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   Introduction 

   “Almost no one comes down here (the engineering level) unless, of course, there is a 
problem. That’s how it is with people. Nobody cares how it works as long as it works. I like 
it down here.” 

 —The Matrix Reloaded (2003) 

 Embedded systems are conspicuous by their omnipresence. But most people take them for granted despite 
the fact that behind every system is a design that involves multiple engineering disciplines. Even something 
as humble as a toaster might be the joint effort of software and hardware engineers. Assuming you still 
have the unabated curiosity to know how stuff works, this book will try to fill any knowledge gaps you might 
run into. 

 Actually, this book is a brain dump of what I have picked up over the past 15+ years. Some of this 
knowledge has been learned the hard way, which is passively through insomnia and hair loss. And it is my 
best wishes that you don’t have to go through the same ordeals I endured. 

 In addition to the traditional design approach, the semiconductor industry’s latest juggernaut has made 
SOPC (System on Programmable Chips) a viable option both technologically and financially. It is a trail 
blazed by many newly designed embedded systems, which this book explores in depth. 

 Lastly, this book will serve you better if you’ve taken some college-level courses in CS or EE, or maybe a 
little bit of both. Basic knowledge in C/C++ and FPGA can help you sail through this book more smoothly. 

 Thank you for your faith in my book! 

 —Changyi Gu 
 02/14/2016 in San Diego, CA  
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    CHAPTER 1   

 The Whole Picture                          

    A complex system that works is invariably found to have evolved from a simple system 
that worked.  

 —John Gall (Ref  [  1  ] )   

 The world of  embedded systems  is pretty much a farrago of everything, with each system having its own 
idiosyncrasies. In the old days, many systems would forgo microprocessors in favor of glue logic or 
application specific controllers to drive costs down. This makes it very hard to have a generalized discussion 
about those systems. 

 However, things have changed since then. The past 20 years witnessed the relentless push of 
semiconductor processes. In the mid-1990s, 0.35μm (350nm) was considered the state of the art. And when 
this book was being conceived, 14nm FinFET had just begun mass production. Big Fabs like Intel, TSMC, 
and Samsung are elbowing their way toward 10nm. The juggernaut of  semiconductor technology   has greatly 
shaped the landscape of embedded systems in the following ways:

•    The  microprocessor’s clock rate   has increased exponentially while its power 
consumption dropped. Thanks to its high production volume, unit price has also 
plummeted. Thus microprocessors have managed to gain the universal presence in 
today’s embedded systems.  

•   However, the sophistication of the  semiconductor process   has also boosted the NRE 
( Non-Recurring Engineering  ) costs dramatically. And the high NRE costs have to be 
balanced out by high volumes in order to make the ends meet. This makes the chip 
tape-out riskier and less affordable. Consequently, for products with small- to mid-
range volumes, programmable logic devices, such as FPGA, become more and more 
favorable over ASIC.  

•   For the semiconductor process, shrinking feature size means higher density, which 
makes it possible for processors and programmable logic to be integrated on the 
same die. Major FPGA vendors now all have programmable SoC (System on Chip) 
devices in their portfolios 1  to target various market segments. And when this book 
was being conceived, Intel has just acquired Altera for more than $16 billion to 
“improve chip performance” with programmable logic devices.    

   1  Altera offers HPS (Hard Processor System) in almost all of its high end products. Xilinx has Zynq serial SoC FPGA. 
Microsemi provides SmartFusion serial SoC FPGA.  

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-1919-5_1    ) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1919-5_1
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 As a result, the traditional boundary between software and hardware has started to blur. For embedded 
systems practitioners, cross-disciplinary knowledge and skills are increasingly valued. Having that in mind, 
this book will try to cover both grounds with a practical approach. 

 As stated previously, thanks to the ferocious push of semiconductor technology, it’s no longer the luxury 
of high-end design to have a microprocessor on board. The prevailing truth is that nowadays the majority 
of embedded systems have at least one microprocessor on board, and they share many common traits in 
this regard. Assuming the system under discussion is a uni-processor system, its general  architecture   can be 
aptly illustrated in Figure  1-1 .  

  Figure 1-1.    General architecture of a  uni-processor system         
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 A few notes about the image in Figure  1-1 :

•    Keep in mind that due to the high density of today’s  semiconductor process  , the 
majority of the components shown in Figure  1-1  could be integrated in the same 
package instead of being multiple discrete components on board.  

•   Many technical details are omitted from Figure  1-1  in order not to distract readers 
from the whole picture. Those technical details are covered in later chapters when 
the correspondent modules are mentioned.  

•   The system bus in Figure  1-1  could be AMBA (if it is a SoC design with ARM CPU 
core), PCI, PCI-express, or any other bus architecture.  

•   Figure  1-1  also assumes there is a VIC ( Vector Interrupt Controller  ) in the system, 
although this is not always the case. The topic of interrupt controllers is covered in 
later chapters.  

•   As mentioned, programmable logic has started to gain traction as the NRE cost of 
ASIC has skyrocketed. Although not every system has FPGA or CPLD, FPGA/CPLD 
devices will be a valuable asset to extend system functions. In fact, today’s FPGA is so 
resourceful that it could either absorb the microprocessor into its programming logic 
as a soft core (Ref  [  2  ] ) or integrate hardcore processors with the programming logic 
in one package (Ref  [  3  ]  [  4  ] ). On top of that, some FPGA vendors go the extra mile by 
providing analog frontend in their products (Ref  [  4  ] ). Given all that, a great amount 
of ink will be spilled on FPGA/CPLD later in this book.  

•   This book does not explicitly distinguish among “microprocessor,” “processor,” 
“CPU” and “CPU core,” since their differences are insignificant for all practical 
purposes. Thus the rest of the book will use those terms interchangeably. However, 
this book does make a distinction between the term “microprocessor” and 
“microcontroller,” as the former only refers to the processor core, while the latter 
usually means the processor core plus RAM/ROM and other peripherals in a 
single package.    

     Organization of the Book 
 The rest of the book will be organized as follows:

•    Chapters   2    –  5     will illustrate how things work behind the scenes, starting from the 
moment when the power switch is flipped on.  

•   Afterward, two chapters will discuss embedded software (firmware) programming, 
with one chapter covering C language and the other covering C++. There is also a 
chapter on firmware build and deployment.  

•   SOPC/FPGA is an import topic of this book. Chapter   9     will start on FPGA 
development, followed by another chapter on the SOPC design approach.  

•   Other miscellaneous hardware topics, such as power management and LCD display, 
are discussed in Chapter   11    .  

•   Math is always the necessary evil—please excuse me for the lack of better words—for 
engineers. A whole chapter will be devoted to fixed-point math.  

http://dx.doi.org/10.1007/978-1-4842-1919-5_2
http://dx.doi.org/10.1007/978-1-4842-1919-5_5
http://dx.doi.org/10.1007/978-1-4842-1919-5_9
http://dx.doi.org/10.1007/978-1-4842-1919-5_11
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•   What sets human beings apart from other species is that we know how to use tools. 
Thus a separate chapter covers tool preparation.  

•   Consistency and reliability are highly valued in any engineering effort. A discussion 
on workflow helps to conclude this book.     

     Companion Materials for this Book 
 Companion materials, such as sample code, supporting scripts, etc., will be released as open source material. 
You may get them on the Apress web site (   http://www.apress.com     ) or through    http://open.pulserain.com      
(link to GitHub).      

   References 
   1.      Systematics—How Systems Work and Especially How They Fail,  by John Gall, Quadrangle/The New York 

Times Book Co., 1977  
   2.     Nios II Gen2 Processor Reference Guide,  Altera Corporation, April, 2015  
   3.      Zynq-7000 All Programmable SoC: Embedded Design Tutorial,  UG1165 (v2015.1), Xilinx Inc. April, 2015  
    4.     SmartFusion Customizable System-on-Chip (cSoC) Rev 13,  Microsemi Corporation, March 2015      

http://www.apress.com/
http://open.pulserain.com/
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    CHAPTER 2   

 Power On and Bootloader                          

    The universe exists because of spontaneous creation.  

 —Stephen Hawking   

 Curiosity is human nature. In a grand scheme of things, people might wonder how the universe got started, 
to which those folks who discovered the gravity wave know better than to ask. But on a much smaller scale, if 
you are just curious to understand how the embedded systems got started, this chapter can help. 

     What Happens After Powering On 
 The first time you get your hands on a brand new smartphone, you push the power button, see the screen 
illuminated, and then see a fancy welcome page or logo dazzling in front your eyes. Have you ever wondered 
what’s going on from the moment you turn on the power to the minute when you see the fancy GUI? Who or 
what is behind all this? 

 For the majority of modern day embedded systems, there is at least one processor on board. When 
the power is turned on, the processor is getting hard-reset. The processor’s program counter is reset to a 
predetermined value. In other words, the processor starts to fetch instructions from a fixed address (called 
the  reset handler ), and it starts to execute that  reset handler   after power on. 

 Take ARM9 (32-bit CPU) for example (Ref  [  1  ] ). Its PC (Program Counter) would be reset to either 
0x00000000 or 0xFFFF0000, depending on the hardware pin configuration. The space allocated for its reset 
handler is 4 bytes, which is exactly the size of one instruction. A branch instruction or a load PC (LDR PC) 
instruction is the usual candidate. It points the program counter to the entry of another bigger program, 
called the  bootloader. That is to say, the first program to be executed after power on reset is the bootloader.  

 Depending on the actual hardware pin configuration, the mapping of the  reset handler   address can be 
completed in one of the ways:

    1.    The address is mapped to some on-chip ROM, with factory programmed 
instructions.  

    2.    The address is mapped to off-chip memory. Usually the off-chip memory is some 
sort of non-volatile memory, like Flash or EEPROM. Take ARM9, for example—if 
its reset handler is configured to 0x00000000, a Flash memory that contains 
bootloader can be mapped to that address (see Figure  2-1 ).   
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    3.    No matter where the reset handler is mapped,  the users can always use ICE 
(In-Circuit Emulator) as the bootloader.  Usually ICE loads the image through a 
JTAG interface. (ICE will be discussed in more detail in later chapters.)     

 The bottom line is that  bootloader   is the first program to be executed after a power on reset.  

  Figure 2-1.    What happens after a  power on reset         
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     What Does Bootloader Do? 
 Bootloader’s  tasks   makes for a long list, including but not limited to the following:

    1.     Initialize the memory.  

 If your system has memory types like DDR, chances are the DDR needs to be 
initialized before it can have the first r/w access. Take personal computers 
for example. Some PCs will print out detailed hardware information at boot 
time. The typical message may look like  "DRAM Clock=xxxMHz, SDRAM CAS 
Latency=y.z" . That means the BIOS (the PC’s bootloader) has configured 
your DDR with these parameters. (On a PC, it is the DIMM you plug into the 
memory slot.) 

 Also keep in mind that ICE will not initialize the DDR automatically for you. 
So if you want to load an image to DDR through ICE, make sure DDR is properly 
configured.  

    2.     Initialize the user terminal or debug console.  

 Your system has to find a way to output something, which can be as conspicuous 
as a high-resolution screen, or as humble as an RS232 console. Although many 
systems do not have screen output, they still require serial console to output 
debug messages or get input at the development stage. Bootloader is responsible 
for setting them up.  

    3.     Initialize other peripherals.  

 Depending on the nature of your system, other peripherals such as Ethernet also 
need to be configured. Sometimes bootloader can load the user image through 
Ethernet or RS232 instead of using Flash memory.  

    4.     Configure cache and MMU.  

 As you can see in Figure  2-1 ,    memory access has to go through cache and MMU. 
As far as bootloader is concerned, performance is not its first priority. Thus 
bootloaders could choose to disable the cache and MMU for the peace of mind. 
After the user image is loaded and executed, cache and MMU are re-enabled in 
order to gain better performance.  

    5.     Provide basic services to the users.  

 Most commercial bootloaders are able to provide some basic commands 
to end users, which allow users to configure the Flash or check memory 
content. Because of these added capabilities, developers sometimes call these 
commercial bootloaders Debug Monitor or ROM Monitor.  

    6.     Provide service calls to OS.  

 Not every bootloader does this. In fact, most embedded bootloaders are decoupled 
with the embedded OS. However, on the IBM PC platform, the BIOS would actually 
provide some basic interrupt calls to OS. A typical case for this is the hard disk 
access. When you are booting from your hard disk to load Windows, you might 
have to wait a short while before you can see the Windows logo. In fact, BIOS is 
doing the disk r/w during that period and the Windows device driver takes over by 
the time when you see the logo. BIOS might do the disk access in PIO mode since 
bootloaders usually prefer simplicity over performance, but the Windows device 
driver could do every r/w in DMA mode to get the highest throughput.  
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    7.     Load the user image into memory.  

    As the name “bootloader” suggests,  the main function of a bootloader is to load the 
user image into memory and execute it from the entry address . The user image could 
be as big as a full-blown embedded OS, or as small as a tiny test program, and it 
can be loaded from Flash, Ethernet, a serial port, or any other available interface.      

     User Image (ROM Image) 
 As it was mentioned at the end of the last section, bootloader can load the  user image   into memory. 
However, be advised that “user image” is a generic term. There are a few cases that have to be distinguished 
from each other when it comes to the details. 

     Image of Embedded  OS   
  If the image to be loaded is an image of the embedded OS (such as the “zImage” of Linux), bootloader treats 
it as raw binary . That is to say, bootloader will load the image as a big trunk of binary and copy it to the 
destination address blindly. 

 For example, to load Linux  zImage  under  redboot  (Ref  [  4  ] ), the command will be something like: 

   Redboot> load -r -b 0x01234000 zImage  
  Redboot> go 0x01234000  

    Here the  -r  option means it is raw binary and the  -b  option provides the destination address. Then the 
 go  command starts to execute from the entry address. 

 For an embedded OS, its image is built with  init  code positioned at the beginning part of the image. 
Most likely it will be compressed as well to keep a small footprint. The  init  code would do some preliminary 
setting and then decompress the rest of the image. It would then extract and load OS kernel into memory, as 
illustrated in Figure  2-2 .   

www.allitebooks.com
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     Image of Object  File   
 If the image to be loaded is an object file produced by a cross-compiler, the image must be structured and 
conform to the standard format. Bootloader would no longer treat it as raw image. If the OS has already 
booted up when the object file is being loaded, the OS loader will replace the bootloader to load these object 
file images. 

      a.out, COFF, and ELF 
 The formats for object files have an evolutionary history of half a century. Among all the formats that have 
been developed, three carry the most weight: a.out, COFF, and ELF. 

  a.out   is probably the oldest object file format on the UNIX system. Although it is no longer used today, 
as a legacy, many C compilers still use  a.out  as the default output filename. 

     COFF   is the successor to  a.out . Many of Texas Instruments’ DSP processors use COFF as the default 
object file format (Ref  [  6  ] ). However, COFF has imposed some limitations on the object file, and it is 
succeeded by the ELF format in large part. 

  ELF   is now the default object file format for many cross-compiler tools, not to mention it is also the 
default format used on Linux. 

  Figure 2-2.    Load image for embedded  OS         
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 ■   Labs   As mentioned earlier, many C compilers still use  a.out  as the default output filename, but the actual 
object file format might be something else, such as ELF. If you have a C file called  test.c  and you type  gcc 
test.c  on a UNIX command line, you will get a new file named  a.out . If you type  objdump --file-headers 
a.out  afterward, it probably will tell you that the file named  a.out  is actually in a format other than  a.out . 
(On the Sun server I’m using, it shows something like  a.out: file format elf32-sparc .)  

 Over the years, many companies and organizations have developed their own formats based on these 
three, like Microsoft’s PE format (derived from COFF) and ARM’s AXF format (derived from ELF). Often 
times, these formats can only be recognized by a certain type of bootloader or ICE software.  

   Sections of the  ELF Format   
 The prevalence of ELF format warrants a close look at it. Basically an object file in ELF is composed of many 
sections (Ref  [  7  ] ). For all practical purposes, the following sections matter the most to developers:

•     .text  section 
 All the executable code lies in this section, such as the  while()  loop.  

•   . data  section 
 All the global variables/static arrays that have non-zero initial values are in this 
section. Note that this section is supposed to be writable. 

 Examples: 

               int gReadFlag = 1;                  // Global variable  
              int gBuffer[] = {1, 1, 2, 3, 5, 8}; // Global array  

    Static variables/arrays with non-zero initial values are also located in this section, 
such as: 

                int test()  
              {  
              static int start_value = 1;     // static variable  
              static int abc[] = {1, 2, 3};   // static array  

                  ...  

                } // End of test()  

•        . rodata  section 
    All the read-only data is placed in this section, such as global constant array. On 
DSPs, such as ARM9E, the read-only data should be loaded into I-TCM (Instruction 
Tightly Coupled Memory). As its name suggests, TCM lies close to the processor 
core. Hence, it has a very short access time. These are not supposed to change, just 
like the . text  section. 

 For example: 

               const int gIndex[] = {1, 3, 7, 9}; // Global const array  
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•       . bss  section  
  All the global/static variables that are not explicitly initialized in the code default to 
zero. The . bss  section hosts these variables. When bootloader loads the object file, it 
will fill the . bss  section with zeros. 

 For example: 

               int gReadFlag;       // Global variable, uninitialized  
              int gReadBuffer[16]; // Global array, uninitialized  

    Since this section is supposed to be all zeros initially, it does not have to take up 
physical space when you build a Flash image out of the object file.     

    Link Script   
 When bootloader loads an object file, it is actually loading these aforementioned sections from the object 
file into the RAM. So the destination address and size of the destination memory block have to be specified 
for each section. What does the target system’s address space look like? How do you fill the memory in the 
target system with these sections? When you are building the object file, these details are all stipulated in a 
text file called  link script file  or  link editor file,  which is used by the linker. The linker will use its default link 
script if one is not provided. (Under ARM’s RVDS, this link script is called a   scatter file   , with  .scat  filename 
extension.) 

 With GNU linker, you could see the default link script by typing: 

   ld --verbose  

    There are two things that have to be done in a link script— you must define the memory in the target 
system and you must determine the address of each section in the object file. 

   Defining the Memory in the Target System 

 The link script has to tell the linker how many physical memory segments exist in the target system, as well 
as the size and starting address of each segment. Linker does not care about the physical attributes of these 
memory segments. In other words, no-volatile memory and volatile memory look the same in the eyes of 
linker. However, these physical attributes do matter to developers, especially when they are running code 
straight from no-volatile memory (XIP, which would be elaborated in later chapters) or the target memory 
needs to be initialized before the first access (like most DDR memory). 

 Listing  2-1  shows a snippet of GNU link script that defines the memory in the target systems. 

        Listing 2-1.    MEMORY Command in GNU  Link Script        

 MEMORY  
  {  
      ROM  : org = 0x200,  len = 0x1000  
      SRAM : org = 0x1300, len = 0x300  
      DDR  : org = 0x1900, len = 0x200  
  }  

    In Listing  2-1 , three memory segments were defined. Each segment should correspond to the actual 
memory map in the target system.  
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   Determining the Address of Each Section in the Object File 

 The bootloader needs to know where to load each section in an object file. Such information has to be stored 
in the object file at link time. 

 Listing  2-2  shows a snippet of the GNU link script for this purpose. 

       Listing 2-2.     SECTIONS Command   in GNU Link Script   

  SECTIONS  
  {  
    my_code :  
    {*(.text);} >SRAM  

      my_data :  
      {*(.data);*(.rodata);} >SRAM  

      .bss :  
      {*(.bss);} >DDR  

      other :  
      {*(.*);} >SRAM  
  }  

     In Listing  2-2 , three output sections are defined. The  my_code  output section collects all the . text  
sections and loads them into SRAM. The  my_data  output section collects . data  and . rodata  sections and 
loads them into SRAM as well. The . bss  section would be in DDR. (Here, the memory segment of ROM, 
SRAM, and DDR are all defined in Listing  2-1 .) 

 ■   Labs   Let’s merge Listings  2-1  and  2-2  into one file and call it  link_script01.x . This is the link script you 
are going to use for this lab. You’ll use the following test program as a guinea pig. The same program will be 
used in later chapters for Flash image generation. Call this program  lost.c , as shown in Listing  2-3 .  

      Listing 2-3.     Test Program  : lost. c     

 unsigned char lost_candidates[] = {0x04, 0x08, 0x0F, 0x10, 0x17, 0x2A};  
  unsigned char jungle[128];  
  const int John_Locke = 0x7A8B9CAA;  
  int main(void)  
  {  
        int test_signature = 0xAABBCCDD;  
        lost_candidates [John_Locke] = 0;  
  } // End of main()  
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    LAB 2-1: BUILDING AN ELF OBJECT FILE

 You’ll compile this program with the following command. (I tested it out on a virtual machine with 32-bit 
Linux installed, because most embedded processors have a word length less than 64 bits. If you run the 
lab on 64-bit Linux, it should still work except that some offset numbers might be slightly different from 
what’s shown here. However, Cygwin may not work well for this lab because the default file format in 
Windows is PE format instead of ELF.) 

       $> gcc -fno-exceptions -c lost.c  
     $>  
     $> objcopy --remove-section=.comment lost.o  
     $>  
     $> ld -o my_output01.elf -T link_script01.x lost.o  
     $>  
     $> objdump -h my_output01.elf  

     Among those commands: 

 1. The first command will compile the code and remove the  .eh_frame  section that otherwise might be 
generated. 

 2. The second command will remove the . comment  section from the object file. The . comment  section 
contains information like the GCC version number, platform supported, etc., which serves no purpose 
other than bloating the image size. So it should be removed from the object file before link. 

 3/4. The third command will link the object file with your own link script. Then the fourth command will 
dump the headers for each section into  my_output01.elf . 

 Table  2-1  shows the output of objdump 1 .  

   1  Depending on the processor type and compiler version, the actual output might be slightly different 
from what is demonstrated here.  

   Table 2-1.    Objdump Output with  Link Script 01        

  Idx    Name    Size    VMA    LMA    File off    Algn  

  0    my_code    0000001b    00001300    00001300    00000300    2**2  

  CONTENTS, ALLOC, LOAD, READONLY, CODE  

  1    my_data    0000000c    0000131c    0000131c    00000334    2**2  

  CONTENTS, ALLOC, LOAD, DATA  

  2    .bss    00000080    00001900    00001900    00000900    2**5  

  ALLOC  

  3    other    00000000    00001328    00001328    00000328    2**2  

  CONTENTS, ALLOC, LOAD, CODE  
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 For now, let’s put aside the difference between VMA and LMA and consider them as the load address for 
each section. As you can see,  my_code  and  my_data  are both in the SRAM segment starting at 0x1300. 
And . bss  is in the DDR starting at 0x1900. If you tell ICE to load this image, these are the addresses that 
ICE will use.     

      Flash Image and XIP   (Execute In Place) 
 A few subtle details are intentionally omitted from the previous example, and these details will be put under 
the microscope here. Before we get started, I want to raise two questions that concern many:

•    On the first day when we were learning C language, we were told that  main()  
function is the start of our program, which is largely true. Then we put a  printf 
("Hello World!")  in the  main()  function to hail the world. For anyone who tries 
to learn C, such “Hello World” practice is probably the universal starting point. But 
have you ever wondered what happens before the  main()  function? Does the CPU 
just magically jump onto the  main() ? Who is setting up the calling stack? And where 
does the  printf()  come from?  

•   Now you know that bootloader is the first program to run after reset, so nobody 
is going to load the bootloader. Bootloader has to help itself. However, since it is 
the first program to run, bootloader is always stored in some type of non-volatile 
memory, such as NOR-Flash or EEPROM. How do you run code straight from 
read-only memory? (It is usually impractical to write a single word to Flash or 
EEPROM on the fly.) In  other   words, how do you handle the . data  and . bss  sections 
in this case?    

   C Runtime Library and  C Standard Library      
 This issue is not only confined to programs running out of Flash. In fact, it is a broad question that any 
developer has to ask. However, if you are just developing applications being loaded by OS, the OS and the 
compiler will answer this question for you without your involvement. But for those more primitive 
programs that run from Flash after a power reset, the developer has to do more than just keep his eyes on the 
 main()  function. 

 Here’s what happened (a line borrowed from Tony Shalhoub (Ref  [  8  ] )): 
 For a program like the “Hello World” in Listing  2-4 , the compiler has to find two things in addition to 

 main()  in order to pass the link stage: the C  runtime library  and the C  standard library.  (Sometimes 
“C standard library” is shortened to “C library”.) 

       Listing 2-4.    “Hello World”   

  #include "stdio.h"  
    void main()  
  {  
      printf ("Hello World\n");  

    } // End of main()  
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      The   C runtime library is usually written in assembly language and takes the name like  crt0.s  or 
 startup.s . As its name implies, it needs to set up the runtime environment before the code in the  main()  
function can be executed, which includes:

    1.    Initializing the hardware, such as CPU cache and MMU, if necessary.  

    2.    Setting up the stack.  

    3.    Initializing the . bss  section to all zeros in the memory.  

    4.    Calling the  main()  function.     

 For application developers, the compiler would provide a default runtime library during the link stage, 
which is good enough in most cases. However, for programs like the bootloader, the developer has to provide 
its own runtime library in order to set up the environment correctly. It will be the first code to run after a 
power reset. 

    Now let’s talk a little bit more about the  printf ("Hello World!")  in Listing  2-4 . As some of you might 
have known,  printf()  is a routine defined in the ISO C standard. The implementation of those standard 
routines is defined in the C standard library, or C Library for short. If you use any of such standard routines 
in your program, compiler would then link the C standard library. 

 For the program in Listing  2-4 , if this program is to be compiled and run as an application under an 
OS environment, the OS would initialize the console hardware long before this program is loaded. And the 
compiler would probably use its default C standard library at link time. 

 However, if this program is to be compiled and run out of Flash after power reset, like the bootloader is, 
there are a few things you have to be aware of:

•    The  C runtime library   would need to initialize the console before the  main()  
function is called in order for  printf()  to work properly. You have to provide your 
own runtime library to the compiler.  

•   You have to pay attention to the size and efficiency of those routines in the C standard 
library. For many embedded systems, there are very restrictive constraints on space 
and timing. Sometime, those routines in the default C standard library turn out to be 
too bulky or too slow. Or even worse, they could have hidden surprises in store.    

 In order to reduce the footprint or save CPU cycles (reduce MIPS), you can do the implementation 
yourself instead of relying on the standard library. Or if you have to, you could use a different C standard 
library that is optimized for embedded development. 

 For example, there are math functions provided by standard library, such as  sin()  or  sqrt() . However, 
some standard library may implement them in a slow fashion, such as by using an iteration method. In order 
to meet real-time requirements, you could rewrite these math functions using a look-up table, which would 
be a lot faster. 

 Also, there are  some   C standard libraries that are optimized for embedded systems. One of these 
libraries is μClibc, which has a smaller footprint than the GNU C Library (Ref  [  9  ] ). 

 Watch out for  printf() ! Depending on the particular flavor of implementation,  printf()  could sneak a lot of 
fat into your image size. And it might also demand a big stack size (Ref  [  25  ] ). 

 The bulkiness of  printf()  is mainly caused by the need to support a wide variety of format options (Ref  [  26  ] ). 
If size is a concern, you could use a C library that implements a simplified version of  printf() . Or, if applicable, 
you could choose not to use  printf()  at all and use something like  puts()  instead.  
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    VMA and LMA   
 If your image is intended to be loaded into RAM and then executed, you only need to tell the linker one 
address. In other words, the RAM address you load your image into is also the address you execute your code 
from. There is no ambiguity here. You can store your image in any type of non-volatile storage, be it a Flash or a 
hard disk. (Note that in this case, if you store your image on a Flash drive, the Flash does not have to be mapped 
into the address space as long as you have a way to access it. You can even have file system on the Flash.) 

    However, things are more complicated if you execute code straight from non-volatile memory, such 
as Flash or ROM. Under such circumstances, the non-volatile memory must be mapped into the system 
address space. (This is called XIP—Execute In Place.) 

 Now this begs the question: For any XIP image, how do you deal with writable sections, such as . data  
and . bss ? 

 When you are running code from Flash or ROM, you have to copy the . data  section from Flash or ROM 
into RAM. Also, you have to initialize the . bss  to all zeros in RAM. Such copy and initialization are supposed 
to be done by the runtime library or any startup code. ( crt0.s  or  startup.s , as mentioned). Because of 
such copying, you have to provide two addresses in the link script for the . data  sections. One is the ROM 
address where it is stored, which we call  LMA  (Load Memory Address). The other is the RAM address where 
it is accessed from, which we  call    VMA  (Virtual Memory Address). Both addresses are mapped into a system 
address space. 

 Probably some hands-on examples would illustrate this better. Let’s revisit the  lost.c  file you saved 
in Lab 2-1. 

 ■   Labs   You will reuse the source file  lost.c  that you had from Lab 2-1. But this time you will link it to a 
different link script, as shown in Listing  2-5 . Let’s call this link script  link_script02.x .  

      Listing 2-5.    Link Script :  link_script02.x     

  MEMORY  
  {  
      ROM  : org = 0x200, len = 0x1000  
      SRAM : org = 0x1300, len = 0x300  
      DDR  : org = 0x1900, len = 0x200  
  }  

    SECTIONS  
  {  

      my_code :  
      { *(.text); } >ROM  

      my_data :  
      {*(.data);*(.rodata);} >SRAM AT>ROM  

      .bss :  
      {*(.bss);} >DDR  

      other :  
      {*(.*);} >SRAM  
  }  
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     LAB 2-2: THE VMA/LMA/ROM IMAGE

 The main difference between  link_script01.x  and  link_script02.x  is in the  my_code  and  my_data  
sections. This time you want to store them in the ROM, but the data section has to be loaded into RAM 
after power-up, since we need to modify its content. You’ll designate this special requirement by putting 
a  AT>ROM  at the end of the  my_data  section. 

 Compile  lost.c  again with this new link script: 

   $> gcc -fno-exceptions -c lost.c  
  $>  
  $> objcopy --remove-section=.comment lost.o  
  $>    
  $> ld -o my_output02.elf -T link_script02.x lost.o  
  $>  
  $> objdump -h my_output02.elf  

    Table  2-2  shows the output of  objdump .  

   Table 2-2.    Objdump Output with  Link Script 02        

  Idx    Name    Size    VMA    LMA    File off    Algn  

  0    my_code    0000001b    00000200    00000200    00000200    2**2  

  CONTENTS, ALLOC, LOAD, READONLY, CODE  

  1    my_data    0000000c    00001300    0000021b    00000300    2**2  

  CONTENTS, ALLOC, LOAD, DATA  

  2    .bss    00000080    00001900    00001900    00000900    2**5  

  ALLOC  

  3    other    00000000    0000130c    0000130c    0000030c    2**2  

  CONTENTS, ALLOC, LOAD, CODE  

 As you can see, the  my_code  section has the same LMA  and   VMA value—both are equal to the starting 
address of ROM, which means the code will be stored in this ROM address and executed in place (XIP) 
from the same address. This makes sense since you expect the code to be read-only. (One exception to 
this rule is the self-modifying code, which will be visited in later chapters.) 

 However, also notice that  the   VMA and LMA of the  my_data  section now have different values. After 
power-up, the runtime library will copy the . data  section from LMA (ROM address) to  VMA   (RAM 
address) so that it can be modified if necessary. 

 Since you are going to store  my_code  and  my_data  in ROM, it is imperative to see what the actual ROM 
image looks like. You can generate the ROM image using the following command: 

   $> objcopy -O binary my_output02.elf my_output02.bin  
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    Open this raw binary image with Ultraedit (or any other tools that can view binary files): 

     Offset                     Content   

    00000000h:  55 89 E5 83 EC 10 C7 45 FC DD CC BB AA A1 08 13  
  00000010h:  00 00 C6 80 00 13 00 00 00 C9 C3  04 08 0F 10 17   
  00000020h:   2A  00 00  AA 9C 8B 7A     

     If you compare notes against the original source file ( lost.c  in Listing  2-3 ) and the link script in 
Listing  2-5 , the following will come to your attention:

    1.    In  lost.c , there is a global array called  lost_candidates[] . The initial value 
of this array can be found at offset 0x1B. This marks the beginning of the . data  
section. And the offset 0x1B matches what you have in the link script. 
(0x1B = LMA of  my_data  ROM starting address = 0x21b - 0x200.)  

    2.    There are two bytes of zero padding at the end of  lost_candidates[]  to make it 
align to the 32-bit boundary. This is done automatically by the compiler.  

    3.    There is a constant integer in  lost.c  (John_Locke = 0x7A8B9CAA), which can be 
found in the raw binary image right after the  lost_candidates[]  array. This marks 
the . rodata  section (read-only data).  

    4.    There is also an uninitialized array of 128 bytes called  jungle[128]  in  lost.c , 
which sits between array  lost_candidates[]  and constant  John_Locke  
in the original source code. However, this uninitialized array is nowhere to be found 
in the raw binary image (The total size of  my_output02.bin  is less than 128 bytes). 
In fact, this uninitialized array will be in the . bss  section. After power up, the runtime 
library will initialize the . bss  section to zero in the RAM (VMA = LMA = 0x1900 in 
this case). The ROM image does not contain a . bss  section.  

    5.    Note that the raw binary image you’ve just generated is not functionally complete 
yet. The biggest missing piece is the runtime library (or any startup code). 
You need the runtime library to load the .data section into RAM and zero out the 
.bss section.      

 As you learned from Lab 2-2,    VMA and LMA could be different for the ROM image. The . data  
section needs to be copied from ROM into RAM, and the . bss  section needs to be initialized to zero at its 
corresponding RAM address. These are all done by the runtime library. The whole XIP flow for Lab 2-2 is 
illustrated in Figure  2-3 .     
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  Figure 2-3.    Execute in place (XIP) from a ROM  image         
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     Flash Memory 
 Most likely, your  bootloader   will be saved in Flash memory, which has its own idiosyncrasies. 

     Burn the Flash ( PROM Program  ) 
 After the ROM image is produced, it has to be burned into an actual PROM (Programmable ROM) device. 
Most likely, the PROM device will be Flash memory. 

 You can program the Flash memory with a pure software approach since most Flash memory chips 
support the command set for read/write/erase. Commercial bootloaders usually have drivers for various 
Flash memory chips. 

 However, this now begs the question: At the beginning, how do you put the bootloader image itself into 
a blank Flash? 

 If your flash memory chip is soldered onto the board, you can program the blank Flash through the 
JTAG/SPI/I 2 C interface (the ISP approach). 

 Or you can solder a socket on the board to anchor the Flash (such as a socket for TSOP or QFP package), 
and program your blank flash through a universal programmer (Ref  [  10  ] ). The socket approach has its merits 
in the early development stage. By putting a socket instead of a pre-determined Flash chip on the board, the 
developer can easily try out pin-compatible Flash memory chips from various vendors with different sizes 
without resorting to PCB rework. 

 Whether you use ISP or a universal programmer, you need to have an image file ready (like those files 
generated by  objcopy .). There are a few options for the image file format:

•     Binary format : Although it comes straightforward, the binary format does not contain 
checksums for itself, and most text editors don’t handle binary files very well.  

•    Motorola S Record, Intel HEX and Tektronix Extended HEX : These are text file formats 
defined by different companies to represent binary content. They are all aimed to 
overcome the drawbacks inherited by the binary format.  

•    Proprietary format : If the flash chip is from a FPGA vendor to be used as a 
configuration device for FPGA (such as Altera EPCS64/128), the vendors sometimes 
define their own file format. For example, Altera has its own . pof  format when you 
use Quartus software (Ref  [  30  ] ) to program its Flash through JTAG.    

 Note that although JTAG is popular as a way to program the Flash in system, it is not the only interface. 
Instead many serial flash/EEPROM can be programmed in system through I 2 C or SPI. For embedded 
systems, a serial flash/EEPROM with very small size (a few bytes typically) can be used to store vendor ID 
and device ID (Ref  [  12  ] ), while large serial flash/EEPROM (in the order of KB or more) can be used to store 
the whole boot image. Some microcontrollers, such as the 8051 in Ref  [  27  ] , support serial Flash/EEPROM as 
a boot option. During power up, the boot image will be copied from serial Flash/EEPROM to on-chip RAM 
automatically by the microcontroller.  

      NOR Flash   and NAND  Flash   
 Although Flash memory was frequently mentioned in previous chapters, I did not provide details on the 
corresponding physical devices. I was reluctant to do so because there are many devils hiding in those 
details. And now is the time to let them out. 

 In terms of semiconductor technologies, there are two kinds of Flash memory being manufactured 
today: NOR and NAND. The semiconductor processes for them are beyond the scope of this book. In-depth 
information for Flash memory manufacturing can be found in Ref  [  15  ]  [  16  ]  [  17  ] . As far as developers are 
concerned, the difference between NOR and NAND are shown in Table  2-3 .  
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 If you take a close look at the datasheets of NOR Flash (Ref  [  15  ] ) and NAND Flash (Ref  [  16  ] ), you will 
notice that NOR Flash has separate address bus and data bus. In other words, the interface of NOR Flash 
is pretty close to that of SRAM’s. In fact, NOR Flash is good at random reading, and it does not carry any 
bad block out of factory. This makes NOR Flash suitable for storing bootloaders. On the other hand, NAND 
Flash’s interface is not so straightforward. The developers have to jump through hoops to get the job done. 
So the conventional wisdom is to use NOR Flash for code storage (such as bootloader or OS image) while 
have NAND Flash as mass data storage. 

 However, the ecosystem of Flash world has gradually changed over the past ten years. With the advance 
in MLC (Multi-level Cell) technology and the fine tuning of SLC (Single Level Cell), NAND Flash has greatly 
reduced its cost per bit through significantly higher density. In the meantime, CPU manufacturers and 
NAND Flash manufacturers have worked jointly to support direct booting from NAND Flash, mainly through 
code shadowing, as illustrated in Figure  2-4 . 

   Table 2-3.    Differences  Between   NOR Flash and  NAND Flash        

 NOR Flash  NAND Flash 

 Random Read Access  Support  None/partial support 

 Density  Low  High 

 Cost per Bit  High  Low 

 Bad Block out of Factory  No  A small percentage 

 Read Interface  SRAM like  I/O, disk like 

 Write/Erase Time  Slow  Fast 

 Burst Access  Slow  Fast 

  Figure 2-4.    Code shadowing  for   NAND  Flash         
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    1.    To do code shadowing, the CPU’s memory controller has to support a NAND 
interface. Take TI OMAP 35x (Ref  [  28  ] ) for example. The OMAP 35x family has a 
GPMC (General Purpose Memory Controller) interface. It is a bus protocol for 
TI OMAP processor to talk to external memories. A similar bus protocol called 
EIM (External Interface Module) can be found on the NXP iMX processor 
(Ref  [  29  ] )) that could talk to NOR Flash, SRAM, or NAND Flash, depending on the 
configuration.  

    2.    The CPU has to have a minimal amount of ROM code that can copy the 
bootloader from NAND Flash to RAM. And the physical NAND Flash chip that 
interfaces with the CPU should be supported by such ROM code (Boot ROM). 
Bootloader can be executed in place (XIP) after it is copied into RAM. This code 
copying process is usually called  code shadowing .  

    3.    Since NAND Flash is good at burst reading, DMA could be used to reduce the 
copying time.  

    4.    Since NAND Flash inherently has bad blocks out of factory, ECC code needs to 
be in place to guarantee data integrity. Some CPUs, such as OMAP 35x, have 
a built-in ECC calculator to help the number crunching. Meanwhile NAND 
Flash manufacturers have also done some work on their end. For examples, 
manufacturers now supply some models (Ref  [  17  ] ) of NAND Flash with the first 
block always valid so that no ECC is required for the first block. Bootloader thus 
can be stored in this block.     

 While NAND Flash is bettering itself, new processes are also introduced to NOR Flash (Ref  [  18  ]  [  19  ] ) 
to boost its single chip capacity over 512Mbits. Meanwhile, different flavors of memories now can be put 
into the same chip thanks to the MCP (Multi-Chip Packaging) and POP (Package on Package) technologies 
(Ref  [  20  ] ). So my suggestion is to shop around for new designs to get the best Flash solution in terms of cost 
and complexity.  

      Pre-Loader      
 In reality, SoC chips today can have a booting process more complicated than what’s shown in Figure  2-4 , 
and using boot ROM can offer more flexibility. Depending on the configuration, the boot ROM can support 
booting options from multiple sources, such as NOR Flash (XIP), NAND Flash, serial port, USB, Ethernet, 
etc. The NAND flash is not limited to raw chips; it can also be a MMC (Multi Media Card) or SD (Secure 
Digital) memory card that has file systems on it. 

 Sometimes an intermediate stage called pre-loader might be introduced between the boot ROM and 
the bootloader. This usually happens when the bootloader has a footprint much bigger than the available 
SRAM. Under such circumstances, the boot ROM will begin loading a lightweight bootloader—called a 
 pre-loader —into SRAM and then hand control to it. The main job of pre-loader is to initialize hardware, 
especially the DDR RAM, and prepare for the next loading stage. 

 From that point forward, the pre-loader could either load the full-blown bootloader into DDR, or it 
could load the OS directly, as illustrated in Figure  2-5 .  
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 Some bootloaders, such as U-Boot, offer options to make a pre-loader in their building and 
customization process. In U-Boot, this pre-loader is called  SPL   (Secondary Program Loader, Ref [  24  ] ), and it 
is in fact a lightweight bootloader with a small footprint.  

      Flash File System      
 Flash devices are different from hard disks in that Flash devices need to go through an extra erasure cycle 
prior to a write cycle. The block sizes of Flash devices are much bigger than their hard disk counterparts. 
Typical block size for Flash devices can be somewhere between 16KB to 512KB, while the sector size of a 
hard disk is usually 512 bytes. Also each block on a Flash device can only survive a limited number of P/E 
(Program/Erasure) cycles, which means load balancing (wear-leveling) is necessary for Flash devices. 
For NAND flashes, bad block management is also a must-have because NAND flash would carry a certain 
amount of bad blocks out of factory. 

 Due to such quirkiness, Flash devices’ file systems would be different from those used on hard disks. 
Commonly used flash file systems are discussed in the following sections. 

    RomFS, CramFS, and SquashFS   
 These are all read-only file systems. Folders that contain your object modules and executables are good 
candidates for these file systems, and they take less time to mount during system boot up. 

 Among these file systems, the RomFS code base is the smallest, and so is its memory consumption. 
However, due to its simplicity, it does not support compression. 

  Figure 2-5.        Pre-loader         
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 On the other hand, CramFS and SquashFS are both compressed file systems. CramFS is widely used 
by embedded Linux, but it carries some limitations on file size, maximum number of user IDs and group 
IDs, etc. (Ref  [  21  ] ). And these limitations are lifted by SquashFS. However, when it comes to Flash devices, 
neither of them has native support for bad block management. You have to take extra care when using them 
on NAND flashes. 

    Under Linux, you can use  genromfs  2 ,  mkcramfs , 3  and  mksquashfs  4  to create images for those file 
systems. After you have made your image, you can burn it onto the Flash with the help of bootloader and 
configure your embedded OS to mount these image partitions.  

    JFFS2, YAFFS2, and UBIFS   
 These Flash file systems support read and write operations. Since it is always a lengthy process to 
program/erase Flash devices, file systems that support Flash write must also have journaling (log) capability 
in addition to all the requirements mentioned earlier (wear-leveling, bad block management, etc.). With 
journal file systems, every write operation is logged before it is committed to the physical devices. If write 
operations are interrupted by common occurrences like power failure or system crash, the file system can 
be remounted quickly without going through a recovery process (disk scan) or leaving corrupted nodes on 
the flash. 

 Under Linux, you can use  mkfs.jffs2  5 ,  mkyaffs2image , 6  and  mkfs.ubifs  7  to create images for those 
file systems. 

 As for which one you should choose for your design, it’s all in the eye of the beholders, and there are no 
carved-in-granite rules on this. For more information, refer to Ref  [  21  ]  [  22  ]  [  23  ]  for the pros and cons of each 
file system.    

     Summary 
 To summarize, bootloader has the following important traits:

•    It is the first program to be executed after power on.  

•   It has to find a way to load itself into RAM or to be executed in place (XIP).  

•   It loads image files into memory and executes them. Image files are composed of 
multiple sections, like code, data, bss, etc.  

•   It is saved in Flash memory. There are two kinds of Flash: NOR and NAND.    

 And for any code (including bootloader) to be executed, you need CPU, memory, and bus. The next 
chapter discusses them in detail.      

   2  genromfs package needs to be installed if it is not readily available.  
   3  It could also be  mkfs.cramfs  on some Linux systems.  
   4   squash-tools  needs to be installed.  
   5  The  mtd-utils  package needs to be installed to make the  make.jffs2  command available.  
   6  This command needs to be built from source code if it is not readily available.  
   7  Kernel source code and  mtd-utils  source code are needed to build the  ubifs  utilities.  
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Chapter 3

Inside the CPU

Help Desk: Double-click on “My Computer”
User: I can’t see your computer.
Help Desk: No, double-click on “My Computer” on your computer.
User: Huh?
Help Desk: There is an icon on your computer labeled “My Computer”. Double-click on it.
User: What’s your computer doing on mine?

—How to be a Good Teacher, by Rupal Jain

As you’ve seen, the CPU is the command and control center of each and every embedded system. Ever 
since the time when the first computer was conceived, many great minds have dedicated the better part of 
their lives to new CPU architectures. The topic of CPU architecture is too pandemic to be discussed here. 
Inquisitive readers would be better served by Ref [1][2] and other good books on this topic. Fortunately, as 
far as embedded systems are concerned, only certain parts of it matters to your development practice. This 
chapter tries to glean these pieces.

Von Neumann Architecture and Memory Barrier
In terms of CPU architecture, there are two main camps: Von Neumann Architecture and Harvard 
Architecture. The family tree of the Von Neumann Architecture goes back to the days when the first digital 
computer was born, and the essence of the Von Neumann Architecture is “stored-program”. Basically, this 
means data and code share the same address space, and they are stored in the memory without explicit 
effort to distinguish them, as shown in Figure 3-1.
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Thanks to such indiscrimination of code and data, the following engineering practice became possible:

•	 Self-modifying code. Under the Von Neumann Architecture, It is possible to generate 
instructions dynamically as data, and then execute them as code. However, such 
practice is largely discouraged in the embedded system development because it 
would complicate the matter without obvious benefit. Unless you believe you have a 
strong case for your particular application, stay away from self-modifying code.

•	 Since there is no explicit difference between data and code, bootloader can initially 
treat user images as pure data and load them into the memory. Afterward, these 
images can be executed as instructions. A typical case would be your PC. Every time 
you turn on your PC, the BIOS on the motherboard will start to load the Windows 
image (Excuse me for this presumption.) from hard disk into your RAM and 
Windows will take over your computer.

So if you decide to do something similar to the behavior of bootloader, the pseudo-code may look  
like Listing 3-1.

Listing 3-1. Attempt to Turn Data into Code

...

(1)   initialization

(2)   load code into memory address #A

(3)   Jump to #A to execute the new code

Figure 3-1. Von Neumann Architecture
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However, things are actually more complicated than this:

 1. Modern CPUs all have pipeline structure. Instructions could be pre-fetched  
or speculatively executed. To be on the safe side, before Step 3 is executed in 
Listing 3-1, it is better to flush the pipeline.

 2. Many modern-day CPUs are in fact hybrids of the Von Neumann Architecture 
and the Harvard Architecture. A typical case is to use a separate I-Cache 
(Instruction Cache) and D-Cache (Data Cache) while keeping a unified address 
space for memory. After Step 20 in Listing 3-1, D-Cache might contain something 
that is actually code. They need to be invalidated.

 3. The compiler might do some optimization that you are unaware of. 

For the scenarios 1 and 2 mentioned above, extra steps have to be taken to guarantee the CPU’s normal 
behavior. In fact, whenever code is treated as data, a sequence of special instructions must be used to ensure 
consistency between the data and the instruction streams processed by processor (Ref [10]). Such special 
instructions are usually called the “memory barrier”. The memory barrier instructions are unique to each 
type of CPU. For uni-processor systems, they are often composed of instructions to flush the pipeline or 
invalidate the cache.

Note that the memory barriers are hardware memory barriers. They should be applied to make the CPU 
hardware behave normally. However, compilers would also do optimizations to change the order of load 
and store. When the data is going to be executed as instructions, such compiler optimization could cause 
unintended consequences. Fortunately, most mainstream compilers offer memory barrier macros/functions 
(such as _ReadWriteBarrier in Microsoft VC++) to prevent moving memory instructions across the memory 
barrier. So to be on the safe side, it is suggested for developers to insert a hardware memory barrier and a 
compiler memory barrier between Steps 2 and 3 in Listing 3-1, which will make the process look like Listing 3-2.

Listing 3-2. Apply Memory Barrier

...

(1)   initialization

(2)   load code into memory address #A

(3)   >>> Compiler Memory Barrier Macros/Functions
(4)   >>> hardware memory barrier

(5)   Jump to #A to execute the new code

Note that this discussion is based on the assumption of a uni-processor system. For dual-processor  
(or multi-processor) systems that have the shared memory, things are even more complicated, as modern-day 
CPUs may often execute instructions out of order to boost performance. And memory barriers have to be 
carefully applied to all processors to guarantee the proper data exchange through shared memory. 

Harvard Architecture, Modified Harvard Architecture
Different from the Von Neumann Architecture, the Harvard Architecture uses two separate physical spaces 
(two address spaces) to store code and data, as shown in Figure 3-2. The plus side of such an arrangement 
is that instruction fetching and data access can happen at the same time, which greatly increases bus 
throughput. Thus for the same clock frequency, a CPU of the Harvard Architecture usually has better 
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performance (speed) over its Von Neumann counterpart, and is thus widely adopted by many digital signal 
processors, like TI’s C55x (Ref [4]) and ARM’s ARM9 (Ref [1]). However, like all digital designs, the Harvard 
Architecture obtains the speed advantage at the expense of a larger area1.

Figure 3-2. Harvard Architecture

Side NoteS

For CMOs circuits2, the dynamic power is estimated by

    P C V fdynamic DD= × × ×a 2   equation 3-1 (ref [5])

where α is the activity factor, C is the load capacitance, VDD is the supply voltage, and f is the clock 
frequency. In this sense, the relatively low clock frequency of the harvard architecture is good for 
dynamic power3. however, as CMOs manufacturing processes advance into deep micron territory, high 
leakage has made static dissipation (quiescent power) on the same order of dynamic dissipation, which 
works in disfavor of the harvard architecture’s larger area. thus you should be careful not to jump to 
any immediate conclusions when you judge power dissipation based on CpU architectures.

For general-purpose microprocessors, Intel’s 8051 (its CMOS counterpart is 80C51) epitomizes what 
a typical Harvard Architecture ought to be. It has two separate address spaces for code and data. Code is 
stored in ROM and executed in place (Ref [3]). Although it is only an 8-bit processor, it is still extensively 
supported by many IC vendors today.

However, for the Harvard Architecture, such “XIP from ROM” solution is not suitable for everybody.  
The separation of code space and data space actually puts a strain on the bootloader. Some CPUs solve  
this by having a special load option that loads code from Flash/EPROM into code space during boot time. 
Others tackle this by providing instructions to move things between code space and data space if necessary. 

1The trade-off between area and time will be covered in later chapters for FPGA design.
2Most digital chips manufactured today (including most CPUs) are in the CMOS process.
3Power dissipation is a very involved subject that is beyond the scope of this book. Readers can refer to Ref [5][9][10] for 
more information.
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The latter one is sometimes called the Modified Harvard Architecture. Since the Modified Harvard 
Architecture raises the possibility of treating code as data, a memory barrier can be used to make the CPU 
behave properly.

To explicitly distinguish between code and data, some CPUs with a Harvard Architecture will use 
a flag called NX bit (No-eXecute bit) to mark memory regions dedicated to data. However, this idea was 
soon borrowed by the Von Neumann camp for security reasons, which is often used to prevent virus code 
disguised as data from being executed.

Also note that for digital signal processors of the Harvard Architecture, they usually carry internal 
memories (separately for code and data) that are close to the CPU core. For example, ARM9 has something 
called TCM (Tightly Coupled Memory) for code and data. These TCMs are independent of I-Cache/D-Cache, 
and can be accessed with low latency and high throughput. In addition, external memories, like DDR, can 
also be accessed by ARM9 through an AHB bus. Developers should always squeeze time critical code  
(hard real-time) into internal memory while keeping the non-real-time part in external memory through the 
proper setup in the link script.

CISC and RISC
The holy war between CISC and RISC started long before I graduated from engineering school. Arguments 
from both sides galore are on the Internet, and conclusions can be found in Ref [2]. I just want to offer my 
two cents from the perspective of a FPGA designer/firmware engineer.

As I will reiterate in later chapters for FPGA, there are only three major ways to improve the throughput 
of a digital design: pipeline, parallel processing, and ping-pong buffer. In the early days when CPUs were 
being designed, memory size was small and memory prices were high. Clock frequency was relatively low 
though. So naturally when people were designing instruction sets, they tended to make each instruction do 
as much as it could, which led to instruction set with the following characteristics:

•	 Instructions become irregular. Due to the multitude of addressing modes, some 
instructions were longer than others. Complicated instructions took more clock 
cycles to complete than simple instructions.

•	 The mushroom of complicated instructions amounts to a perplexing datapath4  
when they are implemented in hardware.

Computers of such instruction sets are called CISC (Complex Instruction Set Computer). And I believe 
CISC designers later found themselves having a difficult time pushing for pipeline and parallel processing, 
thanks to the cumbersomeness inherited instruction set. The inefficiency of pipeline implementation and 
the large granularity at the instruction level made it very hard to boost clock rate or throughput.

Thus CPU designers started to move away from the CISC-style CPU in favor of more concise instruction 
sets. RISC (Reduced Instruction Set Computer) designs become more and more popular. RISC design 
advocates a regularity in instruction length and format. Except for memory load/store, most instructions 
only operate on registers and immediate numbers. Regularity makes pipeline more efficient, and the  
average lightweight instruction means smaller granularity, which is good for exploiting parallelism at the 
instruction level.

At this point, a safe bet is that 90% of the CPUs on the market are RISC implementation. Here  
I’ve used the phrase “RISC implementation” because some CPU families, like x86 and 8051, include a  
strong CISC legacy. Due to the astronomical prevalence of legacy software, it is incumbent on them to be 
binary-compatible with existing code bases. So they choose to support CISC instructions at the software 
level and translate CISC instructions into internal RISC operations through hardware (Ref [1][6]).

4Datapath and controller will be covered in later chapters for FPGA.
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The popularity of RISC CPUs made pipeline a universal reality. Pipelines can introduce certain 
awkwardness on the software side. Developers might have to do some optimization in the following two aspects:

 1. Delay Slot

Pipeline favors a constant flow of instructions. And we all know this is not always 
the case given the complicated nature of software. Load instructions and branch 
instructions are the two main culprits that can stall the pipeline. Due to the relatively 
slow nature of external bus/memory as opposed to CPU main clock, the data 
that is being loaded may not be readily available at the next pipeline stage. So the 
instructions immediately following the load cannot operate on this data right away, 
as shown in Listing 3-3 (such dark period after load/branch is called a delay slot).

Listing 3-3. Pipeline Data Hazard

regB <= regB + 1

load register : *(mem addr) => reg A

regA <= regA + 1 (cannot be done by pipeline!)

An easy way to fix this is to put NOP instructions after the load, as shown in Listing 3-4.

Listing 3-4. Fill NOP in the Delay Slot

regB <= regB + 1

load register : *(mem addr) => reg A

NOP (assume there is one delay slot for load)

regA <= regA + 1

To fine-tune the performance and better utilize the delay slot, developers can put instructions that do 
not depend on the load/branch into this slot, as shown in Listing 3-5.

Listing 3-5. Fill in the Delay Slot with Unrelated Instruction

load register : *(mem addr) => reg A

regB <= regB + 1 (assume one delay slot for load)

regA <= regA + 1

Although this example is for load instructions, the same can be said for branch instructions. Compilers 
can support delay slot optimization automatically or through compiler switch. If assembly is used for 
programming, as many DSP programmers would prefer, such tricks have to be applied manually.

 2. Loop Unrolling

Loop unrolling is not entirely confined to RISC CPUs. However, loop unrolling 
will open more doors for optimization when pipeline and delay slot are involved. 
As shown in Listing 3-6, assuming one clock cycle of loop overhead and one 
delay slot for load instruction, it takes roughly 64 cycles to finish the main loop 
(16 cycles of loop overhead, three cycles of execution time each loop).
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Listing 3-6. Loop without Loop Unrolling

regA <= start address

regC <= 0

for (i = 0; i < 16; ++i) {

     load : *(regA++) => regB;
     NOP;
     regC <= regC + regB;

}

Now if you tried loop unrolling by two fold, you would have something like Listing 3-7.

Listing 3-7. Loop Unrolling

regA <= start address
regAA <= regA + 8;

regC <= 0;
regCC <= 0

for (i = 0; i < 8; ++i) {

     load : *(regA++) => regB;
     load : *(regAA++) => regBB;
     regC + regB => regC;
     regCC + regBB => regCC;

}
regCC + regC => regC;

After loop unrolling, the main loop takes 40 cycles to finish (eight cycles of loop overhead and four 
cycles of execution time for each loop). The saving comes from reduced loop overhead as well as better 
optimization for the delay slot.

Lastly, to avoid any possible confusion, be advised that the term CISC/RISC is mainly about instruction 
sets and corresponding hardware implementation, while the concept of Von Neumann/Harvard in previous 
sections deals largely with memory bus layout. As shown in Table 3-1, any combination of CISC/RISC and 
Von Neumann/Harvard is possible.

Table 3-1. CISC/RISC and Von Neumann/Harvard

Von Neumann Harvard

CISC Intel 80386 Intel 8051

RISC Intel Pentium II5 ARM926

5Strictly speaking, it is a hybrid of Von Neumann and Harvard, with a unified memory address space and separate L1 
caches for instruction and data.
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SIMD/VLIW
As I mentioned, there are only three major ways to improve the throughput of digital design: pipeline, 
parallel processing, and ping-pong buffer. Thus it’s natural to want to add multiple PEs (processing 
elements) to the hardware. Ideally, if you place n PEs in parallel and keep them all busy in each instruction 
cycle, you can increase the throughput by a factor of n.

CPUs using this approach are called SIMD or VLIW processors. (My understanding is that processing 
elements in SIMD all perform the same function while VLIW does not have this restriction. Consult 
academic pedants for the details.) With this approach, the CPU designer is actually shifting some of the 
optimization burden to the software side. To take advantage of such parallel architecture, the programmer 
has to do the optimization manually or rely heavily on the assistance of compiler. As an interesting side note, 
there is an optimization trick called software pipeline that’s unique to the VLIW architecture. It is kind of like 
loop unrolling with a VLIW flavor. I leave it to the readers to explore further.

CPU Debugging
For engineers, actions always speak louder than words. Our ultimate mission is to keep the whole system 
spinning the way we anticipated. However, like any systems built by human beings, imperfection is part of 
the daily life. So when things go awry, you need handy tools beside poking and prodding to figure out what’s 
going on inside the CPU.

CPU Simulator
One approach is to use software to mimic the behavior of the target CPU, and such software is called a  
CPU simulator. The plus sides to using a simulator is that:

•	 You don’t have to have the target CPU physically available. All you need is a host 
machine (such as a PC) to run the simulator. So hardware costs can be kept low 
during development.

•	 Software engineers can have an early start when the hardware is still being 
developed. As discussed in later chapters, the concurrent workflow of the hardware 
(including FPGA/AISC) and software teams is the norm for embedded system 
development. Simulators can help software engineers catch the majority of bugs 
without involving hardware.

•	 Breakpoints can be set up freely. Register content can be fathomed without 
restriction.

The drawbacks of simulators are also conspicuous:

•	 They run slow. By slow, I mean a factor of 1,000 or more. So the simulation time 
could become a big headache for large projects.

•	 Asynchronous events cannot be faithfully reflected in a simulator. Because of the 
slow code execution, many real-time events, like interrupt from the peripherals, may 
not be consistent with the actual hardware behavior.

So it would be better if you could have something that helps you on the real hardware.
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ROM Monitor
One way to alleviate the pain of bug-bite is to beef up the bootloader—give it better debugging capability, 
like reading/writing the memory and registers. As mentioned, such a bootloader is sometimes called ROM 
Monitor. A more powerful ROM Monitor would even support software breakpoint, making it look a lot 
like the debugger you have on PC/Windows. For many low-end microcontrollers, such as the 8051, ROM 
Monitor provides a low-cost solution for debugging (Ref [7]).

However, as you can imagine, ROM Monitor has its limitations:

•	 ROM Monitor is a piece of software, just like the software it is trying to debug. 
Inevitably, it will consume memory and other hardware resources. For example, 
most ROM Monitors need a debug console to interact with user, which usually 
requires one UART port dedicated for this purpose.

•	 Since ROM Monitor is also a piece of software, its memory space could be corrupted 
by other software, or it might conflict with other software on hardware resources.

•	 ROM Monitor has limited control over the software it is trying to debug. For example, 
if the buggy software is accidentally trapped in an ISR with an endless loop (assume 
UART interrupt is disabled in this case), the debug console would stop responding 
to user input, and you might have a hard time pinning down the PC counter value in 
this circumstance.

•	 By the way, who is going to help those folks who develop the ROM Monitor? Or 
the better question might be: how do you debug the ROM Monitor? Without 
any hardware assistance, this really becomes a chicken and egg dilemma. As the 
complexity of CPU grows exponentially, it becomes more and more challenging to 
write a ROM Monitor anew without any hardware assistance. And it is not a small 
undertaking to even port a generic bootloader, like RedBoot (Ref [2]) or U-Boot  
(Ref [3]), to a new hardware platform.

Come to think of it, ROM Monitor is indeed a software solution for software debugging. With the 
complexity of hardware and software balloons, engineers start to wish for a better hardware tool to probe 
inside the CPU. ICE is one of the answers to such calls.

Introduction to ICE (In Circuit Emulator)
Engineers’ dark days usually begin from the workbench when the reality and the simulator are telling 
different stories. Fortunately, there is a piece of equipment called ICE (In Circuit Emulator) that can rescue 
engineers from these nightmares. There are two types of ICEs in this world: non-JTAG ICE and JTAG-based 
ICE. Analogically speaking, ICE can be viewed as a simulator that runs in hardware.
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Non-JTAG ICE
In the good old days when CPUs were slow and less complicated, ICE was built in the following way  
(see also Figure 3-3):

 1. The PCB board was built with a CPU socket on it. During development, the CPU 
socket was hooked to the ICE box through a cable. Inside the ICE there was a 
target CPU, and this CPU was specially built for debugging purposes, which was 
called bond-out CPU.

 2. Bond-out CPU has many of its internal status wired out (or muxed-out) to the 
outside world for debugging purposes. If there is an internal ROM, such ROM 
will be replaced by external RAM instead. All the bus activity between CPU and 
external RAM will be captured by the ICE hardware.

 3. Because there is no internal ROM for the bond-out CPU, all the instruction fetch 
and memory data access is reflected on the external bus and thus can be closely 
monitored by ICE.

 4. Since the ICE has access to the internal registers through bond-out, it can modify 
the CPU internal status for debugging purposes as well.

 5. When development is finished, a production CPU can be plugged into the CPU 
socket. Or if the socket and production CPU have the same footprint, production 
CPU can be soldered onto the PCB to replace the socket in the release version.
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Figure 3-3. Non-JTAG ICE, production CPU, and CPU socket
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However, with the explosive increase of bus speed and CPU clock frequency, the semi-conductor 
industry’s glitz and glamour has pushed Non-JTAG ICE into a corner:

•	 The increase of bus speed has made it a challenging job to capture the bus activity 
without negatively affecting signal integrity. Signal integrity also becomes more 
pronounced for bond-out CPUs when the main clock rate and CPU complexity both 
have exploded.

•	 Due to their low-production volume, bond-out CPUs are notoriously expensive. 
The fast pace of CPU design and development has made it hard to procure the spare 
parts for bond-out CPUs.

•	 In the good old days, CPUs were offered in packages like DIP or PLCC. It is relatively 
easy to make a socket compatible with such packages. To reduce parasitic lead 
inductance, new CPUs with faster speed grades are often provided in more compact 
packages, like TQFP or BGA. Making socket for such packages usually means pin 
extension, which defeats the purpose of compact package. A workaround is to have 
two versions of PCBs, one with the production CPU in compact package, and the 
other with ICE socket. However, such a workaround would give rise to extra R&D 
cost. And the PCB with ICE socket may not be able to run at top speed due to added 
parasitic inductance and loading from ICE. 

In hindsight, CPU designers are partially responsible for ICE’s misfortune. Initially when they were 
designing the CPU, they did not put in enough hardware to facilitate the debugging task. In other words, 
DFT6 (Design for Test) should be the answer to ease ICE’s pain.

So comes JTAG-based ICE.

JTAG-Based ICE
As mentioned in the previous section, CPU designers are expected to design extra debugging hardware to 
interface with ICE. In fact, some CPU manufacturers have defined their own debugging interface, such as 
Motorola’s BDM. However, over the years, microprocessor industry has pretty much converged on JTAG as 
the standard debugging interface.

JTAG was initially designed for IC I/O test in PCB assembly. It uses a boundary scan chain to control 
and capture the in/out of every IO Pad on an IC, as shown in Figure 3-4. BSCs (boundary scan cells) are 
inserted between the IO pad and the internal logic. Conceptually, BSC can be viewed as a MUX.

6DFT will be briefly covered in later chapters.
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Figure 3-4. Boundary scan
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During normal operation, BSC is in pass-through mode, so there is no impact on the ASIC function. 
Under testing mode, 0/1 bit streams can be clocked into the BSC to set it high or low. Output from the ASIC 
can also be captured by the BSC and clocked out through the scan chain. If there are shorts to ground or 
power rail, they will be detected by clocking in various test vectors through the scan chain. Such boundary 
scan practice has been standardized in JTAG through the definition of connector pins, TAP (Test Access 
Port), etc. A description language called BSDL (Boundary Scan Description Language) was also defined to 
standardize the characterization of JTAG devices (see Figure 3-4).

As you can see, JTAG can be a good way to control and capture the in/out of any digital module. It didn’t 
take long for IC designers to recognize its value as a debugging interface. So designers start to put JTAG 
around not only IO pads but also crucial internal modules. For example, in SoC design, the CPU core vendor 
may expose several JTAG chains for things like CPU core logic, memory systems, co-processors, etc., and 
leave some chain index number unassigned in the TAP controller for external modules. IC designers who 
adopt the CPU core could thus add their application-specific modules and corresponding JTAG chain using 
these unassigned index numbers.

JTAG-based ICE does not put any constraints on the form of the CPU package. The only real-estate cost 
of JTAG-based ICE is the JTAG connector, as illustrated in Figure 3-5.
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Figure 3-5. JTAG-based ICE



Chapter 3 ■ InsIde the CpU

42

For completeness of discussion, note that the scan chain can also be inserted into IC’s internal logic for 
DFT purposes. These scan chains are used to inject test patterns during IC fabrication, and the scan cells7 
used in these scan chains are different from BSC. As far as ICE is concerned, these internal scan chains are 
transparent.

Using Breakpoints
Anyone who has ever used an ICE will know first-hand that using breakpoints are an indispensable tool. In 
fact, any magic box calling itself an ICE would offer breakpoint capability. Engineers are so used to it that 
they take it for granted. But like everything else in the engineering world, the devil is always in the details. 
Here is what’s happening under the hood.

Software Breakpoints
If the target CPU does not have any special hardware to assist the ICE, ICE would implement the breakpoint 
through a software approach. When the user sets up a breakpoint on certain memory addresses, ICE 
replaces the instruction at that address with an SWI instruction. When PC (Program Counter) reaches that 
address, this SWI instruction will be executed and the corresponding ISR prepared by ICE will be triggered8. 
Control will thus be handed to ICE. After ICE gets the control, it will restore the original instruction at the 
breakpoint address and let the user probe the CPU status. Figure 3-6 demonstrates such an approach.

7There are three main types of internal scan chain style: multiplexed flip-flop, clock scan, and LSSD. Refer to Ref [8]  
for details.
8There are many ways to let software trigger interrupts. Using SWI instruction is one of them. Illegal instructions or errors 
like “divide by zero” can also trigger interrupts. Some books call those interrupts triggered by software software traps.

Figure 3-6. Software breakpoints
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The plus sides of software breakpoints is that:

•	 There is no hardware cost associated with using software breakpoints, which 
means there is no limit to the number of software breakpoints that can be set 
simultaneously.

•	 Since software breakpoints do not need any hardware support, they are not  
confined to ICE. Any software debugger can do this, as those popular ones on 
Windows can attest.

Of course, there is always give and take. The downsides of software breakpoints are also conspicuous:

•	 Since the instruction at the breakpoint address has to be replaced, software 
breakpoints cannot be applied on ROM-based code, which could be a problem for 
many XIP bootloaders. Although some ICE vendors have devised ways to circumvent 
this by copying the ROM code to RAM, such an approach would mask out many 
behaviors unique to the ROM-based code.

•	 Debugging ISR might also be a problem for software breakpoints, especially in the 
case when software interrupt is masked out.

•	 Using SWI is an intrusive way to debug, which could cause conflict with some 
embedded OS. You should be careful to make sure the SWI numbers (the parameter 
to the SWI instruction) used by embedded OS do not overlap with those used by ICE.

Side NoteS

When I was working for a big telecom firm, I had the opportunity to write code for a soC chip targeted to cell 
phone applications. I had a realView ICe talking to an arM926 core, with a small real-time Os on it. the Os 
was provided by a third-party company. however, when I downloaded the image through ICe, it always took a 
long time (about five seconds) to reach the main() function, and the Isr behaved weirdly, which made some 
threads response time off the mark (very annoying!). Fortunately the day was saved by Os vendor’s Fae.

It turns out that the Os was also using sWI, and the sWI number somehow conflicted with realView 
ICe’s semihosting feature. For those of you who don’t know, the semihosting works like this: It has a 
library on the target side. When users want to print out something, they can use this library to generate 
sWI and send the data buffer to the host pC through JtaG. Users can thus make a console port out of 
JtaG. Unfortunately, I was caught up in the sWI index conflict without knowing it.

Like many engineering puzzles you’ll face, the remedy seemed easy in retrospect (unchecking the 
semihosting feature on the ICe GUI in this case), but it took some time to figure it out.

Hardware Breakpoints
To overcome the shortcomings inherited from software breakpoints, CPU designers began to place bus 
monitoring hardware inside CPU that oversaw the bus activity. Users configure this hardware through JTAG 
to halt CPU activities when certain memory addresses are being accessed. Since it is all assisted by hardware, 
hardware breakpoints have no side effects on code execution. In other words, hardware breakpoints 
are non-intrusive as opposed to its software counterpart, so ROM-based code is no longer unreachable. 
Unfortunately, the physical constraint of bus monitoring hardware always limits the number of hardware 
breakpoints available concurrently.
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Trace
With JTAG-based ICE and software/hardware breakpoints in the arsenal, engineers can pretty much zap any 
bugs flying in their faces. However, anyone who stays in this bug-hunting business long enough knows that 
the most elusive bugs are those that show up intermittently. Sometimes it takes a long while before the error 
gets triggered.

So when the error does get triggered, it might be nice to have a history of previous CPU activities, which 
is something ICE cannot offer.

Now imagine this: What if you could have a logic analyzer with an extremely high sample rate and an 
unlimited sample buffer? Assume you could use this super logic analyzer to probe the CPU instruction bus 
and data bus. If the error trigger condition were activated, you would know all the instructions that had just 
been executed before the error happened, which could help you catch the bug a lot easier.

Unfortunately, we don’t have such a super logic analyzer right now. Even if we did, no CPU would allow 
its internal bus to be probed by external instruments. However, what if we built a logic analyzer inside the 
CPU? Building a logic analyzer inside the CPU is viable and there is a technical term for this: Trace.

As shown in Figure 3-7, to implement Trace, the CPU designer would place a capture unit (the 
specialized logic analyzer) inside the CPU to record all the CPU’s activities. The captured activity data 
is saved in a Trace buffer and later sent out to a Trace box through the Trace port. To save on CPU costs, 
designer might sometimes move the Trace buffer into the Trace box, and the captured activity data would be 
compressed and transferred to the Trace box directly with a high-throughput Trace port.
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Figure 3-7. Trace
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Trace is a nice complement to ICE, except for the fact that it usually costs more. So engineers may have 
to convince their bosses for the necessity of these extra bucks. Good luck on that!

Also note that the idea of “placing a logic analyzer inside the device” is not only confined to CPU design. 
Later in the book, you’ll learn that the FPGA design includes similar ways to capture the history and status of 
internal logic.

Summary
The main topic of this chapter is the CPU:

•	 There are two CPU architectures in this world: Von Neumann and Harvard.  
The former has a unified address space while the latter stores code and data in 
separate places.

•	 Instruction set is the language that CPU speaks. Currently there are two kinds of 
instruction sets: CISC and RISC. By using pipelines to boost clock rate, modern CPU 
designers are either doing the RISC design directly, or turning the CISC instruction 
set into a RISC implementation.

•	 Various CPU debug mechanisms were also explored in this chapter, such as ROM 
Monitor, ICE, Trace, etc.
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    CHAPTER 4   

 RAM, DMA, and Interrupt                          

    Yeah, Jesus tried to save me, but there was no space left on his memory card.  

 —Computer Joke found online by arucardegungrave   

 Most embedded systems have some sort of memory that can be accessed randomly. There are many types 
of RAM (random access memory) in this world. Each has a different interface and electrical characteristics. 
RAM is the main place to store code and exchange data with the CPU core. The throughput of memory has 
a serious impact on the overall performance. Meanwhile, the use of virtual address vs. physical address in 
modern OS has made things more complicated for memory access. This chapter serves to map out all these 
technical details. 

     Types of Random Access Memory 
 RAM can take on many forms, with different density, latency, and throughput characteristics. 

     NVRAM (Non-Volatile Random Access Memory)       
 This book defines NVRAM as ROM that can be accessed randomly. (There are devices that are actually 
SRAM plus battery and call themselves NVRAM as well. This book is not trying to be pedantic.) Other than 
the read-only attribute, NVRAM is treated pretty much the same as RAM, which is mapped into the whole 
address space. 

 There are many semi-conductor devices that could be used as NVRAM, like EPROM, EEPROM, and 
Flash. Most embedded systems developed today use NOR Flash to implement NVRAM.  

      Traditional SRAM  :  Intel 8080 vs. Motorola 6800   
 SRAM typically has a r/w interface like shown in Table  4-1 , Figure  4-1 , and Figure  4-2 . It is called static  RAM   
because unlike Dynamic RAM, it does not need a circuit to refresh the memory cell. Traditional SRAM 
sometimes is also called 6T SRAM since each SRAM cell is composed of six transistors (Ref  [  1  ] ). If necessary, 
the interface can also be made as asynchronous by forgoing the clock signal.    
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     Table 4-1.    Typical  SRAM Pins     

 Signal  Description 

  CLK   Clock 

  CS* (or CE)   Chip select (or chip enable) 

  A   Address bus 

  OE* (or OD)   Output enable (active low) or output disable (active high) 

  R/W*   High for read, low for write 

  D   Data bus 

  Figure 4-1.    Typical SRAM read timing  diagram         
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 As will be discussed in later chapters, the OE* pin is necessary since the D (Data Bus) is bi-directional. 
You need this OE pin to control the tri-state output buffer so that the SRAM data output will be in high-
impedance during SRAM write. Sometimes the bi-directional D (Data Bus) is replaced by two uni-
directional buses (D for Data Input Bus and Q for Data Output Bus), and you don’t need OE pin in that case. 

 Traditional SRAM’s latency is pretty low. However, its 6T memory cell limits its density, which translates 
to high cost. So for RAMs with large sizes, it is not a cost-effective choice. 

 SRAMs are widely used as external memory for microprocessors. In the 1970s when microprocessors 
were still considered somewhat state of the art, the two major players in the field were Intel and Motorola. 
They each released 8080 (Ref  [  11  ] ) and 6800 (Ref  [  12  ]  [  13  ] ) microprocessors into the market. The way that 
those two microprocessors talk to the SRAM is largely the same as what’s mentioned here, with a slight 
difference in R/W control.     

 Intel 8080 uses  R ́ D  and  W ́ R  as read and write control, which can correspond to the OE* and R/W* pins 
in Table  4-1 . The drawback of using  R ́ D  and  W ́ R  is that if the microprocessor accidently sets both of them to 
low, the result will be undetermined. To avoid such ambiguity, Motorola 6800 takes a different approach. It 
uses two signals called  R W/    and  E . The  R W/    is the same as R/W* pin in Table  4-1  functionally, but it only 
takes effect when  E  is high. Table  4-2  shows the SRAM signal mapping for Intel 8080 and Motorola 6800 
interfaces. Table  4-3  shows the Truth Table for them.   

 Ostensibly the  E  signal serves the same purpose as  CS    signal for enabling control. However,  the    CS    

signal provides enabling for the whole chip, and it can be used to put the SRAM into power saving mode, 
while  E  only deals with read and write. In order for the SRAM to work properly, the  CS    signal has to be 

asserted much earlier as suggested by datasheet to give the SRAM enough time to wake up, but this head 
start does not apply to the  E  signal.     

  Figure 4-2.    Typical SRAM write timing  diagram         
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 Although both microprocessors are water under the bridge now, their legacy remains. For example, 
many LCD modules still offer parallel bus support, which could be either Intel 8080 or Motorola 6800 type, 
or maybe both. You need to configure the interface correctly before you can send data to it (Ref  [  14  ] ).     

     DDR SDRAM (Dual Date Rate Synchronous Dynamic RAM)       
 Instead of using transistors,  Dynamic RAM   uses capacitors to build its memory cells. With the improvement 
of manufacturing technology, Dynamic RAM could achieve a much higher memory density than traditional 
SRAM. Unfortunately, the high density comes with a necessary evil. Due to the leakage of capacitors, 
Dynamic RAM cells need to be recharged (refreshed) periodically. 

 The high density enables DRAM vendors to offer memory chips with larger sizes at lower cost and larger 
size calls for higher throughput interface. Today all SDRAM chips on the market use dual data rate to transfer 
data, which means that signals are sampled on both the rising and falling edges of the clock. (There used to 
be DRAMs with a single data rate interface. They have all faded into oblivion.) 

 The large size subsequently demands a wider address bus if normal addressing scheme is used. To 
save address pins, DRAM usually breaks the memory addresses into bank, row, and column, as shown in 
Figure  4-3 . Banks are indexed with dedicated bank address pins, like BA0, BA1. Row and column addresses 
are multiplexed into one address bus (usually designated with A[n-1 … 0]).  

 In Figure  4-3 , each small square stands for a memory word. To index a certain memory word, the 
corresponding row in that bank has to be activated. After the row is activated, those words in that active row 
can be read or written in burst mode by giving the starting column address. 

   Table 4-2.    Signal Mapping for Intel 8080 and Motorola  6800     

 SRAM  Intel 8080  Motorola 6800 

  CLK    CLK    CLK  

  CS*    CS        CS    

  A    A    A  

  OE*    RD      not E not R W( )Ú ( )/    

  R/W*    WR      not E R W( )Ú /    

  D    D    D  

   Table 4-3.    Truth Table for Intel 8080 and Motorola  6800     

 Function 

 Intel 8080  Motorola 6800 

  RD      WR      E      R W/    

  Read   0  1  1  1 

  Write   1  0  1  0 

  No Operation   1  1  0  X 

  Undetermined   0  0 
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  Figure 4-3.    Bank, row, and column addresses       

    Table 4-4.    DDR SDRAM Signal Pins   

 Signal  Description 

  CK and CK#   Differential clock 

  CKE   Clock enable 

  CS#   Chip select 

  RAS#, CAS#   Row address select and column address select 

  WE#   Write enable 

  DM/UDM/LDM   Data mask for write, DM for x32 or wider bus, UDM (upper-byte DM), and LDM 
(Lower-byte DM) for x16 bus 

  BA   Bank address 

  A   Address bus 

  DQS/UDQS/LDQS   Data strobe; they could be differential signal as well, like DQS/DQSn 

  DQ   Data bus 

 The technology of DDR SDRAM keeps evolving. The progresses made over generations are mainly in 
burst length, clock frequency, memory density, and power consumption. However, the data rate still remains 
twice the clock rate (Ref  [  2  ] ).    

 DDR signal pins can be roughly summarized in Table  4-4 .  

 The timing diagrams for DDR  burst   read/write are exemplified in Figure  4-4  and Figure  4-5 . As 
mentioned, the bank/row that contains the target word has to be activated before any read/write can 
proceed, which corresponds to the bank/row address in Figure  4-4  and Figure  4-5 . Be advised that due to the 
plethora of product offerings, the actual timing diagrams may differ from what is shown here. Always use the 
manufacturers latest datasheets as your reference point.       

 



CHAPTER 4 ■ RAM, DMA, AND INTERRUPT

52

  Figure 4-5.    Example of  DDR burst write            

  Figure 4-4.    Example of  DDR burst read         
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 Because of the extra refreshing circuit as well as the high throughput, a dedicated DDR controller (DDR 
PHY) is needed to talk to the DDR SDRAM chip. For the FPGA case, the pin assignment for DDR PHY has to be 
verified by FPGA software (place and route) before board layout can be started. The reasons are the following:   

•    To relieve the skew experienced by the parallel bus, DDR interface divides the DQ 
bus into small groups, with each group taking its associated DQS as the reference 
clock. The group width can be x4, x8/x9, x16/x18, or x32/x36. If the width is x9, x18, 
or x36, the group usually also includes the corresponding DM signal for each byte.  

•   For each I/O bank of the FPGA, the physical pins are also divided into groups in 
order to implement different DQ group width. The pin assignment has to be well 
aligned to such physical arrangement. Otherwise the PAR (place and route) will fail 
due to the physical restriction imposed by FPGA device. In addition, there are other 
concerns that have to be addressed, like the voltage of the I/O bank, the PLL that is 
being used, etc. So it is crucial to have FPGA software do a sanity check on the pin 
assignment before the start of board layout. The time spent on such a check is the 
time well spent, both electrically and financially.        

      QDR SRAM   1  
 As you saw in the previous sections, DDR SDRAM has achieved a high-throughput interface by transferring data 
on both edges of the clock. SRAM manufacturer promptly borrowed this page from DDR SDRAM’s playbook. 
Instead of using bi-directional data bus, SRAM manufacturers have divided read and write into separate ports, 
with each port having its own clock. 2  (However, the address bus is still shared by these two ports.) In other words, 
SRAM manufacturers have defined something kind of like a dual port RAM interface, with one port for read and 
the other for write. Both ports can operate at a double date rate. And they call such devices QDR SRAM (Quad 
Data Rate SRAM)   , which is, in my opinion, more market propaganda than a real technical term. 

 The signal pins of QDR SRAM are listed in Table  4-5 . As you can imagine, those signal pins in Table  4-5  
bear a striking similarity to the ones in Table  4-4 , and such similarity is summarized in Table  4-6 .   

    Table 4-5.    QDR SRAM Signal Pins   

 Signal  Description 

  K and K#   Differential clock for write. 

  C and C#   Differential clock for read if single clock mode is not used. (Exists on QDR II only; 
recommended when multiple QDR II devices are used. See Ref  [  4  ]  [  5  ]  for more detail.) 

  CQ and CQ#   Differential clock as echo clock. Can be used as a read clock. 

  WPS#   Write port select. 

  RPS#   Read port select. 

  BWS#   Byte write select. 

  A   Address bus. 

  D   Data bus for write. 

  Q   Data bus for read. 

  QVLD   Read data valid. 

   1  This book uses QDR SRAM as a generic term, which covers all the QDR type SRAM, including QDR II and QDR II+.  
   2  Single clock mode is also possible for many QDR SRAM chips.  
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 However, unlike DDR SDRAM, QDR SRAM does not multiplex addresses into rows and columns, so 
there is no row-activate command for SRAM. Other than that, the burst read and burst write of QDR SRAM 
also resemble their counterparts in DDR SDRAM.         

     Other  Types of   RAM 
 In addition to DDR SDRAM and QDR SRAM, there are other types of RAM that are used in embedded system 
design, like RLDRAM and PSRAM.

•     RLDRAM  

 The interface of RLDRAM (Reduced Latency DRAM)    can be either Separate I/O 
(SIO) or Common I/O (CIO). If read and write ports are separated, the interface is 
close to QDR SRAM. If the data bus is bi-directional, the interface is very much like 
DDR SDRAM. 

 As its name suggests, RLDRAM has a very low cycle time (tRC 3 ). To demonstrate this 
quantitatively, let’s compare the tRC from an 800MHz DDR3 SDRAM (Ref  [  6  ] ) to that 
from a 400MHz CIO RLDRAM II (Ref  [  7  ] ). In fairness, both of them are offered by the 
same manufacturer (Micron Technology, Inc.). The 800MHz DDR3 gives you a tRC 
of 50ns (Ref  [  6  ] ) while that number is only 20ns for the 400MHz RLDRM II (Ref  [  7  ] ). 
Of course, this is still no match to the latency of QDR SRAM. (Take the 550MHz QDR 
II+ in Ref  [  3  ]  for example’ it has 2.5-cycle read latency, which is equivalent to 4.55ns.) 
However, it does offer a low cost alternative to QDR SRAM.  

•    PSRAM  

 As you can see, the need for refreshing the circuit is DRAM’s soft belly. To overcome 
this shortcoming, memory manufacturers started to offer something called PSRAM 
(Pseudo-SRAM)   . Conceptually, it can be seen as a DRAM chip that carries the 
refreshing circuit inside, and outwardly it looks like a SRAM. I will leave its tech 
details to those inquisitive readers.         

   Table 4-6.    Resemblance of QDR SRAM and DDR SDRAM Signals   

 QDR SRAM Signal  Corresponding DDR SDRAM Signal 

  K and K#   DQS/DQS# 

  CQ and CQ#  

  C and C#  

  WPS#   CS# 

  RPS#  

  BWS#   DM 

  A   A 

  D   DQ 

  Q  

   3  tRC (Row Cycle Time) for DRAM is defined as the minimal time gap between two successive row active commands in 
the same bank.  
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     PIO and DMA 
 Despite the multitude of RAM types, the sole purpose of RAM is to store data. Generally speaking, there are 
only two ways to access data stored in RAM: PIO and DMA. 

     PIO 
 PIO stands  for   Programmed Input/Output, which means all the memory R/W is managed by the CPU, like 
the code snippet in Listing  4-1 . 

       Listing 4-1.    Use PIO to Access Memory   

  int buffer[256];  
  int *p;  
  int i;  

    p = buffer;  

    for (i = 0; i < 256; ++i) {  

       *p++ = i;  

    }  

     The plus side of  PIO mode   is that:

•    The coding is very straightforward; there is no interrupt handler involved.  

•   Everything is done through a virtual address. No need to convert the virtual address 
into a physical address.    

 However, the flip side is that:

•    It consumes a great deal of CPU time. In other words, it carries a big CPU overhead.  

•   As you can see in Listing  4-1 , the PIO actually breaks memory access into 256 single 
memory write operations. All the burst modes discussed so far cannot be utilized by 
PIO. So it carries huge performance penalty.  

•   After the code in Listing  4-1  is executed, the data might still remain in cache instead 
of the memory. A cache flush is needed. (Cache and memory consistency will be 
discussed shortly.)    

 So PIO is not suitable for transferring data with high throughput. To relieve CPU from those chores, you 
need the assistance of extra hardware.  
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     DMA and MMU 
 In order to boost system performance and save the precious CPU cycles, DMA (Direct Memory Access)    is 
introduced. An extra piece of hardware called DMA controller is placed onto the memory bus to off-load 
the CPU core from the job of large data transferring. The CPU core has to configure the DMA controller and 
kick off the data transferring. When the job is done, the DMA controller will notify the CPU core through 
interrupt. And CPU core gets to execute more important jobs in between. 

 There is no doubt that DMA holds a great performance advantage over PIO. RAM chips would blissfully 
churn out long bursts for DMA, much like those you saw in Figure  4-4  and Figure  4-5 . However, the out-
sourcing of the data-transferring job from the CPU core to the DMA controller inevitably has its technical 
consequences. 

 As we all know, it is software that pulls the strings inside the CPU. One of the primary software players 
is the OS (Operation System). Most operating systems use virtual addresses instead of the actual physical 
addresses to manage their memory operations. The use of virtual addresses has its virtues:

•    It makes OS less coupled with the actual hardware it is running on, so it becomes 
easier to port the OS to different hardware platforms.  

•   The virtual address would fool every task running on the OS into thinking that it is 
the only task that runs the show. Although such illusion may sound absurd on the 
first encounter, it does make multi-tasking a lot easier since each task runs in its own 
virtual address space. However, it also means that two different tasks could operate 
on the same virtual address without knowing each other.    

 To facilitate the implementation of a virtual address, CPU usually carries a piece of hardware called 
MMU (Memory Management Unit)   . MMU does the translation from virtual address to physical address in 
the hardware. When the OS schedules a new task to run on the CPU, it will configure the MMU differently so 
that the same virtual address of each task is mapped to a different physical address. Thus multiple tasks can 
coexist peacefully in the physical memory space.    

 To do the address translation more efficiently, memory is divided into pages, with each page having a 
fixed size. A typical page size is 4KB, although other sizes are also possible. OS would maintain a page table 
and manage the memory by the unit of pages instead of words or bytes. This implies that  two consecutive 
pages in the virtual address space could be mapped to two separate pages in the physical address spaces.  
That’s what complicates the DMA! 

 When software tries to move data in large sizes, it usually means to read or write a big memory buffer 
in the virtual address space. Needless to say, such a buffer is continuous by the account of virtual address. 
However, after the translation through MMU, the big buffer becomes a bunch of pages scattered all over the 
physical memory space. Since the DMA controller operates independent of CPU core and MMU, the DMA 
controller has to live with such inconveniences. 

 To get the job done, the DMA controller usually operates on a data structure called the  scatter-gather  
  list    .  Although the exact formats of the scatter-gather lists differs depending on the hardware, they share a lot 
of common traits with the example shown in Figure  4-6  (assuming a 32-bit address space).  
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 The scatter-gather list shown in Figure  4-6  resides continuously in physical memory space. Most DMA 
controllers require the scatter-gather list to be stored continuously in physical memory, although formats 
like link-list type are also possible. In practice, the majority of the memory blocks referenced in Figure  4-6  
would start on a page boundary and have a length of page size or the multiple of page size, which is to be 
expected due to the page table mapping. 

 Because of the scatter-gather list, the programming of DMA is much more tedious than that of PIO. First 
of all, as demonstrated in Listing  4-2 , the continuous buffer in virtual address space has to be translated into 
a bunch of scattered physical memory blocks, with each block corresponding to an entry in Figure  4-6 . 

      Listing 4-2.    Pseudo-Code to Construct Scatter-Gather List Entries   

  UINT32 *pBuf;  
  INT32 left, size;  

    typedef struct {  
     UINT32 start_address;     
     UINT32 entry_length;  
  }SG_ENTRY;  

    SG_ENTRY *pSG_Entry;  

    pBuf = THE_STARTING_ADDRESS_OF_VIRTUAL_BUFFER;  

  Figure 4-6.    A typical scatter-gather  list         
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    left = TOTAL_TRANSFER_SIZE;  

    pSG_Entry = THE_VIRTUAL_ADDRESS_OF_ENTRY_0;  

    while(left > 0){  
     pSG_Entry -> start_address = VIR_TO_PHY(pBuf, &size);  

       if (left > size) {  
          pSG_Entry -> entry_length = (UINT32) size;  
     } else {  
          pSG_Entry -> entry_length = (UINT32) left;  

       }  
     pBuf += size;     
     left -= size;  
     ++pSG_Entry;  
  };  

     The OS would provide a function call to help the mapping from virtual addresses to physical addresses, 
such as the  VIR_TO_PHY  call shown in the pseudo-code. This size parameter is the output of   VIR_TO_PHY  call  , 
which indicated the length of corresponding physical block. 

 After all the physical blocks have been mapped out, the "total entry count" in Figure  4-6  also needs 
to be filled with the correct value (not shown in Listing  4-2 ), which completes the scatter-gather list. Then 
the starting address (physical address) of the scatter-gather list should be filled into the DMA controller’s 
configuration register. The DMA controller cannot start the data transferring until it has the complete 
scatter-gather list. The whole virtual-to-physical address mapping is illustrated in Figure  4-7 .  

  Figure 4-7.    Virtual-to-physical address mapping       
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 When the data transferring is finished, the DMA controller will notify the CPU core through interrupt. 
Sometimes in order to make the programming flow less complicated, the software could choose to disable 
the DMA interrupt during the configuration stage. Instead of waiting for the interrupt, the software keeps 
polling the DMA status register until the done flag is set, as illustrated in Listing  4-3 . In this way, the software 
does not have to implement the interrupt handler.    

     Listing 4-3.    Polling  DMA Status     

  *) To construct the complete Scatter-Gather List  

    *) set up the DMA controller with the SGL, but disable the DMA interrupt  

    *) kick off the DMA transferring  

    do { // polling the DMA status register  

       status = read_DMA_status_register();  

    } while (!(status & DONE_FLAG));  

    // DMA is finished  

     Since the CPU core is actively involved in the status polling, this type of “DMA without interrupt” 
practice is still sometimes called PIO, although data transferring is done by the DMA controller with the 
benefit of burst transfer.     

     Memory Allocation for DMA 
 As you know from previous sections, in order to make DMA work, you need to prepare a data structure called 
SGL (Scatter-Gather List)    in memory, which implies that you might have to allocate memory space for SGL. 

 Those who have ever programmed in C know that you can ask for more memory by calling the  malloc()  
function. Consequently it begs the question: Can you use  malloc()  to allocate space for SGL? In addition, if 
you want to allocate scratch buffers for DMA, can you use  malloc()  to do that job as well? 

 This section covers my suggestions in this regard. 
 First of all, C Library functions, like  malloc() , are not recommended in this case. Since you are 

programming the DMA controller, most likely you are either writing a device driver for the OS or working 
entirely with the bare-bones hardware.  As a general guideline, try to avoid using C Library functions as much 
as you can when you interact with hardware directly.  This is because the actual implementation of the C 
Library depends on the OS and the compiler it is based on. Since you don’t know for sure what underlying 
OS API it is using, you run the risk of shooting things in the dark. 

 And if you have to allocate memory inside an ISR, the allocation function cannot cause blocking. Some 
allocation functions could cause blocking because they have to wait on pages to be released or swapped 
back into the memory. If you use OS API, you should read the remarks carefully to make sure you pick a 
non-blocking function. Due to the ambiguity of its actual implementation, you have no straight way to judge 
a  malloc()  function on that. 

 There are usually two types of memory pool OS manages: paged memory and non-paged memory. The 
difference between those two is that paged memory can be swapped out of the physical memory space onto 
a hard disk or Flash as the OS sees fit, while non-paged ones always stay in the memory. One example is the 
page file used by Windows, which stores images of paged memory that is swapped out to the hard disk by the 
OS. To make the DMA operation successful, only non-paged memory can be used for SGL and DMA buffers; 
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otherwise, you could suffer page-fault exceptions. So you need to specify certain parameter flags (like the 
 GFP_DMA  flag in Linux) or call designated OS APIs when you ask for memory from OS. This is another reason 
why I strongly discourage using  malloc()  here. Chances are that  malloc()  will dole out paged memory at 
some point to sabotage your DMA operation. 

 For embedded systems, if the existing size of the physical memory suffices your needs, you could 
choose to disable the page swap for the peace of mind. (Oftentimes this is the only option due to the absence 
of hard disk space or viable Flash space in the system.) In fact you could also choose to manage part of 
the physical memory on your own. For example, assume you have 512MB RAM in the system. You could 
configure the embedded OS to let it see only the lower 256MB and use the higher 256MB as DMA buffers, 
allocating and releasing them in the device driver you are providing.      

      Cache/Write Buffer and Memory Incoherence   
 Up to this point, assume you’ve done everything by the book to set up the DMA, constructing the SGL with 
the correct type of memory, and configuring the DMA controller meticulously. Is there still anything left that 
could torpedo your DMA operation? I say, “Watch out for the cache!” 

 Today almost every CPU carries an internal cache. This cache is made of high-speed SRAM. When the 
CPU reads something from memory, part of the data will be placed in the cache. The philosophy behind this 
is called   temporal locality    ,  which bets that the memory location being accessed now will be accessed again 
in the near future. 

 Cache is implemented by hardware, and it is largely transparent to programmers in normal operation. 
Sometimes you see terms like “x way set associative cache” in the CPU datasheet, and their corresponding 
definitions can be found in various text books. But practically such terms are only meaningful to the CPU 
designer. At the system level, cache is just a black box that keeps another copy of the data besides memory. 

 However, the DMA controller sits on the memory bus and has no knowledge of the cache’s internal 
status. So it is possible that when DMA overwrites the data at a certain address in memory, the cache still 
keeps another copy of the obsolete data with the same memory address. Such unfortunate occurrence is 
called   memory incoherence   . 

 Memory incoherence can also happen in write. Under the principle of “temporal locality,” the CPU 
chooses to keep part of the write data in cache instead of flushing it to memory right away (assuming the 
cache is set in write back mode). In addition, to merge small writes into bigger trunks, many CPUs also place 
a write buffer between the cache and memory. Before DMA takes off, the corresponding data in the cache 
and write buffer have to be flushed into memory to prevent memory incoherence. 

 On a desktop PC, the x86 CPU performs bus snooping to closely watch the memory bus and compare 
notes with its internal cache. When it detects R/W activity on the memory bus, it will invalidate or flush its 
internal cache accordingly if there is a cache hit. But such approach complicates the CPU design and brings 
added cost. In the world of embedded systems, most CPUs, such as ARM, choose to let software handle this 
with the intent to save cost. Thus the burden falls on the programmers’ shoulders to flush the cache/write 
buffer before DMA starts, or invalidate the cache for read when DMA has occurred. Fortunately, embedded 
OS usually provides functions to facilitate such an operation. However, keep in mind that cache operates in 
the granularity of cache line, whose size is usually bigger than the CPU’s word length. For example, a 32-bit 
CPU might have a cache with a 128-bit cache line size. Thus it is strongly suggested to align the memory 
buffer to the cache line size boundary during memory allocation.   
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     Interrupt 
 On the heel of DMA, I think it is a good opportunity to embark on the subject of interrupt, since they usually 
work hand in hand. 

     Interrupt  Mechanism   
 Interrupt is adopted almost everywhere in the embedded systems: the CPU core delegates certain jobs 
to peripherals (external devices). When the job is finished, the peripheral would notify the CPU core by 
signaling through the interrupt pin. 4  The CPU gets to handle other tasks in the meantime. Interrupt is a 
good way to increase parallelism of the whole system, which usually means higher efficiency and better 
performance. As illustrated in the previous sections, DMA is a typical example to demonstrate the benefit of 
interrupt over polling. 

 Interrupts can come from multiple sources. They can be from power reset, timer, external devices, 
software interrupts, etc. In the old days when the scale of the system was small and the number of external 
devices was limited, the CPU designer would place the entire interrupt controller inside the CPU core 
and reserve a small number of pins for external interrupts. A typical case is Intel 8051, which has only two 
interrupt pins (INT0* and INT1*) for external devices. 

 When an interrupt is generated by its source, and if that interrupt has the highest priority among all the 
interrupts to be serviced, the CPU will save the current status and then point its PC counter to a fixed address 
associated with that interrupt. Software should place a branch instruction (or instructions of similar nature) 
in that address, which jumps to the actual ISR. The whole collection of these fixed addresses and branch 
instructions is called IVT (Interrupt Vector Table)   , because they are usually stored consecutively in a pre-
determined order, with one address/branch instruction per each interrupt. As illustrated in Figure  4-8 , IVT 
is traditionally located at the top or bottom of the whole address space, with power reset as the first vector in 
that table. Each interrupt pin reserved for external devices will have a corresponding entry in the IVT.  

 With the explosive growth of both market and technology, the scale of embedded systems today is 
much larger than in the past. And the number of external devices has also ballooned accordingly, which 
puts a higher demand on interrupt pins. One thing that can be done to solve this supply/demand issue is, of 
course, to increase the number of interrupt pins available. However, such approach requires the augment of 
IVT size and the redesign of CPU core, which is costly and unfeasible in practice. Fortunately, engineers have 
found other ways to balance the supply/demand. One way is to share those interrupts; the other way is to 
use a Vectored Interrupt Controller.     

   4  Interrupt can also be signaled by sending messages instead of using dedicated pins. Such interrupt mechanism is called 
MSI. MSI is mainly used on the PCI local bus (optional, Ref [19]) and PCI express bus (Mandatory, Ref [18]). MSI is 
explored in later sections.  
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      Shared   Interrupt 
 If the supply of available interrupt pins is limited while the demand remains high, you could make do by 
letting multiple external devices share the same interrupt pin and checking the device register inside ISR to 
determine the interrupt source. 

 However, to reduce the risk of in-fighting, the electrical characteristics of those devices should be 
checked out before you let them share an interrupt. There are two main aspects on that score, discussed next. 

   Edge Triggered Interrupt and Level Triggered  Interrupt   
 Electrically speaking, there are two types of interrupts:  edge triggered  and  level triggered . For edge triggered 
interrupts, the device will send out a pulse to the CPU, and the CPU will pick up the rising or falling edge 
of that signal by using edge detection or direct sampling. On the other hand, the device of a level triggered 
interrupt will set the signal level to high or low (most likely it will be active low) and keep that level until it 
gets acknowledgement from CPU. 

 The problem with the edge trigger interrupt is that:

•    The CPU needs to have hardware to keep track of those pulses. Otherwise, low-
priority interrupt may be missed if the CPU is servicing high-priority interrupts.  

•   The sharing of edge triggered interrupt is also a challenge. If two pulses from 
different devices come at close range, such as one happens in the middle of the 
other, those two pulses will be superimposed on the shared interrupt pin as one 
longer pulse, which means one of the interrupt pulses could slip through the crack.    

  Figure 4-8.    Interrupt and  IVT         
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 These shortcomings make edge triggered interrupt less desirable to many system designers. 5  In fact, 
with the improvement response time of external devices, level triggered interrupt becomes much more 
popular for out-of-band interrupt signaling. The thing with level trigger devices is that the device should 
de-assert its interrupt pin in a short period of time after the CPU acknowledges the interrupt; otherwise, the 
CPU may be lulled into taking the same  interrupt twice.    

    Push-Pull and Open Drain   (or Open Collector) 
 Sharing interrupts basically means merging the interrupt pins of two (or more) devices. Since the interrupt 
pins are usually the output of these devices, a close inspection of their electrical spec is necessary. For CMOS 
devices, their output is push-pull or open drain. 6 

    1.     Push-Pull  7  

 For CMOS circuits, they are usually composed of two parts—pull-up network and 
pull-down network—which are made up of PMOS and NMOS, respectively  [  1  ] . 
And at the output stage, the I/O port is called push-pull if both the pull-up and 
pull-down are present. A simple case is the output of an inverter, which is shown 
in Figure  4-9 . 8   

  Figure 4-9.    An example of push-pull  output         

   5  This only holds true for out-of-band interrupt signaling. With the advance in serial link technology and point-to-point 
interconnection/switch technology, edge triggered interrupt is actually favored for in-band interrupt signaling. In-band 
interrupt signaling, mainly MSI, is discussed in later sections.  
   6  Theoretically there is a third option that is called  line driver . Line driver is the very opposite of OD/OC, but it is not as 
common as OD/OC for the I/O port design.  
   7  Its bipolar counterpart is sometimes called  totem pole .  
   8  It is practically the same for bipolar circuits. Just replace the NMOS and PMOS with NPN and PNP transistors.  
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 When a push-pull port wants to output a logic  1 , it will raise its output voltage 
to VDD. So when two push-pull outputs from different devices share the same 
interrupt, they cannot be connected directly. Instead they should go through 
an AND or OR gate, depending on the polarity of the output, as illustrated in 
Figure  4-10 .  

  Figure 4-10.    Share interrupt between push-pull  output         

 However, in a real-world design, an embedded system is actually a medley of 
components from various sources. To reduce cost, sometimes the procurement 
and logistic people are involved in the parts-picking as well. Thus, it is highly 
likely that more than one power rail is needed. For example, some legacy 
components may require 3.3V supply while newer components only need 1.8V 
I/O. For push-pull drivers, this could cause headaches for the designer if devices 
sharing the same interrupt require different VDD/VCC levels or the AND/OR 
gate has a different voltage level from those devices. Although you can always 
throw voltage shifters in between, it will inevitably lead to higher BOM cost. And 
this is the main reason why so many devices make their interrupt output as open 
drain instead of push-pull.  
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    2.     OD (Open Drain  9  )  

 Different from push-pull, open drain output does not have those pull-up PMOS. 
When an OD circuit tries to output a logic  1 , it actually sets the output as high 
impedance. To use the OD output, an external pull-up resistor is needed, as 
shown in Figure  4-11 . The pull-up resistor should be big enough (such as 10KΩ) 
to keep the current below the allowable sink current. Since the output is high 
impedance, you can connect two OD output directly without going through extra 
AND/OR logic gate, and the VDD used to pull up the output does not have to be 
the same as is used to power the device. Such characteristics also imply that the 
open drain interrupt is always active low.  

 Open drain is widely used in interrupt sharing. However, the weak (big value) 
pull-up resistor could introduce a big RC constant, which may limit the toggle 
rate of the interrupt signal. This should be taken into consideration as well when 
you choose the value of the pull-up resistor and what I/O devices you want to 
use/share.          

  Figure 4-11.    Open drain with weak pull-up       

   9  Its counterpart in a bipolar circuit is called  open collector .  
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      VIC   (Vectored Interrupt  Controller  ) 
 With the increasing demand for interrupt pins, CPU designers soon realized that they needed to strip the 
interrupt controller off their “core business”. The external interrupt controller can be replaced or upgraded 
later to keep up with the I/O demand, while the CPU core stays the same. In this way, they can have a CPU 
core with a relatively long shelf life while enjoying the flexibility brought by an external interrupt controller. 
To fulfill this vision, the interface between the CPU core and the interrupt controller has to be consistent 
across the board, thus the Vectored Interrupt Controller is introduced. 

 As shown in Figure  4-12 , VIC has a bunch of INT*/IRQ pins that can be attached to external devices. 
For each INT*/IRQ pin, its priority and masking can be configured through control registers. To expedite 
interrupt handling, some VICs let users set up the corresponding ISR address (Interrupt Vector) for each 
INT*/IRQ pin as well. When interrupt happens, the unmasked INT*/IRQ with the highest priority will be 
picked out, and its ISR address or INT*/IRQ number will be placed in a register. Meanwhile, VIC will assert 
the INT*/IRQ pin on CPU core to notify the coming interrupt.  

 When receiving the interrupt notification, if the CPU core is not doing anything of higher priority, it 
will save the CPU status and jump to the INT*/IRQ handler, which is a generic handler for all the interrupts 
coming from VIC. Inside that generic handler, the software would read out the VIC register to determine the 
ISR address or INT number for the incoming interrupt. If ISR address is provided by VIC, the generic handler 
would jump to that address directly; otherwise, the INT number will be used as an index to determine the 
ISR entry address for that particular INT*/IRQ number.    

 As shown in Figure  4-12 , a standalone VIC external to the CPU core brings flexibility. A typical VIC can 
support 32-64 external devices simultaneously. If more interrupt pins are needed, you can either replace the 
VIC with one that has bigger capacity or use daisy chain to get more interrupt pins. And SWI implement is 
also made easy by using external VIC.  

  Figure 4-12.    Vector interrupt  controller         
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     Interrupt from  Watchdog Timer   
 Every human endeavor is accompanied by mistakes. Embedded systems are certainly far from bulletproof. 
Things like process variation, voltage drop, temperature fluctuation, etc. could easily throw a wrench in the 
hardware. Meanwhile, plagued by cunning bugs, software is no better in this regard. I bet you must have 
seen a man-made natural phenomenon called “blue screen” at least once in your lifetime. :-) 

 The bottom line is, in spite of our due diligence, we have to face the possibility of having hidden defects 
inside our products. However, when things do go awry, we don’t want the system to become a basket case. 
Instead, we hope the system could jump to a fail-safe mode in a timely fashion, and the system should take 
all the proper measures in that fail-safe mode for recovery, like cutting off the high voltage power, turning 
off the engine, or simply resetting the whole system. Hopefully if the hidden defects can only be triggered 
by a peculiar confluence of unfortunate events, the system will be restored to normal mode and continue to 
function for a long while. The total down time is reduced to a minimum in that sense. 

 Such a fail-safe idea is fulfilled by a device called the   watchdog timer    .  Basically, the watchdog timer is a 
counter that counts down from a predetermined value. As its name suggests, the device works like a pettish 
dog. We need to pat the dog from time to time to please it. (Reload the counter value before it reaches zero.) 
If we neglect the dog for too long, the dog will be mad and start barking. (The counter reaches zero, which 
triggers the fail-safe.) Hence, a common usage of a watchdog timer is to tie its output to the CPU core’s NMI 
pin and let the software handle it as the top-priority interrupt. Software can even log debug status before 
it resets the system. But if safety and reliability are big concerns, the watchdog timer output can also be 
hardwired to something like a power switch or valve control without software intervention. 

 The watchdog timer scheme seems artless in a single task setting when the main code is merely a big 
loop with a few ISRs for interrupt handling. However, it will become much more involved when you try to 
reload the watchdog timer on a RTOS with multi-task running. Thorny problems like dead-lock or live-
lock will soon arise. Fortunately, a comprehensive treatment of this topic can be found in Ref  [  8  ] . I strongly 
suggest readers peruse this article before writing any code for a  watchdog timer.    

     Message Signaled Interrupt ( MSI  ) 
 For all the interrupt mechanisms you have discussed so far, each device must have a dedicated interrupt 
pin external to the data bus. Such interrupt mechanism is called an  out-of-band interrupt.  An out-of-band 
interrupt enjoys its straightforwardness. However, as discussed in previous sections, when the system scales 
up, the increasing number of interrupt pins makes the whole system bulky and unwieldy. 

 Fortunately, with the advancement in serial link technology and switch technology, point-to-point 
topology becomes popular in large-scale systems. PCI express is a typical representation of such system 
(Ref  [  10  ] ). In PCI express, in-band interrupt mechanism is both favored and required 10 . Instead of using 
separate interrupt pins, devices signal the interrupt by sending special message on the data bus, writing 
to certain memory locations. Therefore, it is also called MSI (Message Signaled Interrupt)   . The plus side 
of MSI is that there is no distinctive difference between the data and the interrupt, so the implementation 
can be consistent across the board. The system can thus be scaled up fairly easily. However, MSI is more 
complicated than its out-of-band counterpart and requires software support as well. (For example, on 
Microsoft Windows, only Windows Vista or higher version support MSI.) And instead of using level-trigger, 
MSI is actually edge-triggered interrupt mechanism (Ref  [  10  ] ) due to its message based nature. So for small- 
and middle-scale embedded system, out-of-band interrupt is still largely favored for its simplicity.   

   10  In-band interrupt (MSI) is optional in PCI local bus 2.2 and 3.0.  
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     Summary 
 This chapter is mainly about memory access and interrupt:

•    There are various RAM types that you can choose from to achieve random access. 
But there are only two ways to do the read and write: PIO and DMA. DMA is able to 
fully take advantage of the burst mode that most RAM supports, and it often works 
hand in hand with interrupts.  

•   Interrupts can be edge triggered or level triggered. Interrupt pins can be shared, or 
there could be a dedicated VIC to expand the number of IRQ pins.         
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    CHAPTER 5   

 Bus Architecture                          

 All parts should go together without forcing. You must remember that the parts you are 
reassembling were disassembled by you. Therefore, if you can’t get them together again, 
there must be a reason. By all means, do not use a hammer. 

  —IBM Maintenance Manual, 1925   

 Inside an embedded system are numerous components, such as the CPU, memory, the disk controller, etc. 
Inevitably these components need to exchange data, and data is moved from one component to another 
through interconnections. We call these interconnections the  bus . There are many bus architectures existing 
in the world of embedded systems. This chapter covers some crucial aspects of them. Popular bus standards 
like PCI, USB, RS-232, I2C, and SPI will be discussed. 

 In the past decade, serial bus has gradually unseated parallel bus for the sake of higher throughput. This 
may sound counterintuitive on the first encounter, and the reasons will be revealed later in this chapter as well. 

 With those goals in mind, let’s start our “bus ride”. 

     Bus with  System Synchronous Timing   
 When we were learning digital design in school, we were told that synchronous design is the way to go. Part 
of this doctrine is that we should stick with single clock domain as much as we can, although sometimes 
clock domain crossing or asynchronous input is inevitable. 1  Such doctrine has also left its fingerprint on 
bus architectures. If all the devices on the bus use one global clock source to transfer data, we call such bus 
clocking scheme  system synchronous timing,  as shown in Figure  5-1 .  

 The well-known  PCI local bus   ( Conventional Parallel PCI  ) is one of the adopters for system 
synchronous timing. A global clock would no doubt simplify the bus protocol, but its drawbacks are also 
readily apparent:

•    To reduce clock skew, the clock traces have to be matched for length. If expansion 
card is used, the trace length on the expansion card has to be taken into account as 
well. With the number of devices increasing, this actually puts on a strain on board 
layout.  

•   Due to tolerance in the fabrication process, we can expect variations among different 
areas of the PCB, which further aggravates clock uncertainty.  

   1  Clock domain crossing and handling asynchronous input are discussed in later chapters.  
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•   The drive strength of the clock buffer also limits the maximum number of loads as 
well as the maximum clock rate on the bus.  

•   Due to the mechanical constraints, the system synchronous timing is sometimes 
virtually impossible. For example, some externally attached devices require a long 
cable to connect to the bus, and that would introduce too much clock skew with 
 system synchronous timing.      

  Figure 5-1.     System synchronous timing         

 With the increasing demand for more devices and higher bus speed, it doesn’t take long for the 
epiphany to come: Why don’t we send the clock along with the data?  

     Bus with  Source Synchronous Timing   
 As shown in Figure  5-2 , under source synchronous timing, device A would send the clock along with the data 
to the device B. For now, assume the data bus is parallel bus with single ended signal. 2  The bus can be either 
uni-directional or bi-directional. (If it is bi-directional, you need the R/W signal in Figure  5-2  to tell you the 
direction.) The topology can be point-to-point, where one master sends out the clock/data to one slave, as is 
the case in Figure  5-2 . Or it could be one-to-many, with one master and multiple slaves, and data can only be 
transferred between the master and the active slave (chosen by the chip-select signal). One such example is 
the GPMC bus in  Texas Instruments OMAP processor  , which supports one-to-many topology with 
bi-directional data bus.  

   2  A serial bus with a differential signal is discussed in later sections.  

 



CHAPTER 5 ■ BUS ARCHITECTURE

71

 The good news is that now only the trace length between individual devices needs to be matched. 
(As opposed to the system synchronous timing, where the clock trace is global.) Since the clock goes pretty 
much the same routing as data bus, hopefully the fabrication process and temperature fluctuation would 
leave the same amount of deviation on both the data bus and clock. In this way, clock uncertainty can be 
reduced while the layout can be more flexible.     

 Oftentimes, devices can be implemented in FPGA. Should you choose to implement device A or B 
(or both) in FPGA, here are a few caveats in addition to the guidelines for PCB layout:

•    As illustrated in Figure  5-3 , for each IO pin on the FPGA, the FPGA would have a 
corresponding IO cell, which has registers inside. A parallel data bus must have 
multiple data lines. To reduce the uncertainty among those data lines, it is better 
to register them all in the IO cells. Otherwise, those data lines would have to be 
registered inside the FPGA fabric, in which case each data signal may experience 
different delay due to the routing difference. And those routing delay may constantly 
change from one synthesis iteration to another. Thus extra uncertainty might be 
introduced if they are registered inside FPGA fabric instead of the IO cells. (For Altera 
FPGA, this means the Fast Input Register and Fast Output Register options have to be 
enabled in the assignment editor.)   

•   To alleviate ringing and reflection on the bus, the output strength of data bus should 
also be carefully controlled. (For Altera FPGA, this means selecting the proper 
Current Strength value in assignment editor.)  

•   Also, the entire design should be carefully constrained for timing, which largely 
means finding out the proper input and output delay according to bus spec. (For 
Altera FPGA, more information can be found in Ref  [  2  ] .)     

  Figure 5-2.     Source synchronous timing         
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•   For better jittery handling, you can use PLL to track the bus clock. 3  If you choose to 
do so, make sure the PLL in FPGA is configured as Source Synchronous Mode to 
compensate for delay discrepancy between the clock and data (Ref  [  51  ] ).  

•   If the FPGA core logic is running on a different clock other than the bus clock, the 
data has to cross the clock domain. Clock domain crossing is discussed in later 
chapters.     

     From Parallel Bus to Serial  Bus   
 In the past 10 years, serial differential bus has gradually replaced single-ended parallel bus across the board. 
In the storage industry, SATA has replaced the 80-pin ribbon cable, while parallel SCSI is unseated by SAS. 
On the RF front, DigRF has emerged as the leading industry standard for RF transceiver. Now even the long-
standing parallel PCI is succeeded by PCI-express. So this begs the question: Why is everybody jumping onto 
the serial bandwagon? And why, against our best intuition, does reducing the bus bit width make things 
better? 

  Figure 5-3.    Register signal in IO cell or FPGA  fabric         

   3  Sometimes this is not a viable option, because for certain bus standards, the bus clock can be gated off when it is 
inactive.  
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     The Drawbacks of Parallel  Bus   
 At the inception of data bus evolution, bus speed was slow while PCB and IC fabrication technology were 
coarse, parallel bus running single-ended signals seems a reasonable design choice. And higher throughput 
can always be obtained by increasing the bus bit width, just like we solve the traffic jam by adding more 
lanes to the freeway. 

 However, when the bus clock frequency goes beyond 100MHz, the law of diminishing returns starts to 
rule. And such a approach is soon plagued by the following limiting factors:

    1.     Crosstalk  

 We were told in Physics 101 that current has to flow in a closed loop, which 
means every signal has to find a return path for itself, and that return path is 
usually through the ground. 4  In the case of parallel single-ended bus, as the 3-bit 
wide bus shown in Figure  5-4 , the three signal paths flow back in the common 
ground, which forms three current loops. If the common ground is a single 
wire, like the one used in ribbon cable, the high-frequency current loop will be 
inductively coupled with neighboring loops, 5  which gives rise to crosstalk.      

  Figure 5-4.    Coupled current loop       

   4  For high-frequency signals, both power plane and ground plane can be used as the return path. But for the sake of 
simplicity, we assume ground plane is the closet reference plane for the rest of this book.  
   5  In addition to inductive couple, there is also capacitive couple. If the return path is a uniform plane, like the ground 
plane in PCB, capacitive couple and inductive couple current may be in the same order of magnitude. However, if the 
return path is a single lead, inductive couple will dominate (Ref  [  20  ] ).  
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  Figure 5-5.     40-wire ATA cable   (top) and  80-wire ATA cable   (bottom)       

    2.      Skew    

 People like to compare the parallel bus to a multilane highway. That leaves the 
illusion that throughput can always be increased by widening the bus. However, 
there is one subtle difference here: On a multilane highway, the vehicles in 
one lane do not have to go side by side with those in the neighboring lane. In 
other words, the flow of vehicles is asynchronous among lanes. However, on the 
parallel bus, the signals should stay synchronous under the command of the bus 
clock. Due to the layout constraint and fabrication tolerance, it is hard to keep 
the length of each signal trace exactly the same. And the deviation among signal 
traces will be aggregated when bus width increases.    

 To reduce the crosstalk, one thing you can do during cable fabrication is use 
twisted pair, which provides separate ground return path for each signal wire. In 
this way, each current loop will have a much smaller effective loop area. Thus, 
inductive coupling can be greatly reduced. 

 Such an approach has indeed increased the longevity of parallel ATA bus. 
Initially the IDE disks use 40-wire ribbon cable. However, after the introduction 
of Ultra ATA/33 mode (UDMA Mode 2), 80-wire ribbon cable was adopted to 
ensure signal integrity. The added 40-wires are all ground wires to reduce the 
effective loop area. And the new 80-wire cable can support a transfer rate up to 
100MBps (Ultra ATA/100 mode). A photo of those two types of cables is shown 
in Figure  5-5 . But with the non-stop drive for higher clock frequency, the added 
switching noise has eventually pushed parallel bus to its limit.      
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 The deviation among signal traces will inevitably introduce skew when signals 
travel on the parallel bus, as illustrated in Figure  5-6 . The wider the bus is, the 
worse the skew will be, which puts a cap on the bus clock rate. This is another 
reason why higher speed busses take the form of multilane serial links instead of 
a wider parallel bus, as PCI express can aptly attest.   

    3.     Power consumption and hot swap  

 Power is also a design issue that arises when the single-ended parallel bus goes 
wider. The added signal traces/wires mean extra current. And the single-ended 
signal usually has a typical power swing like 1.8V. If terminated by a 50Ω resistor, 
the current will be around 36mA for each signal wire. High current is not only an 
issue for battery powered devices; it also poses design challenges for hot swap 
applications, such as disk arrays used in data centers.        

     The Benefit of  Differential Serial Link   
 These technical hurdles eventually broke the camel’s back on single-ended parallel bus. To look for better 
solutions, designers turned to the differential serial link for help. 

 Different from single-ended signal, the differential link sends a signal over a pair of traces/wires, as 
shown in Figure  5-7 . Signals traveling on these two traces have the same magnitude but opposite polarity, 
which means the two current loops formed by them are identical except one flows in the opposite direction 
of the other. If you put these two traces very close to each other (as close as you can without violating layout 
rules), you can safely bet that their return paths will be the same as well. Since the two current loops flow 
in opposite directions, they will cancel each other out in the return path. So you can say that for differential 
pair, there is no return current flow in the ground. That is to say, the signals are all confined between the pair 
of differential traces/wires.  

  Figure 5-6.     Signal skew         
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 For practical purposes, the differential signal pair will also be superimposed to a common DC voltage 
(common mode voltage, Vcm) to keep them from clipping. And the receiver will subtract the signal pair from 
each other to produce the final result. In this way, the actual level of the common voltage does not much 
matter, as long as there is no signal clipping. An example of a differential signal level  is   shown in Figure  5-8 . 6   

  Figure 5-8.    Differential signal example       

  Figure 5-7.    Differential pair       

   6  There exist a few industry standards for differential signal technology. And each has its own output swing that ranges 
typically from 350mV to 800mV (Ref  [  16  ] ).  
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 Now let’s revisit the drawbacks of single-ended parallel bus and see how serial bus fairs in those 
regards:

•    Since the signals are confined within the differential pair, the effective loop area is 
pretty small as compared to single-ended signal. In addition, due to the proximity 
of these two current loops, any ambient noise or nearby coupling will affect them 
equally as common mode noise, which will then be subtracted out at the receiver 
end. This means the differential pair is not susceptible to coupling from nearby 
traces and is less of an aggressor as far as crosstalk is concerned.  

•   To reduce skew, differential serial link only needs to match the length of two traces 
in a differential pair, and the two traces are in close proximity. So it is less subject to 
process variation and temperature fluctuation.  

•   Differential signals run at a much lower signal level. (As you can see in Figure  5-8 , 
differential signals only have a voltage swing of a few hundred millivolts.) Due to its 
single bit width, differential link needs less signal traces/wires as opposed to parallel 
bus. And all these factors are  boons   for low-power design and hot swap application.    

 In a nutshell, you can overcome those problems by adopting differential serial link. Since the 
differential serial link has better signal quality, its single bit width does not stop it from running at much 
higher data rate.    

     Implementation of Differential Serial Link 
 Now you know that you can improve the data rate by adopting differential serial link. Since the serial link 
is a point-to-point connection, source synchronous clocking is an obvious choice. In that regard, there 
are basically two ways to send the clock along with the serial data: out-of-band clocking and embedded 
clocking. 

      Out-of-band Clocking   
 When the serial link data rate is in the order of a few hundred Mbps, the clock can be sent on a separate trace 
in single-ended mode. Both transmit pair and receive pair can use this clock as the base clock. Since the 
data rate is high, this single-ended clock frequency cannot be in the same order as the data rate, otherwise 
it will defeat the purpose of using a differential serial link. Instead, the single-ended clock is used as a 
base clock. Both the transmitter and receiver (for duplex communication) should use PLL to generate the 
corresponding internal clock frequency from the base clock, as shown in Figure  5-9 .  
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 A typical example for such a setting is the DigRF V3 protocol, which is used to transmit/receive data 
samples between baseband IC and RF IC in telecomm equipment. The single-ended base clock can be 
19.2MHz, 26MHz, or 38.4MHz, while the data rate on each differential pair can be as high as 312Mbps (Ref  [  7  ] ). 

 Since the single-ended clock is well below 100MHz, the transmitter and receiver can be implemented 
by a FPGA that has differential IO capability. (Of course, ASIC implementation with a dedicated PHY is 
always possible under any circumstance.) Should you choose to do this in FPGA instead of ASIC, here is one 
scheme you can consider for a physical layer implementation:   

    1.    The physical layer should define some basic frame structures for serial data. The 
frame can contain segments like frame type, frame length, payload, etc. At the 
beginning of each frame, there should be a SYNC pattern to indicate the start of 
the frame, as illustrated in Figure  5-10 .   

  Figure 5-9.    Two differential pairs with a single-ended clock       

  Figure 5-10.    Frame structure example       
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    2.    As indicated in Figure  5-9 , the transmitter should derive the internal data clock 
by using PLL to multiply the base clock. For example, in  DigRF V3 protocol  , if the 
base clock is 26MHz, and bus data rate is 312Mbps (Ref  [  7  ] ), the transmitter can 
use a X12 PLL to derive the 312MHz clock internally and use this clock (assume 
you use 0 degree phase of the PLL) to drive the P/S module (parallel to serial 
module, which can be implemented by a shift register).  

    3.    At the receiver side, you should also use PLL to generate the internal data clock 
from the base clock. However, due to different initial phases on both sides, the 
best sampling phase is unknown to the receiver. Consequently, the receiver’s 
PLL should generate multiple phases and use a SYNC pattern detector to pick 
the best sampling phase, as illustrated in Figure  5-11 . An algorithm should be 
devised to determine the best sampling phase when SYNC detectors are positive. 
(It is highly likely that more than one SYNC detector will report positive, so the 
algorithm should pick the best one among those positive detections.) Since it 
takes some time to get the final outcome from the algorithm, each SYNC detector 
has to be followed by a Frame Parser to analyze and save those frame segments 
that succeed the SYNC pattern. When the best sampling phase is determined, the 
result from the corresponding frame parser will be used for further processing.          

  Figure 5-11.    Sampling with multiple clocks (different phase)       

      Embedded Clocking   
 If you buy a desktop PC today, chances are that you will have a serial ATA disk inside your chassis. In the 
past five years, serial ATA disks have largely replaced their parallel counterparts on the desktop market. 
Interestingly, if you open the chassis and take a close look at your SATA signal cable, you will notice that it 
only has seven pins. According to the SATA spec, three of them are ground. The other four are TX+, TX-, RX+, 
and RX- (Ref  [  8  ] ). It makes you wonder: Where is the clock? 
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 When the serial data rate goes into the territory of Gbps, skew and jitters prevent out-of-band clocking 
from being a viable option. Instead, the clock is embedded into the data stream and recovered by the 
receiver. Detail of such scheme can be found in Refs  [  1  ]  and  [  8  ] .  Since the receiver is locked to the incoming 
embedded clock and not to an external reference clock, jitter requirements for both transmitter and receiver 
input clocks are relaxed significantly  (Ref  [  1  ] ). 

 Since the data rate is in the order of Gbps, analog behavior matters much more than digital behavior. 
In other words, it is pretty much out of the hands of digital designer, so a specially crafted SerDes (Serial/
De-serial) module has to be used to transmit and receive data reliably. If FPGA is chosen over ASIC to 
implement the serial link, the FPGA device has to have a SerDes module embedded. The good news is that 
you don’t have to go through those ordeals mentioned earlier anymore, but the bad news is now the FPGA 
device will cost more because of the SerDes module.      

      8b/10b Encoding and Signal Conditioning   
 In addition to the clocking scheme, 8b/10b encoding and signal conditioning are also adopted in a 
differential serial link to further boost the data rate. 

 8b/10b encoding is used to achieve DC balancing, which means that for a long stream of data bits, there 
are an equal number of ones and zeros in the stream. In other words, the DC component will be eliminated 
in the spectrum and AC coupled connection can be facilitated. 8b/10b encoding was first introduced in Ref 
 [  9  ] , and was adopted by Serial ATA standard in its link layer (Ref  [  8  ] ). 

 When a signal travels over the trace or cable, loss will inevitably happen, and such loss is usually not the 
same across the whole spectrum. Most likely, the transfer function H(x) for the trace/cable can be viewed 
as some sort of low-pass filter. From signal integrity’s perspective, the loss of high frequency will increase 
the rising time for each pulse, which leads to ISI (Inter Symbol Interference) when the pulse is short. Thus 
it becomes critical at a high data rate to correctly model the H(x) so that it can be canceled out. Signal-
conditioning techniques, such as pre-emphasis, de-emphasis and equalization, are widely adopted to do 
this job. The details of these techniques are beyond the scope of this book. Inquisitive readers can further 
explore those topics through Ref  [  1  ]  and Ref  [  8  ] .   

      Bus Standards   
 There’s a myriad of bus standards used in the embedded systems, and this book is not trying to be an 
encyclopedia on that subject. However, those standards that are frequently encountered in the daily battle 
will be discussed in this section. 

      RS-232   
 Yes, the good old RS-232 port! The RS-232 standard has a history of more than 40 years. It is an 
asynchronous, single-ended bus standard. Despite all of its shortcomings, RS-232 has survived waves of tech 
revolution and is still actively adopted as a way to communicate between host PC and target board. 

 RS-232’s longevity comes from its simplicity. Although its full spec has defined a connector interface 
of 25 pins, for all practical purposes, only three pins are needed to establish a two-way communication. On 
an IBM PC, RS-232 usually takes the form of a D-sub 9-pin connector (often called COM port in PC slang). 
Among the nine pins, you can use pin 2 (RXD), pin 3 (TXD), and pin 5 (GND) to link the target to the PC. On 
the target board, you only need a 3-pin header as the connector. 

 To make two RS-232 ports talk to each other, you might also need a null modem cable. The null modem 
cable makes a twist in between so that the TXD pin on one side goes to the RXD pin on the other side, and 
vice versa. 



CHAPTER 5 ■ BUS ARCHITECTURE

81

 Often times, the term UART is used to refer to an asynchronous serial port that supports RS-232 
standards. Many microcontrollers boast their abundance of peripherals by offering  UART ports  . However, 
be advised that although they might be logically compatible, the actual voltage level is different. Most UARTs 
that come with the microprocessors are 1.8V or 3.3V, while the actual RS-232 port could have a voltage swing 
between -15V and +15V. Thus a transceiver, like the one in Ref  [  10  ] , is needed when you connect UARTs to an 
RS-232 port. The transceiver will provide voltage level translation as well as ESD protection. 

 When the  RS-232 port (COM port)   is used on an IBM PC, you need software to read/write the port. 
One way is to use a terminal emulator software, such as Tera Term (Ref  [  11  ] ) or Hyper Terminal, to make the 
port a console. If you like to write your own software to control the port in Windows, you have two popular 
choices:

•    You can use the MSCOMM control provided by Microsoft.  

•   You can treat the COM port as a device file and read/write it directly. This requires 
more coding as well as skills for multi-thread programming, but it gives you the best 
flexibility.     

      I2C and SMBus   
 I2C bus was first introduced by Philips Semiconductors (now NXP Semiconductors) as a two-wire bus 
standard for device interconnection. It uses two signal wires operating in OD (Open Drain) mode to achieve 
bi-directional communication between the master and slave devices. Thanks to its succinctness, I2C bus 
was widely used as serial interface for memory, temperature sensor, enclosure LED controller, etc. And later 
Intel made a derivative standard out of it called  SMBus   (Ref  [  13  ] ), which is used on PC motherboard. There 
are some minor deviations between those two standards, but for all practical purposes, they can be treated 
the same way. 

 The two wires used in I2C and SMBus are named SCL (Serial Clock Line)    and SDA (Serial Data Line)   . 
Since they both operate in OD mode, they are set to high by default through pull-up resistors. Each slave 
device should be programmed with a 7-bit address to uniquely identify itself on the bus (a 10-bit address 
is also possible although not widely used (Ref  [  12  ] )), and the whole data transaction includes stages like 
START, ADDRESS, R/W, ACK, DATA, STOP, etc. that can be found in Ref  [  12  ]  and Ref  [  13  ] . Most of the time, 
developers can skip those protocol details if the microprocessor has an I2C controller built-in or the FPGA 
contains IP cores for I2C. 

 However, if your product is sensitive to cost, or if you just can’t find enough I2C controllers, you might 
consider using GPIOs to toggle the SDA and SCL. Since I2C bus often works on a 100KHz clock 7  while 
modern CPUs run with a clock rate at least hundreds of MHz, you should have enough CPU horsepower to 
keep up with the I2C bus. Thus CPU can use a timer to control and drive the GPIOs. The drawback of this 
approach is that you now have to get into the protocol detail and implement everything, from the START/
STOP condition to the slave address, in the  software     . But as you can imagine, the software does not count 
into the BOM cost. :-). Because of this, such an approach is generally called  bit banging  in embedded lingo, 
and it is not confined to I2C implementation only.    

 And to help the development of I2C bus, a host bus tool like the one in Ref  [  49  ]  can be used as a good 
reference.  

   7  There are other clock frequencies defined by the standard, like 400KHz, or even 1MHz and 3.4MHz. Make sure you 
have done the number crunching before you take this approach.  
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      SPI   
 SPI (Serial Peripheral Interface)    is a 4-wire, full-duplex serial bus protocol introduced by Motorola’s 
semiconductor division (Now part of NXP). The four wires are named SCLK (Serial Clock)   ,  SS# (Slave Select, 
Active Low)  , MOSI (Master Output, Slave Input)   , and MISO (Master Input, Slave Output)   . The SS# serves 
as a chip select to indicate the availability of data frame, and two-way traffic can flow on MISO and MOSI at 
the same time when SS# is asserted. The timing diagram between an SPI master and an SPI slave device is 
illustrated in Figure  5-12 .  

  Figure 5-12.    SPI bus       

 The SPI bus offers the flexibility to  change clock polarity (CPOL)   and  clock phase (CPHA)  , which 
determines the actual sampling edge. Details about these definitions can be found in Ref  [  14  ] . However, 
unlike other bus standards, SPI does not have a central committee to craft out all the subtle details. So the 
actual implementation from different vendors may have slight discrepancies on the frame length or the SS#. 8  
FPGA or a small CPLD might be necessary to resolve such discrepancies. 

 And to help the development of  SPI   bus, a host bus tool like the one in Ref  [  49  ]  can be used as a good 
reference.     

      PCI   overview 
 PCI and many of its variants (CompactPCI, PCI-104, PCIe-104, etc.) are the main expansion bus on the IBM 
PC and embedded computers. On an IBM PC, PCI started out in parallel form as a  PCI Local Bus   (Ref  [  4  ] ) 
to replace its predecessor (ISA and EISA bus). PCI Local Bus runs at a clock of 33MHz or 66MHz, with the 
bit width of 32-bit or 64-bit. PCI Local Bus uses level triggered interrupt, and the latest PCI Local Bus also 
specifies MSI as a design option (Ref  [  4  ] ). With the emergence of the high-speed serial bus, PCI local bus is 
gradually being replaced by its serial successor—PCI Express (Ref  [  3  ] ). On an IBM PC, PCI bus is connected 
to South Bridge. However, the South Bridge itself might also have ports for USB, Ethernet, IDE/SATA, etc. 
So some devices, like the  IDE/SATA disks  , could be connected to South Bridge directly. Or they could be 
hooked up to a HBA adapter on the PCI bus, as illustrated in Figure  5-13 .  

   8  Some vendors define SS# as a pulse instead of a level and define a fixed frame length.  
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  PCI Local Bus   supports auto configuration, which is essential to plug-and-play application. Any 
PCI device that requires memory spaces or IO spaces should implement base address registers in its 
configuration space. During power up and system initialization, system software (BIOS for IBM PC) will 
enumerate each PCI bus segment, inquire each PCI device by writing all 1s to the base address register and 
read it back, and then fill the base address register with the assigned starting addresses (Ref  [  4  ] ). The device 
driver should operate within the assigned address spaces. Thus no address conflict would happen at the 
system level.    

 As mentioned, PCI Local Bus is gradually being replaced by its serial successor PCI Express, which has 
a multilane, point-to-point architecture. PCI Local Bus and  PCI Express   are very complicated bus standards, 
and they run a wide gamut of topics, ranging from electrical spec to mechanical spec, and many of the 
physical layer details have to be dealt by the ASIC or IP core. So this book will leave their hardware design 
part to inquisitive readers. Refer to Refs  [  4  ]  and  [  3  ]  or the corresponding ASIC manual for more detail. As for 
software development, configuration space is what matters most, since that is what device driver is based on. 
And PCI Express is backward compatible in this regard (Ref  [  3  ] ). 

  Figure 5-13.    PCI bus on IBM PC       

 



CHAPTER 5 ■ BUS ARCHITECTURE

84

     Driver for PCI Device 
 The implementation of PCI devices involves the development of software. Depending on the nature of the 
device, there are a few possibilities:

•    If the device under development is a critical device that is indispensable during 
system initialization, such as a HBA (Host Bus Adapter)    for disk storage, the 
bootloader has to find a way to identify and communicate with the device before 
OS is loaded. In the case of an IBM PC, it means that some BIOS code has to be 
developed for this device besides the OS driver so that system BIOS could talk to this 
new device for OS loading. BIOS is a different beast on IBM PC and this book will 
leave this part to inquisitive readers.  

•   The OS also needs drivers to identify and communicate with the PCI device. Again, 
if the device is indispensable during system boot up or if the device is IO intensive 
by its nature, a full-blown driver should be developed to reduce the interrupt latency 
and guarantee smooth OS loading. For Windows developers, it usually means 
working with WDK or DDK and writing a driver for kernel mode. 9  In addition to the 
normal operation, the driver also needs to deal with various system power states 
under the ACPI standard (Ref  [  16  ] ). The most important states among them are S3 
and S4, which correspond to standby and hibernation under Windows. 10  For the 
S3 state, the content of the main memory will be kept intact while for the S4 state 
everything is flushed to the disk and main memory will lose its power as well. This 
could be a challenge for HBA disk driver since disk storage will be the first device to 
come up before everything else can be restored from disk. The driver has to make 
sure it reinitializes everything correctly when it is woken up from hibernation.     

•   However, if the device is not a critical device needed during system initialization, and 
the device is not IO intensive (i.e, it can tolerate longer interrupt latency), developers 
could consider putting most of the code in user mode and leaving only a small, 
generic part in the kernel mode, as illustrated Figure  5-14 . The plus side of such an 
approach is that developers can enjoy more latitude in the user mode (such as the 
abundance of debugging tools) without worrying about corrupting the system core. 
In fact, there are tools out there, such as WinDriver (Ref  [  15  ] ), to assist you in taking 
this rapid development approach (Microsoft WDK also provides user mode driver 
support through UMDF—User Mode Driver Framework)   . When the driver code is 
matured, it can be migrated into kernel mode for better performance.          

   9  If the device already has a corresponding driver type under Windows, such as Network Adapter or SCSI, developers 
only need to write a miniport driver to handle the hardware specific operation. Windows will handle the rest through its 
bus driver.  
   10  Windows allows you to choose standby or hibernation when you shut down the computer. Sometimes the hibernation 
option may not be available because there are missing drivers in the system. (You will see a yellow exclamation icon in 
the Device Manager.) An incorrect setting in system BIOS may also affect these options.  
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      USB   overview 
 Anyone who owns a PC would probably agree that USB (Universal Serial Bus)    is the most convenient way to 
connect peripheral devices to it. Since its debut in 1996, USB has continuously sharpened its specs and won 
great popularity. At the time when this book is being conceived, USB 3.1 (Ref  [  46  ] ) is the most up-to-date 
USB spec, although many devices still stick with USB 2.0. So this book covers both the USB 3.x and USB 2.0 
specs here. However, for all practical purposes, this book will focus on USB function devices only and leave 
USB host and USB hub devices to inquisitive readers. 

  USB 2.0   is a differential serial bus with half-duplex mode only. Its interface has four signal wires: VBUS, 
D+, D-, and GND (Ref  [  17  ] ). USB 2.0 supports three data rates: high speed (480Mbps), full speed (12Mbps), 
and low speed (1.5Mbps). The device can be bus-powered or self-powered. If the device is bus-powered, 
such as the popular USB flash drive, the maximum current it can draw from the bus is 500mA (USB 3.x 
supports up to 900mA for a bus-powered device). 

 Unlike other bus standards, such as  PCI Local Bus  , USB host is the only bus master on the USB 2.0 bus. 
In other words, there is no active notification from USB device to USB host under the USB 2.0 standard. 
Every transaction is initiated by a USB host. On the device side, the device should provide buffers for 
data read and write. Such a buffer is called the  endpoint  in USB lingo. Since a USB bus is host centered, 

  Figure 5-14.    Drive hardware in user mode       
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an IN endpoint refers to data transferring from the device to the host while an OUT endpoint means data 
transferring from the host to the device. Each device should implement at least one endpoint (endpoint 
zero) for device control. 

 On top of USB 2.0,  USB 3.x   has cranked up the throughput by more than 10 fold. The USB 3.0 has a new 
data rate called SuperSpeed (not warp speed), which can go as high as 5Gbps. And USB 3.1 raises the bar 
even higher, with its SuperSpeed+ mode, which reaches 10Gbps. 

 To achieve such a high data rate while keeping backward compatibility with USB 2.0 at the same time, 
USB 3.x has added four extra signal wires (SSTX+, SSTX-, SSRX+, and SSRX-) along with the existing USB 2.0 
signals. As you can probably tell from the names, these four signals are actually two differential signal pairs 
in opposite directions. Thanks to those dedicated signals in both directions, it goes without saying that full 
duplex mode is supported by USB 3.x. 

 In addition to the lighting-fast speed, USB 3.x has also improved the USB data flow model by supporting 
asynchronous notification as opposed to the polling model used by USB 2.0. Other aspects, such as 
streaming capability and power management, are getting fined tuned as well by USB 3.x. Inquisitive readers 
can find more technical details about them in Ref  [  18  ]  [  46  ] . The architecture of a USB bus is shown in 
Figure  5-15 , and the major differences between USB 2.0 and USB 3.x are summarized in Table  5-1 .   

  Figure 5-15.    USB architecture       
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   Table 5-1.    Major Differences Between  USB 2.0   and  USB 3.x        

 USB 2.0  USB 3.x 

  Highest Data Rate    High speed (480Mbps)    USB 3.0 Super Speed (5Gbps) 
USB 3.1 Super Speed+ (10Gbps)  

  Full Duplex Mode    Not supported    Supported  

  Asynchronous Notification    Not supported    Supported  

  Maximum Current for Bus-powered Device    500 mA    900 mA  

  Data Signals    D±    D±, SSTX± and SSRX±  

 A regular USB device can only communicate with a USB host. In other words, regular USB devices are 
unable to talk among themselves without the coordination of a USB host. However, there are application 
scenarios where USB devices do need to connect to each other directly, such as a digital camera 
downloading photos to a portable printer. USB OTG (Ref  [  21  ] ) is thus devised as a supplement to USB 2.0 
to cover those special cases. A  USB OTG device   can act as a host temporarily and recognize only a limited 
number of devices on its list. For more information, refer to Ref  [  21  ] . This book will not discuss USB OTG in 
any further detail. 

 Independent of the data interfaces (USB 2.0/3.x), standards are also defined for power delivery through 
USB. The USB power delivery specification (Ref  [  47  ] ) attempts to address the increasing demands for 
supplying power directly through USB. The maximum voltage and current defined in Ref  [  47  ]  is 20V and 5A 
each, which can deliver a power up to 100 watts. (With that much of juice, the USB cable is probably the only 
wire your printer needs.) And with USB power delivery, it also means the power can flow both ways (i.e., the 
laptop can be both a power supplier and a power receiver under various circumstances). 

 In addition to the type A/B connector defined by  USB 2.0/3.x  , a new connector type (Type-C) has 
also been introduced along with USB 3.1, which has a symmetric mechanical design and automatic side/
pin detection (Ref  [  48  ] ). The Type-C cable can deliver maximum current of 3A, which can be used for both 
data and power delivery. And it seems Type-C has the ambition to unseat all the other cable/wires for your 
laptop. 11      

     USB device implementation 
 The implementation of the USB device covers a wide gamut of topics, including hardware components, USB 
firmware (all sorts of USB descriptors), Windows device drivers, etc. All of them are indispensable in the 
making of a successful USB device. This book will touch all of them to present a whole picture to the reader. 

   11  Apple made a bold decision to include only one single Type-C port in its new MacBook, which debuted on April 10th, 2015.  
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     Selecting the Hardware Component 
 Basically, this means you need to choose an IC solution for the USB interface. The available choices are:

    1.    Using a separate  USB MAC and USB PHY (transceiver)      

 If the CPU vendor has already integrated USB Link controller inside the 
processor, then a discrete USB PHY (transceiver) is the only thing you need. 
(Most likely, it will be a ULPI interface (Ref  [  22  ] ).) Actually most CPU vendors 
would also provide or recommend companion chips to match their CPUs, which 
probably contain the USB transceiver. One of such examples is TI OMAP 
35x processor. It has a USB link controller integrated inside. At the same time, 
its companion PMIC has a USB transceiver integrated (Ref  [  24  ] ). And it is always 
better to follow the application notes and pick the recommend solution from the 
CPU vendor if there is one.  

    2.    Using an  off-the-shelf USB/UART solution      

 If all you need is a quick and straightforward USB communication between the 
host and the device, you might consider using off-the-shelf USB/UART solution, 
such as the one mentioned in Ref  [  25  ] . The generic architecture of such solution 
is shown in Figure  5-16 . On the device side, it is pretty much the same as other 
USB devices: internal logic will communicate with the off-the-shelf IC through 
FIFOs (or parallel bus) to read/write endpoints. However, the USB descriptor and 
the host device driver are designed so that the USB device appears as a  virtual 
RS-232 COM port   on the host side. As mentioned, the good old RS-232 port has 
been used for such a long time that there are tons of mature applications you 
can choose from, and it is not difficult to make your own COM port application. 
However, the simplicity that comes with RS-232 is the biggest downside of this 
approach.      

  Figure 5-16.    USB/UART       
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    3.    Using a  USB microcontroller      

 USB microcontroller, such as the one mentioned in Ref  [  26  ] , is good for the 
situation where a full-blown USB device implementation is needed. It usually 
includes three parts in one chip: USB transceiver, USB link controller, and 
a generic microprocessor core, as illustrated in Figure  5-17 . The USB link 
controller will handle all the low-level protocols, such as packet decoding, while 
the microprocessor core will deal with the high-level protocols, like providing 
all kinds of USB descriptors and handling USB requests. Consequently, a lot of 
firmware work has to be done for the microprocessor core. In addition, software 
is also needed at the host side. The device driver has to be developed for the host 
OS. On the Windows platform, WinUSB can be used to replace the device driver 
if there is only one application talking to the USB device. The technical details of 
the USB firmware, device driver, and WinUSB will be discussed in later sections.       

  Figure 5-17.     USB microcontroller         
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   Implementing the USB firmware       
 The USB hardware usually needs to be configured by the firmware. Other than the control flow, the firmware 
is expected to finish the following jobs 

      Setting Up Endpoints   
 Each USB transfer is carried out by exchanging a series of USB packets between the host and device. A 
single USB packet can be the type of token, data, handshake, etc. (Ref  [  17  ]  [  18  ] ). However, those low-level 
packets are usually taken care of by hardware, and they are not firmware’s concern most of the time. Instead, 
firmware works at the granularity of USB transfer. There are four main types of USB transfer defined by USB 
standard: control transfer, bulk transfer, interrupt transfer, and isochronous transfer. Accordingly, there are 
four types of endpoints to match those transfer types. Endpoint also has its direction, whereby IN refers to 
the transfer from device to host and OUT means the transfer from host to device. 

 Each transfer type has its own sequence of packets that are predefined by the USB standard. Note that 
among those four transfer types, isochronous transfer is used for time-critical stream data, such as video 
or audio, and does not use handshake packets. As for the interrupt transfer type, it is actually a misnomer 
under  USB 2.0.   As mentioned, USB 2.0 uses a polling mode; the host will check the endpoint with a 
predetermined interval. Interrupt transfer is meant to be used for small, low-latency data transfers. 

 Based on the kind of transfers that the device needs to fulfill its function, firmware should set up the 
endpoints. And endpoint zero should always be configured for a control transfer type, as designated by the 
USB standard.     

     Handling Request/Prepare  Descriptors   
 During device initialization, the host will send the USB requests to the device to get/set various technical 
parameters (control transfer to endpoint zero), and the device should respond to these requests with 
corresponding data structures called   descriptors   . These descriptors include:

•      Device     descriptor:  Provides a device class/subclass, a protocol, and a maximum 
packet size for endpoint zero, vendor ID, product ID, etc.  

•     Configuration     descriptor:  Provides the number of interfaces supported, maximum 
power consumption, etc.  

•     Interface     descriptor:  Provides the number of endpoints, class/subclass, and protocol 
for the interface.  

•     Endpoint     descriptor:  Provides the endpoint direction, transfer type, maximum packet 
size, polling interval, etc.  

•     String     descriptor:  Provides the language ID, string length, etc. This can be referenced 
by other descriptors to display things like vendor name, product name, etc.  

•    Interface association descriptor:  If composite device is required,  IAD   (Interface 
Association  Descriptor  ) should also be provided along with the configuration 
descriptor (Ref  [  27  ]  [  28  ] ).    

 In addition, for a specific device class, other descriptors, such as function descriptors, are also needed. 
The detailed format of these descriptors can be found in Ref  [  17  ]  and  [  18  ] ). In the companion material of this 
book, there is a complete example of  CDC device   (USB communication device), which contains a generic 
head file that has all the data structure for standard USB descriptors and all the class code definitions. This 
head file can be useful for other USB firmware projects.   
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     Implementing the  USB Device Driver   (for the Host OS) 
 USB devices do not work by themselves. Instead they are designed to communicate with USB hosts. If 
you happen to own a PC that runs Windows, you probably know that the “Found New Hardware Wizard” 
will appear when you plug in your USB device the first time. In other words, the driver has to be provided 
at that point in order to let the USB device become a functional peripheral under the host OS. Due to the 
dominance of Windows on the PC desktop, this book will focus this discussion on the Windows platform 
only. As far as the USB device driver is concerned, there are several options:

•     Writing a    full-fledged device driver    :  You can always be hardcore and write a full-
fledged Windows driver for the device. However, I can tell you first hand that it is not 
a small undertaking to write a Windows driver. For those strong hearts, refer to WDK 
and MSDN for more information. Of course, if the situation does warrant a full-
fledged driver, you have to bite the bullet. In that case, I would suggest you start with 
an existing example in WDK and go from there. 

 But under some circumstances, you might find more lightweight solutions, such as 
USB Virtual COM port or WinUSB.  

•    Using a    USB Virtual COM port    :  One thing you can do to circumvent the development 
of a full-fledged Windows driver is use virtual COM port. The USB device can present 
itself as an analog modem type of PSTN device. And PSTN device (Ref  [  30  ] ) falls 
under a more generic USB class called  CDC device   (communication device, Ref 
 [  29  ] ). The best part for such a setting is that Windows already has a built-in device 
driver called  usbser.sys  for these kinds of modem devices. All you have to do is 
to write an . inf  file, which gives the corresponding vendor ID and product ID and 
instructs Windows to load  usbser.sys  for the device. All the heavy lifting will be 
done by  usbser.sys  behind the scenes. 

 Such a USB CDC device will have IN and OUT bulk endpoints for transfer in both 
directions. And all the legacy applications that previously communicate with COM 
port can still be used seamlessly. As mentioned, off-the-shelf IC solutions can also 
be found among various vendors (such as those mentioned in Ref  [  25  ] ). So it is 
truly a cost-effective solution as long as the COM port is acceptable in the actual 
circumstances. The companion material in this book has a full examples of the USB 
Virtual COM port implementation based on the Cypress CY3684 FX2LP EZ-USB 
Development Kit.  

•    Using    WinUSB    :  Oftentimes the manufacturer of the USB device is also the software 
provider of the Windows application. That application usually is the only one that 
talks to the USB device. If that is the case, and if there is no isochronous endpoint 
on the USB device, WinUSB might be a good choice rather than developing a full-
fledged Windows driver (Ref  [  19  ] ).    
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 As illustrated in Figure  5-18 , the WinUSB solution is made up of two main components:  WinUSB.SYS  
in kernel mode and  WinUSB.DLL  in user mode.  WinUSB.SYS  is a generic driver that communicates with 
the USB device.  WinUSB.DLL  is the user mode component that talks with  WinUSB.SYS  and provides APIs 
to the user applications. All the device details are thus masked out by those APIs, which makes the user 
application more portable and easier to develop. Come to think of it, all USB devices are nothing but a bunch 
of endpoints after all, so such generic solution is entirely feasible, as long as throughput and latency are 
acceptable under practical circumstances.      

 The companion material of this book has a complete example of a WinUSB implementation based on 
the same  USB Virtual COM port device  .  

      Ethernet   
 Ethernet started in the early days of Internet and it has been evolving ever since. This discussion on bus 
standards wouldn’t been complete without it.  

  Figure 5-18.     WinUSB architecture         
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     Overview 
 The explosive growth of the Internet in the past two decades has given Ethernet a universal presence. The 
data rate of Ethernet has also skyrocketed from the initial 10Mbps to the order of 100Gbps. Thus it becomes 
more and more imperative for embedded systems to be able to support Ethernet connections. In fact, the 
plummeting hardware prices and the soaring CPU speed have even made it practically possible for medium-
scale systems to run the entire web server inside the microprocessor so that configuration can be done easily 
through the browser, as demonstrated in Figure  5-19 .  

  Figure 5-19.    Embedded web  server         

 The network protocols that shore up the whole architecture are implied in Figure  5-19 . “Network 
protocol” usually refers to the TCP/IP protocol stack that forms the bedrock of the whole Internet. As 
shown in Figure  5-20 , TCP/IP comprises multiple layers of protocols and Ethernet resides in the lower two 
layers: the Physical Layer and the Data Link Layer. Each layer is also composed of several sublayers. As 
far as Ethernet hardware is concerned, the sublayers marked by hatched lines in Figure  5-20  are usually 
implemented in silicon while the rest of the protocol stack is done by the software.  
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 Ethernet started out in late 1970s with only 10Mbps. It has gone through multiple generations of 
improvement and fine-tuning since then. Consequently, the physical layer of Ethernet has also gone through 
several major revisions over the years. So keep in mind that the structure shown Figure  5-20  is based mainly 
on Fast Ethernet (100Mbps) and Gigabit Ethernet (1000Mbps) for the sake of practicality. Different sublayer 
structures may be found for other Ethernet standards, such as the 10Mbps Classic Ethernet. 

 Among the three subphysical layers shown in Figure  5-20 , the PCS layer is mainly responsible for 
encoding the data coming from MAC into a form that is suitable for physical transmission. Since most 
Ethernet link are AC-coupled, the encoded bit stream should be DC-balanced. Also, for the sake of clock 
sync, the encoded bit stream should also have a short run length, which means the maximum number of 
consecutive 1 and 0 after encoding should be reasonably small. In 10Mbps Classic Ethernet, Manchester 
code is used in PCS and is replaced by the 4B/5B code scheme in Fast Ethernet (100Mbps), and then is 
succeeded by the 8B/10B code scheme (Ref  [  9  ] ) in Gigabit Ethernet (1000Mbps). 

 PCS will send the encoded bit streams to the next layer, called PMA, through a standard interface. In 
Gigabit Ethernet, TBI (Ten Bit Interface)    or RTBI (Reduced Ten Bit Interface)    are usually the ones adopted. 
PMA is mainly responsible for data serialization and de-serialization. 

 Bit streams processed by PMA will be passed along to PMD, which is deeply tied to the actual physical 
medium being used in data transferring. There are a wide variety of medium being used or once used in 
the Ethernet, such as coaxial cable with BNC connector, twisted pair with RJ45 connector, optical fiber with 
GBIC/SFP module. For all practical purposes, the rest of this book will focus on the discussion of xBase-T 
Ethernet protocol, which uses  RJ45 connector   and UTP (Unshielded Twisted Pair)    cable. This is the most 
popular cable/connector you’ll often find on your desktop PC or laptop computer. 

  Figure 5-20.     TCP/IP over Ethernet            
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 The interface between MAC and PHY has also been sharply enhanced and standardized over the years 
to accommodate for surging data rates. The possible interfaces are AUI or SNI for 10Mbps Classic Ethernet; 
MII or RMII for 100Mbps Fast Ethernet; GMII, RGMII, or SGMII for 1000Mbps Gigabit Ethernet; XGMII for 
10Gigabit Ethernet; etc. This topic will be revisited in later sections that discuss the hardware configuration.     

      Hardware Implementation   
 As mentioned, MAC and PHY (PCS + PMA + PMD) are usually implemented in IC while the rest of the 
TCP/IP is realized by the software. As for the IC implementation, there are two solutions, discussed next. 

   Standalone Ethernet Controller 
 One design choice is to have both the MAC and PHY in one package and make a standalone controller out of 
it. The controller will have a generic bus interface or processor interface for control/configuration and data 
transferring. The popular choices are:

•     Using a    10Mbps standalone controller    :  If all you need is a cheap Ethernet link that 
could get you onto the network, and if data rate is not a major concern, you might 
use a mature 10Base-T solution, such as the one in Ref  [  31  ] . Since 10Mbps Ethernet 
is from the dinosaur age, most its controllers carry ISA 16-bit interface and can be 
tweaked easily to communicate with microprocessors. The plus side is that since 
these are mature solutions, there are application notes and proven designs galore. 
The flip side is that 10Mbps is slowly dying out. My two cents is to use it only as an 
interface for debug and development and never populate it to the final product.  

•    Using a    10/100Mbps standalone controller    :  For medium-scale embedded systems, 
100Mbps Fast Ethernet link offers a nice balance between cost and performance. 
A standalone 10/100Mbps controller, such as those in Ref  [  32  ]  [  33  ]  [  34  ] , can be used 
if the microprocessor does not have a built-in MAC. Most 10/100Mbps controllers 
will have ISA bus interfaces or generic parallel bus interfaces for integration with 
microprocessor or FPGA, and due to the popularity of these controllers, main-
stream embedded OS usually have built-in drivers ready to recognize them as valid 
peripherals.  

•    Using a standalone controller for    1000Mbps Gigabit Ethernet    :  There are many 
vendors offering 1000Mbps standalone controllers on the market. However, due to 
the high throughput of Gigabit Ethernet, most of these controllers have a PCI/PCI-
express bus interface. And it might post a design challenge if the PCI/PCI-express is 
not natively supported by the microprocessor used in the system. An alternative is 
to use a microprocessor that has built-in Gigabit MAC or FPGAs with a Gigabit MAC 
core, and a Gigabit PHY as an external transceiver. This brings you to the second 
solution: separate MAC and PHY.     

   Separate MAC and PHY 
 Another possible design choice is to use a separate Ethernet MAC and PHY. For IC implementation, the PHY 
is usually designed as a standalone transceiver due to its analog nature. The MAC could be a standalone IC 
by itself, or it could be a built-in module that comes with the microprocessor. It is also possible for FPGAs to 
carry a MAC core if necessary.     
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 Since now the MAC chip and PHY chip could be provided by two different vendors, before any Ethernet 
data can be exchanged between MAC and PHY, a standard interface has to be defined for MAC chip to 
configure the PHY registers and manage the PHY chip. The industry standard interface for this purpose is 
called MDIO, which is part of the MII and GMII interface. MDIO is a serial bus interface, with two signals—
MDC (clock, no more than 2.5MHz) and MDIO (bi-directional serial data)—as illustrated in Figure  5-21 .  

  Figure 5-21.     MDIO interface         

 There is only one PHY in Figure  5-21 . However, the MDIO interface is actually defined with the 
management of multiple PHYs in mind. And in MDIO lingo, the entity sending out the clock is called STA 
(Station Management Entity)    and the one being managed is called MDD (MDIO Manageable Device)   , which 
corresponds to MAC and PHY respectively in Figure  5-21 . Each PHY should be  assigned   an address during 
board design to identify itself to the MAC. This address will be contained in the MDIO frame structure 
when MAC configures the PHY. The details of MDIO frame structure and the definition of MII management 
register can be found in Ref  [  40  ] . 
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 Despite the functional partition shown in Figure  5-22 , PCS and PMA sometimes can be moved into 
a MAC module at implementation due to their digital nature, and PHY chip could focus on the analog 
transceiver to simplify the design and manufacture. PCS and PMA can also be supported by both the MAC 
chip and PHY chip. Thus, the possible partition of work (hardware configuration) could be as following after 
initialization:

    1.    PCS and PMA stay with PHY chip 

  Figure 5-22.    PCS and PMA implemented by the  PHY module            

 As illustrated in Figure  5-22 , MAC and PHY can exchange data through MII/RMII 
interface for Fast Ethernet, or GMII/RGMII interface for Gigabit Ethernet. These 
interfaces are parallel bus interfaces, with separate TX and RX clocks. The RX 
clock is always provided by PHY module while the TX clock could be provided 
either way depending on the Ethernet Protocol. (The TX clock is from PHY under 
Fast Ethernet. But under Gigabit Ethernet, MAC is responsible for providing the 
TX clock.).Details of the signal pins can be found in Refs  [  37  ]  [  40  ] .   

    2.    PCS stays with MAC and PMA stays with PHY 

 It is also possible to let the MAC chip implement the PCS layer while PMA stays 
with PHY, as illustrated in Figure  5-23 . If such a configuration is chosen under 
Gigabit Ethernet, data can be exchanged between PCS and PMA through a TBI or 
RTBI interface. Both TBI and RTBI are parallel bus interfaces, with PCS providing 
the TX clock and PMA providing the RX clock. Details of the signal pins for TBI/
RTBI can be found in Refs  [  37  ]  [  40  ] .   
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    3.     SGMII interface   

 All the interfaces discussed so far between MAC and PHY are single-ended 
parallel buses. As mentioned, single-ended parallel buses are gradually being 
unseated by serial differential links throughout the industry. Ethernet is also 
following this trend with no exceptions. A serial protocol called  SGMII   (Ref  [  41  ] , 
including 10/100/1000Mbps Data Rate) has been introduced by Cisco and won 
the support of major IC vendors. The idea behind SGMII is to use SERDES to 
serialize TBI bus shown in Figure  5-23  into serial links, recover the GMII data at 
the other end, and follow the path of Figure  5-22  afterward. So conceptually there 
will be PCS modules in both MAC and PHY, as illustrated in Figure  5-24 .     

  Figure 5-23.    PCS in MAC; PMA in PHY       
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 The SERDES that converts the parallel TBI bus into a serial link is shown as a 
component external to MAC in Figure  5-24 . Depending on the actual silicon 
implementation, sometimes the SERDES can also be absorbed into a MAC 
module to further simplify board design. As for the clock, there is no out-of-
band clock for the serial link shown in Figure  5-24 . That is to say, the clock is 
embedded in the serial data link. However, out-of-band clock implementation is 
also possible under SGMII protocol if that is desired by designers (Ref  [  41  ] ).  

    4.    PCS and PMA stay with MAC; PHY has PMD only 

 If  1000Mbps Gigabit Ethernet   is the only protocol that needs to be supported, 
Figure  5-24  can be simplified with PMD left in the PHY alone. In this case, 
PHY turns into a standalone Ethernet transceiver. For an Ethernet switch, such 
an implementation has its merits since a Gigabit Ethernet switch port might 
be connected to copper wire (RJ45, twisted pair) or optical fiber of various 
wave lengths. To allow maximum flexibility, the PMD and the corresponding 
connector can be mechanically made into a standard form factor module, like 
GBIC or SFP. Due to such a standard form factor, a mixture of fiber and copper 
port connection is possible under the same switch core fabric, as illustrated in 
Figure  5-25 .       

  Figure 5-24.     SGMII interface            
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      Ethernet Software and Flow Control   

 To work with Ethernet at the software level, most embedded systems will adopt the TCP/IP protocols 
provided by the OS. The protocol stack will interact with MAC through Ethernet Frames. In that sense, at the 
software level there is no major difference between an embedded system and a desktop PC. 

 However, sometimes there might be a throughput limitation imposed by physical layer, which is 
common among many embedded systems. Under such circumstances, flow control problems will arise 
when the board is connected to a powerful PC or switch that blows data relentlessly. Pause frame is one of 
the ways to throttle the traffic.

    1.    Enable flow control for the PC or switch. For Windows PC, right-click the adapter 
in Device Manager and choose Property. Look for things like “flow control” or 
“performance option”. For switch, it is often configured through web interface.  

    2.    On the embedded system side, enable pause frame in both the MAC and PHY. 
Set a big pause quanta, such as 0xFFFF, to begin with.     

    3.    In MAC, set the FIFO threshold that triggers the pause frame. The initial 
threshold can be set at the middle point of FIFO size.  

    4.    Use wireshark (Ref  [  50  ] ) to observe and capture the pause frame. The filter can be 
set as  mcc.opcode == 0x1 .         

  Figure 5-25.    GBIC/SFP with a common  MAC interface            
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     Summary 
 The bus is what stitches everything together. 

 There are main two kinds of bus timing: system synchronous timing and source synchronous timing. As 
the bus clock rate keeps going up, source synchronous timing starts to gain in popularity. These days, high-
speed buses are moving away from parallel single-ended links into differential serial links. Depending on the 
clock rate, there are multiple ways to implement the interface for a differential serial bus. 

 Major bus standards—including RS-232, I2C, SPI, PCI, USB, and Ethernet—were also deeply explored 
in this chapter.      
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    CHAPTER 6   

 Firmware Coding in C                          

    When I read commentary about suggestions for where C should go, I often think back and 
give thanks that it wasn’t developed under the advice of a worldwide crowd.  

 —Dennis Ritchie (1941 – 2011), the Father of the C Language   

 Starting in this chapter, I will delve into the softer side of embedded systems. The next three chapters cover 
C/C++, the build process, and a little bit of embedded OS. 

     Overview 
 At the time when this book was being conceived, iPhone was on its way to become one of the coolest gadgets 
in history. And a large part of its success comes from the contribution of app developers worldwide. (Of 
course, there is no doubt that iPhone also owns its success to Steve Jobs’ charisma and vision. And yes, we 
are all gonna miss him.) Due to the far-reaching deployment of handheld devices like the iPhone and the 
eye-catching nature of cool apps (as that angry bird can attest), people start to intuitively take those apps as 
the equivalence of embedded software, which is  not true  technically. 

 As illustrated in Figure  6-1 , applications are not the only software in embedded systems. Instead, 
multiple layers of software exist above the bare bones hardware but below the applications. These layers of 
low-level software, such as the device driver and the embedded OS, form the foundation for applications. In 
the world of embedded systems, people often use the term  firmware  to distinguish them from the high-level 
application software. Firmware runs at a level that is very close to the hardware, and it has to deal with a lot 
of primitive constraints that are not felt by high-level applications.  
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 The boundary between firmware and pure software is not clean-cut, thanks to the relative nature of 
terms like “low” and “close”. However, my personal observation is that things like bootloader, device driver, 
and embedded OS are traditionally recognized by the industry as firmware instead of software. After all, 
these pieces have to be customized for each individual hardware platform while the application software 
is usually cross-platform. In fact, such a difference is also reflected in the development flow, as most 
application software can be developed on a resource-rich Windows/PC platform (or Mac or Linux host) 
and ported to the embedded system later without much effort. But for firmware developers, the flow usually 
involves reading hardware specs and working with ICE or debug console in the lab, so the development 
environment is much cruder for those folks. 

 If I have to use analogy, imagine the whole embedded system as a race car. The car itself, of course, is 
the hardware that includes various components like engine, wheels, etc. The application developers are 
more like the driver of the race car. Their job is to rev up the engine, spin the wheels, drive the car to full 
throttle, and roar pass other cars on the track. If they are lucky enough to win, they get to be wooed by fans 
and pop open the champagne bottle. Yes, that is as cool as cool can be. However, firmware folks are more 
like the mechanics who take care of the car. They have to worry about the oil leaks somewhere in the valves. 
They have to replace the worn-out tire before it blows. They need to make sure the engine never overheats 
at full speed. In a nutshell, their job is to fine-tune the machine to its maximum. Oftentimes their hands are 
dotted with oil patches. They don’t have much time under the limelight. 

 Now, at this point, if you are doubting your career choice, it is still not too late to throw in the 
towel... :-). Aw, who am I kidding? In fact, I was a firmware engineer in my previous life. I can tell you first-
hand that firmware is cool in its own way. It is the bridge between software and hardware, and you get to 
have innumerable tricks up your sleeve when you work for both sides!  

  Figure 6-1.    software, firmware, and  hardware         
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     The  Confusion of Tongues   
 After the Tower of Babel collapsed, varieties of languages mushroomed across the earth. People who don’t 
speak the same language started to have a difficult time understanding each other, and confusion and 
frustration followed. In the world of embedded systems, firmware engineers are challenged by the same 
dilemma. What is the best programming language for firmware development? As of today, the possible 
choices are:

•    Assembly  

•   C  

•   C++  

•   Java    

 Due to the plethora of programming languages, this list is by no means to be complete. (For example, 
someone from the Microsoft camp might point out that C# is a good alternative to Java.) However, as 
mentioned, firmware has to have close interaction with the hardware. In that sense, any language that is 
based on a virtual machine is not suitable for firmware development, since it naturally begs the question: 
“What programming language shall we choose to write the virtual machine?” So this basically leaves both 
Java and C# out. (Of course, they can still be valuable assets to application developers.) 

 Among all the choices, assembly language is native to the hardware and it can be employed to drive the 
hardware to its maximum efficiency. However, its biggest strength is also its Achilles heel. Since it is closely 
tied to the hardware platform, portability is the major concern for assembly language. Assembly is hard to 
master due to its primitive nature. It lacks the abstract data structures that are commonly enjoyed by modern 
high-level programming languages (like C or C++). All these deficiencies make Assembly justifiable only in 
some special cases like:

•    The startup code for bootloader.  

•   Part of the C runtime library to set up the stack and do other initializations.  

•   In places where execution time is extremely critical. One such case is the FFT 
(Fast Fourier Transform) for digital signal processing. It is usually worth the 
effort to optimize the FFT with assembly language under such circumstances, 
since FFT is often involved in the core algorithms of telecomm, image processing, 
audio/video compression/decompression, etc. And those applications generally 
demand realtime processing.  

•   In places where code size has to be reduced to meet the space constraints. 
(In these days, Flash becomes the commodity and compilers are doing a good job on 
optimization. So before you start the size-reduction with Assembly, make sure all the 
other options have been seriously explored.)    

 So the choice finally comes down to C or C++. There has been plenty of heated debates and discussions 
on this subject in the past decade or so. Here are a few interesting observations I have made personally 
during my career:

•    OS kernel developers tend to have a penchant for C. Mr. Linus Torvalds is probably 
the most prominent member among this group of folks. He once made a few strong 
remarks against using C++ in Linux Kernel (Ref  [  2  ] ). On the other hand, engineers at 
Microsoft seem to have their reservations as well when it comes to writing a kernel 
mode driver in C++. By reading Ref  [  1  ]  and  [  2  ] , I found it hard to believe that, for the 
first time in as long as I can remember, Microsoft and the Linux community were 
able to agree on something at the fundamental level.      
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•   Although my personal opinions could be biased (as the nature of all subjective 
matters), I want to make it clear that I hold no prejudice for one language over the 
other. I think OO is an ingenious concept, and it is possible for C programmers to 
utilize that idea without actually using C++, as demonstrated in Refs  [  3  ]  [  4  ] .  

•   Despite the dominance of C in the kernel, I have to admit that ISOCPP 1  has done 
a great job refining C++ in the past decade. And embedded system developers can 
definitely benefit from embracing C++ under viable circumstances.    

 The rest of this chapter discusses firmware coding in the C language, followed by another chapter on C++.  

     Firmware Coding in the C Language 
 As mentioned, for any embedded systems, Assembly will play a small part after reset to initialize the 
hardware, set up the stack, zero out the . bss  section, and jump to the  main()  function. After that point, 
everything is carried out in the C language, except those special cases where Assembly coding is still needed 
for the sake of performance/sizing. 

 It is also worth mentioning again that firmware has its own idiosyncrasies, most of which are not a 
concern for application development. But these idiosyncrasies will easily break the firmware if they are not 
done in the right way. I will try to address them as much as I can in this section. 

     Explicit Type of Bit- Width   
 One of the main functions of the firmware is to configure hardware, which usually involves register/memory 
access. Most register and memory buses will have a bit-width that is the multiple of a byte (8-bit). Since each 
CPU has its own native word length (bit-width) for bus and register file, the size of integer-type varies from one 
compiler to another. It is always good practice for a firmware project to  typedef  its own primitive types, with 
explicit bit-width marking. Those “typedef” should be put in a common head file and included by the whole 
project to avoid any ambiguity on bit-width, as exemplified in Listing  6-1 . In Listing  6-1 , 8-bit, 16-bit, and 32-bit 
unsigned integer types are defined for the KEIL C51 compiler and the GNU C 32-bit compiler. (Notice that GNU 
C can support 64-bit operations on 32-bit hardware through a software library. So 64-bit unsigned integer can 
be defined as “long long” type in GNU C.) All the rest of the project should only use these U8/U16/U32/U64 
types to define and declare variables for the sake of readability and portability. DSP programmers might also 
want to define the signed integer type (S8/S16/S32) for their own platforms if necessary. 

 Note that there are some  C_ASSERT  macros used in Listing  6-1 .  C_ASSERT  is a debug macro defined for 
compile-time assertion, and its purpose is to statically catch anything fishy. It is discussed in detail later in 
this chapter. 

       Listing 6-1.    Explicit Type of Bit-Width   

  #ifndef COMMON_TYPE_H  
  #define COMMON_TYPE_H  

    #include "debug.h"  

    #if defined (KEIL_C51)  

   1  ISOCPP stands for C++ Standards Committee, the international standardization working group for C++.  
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        typedef unsigned long int   U32;  
      typedef unsigned short      U16;  
      typedef unsigned char       U8;  

    ...  

    #elif defined (GNU_C_32BIT)  

        typedef long long       U64;  
      typedef unsigned int    U32;  
      typedef unsigned short  U16;  
      typedef unsigned char   U8;  

        C_ASSERT(sizeof(U64) == 8);  

    ...  

    #else  

    ...  

    #end if  

    C_ASSERT(sizeof(U32) == 4);  
  C_ASSERT(sizeof(U16) == 2);  
  C_ASSERT(sizeof(U8) == 1);  

    # endif    

          Align the Data Structure 
 As mentioned in previous section, each CPU has its own word length (bit-width) and it varies from one 
platform to another. Due to the broad scope of embedded CPUs, the word length can be as small as 8-bit 
(such as Intel 8051), or as big as 32-bit (like the popular ARM processor). For some high-end products, they 
could even afford 64-bit CPUs. And most systems would also allow memory access with a width less than the 
native word length (For example, most 32-bit CPUs can R/W memory in a single byte as well, with degraded 
efficiency.) Consequently, it gives rise to the alignment issue for all data structures. 

 From the performance standpoint, memory accesses that are aligned to native word length are always 
preferred (i.e., the beginning address is at the boundary of native word length, and the R/W length is a 
multiple of native word length.) Thus most compilers will do some optimization by inserting space  padding   
into the data structure when they see the chance of misalignment, as demonstrated in Listing  6-2 . 

        Listing 6-2.    Padding for Alignment   

  typedef struct {  
      U8 a;  
      U32 b;  
      U16 c;  
  } STRUCT_NOT_PACKED;  
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  GNU C Compiler, 32 bit target CPU:  

    sizeof(STRUCT_NOT_PACKED) == 12  

     For a 32-bit target CPU, the GNU C compiler will insert three bytes of padding for field a and two bytes 
padding for field c in the  struct  defined in Listing  6-2 , so that  struct  member b will be aligned to 32-bit 
boundary, and the total size of  struct STRUCT_NOT_PACKED  becomes 12. 

 Under GNC C, such alignment padding can be disabled by using the   packed  attribute  , as illustrated 
in Listing  6-3 . After applying the  packed  attribute, the size of the data structure is reduced to 7. However, 
 struct  member b is now stored across 32-bit boundary and carries performance penalties if accessed 
individually. 

       Listing 6-3.    Packed Data Structure   

  #define PACKED __attribute__((packed))  

    typedef struct {  
      U8  a;  
      U32 b;  
      U16 c;  
  } PACKED STRUCT_PACKED;      

  GNU C Compiler, 32 bit target CPU:  

    sizeof(STRUCT_PACKED) == 7  

     Alignment is an important part of firmware programming, and most hardware controllers will assume 
the data structures they need are aligned in memory with a predefined layout. For example, DMA controllers 
will read a scatter-gather list out of the memory when it starts DMA, and for the sake of efficiency, it usually 
requires such a list being stored in memory with boundary alignment and having a certain format. Thus it is 
the firmware engineer’s job to lay out the data structure correctly per the hardware specs. 

 To deal with data alignment issue and improve portability, firmware engineers can borrow a page from 
Microsoft’s playbook. In fact, I found the following two macros from Ref  [  5  ]  handy in this regard:

•     FIELD_OFFSET : This macro is defined in Listing  6-4 . It can be used to indicate the 
actual offset of a member field within the  struct . With the help of this macro, you 
can get that the member field b is offset by 4 bytes and 1 byte each in the previous 
two structs defined by Listings  6-2  and  6-3 .    

     Listing 6-4.     FIELD_OFFSET Macro     

  #define FIELD_OFFSET(type, field) \  
          ((long)(long*)&(((type *)0)->field))  

  GNU C Compiler, 32 bit target CPU:  

    FIELD_OFFSET(STRUCT_NOT_PACKED, b) == 4  
  FIELD_OFFSET(STRUCT_PACKED, b) == 1  
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•        TYPE_ALIGNMENT : As shown in Listing  6-5 ,  TYPE_ALIGNMENT  2  can be used to determine 
the alignment offset of a data structure. And if used together with  C_ASSERT , it can set 
up the first line of defense to sort out alignment issues at compile time.        

     Listing 6-5.     TYPE_ALIGNMENT Macro     

  #define TYPE_ALIGNMENT( t ) \  
      ((long)(sizeof(struct { char x; t test; }) - sizeof(t)))  

  GNU C Compiler, 32 bit target CPU:  

    C_ASSERT(TYPE_ALIGNMENT(STRUCT_PACKED) == 1);  

  C_ASSERT(TYPE_ALIGNMENT(STRUCT_NOT_PACKED) == 4);  

     As a strong proponent of code craftsmanship, I also encourage firmware engineers to manually pad the 
data structure and reorder the member fields for better portability and less space consumption, assuming 
the data structure is user-defined. 

 For example, the  struct  in Listing  6-2  and Listing  6-3  can be hand-optimized into something like 
what’s shown in Listing  6-6 . With an alignment of 32-bit, the new  struct  is more portable across different 
compilers and compile options. And its size is reduced to 8 instead of 12. 

     Listing 6-6.    Manual  Padding   for Alignment   

  typedef struct {  
      U8  a;  
      U8  padding;  
      U16 c;  
      U32 b;  
  } STRUCT_MANUAL_PADDING;  

  GNU C Compiler, 32 bit target CPU:  

    sizeof(STRUCT_MANUAL_PADDING) == 8  

    TYPE_ALIGNMENT(STRUCT_MANUAL_PADDING) == 4  

           Debug Print   
 With the rapid betterment of JTAG-based ICE, firmware engineers now get to trace their code at source level 
and enjoy all the benefits that are brought by the IDE (Integrated Development Environment, such as Eclipse 
or ARM RVDS) tools. The productivity of firmware development can thus leapfrog with the assistance 
of these tools. My opinion is that generally they should take the top of the list during project budgeting. 

   2   TYPE_ALIGNMENT  is defined differently in Ref  [  5  ]  as  FIELD_OFFSET( struct { char x; t test; }, test ) . 
The side effect of this implementation is that compiler will give out warnings if it is used together with  C_ASSERT .  
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However, despite the prowess of these ICE and IDE tools, Debug Console is still an indispensable alternative 
during firmware development. Sometimes, it might be the only viable option:

•    To achieve source level debugging, the object has to be built with all the symbols in. 
Oftentimes it also requires disabling the compiler optimization by using  -O0  option. 
All these treatments will bloat the object size. Under some circumstances it might be 
infeasible to load the object through ICE after these treatments, due to the constraint 
of memory size.  

•   Thanks to the different level of optimization used for compiling debug build and 
release build, there could be inconsistency on code flow and latency. Consequently, 
certain bugs may appear in one build but not the other. For release build, Debug 
Console probably is the only feasible option to save engineers from total fiasco.  

•   For device drivers, some of them can be dynamically loaded instead of statically 
built-in. For example, Linux kernel modules can be loaded dynamically by using the 
 insmod  command after the kernel is fully booted up. In order to trace these modules 
through IDE tools, developers have to jump through a lot of hoops. And this is 
usually the moment when  printk()  comes handy.    

 For hardware implementation, Debug Console is traditionally done by using UART ports available 
on the microprocessor, with external RS-232 transceivers for voltage-level translation and ESD protection. 
Alternatively, Debug Console can also be implemented through a JTAG port. 

 As for firmware, it means that you have to define a macro to print out debug information on the console. 
This macro can be disabled in the release build, and it should support variable number of arguments, just 
like the  printf()  or  printk()  function. Here are the common recipes that I have collected over the years for 
such debug print macros:

•     Brutal force for a variable number of arguments:  Basically, this means using multiple 
macros for different number of arguments, as shown in Listing  6-7 . This is not an 
elegant way of doing things, but the code is very straightforward and portable. The 
drawback is, of course, that you have to use a different macro every time you need to 
print out more arguments.    

     Listing 6-7.    Multiple Macros for Debug Print   

  #if defined(DEBUG)    
      #define DEBUG_OUTPUT(val) \  
              printk(val)  

        #define DEBUG_OUTPUT2(val1,val2) \  
              printk(val1,(int)(val2))  

        #define DEBUG_OUTPUT3(val1,val2,val3) \  
              printk(val1,(int)(val2),(int)(val3))  
  #else  
      #define DEBUG_OUTPUT(val)    
      #define DEBUG_OUTPUT2(val1,val2)  
      #define DEBUG_OUTPUT3(val1,val2,val3)      
  #endif  
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•        Borrow a page from script playbook:  Script languages, such as Perl and Tcl, often use a 
debug flag to control the debug output. This trick can be borrowed by C as well, as shown 
in Listing  6-8 . Although this brings the benefit of runtime flexibility, it may also bring 
runtime overhead and other side effects, depending on the compiler optimization.    

     Listing 6-8.    Using a Debug Flag   

  extern U8 debug_flag;  

    #define DEBUG_PRINT if(debug_flag)printf  

  Or  

    #define DEBUG_FLAG (0)  

    #define DEBUG_PRINT if(DEBUG_FLAG)printf  

•        Using double parentheses:  Another way to support a variable number of arguments is 
to use double parentheses whenever Debug Print is invoked, as shown in Listing  6-9 . 
This trick is often played by Windows driver developers, but it is also applicable to 
firmware development. The good news is that such practice conforms to standard C, 
so it should be acceptable to C compilers across the board.    

      Listing 6-9.    Using Double Parentheses   

  #if defined(DEBUG)    
      #define DEBUG_PRINT(_x_) \  
              do{printf ("DEBUG: "); printf _x_;}while(0)  
  #else  
  #define DEBUG_PRINT(_x_)  
  #endif  

  Double Parentheses:  

    DEBUG_PRINT (("arg1 = %d, arg2 = %d \n", 1, 2));  

•        Variable number of arguments in GNU C:  If you feel the double parentheses in 
Listing  6-9  are bothering you, you can use a better solution if your compiler is GNU 
C. GNU C has native support for macros that have a variable number of arguments, 
as demonstrated in Listing  6-10 . The double parentheses are no longer needed in 
this case, but the flip side is that it is not standard C practice and may have portability 
issues with other compilers.        
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     Listing 6-10.    Variable Number of Arguments in GNU C   

  #if defined(DEBUG)    
      #define DEBUG_PRINT(fmt, args...) \  
              printf("DEBUG: " fmt, ##args)  
  #else  
      #define DEBUG_PRINT(fmt, args...)  
  #endif  

  No need for Double Braces:  

    DEBUG_PRINT ("arg1 = %d, arg2 = %d \n", 1, 2);  

           Compile Time Assertion   
 Assertions are frequently used by firmware engineers and application developers to verify the assumptions 
they have taken in the code flow, which is a practice strongly encouraged by most coding guidelines. 
However, those assertions that stay in the code flow are runtime assertions, and they are activated only 
when the code is executed. In addition to those runtime assertions, it is also desirable to have a way to verify 
assumptions at compile time, even before the code is executed. For example, when you want a compile-time 
assertion to do sanity checks statically. 

 Fortunately, there is a way to do this in the C language, and I highly recommend it to firmware 
practitioners. It was first introduced by Mr. Dan Saks in Ref  [  6  ] , and was later enhanced by Mr. Ken Peters 
and Mr. Mike Teachman. The idea is to generate negative array indexes if the assertion fails during 
prepossessing, and therefore raise a compile error, as illustrated in Listing  6-11 . The  C_ASSERT  macro defined 
in Listing  6-11  can be adopted to verify the size of a data type, the alignment of data structures, etc., whose 
usage has already been demonstrated in previous sections. 

      Listing 6-11.    Compile Time Assertion   

  #define C_ASSERT(cond) \  
      extern char compile_time_assertion[(cond) ? 1 : -1]  

  Example:  

    C_ASSERT(sizeof(U32) == 4);  
  C_ASSERT(sizeof(U16) == 2);  
  C_ASSERT(sizeof(U8) == 1);      

          Volatile, Const, and Peripheral Registers 
 “Volatile” and “Const”    are often used to decorate pointer variables and raw addresses in C. However, misuse 
of these type qualifiers could lead to unintended consequences. 



CHAPTER 6 ■ FIRMWARE CODING IN C

113

    Type-Qualifier “volatile  ” 
 As we all know, RAM access is much slower than register access. If you know beforehand that a certain 
variable will be used frequently, you would like it to be stored in register to speed up subsequent accesses. 
One way to achieve such acceleration in C is to specify the storage class of that variable as  register  
instead of  auto , so that compiler will store the variable in a register if there is one. However, such manual 
optimization has its limitations and is usually unnecessary in practice. Instead, you could let compiler 
figure out the best register-allocation scheme by turning on the optimization switch, and most modern C 
compilers do a good job in this regard. 

 ■   Labs   Let’s do some experiments to get an idea on how compilers will optimize the memory access. 
The results shown here are produced with a 32-bit Cygwin on a 64-bit x86 machine running Windows 10. 
The object file format is  pei-i386 . I chose 32-bit Cygwin since most embedded processors are 32 bits or fewer. 
If you run it with 64-bit Cygwin, the object file format will be  pei-x86-64 , and the final Assembly code will 
use 64-bit instructions. But the same idea of optimization applies.  

      Listing 6-12.    Test Program: no_volatile.c   

  unsigned int gVar = 0xABCD1234;  

    int main()  
  {  
      int i;  
      unsigned int *p = &gVar;  
      unsigned int k = 0;  

        for (i = 0; i < 100; ++i) {  
          k += (*p);  
      }  

        return k;  
  } // End of main()     

     LAB 6-1: OPTIMIZATION ON MEMORY ACCESS

 As shown in Listing  6-12 , pointer  p   is   pointing to global variable  gVar , and  (*p)  will be accumulated on 
 k  100 times. Now let’s compile it without any optimization and do a disassembly. 

       $> gcc -g -O0 no_volatile.c -o no_volatile  
      $>  
      $> objdump -S -s no_volatile  
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    If it is done correctly,  objdump  will give you the following: 

       ...  

      Disassembly of section .text:  
     ...  

        int i;  
      unsigned int *p = &gVar;  
    4010ba: c7 45 f8 00 20 40 00    movl   $0x402000,-0x8(%ebp)  

        unsigned int k = 0;  
    4010c1: c7 45 f4 00 00 00 00    movl   $0x0,-0xc(%ebp)  

        for (i = 0; i < 100; ++i) {  
    4010c8: c7 45 fc 00 00 00 00    movl   $0x0,-0x4(%ebp)  
    4010cf: 83 7d fc 63             cmpl   $0x63,-0x4(%ebp)  
    4010d3: 7f 11                   jg     4010e6 <_main+0x56>  

            k += (*p);  
    4010d5: 8b 45 f8                mov    -0x8(%ebp),%eax  
    4010d8: 8b 10                   mov    (%eax),%edx  
    4010da: 8d 45 f4                lea    -0xc(%ebp),%eax  
    4010dd: 01 10                   add    %edx,(%eax)  
  {  
      int i;  
      unsigned int *p = &gVar;  
      unsigned int k = 0;  

        for (i = 0; i < 100; ++i) {  
    4010df: 8d 45 fc                lea    -0x4(%ebp),%eax  
    4010e2: ff 00                   incl   (%eax)  
    4010e4: eb e9                   jmp    4010cf <_main+0x3f>  
          k += (*p);  
      }  

        return k;  
    4010e6: 8b 45 f4                mov    -0xc(%ebp),%eax  

    } // End of main()  
   ...  

    Contents of section .data:  
   402000 3412cdab 00000000 00000000 00000000  4...............  
   402010 00000000 00000000 00000000 00000000  ................  
   402020 00000000 00000000 00000000 00000000  ................  
   402030 00000000 00000000 00000000 00000000  ................  

       ...      
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     As you can see from the bold lines ( 4010d5 - 4010dd ),  (*p)  and  k  are both accessed directly from 
memory without any optimization in the loop body. (Both  p  and  k  are stored on the stack frame, 
as indicated by  4010ba - 4010c1 . The address of  gVar  is  0x402000 , and it was stored in  p  as an 
immediate number in  4010ba . More details about the GNU x86 assembly can be found in Ref  [  7  ]  if you 
are not family with the syntax.) 

 Now if you turn up the optimization by one notch (from  -O0  to  -O1 ) and do the previous steps again, you 
will get the following: 

        $> gcc -g -O1 no_volatile.c -o no_volatile  
      $>  
      $> objdump -S -s no_volatile  

       ...  

      Disassembly of section .text:  
     ...  

        int i;  
      unsigned int *p = &gVar;  
      unsigned int k = 0;  
    4010a8: b8 00 00 00 00             mov    $0x0,%eax  

        for (i = 0; i < 100; ++i) {  
    4010ad: ba 00 00 00 00             mov    $0x0,%edx  
    4010b2: 8b 0d 00 20 40 00          mov    0x402000,%ecx  
          k += (*p);  
    4010b8: 01 c8                      add    %ecx,%eax  
  {  
      int i;  
      unsigned int *p = &gVar;  
      unsigned int k = 0;  

        for (i = 0; i < 100; ++i) {  
    4010ba: 42                         inc    %edx  
    4010bb: 83 fa 63                   cmp    $0x63,%edx  
    4010be: 7e f8                      jle    4010b8 <_main+0x28>  
          k += (*p);  
      }  

        return k;  
  } // End of main()  
     ...      

    Contents of section .data:  
   402000 3412cdab 00000000 00000000 00000000  4...............  
   402010 00000000 00000000 00000000 00000000  ................  
   402020 00000000 00000000 00000000 00000000  ................  
   402030 00000000 00000000 00000000 00000000  ................  

       ...  
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     The major improvement on memory access is demonstrated by the bold lines in  4010b2 - 4010b8 , and 
is summarized as following:

•    First of all, the value of  gVar  is moved into register  ecx  in  4010b2  (Notice that there is 
no dollar sign in front of the address  0x402000 . So it is direct memory addressing. The 
value stored at address 0x402000 is moved into  ecx .)  

•   Secondly, the loop body now has only one instruction ( 0x4010b8 ), which does the 
accumulation only on registers (adding  ecx  to  eax ).    

 Thus the compiler optimization used register access to replace memory access for both  k  and  (*p) , and 
it therefore saved 200 memory accesses.  

 As you can see from Lab 6-1, the compiler has optimized away almost all memory accesses and 
replaced them with register accesses. However, there is one catch:  All bets are off if the memory location that 
p is pointing to can be modified externally.  If that is the case, replacing memory access with register access 
could have harmful side effects, which in turn lays the ground for inconsistency between the debug build 
and the release build. 

 For example, in Lab 6-1, the global variable  gVar  might be modified by ISR (Interrupt Service Routine), 
or pointer  p  could point to some memory-mapped registers that belong to a peripheral sitting on the bus. If the 
possibility of external modification exists for certain memory locations, such knowledge should be conveyed 
to the compiler as well. Otherwise, harmful optimizations might be carried out on them inadvertently. 

 Fortunately, C provides the type-qualifier of  volatile  for this purpose, as demonstrated in Lab 6-2. 

 ■   Labs   Assuming the value of  gVar  can be changed externally in Listing  6-12 , let’s see what the 
type-qualifier  volatile  can do to make things right. In Listing  6-13 , the keyword  volatile  was added when 
pointer  p  is declared.  

      Listing 6-13.    Test Program:  volatile.c     

  unsigned int gVar = 0xABCD1234;  

    int main()  
  {  
      int i;  
      volatile unsigned int *p = &gVar;  
      unsigned int k = 0;  

        for (i = 0; i < 100; ++i) {  
          k += (*p);  
      }  

        return k;  
  } // End of main()     
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     LAB 6-2: TYPE-QUALIFIER " VOLATILE  "

 If you compile Listing  6-13  with the  -O1  optimization, you get the following  objdump : 

        $> gcc -g -O1 volatile.c -o volatile  
      $>  
      $> objdump -S -s volatile  

       ...  

      Disassembly of section .text:  
     ...  
      int i;  
      volatile unsigned int *p = &gVar;  
    4010a9: bb 00 20 40 00        mov    $0x402000,%ebx  

        unsigned int k = 0;  
    4010ae: b9 00 00 00 00        mov    $0x0,%ecx  

        for (i = 0; i < 100; ++i) {  
    4010b3: ba 00 00 00 00        mov    $0x0,%edx  
          k += (*p);  
    4010b8: 8b 03                 mov    (%ebx),%eax  
    4010ba: 01 c1                 add    %eax,%ecx  
  {  
      int i;  
      volatile unsigned int *p = &gVar;  
      unsigned int k = 0;  

        for (i = 0; i < 100; ++i) {  
    4010bc: 42                    inc    %edx  
    4010bd: 83 fa 63              cmp    $0x63,%edx  
    4010c0: 7e f6                 jle    4010b8 <_main+0x28>  
          k += (*p);  
      }  

        return k;  
  } // End of main()  
          
     ...  

    Contents of section .data:  
   402000 3412cdab 00000000 00000000 00000000  4...............  
   402010 00000000 00000000 00000000 00000000  ................  
   402020 00000000 00000000 00000000 00000000  ................  
   402030 00000000 00000000 00000000 00000000  ................  

       ...  
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     From the bold lines above, you can come away with the following observations:

•    First, access to  (*p)  is now conducted on memory instead of register (Notice there 
is a dollar sign in front of address  0x402000  in  4010a9 , so it is moving an immediate 
number  0x402000  into  ebx . And in  4010b8 , register indirect addressing is used to move 
the value stored at  0x402000  into register  eax .  

•   Secondly, as you can tell from  4010ae  and  4010ba , variable  k  still gets optimized by 
placing it in register  ecx .    

 The  volatile  keyword did its job by stopping the compiler from optimizing  (*p) .  

 Unlike the  register  keyword, which specifies the storage class of a variable, the  volatile  keyword is a 
type qualifier. The purpose of  volatile  is to stop the compiler from optimization on memory access, and it 
is not responsible for the allocation of variable’s storage space. In fact, it is possible to put both  register  and 
 volatile  in the same variable declaration, as illustrated in Listing  6-14 . 

      Listing 6-14.     register_volatile.c     

  unsigned int gVar = 0xABCD1234;  

    int main()  
  {  
      register volatile unsigned int *p = &gVar;  
      unsigned int k = 0;  

        k += (*p);  
      k += (*p);  

        return k;  
  } // End of main()  

     If you compile Listing  6-14  in GNU C without any optimization, you will see that pointer  p  is stored in 
register instead of memory, but all accesses to  (*p)  are still conducted directly on memory.     

 Note that the  volatile  keyword can be placed before or after the type that it is qualifying. However, 
if the variable is a pointer, placing  volatile  right next to the pointer could mean something different, as 
illustrated by the following examples:

•    Non-volatile pointer that points to volatile data: 

   volatile type *p;  

•       Or: 

   type volatile *p;  

•       Volatile pointer that points to non-volatile data: 

   type* volatile p;  
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•       Volatile data: 

   volatile type data;  

•       Or: 

   type volatile data;  

       As a word of caution, be advised that  volatile  is a characteristic of the C language, and it has nothing 
to do with CPU cache. So in addition to the  volatile  keyword, those memory-mapped addresses are 
supposed to be configured as “non-cacheable” in MMU. Otherwise, explicit cache invalidation/flush has to 
be used when these addresses are being accessed.  

   Type-Qualifier “ const”   
 In addition to  volatile , there is another type-qualifier that is often used in firmware coding:  const . The 
 const  keyword will inform the compiler that certain storage locations are read-only, and any further 
attempts to write these locations should be flagged as error by the compiler. And similar to  volatile , the 
actual position of  const  in the variable declaration could produce a different binary code, as shown in the 
following examples:

•    Constant data: 

   const type data = ...;  

•       Pointer that points to constant data: 

    const type* p = &gVar;  

    p = NULL;    // valid statement  
  (*p) = ...;  // will produce compile error.  

•        Constant pointer that points to non-constant data: 

    type* const p = &gVar;  

    p = NULL;   // will produce compile error  

    (*p) = ...; // valid  statement    
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           Access Peripheral Registers 
 In hardware,  peripheral registers   are usually mapped into a memory space. The following mixed use of 
 const  and  volatile  is recommend when these register are being operated on:

•    Use  volatile unsigned int * const  to specify register address: In practice, 
 unsigned int  can also be replaced by  U32  or  U16 . Here’s an example of such a 
practice, where control register is written, followed by waiting on the busy flag. 

    #define BUSY_FLAG (1 << 0)  
    ...  

        volatile U32* const REG_CONTROL = (U32*) 0xABCD0000;  
      volatile U32* const REG_STATUS  = (U32*) 0xABCD0004;  

        (*REG_CONTROL) = ... ; // correct statement  

        REG_CONTROL = ... ;    // will produce compile error  

        while((*REG_STATUS) & BUSY_FLAG); // wait on flag  

      ...  

•        Use  const volatile type *  to explore a read-only data buffer: If the peripheral 
exposes a buffer of read-only data to the CPU, a pointer of  const volatile type 
*  can be used to explore the data, with an additional sanity check from the compiler 
to prevent inadvertent writes on the buffer. 

    const volatile U32 *p;  
  U32 data1, data2, data3;  

    volatile U32* const DATA_BUFFER = (U32*) 0xABCD0008;  

    p = DATA_BUFFER;  

    data1 = *p++;  
  data2 = *p++;  
  data3 = *p++;  

    (*p) = ...;   // will produce compile error  

•        Use  volatile type *  to read/write the data buffer: If the peripheral exposes a bi-
directional buffer to the CPU, a pointer of  volatile type *  can be used to explore 
the data. 

    #define DATA_BUFFER 0xABCD0008  

    volatile U32 *p;  
  U32 data;  
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    p = (U32*)DATA_BUFFER;  

    *p++ = ...;   // write data  
  data = *p;    // read  data    

           Atomic Operation and Critical Section 
 As stressed in previous sections, it  is   quite possible for data to be modified externally, and that is the main 
reason why the  volatile  keyword was introduced in C. In addition to the recommended practice, firmware 
engineers should also recognize the atomic operation. 

 For example, if  p  is a pointer to 32-bit volatile data (memory-mapped to peripheral data buffer), the 
statement  (*p) = ...;  will generate bus-write transactions. In a 32-bit system, such a statement will be 
compiled into one instruction, which corresponds to one bus-write transaction, so the statement by itself 
is an atomic operation. However, in a 16-bit system, an atomic bus-write operation can only take 16-bit 
data, and such a statement will be chopped into two consecutive writes on the bus. However, if an interrupt 
is also enabled when these transactions are being carried out, chances are that an ISR (Interrupt Service 
Routine) could cut in between those two atomic bus writes. And even worse, the ISR may operate on the 
same peripheral data buffer as well, which generates a corner case that has never been mapped out in the 
first place. 

 In general, if it is possible that more than one agent will operate on the same object concurrently, and if 
such an operation is not atomic by itself, some protection measures have to be taken to avoid conflicts. And 
the piece of code that operates on the object is often called  critical section  3 . There are many ways to protect 
critical sections, such as disabling-interrupt (for single processor), spin-lock, semaphore, etc. Inquisitive 
readers can find more information in Refs  [  12  ]  [  13  ]  for critical section protection. C++ has built-in support for 
the atomic operation, which will be discussed in the next chapter.   

     Finite State Machine 
 In the eyes of control theory, a system can be modeled by employing state variables. And the state of a 
system is a set of variables such that the knowledge of these variables and the input functions will, with 
the equations describing the dynamics, provide the future state and output of the system (Ref  [  9  ] ). Since 
nearly every embedded system contains some sort of control logic, the state variable model can be applied 
universally, and this leads to one thing—the implementation of FSM (Finite State Machine)   .    

 As exemplified in Figure  6-2 , FSM can be represented by  state diagram  , and there are two major 
approaches for its implementation: the hardware approach and the software approach. In embedded 
systems, the hardware approach usually means  FPGA/ASIC  , and it will be discussed rigorously in later 
chapters. Conversely, the software approach chooses to realize FSM through a microprocessor, which is 
addressed here in this section.  

   3  Refer to your computer science text book if you want to find a more pedantic definition of “critical section”.  



CHAPTER 6 ■ FIRMWARE CODING IN C

122

 SIDE NOTES

 The implementation choice between hardware (FPGA/ASIC) and software (microprocessor) is not confined 
to FSM only. From the perspective of design philosophy, any embedded system design is actually an art of 
compromising on multiple dimensions, including cost, functionality, power consumption, reliability, time-
to-market, etc. The balance between hardware and software is just one of those compromises. 

 For example, an n-tap FIR filter can be implemented by FPGA with  n  multipliers in parallel, or it can be 
realized in DSP with  n  iterations of a MAC (Multiply-Accumulate) operation. Both approaches have pros and 
cons.  FPGA approaches   can be carried out with relatively low clock frequency, but they lack the flexibility 
that microprocessor can offer. And their overall contribution to BOM cost is hinged on various factors. That’s 
why each embedded system is unique and the design choice has to be made on case-by-case basis.  

 To illustrate the software approach, I will start out by employing FSM to simulate a project lifecycle. 
As far as project management is concerned, each embedded system project will go through five phases in its 
lifecycle: initiating, planning, controlling, executing, and closing (Ref  [  10  ] ). The transition among these five 
phases can be simulated by using a FSM with random input, as illustrated by the state diagram in Figure  6-2 . 
(The inputs in Figure  6-2  are just some random numbers I’ve generated for the sake of discussion. Don’t get 
hung up on their meanings.)    

  Figure 6-2.     State diagram         
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 To implement  a   FSM in C, two things are necessary: the storage space for state variable and the code to 
determine the state transition and output. One way to achieve these goals is to use a big   switch  statement  , 
as demonstrated in Listing  6-15 . 

         Listing 6-15.    FSM in the C Language   

  enum FSM_State {  
      STATE_INIT,  
      STATE_PLAN,  
      STATE_CONTROL,  
      STATE_EXECUTE,  
      STATE_CLOSE  
  };  

    char *state_name_string[] = {  
      "STATE_INIT",  
      "STATE_PLAN",  
      "STATE_CONTROL",  
      "STATE_EXECUTE",  
      "STATE_CLOSE"  
  };  

    enum FSM_State FSM(int input)  
  {  
      static enum FSM_State state = STATE_INIT;  
      enum FSM_State prev_state;  

        printf ("current state = %s\n", state_name_string[state]);  

        prev_state = state;  

        switch (state) {     
          case STATE_INIT:  
              logo_print();  
              if (input == 0) {  
                  state = STATE_PLAN;  
              }  

                break;  

            case STATE_PLAN:      

                if (input == 0) {  
                  printf ("proceed to execute\n");  
                  state = STATE_EXECUTE;  
              }  

                break;  
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            case STATE_EXECUTE:  

                if (input > 0) {  
                  printf ("about to close\n");  
                  state = STATE_CLOSE;  
              } else if (input < 0) {  
                  state = STATE_CONTROL;  
              }  

                break;  

            case STATE_CONTROL:  
              if (input > 0) {  
                  state = STATE_EXECUTE;  
              } else if (input < 0) {  
                  state = STATE_PLAN;  
              }  

                break;  

            case STATE_CLOSE:  
              printf ("Game Over!\n");  
              printf ("ABOUT_CRC32 = 0x%x\n", ABOUT_CRC32);  
              break;  

            default:  
              printf (" unknown state, index = %d\n", state);  
              break;  
      } // End of  switch    

        return prev_state;  
  } // End of FSM()  

     The  FSM()  function in Listing  6-15  forms the engine of finite state machine, and it should be called every 
time a new input is available. FSM state is stored in a  static variable   in Listing  6-15 . You can also make the 
FSM state a parameter of the  FSM()  function and keep track of it outside. 

 The state transition and output will be determined by each branch of the  switch  statement. The plus 
side of the  switch  statement is that it offers great flexibility. However, if the state diagram grows, so does the 
 switch  statement, which will make the code cluttered and bloated if the numbers of states is really big. 

 To keep things clean and compact in Listing  6-15 , you can consolidate the code in each branch into 
functions. Or you can take a different approach, as suggested in Ref  [  11  ] , by building the FSM with three tables:

•    Have a state-table to describe all the states in the FSM. In this case, it will 
be five entries for  STATE_INIT ,  STATE_PLAN ,  STATE_CONTROL ,  STATE_EXECUTE , and 
 STATE_CLOSE .  

•   Have an event table to describe all the possible input. In this case, it will be 
 EVENT_POSITIVE (input > 0) ,  EVENT_ZERO (input == 0) , and  
EVENT_NEGATIVE (input < 0).   
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•   Having a state-transition table to describe state transitions and corresponding event 
handler functions. This table is actually a two-dimensional array, with each element 
being a structure of the next state and handler function, as exemplified in Table  6-1 . 
(The handler function can be  dummy () for no action or  msg_print()  for message 
printing.)     

   Table 6-1.     State Transition Table     

 EVENT_POSITIVE  EVENT_ZERO  EVENT_NEGATIVE 

  STATE_INIT    STATE_INIT, logo_print()    STATE_PLAN, logo_print()    STATE_INIT, logo_print()  

  STATE_PLAN    STATE_PLAN, dummy()    STATE_EXECUTE, msg_print()    STATE_PLAN, dummy()  

  STATE_CONTROL    STATE_EXECUTE, dummy()    STATE_CONTROL, dummy()    STATE_PLAN, dummy()  

  STATE_EXECUTE    STATE_CLOSE, msg_print()    STATE_EXECUTE, dummy()    STATE_CONTROL, dummy()  

  STATE_CLOSE    STATE_CLOSE, msg_print()    STATE_CLOSE, msg_print()    STATE_CLOSE, msg_print()  

   4  Sometimes people also put the build number or OEM ID as the third part of the version number.  

 If you have a very large state machine, this is a systematic approach to keep things tight and clean. For 
those inquisitive minds, refer to Ref  [  11  ]  for all the coding details. 

 Last but not least, semaphores can be adopted in Listing  6-15  if it is going to be used in a multithread 
setting. Instead of sharing the same static state variable across multiple threads, you might also consider 
maintaining separate state variable for each thread, and passing it as a new function parameter to   FSM() .    

     Firmware Version and About Signature 
 For firmware team of any size, be it a one-man show or a choral group, there ought to be some sort of version 
control process in place to track the firmware change over time. From the standpoint of building process, it 
means the version number should be stamped into the binary image when the firmware is being built. The 
version number is usually composed of two parts 4 : the major version and the minor version. Depending on 
the version control process, the minor version sometimes can be a mixture of numbers and letters, while the 
major version is made up only of numbers. The whole version number is often displayed by concatenating 
the major version and minor version with a dot, such as  11.0 ,  10.20c , etc. 

 To build the version number into firmware image, the traditional approach is to define two macros 
( VMAJOR  and  VMINOR ) in a makefile and insert them into a constant string in firmware. That constant string is 
often called the “about signature,” and it also includes product name, company name, and copyright claim, 
just like what you see in the About menu of most applications. 

 The version number should be treated as a string since the minor version might include letters. That is 
to say, you need to put quotation marks on  VMAJOR  and  VMINOR  when they are referenced in the C code. In C, 
this can be achieved by using the  #  in macro definition, as illustrated in Listing  6-16 . 
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     Listing 6-16.    Version Number Added to the About  Signature     

  In Makefile, define the version number (such as 1.3g) in VMAJOR and VMINOR  
    CFLAGS += -DVMAJOR=1 -DVMINOR=3g  

    In C File, put quotation marks on VMAJOR and VMINOR  

    #define VERSION_STR(s) VERSION_STR_(s)  
  #define VERSION_STR_(s) #s  

    #define ABOUT_SIGNATURE_LENGTH     512  

    const U8 about_signature[ABOUT_SIGNATURE_LENGTH] = \  
    "\n===================================================================\n"\  
    VERSION_STR(PRODUCT_NAME)"\n"\  
    "Version "VERSION_STR(VMAJOR)"."VERSION_STR(VMINOR)"\n"\  
    "Copyright (c) 2099 PulseRain Technology (www.pulserain.com).\n"\  
    "All Rights Reserved.\n"\     
    "===================================================================\n\n";  

     Speaking of the “about signature”, be advised  not  to build timestamps into the firmware image. The 
reason is that you might want to generate the same binary image given the same source code and same 
building tools and follow the same building process. This one-to-one mapping between source code 
snapshot and binary image is crucial during regression testing. If you can reproduce exactly the same binary 
image from the same source code no matter when you build it, you can be confident that your version 
control process is doing its job properly. 

 Embedding the “about signature” in a binary image can protect your intellectual property. The “about 
signature” ought to be the first message sent to the console, and it serves as a strong proof of authorship. 
However, the world is never short of crackers and copycats. IP thefts could rip you off by using hex-editors to 
modify the “about signature,” and then plagiarize your binary image to their copycat hardware. 

 One thing you can do to protect yourself is to verify the integrity of the “about signature” through CRC 
checksum and navigate the code flow into an endless loop if “about signature” were compromised, as 
demonstrated in Listing  6-17 . Of course, crackers can always find other ways to circumvent this, but CRC 
checksum makes their job harder. 
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     Listing 6-17.    CRC Checksum of About  Signature     

  In Makefile, specify the correct CRC32 checksum in ABOUT_CRC32 macro  

    CFLAGS += -DABOUT_CRC32=0x68DAC604  

  In C File, check the CRC32 checksum of "about signature"  

    int main()  
  {  
      while(CRC32(about_signature, ABOUT_SIGNATURE_LENGTH)!= ABOUT_CRC32);  

       CONSOLE_PRINT("%s\n", about_signature);  

       ...  

    } // End of main()     

           Summary 
 This chapter contained an overview of various programming languages, which concluded that C and C++ 
are the two preferred choices for embedded systems. After that overview, this chapter started with those 
pitfalls and fallacies when C is applied to embedded systems. A few coding tricks to ensure reliability were 
thus introduced. In addition, some routine jobs, like Finite State Machine, code version, and code integrity 
protection are also examined with practical templates. 

 The next chapter discusses C++ and script languages.      
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    CHAPTER 7   

 Firmware Coding in the C++ and 
Script Languages                          

    There are only two kinds of languages: the ones people complain about and the ones 
nobody uses.  

 —Bjarne Stroustrup, the Father of the C++ Language   

 To continue where we left off, this chapter demonstrates how C++ can be applied to embedded systems. 
Script languages are also examined in this chapter. 

     Firmware Coding in C++ 
 C++ is a powerful language, and it offers a lot of cool  features   to embedded system developers. 
However, there are a few things you should keep in mind before you jump onto the C++ wagon:

•    Unlike C, the standard of C++ keeps changing. Sometimes it is hard to find a 
compiler that can support all the latest features. And all bets are off if you can’t find a 
good C++ cross compiler for your microprocessor.  

•   C++ is far more complicated than C. And its steep learning curve has to be taken into 
account for staff hiring and training, as well as the project planning.  

•   The C++ code in this book was compiled and tested under g++ 4.9.2, with the 
- std=c++11  option on.  

•   Note that C++ is a very powerful language, and inquisitive readers are strongly 
recommended to peruse Ref  [  12  ]  [  13  ]  to get an idea of its full power. The purpose of 
this chapter is to demonstrate the practicality for coding firmware in C++.  

•   This chapter is broken into two parts. The first part discusses those C++ features that 
are mostly seen as enhancements to C. The second part examines the new concepts 
that C++ offers and their relevance to embedded system development.        
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     Enhancements to the C Language 
 As shown in the previous chapter, there are tricks you can play in C, such as compile-time assertion, to 
improve coding quality. Many of those tricks have been absorbed into C++ as part of the language standards. 

   Explicit Type of Bit- Width   
 As mentioned, it is recommended to explicitly associate a data type with its bit-width. For C, it is done 
through  typedef . For C++, the C++ standard library has built-in type definitions like  std::uint16_t , 
 std::uint32_t , and so on, and these come in handy for explicit bit-widths. All you have to do is  
#include <cstdint> .  

   Use “constexpr” to replace “define” 
 In the previous chapter, the register address was defined as  volatile U32* const  in C. Although this 
method is still supported by C++, an alternative offered by C++11 is to use  constexpr. constexpr  was 
introduced in C++11 to replace the traditional macro definitions for compile-time constants. Listing  7-1  is 
an example of defining register addresses and bit masks using  constexpr . And as illustrated in Listing  7-1 , 
 reinterpret_cast  and  volatile  should both be used when accessing registers defined by  constexpr . 

      Listing 7-1.    Using constexpr for  Register Definition     

  class ABC  
  {  
     public :  

       //======================================================================  
     // Register Definition  
     //======================================================================  

       //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
           static constexpr uint32_t REG_A = 0x0abc;  
               static   constexpr uint32_t BIT_XXX_ENABLE  = (0 << 8);  
               static   constexpr uint32_t BIT_YYY_DISABLE = (1 << 8);  

       ...  

    };  

    //===============================================  
  // Access register using reinterpret_cast  
  //  
  // *reinterpret_cast<volatile uint32_t*>(ABC::REG_A) = 0xABCD1234;  

     The  constexpr  function is capable of doing very complicated math as long as the result is determinable 
at compile-time. Another restriction of  constexpr  is that its body has to be a  return  statement. 
Notwithstanding this drawback,  constexpr  can be a handy way to generate lookup tables automatically 
(see Listing  7-2 ).     
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       Listing 7-2.    Using the constexpr Function for a  Lookup Table     

  constexpr uint16_t cos_int (int i)  
  {  
     return round(cos (static_cast <long double>(i) / 2048 * 3.14159 / 4) * 32767);  
  }  

    const std::array<uint16_t, 2048> cos_table{{  
     cos_int(0),  
     cos_int(1),  
     cos_int(2),  
     ...  
     cos_int(2046),  
     cos_int(2047)  
  }};  

     As demonstrated in Listing  7-2 , a  cos  table of 2048 items are generated with  constexpr . Since  cos_int  is 
crunched at compile-time, floating-point math can be avoided completely with a lookup table. 

 The drawback of Listing  7-2  is that its lookup table has to be manually (or with the assistance of script) 
populated when the table size increases. It can be quite cumbersome when the table size is big. This is 
mainly caused by the restriction that  constexpr  function can only have return state as its function body. 

 To break free from this restriction, you can take on template specialization and class inheritance, as 
illustrated in Listing  7-3 . 

          Listing 7-3.    Generating a Lookup Table Automatically   

  #include <cmath>  
  #include <array>  

    template<typename T>  
  constexpr T look_up_table_elem (int i)  
  {  
     return {};  
  }  

    template<>  
  constexpr uint16_t look_up_table_elem (int i)  
  {  
     return round(cos (static_cast <long double>(i) / 2048 * 3.14159 / 4) *  
     32767);  
  }  

    template<typename T, int... N>  
  struct lookup_table_expand{};  

    template<typename T, int... N>  
  struct lookup_table_expand<T, 1, N...>  
  {  
      static constexpr std::array<T, sizeof...(N) + 1> values =  
  {{look_up_table_elem<T>(0), N... }};  
         };  
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    template<typename T, int L, int... N> struct lookup_table_expand<T, L, N...>  
  : lookup_table_expand<T, L-1, look_up_table_elem<T>(L-1), N...> {};  

    template<typename T, int... N>  
  constexpr std::array<T, sizeof...(N) + 1> lookup_table_expand<T, 1,  
  N...>::values;  

    const std::array<uint16_t, 2048> lookup_table =  
  lookup_table_expand<uint16_t, 2048>::values;  

     Listing  7-3  is chiefly inspired by the ideas presented in Refs  [  14  ]  [  15  ] . Among all the functions presented 
in Listing  7-3 ,  look_up_table_elem  is the one that generates the value for each table item. And the structure 
 lookup_table_expand  is template-specialized and inherited iteratively.  typename T  is introduced here to 
make Listing  7-3  suitable for types other than  int . 

 However, Listing  7-3  has its own restrictions imposed by compilers. Since it adopts the idea of 
iterative inheritance, its depth of iteration is tied to the size of the lookup table. Under a GNU C++ compiler, 
a message like  "template instantiation depth exceeds maximum of xxx"  will pop up when the lookup 
table is too big. Fortunately, a GNU C++ compiler allows users to bump up the template instantiation depth 
with the  -ftemplate-depth  option. 

 If adjusting the compiler option bothers you, there is another way to do this by divide-and-conquer, 
which can lower the iteration depth to  log   

2
   N    instead of  N . Inquisitive readers can find more information 

in Ref  [  19  ] .  

   Align the Data Structure 
 As mentioned in the previous chapter,  for   embedded systems, it is critical to align data structures to a 
memory boundary. In C, alignment is dealt with by using compiler attributes, as well as macro definitions. 
For C++11, the following built-in features can be used:

•     alignof  operator:  alignof  acts the same way as the  TYPE_ALIGNMENT  macro defined 
in the previous chapter. But unlike the macro definition used by C,  alignof  is a built-
in operator with native support for C++11. Listing  7-4  shows an example of it. 

      Listing 7-4.    The alignof Operator   

  #define PACKED __attribute__((packed))  

    typedef struct {  
      uint8_t  a;  
      uint32_t b;  
      uint16_t c;  
  } PACKED STRUCT_PACKED;  

    typedef struct {  
      uint8_t  a;  
      uint32_t b;  
      uint16_t c;  
  }STRUCT_NOT_PACKED;  

    static_assert(alignof(STRUCT_PACKED) == 1, "");  
  static_assert(alignof(STRUCT_NOT_PACKED) == 4, "");  
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•           alignas  specifier: In addition to the  alignof  operator, C++11 also provides the 
 alignas  specifier to place data structure and variables on memory boundaries, as 
shown in Listing  7-5 .

   Listing 7-5.    The alignas Specifier   

  typedef struct {  
      uint8_t  a;  
      uint32_t b;  
      uint16_t c;  
  }STRUCT_NOT_PACKED;  

         typedef struct alignas(128) {  
      uint8_t  a;  
      uint32_t b;  
      uint16_t c;  
  }STRUCT_ALIGNED;  

    alignas(128) STRUCT_NOT_PACKED abc;  

    static_assert(alignof(STRUCT_ALIGNED) == 128, "");  

    int main()  
  {  
     std::cout << "abc is aligned to " << alignof(abc);  
  }  

    //============================================================  
  // Output:  
  //  
  //   abc is aligned to 128  
  //  

•        Standard library support: In addition to the native language support, the C++ 
standard library also provides functions to assist memory alignment. One of the  std  
functions is  std::align , which can help allocate the memory buffer while aligning 
buffer pointers to a specified boundary. Inquisitive readers are suggested to go 
through the standard library manual for more detailed information.         

    Compile Time Assertion   
 C does not have native support for compile-time assertion. And in the previous chapter, the macro  C_ASSERT  
was defined to remedy this issue. Fortunately, C++11 has created the  static_assert  keyword to support 
compile-time assertion natively. Examples can be found in Listings  7-4  and  7-5 .  

   Use “ nullptr  ” to replace “NULL” 
 In C, an invalid pointer address is defined as NULL, which is actually a constant value of zero. For C++, 
things become more complicated due to type deduction and function/template overload. It is thus 
recommended to use  nullptr  instead of NULL for invalid address whenever possible. The  nullptr  carries 
type information and can be less error prone.  
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    Function Object and Lambda Expression   
 It is not uncommon for embedded systems to execute certain functions based on a mode (or other 
parameters/states) determined at runtime. For C, this can be implemented with a function pointer, as 
illustrated in Listing  7-6 . 

       Listing 7-6.    A Function Pointer   

  #include <stdio.h>  

    typedef int (*T_FUNC_POINTER)(int, int);  

    int func_add (int a, int b)  
  {  
     return a + b;  
  }  

    int func_sub (int a, int b)  
  {  
     return a - b;  
  }  

    int func_add_sub (int mode, int a, int b)  
  {  
     T_FUNC_POINTER func_table[2]={func_add, func_sub};  
     return (*(func_table[mode]))(a, b);  
  }  

    int main()  
  {  
     printf ("add = %d\n", func_add_sub(0, 6, 4));  
     printf ("sub = %d\n", func_add_sub(1, 6, 4));  
  }     

     However, a function pointer is nothing but an address to the function entry. It cannot carry any state 
information. An alternative offered by C++ is to use a function object (or  functor ), as shown in Listing  7-7 . 

     Listing 7-7.    Function Object and Lambda Expression   

  class func_obj_add_sub  
  {  
     public:  
            func_obj_add_sub (int mode): _mode {mode} {};  

              int operator() (const int a, const int b)  
            {  
                   if (_mode == 0) {  
                          _mode = 1;  
                          return a + b;  
                   } else {  
                          _mode = 0;  
                          return a - b;  
                   }  
            }  
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     private:  
            int _mode;  
  };  

    int main()  
  {  
     auto add = [](const int a, const int b){return a + b;};  
     auto sub = [](const int a, const int b){return a - b;};  

       func_obj_add_sub add_sub{0};  

       std::cout << "1st call " << add_sub (6, 4) << "\n";  
     std::cout << "2nd call " << add_sub (6, 4) << "\n";  
     std::cout << add (6, 4) << " " << sub (6, 4) << "\n";  

    }  

     Function objects (functors) can be seen as classes with the  ()  operator overridden. Because they are 
essentially classes, they can carry far more information than function pointers. As demonstrated in Listing  7-6 , 
the  class func_obj_add_sub  overrides the  ()  operator, and the  ()  function will change its internal state (the 
private variable  _mode ) every time it is invoked. Thus, it is recommended to replace the function pointer with 
function objects for the interest of flexibility. 

 Lambda expressions can be used to generate an anonymous function object, and they come in handy 
when the function object is lightweight. Examples can be found in Listing  7-6 . It is also a terse way to 
generate callback functions. Inquisitive readers can find more information in Ref  [  12  ] .      

    Atomic Operation   
 Atomic operations were mentioned in Chapter   6    . C++11 now offers support for atomic operation in its 
standard library. Listing  7-8  shows an example of it. Inquisitive readers are suggested to go through Ref  [  12  ]  
for more information. 

     Listing 7-8.    Atomic Operation   

  #include <iostream>  
  #include <atomic>  

    int main()  
  {  
     volatile std::atomic<uint16_t> aaa {1234};  

       uint16_t bbb;  

       bbb = aaa.load();  
     std::cout << "bbb = " << bbb << "\n";  

       aaa.store(2346); bbb = aaa.load();  
     std::cout << "bbb again = " << bbb << "\n";  
  }  

http://dx.doi.org/10.1007/978-1-4842-1919-5_6
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           New Concepts Offered by C++ 
 C++ is not merely an enhancement to C. It also brings new concepts and new methodologies to the table. 

    RAII   (Resource Acquisition Is  Initialization  ) 
 In my personal opinion, RAII is probably the  most   valuable feature that C++ brings to the table. Resource 
management has always been a big headache for C as its resource acquisition and release are all conducted 
manually. And the resource mismanagement by unwary programmers is often the source of memory 
leakage or deadlock. The remedy that C++ provides is tying the resource management to the lifespan of an 
object. During the creation of that object, its constructor is called and the resource is acquired. When the 
object’s lifespan ends, its destructor is invoked (implicitly by C++) and the resource is released there (see 
Listing  7-9 ). 

      Listing 7-9.    RAII (Resource Acquisition Is Initialization)   

  {  
     // object creation, constructor called  
     class_name obj {initializer_list};  

       //  
     // do something  
     //  

    } // obj lifespan ends, its destructor is  called     

     The merit of RAII is that resource acquisition and release are both contained in the object itself. 
There is no need to scatter them (acquisition/release) all over the place. Listing  7-9  shows an example 
of it. Note that the destructor does not have to be called explicitly by the programmers. The C++’s built-in 
mechanism will invoke the destructor when the execution flow moves out of the closing brace (where the 
lifespan of the object ends).     

 For dynamically allocated memory buffers, programmers can still acquire the buffers in the constructor 
and release them in the destructor. However, for that purpose, C++11 has provided the smart pointer based 
on RAII principle in its standard library. The two prominent smart pointer types are  std::unique_ptr  and 
 std::shared_ptr . Inquisitive readers are suggested to go through the standard library part in Ref  [  12  ]  for 
more information on smart pointer. 

 Speaking of dynamically allocated memory, I have a few words to add here. As mentioned, for 
embedded systems, especially those working close to the bare bones hardware, you should try to avoid C 
standard library as much as you can. This is also true for the C++ standard library. However, I have to admit 
that the C++ library offers richer features than its C counterpart. If you choose the C++ standard library due 
to its handy features, you should make sure that the part you are using does not allocate memory behind 
your back. 

 One example is the  std::vector  template class. The vector will grow when more elements are pushed into 
it. Obviously, the extra space it needs to grow comes with dynamic allocation. For that, you have two choices:

•    Use a different data structure with a fixed size, such as  std::array .  

•   If you can’t avoid using  std::vector  completely, at least use placement new to do 
allocation from a predetermined buffer pool. In this way, its memory range can be 
more controllable.    
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 As mentioned, data structures with dynamic memory allocation (new/delete or malloc/free) 
should be avoided as much as possible, especially in ISR or DMA where the function call cannot be blocked, 
or the memory pool has to be non-paged. It is better to manage the memory buffer on your own in those 
circumstances.  

   Template and Overloading 
 Template and function/operator overloading are great ways to make terse code. And they are the building 
blocks to fulfill the lofty ideals of  generic programming  and  metaprogramming . 

    Generic Programming   

 Notwithstanding the academic pedantry, generic programming can be seen practically as programming 
without specifying the data type. The actual data type is specified later when the template is instantiated and 
determined at compile time. 

 Here is an example as how generic programming can make code terse. Assume you would like to 
implement a function to calculate  - ×x y    for both integers and complex numbers. In C, you usually have to write 

two functions to deal with each type separately, as illustrated in Listing  7-10 . The functions  mult_neg_int()  
and  mult_neg_complex()  are written to deal with the integer and the complex type, respectively. 

 Writing the same (or very similar) algorithm for each data type could be a very tedious job. And if you 
want to modify the algorithm in the future, the modification has to be applied to each and every data type 
and function that is involved, which by itself is an error-prone process. 

      Listing 7-10.    Separate Function for Each Type   

  typedef struct {  
      int x;  
      int y;  
  }MY_COMPLEX;  

    int mult_neg_int (int x, int y)  
  {  
      return x * y * (-1);  
  }  

    MY_COMPLEX mult_neg_complex (MY_COMPLEX *pa, MY_COMPLEX *pb)  
  {  
      MY_COMPLEX tmp;  
      tmp.x = (pa->y) * (pb->y) - (pa->x) * (pb->x);  
      tmp.y = -((pa->x) * (pb->y) + (pa->y) * (pb->x));      

        return tmp;  
  }  

     And with the help of template and operator overloading, C++ could take the following approaches, 
as shown in Listing  7-11 . 
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       Listing 7-11.    Function Template and Operator Overloading   

  #include <iostream>  

    class my_complex  
  {  
     public:  

              explicit my_complex(int x) : _x {x}, _y {0}  
            {  
            }  

              explicit my_complex(int x, int y) : _x {x}, _y {y}  
            {  
            }  

              friend my_complex operator*(const my_complex &a,  
                                        const my_complex &b)  
            {  
                   int x, y;  

                     x = a._x * b._x - a._y * b._y;  
                   y = a._x * b._y + a._y * b._x;  

                     my_complex tmp{x, y};  

                     return tmp;  
            }  

              friend std::ostream& operator<<(std::ostream& os,  
                                            const my_complex& a)  
            {  
                   return os << "(" << a._x <<", " << a._y <<")\n";  
            }  

       private :  
            int _x, _y;      
  };  

    template <typename T>  
  T mult_neg (const T& a, const T& b)  
  {  
     T minus_one{-1};  

       return (a * b * minus_one);  
  }  

    int main()  
  {  
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       my_complex aaa{1,2};  
     my_complex bbb{3,7};  

       int t = mult_neg(2,3);  
     my_complex ccc = mult_neg(aaa, bbb);  
     //my_complex ddd = mult_neg(bbb, aaa);  

       std::cout << t << "\n";  
     std::cout << ccc << "\n";  
  }  

     In Listing  7-11 , only one function  mult_neg()  is used to implement the algorithm for calculating  - ×x y   , 

and it works on an abstract type  T . When it comes to the complex type  my_complex , the trick is all in the 
constructor and operator overloading. Class  my_complex  defines two constructors and one of them takes a 
scalar value and makes a real number out of it. In this way,  my_complex minus_one{-1}  can be properly 
initialized into (-1, 0). On the other hand, the  *  operator is overloaded to support complex number 
multiplication. So ( a * b * minus_one ) is actually calling the overloaded function when  mult_neg()  is 
instantiated with the  my_complex  type. And to make the display easy, the  <<  operator is also overloaded in 
Listing  7-11 . 

 Note that generic programming is just a mechanism to automatically populate the code for each data 
type. Behind the scenes, those data types still have their own versions of implementation, as demonstrated 
in Lab 7-1. 

 ■   Labs   To ease the job of comparison, iostreams and the  <<  operator overloading are removed from 
Listing  7-12 , as shown next (filename:  mult_neg.cpp ).      

     Listing 7-12.    Test Program: mult_neg.cpp   

  class my_complex  
  {  
      public:  
         explicit my_complex(int x) : _x {x}, _y {0} {}  
         explicit my_complex(int x, int y) : _x {x}, _y {y} {}  

           friend my_complex operator*(const my_complex &a,  
                                       const my_complex &b)  
         {  
            int x, y;  

              x = a._x * b._x - a._y * b._y;  
            y = a._x * b._y + a._y * b._x;  

              my_complex tmp{x, y};  
            return tmp;  
         }  
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        private:  
          int _x, _y;  

    };  

    template <typename T>  
  T mult_neg (const T& a, const T& b)  
  {  
      T minus_one{-1};  

        return (a * b * minus_one);  
  }  

    int main()  
  {         
      my_complex aaa{1,2};  
      my_complex bbb{3,7};  

        //int t = mult_neg(2,3);  
      my_complex ccc = mult_neg(aaa, bbb);  
      my_complex ddd = mult_neg(bbb, aaa);  
  }     

     LAB 7-1: TEMPLATE INSTANTIATION

 If you compile  mult_neg.cpp  with the  -O0  optimization: 

       $> g++ -std=c++11 -O0 -c mult_neg.cpp  
      $>  

    And its symbol list will be as following: 

        $> nm mult_neg.o |c++filt  

       ...  
           U ___main  
  00000000 T my_complex mult_neg<my_complex>(my_complex const&,  
                                          my_complex const&)  
  00000000 T operator*(my_complex const&, my_complex const&)  
  00000000 T my_complex::my_complex(int)  
  00000000 T my_complex::my_complex(int, int)  
  00000000 T _main  

     Notice that only  mult_neg<my_complex>  appears in the symbol list. 
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 Now if you uncomment the line of  int t = mult_neg(2,3);  and comment out the last line of  
my_complex ddd = ... , you will get a bigger object file and a symbol list as follows: 

   ...  
           U ___main  
  00000000 T my_complex mult_neg<my_complex>(my_complex const&,  
                                          my_complex const&)  
  00000000 T int mult_neg<int>(int const&, int const&)  
  00000000 T operator*(my_complex const&, my_complex const&)  
  00000000 T my_complex::my_complex(int)  
  00000000 T my_complex::my_complex(int, int)  
  00000000 T _main  

    As you can see, we’ve replaced a complex operation with an integer operation, but the code size has 
increased instead of decreasing. The reason is that the integer operation has caused the instantiation of 
the  mult_neg<int>  function, which does not exist in the previous run. 

 In other words, there are still two functions for each data type in the binary code, just like the case 
in Listing  7-10  for C. But C++ does this automatically with template instantiation and operator 
overloading. 

 Also, note that such automation comes with a price. The C++ code is usually bigger than its C 
counterpart in this regard. Personally I think the terseness is worth more than the overhead as long as it 
meets the real-time requirement and the size constraint.   

    Metaprogramming   

 For all practical purposes, metaprogramming in C++ can be seen as generating code at compile time using 
templates primarily. Listing  7-3  is a good example of it, in which multiple structures are generated through 
template expansion. 

 However, metaprogramming can lead to inscrutable code that few can understand. So my two cents is 
to use template metaprogramming only to the point where it is comprehensible. Keep an eye on the image 
size to prevent bloated code.   

    Error Handling   
 To err is human. Error handling is an important part of embedded system development. As compared to C, 
C++ offers the “exception” mechanism by handling errors in throw and catch, which is a terse way to deal 
with errors. 

 However, for firmware code that works closely to the bare bones hardware, predictability and reliability 
are far more important than terseness. In that sense, it is often discouraged to apply C++’s exception 
mechanism to embedded system for error handling. Not only will C++ exception increase the code size, it 
will also make the error handling unpredictable since it is hard to determine which catch will get the throw 
without going through the whole piece of code. And spilling error handling all over is not a good idea for 
embedded systems. This is especially true when you are working on very low-level code (i.e., code close to 
the hardware). 

 So instead of using exceptions, the traditional method is preferred. That is to say, the error should be 
handled  based on return codes and other old-fashioned and tedious, but predictable, techniques  (Ref  [  16  ] ).  
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   OOP (Encapsulation, Polymorphism, and Inheritance)    
 OOP (Object Oriented  Programming  ) is a great idea that facilitates clean and robust code. OOP mainly 
comprises three fundamental concepts—Encapsulation, Polymorphism, and Inheritance—and they are 
reflected in C++’s various language features. However, note that the idea of OOP is not confined to specific 
languages. C can also borrow a page from the OOP concept, as demonstrated in Ref  [  20  ]  [  21  ] . And when it 
comes to the software architecture design (embedded system included), OO can definitely provide some 
useful clue trails.  

    Boost Library   
 The Boost C++ Library (   http://www.boost.org     ) can be a good addition to the C++ standard library, 
and its license term is pretty open and lenient. Thus embedded systems should see it the same way as the 
C++ standard library. 

 In addition, the Boost Library comes with its own code build system—BJAM—which will be discussed 
in the next chapter.    

     C/C++ Mixed Programming 
 Since C is the English language  de   facto for embedded systems, mixed language programming would be 
inevitable if C++ were added to the picture. 

 Between C and C++, the interaction is mostly through function calls. However, the calling conventions 
of C and C++ are different 1 . To enable C and C++ to talk to each other, the functions and C head files must be 
declared with  extern "C" , as shown in Listing  7-13 . 

     Listing 7-13.    Using extern “C” for the C Language Calling Convention   

  extern "C" {  
      #include "stdio.h"  
  }  

    extern "C" void read_ISR (void* isr_context);  

     On the other hand, C++ functions should have a C wrapper with the  extern "C"  modifier as well; 
this even applies to the  main()  function, as demonstrated in Listing  7-14  for an example of  main.cpp . 
In Listing  7-14 , the  LCD_16207  is a C++ class, and it is invoked within the  main()  function. The  main()  
function also has a C calling convention in order to link properly. 

   1  For all practical purposes, this calling convention can be seen as the way that the stack frame is formed, which includes 
the order that parameters are pushed onto the stack (from left to right or from right to left). There are two kinds of calling 
conventions:  stdcall  and  cdecl . The default calling convention for your C and C++ compilers might be different.  

http://www.boost.org/
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      Listing 7-14.    Example of main.cpp   

  #include <cstdint>  
  #include "LCD_16207.h"  

    LCD_16207 LCD_16207_i {};  

    extern "C" int main ()  
  {  

       LCD_16207_i.display("ABC\n");  
     //LCD_16207_i.clear();  

       LCD_16207_i.move_cursor (1, 2);  
     LCD_16207_i.clear_to_line_end();  
     LCD_16207_i.display("Hello!");  

       ...  

       return 0;  

    }     

          Script Languages Overview 
 To ensure reliability, automated testing is an indispensable part of embedded system development. And 
thanks to their flexibilities, script languages come in handy for this job. In fact, today’s script languages are so 
powerful that they can even be used as the main driving force under certain circumstances. 

     Compiled  Versus   Script Languages 
 As mentioned, C will be the first choice for writing firmware on embedded processors. However, 
to support firmware coding, some groundwork has to be laid a priori on the host side, which normally 
involves the following:

    1.    Pre-processing data. For example, to speed things up at the expense of space, 
you could generate look-up tables beforehand and include them in the firmware 
source code to save the precious CPU cycles.  

    2.    Post-processing. For example, if things went south in the lab, you might end up 
with tons of data samples collected by the target processor. Most likely, they will 
be in some primitive form due to the nature of embedded systems. You have to 
whip up some customized code to analyze them on the host side.  

    3.    Often, you will find yourself import/export data between different tools. That 
usually translates into processing text and matching string patterns.  

    4.    For test automation, you might wish to have an intelligent test program running 
on the host side, reading the input from the console (or network, USB port, etc.) 
and acting accordingly, just like a human being would do. That test program is 
intended to run over a very long period of time to exert stress on the target.  

    5.    For all these things, you might also want to quickly develop a user-friendly GUI.     
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 As you can see, those jobs are just intermediate steps to support your firmware development and 
testing. You don’t want them turn into a big sideshow to distract you from your main goal. Although those 
jobs can be done in any programming languages—such as C/C++/Java—a more practical approach is to do 
them in a script language because:

•    Those jobs don’t have to be done in real time as long as they can be completed in a 
reasonable time frame. Given the high clock frequency and multi-core architecture 
that PC can offer nowadays, compiled language wins very little over script language 
in this regard.  

•   Script language is rich in feature set of data structures, such as regular expression, string, 
list, associative array, etc., and it might take a significant amount of effort to implement 
the same feature in C/C++/Java from the ground up. Thus script language is largely 
favored in regard to test automation, numeric computation, and text processing.  

•   Most main-stream script languages support Tk toolkit, with which simple GUIs can 
be constructed very quickly. Since most script languages are cross-platform, so is the 
GUI they create.         

     Tcl/Tk, Expect, Perl, and Python 
 Despite the plethora of script languages, three stand out: Tcl, Perl, and  Python   (Expect is based on Tcl). 

  Tcl is a string-based command language  (Ref  [  17  ] ). As its mantra goes: “Everything is a string”. Since 
its core mechanism is just string and string substitution, it brings both simplicity and oddness. One thing 
noticeably different from other languages is that in a Tcl procedure or block statement, its open curly brace 
has to be in the same line as the leading keyword. Otherwise, you have to put a backslash at the end as a 
line wrapper, as demonstrated in Listing  7-15 . Obviously, this is a side effect caused by the “Everything is a 
string” mentality. 

 Personally, I found Tcl to be the hardest to master among these three script languages, thanks to its 
string-based mechanism. However, it offers two things that the other script languages are short of:

•    Tcl is a very extensible language. You can add new commands to the Tcl shell by 
implementing them as an extension, or you can integrate the Tcl interpreter into 
your application and export new commands to it (Ref  [  17  ] ). Such extensibility is 
greatly favored by EDA software that uses Tcl as the default script language.  

•   As one of its extensions, Tcl offers a graphic toolkit called Tk, which provides many 
basic GUI widgets, like buttons, textboxes, images, labels, etc. A graphical user 
interface can thus be whipped up without much effort. (To use Tk, you need to 
invoke your Tcl script with “wish”, the graphic Tcl shell.) In this regard, the GUI 
provided by Perl and Python borrowed heavily from Tcl. (To communicate with Tk, 
Perl uses Perl/Tk and Python uses Tkinter.)    

 So my personal approach is to use Tcl/Tk only for GUI creation, and then delegate the real processing to 
other script languages, such as Perl or Python, and capture the in/out for display. 
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     Listing 7-15.    The Position of an Opening Curly Brace   

  proc Log {} { # opening curly brace on the same line  
       ...  

        if {$w == "left"} {  
        button $f.pan_top.open_file -width 10 -text Load -command {Open_File}  
      } else {  
        button $f.pan_top.open_file -width 10 -text Save -command {Save_File}  
      }      
     ...  
  }  

  # Use back slash to continue at next line  
    proc Log {} \  
  {  
      if {$w == "left"} \     
      {  
         button $f.pan_top.open_file -width 10 -text Load -command {Open_File}  
      } else \  
      {  
         button $f.pan_top.open_file -width 10 -text Save -command {Save_File}  

        }  
  }  

     When it comes to choosing between Perl and Python, there has been enough war of words between 
both camps. I’m not here to pass judgment, but just to offer personal opinions. My two cents:

•    If you are doing text processing line by line, use Perl. Perl’s regular expression is very 
powerful and comes with its own syntax.      

•   If you are dealing with binary files, use Python. Python could easily turn a binary file 
into a byte sequence and access its content randomly with sequence indexing.  

•   For number crunching, both of them do a good job. But I like Python better personally.  

•   As an analogy, Perl is to Python as CISC is to RISC. If you know your way around, 
Perl can be very compact. On the other hand, Python is more close to modern 
programming languages, with OOP in its blood.    

 In addition to these three, if you need to have interactive responses for test automations, you might 
consider Expect, which is based on Tcl. More information about Expect can be found in Ref  [  18  ] .  

      Documentation Generator   
 Every time when I open Matlab (   http://www.mathworks.com     ) for number crunching, I am fascinated by 
its Publish feature. If you write the comment in a certain format for the Matlab  .m  file and click the Publish 
button on the editor toolbar, Matlab will automatically generate a nicely formatted HTML document based 
on those comments. 

http://www.mathworks.com/
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 In general, the Publish feature you see in Matlab is called a  documentation generator . It basically means 
you can write the comment in some mark-up language 2 , and a tool (a documentation generator) will extract 
and render those mark-up languages into nicely formatted documents. 

 The idea of a  documentation   generator is not confined to script languages. However, I’ve found that 
script languages are often the loyal customers of the document generator. That’s the main reason I decided 
to discuss this topic here. 

 One thing you can do to generate documents automatically is use a generic documentation generator, 
such as Doxygen (Ref  [  6  ] ). Doxygen supports a wide variety of languages, such as C, C++, Tcl, etc. 
(Amazingly, Doxygen even supports VHDL.) To use Doxygen, the language’s comment has to follow specific 
annotation format, and Doxygen will generate a HTML document based on those comment annotations. 

 With that being said, script languages often have their own flavor of documentation systems. And more 
or less, the same can be said for those script language mentioned previously:

•      TclDoc    :  I didn’t find any built-in features for Tcl that could generate documents based 
on formatted comments. And the closest thing I can find is a tool called TclDoc (Ref  [  4  ] ). 
It offers similar functions for Tcl as Matlab publish does for an  m  file.  

•    POD for Perl:     Perl supports a markup language called POD (Plain Old Documentation) 
in its comments. Details about POD can be found in Ref  [  5  ] . Users can use the  perldoc  
command to extract and render the POD into nicely formatted text.  

•    Python DocStrings and reStructuredText:     Python does go extra miles in this regard. 
First of all, Python supports a documentation convention called DocStrings 
(Ref  [  7  ] ), which starts and ends with triple quotations. Users can use the Help 
command under Python interactive mode to extract those DocStrings and generate a 
nicely formatted document. 

 However, DocStrings is not just a way of commenting. If you’re working with the 
doctest module (Ref  [  8  ] ), DocStrings can be used for BIST (Built-In Self-Test) by 
embedding interactive examples in DocStrings. And among those script languages 
aforementioned, the integration of documentation and verification is a very unique 
feature for Python.  

•   In addition, Python’s technical documents (User Guide, Reference Manual, etc.) are 
written in a markup language called reStructureText (a fruit of the DocUtils project 
(Ref  [  11  ] )). Kind like HTML, reStructureText (Ref  [  10  ] , with . rst  extension) by itself 
is just a text file with lots of markup tags. In order to present its content in a more 
reader-friendly format, the reStructureText file usually needs to be rendered into 
other popular formats, such as HTML or PDF. And Sphinx (Ref  [  9  ] ) is one of the tools 
that can do the job. (On Windows, Sphinx can be run under Cygwin.)      

     Summary 
 This chapter discussed C++ language and script languages. 

 C++ is not merely an enhancement to C. It also offers a lot of new concepts and methodologies, such as 
RAII (Resource Acquisition Is Initialization), OOP (Object Oriented Programming), etc. However, abuse of 
its features can lead to bloated code and unexpected behaviors. Personally I always try to stay away from 
meta-programming and exceptions during embedded system development. 

 In addition, script languages can be handy tools for automated testing. Thanks to regular expression, 
script languages are also good at text processing, like analyzing intermediary results and log files.      

   2  In its simplest form, the markup language can be a certain format convention or some predefined tags.  
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    CHAPTER 8   

 Building and Deployment                          

    As a software project approaches release, its mass increases.  

 —Laws of Software Relativity   

 When the scale of your system grows, two things will likely happen:

    1.    In order to deploy your firmware promptly and consistently, you need a formal 
build process.  

    2.    Multitasking becomes crucial, which may very likely call for an embedded OS.     

 This chapter offers some useful clues to answer those challenges. 

     The Build Process 
 Source code has to be built into binaries before all the magic happens. And it is imperative to have a formal 
build process in place for every firmware project. Such a process is supposed to track dependency among 
source files and produce various flavors of images when configurations are given. Most likely, it will boil 
down to a makefile, which is the centerpiece of this section. However, due to the plethora of build tools, the 
makefile is not the only option on the table. Other options will also be explored, and the pros and cons of 
them will be discussed in detail. 

     Makefile Basics 
 The  makefile   is interpreted by the Make utility, which has a history going back to as early as the 1970s. Given 
its longevity, the Make utility has produced a handful of derivative versions over the years. For all practical 
purposes, the rest of the book will discuss makefiles for GNU Make only and present a few useful templates 
for projects of small and medium scale. 

 The Make utility has a long list of syntax rules, many of which can be convoluted and tedious. It will be 
too pandemic to discuss all of them here. For those of you who are ambitious enough to become the master 
of the Make utility, Ref  [  3  ]  is a good place to start. At a minimum, you should be familiar with the issues in 
the following sections. 
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   Targets and Prerequisites 
 The backbone of the  makefile   is the dependency rule, which is illustrated in Listing  8-1 . Both the targets 
and the prerequisites are files on the disk, and wildcard can also be used to match filenames. (Phony target 
is an exception, which will be discussed later.) Basically, it means the targets are dependent on those 
prerequisites. If any of the prerequisites is updated 1 , Make utility will try to update the target as well by 
executing the corresponding shell commands. 

 The shell commands that are listed under the dependency should follow a certain format:

•    There should be a leading Tab character in front of each shell command. Replacing 
the tab with blank space will produce errors, although tab and spaces look the same 
in most text editors.  

•   Each shell command that is invoked by the Make utility will be echoed onscreen. You 
can put an  @  sign in front of that command to disable the auto-echo.  

•   The Make utility will quit if the shell command returns a non-zero value. You can put 
a  -  sign in front of that command to let the Make utility ignore the error and move on 2 .  

•   You can use  $@  and  $<  to refer to targets and prerequisites, respectively.    

     Listing 8-1.    Targets and Prerequisites   

  targets : prerequisites  
     shell commands ...  

  Example  

    %.o : %.c  
     -@echo "===> Building $@"  
     @$(CC) $(CFLAGS) -c -o $@ $<  

        Variable Expansion 
 You can use variables in your makefiles. Depending on the way variables are assigned, there are two kinds of 
them:  simply-expanded  and  recursively-expanded . Simply-expanded variables get to determine their values 
immediately when they are being assigned, while recursively-expanded ones have to wait until the moment 
when they are being referenced. In order to distinguish one from the other, the two kinds of variables use 
 :=  (for simply-expanded) and  =  (for recursively-expanded) for assignment operation. As demonstrated in 
Listing  8-2 ,  $(TOPDIR)  is a simply-expanded variable while  $(dependency)  is a recursively-expanded one. 
As you can see,  $(obj)  might change its value before  $(dependency)  is being used. So it makes more sense 
to defer to  $(dependency) ’s expansion. 

   1  The Make utility will check the timestamps to determine whether targets are older than any of the prerequisites.  
   2  Another way to process the return value is to use the  $$?  variable, which will be demonstrated in later sections.  
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     Listing 8-2.     Variable Expansion     

  TOPDIR := $(shell pwd)  

    export TOPDIR  

    dependency = $(patsubst %.o,%.d,$(obj))  
  ...  

    ifneq "$(MAKECMDGOALS)" "clean"  
     -include $(dependency)  
  endif  

        Phony Target 
 As mentioned early, a target is supposed to match the corresponding file on the disk. However, this is not 
always the case. With the  .   PHONY  directive  , you can stop such a filename matching by declaring the target as 
a phony target. The Make utility will always treat a phony target as out-of-date. As demonstrated in 
Listing  8-3 , both  all  and  clean  are phony targets.  make all  will trigger the processing of all object files 
before link is conducted, while  make clean  will prepare for a fresh new build by removing files generated in 
the previous iteration. 

     Listing 8-3.    Phony Target   

  obj = test/test_main.o \  
        common/CRC32.o \  
        common/about.o \  
        align/align.o  

    target = demo.exe  

    ...  

    all: $(obj)  
     @echo "====> Linking $(target)"  
     @$(LD) $(LDFLAGS) $(obj) -o $(target)  
     @chmod 755 $(target)  

    clean :  
     -@rm -vf $(target)  
     -@find . -type f \( -name "*.d" -o -name "*.o" \) -exec rm -vf {} \;  

    .PHONY: clean all  



CHAPTER 8 ■ BUILDING AND DEPLOYMENT

152

           Simple Makefile 
 From this section forward, I will try to provide a few makefile templates for practical use. I will start small by 
organizing some files mentioned in early chapters into the source tree structure shown in Figure  8-1 . Within 
the top folder, there are four directories. All the common header files, such as  debug.h , are stored in the 
 common/include  folder, and they will be included in the whole project.  

  Figure 8-1.    Source tree structure       

 Given the  source tree structure  , you can have a simple makefile as illustrated in Listing  8-4 :

•    Specify cross-compiler, cross-assembler, and cross-linker in  $(CC) ,  $(AS),  and  $(LD)  
variables, respectively.  

•   Specify all the compiler options in  $(CFLAGS) . These options should include header 
file search paths and optimization flags. All the global macro definitions, such as 
 VMAJOR ,  VMINOR , and  DEBUG , are supposed to be placed here as well.  

•   By the same token, you specify all necessary link options in  $(LDFLAGS) .  

•   Specify all the modules (object names) in  $(obj)  variable.  

•   Specify the target image name in  $(target)  variable.  
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•   The phony target al l  will kick-start the compiling for all objects, which will in turn 
trigger the  %.o : %.c  rule.  

•   With the help of a wildcard, the  %.o : %.c  rule will trigger the compiling for those 
modules listed in  $(obj)  variable.  

•   The phony target  clean  will kick-start shell scripts to remove files generated in the 
previous building cycle.    

        Listing 8-4.     Simple Makefile     

  CC = gcc  
  AS =  
  LD = gcc  

    CFLAGS += -I. -Icommon/include -Istate_machine -Ialign -g -W -DVMAJOR=1 -DVMINOR=3g 
-DDEBUG -DCONSOLE_PRINT=printf -DABOUT_CRC32=0x68DAC604  

    LDFLAGS +=  

    #== Put all the object files here  
  obj = main/main.o \  
        common/CRC32.o \  
        common/about.o \  
        align/align.o \  
        state_machine/state_machine.o  

    target = demo.exe  

    all: $(obj)  
     @echo "====> Linking $(target)"  
     @$(LD) $(LDFLAGS) $(obj) -o $(target)  
     @chmod 755 $(target)  

    %.o : %.c  
     @echo "===> Building $@"  
     @$(CC) $(CFLAGS) -c -o $@ $<  

    clean :  
     -@rm -vf $(target)  
     -@find . -type f \( -name "*.d" -o -name "*.o" \) -exec rm -vf {} \;  

    .PHONY: clean all  

     The  simple makefile   in Listing  8-4  serves as a good starting point for small projects, except for one thing: 
It does not handle dependency among source files. For example,  debug.h  is included by many sub-modules, 
such as  align.c ,  about.c , and  main.c . However, modifying  debug.h  does not automatically trigger the 
rebuilding of these  .c  files, because such a dependency is not reflected in Listing  8-4 . Since source files are 
in a constant state of changing, and header files could include other headers files in a nested fashion, it can 
be quite labor-intensive to extract dependencies manually. Fortunately, this dilemma can be solved with the 
help of compiler option  -M .  
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     Makefiles that Handle Dependency 
 For each source file, C compilers like gcc can produce a list of include files 3  by using the  -M  option, 
as demonstrated in Listing  8-5 . This list is dumped into a corresponding  .d  file where the  d  stands for 
dependency. The  sed  command in Listing  8-5  is there to correct the output list with directory information, 
whose purpose will be explained soon. Given all that, each  .c  file can generate a corresponding  .d  file that 
contains the full dependency information. 

      Listing 8-5.    main.c and List of Include Files   

  // main.c  
  ...  

    #include "stdio.h"  
  #include "about.h"  
  #include "align.h"  

    int main (void)  
  {  
      about();  
      alignment_test();     

        return 0;  
  } // End of main()  

  $ gcc -I. -Icommon/include -Istate_machine -Ialign -g -W -DVMAJOR=1 -DVMINOR=3g 
-DDEBUG -DCONSOLE_PRINT=printf -DABOUT_CRC32=0x68DAC604 -M main/main.c | sed 
"s,main.o\s*:,main/main.o :," > main/main.d  

    $ cat main/main.d  

    main/main.o : main/main.c /usr/include/stdio.h /usr/include/_ansi.h \  
   /usr/include/newlib.h /usr/include/sys/config.h \  
   /usr/include/machine/ieeefp.h /usr/include/sys/features.h \  
   /usr/include/cygwin/config.h \  
   /usr/lib/gcc/i686-pc-cygwin/4.5.3/include/stddef.h \  
   /usr/lib/gcc/i686-pc-cygwin/4.5.3/include/stdarg.h \  
   /usr/include/sys/reent.h /usr/include/_ansi.h /usr/include/sys/_types.h \  
   /usr/include/machine/_types.h /usr/include/machine/_default_types.h \  
   /usr/include/sys/lock.h /usr/include/sys/types.h \  
   /usr/include/machine/types.h /usr/include/cygwin/types.h \  
   /usr/include/sys/sysmacros.h \  
   /usr/lib/gcc/i686-pc-cygwin/4.5.3/include/stdint.h /usr/include/stdint.h \  
   /usr/include/endian.h /usr/include/bits/endian.h /usr/include/byteswap.h \  
   /usr/include/sys/stdio.h /usr/include/sys/cdefs.h common/include/about.h \  
   common/include/common_type.h common/include/debug.h align/align.h \  
   common/include/common_type.h common/include/debug.h \  
   state_machine/state_machine.h  

   3  Nested includes are also covered in this list.  
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     By including these  .d  files, makefile will be able to determine the exact scope of source files to rebuild 
after a header file is modified. Thus, the simple makefile in Listing  8-4  can be transformed into the one in 
Listing  8-6  to support dependency. 

          Listing 8-6.    Makefile that Handles Dependency   

  CC = gcc  
  AS =  
  LD = gcc  

    CFLAGS += -I. -Icommon/include -Istate_machine -Ialign -g -W -DVMAJOR=1 -DVMINOR=3g 
-DDEBUG -DCONSOLE_PRINT=printf -DABOUT_CRC32=0x68DAC604  
  LDFLAGS +=  

    #== Put all the object files here  
  obj = main/main.o \  
        common/CRC32.o \  
        common/about.o \  
        align/align.o \  
        state_machine/state_machine.o  

    target = demo.exe  

    all: $(obj)  
     @echo "====> Linking $(target)"  
     @$(LD) $(LDFLAGS) $(obj) -o $(target)  
     @chmod 755 $(target)  

    %.o : %.c  
     @echo "===> Building $@"  
     @echo "============> Building Dependency"  
     @$(CC) $(CFLAGS) -M $< | sed "s,$(@F)\s*:,$@ :," > $*.d  
     @echo "============> Generating OBJ"  
     @$(CC) $(CFLAGS) -c -o $@ $<; \  
     if [ $$? -ge 1 ] ; then \  
            exit 1; \  
     fi  
     @echo "----------------------------------------------------------------------------"  

    dependency = $(patsubst %.o,%.d,$(obj))  

    ifneq "$(MAKECMDGOALS)" "clean"  
     -include $(dependency)  
  endif  

    clean :  
     -@rm -vf $(target)  
     -@find . -type f \( -name "*.OBJ" -o -name "*.d" -o -name "*.o" -o -name "*.LST" -o -name 
"*.M51" \  
     -o -name "*.hex" -o -name "*.rsp" \) -exec rm -vf {} \;  

    .PHONY: clean all  
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     As you can see, the enhancements made in Listing  8-6  are as follows:

•    Dependency information will be extracted from the  .c  file and dumped into a  .d  file 
before the object is generated.  

•   For each  .c  file, its corresponding  .d  file will be included by the makefile. The default 
dependency information produced by the compiler does not include a directory 
path. That’s what  sed "s,$(@F)\s*:,$@ :,"  is there for—to correct this behavior, 
since a directory path is required when  .d  files are being included.  

•   When the object is generated, the makefile will determine the next step of action based 
on the compiler’s return value. By default, a compiler should return a non-zero value 
only when there is compiling error. However, some compilers, like Keil C51 (Ref  [  5  ] ), 
will return 1 on warning and 2 on error. To let the makefile only stop on compiling 
errors rather than on warnings, use the automatic variable  $$?  to convert the 
compiler’s return values.    

 For all practical purposes, Listing  8-6  can be a good makefile template for small projects. Here my 
definition of "small" is a project whose total number of source files is less than 200 and total number of 
sub-folders is less than 20. If your project grows far beyond that point, you might consider deploying 
recursive makefiles.  

      Recursive Makefiles   
 Rome wasn’t built in a day, and neither is any meaningful embedded system. The only viable approach to 
building anything relatively big is divide-and-conquer. You start off with those basic building blocks and 
then test them and make sure they are solid. On top of those basic blocks, you can create bigger modules. 
You test them so they can be used as solid building blocks as well. And you repeat those aforementioned 
steps recursively until you reach the top. As far as development is concerned, it implies the following:

•    The project is composed of multiple sub-modules.  

•   There could be dependency among those sub-modules, and such a dependency 
should be reflected in build process as well. Basically it means that some sub-
modules have to be built before others in order not to violate the dependency rule. 
Note that mere symbol reference from one module to another does not necessarily 
constitute build dependency. The two modules can be built in any chosen order 
and linked at the last stage. However, build dependency does exist if module A is 
referencing files from module B and these files are dynamically generated by module 
B in its build process. Consequently, you can assert that A is dependent on B and 
should be built after B.  

•   Since the whole project is developed from bottom up, the building and testing 
should be carried out at both the sub-module level and the top level.    

 To accommodate these issues, I suggest the project source tree and makefiles being organized in the 
following manner:

•    Each sub-module should have a corresponding sub-folder in source tree, and it is 
better to have a flat structure for the source tree. The dependency among sub-modules 
should be reflected in the makefile instead of the source tree structure.  

•   Since each sub-module should be built and tested independently, you can put two 
makefiles in each sub-folder. One is named literally as  Makefile , and it is responsible 
for building the sub-module. The other can be called  Makefile_Test , and it is for 
building the test fixture.  



CHAPTER 8 ■ BUILDING AND DEPLOYMENT

157

•   As you can imagine, most makefiles look the same, which are the close cousins of 
Listing  8-6 . To avoid code duplication, the greatest common factor of them, namely 
the bulk of Listing  8-6 , can be extracted into a file called  Rules.mak. Rules.mak  
resides in the top level. All the makefiles in the project are supposed to include 
 Rules.mak . Generally, makefiles differ from each other only by specifying the 
distinctive objects and targets involved.  

•   As stated earlier, dependency among sub-modules has to be accommodated. 
However, dependency can grow into something that involves multiple layers of 
assorted modules. Assuming there is no mutual or cyclic dependency 4 , you can 
describe module dependency by using DAG ( Directed Acyclic Graph  ), as illustrated 
in Figure  8-2 . The longest path in Figure  8-2  is the length of four (Top -> A1 -> B0 -> 
C0 -> D0 and Top -> A1 -> B0 -> C1-> D0). Based on each module’s longest distance 
from top, the DAG in Figure  8-2  can be divided into four layers. For a medium-scale 
project, the longest path in its dependency DAG is usually no more than four. So I 
will design my template of recursive makefiles based on this assumption and name 
the four layers of sub-modules  submodules ,  submodules_sofa ,  submodules_carpet , 
and  submodules_floor . (As you can see, submodules sit on the sofa, and the sofa 
is on top of the carpet with the floor underneath. Hopefully I don’t have to add one 
more layer for the basement.) These names will correspond to respective variables in 
the makefile to implement sub-module dependency.     

   4  Mutual or cyclic dependency could happen under complex circumstances. For example, both module A and module B 
could reference each other's configuration header files  config_A.h  and  config_B.h , while these configuration header 
files are supposed to be generated dynamically during the build process. Due to their complexity, mutual dependency and 
cyclic dependency are usually solved on an ad hoc basis, and they will not be discussed in this book.  
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 Now let me use the  source tree structure   in Figure  8-1  to show you how recursive makefiles can be 
employed to tackle the same problem. To use recursive Make, there should be makefiles in each sub-folder. 
As stated previously, a test fixture can also reside in the sub-folder to carry out a unit test. So the source tree 
in Figure  8-1  will evolve into the one in Figure  8-3  with more files in it.  

  Figure 8-2.    Describe dependency with DAG       
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  Figure 8-3.    Source tree for recursive make       

 Compare Figure  8-3  to Figure  8-1  and you will find that the source tree folder structure is the same. 
The only difference is that each sub-folder now has three more files:  Makefile ,  Makefile_Test , and  
test_main.c . Makefile is for building the sub-module, while  Makefile_Test  and  test_main.c  are part of the 
test fixture.  Rules.mak  resides in the top folder, and it is supposed to be included by all the makefiles. 

       Listing 8-7.     Rules.mak     

  CFLAGS += -I. -I$(TOPDIR)/common/include  
  CFLAGS += -g -W -DVMAJOR=1 -DVMINOR=3g -DDEBUG -DCONSOLE_PRINT=printf  

    all: $(submodules) $(obj)    
     @if [ -n "$(target)" ] ; then \  
           echo "====> Linking $(target)";\  
           $(CROSS_LD) $(LDFLAGS) $(obj) $(link_obj) -o $(target); \  
     fi  

       @if [ -n "$(post_link_action)" ] ; then \  
           echo "====> $(post_link_action)"; \  
     fi  
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       @$(post_link_action)  

    $(submodules) : $(submodules_sofa)  
     @$(MAKE) -C $@  
     @echo "============================================================================"  
     @echo  

    $(submodules_sofa) : $(submodules_carpet)  
     @$(MAKE) -C $@  
     @echo "============================================================================"  
     @echo  

    $(submodules_carpet) : $(submodules_floor)  
     @$(MAKE) -C $@  
     @echo "============================================================================"  
     @echo  

    %.o : %.c  
     @echo "===> Building $@"  
     @echo "============> Building Dependency"  
     @$(CROSS_CC) $(CFLAGS) -M $< | sed "s,$(@F)\s*:,$@ :," > $*.d  
     @echo "============> Generating OBJ"  
     @$(CROSS_CC) $(CFLAGS) -c -o $@ $<; \  
     if [ $$? -ge 1 ] ; then \  
           exit 1; \  
     fi  
     @echo "----------------------------------------------------------------------"  

    dependency = $(patsubst %.o,%.d,$(obj))  

    ifeq (,$(filter "clean" "clean_recursive", "$(MAKECMDGOALS)"))  
     -include $(dependency)  
  endif  

    clean_recursive :  
     -@for dir in $(submodules_floor) $(submodules_carpet) $(submodules_sofa)  
  $(submodules); do \  
            $(MAKE) -s -C $$dir clean; \  
     done  

       -@rm -vf $(target)  
     -@rm -vf $(obj)  
     -@rm -vf $(patsubst %.o,%.d,$(obj))  

    clean :  
     -@rm -vf $(target)  
     -@find . -type f \( -name "*.OBJ" -o -name "*.d" -o -name "*.o" -o -name "*.LST" -o -name 
"*.M51" \  
                         -o -name "*.hex" -o -name "*.rsp" \) -exec rm -vf {} \;  

    .PHONY: clean all clean_recursive $(submodules) $(submodules_sofa) $(submodules_carpet) 
$(submodules_floor)  
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     Listing  8-7  has the bulk of  Rules.mak , and comparing Listing  8-7  to Listing  8-6  will reveal the following:

•     $(submodules) ,  $(submodules_sofa) ,  $(submodules_carpet) , and  $(submodules_floor)  
are added to  Rules.mak  to enforce the building order. These variables are also listed 
as phony targets. For each dependency rule of these variables,  $(MAKE) -C  is used to 
iterate all the sub-folders involved.  

•   To make  Rules.mak  more generic,  $(post_link_action)  is added to accommodate 
script processing after the link is done.  

•    $(obj)  and  $(target)  are not specified in  Rules.mak . Instead, they are supposed to 
be set up by the makefile.    

 The  top/common/include/about_CRC32.h  file in Figure  8-3  contains the CRC32 checksum of the about 
signature, and it is produced dynamically by a Perl script (the script  about_sig_CRC32.pl  will derive the 
about signature from the binary files and calculate the CRC32). Other modules, such as  state_machine  and 
 main , will include this header file. Thus there is dependency and the  common  module should be built before 
the others. The whole DAG for Figure  8-3  is shown in Figure  8-4 .  

  Figure 8-4.    Example DAG       

 As you can deduce from Figure  8-4 ,  $(submodules)  and  $(submodules_sofa)  will be employed in the 
makefile to force the build order among modules. Thanks to  Rules.mak , the top-level makefile can be more 
succinct, as shown in Listing  8-8 . 

      Listing 8-8.    Top-Level Makefile   

  TOPDIR := $(shell pwd)  

    export TOPDIR  

    obj = main/main.o  
  target = demo  
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    link_obj = state_machine/state_machine.o common/common.o align/align.o  

    submodules = align state_machine  
  submodules_sofa = common  

    CROSS_LD = gcc  

    CFLAGS += -I$(TOPDIR)/align -I$(TOPDIR)/state_machine  

    include $(TOPDIR)/Rules.mak  

     As stated earlier, building and testing should also be carried out at sub-module level. Accordingly, there 
are two makefiles in each sub-folder:  Makefile  and  Makefile_Test . The former is for building only while the 
latter is for unit testing. Take sub-module  state_machine  for example; its  Makefile  and  Makefile_Test  files 
are demonstrated in Listings  8-9  and  8-10 , respectively. As you can see,  state_machine ’s dependency on the 
 common  module is reflected in  Makefile_Test , but not in  Makefile . This is because the unit test needs to link 
all the relevant sub-modules to produce a complete binary. For the recursive make, the top-level makefile 
will handle the module dependency as a whole. 

     Listing 8-9.    Makefile of  state_machine Module     

  obj += state_machine.o  
  target =  

    ifndef TOPDIR  
     TOPDIR := ..  
  endif  

    include $(TOPDIR)/Rules.mak  

         Listing 8-10.    Makefile_Test of state_machine Module   

  ifndef TOPDIR  
     TOPDIR := ..  
  endif  

    obj = test_main.o  
  target = test_main  

    link_obj = state_machine.o $(TOPDIR)/common/common.o  

    submodules += $(TOPDIR)/common $(TOPDIR)/state_machine  

    CROSS_LD = gcc  

    include $(TOPDIR)/Rules.mak  

     The  recursive makefile architecture   demonstrated in this section can serve as a template for medium-
scale firmware projects with a reasonable build time. However, for the sake of completeness, be aware that 
there is also an alternative approach that employs a non-recursive, centralized makefile, as suggested in 
Ref  [  4  ] . The non-recursive makefile will include module-specific information (a file called  module.mk ) from 
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each sub-folder, and it will have multiple targets to build sub-modules. Personally I am not very enthusiastic 
about this non-recursive approach, for the following three reasons:

•    The problems described in Ref  [  4  ]  do not apply to the makefile template presented in 
this section.  

•   The architecture of a  firmware project   is NOT always in a static shape throughout its 
lifecycle. It might be premature to have a centralized makefile when all the possible 
avenues are still being explored at the planning stage. It runs counter to the ideas of 
divide-conquer and bottom-up approach that I mentioned earlier.  

•   Oftentimes, your project will utilize modules provided by a third party. These 
modules are usually self-contained, with their own makefiles out of the box. It would 
be reinventing the wheel to impose non-recursive makefiles on those modules.    

 Thus from the perspective of practicality, I don’t recommend such a non-recursive solution to readers. 
Instead, consider the makefile template presented in this section for your new project.  

     Makefile with  Kernel Configuration Language   
 One thing not included in the previous template is the GUI-based configuration. The kernel configuration 
language that accompanies the Linux kernel offers a nice solution in this regard. 

    Configuration Process   
 To survive and beat your competitors, your project team has to answer calls from a wide variety of 
customers, in a prompt fashion. More often than not, those demands from customers are only slightly 
different from each other. For example, most OEM customers want to customize the display of product 
names and versions. Some customers, in order to differentiate themselves from the pack, may choose 
to include certain modules (with cool features supposedly) offered by a third-party. Consequently, the 
build process has to be flexible enough to accommodate those demands. And under such fast-spinning 
circumstances, the surviving guide usually suggests building the firmware from the same baseline, but with 
macro definitions to conduct conditional compiling. The build process is basically divided into two stages: 
configuration and compile/link. The configuration stage will produce a makefile, which is fed into the 
second stage. 

 One way to do this configuration is, of course, to manually modify the makefile every time when a new 
customer demand comes in. However, when your business is booming and the list of customers grows, the 
manual configuration job quickly becomes tedious and error-prone. Thus most companies will develop 
some scripts to automate the configuration process. The drawback of in-house scripts is obvious: These 
scripts are custom-made and offer no generic value to other projects. 

 Fortunately, since configuration is such a pandemic issue, there are generic solutions. One of them is to 
use the kernel configuration language, which is discussed in detail in this section.  

   The Linux Kernel Configuration Language 
 The  Linux kernel   finds itself with hundreds of sub-modules, and it is targeted to be run on more than 
20 different CPU architectures. Such a huge variety makes configuration an acute issue. A special kernel 
configuration language was thus developed, and it has undergone some major revamps after kernel 2.5 
(Ref  [  6  ] ). The new kernel configuration language provides a generic solution that is not confined only to the 
Linux kernel. And for the rest of the book, the new kernel configuration system will be referred to as  Kconfig . 
Kconfig is an independent part by itself, and any project that needs a configuration process can borrow a 
page from Linux kernel by using Kconfig. 
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  Figure 8-5.    Kconfig workflow       

 As shown in Figure  8-5 , the configuration process needs to provide config options (manifested in the 
kernel configuration language) to Kconfig, and these config options are usually saved in a text file named 
 Config.in  or  Kconfig . Based on this text file, Kconfig will present four different configuration interfaces: 
command line, text-mode menu, GTK+ based GUI, and Qt based GUI. These four configuration interfaces 
correspond to the four makefile targets respectively:  config ,  menuconfig ,  gconfig , and  xconfig .  

 No matter what interface you choose, all of them will save your configuration in a file named  .config . 
This  .config  file can be included in your makefile or  Rules.mak , which will then produce conditional 
compiling macros for code building (see Figure  8-5 ). 

 The support of GUI makes Kconfig stand out and shine. I think it should be the first thing to consider if 
your firmware project merits some sort of configuration process.  

   Integrate Kconfig into Firmware Project 
 To demonstrate Kconfig integration, I will recycle the example shown earlier by adding a configuration 
process to it. Assume there is a customer from Mars who put forward the following demands:

•    The product name and product version ( VMajor  and  VMinor ) should be configurable.  

•   Since the firmware code might be ported to various CPU architectures, the 
cross-compiler should also be configurable.  
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•   As shown earlier,  alignment  and  state_machine  are the two major modules in 
the project. Each module should be individually included or excluded by 
configuration options.  

•   There should be a separate option to enable/disable about-signature verification.  

•   Due to the  common  module’s popularity, there should be a dedicated checkbox option 
to rebuild it.    

 These demands can thus be manifested by the kernel configuration language (saved as  Config.in ) shown 
in Listing  8-11 . As you can see, it is composed of three menus: About, Tools Setup, and Modules Configuration:

•    There are three string entries under the About menu. These entries are used to 
specify product name, major version, and minor version (for demand #1).  

•   There are two string entries under the Tool Setup menu to satisfy demand #2. One 
entry is used to set up the cross-compiler for firmware. The other one is in case a 
different compiler is used. (Some applications may prefer μClibc over the standard C 
library. This option is mainly reserved for this purpose.)  

•   Under the Modules Configuration menu, the  ENABLE_ALIGNMENT_MODULE  and 
 ENABLE_STATE_MACHINE_MODULE  entries are both dependent on  BUILD_WHOLE_IMAGE . 
These are Boolean options and they are designed to meet demand #3.  

•   Demand # 4 and #5 are answered by Boolean entries  CHECK_ABOUT_SIGNATURE  and 
 REBUILD_COMMON , respectively.  

•   What demonstrated in this example is only a subset of the kernel configuration 
language, and more detailed information on Kconfig can be found in Ref  [  7  ] .    

       Listing 8-11.     Config.in     

  mainmenu "Firmware Configuration"  

    config HAVE_DOT_CONFIG  
     bool  
     default y  

    #========================================================================  
  #  Firmware Version  
  #========================================================================  

    menu "About"  

    config PRODUCT_NAME  
     string "Product Name"  
     default "A Super Product"  
     help  
           Name of the Product  

    config VMAJOR_STR  
     string "Major Version"  
     default "xx"  
     help  
       Major Version for the firmware  
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    config VMINOR_STR  
     string "Minor Version"  
     default "xx"  
     help  
       Minor Version for the firmware  

    endmenu  

    #========================================================================  
  #  Tools Setup  
  #========================================================================  

    menu "Tools Setup"  

    config CROSS_COMPILER_PREFIX  
     string "Cross Compiler prefix"  
     default "arm-elf-"  
     help  
       Cross compiler pre-fix, such as arm-elf-, xscale_le-  

    config APP_COMPILER_PREFIX  
     string "Cross Compiler prefix for App Build"  
     default "arm-uclibc-"  
     help  
       Cross compiler pre-fix, such as arm-uclibc-, for application build.  
       This is often used in the case where uclibc is preferred over standard  
       C library.  

    endmenu  

    #========================================================================  
  #  Config all the modules in the firmware  
  #========================================================================  

    menu "Modules Configuration"  

    config BUILD_WHOLE_IMAGE  
     bool "Build Whole Image"  
     default y  
     help  
           Build Whole Image  

    config ENABLE_EVERYTHING  
     bool "Enable All Modules"  
     default n  
     depends on BUILD_WHOLE_IMAGE  
     select ENABLE_ALIGNMENT_MODULE  
     select ENABLE_STATE_MACHINE_MODULE  
     help  
           To enable all modules  
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    config ENABLE_ALIGNMENT_MODULE  
     bool "Enable Alignment Module"  
     default n  
     depends on BUILD_WHOLE_IMAGE  
     help  
            To Enable Alignment Module  

    config ENABLE_STATE_MACHINE_MODULE  
     bool "Enable State Machine Module"  
     default y  
     depends on BUILD_WHOLE_IMAGE  
     help  
            To Enable State Machine Module  

    comment "---------------------------------"  
     depends on BUILD_WHOLE_IMAGE  

    config CHECK_ABOUT_SIGNATURE  
     bool "Check About Signature"  
     default y  
     depends on BUILD_WHOLE_IMAGE  
     help  
            To check the integrity of about signature at startup  

    comment "===================================="  

    config REBUILD_COMMON  
     bool "Rebuild Common Module"  
     default n  
     help  
            Rebuild Common Module  

    endmenu  

     In order to process  Config.in , the source tree in Figure  8-3  has to be expanded to include the Kconfig 
module. As demonstrated in Figure  8-6 , the new source tree will have a  config  folder, which homes the 
Kconfig module extracted from the Linux kernel. The  Config.in  file from Listing  8-11  resides at the top level.  
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 As mentioned earlier,  Kconfig supports   four different kinds of interfaces that are mapped to respective 
make targets. Listing  8-11  can thus be tendered in four different ways, as shown in Figures  8-7  through  8-10 . 
The exciting news is that this petty example project now can be configured by a variety of GUIs, which lends 
it a professional touch.     

  Figure 8-6.    Source tree with Kconfig integrated       
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  Figure 8-7.    The make config (command line version)       

  Figure 8-8.    The make menuconfig (text-mode menu version)       
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  Figure 8-9.    The make gconfig (GTK+ version)       

  Figure 8-10.    The  make xconfig   (Qt version)       
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 No matter what interface you prefer, a file called  .config  will be saved in the  config  folder afterward. 
For this project, the  .config  may look like something in Listing  8-12 . 

      Listing 8-12.    .config   

  #  
  # Automatically generated file; DO NOT EDIT.  
  # Firmware Configuration  
  #  
  CONFIG_HAVE_DOT_CONFIG=y  

    #  
  # About  
  #  
  CONFIG_PRODUCT_NAME="A Super Product"  
  CONFIG_VMAJOR_STR="1"  
  CONFIG_VMINOR_STR="3g"  

    #  
  # Tools Setup  
  #  
  CONFIG_CROSS_COMPILER_PREFIX="arm-elf-"  
  CONFIG_APP_COMPILER_PREFIX="arm-uclibc-"  

    #  
  # Modules Configuration  
  #  
  CONFIG_BUILD_WHOLE_IMAGE=y  
  # CONFIG_ENABLE_EVERYTHING is not set  
  CONFIG_ENABLE_ALIGNMENT_MODULE=y  
  CONFIG_ENABLE_STATE_MACHINE_MODULE=y  

    #  
  # ---------------------------------  
  #  
  CONFIG_CHECK_ABOUT_SIGNATURE=y  

    #  
  # ====================================  
  #  
  # CONFIG_REBUILD_COMMON is not set  

     As you can see from Listing  8-12 ,  .config  is nothing but a bunch of variable definitions, and they are 
supposed to be included by   Rules.mak    or by the top-level makefile. The  Rules.mak  file in Listing  8-7  is now 
transformed into Listing  8-13 . (Due to the constraint of real estate space, only the part relevant to  Kconfig  is 
shown in Listing  8-13 .) The new  Rules.mak  file will include  .config  at the beginning, and object files should 
also be dependent on  .config , so that they will be rebuilt when new configuration is saved. 
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      Listing 8-13.    Rules.mak that Supports Kconfig   

  ...  

    config_targets ?= menuconfig config xconfig gconfig  
  config_folder_name ?= config  

    #check to see if we need to include ".config"  
  ifneq ($(strip $(CONFIG_HAVE_DOT_CONFIG)),y)  

        ifeq (,$(filter $(config_targets), "$(MAKECMDGOALS)"))  
          -include $(TOPDIR)/$(config_folder_name)/.config  
      endif  

    endif  

    ifeq ($(strip $(CONFIG_HAVE_DOT_CONFIG)),y)  
      config_file := $(TOPDIR)/$(config_folder_name)/.config  
  else  
      config_file :=  
  endif  

    ...  

    %.o : %.c $(config_file)  
     @echo "===> Building $@"  
     @echo "============> Building Dependency"  
     @$(CROSS_CC) $(CFLAGS) -M $< | sed "s,$(@F)\s*:,$@ :," > $*.d  
     @echo "============> Generating OBJ"  
     @$(CROSS_CC) $(CFLAGS) -c -o $@ $<; \  
     if [ $$? -ge 1 ] ; then \  
            exit 1; \  
     fi  
     @echo "----------------------------------------------------------------------"  

    ...  

     A top-level makefile should also be revised to invoke Kconfig when  .config  is missing, as illustrated 
in Listing  8-14 . Compare Listing  8-14  to Listing  8-8 ; the new makefile is now conspicuously bigger for the 
following reasons:

•    A big   ifeq-else    forms the skeleton of new makefile, and the  else  branch is 
responsible for invoking the Kconfig when  .config  is not detected.  

•   The   ifeq  branch   is the mainstay of the makefile. Most variables from  .config  will 
be processed in this branch, translated into macro definitions, and passed along to 
source files as compiler options. However, variables like product name and version 
will be processed in  Rules.mak  instead of makefile, because they are applicable 
across the board.    
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      Listing 8-14.    Top-Level Makefile with Kconfig Support   

  TOPDIR := $(shell pwd)  
    export TOPDIR  

    config_targets := menuconfig config xconfig gconfig  
  config_folder_name := config  

    # Pull in the user's configuration  
  ifeq (,$(filter $(config_targets),$(MAKECMDGOALS)))  
     -include $(TOPDIR)/$(config_folder_name)/.config  
  endif         

    ############################################################################  
  ifeq ($(strip $(CONFIG_HAVE_DOT_CONFIG)),y)  

            link_obj += main/main.o  
          submodules += main  

            ifeq ($(strip $(CONFIG_BUILD_WHOLE_IMAGE)),y)  
              target := demo  
          endif  

        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
          ifeq ($(strip $(CONFIG_ENABLE_ALIGNMENT_MODULE)),y)  
              submodules_sofa += align  
              link_obj += align/align.o  
              CFLAGS += -DCONFIG_ENABLE_ALIGNMENT_MODULE     
          endif  
      #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
          ifeq ($(strip $(CONFIG_ENABLE_STATE_MACHINE_MODULE)),y)  
              submodules_sofa += state_machine  
              link_obj += state_machine/state_machine.o  
              CFLAGS += -DCONFIG_ENABLE_STATE_MACHINE_MODULE  
          endif  
      #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
          ifeq ($(strip $(CONFIG_CHECK_ABOUT_SIGNATURE)),y)  
              CFLAGS += -DCONFIG_CHECK_ABOUT_SIGNATURE  
          endif  
      #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
          submodules_carpet = common  
          link_obj += common/common.o  

            CROSS :=  
          CROSS_LD := gcc  
          export CROSS  
      #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
          ifeq ($(strip $(CONFIG_REBUILD_COMMON)),y)  
              submodules_floor = clean_common  
              submodules_floor_build_command = \  
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                  @echo "===> clean common module";\  
                  make -C common clean;\  
                  echo "---------------------------------------------------"  

            endif  
      #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
          export CFLAGS      
          include $(TOPDIR)/Rules.mak  

    ############################################################################  
  else # need to be configured  

    $(config_targets):  
     @make -C $(config_folder_name) $(MAKECMDGOALS)  

    .PHONY: $(config_targets)  

    endif  

     To summarize, if you want to integrate Kconfig into your build process, the  Rules.mak  and makefile 
demonstrated in this section can serve as a template for your reference. The kernel configuration language is 
very intuitive, and the support of GUI is its most valuable asset. That’s why I strongly recommend it.   

     Other Ways to Implement a Build Process 
 Jumping on the  bandwagon   is not a virtue, nor is basking in the comfort zone. The main reason I’ve included 
this section is an attempt to not be single-minded, as the old saying goes: one man’s limerick is another 
man’s clue trail. The build process that has been illustrated so far centers on makefile, with Kconfig as 
its configuration sub-process. Personally, I think this is a handy approach for small- and medium-scale 
firmware projects. However, as you can imagine, there are many other options that you can explore when it 
comes to a build process. And those alternative approaches will be introduced in this section. 

 Among those alternative approaches, my personal favorite is SCons, which I will elaborate with 
practical details. For other options that are introduced in this section, although they may not be the best 
match for building firmware, they still have their merits. 

    Automake and Autoconf   
 Automake (Ref  [  8  ] ) and Autoconf (Ref  [  9  ] ) are part of the GNU build system (Autotool) that comprises 
Automake, Autoconf, Libtool, and Gnulib. Their main purpose is to make it easy to build and distribute 
packages across a wide variety of platforms. They can fathom out the differences among various platforms 
and dynamically produce a makefile to resolve those differences. In addition, chores like dependency checks 
can also be handled by these dynamically generated makefiles. 

 As illustrated in Figure  8-11 , to use Automake and Autoconf, users have to prepare two files:  Makefile.am  
and  configure.ac . (Optionally,  Makefile.am  can include another file called  aclocal.m4 , which is generated 
by the  aclocal  command.) Automake will produce an output file called  Makefile.in  based on  Makefile.am , 
while Autoconf will generate a script called  configure . Afterward, the  configure  script will be executed to 
produce a makefile based on  Makefile.in . Differences among various platforms will be reflected in this 
produced makefile.  
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 Automake and Autoconf can be used to distribute source code packages to a wide variety of hosting 
systems. The produced makefile will have targets like  all  and  install  to facilitate code building and 
installation. However, being able to build across multiple hosting systems is less of a concern for firmware 
development, since the chance of moving to a different cross-building environment is quite low over the 
entire project lifecycle. 

 With a long list of predefined macros, preparing  Makefile.am  and  configure.ac  can be a daunting 
task. (Part of this complexity comes from the GNU M4 (Ref  [  10  ] ), which is the macro language processor 
employed by Autoconf.) That’s why I don’t think  Automake and Autoconf   are suitable for firmware projects, 
unless you want to distribute your source packages to a variety of hosting environments.  

   CMake 
  CMake   (Ref  [  11  ] ) is a cross-platform build system that supports configuration and dependency detection. To 
achieve cross-platform use, CMake works with its own flavor of makefile, called  CMakeList.txt . The output 
of CMake is makefiles or project files that your development tool can recognize, such as a Unix makefile, 
Visual Studio Project File, Borland makefile, etc. CMake relies on these makefiles or project files to do the 
final build. In that sense, CMake is similar to Automake/Autoconf. 

 The prerequisite of have  CMakeList.txt  means developers have to master a new script language in 
order to use CMake, which is a drawback to many including me. (I’m not ashamed to admit that I have 
“language inertia”.) And it takes a while to iron out all the quirks before you can write  CMakeList.txt  with 
sophistication. Since most firmware projects stick with a single platform (host machine) throughout the 
whole development cycle, the cross-platform is less attractive to embedded system development.  

  Figure 8-11.    Automake and Autoconf       
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   BJAM 
 JAM is a build tool first introduced by Perforce Software, Inc. (Ref  [  12  ] ). And shortly after its inception, 
several refinements ensued. One of them made its way into the toolset of the Boost Library (Ref  [  13  ] ), which 
is now called Boost Build (Ref  [  14  ] ) or BJAM. Like Autoconf and CMake, BJAM also relies on its own script 
language (Boost Jam) to conduct the build flow, but it goes further by completely replacing the makefile with 
a Boost Jam file (Jamroot and Jamfile). In that sense, it is a self-contained build tool. 

  BJAM   supports most mainstream compilers, like GNU C/C++ and Visual C++, and is popular among 
C++ programmers. Personally, I’ve found it works well if you work with Boost and C++. However, once 
you walk out of that setting, you will find yourself a lot of hoops to jump through before you can make a 
successfully customized build. And like CMake, mastering a new script language only for a build is not 
favorable to many, and it does not have GUI configuration either.  

   SCons 
 As you can see from previous sections, those who want to replace the traditional makefile have to pick 
up a second language. Autoconf relies on GNU M4, CMake uses  CMakeList.txt , and BJAM adopts Boost 
Jam.  SCons   (Ref  [  15  ] ) also has invented its own build script. However, unlike the other build tools, SCons’ 
build script is merely a Python script. In other words, SCons did not invent a new language. Instead, it has 
invented some new Python functions and classes and put them together to form a new build tool. 

 The dynamics of Python gives SCons great power. SCons supports dependency detection, external 
commands, multiple variants, the separation of source and build directories, etc. (Ref  [  16  ] ). And because 
its build script is pure Python, those who are already familiar with Python can pick it up easily. Personally, 
I like the flexibility that SCons can offer.  If your embedded project needs a build process other than a 
make/makefile, I suggest you consider SCons.  

 To elaborate on this, I have provided an example project in the companion material, which can be used 
as templates for future development. The corresponding source tree is shown in Figure  8-12 .  



CHAPTER 8 ■ BUILDING AND DEPLOYMENT

177

  Figure 8-12.    Source tree for  SCons         

 As you can see, the source tree here bears a striking resemblance to the one shown in Figure  8-3 , except 
for the following:

•    At the top folder, the makefile is replaced by a file called  SConstruct . At the sub-
folder level, makefiles are replaced by files called  SConscript . Both  SConstruct  and 
 SConscript  are in fact Python scripts.  

•   I have added another folder called  table_gen  on top of Figure  8-3  to show how 
sub-projects can be customized. And  table_gen  is based on the example for “lookup 
table auto-generation” from previous chapters.    

 For SCons, it will always look for a file called  SConstruct  at the top level. The main purpose of 
 SConstruct  is to set up the environment and build all sub-projects with the respective  SConscript . For the 
example in Figure  8-12 , the corresponding   SConstruct    is shown in Listing  8-15 . 
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      Listing 8-15.     SConstruct Template     

  ...  
  #===========================================================================  
  # Compiling Environment set up  
  #===========================================================================  
  include      = [".", "#common/include", "#align", "#state_machine"]  
  c_flags      = []  
  cpp_flags    = ['-std=c++11']  
  cc_flags     = ['-O3', '-Wall']  
  sub_projects = ['state_machine', 'main', 'align', 'common', 'table_gen']  
  output_dir   = '#output_files'  

    ...  
  #===========================================================================  
  # Build Variables set up, use "VERBOSE=yes" for verbose output  
  #===========================================================================  

    vars = Variables(None)  
  vars.AddVariables( ('VMAJOR', 'major version', '1'),  
                     ('VMINOR', 'minor version', '3g'),  
                     ('PRODUCT_NAME', 'Product Name', 'A SUPER Product'),  
                     BoolVariable('VERBOSE',                            'Verbose output', 0),  
                      BoolVariable('CONFIG_CHECK_ABOUT_SIGNATURE',       'About Signature 

enable/disable', 1),  
                      BoolVariable('CONFIG_ENABLE_ALIGNMENT_MODULE',     'align module enable/

disable', 1),  
                      BoolVariable('CONFIG_ENABLE_STATE_MACHINE_MODULE', 'state machine module 

enable/disable', 1)  
                   )  
  ...  

    #===========================================================================  
  # setup cross compiler here  
  #===========================================================================  

    ## default_env.Replace (CC="sdcc")  
  ## default_env.Replace (CXX="arm-g++")  
  ## default_env.Append(ENV = {'PATH' : os.environ['PATH']})  
  ...  

      SConstruct  is actually a big file. I’ve only shown the part that might need to be customized, such as the 
sub-project folder name, compiler flag, etc. And for this particular example, macro definitions like  VMAJOR , 
 VMINOR , and  PRODUCT_NAME  can be set in the  SConstruct  directly or provided through the command line. 

 At the sub-project level, most  SConscript  files will look like the one shown in Listing  8-16 . 

     Listing 8-16.    SConscript Template   

 src_files = ['xxxxxx.c']  
  obj = Object (src_files)  
  Return('obj')  
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    However, project  table_gen  is an exception. As mentioned in previous chapters, to accommodate large 
tables,  -ftemplate-depth  needs to be bumped up with a bigger number. The corresponding  SConscript  file 
looks like Listing  8-17 . 

     Listing 8-17.     SConscript with a Customized Build Option     

  src_files = ['Gen_Lookup_Table.cpp']  

    env = DefaultEnvironment()  
  obj = Object (src_files, CXXFLAGS = env['CXXFLAGS'] + ['-ftemplate-depth=2048'])  

    Return('obj')  

     SCons can be installed along with Cygwin, or it can be installed separately, as illustrated in more detail in 
Ref  [  16  ] . For the example at hand, the detailed command execution can be seen with the  VERBOSE=yes  option. 
And in SCons, the counterpart for  make clean  is  scons --clean  or  scons -c . Figures  8-13  and  8-14  are the screen 
captures for them. (BTW, you can always use  scons -Q  to remove the messages generated by SCons itself.)   

  Figure 8-13.     SCons Verbose Build         
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 To use the cross-compilers, some of the environment variables, such as  CC  and  CXX , have to be 
replaced, as shown in the last section in Listing  8-15 . Another useful option I can think of for SCons is 
 --debug=explain , which will go through every step with detailed reasoning. It comes in very handy when 
you have doubts about the dependency decisions that SCons makes for you.  

   Ant and Maven 
 For the sake of completeness, I also want to briefly mention some XML-based build tools here. As you can 
tell from previous sections, makefile is a good match for building in the C/C++ language, and it is heavily 
dependent on shell scripts. However, when Java was brought to the fore, Java programmers soon found that 
the combination of a makefile and shell script was not good enough to achieve platform independence. 
So they came up with new build tools, such as Ant and Maven. My personal interaction with Maven was 
through Eclipse CDT, where I tried to make a new plugin for it at one point. What makes Maven different 
from others is that Maven will pull a lot of plugins all over the Internet and use them to build up the whole 
thing. In my eyes, such an approach works well for cross-platform software like Java, but it may not be a good 
fit for low-level software (firmware) that are used in the embedded systems. 

 Building  Java programs   is beyond the scope of this book. Inquisitive readers can find more detail of Ant 
and Maven in Ref  [  17  ]  and Ref  [  18  ] , respectively.    

  Figure 8-14.     SCons clean         
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     Embedded OS 
 The term “ embedded system  ” runs a wide gamut. At low end, where the CPU has less horsepower and the 
storage space is compact, firmware runs on bare bones hardware. Hence the low-end systems can make do 
without any embedded OS. (One with an 8051 processor usually fits this profile.) For those systems, a super 
endless loop will suffice. Operations are carried out in serial fashion, plus some ISRs (Interrupt Service 
Routine) to handle asynchronous events. 

 However, as the system grows, so does the call for multi-threading and better support beyond a simple 
loop or HAL ( hardware abstraction layer  ). This naturally brings embedded OS to the fore, as warranted by a 
more powerful CPU and larger memory. 

 Among all the embedded OS commercially available, embedded Linux is leading the pack 5 . Over the 
past decade, embedded Linux has been winning market share at the expense of its rivals. And it enjoys a 
huge developer community that actively refines it on daily basis. Consequently, it was chosen by this book 
as the epitome of what a typical embedded OS ought to be. As you can imagine, embedded OS is a pandemic 
subject. This section can only serve as a starting point on this subject. 

     Choose an Embedded OS 
 The choice of embedded OS comes from many dimensions. The following factors should play into your 
decision making. 

    Royalty and License Costs   
 Your profit margin will be eroded if the OS vendor charges a royalty. Although many vendors dropped 
royalty terms after the rise of the open source movement, it is still the first thing to look out for, as it will 
directly affect your bottom line. 

 The development costs have to be taken into account as well. Many vendors charge licensing fees for 
their development tools based on the number of seats. In addition, tech support costs should also be nailed 
down beforehand.  

   Open Source and GPL 
 Embedded OS with open source code has been gaining ground in the past decade. Open source brings 
more flexibility and less cost, along with a large developer community. Among them, Linux stands out as the 
bellwether, partly due to its popularity on the desktop PC. 

 However, adopting an  open source kernel   may also impose some unappealing duty on your code as 
well. Take the Linux kernel for example—it’s licensed under the terms of the GPL, which stipulates that 
any derivative work is obligated to disclose its source code as well. So if you write a Linux device driver for 
your hardware, and you choose to link your driver into the kernel as a whole, that driver code is supposed 
to follow the open source terms. In practice though, many commercial products choose to implement their 
device drivers as a LKM (loadable kernel module) and ship them in binary form. The argument is that 
LKM is an attachment rather than a derivative work, and is thus not subject to GPL terms. Many companies, 
big and small, have been hiding their proprietary code under the LKM umbrella for years without any legal 
hiccups. Nevertheless, since it rides in a gray area, you might need to consult your legal department when it 
comes to the decision making.  

   5  The renowned Android OS is also based on the Linux kernel.  
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   Real Time, Interrupt Latency, and Throughput 
 Depending on the application scenario, your system may impose real-time requirements on the selection of 
OS. And there are two kinds of RTOSs (real-time OS) in the world:  hard real-time  and  soft real-time . 

 An  RTOS   supporting hard real-time should have a predictable scheduling mechanism to guarantee that 
each task can be completed within a predetermined interval. No exception is taken. TDMA communication 
and pacemaker are two typical cases with hard real-time requirement. Besides the RTOS support, hard 
real-time should be considered at the system level. Each task should be carefully profiled. The CPU speed 
(normally measured in terms of MIPS) should be evaluated with meticulous number crunching to make 
sure there is enough computation power and a reasonable design margin. 

 On the other hand, under a soft RTOS, the majority of the tasks can be finished within the required 
interval, but a small amount of exceptions are also allowed in the interest of overall performance. A disk 
controller usually fits this profile, with most IOs being finished quickly, and extra latency on a small number 
of IOs poses no harm. 

 To achieve the optimal performance, designers normally have to strike a balance between interrupt 
latency and throughput. Those two benchmark indexes are closely tied to the RTOS beneath. Thus the 
maximum interrupt latency should be measured (or checked out through a datasheet) when evaluating the 
RTOS.  

    Preemptive and Non-Preemptive Kernels   
 OS kernels can also be categorized as preemptive and non-preemptive. Under preemptive kernels, a kernel 
task can be scheduled off CPU when a new one with higher priority becomes ready. However, for a non-
preemptive kernel, the active task has to give up the CPU voluntarily before a new one can be scheduled, 
even when the new one might have higher priority. Tasks under non-preemptive kernels have to work in a 
very cooperative manner to achieve optimal performance. 

 Compared to preemptive kernel, non-preemptive ones may enjoy less overhead on rescheduling, but 
they also require better planning and collaboration among all tasks. Thus there are no carved-on-granite 
conclusions when choosing between a preemptive and non-preemptive kernel. The evaluation has to be 
conducted on a case-by-case basis.  

    Footprint Size   
 Most embedded OSs will be stored as a compressed image in Flash and expanded into RAM during 
bootstrapping. A small footprint will be a boon for cost-sensitive products. Thus the real estate expense, both 
in compressed and uncompressed form, should be taken into account during evaluation.  

   Hardware Requirements 
 Most embedded OSs will have a minimum hardware requirement in order in order to function properly. 
Your available choices are limited by such hard requirements. And those requirements are normally 
manifested as follows:

•    Specific CPU architecture, such as ARM, MIPS, x86, etc.  

•   The existence of MMU.  

•   Minimum RAM size requirement.  

•   The existence of a particular peripherals, such as a graphic display device with 
certain dimensions and resolution, or a USB connection. As suggested in Ref  [  19  ] , 
Android is a little picky in this regard.      
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      Embedded Linux Development   Flow 
 Despite the plethora of embedded OSs, the development flows of these systems are similar. This book will 
choose embedded Linux to demonstrate what a typical development flow ought to be. 

   Choose a Vendor 
 First off, you have to decide where to get your OS kernel. As for Linux, there are many ways to get an 
embedded Linux kernel for your target system:

•    One way is to download the vanilla kernel from the Linux Kernel Archives 
(   http://www.kernel.org     ). However, porting kernels to a customized system is not a 
small undertaking. You run the risk of hitting road blocks that are unforeseen at the 
beginning.  

•   In particular, the vanilla kernel may not fully support what you have in mind. 
For example, you might want to patch the kernel to reduce the interrupt latency for 
IO-intensive application scenarios. And there are vendors who provide their own 
flavors of kernel for various market segments. The good part of  not  doing it on your 
own is that you can focus your engineering resources on more important jobs and 
leave the kernel porting and patching to the hands of experts.      

     Development Machine Setup 
 In order to proceed efficiently, you need well-oiled development machines. By machine, what I really mean 
are servers, workstations, and storage boxes, as illustrated in Figure  8-15 :

•     A storage server where your    Unix home directory resides    :  In a typical corporate IT 
environment, there are multiple Unix/Linux servers. You can have a SSO (Single 
Sign  On  ) among those servers through services like NIS or LDAP. No matter what 
server you log into, your home directory looks exactly the same, because every server 
mounts its home directory to a centralized storage box. The storage box is normally 
a NAS ( Network Attached Storage  ), with RAID (Redundant Array of Independent 
Disks) protection to survive single/multiple disk failure. Conceptually, you can view 
the storage box as a Linux server that exports NFS or Samba share. In other words, 
you should be able to map your Unix/Linux home directory to your Windows PC as a 
network drive.  

•    Server for version control:  Your source code, along with all the schematic drawing 
and documents, is the most valuable asset of your company. You are supposed to 
treat them seriously by setting up a version control server (e.g., a subversion server) 
and protecting the data with RAID storage, as shown in Figure  8-15 . Strong security 
policy should also be enforced when accessing this server.  

http://www.kernel.org/
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•    Build server:  Obviously you have to turn your source code into binary images at 
some point. Although you can check out source code to your local drive and make 
intermittent builds on your workstation, it is hard to create a standard process 
from such a practice. Instead, an independent build server is recommended for the 
following reasons:

   1.    It will be very hard to maintain exact the same toolchain across all the 
workstations. As time goes by, some team members may choose to upgrade 
the toolchain on their PCs 6  while others lag behind. A centralized  build 
server      can avoid such inconsistencies.  

   2.    There is no doubt that build servers can take the heavy load off 
workstations. On top of that, a build server is a first step toward CI 
(Continuous Integration, which will be discussed in later chapters). 
Basically, you can check out code from version control automatically and 
have nightly builds (or build on every commit). The build process can be 
streamlined to catch errors as early as possible.      

  Figure 8-15.    Servers, workstations, and storage boxes       

   6  Here I take the liberty of assuming that PC is the standard service rifle for embedded developers. Apple fans, feel free to 
replace it with iMAC.  :-)  
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•    Development server:  To develop with your embedded OS, embedded Linux in 
particular, you also need a dedicated server. The development server is responsible 
for the following jobs:

   1.     Provide a    BOOTP/DHCP service     to your development board  

 Most likely, your target system (or at least the development board) will 
have an Ethernet connection if you are working with embedded Linux. 
Although you can manually set up IP addresses for each individual board, 
it will be more convenient to let your development server do this for you 
automatically. However, your corporate IT network may also have a DHCP 
server in place. I suggest you coordinate with your IT department before 
you enable the BOOTP/DHCP service on your development server. To be on 
the safe side, it is better to isolate your lab network with your corporate IT 
network.  

   2.     Provide a    TFTP or FTP service     to your development board  

 After your bootloader is successfully executed, it needs to locate your OS 
kernel image for second stage boot-up. During development, your kernel 
image can be loaded through RS-232, USB, or Ethernet 7 , assuming burning 
Flash frequently is not a viable option. Although RS-232 is handy, its low 
throughput does not work well with large images. USB is a good alternative, 
but not every microprocessor has built-in support for booting from USB. In 
that sense, Ethernet is a more generic solution. After your board acquires 
an IP address, it can grab images (which might include kernel, driver, and 
apps altogether) through the TFTP protocol. (In this regard, some use FTP 
instead of TFTP.) Every time you have a new image, you can put it on your 
development server to be deployed to your target boards.  

   3.     Provide an NFS service to your development board  

 The Linux kernel image is usually in a compressed form. After it is loaded 
into RAM, it will extract itself and start initialization. At some point, it will try 
to mount the root file system. During development, the root file system can 
be a NFS share exported by your development server, and accordingly your 
kernel image should be configured to mount the root file system through 
NFS. On the other hand, the root file system should reside on a Flash for 
your final product, and accordingly the production kernel image should be 
configured to use a Flash-based root file system. 

 Using NFS mount gives developers more latitude, and it is normally 
preferred when things are still in their early stages.      

   7  Of course, you can always use JTAG ICE. But ICE is an expensive piece of equipment, and it might be overkill if all 
you need is to load something into memory and run it.  
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•    Workstations : In this regard, I recommend using a Windows-based PC for your 
development, even if you are targeting embedded Linux. Here is why:

   1.    Most likely, you will need software for ICE or FPGA programming as well 
during the course of your embedded development. This type of software is 
usually Windows PC-based.  

   2.    For embedded  Linux  , you will need a good terminal emulator as your debug 
console. My personal experience is that the Windows-based ones, such as 
Tera Term, are easier to use than their Linux counterparts.  

   3.    I like to map my home directory to my PC, edit the code with my favorite 
Windows-based editors 8 , and build the code on the server (telnet/ssh). Of 
course, this is more of a personal preference. But as mentioned earlier, you 
are supposed to do most of your builds on the server; that is what build 
server is set up for.         

   Prepare the  Toolchain   
 To make your code into binary, you need a cross-compiler. More precisely, you need a toolchain that 
includes a cross-compiler, linker, assembler, debugger, and other tools (such as objdump, objcopy, etc.). 
The toolchain is supposed to be installed on the build server and maintained by designated personnel. 

 There are three main ways to get the toolchain:

•    If you get your bootloader, OS kernel, or development tool from a vendor, the vendor 
will normally provide you with a  pre-built toolchain  . Having the blessing from your 
vendor can help you avoid many hidden roadblocks. So use your vendor’s toolchain 
if you can get ahold of one.  

•   You can also download some pre-built toolchain for free from the Internet, 
such as the ELDK ( Embedded Linux Development Kit  , Ref  [  20  ] ) from DENX 
Software Engineering, the pre-built GNU cross toolchain (Ref  [  21  ] ) contributed by 
eCosCentric Limited, or the one from Linaro (Ref  [  29  ] ).  

•   If you are using GNU toolchain, you can build the toolchain by yourself. But I suggest 
you do it only when you don't have any vendor supplied toolchain, or can’t you find 
a free toolchain to match your host/target processor architecture.    

 Building a toolchain can be tedious, and it might also involve some special patches for your particular 
host/target processor architecture. If you choose uClibc as your C library, you can build your toolchain 
with BuildRoot (Ref  [  22  ] ). Otherwise if you prefer glibc, you can get crosstool (Ref  [  23  ] ) to help you build the 
toolchain.  

   Prepare the  Bootloader   
 As mentioned in previous chapters, bootloader is the first program to be executed after the system powers 
on, and it is responsible for system initialization and for loading the OS kernel image. Because of this, 
embedded OS normally has its favored bootloaders. As for embedded Linux, bootloaders like RedBoot 
(Ref  [  24  ] ) and U-Boot (Ref  [  25  ] ) are popular among developers. After you get your toolchain ready, the next 
step is to port a bootloader to your target system. 

   8  As you can imagine, I am no expert on emacs.  
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 Although it is always possible to port these bootloaders on your own, a more practical approach is to start 
with a BSP (Board Support Package). When CPU vendors roll out their latest models, they, or some third-party 
companies, normally provide a demo board or development kit that has the CPU plus some peripherals and 
connectors. Along with the development kit, there will be a BSP that has the bootloader readily available. 
(Sometimes it also includes an OS kernel and device drivers.) Usually you can get the bootloader source from 
the board vendor and use that as your baseline. As far as bootloader is concerned, the delta between your 
target board and the development kit is most likely in memory address map and the peripherals.  

   Prepare the  OS Kernel Image   
 Just like the bootloader, you can port the Linux kernel based on an existing BSP. (Assuming you can find one 
that meets your requirements.) Or you can get an OS vendor to do the porting for you. The nitty-gritty of 
Linux kernel is beyond the scope of this book. Refer to Ref  [  26  ]  for more information. 

 As mentioned earlier, you can make two flavors of kernel images. One is intended for NFS-mounting to 
your development server; the other is a standalone kernel that mounts the root file system onto Flash. The 
former is convenient for development, and the image can be grabbed by the bootloader through TFTP. The 
latter is mainly for the final product.  

   Prepare the Device Driver 
  Demo board and development kit   are good references for hardware design. Chances are that your target 
system may be a close cousin of those demo boards, which uses the same microprocessor. And the main 
delta in hardware design will most likely be in memory mapping and new peripherals. 

 For those new peripherals, you will have to write device drivers for them. Writing device driver requires 
deep knowledge of Linux kernel, and is thus beyond the scope of this book. Refer to Ref  [  26  ]  [  27  ]  [  28  ]  for more 
information. 

 Your device driver can be linked to the kernel source, and thus become part of the kernel image. 
Or it can be a LKM ( Loadable Kernel Module  ) that is loaded by shell script. As mentioned earlier, some 
companies use LKM to circumvent the GPL, and thus avoid disclosing their proprietary source code. 
However, since this is a legal gray area, consult your corporate lawyers for advice.  

   Prepare the Applications 
 As shown in previous chapters, anything above the OS and device driver can be called an application. 
And for applications, there are oodles of choices when it comes to their implementation. You can take the 
traditional approach by coding them in C/C++. Or you can use Java to create apps based on the virtual 
machine. You can even include a full-blown web server in your system if you have enough hardware 
resources. Due to the multitude of choices, the final decision has to be made on a case-by-case basis.  

   Prepare the Release Image 
 After you have all the previous tasks completed, you can start preparing the Flash image for your final 
product, which includes:

    1.    Configuring the kernel image to mount the root file system on Flash partitions.  

    2.    Preparing the root file system. Instead of including the standard Unix/Linux 
command executables, you might consider using packages such as Busybox to 
significantly reduce the footprint size.  
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    3.    Packaging your device drivers and applications into Flash partitions. 
The partition can use read-only Flash file systems, such as CramFS.  

    4.    Preparing the shell script to mount partitions, load device drivers, and start 
applications.  

    5.    If necessary, preparing other Flash partitions, such as a JFFS2 partition for 
read/write.  

    6.    Configuring the bootloader to load OS kernel images from Flash.     

 Finally, save the whole Flash image for release!    

     Summary 
 As the scale of your system grows, you need a formal build process to deploy your firmware consistently and 
promptly. The Make utility is a handy tool for this job. In fact, with the help of KConfig, you can even create 
for your build process a GUI-based configuration. 

 In addition to the Make utility, other build tools were also discussed and compared in this chapter. 
Among them, SCons stands out as a good alternative to Make. 

 Adopting embedded OS will be inevitable when multitasking becomes crucial to do your job. The 
second part of this chapter discussed the criteria for RTOS selection, as well as the general flow for 
embedded Linux development.      
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    CHAPTER 9   

 Field-Programmable Gate Arrays                          

    It was extremely important for us to always be at the leading edge and we felt that there’s 
no way that we could build a fab.  

 —Bernard Vonderschmitt, Cofounder of Xilinx   

 Now comes the “hard” part. The next three chapters are all about hardware, which covers a wide gamut 
of topics like FPGA, SOPC, LCD, etc. This chapter begins with an overview of the embedded hardware in 
general, followed by detailed discussions about FPGA and IP protection. 

     Hardware Overview 
 The scope of  hardware   can be very broad, as broad as anything that has mass (or weight). In that sense, 
things like mechanical enclosures can be called hardware. But for this book, the scope of hardware covers 
only electronic components. As shown in Figure  9-1 , the  electronic components   in most embedded systems 
can be divided into the following categories: 

•    Controller (a CPU, an FPGA, or a hybrid)  

•   Memory (including volatile and non-volatile)  

•   Peripherals  

•   Clock/reset and power management unit    

 Thus for all practical purposes, the focus of the next three chapters is on the following topics:

•    FPGA and inter-FPGA connection  

•   IP protection  

•   SOPC (System on Programmable Chip)  

•   PMIC (Power Management IC)  

•   Clock and reset  

•   Switch (button) de-bounce  

•   Peripherals    
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  Peripherals   can have a variety of forms. For display, it could be as crude as an RS-
232 terminal, or as fancy as a colorful LCD display. For wireless communication, 
the RF component can be a single chip transceiver, or a combination of 
off-the-shelf components (mixer, synthesizer, etc.). Some of the peripherals 
shown in Figure  9-1  have already been discussed in earlier chapters. And LCD/
touchscreen will be examined after we finish the topic of SOPC. (BTW, the list of 
peripherals in Figure  9-1  is by no means to be complete, as the whole component 
industry keeps charging forward relentlessly. But as for the control interface, 
most of them adopt the bus standards discussed earlier. So this book chooses to 
forgo them for the sake of brevity.)  

     FPGA 
 As its density keeps going up while the price is winding down, FPGA begins to gain a foothold in embedded 
systems. In fact, today’s high device density has made it possible for FPGAs to have a soft core processor 
inside to completely replace an onboard CPU. This section will get started on  FPG  A. The SOPC (System on 
Programmable  Chip  ) design approach will be heavily discussed in the next chapter. 

      CPU   vs. FPGA 
 As demonstrated in Figure  9-1 , all embedded systems have at least one controller as their brain. There are 
two ways to make this brain: software approach (by CPU) or hardware approach (Digital Logic through 
FPGA/ASIC). The software approach has been discussed in detail in previous chapters. For most single-core 

  Figure 9-1.    Hardware overview       
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CPUs, instructions are executed in serial fashion. (VLIW might be an exception.) To achieve multitasking, 
tasks are carried out concurrently. As shown in Figure  9-2 , at any single moment, only one task is active. The 
multitasking is fulfilled by context switching among those tasks, which means there is no true parallelism for 
this software approach.  

 In software, complicated control flow can be achieved through programming in a high-level language, 
which is a boon for design and maintenance. However, the software approach also has its share of 
shortcomings:

•    Due to the absence of true parallelism, multitasking has to be accomplished by 
context switching, and such switching is done asynchronously. From the design 
standpoint, asynchronism always poses a challenge. The biggest headache for any 
asynchronous design is the lack of good methodology to verify the design 1 . I guess 
that’s part of the reason why software is often plagued with bugs.  

•   Another challenge for software approach is to attain real time. For a single-core CPU, 
the main avenue for more MIPS is to increase its clock frequency. However, due to the 
constraint of semiconductor process, clock frequency cannot be increased indefinitely. 
In addition, higher frequency will lead to more power consumption, which may not be 
realistic for battery-powered devices.   

  As an alternative approach, the controller can also be implemented by digital logic, which can be 
physically realized by FPGA or ASIC. Compared to the software approach, digital logic has its merits:

•    True parallelism can be implemented effortlessly through digital logic. Its clock 
frequency can be much lower than its CPU counterpart, thanks to its parallel 
architecture.  

•   Digital logic is primarily done by synchronous design. The simulation and verification 
for synchronous design is much more mature and reliable than its asynchronous 
counterpart. Thus real time can be attained with less effort in digital logic.    

  Figure 9-2.     Multitasking, concurrent execution         

   1  So far there are still no systematic approaches to reliably verify or prove the correctness of asynchronous design.  
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 As summarized in Table  9-1 , each approach has its pros and cons. The rest of this chapter focuses on 
the FPGA solution.   

   Table 9-1.    Software (CPU) vs. Digital Logic (FPGA/ ASIC  )   

 Software (CPU)  Digital Logic (FPGA/ASIC) 

  Clock frequency    High    Low  

  Parallel architecture    No    Yes  

  Power consumption    High    Low  

  Achieve real time    Relatively hard, less reliable    Relatively easy, more reliable  

  Design and maintain    High-level programming 
language (C, C++, etc.)  

  Hardware description language (Verilog/VHDL, etc.)  

      Verilog vs. VHDL   
 Digital logics are primarily designed by an HDL ( Hardware Description Language  ). As with the case of 
software programming languages, there exists more than one HDL. Fortunately, only two of them are chiefly 
used in the industry: Verilog and VHDL. 

 The choice between Verilog and VHDL may trigger another holy war, which I have no intention in 
getting involved in. However, since I had the chance to work with both languages, I would like to offer my 
personal opinions from a designer’s perspective. 

 Under most circumstances, the decision to choose between Verilog and VHDL had already been made a 
long time ago when your design team was initially formed. Since then libraries and code bases were created 
with that particular language. And new designs will always gravitate toward the same language for the sake 
of code reuse. Historically, VHDL is widely used by a great number of defense contractors and European 
companies, while Verilog is popular among commercial design houses in North America. 

 However, if you were able to make the call, I would recommend Verilog instead of VHDL for the 
following reasons:

    1.    VHDL is a strong typed language while Verilog is not. To use programming 
languages as an analogy, VHDL is to Verilog what Pascal is to C. However, 
since VHDL and Verilog are both intended to describe hardware, every value 
eventually boils down to ones and zeros. The strong type offers little help besides 
making things awkward.  

    2.    The evolution of VHDL is lagging behind that of Verilog. Many useful features of 
Verilog 2001 can only find their counterparts in VHDL 2008. To name a few, here 
are two conspicuous examples:

•    For verification, Verilog testbench supports hierarchical names to tap into the 
signals buried deep down beneath. And such a feature only gets picked up as 
late as  VHDL 2008   through external names.  

•   For the design of combinational logic, Verilog 2001 supports wildcards in the 
sensitivity list. A similar feature is only offered by VHDL in its 2008 standard, as 
demonstrated in Listing  9-1 . But even so, it took many EDA vendors a long while 
to fully support this feature in their simulation tools 2 .    

   2  For example,  process(all)  is not supported by Modelsim until version 10.0.  
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     Listing 9-1.    Wildcards in Sensitivity List   

  Verilog 2001  

    always (*) begin  

        a <= b & c;  

    end  

    VHDL 2008  

    process(all)  
  begin  
    a <= b and c;  
  end process;  

         3.    Initially both VHDL and Verilog are weak on verification, so they have to rely 
on other languages, such as Vera or e for more advanced verification. But 
the introduction of SystemVerilog has greatly changed the landscape. As a 
superset of Verilog, System Verilog is rich in features to enhance verification. 
In this regard, VHDL has no counter-offers. In addition, SystemVerilog has 
also borrowed pages from VHDL’s playbooks to make it handy and attractive to 
designers. Thus for newly started designs, I strongly recommend SystemVerilog 
over pure Verilog, let alone VHDL.  

    4.    For gate-level simulation, Verilog holds a performance advantage over VHDL, 
because it has built-in primitives to describe gate-level components. VHDL 
has to rely on VITAL library in this regard. In fact, most third-party simulation 
libraries are in Verilog. So if your design is in VHDL, you have to acquire a mixed 
language license in addition to your existing VHDL license when you simulate 
a design that contains a third-party library. As you know, EDA licenses are 
extremely pricy.     

 The rest of the book presents designs in Verilog and SystemVerilog. 

   Controller and Datapath 
 The nonstop refinement of  semiconductor process   has made it possible for FPGAs to have great density. 
Today, complicated designs with millions of gates can be hold in a single FPGA chip. And large-scale design 
calls for a systematic design approach, which usually means divide-and-conquer. 

 As suggested in Ref  [  4  ] , most digital designs, no matter how complicated they are, are made of two 
major components: the  controller  and  datapath . Seen from the top level, the controller is the brain of the 
design, which usually has a FSM (Finite State Machine) that sends out all the commands (control signals). 
On the other hand, the datapath is a medley of various function units. Each function unit will take order 
from the controller and carry out certain operations, such as counter, ALU, shift registers, etc. For large 
design, the function unit could have its own controller and datapath. As the design scale goes up, more 
design layers can be in place, and the second level function unit can also form its own controller and 
datapath, as illustrated in Figure  9-3 . Such a divide-and-conquer strategy can be executed iteratively to the 
last design node, where the function unit is manageable without the presence of FSM.   
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   Implement FSM in FPGA 
 Since the intelligence of digital design is mostly reflected on the construction of FSM, it is imperative that 
FSM gets implemented efficiently in the hardware. Conceptually, a FSM can be represented by either a state 
diagram or a state transition table, as exemplified in previous chapters. Its software implementation has 
been examined earlier as well. However, from the standpoint of digital design, a FSM is made of two parts: 
the registers to keep the current state (state register) and the combinational logic that determines the state 
transition and output. 

 As illustrated in Figure  9-4 , the state register is supposed to get its next state from a big trunk of 
combinational logic. And here comes an interesting question: If you have an FPGA design with n states in 
the state diagram, how many flip-flops would you have for the state register? The conditioned response 
seems to be “ceiling(log 

2
 n)” since it reduces the number of flip-flops to the minimum. However, reducing 

the number of flip-flops may not be optimal for FPGA implementation, because the traditional FPGA 
architecture is often made of LUTs (lookup tables) and flip-flops. Reducing the number of flip-flops usually 
means bigger trunk of combinational logic, since more effort has to be spent on state decoding. In turn, 
the resulting larger combinational logic has to be partitioned and spread out among multiple logic blocks 
inside FPGA. However, the biggest problem with this approach is that more routing resources are needed 
to interconnect those logic blocks. The routing resource is the most precious resource for FPGA. Heavy 
consumption of routing resources will lead to larger area and longer delay. On the other hand, taking up 
some extra flip-flops may not be such a big deal for FPGA, since flip-flops are abundant in each logic block 
and interconnection among them can be handled chiefly at local scale.  

  Figure 9-3.    Divide and conquer       
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 Thus, FSMs are usually implemented in FPGA with one hot encoding instead of binary encoding, which 
means for a FSM of n states, n flip-flops are used for state register. At any given moment, one and only one 
of the n flip-flops can be set to high (Ref  [  6  ]  [  8  ] ). The one-hot encoding can be written directly into your HDL 
code (as demonstrated in later sections), or it can be set by using proper synthesis options. 

 Another note worth mentioning for Figure  9-4  is the registering of control signals and outputs. As you 
may know, combinational logic is the enemy of timing. If you have trouble closing timing, you might have 
to register your control signals or outputs, or even put deeper pipelines for the combinational logics in 
Figure  9-4 . (Some HDL coding style will naturally do this for you, although it can cause extra cycles of delay.) 
In addition, if your output is heading for another clock domain, it is  absolut  ely necessary to register your 
output, as suggested in later sections.  

  Figure 9-4.    Implementing  FSM in FPGA         
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    HDL Template   for FSM 
 There are many ways to write Verilog/VHDL code for FSM. Sometimes, it is just a matter of personal 
preference. Examples with various implementation styles are abundant in Ref  [  4  ]  [  5  ]  [  7  ]  [  9  ] . And my two cents 
on this subject are as follows:

•    No matter what implementation style you choose, the RTL net list after synthesis 
might bear striking similarities. And most likely, the resulting net list will be a close 
cousin to what’s in Figure  9-4 . (Some implementation styles may carry registers on 
the control signals and outputs, as noted in the previous section.)  

•   As far as HDL coding is concerned, Figure  9-4  can be realized with one procedural 
block that has everything. Or it can be split into two procedural blocks. For the sake 
of argument, let’s see how those two approaches fair on a simplified FSM. 

 Figure  9-5  shows a Moore FSM with only two states:  IDLE  and  RUN . The switch 
between these two states is triggered by the  ctl_start  and  ctl_stop  inputs, and 
the output  active  will be set to  1  if the current state is  RUN . The data path that 
accompanies the FSM is just a counter, which counts only under the  RUN  state.  

  Figure 9-5.    Two-state FSM       
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 Given the state diagram in Figure  9-5 , the corresponding single-procedural-block 
realization is demonstrated in Listing  9-2  3 . A close look at Listing  9-2  reveals the 
following deficiencies:

   a.    The output  active  is not totally in sync with the state change. There is a 
latency of one clock cycle from the state change to the output change, as 
shown in Figure  9-6 . Such latency is introduced because output is dependent 
on the state change, while they both work under sequential logic.   

   b.    If such latency bothers you, you can put the output generation into a separate 
 always  statement of combinational logic, as illustrated in Listing  9-3 . 
However, the second  always  statement also needs to enumerate through all 
the possible states. If the state diagram is a big one with lots of states, such 
an approach can be cumbersome.  

   c.    The data path in Listing  9-2  is directly coupled with the FSM states. That means, 
there are no explicit control signals generated from the FSM to the data path. 
Any redesign or improvement of the state diagram will directly impact the data 
path as well. Using explicit control signals can alleviate such problems since 
conceptually the data path is relatively independent of the FSM. However, 
if everything resides in only one  always  statement for FSM, all control signals 
will experience the same one-clock-cycle latency as the outputs.        

 To handle these dilemmas, you can adopt a new approach with two procedural blocks. One block is in 
sequential logic while the other is in combinational logic. However, different from Listings  9-2  and  9-3 , the 
sequential logic here does not deal with the actual states. Instead, it only updates the state register with new 
states generated from the combinational procedural block. And the new state, along with all controls signals, 
is solely determined by the combinational block, as illustrated in Listing  9-4 . (Listing  9-4  is based on the 
template in Listing  9-5 .) 

 The good thing about Listings  9-4  and  9-5  is that there is only one place to enumerate all the possible 
states, and control signals are explicit. In addition, the latency you saw in Listing  9-2  no longer exists 
(Figure  9-7 ). But if I have to say something negative about this approach, it is that everything is handled in 
a big trunk of combinational logic. You might have to add extra registers on control signals or implement 
deeper pipelines for better timing closure. But you only do this on an as-needed basis.  

          Listing 9-2.    FSM with  One Procedural Block     

  Verilog 2001  

    module one_always_FSM(  
  //========== INPUT ==========  

        input wire clk,                  
      input wire reset_n,              
      input wire ctl_start,            
      input wire ctl_stop,                  

   3  For the sake of one-hot encoding, a reversed case statement is adopted where 1'b1 is put in the case expression. A reverse 
case statement is good for synthesis because only the active  FF  is compared instead of the whole vector (Ref  [  10  ] ).  
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  //========== OUTPUT ==========  
      output reg [7:0] counter_out,          
      output reg active  
  //========== IN/OUT ==========  

    );  

        localparam STATE_IDLE = 0, STATE_RUN = 1;  

        // state register  
      reg [1:0] state;  

        // FSM  
      always @ (posedge clk or negedge reset_n) begin  
          if (!reset_n) begin  

                state <= (1 << STATE_IDLE);  
              active <= 1'b0;  

            end else begin  

                case (1'b1)  
                  state[STATE_IDLE]: begin  
                      active <= 1'b0;  

                        if (ctl_start) begin  
                          state <= (1 << STATE_RUN);  
                      end else begin  
                          state <= (1 << STATE_IDLE);  
                      end  
                  end  

                    state[STATE_RUN]: begin  

                        active <= 1'b1;  

                        if (ctl_stop) begin  
                          state <= (1 << STATE_IDLE);  
                      end else begin  
                          state <= (1 << STATE_RUN);  
                      end  
                  end  

                    default: begin  
                      state <= (1 << STATE_IDLE);  
                      active <= 1'b0;  
                  end  

                endcase  
          end          
      end // end of always  
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        // Data Path  
      always @(posedge clk or negedge reset_n) begin  
          if (!reset_n) begin  
              counter_out <= 0;  
          end else begin  
              if (state[STATE_RUN]) begin  
                  counter_out <= counter_out + 1;  
              end  
          end  
      end // end of always  

    endmodule // one_always_FSM  

  Figure 9-6.    Timing diagram of Listing  9-2        

          Listing 9-3.    Combinational Logic to Remove Latency   

  Verilog 2001  

       always @(*) begin  
          case (1'b1)  
              state[STATE_IDLE]: begin  
                  active = 1'b0;  
              end  

                state[STATE_RUN]: begin  
                  active = 1'b1;  
              end  

                default: begin  
                  active = 1'b0;  
              end  
          endcase  
      end // end of always  

            Listing 9-4.    FSM with  Two Procedural Blocks     

  Verilog 2001  

    module two_always_FSM(  
  //========== INPUT ==========  

        input wire clk,      
      input wire reset_n,  
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      input wire ctl_start,  
      input wire ctl_stop,  
  //========== OUTPUT ==========  
      output reg [7:0] counter_out,  
      output reg active  
  //========== IN/OUT ==========  

    );  

        localparam STATE_IDLE = 0, STATE_RUN = 1;  

        // state register  
      reg  [1:0] current_state, next_state;  
      reg  ctl_enable_counter;  

        // FSM  
      always @(posedge clk or negedge reset_n) begin  
          if (!reset_n) begin  
              current_state <= (1 << STATE_IDLE);  
          end else begin  
              current_state <= next_state;  
          end  
      end // end of always  

        always @(*) begin  
          next_state = 0;  

            ctl_enable_counter = 0;  
          active = 0;  

            case (1'b1)  
              current_state[STATE_IDLE]: begin  
                  active = 1'b0;  

                    if (ctl_start) begin  
                      next_state[STATE_RUN] = 1'b1;  
                  end else begin  
                      next_state[STATE_IDLE] = 1'b1;  
                  end  
              end  

                current_state[STATE_RUN]: begin  
                  active = 1'b1;  
                  ctl_enable_counter = 1'b1;  

                    if (ctl_stop) begin  
                      next_state[STATE_IDLE] = 1'b1;  
                  end else begin  
                      next_state[STATE_RUN] = 1'b1;  
                  end  
              end  



CHAPTER 9 ■ FIELD-PROGRAMMABLE GATE ARRAYS

203

                default: begin  
                  next_state[STATE_IDLE] = 1'b1;  
              end  
          endcase  

        end // end of always  

        // Data Path  
      always @(posedge clk or negedge reset_n) begin  
          if (!reset_n) begin  
              counter_out <= 0;  
          end else begin  
              if (ctl_enable_counter) begin  
                  counter_out <= counter_out + 1;  
              end  
          end  
      end // end of always  

    endmodule // two_always_FSM  

   4  In Verilog 2001, wildcard is supported by using  always @(*) . In VHDL 2008, it is supported by using  process(all) .  

  Figure 9-7.    Timing diagram of Listing  9-4        

•       In the early days, the coding style in Listing  9-5  was not favored by many designers, 
due to the big sensitivity list required for combinational logic. At that time, HDLs 
were not smart enough to support wildcard 4  in sensitivity, and the sensitivity list had 
to be constructed manually, which was error-prone and tedious. But this is no longer 
the case. Consequently, I recommend the template in Listing  9-5  for your FSM 
construction on FPGA.  

•   With the acknowledgement of  SystemVerilog, designers   are gradually adopting it 
as the main design HDL. So you might consider using the template in Listing  9-6  
for new designs. However, be advised that some features of SystemVerilog are not 
fully supported by certain synthesizers at this moment. (For example, enumerator 
methods are not supported by all synthesizers.)           
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 Listing 9-5.    Recommended FSM  Template in Verilog 2001     

  Verilog 2001  

    ̀default_nettype none  

    module MODULE_NAME (  
  //========== INPUT ==========  

        input wire clk,                    
      input wire reset_n,                
      input wire ...  
      input wire ...  
  //========== OUTPUT ==========  
      output ...  
  //========== IN/OUT ==========  
      ...  
  );  

        /* TO DO : define FSM states here */  
      localparam STATE_INIT = 0, STATE_S1 = 1 ... STATE_Sn-1 = n;  

        // current state and next state  
      reg [n - 1:0] current_state, next_state;  

        // State Register  
      always @(posedge clk or negedge reset_n) begin  
          if (!reset_n) begin  
              current_state <= (1 << STATE_INIT);  
          end else begin  
              current_state <= next_state;  
          end  
      end // end of always  

        // State Transition  
      always @(*) begin  
          next_state = 0;  

         /* TO DO : all control signals and outputs default to zero */  

            case (1'b1)  
              current_state[STATE_INIT]: begin  
                /* TO DO : fill in the code */  
              end  

                current_state[STATE_S1]: begin  
                /* TO DO : fill in the code */    
              end  
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                /* TO DO : construct the whole FSM here */  

                default: begin  
                  next_state[STATE_INIT] = 1'b1;  
              end  
          endcase  

        end // end of always  

        /* TO DO : put data path here */  

    endmodule  

  ̀default_nettype wire  

         Listing 9-6.    Recommended FSM  Template in SystemVerilog     

  System Verilog  

    ̀default_nettype none  

    module MODULE_NAME (  
  //========== INPUT ==========  

        input wire clk,                    
      input wire reset_n,                
      input wire ...  
      input wire ...  
  //========== OUTPUT ==========  
      output ...  
  //========== IN/OUT ==========  
      ...  
  );  

        /* TO DO : enumerate FSM states here */  
      enum {S_IDLE, S_RUN, S2, S3...} states;  

        // total number of states  
      localparam FSM_NUM_OF_STATES = states.num();  

        // current state and next state  
      var logic [FSM_NUM_OF_STATES - 1:0] current_state, next_state;  

        // State Register  
      always @(posedge clk or negedge reset_n) begin  
          if (!reset_n) begin  
              current_state <= (FSM_NUM_OF_STATES)'(1 << S_IDLE);  
          end else begin  
              current_state <= next_state;  
          end  
      end // end of always  
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        // State Transition  
      always_comb begin  

            next_state = 0;  

         /* TO DO : all control signals and outputs default to zero */  

            case (1'b1)  
              current_state[S_IDLE]: begin  
                /* TO DO : fill in the code */  
              end  

                current_state[S_RUN]: begin  
                /* TO DO : fill in the code */    
              end  

                /* TO DO : construct the whole FSM here */  

                default: begin  
                  next_state[S_IDLE] = 1'b1;  
              end  
          endcase  

        end // end of always  

        /* TO DO : put data path here */  

    endmodule  

    ̀default_nettype wire  

            Bi-Directional Bus   
 It might be necessary for you to support a SRAM-like interface (close to the one mentioned in previous 
chapters), for the purpose of driving a LCD module through parallel bus, or when interacting with 
microcontrollers. Consequently, you will find it essential to deal with bi-directional data bus. Implementing 
a bi-directional bus usually involves a tri-state buffer. 

 A typical bi-directional bus can be done in the way shown in Figure  9-8 . In Figure  9-8 , a SRAM-like 
interface is implemented by FPGA to talk to an external microcontroller. For the sake of simplicity, address 
bus and chip enable are not taken into consideration. The corresponding data bus can be written in Verilog 
as demonstrated in Listing  9-7 . The tri-state buffer is controlled by the  OE*  pin. To avoid driving the data 
bus during the write cycle, it will output high-impedance when  OE*  is low. (The design demonstrated here 
assumes Intel 8080 bus type is used.)  
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  Figure 9-8.    FPGA acting as SRAM, with a bi-directional data bus       

     Listing 9-7.    Implement  SRAM Bi-Directional Bus in   Verilog   

  module FPGA_SRAM (  
  //========== INPUT ==========  

        input wire clk,                    
      input wire reset_n,                
      input wire oe_n,  
      input wire rw_n,  
  //========== OUTPUT ==========  
      ...  
  //========== IN/OUT ==========  
      inout wire [7 : 0] data  
      ...  
  );  

        reg [7 : 0]   sram_data;  

        assign data = ? oe_n : sram_data : 8'bZ;  

         ...  

        // SRAM data  
      always @(posedge clk or negedge reset_n) begin  
          if (!reset_n) begin  
              sram_data <= 0;  
          end if (!rw_n) begin  
              sram_data <= data;    
      end // end of always  
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          Clock 
 Just like human beings live due to a regular heartbeat, all digital circuits (including microprocessors) rely on 
clocks to proceed and synchronize. In EE’s lingo, it means we need something that can oscillate stably at a 
certain frequency. At the circuit board level, it can be done in the following fashion. 

   Use External Crystal for Oscillation 
 Microcontrollers often use external crystals to make the oscillation. As shown in Figure  9-9 , external to the 
microcontroller are one resistor, two capacitors, and one crystal with the designated frequency. The resistor 
provides bias needed for the internal inverter/amplifier. The two capacitors—Cx and Cy—and the crystal Y 
provide a 180-degree phase shift at the resonance frequency. And the internal inverter/amplifier gives 
another 180-degree shift, which makes total phase shift 360 degrees. Thanks to the amplifier, the total loop 
gain will be more than 1. Altogether, the loop gain and phase shift of 360 degrees form the basis for oscillation.  

  Figure 9-9.    Oscillation with an external crystal       

 For all practical purposes,  microcontroller’s datasheet   usually will provide the recommended value for 
Cx, Cy, R, and Y. And those components should stay as close to the microcontroller as possible to reduce the 
inductance introduced by PCB trace or component leads. Also note that it is never a good idea to take out Cx 
and Cy in favor of lower BOM cost, although engineers can sometimes observe successful oscillation without 
the presence of Cx and Cy. Most likely, it is the parasitic capacitance that acts as the role of Cx and Cy in that 
case. Relying on parasitic capacitance often leads to low yield during mass production. 
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 The component cost for using external crystal is relatively low, and so is its accuracy. And it could also 
become both the source and the victim of EMI interference.  

    Canned Oscillator   
 To achieve better frequency stability and reduce interference, the whole circuit shown in Figure  9-9  can be 
sealed into one package. Oftentimes, the package is a metal case in DIP package 5 . And people call it canned 
oscillator. It comes with four pins: the power, the ground, the output, and a NC (no connection) pin for 
mechanical durability. 

 Using an oscillator can reduce the number of components and save PCB real estate. When used with 
FPGA, the output of oscillator should go directly to FPGA’s dedicated clock input pin, followed by a PLL 
inside the FPGA to generate clocks at the desired frequency.  

   TCXO, OCXO, and VCXO 
 TCXO stands for  Temperature Compensated Crystal Oscillator  . OCXO stands for  Oven Controlled Crystal 
Oscillator  . VCXO stands for  Voltage Controlled Crystal Oscillator  . 

 A typical canned oscillator may achieve frequency stability as good as +/- 20ppm (parts per million). 
When more frequency stability is preferred over a wide range of temperatures, a temperature compensation 
circuit has to be designed into the oscillator. And this is where TCXO comes into the picture. 

 A good TCXO might give you a frequency stability of +/- 0.5 ppm over -20°C to +70°C. If more stringent 
accuracy is desired, an OCXO can be used instead. OCXO is often bigger than its TCXO counterparts, 
because the whole compensation circuit is placed inside a tightly sealed container (as the name “oven” 
suggests). In addition, a temperature sensor is also placed inside the oven to regulate the temperature to a 
much higher than normal range, like between +70°C and +80°C (Ref  [  13  ] ), where the crystal’s temperature 
coefficient is the smallest. With the constant temperature and small temperature coefficient, typical OCXOs 
can achieve frequency stability in the order of ppb (parts per billion) instead of ppm. 

 Notwithstanding manufacturers best efforts, no two oscillators are exactly the same due to aging, 
vibration, humidity, ambient temperature, etc. In telecom, both the transmitter and receiver can tune each 
other’s local oscillator to a standard reference, such as GPS. In such a case, a VCXO (more often than not, it 
will be a TCVCXO) is used. As its name suggests, a VCXO’s frequency can be tuned with an external voltage. 
Oftentimes, an external DAC controlled by FPGA or microcontroller is used to set the voltage for the VCXO.  

   PLL (Phase Lock  Loop  ) 
 Inevitably, there will be phase noise associated with any oscillator in the physical world. And it will be 
reflected in the time domain as jitters. To reduce jitter/phase noise, a PLL is often used. PLL usually includes 
a loop filter and a VCXO to track the reference clock and reduce the jitter/phase noise. And it can also 
multiply the reference clock when a counter is used in its feedback path. For discrete PLLs, they can often 
be programmed through I2C or SPI bus. And these days, most FPGAs and microcontrollers will have PLLs 
integrated inside. The PLL can be used as a reliable clock source, and its “locked” indicator pin can also be 
used for asynchronous resets.  

   5  Note that metal case/DIP is not the only package available. The oscillator could be in any package, such as a plastic case 
with a surface mount package.  
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    RC Oscillator   
 On the other hand, a low-cost, low-accuracy alternative is to use pure electronic components for oscillation, 
as illustrated in Figure  9-10 , where the two inverters will each provide 180-degree phase shift. Such kind of 
oscillator is often called RC oscillator and has a frequency stability of 1% or more. They are often integrated 
into many low-end FPGAs or microcontrollers to reduce BOM cost.    

  Figure 9-10.     RC oscillator         

     Reset 
 It is often desired to be able to put the whole system into a known initial state. That is what reset is for. There 
are two kinds of reset in the digital design: synchronous reset and asynchronous reset. The synchronous 
reset has to rely on the clock being available to work while the asynchronous reset does not. They can usually 
be written as shown in Listing  9-8 . 

     Listing 9-8.    Synchronous Reset and Asynchronous Reset   

  Verilog 2001  

        always @ (posedge clk or negedge  reset_n ) begin  
          if (! reset_n ) begin  
               q <= 0;  
          end else begin  
             if ( sync_reset ) begin  
               q <= 0;  
             end else begin  
               q <= d;  
             end  
          end  
      end // end of always  

    System Verilog  
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        always_ff @ (posedge clk, negedge  reset_n ) begin  
          if (! reset_n ) begin  
               q <= 0;  
          end else begin  
             if ( sync_reset ) begin  
               q <= 0;  
             end else begin  
               q <= d;  
             end  
          end  
      end // end of always  

     After synthesis, the synchronous reset will become nothing more than a mux control, as illustrated 
in Figure  9-11 . The output of the mux goes directly into the input of the register. On the other hand, each 
register has a dedicated reset pin for asynchronous reset, and asynchronous reset can be done without the 
presence of a valid clock.  

  Figure 9-11.    Schematic for  synchronous reset   and  asynchronous reset         

 As far as FPGA design is concerned, the recommended coding style for choosing between synchronous 
reset and asynchronous reset is really vendor dependent. The drawback of a synchronous design is that it 
has to insert some combinational logic into the data path, which could affect timing negatively. And it only 
works when the clock is available. 

 If you decide to go with synchronous reset, and if the sync-reset signal has to drive a good number of 
flip-flops, my recommendation is to let the sync-reset go through a shift register (i.e., using flip-flops to 
delay it by a few clock cycles.) and use its delay version to drive the whole circuit. Meanwhile, turn on the 
physical synthesis to enable re-timing and register duplication. This will help to close the timing if a large 
fan-out is needed. 

 Nevertheless, things will get trickier when asynchronous reset is adopted. For FPGA design, the origin 
of the asynchronous reset could come external to the FPGA, such as from a pushbutton on the PCB. In that 
case, button de-bouncing needs to be implemented. Button de-bounce is discussed in later sections. 
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 For the time being, let’s assume button de-bounce has been taken care of. The asynchronous reset input 
usually has two places to go inside an FPGA:

•    It can be used to reset the built-in PLL asynchronously.  

•   It can be used as the master reset to asynchronously reset all the relevant flip-flops 
inside FPGA.    

 For case 1, as illustrated in Figure  9-12 , FPGA’s built-in PLL will try to reduce the jitter on the external 
oscillator and provide a frequency multiplier at the same time. Its “locked” pin is the status output of the 
PLL, and it can be used as the master asynchronous reset for the rest of the logic circuit.  

  Figure 9-12.    Asynchronous reset using PLL locked pin       

 On the other hand, for case 2 where no PLL is involved, a synchronizer is needed to make sure there 
is no meta-stability when the asynchronous reset is removed (Ref  [  14  ]  [  15  ] ). Without the synchronizer, the 
removal of the reset asynchronously could introduce two problems:

•    The removal could happen very close to a clock rising edge, which will cause reset 
recovery time violation (Ref  [  15  ] ). This in turn will introduce meta-stability.  

•   The delay from the reset original to each flip-flop varies. Due to the possible meta-
stability mentioned in (1), flip-flops may not come out of the reset state on the same 
clock if reset is removed asynchronously.    

 Thus a  synchronizer   like the one shown in Figure  9-13  should be adopted to make the “removal of 
asynchronous reset” synchronous to the clock edge. Note that for the second flip-flop in Figure  9-13 , both its 
input and its output are low when reset is removed. So there is no meta-stability introduced (Ref  [  15  ] ).   
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  Figure 9-13.    Synchronizer for asynchronous reset       

     CDC ( Clock Domain Crossing  ) 
 As mentioned earlier, digital designers should practice synchronous design as much as possible. However, 
there could be multiple clock domains in reality, which make it necessary for signals to cross from one 
clock domain to another. CDC (Clock Domain Crossing) is asynchronous by its nature, and it is hard to 
catch asynchronous design flaws through simulation only. For reliable CDC design, designers could use the 
following guidelines. 

   Single Bit, Level Signal 
 The most basic case for CDC is single bit, level signal. For which, the common practice is to use two flip-flops 
in a row as a synchronizer (Ref  [  1  ] ), as illustrated in Figure  9-14 . The only caveat is that, before the signal 
leaves the first clock domain, it should go through a flip-flop (hash marked in Figure  9-14 ) to remove any 
possible glitches. For synchronous circuit, glitches are not a big concern. However, since these glitches are 
asynchronous to the second clock domain, they might be picked up by the two-FF synchronizer as a valid 
signal, which leads to unknown consequences. Thus it is vital not to keep combinational logic between the 
two clock domains.  
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 SIDE NOTES

 My first job as a digital designer was to design a transmit chain in FPGA. One end of the transmit chain 
went to a  WCDMA RF transceiver  , which worked on a clock that was multiple of 3.84MHz. The other 
end of the transmit chain was connected to a microcontroller, which worked on its bus clock. The 
microcontroller turned on the transmitter by writing a control register that was in the bus clock domain. 
Those control signals had to cross into the RF clock domain to control the RF transceiver. 

 I screwed things up by accidently introducing an AND-gate on the path between the two red circles in 
Figure  9-14 . The transmitter was working okay except it would go off for no reason every half an hour, 
which was followed by hair loss and insomnia for two consecutive days.   

   Single Bit, Pulse Signal 
 Sometimes instead of sending a level signal, you’ll want to send a pulse across the clock domain. The pulse 
should be active for only one cycle in both clock domains. For this, a circuit called a   toggle synchronizer    is often 
used in practice (Ref  [  2  ] ). As illustrated in Figure  9-15 , the idea is to convert the pulse into a level signal (toggle), 
send it into the second clock domain through the same two-FF synchronizer in Figure  9-14 , use edge detector 
to catch its rising edge or falling edge, and regenerate a single cycle pulse in the second clock domain.  

  Figure 9-14.    Using two flip-flops as a synchronizer       
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 In Figure  9-15 , the  Pulse_to_Toggle  converter can be implemented with one flip-flop toggling on the 
active polarity. Its Verilog/VHDL code can be found in Listing  9-9 , and the code for the Edge Detector can be 
found in Listing  9-10 . 

     Listing 9-9.    Pulse to Toggle   

  Verilog 2001  

      parameter POLARITY = 1;  

      always @(posedge clk or negedge reset_n) begin  
        if (!reset_n) begin  
            toggle_out <= 0;      
        end else begin  
            if (data_in == POLARITY) begin  
              toggle_out <= ~toggle_out;  
            end  
        end      
    end  

  Figure 9-15.     Toggle synchronizer         
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           Listing 9-10.    Edge Detector   

  Verilog 2001  

      always @(posedge clk or negedge reset_n) begin  
         if (!reset_n) begin  
                data_in_d1 <= 0;  
         end else begin  
                data_in_d1 <= data_in;  
         end  
    end  

      assign pulse_out = data_in ^ data_in_d1;  

        Toggle Synchronizer   is widely used in digital design to send data enabled strobes across the clock 
domain, or to implement handshaking protocol. Make sure there are enough gaps between every two 
consecutive pulses when it is adopted in the design.  

    Multiple Bits  ,  Data/Address Bus   
 Normally you might also want to send data/address bus across the clock domain instead of just single bit. 
However, things are getting more complicated when multiple bits cross the clock domain simultaneously. 
Simply putting n copies of two-FF synchronizers is not gonna cut it, thanks to the random nature of meta-
stability. An example of this is illustrated in Figure  9-16 . If two bits change from 0 to 1 on the same clock 
edge in clock domain 1, and assume they have caused setup violations when they are sampled by two-FF 
synchronizers, the outcome of each synchronizer can be either 0 or 1, since both are valid outcomes under 
meta-stability. Thus in clock domain 2, there is one clock cycle uncertainty between the rising edge of those 
two bits. In the worst case, there could be one clock cycle gap between them, as demonstrated in Figure  9-16 .  
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  Figure 9-16.    Misaligned data, CDC of two bits       

 Due to the uncertainty caused by meta-stability, you have to take extra measures to get a parallel data/
address bus across the clock domain. Consider the following three approaches. 

   Counters with Gray Code 

 If the bus intended for CDC is actually a counter value, you can play tricks by using better code schemes. 
For a binary counter, since there is more than 1-bit flipping in its successive value sequence (e.g., when 
wrapping around, the counter value can go from all ones to all zeros), bit-misalignment will happen if un-
coded binary values are sent directly across the clock domain. One solution is to convert binary code into 
 gray code  (Ref  [  3  ] ), as exemplified in Table  9-2  (3-bit gray code). As you can see in Table  9-2 , the benefit of 
gray code is that there is only one-bit difference for any two consecutive values, so the data-misalignment 
issue does not apply during CDC.   

    Table 9-2.     Three-Bit Gray    Code      

 Binary Code  Gray Code  Binary Code  Gray Code 

 000   000   100   110  

 001   001   101   111  

 010   011   110   101  

 011   010   111   100  
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   Asynchronous FIFO 

 For a more general and reliable solution,  asynchronous FIFO   is often used to send data/address bus across 
the clock domain (Ref  [  3  ] ). Although the implementation details may vary, asynchronous FIFOs are usually 
implemented with three basic components: block memory (dual port), read pointer, and write pointer. One 
way to piece them together, as demonstrated in Figure  9-17 , is to let the read pointer and write pointer work 
on their respective clock domains as binary counters. These two pointers are used to address the dual port 
RAM, and they are converted to gray code and sent across the clock domain to generate FIFO status (full flag 
/empty flag, etc.). Thanks to the favorable traits of gray coding (as mentioned earlier), the two binary counter 
values can now be compared reliably across the clock domain.  

  Figure 9-17.     Asynchronous FIFO         

 Fortunately, it is very rare that design engineers have to get through all those tedious details mentioned 
here. Most FPGA design software today will offer free libraries of a wide variety of FIFOs.  

   Toggle Synchronizer for  Data Enabled Strobes   

 Although asynchronous FIFO offers a full-blown solution for CDC, it also comes with overheads like block 
RAM and binary/gray counters. If all you need is to send a few bits across the clock domain, and if the data 
doesn’t change very often (the minimum interval between data change is more than two clock cycles in a 
destination clock period), you could find yourself a lightweight solution by employing a toggle synchronizer 
to send data enabled strobes. The corresponding data can go straight to the destination clock domain 
without passing through any two-FF synchronizer, as demonstrated in Figure  9-18 . If you needed to send an 
acknowledgement back for handshaking purposes, you could also put another toggle synchronizer in the 
reverse direction, as suggested in Ref  [  2  ] .     
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  Figure 9-18.    Data enabled strobe through a  toggle synchronizer         

     Area-Time Tradeoff and AT 2  Boundary 
  Digital designers   always face the challenge of reducing the execution time (increasing the speed) while 
keeping the resource usage as low as physically possible. A compromise has to be made between those two 
conflicting design goals. 

   Design for Speed 
 On the speed front, there are three ways to meet the design goal, discussed next. 

   Using a  Pipeline   to Increase Throughput 

 A pipeline can be used to increase throughput by breaking a big trunk of combinational logic into smaller 
ones and distributing them among multiple stages. 

 As illustrated in the top half of Figure  9-19 , the big trunk of combinational logic will hinder the 
maximum clock frequency (FMax) that can be achieved. For the sake of argument, let’s ignore the setup time 
and hold time for flip-flops (assume zero inertial delay for the flip-flops) and assume the big combinational 
logic has a transport delay of  Δ  ns. Now if you add one more pipeline stage and break the big combinational 
logic evenly into two smaller ones, as shown in the bottom half of Figure  9-19 , the transport delay between 
flip-flops will become  Δ/2  ns. Consequently, the FMax will be doubled thanks to the pipeline. And now you 
can drive the pipelined version with a clock rate that is twice the one of none-pipelined version. Assume the 
design has a valid output on every clock cycle. The none-pipelined version has a maximum output rate of 
 1/Δ , while the pipelined version has  2/Δ .  
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  Figure 9-19.    Using a pipeline to increase throughput       

 Although manual optimization can always be adopted to divide the big trunk of combinational logic 
into small trunks, the whole process will be tedious and error-prone. A less labor-intensive way is to use the 
“register retiming” in physical synthesis, as demonstrated in Figure  9-20 . By inserting a few empty pipeline 
stages in front of the big trunk of combinational logic and turning on the register retiming, the physical 
synthesizer can move combinational logic freely between flip-flops to optimize the timing.   
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   Using  Parallelism   to Increase Throughput 

 Just like adding extra lanes to the freeway will ease traffic jam, adding extra processing units will surely help 
boosting the throughput. As shown in Figure  9-21 , assume the processing unit has a processing time of  Δ  ns. 
The top half of Figure  9-21  has a throughput of  1/Δ . By putting two extra copies of processing units in parallel 
with the existing one and using arbiter and multiplexer to direct the in/out, the bottom half of Figure  9-21  
can achieve a throughput of  3/Δ .  

  Figure 9-21.    Using  parallelism   to increase throughput       

  Figure 9-20.    Using  register retiming   for a pipeline       
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 If the data path in Figure  9-21  is wide, such as 32-bits or more, and if the number of processing units is 
also big, the arbiter and multiplexer will become the bottlenecks for timing closure. The following are a few 
useful tips for arbiter and multiplexer design:

•    For the arbiter, it usually can be done in a round-robin fashion for fairness. As shown 
in Figure  9-22 , a one-hot circular shift register can be used for the input enable of 
each processing unit, and an input data bus can be shared among all the processing 
units. If the number of processing units is big and a large fan-out is needed, 
designers can take advantage of the “register duplication” feature in physical 
synthesis by inserting a few empty pipeline stages on the data bus, and the physical 
synthesizer should be able to take care of the rest and duplicate registers when a 
large fan out is desired.   

  Figure 9-22.    Using  parallelism   to increase throughput       

•   For the multiplexer, a traditional N:1 multiplexer could be slow while occupying a 
large area. Instead of using the traditional approach, an alternative solution is to use 
XOR-adder tree. As illustrated in Figure  9-23 , the same one-hot circular shift register 
from Figure  9-22  can be used as the output enable for each processing unit. Those 
2:1 multiplexers shown in Figure  9-23  can be replaced by an AND gate if necessary. 
The outputs of the 2:1 multiplexers are summed by an N-input XOR gate. Either 
manually or through physical synthesis, the N-input XOR gate can be pipelined into 
a multi-stage adder tree for better timing closure. On the other hand, chopping a 
big N:1 multiplexer into multiple pipeline stages may not be so straightforward as 
chopping an adder tree. Hence for wide data bus or large N, I recommend using the 
XOR-adder tree structure.      
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  Figure 9-23.    Using XOR adder tree to replace the N:1 multiplexer       

   Using a Ping-Pong Buffer 

 A ping-pong buffer is a special case of Figure  9-22 , whereby  N  equals 2 and the processing units are just 
simple-dual-port block RAMs. Under such circumstances, one block RAM is called the  ping  buffer and the 
other is called the  pong  buffer. At any given moment, one and only one of them is taking the input (data 
write), while the other is doing the output (data read). Those two block RAMs don’t have to be physically 
separated. Instead they can be combined into a bigger circular buffer, with the read pointer trailing the write 
pointer by half the buffer size, as illustrated in Figure  9-24 .    

  Figure 9-24.     Ping-pong buffer         
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•    Turning the pipeline to a multiple-cycle implementation. Unfortunately, as far as I 
know, this has to be carried out on an ad hoc basis. A typical example can be found 
in the FIR filter implementation. If the design goal is the speed, a transposed 
architecture like the one shown in Figure  9-25  is often adopted. Assume N = 64 and 
assume both input data and coefficients are 16-bit 2s complementary. For the sake of 
simplicity, no guard bits are used and overflow is not considered, thus 32-bits will 
suffice for each register in Figure  9-25 . The total number of flip-flops hence becomes 
 64 32 2048* =   , and total number of multipliers is 64. A throughput of one data output 
per clock cycle can be achieved with such a transposed architecture.  

  Figure 9-25.     FIR filter—transposed architecture         

•  On the other hand, if resource usage is more of a concern, a much smaller design can 
be realized with just one MAC ( multiplier-accumulator  ), as suggested in Figure  9-26 . 
If you don’t take overflow into account, one 32-bit wide register will suffice. The total 
number of multipliers is just one. But the smaller design is also much slower. Its 
throughput is only 1/64 of that of transposed architecture’s.   

•   Using  CPU core   to replace logic. A more generic solution to save space might be to 
use CPU core instead of logic. This approach can be adopted for large-scale signal 
processing where the control is irregular and convoluted. Under such circumstances, 
the initial resource cost for building the CPU core can be offset by the high rate of 
ALU reuse. Ref  [  18  ]  provides a good example to implement vocoders in FPGA using 
DSP cores.     

   Design for Area 
 If you have a brimming FPGA, a first-aid solution is to convert some most scarce resources into other types, 
such as turning block RAMs into logic or vice versa, or converting DSP blocks into logics. If you can’t find a 
quick way out after that, architecture overhaul has to follow. And it usually means resource reuse and doing 
things in multiple cycles.
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  Figure 9-26.    FIR filter—MAC architecture       

    Area-Time Tradeoff and AT 2  Boundary   
 From previous sections, the intuitive conclusion is that you can have a design that runs super-fast, or a 
design that is extremely small in size, but at the end of the day, you have to make a compromise somewhere 
between the super speed and the small area. So this begs the question: Can you come up with a design that 
has the best of both worlds? 

 The answer is negative, as you might have expected. In fact, people have already tried to find answers 
for this question in the semiconductor industry’s early days. Those pioneers in Ref  [  16  ]  [  17  ]  had come to the 
conclusion that: 

  For a given    semiconductor process    , if the design has an area of A and an execution time of T, there exists a 
lower boundary B that   AT B2 ³    .  

 So like other engineering works, it is all about give and take. You can’t have your cake and eat it too.   

      Inter-FPGA Communication   
 If you have a large design that has to be partitioned into multiple FPGAs, and if you need to move data 
between FPGAs in high throughput, this section might provide some useful clues for you. 

    Parallel Source Synchronous Bus   
 If you have enough pins available on both FPGAs, you can use parallel source synchronous bus for data 
transfer. But make sure you have done enough board-level simulations before you commit to this. For all 
the caveats on corresponding FPGA setup, refer to the previous chapters that discussed “Bus with Source 
Synchronous Timing”.  
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   Using Serial Links 
 On the other hand, differential  serial links   can be used to provide a data path for both TX and RX. 
In this regard, if your FPGA has a hard-core SERDES on board, take advantage of it by all means. Otherwise, 
a low-cost alternative is to use a regular differential transceiver (like the one in Ref  [  19  ] ) plus some bit 
alignment circuit to form the link, as described in the following 6 :

    1.    Choose differential pairs dedicated to TX and RX.  

    2.    The clock input for both FPGAs should come from the same oscillator.  

    3.    Register the input and output in the IO pad. (For Altera FPGA, it means enabling 
fast input/output registers in the assignment setting.)  

    4.    It is better to enable DPA ( Dynamic Phase Alignment  ) on the RX side and wait 
until all the channels are locked on DPA.  

    5.    After DPA is locked, the word boundary should be aligned. In other words, 
the bit-slip should be handled for each channel individually by toggling the 
 rx_channel_data_align  pin or other control pins with a similar function. 

 To handle bit-slip, the TX should be composed of two states: alignment and 
normal. In alignment state, the TX should keep sending out a sync word, such 
as 0x5C until it gets an indication from RX that all channels are aligned. Such an 
indication can be realized by using a GPIO pin from RX back to TX.  

    6.    The RX should keep doing the word boundary alignment until:

   a.    All channels are receiving the sync word correctly  

   b.    The sync word has been successfully received on all channels for a 
continuous number of cycles (set a threshold for this)      

    7.    After the alignment is finished, the RX should notify the TX through something 
like a GPIO so that the TX can start its normal transmission.  

    8.    Both TX and RX can be set with 180-degree phase offset between data and clock.  

    9.    On the RX side, the data is received on the TX clock domain. An asynchronous 
FIFO can be used to transfer the data to another clock domain for further 
processing. And start reading data out of the FIFO when the FIFO is half full.        

     Protect Your IP 
 For any company in the world, intellectual property and trade secrets are always closely guarded for obvious 
reasons. The software industry has been plagued by piracy since day one, and schematic/PCB designers fare 
no better as their works are often artfully reverse-engineered (Ref  [  20  ] ). As for FPGA designers, if you are 
selling your modules separately as standalone IPs, two things should be heavily protected from your rivals 
and imitators: the simulation library and the net list. 

   6  The solution described here mainly applies to Altera FPGAs. But I guess similar setups can be found for devices from 
other FPGA vendors.  
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     Encrypt Your  Source Code   
 Most EDA vendors today will offer options to encrypt your VHDL/Verilog code. Usually it is done through 
public/private key pairs. If you are using Modelsim for simulation, you can encrypt your code by enclosing 
them in encryption envelopes (Ref  [  21  ] ), and then you can compile the code with the  +protect  option. For 
delivering simulation library, encryption is a good choice. Refer to the EDA vendor's user manual for more 
options on source code encryption.  

     Obfuscate Your Source Code 
 In addition to the  simulation library  , your net list could be another source to divulge your secret, since the 
names used in the net list are often derived from the names of your design entity or modules. And the net list 
could also reveal your design hierarchies if no proper measures are taken. 

 To confuse the potential crackers, you could choose to obfuscate your source code. There are 
professional tools that are capable of doing this (Ref  [  22  ]  [  23  ] ). And while you are obfuscating your source 
code, don’t forget to do that to the filenames as well. 

 To hide your design hierarchies, make sure you flatten your design during synthesis/compile stage. For 
Altera Prime, the hierarchy will automatically be flattened if you don’t create any design partitions (Ref  [  24  ] ). 
And if you are using Synplify, you can set the  syn_hier  attribute to  flatten  (Ref  [  25  ] ). For other tools, refer to 
the vendor’s document for more information. 

 On top of that, it is also possible for the crackers to get some clues by watching the internal signal of 
your simulation. To make their job harder, the internal simulation models should be hidden. If you are using 
Modelsim, the  -nodebug  option can be used to hide internal model data so that  all source text, identifiers, 
and line number information are stripped out  (Ref  [  21  ] ).  

     Protect Your Bit Stream 
 IP thieves may also go after your bit stream files so that they can make an illegal duplication of your product. 
And the possibility is heightened when manufacturing is not done in-house. To protect your bit stream files, 
you can do the following. 

   Encrypt Your  Bit Stream   
 Some FPGA devices allow users to store the encryption key inside FPGA. The encryption key can be saved as 
one-time programmable fuse, or it can be stored in non-volatile memory that is write-only. The encryption/
decryption algorithm adopted for those cases is usually AES. 

 As for the place to store the bit stream, it can be Flash memory or a MCU that resides outside the FPGA, 
as shown in Figure  9-27 . Or the bit stream can be saved inside FPGA if the FPGA is Flash-based, like Altera 
MAX 10 device.   
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   Node Lock Your Bit Stream 
 Some FPGA devices, like Altera MAX 10, contain a unique chip ID for each device. You can make your design 
functional only with certain chip IDs. This approach is very similar to the way software companies node-lock 
their licenses to certain MAC addresses. 

 If you choose to use the node-lock approach, you might have to build a customized bit stream file for 
each device. Of course, you can always do that through logic design (VHDL/Verilog) and go through the 
synthesis/PAR/Assemble every time. However, if you have a huge project to build, the whole process would 
be time consuming, which may not be feasible for large-volume production. 

 Instead, you could put a soft core processor inside, and let the processor verify the chip ID. In this way, 
you only need to replace the memory  init  file each time. Thus the two most arduous steps (synthesis and 
PAR) could be skipped completely. And as suggested in previous chapters, don’t forget to check the CRC 
checksum in this case, since someone could tamper with your memory content to bypass the ID verification.  

   Limit JTAG Access 
  JTAG   could be another source of vulnerability. Crackers could snoop around through JTAG, or program the 
FPGA with a tampered version of their own. So limit the JTAG access if your FPGA devices support that.   

      Anti-Tamper   
 If for some reason the FPGA device you choose lacks the desired security features, you could protect your 
IPs at the system level. Because they are done at a higher level, the measures discussed in this section can be 
applied universally to all embedded systems. 

  Figure 9-27.     Bit stream encryption and decryption         
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  Figure 9-28.     Anti-tamper sensor/switch         

   Anti-Tamper Sensor/Switch 
 As illustrated in Figure  9-28 , the whole system can be kept in a sealed environment, such as a case. And an 
anti-tamper switch or sensor, like the one in Ref  [  29  ] , can be installed beneath the case cover. Whenever the 
cover is removed, the anti-tamper sensor/switch will be triggered, and the MCU will be notified.  

 If the cover/door is removed or cracked open without proper authorization (keying in the passcode, 
for example), the anti-tamper switch will drive MCU to take counter-measures, such as zero-out all the 
sensitive data on the flash and put the system into a non-functional state. For FPGA, it usually means the bit 
stream files will be erased from the configuration device, or the AES keys will be deleted.  

   Bury the  Conductive Wire   
 By observing Figure  9-28 , you will notice that the keypad is not fully sealed. If you are as paranoid as I am, 
you might want to protect it from snooping as well. One thing you can do is to bury those conductive traces 
(under the key plungers) into the inner layers of your PCB, and your keypad could use capacitive sensors 
instead of conductive ones, as suggested in Ref  [  30  ] . By doing this, you can make your passcode input less 
prone to keypad snooping. 

 Of course, copy cats these days are more resourceful than what I can imagine. But by taking these 
measures, their progress can be hindered a great extent.    
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     Summary 
 The main topics of this chapter were FPGA and IP protection. 

 There are two main HDLs (hardware description languages) that can be used to program FPGA. This 
book is leaning toward Verilog/Systemveriolg. To get good performance in digital design, the equation of 
Performance = Parallelism + Pipeline is a good one to keep in mind. A good design is always a compromise 
between speed and area. 

 To protect your FPGA design, you can take measures to encrypt or obfuscate your netlist and remove 
useful information from simulation library, or you can use node-lock to guard your bit streams. In a more 
general sense, you can take anti-tamper measures to thwart crackers and copycats.      
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    CHAPTER 10   

 System on Programmable 
Chip (SOPC)                          

    Where a calculator like ENIAC today is equipped with 18,000 vacuum tubes and weighs 
30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps weigh 
only 1½ tons.  

 — Popular Mechanics  magazine ,  March 1949   

  Programmable hardware  , as the book’s title suggests, starts to emerge as an important part of embedded 
system design. And more specifically, the SOPC (System on Programmable Chips) approach is moving 
toward the mainstream, thanks to decades of groundwork laid by the FPGA industry. Given all that, this 
chapter explains why SOPC makes more sense for your next big design. 

     Economics 101 
 For those of us who are not immortal, making a viable product in a profitable way is the principle we follow 
on a daily basis. Thus we always keep a close eye on products’ BOM (Bill of  Materials  ) costs. In the old days, 
FPGA devices were often conspicuous by their absence in the  BOM  , mainly because:

•    Device density was low at that time. Those devices did not have enough logic or 
memory resources to hold a soft core microcontroller inside.  

•   Those early devices were mostly SRAM-based. So a separate device, such as a Flash 
memory, has to be present to store all the configuration data. This standalone 
configuration device will not only increase the BOM cost, it will also open doors to 
unauthorized copying.  

•   There were no analog components, such as ADC, integrated in those devices.  

•   Compared to COTS (Commercial Off The Shelf) 1  components, the price of FPGA 
devices was extremely high at that time.    

   1  Generally speaking, FPGA can also be counted as COTS. But in this book, COTS is used to refer to ASIC and 
general-purpose processors.  
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 However, things have changed a lot since then. To show that SOPC approach makes economic sense 
now when it comes to sophisticated systems, I will do a side-by-side cost analysis between the COTS and 
SOPC systems. On the COTS side, I use the popular Arduino UNO Rev3 (Ref  [  1  ] ) as its representative, while 
on the SOPC side I use the Altera MAX 10 device (Flash-based FPGA) as the base of implementation. 

 As many of you know, the component’s unit price and its corresponding volume price (1k price, for 
example) could differ a lot, thanks to the economies of scale. To compare apples to apples, all the prices I quote 
in this chapter are unit prices and publicly available from the vendor or distributor web sites. Keep in mind 
that component prices are not set in stone. By the time you are reading the published version of this book, 
these numbers could have deviated from the reality, as inflation can go both ways, and the economy waxes and 
wanes. Since I’m not the chairman of the Federal Reserve, don’t hold me accountable if those numbers do not 
reflect the latest economic truth. They are listed here only to give you an idea in a relative sense. 

     MCU vs. Soft MCU 
 The Arduino UNO Rev 3 employs an ATmega328P MCU from ATMEL. From the Digi-Key web site, its unit 
price is $3.38. (Its 2k price is $1.675 in case you are curious.) This 8-bit MCU has a plethora of analog and digital 
peripherals, with maximum clock rate of 20MHz. On the other hand, a soft MCU core can be implemented 
in FPGA. For an Altera device, you can choose a NIOS II processor (32 bit), with less than 700LEs. Or you can 
choose a 8051 core (8-bit, four clock cycles per instruction) with less than 2000LE. Thus an Altera 10M02 
device can be used with a unit price of $3.78. The side-by-side comparison is shown in Table  10-1 .  

   Table 10-1.    Cost Analysis for  COTS MCU vs. Soft MCU     

 Item  Arduino UNO Rev 3  Altera MAX 10 

  Main component    ATmega328P ($3.38)    10M02-C8 ($3.78)  

  Processor core    AVR @ 20MHz    NIOS II (Economy) or 8051 (4T) @ 100MHz  

  ADC    1    0  

  Total price    $3.38    $3.78  

  Winner of price war   X 

 Clearly, if MCU is the only major component of your system, using COTS (a general purpose processor) 
makes more economic sense.  

     MCU Plus External Peripherals 
 General-purpose MCUs today contain varieties of peripherals that can cover most common applications. 
However, one size cannot fit all, which is always the soft belly for general-purpose MCUs. For the example at 
hand, Arduino UNO needs to communicate with the host through a USB port (USB-based UART), for which 
it uses ATmega16U2 (Ref  [  2  ] ). 

 The ATmega16U2 is another AVR microcontroller with USB 2.0 full-speed module built-in. Its unit price 
is $4.35. (For USB UART, there are other alternatives as mentioned in previous chapters. One of them is 
offered in Ref  [  3  ]  with a unit price of $4.50.) 

 The counter-offer from  SOPC/FPGA side   is to implement a USB MAC layer inside FPGA, with an 
external USB PHY transceiver. A typical USB MAC might cost a little more than 2000LEs, so the Altera 10M04 
device can be used to host both the soft MCU and USB MAC, with the assistance of an external ULPI USB 
transceiver. The unit price for 10M04 devices (no built-in analog component) is $11.43, while an ULPI USB 
transceiver like the one in Ref  [  4  ]  costs $1.24 per unit. 
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 Now assume you need to do a little more, such as send data to other modules through an LVDS 
interface (parallel to serial). For FPGA, LVDS is a cinch for its IO capability, and the parallel to serial function 
can be done with less than a few hundred LEs. However, for the AVR microcontrollers used by Arduino, an 
external shield with LVDS transceiver has to be mounted. For the sake of simplicity, let’s skip the PCB cost 
of the shield and only take its IC cost into account, which could be the one from Ref  [  5  ]  with a unit price of 
$6.79 (transmitter only). 

 The total tally is summarized in Table  10-2 . With  external peripherals   joining the price war, the scale 
is quickly tipping toward the FPGA side. As I said earlier, the soft belly of general-purpose MCU is that its 
peripheral portfolio cannot be customized. Once you have difficulty finding a MCU that can cover all the 
peripheral needs, the external components added will bump up the BOM cost in big ways. On the other 
hand, SOPC/FPGA can always be molded to target a specific application.   

    Table 10-3.    Cost Analysis for  MP3 Player Application     

 Item  Arduino UNO Rev 3  Altera MAX 10 

  Main component   ATmega328P ($3.38)  10M08-C8 ($14.88) 

  MCU core   AVR @ 20MHz  NIOS II (Economy) or 8051 (4T) @ 100MHz 

  USB   ATmega16U ($4.35)  Soft MAC, External PHY - USB3300 ($1.24) 

  MP3 solution   SOC, VS1053 ($20.00)  NIOS II (Fast) External Codec - MAX9867 ($2.82) 

  Total price    $28.13    $18.94  

  Winner of price war   X 

   Table 10-2.    Cost Analysis for MCU with External Peripherals   

 Item  Arduino UNO Rev 3  Altera MAX 10 

  Main component    ATmega328P ($3.38)    10M04-C8 ($11.43)  

  Processor core    AVR @ 20MHz    NIOS II (Economy) or 8051 (4T) @ 100MHz  

  USB    ATmega16U ($4.35)    Soft MAC, External PHY - USB3300 ($1.24)  

  LVDS transmitter    SN65LV1023A ($6.79)    Soft Parallel to Serial  

  Total price    $14.92   $12.67 

  Winner of price war   X 

     Multiple Processors 
 Now let’s seek a more sophisticated application, like an MP3 player. For this case, two  processors   are 
needed. As always, one of them will be a MCU, which handles the interface and house-keeping matters. The 
other can be a standalone DSP processor or it can be a SOC/ASIC with a DSP core inside. For Arduino, it 
means adding an MP3 shield, like the one offered in Ref  [  6  ] , with a unit price of $35. Its core component is 
actually an SOC/ASIC that has a DSP processor core and an analog codec integrated together (Ref  [  7  ] ). From 
the vendor web site, this chip sells with a unit price of $20 ($10 at 100 pieces, and a 1k price of $3.10). 

 To match that with SOPC/FPGA, you can use a bigger device like Altera 10M08, adding a NIOS II Fast core 
with DSP accelerators. However, the analog codec chip has to be done with external components, like the one 
offered in Ref  [  8  ] . The 10M08 device (C8 speed grade) has a unit price of $14.88, while the codec chip is $2.82. 

 Again, let’s skip the PCB cost of the Arduino and only take IC cost into account. The final tally is 
summarized in Table  10-3 .  
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 At first blush, it looks like the SOPC/FPGA is holding a commanding lead over SOC/ASIC solution in 
cost, which runs counterintuitive. All right, I have to confess that I’ve played a few accounting tricks here. As I 
stated earlier, the prices you see in Table  10-3  are all quoted as unit prices. However, if you take a close look at 
the price curve of Ref  [  7  ]  from the vendor web site, its price will drop to $10 if you buy more than 100 pieces, 
$3.10 at 1K volume, and $2.74 at 9K. Of course, the SOPC/FPGA device will also have a falling price when the 
volume goes up. The Altera 10M08-C8 may drop to $8.70 if you buy hundreds, but I don’t think its price curve 
would be as steep as that of SOC/ASIC. In other words, the SOPC/FPGA may still hold its line if the volume is 
on the order of hundreds. But for anything beyond that, the SOPC/FPGA will lose the price war. 

 Here is my take on this: The  MP3 player   is a mainstream application, for which plenty of SOC/ASIC 
solutions can be found. And SOPC/FPGA cannot compete with SOC/ASIC on cost once the volume is large. 
However, if your application is a little bit off the mainstream, where no SOC/ASIC exists, the SOPC/FPGA 
can be a good choice in terms of cost, especially when the application is sophisticated and needs some level 
of customization. 

 Of course, if your application later starts to be accepted by the mainstream and the volume goes really 
high, the SOPC/FPGA solution can be easily turned into SOC/ASIC. But given the high NRE cost today, 
the breakeven point could be on the order of 10 5  - 10 6 . Consult your end-to-end semiconductor solution 
company for a detailed cost analysis.   

     Processor Core 
 For anything to be called an embedded system today, it must contain some form of processor core inside. 
And some systems could even carry more than one processor along with a wide variety of peripherals. This 
section discusses the available processor choices you have for SOPC. The next section will discuss the bus 
architecture. 

 For the processors to be used in SOPC, the current available choices are as following:

•     Use the hard-core processor provided by the FPGA vendors.  

 FPGA vendors today are providing devices that have hard-core processors 
inside, such as Altera’s HPS SoC or Xilinx’s Zynq SoC. Those high-performance 
processors are usually ARM cores, with a clock rate above 1GHz. If you can afford 
the price tag, go for it by all means.  

•    Use the    soft-core processor     provided by the FPGA vendors.  

 FPGA vendors today also provide soft-core processors that can be used as IPs in 
their devices, such as Altera’s NIOS II or Xilinx’s MicroBlaze. Those cores can be 
put into vendors’ low-end devices as long as they fit, and they are very flexible in 
terms of sizing and performance. They can often be driven with a clock rate of 
100MHz or higher. 

 The plus side of those vendor-provided soft-cores is that their licensing terms are 
often generous, and they come in handy for low-to-mid-range applications. But 
their drawbacks are as follows:

   1.    Their ecosystems are not as big as that of ARMs or 8051s.  

   2.    They are not portable, and you are tied to specific vendor once you get on 
board with them.  

   3.    If by any chance you want to make an ASIC out of current FPGA design, you 
might have to negotiate a separate licensing terms for the processor core to 
be used in ASIC.      
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•    Jump onto the ARM bandwagon.  

 It is always possible to put an ARM soft core inside FPGA. In fact, the first of 
such cores I’m aware of is ARM Cortex M1 (Ref  [  9  ] ). However, for some reasons 
unknown to me, I had a hard time gathering publicly available information 
for this particular ARM core. At this point, my best guess is that in its smallest 
configuration, it has an area and clock rate that is comparable to a 1T 8051 core 2 . 

 Generally speaking, ARM core is not a bad choice thanks to its popularity in cell 
phones and tablet devices. But its popularity comes with a caveat: You have to 
negotiate a good term with ARM for license fee and royalty, which could be a 
sum in the order of millions. (Again, talk to ARM directly for the most up-to-date 
number, and don’t hold me accountable for any wrong predictions.) And go for it 
as long as you think it makes economic sense for you.  

•    Go with the good old 8051.  

 Throughout the history of human beings, wise men have predicted the end of the 
world on more than one occasion. So is the demise of 8-bit MCUs. Among those 
surviving breeds, 8051 stands out as a good, low-cost choice for SOPC/FPGA 
implementation. I will have another section dedicated to 8051 in later part of this 
chapter. For now, remember the following:

   1.    Unlike ARM, you don’t have to sign a license/royalty agreement before you 
implement the 8051 instruction set. And if you later decide to upgrade your 
SOPC/FPGA to SOC/ASIC, you will not be burdened by a license fee/royalty 
either.  

   2.    8051 is not tied to any specific FPGA vendor, so it is very portable.  

   3.    8051 has a very big ecosystem. There are more than 70 vendors (Ref  [  10  ] ) 
worldwide that make various enhanced versions of 8051. Most of them are 
doing RISC implementation of a CISC instruction set, just like Intel has done 
to its x86 processor. So the 8051 you are using today is not the same as that of 
your grandma’s.      

•    Other possibilities, such as LEON.  

 There are always other possibilities beyond those mentioned. LEON (Ref  [  16  ] ) is 
one of them. It is a 32-bit, open source processor with a SPARC V8 architecture. 
However, note that open source does not necessarily mean free. You might still 
have to seek a license agreement before you put it into commercial use.     

   2  1T 8051 core means most instructions (barring branch instructions) are completed in one clock cycle.  
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     Interconnection 
 To glue peripherals around the processor, you will also need to choose a bus architecture. Your choices are 
more limited in this case:

    1.     AMBA (Advanced Microcontroller Bus    Architecture    )  

 If you’ve decided to use ARM or MicroBlaze as your processor, AMBA is pretty 
much your only choice. AMBA includes multiple specifications to cover devices 
of various kinds (Ref  [  11  ]  [  12  ]  [  13  ]  [  14  ] ). Fortunately, most FPGA vendors will have 
tools to help you wrap your device/IP with the targeted AMBA specification.  

    2.     Avalon  

 If you’ve decided to use NIOS II as your processor,  Avalon   (Ref  [  15  ] ) is also your 
only choice for bus architecture. Altera has provided QSys tool to stick multiple 
components together through Avalon.  

    3.     Wishbone  

 The  Wishbone bus   (Ref  [  17  ] ) was developed as an open source bus architecture 
for SoC interconnection. And it is supposed to be less burdened by patents.      

     Design and Use Your Own 1T 8051 
 As I mentioned earlier, 8051 can be a good choice for low-end SOPC/FPGA design. Unlike ARM processors, 
you don’t have to obtain any license permissions before you start designing your own 8051 cores. In fact, 
there have been more than 70 vendors in this world who are offering (or once offered) 8051 in clones or 
various enhanced flavors, including folks from the once almighty USSR. This section discusses how to design 
a  1T 8051   and how to incorporate it into your own system. 

     History 101 
 The first 8051 was born in 1980 at Intel, as a successor to the 8048 microcontroller. And it has gained its 
popularity since then. Consequently, it has been licensed to other manufacturers worldwide (Ref  [  19  ] ). The 
original 8051 was produced using the NMOS process, with later versions starting to adopt the CMOS process. 
The original 8051 stores its programs in external ROM, and nowadays Flash-based 8051 MCUs have become 
universal. 

 The 8051 has a Harvard Architecture and a CISC instruction set. In its original design, it ran at a clock 
rate of 12MHz (or perhaps 11.0592 MHz), and it took 12 clock cycles to execute each instruction. (I guess 
at that time there was no such concept of RISC or pipeline, but I could be wrong.) Thus the original 8051 is 
often called 12T 8051. As you can see, it is extremely slow and inefficient by today’s standards. 

 With the advance in CMOS technology, new applications are crying for more efficient implementation 
with higher clock rate. Thus the enhanced models start to mushroom. And in later sections, I will discuss 
how to design an enhanced 8051 using RISC implementation. In other words, I’m going to use pipeline 
to boost both the efficiency and clock rate. The design goal is to complete most instructions (barring the 
branch, mul/div, and BCD instructions) in one clock cycle, with a targeted clock rate of 100MHz on Altera 
MAX10 C-8 grade devices. Also, only block RAM internal to FPGA will be used as program/data memory.  
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     Patents and Copyrights 
 IP (intellectual property) rights of other companies should be respected. Before you start your own 
processor or microcontroller implementation, you’d better make sure you are not going to violate any IP 
rights. On this particular matter, I have done some legal research and I would like to share my notes here. 
However, keep in mind that I’m not an intellectual property lawyer. Anything I have mentioned regarding 
intellectual property law should be taken only on reference basis. Contact your company’s legal department 
for professional advice or suggestions. 

 With that being said, there are basically three weapons that companies can take to defend their IPs: 
patents, copyrights, and trademarks. Trademarks are beyond the scope of this book, and I will leave it to 
inquisitive readers and their lawyers. As for the patents and copyrights, the patents is used to protect an idea, 
while the copyrights is used to protect the expression or manifestation of an idea, but not the idea itself. 

 SIDE NOTES

 Personally I think it is a very genius design at the system level to distinguish between an idea and the 
expression of an idea. Legally, this is called “idea-expression dichotomy”. In this regard, another genius 
system design I have seen so far is the “separation of powers”.  

 One major difference between patents and copyrights is that the protections they offer have different 
time limits (durations). In the United States, patents are protected for 20 years, starting from the filing date. 
And the patent will fall into public domain after it expires. 

 On the other hand, the copyright protection may have various terms depending on when the work was 
created and the nature of the authorship. In these circumstances (assuming the technology you are interested 
in came into being after 01/01/1978), the shortest protection term will be life plus 70 years 3  (Ref  [  21  ] ). That is 
the reason why I still cannot find a legitimate clone for my all-time favorite video game: Super Mario Bros. 

 SIDE NOTES

 Although NES game console (Nintendo Entertainment System) that first carried Super Mario Bros has 
been discontinued for more than 10 years, the game's original music and art drawing are still under 
copyright protection. And on this matter, Nintendo does not hesitate to stamp out illegal clones through 
his army of lawyers, even for a game made in the last century (Ref  [  22  ] ). 

 So regretfully, my chance to see a legitimate clone of Super Mario is pretty low, unless Congress passes 
new legislations during my lifetime.  

 For a processor to be useful, you need at least two things: the ISA (Instruction Set  Architecture  ) and a 
physically available processor that can understand and execute the ISA. When patents and copyrights are 
applied to them, the deal is as following:

•    As far as I know, ISA is not copyrightable. But ISA can be protected by patents.  

•   However, the form of processor implementation, such as VHDL/Verilog code, lay 
out, die mask, etc., are protected by copyright.    

   3  That means 70 years after the death of its original author.  
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 Since 8051 was born in 1980s, its ISA patents (if there are any) should have all expired by now. The 
original 8051 was a 12T processor produced through NMOS process, while the design we are trying to 
achieve is mainly for FPGA with 1T efficiency in mind. Thus the chance of a copyright lawsuit from Intel is 
next to zero, although Intel has a long history of suing everyone for everything (Ref  [  23  ] ). 

 However, as I mentioned, there are a plethora of vendors who offer enhanced 8051. And those 
enhanced versions could carry an outstanding patent. But given the long history of 8051 and the plenitude 
of open source 8051 cores, the risk of stepping on a standing 8051 patent is pretty low. Yet again, I’m not a 
patent lawyer, so do a thorough patent search if you have doubts. 

 Having said that, I would say it is a safe bet to go ahead and start this 1T 8051 design, without worrying 
too much about potential patent/copyright lawsuit. 

 BTW, ARM clones are also blessed and troubled by patent/copyright laws. Currently, there is an open 
source clone of ARM v2a ISA, which is called Amber (Ref  [  24  ]  [  25  ] ). It seems ARM has tolerated its existence 
so far, given the fact that ARM v2a ISA is such an old architecture (more than 20 years old). However, other 
attempts to clone more update-to-date ARM architectures were less fortunate in this regard (Ref  [  26  ] ).  

      Address Spaces   
 As stated earlier, 8051 has a Harvard architecture, which means its program memory and data memory are 
separated. The original 8051 allows a mixture of external memory and internal memory. However, per the 
design goal, RAM/ROM external to FPGA will not be used. So the maximum code space will be 64KB, limited 
by the bit width of the PC (Program Counter). 

 As for the data space, in the original 8051, the data spaces are divided into three separate sub-spaces: 
XDATA, IDATA, and SFR. The XDATA can be indexed by a DPTR register (16 bits), so it has a space limit of 
64KB. The IDATA and SFR are indexed by general registers (8 bits) or immediate addressing (8 bits), and SFR 
(Special Function Registers) are overlapping with the upper half part of the IDATA. Thus SFR has 128 bytes of 
space limit, while IDATA has 256 bytes. SFR can only be accessed through direct addressing mode, while the 
upper half of IDATA can only be accessed through indirect addressing mode. 

 Now when it comes to FPGA implementation, the typical block RAM type in  Altera MAX10 FPGA   is 
M9K, which is 9 * 1024 bits ≈ 1KB. To use the block RAM more efficiently, you could merge IDATA and 
XDATA into one space and reduce XDATA’s space limit by 256 bytes. The SFR (Special Function Registers), 
on the other hand, have to be implemented in logic as the name suggests. 

 Thus the address space for the  1T 8051   will look like the diagram in Figure  10-1 .  
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 As illustrated in Figure  10-1 , to make efficient use of an FPGA block RAM, the IDATA and XDATA 
are merged into the same address space and indexed by one 16-bit data address register. Thus for MOVX 
instruction (XDATA access), its nominal address will be shifted by 512 bytes to get the physical address. 
And the 8-bit address from MOV instruction (IDATA/SFR access) will be extended to 16-bit for the sake of 
consistency. 

 However, I have to point out that classic 8051 architecture has a limited stack size. In classic 8051, the 
stack pointer is only 8 bits. Taking into account the overhead of general-purpose registers, the stack size’s 
theoretic upper bound is around 479 bytes (Ref  [  27  ] ). However, the fact that SFR and IDATA partially overlap 
has made the situation even more complicated. Due to the partial overlap, the upper half of IDATA can only 
be accessed through indirect addressing mode, which hinders the effort to store local variables on stack. Thus 
some compilers will choose to avoid the upper half of IDATA, which reduces the available stack size to 223. 

 To improve the class 8051 architecture and avoid stack overflow, you can take the following measures:

•    Expand the stack pointer. The stack pointer can be expanded to 16 bits. And the 
higher 8 bits of stack pointer can be stored in an unused SFR register.  

•   To avoid the awkwardness caused by SFR/IDATA overlap, the 16-bit stack pointer 
can work entirely on XDATA.  

•   However, the expansion of stack pointer has to work hand in hand with the C/C++ 
compilers. If the compiler does not fully support storing local variables with a 16-bit 
stack pointer, a less complicated scheme can be used, but only to store the functions 
return address on the stack and to statically store local variables for each function 
in XDATA. The price you pay for this static scheme is that your function cannot be 
re-entrant. In other words, recursive functions still have to use the stack to store their 
local variables for each invocation. As long as you can avoid recursive functions, 
the static allocation scheme can offer faster execution speed than the stack-based 
allocation scheme.     

  Figure 10-1.    An 8051 address space       
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      CISC Instruction Set   
 Like many processors born in the last century, 8051 carries a CISC instruction set. When you are trying to do 
a RISC implementation for a CISC instruction set like this, you will face the following challenges. 

    Variable Instruction Length   
 8051’s instructions are not the same length. The shortest instruction has one byte, while the longest has 
three. For the old 12T 8051, such variable instruction length may not be a big deal, since the instruction 
could be fetched one byte at a time and still be able to achieve the 12 clock machine cycle. However, for this 
1T 8051, the instruction fetch unit is supposed to get one complete instruction out of code memory in each 
clock cycle. To keep up, multiple memory banks can be used to read instructions out of code memory in 
parallel. Thus the word length of code memory can be 8, 16, 24 or 32 bits. But the variable instruction length 
makes it nearly impossible to store all instructions align to the word boundary, no matter what word length 
you choose. The misaligned read will complicate the design of instruction fetch unit and have a negative 
impact on timing closure.  

   Multitudes of  Addressing Mode   
 Like typical CISC ISA, the 8051 instructions allow a multitude of addressing modes. In other words, there are 
multiple ways to index and access memory. For 8051, the available addressing modes for data memory are 
(Ref  [  20  ] ):

•     Direct addressing:  The memory address is given in the instruction, such as  ADD A, 123 .  

•    Indirect addressing:  The memory address is given in register R0 or R1, such as  ADD A, @R0 .  

•    Immediate data:  A constant data becomes part of the instruction, such as  ADD A, #123 .  

•    Bit addressing:  Some of the addresses in IDATA or SFR can be accessed bit-wise, as 
specified in Ref  [  29  ] . This feature comes in handy for software to toggle the IO port, 
like using “CPL 129” to flip the bit 1 of port 0. However, the handiness comes at the 
expense of a more sophisticated hardware. To simplify the design, the bit addressing 
can be treated like regular logic operations, and use the read-modify-write approach 
to keep other bits from the same byte unaffected.    

 For code memory access, the available addressing modes are as follows (Ref  [  20  ] ):

•     16-bit direct addressing:  The full 16-bit address comprises the second and third byte 
of LCALL or LJMP instruction, which can be loaded into the PC directly.  

•    11-   bit direct addressing    :  The 11-bit address mode is used by AJMP and ACALL 
instruction. It is composed of the 3 MSBs in the first byte and the full 8 bits in the 
second byte. Thus the jump or function call is confined to a page (2KB).  

•     Relative jump    :  In this mode, an 8-bit offset (signed number) from the second or third 
byte is added to the address of the following instruction, which limits the jump range 
between -128 bytes and 127 bytes.  

•     Indirect addressing    :  Code can also be moved into Accumulator through  MOVC A, @
A+DPTR  or  MOVC A, @A+PC . Due to the restriction of the Harvard architecture, this is 
probably the only way to move things from code spaces into data spaces.    
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 As you can see, there are multiple ways to access the same memory address, which could cause data 
hazards and make it hard to detect data dependency between instructions. This is part of the reason why 
RISC ISAs restrict memory access to load/store instructions only. 

 With the multitude of addressing modes, it looks like you need dedicate at least two pipeline stages to 
memory access, with one for memory read and the other for memory write. Otherwise it would be extremely 
difficult to keep the pipeline flow constantly and achieve 1T throughput. (In fact, as I will demonstrate 
shortly, you might have to add a third stage to accommodate the weak drive strength of block RAM.)  

   Optimizing for More Frequently Used Instructions 
 There are total of 111  distinctive instructions   in 8051 ISA, including all variants of addressing mode 
mentioned earlier. They can be divided into the categories shown in Table  10-4 .  

      Table 10-4.    8051 Instructions   

 Operations  Instructions  Number of Instructions 

  Arithmetic (excluding 
MUL/DIV)  

  ADD, ADDC, SUBB, INC, DEC    21  

  Multiplication/Division    MUL, DIV    2  

  Logic    ANL, ORL, XRL, CLR, CPL, RL, RLC, RR, RRC    24  

  Data Move    MOV, MOVX, XCH, PUSH, POP    25  

  Code Move    MOVC    2  

  Bit    CLR, SETB, CPL ANL, ORL MOV    12  

  No Operation    NOP    1  

  BCD (Binary Coded Decimal)    DA, SWAP, XCHD    3  

  Branch    JC, JNC, JB, JNB, JBC, ACALL, LCALL, RET, 
RETI, AJMP, LJMP, SJMP, JMP, JZ, JNZ, CJNE, 
DJNZ  

  21  

 Although you can try to make everyone in Table  10-4  be an 1T instruction, this may be both 
unnecessary and unrealistic for a number of reasons:

•    Some instructions are used less often than others. For example, doing math directly 
in decimal format (BCD) might seem archaic today. To speed such instructions up 
will bloat the execution unit and hamper clock rate improvement.  

•   It takes more than one clock cycle to complete branch instructions. Most of the 
branch instructions in Table  10-4  will cause control hazards since they can make 
decisions based on the result of prior instructions, and such results are only 
available at the last stage of pipeline, which will inevitably stall the pipeline if branch 
prediction is wrong. In high-end processors, dual instruction fetch units and dual 
execution units can be in place to speed up the branch instructions, which may be 
overkill for low-end MCUs like 8051.  
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•   There are generally two kinds of computation jobs in this world: control and process. 
As their names suggest, microcontrollers are more suitable for control intensive jobs, 
while process intensive jobs might be a good fit for DSP (Digital Signal Processor) 
or FPGA. In fact, 8-bit MCUs are not cut out to do heavy-duty mathematics as they 
cannot move data as fast as their 32-bit counterparts for obvious reasons. Thus we 
probably don’t have to make multiplication and division as 1T instructions, as in the 
grand scheme of things those two operations are less critical for 8-bit MCUs.  

•   Reading things out of code space will inevitably interfere with instruction fetching. 
Thus as a compromise, MOVC will not be a 1T instruction either.    

 Given all these reasons, the next section tries to make a RISC implementation based on a CISC ISA for 
1T 8051, making only 75% of the instructions in Table  10-4  to be 1T. By compromising on the other 25%, you 
can greatly reduce the design size and increase the clock speed.   

      RISC Implementation   
 Notwithstanding the fact that 8051 has a CISC instruction set, you could still translate those instructions into 
micro operations and apply a RISC implementation on top of it. The same approach has been taken by Intel 
to keep its x86 instruction set alive, while pushing the clock rate into the realm of GHz. (Of course, advanced 
process nodes also played a big part in this regard.) 

    Pipeline Design   
 As illustrated in Figure  10-2 , the pipeline can be partitioned into five stages: 

•    IF: Instruction Fetch  

•   ID1: Instruction decode, part 1  

•   MEM: Read on-chip data, including IDATA, SFR and XDATA  

•   ID2: Instruction decode, part 2  

•   EX: Execution unit, data is written back to on-chip data memory at the end of 
this stage    

 There are two ID stages in this pipeline design, because:

•    The nature of block RAM has to be taken into account when implementing a 1T 8051 
core in FPGA. For a read, an unregistered block RAM will have its data available in 
the next clock cycle after address is given. However, the unregistered output cannot 
drive as much logic as that of flip-flops, and the weak drive strength will bog down 
the maximum clock rate. Thus data has to be latched into registers before they can 
drive other logics, which is why ID2 stage is sandwiched between MEM and EX in 
Figure  10-2  to account for this extra latency.  
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•   To balance the workload, some less complicated instructions, such as  RL A  and  RLC 
A , are decoded in ID2 instead of ID1. This logic retiming will let the whole design 
reach a higher clock rate.    

 In Figure  10-2 , the result data are written back to memory at the end of the EX stage. And that is the only 
place where data is modified. Having a single point to modify memory will make interrupt handling a lot 
easier, because pipeline has to be flushed and reloaded at that moment. 

 To deal with data hazards (data dependency between stages), the output of EX stage can be forwarded 
to its input stage and bypass the output of IDATA/SFR/XDATA. 

 Pipeline stall will happen, especially with the indirect addressing mode, as shown in Listing  10-1 . 

      Listing 10-1.    Code Snippet for 8051 Indirect Addressing Mode   

  mov 104, #119  

    mov R0, #104  

    dec @R0  

     In Listing  10-1 , the  dec @R0  instruction will have to be stalled because  R0  is not updated by  mov R0, #104  
until the EX stage is reached. So at the MEM stage, the read address for  dec @R0  cannot be determined yet 
because at that time  mov R0, #104  has only reached ID2.  NOP  will thus be inserted automatically until the new 
 R0  value is available.  

    Peripherals and Interrupts   
 The classic 8051 has a very limited number of peripherals, such as two timers and one UART. However, the 
beauty of SOPC/FPGA is that you get to cherry pick the peripherals for your particular application and add 
them to your soft core 8051, as shown Figure  10-3 . The control registers for those expanded peripherals can be 
added to SFR, utilizing those unused SFR addresses. For all peripherals, they can be connected to SFR through 
an ad hoc bus architecture, or with some extra effort, they can go through standard buses like Wishbone.  

  Figure 10-2.    Pipeline design for 1T 8051       
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 An interrupt controller has to be in place to pass the peripherals interrupts and external interrupts 
(INT0/1) to the processor core, as illustrated in Figure  10-3 . For 1T 8051, a vector interrupt controller can be 
used, which will pass vector addresses to the processor core directly.   

      Compilers and Debuggers   
 Have I ever mentioned that you need to prepare software for your processor? :-) 

 For 8051, in addition to the assembly code, there are also C/C++ compilers available, like those in 
Ref  [  31  ]  [  32  ]  [  33  ]  [  34  ] . Among them, SDCC is probably the most popular one since it is the only open source 
C compiler available for 8051 so far. In addition to the C compiler, SDCC also offers SDCDB as a debugger. 
SDCDB’s command-line interface is very close to that of GDB’s, and it will run its code on a simulator 
called ucsim. 

 As I mentioned, you can use ROM monitor to debug your code. In fact, it is the approach that Keil C51 
(Ref  [  32  ] ) is taking, with its MON51 Target Monitor (Ref  [  35  ] ). 

 However, for your 1T 8051, you probably could take a more advanced approach, like OCD (On Chip 
Debugger), as shown in Figure  10-4 . In that case, the debugger will talk directly to the OCD through UART. 
And under the direction of the debugger, the OCD can collect information privy to the processor or set up 
hardware breakpoints if necessary.    

  Figure 10-3.    Peripheral and interrupt for 8051       
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     Summary 
 Preliminary financial analysis is offered at the beginning of this chapter to show that the SOPC approach can 
make economic sense, as FPGA vendors keep churning out low-cost devices while the NRE cost for ASIC is 
skyrocketing. 

 The available choices for processor core and interconnections were thus discussed to demonstrate 
the diversity of SOPC. Among all the choices, 8051 stands out as a low-cost, popular solution since it is less 
burdened by patents and copyrights. 

 A RISC implement of 1T 8051 core was explored with depth, including the pipeline design, peripherals, 
interrupts, available compilers, and OCD (on chip debugger).      
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    CHAPTER 11   

 De-Bounce, Power 
Management, and Display                          

    Your mobile phone has more computing power than all of NASA in 1969. NASA launched 
a man to the moon. We launch a bird into pigs.  

 —Tweet from @GeorgeBray (George Bray)   

 This chapter covers some miscellaneous hardware topics that are important to embedded systems, such as 
power-on resets, switch de-bouncing, power management, managing displays, and using touchscreens. 

     PoR (Power-On Reset) and Switch De-Bounce 
 No matter how smart your system becomes, one thing still remains a manual operation: Flipping the power 
switch. Two things have to be taken care of at the very moment when the system goes live:

•    Make sure the system is reset properly so that it can have a fresh start.  

•   Make sure your switch does not “equivocate” when it is transitioning from one 
position to the other. In other words, it should not bounce. Or if it bounces, the 
bouncing should not cause unintended consequences.    

      Power-On Reset      
 People usually expect things to work right out of the box. That means the gadget they bought should work 
reliably from the moment when the power switch is flipped. From the standpoint of an embedded system 
engineer, it means:

•    The system should be able to reliably generate a reset pulse during power on (a cold 
boot).  

•   After power on, the system should provide another mechanism for a warm boot. The 
usual arrangement is to have a reset pushbutton or a reset pinhole hidden on the 
back.  

•   As mentioned in previous chapters, a watchdog timer can also be used to initiate a 
warm reboot automatically.    
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 Power-on reset can be done in the following ways:

•     Using an RC circuit.  A low-cost solution is to use  RC circuit  , as shown in Figure  11-1 . 
The RC value can be adjusted to make sure the reset pulse is long enough.   

  Figure 11-1.    Power-on reset with RC circuit       

•    Use a Schmitt Trigger.  The problem with an RC circuit is that it has a slow slew rate, 
which is prone to noise and can cause multiple state changes when  reset_n  is being 
de-asserted. An improvement can be made by introducing a Schmitt Trigger, as 
illustrated in Figure  11-2 . The hysteresis nature of the Schmitt Trigger can turn the 
low slew rate pulse into sharp rise and fall. And the circuit is immune to noise as long 
as the peak-to-peak noise amplitude is less than the delta between Schmitt Trigger’s 
V 

IH
  and V 

IL
  (Ref  [  2  ] ).   
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•    Use power-on reset IC.  To reboot, we could introduce a pushbutton directly in 
Figures  11-1  or  11-2 . The existing RC filter can be used as some sort of switch 
de-bounce circuit. However, a more reliable and compact solution is to use power-on 
reset ICs. Most of these kinds of ICs will support a power-on pushbutton with switch 
de-bounce. More advanced ICs will also include support for watchdog timers (Ref  [  3  ] ).     

     Switch De-Bounce 
 Since  switch de-bounce   was mentioned multiple times previously, this section will serve to elaborate on it. 

 A switch (or a pushbutton) is a mechanical device. When a switch is flipped (or a pushbutton is pressed/
released), its contact might bounce back and forth briefly before it settles at its new position. Such a contact 
bouncing is observed across board on almost all mechanical switches. The difference among them is just a 
matter of how long the bounce lasts. According to the first-hand statistics collected by Mr. Ganssle in Ref  [  4  ] , 
the bounce time can be as little as sub-100 nanoseconds, or as long as hundreds of milliseconds. The bounce 
times for switch-open and switch-close can also be drastically different. 

 Obviously, such contact bouncing will electrically be translated into asynchronous glitches, and 
consequently introduce meta-stabilities into digital circuits. There are many ways to handle the bouncing. 
One is, of course, to use a dedicated circuit. Ref  [  4  ]  has listed a few options for this. And if all else fails, you 
can always choose IC solutions (Ref  [  5  ] ). 

 On the other hand, to save on BOM costs, the switch de-bouncing can also be implemented by 
firmware, FPGA, or CPLD. If it is done in firmware, the firmware will typically use a timer to read the 
corresponding IO pin for a consecutive number of intervals. If the reading is stable during the sample 
window, it can then be deemed a valid input. Ref  [  4  ]  has a more detailed discussion about this firmware 
solution. 

 The downside of using firmware is that the timer interrupt it has introduced needs to be carefully 
integrated with the rest of the firmware. Since every embedded system is unique and carries its own 
idiosyncrasies, the firmware de-bouncer has to be done on a case-by-case basis. 

  Figure 11-2.    Power-on reset with Schmitt Trigger       
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 Now, if there is already a CPLD or FPGA on board, adding the switch de-bouncer into them adds zero 
BOM cost. And a digital de-bouncer should be more stable and universal than its firmware counterpart. 

 As illustrated in Listing  11-1 , after going through a shift register for clock domain crossing, the input 
will be used to control a counter. Any rising or falling edge on the input will reset the counter. The input will 
be deemed stable and valid if the counter can reach a predefined sample window size. In Listing  11-1 , the 
sample window size is determined by the parameter  TIMER_VALUE  in a number of clock cycles. To make it 
more generic,   TIMER_VALUE    can be derived from a de-bounce interval (in milliseconds) and clock period 
when the module is being instantiated. 

      Listing 11-1.    Implement  Switch De-Bouncer   in System Verilog   

  module switch_debouncer #(parameter TIMER_VALUE = 100000) (  
         input wire clk,  
         input wire reset_n,       
         input wire data_in,  
         output logic data_out  
  );  

      logic unsigned [$clog2 (TIMER_VALUE) - 1 : 0]         counter;                      
    logic unsigned [3 : 0] data_in_sr;  

      always_ff @(posedge clk or negedge reset_n) begin  
         if (!reset_n) begin  
                data_out     <= 0;  
                counter      <= 0;  
                data_in_sr   <= 0;  
         end else begin  
                if (data_in_sr [$high (data_in_sr)] != data_in_sr [$high  
                              (data_in_sr) - 1]) begin  
                       counter  <= 0;  
                       data_out <= 0;  
                end else if (counter == (TIMER_VALUE - 1)) begin  
                       data_out <=   data_in_sr [$high (data_in_sr)];  
                end else begin  
                       counter  <=   counter + 1;  
                end  

                  data_in_sr <= {data_in_sr [$high (data_in_sr) - 1 : 0], data_in};  
         end  
    end  

    endmodule : switch_debouncer  
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           Power Management 
 The number of power domains in an embedded system often correlates to its complexity. Those tricks 
mentioned earlier might be good enough for small-scale systems when they are powered by external DC 
supply, with adequate ventilation. However, for large-scale systems or handheld applications, power 
management becomes a project by itself due to the following reasons:

•    Modern day ICs, especially those System-on-Chip ICs, have multiple power rails for 
core, IO, etc. They have to be powered on with a pre-determined sequence. Violation 
of power-on sequence could cause latch-up 1  or even irreversible damage to the ICs.  

•   For battery powered devices, battery charge/recharge also needs to be closely 
monitored.  

•   To achieve maximum power savings, power domains will be selectively shut off 
depending on the circumstances. And for deep sleeping mode, the system could 
even switch to a much slower clock, such as 32KHz, to only have the house keeping 
job up while putting the rest of the circuit into sleep. Switching gears in and out of 
the sleep mode requires quite a lot of intelligence. This is especially true for TDMA-
based handheld terminals. When going to sleep, the previous time tracking info will 
be saved and maintained by the 32KHz clock in coarse granularity. After wake-up 
and switch to the faster clock with fine granularity, the  TDMA timing tracking   should 
be restored as quickly as possible without going through the long reacquisition 
processing, which is always a challenging job for communication engineers.    

 One way to enlighten power management is to use microcontroller or CPLD for controlling the power-
on sequence, as well as the power domain on/off. The plus side is that this approach is very flexible and 
expandable. The downside is, of course, the added BOM cost. In addition, since the voltage regulator and the 
microcontroller are all discrete components, they tend to take more spaces on the PCB. 

 Given these issues, IC vendors start to integrate the voltage regulators, the clock circuit, the battery 
charging circuit, and the microcontroller (or a simplified version of it) into one single IC called PMIC 
(Power Management IC). And more often than not, they will sell the PMIC as a companion chip to 
their System-on-Chip solution. To make things more compact, they would also integrate some other 
components, like Audio codecs or USB transceivers, into the PMIC. For many hand-held applications, the 
System-on-Chip solution seems to be the only way available for competitive products. So is the PMIC.  

     LCD Display 
 As the old saying goes, seeing is believing. The  display industry   has kept churning out new technologies 
one after another for the past 20 years. And those old bulky CRT displays have now been replaced by their 
flat panel successors. (Yes, that once almighty Sony Trinitron has fallen by the wayside.) Among those 
successors, LCD technology (with a wide variety of flavors) is the mainstay for embedded applications, 
although newcomers like OLED may become something big and solid in the future. 

   1  In CMOS circuit, there are parasite BJTs formed by p well, n well, and the substrate. When these parasite BJTs are 
turned on by ESD or incorrect power-on sequence, a short circuit will be created. The creation of such short circuit is 
called latch-up. IC designers would usually put guard rings to prevent latch-up, but only to some extent.  
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 Thanks to the abundance of new technologies, the display business is full of acronyms, such as LCD, 
LED, OLED, AMOLED, LTPS, IGZO, IPS, TFT, STN, ABN, and so on. The list goes on and on. A lot of these 
acronyms are deeply tied to the chemical processes they were produced with. Since I’m not a chemical 
engineer and the integration of display into embedded systems is what really matters, this book will only give 
a review of LCD display technology at 20,000-foot level, followed by a more detailed discussion on various 
 display interfaces  . 

     How LCD Works 
 The basic mechanism of LCD is to block or let through the light by changing the state of a liquid crystal. And 
unlike OLED, LCD by itself does not emit light. 

   LCD Cell 
 LCD stands for Liquid Crystal Display. In its natural form, the molecules inside the liquid crystal can have a 
twisted alignment instead of a uniformed one. This makes liquid crystal something between the solid state 
and the liquid state. 

 Because its molecule alignment is twisted, the liquid crystal can rotate the polarization of the light 
passing through it. In other words, the liquid crystal can act as an optical filter and add a polarization phase 
shift to the incoming light. On top of that, liquid crystal has another favorable nature. Under the influence 
of an external electrical field, liquid crystal’s molecule alignment can be adjusted all the way to uniform 
alignment (untwisted). Light can then pass through it without any polarization phase shift. In other 
words, you can apply external electrical field to turn on or off the liquid crystal, like an optical switch 
(see Figures  11-3  and  11-4 ).   

  Figure 11-3.    Liquid crystal,  twisted         
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  Figure 11-4.    Liquid crystal,  untwisted         

 With that in mind, a basic LCD cell can be formed as shown in Figure  11-3 . It includes a regular glass, 
two polarized glasses (one is vertically polarized and the other is horizontally polarized), a mirror, and a 
liquid crystal sandwiched in the middle. The liquid crystal is carefully made so that it will have a 90-degree 
phase shift when it is in naturally twisted state. With the help of this 90-degree phase shift, light in Figure  11-3  
is able to get through both polarized glasses that sandwich the liquid crystal and reflected back by the mirror. 
The eyes should see a bright cell in this case. 

 Now if you apply an electrical field to the liquid crystal and turn it into untwisted state, the light will stop 
at the second polarized glass it encounters, because the two polarized glasses are orthogonal to each other 
and the untwisted liquid crystal offers zero phase shift. The eyes should see a dark cell in this case. 

 In Figures  11-3  and  11-4 , the light coming into the LCD cell is ambient light. There is no light source 
at the back of the cell. This kind of LCD display structure is called  reflective  display. They are often seen on 
battery powered calculators or digital stopwatches. (I was going to say “digital wrist watch” initially, but then 
I realized that it might get people confused with the Apple Watch.) 

 However, for poor-lighted settings, light has to come from the back of the LCD cell. Such an LCD is 
called  transmissive  display 2 . The backlight can be produced by florescent lamps or LEDs. And the latter is 
gaining in popularity with the market acceptance of LED TVs. However, you might not be able to see the 
image when the LCD is under direct sunlight. 

 As you can see, LCDs do not provide a light source, and thus backlighting is usually needed. And with 
the emergence of the OLED display, the necessity of backlighting can be eliminated completely since OLED 
can emit light by itself. The removal of backlighting is supposed to provide better picture quality than that 
of LCD. However, OLED has its own share of drawbacks, like low lifespan, low yield, high cost, etc. I believe 
engineers are still working hard to improve this technology. Inquisitive readers should keep a close watch on 
the latest industry news.  

   2  As a trade-off between brightness, contrast, and dim environment, some LCDs called  transflective  display use both 
reflection and backlighting. Under sunlight, the backlight can be turned off, but it can be turned back on when the 
environment is dim. In this way, a transflective LCD can be viewed in both direct sunlight and lowlighting conditions.  
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    Passive Matrix and Active Matrix   
 Displays are made of display elements. Those elements can be as simple as a few segments, like those 
seven segment digits on hand-held calculators. On the other hand, to display images or videos, the display 
elements usually have to form a pixel matrix. 

 Segment LCD is discussed later for its various programming interfaces. And for matrix LCDs, there are 
mainly two kinds of them: passive matrix and active matrix. They have different LCD cell structures, but both 
of them are addressed by multiplexing through the scan line.

•      Passive Matrix LCD (PMLCD    )  

 As mentioned previously, to turn on or off an LCD pixel, an electrical field has to 
be applied or taken away. For passive matrix LCDs, the electrical field is realized 
through electrodes. As illustrated in Figure  11-5 , assume a screen size of  m  rows and 
 n  columns. To display a frame, the rows are scanned through one at a time 3 . The 
 n  columns are selected simultaneously. By carefully choosing the code sequence 
for each column, a frame can be displayed scan line by scan line. However, unlike 
active matrix, passive matrix LCDs have no built-in mechanism to keep the electrical 
field. Once the pixel is not being actively selected, it will slowly restore to its off state. 
In other words, it takes some time (which could be on the order of 10 -2  seconds 
according to Ref  [  8  ] ) for the pixel change from one state to the other. If you do the 
scanning and configuration quickly enough, you can have an acceptable frame rate. 

 Since the frame rate is usually between 60Hz and 200Hz, within the time when a 
pixel’s state is being restored, the pixel can be addressed multiple times. Thus the 
effective voltage applied to the liquid crystal is the average of the signal voltage 
pulses over several frames (Ref  [  9  ] ), and this RMS average could lead to very slow 
response time. 

 The slow response time of  passive matrix LCD   makes it unsuitable for dynamic 
display content. In addition, with the increase of display density, cross talk will also 
increase due to the reduced electrode size and higher driving voltage (Ref  [  6  ] ), which 
puts a constraint on the maximum number of scan lines that a passive matrix can 
have. 

 The liquid crystal shown in Figures  11-3  and  11-4  has a 90-degree phase shift when 
it is in twisted state. Passive matrix made by these type of cells is called TN (Twisted 
Nematic). With the improvement of technology, TN passive matrix has been largely 
replaced by STN for better display quality 4 . The extra letter “S” in STN stands for 
“Super” and the STN can offer a phase shift from 180 degrees to 270 degrees. Today 
most passive-matrix LCDs on the market are STN type or its derivatives (CSTN, 
DSTN, FSTN, etc.). Like I said, those acronyms are deeply tied to the corresponding 
chemical process, and this book will not go any further on the chemical side.  

   3  With the help of orthogonal functions, it is also possible to select multiple rows at the same time for passive matrix 
(Ref  [  8  ]  [  10  ] ).   
   4  Note that TN and STN are merely referring to the liquid crystal cell structure while the passive or active matrixes mainly 
refer to the way how electrical fields are applied and kept. For STN, it is commonly used on passive matrix. But for TN, 
there are also TN-active-matrix LCDs being manufactured.  
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•     Active Matrix LCD (AMLCD    )  

 A page can be borrowed from DRAM to improve the display quality of passive matrix. 
Instead of using electrodes to set up the electrical field, active matrix display uses a 
capacitor to keep the electrical field alive, as shown in Figure  11-6 . Like the passive 
matrix, the columns of active matrix are also data lines that can be configured all 
at the same time. And each row is a scan line that is selected one by one. In active 
matrix, the scan line is used to control the switch that charges the capacitor in each 
LCD cell.  

 Using a switch can greatly reduce the cross talk, and it also allows the voltage 
to be finely controlled. Adopting capacitors to keep the electrical field means a 
faster liquid crystal mixture can be used to reduce response time. With all those 
improvements, active matrix LCDs can have higher contrast, faster response time, 
wider viewing angle, more gray scales, and bigger screen size than their passive 
matrix counterparts. Of course, the down side is the added complexity and higher 
price relative to passive matrix. 

 From the standpoint of manufacturing, there are multiple ways to make the switch. 
However, almost all AMLCDs made today use  TFT (Thin Film Transistor  ) for 
switching. Thus manufacturers often use TFT LCDs to refer to active matrix. 

  Figure 11-5.    Passive matrix addressing       
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 The TFT LCD is constantly reinventing itself, and manufacturers keep churning 
out acronyms for new technologies, like IPS, IGZO, LTPS, etc. Those acronyms 
are mainly related to the chemical material used to make the TFT or the process 
associated with them, and each has its pros and cons. Again, this book will not go 
any further on the chemical side.      

      LCD Programming Interfaces   
 Depending on the level of integration, LCD components can present different interfaces to engineers who 
program them. At the fundamental level, LCDs, whether they are segmented, passive matrix, or active 
matrix, all boil down to something sandwiched between two glass plates (substrates). A component like this 
is called LCD glass or LCD panel. LCD glasses only include the LCD cells and the glasses plates (with some 
metal or plastic casing maybe), plus all the necessary signals as pads around the package. 

  Figure 11-6.    Active matrix LCD       
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 LCD glass by itself does not have much intelligence. If an LCD class or panel is chosen to be a 
component in the embedded system, the system designer should also throw in a driver IC to control the LCD 
glass. In such a setting, there are two ways to place the driver IC:

    1.      Conventional surface mount    

 In this setting, the LCD glass is mounted to a PCB through some fine pitched 
connectors called ZEBRA connectors (or DIP connectors for some segmented 
LCDs). The driver IC is thus placed on the PCB and is hooked up to the LCD glass 
through the connector.  

    2.      COG (Chip on Glass    )  

 In this case, for the two glass plates that sandwich the LCD cells, the bottom 
one is now extended out. The driver IC is placed on the extended part by some 
chemical seal. By doing this, COG can offer more flexibility in sizing as well as 
reduced cost. And with this flexibility, manufacturers can also make customized 
designs per request.     

 Instead of offering LCD glasses or LCD panels alone, LCD manufacturers often integrate the driver IC 
with the LCD glasses (conventional Surface Mount or COG), seal them into one package, and call it an LCD 
module 5 . LCD modules usually provide a microprocessor-friendly interface and can be connected directly to 
the main board through flex cable or ribbon cable. 

 Given all that, let’s take a look at those interfaces at close range. 

   Segment LCDs 
 For  segment   LCDs, the system designer has two choices: Either she could buy an LCD module if there is one 
available, or she could buy an LCD glass and use a microcontroller as the driver IC. The latter will cut down 
the BOM cost, and LCD glass can also be custom made. 

 Assume an LCD glass is used and you need to find a way to control it. Although those segments in 
an LCD class can be in any shapes (dot, line, logo, patterns, etc.) and can be arranged in any layout form 
to suit the UI requirement, it can still be treated as a small scale passive matrix for control purposes. As 
demonstrated in Figure  11-7 , the rows are called back plane (BP) or common and the columns are called 
front plane (FP) or segment line. Each segment is sandwiched between a BP and an FP.  

   5  I’m not sure if there is an industry standard on those tech terms. But my impression is that LCD modules are often more 
advanced than LCD panels.  
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 As I previously mentioned, the rows are multiplexed by activating only one row at a time. One of the 
headaches with liquid crystal is that its drive voltage has to be DC free; otherwise the LCD’s lifespan will be 
significantly reduced. To achieve that, a certain waveform has to be conceived. In other words, the inactive 
rows should also send out AC waveforms in certain formats, as demonstrated in Figure  11-7 . 

 LCD glass manufacturers will usually tell you two things in their spec: duty cycle and BIAS. If the duty 
cycle is 1/ N , it means the LCD has  N  back planes. And if the BIAS is 1/ S , it means the maximum number of 
voltage levels that can be used is  S +( )1   , namely

 

VDD

S
i i S* = ¼( ), , , ,0 1

   

 Here  S  is related to  N . Since the rows are multiplexed, the state of the liquid crystals is determined by 
the RMS voltage applied on them. The screen contrast ratio is largely determined by the ratio between the 
RMS voltage of on-segments to that of the off-segments. By carefully choosing  S  to match  N , the screen 
contrast ratio can be maximized. Ref  [  14  ]  offers a table that lists the commonly used match between duty 
cycle and BIAS levels. 

  Figure 11-7.     Driving waveform  , 1/4 duty cycle, 1/3 bias, eight segments       
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 A sample waveform of 1/4 duty and 1/3 BIAS is shown in Figure  11-7 . This sample waveform is called 
type A waveform, which keeps DC free in every single frame. But it has a lot of rising and falling edges that 
could lead to big side lobe in its spectrum. If side lobe is a concern, type B waveform (Ref  [  14  ] ) can be used as 
an alternative. It will reduce the side lobe by keeping DC free for every two frames only. 

 Once the waveform is determined, the rest of the work is just to toggle the IO pins. First of all, the IOs 
have to be toggled fast enough to maintain a reasonable frame rate (> 30Hz) to avoid flickering. Secondly, 
the number of IOs is proportional to the total number of segments. Take an LCD with 4 commons and 120 
segments for example—it needs 4 pins for commons (BPs) and 120/4=30 pins for segment lines (FPs). 

 Fortunately, there are lots of  MCU vendors   that include built-in LCD controllers in their products 
(Ref  [  15  ]  [  17  ] ). That makes the multiplexing control much easier. For BIAS that equals 1/2, general-purpose 
IO can be used with the help of external voltage divider, as shown in Ref  [  16  ] . And if the number of segments 
is small and only one common plane exists, a static control method can be used with each IO pin controlling 
one segment only. Under such circumstances, the BIAS is 1 and only two voltage levels are needed, so a 
general-purpose IO will suffice without any external voltage dividers.  

    VFD   Display 
 Although this chapter is for LCD displays, VFD will be briefly mentioned for the sake of completeness, since 
VFD can be a good alternative to segment LCD. 

 VFD stands for Vacuum Fluorescent Display. It borrows a page from CRT’s playbook. Like the CRT 
display, a VFD is made up of a filament as the cathode, a grid as the switch, and an anode coated with 
phosphor. For the on state, electrons emitted from the filament will pass through the grid, hit the anode 
phosphor, and light up. Conversely, the grid will stop the electrons from reaching the phosphor when the 
VFD is off (Ref  [  18  ] ). 

 VFD trumps LCD in brightness, contrast, and viewing angle. And it is capable of operating at very low 
temperatures. Similar to LCD, VFD glasses can also be custom-made. Thus car manufacturers tend to use 
VFD on the dashboard (like the low oil sign or the engine light). The downside of VFD is its cost and power 
consumption. So it might not be the best option for hand-held applications, but it is still a popular choice for 
AC powered devices, such as microwave ovens or alarm clocks. 

 As for the programming interface, my takeaway is that VFD shifts a lot of work from software to 
hardware. For software, the concept of multiplexing versus static control still applies. However, VFD does not 
need a DC free control waveform, which makes the programming more straightforward. But at the hardware 
level, VFD routinely requires a high voltage (like 12 volt) supply to power the anode and grid, and it also 
demands an AC supply for the filament, thus extra driver circuit has to be in place to act as an inverter.  

   Character LCD Module (Dot Matrix LCD) 
  LCD vendors   routinely offer LCD modules with predefined font ROMs. The font ROM normally includes the 
alphabet for western language or Japanese kana. Occasionally, the ROM will also include some predefined 
graphic pattern as an extension. Most LCD modules of this type are made of monochrome passive matrix LCD. 

 The standard size of character LCD ranges from 1 x 8 to 4 x 40. Its interface can be serial (like SPI) or 
parallel bus. If parallel bus is used, more often than not, it will be compatible with the Hitachi HD44780 
LCD Controller, with an 8-bit data bus (Ref  [  19  ] ). Since this interface has been universally adopted by the 
whole industry, application notes and open source drivers are plentiful (Ref  [  20  ]  [  21  ] ). And it is generally 
unnecessary to start from scratch without looking for an available driver first.  
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   TFT Graphic LCD Module 
 Depending on the vendors, there are main two kinds of interfaces when it comes to programming a 
graphic LCD:

    1.      MPU interface    

 This generally means a frame buffer has been integrated into the LCD 
module, and the LCD module will present itself as a SRAM to the controlling 
microprocessor. The interface can be a parallel bus of Intel 8080 or Motorola 
6800 type, as mentioned in previous chapters.  

    2.     RGB interface  

 To reduce BOM cost and offer more flexibility, vendors will also offer an RGB 
interface with the absence of frame buffer. The RGB interface comprises the 
following signals:

•    VSYNC (Vertical Sync) and HSYNC (Horizontal Sync) 

 The VSYNC is the sync pulse for row scan line, while the HSYNC is the sync 
pulse for each column. By default, the whole screen is scanned from the upper-
left corner to the lower-right corner.  

•    RGB data   

 Aligned with each HSYNC pulse is the RGB data. The bit-width for each color 
component (R/G/B) varies from 4- to 8-bit.  

•   Data enable 

 Due to the real-time scan requirement, an external driver has to be present to 
generate the sync control and data signals. And in this case, an FPGA can be 
chosen to do the job, bridging between an LCD module of an RGB interface and 
a microprocessor.         

    Backlight Control   
 The brightness of an LCD screen can be adjusted by turning its backlight power on and off under a certain 
ratio. In other words, a PWM (Pulse Width Modulation) controller can be used to adjust the backlight. 

 There are two critical parameters that need to be determined by PWM:  switching frequency  and  duty 
cycle . The switching frequency should be kept high (more than 200Hz or even in the range of KHz) to avoid 
possible flicking, and the duty cycle is usually proportional to the light intensity. 

 Implementation-wise, most microcontrollers have built-in PWM controllers. If not, a CPLD or FPGA 
can be used instead.    
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     Using Touchscreens 
  Touchscreens   often work hand in hand with LCD displays. The general idea of a touchscreen is to put a see-
through layer on top of the LCD display 6 , along with some sensors. When the screen is touched, the sensors 
help to locate the corresponding coordinates. 

 There is a plethora of sensor technologies that exist today for touchscreens, such as resistive sensor, 
capacitive sensor, SAW (Surface Acoustic Wave), infrared, etc. The industry has never stopped looking for 
new technologies. Since I’m not a sensor engineer and the integration into embedded systems is what 
really matters, I will take the same approach as I did for LCD: I give a review at a high level, followed by 
the discussion about the programming interface. And for the case of touchscreen, only the resistive and 
capacitive technologies will be discussed due to their popularity. 

     Resistive Touchscreens 
  Resistive touchscreen   is often the preferred choice for low-cost applications. In its simplest form, a resistive 
touchscreen is made of two resistive sheets stacked together, with two wires on the bottom layer and the 
other two on the top, as illustrated in Figure  11-8 . Gaps exist between those two layers and there is no direct 
contact between them under normal circumstances. However, when pressure is exerted upon by fingers or 
other hard objects, the top layer will bend over and touch the bottom layer, causing electrical conduction.  

 As shown in Figure  11-8 , there are electrodes on the edge of both layers. At the bottom layer, the 
resistive strips go horizontally, while for the top layer, the resistive strips go vertically. To locate the 
coordinates of touch point, two steps have to be taken:

•    Apply voltage to X+ and X- in Figure  11-8  and take the voltage from the Y axis. Since 
now the two layers are in contact, the whole thing acts like a potentiometer. From the 
voltage reading from Y axis, the X coordinate can be linearly determined.  

•   By the same token, apply voltage between Y+ and Y- and read the voltage from the X 
axis, which can help to determine the Y coordinate.    

 To measure the voltages in 4-wire touchscreens, two ADC channels are needed (one for X axis, the other 
for Y axis). Fortunately, there are microcontrollers out there that have ADC channels built-in, which can 
support the 4-wire touchscreen. 

 For large touchscreens, four additional wires (X+ sense, X- Sense, Y+ Sense, and Y- Sense) can be added 
as sensor points to help the calibration. And with enough ADC channels (four ADC channels for 8-wire 
touchscreen), both 4-wire and 8-wire touchscreens can be supported by using microcontrollers (Ref  [  22  ] ). 

   6  This is not always true, as sensors can also be integrated into the LCD display, such as is the case with the 
in-cell technology.  



CHAPTER 11 ■ DE-BOUNCE, POWER MANAGEMENT, AND DISPLAY 

264

 The biggest headache with 4-wire or 8-wire solutions is that the top layer is also used as a 
potentiometer. And in order for the touchscreen to work, the top layer has to be pressed hard to bend over 
and touch the bottom layer. Overtime, the hard-press will wear and tear the resistive coating, affecting the 
accuracy of coordinates’ reading. 

 To improve the lifespan of this touchscreen, the 5-wire solution was conceived, as illustrated in 
Figure  11-9 . At its bottom layer, electrodes are moved to the four corners. Voltage can still be applied 
vertically (from the top two electrodes to the bottom two) or horizontally (from the left two electrodes to the 
right two). The top layer is only used for measuring the voltage at the touch point.  

 In the 5-wire solution, the top layer is only used for probing the voltage at the touch point, so the wear 
and tear of it has less impact on the coordinates’ reading. The touchscreen’s lifespan can thus be enhanced. 
A microcontroller solution is also available for the 5-wire touchscreen (Ref  [  23  ] ). 

  Figure 11-8.     Resistive touchscreen  , four wires       
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 As mentioned earlier, the top layer has to be pressed hard to make the contact with the bottom layer. 
Thus, any hard object (finger, stylus, or even pencil with rubber cap) will work with the resistive touchscreen, 
but only one touch point can be detected and located. This makes it generally unsuitable for gesture 
recognition 7 .  

     Capacitive Touchscreen 
 Capacitive touchscreen relies on the change of electrical fields to detect and locate the touch point. 
Compared to resistive touchscreen, capacitive use a glass surface. So no hard-press is needed, and the 
screen becomes more durable. However, in order to change the electrical field, conductive media, such as a 
human finger, must be introduced into the field, which means rubber headed pencil or wearing gloves may 
not work at all for capacitive touchscreen. 

 There are two kinds of  capacitive touch technologies  : surface capacitive technology and projected 
capacitive technology. 

  Figure 11-9.    Resistive touchscreen, five wires       

   7  This is not always true, though. With some extra effort, certain gestures can be recognized as well on resistive touch 
screens, as exemplified in Ref  [  24  ] .  
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   Surface Capacitive Technology 
 In  surface capacitive technology  , four electrodes are placed at each corner to create a uniformed electrical 
field. When the screen is touched by a finger, the electrical field is disturbed. By measuring the current 
flowing in and out of the electrodes, the touch point’s coordinates can be precisely located. 

 Because it locates the touch point by comparing those currents in and out of corner electrodes, only a 
single point touch can be supported. With the omnipresence of smartphones these days, multi-touch and 
gesture recognition cannot be spared. To support multi-touch, projected capacitive technology has to be 
used.  

   Projected Capacitive Technology 
 There are two main sub-categories in the projected capacitive technology: self capacitance and mutual 
capacitance.

•      Self capacitance touchscreen    

 For self capacitance, only one electrode is used, and the RC value is measured 
between the electrode and ground. When a conductive object, such as a human 
finger, is introduced, the added capacitance from the human body will change 
the total capacitance value and affect the RC delay. By sensing the change, a 
touch point can be detected or located. 

 The self capacitance touchscreen can be formed by one or two layers. If it is one 
layer, multiple electrodes dot the surface. If it is two layers, electrodes are formed 
as X or Y traces on each layer. Whether it’s one layer or two layers, all electrodes 
are all measured individually. 

 Since the electrodes are measured individually, ambiguity will take place for the 
two-layer structure. For this structure, when a two-finger touch happens, you can 
only determine the corresponding two rows and the two columns. However, that 
will give you four possible coordinates instead of two. But with some extra effort 
in software algorithms, gesture recognition, like the zooming gesture, might still 
be possible by detecting the moving direction of the touch points. 

 To better support the multi-touch function, mutual capacitance can be used.  

•     Mutual capacitance touchscreen    

 As its name suggests, two electrodes are used for mutual capacitance 
touchscreen. And the two-layer structure is adopted, with each electrode sitting 
on its own layer as X or Y traces. 

 To detect and locate the touch, the screen is row scanned (or column scanned), 
which is very close to the way that LCD matrix works. The capacitance at each 
electrode intersection will be measured. Unlimited number of touch points can 
thus be supported by doing the scanning quickly enough. The scan results can be 
interpolated to further improve accuracy, at the expense of controller complexity.     
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   On-Cell and In-Cell Touchscreen 
 For completeness,  on-cell and in-cell touch   are briefly mentioned in this section. Since those technologies 
are deeply tied to the manufacturing process, the discussion will be at a very high level. 

 The relentless drive for thinner smartphones is calling for new manufacturing processes. Traditionally, 
the smartphone screen is made of three layers from top to bottom:

•    The glass cover at the top  

•   The capacitive touchscreen sandwiched in the middle  

•   The LCD panel at the bottom    

 To make the phone or tablet even thinner, some manufacturers choose to integrate the touch sensors 
into the glass layer, while others build the touch sensors directly into the LCD panel. To distinguish between 
them, the former approach is usually called on-cell touch, and the latter is called in-cell touch. Inquisitive 
readers can refer to the manufacturers’ latest tech literatures for more information.  

   Programming Interface for Capacitive 
 As you can see from what was mentioned earlier, the capacitive touchscreen can be quite complicated, and 
a microcontroller alone may not be able to cut it. Most likely you are gonna choose a capacitive touch panel 
module, with built-in controllers to simplify the system design. 

 As illustrated in Figure  11-10 , with the help of  touch panel controller (TPC),   the interface pin count 
between system MCUs and the touch panel module can be reduced to wake signal, interrupt, and some 
serial bus like I2C or SPI.  

  Figure 11-10.     Capacitive touch panel module         
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 The TPC can be an ASIC plus a microprocessor on the same PCB, or it can be an SoC with the processor 
core built-in. Now the detection capability is largely determined by the TPC alone, which is supposed to 
provide the following to system MCU:

•     Gesture detection  

 The TPC’s capability is reflected by how many unique gestures it can 
recognize. Common gestures are move up/down, left right, zoom in/out, etc. A 
corresponding gesture code should be passed to the system MCU.  

•     Locate touch point    

 The TPC’s capability is also reflected by how many unique touch events it can 
handle. For each touch event, the position of the touch point should be located, 
along with the nature of the touch event, such as press down, release, firm 
contact, etc. An event code should also be passed on to the system MCU.  

•    Interrupt to system MCU for new events   

•    Power saving     

 With the assistance of TPC, the programming interface of the capacitive touch panel largely becomes 
interrupt handling and register read/write. Readers can refer to the module vendor’s user manual for more 
information.    

     Summary 
 Miscellaneous hardware topics were discussed in this chapter, and they are summarized here:

•    A reset circuit should be in place to guarantee a reliable power-on reset.  

•   The power-on sequence should be strictly followed.  

•   For reliability, the switch/button should be de-bounced, and the de-bouncing circuit 
can be implemented by FPGA or CPLD.  

•   An overview on LCD was given, followed by discussing various programming 
interfaces.  

•   LCD does not emit light by itself. Backlight control was also discussed.  

•   Touchscreens often work hand in hand with LCD. The corresponding programming 
interfaces were explored as well.         
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Chapter 12

Fixed Point Math

In rating ease of description as very important, we are essentially asserting a belief in 
quantitative knowledge—a belief that most of the key questions in our world sooner or 
later demand answers to ‘by how much?' rather than merely to ‘in which direction?'

—Exploratory Data Analysis, by John Wilder Tukey, 1977

I firmly believe that mathematics should be a big part of engineering. It is because every engineering  
project has risks associated with it, and knowing how to take calculated risks is what sets an engineer apart 
from the layman.

So this chapter is dedicated to math, or to be precise, fixed point math. Although technology advancements 
has made the FPU (Floating Point Unit) the norm to modern day CPUs, fixed point math still finds its place 
in those systems where low BOM costs and low clock rate are preferred. Compared to floating point math, fixed 
point math demands less complicated hardware at the expanse of more design effort from the engineers. 
This chapter addresses the commonly used fixed point functions.

Implementation-wise, there are two main ways to do fixed point math: CPU or dedicated logic.  
For the CPU approach, it can be a full-blown DSP (Digital Signal Processor), or it can be an application  
processor running at a high clock rate or with built-in support for SIMD instructions. Dedicated logic  
can be implemented through a FPGA, or it can be a hardware accelerator that becomes part of an SoC  
(System on Chip). Each approach has its pros and cons. And because there are two approaches for doing  
fixed point math, the code snippets presented in this chapter will also be in one of these two forms: C/C++  
or Verilog/System Verilog.

Q Format
An essential part of fixed point math is knowing where the decimal point is. For a number with given word 
length, the true value it represents is determined by a scaling factor. Q format is the nomenclature that 
reflects both the word length and the scaling factor.

Q format is written as Qm.n, where m is the number of integer bits and n is the number of fractional bits. 
“m + n” is supposed to be equal to the word length. So for a 16-bit number, Q2.14 means it has 2 integer bits 
and 14 fractional bits.

However, note that the Q format is not always consistent across all technical literatures. In some 
literatures, “m + n” is equal is the word length minus 1. And sometimes the Q format is shortened to Qn to 
represent only the fractional part. But with a known word length, those ambiguities can be easily sorted out. 
And for this book, the notion Qm.n will be used where “m + n” equals the word length.
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Two’s Complement and Symmetric Range
For a signed binary number, the two’s complement is the most commonly used representation format. 
An n bit two’s complementary number can represent values from 2 11n- -( )  to -( )-2 1n . And the addition and 

subtraction of a two’s complementary number can be done directly by treating them as unsigned values.
One of the biggest problems with two’s complement is its asymmetric range. As you can see, apart from 

zero, a two’s complement has 2 11n- -( )  positive values and 2 1n-( )  negative values. In other words, the most 
negative value -( )-2 1n  does not have a corresponding positive value. This would be a problem for functions 
like “absolute value” or “negation”, because the most negative value -( )-2 1n  will be mapped to itself in those 
operations if no extra care is taken.

Thus, my two cents is to eliminate the most negative value -( )-2 1n  from very beginning. If input 
samples are taken from an ADC, those samples should be sifted through to bump the most negative value 

from -( )-2 1n  to - +( )-2 11n .

Basic Operations
The following basic operations are addressed by fixed point math:

•	 Rounding and truncation

•	 Saturation

•	 Negation

•	 Absolute value

•	 Addition, subtraction, multiplication, and division

•	 Sin and cos

Rounding and Truncation
For floating point math, the rounding is done by adding 0.5 to the LSB and having the result floored. That 
is, Y floor X= +( )0 5. .  Translated into fixed point math, it means adding 1 to the MSB of the fractional part 
and taking the integer bits. To deal with overflowing, one extra guard bit might be necessary, as illustrated in 
Figure 12-1.

Figure 12-1. Fixed point rounding
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In Figure 12-1, an 8-bit number is rounded to its lower three bits, which is carried out by adding 1 to  
bit 2 and taking the highest six bits (including the guard bit) in the sum. If five bits are desired after the 
rounding, a saturation operation has to follow.

In fact, in fixed point math, the rounding often comes after multiplication, after which it is often neces-
sary to put the result back to its original word length. Listing 12-1 gives an example. An additional saturation 
operation can restore the result width back to DATA_WIDTH bits.

Listing 12-1. Rounding after Multiplication

  wire  signed [DATA_WIDTH * 2 - 1 : 0]        x_times_y;
  logic signed [DATA_WIDTH + 1 :0]             x_times_y_round;

  assign x_times_y = data_in_x * data_in_y;

  always_ff @(posedge clk) begin
       x_times_y_round <= x_times_y[DATA_WIDTH * 2 - 1 : DATA_WIDTH - 2] +
  ($size(x_times_y_round))'(1);
  end

// And send x_times_y_round [DATA_WIDTH + 1 : 1] to saturation if necessary

Of course for truncation, it would be a lot more straightforward. An arithmetic right shift (shift right with 
sign bit extended) can be used in C/C++ code for doing the truncation.

Saturation
The rounding and truncation cut bits out at the LSB side, while the saturation operation does it on the  
MSB side.

For a saturation operation in its general form, assume the input data’s bit-width is INPUT_DATA_WIDTH 
while the output data bit-width is OUTPUT_DATA_WIDTH. Overflow will be detected if the bits to be cut out are 
not the sign extension of the remaining bits. Its System Verilog implementation is shown in Listing 12-2.

Listing 12-2. Saturation Operation

wire signed [OUTPUT_DATA_WIDTH - 1 : 0] max_value_out;

assign max_value_out = {data_in[INPUT_DATA_WIDTH - 1], {(OUTPUT_DATA_WIDTH - 1)
{~data_in[INPUT_DATA_WIDTH - 1]}}};

always_ff @(posedge clk) begin
      if (enable_in) begin
          if (data_in[INPUT_DATA_WIDTH - 1 : OUTPUT_DATA_WIDTH] !=
            {(INPUT_DATA_WIDTH - OUTPUT_DATA_WIDTH)  {data_in[OUTPUT_DATA_WIDTH - 1]}})  
             begin : over_flow_if
                     data_out <= max_value_out;
             end : over_flow_if
             else begin
                     data_out <= data_in [OUTPUT_DATA_WIDTH - 1 : 0];
             end
      end
end
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More often than not, the saturation operation will be the step that follows an addition (or subtraction). 
In that case, the overflow can be determined by comparing the sign bit of the sum against that of the  
addends. And for addition, overflow will never happen if the two addends are in opposite signs. So the  
addition with saturation can be done in System Verilog, as shown in Listing 12-3.

Listing 12-3. Addition with Saturation

wire data_in_x_sign, data_in_y_sign;

wire signed [DATA_WIDTH - 1 : 0] x_plus_y;
wire signed [DATA_WIDTH - 1 : 0] max_value;

assign data_in_x_sign = data_in_x[DATA_WIDTH - 1];
assign data_in_y_sign = data_in_y[DATA_WIDTH - 1];

assign max_value = {data_in_x[DATA_WIDTH - 1], {(DATA_WIDTH - 1)
{~data_in_x[DATA_WIDTH - 1]}}};

assign x_plus_y = data_in_x + data_in_y;

always_ff @(posedge clk) begin
     if (enable_in) begin
            if ((data_in_x_sign != data_in_y_sign) ||
                (x_plus_y[DATA_WIDTH - 1] == data_in_x_sign)) begin
                  data_out <= x_plus_y;
            end else begin // over flow
                  data_out <= max_value;
            end
     end
end

And by the same token, the subtraction with saturation is shown in Listing 12-4.

Listing 12-4. Subtraction with Saturation

wire data_in_x_sign, data_in_y_sign;

wire signed [DATA_WIDTH - 1 : 0] x_minus_y;
wire signed [DATA_WIDTH - 1 : 0] max_value;

assign data_in_x_sign = data_in_x[DATA_WIDTH - 1];
assign data_in_y_sign = data_in_y[DATA_WIDTH - 1];

assign max_value = {data_in_x[DATA_WIDTH - 1], {(DATA_WIDTH - 1)
{~data_in_x[DATA_WIDTH - 1]}}};

assign x_minus_y = data_in_x - data_in_y;

always_ff @(posedge clk) begin
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     if ((data_in_x_sign == data_in_y_sign) ||
         (x_minus_y[DATA_WIDTH - 1] ==  data_in_x_sign)) begin
           data_out <= x_minus_y;
     end else begin // over flow
           data_out <= max_value;
     end
end

Note that in all these saturation operations, the max value is composed by extending and flipping 

the sign bit. Although this makes the logic very compact, it will produce the max negative value as -( )-2 1n . 

In other words, it will produce an asymmetric data range between positive values and negative values,  
as explained earlier. Thus, you should be careful when those saturated values go through functions like 
“negation” or “absolute value”.

And if an output with symmetric range is desired, the bit 0 of max value should be forced to be 1.

Negation
The negation of a two’s complement can be done by inverting all of its bits, and add 1 to it afterward. 
However, the asymmetric range of a two’s complement means the value -( )-2 1n  needs some special 
treatment, as shown in Listing 12-5 with System Verilog.

Listing 12-5. Negation

wire signed [DATA_WIDTH - 1 : 0]      data_neg;
wire                                  data_in_or, data_in_sign;

assign data_neg = (~data_in) + (DATA_WIDTH)'(1);

assign data_in_or = |(data_in[DATA_WIDTH - 2 : 0]);
assign data_in_sign = data_in[DATA_WIDTH - 1];

always_ff @(posedge clk, negedge reset_n) begin
     if (!reset_n) begin
            data_out <= 0;
            enable_out <= 0;
     end else begin
            data_out <= data_in_sign & (~data_in_or) ?
                        ({1'b0, {(DATA_WIDTH - 1){1'b1}}}) : data_neg;
            enable_out <= enable_in;
     end
end

In two’s complement, the most negative value -( )-2 1n  will be represented as a 1 in the sign bit and all 

zeros for the other bits. In Listing 12-5, it will be mapped to 2 11n- -( )  instead of 2 1n-( ) .
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Absolute Value
Although absolute value can be calculated by negating the negative values, a more compact solution is 
shown in Listing 12-6.

Listing 12-6. Absolute Value

wire signed [DATA_WIDTH - 1 : 0]      data_sign_ext, data_tmp;
wire                                  data_in_or, data_in_sign;
wire signed [DATA_WIDTH - 1 : 0]      abs_value;

assign data_sign_ext = {(DATA_WIDTH){data_in[DATA_WIDTH - 1]}};
assign data_tmp      = data_in ^ data_sign_ext;
assign abs_value     = data_tmp - data_sign_ext;

assign data_in_or = |(data_in[DATA_WIDTH - 2 : 0]);
assign data_in_sign = data_in[DATA_WIDTH - 1];

always_ff @(posedge clk, negedge reset_n) begin
    if (!reset_n) begin
          data_out <= 0;
          enable_out <= 0;
    end else begin
          data_out <= data_in_sign & (~data_in_or) ?
            ({1'b0, {(DATA_WIDTH - 1){1'b1}}}) : abs_value;
          enable_out <= enable_in;
    end
end

In Listing 12-6, sign bit is extended and used to exclusive-xor the original data. For positive values, such 
an operation has no effect, while for negative values this is identical to bit inversion. The sign bit is then 
subtracted from the exclusive-xor-ed result.

However, despite this neatness, the most negative value -( )-2 1n  still needs special treatment to map  
to 2 1n-( ) .

Unsigned Division
Up to this point, mathematicians haven’t found a good way to do division on fixed point numbers.  
In other words, the number of cycles needed to obtain the quotient is always tied to the bit-width of 
numerator/denominator. To get the job done, three approaches will be discussed here.

•	 Long hand division

This is the traditional way to do division by hand, as illustrated in Figure 12-2.  
Assume the numerator has a bit-width of DATA_WIDTH * 2 - 1, and the 
denominator has DATA_WIDTH bits. The long hand division is carried out by 
comparing the denominator against the numerator’s higher DATA_WIDTH bits.  
A quotient bit of 1 is recorded if the denominator is smaller; otherwise, a bit 0 is 
recorded.
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If a quotient bit 1 is recorded, the denominator (with zero extension) is then 
subtracted from the numerator. And the result is left shifted by 1 and used as the 
new numerator. If a quotient bit 0 is recorded, the numerator will be left shifted 
without any preceding subtraction. Repeat such a comparison (subtraction) and 
shift for DATA_WIDTH iterations to get the full quotient of DATA_WIDTH bits.

In addition to the division in DATA_WIDTH iterations, extreme cases like “divided 
by zero” and saturation also need to be taken care of to make the process 
bulletproof.

The long hand division is very straightforward, and it yields the most accurate 
result for the quotient and remainder. But it takes DATA_WIDTH iterations to get 
that. If speed is preferred over accuracy, the algorithm introduced in Ref [2] can 
be used.

Figure 12-2. State diagram: long hand division 
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•	 Fast division

The so called Anderson-Earle-Goldschmidt-Powers algorithm was first applied 
on the ALU of IBM S/360 Model 91 mainframe computer. It is one of the best 
convergence-division algorithms that can yield satisfying results with much 
fewer number of iterations. Its C model is shown in Listing 12-7.

Listing 12-7. Anderson-Earle-Goldschmidt-Powers Algorithm

int long_fast_div (int bitwidth, int n, long long Numerator, long long Denom, long long *Q)
{
    long long two = (long long)1 << bitwidth;
    long long one = (long long)1 << (bitwidth - 1);
    long long half = (long long)1 << (bitwidth - 2);
    long long quarter = (long long)1 << (bitwidth - 3);

    long long x, f, t;

    int i;

    if (Denom == 0) {
        return -1; // error
    }

    //===== Normalize Denom
       while (Denom < half) {
              Denom = Denom * 2;
              Numerator = Numerator * 2;
       } // End of while loop

       while (Denom >= one) {
              Denom = Denom / 2;
              Numerator = Numerator / 2;
       } // End of while loop

    //===== Main Loop
    x = Numerator; t = Denom;

    for (i = 0; i < n; ++i) {

        f = two - t;

        x = x * f ;        x >>= (bitwidth - 2);
        ++x;        x >>= 1;
        t = t * f;
        t >>= (bitwidth - 2);
        ++t;
        t >>= 1;

       // printf ("i = %d, f = %llu, x = %llu, t = %llu\n", i, f,x,t);
    } // End of for loop
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  *Q = x >> bitwidth;

  return 0;

} // End of long_fast_div()

To yield the best precision, both the numerator and the denominator should be normalized (shifted)  
so that the denominator will fall in the range of [0.5, 1) in floating point. (The corresponding fixed point  
representation for .5 and 1 can be found in Listing 12-7.) If the algorithm is implemented by digital logic,  
the normalization part can be done with barrel shifters.

And in the main loop of Listing 12-7, x and t can be calculated in parallel. For a 16-bit number with 
four iterations (n = 4), the quotient produced by Listing 12-7 differs from that of long hand division’s only by 
0.002%. (i.e., most deviations come from the LSB only).

Due to the compactness of this algorithm, it can be easily implemented in FPGA. And it presents a good 
alternative to long hand division when throughput is prioritized over bit accuracy.

•	 SRT division

In long hand division, the numerator is shifted by one bit in each step. To speed 
things up, people started to explore the possibility of handling multiple bits in 
one shot, and that’s where SRT division came to the fore. The word SRT is from 
the first letter of its three inventors’ names: Sweeney, Robertson, and Tocher  
(Ref [7][8][9][10]), who came up with the idea independently around the same time.

Now assume you would like to shift a numerator by two bits at a time (Radix 4 division). The mathemat-
ics works as the following:

In each step,

    r r q di i i= × - ×-4 1 ,  (Equation 12-1)

r
i
 is the remainder, q

i
 is the quotient digit, and d is the denominator. For the sake of convenience,  

we denote the partial remainder of 4 1× -ri  by p.
Unlike the long hand division, the q

i
 in Equation 12-1 is allowed to take negative values:

    - £ £3 3qi

And you don’t have to worry about the negative q
i
 at this point, because the strategy that SRT takes is  

to correct q q qi0 1 1,  -  with a better q
i
, and the final quotient is the accumulation of all of them, as demon-

strated here:

   Q q n DATA WIDTH
i

n

i
n i= × =( )

=

-å
0

2
24

/
/ , _  (Equation 12-2)

Equation 12-2 will work as long as r
i
 converges. To guarantee convergence, it is imperative that the 

remainder for each step r
i
 stay between -d  and d. Consequently, you can deduce that:

- £ £
- × £ = × = + × £ ×-

d r d

d p r r q d d
i

i i i4 4 41

 (Equation 12-3)
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From Equation 12-3, at each step, q
i
 can be chosen based on p and d. However, this could lead to  

two problems:

•	 For a given pair of p and d, there could be more than one value that satisfies 
Equation 12-3.

•	 Choosing a q
i
 value based on two parameters (p and d) complicates  

hardware design.

Preferably, you would like to come up with some criterion that:

•	 Be able to uniquely determine q
i
.

•	 Be able to determine q
i
 with a simple algorithm. If q

i
 cannot be solely determined by 

p, at least it should only have an occasional reference to d.

With these requirements in mind, the Radix 4 SRT division can be carried out as the following:

 1. Normalize d so that 12 1< <d .

For fixed point number with DATA_WIDTH=n, it means

2 21n nd- £ < .

 2. Draw the plot of p versus d and partition it so that q
i
 can be determined with  

less effort.

Figure 12-3 shows the p-d plot for 8-bit SRT division. (For the sake of simplicity, 
negative p values are omitted in Figure 12-3.) There are four straight lines that 
divide Figure 12-3 into separate regions. The equations for those four lines are:

p d

p d

p d

p d

=
- ×
= ×
= ×

2

3

4
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 3. The corresponding q
i
 values that satisfy Equation 12-3 in each region are 

summarized in Table 12-1.

Figure 12-3. p-d plot for 8-bit SRT division

Table 12-1. Valid q
i
 Values for Each Region in Figure 12-3

Region Valid qi Value that Satisfies Equation 12-3

Below p d= 0, 1

Between p d=  and p d= ×2 1, 2

Between p d= ×2  and p d= ×3 2, 3

Between p d= ×3  and p d= ×4 3

Above p d= ×4 N/A, does not satisfy Equation 12-3
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 4. As p, d, and q
i
 all have to be integer values, the p–d plot inherently has an  

integer grid in its coordinates, as shown in Figure 12-3. By carefully analyzing 
Equation 12-3 and Table 12-1, the whole p–d plot can be divided into five 
sections as follows:

Section A

This is the top-left section in Figure 12-3. No meaningful values should exist 
in this section.

Section B

This is the section marked as with a B in Figure 12-3. For all (p,d) pairs that 
fall into this section, qi = 3.

Section C

This is the section marked with a C in Figure 12-3. For all (p,d) pairs that fall 
into this section, qi = 2.

Section D

This is the section marked with a D in Figure 12-3. For all (p,d) pairs that fall 
into this section, qi =1.

Section E

This is the section marked with an E in Figure 12-3. For all (p,d) pairs that fall 
into this section, qi = 0 .

As you can see, section D and E are rectangular. So only the MSB bits from p are 
needed to determine if (p,d) belongs to these sections.

Although section C is not a perfect rectangular, its shape is still very regular 
(unlike the grotesque shape of section B). Thus only the MSB bits from p and one 
bit from d is needed. (Remember that d has been normalized in Figure 12-3.)

So section B is the only one that has both valid values and an incongruous shape. 
However, since it is the only oddball among all the valid sections, its q

i
 can be 

determined when all else fails.

 5. Thus, you now have criteria that are simple enough for hardware to implement. 
To prove it is correct mathematically, its corresponding Perl script is shown in 
Listing 12-8.

The Radix 4 SRT mentioned here allows q
i
 to be 3 or -3. Given the abundance of hardware resources  

in today’s FPGA, the 3 ×d  can be easily turned into 2 × +d d without much impact on sizing or timing closure. 
So such an approach is good enough for FPGA and low-end microcontrollers.

For those processors that are targeting high-performance computations, q
i
 can be limited between  

-2 and 2, at the expense of a more complicated p–d plot (Ref [11]). The plus side is that it could speed things 
up a little bit. The flip side is the complicated p–d plot will turn into a big look-up table for more area. And 
mistakes in those tables could have dire consequences, both technically and financially, as Intel’s Engineers 
can attest (Ref [12]). Google “pentium fdiv bug cost” to find out how much it cost Intel. :-(
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Listing 12-8. SRT Radix 4 Division in Perl

sub SRT_radix4_div {;

    my($dividend, $divisor, $n)  = @_;
    my $i, $sign, $top4bits, $q, $normalize_shift;
    my $tmp, $tmp2, $final_Q, $quotient = 0;

    # normalize
    $normalize_shift = 0;
    for ($i = 0; $i < $n ; $i = $i + 1) {
        $tmp = 1 << ($n - $i - 1);
        $tmp2 = $divisor & $tmp;

        if ($tmp2) {
            last;
        } else {
            $normalize_shift = $normalize_shift + 1;
        }
    }

    $divisor = $divisor << $normalize_shift;

    if ($normalize_shift == $n) {
        exit(1); # divided by zero!
    }

    for ($i = 0; $i < ($n / 2 + 2); $i = $i + 1) {
        $sign = 1;
        if ($dividend < 0) {
            $sign = -1;
        }

        $top4bits = ($dividend) & (15 << ($n - 1));
        $top4bits = (($dividend) >> ($n - 1)) & 15

        if ($top4bits > 7) {
            $top4bits = $top4bits - 16;
        }

        if (($top4bits < 1) && ($top4bits >= -1)) {
            $q = 0;
        } elsif (($top4bits < 2) && ($top4bits >= -2)) {
            $q = 1;
        } elsif (($top4bits < 3) && ($top4bits >= -3)) {
            $q = 2;
        } elsif (($top4bits < 4) && ($top4bits >= -4)) {
            if ($divisor >= (6 * (1 << ($n - 3)))) {
                $q = 2;
            } else {
                $q = 3;
            }
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        } else {
            $q = 3;
        }

        $q = $q * $sign;
        $dividend  = ($dividend  - $q * $divisor) * 4;
        $quotient = $quotient * 4 + $q;
    }
    $final_Q = $quotient   >> ($n + 2  - $normalize_shift
    return $final_Q;
}

Sin/Cos Table
There are many ways to calculate sin/cos functions. This section will discuss the approach of using look-up 
table. Later sections will address the CORDIC algorithm.

Due to the symmetric nature of sin/cos function, only 1/8th of a full circle (360 degrees) is needed for 
the table values. The rest of the circle can be deduced from those sin/cos values between 0 and 45 degrees, 
as shown in Listing 12-9.

Listing 12-9. Sin/Cos Table Using Look-Up Table

#define ANGLE_BITS 11
#define COS_SIN_BITS 16

const int cos_val [] = {
 32767,
 32767,
 32766,
  ...

 23312,
 23241,
 23170
};

const int sin_val[] = {
 0,
 101,
 202,

 ...

 23027,
 23098,
 23170
};
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void cos_sin_table (int index, int *cos_out, int *sin_out)
{
  int half_quad;
  int cos_base, sin_base;

  half_quad = index >> (ANGLE_BITS - 3);

  index &= (1 << (ANGLE_BITS - 3)) - 1;

  if ((half_quad % 2) == 0) {
       cos_base = cos_val [index];
       sin_base = sin_val [index];
  } else {
       cos_base = cos_val [(1 << (ANGLE_BITS - 3))- index - 1];
       sin_base = sin_val [(1 << (ANGLE_BITS - 3))- index - 1];
  }

  switch (half_quad) {
        case 0 :
              *cos_out = cos_base;
              *sin_out = sin_base;
              break;

        case 1 :
              *cos_out = sin_base;
              *sin_out = cos_base;
              break;

        case 2 :
              *cos_out = -sin_base;
              *sin_out = cos_base;
              break;

        case 3 :
              *cos_out = -cos_base;
              *sin_out = sin_base;
              break;

        case 4 :
              *cos_out = -cos_base;
              *sin_out = -sin_base;
              break;

        case 5 :
              *cos_out = -sin_base;
              *sin_out = -cos_base;
              break;
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        case 6 :
              *cos_out = sin_base;
              *sin_out = -cos_base;
              break;

        case 7 :
              *cos_out = cos_base;
              *sin_out = -sin_base;
              break;

        default :
              *cos_out = cos_base;
              *sin_out = sin_base;
  }
}

In Listing 12-9, a sin/cos function with 2048 items is implemented, but only 256 sin/cos pairs are stored 
in the table. Out of the 11-bit index log2

2048 11=( )  , the eight LSBs are used as a table index, while the top 
three MSBs are used as an index for the half quadrant (1/8th circle), which determines the sign or swapping 
of the table value. The total memory size is 16 * 2* 256 = 8K bits. And the latency is constant.

CORDIC Algorithm
In a mathematician’s toolbox, the following elementary functions are often on his short list: sin, cos, arctan, 
amplitude, square root, exponentiation, logarithm, etc. Mathematicians tend to use Taylor serials to expand 
those elementary functions into polynomials and take it from there. Although fixed point math could follow 
the same approach, a good alternative that demands fewer resources is the CORDIC algorithm.

CORDIC stands for COordinate Rotation DIgital Computer. It was pioneered by Jack E. Volder in the 
1950s to replace the analog navigation system on B-58 bombers (Ref [3]). At that time, the transistor was new 
to the industry and the clock rate was on the order of a few hundred KHz. So it was a very challenging job to 
calculate trigonometric functions and locate the coordinates for navigation in real time. But with the CORDIC 
algorithm, the problem was solved by using an iterative method with only addition/subtraction and shifting 
operations (plus a very small look-up table). Thanks to its ingenuity and compactness, the CORDIC algorithm 
was well received by the industry. And John S. Walther (Ref [5]) from HP Labs later generalized it and made it 
applicable to functions other than trigonometric ones.

Basic Ideas
In the CORDIC algorithm, there are basically three coordinate systems: circular, linear, and hyperbolic.  
 All three coordinate systems follow the same curve equation:

    x m y R2 2 2+ × =  (Equation 12-4)

where m can take the value of 1 (for circular), 0 (for linear), or -1 (for hyperbolic).
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Given an initial point (x
0
 , y

0
) on the curve, the basic idea of CORDIC is to rotate the initial point iteratively 

by a serial of angles, designated as ai i n= ¼ -( )0 1 2 1, , , . Depending on the goal of the rotation, there are two 
operation modes for each coordinate system: vectoring mode and rotation mode.

•	 Vectoring mode

In vectoring mode, the goal is to force the y
n
 to be zero when n®¥ . To achieve 

that, the sign of a
i
 has to change with y

i
 to make sure the iterations can converge.

•	 Rotation mode

For rotation mode, a third variable z is introduced as z zn
i

n

i= +
=

-

å0
0

1

a , 

where z
0
 can be any arbitrary value. And the goal of rotation mode is to force z

n
  

to be zero when n®¥. To achieve that, the sign of a
i
 has to change with z

i
 to 

make sure the iterations can converge.

With three coordinate systems and two operation modes, there are total of six possibilities for  
generalized CORDIC algorithms. Their respective output functions are listed in Table 12-2.

Table 12-2. CORDIC Output Functions

Coordinate System Vectoring Mode Rotation Mode

Circular (m = 1)
x x y Kn = +0

2
0
2

1/
yn = 0
z z y xn = + ( )-

0
1

0 0tan /

x x z y z Kn = × - ×( )0 0 0 0 1cos sin /

y y z x z Kn = × + ×( )0 0 0 0 1cos sin /

zn = 0

Linear (m = 0) x xn = 0

yn = 0

z z y xn = +0 0 0/

x xn = 0

y y x zn = + ×0 0 0

zn = 0

Hyperbolic (m = -1)
x x y Kn = - -0

2
0
2

1/
yn = 0

z z y xn = + ( )-
0

1
0 0tanh /

x x z y z Kn = × + ×( ) -0 0 0 0 1cosh sinh /
y y z x z Kn = × + ×( ) -0 0 0 0 1cosh sinh /

zn = 0

K
1
= 0.607253

K-1 = 1.207497

The rest of this chapter attempts to explain Table 12-2 in more detail.
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Circular Coordinate System
Assume the angle of point (x, y) is q. The circular coordinate system can be expressed by trigonometric 
functions as x R y R sin= × = ×cos , .q q  Now assume you rotate it by another angle of a, the new point will be

¢ = × +( ) = × × - × × = × - ×x R R R x ycos cos cos sin sin cos sinq a q a q a a a

¢ = × +( ) = × × + × × = × + ×y R R R y xsin sin cos cos sin cos sinq a q a q a a a

Thus
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For each iteration, if you intentionally set tan a to be power of 2 (such as ± -2 i  for ith iteration), 

the multiplications will be turned into a shift operation. The part 
1

1
2+ ( )tana

 can then be pre-calculated 
as constants and stored in a look-up table.

Circular Vectoring Mode
As indicated in Table 12-2, the vector mode in the circular coordinate system will give you amplitude and 
arctan. Its fixed point C model is shown in Listing 12-10. (The constant CORDIC_SCALING_FACTOR is defined 
as a scaling factor for all fixed point numbers. And theta[i] can be pre-calculated as well.)

Listing 12-10. Vectoring Mode in Circular Coordinate System

#define CORDIC_MAX_ITERATIONS 30
#define CORDIC_SCALING_FACTOR (1 << 30)

int CORDIC_circular_vectoring_mode(int n, long long *px0, long long *py0)
{
  unsigned int theta[CORDIC_MAX_ITERATIONS];
  int i;
  int sigma;

  long long x,y;
  int z;
  long long x_tmp, y_tmp;
  double k = 1;

  x = *px0; y = *py0;
  z = 0;
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  for (i = 0; i < n; ++i) {

       theta[i] = floor((atan2 (1, 1 << i) * CORDIC_SCALING_FACTOR + 0.5));
       k = k / sqrt (1 + 1.0 / (((long long)1) << (2 * i)));

       if  (y >= 0)  {
             sigma = -1;
       } else {
             sigma = 1;
       }

       if (i > 0) {
             x_tmp = x - sigma * (((y >> (i - 1)) + 1) >> 1);
             y_tmp = (((x >> (i - 1)) + 1) >> 1) * sigma + y;
       } else {
             x_tmp = x - sigma * y;
             y_tmp = x * sigma + y;
       }

       x = x_tmp;
       y = y_tmp;

       z = z - theta[i] * sigma;

       printf ("i = %d, k = %lf\n", i, k);

  } // End of for loop

  *px0 = x;

  return z;

}

For demonstration purposes, the pre-calculated number

    
K n n

i

n

i
( ) =

+
= ¼( )

=

-

- ×Õ
0

1

2

1

1 2
1 2 3, ,

is crunched on each iteration in Listing 12-10, and the results are shown in Table 12-3.
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As you can see, the pre-calculated constant starts to converge on 0.607253 when the n becomes big,  
and that is the value K

1
 (here the subscript ’1 stands for m=1) referenced in Table 12-2.

As shown in Listing 12-11, the amplitude function can be calculated based on Listing 12-10.

Listing 12-11. CORDIC Amplitude Function

long long CORDIC_amplitude (long long x, long long y)
{
  long long amp;
  long long K1 = 0.607253 * CORDIC_SCALING_FACTOR;

  CORDIC_circular_vectoring_mode(CORDIC_MAX_ITERATIONS, &x, &y);

  amp = (K1 * x + (CORDIC_SCALING_FACTOR / 2))/ CORDIC_SCALING_FACTOR;

  return amp;
}

The arctan function can be calculated as shown in Listing 12-12.

Listing 12-12. CORDIC Arctan Function

int CORDIC_arctan (long long x, long long y)
{
  if ((y == 0) && (x == 0)) {
       return -1; // error condition

Table 12-3. Pre-Calculated Constant for Circular Coordinate Systems

Number of Iterations n K (n)

1 0.707107

2 0.632456

3 0.613572

4 0.608834

5 0.607648

6 0.607352

7 0.607278

8 0.607259

9 0.607254

10 0.607253

11 0.607253

12 0.607253

13 0.607253

... 0.607253
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  } else {
       // scale for best precision
       while ( (abs(x) < (CORDIC_SCALING_FACTOR / 2)) &&
               (abs(y) < (CORDIC_SCALING_FACTOR / 2))) {
                    x *= 2;
                    y *= 2;
       } // End of while loop

       return CORDIC_circular_vectoring_mode (CORDIC_MAX_ITERATIONS, &x, &y);
  }
}

Note that the x and y are scaled up in Listing 12-12 to achieve the best precision.

Circular Rotation Mode
The rotation mode is similar to the vectoring mode, except its goal is to force z to zero. As indicated in 
Table 12-2, the rotation mode in circular coordinate systems should give you the combination of cos z

0
  

and sin z
0
. And sin/cos values can be singled out and extracted by carefully choosing x

0
 and y

0
.

Listing 12-13 shows the fixed point C model for rotation mode in circular coordinate systems. The  
corresponding sin/cos functions (with examples) are shown in Listing 12-14. Compared to the look-up table 
method in the previous section, the CORDIC approach can achieve good precision with fewer resources and 
longer latency. And in order to let CORDIC algorithm converge, the input angle z

0
 has to be kept between 

-p /2 and π/2.

Listing 12-13. Rotation Mode in Circular Coordinate System

long long CORDIC_circular_rotation_mode(int n, long long *px0, long long *py0,
                                        signed long long z0)
{
  unsigned int theta[CORDIC_MAX_ITERATIONS];
  int i;
  int sigma;

  long long x,y;
  long long z;
  long long x_tmp, y_tmp;

  x = *px0; y = *py0;
  z = z0;
  for (i = 0; i < n; ++i) {
       theta[i] = floor((atan2 (1, 1 << i) * CORDIC_SCALING_FACTOR + 0.5));

       if  (z < 0)  {
             sigma = -1;
       } else {
             sigma = 1;
       }
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       if (i > 0) {
              x_tmp = x - sigma * (((y >> (i - 1)) + 1) >> 1);
              y_tmp = (((x >> (i - 1)) + 1) >> 1) * sigma + y;
       } else {
              x_tmp = x - sigma * y;
              y_tmp = x * sigma + y;
       }

       x = x_tmp;
       y = y_tmp;

       z = z - (long long)theta[i] * sigma;

       } // End of for loop

  *px0 = x; *py0 = y;
  return z;
}

Listing 12-14. CORDIC Sin/Cos Functions

long long CORDIC_sin (long long z)
{
  long long K1 = 0.607253 * CORDIC_SCALING_FACTOR;
  long long x = CORDIC_SCALING_FACTOR;
  long long y = 0;

  CORDIC_circular_rotation_mode(CORDIC_MAX_ITERATIONS, &x, &y, z);

  return ((K1 * y + (CORDIC_SCALING_FACTOR / 2))/ CORDIC_SCALING_FACTOR);
}

long long CORDIC_cos (long long z)
{
  long long K1 = 0.607253 * CORDIC_SCALING_FACTOR;
  long long x = CORDIC_SCALING_FACTOR;
  long long y = 0;
  CORDIC_circular_rotation_mode(CORDIC_MAX_ITERATIONS, &x, &y, z);
  return ((K1 * x + (CORDIC_SCALING_FACTOR / 2))/ CORDIC_SCALING_FACTOR);
}

//=============================================================================
// Example:
//
// z0 = floor((atan2 (1, 2) * CORDIC_SCALING_FACTOR + 0.5));
// cosz = CORDIC_cos (z0);
// sinz = CORDIC_sin (z0);
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//
// printf ("cos = %f, sin = %f\n",
// (double)cosz / CORDIC_SCALING_FACTOR, (double)sinz / CORDIC_SCALING_FACTOR);
//
// cos = 0.894427, sin = 0.447214
//

Linear Coordinate System
For a linear coordinate system, its curve is a straight line with x R=  according to Equation 12-4. However,  
I found it much easier to understand by viewing x as the radius of a circle and y as the length of an arc, with 
the included angle as q in radians. Figure 12-4 illustrates this idea for R =1.

Figure 12-4. Linear coordinate system, viewing Y as the length of arc

Thus, a point (x, y) in a linear coordinate system can be expressed as x R=  and y R= ×q . Assume you 
rotate it by another angle of a, the new point will be

¢ ¢= = = × +( ) = + ×x x R y R y x; q a a
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For each iteration, if you intentionally set a to be a power of 2 (in this case, it will be ± -2 i , i = ¼1 2 3, , , ), 
the multiplication will become a shift operation. But unlike the circular coordinate system, there is no need 
to pre-calculate anything for the linear coordinate system.

Linear Vectoring Mode
The fixed point C model for vectoring mode in a linear coordinate system is shown in Listing 12-15. 
According to Table 12-2, this mode can do division, as illustrated in Listing 12-16.

Listing 12-15. Vectoring Mode in Linear Coordinate System

int CORDIC_linear_vectoring_mode (int n, long long x0, long long y0, int z0)
{
  int i;
  int sigma;

  long long x,y;
  int z;
  long long x_tmp, y_tmp;

  x = x0; y = y0;
  z = z0;

  for (i = 1; i <= n; ++i) {

       if  (y >= 0)  {
             sigma = -1;
       } else {
             sigma = 1;
       }

       x_tmp = x;
       y_tmp = (((x >> (i - 1)) + 1) >> 1) * sigma + y;

       z = z - (CORDIC_SCALING_FACTOR >> i) *   sigma;

       x = x_tmp;
       y = y_tmp;

  } // End of for loop

  return z;
}
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Listing 12-16. CORDIC Division Function

int CORDIC_division (long long x, long long y)
{
  if ((y == 0) && (x == 0)) {
       return -1; // error condition
  } else {
       // scale for best precision
       while ((abs(x) < (CORDIC_SCALING_FACTOR / 2)) && (abs(y) <
  (CORDIC_SCALING_FACTOR / 2))) {
                     x *= 2;
                     y *= 2;
       } // End of while loop

       return CORDIC_linear_vectoring_mode (CORDIC_MAX_ITERATIONS, x, y, 0);
  }
}

Note that just like Listing 12-12 for the arctan function, the x and y in Listing 12-16 are also scaled up to 
achieve the best precision.

The previous sections discussed long hand division, fast division, and SRT division. It would be interesting  
to compare them to CORDIC division. Here is an example to calculate 2490/3276 with a bit-width of 30: 

        
2490 3276 0 760073260073260

2490 3276 2 816122448 64468930

¸ =
´ = »

.

/ . 8816122449
 (Equation 12-5)

So the long hand division will give you the quotient of 816122448, and the fast division in Listing 12-7 
will also give the same answer with four iterations and a bit-width of 31. The CORDIC division in Listing 12-16 
will present the result as 816122449, which is asymptotically equal to the value in Equation 12-5.

Compared to fast division or SRT division, CORDIC division holds no advantage on latency or precision. 
The only thing CORDIC division can do better is the resource usage since it requires no multiplier.  
However, given the fact that built-in DSP block is ubiquitous in modern day FPGA, fast division or SRT  
division becomes a more favorable choice over CORDIC division when it comes to FPGA implementation.

Linear Rotation Mode
The fixed point C model for vectoring mode in a linear coordinate system is shown in Listing 12-17. 
According to Table 12-2, this mode can do multiplication, as illustrated in Listing 12-18.

Listing 12-17. Rotation Mode in Linear Coordinate System

int CORDIC_linear_rotation_mode(int n,
                                long long x0, long long y0, long long z0)
{
  int i;
  int sigma;

  long long x,y;
  long long z;
  long long x_tmp, y_tmp;
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  x = x0; y = y0;
  z = z0;
  for (i = 1; i <=n; ++i) {
       if  (z >= 0)  {
             sigma = 1;
       } else {
             sigma = -1;
       }

       x_tmp = x ;
       y_tmp = (((x >> (i - 1)) + 1) >> 1) * sigma + y;

       z = z - (long long)(CORDIC_SCALING_FACTOR >> i) *   sigma;

       x = x_tmp;
       y = y_tmp;

  } // End of for loop

  return y;
}

Listing 12-18. CORDIC Multiplication Function

#define CORDIC_MAX_ITERATIONS     30

#define CORDIC_SCALING_FACTOR      (1 << CORDIC_MAX_ITERATIONS)
#define CORDIC_SCALING_FACTOR_SQRT (1 << (CORDIC_MAX_ITERATIONS / 2))

long long CORDIC_mult (int x, int y)
{
  long long result;
  result = CORDIC_linear_rotation_mode (CORDIC_MAX_ITERATIONS + 1,
         (long long)x * CORDIC_SCALING_FACTOR_SQRT * 2, 0,
         (long long)y * CORDIC_SCALING_FACTOR_SQRT);

  result = (result + 1) >> 1;

  return result;
}

To make sure z would converge to zero, its original value z0 should be kept less than  
CORDIC_SCALING_FACTOR, thus the CORDIC multiplication in Listing 12-18 did some scaling and limited the 
x and y to be no more than CORDIC SCALING FACTOR_ _ . For the particular case in Listing 12-18, the 
maximum x or y is 32767.

And for the case of Listing 12-18, it takes 31 iterations for CORDIC to do the multiplication, which is 
extremely slow. Given the fact that built-in DSP blocks are ubiquitous in modern day FPGA, CORDIC  
multiplication is rarely used in practical FPGA design.
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Hyperbolic Coordinate System
Assume the hyperbolic angle of point (x, y) is q. The hyperbolic coordinate system can be expressed as 
x R y R= × = ×cosh sinhq q, . Now assume you rotate it by another angle of a. The new point will be

 
¢ = × +( ) = × × + × × = × + ×x R R R x ycosh cosh cosh sinh sinh cosh sinhq a q a q a a a
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 (Equation 12-6)

For each iteration, if you intentionally set tanh a to the power of 2, the multiplication in Equation 12-6 

will turn into a shift operation. The part 
1

1
2-( )tanha

 can be pre-calculated as constants and stored in a 

look-up table.

One thing that’s unique about hyperbolic coordinate system is its shift sequence. According to Ref [5], 
some of the shift operations in Equation 12-6 need to be repeated to guarantee convergence. If the shift  
operation is in the form of ± -2 i , to guarantee convergence, i should start at 1, and the following index should 
be repeated one more time:

i k k= ¼ + ¼4 13 40 121 3 1, , , ,

The pre-calculated constant should also take this repetition into account.

Hyperbolic Vectoring Mode
As indicated in Table 12-2, the vector mode in the hyperbolic coordinate system will give you x y2 2-  and 
arctanh. The fixed point C model for this mode is presented in Listing 12-19 (theta[i] can be 
pre-calculated and stored as a look-up table).

Listing 12-19. Vectoring Mode in Hyperbolic Coordinate System

void CORDIC_hyperbolic_vectoring_mode (int n,
                               long long *px0, long long *py0, long long *pz0)
{
  unsigned int theta[CORDIC_MAX_ITERATIONS + 1];
  int i,j, iter;
  int sigma;
  int again;
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  long long x, y, z;
  long long x_tmp, y_tmp;
  int repeat_point = 4;

  double k = 1;
  iter = 1;

  x = *px0; y = *py0; z = *pz0;

  for (i = 1; i <= n; ++i) {

       if (i == repeat_point) {
              again = 1;
              repeat_point = repeat_point * 3 + 1;
       } else {
              again = 0;
       }

       for (j = 0; j <= again; ++j) {
              if  (y >= 0)  {
                    sigma = -1;
              } else {
                    sigma = 1;
              }

              x_tmp = x + sigma * (((y >> (i-1)) + 1) >> 1);
              y_tmp = (((x >> (i-1)) + 1) >> 1) * sigma + y;
              x = x_tmp;
              y = y_tmp;

               theta[i] = floor(((log((1 + (double)1/(1 << i)) / (1 - (double)1/(1 << i)) ) / 2)  
* CORDIC_SCALING_FACTOR + 0.5));

              z = z - (long long)theta[i] * sigma;

              k = k / sqrt ( 1 - 1.0 / ((long long)1 << (2 * i)));
              printf ("---------------------- iter = %d, k = %f\n", iter++, k);

       } // End of for loop

  } // End of for loop

  *px0 = x;
  *py0 = 0;
  *pz0 = z;
}
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For demonstration purposes, the pre-calculated number

K n i
i
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+

= ¼ ¼ ¼(
- ×
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1 2
1 2 3 4 4 5 12 13 13 14 15 39 40 40 41

2
, , , , , , , , , , , , , , , ))Õ

is crunched in each iteration in Table 12-4.

Table 12-4. Pre-Calculated Constant for Hyperbolic Coordinate Systems

Number of Iterations n K (n)

1 1.154701

2 1.192570

3 1.201997

4 1.204352

5 1.206711

6 1.207301

7 1.207448

8 1.207485

9 1.207494

10 1.207496

11 1.207497

12 1.207497

13 1.207497

... 1.207497

As you can see, the pre-calculated constant starts to converge on 1.207497 when the n becomes big, and 
that is the value K-1 (here the subscript ’-1 stands for m=-1) referenced in Table 12-2.

If you set x w y w= + = -1 4 1 4/ , / , x y2 2-  can be used to calculate the square root function, as illustrated  
in Listing 12-20.

Listing 12-20. CORDIC Square Root

long long CORDIC_sqrt (long long w)
{
  long long quarter = (long long)CORDIC_SCALING_FACTOR / 4;

  long long x = w + quarter;
  long long y = w - quarter;
  long long z = 0;
  long long result;

  long long Km1 = 1.207497 * CORDIC_SCALING_FACTOR_SQRT;

  CORDIC_hyperbolic_vectoring_mode (CORDIC_MAX_ITERATIONS, &x, &y, &z);
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  result = (long long)((Km1 * x + (CORDIC_SCALING_FACTOR / 2))/  
                      CORDIC_SCALING_FACTOR);

  return result;

}

On the other hand, z in Listing 12-19 will converge on arctanh
y

x
æ
è
ç
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You can calculate the natural logarithm as shown in Listing 12-21. (The input w should be kept less than 
CORDIC_SCALING_FACTOR in Listing 12-21 for convergence.)

Listing 12-21. CORDIC Natural Logarithm

long long CORDIC_ln (long long w)
{
  long long one = (long long)CORDIC_SCALING_FACTOR;

  long long x = w + one;
  long long y = w - one;
  long long z = 0;
  long long result;

  CORDIC_hyperbolic_vectoring_mode (CORDIC_MAX_ITERATIONS, &x, &y, &z);
  z *= 2;

  return z;
}

//=========================================================
// example:
// z0 = CORDIC_ln (CORDIC_SCALING_FACTOR / 2);
// z0 = -744261114,
// z0 / CORDIC_SCALING_FACTOR = -0.693147176876664
// ln(2) = 0.693147180559945
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Hyperbolic Rotation Mode
As indicated in Table 12-2, the rotation mode in a hyperbolic coordinate system will give you a combination 
of sinh and cosh. And the fixed point C model for this mode is shown in Listing 12-22.

Listing 12-22. Rotation Mode in Hyperbolic Coordinate System

void CORDIC_hyperbolic_rotation_mode (int n, long long *px0, long long *py0, long long *pz0)
{
  unsigned int theta[CORDIC_MAX_ITERATIONS + 1];
  int i,j, iter;
  int sigma;
  int again;

  long long x, y, z;
  long long x_tmp, y_tmp;
  int repeat_point = 4;

  x = *px0; y = *py0; z = *pz0;
  for (i = 1; i <= n; ++i) {

       if (i == repeat_point) {
              again = 1;
              repeat_point = repeat_point * 3 + 1;
       } else {
              again = 0;
       }

       for (j = 0; j <= again; ++j) {
            if  (z >= 0)  {
                  sigma = 1;
            } else {
                  sigma = -1;
            }

            x_tmp = x + sigma * (((y >> (i-1)) + 1) >> 1);
            y_tmp = (((x >> (i-1)) + 1) >> 1) * sigma + y;
            x = x_tmp;
            y = y_tmp;

             theta[i] = floor(((log((1 + (double)1/(1 << i)) / (1 - (double)1/(1 << i)) ) / 2)  
* CORDIC_SCALING_FACTOR + 0.5));

            z = z - (long long)theta[i] * sigma;
       } // End of for loop

  } // End of for loop

  *px0 = x;
  *py0 = 0;
  *pz0 = z;
}
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Since

eq q q= +cosh sinh

If you set both x and y as 1, you can make a natural exponential function out of Table 12-2,  
as illustrated in Listing 12-23. (The input w should be kept less than CORDIC_SCALING_FACTOR in Listing 12-23 
for convergence.)

Listing 12-23. CORDIC Natural Exponential Function

long long CORDIC_exp (long long w)
{
  long long one = (long long)CORDIC_SCALING_FACTOR;

  long long x = one;
  long long y = one;
  long long z = w;
  long long result;

  long long Km1 = 1.207497 * CORDIC_SCALING_FACTOR;

  CORDIC_hyperbolic_rotation_mode (CORDIC_MAX_ITERATIONS, &x, &y, &z);

  result = (long long)((Km1 * x + (CORDIC_SCALING_FACTOR / 2))/ CORDIC_SCALING_FACTOR);

  return result;
}

//================================================================
// Example:
// z0 = CORDIC_exp (562332068)
// z0 = 1812780898
// z0 / CORDIC_SCALING_FACTOR = 1.68828377313912
//
// exp (562332068 / CORDIC_SCALING_FACTOR) = 1.68828386644187
//

Summary
This chapter started out with an introduction to the Q format and two’s complement numbers.

Basic fixed point operations such as rounding, truncation, saturation were also discussed.
In order to do more sophisticated computations, a full coverage of the CORDIC algorithm was presented, 

which included three coordinate systems and two operating modes.
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    CHAPTER 13   

 Popular Ways of Console 
Communications: Prepare 
the Tools                          

    If all you have is a hammer, everything looks like a nail.  

 —Law of the Instrument   

 Embedded systems is a pandemic topic that concerns many engineering disciplines. Accordingly, a wide 
variety of tools are used on daily basis by engineers down in the trenches. Although this book has no 
intention to devolve into a tool shed, it is nevertheless recommended for readers to get familiar with the 
following tools. 

     Software Tools 
 I don’t think there will ever be a complete list of software tools, as the software industry is constantly 
reinventing itself. But if I have to pick, the following are a few ones that come handy for embedded system 
developers. 

      Cygwin   
 If you were an embedded system developer, chances are that you might have to work under both Windows 
and Unix (or Linux) environments. Cygwin is a handy toolset that allows users to run Unix/Linux commands 
on a Windows platform. Cygwin is free of charge and can be installed from    http://www.cygwin.com     .  

      Text Editor   
 Choosing an editor is more like choosing your favorite tennis racket. However, good text editors share 
common traits:

•    Support syntax color  

•   Recognize text files in both Unix and DOS format (I will elaborate shortly)  

•   Allow column editing and binary editing  

http://www.cygwin.com/
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•   Allow you to adjust the indent space and let you use space character in place for tabs  

•   Allow you to replace the tabs with space or vice versa  

•   Allow you to do static syntax parsing on languages such as C and jump between 
function bodies smoothly    

 Based on these criteria, my personal favorites are UltraEdit (Ref  [  1  ] ) and Source Insight (Ref  [  2  ] ). 
UltraEdit fits all these standards except the last one. And Source Insight is very good at parsing C/C++ 
languages and cross-referencing between various syntax entities. 

 If you are working on a shoestring budget and want a free editor, I recommend Notepad++ (Ref  [  15  ] ) 
and Eclipse (Ref  [  3  ] ). One thing great about them is that they both have plenty of third-party plugins thanks 
to their open source nature. However, beware that although Eclipse is free, not all of its plugins are free! 

 One nuisance about the text files is that the carriage return (EOL) is a little bit different between the 
Windows and Unix formats. Windows uses two characters ( CR('\r', 0x0D)  +  LF ('\n', 0x0A) ) as a carriage 
return while Unix only uses one ( LF ('\n', 0x0A) ). Fortunately, there are tools under the Unix environment 
that can convert these two formats back and forth, which are called  dos2unix  and  unix2dos , and the same 
tools are available in Cygwin. In addition, if you choose Subversion to be your source control tool, you can set 
up the  svn:eol-style  property to let Subversion automatically do the conversion for you (Ref  [  8  ] ).      

     File/Folder Comparison 
 Engineering is a subtle job.  A   small change could easily make or break the whole system. It would be handy 
to have a nice file-comparison tool. This tool would also be helpful when you merge the code of different 
version. I recommend UltraCompare (Ref  [  5  ] ) or Araxis Merge (Ref  [  6  ] ) in this regard. Both are great tools for 
this job.  

     Version Control 
 There are tons of version control tools in this world. A good  version control   tool should be capable of doing 
the following:

•    Support both command line and GUI access  

•   Support both Windows (NTFS, FAT32) and Unix ( ext2 ) file systems  

•   Be easy to use  

•   Check out files to a local file system    

 Here I want to spend a few words on the last one. A typical development setting for embedded systems 
could be one of the two following:

•    Everything, including the compiling tool and debug tool, is on Windows platform.  

•   A hybrid setting, where part of the tools, like ICE/debug tools, are on Windows while 
other tools, like the cross-compiler, are on Unix/Linux.    

 If you belong to the second case, I suggest you mounting your Unix home directory to Windows through 
Samba (Ref  [  7  ] ) and edit your files on Windows instead of using the arcane vi or emacs. Your version control 
tool should be able to let you check out files and dump them to a local folder specified by you. In this way, 
you can focus on your local files most of the time and sync with the server only when you need to. 
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 However, some version control tools (such as clearcase) have a different concept. Take clearcase for 
example. It implements its own file system called  MVFS  . You have to mount to its MVFS file system to access 
all the source files. Each engineer has his or her own view of the source database. This is an innovative idea. I 
have to give it credit for that. However, such setting brings upon two problems:    

•    If you are working on your own view and one of the files is modified and checked-in 
by your co-workers without notifying you, unintended changes that you are unaware 
of could sneak into your current source project. (You can change your configuration 
specification to prevent this. There are some tedious steps you have to go through.)  

•   If on the same project, two engineer groups work at different sites geographically, 
one of the engineer group might have to suffer long delays when they edit or compile 
the source code, because all the file R/W have to go to a server that is far away. 
(Again, you can create some pipe to alleviate this, but only to a certain extent.)    

 That’s why I prefer to have a version control tool checking-out files to local file systems. You only need 
to access the server when you sync your local files with the server. Multiple sites would not be a serious 
problem in this case. 

 Hereby I recommend Subversion (Ref  [  8  ]  [  9  ] ) or Git (Ref  [  16  ] ) to be the version control tool. They are 
both very powerful tools, but they take drastically different approaches to get the job done. 

  Subversion (SVN)   takes a centralized approach. Only the SVN server has the whole picture (history 
log, all revisions in the past, etc.), and you have to connect to the server in order to commit changes. On the 
client side, you can type  svn  under Cygwin or Linux to access the SVN server through a command line. And 
Subversion has a nice GUI called  TortoiseSVN   (Ref  [  10  ] ) that is smoothly integrated into Windows Explorer. 

 On the other hand, Git takes a decentralized approach. Each Git clone at a local drive is a standalone 
database that has everything in it. All the changes are committed to the local database as well. You can push 
a branch to a remote computer to share your changes with the rest of the world. Git’s distributed nature is 
very suitable for a team that scattered around multiple sites and doesn’t have constant access to a central 
server. Like Subversion, it also has a Windows Explorer GUI extension called  TortoiseGit   (Ref  [  17  ] ). In fact, 
if you are using Git, mostly like you are using the one powered by GitHub (Ref  [  20  ] ). And GitHub has its own 
Windows applications to do most things through a GUI. 

 When it comes to SVN versus Git, I don’t think there is one size that fits all. And I will let you readers 
make your own decisions in this regard.  

      Issue (Bug) Tracking   
 To err is human. Even the slightest misstep could throw the system out of whack in a big way. The project 
team should follow a standard process to keep track of each issue or bug. I am sure those MBAs/PMs would 
do a better job than I to explain how important a process can be. But if you have a small team and a thin 
budget to begin with, I recommend the following tools to replace a full-time MBA/PM. :-)

•     Bugzilla : Bugzilla (Ref  [  11  ] ) is a lightweight bug tracking tool that originated from 
mozilla.org. It is written in Perl (starting from V 2.0). If all you need is to track the 
status of a bug or filing a new ticket, this might be the tool for you.  

•    Trac : Like Bugzilla, Trac (Ref  [  19  ] ) can also file and track tickets. But in addition, Trac 
provides its own wiki system, and it can also be cross-referenced to version control 
systems like Subversion or Git for change-set and history log. So if you want to make 
a center page for your project with various topics and issues, you might consider 
using Trac.  
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•    GitHub : Although GitHub is known for code hosting with Git, its collaborative 
workflow makes it suitable for issue tracking, code review, and lightweight project 
management. More details can be found in Ref  [  20  ] . In fact, the companion material 
of this book is also hosted on GitHub.    

 But no matter what tools you choose, have a process in place and follow it vigorously. That’s what sets 
an engineer apart from a street artist.  

      Terminal Emulator   
 If you are a die-hard fan of the TV show “Lost” (Ref  [  12  ] ), just like me, you probably would never forget its 
signature scene. Deep down the dark hatch, a lone man is keying in a mysterious sequence of numbers 
through a bulky console, and the world was saved once again when he hit the Enter key. :-) 

 At the time when computer’s were invented, it was a big deal to get In/Out through a dummy terminal 
(console). Despite the progress of technology, the idea of using console for In/Out never dies. 

 For embedded systems, debug console is an indispensable tool at the early stage of development. It is 
crucial to be able to get messages to print out and to key in commands to control the target system (DUT). As 
shown in Figure  13-1 , the three most popular ways of  console communications are:   

•    Using JTAG  

•   Through a 10/100 Ethernet port  

•   Through the good old RS-232 port    

  Figure 13-1.    In/out between target and  console         
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 Of course, you don’t have to own a VT100 terminal to talk to your target any more. All you have to do is 
to install a piece of software called a   terminator emulator    on the host PC to mimic the console hardware. 

 If you use JTAG for your console, you also need an ICE box to go with that. And the ICE software is 
usually vendor unique. 

 If your target communicates with your console through Ethernet, you can install either Cygwin or Putty 
 [  13  ] . Your target system should have a server up running with TCP port 22 (ssh) or 23 (telnet) open. This 
usually means you are able to boot into an embedded OS, or your bootloader is already working properly. 

 If you are at a cruder stage of your development, by which you have to work in the dark to figure out the 
code flow, RS-232 is probably the only viable way, both economically and technically, to fulfill the debug 
console function. And here I strongly recommend Tera Term (Ref  [  14  ] ) to be your serial console software. It 
has very flexible scripting capability and is the  best   terminal emulator I have ever seen. Its latest version also 
supports the ssh protocol.      

      Virtual Machine   
 Today’s desktop PCs are so powerful that running a CPU simulator hardly sweats them. Among all the virtual 
machine platforms, two stand out:

•    Virtual Box (   https://www.virtualbox.org/     )  

•   VMware (   http://www.vmware.com/     )    

 For embedded system development, virtual machine can be used to host Linux systems. There are cases 
where Linux platform is required to run tool chains, and virtual machine can be a low-cost alternative if you 
have a small budge and want to save cost on hardware.  

      Cluster Workload Management   
 For those who are doing heavy load computations, like RTL simulation or regression tests of any kind, having 
a cluster of computers to divide and conquer the work load will become necessary. For that purpose, you 
need good workload management software, such as Platform LSF (Ref  [  28  ] ) or Openlava (Ref  [  29  ] ). 

 In fact, those two bear striking resemblance to each other, as the latter is an open source fork of the 
former’s early version (version 4.2 probably). And you could also let those clustering software manage your 
floating licenses so that jobs can be scheduled more efficiently. For overnight tasks, e-mail notification is 
also available.   

     Hardware Tools 
 If you were a soldier in the battlefield, you probably would wish to have all the cannons and tanks on your 
side. For engineers, here is a list of your cannons and tanks. 

      Oscilloscope   
 During the project review stage, don’t forget to ask board designers to leave enough test points or ground 
leads for signal probing purposes. Also make sure you have the right probe and scope for the frequency you 
are dealing with and calibrate them before using. 

 A good introduction to oscilloscope basics can be found in Ref  [  21  ] . Most oscilloscopes allow you to 
change its internal termination between 50 Ω and 1MΩ (or maybe 10 MΩ). For most of the time, you should 
set the termination to high impedance to avoid disturbing the circuit under test. However, for some RF 
circuit, you might want to set the impedance to 50 Ω to observe the waveform under a loaded condition.  

https://www.virtualbox.org/
http://www.vmware.com/
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      Logic Analyzer   
 First of all, if there is a FPGA in your system and that FPGA happens to have enough memory left unused, 
you can turn the FPGA into a small scale logic analyzer. That saves you a lot of debugging costs. 

 If this is not a viable option, you have to do the following to hook up a logic analyzer for real:

    1.    During the board design stage, make sure you have space left for probe 
connectors. In the old days when clock rate is low, a 40-pin single end pod 
connector might suffice. But nowadays the connectors all have very small pitch 
and can be in various forms to reduce parasitic inductance. Ref  [  22  ]  shows a lot 
of possible form factors.  

    2.    Get a probe to match the connectors on board. Depending on the probing 
solution you choose, the probe/cable could cost you more than a thousand 
bucks.  

    3.    Get a logic analyzer that has enough memory. The setup of logic analyzer usually 
involves timing/state mode, triggers, etc. And a good introduction can be found 
in Ref  [  23  ] .     

 Keep in mind that all these steps have dollar signs involved!  

      Bus/Protocol Analyzer  -Exerciser 
 Depending on how complicated the bus/protocol you are dealing with, a bus/protocol analyzer (or 
Exerciser) might be indispensable. Ref  [  24  ]  [  25  ]  are example ones for I2C/SPI and PCI bus, respectively.  

     Power Analyzer 
 Power consumption is an important metric for embedded systems. One way to measure power is to measure 
the current on power rail with two-terminal sensing, as shown in Figure  13-2 . A sensing resistor in the order 
of mΩ is put in serial with the power rail. The voltage across it is measured by a voltage meter.  

  Figure 13-2.     Two terminal sensing         
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 The biggest problem with two-terminal sensing is its accuracy. In two-terminal sensing, the current 
value is derived per Ohm’s law  I V R=( )/    through the voltage reading and the normal value of the sensing 
resistor. However, due to the contact resistance or lead resistance, the actual resistance will inevitably 
deviate from its normal value. The temperature fluctuation on the lead will also contribute to resistance 
variation. 

 As suggested in Ref  [  26  ] , one way to improve the accuracy is to replace the two-terminal resistor in 
Figure  13-2  with a four-terminal one. In this way, the lead length can be reduced to a minimum. 

 And the idea of four-terminal setting also leads to a different measurement method called Kelvin 1  
configuration, as shown Figure  13-3 . The Kelvin configuration reads out both voltage and current to 
accurately measure load power consumption, and it is often the method adopted by Power Analyzers 
(Ref  [  27  ] ). Power Analyzer can integrate over a long period of time to average out the fluctuation, and it is 
also indispensable to measure standby power. I suggest getting one if your budget allows.   

  Figure 13-3.     Kelvin configuration         

   1  Named after William Thomson, Lord Kelvin  

      Multimeter   
 Among all the hardware tools mentioned in this chapter, Multimeter is probably the least expensive. So get 
one for obvious reasons. :-)  

     Others 
 Depending on the particular domain you are working with, there might be tons of domain specific ones you 
have to spend money on. (If you want to get a feel of that big dollar sign, ask an RF engineer to see how many 
pieces he needs to begin with.)   

     Summary 
 This chapter provided a brief introduction to the tools for embedded system development, on both the 
hardware and software sides. The list presented here is by no means complete. But if you are looking for 
advice to fill your capital spending, this is the shopping list to begin with.      
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    CHAPTER 14   

 Work Flow                          

    One way to identify an amateur organization of any sort, be they accountants, lawyers, 
craft shops, or software developers, is a lack of process.  

 —Jack Ganssle, Embedded Systems Design (September, 2003)   

 There is more than one way to design an embedded system, and there are more than 100 ways to design 
a system that has defects. For any engineering work, having a process in place is a sound way to ensure 
consistency and reliability. 

 However, process is often deeply tied to the business nature of the company, and probably no two 
are exactly the same. For embedded system design, this chapter only serves to paint a general picture, as 
demonstrated in Figure  14-1 . Feel free to tailor the flow below to fit your actual circumstances.  

  Figure 14-1.    General work flow       
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      Project Inception   
 The seed of a project can come from multiple sources. It could be the brainchild of your product managers, 
or it could come as a reward by winning bid. The inception of a project often comes with a budget and a 
schedule, based on which the project manager and project engineer will start to do the planning and system 
partitioning. 

 To increase the chance of success, trade study and cost analysis are absolutely necessary at this stage 
to show that a viable product can be made in a profitable way. And spending enough hours at the planning 
stage is always a wise move in my opinion.  

     System Design 
 The project lead will call on engineers across all disciplines for their opinions, and make decisions at system 
level that could fit the given budget and schedule. For embedded systems, the following three groups often 
stand out: Software, Hardware, and Mechanical. 

      Software   
 The type of processor has to be determined at the system design stage. While waiting for hardware engineers 
to deliver the board, the software team can start by working on an eval board that has the same type of 
processors. Hopefully, the final hardware will be a close sibling of the eval board in use, with additional 
peripherals or modified memory mapping. 

 Most processor vendors today will go the extra miles to provide a full suite of BSP (Board Supporting 
 Package     ) along with the bare hardware. The supporting package often includes the bootloader (such as 
U-Boot, RedBoot, etc.), a HAL (Hardware Abstraction  Layer        ) or embedded OS (Linux, VxWorks, etc.), 
drivers for the peripherals, and the test/demo utilities. The software team can use them as a base for new 
development. If feasible, the software team could also use a daughter card to develop drivers for those 
additional peripherals soon to be introduced in the final product. 

 Depending on the circumstances, application software can even be developed on a simulated platform 
without any physical hardware involved, so that multiple groups can work in parallel to meet the targeted 
schedule. 

 And I believe every software engineer has come across the “Software Engineering” subject at some 
point in his or her life, whether it is in school or at work. And inside every software team, there should be 
more detailed flow to enforce consistency on code style, tool usage, version control, etc. to stick to the 
principle of software engineering. However, the phrase “Software Engineering” is a non-linear time-variant 
variable (Ref  [  1  ]  [  2  ]  :-). New flows are constantly being invented as to how to make reliable software within 
the shortest period of time. Chapter   6     includes as a generic flow that is used by many. And inquisitive 
readers can Google the following to witness the pandemonium of “software engineering” and scoop useful 
information out of them:

•    XP (Extreme Programming), Agile, Scrum  

•   The Cathedral and the Bazaar (Ref  [  3  ] )    

 Among all the hypes and hopes offered here, I found the CI (Continuous Integration) concept to be 
relevant to the embedded system development, especially if you run software simulation quite a lot. To put it 
succinctly, CI advocates frequently building and testing for each commit (or nightly build/test) to the trunk 
(for subversion) or master branch (for Git). In this way, the trunk/master branch can be kept in a deployable 
state most of the time to avoid “integration hell”.     

http://dx.doi.org/10.1007/978-1-4842-1919-5_6
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 Practically, it usually means you have to set up a CI server, such as Jenkins (Ref  [  4  ] ), and do build and 
unit tests after every commit made to the version control system. For embedded systems, the unit test might 
be a little bit hard to carry out if extra hardware has to be set up and be constantly available. However, for the 
case of software simulation, to build/test as much as you can is a viable approach to eliminate bugs at the 
early stage.  

      Hardware   
 While software engineers are working wee hours, their hardware counterparts are burning midnight oils 
as well. 

 The PCB design starts with a schematic, which is heavily tied to the BOM cost. And the eval board with 
the intended processor can serve as a good reference. A joint review should be held before the schematic 
is sent to layout. My two cents is that the review should also invite firmware engineers in order to best 
accommodate their debug wishes. 

 In addition, if FPGA is involved, a preliminary test build should be conducted by FPGA engineers to 
make sure the pin assignment is feasible. Sometimes, especially for IPs like DDR controller or high-speed 
transceivers, pins have to be assigned to certain IO banks or differential pairs for IPs to fit. A preliminary test 
build can rule out possible surprises down the road. 

 The PCB layout can be done either in house or contracted out. Layout engineers often need to work 
with various parties like the schematic designer, the mechanical engineers, or even the product manager 
to determine the constraint drawing, the component facing and placement, etc. The number of layers also 
needs to be determined to find a good comprise between signal integrity and cost. 

 If there is  FPGA   or CPLD on the board, the layout engineers can request FPGA engineers and schematic 
designers modify the pin assignment to make the placement and routing less painful. 

 Depending on the turn-around time and cost, the bare board and assembly work can be done locally or 
overseas. When the assembled boards come back, the hardware engineers should do a basic smoke check to 
make sure there is no shorting, and start powering on the components section by section to gradually bring 
up the board. Firmware engineers could get involved at any stage for testing and integration. 

 To facilitate debug, many PCBs with a small form factor would have a test fixture or daughter card 
designed separately to help probe the board. 

 If  FPGA   is in the design, the FPGA engineers should work in parallel to simulate the design as much 
as they can and deliver bit stream files for integration. Since these days the FPGAs and firmware are so 
intertangled, the simulation could include the processor behavior models as well without any hardware 
physically available.      

      Mechanical   
 Mechanical engineers can make the 2D/3D model before the hardware is built for product manager and 
project lead to review. Thermo analysis is also part of their jobs. This book will leave the part of mechanical 
design to inquisitive readers.   

      Manufacturing and Quality Control   
 Process is important in the design stage, and it is more so for manufacturing. The design engineers should 
have concepts like DFT (Design for Test)      , DFM (Design for Manufacture),       etc., in mind if the final product 
is intended for mass production. And before mass production, the product should go through multiple 
verification phases, like EVT (Engineering Verification Test)       and DVT (Design Verification Test)   . Depending 
on the volume and cost, the manufacturing can be done in house or through a contracted manufacturer. 
Again, I will leave the details to inquisitive readers.  
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     Summary 
 McDonald’s is able to grow itself into nearly every corner of the earth because it has a standard process 
that each and every store follows. For engineers, a standard process is what it takes to deliver a dependable 
product consistently. 

 The process mentioned in this chapter only serves as a reference model. You can adopt, modify, or 
come up with your own process as long as it meets your business needs. But make sure you follow your own 
principles once they are in place.      
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