asString data for data in evaluated)

 get: (name) ->
 evaluated = \
 @numbers
 .map(asObject)
 .filter(nameIs name)
 .evaluate()

 print(asString data for data in evaluated)

console.log "Phonebook. Commands are get, list and exit."

process.stdin.setEncoding 'utf8'
stdin = process.openStdin()

Things that operate
on a phone book
belong in the
PhoneBook class.

Use the
fluent

interface
created.
phonebook = new PhoneBook 'phone_numbers.csv'

263Event composition

stdin.on 'data', (chunk) ->
 args = chunk.split ' '
 command = args[0].trim()
 name = relationship = args[1].trim() if args[1]
 console.log switch command
 when 'get'
 phonebook.get name
 when 'list'
 phonebook.list relationship
 when 'exit'
 process.exit 1
 else 'Unknown command'

The same technique works for other sources of events. Using the withEvents func-
tion, you can map and filter user events, such as keyboard interaction.

9.4.4 Client side

It’s time to look at that game of Pong again, because the same technique that worked
for a data stream works for user input data. The paddles in a game of Pong are moved
up and down the screen based on keyboard presses performed by the players. Sup-
pose the game of Pong will run in a browser and that the HTML structure is as follows:

<!DOCTYPE html>
<html dir="ltr" lang="en-US">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Pong</title>
 </head>
 <body>
 <div id="pong"></div>
 </body>
 <script src="9.5.js"></script>
</html>

Attaching a handler to keyboard events means that the data supplied by the keyboard
(the key presses) is received:

document.on 'keypress', (event) ->
 console.log 'The keyboard was pressed'

Sure, you could write an entire program inside the keypress handler, but that will even-
tually lead to event handler spaghetti. In the next listing you see the paddle-controlling
code for Pong implemented by treating the key presses as a stream of event data. Com-
pile this listing and use it with the sample HTML shown previously to experiment.

withEvents = (emitter, event) ->
 pipeline = []
 data = []

 reset = ->

Listing 9.5 Controlling paddles in a web browser

Read input from
the console.
 pipeline = []

264 CHAPTER 9 Composing the asynchronous

 run = ->
 result = data
 for processor in pipeline
 if processor.filter?
 result = result.filter processor.filter
 else if processor.map?
 result = result.map processor.map
 result

 emitter.on event, (datum) ->
 data.push datum

 filter: (filter) ->
 pipeline.push {filter: filter}
 @
 map: (map) ->
 pipeline.push {map: map}
 @
 drain: (fn) ->
 emitter.on event, (datum) ->
 result = run()
 data = []
 fn result
 evaluate: ->
 result = run()
 reset()
 result

UP = 38
DOWN = 40
Q = 81
A = 65

doc =
 on: (event, fn) ->
 old = document["on#{event}"] || ->
 document["on#{event}"] = (e) ->
 old e
 fn e

class Paddle

 constructor: (@top=0, @left=0) ->
 @render()

 move: (displacement) ->
 @top += displacement*5
 @paddle.style.top = @top + 'px'

 render: ->
 @paddle = document.createElement 'div'
 @paddle.className = 'paddle'
 @paddle.style.backgroundColor = 'black'
 @paddle.style.position = 'absolute'
 @paddle.style.top = "#{@top}px"
 @paddle.style.left = "#{@left}px"
 @paddle.style.width = '20px'
 @paddle.style.height = '100px'

A drain runs each event
through the filters and maps
and invokes a callback.

Some variables (uppercase to indicate
constants) that map the keycode
supplied by an event to the key on the
keyboard that was pressed.

A thin wrapper around the
document used to attach
listeners to keyboard events.

Moves the graphical
paddle on the screen.

Creates a
graphical paddle
on the screen.
 document.querySelector('#pong').appendChild @paddle

265Event composition

displacement = ([up,down]) ->
 (event) ->
 switch event.keyCode
 when up then -1
 when down then 1
 else 0

move = (paddle) ->
 (moves) ->
 for displacement in moves
 paddle.move displacement

keys = (expected) ->
 (pressed) ->
 pressed.keyCode in expected

paddle1 = new Paddle 0,0
paddle1.keys = [Q,A]

paddle2 = new Paddle 0,200
paddle2.keys = [UP,DOWN]

withEvents(doc, 'keydown')
.filter(keys paddle1.keys)
.map(displacement paddle1.keys)
.drain(move paddle1)

withEvents(doc, 'keydown')
.filter(keys paddle2.keys)
.map(displacement paddle2.keys)
.drain(move paddle2)

There are other ways to structure this (perhaps without a paddle class), but it’s impor-
tant to see how the program is broken up into small composable units even though it’s
handling multiple users. Regardless of the source of events, this technique helps you
to manage event streams. With first-class functions and a terse syntax for both func-
tions and objects, CoffeeScript makes it possible to write readable code.

9.4.5 Multiple event sources

That works for a single source of events, but what happens when you have multiple
sources of events? Suppose you have two sources of data:

source1 = [13,14,15]
source2 = [23,24,25]

For arrays, to zip them means to create a new array by interleaving the two arrays
together, like a zipper:

zip = (a, b) ->
 zipped = []
 while a.length or b.length
 do ->
 fromA = a.pop()
 fromB = b.pop()
 if fromB then zipped.push fromB
 if fromB then zipped.push fromA

Paddle 1 is controlled by Q and A
keys; paddle 2 is controlled by
up- and down-arrow keys.

The core
movement logic
becomes clear.
 zipped.reverse()

266 CHAPTER 9 Composing the asynchronous

zip source1, source2
[13,23,14,24,15,25]

Streams of events, when treated as arrays, can be zipped together in the same way.
With two event streams where the source order doesn’t matter, zipping them together
as they arrive is done in the same way as two arrays are zipped together.

9.5 Summary
In this chapter you started by processing data synchronously and quickly learned how
you are guaranteed that heavy processing, no matter how well optimized, will eventu-
ally break your program if you try to do it all synchronously on the event loop. That
wasn’t the end of the story, though, and you later learned that large or infinite data
could be handled effectively as event streams.

 You also learned that changing the way you looked at events and treating them as
streams made them easier to compose. Because all CoffeeScript programs run on an
event loop with callbacks and event handlers, if you repeatedly add more and more
event handlers and scatter related program code in unrelated parts of a program,
you’ll quickly find your program to be incomprehensible. By thinking of event emit-
ters as sources of data, you can apply familiar techniques such as mapping and filter-
ing to help make them more manageable.

 When writing all of this code, how do you know it does what it’s supposed to do? In
the next chapter you’ll learn about test-driven development and how to ensure your
CoffeeScript programs are well tested.

Part 3

Applications

Learning how to use CoffeeScript and how to use it well is not enough. It’s
necessary, but it’s not sufficient. Why? Because the applications you write using
CoffeeScript exist in a real world with practical considerations beyond the lan-
guage itself. This part of the book prepares you for writing robust and maintain-
able applications in CoffeeScript both today and in the future.

 Because this part explores topics that are ancillary to CoffeeScript, it takes the time to
also teach the underlying concepts in those topics. Depending on your familiarity with the
focus of each chapter, you should adapt your reading style accordingly.

Driving with tests
I saw the best minds of my generation destroyed by madness.

From Howl by Allen Ginsberg

You have to solve harder problems in CoffeeScript today than most people had to
solve in JavaScript in the early days. Back then, JavaScript was used to enhance
browser applications. Today you’re writing entire applications in CoffeeScript. Writ-
ing more of the program means dealing with more of the problems. Writing tests
for your programs can help with these problems and save you from losing your
mind. Writing the tests first, before writing the programs, is a technique referred to
as test-driven development.

 If you’ve never done it before, test-driven development can feel uncomfortable,

This chapter covers
■ Understanding unit tests
■ Dealing effectively with dependencies

inside tests
■ How to test asynchronous programs
■ How to test behavior
■ Test suites and how to automate your test suite
like having your pants on backwards. Be patient and give it some time, though; it

Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch10-code.html

270 CHAPTER 10 Driving with tests

might take a while to adjust. If you’ve done test-driven development before but not in
CoffeeScript, you’ll be pleasantly surprised at how easy some of the techniques are.

 This chapter presents and encourages a test-driven approach to development and
leads you through the creation of your own tiny test framework. In practice, it’s more
likely you’d use an existing test framework, but your understanding will be deeper if
you go through the steps to build a tiny framework. The techniques for writing unit
tests, dealing with dependencies, testing asynchronous callback-driven code, and
structuring tests can be applied in other ways. First of all, why are tests important and
why do you need automated tests? Why can’t you just test manually?

10.1 No tests? Disaster awaits
One time-honored approach to testing JavaScript applications is to test everything
manually. Manual tests are important, but a testing strategy that uses only manual tests
doesn’t work. You’ve seen it many times before. It’s not sufficient, it doesn’t scale, and
it’s expensive because you need the real application and real humans to do all of it.
Humans are really expensive, and you don’t need to spend all their valuable time
doing something the computer can do.

 Manual testing is more difficult in the long run. If it’s too difficult, you’ll decide
not to do the tests, and before you know it, there are no tests.

WHAT HAPPENS WHEN YOU DON’T WRITE TESTS?
Imagine you’ve written all of the tracking code for Agtron’s site. It tells him how many
visitors his shop gets. Yesterday he had more than 100,000 visitors. You have no idea
how he managed to get that much traffic to his website, but it’s awesome nonetheless.
Even better, your application and the accompanying tracking application, both writ-
ten entirely in CoffeeScript, are performing nicely. No hiccups. As the sun sets before
the weekend, you get a phone call from Agtron asking you to change the tracking pro-
gram to add tracking of mouse movements for every user. Beer in hand on a Friday
evening, you deftly implement a solution. On your way out the door, you go live to the
production servers. Job done.

 You awake in the night to the sound of your phone ringing. Something is wrong.
The tracking program isn’t tracking any users. It occurs to you to debug the client-side
program on the live server to see if you can find the problem there. When you load it
up, though, you remember that the code on the production server has been com-
pressed to make it download faster. It’s a big sea of unreadable code similar to this:

((function(){var a,b,c=function(a,b){return function(){return
a.apply(b,arguments)}};b=require("http"),a=function(){function
a(a,b){this.options=a,this.http=b,this.controller=c(this.controller,this),thi
s.pages=[]}return a.prototype.start=function(a){return
this.server=this.http.createServer(this.controller),this.server.listen(this.o
ptions.port,a)},a.prototype.stop=function(){return
this.server.close()},a.prototype.controller=function(a,b){return
this.increment(a.url),b.writeHead(200,{"Content-Type":"text/

html"}),b.write(""),b.end()},a.prototype.increment=function(a){var

271How to write tests

b,c;return(c=(b=this.pages)[a])==null&&(b[a]=0),this.pages[a]=this.pages[a]+1
},a.prototype.total=function(){var a,b,c,d;c=0,d=this.pages;for(b in
d)a=d[b],c+=a;return c},a}(),exports.Tracking=a})).call(this);

You have no chance of debugging it. In a panic, your brain compiles a knee-jerk list of
inappropriate reactions:

■ Buy a one-way ticket to Tibet and live in a monastery on a mountaintop collect-
ing sticks for the rest of your life.

■ Give up on programming and move into management.
■ Stop using CoffeeScript and go back to using only JavaScript.

Settle yourself. Instead, you decide to roll back the changes and deploy the last-known
working version of the tracking program. There will be time to figure out what was
wrong with the changes first thing in the morning.

 The next morning, sitting at your desk and clutching your morning coffee, you’re
on the phone with Agtron discussing what went wrong.

 “How come the tests didn’t catch this problem?”
 “The thing about the tests,” you reply, “is that there are no tests.”
 Silence.
 This story might have a happy ending. More likely it doesn’t. Instead of following it

through, imagine a world where you have tests for everything the program does. Tests
that you can run every time you make a change (or even when you don’t make a
change) to make sure that the program is working as it should. That sounds better
than a late-night panic when things go wrong. To live in that world, you need to learn
how to write tests.

10.2 How to write tests
Ask your dentist which teeth you should brush. The answer will be “only the ones you
want to keep.” It’s the same with tests—test only the parts of the program that you want
to work. There are three basic steps:

1 Write a test.
2 Watch it fail.
3 Change the program to make the test pass.

This sequence begins with writing a test. How do you write a test?

FRAMEWORKS Although it’s common to use a kitchen-sink-included testing
framework to write tests, these frameworks aren’t necessary to learn how to
test. By learning to write tests without a testing framework, you’ll understand
the principles behind testing frameworks.

A test can be just a stated requirement for what the program should do. A simple
requirement for something the tracking application should do is this:
 It should record each product the user clicks on.

272 CHAPTER 10 Driving with tests

If this test is translated into something that can be executed (a test program), then it
can be run automatically against the real program every time a change is made. Tests
that are run automatically provide frequent feedback that the program does what it
should. Without tests, there’s only hope that the program will do what it should. The
broken tracking application showed you that hope isn’t an effective long-term testing
strategy. How do you write a test for the requirement?

 To learn how to test effectively, you need to learn about assertions, how to write
them for the smallest parts (units) of your program, how to repeatedly write them as
you develop your program, and how to get reliable feedback to tell you whether your
assertions hold or not. The first step is understanding assertions.

10.2.1 Assertions

For a moment, forget about how you’ll implement the tracking application. Imagine
that it’s already written and that as part of your work you have a totalVisits vari-
able that tells you how many visits have been recorded. The test would follow along
these lines:

initial = totalVisits
Somehow visit the homepage
Assert that the totalVisits has increased by one

There are two parts of this that you don’t yet know how to write in CoffeeScript: write
a program that visits the homepage (like a real user), and assert that the number of
visits has increased afterward. You’ll learn assertions first.

 An assertion is a statement about the value of an expression. It either passes or fails.
CoffeeScript doesn’t have assertions built-in, but Node.js has a built-in assert module
that you can use. To use the assert module you require it:

assert = require 'assert'
{ [Function: ok] …

Then you invoke one of the assert methods, such as assert.ok, which tests whether
an expression is truthy. If the assertion succeeds, it evaluates to undefined:

assert.ok 4 is 4
undefined

If the assertion fails, an exception is thrown:

assert.ok 4 == 5
AssertionError: false == true

Tests describe something the program does. The description is an important part of the
test. One way to put a description in a test is by wrapping it in a function assigned to a
variable named after the description:

do assert4Equals4 = -> Use the do -> to invoke the

 assert.ok 4 == 4 test function immediately.

273How to write tests

Another useful assertion method is assert.equal, which takes two arguments and
throws an exception if the arguments aren’t equal:

do assert4Equals4 = ->
 assert.equal 4, 4

Although obviously fake, this small test demonstrates a very basic unit test. A test to see
if a small unit of your program does what it should do is a unit test.

10.2.2 How to unit test

In order to understand the mechanics of writing tests, it’s worthwhile to take only a
small part of an application and implement it using a test-driven approach. Suppose
that as part of the dashboard for Agtron’s tracking application, you need to highlight
the most popular product. To highlight it you must add a class attribute to a DOM ele-
ment in a web page. Consider the following HTML fragment:

<html>
<div class="product special">X12</div>

The <div> has two classes: product and special. You want some way to add a third
class of popular so that it becomes

<html>
<div class="product special popular">X12</div>

Putting aside manipulation of HTML elements for a moment, this problem is about
adding words to a string. When you’re writing this individual unit of code, the require-
ment is this:

It should add a word to a space-separated string of words.

Follow the steps. Write a test; watch it fail; make it pass.

WRITE A TEST

Create a file called word_utils.spec.coffee and put the following failing test inside:

assert = require 'assert'

do addWordShouldAddOneWord = ->
 input = "product special"
 expectedOutput = "product special popular"
 actualOutput = addWord input, "popular"
 assert.equal expectedOutput, actualOutput

WATCH IT FAIL

There’s no addWord function yet, so this test should throw an error, and throwing an
error counts as a failure. It does throw an error:

> coffee word_utils.spec.coffee

Require the built-in
assert module.

The input value
for addWord.

The value
that addWord
should return.

The value
that addWord
actually returned.

Assert that the
actual and expected
values are equal.
ReferenceError: addWord is not defined

274 CHAPTER 10 Driving with tests

Create a file called word_utils.coffee and require it in the test file:

assert = require 'assert'
{addWord} = require './word_utils'

do addWordShouldAddOneWord = ->
 input = "ultra mega"
 expectedOutput = "ultra mega ok"
 actualOutput = addWord input, "ok"
 assert.equal expectedOutput, actualOutput

MAKE IT PASS

Implement the addWord function to make the test pass. The word_utils.coffee file ini-
tially exports an empty addWord function:

addWord = (existing, addition) -> # not implemented
exports.addWord = addWord

In practice you’d now continue to implement a working solution. This time, though,
pause for a moment and think, what would happen if you ran the test now? It should
fail because the addWord function returns undefined. To make sure the program is
currently working how you think it’s working, you run the test:

> coffee word_utils.spec.coffee
AssertionError: "ultra mega ok" == "undefined"

It fails exactly as you expected it to. That’s good. You now implement a working
addWord function:

addWord = (text, word) ->
 "#{text} #{word}"

You run the test and it passes:

> coffee word_utils.spec.coffee
No output

The common.js assertions return undefined when there’s no failure, so there’s no
console output when this test passes.

 You’ve just done test-driven development. You wrote the test; you watched it fail; you
implemented the solution to make it pass. By writing the test first, you know that
you have a test for that specific part of your program. Yes, it’s possible that the test is
wrong. No, having tests isn’t a guarantee that the program never does anything wrong.
What you can guarantee, though, is that if you don’t write tests you’ll have much less
confidence that your program does what it should.

 You repeat the process as you write the program. Like the cliché, you lather, rinse,
repeat. If you have a new requirement, write a new test.

10.2.3 Rinse and repeat

The most popular product doesn’t stay the most popular forever. You need to be able
to remove the highlight from an element once it’s no longer the most popular.

Require the
implementation
from inside the test.
Removing the class popular from

275How to write tests

<html>
<div class="product special popular"></div>

results in

<html>
<div class="product special"></div>

This requirement can be written like this:

 It should remove a word from a space-separated string of words.

Same thing again. Write a test; watch it fail; make it pass.

WRITE A TEST

A test for a function that removes a word is as follows:

assert = require 'assert'
{addWord, removeWord} = require './word_utils'

do removeWordShouldRemoveOneWord = ->
 input = "product special"
 expectedOutput = "product"
 actualOutput = removeWord input, "special"
 assert.equal expectedOutput, actualOutput

Before you’ve implemented any solution, the test fails as expected. The first imple-
mentation of removeWords uses the replace method on a string to replace the word
with an empty string:

removeWord = (text, word) ->
 text.replace word, ''

Remember to export the new function from the word_utils file:

exports.removeWord = removeWord

You now have an implementation. Does the test now pass or does it still fail?

WATCH IT FAIL
Run the test:

> coffee word_utils.spec.coffee
AssertionError: "product" == "product "

The test fails because the whitespace is different.

MAKE IT PASS

To make the test pass, you try again with another solution using a regular expression
to remove any whitespace left behind:

removeWord = (text, word) ->
 replaced = text.replace word, ''
 replaced.replace(/^\s\s*/, '').replace(/\s\s*$/, '')

Now the test passes:

> coffee word_utils.spec.coffee

These strings aren’t equal.
Note the whitespace on the
end of the second string.

Remove
the word.

Remove any
leading or trailing
whitespace.
No output

276 CHAPTER 10 Driving with tests

Agtron, peering over your shoulder, asks if he can try something. Agreeing, you hand
him the keyboard. You anticipate that Agtron is going to show you how to improve
your test. He changes the test to run against multiple input values:

do removeWordShouldRemoveOneWord = ->
 tests = [
 initial: "product special"
 replace: "special"
 expected: "product"
 ,
 initial: "product special"
 replace: "spec"
 expected: "product special"
]

 for test in tests
 actual = removeWord(test.initial, test.replace)
 assert.equal actual, test.expected

The test fails:

> coffee word_utils.spec.coffee
#AssertionError: "product ial" == "product special"

Agtron hasn’t just shown you how to improve the test; he’s shown you that the test was
insufficient. You need a better removeWord function. In chapter 3 you learned to split
a string of words into an array of words. With this technique, you have a new solution:

removeWord = (text, toRemove) ->
 words = text.split /\s/
 (word for word in words when word isnt toRemove).join ' '

You now have a passing test:

> coffee word_utils.spec.coffee
No output

This example is trivial and only tests a very small simple function. The process is
important, though, and it’s always the same, as you’ve just seen.

 Until now you’ve used a three-step process that included watching the test fail. You
might consider this step as implied, making the process two steps:

1 Write a failing test for a single unit of code.
2 Write code that passes the test.

The important thing is that the test is written first. It’s also very different from how you
wrote the broken tracking application, which was solution first, test second. Actually,
the tracking application never got to the second part, so there was no feedback about
whether the application worked as it should. Test feedback matters.

10.2.4 Feedback

Currently, when a test passes you’re blandly greeted with empty console output:

> coffee word_utils.spec.coffee

An array of
two test cases

A for…in loop to
execute the array
of test cases
>
Empty console output

277How to write tests

It would be useful to see feedback for each test stating whether it passed or failed. The
following listing contains the tests for addWord and removeWord and a fact function
that runs a test wrapped inside a try…catch.

assert = require 'assert'

{addWord, removeWord} = require './word_utils'

fact = (description, fn) ->
 try
 fn()
 console.log "#{description}: OK"
 catch e
 console.error "#{description}: \n#{e.stack}"
 throw e

fact "addWord adds a word", ->
 input = "product special"
 expectedOutput = "product special popular"
 actualOutput = addWord input, "popular"

 assert.equal expectedOutput, actualOutput

fact "removeWord removes a word and surrounding whitespace", ->
 tests = [
 initial: "product special"
 replace: "special"
 expected: "product"
 ,
 initial: "product special"
 replace: "spec"
 expected: "product special"
]

 for {initial, replace, expected} in tests
 assert.equal removeWord(initial, replace), expected

Running this file outputs the description of each fact along with the result:

> coffee word_utils.spec.coffee
addWord adds a word: OK
removeWord removes a word and surrounding whitespace: OK

The addWord and removeWord functions are general solutions to part of a more spe-
cific problem of adding a class to a <div>. What would have happened had you dove
straight in and written an addWord implementation like this?

addClass = (selector, newClass) ->
 element = document.querySelector selector
 if element.className?
 element.className = "#{element.className} #{newClass}"
 else

Listing 10.1 Add and remove word

A destructuring require from the two
functions exported from word_utils.

The fact function takes two
arguments: a string description of
the test and the function that’s to
be tested. It wraps the test
function call inside a try...catch,
passing the test if no exception
occurs and failing the test if an
exception does occur.
 element.className = newClass

278 CHAPTER 10 Driving with tests

Try to write a test for it:

fact "addClass adds a class to an element using a selector", ->
 addClass '#a .b', 'popular'
 actualClass = document.querySelector(selector).className
 assert.equals 'product special popular', actualClass

Notice that the test asserts something on the document. This is only indirectly testing
the addClass function. Worse, if the document ever changes the way it works, you’ll
need to update both the function and the test. No thanks.

 The addClass function depends on the presence of a document to work. In other
words, document is a dependency. How do you deal effectively with dependencies in
a test?

10.3 Dependencies
When you write a test, the part of the program you’re testing is the system under test.
Anything that you’re not testing but that the system under tests uses is a dependency.

 Imagine a car. To test if the battery is working, a device called an ammeter, which
tests if the battery is producing electricity, is used. The car needs electricity to start and
to power accessories such as the radio. A battery that’s removed from the car can still
be tested with an ammeter. Not the radio, though; if the battery is removed, then the
radio won’t turn on, preventing it from being tested. How do you test the radio with-
out the battery? Well, the radio doesn’t need the battery specifically but only some
equivalent source of electricity.

 The same principle applies to components in a program. When you test part of a
program, the dependencies don’t need to be the real thing, just something that’s
equivalent as far as the test is concerned. In this section you’ll learn why testing pro-
grams with dependencies is a challenge, how you can isolate those dependencies, and
how to deal with them by using test doubles.

10.3.1 Why dependencies make testing difficult

Remember the task at hand: rewrite the tracking application using a test-driven
approach. One part of the application is a dashboard that Agtron uses to see what’s
happening on his web shop: how many visitors there are, what they’re looking at, and
things like that. Imagine you’re writing a test for part of the dashboard that extracts
some data obtained via an HTTP service that returns JSON:

fact "data is parsed correctly", ->
 extractData 'support', (res) ->
 assert.equals res.status, 'online'

A simplified example of data from the HTTP service contains just one property
and value:

This is actually
asserting the
result of a side
effect. That
smells.
{ status: 'online' }

279Dependencies

You implement extractData to take a callback and pass it as the callback to http.get:

http = require 'http'

extractData = (topic, callback) ->
 options =
 host: 'www.agtronsemporium.com'
 port: 80
 path: "/service/#{topic}"

 http.get(options, (res) ->
 callback res.something
).on 'error', (e) ->
 console.log e

This works well until the day you crash the website. When www.agtronsemporium.com
crashes, you’re no longer able to get data from it. This causes the extractData func-
tion to fail because http.get doesn’t work.

 Imagine you’re working on the program during this time when the HTTP service
is down:

> AssertionError: "undefined" == "online"

This is a problem. Whenever the external site is down, you have no way to verify that
the program is working correctly, even at the unit level. Unit tests shouldn’t break
when a dependency (in this case the external site) is unavailable. To make sure that
unit tests work all the time, you need something that does the job of an HTTP service
that isn’t an HTTP service. You need something that won’t break like an egg on your
face. A thing that does the job during a test is a test double.

10.3.2 Test doubles

There are many terms for things that replace dependencies during a test (such as
spies, mocks, and stubs). In this chapter test double or just double is used as a general
term for something that replaces a dependency in a test. A double is like the stunt
double for an actor or the friend who brought their jumper cables around that time
your car battery was dead. When the real thing isn’t suitable, you use a double.

 In a minute you’ll see how to create a double, but suppose for now you already
have one; how do you get it into the program during the tests? By injecting it.

INJECTION

Picking up the actor metaphor again, consider a scene where an actor has to do a stunt:

class Actor
 soliloquy: ->
 'To be or not to be...'
 stunt: ->
 'My arm! Call an ambulance.'

scene = ->
 imaStarr = new Actor
 imaStarr.soliloquy()
 imaStarr.stunt()

An example
Actor class.

The scene depends
on the actor.
 'Scene completed'

www.agtronsemporium.com
www.agtronsemporium.com

280 CHAPTER 10 Driving with tests

A test for this scene asserts that it returns the value 'Scene completed':

fact 'The scene is completed', ->
 assert.equals scene(), 'Scene completed'

The scene itself obtains the actor, so a test for this scene has no way to replace the
actor with a double. If instead the scene is provided with the actor, then replacing
the actor with a double becomes possible:

scene = (actor) ->
 actor.soliloquy()
 actor.stunt()
 'Scene completed'

Now you can replace the actor with a double by passing it in as an argument. The dou-
ble will need to be convincing, though. It’s no good having a double that doesn’t
know how to soliloquy because the scene won’t work if it doesn’t. So how do you cre-
ate a test double that works?

FRAMEWORKS If you use a test framework, it will likely provide some stan-
dard ways to create test doubles. But as with assertions, you don’t need a test-
ing framework to learn how to use doubles. In some languages it’s very
difficult to create a double without a framework, but in CoffeeScript it’s quite
easy. This is because objects are like an all-night café—always open.

CREATING A DOUBLE FROM SCRATCH

During the scene, the actor does a soliloquy and a stunt—both methods of the
actor object. A double that takes the place of the actor during the scene without ruin-
ing it needs to know how to do (or pretend to do) things that the actor has to do. Cre-
ate a double that can soliloquy and stunt using an object literal:

actorDouble =
 soliloquy: ->
 stunt: ->

The scene completes successfully with this actorDouble in place of the actor:

scene = (actor) ->
 actor.soliloquy()
 actor.stunt()
 'Scene completed'

fact 'The scene is completed', ->
 actorDouble =
 soliloquy: ->
 stunt: ->
 assert.equal scene(actorDouble), 'Scene completed'
The scene is completed: OK

This technique of providing dependencies to part of a program is called dependency
injection. Creating doubles in this way to pass them in as arguments is straightforward,

if at times a little inconvenient, in CoffeeScript.

281Dependencies

 Consider the extractData function that contains a dependency on http. Any tests
against it will suffer the same difficulties that the tests for scene had:

http = require 'http'

extractData = (topic, callback) ->
 options =
 host: 'www.agtronsemporium.com'
 port: 80
 path: "/data/#{topic}"

 http.get(options, (res) ->
 callback res
).on 'error', (e) ->
 console.log e

As you can see, the http dependency makes testing very difficult because it breaks all
the tests any time the external site is offline. You can solve this with an http double.
The double must know how to act like the real thing, so by looking at extractData
you can see that the double must have a get method and an on method:

http =
 get: (options, callback) ->
 callback 'canned response'
 @
 on: (event, callback) ->
 # do nothing

To the extractData function, this http double will look just like a real http. In duck-
typing terms (chapter 7), it walks like an http and quacks like an http, so it’s an http.

 Having the double is only half the story; it also needs to be injected during the test.
In order to allow this, the extractData function must be changed to allow the depen-
dency to be injected:

http = require 'http'

extractData = (topic, http, callback) ->
 options =
 host: 'www.agtronsemporium.com'
 port: 80
 path: "/data/#{topic}"

 http.get(options, (res) ->
 callback res.something
).on 'error', (e) ->
 console.log e

Now the tests can be written such that they don’t break every time something goes
wrong in the real world.

 Injecting dependencies in this way isn’t the only option; dependencies can be
isolated to specific locations in the program so that they can be avoided as much as

Spot the
dependency.

Return the current
object to create a fluent
interface (see chapter 7).

Now that http is being injected, you
can remove this old 'http' require.

The http object
injected.

The http
object used.
possible in other, easily testable units of the program.

282 CHAPTER 10 Driving with tests

CREATING A DOUBLE WITH PROTOTYPES

Sometimes you need a double for an object with lots of properties, but only one of
those properties needs to be replaced inside the test. Consider this Form class, which
has a dependency on the global window object present in all web browsers:

class Form
 reloader = ->
 window.location.reload()

A real window object in a web browser has many properties:

window =
 location:
 href: ''
 reload: ->
 closed: false
 screen:
 top: 0
 left: 0
 # hundreds of other properties not shown here

A real window object in a web browser has more than 200 properties. It would take a
very long time to create a suitable double to use inside the test. Instead of writing a
double from scratch, you can use Object.create to create a double with the real
thing as a prototype and then override just the parts you need to. For the Form class
you need to override the reload method:

windowDouble = Object.create window
windowDouble.location.reload = ->

This saves some time in creating a double to inject during testing. Change the Form
class to accept an injected window in the constructor:

class Form
 constructor: (@window) ->
 reloader: ->
 @window.location.reload()

ISOLATION

The extractData function does too much. It fetches and extracts the data when really
it should just extract the data. Breaking out the fetching of data into a separate func-
tion removes the dependency that extractData has on http. This means that tests for
extractData don’t need to even know about http, let alone create a double:

fetchData (http, callback) ->
 options =
 host: 'www.agtronscameras.com'
 port: 80
 path: "/data/#{topic}"

 http.get(options, (res) ->
 callback res
).on 'error', (e) ->

At the moment it doesn’t
matter what any of the
methods do, so they’ve
been left empty.
 console.log e

283Dependencies

extractData = (data) ->
 console.log data

fetchAndExtractData = ->
 fetchData http, extractData

The next listing shows the final version of the tests with dependencies avoided where
possible and injected where necessary.

assert = require 'assert'

fact = (description, fn) ->
 try
 fn()
 console.log "#{description}: OK"
 catch e
 console.log "#{description}: \n#{e.stack}"

http =
 get: (options, callback) ->
 callback "canned response"
 @
 on: (event, callback) ->

fetch = (topic, http, callback) ->
 options =
 host: 'www.agtronscameras.com'
 port: 80
 path: "/data/#{topic}"

 http.get(options, (result) ->
 callback result
).on 'error', (e) ->
 console.log e

parse = (data) ->
 "parsed canned response"

fact "data is parsed correctly", ->
 parsed = parse 'canned response'
 assert.equal parsed, "parsed canned response"

fact "data is fetched correctly", ->
 fetch "a-topic", http, (result) ->
 assert.equal result, "canned response"

When you isolate dependencies and inject them only into places where you absolutely
need them, the program is easier to reason about and easier to test. Dependency
injection can lead to a particular problem, though. In a world where everything is
injected, all you see is things being injected. What does this mean and how can you
avoid it?

Listing 10.2 Testing with a double

The http
double to be
used by tests

Very simple parse
function shown to
demonstrate it tested in
isolation from fetch

284 CHAPTER 10 Driving with tests

10.3.3 Avoiding dependency injection hell

Imagine you’re writing part of the dashboard for Agtron’s tracking application that
displays the number of visits for a particular user. As part of this, you have a visits
function with three dependencies: a database, an HTTP service, and a user.

 Suppose this visits function looks up the user in the database and then uses that
information to get the number of hits for the user from the HTTP service:

 visits = (database, http, user) ->
 http.hitsFor database.userIdFor(user.name)

Suppose you then find out that some users have requested their data be kept private and
that information be available only in a permissions file. You add another argument:

visits = (database, http, user, permissions) ->
 if permissions.allowDataFor user
 http.hitsFor database.userIdFor(user.name)
 else
 'private'

With more and more dependencies, you can see that this will get more and more
unwieldy. An options object passed in as an argument (see chapter 4) is a common
solution to the problem of having too many arguments:

visits = (dependencies) ->
 if dependencies.permissions.allowDataFor user
 dependencies.http.hitsFor dependencies.database.userIdFor(user.name)
 else
 'private'

That’s different . . . and worse! The function is now harder to understand.
 Think about it; most of the time you don’t need all of those options. If you partially

apply the function (discussed in chapter 6) and create a new function that has fewer argu-
ments, then you can make it more manageable. Instead of having lots of dependencies,

visits = (database, http, user, permissions) ->
 if permissions.allowDataFor user
 http.hitsFor database.userIdFor(user.name)
 else
 'private

make a makeVisits function that fixes the user and permissions arguments to visits:

makeVisitsForUser = (database, http) ->
 (user, permissions) ->
 visits database, http, user, permissions

This function would typically be used dynamically, but an example of using it for a sin-
gle known user, by explicitly passing in a user and permissions, is as follows:

database = new Database
http = new Http

visitsForUser = makeVisitsForUser bob, permissions

database and http created from a class. It’s likely that these wouldn’t
be created using classes; the classes are used here as examples.

Getting a two-argument

function as visitsForBob.

285Dependencies

The resulting visitsForBob function can then be used:

bob = new User
permissionsForBob = new Permissions

visitsForUser bob, permissionsForBob

Cute, you think, but how is it useful in a test? Imagine you have two tests that use the visits
function. Each of them creates doubles for database, http, user, and permissions:

fact 'Visits not shown when permissions are private', ->
 database = databaseDouble
 http = httpDouble
 user = userDouble
 permissions = new Permissions
 assert.equal visits(database, http, user, permissions), 'private'

fact 'Returns visits for user', ->
 database = databaseDouble
 http = httpDouble
 user = userDouble
 permissions = new Permissions
 assert.equal visits(database, http, user, permissions), 'private'

Notice that the dependencies are essentially the same in both cases. If the program
has already been structured to have the makeVisitsForUser function, then dealing
with the dependencies in the test is easier:

database = databaseDouble
http = httpDouble
visitsForUser = makeVisitsForUser database, http

fact 'Visits not returned when permissions are private', ->
 user = new User
 privatePermissions = new Permissions private: true
 assert.equal visitsForUser(user, privatePermissions), 'private'

fact 'Visits returned for user', ->
 user = new User
 privatePermissions = new Permissions private: true
 assert.equal visitsForBob(database, http), 'private'

This change looks minor at a small scale (and it is), but as a program grows, if it has
been composed with functions, then you can avoid some messy dependency situations
that are otherwise difficult to solve.

 In this section you’ve learned to deal with program dependencies when writing
unit tests. The general approach is to create a test double that takes the place of the
dependency during the test. You’ve also seen the different ways to get doubles where
you need them during tests. By forcing yourself to write programs that allow depen-
dencies to be replaced by doubles during tests, your programs will be easier to main-
tain. That’s an added benefit that you’ll appreciate on another day.

Examples of how user and
permissions might be created.

Invoke the visitsForUser function
to get the visits for bob.

286 CHAPTER 10 Driving with tests

 What else do you need to know about testing? This is CoffeeScript, so your applica-
tions almost always run in an event-driven environment. One of the things you’ll have
to deal with in an event-driven environment is the tension between asynchronous
code and the desire to structure tests synchronously.

10.4 Testing the asynchronous
CoffeeScript programs, usually run in the browser or on Node.js, are usually event
driven, and I/O is almost always asynchronous. Why is this a problem? Well, consider
the following test structure:

fact 'the tracking application tracks a user mouse click', ->
 options = {}
 tracking = new Tracking options, http
 tracking.start ->
 fred.visit '/page/1'
 assert.equal tracking.total(), 1

The start method of the tracking object expects a callback function that will be
invoked when it’s finished. But the test invokes the visit method of the fred object
and asserts the result of invoking the total method on the tracking object immedi-
ately, without bothering to wait for the start method to finish. If the start method
hasn’t finished by the time the assertion occurs, the test will fail.

 There are three related techniques for dealing with asynchronous I/O in tests: live
with it, remove it, or expect it.

10.4.1 Live with it

One technique for testing asynchronous programs is to just reflect the asynchronous
nature in your tests. To do this, add assertions as part of a callback to the function
you’re testing:

fact 'the tracking application tracks a user mouse click', ->
 options = {}
 tracking = new Tracking options, http
 tracking.start ->
 assert.equal tracking.total(), 0
 fred = new User serverOptions, http
 fred.visit '/page/1', ->
 fred.clickMouse ->
 assert.equal tracking.total(), 1
 tracking.stop()

Leaving the callback in the test for the start method works well for a while. But what
if the start method has some external dependency? What if the start method per-
forms some potentially error-prone network I/O?

10.4.2 Remove it

There are two types of functions that accept callbacks. One uses I/O and the other

The remainder of the test
is passed as the callback to
the start method of the
tracking object.
one doesn’t. Don’t do any I/O in a unit test. Remember the http double?

287Testing the asynchronous

http =
 get: (options, callback) ->
 callback()
 @
 on: (event, callback) ->
 # do nothing

The get method takes a callback as an argument but it isn’t asynchronous; it’s invoked
immediately. It’s unlike a real http where the callback is invoked only after a network
request has successfully returned. This means the http double has removed the
dependency on the external HTTP service whenever it’s used in place of the real http.
If you pass in an http double as a dependency to the tracking object, then you’re
removing the external dependency from the test:

fact 'the tracking application tracks a user mouse click', ->
 options = {}
 http =
 get: (options, callback) ->
 callback()
 @
 on: (event, callback) ->
 # do nothing

 tracking = new Tracking options, http
 tracking.start ->
 fred.visit '/page/1'
 assert.equal tracking.total(), 1

Perhaps you don’t really need an http double at all. Instead, you can create a double
of a method that uses it. Replace the start method with a double:

fact 'the tracking application tracks a user mouse click', ->
 tracking = new Tracking options, http
 tracking.start = (callback) ->
 callback()

 fred.visit '/page/1'
 assert.equal tracking.total(), 1

This example oversimplifies the scenario, but you can clearly see that instead of a dou-
ble for an object, you essentially have a double for a function. This is often referred to
as a method stub, but you can think of it like any other double.

10.4.3 Expect it

Suppose you’re testing a program that talks to a database via this http object. You
don’t really care about the response you get back asynchronously from the database.
What you do care about is that you made the correct call to it. If the correct call was
made, you trust the database to do the right thing. After all, a database that doesn’t
store things when you tell it to is probably not a database worth having.

288 CHAPTER 10 Driving with tests

 Consider the http module; you might expect a particular method to be called with
specific parameters. A simple way to test that the call happened is to remember it in
the test, using a variable:

fact 'http service should be accessed', ->
 getWasCalled = false
 http =
 get: ->
 getWasCalled = true
 invokeTheThingThatGets()
 assert.ok getWasCalled

Using lexical scope, you can store information about whether the get method has
been invoked on http. It’s a simple technique for testing whether a dependency
has been called.

 The full unit tests for the Tracking class are shown in listing 10.3. This listing makes
use of the fact function from listing 10.1 extracted into a separate file as follows:

exports.fact = (description, fn) ->
 try
 fn()
 console.log "#{description}: OK"
 catch e
 console.error "#{description}: "
 throw e

Also note that the module being tested (listing 10.4) is also required at the top of the test.

assert = require 'assert'

{fact} = require './fact'
{Tracking} = require './10.4'

fact 'controller responds with 200 header and empty body', ->
 request = url: '/some/url'

 response =
 write: (body) ->
 @body = body
 writeHead: (status) ->
 @status = status
 end: ->
 @ended = true

 tracking = new Tracking
 for view in [1..10]
 tracking.controller request, response

 assert.equal response.status, 200
 assert.equal response.body, ''
 assert.ok response.ended

Listing 10.3 Test for the Tracking class

Local variable to
remember whether the
get method was called.

The http double changes the
value of the local variable when
the get method is invoked. Invoking this

function should call
the get method of
the http double.Assert that the get method was

called by checking the local variable.

Fact function
from module Tracking class

from module

HTTP response
double

Checks
response
 assert.equal tracking.pages['/some/url'], 10

289Testing the asynchronous

fact 'increments once for each key', ->
 tracking = new Tracking
 tracking.increment 'a/page' for i in [1..100]
 tracking.increment 'another/page'

 assert.equal tracking.pages['a/page'], 100
 assert.equal tracking.total(), 101

fact 'starts and stops server', ->
 http =
 createServer: ->
 @created = true
 listen: =>
 @listening = true
 close: =>
 @listening = false

 tracking = new Tracking {}, http
 tracking.start()

 assert.ok http.listening

 tracking.stop()
 assert.ok not http.listening

The Tracking class is shown in the next listing.

http = require 'http'

class Tracking
 constructor: (@options, @http) ->
 @pages = []
 start: (callback) ->
 @server = @http.createServer @controller
 @server.listen @options.port, callback
 stop: ->
 @server.close()
 controller: (request, response) =>
 @increment request.url
 response.writeHead 200, 'Content-Type': 'text/html'
 response.write ''
 response.end()
 increment: (key) ->
 @pages[key] ?= 0
 @pages[key] = @pages[key] + 1
 total: ->
 sum = 0
 for page, count of @pages
 sum = sum + count
 sum

exports.Tracking = Tracking

Listing 10.4 The Tracking class

Increments some
different page counts

Tests that page counts
are as expected

http
double

Tests that server
starts and stops
correctly

Initialized pages

Creates the server, passes
controller to it, and then starts it

Closes the server

Handles responses
that arrive, invoking
increment

Increases the
relevant page count

Totals the counts
for all pages

Exports
Tracking class

290 CHAPTER 10 Driving with tests

10.4.4 Exercise

Write a small expectation library that makes the following possible:

fact 'http service should be accessed', ->
 httpDouble = double http
 tracking = new Tracking {}, httpDouble
 assert.ok httpDouble.listen.called == true

Assertions, unit tests, dependencies, expectations, and dealing with the asynchronous
are important, but remember why you started down this path in the first place. You
want to write real programs with evidence that they do what they’re supposed to do.
This means you started with a test for what the program does.

10.5 System tests
You started with a requirement:

 It should record each product the user clicks on.

This is a system requirement. System tests are often functional tests because they test
the functionality of the whole system. Functional tests are not related to functional
programming, so you might find the term system test less confusing.

 To learn how to test-drive the development of a program, you looked only at small
components of the overall tracking system. This was necessary for you to understand
how things work but was somewhat artificial. In practice you’d implement only the
components required to get a passing test for a single system requirement.

 The good news is that you now have the pieces of the test-driven development puz-
zle you need to start with a system requirement, write a test for it, and continue to
write the code to meet that requirement:

fact 'the tracking application tracks a single mouse click', ->
 tracking.start ->
 assert.equals tracking.total, 0
 userVisitsPageAndClicks()
 assert.equals tracking.total, 1

You know that the asynchronous part of the tracking program has been reflected in
the test, with the remainder of the test being passed to the start method. You also
know that userVisitsPageAndClicks is going to create a double for a user because
having a real user for your test isn’t practical; you’d need to kidnap one and keep
them locked in your basement. The following listing demonstrates this slightly differ-
ently as a full working example.

assert = require 'assert'
{fact} = require './fact'
http = require 'http'

{Tracking} = require './10.4'

Listing 10.5 System test for tracking application
{User} = require './10.6'

291Test suites

SERVER_OPTIONS =
 host: 'localhost'
 port: 8080

fact 'the tracking application tracks a user mouse click', ->
 tracking = new Tracking SERVER_OPTIONS, http

 tracking.start ->
 assert.equal tracking.total(), 0
 fred = new User SERVER_OPTIONS, http
 fred.visitPage '/some/url', ->
 fred.clickMouse ->
 assert.equal tracking.total(), 1
 tracking.stop()

The User class used in listing 10.5 is shown in the next listing. This class provides a
user that can interact inside the tests. Think of it like a test double for a real person. It
simulates what happens when a real person visits the site.

class User
 constructor: (@options, @http) ->
 visitPage: (url, callback) ->
 @options.path = url
 @options.method = 'GET'
 callback()
 clickMouse: (callback) ->
 request = @http.request @options, (request, response) ->
 callback()
 request.end()

exports.User = User

It’s time to put all of these tests together and create a test suite.

10.6 Test suites
You have tests. Some of them are unit tests. Some of them are system tests. The total
set of all the tests for the application belong together in a test suite.

 All of the tests you have are executable, but to execute them you have to run each
of them individually. Suppose you have your tests in three files. To test if the program
is working correctly, you’ll need to execute all three files from the command line:

> coffee test1.coffee
OK

> coffee test2.coffee
OK

> coffee test3.coffee
Fail

If you have to run all of the tests individually, then the chances that you actually will

Listing 10.6 The User class

Server config options—uppercase by
convention but not real constants.

Assert the tracking total inside
the callback to the asynchronous
user mouse click.

Constructor shorthand
(chapter 5).

For testing, the user
just needs to create
the necessary http
request.
run them all the time is rather small. To get the full value of the tests, they need to be

292 CHAPTER 10 Driving with tests

easy to run—all at once. In this section you’ll learn how to create a test suite for your
tests that makes it easy to run them all at once. This involves removing some repetition
with test setups and teardowns, making it easier to run the tests with a single com-
mand, and making the tests run for you, automatically. First up, setups and teardowns.

10.6.1 Setups and teardowns

It’s very likely that you have several tests that require a “bunch of the same stuff” to be
in place before they run. Suppose you have three that all require an http double. You
might start writing the first test like this:

fact 'this test uses a http double', ->
 http =
 get: (options, callback) ->
 callback()
 @
 on: (event, callback) ->
 # do nothing

When you write the second test, you don’t want to replicate the code for http double,
so you move it outside the fact:

httpPrototype =
 get: (options, callback) ->
 callback()
 @
 on: (event, callback) ->
 # do nothing

fact 'this test uses a http double', ->
 http = Object.create httpPrototype

fact 'this test also uses a http double', ->
 http = Object.create httpPrototype

Even that is tedious. What you really want is to define some setup that’s done either
before all of your tests or before each of your tests. By now you know that functions
are good for this sort of thing. For example, you can extract the double creation into
a createHttp function to run before each test:

createHttp = ->
 http =
 get: (options, callback) ->
 callback()
 @
 on: (event, callback) ->
 # do nothing
 http

fact 'this test uses a http double' ->
 http = createHttp()
 # the rest of the test goes here

If you have to create 10 doubles, you’ll have to call 10 different setup functions.

No thanks. The simplest way to handle setup for groups of tests is to take advantage

293Test suites

of function scope. If you have three tests that use an http double, put them in a sin-
gle scope:

do ->
 http = {}
 setup = ->
 http =
 get: (options, callback) ->
 callback()
 @
 on: (event, callback) ->
 # do nothing

 fact 'this test uses a http double' ->
 setup()
 # the rest of the test goes here

 fact 'this test also uses a http double' ->
 setup()
 # the rest of the test goes here

Similarly, when each test is finished, you might need to clean up after yourself by
extracting the cleanup work to a teardown function that’s invoked after each test.

 With setups and teardowns, you’ve tidied things up inside test files. How about
multiple test files—how do you deal with those?

10.6.2 Test helpers and runners

You still have to run your test files individually. To test three modules, you must invoke
three test files:

> coffee word_utils.spec.coffee
OK

> coffee tracking.spec.coffee
OK

> coffee another.spec.coffee
OK

This is annoying. When there’s only one file to test, it’s almost bearable, but what about
when there are 10, 100, or 1,000 test files? To be confident that you’ll actually go to the
bother of running the tests, they need to all be invoked with a single command.

TEST HELPERS

You have a new dependency problem in your tests. Everywhere you look, there are
require statements that grab different parts of the program and do scaffolding in
order to get a sufficient environment in place so that your tests will run. This is annoy-
ing to do multiple times. Don’t let the machines mock you.

 A test helper provides a single place to put all of the things that the tests need to
run. The test helper for the tracking application tests is in the listing that follows.

Setup function in
the do -> scope
is available to all
facts contained

294 CHAPTER 10 Driving with tests

dependencies =
 'Tracking': '../tracking'
 'User': '../user'
 'fact': '../fact'

for dependency, path of dependencies
 exports[dependency] = require(path)[dependency]

To run the test files together, you can write another test runner file that finds all of the
tests and runs them.

TEST RUNNERS

You want all your tests to run with a single command, a test command reminiscent of
the ring of power in The Lord of The Rings:

One command to rule them all, one command to find them, one command
to bring them all and in the darkness bind them.

You get the idea.
 A simple test runner just finds test files in a specific directory based on their file-

names and executes their contents as CoffeeScript. This test runner can also inject
require dependencies into a file by munging the file source to put additional require
expressions at the top of the file before they’re run. This is a somewhat unsophisti-
cated and brutish approach, but in the absence of a test framework or a more elegant
solution, it works. The following listing shows such a test runner.

fs = require 'fs'
coffee = require 'coffee-script'

test = (file) ->
 fs.readFile file, 'utf-8', (err, data) ->
 it = """
 {fact} = require './fact'
 assert = require 'assert'
 #{data}
 """
 coffee.run it, filename: file

spec = (file) ->
 /[^.]*\.spec\.coffee$/.test file

fs.readdir '.', (err, files) ->
 for file in files
 test file if spec file

Injecting modules into the source code of a test before passing it to the runtime
makes you slightly uneasy, but it works and can make writing tests a bit easier. Making

Listing 10.7 The test helper

Listing 10.8 The test runner

Keep a hash of dependencies
required during tests.

Export them all from
the test helper.

The test file source has some requires
inserted at the top, and then the
resulting source is run. This saves you
from having to put these specific
requires at the top of every file.

Run all the test files in the current
directory that have a filename
ending with .spec.coffee.
it easier to write tests means you’ll be more likely to actually write them, keeping the

295Test suites

rest of the program cleaner. Although different test frameworks will have other ways
to provide these conveniences for you, the reasons behind them are the same.

 What does the setup of the program look like after all this is done? The file and direc-
tory structure for the tracking application should now be rearranged to look like this:

├──tracking/
│ ├── test.coffee
│ ├── spec/
│ │ ├── tracking.spec.coffee
│ │ ├── 2.spec.coffee
│ │ ├── 3.spec.coffee
│ ├── src/
│ │ ├── tracking.coffee
│ │ ├── 2.coffee
│ │ ├── 3.coffee

Move the test (or spec) files to a spec folder and the program source files to an src
folder, keeping them clearly separated. When you do this, you’ll also need to update
any require paths.

 When the test.coffee file is executed, all of the tests in the test directory run and
report the result:

> coffee test.coffee

Instead of invoking it using the coffee command, you can change test.coffee into an
executable script, allowing the tests to be run without invoking coffee directly on the
command line:

> ./test

An executable script is easier to integrate with other programs. Be sure to make the
script executable. The exact method of doing this depends on the platform you’re
running on. Here is a simple shell script for *nix-based systems that assumes Coffee-
Script is installed:

#!/bin/bash
set -eu

TEST_DIR=$(dirname "$0")

main () {
 coffee test.coffee
}

main "$@"

It’s nice that you can run all the tests with a single command. What would be even
nicer, though, is if you didn’t have to remember to run them at all.

10.6.3 Watchers

The final piece of the test suite puzzle is getting tests to run automatically when a file

The test runner
from listing 10.8

Test files; copy the contents of
listing 10.3 to tracking.spec.coffee

Program file; copy the contents
of listing 10.4 to tracking.coffee

A simple bash script for
running a CoffeeScript
program in test.coffee
is changed. This way, you wouldn’t even need to run the single command that executes

296 CHAPTER 10 Driving with tests

the tests. Instead, you can start the watcher. The watcher script here is called autotest
because it runs the tests automatically:

> ./autotest

Then start writing tests. If you write a failing test in the file test1.spec.coffee,

fact 'True should equal false', ->
 assert.equal true, false

then you’ll see a message on the command line:

> True should equal false
> Assertion Error: true != false
> at spec/1.spec.coffee

An example autotest script is shown in the next listing. This file needs to be executable.

#!/usr/bin/env coffee

coffee = require 'coffee-script'
fs = require 'fs'

SPEC_PATH = './spec/'
SRC_PATH = './src/'

test = (file) ->
 fs.readFile SPEC_PATH + file, 'utf-8', (err, data) ->
 it = """
 {fact} = require '../fact'
 assert = require 'assert'
 #{data}
 """
 coffee.run it, filename: SPEC_PATH + file

spec = (file) ->
 if /#/.test file then false
 else /\.spec\.coffee$/.test file

tests = ->
 fs.readdir SPEC_PATH, (err, files) ->
 for file in files
 test file if spec file

fs.watch SPEC_PATH, (event, filename) ->
 tests()

fs.watch SRC_PATH, (event, filename) ->
 tests()

This autotest runs as a script in a *nix environment (such as your MacBook or your
Linux or BSD server). Consult a local expert for how to create a version for your oper-
ating system.

 The test script and watch script provided here read only a single directory. In prac-

Listing 10.9 The watcher

Specify that this shell
script is CoffeeScript.

Define some paths to use everywhere in the program. These are uppercase
by convention only; there are no real constants in CoffeeScript.

Add the file path back to
coffee.run so it knows where to
look for requires inside the file.

Watch the specifications and
the program source. Rerun all
the tests if any files change in
either of them.
tice you might need to monitor all of the subdirectories as well. But it’s just as likely

297Summary

that you’ll be using an existing testing framework. Having seen how the testing stack
goes together, though, you’re in a better position to work with an existing testing
framework. You know how to use a test framework because you’ve written one. That’s
right: in this chapter you’ve written your own test framework. It wasn’t that difficult!

 By writing (or using) a test framework, you’ve made it easier to write tests. If it’s
easier to write tests, it’s more likely that you actually will write tests and, as a result,
actually have evidence that your program behaves the way it’s supposed to. Evidence is
good. Scruffy and Agtron wouldn’t trust your untested software any more than they
would trust the untested medicine in figure 10.1.

 You get the message. Write tests.

10.7 Summary
You’ve learned how to test programs. Actually, by writing tests without a test frame-
work, you’ve written your own tiny test framework. That was surprisingly easy to do in
CoffeeScript, wasn’t it? This was valuable in showing you how the fundamental princi-
ples work. When you have to use a testing framework, you’ll understand the basic
principles behind it. A testing framework provides easier ways to do some of the tasks
outlined in this chapter. Although which test framework you use often comes down to
personal choice, popular test frameworks worth exploring are Jasmine, Mocha, and

Figure 10.1 Tests are evidence that your program works.
node-unit, all of which can be found in the Node.js package manager, npm.

298 CHAPTER 10 Driving with tests

 Why go to all this trouble writing tests? Surely this program is small enough that
it doesn’t need any tests. You’re familiar with the phrase, “famous last words”? If you
don’t have any tests, then there’s a very good chance that one day you’ll become
unglued. It’s quite possible that when you do become unglued, you will do some
heroics and save the day all by yourself. Or perhaps by sheer brilliance or determina-
tion you don’t need the tests. The tests are boring—until one day they fail. Then
they’re priceless.

 The next chapter is about creating user interfaces for web browsers: what the rules
are, when to break them, and how the strengths of CoffeeScript can help with some of
the challenges unique to user interfaces.

In the browser
A web browser can be a hostile environment in which to run a program, but Coffee-
Script can help you keep your browser-based applications manageable. It’s not the
individual features of CoffeeScript that help you in a browser. Instead, it’s the focus
on simplicity and clarity of expression and semantics that help you to keep your
sanity in the world of web browsers, which can at times seem insane. That said,
although the benefit of CoffeeScript in a browser is in how you use it to structure
programs, it’s still important to learn the challenges of the browser environment
that your CoffeeScript programs live in.

 In this chapter you’ll learn how to write browser-based programs in CoffeeScript
that run on multiple, often incompatible, browsers. To get there you’ll learn how
to deliver your CoffeeScript to a browser, how to deal with browsers that don’t
support the features you need, how to create user interfaces using retained- and

This chapter covers
■ Building browser-based programs
■ Creating polyfills for cross-browser compatibility
■ Building retained- and immediate-mode

interfaces
■ Structuring browser-based programs
Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch11-code.html

300 CHAPTER 11 In the browser

immediate-mode techniques, how to create animations, and how to manage the struc-
ture of your program and how fast it runs. It’s time to get started.

11.1 Getting started
Imagine Agtron has a few servers that frequently run out of both CPU and network
bandwidth. This causes his online shop to temporarily go offline, and Agtron loses
money. If only Agtron had a web-based dashboard to show him the status of his servers
(in real time), then he could prevent the shop from being offline.

 Your mission, should you choose to accept it, is to create a real-time dashboard for
Agtron. In figure 11.1 you see Agtron’s back-of-the-envelope drawing of how he wants
the dashboard to look when viewing the status for a single server. It looks a bit like a
heart-rate monitor found in a hospital.

 This is going to be a browser-based dashboard, so you start with the basic HTML in
the following listing.

<!DOCTYPE html>
<html dir='ltr' lang='en-US'>
 <head>
 <meta http-equiv='Content-Type' content='text/html; charset=utf-8'>
 <title>Radiator</title>
 <style type="text/css">
 html, body { padding: 0; margin:0; }
 </style>
 <script src='status.js'></script>
 </head>
 <body>
 <div id='status'></div>
 </body>
</html>

Listing 11.1 The basic HTML page

Disk

80 KBps

200 KBps

25%

Net

CPU

This status.js file is compiled
from the CoffeeScript in listings
that appear later in this chapter.
Figure 11.1 Agtron’s dashboard

301Getting started

The script referenced by <script src='status.js'></script> is a JavaScript file, but
your browser-based program will be written in CoffeeScript. How do you deliver your
CoffeeScript program to a browser?

11.1.1 Manual compilation

The first option you have is to use the manual command-line CoffeeScript compiler.
But that will quickly become tedious if you have to invoke the compiler every time you
change your program. Suppose the program is contained in the file status.coffee:

> coffee –c status.coffee

You don’t want to manually recompile again and again. There are other options; one
of them is to send CoffeeScript straight to the browser.

11.1.2 Browser compilation

Browsers execute JavaScript, not CoffeeScript. But because CoffeeScript is implemented
in CoffeeScript, a compiled version of CoffeeScript can run in the browser and compile
CoffeeScript for you on the fly. Read the previous sentence again. Let it sink in.

 Once you’re ready, you can compile CoffeeScript in a browser by first including a
browser-specific version of CoffeeScript:

<script src='http://coffeescript.org/extras/coffee-script.js'></script>

Once your HTML document has that, you can include a CoffeeScript source file:

<script type='text/coffeescript' src='status.coffee'></script>

Web browsers don’t recognize the text/coffeescript script type, but by including
CoffeeScript in the browser, the CoffeeScript compiler can turn your CoffeeScript
source files into JavaScript on the fly. How does it do this? It loads the source of your
CoffeeScript program, compiles it, and then tells the browser to evaluate the com-
piled JavaScript.

 That sounds too good to be true! Unfortunately it is. Sending CoffeeScript directly
to the browser comes with a performance disadvantage because every time the browser
loads your program, it has to first load the CoffeeScript, then compile the program,
and then run it. Regardless, you don’t want to compile your CoffeeScript manually.
You need a third alternative.

11.1.3 Automatic compilation

Manual compilation is not only annoying; it can hurt your interface. To develop good
user interfaces, it helps to have frequent and direct feedback from the working inter-
face. If you have to manually compile every time, you’ll lose your flow.

 To keep the immediacy when writing CoffeeScript programs for web browsers, use
the –w (watch) compiler argument to automatically recompile every time you save a
change to a file. Invoke the compiler with the watch option and the filenames you
want to compile:
> coffee –c –w status.coffee

302 CHAPTER 11 In the browser

Each time you save a change, you’re notified that the compiler has run:

21:52:16 - compiled status.coffee
21:52:57 - compiled status.coffee
21:53:00 - compiled status.coffee

Now that you’re happily compiling away (or not), it’s time to get back to the task of
building Agtron’s dashboard.

11.2 Communicating with the outside world
Before you can display any data about Agtron’s servers, you need to get that data from
somewhere. Suppose Agtron has already implemented a data server that collects infor-
mation from all of the servers he wants to monitor and serves them up for you over
HTTP as JSON. Agtron’s back-of-the-envelope network diagram is shown in figure 11.2.

 Your CoffeeScript program is entirely browser-based, so you’ll need to under-
stand the different techniques for loading data from a server from inside a browser.
In this section you’ll learn three techniques: XMLHttpRequest, dynamic script inser-
tion, and WebSocket.

11.2.1 Using XMLHttpRequest

One technique you’ve seen for fetching data over the web in a browser-based program
is to use the XMLHttpRequest object (discussed in chapter 5). Here, you wrap it in an
http function:

http = (method, src, callback) ->
 handler = ->
 if @readyState is 4 and @status is 200
 unless @responseText is null
 callback JSON.parse @responseText

 client = new XMLHttpRequest

Server A

Server B

API server

Dashboard

server

Browser

Server C

Figure 11.2 Agtron’s servers
 client.onreadystatechange = handler

303Communicating with the outside world

 client.open method, src
 client.send()

get = (src, callback) ->
 http "GET", src, callback

Unfortunately, there’s a catch with using XMLHttpRequest. For security reasons, it
works only if the data you’re loading is on the same domain as your browser-based
application. Suppose that in your case the dashboard is on one particular domain at
http://www.agtronsemporium.com, and the data server is on a different domain at
http://www.agtronsapi.com. How do you load data from a different domain?

11.2.2 Dynamic script insertion

An alternative technique to XMLHttpRequest that works across different domains is to
take advantage of the browser’s ability to dynamically load and execute new <script>s
at any time. You might call this hot code loading because program code is being loaded
while the program is running (while it’s hot). To load an external script dynamically into
the application, you dynamically insert a script element with the desired src attribute:

window.serverStatusCallback = (status) ->
 console.log status

head = document.querySelector 'head'
script = document.createElement 'script'
script.src = 'http://www.agtronsapi.com/server-status.js'
head.appendChild script

If the server-status script that’s loaded has the data wrapped in the appropriate call-
back, as follows, then the status will be logged to the console:

window.serverStatusCallback({
 'server 1': {
 'cpu': 22,
 'network': {
 'in': 2343,
 'out' 3344
 }
 }
});

But that will only load the data once, and Agtron wants to leave the application run-
ning and see the information about his servers update over time. A simple approach
to getting regular data updates is to just ask for the data periodically.

HOW TO RUN THE LISTINGS The remaining listings in this chapter are client-side
and require a server to run. The downloadable code includes a server.coffee
file that can be used to experiment with the listings. Run server.coffee from
the command line and visit http://localhost:8080/ to start experimenting.

In the following listing, you see the techniques described in this section used in a first

version of the dashboard program that repeatedly polls Agtron’s servers to get the

http://localhost:8080/
http://localhost:8080/
http://www.agtronsemporium.com
http://www.agtronsemporium.com
http://www.agtronsapi.com

This rende
simply up
page with

rece
304 CHAPTER 11 In the browser

most recent data. Instead of displaying a graph, this first version simply displays the
current numerical value as text.

window.onload = ->
 status = document.querySelector '#status'

 render = (buffer) ->
 status.style.color = 'green'
 status.style.fontSize = '120px'
 status.innerHTML = buffer[buffer.length-1]

 nextCallbackId = do ->
 callbackId = 0
 -> callbackId = callbackId + 1

 nextCallbackName = ->
 "callback#{nextCallbackId()}"

 fetch = (src, callback) ->
 head = document.querySelector 'head'
 script = document.createElement 'script'
 ajaxCallbackName = nextCallbackName()
 window[ajaxCallbackName] = (data) ->
 callback data
 script.src = src + "?callback=#{ajaxCallbackName}"
 head.appendChild script

 seconds = (n) ->
 1000*n

 framesPerSecond = (n) ->
 (seconds 1)/n

 makeUpdater = (buffer = []) ->
 bufferRenderer = (json) ->
 buffer.push (JSON.parse json).hits
 render buffer

 ->
 window.setInterval ->
 fetch '/feed.json', bufferRenderer
 , framesPerSecond 20

 updater = makeUpdater()
 updater()

But as with most things in browser-based programs, there’s a catch. Although some
code (such as JSON data for Agtron’s servers) is safe to hot load,

{
 'servers': [
 {
 'name': 'tolimas'
 'cpu': 22,
 'network': {

Listing 11.2 The status updating script

The window.onload event is fired
when the browser window has
loaded, by which time it’s ready to
execute the program. For
simplicity in this first version of
the program, the entire thing is
declared inside the function
assigned to window.onload.

r function
dates the
 the most
nt values.

Some dynamic
script insertion
used to fetch data.

This makeUpdater function
returns a function that will,
in turn, return a function
that creates an updater.

A Request to feed.json
returns JSON containing
the number of hits.
 'in': 2343,

305Communicating with the outside world

 'out' 3344
 }
 }
]
}

other code can be unsafe, and unsafe code (be it malicious or clumsy) inserted into a
hot program can have disastrous effects. Imagine dynamically inserting a script that
overrides the built-in map method (chapter 5) on the Array prototype. All of your
arrays will break!

Array::map = -> null

[9,8,7,6].map (item) -> item*2
null

If you load source code into your program, there’s a chance that source code will do
something that you don’t want it to. It’s possible to sandbox code in a browser as you
learned to do on the server (in chapter 8), but the only safe rule to follow in a web
browser is to load source code only from sources you trust.

 You trust Agtron’s data server to only return objects and not to override any proto-
types or do anything else nasty to you. If you only poll it for new information periodi-
cally, as in listing 11.2, will you be getting data updates often enough? Surely there’s
some way to get updates in real time.

11.2.3 Going real time with WebSocket

If the data server could inform your dashboard application when there was new data,
then you wouldn’t need to poll. When the server informs the client in this way, the
server is said to push data to the client. To achieve this, you need to open something
called a WebSocket connection between the server and your dashboard.

 To experiment with and learn about WebSocket, it’s useful to have a local server
that will push some data down a WebSocket connection so that you can play with it.
You see a very basic Node.js-powered CoffeeScript program that pushes random data
down a WebSocket connection in the following listing.

{EventEmitter} = require 'events'
WebSocketServer = (require 'websocket').server

seconds = (n) -> n*1000

emitRandomNumbers = (emitter, event, interval) ->
 setInterval ->
 emitter.emit event, Math.floor Math.random()*100
 , interval

source = new EventEmitter

Listing 11.3 A random-number socket emitter

Suppose this line
is hot-loaded.

Any use of map will
now return null.

The websocket protocol
handling here is
provided by a library.
emitRandomNumbers source, 'update', seconds(4)

306 CHAPTER 11 In the browser

attachSocketServer = (server) ->
 socketServer = new WebSocketServer httpServer: server
 socketServer.on 'request', (request) ->
 connection = request.accept 'graph', request.origin
 source.on 'update', (data) ->
 connection.sendUTF JSON.stringify data

exports.attachSocketServer = attachSocketServer

Before WebSocket, web browsers didn’t have any standard way to have data pushed to
them. Instead, various tricks were cobbled together to get real-time effects in brows-
ers. Recently, work to standardize the WebSocket protocol (http://tools.ietf.org/
html/rfc6455) has made life easier for you, and you can open a connection without
much fuss:

socket = new WebSocket 'ws://www.agtronsapi.com/server-data-socket'

As with most things in a browser, WebSocket is event driven, so you must listen for events:

socket.onmessage = (message) -> console.log "Received message #{message}"

The server is now responsible for pushing the data to the client instead of the client
having to ask the server for new data. This is a browser-based program, though, so
there must be a catch. Indeed there is.

 WebSocket is a new technology, so you can’t be sure that any given browser will
support it. Cross-browser compatibility is something you must always be aware of when
building browser-based programs. Such programs have to work in multiple different
browsers—browsers that may not support the same features.

11.3 Cross-browser compatibility
Imagine now that Scruffy tells you he received an email from his 106-year-old great-
grandmother telling you that the dashboard doesn’t work for her. You’re not sure why
Scruffy’s 106-year-old great-grandmother needs to use Agtron’s dashboard, but appar-
ently she does. When you ask what she sees when she opens the dashboard, she tells
you it’s a blank screen. Why does she see a blank screen?

 The problem is that Scruffy’s elderly great-grandmother is using an elderly
browser. Suppose this browser is called Browser X. When you obtain a copy of Browser
X and use it to view the dashboard, you quickly see that there’s an error when it exe-
cutes document.querySelector:

document.querySelector '#status'
document.querySelector is not a function

Your browser-based program has to run on many different browsers. Each browser
may or may not support a particular browser feature that you use in your program
(even when those features are standardized). Special objects that belong to the
browser called host objects provide some of those features. You’ve already encountered

A function that will
attach a socket
server to an existing
HTTP server.
the XMLHttpRequest and document host objects.

http://tools.ietf.org/html/rfc6455

307Cross-browser compatibility

Web browsers define host objects such as the document object. They might not be
defined outside of a browser, such as on the REPL:

document?
false

Host objects are part of the Document Object Model (DOM) and can differ wildly across
browsers. Although the behavior of some host objects is standardized, you should antici-
pate that different browsers will behave differently. More importantly, host objects don’t
behave like regular objects. They might look like regular objects, but they’re not. Don’t
expect host objects to work like regular objects.

How do you deal with incompatibilities in the host objects of different browsers? By
using polyfills.

11.3.1 Polyfilling host objects

A polyfill is a function or group of functions that makes a smooth surface on which
your main program can be written, without having to worry about the inconsistencies.
It comes from polyfilla (also known as spackling paste)—a product that’s used to fill in
gaps and cracks on a wall to create a smooth surface, just like Scruffy and Agtron are
doing in figure 11.3. A polyfill in a web browser works the same way—filling in the
gaps and cracks between the different browsers.

 Your first polyfill is for the document.querySelector that doesn’t work in Browser
X. You use the method to find an element using an ID, so a reasonable first polyfill for
your needs relies on document.getElementById. The trick is to define the method
only if it doesn’t already exist:

document.querySelector ?= (selector) ->

Feature detection
The technique demonstrated in this section is called feature detection because it
checks to see whether a runtime has a specific feature and defines it if it does not.
A contrasting approach is to detect the runtime instead of the feature. Detecting the
runtime proves to be ultimately unmaintainable and isn’t recommended except in
rare cases where a runtime is completely broken.

The Document Object Model
The convention, or model, that defines how your browser-based application interacts
with host objects that belong to the document loaded by the web browser is called
the Document Object Model (DOM). Objects provided by the document are called DOM
objects, and all DOM objects are host objects. DOM objects, such as document, are
often a source of frustration.

Define document
.querySelector only if it
 (document.getElementById (selector.replace /^#/gi, '')) doesn’t already exist.

308 CHAPTER 11 In the browser

But suppose that once you’ve defined querySelector, another programmer (such as
Scruffy) comes along and, quite reasonably, expects it to work according to the specifi-
cation. What happens when Scruffy tries to use your polyfill to find an element using
the class name?

<ul class='pages'>

 <li class='active'>Home
 About
 Contact

Your polyfill fails silently and returns null as if nothing were wrong:

document.querySelector '.links .active'
null

Suppose, though, that you don’t have time to implement (or even read) the entire
specification. Change your polyfill to throw an exception if it’s used for something
that you know it doesn’t support:

document.querySelector ?= (selector) ->
 if /^#/.test selector
 (document.getElementById (selector.replace /^#/gi, ''))
 else

Figure 11.3 Scruffy and Agtron using a polyfill

This polyfill throws an
exception if it doesn’t
implement what you
try to use it for.
 throw new Error 'Not supported by this implementation'

Define
po

onl
do
309Creating a user interface

Now at least other programmers are warned that your polyfill doesn’t implement the
specification (assuming that they didn’t read your tests to discover that already). If
needed, they can override your implementation with a more complete one.

 It’s not just host objects that are inconsistent across browsers, though—some lan-
guage features aren’t implemented by all browsers. In fact, the absence of things like
Array.map in older browsers was one of the early motivations for creating CoffeeScript.

11.3.2 Polyfilling language features

Each browser moves at a different pace. One browser might implement a new feature
of JavaScript while it’s still just ideas, whereas another browser may implement the
same feature years after it’s standardized.

 For example, take a language feature that you’re familiar with—being able to cre-
ate a new object with an existing object as the prototype using Object.create. It’s
easy to take this feature for granted, but unfortunately, when you test your program in
Browser X, you discover that it isn’t defined. What do you do? Polyfill:

Object.create ?= (prototype) ->
 F = ->
 F.prototype = prototype
 new F()

Job done, right? Not quite. Agtron later informs you that your polyfill doesn’t imple-
ment the entire specification (you know, the one you didn’t have time to read).
There’s actually a second parameter (see chapter 13). To prevent people from getting
nasty surprises when they use your polyfill, you take the approach of throwing an
exception if the polyfill is used for part of the specification that it doesn’t implement:

Object.create ?= (prototype, extensions) ->
 if extensions
 throw new Error 'Not supported by this implementation'
 else
 F = ->
 F.prototype = prototype
 new F()

Not all language features can be fixed with a polyfill in this way. Any language feature
that requires syntax can’t be polyfilled at runtime. Writing a polyfill for language syn-
tax would be like building a house out of wallpaper. Changing syntax means compila-
tion. Back to Agtron’s dashboard—how will you create those graphs that Agtron
wants? More generally, how will you create the user interface?

11.4 Creating a user interface
There are two styles of managing your drawing in a web browser: retained mode and
immediate mode. Although web browsers have traditionally used a retained mode, some

 this
lyfill

y if it
esn’t
exist.

Declare a function to be used as the
constructor for the new object.

Set the prototype for the
constructor to be the
prototype parameter.Create and return a new instance by

new-ing the constructor function F.

Throw an exception
if this method is
invoked with a
second parameter.
recent APIs such as canvas are immediate mode. The difference between retained

310 CHAPTER 11 In the browser

and immediate mode isn’t crucial to your understanding of CoffeeScript, but under-
standing it will help you write better CoffeeScript programs in the browser. It’s time to
learn both.

11.4.1 Retained mode with the DOM

In retained mode, what you draw to the view, such as a graph, can be directly modified
and manipulated after it has been drawn. Inside a browser, the DOM is a retained-
mode API. You can both assign a value to the innerHTML property of a DOM element
and get the current value:

number = document.querySelector '#status'
number.innerHTML = 55

number.innerHTML
55

That’s the essence of retained mode. Information persists and can be retrieved.
 How do you take this retained-mode API and display a chart for Agtron? Well, a

line chart like the one Agtron wants is a bit too involved to start with when working
with the DOM, so instead Agtron suggests that you start with a bar chart of 20 bars:

for number, index in values
 measurement[index].style.height = 55

A program that displays a bar chart of the last 20 values obtained (by setting the heights
of 20 DOM elements) is shown in the following listing. Some sections of the listing are
the same as, or similar to, sections of listing 11.2.

window.onload = ->
 status = document.querySelector '#status'

 ensureBars = (number) ->
 unless (document.querySelectorAll '.bar').length >= number
 for n in [0..number]
 bar = document.createElement 'div'
 bar.className = 'bar'
 bar.style.width = '60px'
 bar.style.position = 'absolute'
 bar.style.bottom = '0'
 bar.style.background = 'green'
 bar.style.color = 'white'
 bar.style.left = "#{60*n}px"
 status.appendChild bar

 render = (buffer) ->
 ensureBars 20
 bars = document.querySelectorAll '.bar'
 for bar, index in bars
 bar.style.height = "#{buffer[index]}px"

Listing 11.4 Drawing a bar chart with DOM elements

The ensureBars
function
renders the last
20 values in the
buffer as bars.
 bar.innerHTML = buffer[index] || 0

311Creating a user interface

 nextCallbackId = do ->
 callbackId = 0
 -> callbackId = callbackId + 1

 nextCallbackName = ->
 "callback#{nextCallbackId()}"

 fetch = (src, callback) ->
 head = document.querySelector 'head'
 script = document.createElement 'script'
 ajaxCallbackName = nextCallbackName()
 window[ajaxCallbackName] = (data) ->
 callback data
 script.src = src + "?callback=#{ajaxCallbackName}"
 head.appendChild script

 seconds = (n) ->
 1000*n

 framesPerSecond = (n) ->
 (seconds 1)/n

 makeUpdater = (buffer = []) ->
 bufferRenderer = (json) ->
 buffer.push (JSON.parse json).hits
 if buffer.length is 22 then buffer.shift()
 render buffer

 ->
 window.setInterval ->
 fetch '/feed.json', bufferRenderer
 , framesPerSecond 1

 updater = makeUpdater()
 updater()

Agtron wants a line chart. How do you draw a line chart? Drawing a line chart using
regular DOM elements wouldn’t be much fun, so instead you’ll draw the line chart
using something called canvas that involves immediate-mode techniques.

11.4.2 Immediate mode with HTML5 canvas

In immediate mode, the view is only a buffer, and what you draw to it has no life out-
side of that buffer. There’s no way to get elements back out of the buffer, so you never
directly access or manipulate them. The HTML5 feature called canvas provides an
immediate-mode API for browser-based drawing.

 For now, assume that the standard canvas interface is supported everywhere you
need it to be—if it isn’t, you can write a polyfill for it later. To create a canvas, you cre-
ate a new canvas element, append it to the existing status element (see listing 11.1),
and then create a context inside the new element:

graph = document.createElement 'canvas'
graph.width = '800'

A request to feed.json
returns JSON containing
the number of hits.
graph.height = '600'

312 CHAPTER 11 In the browser

graph.id = 'graph'
document.querySelector('#status').appendChild graph

context = canvas.getContext '2d'

To draw a graph, you’ll also use some other parts of the canvas API: beginPath, lineTo,
and stroke. With those you can now draw a line. The basic mechanism is simple; you
use coordinates to create a path on the canvas and then stroke or fill that path:

context.beginPath()
context.lineTo 0,0
context.lineTo 1,10
context.stroke()

With the graph data in an array, you convert it to a graph on a canvas with beginPath,
lineTo, and stroke:

createGraph = (element) ->
 graph = document.createElement 'canvas'
 graph.width = '800'
 graph.height = '600'
 graph.id = 'graph'
 element.appendChild graph
 graph

getClearedContext = (element) ->
 element.width = element.width
 element.getContext()

drawLineGraph = (element, graphData, horizontalScale) ->
 context = element.
 context.beginPath()
 for y, x in graphData
 context.lineTo x*horizontalScale, y
 context.stroke()

status = document.querySelector '#status'
drawLineGraph getClearedContext(status), [110,160,350,100,260,240], 100

This will draw a simple line graph on the canvas like the one in figure 11.4.
 Drawing with canvas is easy! This immediate mode is puzzling, though; if the can-

vas doesn’t remember anything, then how do you know what you drew last time? How

The new element to hold
the graph is appended
to the status element.Create a '2d' (two-

dimensional) context
on the element.

Begin a new path. This path starts at 0,0.
That’s the top left.

Make a line to 1,10.
Stroke the path,
drawing the border.

Figure 11.4 Drawing a simple

line graph on a canvas

313Creating a user interface

can you animate without knowing where you start? The trick with immediate mode is
to not need to.

 One of the hallmarks of immediate-mode UIs is a single render function that
draws everything to the screen. Suppose your UI contains a graph and a title. Define a
render function as drawing a graph and a title:

render = ->
 drawGraph()
 drawTitle()

You haven’t yet defined drawTitle, but that’s okay; the render function doesn’t have
to care about how drawTitle is implemented.

 The next listing contains a program for rendering a line graph using canvas. This
program has some parts in common with listing 11.4. Compare the retained- and
immediate-mode approaches by comparing the listings.

window.onload = ->
 status = document.querySelector '#status'
 status.style.width = '640px'
 status.style.height = '480px'
 canvas = document.createElement 'canvas'
 canvas.width = '640'
 canvas.height = '480'
 status.appendChild canvas
 context = canvas.getContext '2d'

 drawTitle = (title) ->
 context.font = 'italic 20px sans-serif'
 context.fillText title

 drawGraph = (buffer) ->
 canvas.width = canvas.width
 context.fillStyle = 'black'
 context.clearRect 0, 0, 640, 480
 context.fillRect 0, 0, 640, 480
 context.lineWidth = 2
 context.strokeStyle = '#5AB946'
 context.beginPath()
 prev = 0
 for y, x in buffer
 unless y is prev
 context.lineTo 0 + x*10, 100 + y
 prev = y
 context.stroke()

 render = (buffer) ->
 drawGraph buffer
 drawTitle 'Server Dashboard'

 nextCallbackId = do ->
 callbackId = 0

Listing 11.5 Drawing a line chart with HTML5 canvas

Setting the width of the canvas
will clear it, so it’s used here on
each render to remove anything
currently on the canvas.
 -> callbackId = callbackId + 1

314 CHAPTER 11 In the browser

 nextCallbackName = ->
 "callback#{nextCallbackId()}"

 fetch = (src, callback) ->
 head = document.querySelector 'head'
 script = document.createElement 'script'
 ajaxCallbackName = nextCallbackName()
 window[ajaxCallbackName] = (data) ->
 callback data
 script.src = src + "?callback=#{ajaxCallbackName}"
 head.appendChild script

 seconds = (n) ->
 1000*n

 framesPerSecond = (n) ->
 (seconds 1)/n

 makeUpdater = (buffer = []) ->
 bufferRenderer = (json) ->
 buffer.push (JSON.parse json).hits
 if buffer.length is 22 then buffer.shift()
 render buffer

 ->
 window.setInterval ->
 fetch '/feed.json', bufferRenderer
 , framesPerSecond 1

 updater = makeUpdater()
 updater()

The programs in listings 11.4 and 11.5 both update several times per second. The con-
stantly changing data makes the graphs look like they’re moving. This movement is
stuttered, but the feeling of movement is there nonetheless.

 Animation can be a subtle and nuanced thing, but the realization that you don’t
need to explicitly request animation to make something appear animated is an impor-
tant one when considering immediate-mode graphics. You want to create smooth ani-
mations, though. How do you do that?

11.5 Creating animations
The time-honored way to animate in a browser is to use setInterval or setTimeout
to repeatedly change some property of a DOM object over time. Suppose you have a
reference named bar to a DOM object that you want to animate:

seconds = (n) -> n*1000
setInterval bar.height, seconds 1

In a retained-mode API like the DOM, you directly manipulate the property on the
object. How the object is rendered is taken care of by the retained-mode API. This is in
contrast to an immediate-mode API like canvas where you do the rendering yourself.

 This section explores animations in retained and immediate mode. It also explores
the question of how to keep animations smooth in the single-threaded event-loop

environment of a web browser.

315Creating animations

11.5.1 Retained mode

To animate DOM objects in retained mode you repeatedly change a style property.
Suppose you want to animate the bar on a bar chart so that instead of changing from
a height of 20 to a height of 40 instantaneously (as with listing 11.4), it animates the
change smoothly over one second.

TWEENS The creation of animation between two states is called a tween.

A single bar in your bar chart is drawn as a single DOM element, and the height is set
as a style property:

bar.style.height = 20

To animate this to a height of 40 in one second, use setInterval and increase the
height by 1 pixel until the element reaches the target height:

bar = document.querySelector '#bar'
targetHeight = 65
interval = setInterval ->
 currentHeight = bar.style.height.replace /px/, ''
 if currentHeight >= targetHeight
 clearInterval interval
 else
 bar.style.height currentHeight + 1 + 'px'
, 100

A named abstraction adds some clarity:

animateStyleInPixels = (element, propertyName, targetValue) ->
 interval = setInterval ->
 currentValue = element.style[propertyName].replace /px/, ''
 if currentValue >= targetValue
 clearInterval interval
 else
 bar.style[propertyName] = currentValue + 1 + 'px'
 , 100

bar = document.querySelector '.bar'
animateStyleInPixels bar, 'height', 65

That’s all there is to basic animation in retained mode. Instead of moving things to
their destinations immediately, you animate (tween) them from the start state to the
end state. How does animation in immediate mode look different?

11.5.2 Immediate mode

Immediate-mode animation is like a flipbook or cell-based animation with each frame
being a standalone static image. By rapidly flipping through the frames (the pages of
the flipbook), you create the appearance of movement. When the frames change faster
than the human eye can detect, the animation appears smooth. In the next listing,

This solution is in
an imperative style.

Using the current
height to set the
new height is
retained mode.
you see a program for a 30-frames-per-second immediate-mode graph.

316 CHAPTER 11 In the browser

window.onload = ->
 graph = document.querySelector '#status'
 graph.width = window.innerWidth
 graph.height = window.innerHeight
 context = graph.getContext '2d'

 render = (buffer) ->
 context.fillStyle = 'black'
 context.clearRect 0, 0, graph.width, graph.height
 context.fillRect 0, 0, graph.width, graph.height
 context.lineWidth = 5
 context.strokeStyle = '#5AB946'
 context.beginPath()
 prev = 0
 for y, x in buffer()
 unless y is prev
 context.lineTo 0 + x, 100 + y
 prev = y
 context.stroke()

 seconds = (n) ->
 1000*n

 framesPerSecond = (n) ->
 (seconds 1)/n

 buffer = []

 nextCallbackId = do ->
 callbackId = 0
 -> callbackId = callbackId + 1

 nextCallbackName = ->
 "callback#{nextCallbackId()}"

 fetch = (src, callback) ->
 head = document.querySelector 'head'
 script = document.createElement 'script'
 ajaxCallbackName = nextCallbackName()
 window[ajaxCallbackName] = (data) ->
 callback data
 script.src = src + "?callback=#{ajaxCallbackName}"
 head.appendChild script

 window.setInterval ->
 fetch '/feed.json', (json) ->
 render ->
 buffer.push (JSON.parse json).hits
 if buffer.length is graph.width then buffer.shift()
 buffer
 , framesPerSecond 30

Agtron points out that the solution in listing 11.6 works fine if data is being received
frequently. If it’s not being received frequently, you need to consider buffering and
interpolation. That, however, is a lesson for another day. The final thing to consider

Listing 11.6 Animating an immediate-mode line graph

A render function that
draws everything is a
classic example of
immediate mode.
with your browser-based program is how to put it together.

317Structuring programs

11.6 Structuring programs
Depending on the nature or circumstances of the problem (or the people solving the
problem), an immediate-mode API can be inappropriate. Suppose that you must work
with canvas, but you really need a retained-mode API. What can you do? Use the pow-
erful design technique called wishful thinking.

11.6.1 Abstraction and APIs
Write your program as if you already had the retained-mode API that you want, and then
implement it. Suppose you want a fluent retained-mode API that can draw a circle and
then move the circle around. You call the API Cézanne after the famous French artist
Paul Cézanne:

scene = Cézanne
.createScene('#scene')
.size(400, 400)

circle = scene
.createCircle()
.radius(10)
.color(Cézanne.RawUmber)
.position(20, 20)

circle.animatePosition 360, 360, 2

This looks very different from the canvas API. If you need an API like Cézanne but you
start with raw canvas, then every single line that you write moves you farther from the
API that you want. It’s tempting to think that because you’re not writing a library for
other people to use, you don’t need to create a nice, readable API. The opposite is
true. Unless your program is throwaway (some are!), then write the API today that you
will be happy to use in six months’ time.

 So, how do you implement an API like Cézanne on an immediate-mode API? The
following listing shows an implementation of a retained-mode Cézanne API that can
draw and animate circles.

Cézanne = do ->

 seconds = (n) -> n*1000
 framesPerSecond = 30
 tickInterval = seconds(1)/framesPerSecond

 circlePrototype =
 radius: (radius) ->
 @radius = radius
 this
 color: (hex) ->
 @hex = hex
 this
 position: (x, y) ->
 @x = x
 @y = y

Listing 11.7 A retained-mode circle-drawing API for canvas called Cézanne
 @context.beginPath()

318 CHAPTER 11 In the browser

 @context.fillStyle = @color
 @context.arc @x, @y, @radius, (Math.PI/180)*360, 0, true
 @context.closePath()
 @context.fill()
 this
 animatePosition: (x, y, duration) ->
 @frames ?= []
 frameCount = Math.ceil seconds(duration)/tickInterval
 for n in [1..frameCount]
 if n is frameCount
 do =>
 frame = n
 @frames.unshift =>
 @position x, y
 else
 do =>
 frame = n
 @frames.unshift =>
 @position x/frameCount*frame, y/frameCount*frame

 scenePrototype =
 clear: ->
 @canvas.width = @width
 size: (width, height) ->
 @width = width
 @height = height
 @canvas.width = width
 @canvas.height = height
 this
 addElement: (element) ->
 @elements ?= []
 @elements.push element
 element.context = @context
 startClock: ->
 clockTick = =>
 @clear()
 for element in @elements
 frame = element.frames.pop()
 frame?()
 @clockInterval = window.setInterval clockTick, tickInterval

 createCircle: ->
 circle = Object.create circlePrototype
 @addElement circle
 circle

 RawUmber: '#826644'
 Viridian: '#40826d'

 createScene: (selector) ->
 scene = Object.create scenePrototype
 node = document.querySelector selector
 scene.canvas = document.createElement 'canvas'
 scene.context = scene.canvas.getContext '2d'
 node.appendChild scene.canvas
 scene.startClock()

 scene

319Structuring programs

The animations provided by the implementation of Cézanne shown in listing 11.7
aren’t very smooth. What’s wrong with them? They don’t deal with time effectively.
Whatever your choice of API, you’ll have to deal with time. Time is always a concern.

11.6.2 Dealing with time

The problem with setTimeout and setInterval is that they aren’t guaranteed to be
accurate. In chapter 9 you saw that you could block the event loop by executing a
long-running process. This is a problem for any program, but it’s visibly bad for your
animations. Figure 11.5 shows what happens when the event loop is blocked for some-
thing time-critical like drawing a graph.

 If you block the event loop for 5 seconds, then instead of the animations you want,
you’ll get incorrect (and often surprising) animations. The same problem happens
for any time-sensitive drawing inside a browser. Remember, the browser provides you
with a single event loop—anything that happens on the event loop can impact time-
based rendering.

 The issue of timeout accuracy has more subtle implications. Although you’ll notice
if your event loop is blocked for a second, you won’t normally notice if your event
loop is blocked for 50 milliseconds. For an animation, even a 50-millisecond inaccu-
racy can make it look terrible. For something time-critical like a game, accuracy of the
timing and animations is essential.

 One tactic for getting around this is called drift compensation:

synchronisedInterval = (fn, t, maxDrift) ->
 drift = null
 previous = null
 compensate = 5
 reset = (hard = false) ->
 drift = 0 if hard
 previous = Date.now()
 if drift > maxDrift
 setTimeout runner, (t - compensate)
 else
 setTimeout runner, t
 runner = ->

Compressed

Stretched

Figure 11.5 Some
setInterval inaccuracy
is making the graph
inaccurate.

The compensation is achieved by resetting
the timeout, accounting for the difference
between the expected previous timeout
and the actual timeout.
 current = Date.now()

320 CHAPTER 11 In the browser

 drift += current - previous - t
 previous = current
 fn()
 reset()
 reset true

If you have 100 timeouts running and you’re trying to do drift compensation for all of
them, then you might notice the browser performance starting to degrade. One solu-
tion in cases where you need to synchronize many events is to have a single world inter-
val that synchronizes all the other events in the program to it.

 Understanding different techniques for drawing, animation, and timing is essen-
tial to writing effective browser applications. Although programming for browser-
based user interfaces is a topic too big to cover fully here, you have learned the core
concepts you need to start building interfaces in CoffeeScript today.

11.7 Summary
In this chapter you learned about writing CoffeeScript programs in a web browser and
the unique challenges that browser incompatibilities, animations, and timing present
to you as a developer.

 In the next chapter you’ll see how to put together the various server and client
components of your CoffeeScript application in a reliable and repeatable way with
modules and builds.

Modules and builds
It’s unlikely that you’ll only ever write programs that are contained entirely in a sin-
gle file. Instead, a typical application consists of many files, often written by many
people, and, as a result, one big file won’t cut it. Breaking a program into many files
makes each file easier to manage but also means you need some way to manage
multiple files. Together, the files make up your program.

 Individually, the part of the program contained in a single file is called a mod-
ule. For example, you’re by now very familiar with fs, the filesystem module:

fs = require 'fs'

What you’re not yet familiar with is creating your own modules. That’s what you’ll
learn in this chapter: how to create and use server-side modules for Node.js, how to
build those modules into a complete application using Cake, how to run your tests

This chapter covers
■ Modular applications with the Node.js

module system
■ Automated builds
■ How to make modules work in a web browser
■ Releasing your modular application to the world
against that built application, and how to use the same approach to modules in a

Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch12-code.html

322 CHAPTER 12 Modules and builds

web browser. Finally, you’ll learn how to deploy your program for the world to see.
First up, modules.

12.1 Server-side modules (on Node.js)
JavaScript doesn’t have modules. To clarify: the JavaScript language doesn’t define a
standard module system. The modules that you’ve used so far in your Node.js-based
programs have been Node.js modules.

 Imagine you’re working on an application to power Agtron’s blog (depending on
your opinion of blogs, you might also need to imagine that it’s 2004 to make the pic-
ture more vivid). The application needs to display a list of Agtron’s blog posts on the
homepage. Each item in the list links to a page containing the content of the blog
post. Figure 12.1 shows examples of the two page types in a browser.

 Agtron has some blog posts already written and has supplied them to you as text
files. The first line of each file contains the title of the post, and the rest of the file con-
tains the content. Consider this example in a file named my-trip-to-the-zoo.txt:

-- my-trip-to-the-zoo.txt –-

My trip to the zoo

I went to the Zoo. There were animals.

Scruffy already has written an early version of the application. It’s contained entirely
in a single file called application.coffee. Imagine that as you work with Scruffy on the
application, the file gets bigger and bigger until it becomes a seething mess of inter-
twined code. Madness ensues.

 Alright, madness might not ensue, but it remains true that keeping all the differ-
ent parts of the program in a single file can prevent you from keeping them apart in
your head. You agree with Scruffy to split the application into multiple smaller files
divided by the natural boundaries of the application. The structure you agree on with
Scruffy appears in the following listing.
Figure 12.1 Agtron’s blog in a web browser

323Server-side modules (on Node.js)

│
├── app
│ ├── controllers
│ │ ├── blog.coffee
│ │ ├── controller.coffee
│ │ ├── static.coffee
│ ├── load.coffee
│ ├── models
│ │ ├── model.coffee
│ │ ├── post.coffee
│ ├── server.coffee
│ └── views
│ ├── list.coffee
│ ├── post.coffee
│ ├── view.coffee
├── content
│ ├── my-trip-to-the-circus.txt
│ └── my-trip-to-the-zoo.txt

The structure in listing 12.1 suits your current needs. Other solutions are possible
(such as generating a static website from Agtron’s content), but the one in listing 12.1
is what you chose.

 When an application is divided into multiple parts, or modules, there must be a way
to join the modules together. That’s done using a module system. At a high level, the
module system provides a way for one part of the system to use parts of the program
from another module, like in figure 12.2.

 How do you use this module system? By creating files to be the modules and then
joining them together with require and exports.

 In this section, you’ll learn to create, require, and export modules, why module
names are not filenames, and how the module cache works. Finally, you’ll see several
listings presenting a complete program made up of multiple modules. First, you’ll
examine creating and requiring modules.

12.1.1 Creating and requiring

The first problem you and Scruffy encounter is that the Blog class extends the
Controller class. When both classes are in the application.coffee file, everything
works fine:

class Controller

class Blog extends Controller

Listing 12.1 File and directory structure for your blog application

The root directory
for the projectThe application

directory

Application has
models, views,
and controllers

The content directory,
containing the blog posts

Blog Controller

Export

Require

Figure 12.2 The structure

of modules

324 CHAPTER 12 Modules and builds

There are no errors when compiling:

coffee –c application.coffee

But once you split those classes into separate files according to listing 12.1, then
blog.coffee doesn’t compile:

-- blog.coffee --

class Blog extends Controller

You get a reference error:

coffee –c blog.coffee
ReferenceError: Controller is not defined

You need some way for one file in your application to load other files. The built-in
Node.js module system can do that. It’s a good place to start looking at modules. To
use the parts of the application contained in controller.coffee from inside blog.coffee,
you require it with the module system:

require './controller'

When you require './controller', the module loader finds the controller.coffee
file relative to the current directory, loads it, and evaluates it. To load a local file, you
can also use ../., which looks in the parent directory. This works the same as file
paths on your command line.

 Using require is only half the equation, though; blog.coffee still won’t compile:

-- blog.coffee –

require './controller'

class Blog extends Controller

You still get a reference error:

coffee –c blog.coffee
ReferenceError: Controller is not defined

To use the Controller class inside the blog file, you first need to export it from the
controller file.

12.1.2 Exporting

To make a property available to other modules via require, you assign it to exports
inside the module. You do that at the end of the file:

-- controller.coffee –

class Controller
exports.Controller = Controller

325Server-side modules (on Node.js)

Now you can require the controller module and access the Controller property it
assigned to exports:

-- blog.coffee –-

controller = require './controller'

class Blog extends controller.Controller

The idiomatic way to write require in CoffeeScript uses destructuring assignment
(see chapter 7) on the object returned, avoiding the repetitiveness of unpacking prop-
erties from the controller:

-- blog.coffee -–

{Controller} = require './controller'

class Blog extends Controller

Now you have a local variable Controller in blog.coffee that references the Controller
class from controller.coffee.

In summary, to keep different parts of the application in different files, you need to
export from one file and require in the other. Suppose you have a module_a.coffee
file and a module_b.coffee file in the same directory:

The calls to require don’t have any file extensions. Why not?

12.1.3 No file extensions

So far, all of the calls to require haven’t included any of the .coffee file extensions.
What happens if you create a require statement with a file extension?

Camel case for exports
Although variable naming can be a matter of taste, all of the standard libraries for
JavaScript, whether in the browser or not, use camel case for naming all functions,
methods, and properties. Thus, in the interests of being a good module citizen, you
should always use camel case for anything you export from a module. So, instead of
exports.myproperty, it should be exports.myProperty or exports.myClass if
you’re exporting a class. In view of this, you might also choose to use camel case for
all variables. It’s up to you.

module_a.coffee

w = 3
x = {a: 1}

exports.y = x

module_b.coffee

z = require('./module_a).y

z == {a: 1}

Destructure the Controller
property from the
controller module.
{Controller} = require './controller.coffee'

326 CHAPTER 12 Modules and builds

The program runs just fine when invoked as CoffeeScript from the command line.
Was there any reason to leave off the file extensions?

> coffee blog.coffee
application is running successfully at http://localhost:8080

If you first compile the blog.coffee file and then run it, everything breaks:

> coffee –c blog.coffee
> node blog.js
controller.coffee:2
class Controller
^^^^^
...
SyntaxError: Unexpected reserved word

Never put the file extension in a require statement. A JavaScript program can’t require a
CoffeeScript file without loading the CoffeeScript compiler first. If you leave file
extensions out, however, then your compiled JavaScript modules can load other com-
piled JavaScript modules, instead of trying to load CoffeeScript files. The source for a
module is in a file, but you don’t think of it as requiring the file itself but as requiring
the module it contains. There’s another good reason for thinking this way: modules
are cached.

12.1.4 The module cache

Modules can be loaded by specifying the location of a file, but they’re not loaded from
source each time they’re required. Modules are cached, meaning that the second,
third, or other subsequent load of the same file in your application will not evaluate
the file again. Instead, loading any module again anywhere else in the application will
return the same object with the same properties assigned to exports the first time the
file was evaluated.

 Why does this matter? Suppose you want to keep track of all the posts created
inside your post module:

class Post
 posts = []
 constructor: (@title, @body) ->
 posts.push @
 @all: -> posts

exports.Post = Post

It doesn’t matter how many times you require it; the same object will be returned by
the require method:

{Post} = require './post'

aPost = new Post 'A Post', 'Some content'
anotherPost = new Post 'Another Post', 'Some more content'
Post.all().length

2

327Server-side modules (on Node.js)

When you require the same module again (in the same REPL session or program),
you get a reference to the same object, even if you assign it to a different name:

TheSamePost = require('./post').Post

aThirdPost = new Post 'Three', 'Content three'
TheSamePost.all().length
3

Post.all().length
3

If this isn’t the behavior you want, then you’ll need to wrap the export in a function in
order to create a new scope every time it’s required:

makePost = ->
 class Post
 posts = []
 constructor: (@title, @body) ->
 posts.push @
 @all: -> posts

 {Post}

exports.makePost = makePost

This makePost function now returns a different Post class each time it’s evaluated:

{Post} = require('./post').makePost()
new Post 'A post', 'Some content'

Other = require ('./post').makePost().Post

Post.all().length
1

Other.all().length
0

In summary, be mindful that modules are loaded only once from source and then
cached. This has implications for testing because often when running tests you’ll want
a clean state before each test. If you have a module that maintains some internal state,
then you might find it difficult to test. It’s best not to keep state in a module.

 That’s all there is to requiring local modules. Prefix the path to the module with
either ./ or ../ and then specify the location of the file containing the module. A
require that doesn’t prefix the path with either of those will cause the module loader
to look for a built-in or packaged module.1

 For the modules you do create, what does it look like when they’re all together?
1 Creating built-in and packaged modules is outside the scope of this book.

328 CHAPTER 12 Modules and builds

12.1.5 Putting it together

You work with Scruffy on the blog application until you have just enough to show
Agtron. Although there are both tests and application code, only the application code
appears in listings 12.2 through 12.10. These listings demonstrate an ordinary applica-
tion made up of multiple modules connected together with exports and require. The
first one, listing 12.2, shows server.coffee, which is the entry point to the application:

> coffee server.coffee

The server requires the built-in Node.js module http and some local modules.

http = require 'http'
{load} = require './load'
{Blog} = require './controllers'

load './content'

server = new http.Server()
server.listen '8080', 'localhost'

blog = new Blog server

In the next listing you see load.coffee, which takes all the content files listed in the
content directory and creates posts from them. Because the server.coffee file requires
load, the load.coffee file will be evaluated when server.coffee is evaluated.

fs = require 'fs'
{Post} = require './models/post'

load = (dir) ->
 fs.readdir dir, (err, files) ->
 for file in files when /.*[.]md$/.test file
 fs.readFile "#{dir}/#{file}", 'utf-8', (err, data) ->
 [title, content...] = data.split '\n'
 new Post title, content.join '\n'

exports.load = load

The next listing shows the Controller class. This controller can handle incoming
HTTP requests and respond as desired. It invokes a method on a particular view in
order to generate the body of the response.

class Controller
 routes = {}

 @route = (path, method) ->

Listing 12.2 server.coffee

Listing 12.3 load.coffee

Listing 12.4 controllers/controller.coffee

Read all the files with
extension .md in the
supplied directory and
create Post objects
from each one.
 routes[path] = method

ler

ler
g
329Server-side modules (on Node.js)

 constructor: (server) ->
 server.on 'request', (req, res) =>
 path = require('url').parse(request.url).pathname
 handlers = []
 for route, handler of routes
 if new RegExp("^#{route}$").test(path)
 handlers.push
 handler: handler
 matches: path.match(new RegExp("^#{route}$"))
 method = handlers[0]?.handler || 'default'
 res.end @[method](req,res,handlers[0]?.matches.slice(1)...)

 render: (view) ->
 @response.writeHead 200, 'Content-Type': 'text/html'
 @response.end view.render()

 default: (@request, @response) ->
 @render render: -> 'unknown'

exports.Controller = Controller

In the next listing you see the Blog class that inherits from the Controller class. This
inheritance is a by-product of your chosen design and isn’t necessary when you have
only a single blog controller. But it does help to demonstrate real-world use of mod-
ules. To have Blog inherit from Controller, the blog module needs to first load the
controller module.

fs = require 'fs'
{Controller} = require './controller'
{Post} = require '../models'
{views} = require '../views'

class Blog extends Controller

 @route '/', 'index'
 index: (@request, @response) =>
 @posts = Post.all()
 @render views 'list', @posts

 @route '/([a-zA-Z0-9-]+)', 'show'
 show: (@request, @response, id) =>
 @post = Post.get id
 if @post
 @render views 'post', @post
 else ''

exports.Blog = Blog

There is also a base Model class from which other models can inherit. It appears in the
listing that follows.

Listing 12.5 controllers/blog.coffee

The controller
constructor
attaches its hand
to the provided
server. This hand
looks at incomin
requests and
decides how the
response is
created.

The render method
writes headers and
then the response
body by rendering
the provided view.A default request

handler for when no
handler is found to
render a response.

These look like annotations but they’re
just a method call on @ that specifies a
URL to match and the name of a method
to use when rendering a response to a
request that matches the URL.

https://npmjs.org/

O
(v

page
requ

Keepin
suffi

applica
yo

look
330 CHAPTER 12 Modules and builds

class Model
 dirify: (s) -> s.toLowerCase().replace /[^a-zA-Z0-9-]/gi, '-'

exports.Model = Model

The Post class appears in the next listing. It inherits from the base Model class, and it
has to require the model module. This Post class knows how to get an individual post,
how to get all of the posts, and how to purge all the posts.

{Model} = require './model'

class Post extends Model
 posts = []
 constructor: (@title, @body) ->
 throw 'requires title' unless @title
 super
 @slug = @dirify @title
 posts.push @

 @all: -> posts

 @get: (slug) -> (post for post in posts when post.slug is slug)[0]

 @purge = ->
 posts = []

exports.Post = Post

In the following listing you see the base View class. This View class contains a basic
HTML document that can be used to render a response. In a larger program, it’s likely
that you’d use a template system. In this small example, though, a simple interpolated
multiline string does just enough to serve as a template.

class View
 render: ->
 'Lost?'

 wrap: (content) ->
 """
 <!DOCTYPE html>
 <html dir='ltr' lang='en-US'>
 <head>
 <meta http-equiv='Content-Type' content='text/html; charset=utf-8'>
 <title>Agtron's blog</title>
 #{content}
 """

Listing 12.6 models/model.coffee

Listing 12.7 models/post.coffee

Listing 12.8 views/view.coffee

This Model class has only a utility method to convert
a post title into a path suitable for use in a URL.

Constructor calls the
superconstructor and
creates a slug (used for
the URL) from the title.

This Post class assumes post titles
are unique. One day this may

change, but for now it does the job.

Removes all posts from
the internal array.

nly a single
ery simple)
template is
ired so far.
g it here is

cient. If the
tion grows,
u’ll need to
for another

solution.

exports.View = View

331Server-side modules (on Node.js)

The next listing shows the List class that inherits from View. This List class is used to
render a list of posts.

{View} = require './view'

class List extends View
 constructor: (@posts) ->
 render: ->
 all = (for post in @posts
 "#{post.title}"
).join ''
 @wrap """
 #{all}
 """

exports.List = List

Finally, the Post class appears in the next listing. It also inherits from the View class.
This Post class is used to render the title and body of an individual post.

{View} = require './view'

class Post extends View
 constructor: (@post) ->
 render: ->
 @wrap """
 <h1>#{@post.title}</h1>
 <div class='content'>
 #{@post.body}
 </div>
 """

exports.Post = Post

That was a lot of listings. All of these modules are probably overkill for a site as simple
as the one you’re creating. That’s deliberate. The preceding listings present a working
Model-View-Controller (a technique for breaking a program into different parts).
Whether or not you’re familiar with Model-View-Controller isn’t important here.
What is important is that you’ve seen a reasonably sized application built from mod-
ules. By examining them, you’ve seen examples from a real program of how require
and exports work.

 So far it’s been all individual modules, but sometimes you’ll want to include a
whole group of modules. In that case you’ll need a module index.

Listing 12.9 views/list.coffee

Listing 12.10 views/post.coffee

Again, a view that
renders a template
stored in a variable.

Shorthand constructor that
only sets a post property.
The function body is empty.

Again, a view that
renders a template
stored in a variable.

332 CHAPTER 12 Modules and builds

12.1.6 Indexes

When you have many modules, it’s easier to load several of them together instead of
loading them all individually. Node.js supports module indexes to help you with this.2

An index file is the module you get back when you require a directory.
 Suppose you have a set of modules that you keep under a directory named utils:

├── utils/
│ ├── string.coffee
│ ├── array.coffee
│ ├── statistics.coffee

If you want to use several of those utility modules from another module, having to do
multiple require statements is tedious:

{trim, pad} = require 'utils/string'
{remove} = require 'utils/array'
{chebyshev} = require 'utils/stats'

To avoid that tedium, create an intermediary index file from which you can load all of
the other modules. An index file goes in the same directory as the other modules and
does both require and exports for each of them:

exports.string = require '.utils/string'
exports.array = require '.utils/array'
exports.stats = require '.utils/stats'

Now when you require the utils/index module, you can destructure the object
returned by require in a single line:

{string:{trim,pad},array:{remove},stats:{chebyshev}} = require './utils/index'

This creates trim, pad, remove, and chebyshev variables in the local module that ref-
erence the properties of the same name exported from the string, array, and stats
modules via the index module. To make things a bit easier, the Node.js module system
knows to look for an index file implicitly when a directory name is supplied:

{string:{trim,pad},array:{remove},stats:{chebyshev}} = require './utils'

The module system has allowed your program to still run correctly after it has been
broken into individual files. Remember, though, that your CoffeeScript program doesn’t
actually run as CoffeeScript. It compiles to JavaScript and runs as JavaScript. Once
your program gets bigger, it becomes impractical to individually compile all of the
source files to JavaScript and then run it. Although the command-line CoffeeScript
compiler is capable of compiling multiple files, your build eventually becomes too
complicated to do it all manually each time, especially if things need to be done in a
particular order. You need an automated build.
2 You can also create Node.js packages with npm, but again, that’s beyond the scope of this book.

333Build automation with Cake

12.2 Build automation with Cake
Imagine you’ve been working with Scruffy and running your build manually all day.
Each time you wanted to compile the CoffeeScript application, you just ran the com-
piler from the command line:

> coffee –c –o compiled app

Running the application was fairly easy:

> node compiled/server.js

Running the tests was also fairly easy:

> node compiled/tests.js

You’ve only had to remember two things—easy when there’s one application, but not
so easy when there are lots of applications. Imagine you’re asked to work on another
program that you’ve never seen before. Here’s the directory structure:

├── lib
│ ├── highball.coffee
│ ├── cocktail.coffee
│ ├── julep.coffee
├── app
│ ├── punch.coffee
│ ├── fizz.coffee
│ ├── flip.coffee
├── vendor
│ ├── mug.coffee
│ ├── beaker.coffee
│ ├── teacup.coffee
├── resources
│ ├── reference.csv

How do you compile that program? Perhaps there’s some documentation somewhere
that tells you how to build it; it might even be up to date, perhaps not. For an applica-
tion that lives in a single file, the build just means compiling a single file:

> coffee –c single_file_application.coffee

How about packages?
You’ll notice that you’ve been installing Node.js programs (and modules) by using
npm. This is because npm is how you install external modules, manage those mod-
ules, and also package your own modules so that they can be installed using npm.
Although npm is an important part of the Node.js ecosystem, a deep exploration of it
is beyond the scope of this book. The official npm documentation is available via
https://npmjs.org/ and is a good place to start exploring npm.

The -o option to coffee lets you specify the
output directory for the compiled files.

https://npmjs.org/

334 CHAPTER 12 Modules and builds

For a larger application, though, it’s not so easy. All the CoffeeScript files need to be
compiled. The compiled files might need to go into a specific directory, and some
other files may need to go in there with them. For a large application, the build can
be complicated. Instead of doing it manually each time, the build itself should be a
CoffeeScript program. Otherwise, there’s a good chance you’ll end up creating com-
plicated software with a complicated build process that nobody can understand—similar
to what Scruffy experiences in figure 12.3.

 Keep your build simple. A simple build written in CoffeeScript can be made with
something called Cake. In this section you’ll learn about Cake and how to use it to cre-
ate tasks for your build and for your tests. You’ll also learn about task dependencies.

12.2.1 Cake and build tasks

The tool provided by CoffeeScript for writing builds is called Cake. It’s similar to the
Unix utility Make and the Ruby utility Rake. It’s smaller than either of those and pro-
vides fewer features. That said, Make is one of the most widely used build utilities, so if
you’re already familiar with it, you may prefer to use that. Either way, read on to learn
how Cake works.

 Imagine you agree with Scruffy to make life easier on yourselves (and anybody else
who needs to build your application) by writing the build using Cake. When you have

Figure 12.3 A build that nobody understands often results in disaster.
CoffeeScript installed, it’s simple to get started using Cake by placing a file named

the
ries.

ase

sing
nts
n
e.
335Build automation with Cake

Cakefile in the root directory of your project. Once you have the Cakefile, you invoke
cake from the command line. Your Cakefile is currently empty, so the cake command
doesn’t do anything interesting:

> cake

For Cake to do something, you need to put one or more tasks in your Cakefile. In
Cake, a task is a function that takes the name of the task, the description of the task,
and a function that’s the task itself as the three arguments:

task 'build', 'Compile all the CoffeeScript', ->
 console.log 'Not implemented yet'

When you run cake with no arguments, it displays a list of all the tasks in the Cakefile.
Right now you have only a single build task, so that’s what it shows you:

> cake
cake build # Compile all the CoffeeScript

You can run a specific task by putting the name of the task as the argument to cake:

> cake build
Not implemented yet

The task isn’t very useful yet. Here’s a build task that compiles the CoffeeScript files in
the application, puts the compiled JavaScript into a compiled folder, and logs Build
complete to the console when it’s finished:

{spawn} = require 'child_process'

task 'build', 'Compile all the CoffeeScript', ->
 coffee = spawn 'coffee', ['-c', '-o', "compiled/app", "app"]
 coffee.on 'exit', (code) ->
 console.log 'Build complete'

Now when you invoke cake build, the build is executed:

> cake build
Build complete

The compiled JavaScript files for all of your CoffeeScript files are now in the com-
piled folder:

├── app
│ ├── controllers
│ │ ├── blog.coffee

Task names should contain only
letters, dots, and colons. Cake
doesn’t currently support
spaces in task names.

spawn is part of
Node.js core libra
It allows you to
spawn a different
process. In this c
you’re spawning
the CoffeeScript
compiler and pas
the same argume
you’d pass to it o
the command lin

Some familiar event-driven code.
When the compiler is done, the
task logs “Build complete” to
the console.

The source
CoffeeScript files
│ │ ├── controller.coffee

336 CHAPTER 12 Modules and builds

│ │ ├── static.coffee
│ ├── load.coffee
│ ├── models
│ │ ├── model.coffee
│ │ ├── post.coffee
│ ├── server.coffee
│ ├── views
│ │ ├── list.coffee
│ │ ├── post.coffee
│ │ ├── view.coffee
├── compiled
│ ├── controllers
│ │ ├── blog.js
│ │ ├── controller.js
│ │ ├── static.js
│ ├── load.js
│ ├── models
│ │ ├── model.js
│ │ ├── post.js
│ ├── server.js
│ ├── views
│ │ ├── list.js
│ │ ├── post.js
│ │ ├── view.js

If you create and maintain a build task for every project you have, then you’ll always
be able to build each of them with a single command. Even better, by going to the
project directory and running cake without any arguments, you’ll be able to see all of
the build tasks that have been written for that project.

 Now, with a working build for the application, Scruffy is getting impatient to write
a program that deploys the application to the server. You agree—deploying manually
gets tiring after the first few times. Not so fast, though; is the compiled application
actually working as it’s designed to? How can you be sure?

12.2.2 Test tasks

Suppose that you’ve been running all of the tests for the blog application manually.
The application is small, so it hasn’t bothered you too much to run each test from the
command line as you work. Imagine that late in the afternoon, right before leaving
for the day, you run the build, copy the application to the production server, and
launch it. Everything breaks. You ran the build but you forgot to run the full test suite.
Some of your work in progress broke another part of the application. You’ve just
launched something that doesn’t work. You quickly undo the changes on the server
and launch an older, working version of the software.

 Releasing a broken application into production is stressful. To prevent that from
happening, every single build should also run the tests to make sure the application is
working. Add a test task to the Cakefile:

task 'test', 'Run all the tests', ->

The source
CoffeeScript files

The compiled
JavaScript files
 console.log 'No tests'

337Build automation with Cake

The tests are in a spec directory inside your project:

├── Cakefile
├── app
│ ├── # application files are here
├── spec
│ ├── # test files are here

To write a task that will run these tests, it’s best to look at the tests to see what you’re
dealing with.

A SPECIFICATION

Suppose you already have tests for the Post class. Those tests appear here.

{describe, it} = require 'chromic'
{Post} = require '../../app/models/post'

describe 'Post', ->
 post = new Post 'A post', 'with contents'
 another = new Post 'Another post', 'with contents'

 it 'should return all posts', ->
 Post.all().length.shouldBe 2

 it 'should return a specific post', ->
 Post.get(post.slug).shouldBe 'a-post'

USING CHROMIC Listing 12.11 uses a testing module called chromic that was
created just for this book. The complete source code for this small testing
framework is provided in the downloadable code. Alternatively, you can install
it using npm install chromic.

You need a Cake task to run tests such as the one in listing 12.11.

A TASK TO RUN THE TESTS

To run the tests against the compiled version of the application, the test task will
need to perform these steps:

1 Delete any existing compiled files.
2 Compile the application.
3 Compile the tests.
4 Run the tests.

The test task appears in the next listing. Because the application and tests are both
compiled before the tests are run, the body of the build task has been extracted to
a function.

Listing 12.11 A specification for the Post class

A small testing module called
chromic has been used.

Notice that the test has to
require the module it’s testing.

Compile
tha

direct
which i

comp
338 CHAPTER 12 Modules and builds

See listing 12.19 for the complete Cakefile this is part of

compile (directory) = ->
 coffee = spawn 'coffee', ['-c', '-o', "compiled/#{directory}", directory]

coffee.on 'exit', (code) ->
 console.log 'Build complete'

clean = (path, callback) ->
 exec "rm -rf #{path}", -> callback?()

forAllSpecsIn = (dir, fn) ->
 execFile 'find', [dir], (err, stdout, stderr) ->
 fileList = stdout.split '\n'
 for file in fileList
 fn file if /_spec.js$/.test file

runSpecs = (folder) ->
 forAllSpecsIn folder, (file) ->
 require "./#{file}"

task 'build', 'Compile the application', ->
 clean 'compiled', ->
 compile 'app', ->
 'Build complete'

task 'test' , 'Run the tests', ->
 clean 'compiled', ->
 compile 'app', ->
 compile 'spec', ->
 runSpecs 'compiled', ->
 console.log 'Tests complete'

You now have a build task and a test task. There’s a small amount of duplication, but
extracting the compile function helped.

 In some cases you want an entire task to execute before another task; you need to
create a task dependency.

12.2.3 Task dependencies

Good news! Cake doesn’t get task dependencies wrong. The bad news is that it doesn’t
actually provide task dependencies for you, so you get no help. But there’s an invoke
function that calls one task from another, so you can start by using that:

task 'build', ->
task 'test', -> invoke 'build'

This will make the test task invoke the build task before it runs, but it doesn’t check
to see if the build task has already been invoked. Suppose in your Cakefile you have
three tasks: deploy, build, and test:

task 'build', ->

Listing 12.12 Part of a Cakefile with build and test tasks

function
t takes a
ory from
t should
ile files.

A clean function that
deletes a directory.

Invoke a function for
all the _spec.js files
in a directory.

Run the specs by passing a
function that requires a
test to forAllSpecsIn.

The build task cleans
and then compiles.

The test task cleans and
compiles the app, then cleans
and compiles the tests, and
then runs the tests.
 console.log 'built'

339Client-side modules (in a web browser)

task 'test', ->
 invoke 'build'

task 'deploy', ->
 invoke 'build'
 invoke 'test'

The deploy task should do a deployment only if the build and test tasks both com-
plete successfully, and the test task requires a completed build to run, so that should
run only if the build task is completed. Unfortunately, if you use the tasks as defined
previously, then the build task will be invoked twice when you deploy:

> cake deploy
built
built

invoke does only what it says in the name: invokes the other task. It doesn’t care if the
other task has been run once, twice, or 100 times. Because Cake doesn’t provide any
way to tell a task to run only once each time, you have to do it yourself, with a variable.
This isn’t pretty, but it works:

built = false

task 'build', ->
 return if built
 built = true

Now you’re automating your build with Cake. Depending on how complicated your
build is, you might need to dive into some of the more advanced Node.js libraries for
doing things like spawning, forking, and executing external processes. The official
Node.js documentation is the best place to get up-to-date information on those.

 Now it’s time to look at how the modules and builds you’ve gotten used to can be
applied to those parts of your application that run on the client. It’s time for the client
side. After all, it’s quite likely that the client side is the majority of your application.

12.3 Client-side modules (in a web browser)
Imagine now that Agtron wants to add comments to his blog and have them updated
and visible immediately without users having to refresh the page. To achieve this you’ll
need part of the application to run on the client. This is commonly referred to as a
thick client.

 Scruffy has board meetings all day for the rest of the week but agrees to modify the
server-side application so that it will serve up all the data for the comments as JSON
and also to modify the application to serve the JavaScript files that will be your client-
side application. You don’t have to worry about how Scruffy is going to achieve that. Later
that day you receive an email from Scruffy telling you to put the client-side scripts into
the app folder:

If built is true, then
the task has already
been run.

340 CHAPTER 12 Modules and builds

├── Cakefile
│ ├── app
│ │ ├── # application files are here
│ ├── client
│ │ ├── # Put your files here (Scruffy)
│ ├── spec
│ │ ├── # test files are here

When you move the application to run on the client in a web browser, how will you
organize it into modules? Web browsers don’t understand modules. Two options come
to mind:

■ Return to the dark ages and just develop your entire application in a single file.
■ Find a way to get modules to work on the client.

You’ve been spoiled with modules in Node.js and you don’t want to return to the Dark
Ages. Given that you’re already familiar with Node.js modules, it’s worth investigating
how you can get the same thing to work for your program on the client.

12.3.1 Making modules work in a browser

If web browsers don’t support modules,3 then how are you going to keep your pro-
gram modular? One technique you’ve used in the past is to have a top-level object
with a hierarchy of properties on it. Individual modules are then just properties on
that top-level object.

 For example, you might build your client-side application by putting everything on
a global app object, mirroring the directory structure you had on the server:

@app.controllers = do ->
 controller = do ->
 blog = do ->

In this case, your entire application can be clobbered if somebody can get source code
into the application:

@app = loadSomeNefariousProgram()

That’s not the biggest problem, though. The biggest problem is that if you don’t
enforce modularity with an actual module system, then the chances of you actually writ-
ing modular code are diminished. You need a module system that works on the client,
but you’ll need to implement it yourself. The module system that you’ve used on the
server has worked well, so it makes sense to make the same thing work on the client.

 How do you implement modules on the client? First, you pretend that they already
work and start to write your client-side program accordingly, using the powerful
design technique called wishful thinking. Once you have something that uses modules
on the client, you’ll know what you need to implement to make them work.

3 There are no modules in the fifth edition of the ECMAScript specification. See chapter 13 for a discussion of

Put the client and
spec directories in
the same directory
as the app directory.
modules in upcoming editions of ECMAScript.

341Client-side modules (in a web browser)

REQUIREMENTS

Suppose you’re adding the comment functionality to the application and you need to
require the comments module from inside the main module. You write these two mod-
ules in separate files:

-- main.coffee --
{Comments} = require 'comments'

<rest of module omitted>

-- comments.coffee --
class Comments

<rest of module omitted>

exports.Comments = Comments

Loading many script files in a web browser is slow, so the first thing you do is write a
Cake task that compiles these modules into a single application.coffee file:

task 'concatenate', 'Compile multiple CoffeeScript files', ->

But even when this file contains both modules, they still can’t see each other. Note
that the main module appeared first, but the order could be different, depending on
how you concatenate the files:

(function() {
 var Comments;
 Comments = (function() {
 function Comments() {}
 return Comments;
 })();
 exports.Comments = Comments;
}).call(this);

(function() {
 var Comments;
 Comments = require('comments').Comments;
}).call(this);

This won’t work in any browser. In order to allow modules to require other modules,
you need to write your own module system or use an existing solution.

If you write your own module system, then you’ll have to change how your Coffee-
Script program is compiled. That’s not so scary after chapter 8, so you decide to write

Client-side module solutions
There are many alternatives and they differ per platform. The solution presented here
is along the same lines as Stitch; see https://github.com/sstephenson/stitch/.

The result
of compiling
main.coffee

The result
of compiling
comments.coffee
your own—with a little help from Agtron.

https://github.com/sstephenson/stitch/

342 CHAPTER 12 Modules and builds

12.3.2 How to write a module system
For modules to work when they’re all contained in a single file, there must be some
way to define a module and to tell it how to do require and exports. On the server, a
module was defined implicitly by just having a file. On the client, however, the individ-
ual files will be concatenated to a single file, with each module declared and passed to
a defmodule function, as shown in the following JavaScript example:

defmodule({'main': function (require, exports) {
 var Comments = require('./comments').Comments;
}});

defmodule({'comments': function (require, exports) {
 var Comments;
 Comments = (function() {
 function Comments() {}
 return Comments;
 })();

 exports.Comments = Comments;
}});

At this point you get a little help from Agtron. He writes tests and produces the solu-
tion shown in the following listing. It’s very likely that in practice you’ll use an existing
library to provide modules on the client, and many of them will use techniques similar
to the following listing. It’s always useful to understand how things work, though, so
take some time to explore the solution.

do ->
 modules = {}
 cache = {}
 @require = (raw_name) ->
 name = raw_name.replace /[^a-z]/gi, ''
 return cache[name].exports if cache[name]
 if modules[name]
 module = exports: {}
 cache[name] = module
 modules[name]((name) ->
 require name
 , module.exports)

AMD modules?
Another technique for defining modules is Asynchronous Module Definitions (AMD).
AMD uses a define function that accepts a module name, its dependencies, and the
module definition. In AMD, an object returned from the function contains the proper-
ties that are exported from the module. Because the setup is similar to what you just
implemented, when you encounter AMD modules in the wild, you’ll understand the
basic premise behind them.

Listing 12.13 require and defmodule for the browser (lib/modules.coffee)

Each module is passed to
a defmodule function. This
allows the modules to be
loaded as required and to
have require and exports
defined in their scope by
being passed in as
arguments. This might
remind you of dependency
injection from chapter 10.

Wrap it in a do -> to
keep variables private.

Assign a require method to
the current object. When this
script is executed in a
browser, the current object
will be the global object. In a
browser, that’s generally the
window object.
 module.exports

able.

The
out

Co
wrap
defmo
343Client-side modules (in a web browser)

 else throw "No such module #{name}"

 @defmodule = (bundle) ->
 for own key of bundle
 modules[key] = bundle[key]

So how does it work? When you load a module, the require invocations trigger other
modules to be evaluated, which in turn will cause any require invocations in that
module to be evaluated. The application will need to load one module that will load
all of the others. The overall structure of the compiled output will have a single
require call at the end to invoke this module:

defmodule('comments': function(require, exports) {
 class Comments
 exports.Comments = Comments;
});

defmodule('main': function(require, exports) {
 var Comments = require('./comments').Comments;
});

require './main'

You now have to write the Cake task that compiles your CoffeeScript modules from
separate files into a single JavaScript file that includes the module library from list-
ing 12.13 and wraps each module in a defmodule. This Cake task appears in the next
listing. This task is suitable for compiling your small project. If your project becomes
large (thousands of modules), then you might need to revisit it.

task 'build:client', 'build client side stuff with modules', ->
 compiler = require 'coffee-script'
 modules = fs.readFileSync "lib/modules.coffee", "utf-8"

 modules = compiler.compile modules, bare: true
 files = fs.readdirSync 'client'
 source = (for file in files when /\.coffee$/.test file
 module = file.replace /\.coffee/, ''
 fileSource = fs.readFileSync "client/#{file}", "utf-8"

 """
 defmodule({#{module}: function (require, exports) {
 #{compiler.compile(fileSource, bare: true)}
 }});
 """
).join '\n\n'

 out = modules + '\n\n' + source
 fs.writeFileSync 'compiled/app/client/application.js'

Now you’re able to use the same module system that you use on the server for your

Listing 12.14 Cake task for client-side modules

Assign a defmodule method
to the global object

lib/modules.coffee
contains the code
from listing 12.13.

CoffeeScript is compiled
bare, meaning that there’s
no outer function wrapper.

Because this is in the
build where you don’t
care about blocking,
readFileSync is accept

actual file
put is the
compiled
ffeeScript
ped in the
dule call. All of the modules are

concatenated with a simple join. Write the entire
compiled
application to
application.js.
client-side application as well. There are other techniques for client-side programs, but

344 CHAPTER 12 Modules and builds

the principles are always the same. Moreover, the modules system used in Node.js, which
is based on common.js, is the closest thing to a de facto standard until ECMAScript
standardizes modules (and browser makers implement them).

12.3.3 Tests
Client-side modules can be tested the same way as server-side modules. All of the test-
ing techniques you learned in chapter 10 (such as dependency injection) apply to
modules whether on the server or on the client. In the following listing you can see
the test for the client-side Comments module.

{describe, it} = require 'chromic'

{Comments} = require '../../app/client/comments'

describe 'Comments', ->
 it 'should post a comment to the server', ->
 requested = false
 httpRequest = (url) -> requested = url
 comments = new Comments 'http://the-url', {}, httpRequest
 comment = 'Hey Agtron. Nice site.'
 comments.post comment
 requested.shouldBe "http://the-url/comments?insert=#{comment}"

 it 'should fetch the comments when constructed', ->
 requested = false
 httpRequest = (url) -> requested = url
 comments = new Comments 'http://the-url', {}, httpRequest
 requested.shouldBe "http://the-url/comments"

 it 'should bind to event on the element', ->
 comments = new Comments 'http://the-url', {}, ->
 element =
 querySelector: -> element
 value: 'A comment from Scruffy'

 comments.bind element, 'post'
 postReceived = false
 comments.post = (comment) -> postReceived = comment
 element.onpost()
 postReceived.shouldBe element.value

 it 'should render comments to the page as a list', ->
 out = innerHTML: (content) -> renderedContent = content
 comments = new Comments 'http://the-url', out, ->
 comments.render '["One", "Two", "Three"]'
 out.innerHTML.shouldBe "OneTwoThree"

The next listing contains the Comments module.

class Comments
 constructor: (@url, @out, @httpRequest) ->

Listing 12.15 Comments specification (spec/comments_spec.coffee)

Listing 12.16 The Comments module (client/comments.coffee)
 @httpRequest "#{@url}/comments", @render

345Application deployment

 post: (comment) ->
 @httpRequest "#{@url}/comments?insert=#{comment}", @render
 bind: (element, event) ->
 comment = element.querySelector 'textarea'
 element["on#{event}"] = =>
 @post comment.value
 false
 render: (data) =>
 inLi = (text) -> "#{text}"
 if data isnt ''
 comments = JSON.parse data
 if comments.map?
 formatted = comments.map(inLi).join ''
 @out.innerHTML = "#{formatted}"

exports.Comments = Comments

With a build and tests for the server and client components of the application in
place, it’s now time to learn how to deploy it.

12.4 Application deployment
You have your application broken into modules both on the server and on the cli-
ent. You also have a build that compiles all your CoffeeScript modules, makes them
work for the browser, and runs all of your tests in order to make sure the program
behaves as it should. What’s left is deployment to a server for the world to behold. In
this section you’ll learn why you always deploy the compiled JavaScript (and not Cof-
feeScript) and how to package up a version of your compiled application ready to be
deployed to a server.

 Right now, to run your compiled application, you pass the main application file,
server.js, to Node:

> node compiled/app/server.js

That runs the application locally, but to run the application on a remote server, you first
need to get it onto the server. Once it’s there, the application needs to know how to
run on that server. A simple deployment follows these steps:

1 Create the artifact and manifest.
2 Upload and extract the artifact and manifest.
3 Stop the old version of the application.
4 Start the new version of the application.

If you’re deploying to multiple servers, then the deployment process will be more
complicated, but the basic concepts remain the same. In this section you’re at step 1,
where you’ll create a version of your application, an artifact, that is ready for deploy-
ment, as well as a manifest that will give the application information it needs to run on
the environment you deploy it to.

if
346 CHAPTER 12 Modules and builds

12.4.1 Creating an artifact (something that’s easy to deploy)
First, you need to create something that will be sent to the server and become the pro-
gram that runs there. That something is called an artifact.

 Given that you have a compiled version of the application already, you can create
an artifact from the compiled program. From Cake, the Node.js execFile command
allows you to call out to an external program that can compress the compiled pro-
gram and put it in a single file ready to be deployed:

createArtifact = (path, version, callback) ->
 execFile "tar", ["-cvf", "artifact.#{version}.tar", path], (e, d) ->
 callback()

task 'artifact', 'build the artifact', ->
 version = fs.readFileSync './VERSION', 'utf-8'
 createArtifact 'compiled', version, ->
 console.log "done. artifact.#{version}.tar generated"

When you run cake artifact, a file containing all of the compiled files is created.
Create a file called VERSION in the same directory as the Cakefile and put the number
1 in it. Now when you invoke cake with the artifact task, it will use this version num-
ber when generating the artifact:

> cake artifact
done. artifact.1.tar generated

How about the manifest? Why do you need one and how do you create it?

12.4.2 Creating a manifest (something that tells your artifact where it is)
Consider that in development you run the application on localhost on port 8080.
Looking at listing 12.2, you notice that this value is hardcoded:

server.listen '8080', 'localhost'

In production this might need to be something else:

server.listen '80, 'agtronsblog.com'

This is just one example of something that’s likely to change when you run the appli-
cation on another environment, such as the production environment.

WHICH ENVIRONMENT IS THIS?
The application doesn’t magically know which environment it’s running in. You have
to tell it by using an environment variable. Inside a Node.js application, you can access
environment variables through process.env. The environment variable you’ll use is
called NODE_ENV and is either set for you by the environment you’re running on or is set
by you when your program is started on the command line. Suppose it’s already set;

Execute the command-line program tar to create the artifact. If
your operating system doesn’t have a tar command, then consult

the relevant documentation and use an equivalent program.

The build version is kept in
a file. As before, in a build
it’s generally acceptable to
use synchronous file loads
the build can’t run at all
without those files.
here’s how not to use the NODE_ENV environment variable:

347Application deployment

if process.env.NODE_ENV is 'production'
 server.listen '80', 'agtronsblog.com'
else if process.env.NODE_ENV is 'development'
 server.listen '8080', 'localhost'

Instead of using NODE_ENV in many parts of your program, you should read it once and
keep all of the environment information in a single place. That’s what a manifest, or
environment config, does. So how do you load one?

LOADING AN ENVIRONMENT CONFIG

The application needs to know how to run on the environment it’s deployed to. This
information is provided in the manifest.

Write the configuration as a “plain-old object” and expose it as a module. A server.cof-
fee file that uses a configuration loaded from a local config module appears in the
following listing.

http = require 'http'
{load} = require './load'
{Blog} = require './controllers'

load './content'

config = require('./config')[process.env.NODE_ENV]

server = new http.Server()
server.listen config.port, config.host

blog = new Blog server

The local config module appears in the next listing. There’s a configuration for the
development and production environments. Any other environments you have (such
as testing or staging environments) should also be defined in this file.

config =
 development:
 host: 'localhost'
 port: '8080'
 production:
 host: 'agtronsblog.com'

Using Node.js on Windows?
Some of the listings in this chapter won’t work as is on all operating systems (such
as Windows). They’re designed to run on Unix-like operating systems. For other oper-
ating systems you’ll need to call out to other commands in order to achieve the same
results. That said, the techniques demonstrated here all still apply, so you can still
follow along.

Listing 12.17 The blog application (server.coffee)

Listing 12.18 The blog application configuration file (config.coffee)

Don’t do this everywhere in your
program; it would be a maintenance
nightmare later down the track.

Require the config file and
get the export that matches
the current environment.
 port: '80'

348 CHAPTER 12 Modules and builds

for key, value of config
 exports[key] = value

Your application is now ready to run in a specific environment with a particular con-
figuration. So how does the environment variable get set?

DEFINING THE ENVIRONMENT

You can define the environment where the program is invoked. Define the environ-
ment to be development

> NODE_ENV=development node compiled/server.js

or to be production

> NODE_ENV=production node compiled/server.js

Now that it can run on different environments, the application is ready to be deployed.

DEPLOYING TO A REMOTE SERVER

The process for getting the application running on a remote server can vary depend-
ing on the target, but the basic steps remain the same. Here are the steps again:

1 Create the artifact and manifest.
2 Upload and extract the artifact and manifest.
3 Stop the old version of the application.
4 Start the new version of the application.

Now you’re at step 2 where you’ll upload the artifact that you created and extract it so
that it’s ready to run. You can write a Cake task to perform steps 1 and 2 for the pro-
duction environment defined in the config:

task 'production:deploy', 'deploy the application to production' ->
 VERSION = fs.readFileSync('./VERSION', 'utf-8')
 SERVER = require('./app/config').production.host
 clean 'compiled', ->
 compile 'app', ->
 copy 'content', 'compiled', ->
 createArtifact 'compiled', VERSION, ->
 execFile 'scp', [
 "artifact.#{VERSION}.tar",
 "#{SERVER}:~/."
], (err, data) ->
 console.log "Uploaded artifact #{VERSION} to #{SERVER}"

For a production server, steps 3 and 4 will depend on exactly how the application is
being run on the environment, so the remaining steps are not presented here.

 Continuing on, it’s now time to look at the entire build and examine the Cakefile
that builds the entire application. Any projects you have in the future are likely to
have a similar folder structure and can borrow heavily from the final Cakefile that
appears in listing 12.19.

349The final Cakefile

12.5 The final Cakefile
After writing all these individual Cake tasks, it’s useful to look now at the entire Cake-
file and see where there’s room for improvement.

12.5.1 Tidying up

The Cakefile in listing 12.19 contains all of the build tasks that you created while
developing the blog application. Running cake on the command line will show you
which tasks are defined:

> cake
cake clean # delete existing build
cake build # run the build
cake test # run the tests
cake development:start # start the application locally

Note that any functions used by the build but not defined as tasks have been moved to
a separate module that’s loaded by the Cakefile.

s = require 'fs'
{exec, execFile} = require 'child_process'

buildUtilities = require './build_utilities'

{
clean,
compile,
copy,
createArtifact,
runSpecs,
runApp
} = buildUtilities.fromDir './'

VERSION = fs.readFileSync('./VERSION', 'utf-8')

task 'clean', 'delete existing build', ->
 execFile "npm", ["install"], ->
 clean "compiled"

task 'build', 'run the build', ->
 clean 'compiled', ->
 compile 'app', ->
 copy 'content', 'compiled', ->
 createArtifact 'compiled', VERSION, ->
 console.log 'Build complete'

task 'test' , 'run the tests', ->
 clean 'compiled', ->
 compile 'app', ->
 compile 'spec', ->
 runSpecs 'compiled', ->

Listing 12.19 The Cakefile for the blog application (Cakefile)

Load the utilities.

Get the current desired build
version. You’ll need a VERSION
file containing a number in the
same directory as the Cakefile
for this to work.

Remove
old files.

A full build requires other
tasks and functions to be
run in sequence. Callbacks
are used for this.

A test run
requires a build
but not an artifact.
 console.log 'Tests complete'

350 CHAPTER 12 Modules and builds

task "development:start", "start on development", ->
 runApp 'development'

SERVER = require('./app/config').production.host

deploy = ->
 console.log "Deploy..."
 tarOptions = ["-cvf","artifact.#{VERSION}.tar","compiled"]
 execFile "tar", tarOptions,(err, data) ->
 console.log '1. Created artifact'
 execFile 'scp', [
 "artifact.#{VERSION}.tar",
 "#{SERVER}:~/."
], (err, data) ->
 console.log '2. Uploaded artifact'
 exec """
 ssh #{SERVER} 'cd ~/;
 rm -rf compiled;
 tar -xvf artifact.#{VERSION}.tar;
 cd ~/compiled;
 NODE_ENV=production nohup node app/server.js &' &
 """, (err, data) ->
 console.log '3. Started server'
 console.log 'Done'

task "production:deploy", "deploys the app to production", ->
 clean 'compiled', ->
 compile 'app', ->
 copy 'content', 'compiled', ->
 createArtifact 'compiled', VERSION, ->
 deploy()

The Cakefile in listing 12.19 would have been large and difficult to read if all of the
functions called from the build tasks were included. Instead, those functions are in
another file called build_utilities.coffee, which appears in the following listing.

fs = require 'fs'
{spawn, exec, execFile, fork} = require 'child_process'

clientCompiled = false

forAllSpecsIn = (dir, fn) ->
 execFile 'find', [dir], (err, stdout, stderr) ->
 fileList = stdout.split '\n'
 for file in fileList
 fn file if /_spec.js$/.test file

compileClient = (callback) ->
 return callback() if clientCompiled
 clientCompiled = true
 compiler = require 'coffee-script'
 modules = fs.readFileSync "lib/modules.coffee", "utf-8"
 modules = compiler.compile modules, bare: true

Listing 12.20 Build utilities (build_utilities.coffee)

Starting on development
simply executes Node.

A sample config file is provided
in the downloadable code.

Details of the SSH
command used
are omitted here
for brevity.

The Node.js module
for external processes
is required.

Look at a directory
of files and execFile
each one.

Compile the client-
side modules to work
on the client and
concatenate them.
 files = fs.readdirSync 'client'

351The final Cakefile

 fs.mkdirSync "compiled/app/client"
 source = (for file in files when /\.coffee$/.test file
 module = file.replace /\.coffee/, ''
 fileSource = fs.readFileSync "client/#{file}", "utf-8"
 fs.writeFileSync "compiled/app/client/#{module}.js",
 compiler.compile fileSource
 """
 defmodule({#{module}: function (require, exports) {
 #{compiler.compile(fileSource, bare: true)}
 }});
 """
).join '\n\n'

 out = modules + '\n\n' + source
 fs.writeFileSync 'compiled/app/client/application.js', out

 callback?()

exports.fromDir = (root) ->

 return unless root

 compile = (path, callback) ->
 coffee = spawn 'coffee', ['-c', '-o', "#{root}compiled/#{path}", path]

 coffee.on 'exit', (code, s) ->
 if code is 0 then compileClient callback
 else console.log 'error compiling'

 coffee.on 'message', (data) ->
 console.log data

 createArtifact = (path, version, callback) ->
 execFile "tar", ["-cvf", "artifact.#{version}.tar", path], (e, d) ->
 callback?()

 runSpecs = (folder) ->
 forAllSpecsIn "#{root}#{folder}", (file) ->
 require "./#{file}"

 clean = (path, callback) ->
 exec "rm -r #{root}#{path}", (err) -> callback?()

 copy = (src, dst, callback) ->
 exec "cp -R #{root}#{src} #{root}#{dst}/.", ->
 callback?()

 runApp = (env) ->
 exec 'NODE_ENV=#{env} node compiled/app/server.js &', ->
 console.log "Running..."

 {clean, compile, copy, createArtifact, runSpecs, runApp}

The Cakefile is complete, but you can see a callback waterfall in some of the tasks—
where asynchronous operations that must happen in sequence lead you to deeply
nested callbacks:

task 'build', 'run the build', ->
 clean 'compiled', ->

Compile the
client-side
modules to work
on the client and
concatenate them.

Create
the build
artifact.
 compile 'app', ->

352 CHAPTER 12 Modules and builds

 copy 'content', 'compiled', ->
 createArtifact 'compiled', VERSION, ->
 console.log 'Build complete'

Compare this to a roughly equivalent section of a Makefile:

build: artifact

artifact: clean compile copy
 tar –cvf artifact.tar compiled

Cake is a simple tool, and in some instances you may be better off using a dedicated
build tool. That said, CoffeeScript provides powerful syntactic techniques, so you
could roll your own fluent interface:

task 'build', 'run the build', ->
 clean('compiled')
 .then(compile 'app')
 .then(copy 'content', 'compiled')
 .then(createArtifact 'compiled', VERSION)
 .then(-> console.log 'done')
 .run()

Or perhaps you could implement your own function to handle dependencies:

task 'build', 'run the build', depends ['clean', 'compile', 'copy'], ->

Or you could implement your own syntax by extending the CoffeeScript compiler
(see chapter 8). Many things are possible, but for now, it’s time to recap.

12.6 Summary
In this chapter you learned how to structure a simple application into discrete mod-
ules on the server and on the client and then how to build, test, and release it.

 That marks the end of your discovery of the current world of CoffeeScript, but it
doesn’t mark the end of your journey. Your journey continues into the future, where
in the next chapter you’ll look at where JavaScript is headed and at how CoffeeScript
fits into that picture.

ECMAScript and
the future of CoffeeScript
Whatever your opinion of JavaScript (and regardless of whether learning Coffee-
Script has changed it), you should count on it being around for a long time—long
enough, at least, that it will probably outlast your career as a programmer. For that
reason it’s important to look at what the future holds for JavaScript and how it will
affect CoffeeScript.

 In this chapter you’ll look at the evolving relationship between CoffeeScript and
JavaScript and why your understanding of CoffeeScript applies not only to Java-
Script today but also to the JavaScript of tomorrow. You’ll see how JavaScript ver-
sions relate to different editions of the ECMAScript specification that documents
the evolving JavaScript standard. Lastly, this chapter discusses one of the most
important tool-related aspects of the JavaScript ecosystem: how to debug Coffee-
Script programs with source maps. Before looking at the future, though, where are
you now?

This chapter covers
■ CoffeeScript and the future of JavaScript
■ Features in ECMAScript 5 you can use today
■ Upcoming features in ECMAScript 6
■ Source maps for debugging
Click here to open the source code file for this chapter.

http://www.manning.com/CoffeeScriptinAction/ch13-code.html

354 CHAPTER 13 ECMAScript and the future of CoffeeScript

13.1 CoffeeScript in the context of JavaScript
When talking about language versions, it’s important to first have a broad overview.
Table 13.1 shows a timeline of major versions of the ECMAScript specification.

The fifth and sixth editions of the ECMAScript specification are most relevant to Coffee-
Script. Some of the features introduced by these editions are instantly recognizable
from CoffeeScript, others are vaguely familiar, and some are brand new. All of them
are explored in this chapter.

13.1.1 A better JavaScript through CoffeeScript

JavaScript is the host for CoffeeScript. The word host conjures up images of human
parasites like worms and bedbugs. In the case of CoffeeScript, though, JavaScript ben-
efits from the relationship. One of the ways that JavaScript benefits is by taking some

Table 13.1 An ECMAScript timeline

Edition Date published Examples of new features

1 June 1997

2 June 1998

3 December 1999 Regular expressions
Improved string handling
Exception handling

4 Abandoned

5 December 2009 Strict mode
Native JSON support
New object methods
Property descriptors

6 In progress Rest and spread parameters
Template strings
Default parameters
Destructuring assignment
Function syntax
Classes

JavaScript, ECMAScript? Which is it?
ECMAScript is the name of the language standardized by the ECMA-262 specifica-
tion by Ecma International. JavaScript is a dialect of ECMAScript (and a trademark
of Oracle Corporation), but it’s the name used by almost everybody when referring
to the language. In this chapter, ECMAScript is used when referring to the ECMA-
262 specification.
of the features in CoffeeScript and adding them to future versions of JavaScript.

355CoffeeScript in the context of JavaScript

 Imagine you’re working with Scruffy on a library to automatically fetch form values
and synchronize them with a server. In this listing you can see the initial program that
Scruffy has called Formulaic.

class Formulaic
 constructor: (@root, @selector, @http) ->
 @subscribers = []
 @fields = @extractFields()
 @startPolling()

 extractFields: ->
 element = @root.querySelector @selector
 fields = element.getElementsByTagName 'input'
 extracted = {}
 for field in fields
 extracted[field.name] = field.value
 extracted

 startPolling: ->
 diff = =>
 for own key, value of @extractFields()
 if @fields[key] isnt value
 @fields[key] = value
 @notify()
 setInterval diff, 100

 subscribe: (subscriber) ->
 @subscribers.push subscriber

 notify: ->
 subscriber() for subscriber in @subscribers

How do you use the Formulaic class from listing 13.1? Consider the following HTML
document:

<!doctype html>
<html>
<form id='contact-details'>
<input type='text' name='first-name'>
<input type='text' name='last-name'>
<input type='text' name='email'>

You new a Formulaic instance by passing the document and the selector for the form:

new Formulaic document, '#contact-details'

Agtron tells you that extending and improving Formulaic will require you to learn some
ECMAScript 5 and some ECMAScript 6 features. Sounds good! Time to get started.

13.1.2 Future JavaScript features that CoffeeScript has today

Some of the features coming in future versions of ECMAScript are already present
in CoffeeScript in one form or another. This means that even if the names of these

Listing 13.1 Formulaic form bindings
features sound only vaguely familiar, you already know and use rest and spread

356 CHAPTER 13 ECMAScript and the future of CoffeeScript

parameters, template strings, default parameters, and destructuring assignment. Because
you already know them, it’s best to get them out of the way before moving on to the
interesting stuff.

REST AND SPREAD

The rest and spread operators proposed for ECMAScript 6 work the same way as the
ones you’re familiar with in CoffeeScript (aside from some syntactical differences).
Here’s the CoffeeScript syntax you’re familiar with:

rest = (a, b, r...) -> r
rest 1,2,3,4,5,6,7
[3,4,5,6,7]

spread = [1,2,3,4,5,6,7]
rest spread
[3,4,5,6,7]

In JavaScript with ECMAScript 6 it looks similar, but the ellipsis goes on the front of
the variable name:

rest = function (a, b, ...r) { return r; }
rest(1,2,3,4,5,6,7);
[3,4,5,6,7]

The ECMAScript 6 specification also has string interpolation.

TEMPLATE STRINGS
In CoffeeScript you use string interpolation to insert values into strings without having
to manually concatenate them:

word = 'interpolation'

"Just like string #{word}"
Just like string interpolation

What’s the alternative in JavaScript today? Concatenating strings with the + operator:

"Just like string " + word

Imagine trying to create an HTML template with concatenation instead of interpolation:

"""
<html>
<title>#{title}</title>
<body>
<h1>#{ heading}</h1>

#{content}
"""

ECMAScript 6 will have template strings that provide the string interpolation you know
and love, but with different syntax:

var word = 'interpolation';
`Just like string ${word}.`

ECMAScript 6 example

ECMAScript 6 example

Just like string interpolation.

357ECMAScript 5

Template strings are multiline (like heredocs) and will support custom substitution
functions. In CoffeeScript the back tick ` is already used to put raw JavaScript in
your CoffeeScript programs, so the JavaScript template string syntax won’t work
in CoffeeScript.

ARROW FUNCTION SYNTAX

JavaScript syntax benefits from CoffeeScript. One inspiration that JavaScript will take
from CoffeeScript is arrows instead of the function keyword. The ECMAScript 6 stan-
dard does not specify the single-arrow function but it does have the fat arrow:

let square = (x) => x * x

You would be forgiven for mistaking that for CoffeeScript. That’s because it was inspired by
CoffeeScript syntax—the relationship between CoffeeScript and ECMAScript is symbiotic.

 That’s it for the familiar things. How about all the unfamiliar features that you
need to know about to stay in the game? To begin with, what’s in ECMAScript 5 that a
CoffeeScripter needs to find out about?

13.2 ECMAScript 5
Released in December 2009, the primary focus for the changes in ECMAScript 5 was to
improve robustness for the language and, as a result, for runtimes and programs. The
key features to be aware of are native JSON support, strict mode, property descriptors,
and changes to the Object object. The best way to learn them is to try them, which
means your runtime needs to support them.

13.2.1 Runtime support

It’s easy to play with the ECMAScript 5 features discussed in this section; simply fire up
the CoffeeScript REPL. All of these features are supported in the V8 JavaScript engine
that powers Node.js, your REPL, and all of your server-side CoffeeScript programs. Unfor-
tunately, the same does not hold true for all of your browser-based programs. Some
browsers don’t support all of these features, so if you need to support those browsers,
you have to either avoid those features or use a polyfill (as discussed in chapter 11)
where possible.

The ECMAScript features supported by a particular browser depend on which version of
which JavaScript runtime it uses. When writing programs, however, it’s usually browser ver-
sions that are discussed. So that’s what we’ll discuss now. Table 13.2 shows which versions

Polyfills
If you find yourself stuck writing programs for a browser that doesn’t support the
ECMAScript 5 feature that you want, you will need to polyfill. Sometimes you need to
polyfill things you might think are essential, such as JSON.

ECMAScript 6 example
of major browsers support the ECMAScript 5 features that are discussed in this section.

358 CHAPTER 13 ECMAScript and the future of CoffeeScript

When you target a browser older than the ones in table 13.2 (Internet Explorer 7,
Safari 5, or Firefox 3.5, for example), there’s a good chance that it won’t support the
ECMAScript 5 features you want to use. In that case, it’s best to consult the documenta-
tion for that browser.

 So, what are these features and, more importantly, how will they be useful for your
programs (such as Formulaic)?

13.2.2 Object.create

You know that Object.create produces a new object with an existing object as the
prototype. What you might not know is that Object.create also has a second parame-
ter, an object of property names and descriptors:

homer =
 'first-name': 'Homer'
 'last-name': 'Simpson'

homerTwo = Object.create homer,
 clone:
 value: true
 writable: false
 'middle-name':
 value: 'Clone'
 writable: false

homerTwo.clone
true

If your CoffeeScript program is running in an environment without a native Object
.create, then objects won’t support property descriptors and any polyfill for
Object.create won’t have the second parameter.

13.2.3 JSON

ECMAScript 5 introduced the global JSON object and the JSON.stringify and JSON
.parse methods. What do they do, and why can’t you just use JSON directly in your

Table 13.2 Support for ECMAScript 5 in some popular browsers

Feature IE8 IE9 IE10 FF 4+ Sf 6+ Ch 7+

Object.create No Yes Yes Yes Yes Yes

Object property descriptors No Yes Yes Yes Yes Yes

New array methods (e.g., map) No Yes Yes Yes Yes Yes

Strict mode No No Yes* Yes Yes Yes

Native JSON Yes Yes Yes Yes Yes Yes

IE = Internet Explorer; FF = Firefox; Sf = Safari; Ch = Chrome
* = Known bugs in implementation
programs? After all, valid JSON is a valid JavaScript object.

359ECMAScript 5

 Consider the Formulaic program. So far it’s not particularly useful because it
doesn’t send the form information anywhere. How do you implement a sync method
in Formulaic that communicates with an external server? The sync method should
post all of the form data to a specific URL by invoking the http.post method:

sync: ->
 throw new Error 'No transport' unless @http? and @url?
 data = extractFields
 @http.post @url, JSON.stringify(@)

What does invoking JSON.stringify do? It turns an object into a string.

STRINGIFY

To turn an object into a valid JSON string, use JSON.stringify:

fred = {firstName: 'Fred', lastName: 'Flintstone'}
JSON.stringify fred
'{"firstName":"Fred","lastName":"Flintstone"}'

However, when you use JSON.stringify on a Formulaic instance you’re really only
interested in the field values, but you get much more:

{
 "root":{
 "location":{},
 "contact-form":{
 "0":{},
 "1":{},
 }
 },
 "selector":".contact-form",
 "subscribers":[],
 "fields":{
 "search":""
 }
}

Worse, some other objects will not JSON.stringify at all. For example, try it on the
REPL with the global object:

JSON.stringify @
TypeError: Converting circular structure to JSON

What can you do? Formulaic is your class, so surely you can tell it how to turn itself into
JSON? Indeed, you can. Even better, you can tell JSON.stringify about it.

CONVERTING TO JSON
If an object has a toJSON method, then JSON.stringify will invoke it and use it as the
value to stringify:

class Formulaic
 toJSON: -> "message": "Determine your own JSON representation"

formulaic = new Formulaic
JSON.stringify formulaic

'{"message":"Determine your own JSON representation"}'

360 CHAPTER 13 ECMAScript and the future of CoffeeScript

That takes care of sending the form information to the server. How about getting the
form back? Suppose the server responds to a POST with updated JSON for the object:

sync: ->
 throw new Error 'No transport' unless @http? and @url?
 @http.post @url, JSON.stringify(@extractFields()), (response) ->
 @fields = JSON.parse response

What does invoking JSON.parse do?

PARSE

The JSON.parse method converts a string of JSON to an object. If you need to polyfill
JSON.parse, you can do it dangerously with an eval:

JSON.parse ?= (json) ->
 eval json

barney = JSON.parse '{"firstName":"Barney","lastName":"Rubble"}'"
barney.lastName
"Rubble"

Be warned: eval is evil. When you eval code, it can do anything, so you should never
eval code you don’t trust. The ECMAScript 5 specification adds a native JSON.parse
over eval (for safety reasons) and over other techniques for parsing JSON (for perfor-
mance reasons).

 The native JSON support is the most immediately applicable solution for Formulaic.
How does Formulaic send form data back to the server and what format does it use? In
the next listing you see an extended version of Formulaic that uses native JSON support.

class Formulaic
 constructor: (@root, @selector, @http) ->
 @subscribers = []
 @fields = @extractFields()
 @startPolling()

 extractFields: ->
 element = @root.querySelector @selector
 fields = element.getElementsByTagName 'input'
 extracted = {}
 for field in fields
 extracted[field.name] = field.value
 extracted

 update: =>
 for own key, value of @extractFields()
 if @fields[key] isnt value
 @fields[key] = value
 @notify()

 startPolling: ->
 setInterval @update, 100

 subscribe: (subscriber) ->

Listing 13.2 Formulaic with server sync
 @subscribers.push subscriber

361ECMAScript 5

 notify: ->
 subscriber() for subscriber in @subscribers

 sync: ->
 throw new Error 'No transport' unless @http? and @url?
 @http.post @url, JSON.stringify(@extractFields()), (response) ->
 @fields = JSON.parse response

exports.Formulaic = Formulaic

The Formulaic program in listing 13.2 is far from finished. For one thing, it fetches data
from the server but doesn’t actually put any changes it receives back into the visible
form that the user edits. To do that, you need some new features of the Object object.

13.2.4 Property descriptors

The new problem Agtron has given you and Scruffy is to improve Formulaic so that a
change from the server is reflected in the form. This means that a change to the
object representing the form needs to trigger an update in the form:

form = new Formulaic document, '#contact-details'
form.fields['first-name'] = 'Tyrone'

You could get Formulaic to poll the field properties. You could, but you don’t have to.
Why? Well, until now you’ve treated all object properties as having just a name and a value:

form.fields =
 'first-name': 'Fred'

With ECMAScript 5, though, properties don’t have just names and values; they also have
descriptors. The property descriptors are value, get, set, configurable, enumerable,
and writable. The get and set descriptors are commonly known as getters and setters.

GETTERS AND SETTERS

Consider the 'first-name' property of form.fields. Until now, when a property value
is changed, that’s the full extent of it, and you’d better like it. With a set property
descriptor, though, you can create a property and define what happens when a new
value is assigned to it! One way to do that is with Object.defineProperty:

Object.defineProperty form.fields, 'first-name',
 set: (newValue) => @root.getElementsByName('first-name')[0].value = newValue

For Formulaic, a get property descriptor means you don’t need to poll the form fields
for changes. Instead, you can define a function that gets the latest value from the form
field any time the object property is accessed:

Object.defineProperty form.fields, 'first-name',
 set: (newValue) => @updateView 'first-name', newValue
 get: => @updateField 'first-name'

name value
In the following listing you see a new version of Formulaic using getters and setters.

362 CHAPTER 13 ECMAScript and the future of CoffeeScript

class Formulaic
 "use strict"
 constructor: (@root, @selector, @http) ->
 @fields = {}
 @subscribers = []
 @extractFields()

 bind: (field) ->
 Object.defineProperty @fields, field.name,
 set: (newValue) =>
 field.value = newValue
 @sync()
 get: ->
 field.value
 enumerable: true

 updateField = =>
 @fields[field.name] = field.value

 updateField()
 field.addEventListener 'input', updateField

 documentFields: ->
 element = @root.querySelector @selector
 element.getElementsByTagName 'input'

 extractFields: ->
 @bind field for field in @documentFields()

 sync: ->
 throw new Error 'No transport' unless @http?
 if @url?
 @http.post @url, JSON.stringify(@fields), (response) =>
 @fields = JSON.parse response

exports.Formulaic = Formulaic

Now what? Agtron wants to know what happens when the form is considered complete
and should no longer be changed. How will you stop the Formulaic instance from
being modified?

PREVENTING CHANGES

Suppose now that the form also contains a unique identifier for a user. This user ID
should never change. Unfortunately, regular object properties can be changed by any-
body who has a reference to the object.

 With property descriptors, you can create properties that can’t be changed:

class User

user = Object.create User.prototype,
 id:
 value: 'u58440329'
 enumerable: true
 writable: false

Listing 13.3 Using getters and setters

"use strict" is discussed
later in this section.
 configurable: false

363ECMAScript 5

 name:
 value: 'Robert'

Due to the writable descriptor being false, attempts to change this property have
no effect:

user.id = '0'
user.id
u58440329

Also, due to the enumerable descriptor being false, the property doesn’t appear in
a comprehension:

property for property of user
['name']

Finally, due to the configurable descriptor being false, the property can’t be made
writable or enumerable again:

Object.defineProperty user, id, writable: true
Cannot redefine property: id

Using Object.defineProperty gets tedious when you need to add or change multiple
properties, but some other methods new to the Object object make it easier.

FREEZING, SEALING, AND PREVENTING EXTENSIONS

To make working with multiple descriptors at the same time easier, some other methods
have been added. First, with Object.freeze you can stop any properties on form.fields
from being modified. Suppose your form contains a user object; to stop it from being
modified, you freeze it:

user =
 name: 'Robert'

Object.freeze user

Now none of the properties are writable or configurable and no new properties can
be added:

user.name = 'Janet'
user.name
'Robert'

user.address = '10 Elephant Parade'
user.address?
false

Object.defineProperty user, 'phone', value: '555 4312'
Cannot define property:phone, object is not extensible.

That’s all well and good. How do they apply to Formulaic?

13.2.5 Putting it together

To answer Agtron’s question of locking the form when it’s complete, Scruffy wants
to change Formulaic to use Object.freeze so that all of the fields on an instance

can be frozen:

364 CHAPTER 13 ECMAScript and the future of CoffeeScript

form = new Formulaic, '#form'
Object.freeze form

form.fields.user.id = 'u2344999'
form.fields.user.id
'u2344999'

It’s not working! Why not? Because freezing an object is shallow—it only freezes the prop-
erties and doesn’t work recursively to freeze properties of objects that are properties.
You must either be careful to freeze the object containing the actual properties you
want to be frozen (as you’ll see in listing 13.4) or recursively freeze everything in the
object to achieve a deep freeze. A typical implementation of a deep freeze follows:

deepFreeze = (o) ->
 Object.freeze o
 for own propKey of o
 prop = o[propKey]
 if typeof prop != 'object' || Object.isFrozen prop
 continue
 deepFreeze prop

That’s enough time in the deep freeze; what about the other methods, Object.seal
and Object.preventExtensions? They’re similar to Object.freeze, but they’re less
restrictive about what can be changed in the object afterward. In table 13.3 you can
see the different levels of restriction that these methods place on the objects they’re
invoked with.

You can test whether an object is frozen, sealed, or has had extensions prevented by
using Object.isFrozen, Object.isSealed, and Object.isExtensible, respectively.

 There’s a problem when you try to freeze the form.fields property of a Formulaic

Freezing doesn’t follow the prototype chain
Although a frozen object is itself immutable, other objects on its prototype chain may
not be. If you’re creating mixins or constant objects and you really want them to be
isolated, use null as the prototype first and then freeze the object.

Table 13.3 How seal, freeze, and preventExtensions affect an object

Property action

Method Add Delete Edit value Edit descriptor

freeze No No No No

seal No No Yes No

preventExtensions No Yes Yes Yes
instance because the properties on that are all getters and setters—the values are

365ECMAScript 5

stored somewhere else and the Formulaic instance is only acting as a proxy for the
fields. A solution to this appears in the next listing.

class Formulaic
 "use strict"
 constructor: (@root, @selector, @http) ->
 @fields = {}
 @extractFields()

 bind: (field) ->
 Object.defineProperty @fields, field.name,
 set: (newValue) =>
 field.value = newValue
 @sync()
 get: ->
 field.value
 enumerable: true
 configurable: true

 updateField = =>
 @fields[field.name] = field.value

 updateField()
 field.addEventListener 'input', updateField

 disable: ->
 for key, value of @fields
 Object.defineProperty @fields, key, { value }
 for field in @documentFields()
 field.disabled = true

 Object.freeze @fields

 documentFields: ->
 element = @root.querySelector @selector
 element.getElementsByTagName 'input'

 extractFields: ->
 @bind field for field in @documentFields()

 sync: ->
 throw new Error 'No transport' unless @http?
 if @url?
 @http.post @url, JSON.stringify(@fields), (response) =>
 @fields = JSON.parse response

exports.Formulaic = Formulaic

The final part of ECMAScript 5 that you need to know about is strict mode. Notice that
both listings 13.3 and 13.4 included something called "use strict" in them. What
does it do and why might you want to include it?

Listing 13.4 Formulaic with disabled fields

"use strict" is covered
later in this section.

366 CHAPTER 13 ECMAScript and the future of CoffeeScript

13.2.6 Strict mode

When most of your JavaScript programs are written in CoffeeScript, it can be easy to
forget JavaScript’s problems. CoffeeScript protects you from some JavaScript follies, so
the "use strict" pragma added in ECMAScript 5 doesn’t appear in your programs
often. But it’s still important to understand how it relates to CoffeeScript.

 Strict mode forbids some things in JavaScript that are dangerous; if you use them,
you’ll get an error. For example, with strict mode, using an undeclared global variable
in JavaScript will cause a ReferenceError:

failsStrictMode = function() {
 "use strict";
 undeclaredVariable = 3;
};

failsStrictMode()
// Reference Error

Of course, implicit variable declaration in CoffeeScript means that you won’t see this
error in CoffeeScript programs.

 As you can see in the previous example, to enable strict mode you add the pragma
"use strict" to some scope in your program. Any violations of strict mode inside that
scope will cause an error.

 The CoffeeScript compiler won’t compile your program into something that
breaks strict mode, but it won’t complain if you break strict mode yourself. So when
you run the following compiled program, the runtime will throw a syntax error:

"use strict"

failsStrict =
 duplicateKey: 1
 "duplicateKey": 2

There’s nothing to stop you from adding the "use strict" pragma to your Coffee-
Script program if you want to ensure that your programs adhere to strict mode.

 That’s enough for ECMAScript 5. It’s time to look into the future a little bit and see
what ECMAScript 6 has in store for you.

13.3 ECMAScript 6

IMPORTANT The ECMAScript 6 specification is still a work in progress. Any of
the features discussed here may change before they’re finalized.

ECMAScript 6 is more ambitious than ECMAScript 5. In fact, at the time of writing, it’s
still at least a year from being finalized and probably years from being widely sup-
ported. Still, these things have a habit of changing while you aren’t looking, so it’s
best to keep aware of the changes that are coming. Besides, some of them can already
be used.

ECMAScript 5
example

367ECMAScript 6

 There are some specific features you can expect in ECMAScript 6 that have current
or future relevance to CoffeeScript, and they’re covered in this section: modules,
const, let, sets, maps, proxies, comprehensions, iterators, and generators.

 To try these features from the CoffeeScript REPL, you’ll need two things. First,
you’ll need a recent version of Node.js. To see which version you have, pass --version
to Node.js.

> node --version

The features described in this section require the version to be 0.10.24 or newer. If
you have an older version, you should upgrade your version of Node.js.

 The second thing you’ll need to do to try the new features on the CoffeeScript REPL
is to pass arguments to Node.js when you start the CoffeeScript REPL telling it to enable
the new features. When invoking the CoffeeScript REPL, these options are passed indi-
vidually as flags. For example, to enable proxies you set the harmony-proxy flag:

> coffee -i --nodejs --harmony-proxies

What if you want to use all of the new features? Well, Harmony was the name given
early on to a large set of features that were intended for the next version of the
ECMAScript specification. You can enable all of these Harmony features in Coffee-
Script/node.js/V8 with a single harmony flag:

> coffee -i --nodejs --harmony

To try the CoffeeScript code snippets for the features in this section, you should
invoke the REPL with harmony enabled.

 The first feature worth mentioning—in part because it’s a point of contention—is
the module system.

13.3.1 Modules

JavaScript wasn’t designed with a module system, so when people needed modules for
client-side programs they invented their own. Now there are many different module
systems, so almost everybody is a traveler in a foreign country—carrying their mod-
ule adapters everywhere they go so they can plug things in.

 Until ECMAScript 6 standardizes modules, you’ll need to use some other module
system. One approach, outlined in chapter 12, is to use the Node.js module syntax for
both server and client modules and compile them out for the client (where they
aren’t supported) using a build step.

 In the long term, JavaScript needs a standardized module system for the sake of
interoperability. The module system that’s proposed for ECMAScript 6 is similar to the
Node.js module system. But the keyword module is already used by Node.js to refer to
the current module, so something will have to change:

module Formulaic CoffeeScript that can compile to

 export Formulaic module-supporting ECMAScript 6

368 CHAPTER 13 ECMAScript and the future of CoffeeScript

Then elsewhere you import...from:

module QuoteApplication
 import { Formulaic } from Formulaic

Your CoffeeScript program has a compilation step, so regardless of the module sys-
tem your CoffeeScript program uses today, the JavaScript that it generates can use a
different module system tomorrow. Because the module system is one of the most
likely areas that can still change, it’s easier to move on to more defined areas such as
const and let.

13.3.2 const and let

The variable-scoping rules catch out many programmers new to JavaScript. One of the
reasons for this is that it has a syntax similar to C and Java but very different scoping
rules. In order to provide some of the naming rules that people expect to find in
JavaScript, two new keywords, const and let, are being added in ECMAScript 6. You’ll
notice that you almost use their semantics already.

CONST

Many CoffeeScript programs have a few variables that are written in uppercase:

ONE_SECOND = 1000

setInterval ->
 rocket.forward()
, ONE_SECOND

Why name this variable in uppercase? In JavaScript it’s really just tradition handed
down from programming languages with a C heritage. It’s meant to indicate that the
value shouldn’t be changed. The problem is that it can be changed:

ONE_SECOND = 0

Suppose your program needs to get some information about the environment it’s run-
ning in, such as whether it’s in production or development mode:

MODE = 'development'

Because the MODE variable can be changed by any other part of the program, there’s
some potential for your program to break:

const MODE = 'development';
MODE = 5;
TypeError: redeclaration of const MODE

Everything is immutable?
If you take a functional approach to your CoffeeScript programs, then you might
already treat most (if not all) of your variables as being constant. If you’re brave, then
you modify the compilation of your CoffeeScript programs to turn all of your var dec-
larations into const declarations.

CoffeeScript that can compile to
module-supporting ECMAScript 6

ECMAScript 6

369ECMAScript 6

The keyword const is a reserved word in the CoffeeScript compiler, but as of Coffee-
Script 1.6 const itself is not supported.

LET
Variables in CoffeeScript are always function scoped. What if you don’t want a name
to be scoped to a function? Consider a trivial example with a comprehension inside
a function:

number = 4
double = (numbers) -> number * 2 for number in numbers
double [3,4,5,6]

number
6

Comprehensions in CoffeeScript have side effects. The names used are variables and
so they use the same scoping rules and implicit declaration as any other variables in
CoffeeScript. The ECMAScript 6 let expression is designed for names that should only
apply to a block of code, just like the comprehension shown previously:

if (something) {
 let x = 3;
}

If you don’t like comprehensions to have side effects, you can see how that could be
useful. How can you use it in CoffeeScript? Well, the brevity and flexibility of Coffee-
Script’s syntax mean that you can approximate let with a simple do -> form:

number = 5
do (number=0) -> number for number in numbers

Function parameters always shadow, so there’s no way to assign a value to the number
variable. This means you can rewrite the earlier example so that the comprehension
doesn’t clobber the outer variable:

number = 4
double = do (number=0) ->
 (numbers) -> number * 2 for number in numbers
double [3,4,5,6]
number
4

CoffeeScript favors simplicity. Sometimes when you think you need a specific new fea-
ture, there’s an easy way to achieve the result you want without it. It’s possible to write
entire CoffeeScript programs that use only parameters and never use variables.

 Remember, const and let are reserved words in the CoffeeScript compiler, so you
can’t use them. How about something you can use? How about some more objects?

13.3.3 Sets, Maps, and WeakMaps

Objects are useful as key-value pairs, but they’re not dedicated for use as key-value

The value of this outer variable has
been changed by the comprehension.

ECMAScript 6
stores. This can lead to problems such as properties on the prototype chain being

370 CHAPTER 13 ECMAScript and the future of CoffeeScript

included in comprehensions unless the own keyword is used. ECMAScript 6 specifies
several dedicated APIs better optimized for some cases where you’d otherwise use a
plain object. These are Set, Map, and WeakMap.

SET

A Set is just an ordered list of unique elements—a bit like a shopping list. Try it on a
harmony-enabled REPL; use coffee -i --nodejs –harmony:

shopping = new Set()

shopping.has 'eggs'
false

shopping.add 'milk'
shopping.has 'milk'
true

shopping.delete 'milk'
shopping.has 'milk'
false

On to the Map; how does it differ? Well, in the analogy format you remember from
high school English tests, Set is to Array as Map is to Object.

MAP
A Map is dedicated to storing key-value pairs. Aren’t objects already good at that? Yes,
but a Map allows any value (not just a string) to be used as a key:

map = new Map

harold = name: 'Harold'
map.set harold, age: 50

map.get harold
{age: 50}

Be mindful that when you use an object as a key, only the actual object can be used to
get from a Map instance, not just any old object that looks the same:

map.get {name: 'Harold'}
undefined

Unfortunately, a Map can be a problem because it can eat memory. Sounds dangerous—
what does it mean?

WEAKMAP

In addition to Map there’s also a WeakMap. A WeakMap is a Map that is not enumerable.
The reason it’s not enumerable is so that objects referenced by it can be garbage col-
lected if the only reference to the object is in the WeakMap instance itself:

stackOfPapers =
 paperOnGladiators:
 text:

 "Gladiators, it seems, were fat."

371ECMAScript 6

papersMap = new WeakMap
papersMap.add stackOfPapers.paperOnGladiators

delete stackOfPapers.paperOnGladiators

When that’s implemented using a WeakMap, then deleting the paperOnGladiators
from the stackOfPapers allows it to be garbage collected. But if it were implemented
using a regular Map, then deleting the object wouldn’t make it available for garbage
collection because the Map has a strong reference to the deleted paper. You can see
how a Map could lead to object hoarding and a massive amount of uncollected garbage
in some instances.

 These features may not be setting your hair on fire. They’re very useful for solving
some specific problems, but they don’t really expand your universe as a programmer.
That’s about to change, because it’s time to explore proxies.

13.3.4 Proxies

With proxies you can give revocable access to an object. How is that useful? Imagine
you’re a superhero. What happens when the bad guys take you to their secret hideout?
They blindfold you so that you don’t know how to get there. In other words, they take
you to the hideout without giving you any reference to it:

class SecretHideout
hideout = new SecretHideout()
proxy = new Proxy hideout, {}

Just as you can’t lead the police to a hideout you can’t find, there’s no way you can
touch a proxied object because your reference is to the proxy, not the original object:

proxy.policeAssault = true

hideout.policeAssault
false

More importantly, a proxy can capture any call to the object behind the proxy by
defining a handler object that defines a get and set for any property accessed on the
proxy. In the case of Formulaic, a form can be placed behind a proxy handler. The
handler must have get and set methods that specify what happens when a property
on the proxied object is accessed or modified:

form = document.getElementById '#the-form'
handler =
 get: -> 'property access intercepted by proxy'
 set: -> 'property modify intercepted by proxy'
proxiedForm = new Proxy form, handler

proxiedForm.name
'property access intercepted by proxy'

proxiedForm.phone = '555 9988'
'property modify intercepted by proxy'

This is useful for Formulaic. The existing implementation extracts all of the fields and

creates an intermediate representation of the form. With ECMAScript 6, instead of this

372 CHAPTER 13 ECMAScript and the future of CoffeeScript

intermediate representation your program can use a proxy. In listing 13.5 you can see
Proxy and Map used to create a new version of Formulaic. In order for this program to
work, it will need to execute in a runtime that supports proxies. For that reason, this
listing throws an error if proxies are not supported.

throw new Error 'Proxy required' unless Proxy?

class Formulaic

 constructor: (@root, @selector, @http, @url) ->
 @source = @root.querySelector @selector
 @handler =
 get: (target, property) ->
 target[property]?.value
 set: (target, property, value) =>
 if @valid property then @sync()
 @fields = new Proxy @source, @handler

 valid: (property) ->
 property isnt ''

 addField: (field, value) ->
 throw new Error "Can't append to DOM" unless @source.appendChild?

 newField = @root.createElement 'input'
 newField.value = value
 @source.appendChild newField

 sync: ->
 throw new Error 'No HTTP specified' unless @http? and @url?

 @http.post @url, JSON.stringify(@source), (response) => #B
 for field, fieldResponse of JSON.parse response
 if field of @source
 @source[field].value = fieldResponse.value
 else
 @addField field, fieldResponse.value

The advantage of a Proxy approach is that it provides a way to unify an interface:

form = new Formulaic document, '#form', http, 'http://agtron.co/formulaic/1'

form.fields.login = 'scruffy1234'

You only change properties on an instance of the Formulaic class, but the underly-
ing implementation can be communicating with the server and updating the view
for you. In fact, the proxy can do anything in response to a get or set. Listing 13.5
shows one other use for proxies, by validating the field value to ensure empty strings
are not used.

 The fun doesn’t stop at proxies, though. Another exciting feature proposed for
ECMAScript 6 is the addition of iterators, generators, and the concept of yield, which

Listing 13.5 Formulaic using Proxy
combine to finally give comprehensions real power.

373ECMAScript 6

13.3.5 Comprehensions, iterators, and generators

Comprehensions, iterators, and generators in ECMAScript 6 will be familiar to Python
programmers. Why do they matter? Event streams. You’ll remember (from chapter 9)
that composing programs with event streams is problematic. To improve these pro-
grams, you developed a fluent interface for asynchronous streams of events that
abstracted away some of the complexity, giving you a cleaner programming model to
work with. The combination of comprehensions, iterators, and generators can pro-
vide the same power at a different syntactic level.

 First, though, you need to see how JavaScript is getting comprehensions very much
like the ones you already know in CoffeeScript.

COMPREHENSIONS

ECMAScript 6 has array comprehensions similar to those you’re familiar with in
CoffeeScript:

double = function(n) {
 return n * 2;
};
numbers = [2,3,5,4,2];
var doubled = [double number for each (number in numbers)];

The only syntactic difference from CoffeeScript is some brackets and parentheses:

double (n) ->
 n * 2
numbers = [2,3,5,4,2]
doubled = double number for number in numbers

Array comprehensions are nice, but they’re certainly no earth-shattering new feature.
You might have noticed that in CoffeeScript too; the comprehensions are nice, but
they’re fairly limited. That changes once iterators and generators are introduced;
comprehensions become very powerful.

 Consider some keyboard-handling code for a computer game. When the user
presses the up-arrow, down-arrow, left-arrow, left-arrow, and down-arrow keys, then the
data your program ultimately receives is an array (just like in chapter 9):

[UP, DOWN, LEFT, LEFT, DOWN]

Unfortunately, there’s a catch with this array—you don’t have it yet. When the game
starts, you haven’t received any events, so you can’t use a comprehension on it because
a comprehension works on values—not on values you’ll get later.

 What if you could use a comprehension for these keyboard commands? What if
comprehensions worked with arrays that you don’t have yet? With iterators and gener-
ators they do!

ECMAScript 6

374 CHAPTER 13 ECMAScript and the future of CoffeeScript

ITERATORS

So, what’s an iterator? Think of it as an object with a next method:

keyCommandIterator =
 next: ->
 if Math.floor Math.random()*10 > 5
 UP
 else
 DOWN

keyCommandIterator.next()
UP
keyCommandIterator.next()
UP

To use this iterator in ECMAScript 6, you need to declare it as an iterator property
on the prototype of your object. In CoffeeScript, that means putting it in the class
declaration:

class KeyboardEvents
 iterator: keyCommandIterator

You iterate over an instance of KeyboardEvents with an ECMAScript 6 comprehension:

scruffysKeyboard = new KeyboardEvents
for event of scruffysKeyboard
 console.log scruffysKeyboard

UP
UP
DOWN

Now the potential for comprehensions starts to become apparent, but if you have a
sweet tooth, it might not seem like very much sugar yet. Just making comprehensions
work with objects that have a next method isn’t enough. That’s good, because it
doesn’t end there. Comprehensions in ECMAScript 6 will also work with a new sort of
function: a generator.

GENERATORS

Comprehensions with objects and iterators work, but they’re a bit cumbersome. Sup-
pose you don’t have a keyboard event object and a dedicated iterator. Instead, you just
have a function that produces a value:

UP = 1
DOWN = -1
keyboardEvents = ->
 if Math.floor Math.random()*10 > 5
 UP
 else
 DOWN

Wouldn’t it be nice if there were some way to express a function that could work like
an iterator on an object? You’d need some special syntax for a function that could give

An iterator that uses
Math.random() to return
either UP or DOWN

This will run until
you terminate it.
control back to the invoking function without being finished. There’s such a thing

ECMAS
375ECMAScript 6

proposed for ECMAScript 6 called a generator function. Instead of being evaluated and
returning a value, a generator function yields values.

 In order to support this new feature, ECMAScript 6 had to add new syntax to indi-
cate that a function is a generator:

const UP = 1;
const DOWN = -1;

function* keyboardEventGenerator () {
 for (;;) {
 if(Math.floor(Math.random()*10) > 5) {
 yield UP;
 }
 else {
 yield DOWN;
 }
 }
}

CoffeeScript will need to add new syntax to support the yield keyword for generators.
One option is the starred arrow ->*:

keyboardEventGenerator = ->*
 while true
 if Math.floor Math.random()*10 > 5
 yield UP
 else
 yield DOWN

At the time of writing, the actual syntax hasn’t been decided and CoffeeScript doesn’t
currently support generators. Both the ECMAScript 6 specification and the Coffee-
Script syntax to deal with it are still evolving.

 A generator is like a function, but instead of just being evaluated, it can suspend exe-
cution and resume later. Being able to yield in the middle of a function means that the
generator and the function that uses it work together. With regular functions, a func-
tion invocation always completes before the calling function resumes. In contrast,
with generators, the calling function gets control back many times. That’s why genera-
tor functions are sometimes known as co-routines in languages where the equivalents of
functions are known as routines.

 Will these generators be useful in CoffeeScript? Absolutely. They’ll be useful in all
those places where you’ve either ended up with event-emitter spaghetti code or have
created your own abstraction to deal with them. Generators and comprehensions will
give you more syntactic flexibility.

 Language features in JavaScript are nice, but in the ever-expanding JavaScript
universe, new languages are being invented almost daily. The rising popularity of
compile-to-JavaScript languages (like CoffeeScript) means that runtimes need to find
better ways to support them. One of the ways that JavaScript runtimes are starting to
do this is with source maps.

cript 6

The new function* syntax
indicates that the function being
defined is a generator and should
contain yield statements.

376 CHAPTER 13 ECMAScript and the future of CoffeeScript

13.4 Source maps for debugging
Debugging CoffeeScript by looking at the compiled JavaScript is difficult. An error in
a running JavaScript program is easy to understand if the program was written in Java-
Script but not so easy if the program was transpiled from another language such as
CoffeeScript. So how do you use a debugger on a CoffeeScript program?

13.4.1 Why source maps?

You don’t really need the debugger to work, right? When you develop everything by
writing a test first (see chapter 11), and your code doesn’t work, you can change a test or
write a new test to see what’s happening. There’s some degree of truth in that, but it’s
not practical. Even if you tend not to use it much, one day you’ll need the debugger and
you don’t want to be presented with the compiled JavaScript version of your program.

 Imagine a browser-based program you wrote—a program, any program, it doesn’t
matter which one. Imagine now that you wrote this program in a file called (inge-
niously) program.coffee. What do you see if the program throws an exception? You
see text something like so:

Reference Error: x is not defined -- program.js 23

This is telling you that your program has thrown a reference error in line 23 of pro-
gram.js. That’s nice, except that you didn’t write any program.js because you wrote
your program in CoffeeScript! So what’s the problem?

 The problem is not that CoffeeScript is compiled. There are many compiled lan-
guages with good debuggers. The problem is that the JavaScript runtime has no
knowledge of your original CoffeeScript source, so it has no way to show you where
the problem is in your original source. That changes with source maps. Source maps
allow the CoffeeScript compiler to tell the JavaScript runtime how source lines in the
JavaScript correspond to source lines in the original CoffeeScript source.

13.4.2 Getting started with source maps

To try CoffeeScript with source maps, you’ll need both a runtime that supports them
and a CoffeeScript compiler that can create a source map. Right now, that means a
CoffeeScript compiler version greater than 1.6 and a recent version of your web
browser that supports source maps.1 Before long, source maps will be supported by
more runtimes.

 To understand what they do, here’s a trivial program you can whet your source-
maps appetite on:

double = (array) ->
 throw new Error 'Using source maps'
 item * 2 for item in array

double [1,2,3,4]

1 Consult the documentation for your browser to determine if it supports source maps and how you can

A deliberate error that you
expect to see thrown when
the program executes
enable them.

377Source maps for debugging

Suppose the program is contained in a file called sourcemaps.coffee. You’re familiar
with the standard way to compile:

> coffee sourcemaps.coffee

To generate a corresponding map file, you pass the -m or --map flag:

> coffee --map sourcemaps.coffee

The source map won’t make much sense because it’s not intended to be human read-
able. It’s a JSON file containing information that the runtime can use to map from the
compiled JavaScript program to your original CoffeeScript source:

{
 "version":3,
 "file":" sourcemaps.coffee",
 "sources":[
 "sourcemaps.coffee"
],
 "names":[],
 "mappings":"AAAC;;;EAAA,MAAA,GAAS,SAAA,CAAA,KAAA,CAAA;;;MAAW,2BAAqB,aAArB,

aAAA,CAAA,KAAA,CAAA;QAAa,OAAQ;oBAArB,IAAA,CAAA,CAAA,CAAO;;;;;EAC3B,OAAO,
IAAP,CAAY,MAAA,CAAO,CAAA;AAAA,IAAC,CAAD;AAAA,IAAG,CAAH;AAAA,IAAK,CAAL;
AAAA,IAAO,CAAP;AAAA,EAAA,CAAP,CAAZ;EACA,KAAA,CAAM,GAAA,CAAI,KAAJ,CAAU,
mBAAV,CAAN"

}

To use the source map, the runtime needs to be told where to find it. To tell the run-
time where to find the source map, either put a comment in the compiled JavaScript
or set an X-SourceMap header if the file is served over HTTP. You add a comment to the
file like this:

echo '\n//@ sourceMappingURL=sourcemaps.js.map' >> sourcemaps.js

Now, consider that 'Using source maps' error that your program throws—how does it
appear? When you run the program in an environment that doesn’t understand
source maps, you’ll see the error reported in the compiled JavaScript file:

Uncaught Error: Using source maps
double -- sourcemap.js:5

That’s not very useful. An exception in compiled JavaScript when you’re writing your
program in CoffeeScript is difficult to comprehend. In contrast, with source maps
you’ll see the error reported in your original CoffeeScript program:

Uncaught Error: Using source maps
double -- sourcemaps.coffee:2

It gets better. Not only will you see errors on appropriate lines, but you’ll also be able
to harness the full power of your favorite IDE on your CoffeeScript program. Stepping
through and setting breakpoints will be done in your CoffeeScript source, and not in

the generated JavaScript.

378 CHAPTER 13 ECMAScript and the future of CoffeeScript

It’s still early days for source maps, so you’ll need to consult the documentation for
your individual runtime to get them working. If you like to use the debugger, you can
already see that it’s a useful tool.

 The future will include JavaScript, but it’s not all JavaScript. Every day there are
more languages that compile to JavaScript. Source maps go just that little bit further
to opening up the JavaScript language to embrace them.

13.5 Summary
In this chapter you looked at the language ecosystem around CoffeeScript. Specifi-
cally, you saw how CoffeeScript not only benefits from advancements in the ECMA-
Script specification but also contributes to them. Your deeper understanding of
both current and future language features will ultimately make you a better Coffee-
Script programmer.

 As a CoffeeScript programmer, you also need tools like source maps. Support for
those is emerging rapidly on runtimes, so by starting today you’ll be prepared for
tomorrow (which will arrive sooner than you think). Regardless of whether you’re ulti-
mately writing JavaScript, CoffeeScript, or a mixture of both, you’ll be better off for
learning what the future holds. After all, learning and using are, to borrow a phrase
from Scruffy’s high school English teacher, inexorably intertwined.

Enabling source maps in your browser
As with most configuration options, each browser will have a slightly different way of
enabling source maps. As an example, Chrome 27 allows you to enable source maps
via a check box in the settings for the developer tools. Consult the documentation for
the relevant version of the browser (or other runtime) you’re using for details on how
to enable source maps.

appendix A
Reserved words

The CoffeeScript compiler maintains a list of reserved words that will break compi-
lation if you use them as variable names in a program.

 For CoffeeScript 1.6.3 the reserved words list appears in table A.1.

Some of the reserved words in CoffeeScript are reserved because the compiler uses
them in the generated JavaScript. Others are reserved because they’re reserved
words in the ECMAScript specification, as shown in tables A.2 and A.3.

Table A.1 CoffeeScript compiler 1.6.3 reserved words

case
default
function
var
void
with
const
let
enum
export
import
native
__hasProp
__extends
__slice
__bind
__indexOf

implements
interface
package
private
protected
public
static
yield
true
false
null
this
new
delete
typeof
in
arguments
eval

instanceof
return
throw
break
continue
debugger
if
else
switch
for
while
do
try
catch
finally
class
extends

super
undefined
then
unless
until
loop
of
by
when
and
or
is
isnt
not
yes
no
on
off
Click here to open the source code file for this appendix.

http://www.manning.com/CoffeeScriptinAction/appA-code.html

380 APPENDIX A Reserved words

There are some words that are reserved for future editions of the ECMAScript specifi-
cation, as shown in table A.3. Some of them, such as class, also have meaning in Coffee-
Script. Don’t use them as identifiers.

There are some built-in constructors that you should treat as reserved. If you redefine
them, you’ll most likely break your programs:

Object, Function, Array, String, Boolean, Number, Date, RegExp, Error,
EvalError, RangeError, ReferenceError, SyntaxError, TypeError, URIError

There are other global objects and value properties that you’ve encountered:

Math, JSON, Infinity, NaN

Finally, there are some global functions:

eval, parseInt, parseFloat, isNaN, isFinite, decodeURI, decodeURIComponent,
encodeURI, encodeURIComponent

Table A.2 Reserved words in the fifth edition of the ECMAScript specification

break
do
instanceof
typeof
case
else
try

return
void
continue
for
switch
while
this

with
default
if
throw
delete
in

new
var
catch
finally
debugger
function

Table A.3 Words reserved for future editions of the ECMAScript specification

class
enum
extends
super

export
import
implements
let

interface
package
protected
static

private
public
const
yield

appendix B
Answers to exercises

About the exercises
These exercises are provided for you to practice using CoffeeScript and also to
spend some time reflecting on CoffeeScript. These two activities are an essential
component of learning a new programming language. Attempting the exercises is
more important than looking at the solutions.

Exercise 2.3.3
torch = price: 21
umbrella = {}
combinedCost = (torch.price || 0) + (umbrella.price || 0)
21

Exercise 2.4.4
animal = "crocodile"
collective = switch animal
 when "antelope" then "herd"
 when "baboon" then "rumpus"
 when "badger" then "cete"
 when "cobra" then "quiver"
 when "crocodile" then "bask"
bask

Exercise 2.5.3
animal = "cobra"
collective = switch animal
 when "antelope" then "herd"
 when "baboon" then "rumpus"
 when "badger" then "cete"
 when "cobra" then "quiver"
 when "crocodile" then "bask"
"The collective of #{animal} is #{collective}"

The collective of cobra is quiver

Click here to open the source code file for this appendix.

http://www.manning.com/CoffeeScriptinAction/appB-code.html

382 APPENDIX B Answers to exercises

Exercise 2.6.5
animals = 'baboons badgers antelopes cobras crocodiles'

result = for animal in animals.split " "
 collective = switch animal
 when "antelopes" then "herd"
 when "baboons" then "rumpus"
 when "badgers" then "cete"
 when "cobras" then "quiver"
 when "crocodiles" then "bask"
 "A #{collective} of #{animal}"

Exercises 3.1.5
countWords = (text) ->
 words = text.split /[\s,]/
 significantWords = (word for word in words when word.length > 3)
 significantWords.length

everyOtherWord = (text) ->
 words = text.split /[\s,]/
 takeOther = for word, index in words
 if index % 2 then ""
 else word
 takeOther.join(" ").replace /\s\s/gi, " "

Exercises 3.3.4
http = require 'http'
fs = require 'fs'

sourceFile = 'attendees'
fileContents = 'File not read yet.'

readSourceFile = ->
 fs.readFile sourceFile, 'utf-8', (error, data) ->
 if error
 console.log error
 else
 fileContents = data

fs.watchFile sourceFile, readSourceFile

countWords = (text) ->
 text.split(/,/gi).length

readSourceFile sourceFile

server = http.createServer (request, response) ->
 response.end "#{countWords(fileContents)}"

server.listen 8080, '127.0.0.1'

Exercises 3.4.4
accumulate = (initial, items, accumulator) ->
 total = initial
 for item in items
 total = accumulator total, item

 total

383Exercises 4.2.3

sumFractions = (fractions) ->
 accumulator = (lhs, rhs) ->
 if lhs is '0/0'
 rhs
 else if rhs is '0/0'
 lhs
 else
 lhsSplit = lhs.split /\//gi
 rhsSplit = rhs.split /\//gi
 lhsNumer = 1*lhsSplit[0]
 lhsDenom = 1*lhsSplit[1]
 rhsNumer = 1*rhsSplit[0]
 rhsDenom = 1*rhsSplit[1]
 if lhsDenom isnt rhsDenom
 commonDenom = lhsDenom*rhsDenom
 else
 commonDenom = lhsDenom

 sumNumer = lhsNumer*(commonDenom/lhsDenom) + rhsNumer*(commonDenom/
rhsDenom)

 "#{sumNumer}/#{commonDenom}"

 accumulate '0/0', fractions, accumulator

console.log sumFractions ['2/6', '1/4']
'14/24'

And the keep function:

keep = (arr, cond) ->
 item for item in arr when cond item

Exercises 4.2.3
Adding edit to listing 4.2:

phonebook =
 numbers:
 hannibal: '555-5551'
 darth: '555-5552'
 hal9000: 'disconnected'
 freddy: '555-5554'
 'T-800': '555-5555'
 list: ->
 "#{name}: #{number}" for name, number of @numbers
 add: (name, number) ->
 if not (name of @numbers)
 @numbers[name] = number
 else
 "#{name} already exists"
 edit: (name, number) ->
 if name of @numbers
 @numbers[name] = number
 else
 "#{name} not found"
 get: (name) ->
 if name of @numbers

 "#{name}: #{@numbers[name]}"

384 APPENDIX B Answers to exercises

 else
 "#{name} not found"

console.log "Phonebook. Commands are add, get, edit, list, and exit."

process.stdin.setEncoding 'utf8'
stdin = process.openStdin()

stdin.on 'data', (chunk) ->
 args = chunk.split ' '
 command = args[0].trim()
 name = args[1].trim() if args[1]
 number = args[2].trim() if args[2]
 switch command
 when 'add'
 res = phonebook.add(name, number) if name and number
 console.log res
 when 'get'
 console.log phonebook.get(name) if name
 when 'edit'
 console.log phonebook.edit(name, number) if name and number
 when 'list'
 console.log phonebook.list()
 when 'exit'
 process.exit 1

Setting properties on an object:

css = (element, styles) ->
 element.style ?= {}
 for key, value of styles
 element.style[key] = value

class Element
div = new Element
css div, width: 10

div.style.width
10

Exercise 4.6.3
The original music device is

cassette =
 title: "Awesome songs. To the max!"
 duration: "10:34"
 released: "1988"
 track1: "Safety Dance - Men Without Hats"
 track2: "Funkytown - Lipps, Inc"
 track3: "Electric Avenue - Eddy Grant"
 track4: "We built this city - Starship"

The music device was created from it:

musicDevice = Object.create cassette

Creating another one from the first is the same:
secondMusicDevice = Object.create musicDevice

385Exercises 4.8.3

Changes to either the original cassette or the music device will be visible on the sec-
ond music device:

cassette.track5 = "Hello - Lionel Richie"

secondMusicDevice.track5
"Hello - Lionel Richie"

musicDevice.track6 = "Mickey - Toni Basil"

secondMusicDevice.track6
"Mickey - Toni Basil"

Multiple prototype references like this are called the prototype chain. You’ll learn more
about it in chapter 5.

Exercise 4.7.2
views =
 excluded: []
 pages: {}
 clear: ->
 @pages = {}
 increment: (key) ->
 unless key in @excluded
 @pages[key] ?= 0
 @pages[key] = @pages[key] + 1
 ignore: (page) ->
 @excluded = @excluded.concat page
 total: ->
 sum = 0
 for own page, count of @pages
 sum = sum + count
 sum

Exercises 4.8.3
class GranTurismo
 constructor: (options) ->
 @options = options
 summary: ->
 ("#{key}: #{value}" for key, value of @options).join "\n"

options =
 wheels: 'phat'
 dice: 'fluffy'

scruffysGranTurismo = new GranTurismo options

scruffysGranTurismo.summary()
wheels: phat
dice: fluffy

The constructor could use the shorthand for arguments:

class GranTurismo
 constructor: (@options) ->
 summary: ->
 ("#{key}: #{value}" for key, value of @options).join "\n"
This is equivalent to the first version.

386 APPENDIX B Answers to exercises

Exercise 5.3.3
Here are Product and Camera classes based on listing 5.4 with an alphabetical class
method added to the Camera class:

class Product
any implementation of Product

class Camera extends Product
 cameras = []
 @alphabetical = ->
 cameras.sort (a, b) -> a.name > b.name
 constructor: ->
 all.push @
 super

The Camera class can keep an array of all instances for alphabetical just as the Product
class kept an array of products for find. The Camera constructor uses super to ensure
the Product constructor is also invoked so that Product.find doesn’t break.

Exercise 5.8.1
Applying some basic class techniques to the server-side application helps to increase
clarity:

fs = require 'fs'
http = require 'http'
url = require 'url'
coffee = require 'coffee-script'

class ShopServer
 constructor: (@host, @port, @shopData, @shopNews) ->
 @css = ''
 fs.readFile './client.css', 'utf-8', (err, data) =>
 if err then throw err
 @css = data

 readClientScript: (callback) ->
 script = "./client.coffee"
 fs.readFile script, 'utf-8', (err, data) ->
 if err then throw err
 callback data

 headers: (res, status, type) ->
 res.writeHead status, 'Content-Type': "text/#{type}"

 renderView: ->
 """
 <!doctype html>
 <head>
 <title>Agtron's Emporium</title>
 <link rel='stylesheet' href='/css/client.css' />
 </head>
 <body>
 <div class='page'>
 <h1>----Agtron’s Emporium----</h1>

 <script src='/js/client.js'></script>

387Exercise 5.8.1

 </div>
 </body>
 </html>
 """

 handleClientJs: (path, req, res) ->
 @headers res, 200, 'javascript'
 writeClientScript = (script) ->
 res.end coffee.compile(script)
 @readClientScript writeClientScript

 handleClientCss: (path, req, res) ->
 @headers res, 200, 'css'
 res.end @css

 handleImage: (path, req, res) ->
 fs.readFile ".#{path}", (err, data) =>
 if err
 @headers res, 404, 'image/png'
 res.end()
 else
 @headers res, 200, 'image/png'
 res.end data, 'binary'

 handleJson: (path, req, res) ->
 switch path
 when '/json/list'
 @headers res, 200, 'json'
 res.end JSON.stringify(@shopData)
 when '/json/list/camera'
 @headers res, 200, 'json'
 camera = @shopData.camera
 res.end JSON.stringify(camera)
 when '/json/news'
 @headers res, 200, 'json'
 res.end JSON.stringify(@shopNews)
 else
 @headers res, 404, 'json'
 res.end JSON.stringify(status: 404)

 handlePost: (path, req, res) ->
 category = /^\/json\/purchase\/([^/]*)\/([^/]*)$/.exec(path)?[1]
 item = /^\/json\/purchase\/([^/]*)\/([^/]*)$/.exec(path)?[2]
 if category? and item? and data[category][item].stock > 0
 data[category][item].stock -= 1
 @headers res, 200, 'json'
 res.write JSON.stringify
 status: 'success',
 update: data[category][item]
 else
 res.write JSON.stringify
 status: 'failure'
 res.end()

 handleGet: (path, req, res) ->
 if path is '/'
 @headers res, 200, 'html'

 res.end @renderView()

388 APPENDIX B Answers to exercises

 else if path.match /\/json/
 @handleJson path, req, res
 else if path is '/js/client.js'
 @handleClientJs path, req, res
 else if path is '/css/client.css'
 @handleClientCss path, req, res
 else if path.match /^\/images\/(.*)\.png$/gi
 @handleImage path, req, res
 else
 @headers res, 404, 'html'
 res.end '404'

 start: ->
 @httpServer = http.createServer (req, res) =>
 path = url.parse(req.url).pathname
 if req.method == "POST"
 @handlePost path, req, res
 else
 @handleGet path, req, res

 @httpServer.listen @port, @host, =>
 console.log "Running at #{@host}:#{@port}"

 stop: ->
 @httpServer?.close()

data = require('./data').all
news = require('./news').all
shopServer = new ShopServer '127.0.0.1', 9999, data, news

shopServer.start()

There are some further opportunities in the preceding program for encapsulation,
but for a program of little over 100 lines you’d likely find any more to be overkill.

Exercises 7.2.5
Your first thought might be to do something like this:

swapPairs = (array) ->
 for index in array by 2
 [first, second] = array[index-1..index]
 [second, first]

This is close, but you’ll end up with an array of arrays:

swapPairs([3,4,3,4,3,4])
[[4, 3], [4, 3], [4, 3]]

swapPairs([1,2,3,4,5,6])
[[2, 1], [4, 3], [6, 5]]

Solve this by using the array concat method with rest:

swapPairs = (array) ->
 reversedPairs = for index in array by 2
 [first, second] = array[index-1..index]
 [second, first]

 [].concat reversedPairs...

389Exercise 10.4.4

swapPairs([3,4,3,4,3,4])
[4, 3, 4, 3, 4, 3]

swapPairs([1,2,3,4,5,6])
[2, 1, 4, 3, 6, 5]

For the second exercise, use a combination of rest, array, and object destructuring:

phoneDirectory =
 A: [
 name: 'Abe'
 phone: '555 1110'
 ,
 name: 'Andy'
 phone: '555 1111'
 ,
 name: 'Alice'
 phone: '555 1112'
]
 B: [
 name: 'Bam'
 phone: '555 1113'
]

lastNumberForLetter = (letter, directory) ->
 [..., lastForLetter] = directory[letter]
 {phone} = lastForLetter
 phone

lastNumberForLetter 'A', phoneDirectory
555 1112

Exercise 10.4.4
Suppose the Tracking class and http object are as follows:

class Tracking
 constructor: (prefs, http) ->
 @http = http
 start: ->
 @http.listen()

http =
 listen: ->

A potential double function follows:

double = (original) ->
 mock = {}
 for key, value of original
 if value.call?
 do ->
 stub = ->
 stub.called = true
 mock[key] = stub

 mock

390 APPENDIX B Answers to exercises

This double function returns a mock version of the original object. It has all the same
method names, but the methods themselves are just empty functions that remember if
they’ve been called or not.

 In other circumstances your test might call for a spy instead. When you spy on an
object, any method calls still occur on the original object but are seen by the spy. A
double function that returns a spy follows:

double = (original) ->
 spy = Object.create original
 for key, value of original
 if value.call?
 do ->
 originalMethod = value
 spyMethod = (args...) ->
 spyMethod.called = true
 originalMethod args...
 spy[key] = spyMethod
 spy

Depending on the test framework you’re using, there may be both mocking and spying
libraries provided for you. The pros and cons of using mocks, spies, and other testing
techniques aren’t covered here.

 That’s it for the exercises. Happy travels.

appendix C
Popular libraries

While learning to program in CoffeeScript, it’s important to deal only in language
concepts and to build up programs using only the raw building blocks of the lan-
guage instead of leaning too heavily on specific libraries or frameworks. Having
said that, once you have learned CoffeeScript, there are many occasions when it
makes sense to reach for a well-known and supported library or framework that
takes an approach similar to your own.

 What follows is a list of useful libraries and relevant websites for learning about
them. In some cases the libraries are not only useful in your CoffeeScript programs
but are themselves written in CoffeeScript—those libraries are indicated here.

npm
Although you’ve had experience with npm (the package manager that comes with
Node.js), there are many aspects of it (such as dependency management) that you
haven’t explored. Find out more about npm at http://npmjs.org/.

Testing
In chapter 10 you built up your own small testing framework. There are several
excellent frameworks that can help to extend your testing prowess:

■ Jasmine—Jasmine is the most popular testing framework for browser-based
programs. Find out more at http://pivotal.github.io/jasmine/.

■ Mocha—Mocha is one of the most popular testing frameworks for Node.js
programs. Find out more at http://visionmedia.github.io/mocha/ or npm
install mocha.

■ Chai—Chai provides assertion matchers to help make your tests more read-
able. Find out more at http://chaijs.com/ or npm install chai.
391

http://npmjs.org/
http://pivotal.github.io/jasmine/
http://pivotal.github.io/jasmine/
http://visionmedia.github.io/mocha/
http://visionmedia.github.io/mocha/
http://chaijs.com/
http://chaijs.com/

392 APPENDIX C Popular libraries

■ Zombie—Zombie provides a virtual browser (a mock browser) that you can use
inside Node.js. Find out more at http://zombie.labnotes.org/ or npm install
zombie. Zombie is written in CoffeeScript.

Modules
In chapter 12 you created your own support for Node.js module syntax in your
browser-based program. There are a few alternatives to look at while you wait for
JavaScript runtimes to support some native module system:

■ Stitch—Stitch uses a setup similar to the one you built in chapter 12. Find out
more at https://github.com/sstephenson/stitch or npm install stitch. Stitch is
written in CoffeeScript.

■ Browserify—Browserify provides a compiler to support Node.js modules. Find
out more at http://browserify.org/ or npm install gamma.

■ Bower—Bower provides a complete package system for your browser-based pro-
grams, similar to some of the features that npm provides on Node.js. Find out
more at http://bower.io/.

Builds
In chapter 12 you used Cake to build your program. Although useful, Cake can be
overly minimal for some needs:

■ Make—Make is not specific to CoffeeScript, JavaScript, or Node.js, but it’s one
of the most widely used build automation tools. Although Make can be intimi-
dating to novices, it’s an important and effective tool that you should learn to
use. Find out more at http://www.gnu.org/software/make/.

■ Grunt—Grunt is a task runner that runs on Node.js. Find out more at http://
gruntjs.com/.

■ Lineman—Lineman builds on top of Grunt and is targeted at build automation
for browser-based programs. Grunt is a task runner that runs on Node.js. Find
out more at http://linemanjs.com/. Lineman is written in CoffeeScript.

Deployment
In chapter 12 you looked briefly at deploying your CoffeeScript program to a server
with SCP. There are alternatives. DPLOY is a configuration-driven SCP deployment
tool for your Node.js program. Find out more at http://leanmeanfightingmachine
.github.io/dploy/.

 Instead of deploying to a server where you configure the environment, you might
find it easier to deploy your application to a host that manages the servers for you.
The two most popular options for Node.js are Heroku (http://www.heroku.com) and
Nodejitsu (http://nodejitsu.com/). To make the most of these, you’ll need to be
familiar with npm.

http://zombie.labnotes.org/
http://zombie.labnotes.org/
https://github.com/sstephenson/stitch
https://github.com/sstephenson/stitch
http://browserify.org/
http://browserify.org/
http://bower.io/
http://bower.io/
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
http://gruntjs.com/
http://gruntjs.com/
http://linemanjs.com/
http://linemanjs.com/
http://linemanjs.com/
http://leanmeanfightingmachine.github.io/dploy/
http://leanmeanfightingmachine.github.io/dploy/
http://www.heroku.com
http://www.heroku.com
http://www.heroku.com
http://nodejitsu.com/
http://nodejitsu.com/

393On GitHub

Frameworks
There are many competing web frameworks for Node.js, but the most popular is
Express (http://expressjs.com/). The creator of Express has now also created a new
framework based on generators called Koa (http://koajs.com/).

 There are even more frameworks for browsers than there are for Node.js, but the
ones you’ll find most interesting are Backbone.js (http://backbonejs.org/) created by
CoffeeScript creator Jeremy Ashkenas and batman.js (http://batmanjs.org/), which is
written in CoffeeScript.

Asynchronous programming
In chapter 9 you learned techniques for dealing with asynchronous programs. The
most interesting development in this area is generator support in ECMAScript 6. But
another interesting library to look at is bacon.js (https://github.com/baconjs/
bacon.js), which uses functional reactive programming to move your event-driven
code away from imperative and toward functional. Bacon.js is written in CoffeeScript.

Physical computing
Cylon.js is a framework for physical computing with Node.js. It has hardware support
for many popular platforms including Arduino and Raspberry Pi. Find out more at
http://cylonjs.com/ or npm install cylon. Cylon.js is written in CoffeeScript.

On GitHub
The popular web-based hosting service for projects that use Git is a good place to
explore interesting new CoffeeScript programs. See popular recent programs written
in CoffeeScript at https://github.com/trending?l=coffeescript&since=monthly.

 Finally, be sure to keep track of the official CoffeeScript website at http://coffee-
script.org, the CoffeeScript wiki at https://github.com/jashkenas/coffee-script/wiki,
and the source code for CoffeeScript in Action at https://github.com/boundvariable/
coffeescript-in-action.

http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://koajs.com/
http://backbonejs.org/
http://backbonejs.org/
http://backbonejs.org/
http://batmanjs.org/
http://batmanjs.org/
https://github.com/baconjs/bacon.js
https://github.com/baconjs/bacon.js
https://github.com/baconjs/bacon.js
http://cylonjs.com/
http://cylonjs.com/
http://cylonjs.com/
https://github.com/trending?l=coffeescript&since=monthly
http://coffeescript.org
http://coffeescript.org
https://github.com/jashkenas/coffee-script/wiki
https://github.com/jashkenas/coffee-script/wiki
https://github.com/boundvariable/coffeescript-in-action
https://github.com/boundvariable/coffeescript-in-action

index
Symbols

; (semicolon) 15
: (colon) 77
:: (double colon) 128–130
? (question mark) 24
... (ellipsis) 180–181
() parentheses

adding for subsequent function calls 211
arguments and 146–147
fluent interfaces 205–206
functions and 50
rewriting process, compiler 229–230

[] (square braces) 79–82, 183–184
{} (curly braces) 16, 184–185
@ (at symbol) 110, 119–122, 174, 207
#{} (string interpolation) 32–33
=> (fat arrow) 174, 357
-> (arrow) 17

A

abstract syntax tree. See AST
addition operator 20
Ajax (Asynchronous JavaScript and XML) 56–57
ambiguity

adding function parentheses 211
avoiding 210
implicit variables 211
whitespace 209–211

AMD (Asynchronous Module Definitions) 342
and keyword 379
animations

immediate mode 315–316
retained mode 315

APIs, program structure using 317–319
Arduino 393
arguments

closures and 72
for functions 49
functions as

default argument values 65
summing array example 62–64

generalizing functions 147
named 82–84
parentheses and 146–147
scope for 69

arguments keyword 379
arguments object 180
Array class 130
Array::sort method 244
arrays

array destructing expansion 187
comprehensions

by comprehension guard 38
for...in… comprehension 36
using comprehensions 36–37
when comprehension guard 38

concat method 34–35
destructuring 183–184
in operator 35
join method 34
length property 34
multiply numbers in 39
overview 33–34
ranges 35
slice method 34
zipping 265

arrow (->) 17
arrow function syntax (=>) 357
395

annotated source code 227 artifact, creating for deployment 346

INDEX396

Ashkenas, Jeremy 3
assert module 219
assertions

as callback 286
overview 272–273

assignment operator 19
AST (abstract syntax tree)

compiler process 230–231
modifying CoffeeScript language 236–238

asynchronous combinators 176
Asynchronous JavaScript and XML. See Ajax
Asynchronous Module Definitions. See AMD
asynchronous programming

data processing
decorate-sort-undecorate technique 247–248
performance 246
reading 242–243
sorting 243–246

event composition
event streams 260–263
lazy data handling 257–259
lazy event handling 259–260
Pong example 263–265
zipping event streams 265

event emitters
data as events 253–254
events as data 256–257
in node.js 254–256
user events 252–253

event loop
infinite data and 251
overview 248–251

libraries 393
testing

assertions as callback 286
expected method in test 287–289
overview 286
removing I/O in tests 286–287

timing programs 246
asynchronous, defined 55
at symbol (@) 110, 119–122, 174, 207

B

backbone.js 393
bacon.js 393
batman.js 393
beginPath() method 312
behavior of objects 98–100
binding

fat arrow 95–96
overview 91
referencing clicked element 94–96
this keyword 91–94

blocking event loop 250
boolean aliases 17
bootstrapping compiler 226
bound variable 72
Bower 392
braces 229–230
break keyword 31, 379–380
browser environment

animations
immediate mode 315–316
retained mode 315

communicating with data server
dynamic script insertion 303–305
overview 302
WebSocket 305–306
XMLHttpRequest object 302–303

compiling
automatically 301–302
manually 301
no compilation 301

cross-browser compatibility
overview 306–307
polyfilling host objects 307–309
polyfilling language features 309

dashboard example 300–301
ECMAScript support comparison 357
editing source maps in 378
events in 53–54
running CoffeeScript in 41–42
structure of programs

APIs 317–319
time inaccuracies 319

user interface
immediate mode 311–314
retained mode 310–311

Browserify 392
build automation with Cake

build tasks 334–336
overview 333–334
task dependencies 338–339
test tasks

overview 336–337
specification 337
task to run tests 337–338

by comprehension guard 38
by keyword 379

C

C language 6
cache

general cache 164–165
memoization 165
specific cache 163–164

INDEX 397

Cake
Cakefile 349–352
creating artifact 346
creating manifest

defining environment 348
deploying to remote server 348
environment variable 346–347
loading environment config 347–348

callbacks
assertions as 286
overview 54–56

camel case 325
canvas API

creating fluent interface for 208
immediate mode for UI 311–314

Cascading Style Sheets. See CSS
case keyword 379–380
cat program 58
catch keyword 379–380
Chai 391
clarity in functions

functions returning functions 148–152
generalizing function 147–148
overview 145–146
where arguments and parentheses 146–147

class keyword 101, 379–380
classes

@ symbol in declaration 119–122
abstraction 109–112
constructor method 102
declaring 101
equality of objects 102–103
inheritance

defined 112–116
example using 114–116
extends keyword 112–114

JavaScript history 7
methods in

overriding 122–125
overview 118

mixins
class inheritance and 135–136
creating 136–137
enumerable mixin example 137–139
from null 139
overview 135

new operator 102
overview 100–101
properties of

inheritance 121–122
overview 116–117

prototypes vs. 103
prototypes, modifying

class declarations and 125–126

constructor functions 126
dynamic classes 127–128
extending built-in objects 130–135
overview 125
shorthand for 128–130

super keyword 123–125
variables in

instance properties vs. 118–119
overview 118

See also objects
clearInterval method 55
clearTimeout method 55
client-side modules

creating support for 340–344
overview 339–340

closures
abstract example 70–71
applied example 71–72
arguments and 72
defined 70
example using 72–73
global state problems 70

CoffeeScript
advantages of 4–5
compiler reserved words 379
debugging using source maps 376
JavaScript and

C language 6
functions 52
history of 9
improvements to 354–355
language, and community 8
Scheme 7
Self 7–8

literate CoffeeScript
.litcoffee file extension 215
overview 215–217

modifying language
implementing let syntax 238–240
overview 232
rewriting token stream 234–235
using abstract syntax tree 236–238
using eval function discouraged 232–234

running 5–6
in browser 41–42
on command line 42–44

source code (annotated) 227
syntax 9–12

colon (:) 77
combinators

asynchronous 176
creating 169–173
overview 168–169
using objects 173–176
class methods 126–127 command line, running CoffeeScript on 43

INDEX398

comments
herecomments 40
standard 39–40

communication with data server
dynamic script insertion 303–305
overview 302
WebSocket 305–306
XMLHttpRequest object 302–303

community, and language 8
comparison operators 21
compiler

abstract syntax tree 230–231
overview 11
reserved words 379
rewriting

braces and parentheses 229–230
implicit indentation 229
newlines 229
postfix conditional 230

tokenizing 228
versions 228
written in CoffeeScript 226–231

compiling for browser environment
automatically 301–302
manually 301
no compilation 301
See also build automation with Cake

comprehensions
by comprehension guard 38
ECMAScript 6 features 373
filter function 201
for...in… comprehension 36
functions inside of 202–203
map function 200
for objects

overview 85–86
own properties 88
page views example 87–88
properties 86
undefined properties and 87–88
values 87

overview 199–200
reduce function 201–202
using comprehensions 36–37
when comprehension guard 38

computation by functions 46
concat method 34–35
concurrency 159
conditional assignment 191–193
const keyword 368–369, 379–380
constructor functions

extending built-in objects 130–131
modifying prototypes 126

constructor method 102

context for canvas element 311
continuation-passing style 177
continue keyword 379–380
continue statements 31
counting words example 47–48, 61–62
createServer method 59
cross-browser compatibility

overview 306–307
polyfilling host objects 307–309
polyfilling language features 309

CSS (Cascading Style Sheets) 224–225
curly braces ({}) 16, 184–185
Cylon.js 393

D

dashboard example 300–301
data

as event 253–254
event as 256–257

data processing
asynchronous

decorate-sort-undecorate technique 247–248
performance 246
reading 242–243
sorting 243–246

keeping outside event loop 256
lazy data handling 257–259

dates, extending built-in classes 130–134
debugger keyword 379–380
debugging using source maps 376
decorate-sort-undecorate technique 247–248
default (logical or) operator 22
default keyword 379–380
define function 342
defmodule function 343
delete keyword 379–380
dependencies

avoiding dependency injection 284–286
build automation with Cake 338–339
creating double from scratch 280–281
creating double with prototypes 282
difficulties with 278–279
injection 279–280
isolation 282–283
overview 278

deployment
creating artifact 346
creating manifest

defining environment 348
deploying to remote server 348
environment variable 346–347
loading environment config 347–348

libraries 392

constructor property 194–195 overview 345–346

INDEX 399

descriptions
functions as 145
literate CoffeeScript 215

destructive methods 244
destructuring

array destructing expansion 187
arrays 183–184
object shorthand 185–186
objects 184–185

division operator 20–21
do keyword 379–380
document.getElementById 307
document.querySelector method 54
documentation 227
DOM (Document Object Model) 54

defined 307
host objects 307
retained mode for UI 310–311

double colon (::) 128–130
DPLOY 392
DSLs (domain-specific languages) 214

creating with object literals 219–221
CSS 224–225
external 218
fluent interfaces 221–222
function passing 222–223
HTML 223–224
internal 219
overview 218
SQL 225–226

duck typing
constructor property 194–195
instanceof operator 194–195
overview 193–194
typeof operator 194–195
using 195–199

dynamic script insertion 303–305

E

ECMAScript
edition 5

freeze method 363
getters and setters 361–362
JSON, parse method 360–361
JSON, stringify method 359
JSON, toJSON method 359–360
Object.create 358
preventing changes to properties 362–363
runtime support 357–358
strict mode 366

edition 6
comprehensions 373
const keyword 368–369

iterators 374
let expression 369
Map 370
modules 367–368
proxies 371–372
Set 370
WeakMap 370–371

feature timeline 354
future JavaScript features in CoffeeScript

arrow function syntax 357
rest and spread 356
template strings 356–357

modules 344
reserved words 379
specification 200

ellipsis (...) 180–181
else keyword 379–380
encapsulation

importance of 146
of state 156–157

enum keyword 379–380
enumerable mixin example 137–139
environment variable 346–347
equality of objects 102–103
equality operator 19–20
eval function, modifying CoffeeScript

232–234
eval keyword 379
event loop

infinite data and 251
overview 248–251

events
browser events 53–54
callbacks 54–56
emitters

data as events 253–254
events as data 256–257
in node.js 254–256
user events 252–253

event loop
infinite data and 251
overview 248–251

event streams
overview 260–263
zipping 265

file reading with node.js 57–58
file serving with node.js 59
lazy data handling 257–259
lazy event handling 259–260
overview 53
pong example 263–265
timeouts and intervals 54

exception blocks 29–30
exercises, answers to 381–390
generators 374–375 existential assignment 88

INDEX400

existential operator 24
explicit vs. implicit 67
export keyword 379–380
exports statement 324
Express 393
expressions, combining 24
extending built-in objects

caveats 134–135
constructor functions 130–131
extending date 131–134
overview 130

extends keyword 112–114, 379–380
external DSLs 218

F

failure of unit tests 273–275
false keyword 379
fat arrow 95–96, 174
feature detection 307
feedback from tests 276–278
file system module, node.js 59
fill() method 312
filter function 201
finally keyword 379–380
Firefox 357
first-class functions 46
fluent interfaces

advantages of 203–205
creating 207–208
creating for objects without 208–209
defined 203
DSLs 221–222
indentation and 205–207
with parentheses 205–206
without parentheses 206–207

for keyword 379–380
for...in… comprehension 36
frameworks 393
freeze method 363
function keyword 379–380
functional programming 7, 157
functions

abstraction
general cache 164–165
memoization 165
repetitive code 159–163
specific cache 163–164

arguments for 49
as arguments

default argument values 65
summing array example 62–64

clarity in
arguments and parentheses 146–147

generalizing function 147–148
overview 145–146

closures
abstract example 70–71
applied example 71–72
arguments and 72
defined 70
example using 72–73
global state problems 70

combinators
asynchronous 176
creating 169–173
overview 168–169
using objects 173–176

composition 46
computation by 46–47
counting words example 47–48, 61–62
defined 45–46
DSLs 222–223
events

browser events 53–54
callbacks 54–56
overview 53
timeouts and intervals 54

explicit return statement 51
I/O

Ajax 56–57
event-driven file handling with node.js 57–59

implicit return 50
inside of comprehensions 202–203
invocation 22

of other functions 60–61
overview 49

JavaScript vs. CoffeeScript 52
literal values 17
named functions (JavaScript) 52
nesting 68–70
parentheses 50
recursion

memory and 168
overview 165–168

return from inside expression 50–51
scope

argument scope 69
functions as return values 69–70
implicit variable declarations 67–68
lexical function scope 66
no block scope 66–67

state and
encapsulating state with objects 156–157
external 157–159
local state and shared state 153–155
overview 151–152
variable assignment 152–153
functions returning functions 148–152 unless keyword 51–52

INDEX 401

G

general cache 164–165
generalizing functions 147–148
generators

comprehensions and 203
ECMAScript 6 features 374–375

getters and setters 361–362
GitHub 393
global object 54
Google Chrome 357
grammar, defined 238
Grunt 392
guard (logical and) operator 21–22

H

harmony flag 367
herecomments 40
heredocs 40
heregexes 41
Heroku 392
higher-order function 59
host objects 306
hot code loading 303
HTML (Hypertext Markup Language)

223–224
html() method 92
HTML5 canvas 311–314
HTTP module, node.js 59

I

I/O (input/output)
Ajax 56–57
event-driven file handling with node.js

57–59
if keyword 379–380
if statements 26
immediate mode

animations 315–316
user interface 311–314

imperative programming 7, 157
implements keyword 379–380
implicit return 50
implicit variables 67, 211
import keyword 379–380
in keyword 379–380
in operator 35
indentation

ambiguity 209
fluent interfaces and 205–207
rewriting process, compiler 229

inequality operator 19–20

inheritance, class
defined 112–116
example using 114–116
extends keyword 112–114
mixins and 135–136
properties 121–122

injecting dependencies 279–280, 284–286
inline blocks 30
innerHTML property 92, 310
input/output. See I/O
instance properties 118–119
instanceof keyword 194–195, 379–380
interface keyword 379–380
internal DSLs 219
Internet Explorer 357
intervals, events created by 54
invocation of functions

by other functions 60–61
overview 49

invoke function 338
is keyword 379
isExtensible method 364
isFrozen method 364
isnt keyword 379
isolation 282–283
isSealed method 364
iterators 374

J

Jasmine 391
JavaScript

C language 6
CoffeeScript vs.

coffee machine example 14–16
curly braces 16
functions 52
return statements 16
semicolons 15
var statements 15

ECMAScript vs. 354
history of 9
improvements with CoffeeScript 354–355
language, and community 8
named functions 52
Scheme 7
Self 7–8

Jison parser-generator 238
join method 34
jQuery 92
JSON (JavaScript Object Notation)

DSLs 221
ECMAScript 5 features

parse method 360–361

infinitely recursive functions 168 stringify method 359

INDEX402

JSON (JavaScript Object Notation) (continued)
toJSON method 359–360

overview 89
polyfills 357

K

key-value stores
accessing properties 79
adding property 80–81
changing property 81
checking for property name 81–82
named arguments 82–84
options argument 83–84
overview 78–79
property names from variables 80
quoted property names 79–80

Koa 393

L

lambda calculus 7
lazy data handling 257–259
lazy event handling 259–260
length property 34
Less 224
let expression

ECMAScript 6 features 369
modifying CoffeeScript language 238–240

let keyword 379–380
lexical function scope 66
libraries

asynchronous programming 393
builds 392
deployment 392
frameworks 393
modules 392
npm 391
on GitHub 393
physical computing 393
testing 391–392

Lineman 392
lineTo() method 312
Lisp 7
literal notation 76–77
literal values

as objects 77
boolean aliases 17
function 17
object 17
overview 16–17
regular expressions 17–18

literate CoffeeScript
.litcoffee file extension 215

literate programming 215–216
local state 153–155
logical and operator 21–22
logical or operator 22
loop keyword 379
loops 28–29
lowercase strings 32

M

Make 392
manifest

defining environment 348
deploying to remote server 348
environment variable 346–347
loading environment config 347–348

map function
ECMAScript 6 features 370
overview 200

Markdown 217
memoization 165
memory, recursion and 168
metaprogramming

compiler, CoffeeScript
abstract syntax tree 230–231
rewriting 229–230
tokenizing 228
written in CoffeeScript 226–231

defined 214–215
DSLs

creating with object literals 219–221
CSS 224–225
external 218
fluent interfaces 221–222
function passing 222–223
HTML 223–224
internal 219
overview 218
SQL 225–226

literate CoffeeScript
.litcoffee file extension 215
overview 215–217

modifying CoffeeScript language
implementing let syntax 238–240
overview 232
rewriting token stream 234–235
using abstract syntax tree 236–238
using eval function discouraged

232–234
methods

for objects 100
in classes

modifying prototypes 126–127
overriding 122–125
overview 215–217 overview 118

INDEX 403

mixins
class inheritance and 135–136
creating 136–137
enumerable mixin example 137–139
from null 139
overview 135

Mocha 391
module system 323
modules

cache 326–327
camel case 325
client-side

creating support for 340–344
overview 339–340
testing 344–345

defined 323
ECMAScript 344
ECMAScript 6 features 367–368
indexes 332
libraries 392
server-side (node.js)

creating 323–324
example 328–331
exporting 324–325
file extensions in require statement

325–326
module cache 326–327
module indexes 332
overview 322–323

modulo operator 21
multiplication operator 20–21

N

named arguments 82–84
named functions (JavaScript) 52
native keyword 379
negation operator 19
nesting functions 68–70
new keyword 379–380
new operator 22, 102
newlines 229
no block scope 66–67
NODE_ENV variable 346
node.js

checking version 367
event emitters 254–256
file reading with 57–58
file serving with 59
server-side modules

creating 323–324
example 328–331
exporting 324–325
file extensions in require statement

module cache 326–327
module indexes 332
overview 322–323

on Windows 347
Nodejitsu 392
not keyword 379
npm (node.js package manager) 333, 391
null keyword 379
null values

conditional assignment 191–193
mixins from 139
null soak operator 189–191
overview 188–189

null variables 23

O

Object class 130
Object.create method 97, 358
objects

behavior of 98–100
binding

fat arrow 95–96
overview 91
referencing clicked element 94–96
this keyword 91–94

classes
constructor method 102
declaring 101
equality of objects 102–103
new operator 102
overview 100–101

combinators and 173–176
comprehensions

overview 85–86
own properties 88
page views example 87–88
for properties 86
undefined properties and 87–88
for values 87

creating DSL with object literal 219–221
destructuring 184–185
encapsulating state with 156–157
extending built-in

caveats 134–135
constructor functions 130–131
extending date 131–134
overview 130

key-value stores
accessing properties 79
adding property 80–81
changing property 81
checking for property name 81–82
named arguments 82–84
325–326 options argument 83–84

INDEX404

objects: key-value stores (continued)
overview 78–79
property names from variables 80
quoted property names 79–80

literal values 17
methods for 100
prototypes

defined 96
using 96–97

structured data
accessing values 90–91
JSON 89
trees 89–90

syntax
literals 77
properties 77–78
YAML-style syntax 78

See also classes
of keyword 379
off keyword 379
on keyword 379
OOP (object-oriented programming) 7
operators

add 20
assignment 19
combining expressions 24
comparison 21
default (logical or) 22
divide 20–21
equality 19–20
existential 24
function invocation 22
guard (logical and) 21–22
inequality 19–20
modulo 21
multiply 20–21
negation 19
new 22
overview 18–19
property access 23
subtract 20
type coercion 20

options argument 83–84
or keyword 379
ordering of object properties 81
overriding methods 122–125
own properties, comprehensions for 88

P

package keyword 379–380
page views example 87–88
parameters

rest parameter 180

parentheses ()
adding for subsequent function calls 211
arguments and 146–147
fluent interfaces 205–206
functions and 50
rewriting process, compiler 229–230

passing, unit tests 274–276
performance

asynchronous data processing 246
decorate-sort-decorate technique 248

polyfills
ECMAScript 5 features 357
host objects 307–309
language features 309

Pong example 263–265
Postel’s law 196
postfix conditional 230
preventExtensions method 364
private keyword 379–380
private properties 110
process.argv 48
proper tail calls 168
properties

accessing 23
accessing in key-value store 79
adding 80–81
changing 81
checking for 81–82
of classes

inheritance 121–122
overview 116–117

comprehensions for 86
ECMAScript 5 features 362–363
for objects 77–78
private 110
property names from variables 80
quoted property names 79–80

protected keyword 379–380
prototype chain 115
prototypes

classes vs. 103
defined 96
JavaScript history 7
mixins

class inheritance and 135–136
creating 136–137
enumerable mixin example 137–139
from null 139
overview 135

modifying
class declarations and 125–126
class methods 126–127
constructor functions 126
dynamic classes 127–128
spread parameter 181 extending built-in objects 130–135

INDEX 405

prototypes: modifying (continued)
overview 125
shorthand for 128–130

using 96–97
See also classes

proxies 371–372
public keyword 379–380
pure function 157
pushing data with WebSocket connection

305–306
Python 10

Q

question mark (?) 24

R

ranges 35
Raspberry Pi 393
Read-Eval-Print Loop. See REPL
recursion

memory and 168
overview 165–168

reduce function 201–202
RegExp class 130
regular expressions 17–18
repetitive code in functions 159–163
REPL (Read-Eval-Print Loop) 5
replacing strings 32
require statement

file extensions in 325–326
using modules 324

reserved words 379
rest operator 180–181, 356
retained mode

animations 315
user interface 310–311

return keyword 379–380
return statements 31

CoffeeScript vs. JavaScript 16
for functions 51

return values, functions as 69–70
returning functions from functions 148–152
rewriting process, compiler

braces and parentheses 229–230
implicit indentation 229
modifying CoffeeScript language 234–235
newlines 229
postfix conditional 230

Ruby 10, 226
running CoffeeScript

in browser 41–42
on command line 43

runtime detection 307
runtime support 357–358

S

Safari 357
safe navigation operator 190
sandboxing code in browser 305
Sass 224
Scheme 7
scope

argument scope 69
functions as return values 69–70
implicit variable declarations 67–68
lexical function scope 66
no block scope 66–67

scripts, inserting dynamically 303–305
seal method 364
Self 7–8
semicolons 15
server-side modules

creating 323–324
example 328–331
exporting 324–325
file extensions in require statement

325–326
module cache 326–327
module indexes 332
overview 322–323

setInterval method
animation 314
creating events 54
inaccuracies 319

sets 370
setters 361–362
setTimeout method

animation 314
creating events 54
inaccuracies 319

setups for tests 292–293
shared state 153–155
shorthand for modifying prototypes 128–130
slice method 34
SMTP (Simple Mail Transfer Protocol) 219
sorting data 243–246
source maps for debugging

editing in browser 378
reason for 376
using 376

specific cache 163–164
splitting strings 32
spread operator 181–183, 356
SQL (Structured Query Language) 225–226
square braces ([]) 79–82, 183–184
overview 5–6 stack, recursion and 168

INDEX406

state
encapsulating state with objects

156–157
external 157–159
local state and shared state 153–155
overview 151–152
variable assignment 152–153

statements
break 31
continue 31
exception blocks 29–30
if statements 26
inline blocks 30
loops 28–29
overview 25
return 31
suffix if 30
switch statements 27–28

static keyword 379–380
Stitch 341, 392
strategy pattern 65
strict mode 366
strings

extending built-in classes 130
interpolation (#{}) 32–33
replacing 32
searching 31–32
splitting 32
uppercase and lowercase 32

stroke() method 312
structured data

accessing values 90–91
JSON 89
trees 89–90

style and semantics
ambiguity

adding function parentheses 211
avoiding 210
implicit variables 211
whitespace 209–211

comprehensions
filter function 201
functions inside of 202–203
map function 200
overview 199–200
reduce function 201–202

destructuring
array destructing expansion 187
arrays 183–184
object shorthand 185–186
objects 184–185

duck typing
constructor property 194–195
instanceof operator 194–195

typeof operator 194–195
using 195–199

fluent interfaces
advantages of 203–205
creating 207–208
creating for objects without 208–209
defined 203
indentation and 205–207
with parentheses 205–206
without parentheses 206–207

null values
conditional assignment 191–193
null soak operator 189–191
overview 188–189

rest parameter 180–181
spread parameter 181–183

subtraction operator 20
suffix if 30
super keyword 123–125, 379–380
switch statements 27–28, 379–380
syntactic sugar 114
syntax

arrays
comprehensions 36–39
concat method 34–35
in operator 35
join method 34
length property 34
overview 33–34
ranges 35
slice method 34

comments
herecomments 40
standard 39–40

heredocs 40
heregexes 41
JavaScript vs.

coffee machine example 14–16
curly braces 16
return statements 16
semicolons 15
var statements 15

literal values
boolean aliases 17
function 17
object 17
overview 16–17
regular expressions 17–18

literals 77
operators

add 20
assignment 19
combining expressions 24
comparison 21
overview 193–194 default (logical or) 22

INDEX 407

syntax: operators (continued)
divide 20–21
equality 19–20
existential 24
function invocation 22
guard (logical and) 21–22
inequality 19–20
modulo 21
multiply 20–21
negation 19
new 22
overview 18–19
property access 23
subtract 20
type coercion 20

properties 77–78
statements

break 31
continue 31
exception blocks 29–30
if statements 26
inline blocks 30
loops 28–29
overview 25
return 31
suffix if 30
switch statements 27–28

strings
interpolation 32–33
replacing 32
searching 31–32
splitting 32
uppercase and lowercase 32

types 23–24
variables

null 23
overview 18
undefined 23
undefined type 18

YAML-style syntax 78
system tests 290–291

T

tail call optimization 168
T-Diagram 226
teardowns for tests 292–293
template strings 356–357
terminator, defined 229
test doubles

creating double from scratch 280–281
creating double with prototypes 282
injection 279–280
isolation 282–283

test runners 294–295
testing libraries 391–392
tests

assertions 272–273
asynchronous testing

assertions as callback 286
expected method in test 287–289
overview 286
removing I/O in tests 286–287

build automation with Cake
overview 336–337
specification 337
task to run tests 337–338

dependencies
avoiding dependency injection messes

284–286
creating double from scratch 280–281
creating double with prototypes 282
difficulties with 278–279
injection 279–280
isolation 282–283
overview 278

feedback from 276–278
importance of 270–271
overview 271–272
system tests 290–291
test suites

setups and teardowns 292–293
test helpers 293
test runners 294–295
watchers 295

unit tests
creating 273, 275
failure 273–275
overview 273
passing 274–276

text/coffeescript script type 301
then keyword 379
thick client 339
this keyword 379–380

binding for objects 91–94
fluent interfaces 207

throw keyword 379–380
time inaccuracies 319
timeouts, events created by 54
timing programs 246
tokenizing process, compiler 228
Tombstone Diagram 226
trees 89–90
true keyword 379
try keyword 379–380
tween 315
type coercion 20
typeof operator 194–195, 197, 379–380
test helpers 293 types in CoffeeScript 23–24

INDEX408

U

undefined keyword 379
undefined properties 87–88
undefined type 18, 23
unit tests

creating 273, 275
failure 273–275
overview 273
passing 274–276

unless keyword 51–52, 379
until keyword 379
uppercase strings 32
user interface

immediate mode 311–314
retained mode 310–311

V

var keyword 15, 67, 379–380
variables

in classes
instance properties vs.

118–119
overview 118

implicit 211
null 23
overview 18
property names from 80
state in functions and

152–153

undefined 23
undefined type 18

void keyword 379–380

W

watchers 295
watchFile method 59
WeakMap 370–371
WebSocket connection 305–306
when comprehension guard 38
when keyword 379
while keyword 379–380
whitespace and ambiguity 209–211
Windows, node.js on 347
with keyword 379–380

X

XMLHttpRequest object 302–303

Y

YAML-style syntax 78
yes keyword 379
yield keyword 379–380

Z

zipping arrays 265
Zombie 392

Patrick Lee

J
avaScript runs (almost) everywhere but it can be quirky
and awkward. Its cousin CoffeeScript is easier to compre-
hend and compose. An expressive language, not unlike

Ruby or Python, it compiles into standard JavaScript without
modifi cation and is a great choice for complex web applica-
tions. It runs in any JavaScript-enabled environment and is
easy to use with Node.js and Rails.

CoffeeScript in Action teaches you how, where, and why to use
CoffeeScript. It immerses you in CoffeeScript’s comfortable
syntax before diving into the concepts and techniques you
need in order to write elegant CoffeeScript programs.
Throughout, you’ll explore programming challenges that
illustrate CoffeeScript’s unique advantages. For language
junkies, the book explains how CoffeeScript brings idioms
from other languages into JavaScript.

What’s Inside
● CoffeeScript’s syntax and structure
● Web application patterns and best practices
● Prototype-based OOP
● Functional programming
● Asynchronous programming techniques
● Builds and testing

Readers need a basic grasp of web development and how Java-
Script works. No prior exposure to CoffeeScript is required.

Patrick Lee is a developer, designer, and software consultant,
working with design startup Canva in Sydney, Australia.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/CoffeeScriptinAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

CoffeeScript IN ACTION

WEB DEVELOPMENT/JAVASCRIPT

M A N N I N G

“This book will
help you become a

 CoffeeScript Ninja!”
—Phily Austria, Paystr LLC

“Truly entertaining ...
dives deep into

 CoffeeScript.”—Andrew Broman
 University of Wisconsin, Madison

“By far the best resource
 for learning CoffeeScript

 or for improving your
 existing skills.”

—John Shea, Endicott College

“Makes learning
 CoffeeScript fun!”—Kenrick Chien

Blue Star Software

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Prerequisites
	Code conventions
	Installing CoffeeScript
	Code downloads
	Exercises
	Author Online

	about the cover illustration
	Part 1—Foundations
	1 The road to CoffeeScript
	1.1 Why CoffeeScript?
	1.2 Running CoffeeScript
	1.3 JavaScript
	1.3.1 C
	1.3.2 Scheme
	1.3.3 Self

	1.4 Evolving JavaScript
	1.4.1 A little story about language
	1.4.2 The lesson for JavaScript

	1.5 Creating CoffeeScript
	1.5.1 Designing new syntax
	1.5.2 Achieving new syntax

	1.6 Summary

	2 Simplified syntax
	2.1 Your first program
	2.1.1 Comparing CoffeeScript to JavaScript

	2.2 Simple expressions
	2.2.1 Literal values
	2.2.2 Variables

	2.3 Operators
	2.3.1 Essentials
	2.3.2 Types, existential, and combining operators
	2.3.3 Exercises

	2.4 Statements
	2.4.1 Anatomy
	2.4.2 Statements as expressions
	2.4.3 Pure statements
	2.4.4 Exercise

	2.5 Strings
	2.5.1 Methods
	2.5.2 Interpolation
	2.5.3 Exercise

	2.6 Arrays
	2.6.1 length, join, slice, and concat
	2.6.2 in
	2.6.3 Ranges
	2.6.4 Comprehensions
	2.6.5 Exercise

	2.7 Heres for comments, docs, and regexes
	2.7.1 Comments
	2.7.2 Heredocs
	2.7.3 Heregexes

	2.8 Putting it together
	2.8.1 Running in a browser
	2.8.2 Running on the command line

	2.9 Summary

	3 First-class functions
	3.1 Computation
	3.1.1 Basics
	3.1.2 Custom operations
	3.1.3 Anatomy
	3.1.4 Comparison: JavaScript and CoffeeScript
	3.1.5 Exercises

	3.2 Events
	3.2.1 Browser events
	3.2.2 Using timeouts and intervals to create events

	3.3 I/O
	3.3.1 Ajax
	3.3.2 Event-driven file reading with Node.js
	3.3.3 Event-driven file serving with Node.js
	3.3.4 Exercises

	3.4 Higher-order functions
	3.4.1 Invoking other functions
	3.4.2 Example: Counting words in a file
	3.4.3 Functions as arguments
	3.4.4 Exercises

	3.5 Scope
	3.5.1 Lexical function scope
	3.5.2 No block scope
	3.5.3 Implicit variable declarations
	3.5.4 Nesting

	3.6 Closures
	3.6.1 Global state problems
	3.6.2 Functions as return values
	3.6.3 Extended example: using closure

	3.7 Putting it together
	3.8 Summary

	4 Dynamic objects
	4.1 Syntax
	4.1.1 Literals
	4.1.2 Properties
	4.1.3 YAML-style syntax

	4.2 Key-value stores
	4.2.1 Data
	4.2.2 Key-values for named arguments
	4.2.3 Exercises

	4.3 Comprehensions
	4.3.1 Object comprehensions
	4.3.2 Example

	4.4 Structured data
	4.4.1 JSON
	4.4.2 Trees

	4.5 Binding
	4.5.1 this
	4.5.2 The fat arrow

	4.6 Prototypes
	4.6.1 Copy
	4.6.2 Object creation
	4.6.3 Exercises

	4.7 Behavior
	4.7.1 Refactor
	4.7.2 Exercise

	4.8 Classes
	4.8.1 Declaration
	4.8.2 Object identity
	4.8.3 Exercises

	4.9 Putting it together
	4.10 Summary

	Part 2—Composition
	5 Composing objects
	5.1 Being classical
	5.1.1 Raw data
	5.1.2 Class abstractions

	5.2 Class inheritance
	5.2.1 extends
	5.2.2 How does it work?

	5.3 Class variables and properties
	5.3.1 Usage
	5.3.2 Declaring (to keep things together)
	5.3.3 Exercise

	5.4 Overriding and super
	5.4.1 Overriding
	5.4.2 super

	5.5 Modifying prototypes
	5.5.1 How class declarations work
	5.5.2 How methods work
	5.5.3 Dynamic classes

	5.6 Extending built-ins
	5.6.1 Built-in constructor prototypes
	5.6.2 Extending date
	5.6.3 Don’t modify objects you don’t own

	5.7 Mixins
	5.7.1 Class inheritance can be awkward
	5.7.2 Writing a mixin
	5.7.3 Example: enumerable mixin
	5.7.4 Mixins from null

	5.8 Putting it together
	5.8.1 Exercise

	5.9 Summary

	6 Composing functions
	6.1 Clarity
	6.1.1 Functions are descriptions
	6.1.2 Where arguments need parentheses
	6.1.3 Higher-order functions revisited

	6.2 State and mutability
	6.2.1 Variables, assignment, and side effects
	6.2.2 Local state and shared state
	6.2.3 Encapsulating state with objects
	6.2.4 World state

	6.3 Abstraction
	6.3.1 Extracting common code
	6.3.2 Adding common code
	6.3.3 Recursion

	6.4 Combinators
	6.4.1 Compose
	6.4.2 Before and after
	6.4.3 Around
	6.4.4 Working with objects
	6.4.5 Asynchronous combinators

	6.5 Summary

	7 Style and semantics
	7.1 Rest and spread parameters
	7.1.1 Rest
	7.1.2 Spread

	7.2 Destructuring
	7.2.1 Arrays
	7.2.2 Objects
	7.2.3 Object shorthand
	7.2.4 Array destructuring expansion
	7.2.5 Exercises
	7.2.6 Putting it together

	7.3 No nulls
	7.3.1 Null soak
	7.3.2 Conditional assignment

	7.4 No types—the duck test
	7.4.1 Don’t rely on typeof, instanceof, or constructor
	7.4.2 How to use duck typing

	7.5 When to use comprehensions (and when not to)
	7.5.1 map
	7.5.2 filter
	7.5.3 reduce
	7.5.4 Defining functions inside comprehensions

	7.6 Fluent interfaces
	7.6.1 Why create them?
	7.6.2 The indentation problem
	7.6.3 Creating fluent interfaces
	7.6.4 Chain

	7.7 Ambiguity
	7.7.1 Whitespace and indentation
	7.7.2 Implicit variables

	7.8 Summary

	8 Metaprogramming
	8.1 Literate CoffeeScript
	8.1.1 The .litcoffee file extension

	8.2 Domain-specific languages
	8.2.1 External DSLs
	8.2.2 Internal DSLs
	8.2.3 Object literals
	8.2.4 Fluent interfaces
	8.2.5 Function passing
	8.2.6 Constructing a DSL

	8.3 How the compiler works
	8.3.1 Tokenizing
	8.3.2 Rewriting
	8.3.3 The abstract syntax tree

	8.4 Bending code to your ideas
	8.4.1 Can you just eval?
	8.4.2 Rewriting the token stream
	8.4.3 Using the abstract syntax tree
	8.4.4 It’s just JavaScript

	8.5 Summary

	9 Composing the asynchronous
	9.1 Data processing
	9.1.1 Reading
	9.1.2 Sorting
	9.1.3 Performance
	9.1.4 Decorate, sort, undecorate

	9.2 Event loops
	9.2.1 Events and blackouts
	9.2.2 Infinite time

	9.3 Event emitters
	9.3.1 User events
	9.3.2 Data as events
	9.3.3 Using event emitters in Node.js
	9.3.4 Events as data

	9.4 Event composition
	9.4.1 Lazy data handling
	9.4.2 Lazy event handling
	9.4.3 Composing event streams
	9.4.4 Client side
	9.4.5 Multiple event sources

	9.5 Summary

	Part 3—Applications
	10 Driving with tests
	10.1 No tests? Disaster awaits
	10.2 How to write tests
	10.2.1 Assertions
	10.2.2 How to unit test
	10.2.3 Rinse and repeat
	10.2.4 Feedback

	10.3 Dependencies
	10.3.1 Why dependencies make testing difficult
	10.3.2 Test doubles
	10.3.3 Avoiding dependency injection hell

	10.4 Testing the asynchronous
	10.4.1 Live with it
	10.4.2 Remove it
	10.4.3 Expect it
	10.4.4 Exercise

	10.5 System tests
	10.6 Test suites
	10.6.1 Setups and teardowns
	10.6.2 Test helpers and runners
	10.6.3 Watchers

	10.7 Summary

	11 In the browser
	11.1 Getting started
	11.1.1 Manual compilation
	11.1.2 Browser compilation
	11.1.3 Automatic compilation

	11.2 Communicating with the outside world
	11.2.1 Using XMLHttpRequest
	11.2.2 Dynamic script insertion
	11.2.3 Going real time with WebSocket

	11.3 Cross-browser compatibility
	11.3.1 Polyfilling host objects
	11.3.2 Polyfilling language features

	11.4 Creating a user interface
	11.4.1 Retained mode with the DOM
	11.4.2 Immediate mode with HTML5 canvas

	11.5 Creating animations
	11.5.1 Retained mode
	11.5.2 Immediate mode

	11.6 Structuring programs
	11.6.1 Abstraction and APIs
	11.6.2 Dealing with time

	11.7 Summary

	12 Modules and builds
	12.1 Server-side modules (on Node.js)
	12.1.1 Creating and requiring
	12.1.2 Exporting
	12.1.3 No file extensions
	12.1.4 The module cache
	12.1.5 Putting it together
	12.1.6 Indexes

	12.2 Build automation with Cake
	12.2.1 Cake and build tasks
	12.2.2 Test tasks
	12.2.3 Task dependencies

	12.3 Client-side modules (in a web browser)
	12.3.1 Making modules work in a browser
	12.3.2 How to write a module system
	12.3.3 Tests

	12.4 Application deployment
	12.4.1 Creating an artifact (something that’s easy to deploy)
	12.4.2 Creating a manifest (something that tells your artifact where it is)

	12.5 The final Cakefile
	12.5.1 Tidying up

	12.6 Summary

	13 ECMAScript and the future of CoffeeScript
	13.1 CoffeeScript in the context of JavaScript
	13.1.1 A better JavaScript through CoffeeScript
	13.1.2 Future JavaScript features that CoffeeScript has today

	13.2 ECMAScript 5
	13.2.1 Runtime support
	13.2.2 Object.create
	13.2.3 JSON
	13.2.4 Property descriptors
	13.2.5 Putting it together
	13.2.6 Strict mode

	13.3 ECMAScript 6
	13.3.1 Modules
	13.3.2 const and let
	13.3.3 Sets, Maps, and WeakMaps
	13.3.4 Proxies
	13.3.5 Comprehensions, iterators, and generators

	13.4 Source maps for debugging
	13.4.1 Why source maps?
	13.4.2 Getting started with source maps

	13.5 Summary

	Appendix A—Reserved words
	Appendix B—Answers to exercises
	About the exercises
	Exercise 2.3.3
	Exercise 2.4.4
	Exercise 2.5.3
	Exercise 2.6.5
	Exercises 3.1.5
	Exercises 3.3.4
	Exercises 3.4.4
	Exercises 4.2.3
	Exercise 4.6.3
	Exercise 4.7.2
	Exercises 4.8.3
	Exercise 5.3.3
	Exercise 5.8.1
	Exercises 7.2.5
	Exercise 10.4.4

	Appendix C—Popular libraries
	npm
	Testing
	Modules
	Builds
	Deployment
	Frameworks
	Asynchronous programming
	Physical computing
	On GitHub

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

