
Beginning 
Samsung ARTIK

A Guide for Developers
—
Cliff Wootton

T E C H N O L O G Y  I N  A C T I O N ™

www.allitebooks.com

http://www.allitebooks.org


     Beginning 
Samsung ARTIK 

 A Guide for Developers

Cliff Wootton    
  

   

     

     
             

www.allitebooks.com

http://www.allitebooks.org


Beginning Samsung ARTIK

Cliff Wootton     
Crowborough, East Sussex, United Kingdom   

ISBN-13 (pbk): 978-1-4842-1951-5  ISBN-13 (electronic): 978-1-4842-1952-2 
DOI 10.1007/978-1-4842-1952-2

Library of Congress Control Number: 2016940104

Copyright © 2016 by Cliff Wootton 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part 
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission 
or information storage and retrieval, electronic adaptation, computer software, or by similar or 
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are 
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for 
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser 
of the work. Duplication of this publication or parts thereof is permitted only under the provisions 
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must 
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the 
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and 
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of 
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they 
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are 
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility 
for any errors or omissions that may be made. The publisher makes no warranty, express or implied, 
with respect to the material contained herein.

Managing Director: Welmoed Spahr 
Lead Editor: Jeffrey Pepper
Editorial Board: Steve Anglin, Gary Cornell, Louise Corrigan, James T. DeWolf, 

Jonathan Gennick, Robert Hutchinson, James Markham, Matthew Moodie, 
Susan McDermott, Jeffrey Pepper, Douglas Pundick, Dominic Shakeshaft, 
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, 
e-mail   orders-ny@springer-sbm.com    , or visit   www.springer.com    . Apress Media, LLC is a California LLC 
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). 
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail   rights@apress.com    , or visit   www.apress.com    .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional 
use. eBook versions and licenses are also available for most titles. For more information, reference our 
Special Bulk Sales–eBook Licensing web page at   www.apress.com/bulk-sales    .

Any source code or other supplementary materials referenced by the author in this text is available 
to readers at   www.apress.com    . For detailed information about how to locate your book’s source code, 
go to to   www.apress.com/source-code/    .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org


  To my longtime buddy, Pete Willis. 

www.allitebooks.com

http://www.allitebooks.org


   

www.allitebooks.com

http://www.allitebooks.org


v

Contents at a Glance

About the Author ..........................................................................xxvii

Acknowledgments .........................................................................xxix

Trademarks ....................................................................................xxxi

Foreword .....................................................................................xxxiii

Introduction ..................................................................................xxxv

 ■Chapter 1: Getting Started .............................................................. 1

 ■Chapter 2: Welcome to the Internet of Things ................................ 9

 ■Chapter 3: Hello, ARTIK ................................................................. 15

 ■Chapter 4: Understanding Security .............................................. 41

 ■Chapter 5: Your Development Kit .................................................. 47

 ■Chapter 6: Getting Your Hardware Together ................................. 59

 ■Chapter 7: Setting Up a Terminal Emulator .................................. 81

 ■Chapter 8: Talking to Your ARTIK .................................................. 99

 ■Chapter 9: Network Confi guration .............................................. 109

 ■Chapter 10: Confi guring and Upgrading ..................................... 143

 ■Chapter 11: Programming Your ARTIK ........................................ 159

 ■Chapter 12: Using Eclipse IDE .................................................... 175

 ■Chapter 13: Using Arduino IDE ................................................... 195

 ■Chapter 14: Using the Command Line ........................................ 219

www.allitebooks.com

http://www.allitebooks.org


  ■ CONTENTS AT A GLANCE

vi

 ■Chapter 15: Programming in C Language ................................... 239

 ■Chapter 16: Programming with Node.js ..................................... 257

 ■Chapter 17: Programming with Python ...................................... 267

 ■Chapter 18: Integrating with SAMI ............................................. 273

 ■Chapter 19: Integrating with Temboo ......................................... 301

 ■Chapter 20: Debugging Your Application .................................... 325

 ■Chapter 21: Deploying Your Application ..................................... 333

 ■Chapter 22: Next Steps ............................................................... 341

Index .............................................................................................. 347

www.allitebooks.com

http://www.allitebooks.org


vii

Contents

About the Author ..........................................................................xxvii

Acknowledgments .........................................................................xxix

Trademarks ....................................................................................xxxi

Foreword .....................................................................................xxxiii

Introduction ..................................................................................xxxv

 ■Chapter 1: Getting Started .............................................................. 1

Introducing the ARTIK Family .................................................................. 1

Reinventing the Engineering Process ...................................................... 1

About This Book ...................................................................................... 2

Finding Out About ARTIK .......................................................................... 2

Provenance.............................................................................................. 3

Experience Helps ..................................................................................... 4

Your Journey Through the Book .............................................................. 4

Do You Use Windows, Linux, or Mac OS X? ............................................. 4

Get Your Samsung Account ..................................................................... 5

Buy an ARTIK Development System Now ................................................ 5

Would You Like to Know More? ............................................................... 5

What to Read Next ................................................................................... 6

Quick Start............................................................................................... 6

www.allitebooks.com

http://www.allitebooks.org


  ■ CONTENTS

viii

 ■Chapter 2: Welcome to the Internet of Things ................................ 9

What Is the Internet of Things? ............................................................... 9

Concept Map ............................................................................................................. 9

An Example You Can Build Today ............................................................................ 10

The Internet Is Changing—Rapidly ....................................................... 10

Disruptive Changes ................................................................................................. 11

Network Architecture and Design ........................................................................... 11

Sensors ................................................................................................................... 11

Lifestyle Changes .................................................................................. 12

A Revolution in Medicine and the Care Community ................................................ 12

Industrial Internet of Things .................................................................. 13

Revenue-generating Opportunities ......................................................................... 13

 ■Chapter 3: Hello, ARTIK ................................................................. 15

What Is an ARTIK Module?..................................................................... 15

What Is an Ecosystem? ......................................................................... 15

The ARTIK Modules ................................................................................ 16

Software Support .................................................................................. 17

The ARTIK Community ............................................................................................ 17

Security and Privacy Are Core Needs .................................................... 18

The Connected Cloud Service ............................................................... 19

Sensory Capabilities .............................................................................. 19

Communications Challenges ................................................................. 19

Integration with Other Platforms ........................................................... 20

Benefi ts to Consumers .......................................................................... 21

Introducing the ARTIK 1 ......................................................................... 21

Functional Organization .......................................................................................... 22

Operating System ................................................................................................... 22

www.allitebooks.com

http://www.allitebooks.org


  ■ CONTENTS

ix

Wireless Communications ...................................................................................... 22

Spatial Sensors ....................................................................................................... 23

Computing Capacity................................................................................................ 23

Memory Storage ..................................................................................................... 23

Video Display Output .............................................................................................. 23

Introducing the ARTIK 5 ......................................................................... 24

Functional Organization .......................................................................................... 25

Operating System ................................................................................................... 25

Wireless Communications ...................................................................................... 25

Networking Protocol Support ................................................................................. 26

Computing Capacity................................................................................................ 26

Graphics Processing Unit (GPU) .............................................................................. 26

Memory Storage ..................................................................................................... 27

Hardware Video Codec Support .............................................................................. 27

Introducing the ARTIK 10 ....................................................................... 28

Functional Organization .......................................................................................... 29

Operating System ................................................................................................... 30

Wireless Communications ...................................................................................... 30

Networking Protocol Support ................................................................................. 31

Computing Capacity................................................................................................ 31

Graphics Processing Unit (GPU) .............................................................................. 31

Memory Storage ..................................................................................................... 32

Audio Codec Support .............................................................................................. 32

Hardware Video Codec Support .............................................................................. 33

Comparing the ARTIK Modules .............................................................. 33

Power Management Integrated Circuit (PMIC) ....................................................... 33

Security Management ............................................................................................ 34

Support for Audio Coding ........................................................................................ 34

www.allitebooks.com

http://www.allitebooks.org


  ■ CONTENTS

x

Support for Video Coding ........................................................................................ 34

Physical Connections .............................................................................................. 35

About the ARTIK Operating Systems ..................................................... 35

Nucleus RTOS ......................................................................................................... 35

Linux: Fedora OS ..................................................................................................... 36

But What Is Yocto? .................................................................................................. 37

Other Operating Systems ........................................................................................ 38

Summary ............................................................................................... 39

 ■Chapter 4: Understanding Security .............................................. 41

Risk Factors and Dystopian Futures ...................................................... 41

Security Ecosystem ............................................................................... 42

SAMI ...................................................................................................... 42

OAuth2 ................................................................................................... 42

Cloud-based Services ........................................................................... 43

Open Technologies for Sharing .............................................................. 43

Keeping Your Data Safe and Secure ...................................................... 43

Secure Operating System ...................................................................... 43

Firmware Security ................................................................................. 44

Device Authentication............................................................................ 44

Data Encryption ..................................................................................... 44

Get Your Samsung Account Now ........................................................... 44

Embedded Secure Element ................................................................... 45

Hardware Crypto Engine ....................................................................... 45

Segregated Trust Zone .......................................................................... 46

Current Status ....................................................................................... 46

Summary ............................................................................................... 46



  ■ CONTENTS

xi

 ■Chapter 5: Your Development Kit .................................................. 47

The Developer Reference Board ............................................................ 47

About the Developer Reference Boards .................................................................. 47

What Is in the Box? ............................................................................... 48

The Type 1 Developer Reference Board................................................. 50

The Type 5 & 10 Developer Reference Boards (Beta) ............................ 51

Early Production Models........................................................................ 53

Type 5 and 10 Developer Reference Board Connectors ........................ 53

Type 5 and 10 Developer Reference Board Switches ............................ 55

Type 5 and 10 Developer Reference Board LED Indicators ................... 55

Type 5 and 10 Developer Reference Board Jumpers ............................ 56

Connecting External Devices ................................................................. 56

Summary ............................................................................................... 57

 ■Chapter 6: Getting Your Hardware Together ................................. 59

Your Workbench .................................................................................... 59

Setting Up a Hardware Workbench ....................................................... 59

Wiring Up Your Circuits ........................................................................................... 60

Test Equipment ....................................................................................................... 61

Setting Up a Software Workbench ......................................................... 62

Risk Managing Your Software Development ........................................................... 63

Confi guring the Developer Reference Board ......................................... 63

Communicating with Your ARTIK ........................................................... 65

Connecting the ARTIK Development System ......................................... 66

USB Serial Interfaces ............................................................................ 67

Hooking Up the Serial Interface .............................................................................. 68

Setting Up a USB Serial Interface Driver on Windows ............................................ 68

Setting Up a USB Serial Interface Driver on Mac OS X ........................................... 69



  ■ CONTENTS

xii

Setting Up a USB Serial Interface Driver on Ubuntu Linux...................................... 75

Setting Up a USB Serial Interface on Android Devices ........................................... 77

USB Vendor IDs ...................................................................................... 78

Summary ............................................................................................... 79

 ■Chapter 7: Setting Up a Terminal Emulator .................................. 81

Serial Connections with a Terminal Emulator ........................................ 81

Installing Your Terminal Emulator .......................................................... 82

Adding a Terminal Emulator to Windows ............................................... 82

Install PuTTY on Windows ....................................................................................... 82

Connecting to the ARTIK Development System from PuTTY ................................... 84

Closing the Connection ........................................................................................... 84

Logging the Output to a File ................................................................................... 85

PuTTY Log File Naming ........................................................................................... 85

Using the Default Terminal Application on Mac OS X ............................ 86

Closing the Connection ........................................................................................... 87

Recovering from a Bad Screen Exit ........................................................................ 88

Other Useful Screen Commands ............................................................................. 89

Logging the Output to a File ................................................................................... 89

Log Capture Example 1 (Clipboard Cut and Paste) ................................................. 90

Log Capture Example 2 (Screen Command Logging) ............................................. 90

Log Capture Example 3 (Output Redirection) .......................................................... 91

Log Capture Example 4 (Stream Duplexing) ........................................................... 91

Log Capture Example 5 (Script Command Logging) ............................................... 92

Alternatives to the Mac OS X Terminal App ............................................................ 92

Using the Minicom Terminal Application on Linux ................................. 92

Installing Minicom with yum .................................................................................. 93

Installing Minicom with apt-get .............................................................................. 93

Building Minicom from the Source Code Files........................................................ 93



  ■ CONTENTS

xiii

Confi gure Minicom to Talk to the ARTIK Developer  Reference Board ..................... 94

Connecting to the ARTIK Development System from Minicom ............................... 95

Closing the Connection ........................................................................................... 96

Logging the Output to a File ................................................................................... 96

Pausing the Screen Output ..................................................................................... 97

Using Minicom Inside Your ARTIK .......................................................... 97

Summary ............................................................................................... 97

 ■Chapter 8: Talking to Your ARTIK .................................................. 99

Starting Up the ARTIK ............................................................................ 99

The System Administrator Console ....................................................... 99

U-boot Universal Boot Loader Messages .............................................. 99

Booting the Kernel ............................................................................... 100

OS Kernel Startup ................................................................................ 101

Setting the Boot Mode Switches ......................................................... 103

Booting Up Your ARTIK Development System ...................................... 104

Login Credentials ................................................................................ 105

Shutdown Commands ......................................................................... 106

Shutdown Warnings ............................................................................ 107

Shutdown Console Logging Messages ................................................ 108

Summary ............................................................................................. 108

 ■Chapter 9: Network Confi guration .............................................. 109

Networking Your ARTIK ........................................................................ 109

Networking Protocol Support .............................................................. 109

Choosing the Best Networking Strategy ............................................. 110

Wireless Networking ........................................................................... 110

Dynamic Name Auto-discovery Support .............................................. 111

Protocol Support .................................................................................. 112



  ■ CONTENTS

xiv

OMA Lightweight M2M Protocol (LW M2M) ......................................... 112

Constrained Application Protocol (CoAP) ............................................. 113

Message Queue Telemetry Transport Protocol (MQTT) ........................ 113

6LoWPAN Protocol ............................................................................... 114

Using ZigBee and Thread Protocols ..................................................... 114

OpenHAB Support in ARTIK 10 Modules .............................................. 115

OpenStack (Swift) Framework ............................................................ 116

Confi guring Your Ethernet Connection ................................................ 117

How It Works ....................................................................................... 117

IPv4 Addressing Notation .................................................................... 118

IPv6 Addressing Notation .................................................................... 120

Port Numbers ...................................................................................... 121

The Switchover.................................................................................... 122

IP Address Confi guration in Your ARTIK ............................................... 122

Inspecting the IP Addresses ................................................................................. 122

Setting a Temporary IP Address on the Ethernet Interface ................................... 123

Setting a Default Persistent Static IP Address ...................................................... 123

Confi guring Your ARTIK for IPv6 Operation ........................................................... 125

DNS Confi gurations ............................................................................. 126

Introducing systemd ............................................................................................. 126

The Impact of systemd on DNS Confi guration ...................................................... 126

Statically Confi guring Your DNS Servers .............................................................. 127

Getting State of Your IP Links ............................................................................... 128

Confi gure the Wi-Fi Networking .......................................................... 130

Setting Up Wi-Fi Communications ........................................................................ 130

Another Way to Confi gure Your Wi-Fi .................................................................... 133



  ■ CONTENTS

xv

Troubleshooting FAQ ............................................................................................. 135

Advanced Wi-Fi Confi guration .............................................................................. 136

Automatically Reconnect Your Wi-Fi after Each Reboot ....................................... 136

Connecting with Telnet via SSH ........................................................... 138

Confi guring Your Bluetooth Wireless Interface .................................... 139

Setting Up Bluetooth for an ARTIK 5 or 10 ............................................................ 139

Summary ............................................................................................. 141

 ■Chapter 10: Confi guring and Upgrading ..................................... 143

Updating Your Operating System ......................................................... 143

Writing Downloaded Images to an SD Card ........................................ 143

Writing Micro SD Card Images on Windows ......................................................... 143

Writing Micro SD Card Images on Linux ............................................................... 144

Writing Micro SD Card Images on Mac OS X ........................................................ 146

Updating Your ARTIK 5 or 10 ................................................................ 152

Known Firmware Versions ................................................................... 155

Installing Software on Your ARTIK ....................................................... 156

Summary ............................................................................................. 157

 ■Chapter 11: Programming Your ARTIK ........................................ 159

Everything Is the Same but Different .................................................. 159

Programming Your ARTIK..................................................................... 159

Setting Up Your Software Development Environment ......................... 160

Code-Editing Tools ............................................................................... 160

Folders vs. Directories ......................................................................... 161

File-System Path: Folder Separator Characters .................................. 161

Spaces in File Names and Paths ......................................................... 162

Upper- and Lowercase Issues ............................................................. 162



  ■ CONTENTS

xvi

Of Camels and Underscores ................................................................ 164

Let the Environment Do the Heavy Lifting ........................................... 164

Links vs. Aliases .................................................................................. 164

Mac OS Resource Forks ...................................................................... 165

New-Line Characters ........................................................................... 165

Typographers Quotes........................................................................... 166

Being in Two Places at Once ............................................................... 166

Developing Your Code .......................................................................... 169

What Is Cross-Compiling? ................................................................... 169

Building Code for the Correct Target CPU ............................................................. 170

Debug vs. Release ............................................................................... 170

Managing Your Code ............................................................................ 171

Why Do You Need Java? ...................................................................... 172

Checking the Java Version on Windows ............................................................... 172

Checking the Java Version on Mac OS X .............................................................. 172

Checking the Java Version on Linux ..................................................................... 173

Installing Java ....................................................................................................... 173

Do You Need Java on Your ARTIK? ........................................................................ 174

Summary ............................................................................................. 174

 ■Chapter 12: Using Eclipse IDE .................................................... 175

Installing, Confi guring, and Using Eclipse IDE ..................................... 175

Before You Install Eclipse IDE .............................................................. 175

Getting Help ......................................................................................... 175

Installing Eclipse IDE ........................................................................... 176

Eclipse on Mac OS X ............................................................................ 176

Workspace Preferences ...................................................................... 178

Adding New Tools to Your Eclipse IDE ................................................. 179



  ■ CONTENTS

xvii

What Is a Toolchain? ............................................................................ 180

Installing Support for ARTIK Development........................................... 180

Why Build Tools Are Needed ................................................................ 181

Installing the GNU ARM Eclipse Plugin on Mac OS X ........................... 181

Installing an ARM Toolchain on Mac OS .............................................. 182

Confi guring Your IDE for Remote Exploring ......................................... 185

Setting Up a Default Toolchain ............................................................ 188

Semi-hosting Stubs ............................................................................. 189

Support for the MIPS Architecture ....................................................... 190

Support for Eclipse Smart Home ......................................................... 190

Making a New ARM Project ................................................................. 190

Deploy the Binary to Your ARTIK .......................................................... 194

Summary ............................................................................................. 194

 ■Chapter 13: Using Arduino IDE ................................................... 195

Installing, Confi guring, and Using Arduino IDE .................................... 195

Before You Install Arduino IDE ............................................................. 195

How To ................................................................................................. 195

Recommended Settings for Your Arduino IDE ..................................... 197

Installing and Confi guring libArduino .................................................. 199

Confi guring Your ARTIK for Uploads (Board Setup) .............................. 201

Uploading a Sketch to Your ARTIK with Arduino IDE .................................202

Network Upload Method ....................................................................................... 202

Serial Upload Method ........................................................................................... 203

Native Sketch Compilation .................................................................. 203

Recommended Update Cycle .............................................................. 204

Developing with libArduino SDK .......................................................... 204



  ■ CONTENTS

xviii

Arduino Pins: Type 1 Developer Reference Board ............................... 204

Arduino Pins: Type 5 and Type 10 Developer Reference Boards.......... 206

System Commands ............................................................................. 208

Detecting the Board Version ................................................................ 208

The Serial Object ................................................................................. 209

The Serial1 Object ............................................................................... 209

The DebugSerial Object ....................................................................... 210

Pin Modes ............................................................................................ 210

Reading Digital Input Pin Values .......................................................... 211

Setting Digital Output Pin Values ......................................................... 211

Setting Analog Output Pin Values ........................................................ 212

Reading the Analog Inputs .................................................................. 213

Serial Peripheral Interface (SPI) .......................................................... 214

Detecting Interrupts ............................................................................ 214

Pausing for Breath ............................................................................... 214

Powersaving Mode .............................................................................. 215

Compiling and Running Sketches Natively .......................................... 215

Where to Find Out More ...................................................................... 216

Troubleshooting ................................................................................... 217

Managing the Type 5 vs. Type 10 Pin-Number Differences .................................. 217

CPU Utilization at 100 Percent .............................................................................. 217

Digital Read Only Ever Reports a 1 Value ............................................................. 217

Porting Projects from Other Architectures ............................................................ 218

Logic Levels .......................................................................................................... 218

Summary ............................................................................................. 218



  ■ CONTENTS

xix

 ■Chapter 14: Using the Command Line ........................................ 219

Command-Line ARM Toolchains .......................................................... 219

Ubuntu Linux ....................................................................................... 219

Debian Linux ........................................................................................ 220

Mac OS X ............................................................................................. 220

Adding a UNIX Command Line to Windows ......................................... 221

UNIX I/O Streams and Redirection ....................................................... 221

What’s Where? .................................................................................... 222

File System Mapped Properties Inside the ARTIK ................................ 223

What CPU Is Available? ......................................................................................... 223

Detecting Current Processor Speed ..................................................................... 224

Connecting to Remote Web Servers .................................................... 224

Examples with curl ............................................................................................... 225

Useful UNIX Commands Inside Your ARTIK .......................................... 226

Quitting and Aborting Processes .......................................................................... 226

Inhibiting the Debugging Messages ..................................................................... 227

Setting the Correct Date ....................................................................................... 228

Checking Your Memory Usage .............................................................................. 228

The vi Editor (Why vi?) ......................................................................... 228

How to Use vi ........................................................................................................ 229

Open a File for Editing or Create a New One ........................................................ 229

Inside the vi Editor ................................................................................................ 229

Saving and Exiting ................................................................................................ 229

Command Mode ................................................................................................... 230

The GCC Compiler ................................................................................ 232

Language Support ................................................................................................ 233

Supporting Libraries ............................................................................................. 233

GCC ARM Compiler Support .................................................................................. 234



  ■ CONTENTS

xx

Getting GCC Up and Running ................................................................................ 234

Writing a Simple Program (Hello World) ............................................................... 235

Compiler Warnings ............................................................................................... 236

Next Steps ........................................................................................... 236

SCP: Secure Copy ................................................................................ 236

File Upload to ARTIK Module ................................................................................. 237

File Download from ARTIK Module ....................................................................... 237

Summary ............................................................................................. 237

 ■Chapter 15: Programming in C Language ................................... 239

Programming Your ARTIK Natively in C ................................................ 239

Coding Strategies ................................................................................ 239

Creating a Simple Application ............................................................. 240

Looking Deeper Inside Your ARTIK ....................................................... 241

About the /sys Virtual File System ....................................................... 242

GPIO Pins ............................................................................................. 243

GPIO: Pin Mapping ................................................................................................ 243

GPIO: Pin Export to the User Domain .................................................................... 245

GPIO: Pin Direction Setting ................................................................................... 246

GPIO: Digital Value Setting .................................................................................... 247

GPIO: Digital Value Reading .................................................................................. 247

GPIO: Edge Detecting ............................................................................................ 248

Reading Analog Input Values ................................................................................ 249

Analog Read Differences Between ARTIK 5 and 10 .............................................. 250

Library Function Toolkit ....................................................................... 250

An Example ......................................................................................... 254

Accessing Remote Systems with libCurl ............................................. 254

Summary ............................................................................................. 256



  ■ CONTENTS

xxi

 ■Chapter 16: Programming with Node.js ..................................... 257

Developing with Node.js ...................................................................... 257

The Architectural Design ..................................................................... 258

Compiled Binary Code ......................................................................... 259

Checking the Version of Your Node.js Installation ............................... 259

Extending Node.js ................................................................................ 260

Installing NPM ...................................................................................................... 260

Node Packages and Modules ............................................................................... 261

Installing the WebSocket Module ......................................................................... 262

Let’s Write Some Node.js Code ........................................................... 262

Reading a Pin Voltage with Node.js ..................................................... 262

Sending Data to SAMI with Node.js ..................................................... 264

Summary ............................................................................................. 266

 ■Chapter 17: Programming with Python ...................................... 267

Developing with Python ....................................................................... 267

Checking Your Python Interpreter ........................................................ 268

Installing the Python Package Manager .............................................. 268

Installing Python Packages ................................................................. 269

Run a Simple Python Test .................................................................... 269

Reading a Pin Voltage with Python ...................................................... 270

Summary ............................................................................................. 271

 ■Chapter 18: Integrating with SAMI ............................................. 273

About SAMI .......................................................................................... 273

What Is SAMI? ..................................................................................... 274

Interacting with SAMI .......................................................................... 275

How SAMI Works ................................................................................. 275



  ■ CONTENTS

xxii

SAMI Developer Documentation .......................................................... 276

Security ............................................................................................... 276

Authentication ..................................................................................... 277

Messages ............................................................................................ 277

User ..................................................................................................... 278

User ID ................................................................................................. 278

Devices ................................................................................................ 279

Device Type ......................................................................................... 279

Device ID ............................................................................................. 280

Applications ......................................................................................... 280

Application ID ...................................................................................... 280

OAuth2 Access Tokens ........................................................................ 280

Manifest .............................................................................................. 280

Raw Data ............................................................................................. 282

Normalized Data .................................................................................. 282

The SAMI API ....................................................................................... 282

Developer SDK Libraries ...................................................................... 283

SAMI Tools ........................................................................................... 284

The Developer Portal ............................................................................................ 284

The User Portal ..................................................................................................... 285

API Console ........................................................................................................... 286

Device Simulator .................................................................................................. 286

Manifest Validator ................................................................................................. 286

User Portal: Managing Devices ........................................................... 286

Device Details ....................................................................................................... 288



  ■ CONTENTS

xxiii

User Portal: Managing Rules ............................................................... 289

Rule-based Actions ............................................................................................... 290

Adding New Rules ................................................................................................ 290

User Portal: Displaying Charts ............................................................. 292

User Portal: Viewing Data Logs ........................................................... 293

User Portal: Exporting Data ................................................................. 294

Developer Portal: Managing Device Types........................................... 294

Developer Portal: Managing Applications ............................................ 295

Connecting to SAMI from Your Applications ........................................ 295

Acquiring an Access Token for Your Application .................................. 296

Getting Data from SAMI for Your Application ....................................... 296

Sending Data to SAMI from Your Device ............................................. 297

Try Out More Examples ....................................................................... 298

Want to Know More? ........................................................................... 298

Summary ............................................................................................. 299

 ■Chapter 19: Integrating with Temboo ......................................... 301

Hello Temboo ....................................................................................... 301

Developing with Temboo ..................................................................... 302

Registering Your Temboo Account ....................................................... 302

Your Temboo Account Dashboard ........................................................ 303

Monitoring Your Activity ....................................................................... 304

Your Choreo Library Dashboard ........................................................... 306

Supported Platforms ........................................................................... 307

Supported Connectivity ....................................................................... 308



  ■ CONTENTS

xxiv

Online Data Storage ............................................................................ 308

Choreographies ................................................................................... 308

Condition Handling .............................................................................. 310

Remote Storage in Profi les .................................................................. 311

Output Filters ....................................................................................... 311

Data Streaming ................................................................................... 311

Machine-to-Machine (M2M) with Temboo........................................... 312

Temboo and ARTIK ............................................................................... 312

Temboo and ARTIK 5 ............................................................................ 313

Getting Ready to Tango with Temboo .................................................. 313

An Example of Code Generated by Temboo ......................................... 315

Shared Login Credentials .................................................................... 320

Missing cdefs.h Message .................................................................... 321

Using CURL via a REST API Instead of C .............................................. 321

Using Temboo with Node.js ................................................................. 322

Sample Code to Experiment With ........................................................ 322

Summary ............................................................................................. 324

 ■Chapter 20: Debugging Your Application .................................... 325

Debugging Your App ............................................................................ 325

Software Debugging with GDB ............................................................ 325

Onboard Native Debugging with GDB ................................................................... 326

Remote Debugging with GDB ............................................................................... 327

IDE Support for Debugging .................................................................. 328

Emulating Your Hardware with QEMU ................................................. 329

Using the JTAG Connectors ................................................................. 329



  ■ CONTENTS

xxv

Hardware Debugging with SEGGER J-Link .......................................... 329

Hardware Debugging with OpenOCD ................................................... 331

Cleaning Up after Debugging .............................................................. 331

Summary ............................................................................................. 331

 ■Chapter 21: Deploying Your Application ..................................... 333

Getting Ready ...................................................................................... 333

Deploy Files to ARTIK with scp ............................................................ 333

Deploy Files across the Network ......................................................... 334

Deploy Files to Your ARTIK with a Micro SD Card ................................ 334

Deploy Files to Your ARTIK with a USB Flash Drive ............................. 337

Prototypes vs. Production ................................................................... 338

Integrating the ARTIK into your Products ............................................ 338

Summary ............................................................................................. 339

 ■Chapter 22: Next Steps ............................................................... 341

What Do You Want to Make?................................................................ 341

Finding Out about More Project Ideas ................................................. 343

Becoming a Partner Organization........................................................ 344

Going Deeper into ARTIK Development................................................ 344

My Challenge to You ............................................................................ 345

Index .............................................................................................. 347



  



xxvii

  About the Author 

     Cliff   Wootton       is a Royal Television Society (2002) 
Innovation award-winning former interactive TV 
systems architect at the BBC, specializing in content 
management systems and digital video. He was a guest 
speaker on pre-processing for video compression at 
the Apple WWDC 2007 developer conference and 
presented a technical paper on interactive TV systems 
at the NAB 2003 conference. He has taught IoT, 
real-world computing with Arduino, multimedia, video 
compression, metadata, and how to build multimedia 
art installations at the master’s level at the University of 
the Arts, London. Cliff now concentrates on research 
and development projects, building digital media tools 
for creating audiovisual content, multimedia, electronic 
book publishing, writing, teaching, and playing the bass 
guitar. 

       

     



  



xxix

  Acknowledgments  

 Huge thanks are due to these people who created resources online and contributed ideas 
and practical help while I was writing this book. Their assistance was truly invaluable and 
is gratefully acknowledged.

•     Steve Weiss ,  Melissa Maldonado ,  Jeff Pepper,  and  Jonathan 
Gennick  at Apress — it has been great to work with you guys again  

•    Glenn Cameron  at Samsung, who kindly provided prototype 
hardware and technical resources  

•    Curtis Sasaki  for generously contributing the foreword  

•    Fred Patton  at Samsung for his excellent photographic 
contributions and technical support  

•    Martin Kronberg  for putting some helpful projects online in the 
Hackster.io blog  

•    Simon Tatham,  who wrote and maintains the PutTTY application  

•   The minicom project team  

•   The Temboo team for their generosity in sharing insights into 
deeply technical interface code through their code-publishing 
mechanisms  

•    Kevin Sharp  for his helpful contributions to the ARTIK blog  

•   All the  artik.io  forum posters whose questions inspired me to 
cover interesting topics  

•    Gaynor Bromley  at Panasonic Electric Works UK Ltd for the AXT 
connector images  

•    Joe Geoghegan  and  Bhavin Naik  at Mentor Graphics for 
technical white papers about Nucleus OS  

•    Paul Stoffregen  for developing the  Bridge.h  library used in the 
Arduino IDE  

•    Tevon Jordaan  for introducing me to Scrivener 
(an extraordinarily good book-writing tool).  

•   The Scrivener application developer team 
(see    http://www.literatureandlatte.com     )     

www.allitebooks.com

http://www.literatureandlatte.com/
http://www.allitebooks.org


  



xxxi

  Trade marks 

   ARM® is a registered trademark owned by ARM Ltd. 

 Mali™ is a trademark owned by ARM Ltd. 

 MIPS® microAptiv™ is a trademark owned by Mentor Graphics. 

 Linux® is the registered trademark of Linus Torvalds in the United States and other countries. 

 Java® is a registered trademark of Oracle and/or its affiliates. 

 All other trademarks are the property of their respective owners.  



   



xxxiii

   Foreword    

 If you follow the tech media at all, you will no doubt have seen plenty of coverage of — and 
excitement for — the Internet of Things (IoT). The hype surrounding IoT has been palpable. 
But now we appear to have reached an inflection point, where the hype is becoming 
reality. IoT is transforming the way people live their lives, with the power to automate, 
connect, and inform us like never before. 

 The technology to support IoT is evolving rapidly, with the availability of new, 
highly-integrated “systems on modules” (SOMs), as well as optimized wireless support 
and diverse sensor technologies. The most important change however, may be the 
move back to hardware. Over the past few years, most innovation has been taking place 
in the cloud and in system software. But with IoT, we are seeing renewed energy and 
commitment to hardware development. The arrival of low-cost development platforms, 
such as Arduino and Raspberry Pi, has helped the burgeoning maker community to really 
take off. 

 The Samsung ARTIK IoT platform takes this evolution to the next phase with its 
System on Module (SOM) concept. Designed for both individual developers and those 
who need it for large-scale production purposes, it features not only the application 
processor, but also DRAM, flash memory, radios, and advanced security options. 

 The idea behind ARTIK is simple: reduce the complexity of designing your IoT 
hardware. Previously, designers often had to do their job twice — once to get a working 
prototype, and then a redesign for the final production board. With ARTIK, you have 
the advantage of using the same module in your prototype that you will use in the final 
production hardware. 

 Beyond the hardware, the ARTIK platform also delivers a full stack with the latest 
drivers and tools, as well as a cloud service. And because ARTIK is an open platform, the 
choice of software is up to you. 

 As you can imagine, ARTIK is designed to support a broad range of uses, from 
wearables and products for the smart home to powerful hubs capable of local processing 
and analytics. 

 All of us at Samsung are excited to see the creativity that you will bring in leveraging 
the ARTIK platform, and how your work can change the world around us in positive ways. 
Of course, having books and documentation to help you get started is always welcome. 

 We believe that this  Beginning Samsung ARTIK  book and the companion  ARTIK 
Reference Guide  will provide plenty of inspiration to help you achieve your vision with the 
ARTIK platform.  

   —Curtis   Sasaki   
   Samsung ARTIK project leader ,    

 Spring 2016 



  



xxxv

  Introd uction 

   This introductory book will help you start your journey toward becoming an expert 
ARTIK developer as you develop a new and profitable enterprise. 

 This book will show you how to set up your own ARTIK development system and 
get your ARTIK module up and running. Then you can develop your own applications 
for it. By the end of the book you should have a working system and be able to create and 
deploy simple applications to your ARTIK module. Then it will be up to you to create 
something extraordinary. The chapters are arranged in a logical sequence starting with 
some background information, then how to set up your system, before describing basic 
programming techniques. External systems such as Temboo and SAMI are covered before 
rounding things off with debugging and deployment guidelines. 

 I composed this as I got to know the ARTIK after Glenn Cameron from Samsung 
kindly sent one to me to work on. As I found out new and interesting things about it, I wrote 
about what I learned straightaway while the knowledge was still fresh. I tried to maintain 
the perspective of a new user encountering ARTIK for the first time to avoid making 
assumptions about what the reader might already know. Some readers will already know 
about the topics I cover. Even so, the additional background information I provide here will 
be helpful even to more experienced engineers, designers, makers, and developers. 

 It is still an early stage in the ARTIK product lifecycle, and many features are still 
being developed to their full potential. There are topics like video and audio that merit 
complete books about just that aspect of ARTIK development. Those will come later. 
For now, it is enough to understand the basics of how ARTIK works so as to have solid 
foundational knowledge on which to later build the more advanced topics. Some of those 
topics are mentioned briefly here, but there is not enough space to cover everything 
in great depth without creating a huge book. For now, let’s work on this in more easily 
digestible stages and get the ARTIK modules up and running first. 

 The companion  ARTIK Reference Guide  will build on what you learn in this book. 
It will concentrate on ARTIK internals and provide details for more advanced 
programming so that you can create more complex applications.

   —Cliff Wootton  
  Crowborough, UK  

  Spring 2016     



1© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_1

    CHAPTER 1   

 Getting Started           

     Introducing the ARTIK Family 
 Samsung ARTIK is all about versatility. Providing the computing power of a UNIX 
workstation in a form factor as compact as this will revolutionize the way that smartness 
is engineered into your products. With computing power delivered as a commodity, 
ARTIK can make everything smarter. 

 The  Samsung ARTIK platform   is designed to jumpstart the development of products 
that exploit the potential of the Internet of Things (IoT). IoT is a structured way by 
which all kinds of devices from tiny wearable items to entire homes and factories can 
communicate with each other. Then they can autonomously adjust their behavior to 
accommodate real-time changes in their interactions with peers or human operators. 

 Products like the ARTIK modules are only possible due to the prior success of 
mobile phone technology. As phones have become smarter and smaller, the integration 
of memory and computing power into ever-smaller packages can be leveraged to create 
a general-purpose computer. The further reduction in device size results in technologies 
such as the ARTIK modules. As these modules become increasingly popular, the 
economies of scale reduce the unit cost and they can be deployed everywhere.  

     Reinventing the Engineering Process 
 Samsung expects ARTIK to be integrated into products, devices, and appliances that the 
general public will deploy in homes and factories in huge numbers. The SAMI or Temboo 
 ecosystems   and others like them will take this integration even further and distribute the 
smartness across many devices so they work together as a single larger system. 

 You can retrofit the ARTIK into existing products to make them smarter or include an 
ARTIK module in the core of a revolutionary new product or service. The ARTIK solution 
is versatile enough to be deployed in a huge range of scenarios. By developing a base 
platform, ARTIK helps you leverage all of that technology and concentrate on your 
value-added innovation. Fundamental capabilities such as communications, media 
services, sensor integration, security, and compute engines are already up and running. 
This saves a lot of time when you begin a new design. 

Electronic supplementary material The online version of this chapter 
(doi:  10.1007/978-1- 4842-1952-2_1    ) contains supplementary material, which is 
available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1848-8_1


CHAPTER 1 ■ GETTING STARTED

2

 Using a well-integrated  hardware and software solution   such as the ARTIK module 
helps you avoid years of engineering design and development work. Simply add your 
control interfaces, sensors, and software and let ARTIK take care of the heavy lifting. 
Because the ARTIK module is built with a lot of well-known  open-source technologies  , 
your learning curve can exploit the things you already know. Just fill in the gaps.  

     About This Book 
 This is a beginners’ guide that will introduce you to developing prototype applications on 
a Samsung ARTIK module. If you are already an experienced UNIX developer you should 
feel at home working on ARTIK through the  command-line user interface  . If you are new 
to UNIX and the Internet of Things industry, this book will provide useful references to 
other source material to facilitate your learning experience. 

 This book will show you how to work with the hardware developer reference 
board that carries an ARTIK module. The developer board makes access to the pinout 
connectors on the ARTIK module more convenient for prototyping. The board also 
provides enhanced hardware debugging connectivity for  JTAG probes  . 

 The programming examples in this book are intended to illustrate how to use the 
application building and deployment commands. They are not very complex, but they do 
show you in a very brief format how to interact with the hardware from inside your own 
applications. 

 The companion Apress  ARTIK Reference Guide  book has more reference material 
and deeper coverage of the ARTIK internals, along with more extensive coding examples. 
It will help you move on to more advanced topics and prepare your prototype design for 
deployment to production.  

     Finding Out About ARTIK 
 When a product like ARTIK is so new, the available information about it is scarce. As a 
developer you need to apply  forensic techniques   to research-related topics and reverse 
engineer them to understand what to look for inside the ARTIK module. Once you absorb 
that knowledge and understand the technology, you are ready to experiment with an 
idea. It is not always easy, but it is great fun and very satisfying when you get something 
to work. The Temboo tools are a huge help, because they generate working code that you 
can learn from. Their code shows you how to access the  Arduino compatible pins   in your 
ARTIK module directly from C language or Node.js and other languages. 

 I was inspired to cover some topics by the posts in the discussion forum, which 
suggested things that readers would like to know more about. Other content was 
suggested by reading blogs and tutorials elsewhere on the Internet. Then I concentrated 
on finding things out by experimentation and documented what I discovered in a logical 
narrative. The fruits of my own forensic research and experimentation are distilled into 
this book so you can quickly move on to more advanced things. 

 I hope this book helps to support developers by answering some of the questions 
they have asked so far. There will be new questions to answer as we get to know the 
ARTIK modules better. The Samsung materials are excellent starting points for your 
learning process. While I have used them as a starting point for my own tutorials, I have 
added a lot of additional background supporting material around the basic coverage.  



CHAPTER 1 ■ GETTING STARTED

3

     Provenance 
 The book was initially written around the Alpha prototype version of the ARTIK 5 and 
then upgraded with the information found in the Beta documentation and by testing on 
a Beta prototype of the ARTIK 5. If you are trying to use the examples in this book on an 
Alpha prototype ARTIK module, a lot of things had not yet been developed at that point. 
Some functionality was also not yet available for the Beta prototype, and you will probably 
observe some functionality differences when you work on the production model. 

 You might find a practical use for your old  Alpha and Beta prototype modules   
and developer reference boards, but upgrading to a production model ARTIK module 
when they are available is a good idea. That will ensure a trouble-free development 
process going forward, and any future software upgrades will be compatible with your 
prototyping system. 

 The initial group of ARTIK modules shipped in the spring of 2016 are Commercial 
Beta version 0.5.0 products. The shipping models will be updated later to production 
versions as they feed through the manufacturing pipeline. The Commercial Beta is 
perfectly capable of supporting your prototype product development process. Later on, 
you may want to risk-manage any potential functional changes by upgrading your ARTIK 
development systems from time to time as they evolve. 

 It is natural that things will change inside the ARTIK modules as their design evolves. 
Where locations within the virtual file system are described, pay special attention 
to checking these against your own ARTIK module. The fundamental file system 
organization is dictated by the base operating system (either Nucleus or Fedora). Further 
changes to the Fedora core are configured by a Yocto profile. There is a possibility that 
Samsung will move virtual file system locations or change the file names to accommodate 
new hardware and drivers as they are introduced. It is impossible to predict whether 
this will happen or when, so you should run some basic checks whenever you upgrade 
the operating system. Using some intuition and a little forensic research based on what 
is covered by this book will reveal what you need to know when things move around — as 
they inevitably will. 

 Post your observations and discoveries online or submit to the publisher for 
inclusion in later books. That will help the whole ARTIK community keep up to date. 

 Although there is some discussion here about the ARTIK 1 modules, this book is 
primarily concerned with getting your ARTIK 5 and 10 modules working. The ARTIK 1 
modules will be delivered in due course, and the knowledge gained from working with 
the ARTIK 5 and 10 modules can be applied to getting them up and running. 

 ■   Note    The tutorials and instructions herein are based on what you should observe in 
a Commercial Beta ARTIK module, with some caveats noted where I found things were not 
implemented in my earlier Beta test system. My final testing took place on a Commercial 
Beta unit just as they began to ship.   



CHAPTER 1 ■ GETTING STARTED

4

     Experience Helps 
 To get the most out of a new system, you will rely on a lot of background knowledge and 
experience that you add to with each new product you work on. That experience takes 
time to acquire — a lifetime, perhaps. There is always something new being invented to 
learn about. I realized from the outset that some readers would need to know about 
important background topics, such as how UNIX works and why IP networks have all 
those parameters to configure them. Other readers will already be experts in those topics 
and can safely skip over those sections, although they may need the practical instruction 
steps. To help readers who are unfamiliar with systems administration, I include 
basic knowledge to support you during the initial stages. This extra help is not meant 
to be a complete grounding in  UNIX systems administration   or how IP networks are 
implemented. There are many helpful tutorials online and advanced reference books that 
will go as deeply into those topics as you need if you want to become an expert. 

 The ARTIK modules run a version of UNIX. Consequently, there are many useful 
tools that are already installed by default. The  vi  text editor and  gcc  compiler are enough 
to write a simple application without any additional external tool support. If you watch 
the logging messages during the ARTIK boot process, you will see various other services 
being started up, such as  sendmail . These are all there, ready and waiting to be exploited 
as part of your design. Get to know these tools well, because the knowledge is career 
enhancing.  

     Your Journey Through the Book 
 Work through the chapters to bring up your development system in an orderly way. If you 
already have a development environment up and running, just check that your settings 
are compatible. The earlier chapters are about configuring applications and tools on your 
workstation. When your development environment is ready, you can interact with your 
ARTIK module. If you are keen to get started right away, look at the quick-start guide. 
Not everyone is comfortable with living on the bleeding edge of technology like that and 
jumping in straight away. Experienced developers enjoy the challenge, however. Gaining 
a thorough and in-depth knowledge requires a steady step-by-step approach with a 
gentle learning curve at the beginning. The logos for important software products are 
included so that when you search for online resources you can identify the correct search 
results. Some topics have multiple conflicting results that describe products other than 
the one you need to read about.  

     Do You Use  Windows  , Linux, or Mac OS X? 
 Very often, developer documentation assumes you are working on a Windows 
workstation. Some professional developers like to use Linux or another UNIX-based 
system because it is what they grew up with. Recently, and most likely due to the growth 
in the number of mobile developers writing applications for iOS, a lot of people are using 
Apple Macintosh computers as a serious platform for their development work. 



CHAPTER 1 ■ GETTING STARTED

5

 None of these are necessarily a better solution than the others. They are all different, 
with  Linux and Mac OS   sharing some common heritage. A lot of tools have been 
developed by Apple to replace or supplement command-line utilities that are widely 
available in Linux. Proprietary Apple tools are not available on Linux, although some 
open-source projects sponsored by Apple might be. The open-source community plugs 
the gap with new tools that are usually ported to all three operating systems. 

 The coverage in this book is balanced across all three development-hosting 
platforms so as to treat them equally and gives hints about how to resolve any difficulties 
you encounter. Apress will be delighted to receive advice, comments, and suggestions 
from readers about improvements to this cross-platform coverage. 

 ■   Note   Even the core and classic UNIX implementations are fragmented, and there are a 
few different flavors of Linux. A book like this can cover things from a generic point of view, 
but the diversity of operating systems, platforms, and versions means that you will often 
encounter subtle differences. “ Your mileage may vary ”.   

     Get Your Samsung Account 
 You should sign up for a  Samsung account   right away. The developer resources for the 
ARTIK hardware and the SAMI data exchange are only accessible to you when you are logged 
on with an account. The account is provided free of charge by Samsung for developers 
and end users. Refer to Chapter   4     (“Security Matters”) for an outline of the sign-up 
process if you are unsure how to do it. The process is straightforward and easy to follow.  

     Buy an ARTIK Development System Now 
 The ARTIK 5  development systems   went on sale as the Mobile World Conference got 
underway in Barcelona in February 2016. The supplier is Digi-Key. If you go their website, 
you can search using the keyword “ ARTIK ” to find all the Samsung ARTIK products 
available. Digi-Key has international representation, so you should use the correct 
version of their site to order in your local currency. The international territories are listed 
at the bottom of the web page. Here are links to the US and UK ARTIK product searches: 

      http://www.digikey.com/product-search/en?keywords=ARTIK         
     http://www.digikey.co.uk/product-search/en?keywords=ARTIK         

         Would You Like to Know More? 
 Some topics of great interest are outside the scope of an introductory book. I will provide 
a brief mention of them here and provide links to additional material in online resources 
that I found for you. These resources informed my writing process, but there is much 
to be gained by your reading them yourself. Most things you need to learn about are 

http://dx.doi.org/10.1007/978-1-4842-1952-2_4
http://www.digikey.com/product-search/en?keywords=ARTIK
http://www.digikey.co.uk/product-search/en?keywords=ARTIK


CHAPTER 1 ■ GETTING STARTED

6

based on publicly available knowledge. Explore them to hone your skills and glean more 
valuable knowledge about the technologies embedded in your ARTIK module. 

 This curated approach to teaching worked very well in a university environment 
where the students were expected to use a  self-directed study approach   to learn what they 
needed and realize their own project designs. 

 If you learn something useful and important that is not covered in this book or 
the companion reference guide, add it to the forum discussions and help your fellow 
developers at the same time. 

 There is a small risk that some of the web URLs will move or be deleted in the future. 
If you cannot find the item listed here, deconstruct the link and look for it using key 
components of its name. For example, if a blog moves, the articles may still be intact. 
Take the file-name portion of the URL and search for that using Google, Bing, or any other 
search engine you prefer. 

 ■   Note    The concept of self-directed learning is best encapsulated by this proverb: 
“ Give a man a fish and you feed him for a day; teach a man to fish and you feed him for a 
lifetime. ” I like to teach my students how to catch their own fish!   

     What to Read Next 
 There is a lot of ground to cover, and this introductory book is designed to get you up and 
running without getting too deep into the minutiae of how an ARTIK works. Even at this 
early stage in the ARTIK world there is more knowledge than I can fit into a beginners’ guide. 
When you need more in-depth knowledge, the more complex and advanced material is 
published in the companion Apress  ARTIK    Reference Guide   . It covers things in much greater 
detail and has more examples to explain the reference material when necessary.  

     Quick Start 
 OK, I know that some of you are impatient to get started with your ARTIK module. If your 
workstation is not yet able to communicate with your ARTIK module, read Chapter   6     
(“Setting Up Your USB Serial Interface”) and Chapter   7     (“Terminal Emulators”) for help. 
If you want to live dangerously and try something out now, here are some brief guidelines:

    1.    Connect your development workstation to the ARTIK 
developer reference board with the USB cable.  

    2.    Connect to the serial  COM  port with a terminal emulator. Use 
PuTTY on a PC, minicom on Linux, or the  screen  command 
from a Mac OS terminal window. Run the serial connection at 
 115200  baud.  

    3.    Power on the developer reference board with the rocker action 
power switch.  

http://dx.doi.org/10.1007/978-1-4842-1952-2_6
http://dx.doi.org/10.1007/978-1-4842-1952-2_7


CHAPTER 1 ■ GETTING STARTED

7

    4.    Press and hold the power (boot) button down to boot the 
ARTIK.  

    5.    Watch the verbose output while ARTIK boots.  

    6.    Log in to the ARTIK command line. 

 Account:  root  
 Password:  root   

    7.    Go to the temporary files directory: 

   cd / tmp    

        8.    Use the  vi  editor to create a C language source file: 

   vi hello.c  

        9.    Switch to insert mode by pressing the letter [ I ] key.  

    10.    Type this source code into the editor: 

   #include<stdio.h>  

  int main()  
  {  
  printf("Hello World\n\n");  
  return 0;  
  }  

        11.    Press the [ Control ] + [ L ] key combination to refresh the screen if 
the debugging messages are being displayed at regular intervals.  

    12.    Press the [ Escape ] key to go back to command mode.  

    13.    Press the [:] (colon) key to choose extended command mode.  

    14.    Press the [ w ] key to write the new file contents out to disk.  

    15.    Press the [ q ] key to quit out of the  vi  editor.  

    16.    Press the [ Return ] key to execute these commands.  

    17.    Now, compile the source code with the  gcc  command: 

   gcc -Wall hello.c -o hello  

        18.    Run the compiled program with this command: 

   ./hello  

        19.    You should see the text  "Hello World"  echoed on the screen.        

 Congratulations, you just built an application natively in your ARTIK module and 
ran it there. Now take a little bit of time to read the rest of this book and get to know your 
ARTIK module better.      



9© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_2

    CHAPTER 2   

 Welcome to the Internet 
of Things           

     What Is the Internet of Things? 
 When every electronic and mechanical device is connected to the Internet and has 
built-in smartness, the Internet becomes a connected web of “things.” For years, 
manufacturers have been making appliances smarter and more automated. There is a 
limit to how far that can go, because a human being still has to make choices about which 
kind of washing machine cycle to run or how long the turkey needs to be cooked for 
Thanksgiving. 

     Concept Map 
 The concept  map   in Figure  2-1  shows how all the new and revolutionary technologies 
developed in the last few years relate to one another. Some of these concepts are still 
science fiction, but they are on the horizon. They will soon be in the hands of consumers. 
Even this concept map is simplified, and many more connections are possible. The 
 Samsung ARTIK   is an enabler in all of these concepts.   



CHAPTER 2 ■ WELCOME TO THE INTERNET OF THINGS 

10

     An Example You Can Build Today 
 Until now, this smartness has been stand-alone. Only the appliance itself knew what it 
was doing. Today, a cooker could be smart enough to know it is on, and if it also knows it 
has nothing in it and that you have just left the building, then it could send you a warning. 
Cookers know nothing about building security, nor should they. Access to the building 
would be monitored separately. The cooker and access control system could both send 
a status message to a central decision-making system. The intelligence in that central 
cortex could use simple, rule-based logic to trigger a warning to a mobile phone and 
warn you that the cooker is potentially unsafe. Attaching an ARTIK to sensors in a cooker, 
the front door, and the house security system and then integrating a Samsung SAMI 
messaging hub provides the means to do this.   

     The Internet Is Changing—Rapidly 
 The Internet of Things (IoT)  revolution   is already rapidly gaining pace. So far, the changes 
have evolved naturally out of an increasingly connected world. Like most overnight 
successes, the hard work has taken a long time to come to fruition. The number of devices 

Smart Glasses Augmented Reality

Virtual Reality

Imaging what we cannot see

Telemedicine

Wearable computing

Telepresence

Manufacturing

Magic books

Sport

Simulation

Arduino

Biometric Sensors

Brain implants

Cybernetic Organisms (Cyborgs)

Home automation

Microsoft Holo

X10

Telecare

Web to Print to Web

3D Printing

3D TV

Siri

3D stereography artefacts

AR in print industry

Artificial Intelligence (AI)

Force feedback

Microsoft Kinect

Gesture detection

Going offline (how?)

GPS

Mobile Phone

Haptic systems

Virtual Erotica

Hawkeye system

Advertising

Digital Signage

Human vision system

Image enhancement

Location based computing

Persistence of vision

Privacy issues

Prosthetics

QuickTime VR

VRML

Raspberry Pi

Real World computing

Remote operation

RFID Chipping

Tagging human beings
Robotics

Security issues

Touch interface

Training Tricorder competition

TV Remote control

Voice activated control

Samsung Smart TV

  Figure 2-1.    Concept  map         

 



CHAPTER 2 ■ WELCOME TO THE INTERNET OF THINGS 

11

connected to the Internet already outnumbers the number of people on the planet. This 
changes the nature of the Internet in subtle ways. 

 Already, the mobile device explosion has altered the way the Internet is consumed. 
Website developers have changed their site designs because more people are viewing 
the World Wide Web on a mobile device. They call this a “Mobile First” strategy, and the 
desktop versions of their websites take a backseat to the mobile versions. 

 More evolution will happen as the number of IoT devices increases. The  Samsung 
ARTIK   is going to play an important part in that change process. 

     Disruptive Changes 
 Publicly available statistics suggest there are about 3.5 billion Internet users. This is 
equivalent to about half the world population. That total is related to estimates of 
about 1.7 billion computers and approximately 2 billion mobile devices. Estimating 
these figures accurately is difficult because many people have more than one Internet-
connected device. 

 The  defining point   for the Internet of Things revolution is when there are more 
objects or things connected than people. According to a research paper (The Internet 
of Things) published by Cisco in April 2011, this  statistical cusp   would have happened 
between 2008 and 2009. That is only two years after the introduction of the iPhone in 
2007. By 2010, the ratio of connected devices to the population was almost 2 to 1. By 2015, 
this factor has risen to 3.45, and it is expected that by 2020 there will be more than 6.5 
Internet-connected devices for every person on the planet. 

 These figures do not take into account that a proportion of the world’s population 
has no access to computers at all, so for the developed world, the ratios would be even 
higher. Early adopters, health monitoring systems, industrial applications, and wired 
homes may exceed this ratio by an order of magnitude or more. 

 These estimates are based on what can be engineered with current technology. 
New inventions will almost certainly increase the rate of change.  Cisco   predicts that the 
Internet of Things will result in 40 to 50 billion devices being connected to the Internet by 
2020 and that eventually 99% of all physical objects will be connected.  

      Network Architecture and Design   
 This shift in technology will have a significant effect on how the Internet works. The way 
that IP traffic is routed will need to be enhanced to deliver the necessary performance. 
The implications for security and cyber-attack countermeasures are profound. 

 Moving from IPv4 to IPv6 protocols removes another important limitation on the 
number of devices that can be connected and addressed directly.  

      Sensors   
 The huge increase in the number of airbags installed in motor vehicles and the sensors 
that trigger them yielded orders-of-magnitude reductions in the cost of accelerometers. 
This facilitated motion sensing in phones and tablets at an affordable price. 



CHAPTER 2 ■ WELCOME TO THE INTERNET OF THINGS 

12

 As the mobile phone market increased in size, the price of sensors has dramatically 
reduced even further. New kinds of sensors that measure physical characteristics of the 
real world expand the range of possibilities as they become available. Wireless networking 
allows new devices to be connected easily, and this communications technology is being 
integrated directly into the sensors so they can operate independently.   

     Lifestyle Changes 
 Evangelists of the Internet  of   Things (IoT) culture highlight the ways that it can help to 
solve  climate change and energy supply issues  , improve living conditions, and potentially 
eliminate poverty and conflict. Disruptive technology advancements are on the horizon, 
and the whole application development and deployment environment is likely to change 
very radically and very quickly. 

 This might turn out to create as big a change to  lifestyles   as did the introduction of 
the Internet. The evolution has been going on quietly in the background for some time. 
The roots can be traced back to early work at MIT in the late 1990s. The introduction of 
smartphones in 2007 accelerated the rate of change in the number of devices versus the 
number of people. Now it has reached a critical mass, and the media has woken up to this 
fact and started to report on IoT as the next big thing. 

     A Revolution in Medicine and the Care  Community   
 Some concepts are only possible due to the large number of devices being deployed. 
The new medical trials initiatives being driven via the open-source HealthKit tools are 
an example of something that simply was not possible before. IoT will create many more 
opportunities like that. 

 Mobile devices such as watches, phones, vehicles, and major transport infrastructure 
projects are also made smarter by the introduction of IoT technology. IoT has the 
potential to revolutionize healthcare by pre-empting a risk scenario, such as by early 
detection of cardiac events, with automated location of the patient and a call for first 
responder assistance as soon as a situation develops. Related to this are the advanced 
remote tele-care services. These are assistive technologies for the aged or infirm. There 
are more advanced prosthetic limbs as well as implant technologies that can restore 
mobility or replace defective organs. We are living in a time of profound change. 

  General Electric (GE)   has industrialized the sensor processes and gathers large 
amounts of data from millions of deployed medical devices. This “big data” approach 
informs new product development and creates huge data sets that facilitate medical 
breakthroughs. The  GE Predix and Apple HealthKit   initiatives are two examples of how 
IoT can revolutionize scientific research.   



CHAPTER 2 ■ WELCOME TO THE INTERNET OF THINGS 

13

     Industrial Internet of Things 
 Large corporations are already making significant revenues from IoT. Using IoT on a 
large scale like this is described as the  Industrial   Internet of Things (IIoT)      . GE applies 
instrumentation to freight trains so they can develop optimized trip plans. These can save 
millions of dollars’ worth of diesel fuel. That translates back to a more ecologically sound 
approach when applied on a massive scale. 

     Revenue-generating Opportunities 
 Revenues are already projected to be several trillion dollars by 2020, rising to several tens 
of trillions by 2030. These are big stakes indeed. 

 Several large companies have speculated about future trends. The GE corporation 
anticipates $500 billion worth of business by 2020 and suggests IoT will add $15 trillion 
to the global economy by 2030. Cisco believes that the IoT business will be generating 
$20 trillion in revenue by 2020. The Gartner organization backs these assertions up, 
although their prediction is slightly more conservative. Even if this is speculative (and the 
revenue expectations are overhyped), there are certainly big commercial opportunities 
on the horizon. Some of the revenue-generating opportunities will result from improved 
efficiency when developing new products or operating existing plants. These are very 
big numbers indeed and the funding needed to support the emerging IoT business may 
be taken away from existing industries to resource the new innovations. It is hard to 
predict which industries will be affected and by how much. There are signs that home 
automation, medicine, and the automotive industries will be affected. Other industries 
have the potential to exploit IoT as well. 

 Your goal is to find a niche where the combination of your knowledge, a Samsung 
ARTIK module, and these revenue predictions will result in your creating a business that 
succeeds in generating an income.      



15© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_3

    CHAPTER 3   

 Hello, ARTIK           

     What Is an ARTIK Module? 
 Before setting up your development environment and starting work, you need to know 
what ARTIK is capable of. Spending some time studying the bigger picture will create a 
better context for a deeper understanding of how it all works. 

 ARTIK is a family of modules (ARTIK 1, ARTIK 5, ARTIK 10) tailored for the Internet 
of Things ( IoT     ). With a tiered architecture built for performance, optimized power 
consumption, and memory utilization and footprint, ARTIK is designed specifically for 
a variety of applications, from low-end wearable devices to powerful hubs with local 
processing and analytics. ARTIK’s best-in-class security solution includes Embedded 
Secure Element ( ESE  )       and machine learning for anomaly detection, and  Trusted 
Execution Environment (TEE)  . 

 Samsung makes developing for the ARTIK modules as straightforward as possible. 
In addition to the usual compilers, there are libraries for Java, Python, Temboo, and 
Arduino, giving you a variety of programming options. You can add others due to the 
versatile and open nature of the ARTIK design.  

     What Is an Ecosystem? 
 The  ARTIK ecosystem      comprises all the devices you make smarter by integrating an 
ARTIK module into them, plus the  centralized SAMI connecting hub   that aggregates all of 
these sensors and devices into a logical decision-making system. Mobile devices become 
a dashboard or console with which to control and manage what happens. This is called 
an ecosystem because it has many dependent parts that operate in a symbiotic fashion. 
They are all somewhat smart in a self-contained way, but by integrating them, you create 
a context for very powerful decision making. That is where the true smartness of this 
approach lies. 

 An alternative to the  SAMI data-aggregation system   is the Temboo integrated 
development and messaging hub. This is a great way to get started with developing your 
ideas for Internet of Things projects, and the ARTIK module is already pre-configured to 
integrate with the  Temboo ecosystem  . Other hub technologies are also feasible to use, or 
you can create your own if your project design dictates that approach.  



CHAPTER 3 ■ HELLO, ARTIK

16

     The ARTIK Modules 
 The  Samsung   ARTIK  modules   are optimized for  IoT  . Adding an ARTIK module to an 
appliance or device immediately gives that device an opportunity to integrate with 
the Internet via cloud services. Add sensors and triggers to your appliance. The ARTIK 
module can “read” the state of these sensor inputs and communicate them to other 
devices and services. The ARTIK software you write would take those sensor readings 
and add  artificial intelligence   to recognize certain patterns. If a refrigerator  starts   to have 
difficulty reaching the correct temperature, perhaps there is something wrong with the 
cooling system. An engineer can be called automatically and an appointment be made for 
a maintenance visit. The appliance can be made safe by shutting down the faulty parts, 
and a warning indicator can be turned on to alert the user. 

 Some of your project ideas will require much less computing power. Samsung 
addresses this need by providing small, medium, and large configurations with different 
feature sets and computing power. The two larger ARTIK modules run  embedded UNIX 
operating systems  , while the smallest runs a real-time operating system. All of the ARTIK 
modules accept a variety of  input/output sensors   and can use controls to operate other 
equipment or systems. The ARTIK modules are equipped with wireless communication 
capabilities to collaborate with one another or via a secure cloud-connected ecosystem. 
The  three   ARTIK modules in Figure  3-1  are shown at the same scale to compare the sizes.  

 The ARTIK modules use a new ePoP (Package on Package) technology that 
integrates multiple chips onto a single board. This is a robust and very compact form of 
construction. Samsung calls this technology System on  Module   (SOM). 

 The smallest and simplest  module   is called ARTIK 1. It can be embedded into wearable 
devices or in places where you only need a very simple computer —p erhaps a home media 
system control surface that is communicating with the central media server to instruct it. 
This module also has motion sensors included and runs very economically so the battery 
will last longer between charging cycles. Manufacturer testing indicates that an ARTIK 1 can 
run for several weeks on a single coin-cell battery. 

ARTIK 1 ARTIK 5 ARTIK 10

  Figure 3-1.    Comparing the ARTIK modules       

 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 3 ■ HELLO, ARTIK

17

 The medium-size module  is   called ARTIK 5 and has a more powerful CPU and 
operating system. In fact, it has multiple CPU cores. It has enhanced audio/visual 
capabilities too. This is powerful enough to create a home media player attached directly 
to a video monitor. That creates opportunities to build digital signage systems that can 
talk to one another and potentially alter their behavior when somebody approaches while 
they are wearing an ARTIK 1 – equipped device. An ARTIK 5 could take over significant 
responsibilities in running a wired home or a manufacturing process, with the status 
display being generated onboard and presented on a view screen. 

 The most capable module is the ARTIK 10. This has significantly more computing 
capacity with multiple cores and assistive processors for video coding/decoding, graphics 
rendering, and a very large number of versatile input/output connections. This could 
operate as either a centralized server or a high-powered media ingest engine.  

     Software Support 
 Samsung has created  a   whole ecosystem of software support for the ARTIK modules. 
This includes a software stack with all the low-level support you need for accessing the 
hardware safely and securely. 

     The ARTIK Community 
 Sign up for a Samsung ARTIK developer account at the following when you are ready to 
start developing code for your ARTIK module: 

      https://www.artik.io/developer/users/auth/samsung       

    Once you have signed up, log in with your new ARTIK developer account and 
explore the resources that Samsung has prepared for you. Having a developer account is 
not the same as having a Samsung user account registered for use with your smartphone. 
Register for both kinds of account. Use a unique password for each, and don’t use those 
passwords for anything else in order to protect yourself against identity theft. Make sure 
that you use a different account as you deploy your software to production, because 
embedding your own personal login credentials into thousands of shipping devices is a 
bad idea. 

 There are many other useful online resources aside from the support materials that 
Samsung provided. ARTIK is now becoming better known within the IoT community, 
and support is growing as developers enthusiastically adopt it for experimentation and 
potential product development. Table  3-1  summarizes where to get more help and advice.  

https://www.artik.io/developer/users/auth/samsung


CHAPTER 3 ■ HELLO, ARTIK

18

 Some of  these   require you to register an account to fully access their resources. 
Occasionally you will find an online resource that charges a small fee to get access to 
more value-added and advanced resources, but most are free. Many of these  provide 
  newsletter updates via email to alert you to new articles.   

     Security and  Privacy   Are Core Needs 
 Samsung knows that for the ARTIK modules to be reliably deployed, they must remain 
secure and highly resistant to penetration by hackers. Privacy is also important and is not 
the same thing as security. IoT devices must communicate securely and privately. At the 
same time, they need to share information in a controlled way. Data must only be shared 
with the intended participants and certainly not with strangers or government agencies 
unless that is beneficial to the end user. Samsung has provided the Embedded Secure 
Element technology on every ARTIK module. It is implemented onboard as a hardware 
cryptographic engine. 

   Table 3-1.    ARTIK  Community Websites     

 Description  URL 

 Samsung ARTIK blog     https://www.artik.io/blog/      

 Samsung developer pages     https://www.artik.io/developer      

 Instructables     http://www.instructables.com/member/
SamsungIoT/      

 Samsung SAMI IO     https://developer.samsungsami.io/      

 Samsung Simband     https://www.simband.io/      

 Samsung Strategy & Innovation Centre     http://www.samsung.com/us/ssic/      

 The ARTIK Forum & Knowledge Base     http://artie.artik.io/      

 ARTIK discussion forum     http://artie.artik.io/forums/289867-artik      

 ARTIK Knowledge Base     http://artie.artik.io/knowledgebase/
articles/all      

 Samsung IoT on Instagram     https://instagram.com/samsungiot/      

 Samsung IoT Facebook page     https://www.facebook.com/SamsungIoT      

 Hackster.IO Samsung IoT community     https://www.hackster.io/samsung      

 Samsung IoT on Instructables     http://www.instructables.com/member/
SamsungIoT/      

 LinkedIn group     https://www.linkedin.com/groups/8292561      

 Samsung IoT on Twitter     https://twitter.com/samsungiot      

 SmartThings wired home technology     http://www.smartthings.com/      

 Samsung Dev Conference (2016)     http://www.sdc2016.com/      

 Mobile World Congress     http://www.mobileworldcongress.com/      

https://www.artik.io/blog/
https://www.artik.io/developer
http://www.instructables.com/member/SamsungIoT/
http://www.instructables.com/member/SamsungIoT/
https://developer.samsungsami.io/
https://www.simband.io/
http://www.samsung.com/us/ssic/
http://artie.artik.io/
http://artie.artik.io/forums/289867-artik
http://artie.artik.io/knowledgebase/articles/all
http://artie.artik.io/knowledgebase/articles/all
https://instagram.com/samsungiot/
https://www.facebook.com/SamsungIoT
https://www.hackster.io/samsung
http://www.instructables.com/member/SamsungIoT/
http://www.instructables.com/member/SamsungIoT/
https://www.linkedin.com/groups/8292561
https://twitter.com/samsungiot
http://www.smartthings.com/
http://www.sdc2016.com/
http://www.mobileworldcongress.com/


CHAPTER 3 ■ HELLO, ARTIK

19

 The first step is to provide sufficient internal capabilities that allow the ARTIK 
module to sandbox private data within a secure partition that cannot be subverted 
by external agents. Later on, when the ARTIK needs to share information, those 
communications must be encrypted. The encryption key is unique to each ARTIK 
module and is hard-wired or burned-in during the manufacturing process. It cannot be 
changed or accessed by external processes without destroying the chips. This ensures 
that every ARTIK can be uniquely recognized and its communications can be encrypted 
in a very secure fashion.  

     The  Connected Cloud Service   
 Samsung has worked hard to make sure that the modules are secure and very capable of 
communicating. Samsung hosts the  SAMI cloud-based service   that the ARTIK modules 
can talk to or use to exchange and synchronize information with one another or other 
devices. Binding these communications to a shared account keeps them separate from 
other users. This allows a pool of connected ARTIK modules to operate collaboratively 
but still remain secure. The SAMI cloud service is designed for aggregating, exchanging, 
and sharing information. SAMI is not intended for mass storage of bulky media assets, 
but rather it facilitates your access to other separate systems with larger storage capacities 
that you deploy independently. The SAMI system will be covered in more detail in 
chapter   18    .  

      Sensory Capabilities   
 Motion sensors originated in the automotive industry as part of the safety precautions 
that triggered airbag deployment in the case of a sudden deceleration. As these became 
more widespread and were fitted to all new cars, the price of the sensors went down. 
Eventually, they reached a price point where embedding an accelerometer inside a 
mobile device became cost effective. The first mobile technology application was motion 
detection in laptops. The motion detector alerts a disk drive that the laptop has been 
knocked off a table. The hard drive can then park the read/write heads safely in the 
short time before the laptop hits the ground. Progress in these accelerometers further 
reduced the price and size. Now they are small and cheap enough to be embedded inside 
phones and tablets. A gyroscope improves the orientation and position calculations 
that aggregate all of the sensor values to yield a more reliable output. Nowadays, a 
magnetometer can augment this to determine the direction the device is pointing. More 
sophisticated devices are equipped with barometric sensors to work out the height 
above sea level. This coupled with GPS antennae and knowledge of Wi-Fi and cell tower 
positions means that location and orientation can be determined very accurately.  

      Communications Challenges   
 The sheer number of devices that communications carriers must support simultaneously 
is a big challenge. As of Q4 2015, the number of mobile phones and tablets has overtaken 
desktop and laptop devices. The Internet is supporting approximately 4 billion unique 

http://dx.doi.org/10.1007/978-1-4842-1952-2_18


CHAPTER 3 ■ HELLO, ARTIK

20

devices, and this number is set to increase without IoT making a difference. Predictions 
vary, but it is possible that by 2020, there could be 50 billion IoT devices competing for 
the available communications capacity. Increasing the mobile traffic levels by more than 
an order of magnitude is a challenge to say the least. 

 Designing your products and services to aggregate multiple devices and connect to 
the Internet via a hub would help alleviate this problem. Low-power localized personal 
networks that connect all your wearable or in-car smart devices and use IPv6 protocols 
will also help. 

 IoT products must have sufficient intelligence to avoid wasting valuable wireless 
capacity to reach a simple decision. A farmer might deploy an automated water irrigation 
system that can measure soil moisture levels, detect daylight, compute time of day, and 
measure ambient temperature and humidity. Aside from acquiring a weather prediction, 
it should be smart enough to know when to activate the sprinklers to deliver enough 
water to the crops at just the right time to be the most effective. This kind of autonomous 
intelligence is an ecologically sound proposition that minimizes the use of valuable water 
resources, optimizes crop yields, and should be able to run unattended. Even the weather 
forecast might be acquired from a digital radio service. Such a system only needs to send 
a small status message to the farm management system once an hour. Capacity planning 
is a key component of making successful IoT products work efficiently. 

 Looking at this problem in the context of an office environment where staff would 
bring in their own devices forces a completely different approach to provisioning the 
Wi-Fi services within a building. Capacity planning needs to take into account how many 
wireless-connected devices each staff member is carrying. Aggregating those devices 
into a hub application running on a mobile phone is one possible scenario. Only the 
phone needs to use the Wi-Fi network, which will reduce complexity and traffic. Within 
the boundary of someone’s personal space, all their devices will talk to each other, but 
privacy is maintained because the central cortex in the phone then only transmits filtered 
and aggregated data to a remote service.     

     Integration with Other Platforms 
 The Samsung ARTIK modules are all certified as being compatible with the Arduino 
family of modules. This immediately expands the range of sensory possibilities. You could 
develop Arduino applications and run them directly on an ARTIK. Alternatively, complex 
pre-processing can be done in an Arduino and then be communicated to the ARTIK. This 
lightens the load on the ARTIK core processors and allows it to execute the main event 
loop more efficiently.  Arduino modules   are well known for their capability to integrate 
with sensors and for their output connections that can be amplified via driver transistors 
so as to control very heavy mechanical loads. This driver capability allows an Arduino 
to operate motors, high-powered lighting systems, servos, hydraulics, and lasers or any 
similar high-powered machinery. Robotic manufacturing systems and industrial process 
control become immediately available to your ARTIK-empowered systems. You have the 
choice to use Arduino boards as delegates or to control and sense things directly from the 
ARTIK itself.  



CHAPTER 3 ■ HELLO, ARTIK

21

     Benefits to  Consumers   
 Because Samsung now has a  core-enabling technology  , it can build new consumer 
products using ARTIK as a foundation. This saves searching for new technologies and keeps 
all of the research and development in house. Because the ARTIK modules are made with 
Samsung silicon chips, this also keeps their chip-making foundries busy too. It is a very 
good solution to a vertically oriented company that can use its own in-house component 
manufacturing and add more value at each level of the product-design process. Ultimately, 
this benefits the consumer because the products become more affordable.  

     Introducing the ARTIK 1 
 The ARTIK 1 module is extremely compact and is designed for use in scenarios where 
power consumption, size, and minimal computing power are paramount. The 12mm x 
12mm square form factor is good for hiding an ARTIK 1 module inside wearable devices. 
This is small enough to find space for it in most projects. This ARTIK module is ideal for 
creating  Bluetooth location-based beacons  , activity trackers, smart wristband devices, or 
IoT end nodes that can control digital signage displays or manage appliances. One ARTIK 1 
module per room in a wired home could handle environment, lighting, and media control 
surfaces. Figure  3-2  shows the ARTIK 1 module, enlarged from its 12mm x 12mm size.  

  Figure 3-2.    The ARTIK 1 module       

 



CHAPTER 3 ■ HELLO, ARTIK

22

 The ARTIK 1 module is  design  ed to consume very little power. Nevertheless, you should 
take power consumption into account when developing your application code. The more 
CPU cycles you consume, the larger the battery drain. Try to design your application to 
accomplish as much as possible with as little computing capacity as you can manage. 

      Functional Organization   
 A simplified functional breakdown of the ARTIK 1 module is shown in Figure  3-3 . 
This diagram illustrates the major components of the ARTIK 1 internal sub-systems.   

     Operating System 
 The ARTIK 1 module has an  embedded operating system   based on the Nucleus  Real-Time 
Operating System (RTOS)  . The real-time nature of wearable devices needs a more 
lightweight operating system than the Fedora Linux used in the ARTIK 5 and 10 modules.  

      Wireless Communications   
 Communications to the outside world are possible via a Bluetooth transceiver. The 
communications run in a very low-energy configuration (BLE version 4.0). Use this 
to exchange messages with a mobile phone, tablet, or watch. Perhaps within close 
proximity, sensors in an environment can also detect the wearer’s presence and location. 
The signal is transmitted and received by a chip-size antenna that is integrated onto the 
ARTIK 1 main board.  

AXT
Connectors

2 x 26 pins

Bluetooth
Low Energy

(BLE)

Power Management

Buck Convertors

LDO Regulators

Static Memory
1 MByte

Main CPU
240 Mhz

Sensor CPU
80 Mhz

Processor

Flash Memory
4 MByte

Storage Hardware
Crypto
Engine

USB
Controller

Audio
Input/Output

Media Sub-system

  Figure 3-3.     The   ARTIK 1 module  block diagram         

 



CHAPTER 3 ■ HELLO, ARTIK

23

      Spatial Sensors   
 There is an integrated 9-axis accelerometer and gyroscope for detecting motion and 
orientation and a magnetometer for detecting the orientation with respect to the Earth’s 
magnetic field. Having a “compass” is useful for augmenting the motion and orientation 
sensing. The ARTIK 1 will always be able to figure out which way is up and what direction 
is the shortest way home. 

 This is the only member of the ARTIK family that has motion-sensing capabilities. 
Motion sensing can be implemented on products built around the ARTIK 5 and 10 
modules by installing external sensors. Perhaps for some solutions, combining an ARTIK 
1 and one of the larger ARTIK modules is a good solution. Offload the motion-sensing 
work to the ARTIK 1 so it can work out gestures. The high-level gesture events are then 
transmitted to the ARTIK 5 or 10 modules to control an application running there.  

     Computing Capacity 
 There are two CPU cores available for running custom application software. One CPU 
runs at 250MHz and the other at 80MHz. By having two processors, the physical sensing 
work can be delegated to one of the processors while the other is in control of the main 
application. This is helpful because a real-time operating system like Nucleus can only 
run one task at a time, although it can switch tasks very quickly when necessary. The 
task switch is not managed the way it would be in a general-purpose operating system 
because an RTOS needs to respond to interrupts and events in a timely manner. Having 
two CPU cores available makes it easier to delegate one CPU to handling user-generated 
events while the other manages more compute-intensive tasks.  

     Memory Storage 
 For storing  and   processing data on an ARTIK 1 module, you have 1MB of on-chip 
memory mapped into the address space of the CPU. Some of this will be devoted to 
running the operating system. Another 4MB of Flash memory is accessible via a  Serial 
Peripheral Interface (SPI)   connection. 

 The amount of memory in an ARTIK 1 module is significantly more than developers 
had at their disposal when microprocessors were first used to make personal computers. 
Sophisticated applications were created in those days with limited resources, and the 
amount of memory you have available in an ARTIK 1 should be more than enough for 
the kind of wearable devices or Internet of Things (IoT) endpoints you are creating. Write 
your code economically and avoid squandering the available resources in your ARTIK  to 
  eke out the CPU capacity and battery life.  

     Video Display Output 
 The ARTIK 1 module has a  WVGA video output driver   to put an image on an external 
display screen. The resolution is 800 pixels wide by 480 high. At an aspect ratio of 15:9, 
this is almost widescreen. Perhaps it is sufficient for the display on a watch.   



CHAPTER 3 ■ HELLO, ARTIK

24

     Introducing the ARTIK 5 
 The ARTIK 5 module is more powerful than the ARTIK 1. The ARTIK 5 has faster and 
more capable CPU cores running at 1GHz. There is also more on-board memory than the 
ARTIK 1. Because the ARTIK 5 has more connectivity, the board is larger than the ARTIK 1, 
and it is more carefully screened against radio frequency interference ( RFI  )       because 
it runs faster. There are more wireless connection options and support for the ZigBee 
protocol, which is gaining popularity in wired home installations. 

 The 29mm x 25mm form factor is a significant achievement when you consider the 
capabilities that Samsung has accommodated in this device. 

 The ARTIK 5 module also supports the  Samsung Secure Element protocols   that afford 
robust protection against hacking at the module level. Integrate your distributed systems so 
they can collaborate by connecting them together via the  SAMI cloud-based protocols  . 

 This ARTIK module can also decode a variety of video playback formats and present 
the output directly on an attached video monitor. The ARTIK 5 is well suited for building 
smart home hubs, high-end smart watches, drone flight controllers, and embedded 
IP-based camera management systems. Figure  3-4  shows the ARTIK 5 module with its 
 radio frequency (RF) shielding   removed.  

  Figure 3-4.    The ARTIK 5 module       

 



CHAPTER 3 ■ HELLO, ARTIK

25

      Functional Organization   
 A simplified functional breakdown of the ARTIK 5 module is shown in Figure  3-5 . 
This diagram shows the important sub-systems inside an ARTIK 5.   

     Operating System 
 The same version of  Fedora Linux   is used in the ARTIK 5 and 10 modules. Fedora is 
a multi-process UNIX OS usually found in mainstream computers. The performance 
is optimized for throughput to get the maximum compute performance, as opposed 
to the Nucleus OS in an ARTIK 1 that is optimized for responsiveness. This additional 
computing power lets you build more sophisticated products. The embedded version of 
Fedora in the ARTIK modules has been generated with Yocto templates that pare down 
and configure the Fedora distribution to make it small enough to embed.  

      Wireless Communications   
 The ARTIK 5 module supports the Bluetooth low-energy communications (BLE version 4.0) 
for attaching close-proximity peripherals. 

 Because this module is not designed to be the core of a wearable device, it also has 
Wi-Fi support for the IEEE 802.11 b/g/n protocols. The newer IEEE 802.11 ac and ah 
versions are not currently supported. 

I/O
Interfaces

AXT
Connectors

3 x 60 pins

Bluetooth
Low Energy

(BLE)

WiFi
(802.11)

ZigBee/Thread

Power Management

Buck Convertors

LDO Regulators

CPU 1 - A7
1 Ghz

CPU 2 - A7
1 Ghz

Processor

LPDDR3 Memory
512 MByte

eMMC Memory
4 GByte

Hardware
Crypto
Engine

USB
Controller

GPU

Audio
Input/Output

Video
Input/Output

Media Sub-system

  Figure 3-5.    The ARTIK 5 module  block diagram            

 



CHAPTER 3 ■ HELLO, ARTIK

26

 For wired home automation enthusiasts, the ARTIK 5 module supports the ZigBee 
(IEEE 802.15.4) communications standard. The competing Thread Group protocol is 
also supported. They both operate in a similar way, but there are differences in their 
capabilities. Thread has a longer reach than ZigBee, but ZigBee can support many more 
devices within a local mesh. ZigBee has been available for at least a decade. The Thread 
protocols are based on IPv6 and are a result of the Nest learning thermostats from Google. 
Samsung and ARM actively support the Thread project. Following the progress as it 
evolves will inform your future strategy.     

      Networking Protocol Support   
 The ARTIK 5 natively supports the following networking protocols. Add others if you have 
the necessary source code for the libraries. Samsung may add other communications 
protocols at a later date. Refer to chapter   9     (“Networking Your ARTIK”), where these are 
described in more detail, to avoid repeating the same discussion for each module:

•     OMA Lightweight M2M protocol (LW M2M)    

•    Constrained Application Protocol (CoAP)    

•    Message Queue Telemetry Transport (MQTT)    

•   IPv4 via Ethernet  

•   IPv6 via Ethernet  

•   IPv6 via Low-power Wireless Personal Networks (6LoWPAN)  

•   Multicast Domain Name System for Wi-Fi (mDNS)        

      Computing Capacity   
 The CPU in the ARTIK 5 is a dual-core ARM A7 processor similar to that found in many 
mobile devices. Both cores run at 1GHz, providing plenty of computing leverage for 
your applications. This is capable of loading the attached graphics processor with new 
instructions very quickly.  

     Graphics Processing Unit (GPU) 
 In addition to the compute engines, there is an embedded graphics co-processor. The 
ARM® Mali™ - 400 Graphics Processing Unit ( GPU        ) supports OpenVG version 1.1 for 
vector graphics and OpenGL ES1.1/2.0 for 3D rendering. 

 Open GL for embedded systems is a sub-set of the full Open GL specification. 
This implementation maps functionality from OpenGL 1.1 and 2.0. The OpenVG 
implementation provides hardware-assisted vector-graphics drawing tools. 

 This is a very powerful graphics engine and provides a serious level of graphics 
capability. In a process-control application, the production workflow can be rendered as 
a mimic display showing an entire manufacturing process or perhaps a railway network 

http://dx.doi.org/10.1007/978-1-4842-1952-2_9


CHAPTER 3 ■ HELLO, ARTIK

27

in a transport management and control system. Find out more about these graphics 
capabilities here: 

     https://en.wikipedia.org/wiki/Mali_(GPU)        
    http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/
mali-400-mp.php        
    https://en.wikipedia.org/wiki/OpenGL        
    https://en.wikipedia.org/wiki/OpenGL_ES        
    https://en.wikipedia.org/wiki/OpenVG        

          Memory Storage   
 The ARTIK 5 modules have 512MB of fast-access, low-power DDR3 (LPDDR3) memory 
directly connected to the CPU. This is similar to the kind of memory you have in a laptop 
computer but requires much less power to operate. Everything about the ARTIK modules 
is designed to conserve power, and the memory architecture is carefully designed to drain 
the minimum power from a battery. 

 Additional storage capacity is implemented with a larger 4GB bulk memory attached 
as eMMC storage. This is effectively a memory card that is permanently bonded to the 
ARTIK module. It is enough to be able to store and process video or draw large animated 
graphic scenes. A vertically integrated manufacturer such as Samsung has a lot of the 
technology needed to create an ARTIK already established in-house.  

     Hardware Video Codec Support 
 The  ARTIK 5 module   includes hardware for a variety of video formats summarized in 
Table  3-2 . Encoding and decoding support varies depending on the codec. Not all codecs 
are supported in both modes, and the encoding is powerful enough to support HD video 
as 30 frames per second (FPS) with 720 lines. This is not the full HD 1080p image size 
delivered by a Blu-ray disk player.    

   Table 3-2.    ARTIK 5 Video Support   

 Codec  Encode  Decode 

 H.263  √  √ 

 H.264 (AVC, MPEG 4 part 10)  √  √ 

 VP8  √  √ 

 MPEG-2  √ 

 VC1  √ 

 Xvid  √ 

https://en.wikipedia.org/wiki/OpenVG
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-400-mp.php
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-400-mp.php
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/OpenGL_ES
https://en.wikipedia.org/wiki/OpenVG


CHAPTER 3 ■ HELLO, ARTIK

28

     Introducing the ARTIK 10 
 The ARTIK 10 is the most capable and powerful of all the modules in this family. It has more 
of everything compared with the ARTIK 5. In terms of computing capacity it has 8 CPU 
cores in all. There are many more connector outputs, and it can handle a higher quality  HD 
video output   or encoding throughput. This would make a very capable starting point for 
building TV set-top boxes with interactive TV capabilities. It is probably powerful enough 
to create a  home Intranet server   or media hub for a digital entertainment system. If you 
delegate more of the hard work to a centralized ARTIK 10, you can use ARTIK 5 modules in 
your client players instead of needing to deploy more ARTIK 10 modules. If you construct a 
home Intranet around an ARTIK 10, that could also provide a personal cloud integration for 
all the devices around the home and then provide gateway access to the Internet via a single 
interface. If an ARTIK 5 is not powerful enough for your needs, an ARTIK 10 is certainly up 
to the task of managing the throughput for all kinds of smart machines. 

 The  29mm x 39mm form factor   is astonishing when you consider this is a fully 
featured UNIX computer with high definition video encode/decode capabilities 
integrated into the module. 

 This module is powerful enough to live encode incoming video for onward delivery 
to a media storage system. This opens up possibilities for use in security monitoring and 
personal video recorder products. It could also find applications in the broadcast industry 
for building master control and  file-based edit/storage systems  . 

 The ARTIK 10 module also supports the  Samsung Secure Element protocols   that 
afford robust protection against hacking at the module level. Integrate your distributed 
systems via the  SAMI cloud-based protocols  . 

 This ARTIK can also decode a variety of  video playback formats   and present the 
output directly on an attached video monitor. Figure  3-6  shows the ARTIK 10 module.  



CHAPTER 3 ■ HELLO, ARTIK

29

     Functional Organization 
 The functional breakdown of the ARTIK 10 module is shown in Figure  3-7 . This diagram 
shows the main  internal sub-systems   in an ARTIK 10.   

  Figure 3-6.    The ARTIK  10   module       

 



CHAPTER 3 ■ HELLO, ARTIK

30

     Operating System 
 The  operating system   is the same version of Fedora Linux as the ARTIK 5 uses, although 
there are some differences in the installed libraries and supporting code. The additional 
computing power of the ARTIK 10 lets you build more sophisticated products with faster 
performance or higher throughput. The embedded version in the ARTIK modules has 
also been generated with the Yocto templates that pare down the Fedora distribution to 
make it small enough to embed.  

      Wireless Communications   
 The ARTIK 10 module supports Bluetooth low-energy communications (BLE version 4.0) 
and Wi-Fi support for the IEEE 802/11 b/g/n protocols. The newer IEEE 802/11 ac version 
is not currently supported. 

 Like the ARTIK 5, the ARTIK 10 module supports the ZigBee (IEEE 802.15.4) 
communications standard. The competing Thread Group protocol is also supported, and 
your software designs that work on the ARTIK 5 should be easily ported to the ARTIK 10 if 
you need the additional computing resources.     

I/O
Interfaces

AXT
Connectors

2 x 80 pins
1 x 40 pins

Bluetooth
Low Energy

(BLE)

WiFi
(802.11)

ZigBee/Thread

Power Management

Buck Convertors

LDO Regulators

Quad - A15
1.3 Ghz

Quad - A7
1 Ghz

Processor

LPDDR3 Memory
2 GByte

eMMC Memory
16 GByte

Hardware
Crypto
Engine

USB
Controller

GPU

Audio
Input/Output

Video
Input/Output

Media Sub-system

  Figure 3-7.    The  ARTIK 10 module    block diagram         

 



CHAPTER 3 ■ HELLO, ARTIK

31

      Networking Protocol Support   
 The ARTIK 10 module natively supports the following networking protocols. Add others as 
part of your project implementation if you need them. Samsung may add other protocols to 
the ARTIK 10 module at a later date. Refer to chapter   9     (“Networking Your ARTIK”), where 
these protocols are described, to avoid repeating the same discussion for each module:

•     OMA Lightweight M2M protocol (LW M2M)    

•    Constrained Application Protocol (CoAP)    

•    Message Queue Telemetry Transport (MQTT)    

•   IPv4 via Ethernet  

•   IPv6 via Ethernet  

•    IPv6 via Low-power Wireless Personal Networks (6LoWPAN)    

•   Multicast Domain Name System for Wi-Fi (mDNS)     

•    OpenHAB-based framework    

•    OpenStack (Swift) Framework      

 The ARTIK 10 is the only module that natively supports  OpenHAB and OpenStack 
networking  . If you have access to the source code, they could be ported to an ARTIK 5 if 
you are prepared to do the work.  

      Computing Capacity   
 The CPU support in the ARTIK 10 comprises a quad-core ARM A15 processor plus a quad-
core ARM A7 processor. The A15 runs at 1.3GHz and the A7 at 1GHz, providing a lot of 
computing power. This is equivalent to a small laptop computer or a high-end tablet device.  

     Graphics Processing Unit ( GPU     ) 
 The ARTIK 10 has a  more   powerful graphics co-processor than the ARTIK 5 has. The 
ARM® Mali™ - 628 Graphics Processing Unit (GPU) supports a variety of graphics 
frameworks to generate images very quickly. See Table  3-3  for a summary.  

   Table 3-3.    ARTIK 10 GPU Support   

 Framework  Version 

 OpenGL ES  1.1/2.0/3.0 

 OpenCL  1.1 

 OpenVG  1.0.1 

 DirectX  11 

 Google Renderscript 

http://dx.doi.org/10.1007/978-1-4842-1952-2_9


CHAPTER 3 ■ HELLO, ARTIK

32

 OpenGL for embedded systems is a sub-set of the full OpenGL specification. 
This implementation maps functionality from OpenGL 1.1, 2.0, and 3.0. The  OpenGL 
implementation   in an ARTIK 10 module has additional higher-version support than the 
ARTIK 5 does. 

 The OpenVG implementation provides hardware-assisted vector graphics drawing 
tools. 

 The Microsoft DirectX support will assist in porting applications and frameworks 
from projects that are built for Windows operating systems. 

 The Google Renderscript support is compatible with the framework developed for 
use in the Android operating system. 

 This GPU also supports OpenCL, which provides additional computing capacity to 
the ARM CPU’s. The CPU can delegate work to the GPU, such as video compression or big 
data computations on large arrays. 

 This is a very powerful graphics engine that provides a serious level of graphics 
capability. Find out more about these graphics capabilities here:    

      https://en.wikipedia.org/wiki/Mali_(GPU)       
     http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/
mali-t628.php       
     https://en.wikipedia.org/wiki/OpenGL       
     https://en.wikipedia.org/wiki/OpenGL_ES       
     https://en.wikipedia.org/wiki/OpenVG       
     https://en.wikipedia.org/wiki/OpenCL       
     https://en.wikipedia.org/wiki/DirectX       
     https://en.wikipedia.org/wiki/Renderscript          

         Memory Storage 
 The ARTIK 10 module has 2GB of low-power DDR3 memory (LPDDR3) on board. This 
is similar to the kind of memory you have in a laptop computer but requires much less 
power to operate. This memory is directly connected to the CPU. An additional 16GB of 
eMMC memory capacity is attached through a slower interface. This is the equivalent of 
approximately 20 CD-ROMs or a couple of DVD disks. If you compress the audio, perhaps 
a thousand or more songs could be stored inside the ARTIK 10 module. 

 Everything about the ARTIK modules is designed to conserve power, and memory 
architecture is carefully designed to drain the minimum power from a battery.  

     Audio Codec Support 
 The ARTIK 10 provides  audio codec support   for surround sound and multi-channel 
mixing. This is all done in hardware that avoids using up valuable computing capacity on 
the CPU. The surround sound delivery is done via the I2S bus. The multi-channel support 
is implemented as an 8-channel Time Division Multiplexor (TDM) routed to a hardware 
mixer for mix-down and routing to the output.     

https://en.wikipedia.org/wiki/Mali_(GPU)
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-t628.php
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-t628.php
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/OpenGL_ES
https://en.wikipedia.org/wiki/OpenVG
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/Renderscript


CHAPTER 3 ■ HELLO, ARTIK

33

      Hardware Video Codec Support   
 The ARTIK 10 module includes hardware for higher quality video formats (summarized 
in Table  3-4 ) than the ARTIK 5 has. Encoding and decoding support varies depending 
on the codec. Not all codecs are supported in both modes, and the encoding is powerful 
enough to support HD video at 120 frames per second (FPS) with 1080 lines. This is better 
than the quality you would have delivered from a Blu-ray disk player. The higher frame 
rate will make sports footage and other rapidly moving objects easier to see on the screen 
due to the reduced motion blur artifacts.    

     Comparing the ARTIK Modules 
 The ARTIK module family spans a huge range of capabilities. At the smallest scale, you 
have a very compact and lightweight module (ARTIK 1) that is ideally suited to developing 
wearable devices or being embedded inside consumer products. At the other end of the scale, 
the ARTIK 10 is a hugely powerful media processing – capable 8-core computer with a lot of 
onboard capabilities and many interfacing possibilities due to the range of I/O processors 
integrated with the CPU. In the middle ground, the ARTIK 5 has media-processing playback 
capabilities and also has a generous complement of inputs and outputs. 

 Many features are engineered and implemented across all ARTIK modules. The only 
difference is the scale or number of component items supported. ARTIK 1 has the fewest, 
and the ARTIK 10 has more because it is designed for larger and more complex tasks. 

     Power Management Integrated Circuit ( PMIC)      
 Power consumption is reduced to a very low level across all ARTIK modules. The same 
kind of embedded power management controller is used across all ARTIK modules. This 
maintains a steady power source for all the chips on the board and the voltages being 
supplied to externally connected devices. 

 The PMIC is a critically important part of the power management that extends the 
life of the battery providing power to your ARTIK module. The buck convertors step 
down the incoming power supply to the correct regulated voltage to deliver power to the 
onboard processor and other components. The low-dropout (LDO) circuits maintain the 
supply when the battery runs down. 

   Table 3-4.    ARTIK 10 Video Support   

 Codec  Encode  Decode 

 H.263  √  √ 

 H.264 (AVC, MPEG 4 part 10)  √  √ 

 VP8  √  √ 

 MPEG-2  √ 

 VC1  √ 



CHAPTER 3 ■ HELLO, ARTIK

34

 The  PMIC support   in the ARTIK 10 has more buck convertors and LDOs for 
regulating the power supply when compared with an ARTIK 5 or ARTIK 1. Learn more 
about PMIC concepts here: 

      https://en.wikipedia.org/wiki/Low-dropout_regulator       

          Security Management   
 The ARTIK modules implement the hardware-encrypted Secure Element system that 
Samsung provides across the whole ARTIK range. Refer to chapter   4     (“Security Matters”) 
for more details about how this works.  

     Support for Audio Coding 
 At this very  early   stage of the ARTIK product lifecycle, the audio capabilities are present 
but unsophisticated. There is an API to access the inbuilt audio mixer, and the ARTIK can 
run various open-source applications, such as mPlayer, to process the audio. 

 This functionality will become more capable and sophisticated as Samsung 
continues to develop the ARTIK products, and third-party developers also have an 
opportunity here to extend the capabilities by their own ingenuity. 

 The foundation of the audio support is built on the  Advanced Linux Sound 
Architecture (ALSA)      project. This is a standard set of tools for audio processing in Linux. 
ALSA provides support for MIDI in addition to the sampled audio support. Access the 
ALSA project and explore the open source and guidance on using the tools here: 

      http://www.alsa-project.org/main/index.php/Main_Page       
     http://alsa.opensrc.org/        

    Find  out   more about the audio toolkits and capabilities in the companion Apress 
 ARTIK Reference Guide  book.  

     Support for Video Coding 
 Digital video is  a   complex topic. The ARTIK 10 has sufficient computing power to encode 
video from a camera or digital video interface. The ARTIK 5 is capable of playing back 
high-quality video. 

 The documentation relating to UVC camera drivers for Linux lists various compatible 
cameras and how to interact with them. Find out more about UVC here: 

      http://www.ideasonboard.org/uvc/       

    The ARTIK OS has the popular  ffmpeg  video-coding tool installed by default. The 
 aplay  and  mPlayer  tools should get you started with playing video clips. 

 This is an advanced topic and requires a good deal of careful integration. It is 
dependent on the make and model of your video input/output devices and on what you 
plan to do with them. Consult the  ARTIK Reference Guide  for more details.  

https://en.wikipedia.org/wiki/Low-dropout_regulator
http://dx.doi.org/10.1007/978-1-4842-1952-2_4
http://www.alsa-project.org/main/index.php/Main_Page
http://alsa.opensrc.org/
http://www.ideasonboard.org/uvc/


CHAPTER 3 ■ HELLO, ARTIK

35

     Physical Connections 
 The connections are all brought out of the ARTIK modules via  Panasonic AXT multi-pin 
connectors   on the underside. Build receptacles for these connectors on your interface inside 
the product you want to empower with the ARTIK. Allow sufficient vertical space in your 
mechanical design to accommodate these connectors — and the ARTIK when it is plugged 
into them. Look at the developer reference boards to see these connectors under your ARTIK 
module. Check out the companion Apress  ARTIK Reference Guide  for detailed information 
about the pinouts and connectors. The configuration of these connectors is different for each 
of the ARTIK module variants. An example connector is shown in Figure  3-8 .    

  Figure 3-8.    Panasonic AXT connectors       

     About the ARTIK Operating Systems 
 The ARTIK 5 and 10 modules run a version of Linux. You should become familiar with 
UNIX commands, scripts, and how the file system works. It helps to know about regular 
expressions and how to pipe the output of one command into another. There are many 
books available that will teach you about the UNIX command-line shells. 

     Nucleus RTOS 
 The  Nucleus real-time   operating system in the ARTIK 1 module is unique to that device. 
The larger ARTIK modules use a Linux general-purpose operating system (Fedora), which 
works quite differently.  

 



CHAPTER 3 ■ HELLO, ARTIK

36

 Because the ARTIK 1 is used in a different context, it needs a real-time operating 
system (RTOS) rather than a traditional time-sharing process multiplexed operating 
system. A traditional operating system focuses on getting as much work done within the 
shortest time span. This sometimes affects its response to external stimulations. A real-
time operating system has a predictable response time. There are a lot of similarities, but 
an RTOS will generally break down a computing task into smaller slices that are ready to 
receive new input when called for. RTOS systems are also more event driven. The coding 
of RTOS internals is more efficient and constrained so as to execute more quickly than a 
traditional time-sharing OS. This allows an RTOS-equipped system to respond to real-
world trigger events right away. 

 The Nucleus RTOS was developed by Mentor Graphics and is already embedded 
in several billion consumer devices. Because it has been widely adopted, there will be 
a large number of other useful resources available on the Internet. Here is some helpful 
documentation to start with: 

      https://www.mentor.com/embedded-software/nucleus/        
     https://en.wikipedia.org/wiki/Nucleus_RTOS          

    The Nucleus community discussion forum is a good place to go for solutions. Any 
questions you will come up with during the early part of your research have probably 
come up before and been answered already: 

      https://communities.mentor.com/community/embedded_software/nucleus_rtos       

    Nucleus is less capable of being modified than Fedora since it is managed as a 
closed-source project. If you plan to embed Nucleus into a product of your own design, 
the commercial license permits you to see the source code. The Samsung engineers 
would have access to add features and bind the OS to their hardware but as third party 
customers, we cannot obtain the source code and add our own enhancements. This 
suggests that ARTIK 1 software development should focus on writing applications, 
because the OS is harder to access for modification. 

 The Nucleus kernel only consumes about 2KB of your available memory. Beyond 
this, memory consumption depends on what additional operating system services you 
have configured. When you write your application, be aware of the limited amount of 
memory and only use what you need. Concentrate hard on removing potential memory 
leaks, and recycle the memory allocations to avoid filling it up. Be as economic as you can 
with CPU processing capacity to avoid draining the battery.     

     Linux: Fedora OS 
 The operating system in the ARTIK 5 and 10 modules is based on Fedora Linux and has 
more capabilities than the Nucleus OS found in the ARTIK 1.  

  Figure 3-9.    The Nucleus OS logo       

 

https://www.mentor.com/embedded-software/nucleus/
https://en.wikipedia.org/wiki/Nucleus_RTOS
https://communities.mentor.com/community/embedded_software/nucleus_rtos


CHAPTER 3 ■ HELLO, ARTIK

37

 These larger modules have more hardware interfaces to control and require libraries 
of supporting code that the ARTIK 1 does not need. Fedora is not a real-time OS because 
an ARTIK 5 or 10 works like a conventional computer and does not expect to respond to 
outside stimuli as immediately as an ARTIK 1 does. Find out more about Fedora here: 

      http://www.linux.com/directory/Distributions/popular-distributions/fedora       
     https://en.wikipedia.org/wiki/Fedora_(operating_system)       
     https://fedoraproject.org/wiki/Overview       
     https://getfedora.org/       
     https://docs.fedoraproject.org/en-US/        

    The Alpha prototype versions of the ARTIK modules shipped with Fedora 20. 
The Beta prototype modules upgrade that version to Fedora 22, which has many more 
capabilities. Fedora will be upgraded as new releases are developed, so your production 
revision ARTIK modules may be running a later version. It is quite easy to detect what 
version you have from inside your applications. A simple example in chapter   15     illustrates 
how to do this with only a few lines of code. 

 Fedora focuses on rapid and regular release cycles, with new features being added 
often. It is used as the basis of the Redhat Linux distribution that powers many corporate 
systems. CentOS is a community-supported derivative used in many virtual private 
servers that power the World Wide Web. Because of this relationship, the Fedora-based 
operating system is well supported by a large community, and there are lots of resources 
to support your development activity.     

     But What Is Yocto? 
 The  Yocto project   is not an operating system itself but rather is a template for taking 
an existing Linux distribution and paring it down to be embedded onto a single-board 
computer. The ARTIK modules use the Fedora Linux distribution as a basis for the Yocto 
embedding process.  

  Figure 3-10.     Fedora Linux   logo       

 

http://www.linux.com/directory/Distributions/popular-distributions/fedora
https://en.wikipedia.org/wiki/Fedora_(operating_system)
https://fedoraproject.org/wiki/Overview
https://getfedora.org/
https://docs.fedoraproject.org/en-US/
http://dx.doi.org/10.1007/978-1-4842-1952-2_15


CHAPTER 3 ■ HELLO, ARTIK

38

 Samsung has joined with a lot of other companies that produce consumer products 
to form the  Yocto Long-Term Support Initiative (LTSI)  . This is designed to provide stable 
and ongoing support for products based on this template-driven embedded operating 
system infrastructure. 

 Enthusiasts debate online whether Yocto is the optimum choice for the ARTIK 
modules. Samsung does not want to exclude any OS version that ARTIK developers might 
use. Theoretically for now, you could build your own embedded Linux operating system 
and install it. The resources you need to create a device tree and include a board support 
package have not yet been published. As ARTIK becomes more widely known, the user 
community will develop solutions like that for everyone to share. ARTIK modules running 
Tizen and Snappy Ubuntu have already been demonstrated. You have to make a solid 
business case to justify the amount of effort needed to port a new operating system to the 
ARTIK. For most users, the default OS will be just fine. 

 Here is the home page for the Yocto project. This is a good place to start searching for 
resources: 

      https://www.yoctoproject.org/about          

         Other Operating Systems 
 ARTIK discussion forum postings asked whether other operating systems could be ported 
to the ARTIK. The simple answer is yes, because it is based on a UNIX-driven hardware 
architecture, and therefore any UNIX variant is feasible in principle. The more complex 
answer is that while anything is possible, some things are easy and others are a bit harder. 
Provided you build a bootable eMMC image small enough for the embedded OS to work 
within the available memory in the ARTIK, this should be doable. 

 As an example of running other operating systems, the ARTIK 5 and 10 modules 
were demonstrated at the 2015 Samsung Tizen developer conference with a special build 
of the  Tizen   operating system. Tizen is an operating system developed by Samsung for 
use in TV set top boxes. This was also integrated with the SAMI system for exchanging 
IoT data between devices. Dr. Luc Julia demonstrated how to create a Tizen TV Manifest 
in SAMI, get real-time data, and have the Tizen TV interact with other devices already 
connected to SAMI after the Manifest was created. 

 A  Snappy Ubuntu   core running on an ARTIK module was demonstrated at the 
Mobile World Conference – Barcelona in February 2016, further proving that if you have the 
resources and knowledge, porting a different OS to the ARTIK is not an impossible task.   

  Figure 3-11.    Yocto project logo       

 

https://www.yoctoproject.org/about


CHAPTER 3 ■ HELLO, ARTIK

39

     Summary 
 Now that you are getting to know the ARTIK modules and how the three different models 
compare with one another, it is time to look more closely at the ARTIK features and 
capabilities. Although the modules are different and there are two kinds of operating 
system in use, the modules all work in fundamentally the same way. The next chapter will 
examine the security features of the ARTIK modules. Security is fundamental to building 
a reliable and robust Internet of Things ecosystem. Samsung has built security support 
into the hardware that makes it much more difficult to subvert.        



41© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_4

    CHAPTER 4   

 Understanding Security           

     Risk Factors and Dystopian Futures 
 Taking  security   seriously is more important than ever before when it comes to IoT 
systems. IoT systems must be 100 percent robust, secure, and private too. There are three 
perspectives on this — the Good, the Bad, and the Arguable.

    1.    Smart vehicles within a transport infrastructure can leverage 
their location information to add new capabilities. Knowing 
that your car is moving and that its location is not adjacent to 
any of your nominated drivers is a good indication that it has 
been stolen. Self-driving cars will always be location tracked 
and can be controlled or immobilized remotely. Car theft will 
be much more difficult, because vehicles can be immobilized 
remotely. Even vehicle ownership is being questioned as a 
consequence of using self-driving vehicles.  

    2.    On the other side of this scenario are the risk factors. 
Developers should seriously consider the dark side of this 
equation. Hacking a self-driving car could be a way to cause 
an accident or gain unauthorized access to the car to steal its 
contents.  

    3.    There are grey areas where trading a little privacy in exchange 
for improved services and infrastructure is beneficial. 
Everything will be trackable, including every individual 
person and their property. Governments can use this tracking 
technology as a way to price the transport infrastructure. This 
makes it very easy to introduce congestion charging as a way 
to alter the driving habits of the population at large without 
massive infrastructure needing to be built. That may lead to 
less stressful commuting. It remains to be seen whether the 
revenues would be invested in improving the transport system 
as a whole. Insurance companies are already considering 
how to personalize policies by aggregating big data sources  to   
know more about your lifestyle.     



CHAPTER 4 ■ UNDERSTANDING SECURITY

42

 Take into account all of these perspectives and ensure the security of your design is 
well conceived, operates as you intend, and cannot be subverted by third parties. Protect 
the privacy of your customers to avoid unwanted intrusions into their lifestyles.  

     Security Ecosystem 
 Securing your ARTIK- based   products against intrusion, interference, and data theft is a 
critical part of your design process. Samsung has built tools into the ecosystem that help 
you with that. You are free to develop a security system of your own, but the combination 
of the built-in security tools and the SAMI cloud-based data exchange can take a lot of the 
hard work out of building a secure and robust architecture for your product. 

 Read this blog article by Kevin Sharp that explains the whole security issue in an 
interesting way:

     https://www.artik.io/blog/2015/iot-101-security       

         SAMI 
  SAMI   can provide an application standard for a market like IoT where interoperability 
and security are essential. The design emphasizes data-driven development. Writing a 
manifest decouples the framework from having to hardwire support for devices and also 
helps you manage the extensibility that is vital to being able to support new and as yet 
unknown devices. Think beyond single devices and consider instead how data belonging 
to different users and devices can be connected to generate new insights. By adding 
rules that trigger actions, the data exchange becomes much more than a simple data 
conversion nexus. Samsung describes this as  data fusion .  

     OAuth2 
 Security in the ARTIK and SAMI ecosystems is handled with  OAuth2 protocols  . These are 
well known in the industry, and there is a lot of documentation and support for them. 
Because Samsung has already done all the hard work of embedding them, you need not 
delve into their inner workings. It is beneficial to know how OAuth2 works so that you 
can diagnose problems if they crop up. There is OAuth2 support and toolkits for all the 
languages you are likely to use for ARTIK and SAMI software development. Find out more 
about them and OAuth2 here on the home page:

     http://oauth.net/2/        

https://www.artik.io/blog/2015/iot-101-security
http://oauth.net/2/


CHAPTER 4 ■ UNDERSTANDING SECURITY

43

          Cloud-based Services      
 The purpose of the SAMI data-exchange approach is to build a unified ecosystem for 
IoT. Samsung also provides the SmartThings OpenCloud. SmartThings is a software and 
data aggregation service built on top of SAMI that can send and receive all data formats 
between all devices, and store them for analytics. It is especially well suited to building 
smart home systems.  

     Open Technologies for  Sharing   
 The IoT industry needs open standards that reflect the best system architecture designs. 
Developers must be able to easily connect different kinds of applications so they can 
communicate with one another. A single developer may not be in control of all the 
applications that they depend on. An open but secure data exchange needs to allow 
multiple developers to share data with one another. Creating order amongst a chaotic 
tangle of competing devices and protocols, and fostering a collaborative approach to 
development, goes hand in hand with setting a secure foundation for IoT. The world 
cannot afford to sacrifice functionality and security on the altar of market share and 
dominance by a single provider.  

     Keeping Your Data Safe and  Secure   
 Samsung has engineered a lot of security support into the ARTIK designs to protect 
your privacy. The ARTIK hardware and software control who is permitted to access the 
device, what they can do with it, and what information they are allowed to view. The 
ARTIK modules also have smart-machine learning for identifying unusual behaviors 
that compromise device security. If you insist on building a fundamentally insecure 
application or device, ARTIK cannot protect you from your own stupidity, but it can give 
you enormous help in building secure and intrusion-proof systems without your needing 
to become a security expert in the first place.  

     Secure  Operating System   
 The ARTIK 5 and 10 modules run a variant of the Linux operating system. The security 
support in Linux is inherited from UNIX, which has been around for a long time and has 
matured into a secure and robust environment. That is not to imply that other operating 
systems are not secure, but they are proprietary. A Linux solution is a good choice 
because it has an open-source heritage that makes it very easy to introduce corrective 
patches when a potential security flaw is detected.  



CHAPTER 4 ■ UNDERSTANDING SECURITY

44

      Firmware Security   
 The ARTIK ecosystem supports secure  firmware  -updating principles. Samsung will from 
time to time release updates that are installed under control of the trusted execution 
environment.  

      Device Authentication   
 Authenticate your ARTIK module by registering it with your SAMI account, and use the 
SAMI data exchange to aggregate feeds from several devices. This uses a three-element 
key that is cryptographically secured by the embedded secure element support:

•    Device type ID  

•   Unique device instance ID  

•   OAuth2 token for the data-exchange transactions     

      Data Encryption      
 The hardware crypto engine inside your ARTIK’s embedded secure element encrypts 
data that is transmitted to a remote service, such as the SAMI data exchange. Because this 
is hardware-based security, it is much more robust than a software solution and is very 
resilient to intrusion. 

 The transmitted data is based on  Datagram Transport Layer Security (DTLS)  , which 
operates deep down in the networking protocol at the most fundamental layer. This 
makes the transmission secure at a foundational level. Read more about how this works 
on Wikipedia: 

      https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security       

         Get Your Samsung Account Now 
 You need a Samsung  account   of your own to access the SAMI services. This will associate 
all the data streams your devices create with the same account, where it is aggregated 
and maintained in private. A Samsung account also grants access to the online ARTIK 
developer resources. Follow these steps to register and verify an account to use for your 
prototyping research:

    1.    Go to the Samsung account front page: 

      https://account.samsung.com/       

        2.    Click on the “Sign Up” link at the top right.  

    3.    Enter your e-mail address that will be used as your Samsung 
account ID.  

https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security
https://account.samsung.com/


CHAPTER 4 ■ UNDERSTANDING SECURITY

45

    4.    Enter a robust password.  

    5.    Confirm your password in the second textbox.  

    6.    Add your name and personal details.  

    7.    Type the captcha text to indicate that it is a human being 
applying for the account and not a web crawler.  

    8.    Choose whether to receive marketing communications from 
Samsung.  

    9.    Read and agree to the Terms & Conditions.  

    10.    Read and agree to the Samsung Privacy Policy.  

    11.    Read and agree with the Data Combination Policy.  

    12.    Click on the Continue button.  

    13.    Samsung sends an e-mail verification message to you at the 
mailbox you specified as your Samsung account ID.  

    14.    Check your e-mail and click on the verification link to confirm 
that your e-mail account is working and to tell Samsung your 
account was created by the e-mail account owner.  

    15.    Use these credentials to sign in to your Samsung account 
to access the SAMI system as a user or developer. The same 
account will access the ARTIK developer resources.         

      Embedded Secure Element   
 ARTIK was built with security in mind. All three ARTIK modules have an  embedded 
secure element   (SE) that can be used to protect sensitive information stored on a device 
using traditional cryptography, and to store any cryptographic materials used to encrypt 
a user’s data. These security features are very important because they facilitate a secure 
integration of IoT devices with the SAMI data exchange.  

      Hardware Crypto Engine   
 The ARTIK module maintains a closed storage container where cryptographic keys 
can be locked away safely. These keys are used to encrypt and decrypt messages 
between your ARTIK module and the SAMI data exchange, for example. They could 
secure any kind of encrypted messaging. The keys are unique to each ARTIK and are 
“burned in” as the modules are manufactured. No two ARTIK modules share the same 
credentials, and because this storage is inaccessible to the user space, neither users nor 
developers can extract the keys and subvert them. This is fundamental to making ARTIK 
communications secure. 



CHAPTER 4 ■ UNDERSTANDING SECURITY

46

 The secure element support is integrated at the chip level with each ARTIK as it is 
manufactured. This is a hardware-implemented crypto engine, and penetration attempts 
will destroy the chip, causing any attempt to physically hack the devices to fail. Software-
based attacks are prevented because there is no route to access the secured storage from 
the user space.     

     Segregated Trust Zone 
 A  segregated trust zone  , also known as a  trusted execution environment (TEE)  , is 
accessible only by authenticated services. This prevents access by malicious attackers 
attempting to negotiate a route around the secure element support. Only those processes 
running within the TEE can access secure content within the protected parts of the 
module.  

     Current Status 
 As of the Alpha and Beta prototypes of the ARTIK modules, the embedded secure 
element support is not yet complete. This blog article describes how to accomplish a 
useful level of security for the time being with a SAMI-based data exchange:

     https://blog.samsungsami.io/topics/security/        

         Summary 
 The security features must work in the background without the developer needing to 
worry or intervene. The hardware crypto support in an ARTIK module ensures that 
HTTPS protocol connections to SAMI (for example) are secured without any help from 
your application code. This partition of responsibilities makes things more secure, 
as there is no software component exposed in source code and, therefore, nothing to 
be subverted. The hardware crypto support is impenetrable from the software, and 
physically accessing the internals of the crypto engine would destroy the contents of the 
chip beyond repair; the ARTIK module would cease to work. 

 The next step is to get to know the ARTIK developer reference board that facilitates 
the prototyping of new project ideas. This brings all the connections out to more easily 
accessible switches, sockets, and connector pins.     

https://blog.samsungsami.io/topics/security/


47© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_5

    CHAPTER 5   

 Your Development Kit           

     The Developer Reference Board 
 The ARTIK modules are small and easily damaged. You should avoid handling them 
unnecessarily. They have specialized multi-pin Panasonic AXT connectors on the 
underside to avoid having to solder connections directly onto them. The best way to 
start learning how the ARTIK modules work is to use the developer reference board. 
This extends the connectivity of the ARTIK out to connectors that you will be more 
familiar with. The developer reference board also provides debugging facilities through 
its JTAG connector. 

 The developer reference board is designed to safely mount your ARTIK so you can 
work on your product design without constantly handling the module. This will protect 
it from undue wear and tear and the risk of  static discharge damage  . Even so, you should 
always make sure you have grounded yourself and the equipment you are handling 
before touching it in order to dissipate any gradual build-up of static charges. 

     About the Developer Reference Boards 
 There are several different developer reference boards available for mounting your ARTIK 
modules in a test harness for connection to your hosting development workstation. Each 
kind of ARTIK module has a board specifically designed for it. 

 The ARTIK 1 is small enough to be used in wearable products. It has fewer 
connecting pins than the other ARTIK modules, which need to support connections 
that the ARTIK 1 does not need. Consequently, the Type 1 is a quite different developer 
reference board design. 

 There are multiple versions of the developer reference board that have evolved from 
the original Alpha prototype. The Beta prototype integrated the serial interface onto the 
main board and eliminated the need for the extra debug board and USB-Serial adapter. 
Table  5-1  is a summary of the different versions and release dates to help you identify the 
different boards and ARTIK modules.  



CHAPTER 5 ■ YOUR DEVELOPMENT KIT

48

 This introductory book will review the best information we have on the currently 
shipping versions of the reference board as of spring 2016. As the product evolves, the 
changes do become smaller and subtler. The Commercial Beta revisions are close enough 
to the production version to be suitable for early adopters to use. 

 ■   Note   Because Samsung is still developing the ARTIK platform, the developer reference 
board and the ARTIK modules will change from what is documented here.    

     What Is in the Box? 
 When you open the developer kit, you will find all the accessories needed to get started 
with your research project right away. A typical developer kit is shown in Figure  5-1 . 

   Table 5-1.    Developer Reference Board  and Module Versions     

 Prototype  Type  Version  Date  Description 

 Alpha  1  0.2.0  2015-04-21  Compatible with ARTIK 1 only 

 Alpha  2  0.2.0  2015-04-20  Universal developer board, 
compatible with ARTIK 10 and with 
the addition of a small mezzanine 
adapter the ARTIK 5 can be mounted 
on the same board. 

 Beta  5  0.3.0  Development prototype 

 Beta  10  0.3.0  Development prototype 

 Beta  5  0.3.1  2015-09-02  Compatible with Beta ARTIK 5 

 Beta  10  0.3.1  2015-09-02  Compatible with Beta ARTIK 10 

 Beta  5  0.3.2  2015-10-22  Compatible with Beta ARTIK 5 

 Beta  5  0.5.0  2015-12-23  At launch, ARTIK 5 modules will be 
this Commercial Beta version 

 Beta  10  0.5.0  2015-12-23  At launch, ARTIK 10 modules will be 
this Commercial Beta version 

 Production  5  1.0.0  Later  ARTIK 5 production modules 

 Production  10  1.0.0  Later  ARTIK 10 production modules 



CHAPTER 5 ■ YOUR DEVELOPMENT KIT

49

•    One of the ARTIK 5 or 10 modules already safely mounted on the 
developer reference board. The board will be a Type 5 or Type 10 
variant. Some pinouts and jumpers are different between the two 
kinds of developer reference board. Alter your application code 
depending on the one you are using.  

•   A USB-A to USB-Micro-B cable that replaces the USB-Serial 
adapter that was required for the Alpha prototypes. The serial 
adapter is now an integral part of the developer reference board. 
Just connect this USB cable to your development workstation.  

•   A 5-volt DC power supply pod that operates worldwide at 100 to 
240 volts AC.  

•   A set of wireless communications antennas for use with the 
Wi-Fi and ZigBee SMA connectors.        

  Figure 5-1.     Typical developer kit         

 



CHAPTER 5 ■ YOUR DEVELOPMENT KIT

50

 Table  5-2  lists the switches, jumpers, and connectors found on the Type 1 developer 
reference board. Configure their operation once you have the system up and running.   

ARTIK 1 Module

Arduino
Compatible
Connector

LCD Video
Output

Microphone

Reset
Button

Debug
Connector

Power
Button

Jumpers Audio
Output

Power Input
Connector

Mini USB for 
Peripherals

Serial Connector
to Hosting
Development
Workstation

LED
Indicators

Rx/Tx LEDs

  Figure 5-2.    ARTIK 1 developer reference board       

     The Type 1 Developer Reference Board 
 The Type 1 developer reference board shown in Figure  5-2  is self-contained and has 
 Panasonic AXT connectors   configured to mount a single ARTIK 1 module. There are 
breakout connectors for all of the services and signals that the ARTIK 1 supports. These 
provide easier access than trying to make your own direct connections to the two small 
AXT connectors on the bottom of the ARTIK 1 module.  

 



CHAPTER 5 ■ YOUR DEVELOPMENT KIT

51

     The Type 5 & 10 Developer Reference 
Boards (Beta) 
 With the introduction of the  Beta versions   of the ARTIK modules, the developer reference 
boards have been updated. The Alpha prototypes shared the same Type 2 universal 
developer reference board for both ARTIK 5 and 10 modules. Now there is a different 
developer reference board for each of them. There are pinout differences between 
these boards to account for in your code. The Type 5 board shown in Figure  5-3  is for 
developing your applications with an ARTIK 5 module. The newer design eliminates the 
external ribbon cable – connected debug board and integrates an onboard USB-Serial 

   Table 5-2.    Type 1 Developer Reference Board  Connections     

 Connector  Description 

 Power Port  5-volt power input 

 JTAG  14-pin JTAG hardware debugging connector. Attach a Segger 
JTAG debugging hardware tool here. You may need a 14- to 20-
pin adapter cable to match the JTAG pinouts. 

 Serial Connector  This is a generic DB9 serial connector. Plug this into the serial 
interface you have configured on your computer. 

 LCD Video  Video output to a small wearable LCD display 

 Microphone  Audio input via a microphone on the developer reference 
board 

 Mini USB  Connect downstream USB peripherals here. 

 Audio  3.5 mm headphone-compatible jack output socket 

 Arduino Connector  A sub-set of the pins found on an Arduino 

 AXT CPU Socket  This is where your ARTIK module will be connected to the 
outside world. The developer reference board may already 
have the ARTIK fitted. 

 Power Button  Power up U-Boot call to action. The boot button. 

 Reset Button  Reset action 

 Jumper pins  Configuration jumpers 1 to 4. Their functionality is currently 
undocumented. 

 RXD LED  Located near the serial connector. This should flash when the 
board receives serial data from your computer. 

 TXD LED  Also located nearby, this should flash when the developer 
reference board is sending data back to your computer. 

 Power LED  Illuminates when the power is turned on 

 Reset LED  Illuminates when the reset button is pressed 



CHAPTER 5 ■ YOUR DEVELOPMENT KIT

52

interface. This illustration shows the board fitted with a Beta version of the ARTIK 5. The 
layout of the production model is slightly different, with the three coaxial connections on 
the ARTIK module arranged in different positions.  

SigFox
Antenna

Z-Wave
Antenna

WiFi/Bluetooth
Antenna

Video
Display

Connector

Video
Camera

Connector

WiFi/ZigBee
Antenna

Power
Button

Power Supply 
Switch

5v DC Power
Input

Mini USB

Digital I/O Pins

Analog Input Pins

Arduino Compatible PinsJTAG Connector

Audio Output

Micro SD socketBoot
Configuration

Switches

Rx/Tx
LEDs

USB Serial Adapator
Connection to

Hosting Development
Workstation

ARTIK 5

Ethernet RJ45
Connector

ZigBee
Antenna

Reset LED

Power
LED

Backup
Battery

External Battery
Connector

Jumper 30

Jumper 14

Ethernet LED

Jumper 31

Reset
Button

  Figure 5-3.    Type 5 Beta developer reference board (Ver 0.3.2)       

 The Type 10 developer reference board shown in Figure  5-4  is for developing 
applications with an ARTIK 10 module. Like the Type 5 board, this one has a USB-Serial 
interface integrated directly onto the board. This example is a Commercial Beta revision 
that will be shipped to early adopters.   

 



CHAPTER 5 ■ YOUR DEVELOPMENT KIT

53

     Early Production Models 
 The ARTIK 5 and 10 modules will be shipped to the early-adopting consumers on a 
version 0.5.0 developer reference board. These early production boards are functionally 
similar to the Beta version, but some of the connectors are moved to different locations. 
Samsung describes this revision as a Commercial Beta model.  

     Type 5 and 10 Developer Reference Board 
Connectors 
 Table  5-3  lists the  connectors   on the developer reference board and what they are for. 
Any configuration of these connectors and their operation needs to be done once you 
have the system up and running. Edit configuration files in the operating system or 
send messages to the kernel to set things up exactly how you want them. The kernel is 
an important part of the operating system that interfaces to the ARTIK hardware and 
provides an API for your application code to call.  

 Your developer kit includes wireless antennas. Attach these depending on what kind 
of wireless communications you want to use. Purchase additional antennas if you want to 
activate all of the Wi-Fi capabilities at once. Be careful to order extra attachable antennas 
with the correct kind of SMA connector, as there are several different configurations. 

 You will notice that the board layout changes with each revision, so although the 
same connectors are present, they might not be in the same place. You should inspect your 
board carefully to find the correct ones, and some experimentation may be necessary.     

SigFox
Antenna

Z-Wave
Antenna

WiFi/Bluetooth
Antenna

WiFi/Zigbee
Antenna

Video
Display

Connector

Video
Camera

Connector

Power
Button

Power Supply 
Switch

5v DC Power
Input

USB 3.0

USB 2.0

Digital I/O Pins

Analog Input Pins

Arduino Compatible PinsJTAG Connector

Audio Output

Micro SD socket

Boot
Configuration

Switches

Rx/Tx
LEDs

USB Serial Adapator
Connection to

Hosting Development
Workstation

ARTIK 10

Ethernet RJ45
Connector

ZigBee
Antenna

HDMI
Output

Camera
Connector

External Battery
Connector

Jumper 30

Jumper 19

Power & Reset LEDs

Jumper 14

Activity LEDs

Reset
Button

  Figure 5-4.    Type 10 Commercial Beta developer reference board (Ver 0.5.0)          

 



CHAPTER 5 ■ YOUR DEVELOPMENT KIT

54

   Table 5-3.    Type 5 and 10 developer reference board connections   

 Connector  5  10  Description 

 Power port  √  √  5v power input 

 MicroHDMI  √  HDMI video output 

 Camera  √  √  Video camera input 

 Secondary camera  √  Additional camera input 

 ZigBee antenna  √  √  ZigBee smart home antenna 

 Combo Wi-Fi & BT 
antenna 

 √  √  Combined Wi-Fi & Bluetooth antenna 

 Combo Wi-Fi & ZigBee 
antenna 

 √  Additional antenna on the Type 5 only 

 Z-Wave antenna  √  This is a feature of the developer reference board 
and is not integrated into the ARTIK module. 

 SIGFOX antenna  √  √  This is a feature of the developer reference board 
and is not integrated into the ARTIK module. 

 Backup battery  √  Onboard battery 

 External battery  √  √  Connection to an external backup power supply 

 Ethernet RJ45  √  √  Wired Ethernet connections 

 Micro USB 3.0  √  Micro-sized connector on Type 5 only 

 USB 3.0  √  Full-sized USB 3 connector on Type 10 only 

 USB 2.0 Type A  √  Secondary USB interface on Type 10 only 

 Micro SD Card 
Receptacle 

 √  √  For loading software 

 Audio output socket  √  √  3.5 mm stereo jack socket 

 Arduino compatible 
Pinouts 

 √  √  Arduino-compatible pins. Some differences 
between the addressing and pin availability 
between the Type 5 and 10 boards. 

 Analog input pins  √  √  GPIO analog inputs. Some differences between the 
Type 5 and 10 boards. 

 Digital I/O pins  √  √  GPIO input/outputs. Some differences between the 
Type 5 and 10 boards. 

 CPU socket  √  √  This is where the ARTIK module will be connected. 
The developer reference board should already 
have this fitted. 

 JTAG  √  √  20-pin ARM JTAG hardware debug connector. Attach 
a Segger JTAG hardware-debugging probe here. 

 USB Serial  adapter    √  √  USB connection to the hosting development 
workstation. Install the appropriate drivers to 
support the built-in USB-to-serial interface. 



CHAPTER 5 ■ YOUR DEVELOPMENT KIT

55

     Type 5 and 10 Developer Reference 
Board Switches 
 The  switches   listed in Table  5-4  control the developer reference board and the embedded 
ARTIK that you have mounted on it.   

   Table 5-4.    Type 5 and 10 Developer Reference Board Switches   

 Switch  What It Controls 

 Power Switch  The power switch powers up the board and turns on the LEDs. 

 Power Button  This should be called a Boot button because pressing it will 
trigger the boot strap loader. 

 Reset Button  The reset button illuminates the Reset LED but appears to do 
nothing while the ARTIK is running. The hardware address 
for this switch is currently undocumented but it might be 
accessible to your software as a GPIO input. 

 Boot Mode Selector  Choose either the embedded OS or the OS installed on the SD card. 

 eMMC11  Selector    Choose the kind of memory to map in. 

     Type 5 and 10 Developer Reference 
Board LED Indicators 
 The  LED indicators   on the developer reference board and what they tell you are 
summarized in Table  5-5 .   

   Table 5-5.    Type 5 and 10 Developer Reference Board LED Indicators   

 Indicator  Details 

 Reset state active  This illuminates when the Reset button is pressed. This is near 
the Reset button on the Type 5 developer reference board and 
near the secondary camera connector on the Type 10. 

 Power on  Indicates that the developer reference board is powered up. 
This is near the Power button on the Type 5 developer reference 
board and near the secondary camera connector on the Type 10. 

 Ethernet activity  Adjacent to the Ethernet connector 

 USB activity  Adjacent to the USB connectors 

 RXD  Located near the serial connector. This should flash when the 
board receives serial data from your computer. 

 TXD  Also located nearby, this should flash when the developer 
reference board is sending data back to your computer. 

(continued)



CHAPTER 5 ■ YOUR DEVELOPMENT KIT

56

     Type 5 and 10 Developer Reference 
Board Jumpers 
 The developer reference boards contain several  jumpers   (as listed in Table  5-6 ). These 
will reconfigure the board and (possibly) the ARTIK behaviors when the pins are shorted 
together. Unless you know what the purpose of a jumper is, you should not just connect 
them and experiment. Your ARTIK module may not boot as a consequence. Take care to 
only alter jumpers if you know what they do. Check that the jumper pins are straight and 
unbent. Sometimes they can become damaged in transit and accidentally short together.   

Table 5-5. (continued)

 Indicator  Details 

 SIGFOX  This LED indicator is only present on the Type 10 boards and 
indicates SigFox activity. 

 USB  This LED indicator is only present on the Type 10 boards and 
indicates USB 2.0 activity. 

  PGANG    This LED indicator is only present on the Type 10 boards. The 
functionality is currently undocumented. 

   Table 5-6.    Type 5 and 10 Developer Reference Board Jumpers   

 Jumper  Description 

 J20  ARTIK revision 3 configuration 

 J33  ARTIK revision 3 configuration (Type 5 board only) 

 J36  ARTIK revision 3 configuration (Type 10 board only) 

 J30  Functionality undocumented (Type 5 & 10) 

 J14  Functionality undocumented (Type 5 & 10) 

 J31  Functionality undocumented (Type 5) 

 J19  Functionality undocumented (Type 10) 

     Connecting External Devices 
 The developer reference boards provide  connectivity   for a variety of external hardware. 
There are camera connections directly on the ARTIK modules for feeding video in. At 
present the video support for these is still being developed and is quite primitive. That 
will change as more developers try things out and publish their results. Plug additional 
hardware into the USB connector and install suitable drivers for it. Optionally, write new 
drivers or recompile the existing ones to be compatible with the ARM CPUs. The USB port 
provides a way to add large amounts of external storage for surveillance- and video-related 



CHAPTER 5 ■ YOUR DEVELOPMENT KIT

57

products such as media servers or video recorder applications. Your ARTIK may not be 
able to provide sufficient power for those external devices, so they should have their own 
independent power supply.  

     Summary 
 This introductory book focuses on using the developer reference boards to exercise your 
ARTIK modules. The internals of the ARTIK modules — and how to use them in your own 
product designs — are covered in the companion Apress  ARTIK Reference Guide  book. Now 
that the different versions of these developer reference boards have been examined, the 
next step is to set up a development workstation to interact with them.     



59© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_6

    CHAPTER 6   

 Getting Your Hardware 
Together                          

     Your Workbench 
 Having a dedicated place to work on your projects is helpful. Set up a software 
environment and a place to do hardware engineering at the same time. Be careful 
to keep your machine shop separate from your ARTIK or  development workstation  . 
Dropping metal filings onto electronic circuit boards is a recipe for disaster. Keep the two 
workspaces apart as far as possible.  

     Setting Up a Hardware Workbench 
 Equip yourself with some electronics tools and components. Gathering a stock of 
components and organizing them into storage containers will ensure you have everything 
ready to roll when you have a great idea. Check out the  Arduino suppliers   (Oomlout, 
Sparkfun, Adafruit, etc.) for starter kits with LEDs, resistors, and capacitors. They also 
supply kits with a few motors, solenoids, and sensors. Use plastic storage containers to 
keep things neat and tidy. Have a supply of connecting cables or reels of insulated wire. 
Stock a few mechanical components. A collection of miscellaneous brackets, nuts, bolts, 
and washers for assembling hardware would be useful. 

 You should have a range of tools that include good quality pliers, wire cutters, and 
a soldering iron. You should invest in a static electricity dissipating strap. Wearing this 
and tethering it to the grounded earth terminal of your workspace should prevent your 
generating a  static discharge and blowing   up your ARTIK. If you do not have one, touch 
something that is grounded first and then only handle your ARTIK module by gripping it 
by the edges. 

 A small vice, metalworking tools, and needle files are useful for cutting out control 
panels and brackets. Buy a few things at a time as you need them, and before long you will 
have a fully equipped workshop. 

 Apress publishes several useful handbooks about setting up your electronics 
workspace. They also have helpful guides on soldering and how electronic circuits work. 



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

60

     Wiring Up Your Circuits 
 Check out the connectors on the development system. Having some compatible 
connectors with wire tails is useful for connecting your breadboard or printed circuit 
board (PCB)    designs to the development system. 

 Stick to the accepted conventions on wire coloring to diagnose problems with your 
designs more easily. Ribbon cables with multi-colored wires are useful for connecting 
multiple signals over some distance. Work out the connections based on color and 
position within the ribbon. The common conventions are listed in Table  6-1 , but these are 
not mandatory.  

 Prototyping your circuit design on a breadboard (see Figure  6-1 ) is useful for trying 
things out quickly. Once your design is stable, you should then solder things together on a 
circuit board for a more permanent )   solution that stays in one piece while you work on it.   

   Table 6-1.     Wire Color Conventions     

 Color  Meaning 

 Black  Negative DC and also common ground plane 

 Red  Positive DC power supply 

 Green  Earth 

 Yellow  Signal - Perhaps for Rx when setting up communications 

 Blue  Signal - Perhaps for Tx when setting up communications 

 Orange  Connecting to a driver for amplifying a current to supply high power 

 Grey  Connecting to an external switcher 

  Figure 6-1.    Breadboard (courtesy of Oomlout)       

 



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

61

     Test Equipment 
 A  digital multimeter   (see Figure  6-2 ) is useful for measuring voltages and resistors, and 
for testing circuit continuity. Test circuits for continuity with a battery and LED indicator 
if you do not have a multimeter, but make sure you include a limiting resistor to control 
the LED current.  

  Figure 6-2.     Digital multimeter   (courtesy of Binarysequence)       

 



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

62

 An oscilloscope (see Figure  6-3 ) is very useful for observing time-varying values. This 
would be very useful for establishing the timing differences when comparing an ARTIK 
module and an Arduino board. Timings are interesting to look at if you are programming 
the Pulse Width Modulated (PWM) digital output pins. More sophisticated oscilloscopes 
support logic probes. These  logic   analyzers are high-end devices, and you only need this 
kind of expensive equipment if you plan to take this very seriously.    

     Setting Up a Software Workbench 
 Use Windows, Macintosh, or Linux as your development platform and add a couple of 
applications to build projects with. Similar tools are available for all platforms. The Linux 
and Macintosh operating systems are UNIX based, which might be helpful when you are 
developing your ARTIK software. Even though Windows is not a UNIX-based operating 
system, it is very easy to add a  UNIX command-line shell   by installing Cygwin and the 
PuTTY terminal emulator. 

 The Samsung ARTIK developer resources describe in detail how to set up a cross-
compiler to develop ARM software with a Windows-based development system. Some 
coverage in the Samsung notes applies to Linux workstations too. ARTIK early adopters 
requested additional coverage for the Macintosh platform, which is addressed in this 
book. The  cross-compiler tools   in particular are somewhat different for the Macintosh 
platform because the Linaro toolchain cannot be used there. The cross-compiling 
toolchain on Mac OS is explored in this book without duplicating what Samsung already 
makes available online for Windows and Linux users. 

 If you are not used to installing software, reading all of the notes that come with the 
software before you begin is a good idea. Keep the installation package archived safely 
so you can review the documentation and use it again. Make a note of the website where 
the installation packages are maintained and check for updates periodically or when you 
need them. 

  Figure 6-3.     Oscilloscope      (Courtesy of Xato)       

 



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

63

     Risk Managing Your Software Development 
 If possible, you should commit a single computer to your ARTIK work. If something goes 
badly wrong and it trashes the system, you avoid wiping out your favorite games machine 
or the place where you administer your accounts and paperwork. The shared family 
computer is also not the best place to do this. If you only have one computer then you 
have no choice. In that case, at least create a special login account to do the development 
work in. The chances of trashing your workstation when developing ARTIK software are 
small but not zero — much less than if you were developing  kernel driver code   to attach 
new hardware directly to your workstation. Some scenarios with an embedded ARTIK 
need complex workstation setups. Assess and manage the risks accordingly. Keep lots of 
backups, preferably offline on another device or system. That way, your recovery process 
should be quick and easy.   

     Configuring the  Developer Reference Board   
 On the Type 5 and  10   developer reference boards, there are two configuration jumpers 
that must be set correctly in order for the board to operate with the revision of the ARTIK 
module you have plugged in. Your developer kit should be shipped to you with these 
configured correctly for the ARTIK provided with it. You only need to be concerned with 
this if you are swapping out an old ARTIK module for a newer one that requires a different 
jumper configuration. 

 Figures  6-4  and  6-5  show the location of the jumpers on the developer reference 
boards. The location is similar on the Type 5 and 10 boards of the same revision, but they 
might be in a different place on a later version of the board. However, the jumper pins are 
numbered differently on each type of developer reference board.   

  Figure 6-4.    Type 5 jumper locations (version 3.2)       

 



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

64

 If your ARTIK module  is   earlier than version 3, the jumpers should be configured as 
shown in Figure  6-6 .     

 If your ARTIK is a version 3.0, 3.1, or later model, use the configuration seen in 
Figure  6-7  instead.     

  Figure 6-5.    Type 10 jumper locations (version 3.2)       

Jumper A Jumper B

  Figure 6-6.    Jumper configuration for pre – version 3 ARTIK modules       

 

 



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

65

 The jumper numbers  on   the developer reference boards are shown in Table  6-2 .  

 If you did this correctly, your ARTIK module and developer reference board are now 
compatible, and everything should work as intended.  

     Communicating with Your ARTIK 
 The ARTIK modules have a command-line console accessed through a serial interface. 
This is a classic and “old-school” way to interact with a computer. Prior to the Xerox 
SmallTalk systems and the  Apple Lisa computer   (these were the first computers to offer 
a graphical user interface to the general public), this was the only way to interact with a 
computer. 

 This is daunting if you have never worked like this, but it is not very complicated. 
A simple terminal emulator application can talk to the ARTIK console. You type a 
command and the ARTIK executes it and gives you the result and waits for your next 
instruction. This is challenging at first because there are a lot of new commands to learn 
and it is a very powerful environment. If you take small, careful steps and learn one thing 
at a time, you will make steady progress. Familiarize yourself with the command-line 
instructions by exploring them carefully one at a time. When you become adept at using 
them, you can string them together into more powerful combinations by redirecting their 
I/O or writing a shell script to automate them. 

Jumper A Jumper B

  Figure 6-7.    Jumper configuration for version 3.0 and later ARTIK modules       

   Table 6-2.    Developer Reference Board Configuration Jumpers   

 Jumper  Type 5  Type 10 

 A  J20  J20 

 B  J33  J36 

 



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

66

 Initial communications with the ARTIK module take place through a serial interface. 
After configuring the network support the ARTIK can be reached across the Local Area 
Network ( LAN        ) using telnet and other protocols. 

 Serial interfaces are sometimes called TTY interfaces. Serial connections were 
originally used with an electric typewriter keyboard and printer called a Teletype. This is 
abbreviated to TTY and is used to name the serial devices in UNIX operating systems.  

     Connecting the ARTIK Development System 
 There are two SMA antenna connectors that deliver Wi-Fi on the newer developer 
reference boards. One is  a   combination of Wi-Fi and Bluetooth and the other is a 
combination of  Wi-Fi   and  ZigBee  . Choose one of these to attach the antenna to so you 
can configure the Wi-Fi. After checking your configuration jumper settings, follow the 
following steps to connect and power on your ARTIK development system:

    1.    Connect a wireless antenna to the connector labeled 
“CPU WIFI ANT.” (labelled J23 on the Commercial Beta 
developer boards)  

    2.    Connect the board to your development workstation using 
the USB cable. There is only one micro-USB connector on the 
developer reference board.  

    3.    You should see the Rx and Tx LED indicators light up.  

    4.    Make sure the power switch on the developer reference board 
is set to the off position.  

    5.    Plug your 5V power supply into your power outlet.  

    6.    Insert the small DC power plug into the power port on the 
developer reference board.  

    7.    Flip the power switch on the developer reference board to the 
on position.  

    8.    The LED indicator next to the SW3 POWER button should 
illuminate.     

    9.    Your developer reference board is now powered up, but your 
ARTIK is not yet booted.     

 Your ARTIK 5 setup should look something like the example shown in Figure  6-8 . 
The picture in Figure  6-9  illustrates an early Beta Type 10 developer board with an ARTIK 
10 module installed for evaluation. The production models may look slightly different.   



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

67

 Now that your developer reference board and ARTIK are up and running, move on 
to the next step to check that your USB serial connections are working before booting the 
operating system in the  ARTIK.    

     USB Serial  Interfaces   
 Early ARTIK developer systems shipped with a separate external USB interface. This often 
used the Prolific Technologies  driver  . The Beta version of the developer boards integrated 
the serial interface directly onto the board. This interface requires a different driver from 
FDTI, which you may need to install separately depending on your operating system 
version. 

  Figure 6-8.    Type 5 developer reference board all hooked up       

  Figure 6-9.    Type 10 developer reference board all hooked up       

 

 



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

68

 Setting up the serial interface so that the development workstation can communicate 
with the ARTIK is slightly different for each of the major operating systems. Some 
operating systems will automatically detect the USB hardware and provide the correct 
driver for the serial interface hardware. These are the main steps:

    1.    Install the correct driver for the serial interface hardware.  

    2.    Connect the ARTIK developer reference board serial interface 
hardware to a USB port on the computer.  

    3.    Install or find a terminal application that can talk to the ARTIK 
via the serial device driver that the operating system has set up.     

 There are several variations of Linux. They have minor differences in how you 
install new software packages. In addition, third-party installers have been developed 
independently. Your driver installation process might look slightly different. In general 
though, it should be similar enough to follow what is happening. 

     Hooking Up the Serial Interface 
 Plug the USB connector into your development workstation before powering on the 
developer reference board. If the serial interface is not immediately recognized, one of 
the following may be the reason:

•    The correct driver software may not be installed.  

•   Alternatively, if the driver is installed, it might not be configured 
properly.  

•   The driver might require the dev board to be powered on to see it.    

 When you power on the ARTIK it should wake up the serial driver in your 
development workstation. Some USB interfaces must be unplugged and plugged in again 
to wake the driver up. The default settings should work without your needing to delve into 
the complexities of serial communications.  

     Setting Up a USB Serial Interface Driver on  Windows      
 When you plug the serial interface into your USB port, your Windows operating system 
should tell you that new hardware has been detected. This might trigger a software 
update if it needs to install a driver. It depends on the make and model of your serial 
interface and the version of Windows you are using. Some drivers are pre-installed in 
the Windows operating system. If a software update is required, follow the instructions 
on your screen. A reboot of your Windows computer may be called for. After the driver is 
installed, check it out with the Device Manager in the Windows Control Panel. 

 One of the ARTIK Discussion Forum members shared this link to download a USB 
driver for Windows when you are using a Trip·Lite USB-Serial adapter (thanks Thierry): 

      http://www.tripplite.com/shared/software/Driver/U209-000-R- Driver-For-
Windows-2000-Or-Later.zip       

www.allitebooks.com

http://www.tripplite.com/shared/software/Driver/U209-000-R- Driver-For-Windows-2000-Or-Later.zip
http://www.tripplite.com/shared/software/Driver/U209-000-R- Driver-For-Windows-2000-Or-Later.zip
http://www.allitebooks.org


CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

69

    You may need a different driver if your OS does not have built-in support for the Beta 
(and later) developer reference boards with an integrated FTDI serial interface.  

     Setting Up a USB Serial Interface Driver on  Mac OS X   
 The operating system uses the product and vendor ID values to select the right driver. You 
might have to manually install another driver if you change to a different serial interface. 

   OS X and  Security Issues   
 Apple has a determined policy of keeping operating systems and products secure against 
any risk of intrusion. This is always in the best interests of the consumers, but there are 
a few consequences for developers. Apple will continue to close access to more of the 
operating system internals and special files as OS X advances. As a rule, Apple replaces 
the casual developer’s access to system files with frameworks that allow application 
developers to still achieve their goals. In the margins are developers who want to create 
systems administration tools. This affects ARTIK developers, because a special driver 
might need to be installed for the serial interface. A few more steps are necessary on 
recent operating system versions to accommodate the Apple security countermeasures. 
The details might be slightly different for each version of the OS X operating system as 
Apple introduces new constraints. Guidance is presented here based on what has been 
happening with the latest OS X releases.  

   Is a New Driver Necessary? 
 Your Mac OS X operating system should automatically configure the correct driver for 
the USB serial interface if it has one available. As I moved from using an  Alpha prototype 
board   to the Beta version of the ARTIK, the OS X kernel attempted to load a built-in FTDI 
driver for the new serial interface. On a test system running an older version of OS X, 
that driver turned out to be incompatible with the ARTIK hardware. Work through a few 
diagnostic steps to make sure you have the right driver installed and selected. Install a 
new one if necessary.  

   Is the Hardware Detected?    
 Inspect the system configuration on Mac OS X via the “About this Mac” item on the Apple 
menu. Click on the More Information button to call up the System Profiler application or 
run it directly from the “Utilities” folder. If the serial adapter is plugged in, you should see 
it listed as  "USB-Serial Controller D:"  in the USB device tree. Select that item in the 
list to see the properties in the System Profiler app. 

 Depending on the USB serial device name in the system profile display, follow the 
most appropriate instructions as follows.  



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

70

   Installing a Driver ( USB-Serial Controller D  ) 
 Figure  6-10  illustrates what you might see on a Mac OS X system when you try to use  an 
  Alpha prototype developer reference board and an external USB serial adapter based on 
the Prolific Technology chipset. Note that many different manufacturers use this chipset 
and they will all look very similar, and might all work with the same driver.  

 ■   Note   Because this USB serial interface is based on the Prolific Technology chipset, 
you should use their driver. As time goes on, conventions are developed between competing 
manufacturers and they may emulate one another's products. Drivers that did not previously 
work gradually become compatible with new hardware. There is no way to predict this, 
and the provenance of your driver should be consistent with the hardware manufacturer for 
best results.  

 Now that the hardware is installed, the next job is to install a driver for it. Table  6-3  
summarizes some possible drivers for the PL2303 chipset. Installing a driver from 
any of these sources will probably work because they all communicate with the same 
chipset. The driver name is mirrored in the USB vendor ID that is defined by Prolific 
Technologies — the company that makes the interface chips.  

   Table 6-3.     Prolific 2303 Driver URLs     

 Interface  Driver 

 Tripp·lite U209-000-R     http://www.tripplite.com/support/downloads        

 Pluggable PL2303-DB9     http://plugable.com/drivers/prolific/      

 Generic PL 2303  compatible       http://www.prolific.com.tw/US/support.aspx      

  Figure 6-10.    Prolific USB serial device properties on Mac OS X       

 

http://www.luv2code.com/#_blank
http://plugable.com/drivers/prolific/
http://www.prolific.com.tw/US/support.aspx


CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

71

 The version 1.5.1 driver is compatible with Mac OS X 10.6 and higher. The product 
ID ( 2303 ) and the vendor ID ( 067B ) match the values shown in the System Profile. This 
driver should be good for most current Mac OS X scenarios using the Prolific chip set. 
Download the installer package (PL2303 Prolific Mac OS X 10.6 and newer v1.5.1) and 
un-archive the zip file. Open the folder and read the installation instructions in the 
enclosed PDF. The Read-Me document lists the vendor and product ID values if you 
want to check them. The instructions show you how to install a driver that you did not 
obtain via the Apple App Store. This is important now that Mac OS X is being made 
more secure. If necessary, bypass the Apple App Store Gatekeeper to install an unsigned 
kernel extension. These basic steps show you how:   

    1.    Download one of the drivers. This one is easy to find: 

      http://plugable.com/drivers/prolific/        

        2.    Open the System Preferences window.  

    3.    Find the Security and Privacy settings pane.  

    4.    Unlock the preference panel with an administrator password 
to make changes.  

    5.    Turn off the gatekeeper by choosing the “Anywhere” option in 
the Allow Applications section.  

    6.    Unpack and run the installer package file to install the new 
driver package.  

    7.    Restart the computer.  

    8.    Go back to the Security and Privacy control panel and turn the 
gatekeeper back on if you turned it off earlier.  

    9.    Open a terminal window.  

    10.    List the logical devices under the  /dev/  path to see if the 
interface is visible with this command: 

   ls /dev/ | grep usb  

        11.    You should see a list with  /dev/.cu.usbserial  included, if 
the driver has been activated.  

    12.    Alternatively, your devices might be named like this: 

   tty.usbserial-{dev_board_ID}     

        13.    Note the name of the driver that you see, because you will 
need that when you connect to the ARTIK module from your 
terminal session.  

http://plugable.com/drivers/prolific/


CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

72

    14.    If you go back to the System Profile, the serial device should 
still be visible in the USB tree. It might not be displayed if it 
has not been woken up. Power cycling your ARTIK developer 
reference board may help. Unplugging and plugging in the 
USB cable again may also make it show up.  

    15.    Refresh the device list each time by pressing the [Command] + 
[R] key combination.      

   Installing a Driver ( FT232R USB UART     ) 
 The device report in the system profiler looks different when you connect a Beta version 
ARTIK Type 5 or 10 developer reference board. Figure  6-11  illustrates what you might see 
if you connect an ARTIK with an FTDI serial interface. This serial adapter is integrated 
onto the developer board and you do not need a separate interface.  

 This board uses the Future Technology Devices International (FTDI) drivers that are 
commonly used on  Arduino boards  . FTDI drivers are available from a variety of sources. 

 Apple has included a default FTDI driver from OS X 10.9 upwards. This driver (and 
its useful companion file) is documented in a technical note here: 

      https://developer.apple.com/library/mac/technotes/tn2315/_index.html          

    Testing the Beta version ARTIK developer reference board on Mac OS X 10.11 worked 
without problems, connecting via the default Apple FTDI driver. No additional software 
installation was necessary. Connecting the serial interface cable into the USB port on the 
Macintosh immediately created a device at this location: 

   /dev/cu.usbserial-AI02ZIIU  

    The part of the device name following the dash might be different on your 
development workstation. Note this down carefully for reference later on. Operating 
systems earlier than Mac OS X 10.9 will require an FTDI driver to be installed so they can 
work with the Beta developer reference boards. From OS X 10.9 upwards, try the built-in 
driver first and only replace it with a new one if it does not work.    

  Figure 6-11.     FTDI    USB serial device properties     on Mac OS X        

 

https://developer.apple.com/library/mac/technotes/tn2315/_index.html


CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

73

 Follow these instructions to check for an incompatible  FTDI   driver and move it to 
one side. Install a new driver compatible with the FTDI-equipped Beta ARTIK developer 
reference board. Always be careful that you keep safe copies of any files you move in case 
you need to restore things later.

    1.    Open a terminal window to access the file system from a 
command line.  

    2.    Change your working directory to where the FTDI kernel 
extension is located within the  IOUSBFamily  bundle: 

   cd /System/Library/Extensions/IOUSBFamily.kext/Contents/PlugIns  

        3.    List this directory to see if there is an FTDI kext file: 

   la -l1  

        4.    You should see something like this: 

   AppleUSBCDC.kext  
  AppleUSBCDCACMControl.kext  
  AppleUSBCDCACMData.kext  
  AppleUSBCDCDMM.kext  
  AppleUSBCDCECMControl.kext  
  AppleUSBCDCECMData.kext  
  AppleUSBCDCEEM.kext  
  AppleUSBCDCWCM.kext  
  AppleUSBEHCI.kext  
   AppleUSBFTDI.kext   This is the existing driver  
  AppleUSBHub.kext  
  AppleUSBMergeNub.kext  
  AppleUSBOHCI.kext  
  AppleUSBOpticalMouse.kext  
  AppleUSBUHCI.kext  
  AppleUSBVideoSupport.kext  
  AppleUSBXHCI.kext  
  IOUSBCompositeDriver.kext  
  IOUSBHIDDriver.kext  
  IOUSBHIDDriverSafeBoot.kext  
  IOUSBLib.bundle  
  IOUSBUserClient. kext       

        5.    The FTDI kext (kernel extension) may not be present. This 
could explain why your Beta developer reference board is not 
recognized. If the FTDI driver is there, set it aside and install a 
replacement. Use this command to disable it: 

   sudo mv AppleUSBFTDI.kext AppleUSBFTDI.disabled  



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

74

        6.    Enter an administrator password.  

    7.    Download the replacement driver. Make sure you use the 
correct one for the version of OS X you are using: 

      http://www.ftdichip.com/Drivers/VCP.htm       

        8.    Mount the disk image.  

    9.    Because the version 2.2.18 driver is unsigned, you must tell 
the gatekeeper to allow applications to be installed from 
anywhere.  

    10.    Go and change your gatekeeper settings in the Security and 
Privacy control panel if necessary.  

    11.    Run the installer.  

    12.    Reset your gatekeeper protection to block unsigned 
installations again if necessary.  

    13.    Now, when you plug in the developer reference board, the 
USB serial interface identifier should show up in the device 
listing. Type this command to confirm it is there: 

   ls /dev | grep usb  

        14.    On my Mac OS X 10.8.5 system, I see these devices listed. 
These are the USB serial interface identifiers: 

   cu.usbserial-AI02ZIIU  
  tty.usbserial- AI02ZIIU       

        15.    Open a terminal window if you have one available and use 
the  screen  command to connect to your ARTIK developer 
reference board using the serial interface. The USB serial 
interface identifier you just discovered should be substituted 
in place of the example shown here: 

   screen /dev/tty.usbserial-AI02ZWTO 115200  

            FTDI Driver   Versions 
 There are many driver versions available from FTDI. You should use the correct one for 
your OS X version. Make sure you choose the correct 32- or 64-bit variant. Table  6-4  lists 
the available driver versions and their corresponding target OS releases.   

http://www.ftdichip.com/Drivers/VCP.htm


CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

75

    Drivers vs. Device Names   
 If you configure an outboard USB-Serial adapter with the Prolific USB driver, your serial 
port will have a different device name compared with the connection to an integrated 
serial interface on the Beta versions of the developer reference boards. The examples 
in this introductory book are updated with the latest available information, but if you 
have a different setup, see the device names in Table  6-5  for guidance on what to look for 
in your system.    

     Setting Up a USB Serial Interface Driver on  Ubuntu Linux      
 Setting up a USB serial driver on Linux is straightforward provided you work through 
these steps carefully one at a time. There is more information available on this web page: 

      http://pensacola-tech.com/pensacola/2010/06/01/  
               how-to-enable-usb-serial-port-adapter-on-ubuntu-2/       

      Here are the instructions for a typical Ubuntu Linux system:

    1.    Log in to the  root  account on your Linux system.  

    2.    Plug the USB-Serial adapter into one of your USB ports on the 
computer.  

    3.    Wait for a few seconds to give the operating system time to 
notice the new hardware and load a driver for it if it has a 
suitable one available.  

   Table 6-4.     FTDI Driver    Versions     vs. OS X    Versions      

 OS X Version  FTDI Driver Version  Notes 

 10.3  2.2.18  Install the special 10.3 (Panther) 
package. 

 10.4, 10.5, 10.6, 10.7, 10.8  2.2. 18    Install the 10.4 – 10.7 package. 

 10.9, 10.10, 10.11  2. 3    Only install this if the Apple built-in 
driver does not work. Apple signs this 
driver. 

   Table 6-5.    USB Serial Adapter Driver Names   

 Device name  Provenance 

  cu.usbserial  
  tty.usbserial  

 Prolific USB-Serial adapter driver connecting to an 
Alpha developer reference board. 

  cu.usbserial- {dev_board_ID} 
  tty.usbserial- {dev_board_ID} 

 Apple FTDI driver connecting to an integrated serial 
interface on a Beta developer reference board. 

http://pensacola-tech.com/pensacola/2010/06/01/how-to-enable-usb-serial-port-adapter-on-ubuntu-2/
http://pensacola-tech.com/pensacola/2010/06/01/how-to-enable-usb-serial-port-adapter-on-ubuntu-2/


CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

76

    4.    Type this command:       

   dmesg  

        5.    The  dmesg  command will echo back the most recent few lines 
of the system message console, and you should see something 
like this: 

   usb 2.0: new full speed USB device using uhci_and address 2  
  usb 2.0: configuration #1 chosen from 1 choice  

        6.    Unplug the USB-Serial adapter to see a list of USB devices 
without it being plugged in.  

    7.    Type this command to list the USB devices: 

   lsusb  

        8.    You should see a list of USB devices that looks like this:    

   Bus 003 Device 001: ID 0000:0000  
  Bus 002 Device 007: ID 03f0:4f11 Hewlett-Packard  
  Bus 002 Device 006: ID 05e3:1205  
  Bus 002 Device 004: ID 15d9:0a33  

        9.    Now plug the USB-Serial adapter back in discover the bus 
device assignment.  

    10.    List the USB devices again: 

   lsusb  

        11.    Compare the list with the previous one. The additional line is 
highlighted: 

   Bus 003 Device 001: ID 0000:0000  
  Bus 002 Device 007: ID 03f0:4f11 Hewlett-Packard  
   Bus 001 Device 002: ID 4348:5523   This is a new device  
  Bus 002 Device 006: ID 05e3:1205  
  Bus 002 Device 004: ID 15d9: 0a33       

        12.    Determine the vendor ID and the product ID by inspecting 
this additional line. In this example they are  4348  and  5523 . 
For a TripLite USB-Serial adapter, they are  2303  and  067B .  



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

77

    13.    Load the kernel module called  usbserial  and pass the vendor 
and product ID values to it. The driver can then associate itself 
with the correct hardware device on the USB bus. Type this 
command, making sure you substitute the correct vendor and 
product ID values for your interface  hardware:   

   sudo modprobe usbserial vendor=0x4348 product=0x5523  

        14.    Now view the system console log again with this command: 

   dmesg  

        15.    You should see messages like this: 

   usbserial_generic 2.0:1.0: generic converter detected  
  usb 2.0: generic converter now attached to ttyUSB0  
  usbcore: registered new interface driver usbserial_generic  

        16.    This tells you that the device is mapped to the  /dev/ttyUSB0  
serial port.  

    17.    List the devices under the  /dev/  path to see if the interface is 
visible with this command: 

   ls /dev/  

        18.    Instruct Ubuntu to load this module automatically by 
including the following line in the  /etc/modules  file. 
Substitute your own vendor and product ID if they are 
different. 

   usbserial vendor=0×4348 product=0×5523  

        Other Linux distributions may use different commands to discover the hardware ID 
values and the name of the kernel extension containing the driver.        

     Setting Up a USB Serial Interface on Android  Devices   
 If you are connecting an Android device with a USB-to-Serial adapter cable, the USB 
connector on the phone or tablet will need an adapter to convert from micro USB to full-
sized USB connectors. Solve this by using a USB Host Mode (OTG) cable to connect to 
your serial interface. These adapters come with straight or right-angled connectors that 
help you position the phone and ARTIK module more conveniently. These adapters are 
inexpensive and easy to obtain online. Figure  6-12  shows two examples with alternative 
micro USB connectors at one end.  



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

78

 Alternatively, buy a single cable with the correct micro USB connectors on both ends. 
It is impossible to predict exactly what sort of cable you will need because it depends on 
your hosting device, but fortunately they are easy to find in online stores and all of the 
potential combinations are available.   

     USB Vendor IDs 
 Table  6-6  provides a short list of useful USB vendor and device identifiers. This may help 
you diagnose driver activation issues when connecting an ARTIK serial interface to your 
development workstation or when attaching an Arduino to your ARTIK or workstation.  

  Figure 6-12.      Micro USB OTG adapter cable          

   Table 6-6.     USB Vendor Identifiers        

 Product ID  Vendor ID  Details 

  0x6001    0x0403   Future Technology Devices International Limited 
UART fitted to a Beta ARTIK Type 5/10 developer 
reference board 

  0x2303    0x067b   Trip·Lite USB-Serial adapter with Prolific 
Technology chips used with Alpha ARTIK Type 2 
developer reference boards 

 Device specific   0x2341   Genuine Arduino (cc) boards 

 Device  specific     0x2A03   Arduino-org boards made by Arduino SRL 

 



CHAPTER 6 ■ GETTING YOUR HARDWARE TOGETHER

79

 Get an up-to- date   list of USB vendor and device ID values from the following URL. 
This is a community-generated table and not a copy of the official USB registry database. 
It relies on the efforts of volunteers for accuracy and may not include the very latest 
devices: 

      http://www.linux-usb.org/usb.ids          

         Summary 
 Now that you have a place to work, set up a terminal emulator to communicate with 
your ARTIK module and start it up. The next chapter will show you how to install, 
configure, and use a terminal emulator application to connect via the serial interface you 
just installed.     

http://www.linux-usb.org/usb.ids


81© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_7

    CHAPTER 7   

 Setting Up a Terminal 
Emulator                          

     Serial Connections with a Terminal Emulator 
 Connecting your development workstation to an ARTIK module with a serial interface 
and a USB adapter solves the hardware connectivity issue. Now, use a terminal emulator 
application to send instructions to the ARTIK and receive its responses. Anything you 
type on your keyboard will be transmitted to the remote system, and anything the ARTIK 
outputs will then be echoed on the screen of your terminal. 

 Terminal emulator applications are available for all types of workstations and 
operating systems. They are based on the  old-fashioned tele-typewriter devices   that you 
see in 1950s movies. A lot of that “old-school” technology influences what things are 
called inside modern computers and smart mobile devices. When you see devices named 
TTY, it is an echo from an earlier and much less sophisticated age when computers were 
rare, expensive, and very large. 

 Open a session with your terminal application. This gives you a command line 
on your development workstation where you can execute a  screen  command (or an 
equivalent) to connect to your ARTIK developer reference board via a serial interface. 
That interface then passes your keystrokes to the ARTIK. Any characters echoed back 
from the ARTIK follow the same route back to your terminal emulator screen. Figure  7-1  
shows how the various processes connect together.   

Development workstation

Terminal emulator window

Development board

Screen
command

USB to serial 
adapterFTDI

driver

ARTIK

  Figure 7-1.    Connecting to ARTIK       

 



CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

82

      Installing   Your Terminal Emulator 
 Some operating systems already have a terminal application installed. These next steps 
are optional depending on your configuration. There are alternatives to all of these, and 
you may prefer to use a different terminal emulator application if you are already familiar 
with one. Table  7-1  recommends the applications suitable for each operating system.   

     Adding a Terminal Emulator to  Windows   
 The PuTTY  application   is developed and maintained by Simon Tatham. Installers are 
available for all the variants of the Windows operating system. 

     Install PuTTY on  Windows   
 Here are the basic instructions for installing PuTTY and configuring it to connect to your 
ARTIK developer reference board.   

    1.    Go to this website: 

    http://www.putty.org/     

      2.    Download the installer.  

    3.    Run  putty.exe  to install the PuTTY terminal app.  

    4.    Connect a USB serial interface to the PC.  

    5.    Open the Device Manager in the Windows Control Panel.  

    6.    Note the COM port number for the USB serial interface. This 
should appear when you connect the USB serial cable to the 
PC. If necessary, power cycle the ARTIK developer reference 
board.  

    7.    If the COM port connection is not detected, temporarily 
power on the ARTIK developer reference board.  

    8.    Go to the PuTTY terminal app.  

   Table 7-1.    Terminal Emulators for Different Operating Systems   

 OS  Terminal Emulator App 

 Windows  Install and configure PuTTY 

 Macintosh  Use the built-in Terminal application but establish the serial 
connection from the command line. Or install iTerm and use that to 
establish the connection, as it has better log-capture tools. 

 Linux  Install and configure the minicom package. 

http://www.putty.org/


CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

83

    9.    Open the PuTTY configuration screen.      

      10.    Set the selected serial line to the COM port you noted 
just now.     

    11.    Set the connection speed to  115200 .  

    12.    Set connection type to  Serial .  

    13.    Name this session to find and restore it later.  

    14.    Save the session.     

    15.    The PuTTY console screen will be blank until you reset the 
developer reference board and boot the ARTIK.  

    16.    Exit the PuTTY application, unless you want to connect to the 
ARTIK.     



CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

84

 The PuTTY documentation is here in case you want to explore more detailed 
configuration options: 

    http://www.chiark.greenend.org.uk/~sgtatham/putty/docs.html     

       Connecting to the  ARTIK Development   System 
from PuTTY 
 Opening a session that connects to the ARTIK developer reference board is very similar 
for all operating systems.

    1.    Run the PuTTY application.     

    2.    Choose the ARTIK session to configure the connection.  

    3.    Click the Open button to connect to the ARTIK via the serial 
interface.     

    4.    You should see a terminal window open.  

    5.    When this is the active window, your keyboard has focus. 
Keystrokes will be transmitted to your ARTIK module and be 
executed there.  

    6.    The messages from your ARTIK module will be shown here 
when it is turned on.  

    7.    Switch on the ARTIK developer reference board with the rocker 
action power switch (or cycle the power if it is already on).  

    8.    Press the power (boot) button next to the power switch on 
your developer reference board to boot the ARTIK module.  

    9.    The ARTIK will boot up the operating system and report the 
progress as it goes.  

    10.    The serial output will be displayed on the screen of your 
workstation.  

    11.    Eventually the ARTIK login prompt will be displayed.  

    12.    Log in to the ARTIK system administrator  root  account with 
the  root  password.      

     Closing the Connection 
 You should always exit from a command-line session in an orderly way. Follow these 
steps to shut down the PuTTY session with your ARTIK.

    1.    Close the logged-in session on the ARTIK with the  exit  
command.  

    2.    Quit the PuTTY application.        

http://www.chiark.greenend.org.uk/~sgtatham/putty/docs.html


CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

85

 If you are quitting for the day and will not be logging in again, shut down the ARTIK 
instead of exiting from the session. This is better, because it allows the operating system 
to tidy things up.  

      Logging   the Output to a File 
 By default, PuTTY will discard the session data after you exit. Tell it to preserve the output 
in a file to archive it, read it later, or use it to build automated scripts. It is extremely useful 
to capture session dialogs in order to create documentation from them. They are almost 
ready to use as a step-by-step example. Annotate the listing with your own comments and 
remove sensitive information that needs to be kept private. Here is how to turn on the 
logging:

    1.    Open the PuTTY settings panel.  

    2.    On the left, there is a tree-structured list.  

    3.    Find the item called Session.  

    4.    Unfold it with the disclosure widget.  

    5.    Click on the Logging item.  

    6.    Set up the kind of session logging you need.  

    7.    The recommended item is “All session output.”  

    8.    Either type in the full path name of the log storage file or 
browse to locate the folder where it will be written and 
add the name.         

     PuTTY Log File  Naming   
 Use special meta-characters to  automatically   generate your log file name. This will create 
a new log file every time you run PuTTY. Your logs will be better organized, and you will 
be able to find specific sessions more easily. You could always rename the session logs 
to describe what you did and archive them if you want to keep a permanent record. The 
PuTTY log file-naming meta-characters are enumerated in Table  7-2 .  

   Table 7-2.    PuTTY Log  File-Naming Meta-characters     

 Meta-character  Meaning 

  &H   Host name for the session 

  &Y   Four-digit year number 

  &M   Month number 

  &D   Day date number 

  &T   Time  string   



CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

86

 These meta-characters are usually only used as part of the log file name. Keep 
session data separate based on the target host name by using a meta-character as a 
directory-naming component. This would store all logs in one directory: 

   D:\putty-log\&H-&Y&M&D-&T.log  

    This would store logs in separate directories on a host-by-host basis: 

   D:\putty-log\&H\&Y&M&D-&T.log  

    Note the subtle difference by adding an extra directory level backslash ( \ ) after the 
host name in place of the dash separator ( - ).   

     Using the Default Terminal Application on 
Mac OS X 
 The Macintosh operating system has a built-in Terminal application for executing 
command-line instructions. Starting it up opens a window on your Macintosh in which 
to type UNIX commands and interact directly with OS X. Follow these instructions to run 
a  dialup connection tool   from the Mac OS X command line and tell it where and how to 
connect to the ARTIK development system.

    1.    The Terminal application lives in the Utilities folder (inside 
the Applications folder). Use the keyboard shortcut that takes 
you straight to the Utilities folder from the Finder: 

   {your_boot_disk} ➤ Applications ➤ Utilities ➤ 
Terminal app  

        2.    Press the [Command] + [Shift] + [U] key combination.  

    3.    Scroll down and double-click on the Terminal application 

icon to run it.      

      4.    List the logical devices and filter them with a  grep  command 
to find the correct identifier for the ARTIK USB serial 
interface. Use this command (note the vertical bar that 
pipes the output of the  ls  command to the input of the  grep  
command): 

   ls /dev | grep usb  

        5.    You should see one item listed that has a name prefixed by 
 cu.usbserial  or  tty.usbserial  followed by your USB serial 
interface ID.    



CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

87

    6.    An example with a real USB serial interface device identifier 
looks like this: 

   cu.usbserial-AI02ZIIU  
  tty.usbserial-AI02ZIIU  

        7.    At the prompt, type this command with your own USB serial 
interface device identifier substituted in place of the 
example one: 

   screen /dev/tty.usbserial-AI02ZIIU 115200  

        8.    When this is the active window, your keystrokes will be 
transmitted to your ARTIK for execution there.  

    9.    The messages from your ARTIK module are displayed here 
when it is turned on.  

    10.    Switch on the ARTIK developer reference board with its rocker 
action power switch (or cycle the power if it is already on).  

    11.    Press the power (boot) button next to the power switch on 
your developer reference board to boot the ARTIK module.  

    12.    The ARTIK will boot up the operating system and report the 
progress as it goes.  

    13.    The serial output will be displayed on the screen of your 
Macintosh.  

    14.    Eventually the ARTIK login prompt will be displayed.  

    15.    Log in to the ARTIK system administrator  root  account with 
the  root  password.     

     Closing the Connection 
 When you are finished, follow these steps to cleanly exit out of the  screen  command:

    1.    Close the logged-in session on the ARTIK with the  exit  
command.  

    2.    Press the [Control] + [A] key combination.  

    3.    Press the [Control] + [\] key combination.  

    4.    You will be prompted to close all the windows.  



CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

88

    5.    Press the [Y] key to exit the  screen  command.  

    6.    Now you are back at the command-line prompt for your 
Macintosh.  

    7.    Exit by closing the window or quitting the terminal 
application.      

     Recovering from a Bad Screen Exit 
 If you do not exit the  screen  command in an orderly manner, the  screen  process will 
continue to run in the background. While it is running, it will stay connected to the ARTIK 
and block any further access to the serial interface. Resolve that by searching for the 
 screen  process with the  ps  command and signaling it to stop with the  kill  command 
when you know the  process ID (PID)  . Follow these steps to find the PID and close a 
 screen  command that is blocking your serial port:

    1.    Find the process ID (PID): 

   ps -ef | grep usb  

        2.    This should display a matching process like this: 

   501 1185 1 0 2:47pm cu.usbserial 0:01.16 SCREEN 
/dev/cu.usbserial 115200  

        3.    Note the second number ( 1185  in this example). That is 
the PID for your application process. The first number is 
the parent PID that is probably the process running your 
command-line shell. You should see that value repeated a few 
times. The application PID you are interested in will only be 
listed once.  

    4.    Now kill the  screen  process by sending a signal to the process. 
Substitute the correct PID value in this command: 

   kill -9 1185  

        5.    Check that it has stopped by listing the processes again with 
the  ps  command.     



CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

89

 ■   Note    DO NOT ACCIDENTALLY KILL THE PARENT PROCESS  .  If you do, your workstation 
session might be forcibly aborted. This is a bad thing as it can corrupt files, and in extreme 
cases it can blow away the partition map and destroy the main hard disk. Rebooting your 
workstation is now the only solution unless your application was running in a sub-shell. You 
should run a disk repair with the  fsck  tool or the Disk Utility immediately in case something 
was broken. Your Macintosh or Linux workstation may take a little longer to start up the first 
time while it checks the integrity of your hard disk.   

     Other Useful Screen Commands 
 Read the  UNIX manual  page for the   screen  command   to find out what other command-
line options to use with it. Add the  -L  option to log the output to a file. 

 Pressing the [Control] + [A] key combination enters command mode. Follow that 
with the [?] key to see the keystroke commands available. The  manual  page has more 
details. Type this command to see it in your terminal window: 

   man screen  

    If you prefer to read the command-line manual pages in a web browser, the manual 
pages are available on the Apple developer website. The top level is located here. Navigate 
into section 1 and scroll down the list to find the page for the  screen  command: 

    https://developer.apple.com/library/mac/documentation/Darwin/Reference/
ManPages/     

  The examples here are based on using the  screen  command because it is included 
by default in Mac OS X. Alternative serial terminal applications will work too.  

      Logging   the Output to a File 
 This used to be configurable in the Mac OS X Terminal application preferences in a 
similar way to in PuTTY, but that feature was removed a few OS versions back. The 
current version of the Terminal application in the Mac OS utilities logs output in a scroll-
back buffer. This is less intuitive and it’s harder to capture all the output. 

 Although these examples are described for the benefit of Mac OS X users, you can 
use variations of the techniques in Cygwin for Windows and in Linux terminal sessions.  

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/


CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

90

     Log Capture Example 1 (Clipboard Cut and Paste) 
 In earlier versions of the Terminal application, there was a preference setting to tune 
the length of the  scroll-back buffer  . Setting it to unlimited was useful, but performance 
degraded when it got very long. Now that this option has been removed, it is hard to 
predict what gets put into the scroll-back buffer. If you bring up a manual page, the scroll-
back buffer contains the text you view, but when you exit the manual page it gets cleared 
from the buffer. There are a few useful work-around approaches to capture the screen 
output. Copy the scroll-back buffer to the clipboard with these steps:

    1.    Open a destination file with a text editor so you have 
somewhere to past the log.  

    2.    Click in the terminal window to give it focus.  

    3.    Use a Select All instruction:

   [Command] + [A]     

    4.    Copy the screen content into your clipboard:

   [Command] + [C]     

    5.    Paste the result into your text editor:

   [Command] + [V]     

    6.    Save the log file.      

     Log Capture Example 2 ( Screen Command Logging  ) 
 To record a log within a  screen  command session, append the  -L  option to the screen 
command when you open the session. Follow these steps to run the session and log the 
output:

    1.    Start the serial session like this: 

   screen -L /dev/tty.usbserial-AI02ZIIU 115200  

        2.    The session will be recorded to a file called  screenlog. {n} 
where  n  is a number from  0  to  9 . The output is flushed 
periodically to the file and also when you exit the session.  

    3.    Toggle the logging on and off by going into command mode 
with a [Control] + [A] key combination and executing a [Shift] 
+ [H] key combination.  

    4.    Press the [Control] + [A] key combination.  

    5.    Then press the [Shift] + [H] key combination.  

    6.    The  screen  session will echo a message to your console about 
the logging process.      



CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

91

     Log Capture Example 3 ( Output Redirection  ) 
 This capture method will record the output of a specific command by redirecting it to a 
temporary file for analysis later. In the examples, the tilde character ( ~ ) is shorthand for 
accessing sub-directories within your own home directory. Log a session to a file like this:

    1.    List the contents of a directory to a new file: 

   ls -la > ~/Desktop/myoutput.log  

        2.    Append to an existing log file: 

   ls -la >> ~/Desktop/myoutput.log  

        3.    This will not capture the error messages to the log file. Capture 
those separately to another file: 

   ls -la 2> ~/Desktop/myerrors. log    

        4.    Capture the standard output and merge the error messages 
with it: 

   ls -la 2>&1 ~/Desktop/myoutput.log  

             Log Capture Example 4 ( Stream Duplexing  ) 
 Another possible approach to capturing logs is to pipe the output of your command 
to the  tee  command, which splits the input into two streams that can be redirected 
independently. One would still go to your screen, the other to a file:

    1.    Capture the standard output to a new file: 

   ls -la | tee ~/Desktop/myoutput.log  

        2.    Append the standard output to an existing log file: 

   ls -la | tee -a ~/Desktop/myoutput.log  



CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

92

             Log Capture Example 5 ( Script Command Logging  ) 
 This technique uses the  script  command to capture the terminal output. The example 
tells the  script  command to flush the output to the log file every  15  seconds: 

   script -t 15 ~/Desktop/myoutput.log ls -lt  

    Set this up as a default command to be executed every time a terminal window is 
opened. Additional line feeds may be recorded and must be cleaned out before using 
the output file. There is a race hazard risk with this approach if you have more than one 
window open with both of them logging their output to the same file. It is better to only 
log the output when you need it. 

 The command that you previously typed at the start of the line is now presented as a 
parameter to the  script  command. Use the  script  command as follows to spawn a new 
command line and log all of the output to the file: 

   script -t 15 ~/Desktop/myoutput. log    

    Remember to always exit out of the  script  command session with a [Control] + [D] 
key combination.  

     Alternatives to the Mac OS X Terminal App 
 The CoolTerm application is a good alternative to the Mac OS Terminal app. CoolTerm 
is useful for managing the serial connection to your ARTIK separately from running a 
command line through the Terminal app. Get a CoolTerm installer here: 

    http://freeware.the-meiers.org/     

  Another possibility is using the shareware iTerm application as a complete 
replacement for the standard Terminal app. The iTerm application has a very elegant 
solution for capturing the logs via a menu item to start and stop the logging. This is a 
more sophisticated emulator than the Apple Terminal Emulator app. This is useful if you 
spend a lot of time in a command-line environment. The iTerm home page is here:  

   https://www.iterm2.com/     

        Using the Minicom Terminal Application on  Linux   
 If your development workstation is running the Linux operating system, use the minicom 
 application   to interact with a command-line shell. Depending on your Linux distribution 
(flavor), the  yum ,  rpm , or  apt-get  installers will add new packages if minicom is not 
installed by default. Download the source code files and compile the software tools 

http://freeware.the-meiers.org/
https://www.iterm2.com/


CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

93

yourself if you prefer to ensure they are 100 percent compatible with your operating 
system configuration. There is more information available on the minicom web pages: 

    https://alioth.debian.org/projects/minicom/     
   https://help.ubuntu.com/community/Minicom     
   https://apps.fedoraproject.org/packages/minicom     

      Installing Minicom with yum    
 The Redhat, CentOS and Fedora distributions use the  yum  command to install new 
packages. The   yum  tool   is smart enough to search for and download packages from a 
central package repository. Use this command to install minicom with  yum  on compatible 
Linux distributions: 

   yum install minicom  

         Installing Minicom with  apt-get   
 Some versions of Linux manage their installations with the  apt-get  command rather 
than the  yum  command. Debian Linux uses this, for example. Installing the minicom 
terminal emulator is straightforward if  apt-get  is supported by your system: 

   sudo apt-get install minicom  

         Building Minicom from the  Source Code Files   
 If the  apt-get  installer is not available, follow these instructions for building and 
installing using the source code files:

    1.    Go to the Debian packages web page for minicom. 

   https://packages.debian.org/search?keywords=minicom       

    2.    Download the installation package and note where it was 
dropped on your system.  

    3.    Open a command-line terminal window on your Linux 
workstation.  

    4.    Change to the  minicom-$VERSION  directory (where  $VERSION  
indicates which revision you have).  

    5.    Optionally, check out the configuration help with this 
command: 

   ./configure -- help    

https://alioth.debian.org/projects/minicom/
https://help.ubuntu.com/community/Minicom
https://apps.fedoraproject.org/packages/minicom
https://packages.debian.org/search?keywords=minicom


CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

94

        6.    Run the configuration script to build a source code image 
ready to compile: 

   ./configure  

        7.    Build the application: 

   make  

        8.    Install the application:    

   make install  

        9.    Log in as  root  or use the  sudu  command to modify the 
 /etc/minicom  configuration file.  

    10.    Run minicom in configuration mode: 

   minicom -s  

        11.    Change the configuration options to suit what you want to do.  

    12.    Choose “Save setup as dfl” from the configuration menu to 
save the changed settings as system defaults.  

    13.    Add every user who should be allowed to use minicom to the 
user group of the corresponding character devices 
(e.g.,  /dev/ttyS0 ). On Debian this group already exists and is 
called dialout. Your Linux OS might call it something else.      

      Configure   Minicom to Talk to the ARTIK Developer 
 Reference Board 
 Now that you have minicom installed and ready to use, configure it to connect to your 
ARTIK developer reference board via the USB serial interface. The minicom serial 
configurations are described here: 

    https://help.ubuntu.com/community/Minicom     

  Here are the configuration steps:

    1.    Log on as the  root  user or use the  sudu  command prefix to 
run a command as if you were the  root  user.  

    2.    Get a list of your serial ports with this command: 

   dmesg | grep  tty    

https://help.ubuntu.com/community/Minicom


CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

95

        3.    For USB-to-Serial adapters, you might see something like this: 

   [0.000000] console [tty0] enabled  
  [5.065029] usb 4-3: pl2303 converter now attached to ttyUSB0  

        4.    Note the name of the serial port listed for the USB interface. In 
this example it is  ttyUSB0 .  

    5.    Now run minicom in a configuration mode to adjust the serial 
connection settings: 

   sudo minicom -s  

        6.    From here, choose “Serial port setup.”  

    7.    Alter the various settings to configure in the correct device (we 
are using  ttyUSB0  here).  

    8.    Set the communications speed to  115200 .  

    9.    The default settings for data size, parity, and stop bits are 
usually OK.  

    10.    Choose “Save setup as dfl” from the configuration menu to 
save the changed settings as system defaults.     

    11.    Exit the minicom application.     

 The minicom application keeps the default startup configuration in the 
 /etc/minicom/minirc.dfl  file. Make a backup copy of this file for safekeeping. 
Experienced system administrators may edit this file directly, but since minicom provides 
a configuration mode that is rarely necessary.     

     Connecting to the ARTIK Development System from 
Minicom 
 Running the minicom application on Linux is similar to using the  screen  command on 
Mac OS X.

    1.    Open a command-line window on your Linux desktop.  

    2.    Start minicom, with no options to run with the default 
configuration: 

   minicom  

        3.    When this is the active window, your keystrokes will be 
transmitted to your ARTIK module and processed there.  

    4.    Messages from your ARTIK module will be displayed in the 
minicom window when it is booted.  



CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

96

    5.    Switch on the ARTIK developer reference board with its rocker 
action power switch (or cycle the power if it is already on).  

    6.    Press the power (boot) button next to the power switch on 
your developer reference board.  

    7.    The ARTIK will boot up the operating system and report the 
progress as it goes.  

    8.    The serial output will be displayed on the screen of your Linux 
workstation.  

    9.    Eventually the ARTIK login prompt will be displayed.  

    10.    Log in to the ARTIK system administrator  root  account with 
the  root  password.      

     Closing the Connection 
 When you are finished, follow these steps to cleanly exit out of the minicom session:

    1.    Close the logged-in session on the ARTIK with the  exit  
command.  

    2.    Press the [Control] + [A] key combination to get a message bar 
at the bottom of the minicom terminal window.  

    3.    Press the [Shift] + [X] key combination to exit the minicom 
application.  

    4.    Now you are back at the command-line prompt for your Linux 
workstation.  

    5.    Exit by closing the window.         

      Logging   the Output to a File 
 Add the  capture  option to minicom when you start it up. This will store all screen output 
in the indicated log file: 

   minicom -C /var/log/mylogfile.log  

 ■      Note   Make sure that you type an uppercase letter [C] key or your log file will not be 
created. The lowercase letter [c] key is reserved for setting up the screen colors.  

 Toggle the logging stream on and off by pressing the [Control] + [A] key combination 
followed by a [Shift] + [L] key combination.  



CHAPTER 7 ■ SETTING UP A TERMINAL EMULATOR

97

     Pausing the Screen Output 
 The terminal emulator application supports software flow control that is useful for 
pausing the output to the console screen. Pressing the [Control] + [S] key combination 
(equivalent to the ASCII control code  XOFF ) will stop the flow. Restart it by pressing 
the [Control] + [X] key combination (equivalent to  XON ). This might also work in other 
terminal emulator applications on other platforms.      

     Using Minicom Inside Your ARTIK 
 If you intend to connect external devices to your ARTIK module, you may choose to 
do so with a downstream serial interface, perhaps with a serial adapter connected to 
the USB connector. Because the ARTIK runs Linux, you may be able to get minicom up 
and running inside your ARTIK. This would make debugging your downstream serial 
connection much easier. Porting and recompiling minicom for the  ARM CPU architecture   
may be challenging if a compatible version is unavailable. If you modify the source code 
to make it work, submit your changes back to the minicom project team or post an article 
online to help the rest of the ARTIK community.  

     Summary 
 Things are about to get very interesting. You have just set up the terminal emulator you 
will use to talk to your ARTIK. The next step is to switch it on and start it up. This is an 
important milestone in your journey, because you will then be ready to begin to explore 
the internals of the ARTIK operating system.     



99© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_8

    CHAPTER 8   

 Talking to Your ARTIK                         

      Starting Up   the ARTIK 
    Now that you can communicate with the ARTIK module you are ready to start it up. At 
first this can seem very confusing because the ARTIK will display a long list of messages 
as individual processes are started. This verbose messaging can be turned off when you 
ship your production devices. In a development context it is useful to see what is running 
at boot-up time. Customize the startup process to turn off unwanted services or add new 
ones to the boot sequence. The onscreen feedback shows you whether that configuration 
worked correctly. You will soon become familiar with the contents of this message 
stream, and if anything goes wrong you will spot it right away. 

 Capturing this message stream to a log file from your terminal emulator application 
and reading through it carefully will teach you a lot about how your UNIX systems start 
up. There are useful and important values revealed for use in your ARTIK applications.  

     The  System Administrator Console   
    When your ARTIK starts up, it displays status messages on the system administrator 
console about each process or utility as it is initiated. That console output is presented 
on your terminal emulator screen. If you start the emulator first and connect to the 
serial port before starting up your ARTIK, you can capture the log and inspect it. Some 
messages are a little opaque, but with practice you will be able to recognize whether there 
are any problems with your configuration due to your alterations. Gradually, you will 
learn what all of this means, and reviewing these messages is a good way to get to know 
your UNIX systems. Sometimes, the messages will tell you a useful identifier for use later 
when you use the command line to interact with a process.     

     U-boot Universal Boot Loader  Messages   
       These messages are generated by the initialization code when the U-Boot Universal 
Boot Loader runs. This U-Boot software presents a description of the hardware and CPU 
model. On a PC, the equivalent would be the BIOS, and on a Macintosh it would be the 
EFI Firmware. This brings up the hardware to a point where it can look for an operating 
system kernel    and get that running. Press any key to halt the automatic loading of the 



CHAPTER 8 ■ TALKING TO YOUR ARTIK

100

operating system and interact with U-Boot to explore your ARTIK hardware. See 
Listing  8-1  for an example of what happens when you boot a Beta revision ARTIK 5 module. 

     Listing 8-1.    U-Boot Startup Messages (Beta)   

  U-Boot 2012.07 (Nov 09 2015 - 13:32:25) for ARTIK5  

    CPU: Exynos3250 [Samsung SOC on SMP Platform Base on ARM CortexA7]  
  APLL = 700MHz, MPLL = 800MHz  

    Board: ARTIK5  
  DRAM:  504 MiB  
  WARNING: Caches not enabled  

    TrustZone Enabled BSP  
  BL1 version: 20140203  

    Checking Boot Mode ... EMMC4.41  
  MMC:   S5P_MSHC0: 0, S5P_MSHC2: 1  
  MMC Device 0: 3.6 GiB  
  MMC Device 1: [ERROR] response error : 00000006 cmd 8  
  [ERROR] response error : 00000006 cmd 55  
  [ERROR] response error : 00000006 cmd 2  
  In:    serial  
  Out:   serial  
  Err:   serial  
  rst_stat : 0x10000  
  Net:   No ethernet found.  
  Hit any key to stop autoboot:g  

     If you press any key at this point, the booting process will stop. Only interact with the 
U-Boot command line if you are confident and know what you are doing. This is not a place 
where you can casually tinker with settings, because you might not be able to get it to work 
again. The U-Boot environment is an advanced topic, and there is nothing to do there from 
a beginner’s perspective; it is best to just let it continue and start the kernel automatically.     

     Booting the  Kernel   
     If you did not purposely halt the U-Boot autoloader, the OS kernel will be started up 
automatically once the operating system has been retrieved from its secure storage. 
See Listing  8-2 . 

     Listing 8-2.    Reading the OS Image from Secure Storage (Beta)   

  reading zImage  
  4367680 bytes read in 17600 ms (242.2 KiB/s)  
  reading exynos3250-artik5.dtb  
  38241 bytes read in 11667 ms (2.9 KiB/s)  



CHAPTER 8 ■ TALKING TO YOUR ARTIK

101

  reading uInitrd  
  1353683 bytes read in 25638 ms (50.8 KiB/s)  
  ## Loading init Ramdisk from Legacy Image at 43000000 ...  
     Image Name:   uInitrd  
     Image Type:   ARM Linux RAMDisk Image (uncompressed)  
     Data Size:    1353619 Bytes = 1.3 MiB  
     Load Address: 00000000  
     Entry Point:  00000000  
  ## Flattened Device Tree blob at 40800000  
     Booting using the fdt blob at 0x40800000  
     Loading Ramdisk to 43eb5000, end 43fff793 ... OK  
     Loading Device Tree to 43ea8000, end 43eb4560 ... OK  

    Starting kernel ...  

     If you interrupted the auto boot and want to start the kernel manually, type the 
following command into the U-Boot command line: 

   boot  

    The ARTIK will only take a few seconds to boot up to the login prompt.     

      OS Kernel Startup   
 First the hardware is prepared. Then the operating system (Fedora in this case) is located 
and the startup scripts are executed to bring up the system in an orderly fashion. Study 
the boot listing on your own ARTIK and inspect the messages about these services as they 
start. The Fedora boot process carries out these steps as it starts up:   

•    Prepares the hardware  

•   Locates the operating system image to be booted  

•   Runs the OS startup scripts  

•   Locates encrypted volumes  

•   Sets up memory swap space  

•   Configures memory into privileged space and user space  

•   Starts journal logging  

•   Sets up file system and mounts volumes  

•   Sets up serial TTY  

•   Created NFS file system for remote file system mounts  

•   Creates device virtual file system  

•   Initializes random number seed  



CHAPTER 8 ■ TALKING TO YOUR ARTIK

102

•   Locates MMC memory device  

•   Mounts boot file system  

•   Locates sound card  

•   Loads kernel extension modules  

•   Initializes Remote Procedure Call support  

•   Starts time synchronizer  

•   Configures hardware timers  

•   Sets up DNS bind  

•   Sets up D-Bus  

•   Starts Avahi mDNS  

•   Establishes login service  

•   Starts GSS Proxy daemon  

•   Starts PWM audio services  

•   Initializes Bluetooth firmware  

•   Starts network manager  

•   Starts OpenSSH server  

•   Notifies NFS peers that a restart has happened  

•    Presents the login prompt to the  user      

 See Listing  8-3  for the last few lines of  a   kernel startup log recorded from a Beta 
model ARTIK 5 as it boots up. 

    Listing 8-3.    Kernel Startup Log and Fedora Startup Messages   

  [0.059426] /cpus/cpu@0 missing clock-frequency property  
  [0.059454] /cpus/cpu@1 missing clock-frequency property  
  [0.284917] cw201x 1-0062: get cw_capacity error; cw_capacity = 255  
  [0.619665] (unregistered net_device): timeout waiting for reset completion  
  [0.666998] jpeg-hx2 11830000.jpeg: failed to get parent1 clk  
  [0.782503] exynos-adc 126c0000.adc: operating without regulator vdd[-19]  
  [3.834717] s5p-decon-display 11c00000.fimd_fb: wait for vsync timeout  
  Loading, please wait...  

    Welcome to Fedora 22 (Twenty Two)!  

    ... Many lines of boot messaging omitted here to save space ...  



CHAPTER 8 ■ TALKING TO YOUR ARTIK

103

    Fedora release 22 (Twenty Two)  
  Kernel 3.10.9 on an armv7l (ttySAC2)  

    localhost login:        

     Log in to the  root  account now and explore your ARTIK from the command line.  

     Setting the Boot Mode  Switches   
    Alter the way your ARTIK boots when it is running on the developer reference board 
by setting the boot mode switches. Orient the developer reference board with the boot 
configuration switches facing you, as shown in Figure  8-1 . Find the Micro SD socket as well.  

 The boot mode switches labeled 1 and 2 should both be set to Off. This means the 
board is in eMMC boot mode and will look for an eMMC memory image that contains a 
viable and bootable operating system kernel.    

 To set the board to SD card mode, set switch 2 to On and leave switch 1 set to Off. 
This mode is used to install a new kernel or firmware updates. In SD boot mode, the ARTIK 
will look for an attached SD card and try to locate a viable and bootable OS kernel there. 

  Figure 8-1.    Boot mode switches and Micro SD socket          

 



CHAPTER 8 ■ TALKING TO YOUR ARTIK

104

 ■   Note   These switches and the Micro SD socket are not always in the same place, and 
when viewed from the edge of the board the switches may be oriented upside down, which 
makes the On and Off settings look as if they are the opposite way around. Later revisions 
of the developer reference board have relocated these items several times, and this might 
happen again. There is some conflict    in the source documentation describing the settings 
shown in Table  8-1 , which has been checked against Alpha and Beta versions of the ARTIK 
developer reference boards. Earlier descriptions incorrectly reversed some switch positions.      

      Booting Up   Your ARTIK Development System 
 Follow these steps to boot up your ARTIK:

    1.    Connect the power cable to the reference board and plug it in.  

    2.    Start up your terminal emulator application.  

    3.    Open the serial console.  

    4.    Turn the log capturing on if you want to store the boot 
messages for inspection later.  

    5.    The rocker action  power switch powers up the board and 
turns on the LEDs.  

    6.    The LED indicators labeled RXD and TXD will illuminate to 
indicate traffic flowing through the serial interface to your 
development workstation.  

    7.    Now press the power (boot) button next to the power switc   h on 
your developer reference board to boot your ARTIK module.  

    8.    Some of the LED indicators will blink.  

    9.    Booting messages will appear on the serial console.  

    Table 8-1.    Boot Mode Switch Settings   

 Switch 1  Switch 2  Setting Description 

     Off  ( 0 )   Off  ( 0 )  eMMC boot mode to run the OS installed in the internal 
secure memory 

  Off  ( 0 )   On  ( 1 )  SD boot mode to install a new OS from the Micro SD card 

  On  ( 1 )   Off  ( 0 )  Undocumented state 

  On  ( 1 )   On  ( 1 )  Undocumented state 

 If you try to boot an ARTIK with an empty SD card, even the most basic parts of the boot 
process will not work. Make sure you install an SD card with a genuinely bootable image if 
you set the switches to boot from it. Table  8-1  summarizes the boot switch possibilities:  



CHAPTER 8 ■ TALKING TO YOUR ARTIK

105

    10.    Wait until you receive a login message.  

    11.    Log in to the ARTIK system administrator  root  account with 
the  root  password.         

      Login Credentials   
    The system administrator of a UNIX system is described as the  root  user. This user has 
sufficient permission and privileges to completely destroy the operating system and 
render the ARTIK un-bootable. You must always be very careful when you are logged in 
as the root user. Always think about what you are about to type at the command line. The 
initial login credentials are listed in Table  8-2 .  

 Earlier prototype versions of the ARTIK firmware have a different initial root 
password. This indicates that you have older firmware that should be updated: 

   f@s)P!A$RTNER  

    You should change the administrator password    immediately. Changing default 
passwords is very important when you go into production with a new product design that 
has an ARTIK embedded within it. Make sure the new password is something you can 
remember. Be sure to carefully note the new password, because if you lock out the  root  
account, gaining access to the system again is difficult. Reinstalling the operating system 
from scratch may be necessary. 

 Use the  passwd  command    on the ARTIK command line to alter the  root  account 
password. Enter your password carefully twice to confirm that you typed it correctly. They 
must both match or the password change will be aborted. This is a safety feature to avoid 
setting the password to something unintentional. Type it slowly so that each keystroke 
is correct. The ARTIK operating system suggests that any passwords shorter than eight 
characters are weak. Follow these steps to change the password for the  root  account:

    1.    Decide what your new password is going to be. It should fit 
the following criteria:

•    Easy to remember  

•   At least eight characters long  

•   Mix of upper- and lowercase letters  

•   Mix of letters and  numbers    

•   The strongest passwords include punctuation characters     

   Table 8-2.    Login Credentials   

 Account  Password     Description 

  root    root   Summer 2015 pioneer edition ARTIK modules onwards 
(including Beta & Spring 2016 launch models) 

  root    f@s)P!A$RTNER   Early firmware Alpha prototype ARTIK modules 



CHAPTER 8 ■ TALKING TO YOUR ARTIK

106

    2.    Log in to the  root  account.  

    3.    Type the password-changing command: 

   passwd  

        4.    Carefully enter your new password for the first time.  

    5.    Carefully enter your new password again to confirm it.  

    6.    Note your new password in a safe and secure place.      

      Shutdown Commands   
    If you are reconfiguring your ARTIK or building applications and services to be 
reconnected at boot time, you will want to shut down the ARTIK and reboot it to test your 
changes. Be careful not to accidentally shut down your development workstation instead 
of your ARTIK module. Power cycling an ARTIK without gracefully shutting it down 
would also work, but it is never a good idea to just remove the power from a running 
UNIX system. It is much better to shut it down in an orderly way. This gives the OS an 
opportunity to record important information about the system and restore it when the 
system restarts. Use the  shutdown  command with options to modify its behavior: 

   shutdown {control_options} {time_value} {warning_message_text}  

    The most useful command-line options are listed in Table  8-3 . Use the  man shutdown  
command to see all the descriptive help pages.  

 The time values can  be   specified as a specific  hh:mm  time in 24-hour format. Use 
the keyword  now  to indicate the shutdown must happen right away. Alternatively, use 
the  + {minutes} format to indicate a delay measured in minutes before the shutdown 
happens. Without a time value, the shutdown command assumes  +1  by default and waits 
60 seconds before shutting down. When you indicate a delay, the operating system will 
inhibit new logins for the 5 minutes prior to the shutdown. 

   Table 8-3.    Shutdown Command Options   

 Option  Description 

  --help   Displays a brief help message 

  -H   Halts the ARTIK 

  -P   Powers off the ARTIK. Restart it again by pressing the power (boot) button 

  -r   Shuts down and reboots the ARTIK from the U-Boot as if the power 
(boot) button has been pressed 

  -c   Cancels a pending deferred  shutdown  command 



CHAPTER 8 ■ TALKING TO YOUR ARTIK

107

 Sending a message to your users makes sense in the context of a delayed shutdown. 
The warning message will be sent to all logged-in users. When you add a message, you 
must specify a time value to avoid the message being misinterpreted as command-line 
options. 

 If you are shutting down  now , your users will not have any chance to see the message 
or take any action before the shutdown happens but their terminal screen will at least 
display it until they reset. The message may still be helpful to warn them about why the 
system is shutting down right away and when it will be up again.    

 Table  8-4  illustrates a few example  shutdown  command variations.     

   Table 8-4.    Example Shutdown Commands   

 Command  Description 

  shutdown -r now   Shut down gracefully right away and run the Universal Boot 
Loader again to restart the ARTIK. 

  shutdown -P now   Shut down gracefully right away and return the ARTIK to the 
initial powered on but not yet booted state. 

  shutdown -r +5   Reboot the ARTIK in five minutes. 

  shutdown -r 11:55   Reboot the ARTIK just before midday. That would be 
tomorrow if the command is typed in the afternoon. 

  shutdown –c   Cancel a pending shutdown. 

     shutdown --help   Display the list of commands. 

 ■   Note   You can use the  systemctl  utilities to power off and reboot the ARTIK if you 
prefer, but the time-honored  shutdown  command works just fine and is easy to use.   

      Shutdown Warnings   
    When you tell the ARTIK to shut down without specifying a time delay the default timeout 
is assumed and the message shown in Listing  8-4  appears on the console display. 

     Listing 8-4.    Shutdown Messages   

  Broadcast message from root@localhost.localdomain (Wed 2014-01-01 12:20:32 UTC):  

    The system is going down for power-off at Wed 2014-01-01 12:21:31 UTC!  

     Override this message with your own text, provided you indicate a time value so your 
users will see the message in time to respond to it.     



CHAPTER 8 ■ TALKING TO YOUR ARTIK

108

      Shutdown Console Logging Messages   
 The operating system displays a log of what is happening as it closes down any running 
processes and returns to a quiescent state. Execute this command to shut down and see 
the messages on your console screen as the operating system tears down all the processes 
that it started when the system was booted: 

   shutdown -P now  

    Shutting down in an orderly manner is always the recommended approach so as to 
avoid corrupting your ARTIK operating system files.  

     Summary 
 If everything went correctly up to this point, you should be able to boot and log in to your 
ARTIK and start to explore the internal layout. At the moment, you can only communicate 
via a serial interface. The next priority is to get the other network connections and 
protocols up and running. Once you have done some internal configuration, your ARTIK 
will be ready for application coding.     



109© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_9

    CHAPTER 9   

 Network Configuration                         

     Networking Your  ARTIK   
 Now that your development workstation is able to talk to the ARTIK via a serial interface 
connection, you can start up, shut down, and reboot the ARTIK operating system. The 
next task is to configure the network connectivity in the ARTIK. Less sophisticated 
product designs might not need network capabilities, but it will help to integrate the 
software tools in the development workstation if they are able to communicate across 
the network. Your ARTIK needs to have some network connectivity set up first. There are 
three basic kinds of networking available:

•    Ethernet wired connections accessible via a sub-net or local area 
network (LAN)  

•   Wi-Fi connections using one of the IEEE 802.11 protocols  

•   Bluetooth connections to peripheral devices that the ARTIK 
module will manage    

 The first two are the most helpful for integrating the developer tools. The serial 
connection is still available for debugging but has no inherent smartness. Connect a  JTAG 
hardware-debugging probe   to communicate with the internals of running applications as 
you develop them. There are several useful ways to talk to your ARTIK and the processes 
inside it. Add other communications devices by plugging adapters into the ARTIK’s 
peripheral USB interface and then install drivers to support them.  

     Networking Protocol  Support   
 The ARTIK 5 and 10 modules support a variety of networking protocols that are available 
courtesy of the Linux operating system. You can provide the necessary service endpoints, 
supporting libraries, and drivers yourself to add protocols that are not already supported 
by default. 

 Kevin Sharp has produced a series of useful blog articles to get you started. Read 
about connectivity and IoT networking technologies here: 

      https://www.artik.io/blog/2015/iot-101-networks       
     https://www.artik.io/blog/2015/iot-101-connectivity       

https://www.artik.io/blog/2015/iot-101-networks
https://www.artik.io/blog/2015/iot-101-connectivity


CHAPTER 9 ■ NETWORK CONFIGURATION

110

         Choosing the Best Networking Strategy 
 Choose the best  network connection strategy   by balancing bandwidth, range, and power 
consumption as the key factors. The complexity of the chosen transmission protocol is 
also relevant because more energy is consumed when the CPU needs to work harder to 
encode and decode messages. 

 If your product is stationary and never likely to move, a hard-wired Ethernet-
connected solution is best. Maximum network throughput is achieved with a physical 
cable connection, although modern wireless connections are getting faster. The 
configuration instructions for your Ethernet connector describe how to set up an IP 
address for IPv4 and IPv6. 

 An Ethernet-based configuration will expend less energy than using a Wi-Fi 
connection. In a hard-wired scenario, you can also permanently power the unit so that a 
limited battery life is of no consequence. Then you are free to choose whatever protocol 
you need.  

     Wireless Networking 
 When you are selecting a communications technology, it helps to compare like for 
like. Figure  9-1  illustrates comparative range and power consumption for the wireless 
communications supported by the  ARTIK modules  . The data transfer capacity is 
indicated by the size of the circles. A few of the protocols are emulated on the developer 
reference board and are not available directly from the ARTIK module when it is 
embedded in a stand-alone configuration. If you need those protocols, your product 
design must implement its own support for them. Those protocols may eventually 
migrate into the ARTIK in which case they will be natively supported.  

Power
Consumption

500 mW

100 mW

10 mW

1 mW

10 m 100 m 1 km 10 km
Distance

NFC
BLE

Thread

ZigBee Z-Wave

Bluetooth

WiFi

SigFox LPWA

Integrated into the 
ARTIK modules
Emulated on the 
development board

Size = Data Rate

  Figure 9-1.     Power consumption vs. range         

 



CHAPTER 9 ■ NETWORK CONFIGURATION

111

 If range is important, choose  IEEE 802.11 Wi-Fi  . This has good bandwidth but 
consumes more energy than the alternatives. Manage the state of the Wi-Fi link up 
and down to conserve battery power in a mobile scenario. There are three variants of 
the protocol supported. The 802.11b, g, and n variants are all available. Variants b and 
g are similar in performance to Bluetooth Low Energy and only provide a little more 
bandwidth. IEEE 802.11n is the best solution if you choose this kind of networking. The 
newer ac and ah variants are not yet available on ARTIK modules. 

 If your product is part of a Personal Area Network combining several wearable devices, 
Bluetooth is the best option. Choose Bluetooth Low Energy ( BLE        ), as this has the best 
power consumption profile and the communications range is good (within the context of a 
wearable device). Classic Bluetooth performs less well in terms of power and range. 

 The  ZigBee and Thread protocols   are extremely low power options. These will 
sip their power; a small coin cell battery will last for a very long time. Managing your 
connections and turning things off when they are not needed is always a good design 
strategy and will enable the battery to last longer. 

 Table  9-1  summarizes the different protocols supported by each ARTIK module.   

   Table 9-1.    Wireless  Protocols   Supported by Each Module Type   

 Protocol  ARTIK 1  ARTIK 5  ARTIK 10  Dev board 

 Bluetooth   √  √ 

 Bluetooth Low Energy (BLE) 4.0  √  √  √ 

 Wi-Fi (IEEE 802.11  √  √ 

 ZigBee  √  √ 

 Thread  √  √ 

 Z-Wave  √ 

 NFC  √ 

 SigFox LPWA  √ 

     Dynamic Name Auto-discovery  Support   
 The Multicast Domain Name System for Wi-Fi ( mDNS        ) is a zero-configuration Dynamic 
Name System resolver for use in small networks such as those found on a Wi-Fi 
installation. It is able to coexist with a traditional unicast DNS resolver. In Apple networks, 
this is compatible with the Rendezvous/Bonjour protocols. 

 When an  mDNS   client process needs to resolve a host name, it sends an IP multicast 
query message over the local area network (LAN). All hosts on that LAN see the message. 
It asks the host having that name to identify itself. That target machine then multicasts a 
message in reply that includes an IP address. All machines in that sub-net can then use 
that information to update their own private mDNS caches. 

 Each node on the network must be configured with a unique IP address. If an IP 
address collision happens, the integrity of the mDNS is compromised and parts of your 
network (or possibly all of it) will cease to function. 



CHAPTER 9 ■ NETWORK CONFIGURATION

112

 The service is managed with the  avahi  daemon, which needs to be running in order 
for mDNS to work. The ArchLinux wiki has set up instructions for configuring  avahi  
services, which include file sharing and AirPrint access to printers. Find out more about 
mDNS here:    

      https://en.wikipedia.org/wiki/Multicast_DNS       
     https://tools.ietf.org/html/rfc6762       
     https://wiki.archlinux.org/index.php/avahi       

          Protocol Support   
 A protocol is an agreed upon format for sending messages between systems. Typically 
you would send a request from a client process to a service, which would reply with a 
message that the client could understand. 

 Messages are sent in a variety of different ways, perhaps by tunneling via an  
HTTP:  protocol. This might look very similar to a form submission from a web browser. 
The service might respond to a request like that with a response encapsulated in XML or 
JSON. A JSON-formatted response is more compact than XML and easier to parse. Rather 
than use  HTTP: , you could transmit an XML-formatted request to a SOAP service using 
WebSockets. 

 A more compact message format uses less CPU power to encapsulate and unwrap 
the transactions, and that directly affects the power consumption of your design. The 
size of the message affects transfer speed and also the data transfer budget that your 
customers pay for. Network traffic for IoT products should be kept to a minimum and 
made as efficient and compact as possible.     

     OMA Lightweight M2M Protocol (LW M2M) 
 The Lightweight  M2M   protocol from the Open Mobile Alliance is designed to support 
communications from mobile to mobile ( M2M  )    devices. It facilitates Internet of Things 
device management. The LWM2M support defines the communications protocol 
between an LWM2M server and an LWM2M client in another device. Because it is 
targeting mobile devices, the protocol is very economical in terms of the message size of 
the underlying data model. It is frequently used with CoAP (explained next). The LWM2M 
protocol is especially optimized to manage functionality over mobile phone networks or 
meshes of sensors. Find out more about this protocol here: 

      https://en.wikipedia.org/wiki/OMA_LWM2M       

    Temboo has introduced support for this in their web-based code design workbench. 
Incorporate it into your Temboo project with their point-and-click GUI-based code 
builder to generate the code to embed into your application.  

https://en.wikipedia.org/wiki/Multicast_DNS
https://tools.ietf.org/html/rfc6762
https://wiki.archlinux.org/index.php/avahi
https://en.wikipedia.org/wiki/OMA_LWM2M


CHAPTER 9 ■ NETWORK CONFIGURATION

113

     Constrained Application Protocol ( CoAP  )    
 The  Constrained   Application Protocol allows very simple electronics devices to 
communicate over the Internet. It is particularly useful for miniature low-power sensors, 
switches, valves, and similar components that are operated or monitored remotely. The 
CoAP protocol can tunnel via  HTTP:  for integration with the web. Connecting directly 
without tunneling is more efficient, and this protocol consumes much less bandwidth 
than sending  HTTP:  requests. The CoAP protocol also supports multicast messaging. 

 The core of the protocol is specified in RFC 7252; important extensions are in various 
stages of the standardization process. CoAP messages are transported via fast UDP 
connections. Because there is no flow control, they are not as robust as TCP-connected 
messaging. Message Queue Telemetry Transport Protocol (MQTT) is better if you need 
guaranteed delivery as opposed to speedy delivery.    

 CoAP is built around a REST API programming model and is easy to manage via 
a proxy when you want to interact with a web-based application. Find out more about 
CoAP here: 

      https://en.wikipedia.org/wiki/Constrained_Application_Protocol       
     https://tools.ietf.org/html/rfc7252          

         Message Queue Telemetry Transport 
Protocol ( MQTT  )    
 Message Queue Telemetry Transport ( MQTT)   services run directly on top of the TCP/IP 
protocol. TCP guarantees that all message packets will arrive in sequence and takes care 
of retransmission and assembly into the correct order. The downside is that this requires 
some buffering, because packets arrive by different routes and hence out of sequence. 
A small delay is introduced while the data is reconstructed. This delay is the built-in 
latency of a protocol such as MQTT. UDP can be used for transmission if speed is of 
the essence, but you lose the guaranteed chronological order and completeness of the 
transacted packets. 

 This protocol is built around a publish/subscribe programming model and is more 
efficient than CoAP. Choose this protocol when message size is most important. 

 The publish/subscribe messaging pattern requires a message broker. Messages are 
sent to the broker and redistributed to interested client processes that have registered 
with it. The broker may decide to route messages only to a subset of the clients based on 
their content. 

 The MQTT protocol has been around since 1999 when it was invented by IBM and 
delivered as part of their message queuing solution. The naming of this protocol does not 
imply that all implementations will support queuing but rather is a historical hangover 
from its origins. The current version of the standard is 3.1 and is published by OASIS for 
download here:    

      http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html       

https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://tools.ietf.org/html/rfc7252
https://en.wikipedia.org/wiki/Simple_machine


CHAPTER 9 ■ NETWORK CONFIGURATION

114

       Prominent users of MQTT are Amazon IoT and Facebook Messenger, although 
they only use sub-sets of the protocol. If you have the necessary permissions, you can 
synthesize messages and transmit them into these systems. Your application should 
authenticate first. A license and permission from the service providers are sometimes 
necessary for commercial applications. A variation of the protocol is called MQTT-SN 
and can be used on non-TCP networks such as ZigBee. Find out more about MQTT on 
Wikipedia here: 

      https://en.wikipedia.org/wiki/MQTT       

          6LoWPAN Protocol   
 The protocol name 6LoWPAN is condensed from “IPv6 over Low power Wireless Personal 
Area Networks.” The original concept asserts “the Internet Protocol could and should 
be applied even to the smallest devices.” It is fundamental that low-power devices with 
limited computing power should be able to participate in the Internet of Things. 

 The 6LoWPAN standards working group has defined protocols that allow IPv6 
packets to be sent and received over ZigBee-based networks (IEEE 802.15.4). This 
protocol wrapping is necessary because although IPv6 is derived from IPv4, they work 
differently than the IEEE 802.15.4 networking protocols and must tunnel through the 
wireless infrastructure, using it as a transport mechanism. Find out more about this 
protocol here: 

      https://en.wikipedia.org/wiki/6LoWPAN       
     https://tools.ietf.org/html/rfc4944       
     https://tools.ietf.org/html/rfc6282       
     https://tools.ietf.org/html/rfc6775       
     https://tools.ietf.org/html/rfc4919       

         Using  ZigBee and Thread Protocols   
 Your ZigBee protocol  connection   can be configured to create a mesh of interconnected 
devices that increases the range of a single node. The nodes in the mesh can then 
reach further by forwarding messages for each other. This is a more lightweight 
communications protocol than Bluetooth or Wi-Fi and has an embedded security 
model. Stay up to date with all matters relating to security in case there are weaknesses 
discovered that allow unwanted intrusions into your ZigBee infrastructure. Make sure 
your ZigBee mesh does not interact with your neighbor’s system if they have ZigBee 
deployed too. 

 Although the ZigBee and Thread Group systems are competitors, they have agreed to 
work on joint standardization of the protocols. The systems will then collaborate rather than 
compete when a user implements both within the same environment. See the following: 

      https://en.wikipedia.org/wiki/ZigBee       

https://en.wikipedia.org/wiki/Simple_machine
https://en.wikipedia.org/wiki/Simple_machine
https://en.wikipedia.org/wiki/Simple_machine
https://en.wikipedia.org/wiki/Simple_machine
https://en.wikipedia.org/wiki/Simple_machine
https://en.wikipedia.org/wiki/Simple_machine
https://en.wikipedia.org/wiki/ZigBee


CHAPTER 9 ■ NETWORK CONFIGURATION

115

    There is a detailed article in the Samsung developer blogs that describes how to 
install the Ember debugging system for ZigBee. Read this blog article for details if you 
want to exercise the ZigBee capabilities of your ARTIK 10 module: 

      http://artie.artik.io/knowledgebase/articles/755967-artik-zigbee-manual       

         OpenHAB Support in ARTIK 10  Modules   
 The  Open Home Automation Bus (OpenHAB)      creates a common framework for 
managing home automation devices and applications. This should aid interoperability 
between devices and software from different manufacturers. OpenHAB will run anywhere 
a Java VM runtime environment is available. It requires at least Java version 1.7 in order 
to work properly. This allows it to run in your ARTIK 10 module and in your development 
workstation, regardless of the platform it is based on. There are also user interfaces and 
API support for Android, iOS, and web-based applications. Integrating OpenHAB with 
any mobile device should therefore be straightforward. 

 New devices are integrated with OpenHAB through the addition of bindings and 
bundles. A bundle contains the optional plugin code support that talks to a particular 
product. Samsung provides a bundle for connecting to their consumer TV products. 
Bindings are used to integrate with software products and online API frameworks. A 
binding is delivered as a Java JAR file. Visit the OpenHAB website and find the “Supported 
Technologies” web page for more help. 

 OpenHAB is currently undergoing an evolution from version 1 to version 2. The 
focus of this work is to make it easier to administer OpenHAB installation. In OpenHAB 1, 
the configuration requires you to hand edit various configuration files. OpenHAB 2 adds 
administrative tools to help you do this. The developers have made the decision to base 
version 2 on the Eclipse Smart Home project.     

 There are also links to helpful blog articles in the Git repository for OpenHAB 2. Find 
out more about the OpenHAB project there. The website has a useful “Getting Started” 
article that will help you with your development process:    

      http://www.openHAB.org/        
     https://github.com/openhab/openhab       
     https://github.com/openhab/openhab2       
     https://en.wikipedia.org/wiki/Draft:OpenHAB       
     http://www.openhab.org/getting-started/        
     http://www.openhab.org/features/supported-technologies.html       
     http://kaikreuzer.blogspot.de/2014/06/openhab-20-and-eclipse-smarthome.html       
     http://www.eclipse.org/smarthome/        

    A pre-installed framework on the ARTIK 10 module natively supports OpenHAB. 
This is not currently installed on ARTIK 5 modules. The location of this framework can be 
determined with the  find  command via a case-insensitive search: 

   find / -iname \*openhab\* -print  

http://artie.artik.io/knowledgebase/articles/755967-artik-zigbee-manual
http://www.openHAB.org/
https://github.com/openhab/openhab
https://github.com/openhab/openhab2
https://en.wikipedia.org/wiki/Draft:OpenHAB
http://www.openhab.org/getting-started/
http://www.openhab.org/features/supported-technologies.html
http://kaikreuzer.blogspot.de/2014/06/openhab-20-and-eclipse-smarthome.html
http://www.eclipse.org/smarthome/


CHAPTER 9 ■ NETWORK CONFIGURATION

116

    This  grep  command will locate files whose names do not contain the string 
 'OpenHAB'  but whose content mentions it. The first example command may take some 
time to execute because it searches though the entire file system in the ARTIK. You can 
just search in specific directories such as  /etc  as shown in the second example: 

   grep -r –i –H 'OpenHab' /  
  grep -r –i –H 'OpenHab' / etc    

         OpenStack (Swift)  Framework   
 OpenStack is an object-based data storage system for sharing assets between systems. 
Use it to create private or public cloud-based systems of your own. The objects are 
distributed across a cluster of OpenStack nodes. 

 The API to OpenStack is implemented as a REST API interface called Swift that 
is built on top of OpenStack and provides additional features. This is also wrapped in 
language support for most popular development languages. 

 A  Swift OpenStack cluster server   implements four basic process types to 
communicate with:

•    Proxy  

•   Account  

•   Container  

•   Object    

 Run a proxy process by itself to create a proxy node that gives a more secure kind 
of access to the cluster. Installing the other three process types on a server creates a 
storage node. Nodes can be organized into zones and regions that are interconnected 
transparently. Other internal processes are also running so as to manage consistency 
across all nodes in the cluster regardless of how widely they are dispersed in a distributed 
cluster configuration. 

 Interact with a Swift OpenStack cluster via the  curl  command-line tool or with 
 libCurl  from your C language applications. These are the basic Swift HTTP verbs:

•     GET —downloads objects, lists the contents of containers or accounts  

•    PUT —uploads objects, creates containers, overwrites metadata 
headers  

•    POST —creates containers if they do not exist, updates metadata 
(accounts or containers), overwrites metadata (objects)  

•    DELETE —deletes objects and containers that are empty  

•    HEAD —retrieves header information for the account, container, 
or  object      



CHAPTER 9 ■ NETWORK CONFIGURATION

117

 Read more about the Swift OpenStack framework and its associated projects that 
provide bindings to your favorite programming languages at the URLs that follow. The 
bindings encapsulate calls to the  curl  tool so as to access them more conveniently from 
your own applications: 

      http://www.openstack.org/        
     https://swiftstack.com/openstack-swift/        
     http://docs.openstack.org/developer/swift/associated_projects.html       
     https://wiki.openstack.org/wiki/SDKs       

 ■      Note    The Swift OpenStack framework has no relationship to the Swift programming 
language that Apple provides for creating applications for the App Store ecosystem. Now 
that Apple's Swift programming language is published as an open-source project, you may 
accidentally discover that project when you are searching for OpenStack.   

     Configuring Your Ethernet  Connection   
 The ARTIK developer reference board has an RJ45 Ethernet connector for IP networking 
support. Although the serial interface is useful, bringing up an IP network connection to use 
the Secure Telnet protocol to make the ARTIK available from anywhere on your network. 

 The Internet Protocol version 4 has been the basis for the Internet revolution since it 
was developed in the late 1970s. All the expectations for the number of nodes that can be 
mapped with this protocol have been exceeded, and it is being replaced with version 6 to 
increase capacity. 

 Log in to your ARTIK module via the serial connection to configure your Ethernet 
IP connectivity.    

 ■   Note    As of the very early Beta release of the embedded operating system firmware, 
Ethernet connectivity is not yet supported on the ARTIK 5 module. If you have a Beta or 
earlier version of the ARTIK 5, you can still connect using Wi-Fi. Later Beta firmware added 
this functionality. It is supported on the shipping Commercial Beta units.   

     How It Works 
 The IP protocols that the Internet depends on are maintained and standardized by 
the Internet Engineering Task Force (IETF)      . They publish numbered documents calls 
RFCs. The RFC documents are the definitive reference for matters concerning Internet 
standardization. Higher-level capabilities such as web standards are managed by 
organizations such as the World Wide Web Consortium (W3C). These documents show 

http://www.openstack.org/
https://swiftstack.com/openstack-swift/
http://docs.openstack.org/developer/swift/associated_projects.html
https://wiki.openstack.org/wiki/SDKs


CHAPTER 9 ■ NETWORK CONFIGURATION

118

you how your application needs to be built to interact appropriately with the rest of the 
world. Here are some useful places to look for Internet-related standards documents: 

      https://www.ietf.org/        
     https://www.ietf.org/rfc.html       
     https://en.wikipedia.org/wiki/Request_for_Comments       
     http://www.w3.org/        

          IPv4 Addressing Notation   
 The IPv4 protocol describes each unique address on the Internet with a 32-bit value. 
By convention this is broken down into a dotted quad format where each group of 8 bits is 
described as a decimal value separated by dots. Typical IPv4 addresses look like this: 

   172.16.254.1  
  192.168.1.32  

    Figure  9-2  shows how the IPv4 notation maps to a binary representation of the 
IP address:     

  Figure 9-2.     IPv4 addressing         

 A 32-bit value has 4.3 billion unique combinations. A few are lost to overheads that 
are needed for network management. Find out about those on the Wikipedia page for 
IPv4. Careful design of the network architecture allows separate sub-networks to be 
connected together with a router. That expands the range of addressable endpoint nodes, 
but it is a more complex solution than just increasing the size of the addressing space. 
Find out more about IPv4 here: 

      https://en.wikipedia.org/wiki/IPv4       
     https://tools.ietf.org/html/rfc791       

    You should be conversant enough with your network and the way it works to interact 
with other ARTIK modules or remote systems properly. You cannot simply make up 
addresses and randomly assign them. Every device on a network must have a unique 

 

https://www.ietf.org/ 

https://www.ietf.org/rfc.html

https://en.wikipedia.org/wiki/Request_for_Comments

http://www.w3.org/
https://en.wikipedia.org/wiki/IPv4

https://tools.ietf.org/html/rfc791


CHAPTER 9 ■ NETWORK CONFIGURATION

119

address. Duplicate addresses cause an address collision. Network nodes with the same 
address are unreachable at best and may render your network inoperative at worst. 

 IPv4 uses a sub-net mask to map the nodes on your local network to the wider world. 
The router keeps track of this mapping. Net masks are defined in classes, and unless you 
are a very big organization, you will likely have a class C network. Your net mask will 
probably be  255.255.255.0 . This allows 256 separate nodes on your local network. 
A few of these addresses are reserved, so you should plan on allocating no more than 250. 
Other workstations and devices such as printers and file servers in your lab will use some 
addresses on your network. 

 Keeping track of IP address allocations is very important. By default, your ARTIK 
will acquire a network address using Dynamic Host Configuration Protocol (DHCP). 
This depends on the router having a pool of addresses that it can vend to requesting 
nodes when they start up. When that pool of addresses runs out, any subsequent DHCP 
configurable nodes will not be able to get on the net, as an address cannot be granted to 
them until one is freed up by another node’s relinquishing of it. The DHCP service can do 
more than just define an IP address; there is more information about how it works here: 

      https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol          

    Your router will define a prefix for the sub-net. Typically, this might be 
 192.168.1.***  and you then add your selected node number as the last number in the 
quad to define a specific IP address. Some addresses are reserved. Table  9-2  summarizes 
a few important addresses:     

   Table 9-2.    Reserved IP Addresses on Your Sub-net   

 IP Address  Reserved for 

  255.255.255.0   Not strictly an IP address, this is the net mask for a class C IP address. 

  192.168.0.0   Base address for the local area network 

  192.168.1.1   Reserved as the IP address for the router 

  192.168.1.255   Broadcast a message to all nodes on the sub-net. 

  127.0.0.0   Local host. Used for processes to communicate with network ports 
on the machine they are running on. 

 Find out more about reserved addresses here: 

     https://en.wikipedia.org/wiki/Reserved_IP_addresses        

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Reserved_IP_addresses


CHAPTER 9 ■ NETWORK CONFIGURATION

120

          IPv6 Addressing Notation   
 Internet Protocol version 6 became necessary in order to solve the problem of the IPv4 
addresses running out. There are very few free IPv4 addresses available now. IPv6 
provides a massive increase in the number of addressable endpoints mapped onto the 
Internet. IPv6 also simplifies some of the complexities of IPv4 addressing, routing, and 
packet delivery as fragments. 

 The address space is extended to 128 bits instead of the earlier 32. This allows for 
many billions of addresses. Consequently, a new notation scheme is used to describe the 
3.4 x 10 38  possible endpoints. Typical IPv6 addresses look like this: 

   2001:0db8:0000:0000:0000:ff00:0042:8329  

    Shorten IPv6 address descriptions by applying simple rules. Omit leading zeros 
from any of the colon-separated groups. Then replace runs of zeros with a double colon, 
although you can only do this once. The preceding example can be shortened to this 
value with no loss of addressing granularity with the zero rule: 

   2001:db8:0:0:0:ff00:42:8329  

    And by applying the colon rule it can be shortened to this: 

   2001:db8::ff00:42:8329  

    Figure  9-3  shows how the IPv6 address notation maps to the binary representation:  

  Figure 9-3.     IP v6 addressing         

 



CHAPTER 9 ■ NETWORK CONFIGURATION

121

 Internet Protocol version 6 is gradually taking over from IPv4, but it is not yet a direct 
replacement. They cannot coexist together on the same wire, but there are mechanisms 
for tunneling IPv4 protocol on IPv6 networks and vice versa.    

 IPv6 is also in use on the smart grid where smart meters for measurement of utility 
supplies and other nodes are managed as a micro-mesh network before sending the data 
back to the billing system using the IPv6 backbone. Some of these networks run over IEEE 
802.15.4 wireless networks for part of their journey. Find out more about IPv6 here: 

      https://en.wikipedia.org/wiki/IPv6       
     https://en.wikipedia.org/wiki/IPv6_address       
     https://tools.ietf.org/html/rfc2460       
     https://en.wikipedia.org/wiki/6to4       

          Port Numbers      
 At each IP address, there are 65536 separate ports with which to open a connection. 
Separate the port number from the IP address with a colon character ( : ) in IPv4. With 
IPv6, the same delimiter is used, but because the IPv6 address itself uses colons, you 
should encapsulate the IPv6 address in square brackets ( [  …  ] )and then append the 
colon and port number. 

 Port  80  is reserved for connecting a web server. The full IPv4 address for such a 
web server on your local sub-net is  192.168.1.54:80  although web servers can often 
be moved to an alternative port. In that case, the address might be  192.168.1.54:8080  
instead. The equivalent IPv6 address would be described with this notation: 

   [fe80::21e:6ff:fe61:7a39]:8080  

    Processes that are already running on your ARTIK can listen for incoming messages 
on particular port numbers and respond to the requests. Alternatively, you can also register 
processes as network services. This is how Telnet and FTP work. The service manager listens 
for new connections on their behalf. A new process is then started up when a connection is 
initiated on its service port number. The incoming messages arriving via that connection are 
directed to the process that is bound to the port. Any output it generates is transmitted back 
to the requesting client. The process exits when it is done. The major benefit here is that you 
do not waste CPU resources on running processes that are not needed and resources are 
freedup when the work is completed. Find out more about  port numbers here:   

      https://en.wikipedia.org/wiki/Port_(computer_networking)       
    https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers      

    Creating UNIX  services   is an interesting technique because your ARTIK could have 
listeners set up without consuming compute resources until they are needed. This would 
help conserve the battery, because unnecessary processes will only run when they are 
needed. Ports  0  to  1023  are reserved for well-known services and are secured against 
intrusion. Ports  1024  to  49151  are reserved for vendor applications and managed via a 
registry. Use these port numbers if you know that the registered application is not installed 
and will not be using them, but really it is better to avoid them. Ports  49152  to  65535  are 

https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/IPv6_address
https://tools.ietf.org/html/rfc2460
https://en.wikipedia.org/wiki/6to4
https://en.wikipedia.org/wiki/Port_(computer_networking)
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers


CHAPTER 9 ■ NETWORK CONFIGURATION

122

available for you to use for your own processes on a first come, first served basis. These 
are called ephemeral or dynamic ports. You should design your software without hard 
coding the specific port number because there is no guarantee you will always have the 
same one allocated. 

 Using ports intelligently on multiple ARTIK modules and communicating between 
them via raw BSD socket protocols would be a neat way to build an ARTIK mesh- or grid-
based architecture. Knowing what ports are available in other network nodes that are 
reachable from your ARTIK lets you leverage all kind of processes and resources that can 
save you from re-inventing lots of wheels.        

     The  Switchover   
 Switching to IPv6 offers many benefits and extends the potential lifetime of your product, 
and it will be necessary as the IPv4 infrastructure is gradually deprecated. Even though 
your ARTIK can use IPv6 when you deploy it, your development system might live on an 
IPv4 sub-net connected to an IPv6 network via a router for some time to come.  

     IP Address Configuration in Your ARTIK 
 The IP address of the ARTIK module is set automatically via  DHCP  . This will work fine, 
provided your router is already configured to vend IP addresses for DHCP clients to lease. 
When you are developing software, it helps to eliminate variability in your setup. To make 
things more predictable, a statically defined address known to the hosting development 
workstation is a good idea. This removes the potential uncertainty that DHCP-vended 
addresses have. 

     Inspecting the IP Addresses 
 Inspect the current network configuration with the  ifconfig  command. Just type it 
without any additional options at the command-line prompt after you have logged in: 

   ifconfig  

    You should see a network configuration listed on the screen similar to the one shown 
in Listing  9-1 . 

     Listing 9-1.     IP Network Configuration Report     

 eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500  
          inet 192.168.1.200 netmask 255.255.255.0 broadcast 192.168.1.255  
          inet6 fe80::21e:6ff:fe61:7a39  prefixlen 64  scopeid 0x20<link>  
          ether 00:1e:06:61:7a:39  txqueuelen 1000  (Ethernet)  
          RX packets 5  bytes 689 (689.0 B)  
          RX errors 0  dropped 0  overruns 0  frame 0  
          TX packets 37  bytes 6537 (6.3 KiB)  
          TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0  



CHAPTER 9 ■ NETWORK CONFIGURATION

123

  lo: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536  
          inet 127.0.0.1  netmask 255.0.0.0  
          inet6 ::1  prefixlen 128  scopeid 0x10<host>  
          loop  txqueuelen 0  (Local Loopback)  
          RX packets 320  bytes 27840 (27.1 KiB)  
          RX errors 0  dropped 0  overruns 0  frame 0  
          TX packets 320  bytes 27840 (27.1 KiB)  
          TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0  

  p2p0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500  
          inet6 fe80::290:4cff:fe33:2211  prefixlen 64  scopeid 0x20<link>  
          ether 00:90:4c:33:22:11  txqueuelen 1000  (Ethernet)  
          RX packets 0  bytes 0 (0.0 B)  
          RX errors 0  dropped 0  overruns 0  frame 0  
          TX packets 0  bytes 0 (0.0 B)  
          TX errors 0  dropped 0 overruns 0  carrier 0  collisions  0    

  wlan0: flags=4099<UP,BROADCAST,MULTICAST>  mtu 1500  
          inet6 fe80::f609:d8ff:fe55:347b  prefixlen 64  scopeid 0x20<link>  
          ether f4:09:d8:55:34:7b  txqueuelen 1000  (Ethernet)  
          RX packets 0  bytes 0 (0.0 B)  
          RX errors 0  dropped 1  overruns 0  frame 0  
          TX packets 6  bytes 468 (468.0 B)  
          TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0  

    Note the IP address from your listing and keep that record updated if you statically 
define the IP address. You will need this value later if you plan to use the Temboo library.  

     Setting a Temporary IP Address on the Ethernet Interface 
 The  Ethernet IP interface   brought out to the RJ45 connector on the developer reference 
board is called  eth0: . 

 If you want to change the IP address temporarily, use the  ifconfig  command. 
Changing the IP address temporarily allows access to different networks in the same 
location without changing the default settings of the board. Rebooting the ARTIK will 
undo this change, and it will revert to the default IP address next time it is booted up. Use 
this command to change the IP address: 

   ifconfig eth0 192.168.1.210  

    Use the  ifconfig  command again with no options to show that the interface now 
has a new IP address.  

     Setting a Default Persistent Static IP Address 
 Change the IP address to a static (unchanging) value that is effective even after rebooting 
the ARTIK module by editing the configuration file for that interface. Do that inside the 
ARTIK with the vi text editor. This defines the IP address of your ARTIK by default. 



CHAPTER 9 ■ NETWORK CONFIGURATION

124

 Be careful to use a new, unused, and unique IP address. Be careful not to collide with 
IP values that are reserved for the DHCP pool of addresses. That would prevent DHCP 
devices from connecting. If you are not already managing your collection of IP addresses 
on the sub-net, take a few minutes to create an Excel spreadsheet or just a text file to 
note all the IP addresses you have available and annotate the ones that are allocated to 
particular nodes. Getting into good habits with your documentation from the start will 
save you a lot of trouble later on. Follow these steps to configure the  static IP address  :

    1.    Open the  etho:  configuration script with this command: 

   vi /etc/sysconfig/network-scripts/ifcfg-eth0  

        2.    Change the  BOOTPROTO  parameter setting from  dhcp  to  static .  

    3.    Add the  IPADDR  variable and set the value to the IP address 
you want to use.  

    4.    Add the  NETMASK  variable and set the value to the class of net 
mask that is appropriate for your sub-net. Most likely this is 
 255.255.255.0  for a class-C sub-net.  

    5.    Add the  BROADCAST  variable and set the value to the IP address 
for your sub-net.  

    6.    Add the  NETWORK  variable and set the value to the base IP 
address for your sub-net.  

    7.    Add the  GATEWAY  variable and set the value to the IP address of 
the router that manages your sub-net.  

    8.    The finished configuration should look something like this 
(with your network IP values substituted in place of the ones 
shown here): 

   DEVICE="eth0"  
  TYPE="Ethernet"  
  ONBOOT="yes"  
  BOOTPROTO="static"  
  USERCTL="no"  
  IPADDR=192.168.1.210  
  NETMASK=255.255.255.0  
  BROADCAST=192.168.1.255  
  NETWORK=192.168.1.0  
  GATEWAY=192.168.1.1  

        9.    Type these keystrokes to exit from  vi  and save the changes to disk: 

   [Escape] [:] [w] [q] [Return]     



CHAPTER 9 ■ NETWORK CONFIGURATION

125

             Configuring Your ARTIK for  IPv6 Operation   
 If you want to activate IPv6 networking, follow these steps to turn it on and add the 
addresses to the Ethernet configuration. Remember that this cannot co-exist on a 
network that is running IPv4 protocols:

    1.    Open the networking configuration file with the vi editor: 

   vi /etc/sysconfig/network  

        2.    Find this line in the configuration file: 

   NETWORKING_IPV6=no  

        3.    Modify it to turn on the IPv6 protocol support: 

   NETWORKING_IPV6=yes  

        4.    Type these keystrokes to exit from  vi  and save the changes to disk: 

   [Escape] [:] [w] [q] [Return]  

        5.    Now open the  etho:  configuration script with this command: 

   vi /etc/sysconfig/network-scripts/ifcfg-eth0  

        6.    Add the  IPV6INIT  variable and set the value to  yes .  

    7.    Add the  IPV6ADDR  variable and set the value to the colon-
delimited IPv6 address you want to use.  

    8.    Add the  IPV6_DEFAULTGW  variable and set the value to the IPv6 
address for your router/gateway.  

    9.    Type these keystrokes to exit from vi and save the changes 
to disk:    

   [Escape] [:] [w] [q] [Return]  

        10.    Restart the networking services in your ARTIK with this 
command to use the new configuration: 

   service network restart  

        11.    You should see this message while the network services restart: 

   Restarting network (via systemctl):  [  OK  ]  

        12.    Check it is all working with the IPv6 version of the  ping  command: 

   ping6 ipv6.google. com    



CHAPTER 9 ■ NETWORK CONFIGURATION

126

              DNS Configurations 
 The DNS servers convert human-readable domain names to IP addresses. This process is 
called  resolving . The opposite of resolving is performing a lookup to see what DNS entries 
correspond to an IP address. Look in the  Utilities  folder on your Macintosh and find 
the Network Utility app. This is useful for debugging this sort of thing. Use command-
line tools on Linux. Windows users will have similar  GUI network-management tools   
available. If they are not already part of your system, they should be available as 
downloads. Alternatively use the command-line tools from the Cygwin console. Use IPv4 
or IPv6 addresses for the name servers. 

 By default, Linux will track a maximum of three DNS servers. The value is defined in 
the  /usr/include/resolv.h  file, but to alter it you would need to recompile at least some 
parts of the operating system. Having three nameservers should be sufficient for most 
scenarios. 

     Introducing systemd 
 Traditionally the services and processes have been managed by the  inetd  control 
daemon. This was the first process to start in a  UNIX operating system   and it managed 
the startup of all subsequent processes and services. In Fedora 22, this is all swept away 
and replaced by  systemd , which is still in a state of evolution and not yet complete. This 
change has impacted the way that network services such as DNS are configured and has 
added a degree of complexity. Instead of simply editing a configuration file and restarting 
a process, the  systemctl  command needs to be used to communicate your changes 
to  systemd  so it can manage the configurations for you. Some systems administrators 
have mixed views on whether this is a good approach. It has now become the de facto 
standard. Find out more about  systemd  here: 

      https://fedoraproject.org/wiki/Systemd       
     https://en.wikipedia.org/wiki/Systemd       
     https://wiki.archlinux.org/index.php/systemd       
     https://www.freedesktop.org/software/systemd/man/systemd.html       
     https://www.freedesktop.org/software/systemd/man/resolved.conf.html       
     http://www.dynacont.net/documentation/linux/Useful_SystemD_commands/        

         The  Impact   of systemd on DNS Configuration 
 Traditionally, the DNS configuration is described in the  /etc/resolv.conf  file. In Fedora 
22 on the ARTIK modules, this is now a symbolic link to  /run/systemd/resolve/resolv.
conf , where it is managed by the system resolve daemon. You should not edit that file 
directly, but rather should use the  systemctl  command to manage changes that you 
make to an alternative file ( /etc/systemd/resolved.conf ) if you want to benefit from the 
dynamic configuration mechanisms. Read about the parameters you can define in that 
configuration file here: 

      https://www.freedesktop.org/software/systemd/man/resolved.conf.html       

https://fedoraproject.org/wiki/Systemd
https://en.wikipedia.org/wiki/Systemd

https://wiki.archlinux.org/index.php/systemd

https://www.freedesktop.org/software/systemd/man/systemd.html

https://www.freedesktop.org/software/systemd/man/resolved.conf.html

http://www.dynacont.net/documentation/linux/Useful_SystemD_commands/

https://www.freedesktop.org/software/systemd/man/resolved.conf.html


CHAPTER 9 ■ NETWORK CONFIGURATION

127

         Statically Configuring Your DNS Servers 
 The DNS resolve configuration file maintained by  systemctl  contains comments that 
suggest you can return to a manually edited static configuration. You need to make your 
own judgment call about whether that is a good idea. Guidance for creating a static DNS 
configuration is taken from here: 

      http://www.linuxfromscratch.org/lfs/view/systemd/chapter07/network.html       
     https://wiki.archlinux.org/index.php/resolv.conf       

    Follow these instructions to revert to a static  configuration   and add your DNS servers 
to the  /etc/resolv.conf  file:

    1.    Replace the symbolic link with a real file using these commands: 

   mv /etc/resolv.conf /etc/resolv.conf_orig  
  echo "" > /etc/resolv.conf  

        2.    Open the resolver configuration file for editing with the vi editor: 

   vi /etc/resolv.conf  

        3.    Add your domain name as the first line: 

   domain {your_domain_name}  

        4.    Add your primary nameserver as the next line. Your Internet 
service provider most likely provides this: 

   nameserver {IP_address_of_your_primary_nameserver}  

        5.    Add your secondary (backup) nameserver: 

   nameserver {IP_address_of_your_secondary_nameserver}  

        6.    Because by default Linux only tracks three nameservers, 
you can only optionally add one more. Any additional 
nameservers after that might be ignored.  

    7.    When you have added all the nameservers you want, type 
these keystrokes to exit from vi and save the changes to disk: 

   [Escape] [:] [w] [q] [Return]  

        8.    My Alpha test system needed to be rebooted for these changes 
to take effect. After rebooting and logging in again, this 
command worked fine. The Commercial Beta systems should 
work without a reboot: 

   ping gnu. org    

http://www.linuxfromscratch.org/lfs/view/systemd/chapter07/network.html
https://wiki.archlinux.org/index.php/resolv.conf



CHAPTER 9 ■ NETWORK CONFIGURATION

128

        9.    The following results were displayed: 

   PING gnu.org (208.118.235.148) 56(84) bytes of data.  
  64 bytes from wildebeest.gnu.org (208.118.235.148): icmp_seq=1 ttl=49 time=95.1 ms  
  64 bytes from wildebeest.gnu.org (208.118.235.148): icmp_seq=2 ttl=49 time=94.3 ms  
  64 bytes from wildebeest.gnu.org (208.118.235.148): icmp_seq=3 ttl=49 time=93.8 ms  
  64 bytes from wildebeest.gnu.org (208.118.235.148): icmp_seq=4 ttl=49 time=93.0 ms  

        You can optionally add the IP address of your router as an extra nameserver if it 
caches DNS lookups. It saves time if a nearby device can resolve the lookup. The router 
is the nearest device and the best place to look first. Google provides nameservers at 
these addresses. You can use these in place of others as your primary and secondary 
nameservers. There are privacy implications here, however:   

•    8.8.8.8  

•   8.8.8.4    

 This blog describes how to set up the  systemd  mechanisms and may be useful if you 
want to revert back to  systemd  after experimenting with static DNS configurations: 

   http://lukeluo.blogspot.co.uk/2015/04/the-best-way-to-configure-network.html  

         Getting State of Your IP Links 
 Use the  ip  network utility to list the currently configured interfaces: 

   ip link  

    Typical configuration report from the  ip link  command on an ARTIK 5 is shown 
in Listing  9-2 : 

     Listing 9-2.     IP Link Report     

 1: lo: <LOOPBACK,UP,LOWER_UP>  
      mtu 65536  
      qdisc noqueue  
      state UNKNOWN  
      mode DEFAULT  
      group default  
      link/loopback 00:00:00:00:00:00  
      brd 00:00:00:00:00:00  

  2: sit0: <NOARP>  
      mtu 1480  
      qdisc noop  
      state DOWN  
      mode DEFAULT  
      group default  
      link/sit 0.0.0.0  
      brd 0.0.0.0  



CHAPTER 9 ■ NETWORK CONFIGURATION

129

  3: ip6tnl0: <NOARP>  
      mtu 1452  
      qdisc noop  
      state DOWN  
      mode DEFAULT  
      group default  
      link/tunnel6 ::  
      brd ::     

  4: p2p0: <BROADCAST,MULTICAST,UP,LOWER_UP>  
      mtu 1500  
      qdisc pfifo_fast  
      state UNKNOWN  
      mode DEFAULT  
      group default  
      qlen 1000  
      link/ether 00:90:4c:33:22:11  
      brd ff:ff:ff:ff:ff:ff  

  5: wlan0: <NO-CARRIER,BROADCAST,MULTICAST,UP,LOWER_UP>  
      mtu 1500  
      qdisc pfifo_fast  
      state DORMANT  
      mode DORMANT  
      group default  
      qlen 1000  
      link/ether f4:09:d8:55:34:7b  
      brd ff:ff:ff:ff:ff:ff  

    The IP links use interfaces with these names. The devices listed in your ARTIK 
module may be different than the list in Table  9-3  depending on how you configure your 
network settings.  

   Table 9-3.     Network Device Names     

 Interface  Description 

  eth0:   The Ethernet cable connected to the RJ45 socket on the developer reference 
board 

  lo:   Loopback connections to this host 

  p2p0:   Peer-to-peer networking. Used by Virtualbox and Apple AirDrop, among 
other things. 

  wlan0:   Wireless local area network connection via Wi-Fi. Depending on your 
hardware, you may not be able to use  p2p0:  and  wlan0:  at the same time. 

  sit0:   This is for carrying IPv6 traffic on an IPv4 network. 

  ip6tnl0:   This is for carrying IPv4 traffic on an IPv6 network. 



CHAPTER 9 ■ NETWORK CONFIGURATION

130

 Find out more about the  ip  networking tool here:    

      http://linux-ip.net/html/tools-ip-link.html       

          Configure the Wi-Fi Networking 
 Your ARTIK 5 and 10 modules support Wi-Fi networking communications. They 
implement communications with the IEEE 802.11 protocol using the b, g, & n variants. 
The newer ac and ah variants are not yet supported but may be added later via an 
operating system upgrade. 

 If you want to know more about wireless communications, Kevin Sharp has posted a 
great article on the ARTIK blog: 

      https://www.artik.io/blog/2015/iot-101-connectivity       

         Setting Up Wi-Fi Communications   
 These instructions will show you how to bring up the Wi-Fi connectivity and register on 
your local Wi-Fi network. Log in to your ARTIK first, because the Wi-Fi configuration 
happens inside the ARTIK module. If an Ethernet connection is not yet configured, use 
the serial connection to open a command-line session with your ARTIK. After this is 
configured and working you will be able to connect using IP protocols and log in remotely 
with a wireless connection instead of using an Ethernet or serial wired connection. Follow 
these steps to set up your Wi-Fi communications:

    1.    Attach an antenna to the CPU WIFI ANT SMA antenna 
connector.  

    2.    Open a terminal window and log in to your ARTIK.  

    3.    Scan for wireless access points with this command: 

   wpa_cli scan_results  

        4.    If you have configured your  wlan0  interface, you should see a 
list of Wi-Fi access points like this:    

   bssid / frequency / signal level / flags / ssid  
  00:1b:19:27:c4:7a       2412    -90      [WPA2-PSK-CCMP][WPS]

[ESS]       BTHub5-K8H2  
  78:ca:19:22:b5:55       2412    -91     [WPA2-PSK-CCMP][ESS]  
  b8:c7:1d:18:8a:47       2412    -76     [WPA2-PSK-CCMP][ESS]  

        5.    If the interface is not configured, the list will be empty. 
However, this could indicate your antenna is attached to the 
wrong SMA connector.  

http://linux-ip.net/html/tools-ip-link.html
https://www.artik.io/blog/2015/iot-101-connectivity



CHAPTER 9 ■ NETWORK CONFIGURATION

131

    6.    The interface name might be displayed as  p2p-dev-wlan0  on 
some systems.  

    7.    If you plan to edit your  wpa_supplicant.conf  file, make a safe 
copy with this command (the example should be typed on 
one line — it is split for readability): 

   cp /etc/wpa_supplicant/wpa_supplicant.conf   
     /etc/wpa_supplicant/wpa_supplicant.conf_backup  

        8.    Decide the parameters you are going to need based on what 
you know about your own Wi-Fi network settings. You will 
need the network name and its password.  

    9.    Use the  wpa_passphrase  command like this to write your 
router SSID and password into  wpa_supplicant.conf  (the 
example should be typed on one line — it is split for readability): 

   wpa_passphrase {your_wi_fi_network_SSID_name}   
       {your_wi_fi_network_password} >>   
      /etc/wpa_supplicant/wpa_supplicant.conf  

        10.     Here is an example: 

   wpa_passphrase MyAP abcd1234 >>   
      /etc/wpa_supplicant/wpa_supplicant.conf  

        11.    This will append these lines to the configuration file: 

   network={     
          ssid=" MyAP"  
          #psk=" abcd1234"  
           psk=35512e2a988f53d57a3abf2302cab785f731e94c3895e 

   88a8eaa56bfe4f74979  
  }  

        12.    Display the modified configuration file with this command: 

   cat /etc/wpa_supplicant/wpa_supplicant.conf  

        13.    You should see something like this: 

   ctrl_interface=/var/run/wpa_supplicant  
  ctrl_interface_group=wheel  
  network={  
          ssid="MyAP"  
          #psk="abcd1234"  
           psk=35512e2a988f53d57a3abf2302cab785f731e94c3895e 

   88a8eaa56bfe4f74979  
  }  



CHAPTER 9 ■ NETWORK CONFIGURATION

132

        14.    Restart the  wpa_supplicant  service with this command to 
acquire your new configuration: 

   systemctl restart wpa_supplicant  

        15.    Configure a DHCP-vended IP address with the  dhclient  
command. This may take a while, as your Wi-Fi router needs 
to respond. If it does not, then the command will time out. 
This will only work if your Wi-Fi router is compatible: 

   dhclient wlan0  

        16.    Now check that your  wlan0  network has an IP address granted 
to it. Use this command: 

   ifconfig wlan0  

        17.    You should see something like this: 

   wlan0: flags=4099<UP,BROADCAST,MULTICAST>  mtu 1500  
          inet6 fe80::f609:d8ff:fe55:347b  prefixlen 64
#x00A0; scopeid 0x20<link>  
          ether f4:09:d8:55:34:7b  
txqueuelen 1000  (Ethernet)  
          
RX packets 0  bytes 0 (0.0 B)  
          RX errors 0  dropped 2  overruns 0  frame 0  
          TX packets 15  bytes 2778 (2.7 KiB)  
          TX errors 0  dropped 0 overruns 0  carrier 0  collisions  0    

        18.    Run this command to see the new status of your Wi-Fi 
connections: 

    wpa_cli scan_results   

        19.    Here is the result: 

    Selected interface 'wlan0'   
   bssid / frequency / signal level / flags / ssid   
   00:1b:19:27:c4:7a    2412  - 75   [WPA2-PSK-CCMP][ESS]  
  78:ca:19:22:b5:55    2412  -92   [WPA2-PSK-CCMP][ESS]  
  b8:c7:1d:18:8a:47    2412  -90   [WPA-EAP-CCMP+TKIP]
[WPA2-EAP-CCMP+TKIP-preauth][ESS]    BTWifi-X  

        20.    Verify the network connectivity with a  ping  command: 

   ping gnu.org  



CHAPTER 9 ■ NETWORK CONFIGURATION

133

        Setting up the networking configuration is challenging because there are so many things 
that are different from one installation to another. Wireless networking is even more difficult 
if you follow good practice and secure your Wi-Fi router so it runs in stealth mode. This 
may stop your ARTIK from being able to connect to it because the SSID is not visible when 
scanning for available networks.  

     Another Way to Configure Your Wi-Fi 
 The  nmcli   command   is a convenient way to interact with the Wi-Fi and other networking 
capabilities of your ARTIK. It is a much simpler way to configure your wireless 
connections. Find out more about  nmcli  here: 

      https://wiki.archlinux.org/index.php/NetworkManager       
     http://www.linux-commands-examples.com/nmcli       

    Martin Kronberg  documents   a different way to set up your ARTIK Wi-Fi using the 
 nmcli  command in his excellent blog article. The instructions are repeated here with a 
few additional illustrations and comments to support the example: 

      https://www.hackster.io/martinkronberg/artik10-sami-eab8f7       

      1.    Attach an antenna to the  CPU WIFI ANT  SMA antenna 
connector (labelled J23 on the Commercial Beta developer 
boards).  

    2.    Open a terminal window and log in to your ARTIK.  

    3.    Get a list of Wi-Fi networks with this command: 

   nmcli dev wifi list  

        4.    This yields the results that look like the following. Note the 
entry with two dashes in the SSID column. This is an Apple 
Airport Express running in hidden network mode, which does 
not advertise its SSID. The other networks are from neighbors’ 
dwellings nearby. Their networks are completely visible: 

   *  SSID             MODE   CHAN  RATE       SIGNAL  BARS    SECURITY  
     --               Infra  1     54 Mbit/s  44      ▂▄__   WPA2  
     BTWifi-X         Infra  1     54 Mbit/s  14      ▂___  WPA1 WPA2 802.1X  
     BTWifi-X         Infra  1     54 Mbit/s  12      ▂___  WPA1 WPA2 802.1X  
     BTHub5-3N29      Infra  1     54 Mbit/s  14      ▂___  WPA2  
     BTWifi-with-FON  Infra  1     54 Mbit/s  17      ▂___  --  
     BTWifi-with-FON  Infra  1     54 Mbit/s  12      ▂___  --  
     BTHub5-K9H6      Infra  1     54 Mbit/s  17      ▂___  WPA2  

https://wiki.archlinux.org/index.php/NetworkManager
http://www.linux-commands-examples.com/nmcli
https://www.hackster.io/martinkronberg/artik10-sami-eab8f7


CHAPTER 9 ■ NETWORK CONFIGURATION

134

        5.    Add your Wi-Fi SSID, a static IP address, and the gateway IP (replace 
{your_ssid} with your own genuine SSID (Wi-Fi network name): 

   nmcli con add con-name {your_ssid} ifname wlan0 type 
wifi ssid {your_ssid} \  
  ip4 192.168.1.100/24 gw4 192.168.1. 1    

        6.    Set up the DNS. (Google provides the DNS in this example, 
but you can substitute your own): 

   nmcli con mod {your_ssid} ipv4.dns "8.8.8.8 8.8.4.4"  

        7.    Add the WPA password for your Wi-Fi network: 

   nmcli con modify {your_ssid} wifi-sec.key-mgmt wpa-psk  
  nmcli con modify {your_ssid} wifi-sec.psk {your_WPA_password}  

        8.    Turn on the connection: 

   nmcli con up {your_ssid}  

        9.    If your Wi-Fi router is not compatible, you may see the 
following result. This will also happen if you are using an Apple 
Airport network configured into stealth (hidden network) mode 
so as to not advertise its SSID. The Wi-Fi service is visible, but 
it has no name. Use the Airport utility to turn off the hidden 
network setting, then reboot your Airport device and try again. 

   Error: Connection activation failed: No suitable device 
found for this connection.  

        10.    If it did work, you can now use your Wi-Fi connection with the 
ARTIK. You should see a message like this: 

   Connection successfully activated (D-Bus active path: 
/org/freedesktop/NetworkManager/ActiveConnection/6)  

        11.    Turn the Wi-Fi services off again with this command: 

   nmcli r wifi  off    

 ■          Note    When you set up your Wi-Fi, you MUST enter an IP address that is on the same 
sub-net as your router/gateway. Also, it must not be in use by another device. Assume for 
example that the router is allocated with the IP address  192.168.1.1 . All the devices on 
the network connected to that router must use an IP address of the form  192.168.1.XXX . 
The  XXX  corresponds to the zero bits in the class C netmask  255.255.255.0  that determines 
how the router converts addresses between each network it is integrating together.   



CHAPTER 9 ■ NETWORK CONFIGURATION

135

      Troubleshooting   FAQ 
 There are many reasons why you might not get a Wi-Fi network going right away. 
A simple mistake or a saturated network with no free capacity would prevent things from 
working. In a very busy network, all of the DHCP addresses could be allocated already. 
Let’s review a few other possibilities. 

   No Suitable Device Found for This Connection 
 This might be because you are running an  Apple Airport wireless network   and you have it 
set up for stealth mode. In stealth mode the SSID is not advertised, so the ARTIK cannot 
identify the router from the scanned list. Arguably, this is a fault with the  Broadcom driver   
that manages Wi-Fi interfaces. Try turning off the hidden-network stealth mode while 
you configure the ARTIK for Wi-Fi networking to see if that solves the problem. You may 
need to run the network in this marginally less secure configuration when testing ARTIK 
Wi-Fi operations.  

   No Network Configuration Set Up 
 If this configuration did not succeed, reboot your ARTIK and try the  dhclient  step again. If that 
does not work, go back and check all of the steps again to see if you mistyped something.  

   “Failed to Connect” Message 
 When I scan for nearby  detectable   Wi-Fi networks, with the  wpa_cli scan_results  
command, I get this error message: 

   Failed to connect to non-global ctrl_ifname: (null) error: No such  
  file or directory  

      1.    Try adding this line to the  /etc/wpa_supplicant/
wpa_supplicant.conf  file to see if it corrects the problem: 

   ctrl_interface=/var/run/wpa_supplicant  

        2.    If you already have networks defined in your  wpa_
supplicant.conf , it should look something like this: 

   ctrl_interface=/var/run/wpa_supplicant  
  ctrl_interface_group=wheel  

  network={  
          ssid="MyAP"  
           #psk="abcd1234"   
          psk=35512e2a988f53d57a3abf230
2cab785f731e99b58ea288a8eaa56bfe4f74979  
  }  



CHAPTER 9 ■ NETWORK CONFIGURATION

136

        3.    Restart the  wpa_supplicant  service with this command: 

   systemctl restart wpa_supplicant  

        4.    The  wpa_cli scan_result  command should work without 
showing the error now and you should see something like 
this: 

   Selected interface 'wlan0'  
  bssid / frequency / signal level / flags / ssid  
  b8:c7:5d:08:8a:97       2412    -92     [WPA2-PSK-CCMP][ESS]=     

               Advanced   Wi-Fi Configuration 
 A sample configuration file is located in your ARTIK file system and contains examples of 
many other configurable parameters: 

   /usr/share/doc/wpa_supplicant/wpa_supplicant.conf  

    Edit this file to add the parameters you need for your live configuration. Only do 
this if you understand the technicalities of Wi-Fi networks. Make notes as you configure 
things and keep copies of the original file in case you need to undo your changes. 

 Manually edit your  wpa_supplicant.conf  file to include your advanced Wi-Fi router 
settings with this vi editor command to open it for updating: 

   vi /etc/wpa_supplicant/wpa_supplicant.conf  

         Automatically Reconnect Your Wi-Fi after Each Reboot 
 It is inconvenient to have to go through this  reconfiguration   every time you reboot your 
ARTIK. Follow these steps to edit your system initialization script and make the changes 
permanent:

    1.    Go to the  /etc/rc.d  directory with this command: 

   cd /etc/rc.d  

        2.    If there is an  rc.local  file, inspect it with this command: 

   cat ./rc.local  



CHAPTER 9 ■ NETWORK CONFIGURATION

137

        3.    You should see something like this: 

   #!/bin/sh  
  #  
  # This script will be executed *after* all the other init scripts.  
  # Put your own initialization stuff in here if you don't  
  # want to do the full Sys V style init stuff.  
  touch /var/lock/subsys/local  
  setterm -powersave off -blank 0  
  setterm -blank 0 >> /etc/issue  
  mkdir -p /var/run/swift  
  echo "Enable wifi"     
  depmod  
  modprobe dhd dhd_poll=1 dhd_intr=0 iface_name=wlan0  
  firmware_path=/etc/wifi/fw.bin nvram_path=/etc/wifi/nvram.txt  

        4.    If there is not an  rc.local  file there, then we need to create 
one and set its file protections so it can be executed as the 
ARTIK starts up.  

    5.    Open the  rc.local  file with this vi editor command: 

  vi ./rc.local  

        6.    Add this line first. It will tell the startup code which shell to 
use to run the script: 

   #!/bin/sh  

        7.    Add this line to the end of the Wi-Fi configuration instructions: 

   dhclient wlan0  

        8.    Alternatively, this line may be more appropriate if you used 
 nmcli  to configure your Wi-Fi. Add it instead of the  dhclient  
command: 

   nmcli con up {your_ssid}  

        9.    Type these keystrokes to exit from vi and save the changes to disk: 

   [Escape] [:] [w] [q] [Return]  

        10.    Now set the file permission flags to make the  rc.local  file 
executable if you needed to create a new file from scratch. 
Type this command:    

   chmod +x ./rc.local  

        11.    Reboot your ARTIK module to test that it works.       



CHAPTER 9 ■ NETWORK CONFIGURATION

138

     Connecting with  Telnet   via SSH 
 You can log in to  your   ARTIK module across the network using the SSH protocol. Fedora 
22 behaves differently to Fedora 20 and might require some configuration changes for this 
to work. The format for a connection is: 

   ssh {account_name}@{network_address}  

    Follow these steps from a terminal session on your developer workstation. You will 
need to know the IP address of your ARTIK, which may change if it is defined by DHCP:

    1.    Open a terminal window.  

    2.    In our example, we know the IP address of the ARTIK is 
 192.168.1.202 . Type this command: 

   ssh root@192.168.1.202  

        3.    You should see this message: 

   The authenticity of host '192.168.1.202 (192.168.1.202)' can't be established.  
  RSA key fingerprint is 0b:b5:38:b8:7d:20:69:a0:0b:a2:15:30:61:d7:cf:70.  
  Are you sure you want to continue connecting (yes/no)?  

        4.    Type  yes  and press the [Return] key.  

    5.    This confirms that you trust the remote node, and your security 
software (Mac OS in this example) presents this message: 

   Warning: Permanently added '192.168.1.202' (RSA) to the list of 
known hosts.      

    6.    You are then prompted to enter the password for the account 
you requested: 

   root@192.168.1.202's password:      

    7.    Enter the password, and you are logged in with a message 
telling you when the account was last used: 

   Last login: Thu Mar  3 10:04:53 2016  
  [root@dhcppc2 ~]#             
 If your connection is rejected, then refer to the Fedora 22 system 
administrators guide. Chapter   7     describes how SSH works in detail. 

   https://docs.fedoraproject.org/en-US/Fedora/22/html/
System_Administrators_Guide/ch-OpenSSH.html      

http://dx.doi.org/10.1007/978-1-4842-1952-2_7


CHAPTER 9 ■ NETWORK CONFIGURATION

139

     Configuring Your Bluetooth Wireless  Interface   
 Your ARTIK modules all support Bluetooth communications. They implement a version 
called Bluetooth Low Energy (BLE) that consumes less power and helps make your 
battery last longer in a mobile situation. This configuration process is managed from the 
command line inside your ARTIK module. Log on there to start the configuration. 

 If you want to know more about wireless communications, Kevin Sharp has posted a 
great article on the ARTIK blog: 

      https://www.artik.io/blog/2015/iot-101-connectivity       

        Setting Up Bluetooth for an ARTIK 5 or 10 
 Here are the instructions for enabling Bluetooth on your ARTIK module and pairing 
it with another device for it to communicate with. You need download and install the 
Bluetooth software using a script that is already on your ARTIK module. Follow these 
steps to find the correct script and run it:

    1.    Attach an antenna to the Bluetooth SMA antenna connector 
(labelled J23 on the Commercial Beta developer boards).  

    2.    Open a terminal window and log in to your ARTIK.  

    3.    Change your working directory to the Bluetooth 
configuration directory: 

   cd /etc/bluetooth  

        4.    Now run a built-in script to download the firmware into the 
Broadcom Bluetooth hardware.

  ./fwdown.sh  

        5.    Now enable the  hci0  network interface: 

   hciconfig hci0 up  

        6.    Your Bluetooth network should now be running. Now it can 
pair with another device. Initiate the pairing from the ARTIK 
by running the Bluetooth control utility: 

   bluetoothctl  

        7.    Your command-line prompt should change to ‘ [bluetooth] ’. 
This indicates the utility is running. You should also see a 
message describing your Bluetooth controller. If this message 
does not appear, it is because the  fwdown.sh  script did not 
work or you executed the wrong one. 

   [NEW] Controller F8:04:2E:EC:D8:A1 ARTIK5 [default]  

https://www.artik.io/blog/2015/iot-101-connectivity


CHAPTER 9 ■ NETWORK CONFIGURATION

140

        8.    Turn on the Bluetooth agent with this command: 

   agent on  

        9.    You should see this message: 

   Agent registered  

        10.    Now request access to the default agent with this command: 

   default- agent    

        11.    You should see this message on the screen:  Default agent 
request successful  

        12.    Start the Bluetooth scanner to see if there are any discoverable 
devices. To test this, turn on Bluetooth in a mobile phone and 
make it discoverable: 

   scan on  

        13.    The scanner tells you it has started looking for discoverable 
Bluetooth devices. It lists any devices that it finds. The 
line that follows that is tagged with the prefix string  [CHG]  
describes this ARTIK. Discovered devices are tagged with 
the prefix string  [NEW] . Note the device address, because the 
ARTIK will need that to pair with it: 

   Discovery started  
  [CHG] Controller 43:50:C0:00:00:00 Discovering: yes  
  [NEW] Device B8:09:8A:6D:4A:74 XXXXXXX  

        14.    Initiate the pairing request: 

   pair B8:09:8A:6D:4A:74  

        15.    The utility reports the progress as it connects to your other 
Bluetooth device: 

   Attempting to pair with B8:09:8A:6D:4A:74  
  [CHG] Device B8:09:8A:6D:4A:74 Connected: yes  



CHAPTER 9 ■ NETWORK CONFIGURATION

141

        16.    On the other device, you should see a message telling you a 
remote Bluetooth device is attempting to pair. Accept that 
pairing attempt there. When you do, the other device sends 
back a unique key value that needs to be confirmed by the 
agent in the ARTIK. Confirm the key by typing  yes : 

   Request confirmation  
  [agent] Confirm passkey 622643 (yes/no): yes  

        17.    Connection-specific debugging messages are displayed. 
These tell you about the state of the connection:    

   [CHG] Device B8:09:8A:6D:4A:74 Modalias: bluetooth:v004Cp6D03d0830  
  [CHG] Device B8:09:8A:6D:4A:74 UUIDs:  
  00000000-deca-fade-deca-deafdecacafe  
  00001000-0000-1000-8000-00805f9b34fb  
  0000110a-0000-1000-8000-00805f9b34fb  
  0000110c-0000-1000-8000-00805f9b34fb  
  0000110e-0000-1000-8000-00805f9b34fb  
  00001116-0000-1000-8000-00805f9b34fb  
  00001200-0000-1000-8000-00805f9b34fb  

        18.    If the pairing worked, you should see this message: 

   [CHG] Device B8:09:8A:6D:4A:74 Paired: yes  
  Pairing successful  

        19.    Quit out of the Bluetooth utility with the  exit  command.       

     Summary 
 Now that you have configured your networking support in the ARTIK module, you have 
some choice about how to connect to it. The software developer tools can cross compile 
and deliver runnable applications directly to the ARTIK as part of the build process. Your 
ARTIK can also communicate with the outside world and connect to online services such 
as Temboo and SAMI when it needs to.                  



143© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_10

    CHAPTER 10   

 Configuring and Upgrading                         

     Updating Your Operating System 
 From time to time, Samsung will release operating system upgrades — perhaps to introduce 
new features or if a security flaw has been discovered — and it is important to upgrade right 
away to prevent the ARTIK modules from being hacked by an intruder. 

 When you receive your new ARTIK development system, it should already have 
the latest version of the operating system installed. Sometimes manufacturers release 
updated operating systems after products have been shipped but before they have 
reached the customers. These products might not be intercepted and updated in transit 
before you receive them. There are rare occasions where an operating system update is 
called for right away. If you develop a new OS package yourself you will want to install it 
to test your product design. You might be manufacturing products on a large scale, and a 
vital step in that process is to image your product code onto the ARTIK modules as they 
pass through your production line. 

 Creating a bootable SD card with an operating system installer on it and then 
configuring the ARTIK so it can transfer that software into its secured operating system 
memory is the solution for all of these scenarios.  

     Writing Downloaded Images to an SD Card 
 After downloading or manufacturing a new software installation, you need to write the 
contents of a disk image file to the SD card you plan to use for updating your ARTIK OS. 
The process of doing so is slightly different if your development system is Windows based 
versus Apple Macintosh or Linux. Follow the instructions appropriate to your workstation 
type to prepare your SD card before installing an update into your ARTIK. 

     Writing Micro SD Card Images on Windows 
 Follow these instructions  to   acquire the SD card – writing software and load a firmware 
image onto an SD card with your Windows development workstation.

    1.    Download the SD image-writing program from SourceForge: 

      http://sourceforge.net/projects/win32diskimager/        

http://sourceforge.net/projects/win32diskimager/


CHAPTER 10 ■ CONFIGURING AND UPGRADING

144

        2.    Install the SD image-writing application.  

    3.    Download the firmware image you want to use.  

    4.    Plug an SD card reader into your development workstation.  

    5.    Install the Micro SD card into your card reader. Currently, you 
must use a card with no more than 32GB capacity.  

    6.    Start up the image-writing application. The required 
graphical user interface controls are labeled A, B & C in the 
following image:

      

      7.    Select the drive where the Micro SD card is installed with the 
drop-down menu (A).  

    8.    Choose the downloaded firmware image with the browse 
button (B).  

    9.    Initiate the image copy by clicking on the Write button (C).  

    10.    The progress indicator will indicate when the transfer is 
complete.  

    11.    Quit the image-writing application when you are done.         

     Writing Micro SD Card Images on Linux 
 Follow these instructions  to   write your ARTIK firmware image on a Linux computer. 
These steps might be slightly different for you, depending on the version of Linux you 
are using. The biggest problem is reliably identifying the device name of your SD card. 
Try listing the available disks with the card not plugged in first and then try again with it 
plugged in to see what has changed. Here are the steps:

    1.    Download the firmware image you want to use and note 
where the downloaded file is so you can refer to it with the SD 
card loading command.  

    2.    Plug an SD card reader into your development workstation. 
Your Linux installation should have all the drivers available 
for this already.  



CHAPTER 10 ■ CONFIGURING AND UPGRADING

145

    3.    Install the Micro SD card into your card reader. Currently, you 
must use a card with no more than 32GB capacity.  

    4.    Linux might automatically mount the SD card. Unmount it 
once you have discovered which device it is.  

    5.    List the mounted disks with this command to identify exactly 
which one is the SD card: 

   mount  

        6.    This command also lists the disks to show how much space 
they have. Look for one that has the right capacity:    

   df  

        7.    You may see disk names with various partition suffixes. You 
want the raw disk number. This command lists all the disks in 
the  /dev  virtual file system on your development workstation: 

   ls /dev | grep disk  

        8.    Or perhaps the SD card has a different name or exists as a 
USB device. Inspect the whole list of logical devices with this 
command: 

   ls /dev  

        9.    Note the SD card device name carefully for use in the next 
command. It is very important that you correctly identify the 
SD card. You can seriously damage your system if you attempt 
to load ARTIK firmware onto the wrong device.  

    10.    Unmount the SD card with this command. The SD device is 
called  disk2  in this example, but it could be called  sdb1  or a 
variety of other things. Make sure you are dismounting the 
correct device: 

   sudo umount /dev/disk2  

        11.    Use the  cd  command to go to the directory containing your 
downloaded ARTIK firmware image file.  

    12.    Now use the  dd  block-copying command to physically 
duplicate the image file onto the SD drive. Explore the Linux 
documentation to establish the correct way to identify the 
target SD card. The command format is this: 

   sudo dd if={downloaded_image_file_name} of=/dev/
{your_sd_disk_name} bs=1m  



CHAPTER 10 ■ CONFIGURING AND UPGRADING

146

        If you make a mistake at this point and type in the device name of your boot disk 
instead of the SD card, the  dd  command will  completely  and  irrevocably  wipe out your 
operating system. Read the UNIX manual page for the  dd  command to understand what is 
happening here.     

     Writing Micro SD Card Images on Mac OS X 
 Use command-line tools to  create   the bootable SD card from a Samsung-generated disk 
image. You cannot use the GUI Disk Utility tool to clone the firmware image to the SD 
card. Mac OS X cannot read the format of the partitions on the image. Therefore, it cannot 
validate the image before restoring it. 

 If the SD card has been used before, it may have an Apple partition map. If it is a new 
SD card, it most likely has a Windows-compatible partition map and a DOS partition 
with the FAT16 or FAT32 format. The partition map on a new SD card is probably called 
 FDisk_partition_scheme . Although it is not strictly necessary, you can reformat it and 
set the partition map to  Master Boot Record  (this is another name for the same partition 
scheme) and create a single partition. That single partition will get erased and replaced 
by the  dd  command that copies the image file to the SD card. 

 Use the GUI Disk Utility tool to alter the partition scheme on a recycled SD card. 
Then follow these instructions to write your ARTIK firmware image to an SD card on a 
Macintosh computer. Unless you are going to reconfigure the partition scheme on the SD 
card first, all of this happens in a terminal window at the Mac OS X command line:

    1.    Download the firmware image you want to use.  

    2.    Plug an SD card reader into your development workstation.  

    3.    Install the Micro SD card into your card reader. Currently, you 
must use a card with no more than 32GB storage capacity.  

    4.    Mac OS X will automatically mount the SD card if it recognizes 
any compatible file-system partitions. Otherwise, you will see 
a dialog inviting you to initialize the SD card. It is safe to click 
on either the OK or Cancel buttons because the card will be 
completely erased when the new image is written onto it.  

    5.    List the mounted disks with this command to identify exactly 
which one is the SD card: 

   diskutil  list    



CHAPTER 10 ■ CONFIGURING AND UPGRADING

147

        6.    Make a note of the disk number of the SD card. It is very 
important that you identify the correct disk. You can seriously 
damage your system if you attempt to load ARTIK firmware 
onto the wrong one. You should see something like this: 

 /dev/disk0  
     #:                       TYPE NAME             SIZE        IDENTIFIER  
     0:      GUID_partition_scheme                  *750.2 GB   disk0  
     1:                        EFI                   209.7 MB   disk0s1  
     2:                  Apple_HFS ADMN              749.2 GB   disk0s2  
     3:                 Apple_Boot Recovery HD       784.2 MB   disk0s3  
  /dev/disk1  
     #:                       TYPE NAME             SIZE        IDENTIFIER  
     0:      GUID_partition_scheme                  *750.2 GB   disk1  
     1:                        EFI                   209.7 MB   disk1s1  
     2:                  Apple_HFS BACK              749.8 GB   disk1s2  
  /dev/disk2  
     #:                       TYPE NAME             SIZE        IDENTIFIER  
     0:      FDisk_partition_scheme                 *1.0 GB     disk2  
     1:                 DOS_FAT_16 NO NAME           1.0 GB     disk2s1  

        7.    Look at the sizes of the disks and figure out which one is the 
SD card. Note the disk reference carefully for use in the next 
command. The example system has some very large hard 
disks and one small one with a different partition scheme.     

    8.    Note the partition scheme. It should be  FDisk_partition_scheme  
but it might say  Master Boot Record , which is also OK. If it 
says  GUID  or  Apple partition scheme , erase the SD card and 
change the partition scheme to  Master Boot Record  with 
the Disk Utility tool before copying the image to it. See the 
instructions that follow if you need them.  

    9.    Now use the command-line  diskutil  tool to unmount the SD 
card with this command. In this example, the SD card device 
is called  disk2 . Because this is allocated dynamically on a first 
come, first served basis, it might not be  disk2  on your system. 
Check carefully and double check again to avoid accidentally 
damaging another disk drive: 

   diskutil unmountDisk /dev/disk2  

        10.    You should see this message: 

   Unmount of all volumes on disk2 was successful  

        11.    Use the  cd  command to go to the directory containing your 
downloaded ARTIK firmware image file.  



CHAPTER 10 ■ CONFIGURING AND UPGRADING

148

    12.    Now use the  dd  block-copying command to physically 
duplicate the image file onto the SD drive. The command 
format is this: 

   sudo dd if={downloaded_image_file} of=/dev/rdisk{sd_disk_number} bs=1m  

        13.    Using  disk2  as an example and a recent ARTIK 10 firmware 
image, you would have this: 

   sudo dd if=artik10_20151109.img of=/dev/rdisk2 bs=1m  

        14.    You should be prompted for an administrator password at 
this point.     

    15.    While the  dd  command is executing, you should see a flashing 
activity light on your card reader. The copying may take a few 
minutes. The  dd  command will echo progress statistics to the 
screen: 

   470+0 records in  
  470+0 records out  
  492830720 bytes transferred in 107.501932 secs (4584389 bytes/sec)  

        16.    When the transfer has finished, Mac OS X may try to mount 
the disk and present an initialization-warning dialog. Just 
click on the Ignore button to dismiss it.  

    17.    When the copying is finished, your SD card should have three 
new Linux partitions on it. You cannot mount these partitions 
on a Macintosh without installing additional disk drivers, 
because Mac OS does not understand Linux file-system 
partitions. List them to see that they are there: 

   diskutil list  

        18.    You should see the SD card with four new partitions looking 
something like this: 

   /dev/disk2  
     #:                       TYPE NAME       SIZE       IDENTIFIER  
     0:     FDisk_partition_scheme           *1.0 GB     disk2  
     1:                      Linux            33.6 MB    disk2s1  
     2:                      Linux            33.6 MB    disk2s2  
     3:                      Linux            424.7 MB   disk2s3  

        19.    Take the SD card out of the reader.  

    20.    Install the SD card in your target ARTIK developer reference 
board, and you are ready to update your ARTIK module.        



CHAPTER 10 ■ CONFIGURING AND UPGRADING

149

 When you use the  dd  command, the path to the target SD card in these examples is 
 /dev/rdisk2  and not  /dev/disk2 . The  r  prefix is important. If you make a mistake 
at this point and type in the descriptor for your boot disk instead of the SD card, the 
 dd  command will wipe out your development system and render it un-bootable. You will 
also irretrievably lose all the documents, source code, and files that you had stored on 
that disk. This is worse than accidentally repartitioning the disk because it overwrites the 
disk contents. Be very careful, because recovery tools will be unable to repair your disk 
and bring your files back after that. Read the UNIX manual page for the  dd  command to 
understand what is happening here. 

   Ghost Disks on Mac OS  X   
 You may see ghost disk drives listed on your Macintosh if you have previously mounted 
installer disk images. For example, Adobe Flash Player leaves behind a vestigial record of 
the installer disk even though it has been unmounted. This can offset the disk numbers. 
Any recommendation that you should use  disk2  needs to be confirmed by locating a 
drive that has the expected size of your SD card. In this example it is  disk2 , but it might 
not be.  

   About Partition Maps on OS  X   
 If you experience any problems when you try to boot the ARTIK module from this SD 
card after creating an image on a Macintosh workstation, you might not have created the 
SD card correctly. Run the Mac OS X Disk Utility tool and repartition the SD card to use a 
recognizable partitioning scheme that the ARTIK can understand. 

 Before you reconfigure the partitions with the Disk Utility, click on the Options 
button to set the partition map to  Master Boot Record . This is a Windows-compatible 
partition map that the ARTIK understands. You cannot set the partition map to 
 FDisk_partition_scheme  with the Apple Disk Utility. The other two alternatives in the 
Disk Utility are for use only on Apple hardware systems. Do not set the partition map to 
one of the Apple-specific formats, because the ARTIK module will not be able to find the 
partitions on your SD card. Once the partition map is set correctly, create a single disk 
partition and repeat the image loading before attempting the update again. Follow these 
steps to  repartition   an SD card:

    1.    Fire up the GUI Disk Utility. It lives in the Utilities folder inside 
the Applications folder on your Macintosh desktop: 

   {your_boot_disk} ➤ Applications ➤ Utilities ➤ Disk Utility app  

        2.    Press the [Command] + [Shift] + [U] key combination.  



CHAPTER 10 ■ CONFIGURING AND UPGRADING

150

    3.    Scroll down and double-click on the Disk Utility application 

icon to run it.        

      4.    Make sure you choose the correct disk drive from the list 
of physical drives attached to your computer. The SD card 
should be easy to identify by its capacity. Be careful not to 
choose one of your hard disk drives inadvertently:

      

      5.    Choose the 1-partition setup:

      



CHAPTER 10 ■ CONFIGURING AND UPGRADING

151

      6.    Click on the Options button to choose an appropriate 
partition scheme:

         

      7.    Choose the  Master Boot Record  partition scheme.  

    8.    Click on the OK button to confirm the  Master Boot Record  
partition scheme.  

    9.    Click on the Apply button to rewrite the partition map and 
create a new partition.  

    10.    Your SD card is now ready to resume the command-line 
image copy process.           



CHAPTER 10 ■ CONFIGURING AND UPGRADING

152

     Updating Your ARTIK 5 or 10 
 Look at your developer reference board to make sure you know where the important 
items are. You should already know how to switch on the power and boot your ARTIK 
with the power button on the developer reference board. Orient your developer reference 
board as shown in Figure  10-1  and find the  SD card reader socket   and the  boot switches  . 
The exact design and layout of the developer reference boards may change and the 
switches might be moved, so look for a pair of switches labeled  SW2 . The switches are 
marked with a legend that indicates the On position.  

  Figure 10-1.    Location of boot switches and SD card reader       

 Follow these  instructions   to upgrade your operating system. This is described in the 
official documentation as updating the eMMC image.

    1.    Go to the developer downloads page. You will need to be signed 
in with your Samsung developer account to see this page: 

      https://www.artik.io/developer/downloads       

        2.    Read the notes about the firmware download. This is 
important, because your ARTIK module must be compatible 
before you upgrade. You should not attempt to install Beta 
firmware onto an Alpha developer reference board, as you 
may render your ARTIK module inoperative after that.     

 

https://www.artik.io/developer/downloads


CHAPTER 10 ■ CONFIGURING AND UPGRADING

153

    3.    Observe the limitations on SD card capacity if the release 
notes describe them. Beta development systems can only 
recognize 32GB SD cards. A 64GB card is not compatible with 
Beta versions of the ARTIK. Earlier ARTIK models can only 
use 16GB SD cards.  

    4.    Download an ARTIK operating system image to install. 
These are generally available in the “Downloads” section of 
the developer website, but they could be located elsewhere 
if Samsung create a special repository for eMMC images. 
Be careful to download the right firmware for your ARTIK. 
The model 5 and 10 firmware is different. Some versions are 
incompatible with hardware of a different vintage. This may 
be less of a problem once the product matures.  

    5.    Plug an SD card reader into your development workstation.  

    6.    Install the Micro SD card into your card reader. Currently, you 
must use a card with no more than 32GB capacity.  

    7.    Write the image to the SD card. This is a slightly different 
process if your development system is Windows based versus 
Apple Macintosh based. Follow the instructions that are 
appropriate to your workstation type.  

    8.    Eject/dismount the SD card from your development system.  

    9.    Make sure your ARTIK developer reference board is 
powered off.     

    10.    Remove the card from the SD card reader and install it into 
the Micro SD card slot on your ARTIK developer reference 
board.  

    11.    Set the boot-mode switches on the developer reference board 
to boot the Micro SD card instead of the onboard operating 
system already installed on the ARTIK module.  

    12.    Orient your developer reference board the other way up to see 
the switch depending on the vintage of your board and which 
way the switches are placed. The switches may be oriented 
upside down when viewed from the edge of the board. This can 
be confusing and make the On and Off positions ambiguous. 
Look closely, and you will see the switches have very small 
lettering on them, which indicates the correct orientation.  

    13.    Set boot-mode switch 1 to the Off position.  

  
  14.    Set boot-mode switch 2 to the On position. 

      
      15.    Open your terminal window and connect via the serial interface.  

    16.    Follow the update as it happens on the console screen.  



CHAPTER 10 ■ CONFIGURING AND UPGRADING

154

    17.    Switch on the power supply to the developer reference board.  

    18.    Press and hold the power (boot) button for a second to initiate a 
boot cycle.  

    19.    You should see messages from the U-Boot loader as it starts up.  

    20.    The boot loader should then display a message telling you 
it is booting from the SDMMC card instead of the internal 
operating system. You should see this message on the screen:    

   Checking Boot Mode ... SDMMC  

        21.    If you do not see this message, you probably have the boot 
mode switches set incorrectly. Check them again and reboot.  

    22.    Booting the image on the SD card will automatically run an 
updater script to copy new software from the SD card into the 
main eMMC memory on your ARTIK module. Wait for this 
process to complete. Interrupting or powering off before it is 
finished may render your ARTIK unable to boot and it will be 
unrecoverable.  

    23.    When the updating process is done, you should see this 
message on the screen: 

   Upgrade completed!  

        24.    Power off the ARTIK developer reference board.  

    25.    Remove the SD card from the Micro SD socket on your 
developer reference board. You may want to keep it with your 
other ARTIK accessories in case you want to upgrade again.  

    26.    Reset the boot-mode switches on the developer reference 
board to boot the eMMC memory inside the ARTIK module.  

    27.    Set the boot-mode switch 1 to the Off position.  

  
  28.    Set the boot-mode switch 2 to the Off position.

       
      29.    Switch on the power supply to the developer reference board.     

    30.    Press and hold the power (boot) button down for a second to 
initiate a boot cycle.  

    31.    You should see messages from the U-Boot loader again as it 
starts up.  



CHAPTER 10 ■ CONFIGURING AND UPGRADING

155

    32.    The boot loader should then display a message telling you it 
is booting from the internal operating system in the ARTIK’s 
eMMC memory. You should see this message on the screen: 

   Checking Boot Mode ... EMMC4.41  

        33.    If you do not see this message, you probably have the 
boot-mode switches set incorrectly.  

    34.    Check them again and reboot.     

 After upgrading the OS, you should always check the virtual file system to see 
whether any devices or hardware addresses have changed. Keeping a copy of the listing 
of the  /dev  and  /sys  virtual file systems and comparing that with one you capture after 
an upgrade will tell you if anything moved. If it did, your code may need to be altered to 
accommodate the change.  

     Known Firmware Versions 
 Table  10-1  lists the publicly available  firmware versions   that have been released via the 
Samsung developer downloads page. There may be others that you have been supplied 
with directly from Samsung. Download new firmware only from the Samsung developer 
downloads page to ensure you have an authoritative copy. You will need to be signed on 
with your developer account to reach the page and access the firmware:  

      https://www.artik.io/developer/downloads          

   Table 10-1.     ARTIK Firmware Release Versions History     

 ARTIK  Date  Notes 

 5  2015-10-07  Only use this on Alpha boards. Alpha firmware is built with 
Yocto from Fedora 20. Ethernet driver support unavailable on 
this version. 

 5  2015-11-11  Only use this on 0.3 version (Beta) boards. Beta firmware is 
built with Yocto from Fedora 22. Adds support for Ethernet 
interface, Analog write, and I2C device access. Temboo 
library is not available on this version. 

 10  2015-10-07  Only use this on Alpha boards. Alpha firmware is built with 
Yocto from Fedora 20. 

 10  2015-11-09  Only use this on 0.3 version (Beta) boards. Beta firmware is 
built with Yocto from Fedora 22. Adds USB camera support 
via the Linux UVC driver, Analog write, and I2C device access. 
Temboo library is not available on this version. 

https://www.artik.io/developer/downloads


CHAPTER 10 ■ CONFIGURING AND UPGRADING

156

         Installing Software on Your ARTIK 
 Installation of new  software   utilities on Linux is managed via the Redhat Package 
Manager ( RPM)     . Each software package consists of an archive of files along with 
information about the package. There is also an API framework with which advanced 
developers can create multiple installer packages with languages such as C or Python. 

 The package manager expects the installation archives to be constructed in a 
particular way and to have the  .rpm  file extension. These are more sophisticated than 
a simple Zip archive because they contain instructions for configuring the packages as 
they are installed. The archive packages also include descriptive text and version number 
details. Removing packages is facilitated by the uninstaller support that is built in to the 
archive. Find out more about the  rpm  tool here: 

      http://www.rpm.org/        
     https://en.wikipedia.org/wiki/RPM_Package_Manager       
     https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/
RPM_Guide/        

    Using a package manager such as  rpm  makes the installation process consistent 
across a number of target platforms. After you have built and tested your ARTIK 
application code, use  rpm  as part of your deployment process to load your own software 
onto your ARTIK modules during your production workflow.    

 The  rpm  package manager is suitable for single stand-alone products with no 
knowledge of dependencies between multiple installed software packages. When you 
acquire software for your development environment, you often use an  rpm  front-end to 
work out dependencies on other installations. Two particularly well-known ones are 
 yum  and  apt-get , but there are others that are summarized on the  rpm  Wikipedia page. 
Although the  rpm  tools are present on the ARTIK modules, Fedora version 22 replaces the 
 yum  toolkit with  dnf  which is functionally similar and has additional features. Find out 
more about  dnf  here: 

   https://fedoraproject.org/wiki/Dnf   

   Use the appropriate  rpm  commands to perform these operations on packaged software:

•    Upgrade an already installed package  

•   Install a package from scratch  

•   Remove an installed package  

•   Query a package’s contents  

•   Verify that a package has not been tampered with  

•   Check a package signature    

 Find out about the installed version of the  rpm  tool on your ARTIK by typing 
this command: 

   man rpm  

http://www.rpm.org/ 

https://en.wikipedia.org/wiki/RPM_Package_Manager

https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/
https://fedoraproject.org/wiki/Dnf


CHAPTER 10 ■ CONFIGURING AND UPGRADING

157

    Here is a very brief example of installing software directly with RPM:

    1.    Log in with the  root  account or use the  su  command to switch 
to the  root  account from your logged-in session.  

    2.    Download the package that you want to install. It will 
have a name that describes the software and version 
number with the  .rpm  file extension. This example uses the 
 MySoftware042b.rpm  package name.  

    3.    Type this command to install the software: 

   rpm -i MySoftware042b. rpm    

        4.    Alternatively, type this command if the software is already 
installed and you want to update it: 

   rpm -U MySoftware042b.rpm  

        5.    Log out of the  root  account when you are done.      

     Summary 
 Being able to install operating system updates or install additional software packages 
provides an upgrade path for you when you need it. Because the ARTIK OS is Linux 
based, most open-source packages can be installed. This can save you a great deal of 
development time and effort. Software features and functionality can be kept up to date 
with all the most recent developments. This also includes the software development tools 
that will be examined in the next chapter. These will be installed on your development 
workstation to cross-compile applications. Installing supporting tools directly on the 
ARTIK module is helpful for customizing how it works and deploying your own code. 
Now you know how to do it. In the fullness of time, other installer tools and options will 
become available. For now, these basic facilities should be sufficient.     



159© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_11

    CHAPTER 11   

 Programming Your ARTIK           

     Everything Is the Same but Different 
 The ARTIK 5 and 10 modules are based on a Linux operating system. Your development 
platform might be Windows, Linux, or Mac OS X. They each have some subtly different 
characteristics that map onto your ARTIK in strange ways. This is likely to impact your 
programming more than any other aspect, so this chapter will discuss some topics that 
you need to be aware of when you are moving between different platforms. Sharing a 
folder from your development workstation and mounting it on your ARTIK or vice versa 
exposes you to the different ways that each operating system manages file names. These 
all cropped up during the investigative phase of this book-writing project.  

     Programming Your ARTIK 
 There are already several alternative ways to approach ARTIK programming. This is 
astonishing for a product so early in its lifecycle. It is reassuring as a developer, because 
the more people who embrace the ARTIK technology, the better it is for the whole 
community. It will encourage Samsung to take the platform further with new features, 
new module designs, and more support. 

 Plan your development process around what you expect to build and choose 
the best tools based on your goals. You have the choice to develop  software   in these 
fundamentally different ways:

•    Natively inside the ARTIK as a compiled C language application  

•   Java running on a VM inside your ARTIK module  

•   Command-line shell scripts inside your ARTIK module  

•   Python scripts running inside your ARTIK module  

•   Arduino sketches running inside your ARTIK module  

•   JavaScript applications running as Node.js scripts inside your 
ARTIK module  

•   Compiled applications from source code generated via the 
Temboo toolkit online  



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

160

•   Cross-compiled applications built on your development 
workstation and loaded into your ARTIK module  

•   Auto-generated code from the Temboo web-based code generator 
copied and compiled natively on your ARTIK  module      

 Since the ARTIK is UNIX based, installing other tools and languages is also feasible if 
you are prepared to do the extra work required to port them to the ARTIK environment.  

     Setting Up Your Software Development 
 Environment   
 Maintaining and managing a project can become complicated. Having an integrated 
development environment (IDE)       that manages a collection of resources, configures a 
compiler, and supports a graphical debugger can be a great help. Choose any of these 
alternatives for creating your application source code:

•    Raw C language source files with build scripts written as shell 
commands or for use with the  make  utility. Cross-compile these 
in your development workstation or natively compile with GCC 
inside your ARTIK.  

•   Eclipse IDE with the ARM cross-compilation tools installed and 
one of the debugging sub-systems configured to connect to the 
debugging stubs  

•   Arduino IDE on your development workstation with the 
libArduino cross-compiler for ARM installed  

•   Temboo online GUI developer tools  

•   Node.js, Python, and other scripts edited on your development 
workstation and copied to your ARTIK module for execution  there       

      Code-Editing Tools      
 There are many alternative and inexpensive text editors to choose from. The most 
popular ones are free, and there are very capable tools for all of the platforms you might 
develop with:

•    Edit directly in the UNIX environment by learning how to use the 
vi editing tools. There are books available to teach you all about it. 
There are many other editors (such as EMACS or PICO) but you 
may need to install them. The vi editor is always guaranteed to be 
available on a UNIX system.  



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

161

•   On Mac OS, there are two editors written by Bare Bones Software 
that are particularly good. Their premium editor is called BBEdit. 
It is inexpensive and powerful. From the same developer, the 
TextWrangler editor is free and provides many of the core code-
editing tools you need.  

•   Windows-based developers can use Notepad+, which is similar to 
TextWrangler.            

      Folders vs. Directories   
 Because the command line and graphical user interface worlds have evolved 
independently, they use different terminology to describe the same thing. The constraints 
that GUI implementations place on end users to prevent their accessing important 
operating system components make this a quite sensible idea. Now that you are 
becoming familiar with the  command-line interface (CLI)  , the UNIX nomenclature that 
describes the file containers may be unfamiliar. 

 In a graphical user environment, your file containers look like folders in a file 
cabinet, so we become used to describing them as folders. Traditional UNIX users call 
them directories. They are fundamentally the same thing, but in the UNIX environment 
you can see directories that are not mirrored as folders in your desktop environment. 
Anything whose name starts with a full stop (period) in the UNIX command-line 
environment is hidden when you view it from the desktop. Mac OS X uses extended 
file attributes to hide files without putting a prefixing full stop on their name. So in this 
book, the term  folder  is used in the context of a desktop user session where you can point 
and click on an item with a mouse or touch gesture. The term  directory  is used when 
describing a file container that you operate on from the command line via the terminal 
emulator and refer to directly by a name that you type.  

      File-System Path  :  Folder Separator Characters   
 There are three operating systems that you are likely to encounter: Windows, Macintosh, 
and Linux. They each have particular ways to separate folder or directory names when 
you are describing a fully qualified path to a file. 

 In Windows, the default separator for folders is a backslash character ( \ ). This is 
usually hidden in the file explorer view but is very important in the command line. In 
Cygwin, the conversion to the UNIX form happens automatically if you enclose the path 
in single quotes. This command for example: 

   cd C:\windows\path  

    Should be typed with enclosing single quote characters ( ' ): 

   cd 'C:\windows\path'  



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

162

    The single quotes are necessary to prevent the command-line shell from 
misinterpreting the backslashes as meta-character escape sequences. 

 On Mac OS X, the command line natively works like any other Linux. It uses POSIX-
compatible paths with folder (directory) names separated by slash characters ( / ). If you 
use AppleScript or other utilities written for use with the Macintosh toolbox, you may see 
path names that are separated by colon characters (:) instead of slashes ( / ). Substitute a 
slash character wherever you see a colon in the file path. 

 Avoid creating a file name with a colon in it when you are working in the command 
line. You may be able to fix this from the command line, but sometimes you get a file that 
you cannot operate on to delete or rename. These are called “Files from hell.” The only 
practical solution is to relocate the containing folder to a safe location out of the way and 
recreate it file by file (omitting the bad file, of course). Putting it in the trash will not work, 
because the trash-emptying logic is also unable to remove it. Some deeply complex code 
could edit the file-system database and fix things at the directory inode level or possibly 
access the disk and rewrite the directory by patching a physical disk block. Attempting 
that could lose your entire file system and potentially render the disk unreadable unless 
you know exactly what you are doing. 

 Linux users will never likely encounter any of these issues because they will always 
just use a slash character ( / ) as a folder name separator.         

     Spaces in File Names and  Paths   
 Sometimes on Windows or Mac OS, you will use space characters in the GUI environment 
(File Explorer or Finder). These are preserved in the file and folder names at the 
command line, where they are called directories rather than folders. A space character 
is deemed to be an item separator for UNIX command-line arguments, which makes it 
awkward when the file names include a space. You should enclose a file path in double 
quote characters ( " ) if you are using it as an argument to a UNIX command. The quotes 
are not necessary if there are no spaces in the name, but you may be passing the name 
in a variable. Encapsulate the reference to that variable in quotes to protect the file path 
when the variable value is rendered to replace the reference with its contents. 

 The paths with space characters can be described without the quotes if you use the 
backspace character to escape the embedded spaces. This is a bit more complex and 
prone to errors. These two paths are equivalent, but the quoted version is much easier to 
deal with:

•     "/users/cliff/desktop/my file name with spaces. txt"   

•    /users/cliff/desktop/my\ file\ name\ with\ spaces. txt      

     Upper- and Lowercase  Issues   
 Some file systems do not care about whether file and folder names are composed with 
upper- or lowercase letters. In others, the case is important. Some support a hybrid 
scenario where case is preserved but ignored. DOS just uses all uppercase letters. Mac 
OS X preserves the case when a file name or directory is created but ignores it thereafter. 



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

163

The UNIX operating system (including Linux), preserves case and treats differently 
cased versions of file and folder names as strictly different entities so it is case sensitive. 
Consider this file name: 

   My_mixed_CASE_file_name. txt  

    Mac OS X will match the file with this description  "my_mixed_case_file_name.txt"  
but UNIX will not. The underlying file system provides the case sensitivity. The HFS+ file 
system on Mac OS X is case insensitive, but if you mounted a case-sensitive file system, 
the command line in Mac OS X would honor that. Table  11-1  summarizes the case 
sensitivity for the operating systems we are interested in:     

 Read these articles for more information on this topic, especially if you intend to 
mount foreign file systems on your developer workstation or even on your ARTIK module: 

      https://en.wikipedia.org/wiki/Case_preservation       
     https://en.wikipedia.org/wiki/Case_sensitivity       
     https://www.dropbox.com/en/help/145       
     http://xahlee.info/UnixResource_dir/_/fileCaseSens.html       

 ■     Note Moving folders full of files from case-sensitive file systems to case-insensitive 
file systems causes a collision between files that may have different file names on one but 
render as the same file name on the other. The copy may fail or it may silently replace two 
similarly named files with one. There is no guarantee which of the files will survive and 
which will be destroyed. Moving files from Windows or Mac OS X to an ARTIK will be fine, 
but moving files back from the ARTIK may not.      

   Table 11-1.     Case Preservation and Sensitivity   on Operating Systems   

 OS  Case Preservation  Case Sensitive 

 Windows Explorer  Yes  No 

 Cygwin on Windows  Yes  Yes 

 Windows Services for UNIX (POSIX)  Yes  Yes 

 Linux  Yes  Yes 

 Mac OS X Finder  Yes  No 

 Mac OS X Command Line  Yes  Yes 

 Mac OS X Command Line with HFS+  Yes  No 

 ARTIK 5 and 10  Yes  Yes 

https://en.wikipedia.org/wiki/Case_preservation
https://en.wikipedia.org/wiki/Case_sensitivity
https://www.dropbox.com/en/help/145
http://xahlee.info/UnixResource_dir/_/fileCaseSens.html


CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

164

     Of Camels and Underscores 
 Choosing a strategy that avoids space characters in file names suggests that using 
underscores in place of spaces is good. Some developers prefer to use Camel Case file 
names. This capitalizes each word but removes the spaces. Experience suggests that this 
is slightly more prone to typing mistakes in case-supporting operating systems whereas 
underscores are less likely to be mistyped.

•     my_underscore_separated_file_name. txt   

•    MyCamelCaseFileName. txt      

     Let the Environment Do the Heavy Lifting 
 Finding the right separation between environment and file names is important. If the 
environment is going to change, possibly because the code is supported across multiple 
platforms, then defining the path to an important file can be done using environment 
variables in UNIX or registry entries in Windows. Mac OS X has a mechanism called the 
 defaults database . Your application can query these definitions to construct a path to a 
folder containing the file you want to operate on. Then it can append the file name and 
extension. Manifest constants in the C pre-processor can be used to define the file-name 
portion so your code can be completely decoupled from the environment it is running in. 

 Considering all the possible file systems, apply the file-naming conventions that are 
the most limiting and use those to define the file-name portion. A totally portable file name 
can be constructed by limiting the file-name portion to eight characters, the file extension 
to three characters, and using only uppercase letters. This is the DOS 8.3 file-name 
convention. If you are not including DOS systems, you might relax these rules a little, but 
keeping file names short is good for compactness in an IoT scenario.  

      Links vs. Aliases   
 In the UNIX environment, you can create shortcuts using the symbolic link mechanism. 
These shortcuts behave like aliases in the Finder, but they are not the same thing. 

 UNIX also supports hard links to files that are indistinguishable from real files. So 
a file that has two hard links to it will not be removed and free up disk space when one 
of them is deleted. The second link must also be deleted to relinquish the space. This is 
sometimes useful as a way to avoid important files getting deleted accidentally. In UNIX, 
you can only make hard links to files that live on the same file system as the link itself. 
You cannot make hard links to directories. Symbolic links can cross between file-system 
boundaries without any problem and can reference a directory. 

 The Windows desktop also supports shortcuts that are managed differently than any 
symbolic links you create in Cygwin. 

 The Mac OS X Finder recognizes symbolic links and displays them as aliases, but it 
does not distinguish between two hard links pointing at the same file.  



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

165

      Mac OS Resource Forks   
 Classic Mac OS operating systems used to manage files quite differently than any other 
operating system. They had the normal file container that you could operate on as a data 
file to read and write the content. In addition, each file also had a separate container that 
was organized as an object-oriented database. This was where a structured collection of 
resources such as icons and localized texts would be stored. These two parts of the file 
were called the data fork and the resource fork. 

 Even before Mac OS X arrived, these two forks created some difficulties on non-Apple 
file systems. These were often hosted on Windows file servers. Usually, the Apple 
files were split into two separate normal files. For the Mac OS user the driver software 
reconstructed them as a single entity, but users of other platforms saw files with strange 
names often only copying one half for their own use or deleting what they thought was a 
spurious file, leading to corruption. 

 Later, these files were reconceived on Mac OS X as file bundles, which are simply 
nested folders that the Finder hides when you browse the contents of your disk. Thus, 
an application or a Keynote presentation is really a folder and not a single entity. Finder 
recognizes the  .app  or  .key  file extensions and does the right thing.     

 This is important for ARTIK developers because you might casually drag and drop a 
resource file from a Macintosh desktop and place it on your ARTIK. Because the ARTIK 
does not understand Mac OS naming conventions, it simply presents this as a folder 
containing various assets instead of as a single file. In the early Alpha builds of the ARTIK 
OS, some open-source material was distributed like this. Having removed the visible files, 
there were some hidden ones left behind because their file names had a dot prefix.  

     New-Line Characters 
 There are three kinds of new-line markers. Naturally, they are different for the three main 
operating system types. Although UNIX has been around longer than the other two, these 
differences came about for historical and proprietary reasons just like the different file-
system separator characters. 

 If you use the wrong type of new-line markers, the UNIX command line in your 
ARTIK will not be able to distinguish one line of script from another. Table  11-2  
summarizes the three different new-line character variations.  



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

166

 Text editors such as TextWrangler and BBEdit on the Macintosh provide a mode 
switch at the bottom of every window to choose which of these alternatives to use. That 
gives you handy way to convert a file. Just open it in the editor, change the new-line mode, 
and save it again. Other editors on Windows and Linux probably have the same feature.     

 Drag and drop text-cleaning tools are available for use from your desktop. Install 
text-processing utilities in your development environment to clean blocks of text on the 
fly. Writing a text-cleaning function and using that as part of a file reader is also a neat 
work-around, although nothing is fixed permanently unless you rewrite the original 
source-file contents.  

      Typographers Quotes   
 Make sure you remove any curly quotes from your source files and replace them with 
straight ASCII quotes. Use either the single straight quote characters ( ' ) or double straight 
quote characters ( " ). Remove any of these curly quotes ( ‘ ’ “ ” ) from the source code. 
This applies to both single and double quotes. Your compiler will complain if you leave 
the curly quotes in your source code, but at least it will tell you what lines they are on.  

     Being in Two Places at Once 
 When you develop code for an embedded OS on an ARTIK module, sometimes you will 
be working on your hosting system and sending things to the ARTIK. At other times, 
you will be logged in directly to the ARTIK module, working natively in a command-line 
environment there. Because the ARTIK uses UNIX, it helps to keep your head straight if 
you also work in a UNIX-like environment on your hosting workstation. 

 It is also a good idea to configure the working setup to clearly style the window 
appearances differently or you will inevitably type a command intended for one 
environment into the other. Any visual cues you can give yourself will help you avoid silly 
mistakes. 

   Table 11-2.     New-Line Characters     

 New Line Terminator  Description 

 Single line-feed character ( LF )  Used on UNIX systems by default. Set your editor 
preferences to this mode. This is the best kind of 
new-line marker to use for files inside the ARTIK. 

 Single carriage return ( CR )  Used on classic Macintosh systems. Old legacy files 
from your archives may use this marker. UNIX will 
not see the line breaks and will get confused because 
everything will appear to be on one line. 

 Carriage return followed by line 
feed ( CRLF ) 

 Windows systems mark their line breaks by using 
both characters. Your UNIX command line will likely 
work OK but you may see listings with extra blank 
lines in some views. 



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

167

 Try color-coding your terminal windows. Then when you open a command-line 
interface on your workstation, it will look different than when you are logged on to your 
ARTIK. On Windows, use PuTTY for talking to your ARTIK and Cygwin for command-line 
work on your PC. Those applications already have different appearances. On Mac OS X, 
use iTerm for ARTIK work and the default Terminal application for command-line work 
on the Macintosh. 

 Another possibility would be to edit the  .profile  login configuration on the 
ARTIK and on your hosting workstation to set the command-line prompt. The login 
configuration file is named differently depending on the command-line shell you are 
using. Table  11-3  lists the initialization files that configure the shell command-line 
environment when you log in. The tilde character ( ~ ) denotes the home folder/directory 
path for your account:  

   Table 11-3.     Command-Line Shells     

 Path  Shell  Description 

  /etc/profile    sh, bash, csh, 
ksh  

 Used by the standard Bourne shell or the 
improved  bash  (Bourne Again) shell to 
configure all user login sessions. Affects both 
kinds of shell environments. 

  /etc/bashrc    bash   Used by the Bourne Again ( bash ) shell to 
configure all user login sessions. Only used by 
 bash  shells. Not seen by  sh  shells. 

  ~/.bash_profile    bash   Your own private settings for  bash  sessions. 
Used when you spawn sub-shells as well. 

  ~/.bash_login    bash   Your own private settings used only when you 
login 

  ~/.bashrc    bash   Your own private settings to initialize a  bash  
shell or sub-shell 

  ~/.profile    bash, csh, ksh   Use this generically for setting up your session, 
but beware that if you put  bash -specific syntax 
in it, other shells may misunderstand the 
syntax. 

  ~/.cshrc    csh   Your own private initialization settings for a C 
shell session. 

  ~/.kshrc    ksh   Your own private initialization settings for a 
Korn shell session. 

  ~/.bash_logout    bash   Shell commands to execute when you log 
out of a  bash  session. What you do here 
could indicate the difference between an 
orderly logout and a system crash that shuts 
everything down without warning. 



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

168

 Choose the  scope   (global or private) and then open the appropriate initialization file 
in your editor. Add this line to create an environment variable assignment that defines 
what your command-line prompt is going to be: 

   export PS1=" "  

    Start with an empty text string and construct a new prompt piece by piece. Aside from 
any arbitrary string of literal characters, add the following meta-characters to define your 
own custom command-line prompt. Type your custom string between the quotation marks 
that define the PS1 value. Be careful not to construct a new prompt that is too long or you 
will be coping with lines wrapping when you type long command-line strings. Use the 
meta-characters listed in Table  11-4  to construct a custom prompt according to your needs.  

 Newer versions of Mac OS X allow the use of an Emoji character since the terminal 
application is fully Unicode compliant. Make space for the Emoji in your PS1 string and 
drag the Emoji symbol from the special characters browser to the Terminal window and 
drop it there. 

 Add color instructions to your prompt text by incorporating their escape sequences. 
This is a good idea in order to distinguish between a root account and normal, 
unprivileged one. This example defines the prompt as a green dollar sign. Make sure that 
you reset the color to black at the end of the prompt or everything else you type will be 
green as well: 

   export PS1="\[\e[1;32m\]\$ \[\e[0m\]"  

    This part is the green color-control escape sequence: 

   \[\e[1;32m\]  

    This part is the escape sequence to set the color back to black for the rest of the 
command line. Without this all the text you type will be green too: 

   \[\e[0m\]  

   Table 11-4.     Shell Command Prompt-Formatting Meta-characters     

 Meta-character  Meaning 

  \d   Current date 

  \t   Current time 

  \h   Host name 

  \#   Command number 

  \u   User name 

  \W   Current working directory 

  \w   Current working directory with full path 



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

169

    Remember to reset things when you change them or the color change will persist. 
Messing with the color settings is fun but generally not necessary. The more complex you 
make the prompt string, the harder it will be to capture a command-line history to a log 
file and convert it to a script. You will have to edit out all the color escape sequences first. 
Here are some helpful guides to defining prompt strings: 

      http://osxdaily.com/2006/12/11/how-to-customize-your-terminal-prompt/         
     http://osxdaily.com/2013/04/08/add-emoji-command-line-bash-prompt/         
     http://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html         
     https://beginlinux.wordpress.com/2008/09/12/modify-your-command-prompt/         
     https://wiki.archlinux.org/index.php/Color_Bash_Prompt         

         Developing Your  Code   
 You need an  integrated development environment (IDE)   to develop code in. This 
manages the complexity of building applications for multiple target platforms and 
switching debugging support in and out. 

 One of the biggest advantages of using an IDE to develop your applications is the way 
it brings together a collection of tools that were previously hard to integrate manually. 
This makes tasks such as refactoring (reorganizing the code in your project) much easier. 
Suppose you had a hundred source files and wanted to change the name of a variable 
throughout. If the variable is only used in ten of those files, finding it without an IDE takes 
a while because you would have to open all one hundred files and then search each of 
them one at a time and only edit one when you find a match. Your chances of missing 
one are very high, and you waste a lot of time checking files that you do not need to open. 
A global (project-wide) search/replace within an IDE solves this sort of problem in an 
elegant and efficient way. 

 The Eclipse IDE is available across all platforms and is easier to set up than 
modifying proprietary, platform-specific development environments such as Xcode. 
You could use the Arduino IDE with suitable plugin SDK libraries to support the ARTIK. 
Another interesting possibility is the cloud-based Temboo software development tool.     

 Make your own value judgment and choose the best solution for your development 
needs. More tools can be introduced later if your needs change.  

     What Is  Cross-Compiling  ? 
 When you develop software with an IDE running on your development workstation, 
the code it produces needs to run on your ARTIK module. This is not the same kind of 
hardware as your development workstation. An IDE, by default, will build applications 
for the computer it is running on. Building applications for a different kind of computer 
is called cross-compiling. That computer is referred to as the target system and your 
development system is described as the host. 

 Your target platform in this case is one of the ARTIK 1, 5, or 10 modules. Your 
target module needs to be reachable by a network connection from your development 
workstation in order for the IDE to automatically deliver new applications as they are 
built. In that scenario, the development workstation is called the hosting computer. 

http://osxdaily.com/2006/12/11/how-to-customize-your-terminal-prompt/
http://osxdaily.com/2013/04/08/add-emoji-command-line-bash-prompt/
http://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html
https://beginlinux.wordpress.com/2008/09/12/modify-your-command-prompt/
https://wiki.archlinux.org/index.php/Color_Bash_Prompt


CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

170

 Write code using an editor that is running inside the target platform and compile the 
code to build an application there. That is called  native compiling  because the work takes 
place on the same hardware system that the code will execute on.     

 The terms  target  and  client  are often used to describe the same thing, but there are 
subtle differences. A client would connect to a hosting system and treat it as a server 
and then request things from it. A target is where a process running on a hosting system 
will put things or send messages. The subtle difference is which device initiated the 
communication. 

     Building Code for the Correct Target  CPU   
 Make sure you build executable applications that are compatible with the correct CPU in 
your ARTIK. ARM processors come in a variety of configurations, and each has a different 
instruction set. If you build for the wrong CPU, your executable most likely has some 
invalid instructions in it. The CPU will crash your application when it encounters an 
unknown instruction. This may be very hard to diagnose because it fails at the assembly-
code level and you will not see anything wrong with your source code. Run your 
application in a debugger to examine the internal memory and variable usage. Table  11-5  
summarizes the CPU types for which to compile your application.    

      Debug vs. Release      
 Debugging software can be made easier by running the code inside an emulator on the 
development workstation to see if it works properly. An emulator is similar to the way that 
a computer system can be virtualized to create multiple virtual hosts or run Windows and 
Linux within an application such as VMWare or Parallels on a Macintosh. The emulator 
provides connections for a debugger to monitor the ARM application as it runs. This will 
not reveal every possible bug, and eventually the code will need to be tested on the target 
ARTIK module. This does give a lot of assurances that the application is fundamentally 
working properly though. 

 The next step is to debug natively within the target ARTIK with the application 
controlled remotely from the IDE. First, compile a debug version of the application with 
additional code embedded to support the debugger. When the application is running 
properly, build it again with the debugging support turned off and only ship production 
builds that are tagged with the Release status. Never ship a Debug version of an 
application, as this provides opportunities for intrusion and cyber attacks.  

   Table 11-5.     ARTIK Module CPU Architectures     

 Module  CPU Architecture 

 ARTIK 1  Dual MIPS®S32 processors 

 ARTIK 5  Dual ARM A7 processors 

 ARTIK 10  Quad ARM A7 + Quad ARM A15 processors 



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

171

     Managing Your Code 
 Manage the gradual evolution of your code so you can revert back to earlier versions and 
rework things. This ability to undo and start over goes way beyond what the  undo  function 
provides in your code editor. At best, you can only go back to the beginning of the editing 
session. Closing the file results in the loss of all of the  undo  history. Manually cloning 
working backups each time you start working is a simplistic solution. That approach 
wastes disk space, because lots of unchanged static items are cloned too. 

 We get around this by using a source code –  management  /control tool. Currently, the 
most favored tool is Git, which was developed by Linus Torvalds and his colleagues in 2005. 
Linus was the original developer of Linux. 

 Code management is well suited to collaboration on shared projects, but it is also 
useful if you are working on your own. It is good for managing website code and even book 
manuscripts. Any kind of text-based digital media can be version controlled with Git. 

 Git and other code-management repositories store the changes between the version 
you check in and the previous one. Git also has powerful branch-management tools. 
It helps you go off and fix a bug based on an earlier release without altering your main 
development source code. Fold that change back into your development work later when 
it is convenient. Git also manages conflicts where two opposing changes affect the same 
source file.     

 Before Git, the  Apache Subversion (SVN)   tools were popular. If you use a code-
management application (such as Tower for the Macintosh), managing your code with 
Git is very easy. Tower for Mac OS X is an example of a very well-designed application that 
supports Git on your local machine and SVN on the remote repository. There are other 
tools available, and your choice of code repository is not constrained. Windows and Linux 
workstations are well supported with other GUI-based Git client apps. Find out more 
about code management here: 

      https://en.wikipedia.org/wiki/Git_(software)         
     https://en.wikipedia.org/wiki/Apache_Subversion         

    I recommend that you install a copy of Git on your workstation and then install a 
client tool to help you manage it more easily. That is, unless you want to do it all from 
the command line. Modern IDE tools have support for Git and SVN built in, or they can 
be extended to support code management. As you add features, commit the changes to 
the master repository with details of what you did. Try and stick to a discipline of only 
checking in a complete and working build. People who check in busted source code are 
not hugely popular with their peers because it breaks everyone else’s workflow. 

 Later on, revert your changes if you installed a bug fix that turned out not to be right 
after all. Keeping things managed feature by feature also makes it easier to repurpose the 
new code into other projects, because the changes needed to add just that feature can be 
isolated by inspecting the code differences (we call them  deltas ).  

https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Apache_Subversion


CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

172

     Why Do You Need Java? 
 If you plan to use the Eclipse or  Arduino IDE tools   to develop your ARTIK software, or 
if you want to write Java code yourself, you will first need a working Java installation on 
your development workstation. Only install the software you require to get the job done. 
Installing too much software is inefficient, because unnecessary software processes may 
be started automatically. They will waste your available CPU and memory capacity. 

 Current practice in the industry is to not install a Java runtime environment ( JRE        ) by 
default. You should be aware of the security implications and risk factors of installing Java 
and make sure you keep the installation up to date. You should upgrade to at least Java 
version 8 and consider all older versions to be deprecated. 

 It is a good idea to install the developer tools for Java. These are delivered as the 
standard edition  Java development kit (JDK)     . This installs a JRE for you. However, be 
careful not to include the developer tools in your shipping production version, because 
this increases the risk of intrusion. 

     Checking the Java Version  on Windows   
 Windows usually has a JRE installed. To find out if you have Java installed already on 
Windows and to see what version it is, follow these steps:

    1.    Launch the Windows Start menu.  

    2.    Click on the Programs item.  

    3.    Find the Java program listing.  

    4.    Click on the About Java item to see the Java version.      

     Checking the Java Version  on Mac OS X   
 Mac OS does not have Java installed by default. To check whether you have installed Java 
as a byproduct of using other tools, open a Terminal window and type these commands 
to see what version of Java is used for browser plugins: 

   cd /Library/Internet\ Plug-Ins/JavaAppletPlugin. plugin  
  . /Contents/Home/bin/java -version  

    This will echo the following information about the JRE if it is installed: 

   java version "1. 8. 0_60"  
  Java(TM) SE Runtime Environment (build 1. 8. 0_60-b27)  
  Java HotSpot(TM) 64-Bit Server VM (build 25. 60-b23, mixed mode)  

    Type the following command to check on the default version of the  Java development 
kit (JDK)  , if you have one installed. This is also good for Linux operating systems: 

   java -version  

    The output is similar, but it may not be the same version as the browser plugin.  



CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

173

     Checking the Java Version  on Linux   
 Type the following command to check the default version of the JDK installed on your 
workstation: 

   java -version  

    This command should also work inside your ARTIK, because there are scenarios 
where having Java installed in an ARTIK are also helpful.  

     Installing Java 
 Java was originally  developed   by Sun Microsystems but is now owned and maintained 
by Oracle (that’s the big database company). They provide  installation guidelines   for all 
the supported platforms. The goal of Java is to create a common platform for software to 
run on, regardless of the underlying operating system. The code you write is converted 
into tokens (bytecode) and interpreted by a virtual machine (the JVM) when you run the 
application. Find all the download links and installation instructions for Windows, Mac 
OS, and Linux versions of Java here: 

      http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_
overview.html         

    Go to the following link on the Java website for additional details about installing and 
upgrading Java. Choose an operating system with the drop-down menu: 

      https://www.java.com/en/download/help/index_installing.xml         

    A JDK is recommended when you plan to develop software with Eclipse IDE. A 
JRE takes up much less space but lacks some of the tools you need when you are using 
Eclipse. JDK downloads are available from this page: 

      http://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html         

    Check that you install the correct 32- or 64-bit version of Java that matches the 
version of Eclipse you plan to use. Both Java and Eclipse must be either 32- or 64-bit 
versions. A 64-bit Eclipse cannot run on top of a 32-bit Java virtual machine (JVM). Mac 
OS X is now always 64-bits. 

 You may see more than one version of the JDK available for installation. Usually, the 
later one is a better choice. Read through the release notes to understand any limitations 
or special considerations for your operating system. Keep a copy of the release notes in 
case you hit any snags later. A work-around for your problem is often described in the 
notes if it is well known.  

http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html
https://www.java.com/en/download/help/index_installing.xml
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html


CHAPTER 11 ■ PROGRAMMING YOUR ARTIK

174

     Do You Need Java on Your  ARTIK  ? 
 You only need the run-time environment ( JRE  ) to run Java applications, and you certainly 
should not ship a production version of your project with a JDK installed. With the memory 
footprint limitations inside the ARTIK, it is probably a good idea to compile outside of the 
module and load the binary in from your development workstation. 

 Log in to your ARTIK and type the following command to see which version of Java is 
installed: 

   java -version  

    You should see a message like this echoed back: 

   java version "1. 8. 0_33"  
  Java(TM) SE Runtime Environment (build 1. 8. 0_33-b05)  
  Java HotSpot(TM) Client VM (build 25. 33-b05, mixed mode)     

    Check that this is the version you need and run an update if necessary. You should 
prioritize updates of the JRE on your ARTIK to keep it secure. Any unfixed intrusion 
vectors will compromise the security of your product. Robust security protection comes 
from good design and efficient support in the field. Consider designing a reliable support 
mechanism for deploying updates once people have purchased your product. Designing 
security into your product from the start is vital, or you could be faced with much pain 
and grief later, not to mention expense.   

     Summary 
 Getting the right combination of tools installed on your development workstation and the 
necessary client-side support for running your applications on the ARTIK might take you 
some time. Instead of installing everything, consider all of the alternatives and install just 
the software development tools you need on an as-needed basis. 

 Java is slightly different in that it is an enabling technology. Because it makes all 
platforms look very similar (the original goal was to make them all look the same), some 
software tool builders choose to write the software tool applications in Java. This allows 
them to maintain just a single version with some confidence that it will work on all the 
available operating systems. 

 It is worth investing some effort to use Java as a supporting tool for your development 
workstation. This depends on Java being available at the same version on all platforms. 
A consistent release strategy for all supported devices and platforms is well managed by 
Oracle these days. 

 Installing a Java development kit (JDK) in your ARTIK module is possible, but 
avoid running applications in a Java virtual machine (JVM) in your ARTIK unless it is 
mandated by your product design. Cross-compiled applications will yield a much better 
performance. They will be more efficient and use less memory.     



175© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_12

    CHAPTER 12   

 Using Eclipse IDE           

     Installing, Configuring, and Using Eclipse IDE 
 The Eclipse IDE tool is a versatile platform for developing applications for a variety of target 
platforms using different languages. Cross-compiling from C language to an executable that 
runs in the ARM processors in an ARTIK module is well supported. Cross-compiling from 
other languages is possible with some additional work setting your systems up. Anything that 
the GNU Compiler Collection (GCC) compiler can process is viable to start with. 

 The ARTIK 5 and 10 modules share a similar ARM CPU architecture for which there 
is already a plugin support kit that equips Eclipse with the tools for  cross-compiling   the 
applications. Use the Eclipse IDE on your development workstation to create applications 
for the ARTIK modules. Build the applications there and install the finished executable 
image across the network onto your target ARTIK module.  

     Before You  Install   Eclipse IDE 
 The Eclipse Integrated Development Environment (IDE) is built on a Java foundation 
platform. Therefore, Eclipse will work on any operating system that supports a viable Java 
virtual machine (JVM) and has a user interface. Install a JVM if it is not already present 
by installing a Java runtime environment (JRE). If you plan to develop software, a Java 
development kit (JDK) is better. 

 Use a JVM that is compatible with the version of Eclipse you plan to install. If you plan to 
install a 64-bit version of Eclipse, you should have a 64-bit version of the JVM to run it on. You 
may have multiple versions of the JVM installed on your workstation for different tasks. Knowing 
which one you are using is important. Keep notes and document everything you do, step by step.     

      Getting Help   
 The Eclipse IDE has been available for a long time. There are plenty of books available 
that will help you with every aspect of it. Start with these web pages if you want to read the 
online help provided by the Eclipse developers: 

      https://eclipse.org/users/        
     http://help.eclipse.org/mars/index.jsp       

https://eclipse.org/users/
http://help.eclipse.org/mars/index.jsp



CHAPTER 12 ■ USING ECLIPSE IDE

176

    If this does not solve your problem and you cannot find a book that covers it, use 
a search engine to find out what other Eclipse users have posted online. Often they will 
post exactly the question you want answered, and one of the more expert users will have 
explained how to solve the problem. Be sure to read all the comments and replies in 
case the best answer is at the end of the discussion. This is one of the better aspects of 
the Internet — the community helps one another. Be nice and ask your questions politely. 
If you find a better solution, give something back and help the rest of the community by 
posting it online for everyone else to enjoy.  

      Installing   Eclipse IDE 
 If you install a version of Eclipse that lacks any specific tools, they can be added later from 
within the IDE. If you installed a Java-only development-oriented version, add the C/C++ 
tools later on when you need them. Study the Eclipse installation guide for more detailed 
help with installing Eclipse IDE tools: 

      https://wiki.eclipse.org/Eclipse/Installation       

    The online Samsung developer documentation for supporting Eclipse on Windows 
is comprehensive. There are subtle differences when installing on Mac OS X that are 
covered here as a supplement to that help. 

 Linux users are well supported by the Eclipse organization. A development 
workstation running Linux is a great foundation for building an Eclipse-based toolkit, but 
it will work on Windows or Mac OS X too.     

     Eclipse  on Mac OS X   
 The Samsung developer web pages describe how to install Eclipse and build a toolchain on 
a Windows workstation. If you use a Macintosh workstation for development, there are some 
details of the installation and deployment of ARM cross-compiling tools that need special 
attention. The guidelines hosted by the Eclipse developers provide additional detailed help 
for installing Eclipse IDE on Mac OS X. A summary walkthrough for OS X is described here, 
but if you want to understand it more thoroughly, the Eclipse documentation will provide 
more insights. The installation steps are summarized as follows:

    1.    Decide whether to run 32-bit or 64-bit Eclipse IDE. The 
64-bit option is optimal, and on a Macintosh it is the 
preferred solution because Mac OS X is fundamentally 64-bit 
throughout.  

    2.    Install a compatible JDK with an embedded JVM.  

    3.    A Java Runtime Environment (JRE) is installed with your JDK.  

    4.    Check the versions to make sure everything was updated.  

https://wiki.eclipse.org/Eclipse/Installation


CHAPTER 12 ■ USING ECLIPSE IDE

177

    5.    Download the Eclipse IDE installer from the following URL. 
Choose Eclipse IDE for C/C++ Developers to start with: 

      http://www.eclipse.org/downloads/packages/eclipse-ide-
cc-developers/mars1       

        6.    The download is delivered in a compressed archive. Extract 
the files from the archive and install the package in the right 
place for your operating system.  

    7.    Configure your Eclipse IDE application to use the right JVM. 
Choose the correct one if you have several versions installed. 
Inspect the  Eclipse.ini  document description for guidance:    

      https://wiki.eclipse.org/Eclipse.ini       

        8.    Start up your Eclipse IDE application. You should see a 
window telling you what version it is. The appearance of this 
window will change with each release of Eclipse IDE:      

      9.    Eclipse will then ask you to choose a location for the 
workspace folder. This is where Eclipse maintains all your 
projects. If you are using source code – management software 
such as Git or SVN, you may already have a workspace set up.  

http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/mars1
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/mars1
https://wiki.eclipse.org/Eclipse.ini


CHAPTER 12 ■ USING ECLIPSE IDE

178

    10.    Eclipse then presents the Welcome screen:      

      11.    Read the “Getting Started” documentation here: 

      https://eclipse.org/users/           

             Workspace Preferences 
 The IDE can also be configured around your needs. This is all done via  Workspace 
Preferences  . When you install plugins or add tools for new languages, the preferences 
panel will inherit extra panes and tabs for you to configure options specific to those tools. 
Always take a look after adding new tools in order to tune the new behavior to your needs. 
There are some helpful guidelines in the GNU ARM for Eclipse IDE web pages: 

      http://gnuarmeclipse.github.io/eclipse/workspace/preferences/        

    Here are the configuration options for the base install:

•    Auto-saving control  

•   Text-file encoding format  

•   Text editor presentation  

https://eclipse.org/users/
http://gnuarmeclipse.github.io/eclipse/workspace/preferences/


CHAPTER 12 ■ USING ECLIPSE IDE

179

•   Line numbers  

•   Editor folding  

•   Code formatting  

•   Build configurations  

•   The build console appearance and behavior  

•   Documentation management with Doxygen  

•   Debugging  

•   Previous application persistence (auto open/debug)        

     Adding New  Tools   to Your Eclipse IDE 
 Follow these steps to add new tools to your Eclipse IDE:

    1.    Locate the Help menu and click on it.  

    2.    Choose the “Install New Software...” option.  

    3.    Choose one of the predefined sites or enter the details of one 
that is not listed by default.  

    4.    Set any options relating to the way that tools are listed to filter 
the sub-set you want to see.  

    5.    Eclipse now searches that repository for additional tools that 
are compatible with the version you have installed.  

    6.    Choose the tools you want to add.  

    7.    Click on the Next> button.  

    8.    Eclipse builds an installation plan and downloads the 
components it needs to install the selected tool or tools 
you chose.  

    9.    Click on the Next> button.  

    10.    Accept the terms of the software license for the chosen tools.  

    11.    Click on the Finish button to run the installation.  

    12.    You can elect to run the installation in the background if you 
wish to carry on working while the installation takes place.  

    13.    Eclipse presents a Restart dialog to complete the installation.  

    14.    Click on the Yes button.     

    15.    Eclipse then closes and restarts itself automatically to load the 
new tools so they are ready for you to access them.      



CHAPTER 12 ■ USING ECLIPSE IDE

180

     What Is a Toolchain? 
 The toolchain is a collection  of   small utilities and command-line tools that help your 
build process. They are invoked one by one as needed by the IDE when you run a 
project build. The IDE expects them to be there, but for ARM development some of the 
components are missing. A manual installation is necessary, because the ARM-specific 
tools are not installed on operating systems by default.  

     Installing Support for  ARTIK Development   
 The Eclipse IDE is not yet available in a pre-packaged format ready for ARM 
development. Solve that by installing the GNU ARM Eclipse plugin to cross-compile 
for the ARTIK CPU and add toolchain support to bind it to the Eclipse IDE application-
building support. 

 Work carefully through this process and take plenty of notes at each step. Some tools 
require the location of things you installed earlier, and taking careful notes on what you 
configured will pay dividends later. The main steps are:

•    Install the GNU plugins that support compiling for ARM-based 
computers. This tells the GCC compiler about the ARM chips. It 
can use the plugins to compile the source code appropriately.  

•   Install a toolchain that can be invoked to gather the component 
parts of your application together and create an executable.  

•   Install debugging support. Working through your application to 
isolate problems is much easier with a debugger.  

•   Configure your IDE to make remote connections to the target 
ARTIK module you are working on. This needs an ARTIK module 
that can be reached via your local area network (LAN).       

 Samsung provides detailed instructions for adding ARM cross-compiling tools to 
your Windows- or Linux-based Eclipse IDE. Configuring your Eclipse IDE for ARM cross 
development on a Mac OS platform is different than for Windows because some of the 
tools that the Windows-based approach uses are just not available on Mac OS. This 
developer guide web page has more details: 

      https://www.artik.io/developer/documentation/developer-guide/setting-up-
eclipse.html       

    Getting this to work on a Macintosh requires a few different steps, mainly because 
the Linaro toolchain is not available for Mac OS X. The installation process cannot be 
completed without installing an alternative to Linaro. In addition, the user interface is 
organized slightly differently. The guidance in the Samsung instructions for Windows is 
still helpful as an illustration of what you need to replace. 

 Follow the steps carefully if this is the first time you have done this sort of 
installation. If you change something and it is not done properly, you might run into 
trouble with subtle problems later on.  

https://www.artik.io/developer/documentation/developer-guide/setting-up-eclipse.html
https://www.artik.io/developer/documentation/developer-guide/setting-up-eclipse.html


CHAPTER 12 ■ USING ECLIPSE IDE

181

     Why Build Tools Are Needed 
 This information is specific to a Windows installation only. The  Windows build tools   are 
necessary because they are provided by default on a UNIX workstation such as Linux or 
Mac OS but not on Windows. The IDE needs to have the  make  tools available in order to 
build your app. The GNU ARM Eclipse Windows build tools are recommended because 
they integrate your cross-compiling tools better than the external  make.exe  utilities 
that might process file-name paths incorrectly. A helpful description and installation 
guidelines are available on the  GNU ARM   Eclipse IDE  support   pages here: 

      http://gnuarmeclipse.github.io/windows-build-tools/        
     http://gnuarmeclipse.github.io/windows-build-tools/install/        

    Ensure the corresponding build tools are available on a Macintosh by installing 
Xcode first. Xcode is offered free of charge from the Apple Macintosh App Store. We will 
not be using Xcode directly as an IDE, but it includes some very useful stand-alone tools 
for controlling project builds and comparing different versions of the source code.  

     Installing the GNU ARM Eclipse  Plugin      on 
Mac OS X 
 Although the installation steps are covered briefly here, there is a very useful reference 
page in the GNU ARM Eclipse support website. That page describes the inner workings of 
the cross-compiler and what to do if anything goes wrong: 

      http://gnuarmeclipse.github.io/plugins/install/        

    Use the Eclipse New Software Installer configuration tool in the IDE to configure 
a toolchain that creates an ARM executable for the correct architecture. The remote 
system connections and secure copy tools are fine though. Follow these steps to add the 
necessary plugins to your Eclipse IDE:

    1.    Start up your Eclipse IDE as normal.  

    2.    Locate the Help menu and click on it.  

    3.    Choose the “Install New Software...” option from the Help 
menu.  

    4.    Click on the Add button.  

    5.    Type this text into the Name textbox: 

 GNU ARM Eclipse Plug- ins    

http://gnuarmeclipse.github.io/windows-build-tools/
http://gnuarmeclipse.github.io/windows-build-tools/install/
http://gnuarmeclipse.github.io/plugins/install/


CHAPTER 12 ■ USING ECLIPSE IDE

182

        6.    Type this URL into the Location textbox: 

      http://gnuarmeclipse.sourceforge.net/updates       

        7.    Click on the OK button.     

    8.    Eclipse now searches that location for the plugin you 
described.  

    9.    Set any options relating to the way that tools are listed to filter 
the sub-set you want to see.  

    10.    Choose the GNU ARM Cross-Development tools.  

    11.    Click on the Next> button.  

    12.    Eclipse builds an installation plan and downloads the 
components it needs to install the selected tool or tools 
you chose.  

    13.    Click on the Next> button.  

    14.    Accept the terms of the software license for the chosen tools.  

    15.    Click on the Finish button to run the installation.  

    16.    On Mac OS X, you may get a warning about installing 
unsigned software. Click on the OK button if you trust the 
source that the code was downloaded from.  

    17.    Eclipse then presents a Restart dialog to complete the 
installation.  

    18.    Click on the Yes button.  

    19.    Eclipse then closes and restarts itself automatically to load the 
ARM cross-development tools so they are ready for you to use.            

     Installing an ARM  Toolchain   on Mac  OS   
 There are some generic UNIX build tools that you will need for your ARM toolchain. 
Installing Xcode adds some of these for you. The Xcode IDE cannot be used on its own 
for developing ARM applications that run in an ARTIK module. Installing an Eclipse 
toolchain in addition to Xcode is a good alternative. Adding the GNU ARM Toolchain to 
your Eclipse IDE is described on this web page: 

      http://gnuarmeclipse.github.io/toolchain/install/        

http://gnuarmeclipse.sourceforge.net/updates
http://gnuarmeclipse.github.io/toolchain/install/


CHAPTER 12 ■ USING ECLIPSE IDE

183

    Note carefully where you install this toolchain so as to be able to enter the details 
into projects that need to use it later. Read the Samsung developer documentation for 
instructions on installing toolchains on Windows or Linux to get some insights into what 
we are about to do. Follow these steps to install the toolchain on your Macintosh:

    1.    Download the toolchain installer from this URL: 

      https://launchpad.net/gcc-arm-embedded/+download       

        2.    The installer file name will look like this (although the version 
numbers may be different): 

   gcc-arm-none-eabi-4_9-2015q3-20150921-mac.tar.bz2  

        3.    Open a Terminal window on your Macintosh with the 
Terminal application in the utilities folder: 

   {your_boot_disk} ➤ Applications ➤ Utilities ➤ Terminal  app    

        4.    Locate the downloaded file.     

    5.    Change the working directory in your Terminal window to the 
same directory as the downloaded file. The location depends 
on where you normally put downloads.  

    6.    There is a trick for going to a shortcut. Type  cd  followed by a 
Space character, but do not press the [Return] key yet.  

    7.    Now look in the title bar of the window for the folder 
containing your download.  

    8.    Click and hold for a moment until the icon is highlighted. Then 
drag and drop it onto your Terminal window. Magically, the 
Finder and the Terminal application will collaborate to work 
out the fully qualified path to that folder. They automatically 
convert it to a directory reference and fill it in for you.  

    9.    Now press the [Return] key, and your terminal session will go 
to the correct working directory.  

    10.    Type the following command and press the [Return] key to 
check that the downloaded file is visible. Copy and paste the 
name into a temporary clippings text file to use later: 

   ls -la  

        11.    Type the following command to display the download 
location and copy it to your clippings file later: 

   pwd  

https://launchpad.net/gcc-arm-embedded/+download


CHAPTER 12 ■ USING ECLIPSE IDE

184

        12.    You should see a path displayed in a conventional UNIX 
fashion like this: 

   /Users/cliff/Downloads  

        13.    Check that the recommended location for installing these 
tools already exists. This command will create it if it does 
not exist:    

   sudo mkdir -p /usr/local  

        14.    You will be prompted for your administrator account 
password at this point unless you are already logged on as 
a super user. The password privilege will persist for a short 
while. You may not be asked a second time if you use the  sudo  
command again right away, as there is a timeout built into the 
authentication support:     

    15.    Now go to the destination directory where you plan to install 
the toolchain: 

   cd /usr/local  

        16.    Unpack the previously downloaded archive file and place the 
contents into the destination directory. The command format 
is illustrated here, followed by an example: 

   sudo tar xjf {path_to_download_directory}/{name_of_
downloaded_file}  
  sudo tar xjf /MyDownloads/gcc-arm-none-eabi-4_9-2015q3-
20150921-mac.tar.bz2  

        17.    Check that the unpacking step worked with this command: 

   ls -la  

        18.    You should see a listing like this: 

   drwxr-xr-x   8 root  wheel  272 19 Nov 15:02 .  
  drwxr-xr-x@ 13 root  wheel  442 31 Jan  2013 ..  
  drwxr-xr-x   6 root  wheel  204 19 Nov 15:02 gcc-arm-
none-eabi-4_9-2015q3  

        19.    There may be other items listed if your  /usr/local  directory 
was already there.  



CHAPTER 12 ■ USING ECLIPSE IDE

185

    20.    Run a quick test to see that the compiler is functional with 
this command. Make sure that the path matches the name of 
the unpacked directory. As time goes on, version numbers 
will change. The name of this package will evolve as a 
consequence: 

   /usr/local/gcc-arm-none-eabi-4_9-2015q3/bin/arm-none-
eabi-gcc --version  

        21.    You should see a message from the compiler that looks like this:       

   arm-none-eabi-gcc (GNU Tools for ARM Embedded 
Processors) 4.9.3 20150529 (release)  
  [ARM/embedded-4_9-branch revision 227977]  
  Copyright (C) 2014 Free Software Foundation, Inc.  
  This is free software; see the source for copying 
conditions. There is NO  
  warranty; not even for MERCHANTABILITY or FITNESS FOR A 
PARTICULAR PURPOSE.  

        22.    If you look inside this package you will find a collection of 
Read-Me text files, license messages, and PDF documentation 
files. Explore this from the Finder or unpack a separate copy 
of the archive there. Inspect that copy or dismantle it without 
damaging anything in your installed toolkit. Keeping an extra 
copy of the PDF documentation nearby for quick reference is 
also a good idea. 

           23.    Your toolchain is now installed. You may want to install 
other toolchains for different building processes. Make sure 
you note the correct path to this one so you can call it up to 
configure a development project later.     

 Read about semi-hosting stubs later in this chapter to resolve warning messages that 
the linker throws when it discovers that low-level input/output functions are not present. 
Further coverage of debugging is covered in Chapter   20     where you can find out about 
the GNU Debugger (GDB) and the Quick Emulator (QEMU) for simulating the ARM 
environment for testing your applications.     

     Configuring Your IDE for Remote Exploring 
 Development will proceed more quickly if you can easily copy files from your 
development workstation to the ARTIK module and execute commands to run scripts 
and applications there. If you cross-compile applications on your development system, 
just copy them across. Or alternatively copy the source files to your ARTIK and compile 
them there. Tell Eclipse to set up a Remote System Explorer and configure the connection 
to your target ARTIK module. This will only work if you have a viable network connection 

http://dx.doi.org/10.1007/978-1-4842-1952-2_20


CHAPTER 12 ■ USING ECLIPSE IDE

186

that reaches your ARTIK. The  setup instructions   for Windows are covered in the Samsung 
Eclipse Setup Guide. Execute the following instructions to set this up on the Eclipse IDE 
running on your Macintosh:

    1.    In Eclipse, click on this menu item to open a list of perspective 
tools: 

    Window  ➤  Perspective  ➤  Open Perspective  ➤  Other   

        2.    Choose the Remote System Explorer item.      

      3.    Click on the OK button. Once you have already opened the 
Remote System Explorer, it will be listed above the Other item 
in the main menu bar. Choose it directly without needing to 
navigate these panels.  

    4.    Click on the New Connection icon to create a connection to 
your ARTIK.      



CHAPTER 12 ■ USING ECLIPSE IDE

187

      5.    Select SSH Only and enter the Host name or IP address for 
your ARTIK to create a new connection.     

    6.    Specify a name for this connection.  

    7.    Add descriptive text so you know what it is later.  

    8.    Verify the existence of the remote host.  

    9.    Click on the Finish button.  

    10.    The connection is added.      

      11.    Open the Sftp Files item to explore the remote file system.  

    12.    Open the Ssh Shells item to execute remote commands on 
the system.     



CHAPTER 12 ■ USING ECLIPSE IDE

188

 ■  Note This is only going to work reliably if your ARTIK has a statically defined IP address 
or if you have a local DNS that is smart enough to know what the IP address is for a 
DHCP-configured node on your network.  

      Setting Up   a Default  Toolchain   
 You should only do this if you plan to use your Eclipse IDE just for making ARM executable 
images to install on your ARTIK. If you need to build apps for different platforms, the 
default setup is different for every project, and you can skip this altogether. These values 
will be populated by default into new projects when you create them. Override these 
settings within the project. If you plan to work on lots of different architectures with 
your Eclipse IDE, this might not save you any time. It could even lead to subtle problems 
with building applications that will slow you down because you forgot that the default 
application build is for ARTIK ARM CPUs. Follow these steps to set up the defaults:

    1.    Go to the Eclipse Preferences panel.  

    2.    Unfold the C/C++ item.  

    3.    Unfold the Build item.  

    4.    Click on the Global Tools Paths item.  

    5.    On a Macintosh the Xcode command-line build tools are 
used. Set the Build Tools folder to be empty.  

    6.    Set the Toolchain folder to the top level  /bin  directory inside 
the Toolchain folder that was installed earlier.  

    7.    Close the Preferences panel.  

    8.    Now any new projects will inherit these settings by default. 
Existing projects will not be altered and will need to be edited 
to use these new settings.     

 ■   Note   There is a small caveat to using the Xcode command-line build tools. Apple is 
prone to completely revising the way that Xcode works and how its internals are organized. 
Be very careful to check all this after upgrading Xcode when a new version is released. You 
might inadvertently break your ARTIK toolchain and have to diagnose why it cannot find the 
tools it needs because the path has changed.   



CHAPTER 12 ■ USING ECLIPSE IDE

189

      Semi-hosting Stubs      
 When you build an embedded application with Eclipse IDE, the low-level handling of 
input and output has nowhere to go because the library omits the API endpoints. The 
runtime environment inside the ARTIK needs to provide them instead. You may need to 
write kernel level drivers or add new devices that map the standard input/output to the 
hardware you attach to the ARTIK. 

 Semi-hosting configurations attach external hardware or software to these points to 
exercise the application at runtime and capture any output it generates and feed input to it. 
Temporarily resolve broken links by installing debugging tools. Ultimately they should be 
resolved permanently with your own code that interacts with the hardware your ARTIK is 
embedded into. You should not put the debugging support into a shipped product design. 

 To get your application to compile, provide a set of stubs as part of your source code. 
The linker can use these to resolve any references to the missing functions. Append the 
code shown in Listing  12-1  to the end of your  main.c  and add the  _ansi.h  header as a 
 #include  at the top. Alternatively, create a new source file in your project and put these 
items there so you can resolve the broken linker references and enhance the code later. 

     Listing 12-1.    Semi-hosting Stub Placeholders   

  ... Your headers here ...  

    #include <_ansi.h>  

    ... Your code here ...  

    int _isatty(void) { return 1; }  
  int _fstat(void)  { return 1; }  
  int _read(void)   { return 1; }  
  int _lseek(void)  { return 1; }  
  int _close(void)  { return 1; }  
  int _write(void)  { return 1; }  
  int _sbrk(void)   { return 1; }  

    void _exit (int status) { while(1 == 1); }  

 ■      Note Replace these stubs with other functional code that interacts with the hardware 
your embedded application is running in. 

 Your hardware design dictates whether additional libraries of code need to be linked. 
The semi-hosting function calls can call debugging log functions when you test in the 
development workstation. When the application is moved to the ARTIK, your engineering 
team must write supporting code (possibly as kernel extensions) that resolves these 
endpoints. For example, standard output may be presented on an LCD display rather 
than on the serial console.    



CHAPTER 12 ■ USING ECLIPSE IDE

190

 Research the installation of these open-source libraries, which are all somewhat 
related to one another. Then you can make an informed choice about the best one to use 
for your project:

•      newlib     

•    newlib-nano   

•    gloss   

•    nosys     

 The  newlib  library is maintained by the RedHat organization. Download the source 
and build it first. The  newlib-nano  library is part of Eclipse by default and should be 
selectable with a checkbox in the linker properties. This version of  newlib  is designed 
to be very fast and efficient in an embedded scenario. The  gloss  and  nosys  libraries are 
related to  newlib  as sub-sets or super-sets of functionality. Experiment with them to find 
the optimum solution for your design, which may require custom code to interact with 
your own hardware.  

     Support for the  MIPS Architecture   
 The ARTIK 1 module has a MIPS®32 CPU, unlike the ARTIK 5 and 10, which use ARM 
processors. The Eclipse IDE will need additional toolchain support for the MIPS CPU 
compilations.  

     Support for  Eclipse Smart Home   
 The OpenHAB2 project is being built on top of the Eclipse Smart Home project. 
Therefore, you may want to investigate this in more detail and install additional tools to 
support your experiments. Go to the Git repositories for the OpenHAB project source 
code if you want to download and build your own installation: 

      https://github.com/openhab/openhab       
     https://github.com/openhab/openhab2       
     http://www.eclipse.org/smarthome/        

    Note that OpenHAB support is built into ARTIK 10 modules but not ARTIK 5 modules.  

     Making a  New ARM Project   
 Now you are ready to create a new project and build it. Windows and Linux users can 
follow the instructions in the Samsung guidelines. Here is the build process based on 
those guidelines, but modified for Macintosh-based development workstations:

    1.    In your Eclipse IDE, create a new C language project. You will 
get offered a choice of the available project types.      

https://github.com/openhab/openhab
https://github.com/openhab/openhab2

http://www.eclipse.org/smarthome/


CHAPTER 12 ■ USING ECLIPSE IDE

191

      2.    Enter the project name.  

    3.    Choose the Hello World ARM C Project type.  

    4.    Click on the Next> button.  

    5.    Put your name as the author.  

    6.    Add your copyright message.     

    7.    Modify the “Hello, world” greeting text if you want to.  

    8.    Change the “Linker semi-hosting option” textbox to the 
following string of options. Note especially the pairs of dash 
characters ( -- ) on the start and end options: 

   -Wl,--start-group -lgcc -lc -lc -lm -Wl,--end-group  



CHAPTER 12 ■ USING ECLIPSE IDE

192

        9.    Click on the Next> button.  

    10.    Choose whether to build a Debug, Release, or both types 
of executable result. Do not ship a debug version in your 
finished product.  

    11.    Optionally click on the Advanced Settings button to configure 
the project properties.  

    12.    Click on the Next> button.  

    13.    Choose the Custom (arm-none-eabi-gcc) toolchain name.  

    14.    Choose the toolchain path. Navigate via the project properties.  

    15.    Browse the projects collection and find the project you want 
to configure.     

    16.    Select the Hello World project (for example) in the project 
explorer panel.  

    17.    Open the project properties by pressing the [Command] + [I] 
key combination.  

    18.    Unfold the disclosure arrow beside the C/C++ Build item.  

    19.    Click on the Tools Paths item.      

      20.    Click on the Browse button for the Toolchain folder.  

    21.    Navigate to the  /usr/local  directory and select the top-level 
 /bin  directory within the toolchain that was installed earlier. 
This is why it is so helpful to keep plenty of notes about what 
you do.  

    22.    Now click on the Settings item to view the tool settings.  

    23.    Choose the target processor type with which to display the 
CPU architecture settings.  



CHAPTER 12 ■ USING ECLIPSE IDE

193

    24.    Set the ARM family value to one of the following depending on 
which ARTIK processor you are building your application for: 

    cortex-a7   
   cortex-   a15     

        25.    Set the Instruction Set value to  ARM (-marm) .  

    26.    Now choose the Toolchains tab in the same panel.  

    27.    Set the Name value to  Custom (arm-none-eabi-gcc) .  

    28.    Set the Architecture value to one of the following depending 
on whether you want a 32-bit or 64-bit compatible application 
to load into your ARTIK: 

    ARM (AArch32)   
   ARM (AArch64)   

        29.    Set the Prefix value to match the toolchain. This is used to 
construct paths to run toolchain items. Use the value 
 arm-none-eabi-  to define your prefix.  

    30.    Click on the Apply button.  

    31.    Click on the OK button to close the properties panel.  

    32.    The project is now configured and ready to build.  

    33.    Press the [Command] + [B] key combination to execute this 
menu item: 

    Project  ➤  Build all   

        34.    You should see some compiler output on the console panel 
that looks like this: 

    01:49:58 **** Incremental Build of configuration Debug for project 
Hello World ****  
  make all  
  Building file: ../src/main.c  
  Invoking: Cross ARM C Compiler  
  arm-none-eabi-gcc -mcpu=cortex-a15 -marm -O0 -fmessage-length=0 
-fsigned-char -ffunction-sections -fdata-sections -g3 -std=gnu11 
-MMD -MP -MF"src/main.d" -MT"src/main.o" -c -o "src/main.o" 
"../src/main.c"  
  Finished building: ../src/main.c  
         Building target: Hello World.elf  
  Invoking: Cross ARM C Linker  
  arm-none-eabi-gcc -mcpu=cortex-a15 -marm -O0 -fmessage-length=0 
-fsigned-char -ffunction-sections -fdata-sections -g3 -Xlinker 



CHAPTER 12 ■ USING ECLIPSE IDE

194

--gc-sections -Wl,-Map,"Hello World.map" -Wl,--start-group -lgcc 
-lc -lc -lm -Wl,--end-group -o "Hello World.elf" ./src/main.o  
  Finished building target: Hello World.elf  

    Invoking: Cross ARM GNU Create Flash Image  
  arm-none-eabi-objcopy -O ihex "Hello World.elf"  "Hello World.hex"  
  Finished building: Hello World.hex  

    Invoking: Cross ARM GNU Print Size  
  arm-none-eabi-size --format=berkeley "Hello World.elf"  
     text    data     bss     dec     hex filename  
     8344    2124      84   10552    2938 Hello World.elf  
  Finished building: Hello World.siz  

    01:49:59 Build Finished (took 172ms)  

              Deploy the Binary to Your ARTIK 
 Deploying your compiled application to your target ARTIK module is straightforward. 
Just open the remote shell and execute this command: 

   {project_location}/Debug/HelloWorld.elf  

         Summary 
 The Eclipse IDE can build applications for a variety of platforms. Today the ARTIK is the 
most important to you, but you can also build applications for other devices. Eclipse can 
use the network connectivity to deliver applications directly to the target ARTIK module. 
When the applications are installed, they can be run in debug mode and tethered to the 
GDB running on your development workstation inside Eclipse IDE. This should create a 
rapid cyclic development environment where you will Run ➤ Debug ➤ Fix ➤ Deploy very 
quickly. This will not make a fundamentally bad application design into a good one, but it 
will help you debug your intended behavior. Then you can turn off the debugging support 
and build a release version of your application for deployment to production. 

 The next chapter will examine an alternative to using Eclipse. The Arduino IDE is 
smaller and much less complex than the Eclipse IDE, but it is well suited for application 
designs that are architecturally similar to an Arduino project.            



195© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_13

    CHAPTER 13   

 Using Arduino IDE           

     Installing, Configuring, and Using Arduino IDE 
 If your development needs are less sophisticated and do not merit the power of the Eclipse 
IDE, the Arduino IDE might be sufficient. This would be appropriate if you want to use the 
ARTIK to emulate an Arduino with its simple initialization and loop application paradigm. 

 Use the same Arduino IDE on your development workstation to develop applications 
for both your Arduino boards and the ARTIK 5 and 10 modules. These ARTIK modules 
share a similar ARM CPU architecture. The libArduino plugin support kit equips the 
Arduino IDE with the tools needed to cross-compile applications for installation on your 
ARTIK. The ARTIK will then emulate an Arduino as it runs the sketches. 

 An Arduino sketch is not the same as a native compiled ARTIK/ARM application. 
The sketch is loaded into an Arduino emulator and run via an interpreter. The benefits 
are that there are already many example Arduino sketches for you to use as a starting 
point. The downside that that performance may not be quite as fast and extending the 
functionality is limited to what you could do with an Arduino. 

 Move the source code for the sketches to the ARTIK module and run them there in a 
native mode to avoid the need to cross-compile. 

 Although the screenshots in this chapter show the Arduino IDE running in the 
Macintosh user interface, the guidance is applicable to Arduino IDE running on other 
platforms because it works the same everywhere.  

     Before You Install Arduino IDE 
 Because the Arduino integrated development environment (IDE) is built on a Java 
foundation platform, Arduino IDE will work on any operating system that supports a 
viable Java virtual machine ( JVM  )    and a user interface. Add a JVM if it is not already 
present by installing a Java runtime environment ( JRE  ). If you intend to develop Java 
applications then install a Java development kit (JDK) instead.  

     How To 
 Because the ARTIK is now registered as a certified partner with the Arduino organization, 
the recommended source for IDE tools and advice is here: 

      http://www.arduino.cc/        

http://www.arduino.cc/


CHAPTER 13 ■ USING ARDUINO IDE

196

    Follow these steps to  install   the IDE and commence developing your Arduino code:

    1.    Go to the Arduino website and find the downloadable 
software page. Version 1.6.6 or later is recommended because 
that can be extended to cross-compile code for the ARTIK 5 
and 10 modules: 

      https://www.arduino.cc/en/Main/Software       

        2.    Choose the installer you need and download it. There are 
alternatives for Windows, Macintosh, and Linux. For your 
Linux workstation, choose a 32-bit or 64-bit version. On Mac 
OS X, the 64-bit version is preferred.  

    3.    Go to the “Getting Started” page for advice on how to install 
the Arduino IDE. There is a section for each of the operating 
systems: 

      https://www.arduino.cc/en/Guide/HomePage       

     a.    Follow these instructions to install your IDE on Windows. 
The Windows 7, Vista, and XP versions of Windows are 
covered. Windows 8 and 10 will be similar, but the names 
of some items in the user interface may be different: 

      https://www.arduino.cc/en/Guide/Windows       

       b.    Installing on a Macintosh is a little easier because there are 
default drivers already installed and the installation process 
is somewhat automated. The installation process is the 
same for all supported versions of Mac OS X. Nevertheless, 
you may have an unrecognized serial connector. Refer 
to chapter   6     for details on the serial interface setup 
that establishes a connection from your development 
workstation to the ARTIK developer reference board. 
The process is similar for connecting an Arduino: 

      https://www.arduino.cc/en/Guide/ MacOSX          

       c.    Installing on Linux is only a little bit more complicated 
because there are so many different Linux distributions. 
Choose the right one and follow the instructions appropriate 
to your variant of Linux. There is a catch-all manually 
configured set of instructions for any other versions of Linux 
that do not have a pre-baked installer guide: 

      http://playground.arduino.cc/Learning/Linux        
     http://playground.arduino.cc/Linux/All       

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/Windows
http://dx.doi.org/10.1007/978-1-4842-1952-2_6
https://www.arduino.cc/en/Guide/MacOSX
http://playground.arduino.cc/Learning/Linux
http://playground.arduino.cc/Linux/All


CHAPTER 13 ■ USING ARDUINO IDE

197

            4.    Now you are ready to build sketches to load into an Arduino 
that can be controlled from your ARTIK, or to load them 
directly into your ARTIK and run them there.     

 ■  Note There is a competing Arduino website at    http://www.arduino.org/     , which 
is run by another organization. This also has an Arduino IDE, but it is not compatible with 
the libArduino from Samsung. The    http://www.arduino.cc/      website is the official and 
authoritative source for certified Arduino resources.  

     Recommended Settings for Your Arduino IDE 
 It is worth spending a few moments adjusting the preferences in your Arduino IDE for 
optimum performance. Follow these steps to alter the  IDE preferences  :

    1.    Start up your Arduino IDE application.  

    2.    Open the Preferences panel.      

http://www.arduino.org/
http://www.arduino.cc/


CHAPTER 13 ■ USING ARDUINO IDE

198

      3.    Define a more appropriate location for your Arduino 
workspace if you prefer not to have it buried inside your 
Home folder.  

    4.    Turn on verbose messages when compiling. This is great help 
when debugging.  

    5.    Turn on verbose messages when uploading. You will 
immediately see whether there is a problem with installing 
your application if this is active. With this turned off, you may 
only see that an error happened but very little information 
about its context and detail.  

    6.    Set compiler warnings to  all . Aim to eliminate all errors and 
warnings to ensure a clean application build.  

    7.    Turn on line-number displays. Often you will get warnings 
with line numbers. This helps you find the bad line of code 
right away.  

    8.    Enable code folding. This helps to de-clutter your screen by 
hiding blocks of code that you are not currently looking at.  

    9.    Turn on the option to verify code after it has been uploaded. 
These tests come for free at the expense of a few moments 
while Arduino IDE checks things for you. It is another useful 
reassurance that everything is going well.  

    10.    “Check for updates on startup” tells you when your Arduino 
IDE application needs to be upgraded.     

    11.    Update sketch files to use the current file extension. They 
used to be  .pde  files and now they are  .ino  files. This is 
only of concern if you are loading old legacy sketches and 
updating them. Your new sketches should have the correct file 
extension by default.  

    12.    “Save when verifying or uploading” is a personal preference. 
It depends on how you work with your code. It is probably a 
good idea to turn this on. If you fix a bug and upload without 
saving, you might find that change makes your application work 
better. If you forget to save it, your deployed application is then 
one change newer than the source code, and the bug will regress 
(come back) next time you open the source file. The only time 
you will not want to save your edit is if the change makes the bug 
worse or if you are clumsy and delete a whole section of code.  

    13.    The “Additional boards manager URLs” textbox is for 
extending the IDE to cross-compile for other architectures.  



CHAPTER 13 ■ USING ARDUINO IDE

199

    14.    If you consider yourself a power user, the Preferences panel 
provides a link to where the preferences are stored so you can 
manually edit them. This is living dangerously if you do not 
make copies before you change things, and you should make 
sure that the Arduino IDE is not running when you edit the 
preferences.     

 ■   Note   Maintain your source files via a Git repository. Alternatively, make a cloned copy 
to work on each time you start. Reverting to a previous version to undo some work is much 
easier if you planned that from the outset. Manually undoing changes is very unreliable and 
impossible to do once an edited file has been closed.      

     Installing and  Configuring   libArduino 
 The ARTIK Beta program introduces an additional library you can install into your 
Arduino IDE to cross-compile applications so as to run them directly in your ARTIK. 
If you feel that the Eclipse IDE is more than you need, the Arduino IDE is a simpler 
development environment to use, although it is not as flexible and powerful as Eclipse is. 

 To install the  libArduino  library, you must be running version 1.6.6 of the Arduino 
IDE obtained from the    http://arduino.cc/      website. Do not download the IDE from the 
   http://arduino.org/      website because it is not compatible, and the ARTIK  libArduino  
library will not be available there. Here is the best download location: 

      https://www.arduino.cc/en/Main/Software       

    Follow these instructions to add the cross-compiler tools. This will install an ARTIK 
library into the Arduino IDE on our development workstation:

    1.    Start up your Arduino IDE.  

    2.    Open the Preferences panel.  

    3.    Edit the “Additional Board Manager URLs” textbox. If it is 
empty, just add the URL for the JSON manifest file. If there 
are other board managers there, click on the small icon to the 
right and add this one to the list: 

      http://downloads.arduino.cc/libArduino/package_arduino.
cc_linux_index.json       

        4.    Quit and restart your Arduino IDE to read the new manifests 
into the board manager.  

http://arduino.cc/
http://arduino.org/
https://www.arduino.cc/en/Main/Software
http://downloads.arduino.cc/libArduino/package_arduino.cc_linux_index.json
http://downloads.arduino.cc/libArduino/package_arduino.cc_linux_index.json


CHAPTER 13 ■ USING ARDUINO IDE

200

    5.    Open the board manager. It is located on a sub-menu in the 
tools menu: 

   Tools ➤ Board "{currently_chosen_Arduino}" ➤ Boards 
manager...  

        6.    Scroll down until you see the Samsung ARTIK modules listed.  

    7.    Choose the Contributed items filter to reduce the size of the list:         

      8.    Select the version of the library you want to install from the 
pop-up menu list. The latest version is always selected by 
default.  

    9.    Click on the Install button to download and install the 
selected version of the library.  

    10.    The appropriate platform library is downloaded and installed 
into the Arduino IDE on your development workstation.  

    11.    The board manager status is updated to reflect the version 
currently installed. If you want to change versions, a new pop-
up list is available. Alternatively, you can replace the currently 
installed version of  libArduino .  

    12.    The ARTIK 5 and 10 modules will be listed in the Tools/Boards 
menu. Choose the one you want, and then all subsequent 
sketches will be compiled for that kind of ARTIK module.     

 ■   Note   The Arduino IDE refers to these as ARTIK boards, but Samsung calls them 
ARTIK modules. It is a fine point but likely inherited because Arduino describes their 
products as boards.      



CHAPTER 13 ■ USING ARDUINO IDE

201

     Configuring Your ARTIK for Uploads (Board Setup) 
 The next step is to install software onto your ARTIK module for the Arduino IDE to 
communicate with. To do this “board setup” the  curl  command-line tool downloads an 
instruction script from    http://arduino.cc/      and passes it to the command-line shell 
in your ARTIK module for execution. That script will install the tools on your ARTIK 
automatically. Follow these steps to configure your ARTIK  module  :

    1.    Open a terminal window and connect to your ARTIK either 
via the serial interface or using the SSH telnet technique. 
Your ARTIK will need to be able to reach the Internet via your 
network.  

    2.    Log in as normal with the system administrator account.  

    3.    Type this command exactly as it appears here: 

   curl -s downloads.arduino.cc/libArduino/install_artik_
prereq.sh | sh  

        4.    A confirmation prompt will be presented.  

    5.    Press the [Y] key and then press the [Return] key to confirm 
that you want to continue.  

    6.    The script then starts to set up various services and auto-start 
configurations.  

    7.    The script will set up a port of the Android Debug Bridge 
Daemon (ADBD). The Arduino IDE in your development 
workstation understands how to communicate with this for 
uploading sketches.  

    8.    The script sets up the ARTIK module to run the  avahi-daemon  
process. This provides zero-configuration auto-discovery. 
Other nodes on your local area network can see the ARTIK 
module using the Apple Rendezvous/Bonjour protocols.     

    9.    If the script is able to establish a connection to the Internet, it 
will then download and install the Arduino build tools, a local 
copy of  libArduino , and platform configuration files.  

    10.    When this is all complete, your ARTIK should show up in 
the IDE Tools/Ports menu courtesy of the auto-discovery 
protocols.      

http://arduino.cc/


CHAPTER 13 ■ USING ARDUINO IDE

202

     Uploading a Sketch to Your ARTIK with Arduino IDE 
 Upload sketches to your ARTIK module with a network connection or via the serial 
connection. The Arduino IDE can use either. 

      Network Upload Method   
 Follow these steps to upload a sketch to your ARTIK module after you have configured it 
successfully for an ADBD connection:

    1.    Make sure that both the ARTIK module and your development 
workstation are on the same network.  

    2.    Open the sketch you want to upload in the Arduino IDE.  

    3.    Open the Tools/Ports menu to reveal the list of connectible ports.  

    4.    Choose your target ARTIK module.  

    5.    Click on the Upload button in the Arduino IDE user interface.  

    6.    Arduino IDE connects to the ARTIK.  

    7.    The ARTIK module then challenges the IDE for a password.  

    8.    Since it is logging in via the root account, the usual credentials 
will apply. Enter the normal password (root) and press the 
[Return] key.     

    9.    Arduino IDE will upload the sketch to the ARTIK module.  

    10.    The ARTIK module will then execute the sketch automatically.  

    11.    If the ARTIK module does not show up in the Tools/Ports 
menu, check to see if it is configured for the same network.  

    12.    Use the following command on both the development 
workstation and the ARTIK module and compare the results 
to see whether the network connectivity is consistent: 

   ifconfig -a  

        13.    The sub-net part of the address should be the same, but the 
last item in the IP address quad should be different. They 
should both have the same net mask, and the router/gateway 
should be the same on both.  

    14.    If the network configuration is OK, restart the  avahi  daemon: 

   avahi-daemon -r  



CHAPTER 13 ■ USING ARDUINO IDE

203

              Serial Upload Method   
 This is an experimental upload technique that is only available on Linux or Mac OS X 
(UNIX-based) development workstations. The necessary tools are installed via the board 
setup process you just executed on your ARTIK module. Follow these instructions to 
upload a sketch to your ARTIK:

    1.    Make sure your ARTIK module is connected to your 
development workstation with the mini USB cable. This is 
how you get a serial connection.  

    2.    Log in to your ARTIK module with the  root  account: 

   root  

        3.    Enter the normal password and press the [Return] key.  

    4.    Execute the following command on the ARTIK module. 
If it does not work, run the board setup again to ensure it is 
installed: 

   ./watcher  

        5.    Now open the Arduino IDE on your development workstation.  

    6.    Open the sketch you want to upload in the Arduino IDE.  

    7.    Open the Tools/Ports menu to reveal the list of connectible ports.  

    8.    If the watcher is running and your development workstation 
is connected via a serial interface through the USB cable, your 
Arduino IDE should list it in the Port/Serial Ports menu.  

    9.    Choose your target ARTIK module.  

    10.    Click on the Upload button in the Arduino IDE user interface.  

    11.    Arduino IDE will upload the sketch to the ARTIK module.     

    12.    The ARTIK module will then execute the sketch automatically.       

      Native Sketch Compilation      
 Although you can create C or C++ software and compile it natively on your ARTIK, you 
can also create Arduino sketches and compile those natively. The script that sets up the 
ADBD and  avahi-daemon  also installs an Arduino sketch compiler. Use this command to 
compile a sketch and run it: 

   /root/compile_sketch_native {your_sketch_name}.ino  

    Refer to the  libArduino  manual for more information about the availability of this 
support.  



CHAPTER 13 ■ USING ARDUINO IDE

204

     Recommended Update Cycle 
 The  libArduino  kit for  cross-compiling   to ARTIK 5 and 10 executable images is at a very 
early stage of development. The developers are working on all the underlying Arduino 
IDE, the library code, and the toolkit. You should regularly update your IDE using the 
hourly build version and then check the board manager to see if a newer version of the 
cross-compiler kit is available.  

     Developing with  libArduino SDK   
 This chapter is compatible with Beta versions of the ARTIK developer reference boards 
and version 3 of the  How To Guide  for  libArduino . If your developer reference board is a 
later revision your pinouts might be different, and if your  libArduino  documentation is a 
later version, the instructions in that manual may have different steps.  

     Arduino Pins: Type 1 Developer Reference Board 
 The  Type 1 developer reference board   is only used for developing code for an ARTIK 1 
module. This has fewer Arduino-compatible pins than the other ARTIK modules have. 
The Arduino-compatible pins for a Type 1 board are illustrated in Figure  13-1 .  

  Figure 13-1.    Type 1 Arduino pins       

 



CHAPTER 13 ■ USING ARDUINO IDE

205

   Table 13-1.    Arduino-Compatible Pins on a Type 1 Developer Reference Board   

 Pin Name  Description 

  0   Arduino serial Rx data input via the  Serial  object. This is the pin 
nearest the mounting hole in the corner of the board. 

  1   Arduino serial Tx data output via the  Serial  object 

  2   Arduino-compatible pin 2 

  3~   Use for PWM output with the  analogWrite()  function 

  4   Arduino-compatible pin 4 

  5~   Use for PWM output with the  analogWrite()  function 

  6~   Use for PWM output with the  analogWrite()  function 

  7   Arduino-compatible pin 7 

  8   Arduino-compatible pin 8 

  9~   Use for PWM output with the  analogWrite()  function. This is the pin 
nearest to the LCD connector.    

 Table  13-1  lists the available Arduino-compatible pin connections on a Type 1 
developer reference board.   



CHAPTER 13 ■ USING ARDUINO IDE

206

  Figure 13-2.    Type 5 and 10 Arduino pins       

     Arduino Pins: Type 5 and Type 10 Developer 
Reference Boards 
 The  Type 5 and Type 10 developer reference boards   are used for developing code for 
ARTIK 5 or ARTIK 10, respectively. They were introduced as part of the Beta release. 
Although the pins are arranged in the same physical layout, the pin addresses are 
mapped to different locations in the virtual file system. The application source will need 
to be modified slightly to cope with that. Figure  13-2  illustrates the pin layout for both 
boards based on Beta versions. The complete set of pinouts for the other peripheral 
connections are examined in much more detail in the companion Apress  ARTIK 
Reference Guide .  

 



CHAPTER 13 ■ USING ARDUINO IDE

207

 Table  13-2  lists the available Arduino pin connections on a Type 5 or 10 developer 
reference board.      

   Table 13-2.    Arduino-Compatible Pins on a Type 5 or Type 10 Developer Reference Board   

 Header  Pin Name  Description 

 J26-8   RX <- 0   Arduino serial Rx data input via the  Serial  object 

 J26-7   TX -> 1   Arduino serial Tx data output via the  Serial  object 

 J26-6   2   Arduino-compatible pin 2 

 J26-5   3~   Use for PWM output with the  analogWrite()  function 

 J26-4   4   Arduino-compatible pin 4 

 J26-3   5~   Use for PWM output with the  analogWrite()  function 

 J26-2   6~   Use for PWM output with the  analogWrite()  function 

 J26-1   7   Arduino-compatible pin 7 

 J27-10   8   Arduino-compatible pin 8 

 J27-9   9~   Use for PWM output with the  analogWrite()  function 

 J27-8   10~   Use for PWM output with the  analogWrite()  function 

 J27-7   11~   Use for PWM output with the  analogWrite()  function 

 J27-6   12   Arduino-compatible pin 12 

 J27-5   13   Arduino-compatible pin 13 

 J27-4   GND   Additional grounding pin 

 J27-3   AREF   Reference voltage for ADC converters 

 J24-1   A0   Analog input 0 

 J24-2   A1   Analog input 1 

 J24-3   A2   Analog input 2 

 J24-4   A3   Analog input 3 

 J24-5   A4   Analog input 4 

 J24-6   A5   Analog input  5   

 J25-8   Vin   Reference voltage for analog inputs 



CHAPTER 13 ■ USING ARDUINO IDE

208

     System Commands 
 Use the   systemCommand()  function   to execute a command-line script or run an 
application from within your ARTIK sketch. The function returns whatever the command 
outputs as a string. The syntax of the  systemCommand()  function is: 

   String myResult = systemCommand({command_line_instruction});  

         Detecting the  Board Version   
 Use the  systemCommand()  function to examine the  /proc  file system and find out things 
about the running process. Here is an example that checks for a particular CPU type: 

   String cpu_type = systemCommand("cat /proc/cpuinfo | grep -i EXYNOS5");  

    If the result is empty, then assume you have an ARTIK 5. If there is any text in the 
result, it is an ARTIK 10. The conditional block of code shown in Listing  13-1  will set your 
board-version variable accordingly. 

     Listing 13-1.    Setting a Board Version   

 if(cpu_type == "")  
  {  
     cpu_type = "Artik5";  
  }  
  else  
  {  
     cpu_type = "Artik10";     
  }  

    In the future, the ARTIK may be so successful in the marketplace that Samsung 
introduces more models. Then you will need to make this test more specific. The 
currently known hardware strings are summarized in Table  13-3 .   

   Table 13-3.     ARTIK Processor Hardware Identifiers     

 Hardware Name  ARTIK Module Type 

  Exynos3   ARTIK 5 

  Exynos5   ARTIK 10 



CHAPTER 13 ■ USING ARDUINO IDE

209

     The  Serial Object   
 The  Serial  object provides an API for the serial port exported on pins  0  and  1 . Arduino-
compatible systems conventionally label these pins as Rx and Tx. Every message printed 
using the Serial object will be redirected to those pins. Interact with the  Serial  object by 
using an FTDI 3.3V TTL adapter (or similar) in your hardware. 

 Connect the Rx on your ARTIK module to the Tx on the other device and vice versa 
for a return path. Refer to Figure  13-3  to see how this is connected. This establishes a 
bi-directional communication channel over two wires. A simple protocol exchanges data 
between the connected devices.  

ARTIK module Arduino
(or compatible device)

Rx pin

Tx pin

Rx pin

Tx pin

  Figure 13-3.    Cross-coupled Rx and Tx pins       

 Call this method first from your  setup()  function to initialize the  Serial  object with 
the right communications baud rate: 

   Serial.begin(9600);     

    Send a message via the Serial object line. The second example adds a new line 
automatically: 

   Serial.print("My text");  
  Serial.println("My text");  

    This is typically used to communicate between two Arduino boards, but it can talk 
to any compatible serial interface. This is a way to communicate with legacy broadcast 
equipment via an RS232 or RS485 interface. Old semi-redundant hardware can be given 
a new lease on life in a modern broadcast or recording studio if only your master control 
system can tell it what to do.  

     The  Serial1 Object   
 This is a useful debugging output if you logged in to the ARTIK command line via a network 
connection. The  Serial1  object manages the serial port where you usually perform a 
login. Using this serial port will wipe out the login shell. Make sure your command line 
is connected over a network connection via  ssh  before launching a sketch that uses the 
 Serial1  object. The  Serial1  object is mapped to different logical devices on the ARTIK 5 
and 10 modules. Table  13-4  summarizes the devices for each ARTIK module type.   

 



CHAPTER 13 ■ USING ARDUINO IDE

210

        The DebugSerial Object 
 Printing output to the  DebugSerial  object uses the  /dev/console  virtual device. Call this 
method first from your  setup()  function to initialize the  DebugSerial  object with the 
right communications baud rate: 

   DebugSerial.begin(115200);  

    Interact with the  DebugSerial  object to send a message with this method: 

   DebugSerial.println("My text message");  

          Pin Modes   
 There are two sets of pins in the Arduino design, and these are carried over to the ARTIK 
modules. The digital pins (labelled 0 to 13) can be set for input or output. Some of the 
pins can be driven with a  pulse-width modulated (PWM)   square wave to create a pseudo-
analog output. The analog pins (labelled A0 to A5) are always used for input, and the 
pin-mode setting is unnecessary. 

 When you write code for the ARTIK with the Arduino IDE, it follows the tradition 
of the Arduino when you interact with the digital input/output pins. Use the  pinMode()  
function to control whether the digital pins are connected to drivers (output) or sensors 
(input). The  pinMode()  function syntax is as follows: 

   pinMode({pin_number}, {pin_mode});  

    Where  {pin_number}  is in the range  0  to  13 and {pin_mode}  can be  INPUT  or  OUTPUT . 
 Both of these values are defined as manifest constants. The internal value these 

symbols represent is irrelevant provided you use the manifest constant names in your 
source code. The correct value will be inserted automatically when you compile your 
application. It is important that you use the manifest constants consistently everywhere. 
For example: 

   pinMode(13, OUTPUT);     

   Table 13-4.    Serial1 Object TTY  Addresses     

 Model  TTY Device 

 ARTIK 5   /dev/ttySAC2  

 ARTIK 10   /dev/ttySAC3  



CHAPTER 13 ■ USING ARDUINO IDE

211

 ■      Note   The pulse-width modulation (PWM)    should be described as pulse-width strobing 
when it is used to drive an LED to control the apparent brightness. The human eye has 
persistence of vision that this PWM approach exploits. If the retina worked instantly and 
humans had no persistence of vision, the individual flashes would be visible. Persistence of 
vision aggregates the LED illumination and averages it out over time so humans perceive an 
apparent dimming effect at lower duty cycles.   

     Reading Digital Input Pin Values 
 If a digital pin mode is set to  INPUT , read the incoming values that are controlled by a 
switch or sensor. Use the   digitalRead()  function   to acquire the value, like this: 

   myValue = digitalRead({pin_number});  

    Where  {pin_number}  is in the range  0  to  13 . For example: 

   buttonState = digitalRead(2);  

         Setting Digital Output Pin  Values   
 After you have set the pin mode to  OUTPUT , set the value of a digital pin to  HIGH  or  LOW . You 
do this with the  digitalWrite()  function. If you are driving a low-current circuit such as 
a single LED indicator, the ARTIK should be able to provide enough current to illuminate 
the LED provided you current-limit the circuit with an appropriate resistance. The correct 
resistance depends on the supply voltage and the LED being used. In the Samsung 
tutorial a 220Ω resistor is used, but LED indicators come in a variety of voltage and current 
configurations, and that resistor may not be correct for your device. Here is a useful 
calculator and another page with some theory for working out an appropriate value: 

      http://led.linear1.org/1led.wiz       
     http://electronics.stackexchange.com/questions/17179/        

    Drive a higher-current device by amplifying the switching value with a power 
transistor, or use it to operate a relay, solenoid, or thyristor. If you are trying to control 
mains-powered equipment then you should include an opto-isolator to keep you or your 
ARTIK from being fried. The  digitalWrite()  function syntax for this is:    

   digitalWrite({pin_number}, {pin_value});  

    Where  {pin_number}  is in the range  0  to  13  and  {pin_value}  can be  HIGH  or  LOW . 

http://led.linear1.org/1led.wiz
http://electronics.stackexchange.com/questions/17179/


CHAPTER 13 ■ USING ARDUINO IDE

212

 Both of these values are defined as manifest constants. The constants will substitute 
the correct values when you compile the application. For example: 

   digitalWrite(13, HIGH);  

 ■      Note   On the early Alpha release ARTIK developer reference boards, the voltage of the 
 HIGH  and  LOW  values are reversed when compared with the Beta boards, which set the 
levels correctly. Setting a digital pin to  HIGH  on an Alpha developer reference board is the 
equivalent of setting it to  LOW  on a Beta board and vice versa for setting it  LOW . If in doubt, 
check with a voltage meter.   

     Setting Analog Output Pin  Values   
 After you have set the digital pin mode to  OUTPUT , set the value of that pin to an analog 
value. Similar to an Arduino, the ARTIK is not actually setting a continuously variable 
analog value, but rather is defining the duty cycle of a pulse-width modulated square 
wave. This is still, strictly speaking, a digital output. 

 Set the pin value with the  analogWrite()  function. The pulse train runs at a constant 
rate, but the width of the pulses is adjusted to a value proportional to the input value. This 
pulse train operates at different frequencies according to the kind of device it runs on. 
The implementation of the ARTIK module hardware is different than that for the Arduino. 
Clocks and timers in an ARTIK module run at a different frequency, which you should 
check if it is important to your implementation. The same current-limiting concepts that 
would apply in the Arduino environment also apply here. The  analogWrite()  function 
syntax is: 

   analogWrite({pin_number}, {pin_value});     

    Where  {pin_number}  is in the range  0  to  13  and  {pin_value}  is between  0  (always 
off) and  255  (always on). For example: 

   analogWrite(13, HIGH);  

    The pulse width varies according to the value, as shown in Figure  13-4 , while the 
frequency remains constant.  



CHAPTER 13 ■ USING ARDUINO IDE

213

 Once you set the value, the pin will output a continuous stream of pulses whose 
width is proportional to the value. Subsequently calling  analogWrite() ,  digitalRead() , 
or  digitalWrite()  on that pin will halt the output of the PWM pulse train. 

 If you want a genuinely analog varying-voltage output, use the digital pins to control 
the inputs to a digital-to-analog converter (DAC). Adjust the DC voltage output precisely 
or generate other waveform shapes by converting a stream of digital sample values to 
voltages.  

     Reading the Analog Inputs 
 When you interact with sensors, everything comes down to measuring a value. Physical 
sensors are often based around changes in electrical resistance. The modern sensor 
components have a lot of input intelligence and present meaningful values mapped into 
a range the Arduino and ARTIK can understand. 

 Read the incoming values on the analog inputs, which can be controlled by a 
valuator or sensor. These inputs are completely separate from the digital pins. The input 
is connected to an analog-to-digital converter (ADC) that yields a numeric value between 
 0  and  1023 . Use the   analogRead()  function   to acquire the value, like this: 

   myValue = analogRead({pin_number});  

    Where  {pin_number}  is between  0  and  7 . For example: 

   sensorValue = analogRead(2);  

High PWM value

Low PWM value

  Figure 13-4.     Pulse-width modulation         

 



CHAPTER 13 ■ USING ARDUINO IDE

214

         Serial Peripheral Interface ( SPI        ) 
 The ARTIK emulates an SPI connection on pins  11 ,  12 , and  13 . The companion  ARTIK 
Reference Guide  goes into much more detail about these peripherals. Read the following 
Wikipedia article to find out more about SPI. This implementation emulates the Arduino 
UNO outputs. The Arduino UNO is popular and widely used with many example projects 
you can study and repurpose to work on the ARTIK: 

      https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus       

         Detecting  Interrupts   
 One way of triggering an action based on a button press is to register an interrupt handler. 
A suitable interrupt-handling function must be declared first. Use the following function 
to set one up: 

   attachInterrupt(13, interruptHandler, FALLING);  

    Now, when the value on digital input pin  13  goes from  HIGH  to  LOW , the 
 interruptHandler()  function will be called automatically.     

     Pausing for Breath 
 You may notice that your ARTIK module heats up when it is running. If the CPU is running 
at 100 percent utilization, you may be working it harder than is necessary. Keeping your 
ARTIK running continuously may not be needed, and it could just be “busy-waiting.” If 
you are driving indicators, strobe the LEDs to conserve power. This works because the 
human eye has persistence of vision and perceives the light as if it were on all the time. 
You should also think in eco-friendly terms when designing your code. Your ARTIK is 
likely to be running from a limited battery supply when it is in a mobile situation. Eke out 
that battery capacity by adding  delay()  functions after you do some useful work if it is not 
necessary to repeat the task again immediately. This is appropriate when you are checking 
for user input, but not in the middle of an audio-sampling loop. The syntax for the   delay()  
function   is as follows: 

   delay({millisecond_time_value});  

    For example: 

   delay(1000);  

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus


CHAPTER 13 ■ USING ARDUINO IDE

215

          Powersaving Mode   
 Control whether your CPU is running in powersave or performance mode with these two 
function calls: 

   goPowerSave();  
  goPerformance();  

    Track the powersaving state by storing a flag value inside the application. Switch 
states based on the flag value. Then manage the flag value by assigning a TRUE value to it 
according to the needs of your application. You should define the type of the  powersave  
variable to get an unambiguous Boolean test. See the example in Listing  13-2 : 

     Listing 13-2.    Powersave Example   

  // Test this variable later on in your application code with a conditional 
branch  
  // Define the type and set the default value to TRUE  
  // Change the value when your application needs to switch the powersave mode  

  Binary powersave = TRUE;  

    ... more code here ...  
  ... powersave value might be set or cleared when needed ...  

    if(powersave)  
  {  
     goPowerSave();  
  }  
  else  
  {  
     goPerformance();     
  }  

          Compiling and Running Sketches Natively 
 When you install the Arduino support into your ARTIK, you also make available the 
 Arduino sketch compiler  . Invoke that directly on a sketch inside your ARTIK and run it 
natively from the command line. Follow these steps to create and run a sketch directly in 
your ARTIK:

    1.    Log in to your ARTIK from a terminal app.  

    2.    Use the  cd  command to go to a safe working directory.  



CHAPTER 13 ■ USING ARDUINO IDE

216

    3.    Use the vi editor to create a sketch file with the code you 
want to run, or import one from your development system. 
The file will have an  .ino  file extension. The example calls it 
 my_sketch.ino  for now.  

    4.    Compile and run your sketch with this command: 

   /root/compile_sketch_native my_sketch.ino  

             Where to Find Out More 
 The Samsung ARTIK developer documentation has a few interesting tutorials that explain 
how to connect up  switches and LED indicators   and then interact with them from your 
code. The  libArduino  How-To Guide also has useful information about programming 
your ARTIK in a similar way to an Arduino. Check out the documentation pages here: 

      https://www.artik.io/developer/documentation/tutorials/        

    Elsewhere on the Internet there are many IoT resources coming online. The 
HacksterIO blog is also another useful resource. If you want to study Arduino projects 
and adapt them, the Adafruit tutorials are very helpful. There are good examples on the 
Instructables blog. The Temboo cloud-based development environment generates code 
that you can copy and paste into your own projects. See the following: 

      https://learn.adafruit.com/        
     https://www.hackster.io/        
     http://www.instructables.com/        
     http://www.temboo.com/       

    The Arduino reference library is a good source of knowledge about API calls. Since 
the ARTIK sets out to be Arduino compatible, the API should be the same, although there 
may be a few small differences. There are features that the ARTIK modules have that 
are not part of the standard Arduino design. The ARTIK module functionality should be 
considered a super-set of this Arduino reference. Consult the Arduino reference Home 
page here: 

      https://www.arduino.cc/en/Reference/HomePage       

https://www.artik.io/developer/documentation/tutorials/ 

https://learn.adafruit.com/
https://www.hackster.io/
http://www.instructables.com/
http://www.temboo.com/
http://www.nextgenscience.org/msps2-motion-stability-forces-interactions


CHAPTER 13 ■ USING ARDUINO IDE

217

         Troubleshooting 
 There are many ways that software can go wrong. Nobody can possibly predict every 
problem you will encounter, but here are a few that cropped up during the research for 
this book. 

     Managing the Type 5 vs. Type 10 Pin-Number Differences 
 The  pin numbering   on the developer reference boards is different for each board type. Be 
especially careful with the Type 5 and Type 10 boards released as Beta products, because 
although the pins are presented in a similar way, the mapping of the pin numbers is not 
identical. Code that works on an ARTIK 10 running in a Type 10 developer reference 
board will not work on an ARTIK 5 without recompiling. 

 You can detect the kind of ARTIK you are using from inside your application by 
inspecting the  /proc/cpuinfo  virtual file-system location and making the appropriate 
changes dynamically. 

 A static approach would create a manifest constant with a  #define  pre-processor 
directive and give it a symbolic name. Create an  include  file on your ARTIK 5 and your 
ARTIK 10 with the symbolic name mapped to the correct pin for each module type. This 
abstracts the problem out of your main source code. 

 Dynamic software detection of the type of ARTIK your code is running in is a better 
approach. Then you can create a single instance of the source code that will compile and 
run on different types of ARTIK modules.     

      CPU Utilization   at 100 Percent 
 If you notice that your ARTIK gets very hot and the CPU usage is always 100 percent, then 
your sketch is running with a very high priority to simulate real-time operations. Fix this 
by adding  delay()  function calls when your code needs to be inactive. Pay particular 
attention to this if you migrate code from projects on other platforms. 

 Another source of concern is processes that reach an end point and use a  while(1) 
{}  call to lock the process from continuing execution. In this case, use an  exit()  function 
instead. Your code will stop until it is called for again.  

     Digital Read Only Ever Reports a 1 Value 
 This function call should return a  1  or  0  depending on the state of what is connected 
to it. The pins are pulled up to a 3.3v level with a 10KΩ resistance. Your hardware 
needs to defeat this and ground the pin to ensure that it returns a zero value. Then the 
  digitalRead()  function   should return the correct result.  



CHAPTER 13 ■ USING ARDUINO IDE

218

     Porting Projects from Other  Architectures   
 Almost every example and library from the Arduino resources is usable, apart from 
anything that is tagged as architecture or as being Arduino-board specific. Modify anything 
that uses SPI/I2C/PWM interfaces to make the pin mapping and values you use in your 
repurposed code compatible with their virtual file system locations in your target ARTIK 
module.  

      Logic Levels   
 Earlier Alpha prototype developer reference boards had an active low output on their 
Arduino pins. Setting the pin value to  HIGH  forced the output voltage to zero instead, and 
setting it to  LOW  raised the pin voltage to 3.3v. 

 This is corrected on the Beta version of the ARTIK developer reference boards. If you 
plan to use the same code on both vintages of the reference board, your software needs to 
change the values you set on the pins depending on which kind of board it is running in. 
Measure the voltages with a multi-meter to check you are seeing the value you expect to 
see when you set a pin as  HIGH  or  LOW . 

 Work around the difference by defining this value as a manifest constant that 
maps the  HIGH  and  LOW  constants and then use different header files in each developer 
reference board. A more complex solution would be to detect whether you are running in 
an Alpha prototype or Beta prototype board. You may have to infer that by inspecting the 
ARTIK CPU and then manually modifying an  include  file.   

     Summary 
 Now you have a simple alternative to using Eclipse IDE. This Arduino development tool 
is great for creating Arduino sketches that run directly in your ARTIK. This is one of the 
benefits of Samsung being a fully qualified partner of the Arduino organization. Support 
for the ARTIK is likely to grow in sophistication as developers get to know the  libArduino 
library  capabilities and then start to enhance them. The Arduino is one of the great 
success stories in open software and open hardware. The ARTIK modules can enjoy all 
of the upsides of that community spirit while simultaneously creating their own ARTIK 
community alongside.             



219© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_14

    CHAPTER 14   

 Using the Command Line           

     Command-Line  ARM Toolchains      
 Sometimes a command line is sufficient, instead of using the Eclipse or Arduino IDE with 
their sophisticated project management tools. Construct your own application-building 
workflow in your development workstation and create custom build scripts to compile 
and link your applications in whatever way you need to. 

 Building a working toolchain from scratch is not a trivial job. This is not something 
you want to attempt unless you are comfortable with systems administration on a UNIX 
platform. This is complex enough to merit a complete book about it. 

 If you build the ARM toolchain carefully, item by item, from the raw source code, you 
stand a better chance of success than if you just randomly pick what looks like a viable 
binary image. Compiling and building the toolkit on your development workstation 
makes it immediately more compatible with your system. Work through the process step 
by step and check that everything is working properly as you go.  

      Ubuntu Linux      
 A compiler package that contains a set of useful related tools is available from this website: 

     http://packages.ubuntu.com/precise/devel/gcc-arm-linux-gnueabihf    

  Toolkits are available for AMD or Intel CPU architectures. Install the correct one 
for your development system hardware. Use these commands on your development 
machine to install the cross-compilers for C and C++: 

   get install gcc-arm-linux-gnueabihf  
  get install g++-arm-linux-gnueabihf  

    To test the installation, create a standard  hello_world.c  source file and compile 
using this command for the C code version: 

   arm-linux-gnueabihf-gcc -o hello hello_world.c  

http://packages.ubuntu.com/precise/devel/gcc-arm-linux-gnueabihf


CHAPTER 14 ■ USING THE COMMAND LINE

220

    Use this command for the C++ version, using an appropriate  hello_world.cpp  
source file: 

   arm-linux-gnueabihf-g++ -o hello_cpp hello_world.cpp  

          Debian Linux   
 If your development workstation is of the Debian variety, the following is a good starting 
point. Find out about ARM toolchain alternatives here: 

    https://wiki.debian.org/CrossToolchains 

            Mac OS X   
 Cross-compiling ARM applications on a Macintosh is possible, but the experience in the 
developer community is less well evolved than that for Linux or Windows. Some effort 
is needed to bring your development environment up to an equivalent capability. The 
GNU toolchain expects a particular version of some command-line tools that are already 
installed on the Mac OS command line. The  Mac OS X   tools are derived from a Berkeley 
Software Distribution (BSD) heritage that lacks some critical command-line options 
that GNU expects to be there (although it adds others as well). For this to work correctly, 
you must install additional command-line tools and ensure the GNU toolkit finds those 
before it finds the default BSD versions. This article is a good starting point and also leads 
to another that describes the necessary configuration steps: 

    http://hackaday.com/2012/12/07/building-an-arm-cross-compiler-on-osx/      
    http://www.benmont.com/tech/crosscompiler.html      

 You need to become familiar with the open-source installation tools MacPorts and 
Brew, because some packages are easiest to install with the pre-packaged kits that are 
used by these installers.       

 It is vital that you back up your development system before starting any of these 
installations. Make sure that you are building this on a genuinely disposable machine that you 
can afford to crash and burn and then flatten and reinstall everything on. This not the kind of 
thing to do on a machine you use to run your business or keep the family photo archive on, 
because there are opportunities to completely trash the file system if you are not very careful. 

 The term GNU is a play on words which describes a recursive acronym. GNU stands for 
GNU’s Not UNIX. The acronym contains the acronym itself which makes it recursive. This is 
somewhat of a tradition in the open source community. More details here: 

    http://www.gnu.org/fun/jokes/gnu-overflow.html      
    https://en.wikipedia.org/wiki/GNU       

https://wiki.debian.org/CrossToolchains
https://wiki.debian.org/CrossToolchains
http://hackaday.com/2012/12/07/building-an-arm-cross-compiler-on-osx/
http://www.benmont.com/tech/crosscompiler.html
http://www.gnu.org/fun/jokes/gnu-overflow.html
https://en.wikipedia.org/wiki/GNU


CHAPTER 14 ■ USING THE COMMAND LINE

221

     Adding a UNIX Command Line to Windows 
 The ARTIK modules all run a  UNIX   operating system internally. Developers who host 
their project tools on Windows will benefit from installing a UNIX command-line 
environment directly on their workstations. Try out some UNIX commands directly on 
your local desktop to familiarize yourself before using them on your ARTIK module. 
Download the Cygwin installation kit from the website here: 

      http://cygwin.com/install.html     

  Make sure you use the correct 32-bit or 64-bit executable depending on the version 
of Windows you are running. This will install the basic kit. Choose additional packages 
to install by selecting them when you run the setup application. Add more of the Cygwin 
modules later depending on what you are doing with it. Read the guidance notes on the 
installer page for more information. Check out the Cygwin documentation and FAQs here: 

    https://www.cygwin.com/     
   https://cygwin.com/cygwin-ug-net.html     
   https://www.cygwin.com/faq.html     
   https://en.wikipedia.org/wiki/Cygwin     

  If you are not already familiar with UNIX, check out these web articles for an 
introduction. Spend time learning more about it and practice with the tutorial exercises:    

   http://www.lemoda.net/windows/windows2unix/windows2unix.html     
   http://www.admin-magazine.com/Articles/Linux-Essentials-for-Windows-
Admins-Part-1     
   http://www.admin-magazine.com/Articles/Linux-Essentials-for-Windows-
Admins-Part-2     
   http://matt.might.net/articles/basic-unix/     
   http://math.sut.ac.th/surrey/tutorial. html       

        UNIX I/O Streams and Redirection   
 The UNIX operating system is a very flexible system when it comes to input/output 
redirection, and there are a variety of solutions. If you don't know much about it, search 
online for tutorials about the standard input, standard output, and standard error 
streams. Then learn how to redirect them. Here are some useful resources: 
 
   https://github.com/pkrumins/bash-redirections-cheat-sheet     
   http://www.tldp.org/LDP/abs/html/io-redirection.html     
   http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-3.html     
   http://wiki.bash-hackers.org/syntax/redirection     

http://cygwin.com/install.html
https://www.cygwin.com/
https://cygwin.com/cygwin-ug-net.html
https://www.cygwin.com/faq.html
https://en.wikipedia.org/wiki/Cygwin
http://www.lemoda.net/windows/windows2unix/windows2unix.html
http://www.admin-magazine.com/Articles/Linux-Essentials-for-Windows-
Admins-Part-1
http://www.admin-magazine.com/Articles/Linux-Essentials-for-Windows-
Admins-Part-1
http://www.admin-magazine.com/Articles/Linux-Essentials-for-Windows-
Admins-Part-2
http://www.admin-magazine.com/Articles/Linux-Essentials-for-Windows-
Admins-Part-2
http://matt.might.net/articles/basic-unix/
http://math.sut.ac.th/surrey/tutorial.html
https://github.com/pkrumins/bash-redirections-cheat-sheet
http://www.tldp.org/LDP/abs/html/io-redirection.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-3.html
http://wiki.bash-hackers.org/syntax/redirection


CHAPTER 14 ■ USING THE COMMAND LINE

222

       What’s Where? 
 Knowing what the top-level directories contain will help you to find things inside your 
ARTIK module from the command line. These file-system paths are used to access files 
and devices from inside your application source code. Listing  14-1  shows a summary of 
the  top-level directory structure  . 

     Listing 14-1.    Top-level Directory Structure   

 [/]  
   !  
   +- [bin]        - OS command-line tools  
   !  
   +- [boot]       - Support for the boot process  
   !  
   +- [dev]        - Device mirrored virtual file system  
   !  
   +- [etc]        - System configuration files  
   !  
   +- [home]       - Home folders for user accounts  
   !  
   +- [lib]        - Libraries of code and kernel extensions  
   !  
   +- [lost+found] - Files recovered by a disk repair  
   !  
   +- [media]      - Removable media mount points  
   !  
   +- [mnt]        - File systems' and devices' mount points  
   !  
   +- [opt]        - Optional add-on software not part of the default OS  
   !  
   +- [proc]       - A virtual file system with mirrors of running processes  
   !  
   +- [root]       - System administrator home folder  
   !  
   +- [run]        -  Information about the running system since it was last booted  
   !  
   +- [sbin]       - System administrator tools  
   !  
   +- [srv]        - Server- and service-related data  
   !  
   +- [sys]        - A virtual file system that mirrors the system hardware  
   !  
   +- [tmp]        -  Temporary working data purged at shutdown/reboot. 

Only removes your items.     
   !  
   +- [usr]        - User-provided binaries, data, and applications  
   !  
   +- [var]        - System-related variable data storage  



CHAPTER 14 ■ USING THE COMMAND LINE

223

    Read more about the internals of your operating system here:  

   https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard     
   http://www.tldp.org/guides.html     
   http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/     

       File System Mapped Properties Inside the ARTIK 
 Inside your ARTIK module, the Linux operating system does some clever things to help 
you interact with your system. It mirrors internal values from the kernel through virtual file 
systems. That makes it much easier to find and read various operating properties of the 
system and the processes running in it. Things that were hard to do before are easier now 
because you can access them like regular data files. The running processes are mirrored into 
the file system under the  /proc  virtual file system tree. The  /sys  and  /dev  virtual file system 
trees also provide information about the operating system and its devices. The companion 
Apress  ARTIK Reference Guide  will go into this in much more detail. Just to whet your 
appetite, a couple of simple examples here will show how to query these virtual file systems 
for information about your system. Read the online documentation and then explore. 

 ■   Note   Make sure you only read things and be careful not to write data to places that you 
do not understand. This is a good proverb to keep in mind: “ Only take photos. Leave nothing 
behind except for footprints. ”  

     What CPU Is Available? 
 Find out about the current  CPU configuration   of your ARTIK module with this command: 

   cat /proc/cpuinfo  

    The example shown in Listing  14-2  was run on a Type 5 Beta prototype developer 
reference board with an ARTIK 5 mounted on it. Your output may be different, but it will 
contain similar information. 

     Listing 14-2.    Processor Info  Virtual File Listing     

  processor       : 0  
  model name      : ARMv7 Processor rev 3 (v7l)  
  BogoMIPS        : 13.71  
  Features        :  swp half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 

idiva idivt  
  CPU implementer : 0x41  
  CPU architecture: 7  
  CPU variant     : 0x0  
  CPU part        : 0xc07  
  CPU revision    : 3  

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
http://www.tldp.org/guides.html
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/


CHAPTER 14 ■ USING THE COMMAND LINE

224

    processor       : 1  
  model name      : ARMv7 Processor rev 3 (v7l)  
  BogoMIPS        : 13.71  
  Features        :  swp half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 

idiva idivt  
  CPU implementer : 0x41  
  CPU architecture: 7  
  CPU variant     : 0x0  
  CPU part        : 0xc07  
  CPU revision    : 3  

    Hardware        : Exynos3  
  Revision        : 0000  
  Serial          : 0000000000000000  

     You should see something similar on your ARTIK. Type this command to see what 
else is accessible in the  /proc  virtual file system: 

   ls /proc  

    If you add the  -la  option ( ls -la /proc ), the listing will mark the sub-directory items. If 
the listed items are just files, you can use the  cat  command to send them to the screen unless 
they contain binary information. You will learn a lot about your ARTIK module by exploring, 
but be careful that you only  read  the files unless you know that it is safe to  write  to them.  

     Detecting Current  Processor Speed   
 Use this command to detect the current processor speed for the primary CPU: 

   cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq  

    This example refers to  cpu0 . The secondary CPU is identified as  cpu1 . It has a 
different set of properties. There is much more for you to learn about the internals of your 
ARTIK module by exploring it yourself.   

     Connecting to Remote Web Servers 
 There are two useful tools already included in your ARTIK operating system for 
interacting with a remote web server. The  wget  and  curl   tools   both provide a way to 
make a request to a web server and process the response into usable output. Direct the 
response to a file — for example to make a downloader. 

 The   wget  tool   is especially good for building web spiders that can recursively traverse 
a web page and seek out the child pages from the links embedded within it. The   curl  
tool   has a counterpart called  libCurl  that encapsulates it inside your compiled C-code 
application. Here is a useful comparison between the different download tools:    

   http://curl.haxx.se/docs/comparison-table.html     

http://curl.haxx.se/docs/comparison-table.html


CHAPTER 14 ■ USING THE COMMAND LINE

225

  Install these download tools onto your ARTIK if they provide functionality you need 
in addition to what the  curl  and  wget  commands can already do. The  curl  tool operates 
in a GET and PUT context. The  wget  tool only pulls (downloads) content from a remote 
system. Optionally, use the  wput  tool to upload content to a remote destination. The  curl  
command is probably powerful enough for most needs. Only install  wput  if you need it. 
The major advantage with  wget  is that it can be used to recursively download the contents 
of a website without needing to process the download and create supplementary 
commands. You need to add your own code to do that with the  curl  tool. 

     Examples with curl 
 Here are a few simple examples of   curl  commands  . This is a very useful and easy-to-learn 
tool. View the result of a request on a web server with this command: 

 curl    http://www.example.org/      

 The raw HTML of the web page content will be displayed on your screen. This is 
not the same as requesting a page for viewing in a web browser; you are seeing what the 
web browser would have captured before it formatted and presented it to you. This is 
extremely useful for debugging a remote service. Redirect the output into a temporary 
data file to do more work with it later like this: 

 curl    http://www.example.org/      > /tmp/www_example_org.html

  The  curl  command can write the output to a file rather than use redirection. 
Accomplish the same result like this: 

 curl -o /tmp/www_example_org.html    http://www.example.org/     

  In this example, the command-line option is a lowercase letter ( -o ). An uppercase 
letter ( -O ) tells the  curl  command to derive the file name from the URL request. Then the 
filename parameter can be omitted. 

 Sometimes a web server will redirect an  HTTP:  request to another location when a 
file has moved. The  curl  command can automatically follow that redirection with an 
additional option. The new redirect-following  curl  command looks like this: 

 curl -L    http://www.example.org/     

  Sometimes, a file will be protected with an authentication challenge and 
response. Provide a user name and password to access the remote resource. Add that 
authentication with  -u  option: 

 curl -u {my_username}:{my_password}    http://www.example.org/      

  Not all remote assets are served via an  HTTP:  protocol on a web server. Use  curl  
to access files on an FTP server too. Authentication details are needed to reach the FTP 

http://www.example.org/
http://www.example.org/
http://www.example.org/
http://www.example.org/
http://www.example.org/


CHAPTER 14 ■ USING THE COMMAND LINE

226

server and log on to access the contents. This command downloads a file called  xss.php  
and stores it in the current directory: 

   curl -u {my_username}:{my_password} -O ftp://ftp_server/public/xss.php  

    Put files back on an FTP server using the  -T  option, like this: 

   curl -u {my_username}:{my_password} -T myfile.txt ftp://ftp_server/  

    With the ability to get and put files with  curl , you have the means to upload data that 
can be shared with other mobile devices. With this design, you are in complete control of 
the security. If you need something more secure and also a means of delivering shared 
content to other devices, use the SAMI system to exchange your content. Find out more 
about  curl  here:  

   http://www.thegeekstuff.com/2012/04/curl-examples/     
   https://en.wikipedia.org/wiki/CURL     
   http://curl.haxx.se     

        Useful UNIX Commands Inside Your ARTIK 
 You are probably going to spend a significant amount of time logged in to your ARTIK and 
living in the UNIX command-line environment there. Here are some useful tricks and tips 
to make that process a little easier and more convenient. 

      Quitting and Aborting Processes   
 When you initiate UNIX commands, some of them will continue running until you 
explicitly tell them to stop. Sometimes you do that with a [Control] + [c] key combination 
or a [Control] + [d] combination. If the command spawns a sub-shell, try the  exit  
command to leave that shell and bounce back up to the calling parent shell. Some utilities 
expect you to type  quit  or  bye  to exit. Kill a process by checking for the process ID (PID) 
and using the  kill -9  command on it. This sends a signal to the process that halts it right 
away. This is not an ideal way to stop something, but it may be necessary. Here is how:

    1.    Find the process ID (PID): 

   ps -ef | grep {your_application_name}  

        2.    This should display a matching process, like this: 

   501 1185 1 0 2:47pm xxxxxx 0:01.16 /xxx/yyyy  

        3.    Note the second number ( 1185  in this example). That is the 
PID for your application process. The first number is the 
parent PID. This may refer to your command-line shell. You 
should see that value repeated a few times. The application 
PID you are interested in will only be listed once.  

http://www.thegeekstuff.com/2012/04/curl-examples/
https://en.wikipedia.org/wiki/CURL
http://curl.haxx.se


CHAPTER 14 ■ USING THE COMMAND LINE

227

    4.    Now kill the  screen  process by sending a signal to the process 
identified by the correct PID value. Substitute the PID value 
you discovered in this command: 

   kill -9  1185    

        5.    Check that it has gone by listing the processes again.     

 ■   Note    DO NOT ACCIDENTALLY KILL THE PARENT PROCESS . If you do, your workstation 
session might be forcibly aborted. This is a bad thing because it can corrupt files, and in 
extreme cases it can blow away the partition map and destroy the main hard disk. Rebooting 
your workstation is now the only solution unless your application was running in a sub-shell. 
You should run a disk repair with the  fsck  tool immediately in case something was broken.   

     Inhibiting the  Debugging Messages   
 In the earlier Alpha prototype version of the ARTIK OS, a background-scanning process 
displays a status message on the console every few seconds. This soon becomes an 
annoyance, because if you try to edit a file, the status text breaks up the display of the 
edited text. Refresh the screen to correct the appearance of the file you are editing 
when this happens. The default configuration has changed in the Beta release, and the 
messages are now suppressed. 

 If this causes problems, there are two ways to tell the ARTIK to turn off the debugging 
messages that the  wl_escan_handler  presents every few seconds. 

 The simplest solution is just to hide them. The scanner still outputs the messages, 
but the text is redirected into a sink where they disappear. UNIX developers describe that 
as redirecting the output to  /dev/null . Long-time UNIX enthusiasts sometimes call it the 
Bit-Bucket.    

 The more difficult solution is to stop the scanner from running, but it is always a 
good idea to avoid using a sledgehammer to crack a nut if there is a simpler solution. 
Unless you know what that scanner is doing and why it is important for it to run, stopping 
it could have unwanted side effects. For example, other things you do need might stop 
running. If you do not need the messages, type this command to suppress them: 

   dmesg -n 3  

    This sets the level at which messages to the console are suppressed or allowed. If you 
want to see them again, set the debugging message level to make them visible again with 
this command: 

   dmesg -n 7  

    If the scanner is no longer running, they will not appear, even at  dmesg  level  7 .  



CHAPTER 14 ■ USING THE COMMAND LINE

228

     Setting the Correct  Date   
 Your ARTIK module will almost certainly have the wrong date when you unpack it and 
boot it for the first time. You must set the date and time manually every time it boots, 
unless you provide a battery backup or configure your ARTIK to call a timeserver to set 
the time automatically. 

 Use the  date  command with the  -s  option to set the date. The command should look 
something like the following, but make sure you use the right date and time values when 
you type it on the ARTIK command line: 

   date -s '2015-M-D HH:MM: SS'    

         Checking Your Memory Usage 
 The memory footprint of the ARTIK operating system is designed to be very small. Your 
application code may use significantly more memory, depending on what you do with it. 
Configuring additional services in the OS core may increase this memory usage. Use this 
command when you are logged in to your ARTIK to see how much memory is being used: 

   free -m  

    The example in Listing  14-3  illustrates a list of the memory  usage   captured 
immediately after booting an ARTIK 5 module. 

     Listing 14-3.    Free Memory Report   

         total     used     free     shared     buff/cache     available  
  Mem:      490       33      388          0             68           442  
  Swap:       0        0        0  

          The vi Editor (Why vi?) 
 If you log in to your ARTIK and explore the file system with the command line you will 
soon want to edit or create files. Although there are a lot of different editors available for 
UNIX and you may already have a favorite, the only one that is guaranteed to always be 
there is vi. Occasionally, systems integrators will add other text editor applications for 
you, but you can never rely on that happening. The vi editor is guaranteed to always be 
present on a  UNIX system  . 

 These days, a newer version of vi is part of the standardized UNIX toolkit. This is 
called vi Improved and is called up by the   vim  command  . Old habits die hard, and if you 
were in the habit of typing  vi , that still works and calls the vim editor anyway. The vim 
editor is upwards compatible, and all the reference resources online that describe how vi 
works should be supported by vim as well. 



CHAPTER 14 ■ USING THE COMMAND LINE

229

     How to  Use   vi 
 Here are some quick reference notes about how to use vi. If you want to get deeply 
involved with this, there are books available on how to preset your own special keys 
and write macros. You will not need those advanced features for simple editing jobs. 
If the debugging messages are being logged to the screen, tell the ARTIK to turn them off 
while you use vi or else the screen becomes cluttered with text you did not type. That gets 
confusing very quickly. Use this command to turn the messages off: 

   dmesg -n 3  

         Open a File for Editing or Create a New One 
 To open a file you just describe it as the last item after any options when you invoke the 
 vi  or  vim   commands  . This command opens a file in the current working directory. The 
explicit reference to the current directory is not always necessary, but there are risks in 
being ambiguous about things in the UNIX operating system. Both of these commands do 
the same thing: 

   vi myfile.txt  
  vi ./myfile.txt  

    This command opens a file in the parent directory: 

   vi ../file_in_parent_directory.txt  

    This command opens a file at a specific location rooted at the top-level directory in 
the file system: 

   vi /home/specific_file.txt  

         Inside the vi Editor 
 There are two operating  modes   when you are in a vi editing session. By default you will be 
in command mode. Press the letter [I] key to go into insert mode and add new text or else 
your keystrokes will be interpreted as commands. Now any characters you type will push 
the existing text rightward as they are added. Leave  insert mode   by pressing the [Escape] 
key. This modal behavior takes a bit of getting used to if you normally use a text editor in a 
graphical user interface ( GUI  ).  

     Saving and Exiting 
 This is how you  exit and save   the edited file. Extended command mode is initiated by 
pressing the [:] (colon) key. The most likely command you want right now is to quit and 
save the file. The [w] will write the file and the [q] key will exit from the vi editor. Type this 
sequence of keystrokes to save and quit: 

   [:] [w] [q] [Return]  



CHAPTER 14 ■ USING THE COMMAND LINE

230

    This command will quit and discard any edits you have made: 

   [:] [q] [Return]  

    If you are inserting or appending text, press the [Escape] key first to go back to 
command mode.  

     Command Mode 
 In command mode, the letter keys perform editing actions. Like the rest of UNIX, the 
 vi  commands are case sensitive. Some commands are happy to accept a number 
preceding them to carry out the command multiple times. You can enter an extended 
command-line mode by pressing the [:] (colon) key. Very often in UNIX, there is more 
than one way to accomplish what you want to do. This is also true for the vi editor. 
Table  14-1  covers the commands you will find most useful at first. It is worth spending 
some time to learn the others to speed up your text-editing sessions.  

   Table 14-1.     Command Mode Keystrokes   in the vi Editor   

 Command  Description 

  0  (zero)  Position the cursor at the beginning of the current line. 

  $   Position the cursor at the end of the current line. 

  i   Insert new text before the current character. 

  I   Insert new text before the current line. 

  a   Insert new text after the current character. 

  A   Append text to the end of the current line. 

  r   Replace the character under the cursor with the next character 
you type. 

  o  (lower case letter o)  Create a new empty line after the current one and move the 
cursor to start inserting new text there. 

  O  (upper case letter O)  Create a new empty line before the current one and insert new 
text there. 

  dd   Delete the current line. 

 {number} dd   Delete {number} lines. Be careful here because it is easy to 
delete more than you intended. 

  D   Delete from the cursor to the end of the line. 

  x   Delete the current character. 

 (number) x   Delete {number} characters. 

  X   Delete previous character to the left of the cursor.    

(continued)



CHAPTER 14 ■ USING THE COMMAND LINE

231

Table 14-1. (continued)

 Command  Description 

  J   Join current and next lines into one line. 

  u   Undo the most recent command just done on the current line. 
This is very limited and not like the continuous undo on a GUI 
editor. 

  yy   Yank the current line into a buffer. This is like a clipboard cut. 

 {number} yy   Yank {number} lines into the clipboard buffer. 

  p   Put the yanked buffer text after the cursor. This is like a 
clipboard paste. 

  P   Put the yanked buffer text before the cursor. This is like a 
clipboard paste. 

  :w   Write the changes back to the current file and continue editing. 

  :wq   Write the changes back to the current file and quit back to the 
command line. 

  :w  {filename}  Write the changes to a different file. 

  :w!   Force-write the changes to the current file when the file 
protections would normally prohibit the change. 

  :w!  {filename}  Force-write the changes to a different file when the file 
protections would normally prohibit the change. 

  :q   Quit the editing session and discard any changes made. 

  :f  {filename}  Change the name of the current file. Subsequent writes will 
use the new name.    

  :r  {filename}  Insert the contents of the named file at the current cursor 
position. 

  :!  {command}  Execute a command in the shell without leaving the editor. 

  :r!  {command}  Execute a command in the shell without leaving the editor and 
insert the resulting output from it at the current cursor position. 

  ZZ   Write the changes to the current file and exit. 

  :set number   Toggle line number display. 

  :set autoindent   Automatically indent following lines to the same depth. 

  / {pattern}  Search forward for {pattern} in the current file. There are many 
more things you can do with searches. 

  ? {pattern}  Search backward. 

  n   Repeat previous search and find the next instance. 

  N   Find the previous instance. 

  ~   Switch the case of the character under the cursor. 

  :%s/ {old} / {new} /g   Replace all occurrences of old by new in file. 



CHAPTER 14 ■ USING THE COMMAND LINE

232

 Here are some reference guides to more vi commands: 

    http://www.astrohandbook.com/ch20/vi_guide.html     
   http://hea-www.harvard.edu/~fine/Tech/vi.html     
   http://www.ibm.com/developerworks/aix/library/au-vitips.html     
   http://www.catswhocode.com/blog/100-vim-commands-every-programmer-should- know       

        The GCC Compiler 
 Every UNIX operating system can compile applications from source code by default. 
Because of its heritage as an open-source operating system, Linux naturally takes 
advantage of the GCC compiler. Your ARTIK module continues this tradition and GCC 
works just fine inside it for native compilations. The discussions here about the GCC 
compiler are mainly relevant to your  ARTIK module   but also apply to your development 
workstation if you have GCC and its supporting tools installed there.  

  Figure 14-1.    GCC  logo         

 The GNU Compiler Collection (GCC) has proven to be an excellent  application-
building tool   for many years and formed the core of the NeXT Step developer workflow 
before being assimilated into Mac OS X. For a long time GCC was part of the Xcode tools 
on Mac OS  X  , but it has now been replaced by Apple’s own Clang/LLVM compiler. Find 
out the latest information about GCC here: 

    https://gcc.gnu.org/     
   https://en.wikipedia.org/wiki/GNU_Compiler_Collection      

 

http://www.astrohandbook.com/ch20/vi_guide.html
http://hea-www.harvard.edu/~fine/Tech/vi.html
http://www.ibm.com/developerworks/aix/library/au-vitips.html
http://www.catswhocode.com/blog/100-vim-commands-every-programmer-should-know
https://gcc.gnu.org/
https://en.wikipedia.org/wiki/GNU_Compiler_Collection


CHAPTER 14 ■ USING THE COMMAND LINE

233

 ■   Note   There are two important aspects of GCC. First, it is built in as a native tool inside 
your ARTIK module. Second, it is available by default on Linux and can be installed on Mac 
OS X or Windows as well. This allows you to cross-compile on your development workstation 
or natively compile inside the ARTIK module.  

      Language Support   
 The GCC tools are not just for compiling C code. They also include other languages, 
such as Fortran, Objective-C, and C++. There are experimental projects to add Pascal 
and other similar languages. Developers can exploit this because the application-
building process is managed in two phases. First, the source code is compiled down 
to an intermediate form called object code. Then the application is linked together by 
taking the object code that you have just made and binding it with libraries of previously 
compiled code. Understand the mechanisms for passing parameters and making calls to 
functions independent of any language. Then, part of your application can be composed 
in a different language and integrated by the linker. 

 Variable containers can be described as either values or references. Objective-C adds 
a third possibility of calling with a selector that connects to a named function handler at 
runtime. This allows Objective-C code to be modified and extended after the application 
has been compiled and linked. This is also useful for debugging. 

 If you have complex mathematics algorithms or statistics analyzers written in Fortran, it 
is feasible to compile and link to them from a C-language application and reuse the code. 

 This is an advanced technique, and we’ll leave it there for now, but just knowing 
something is possible can save you from wasting a lot of time trying to do it another way.     

      Supporting Libraries   
 The ANSI Standard C development tools include a library of code that is powerful enough 
to accomplish most application-development goals. By adhering to the standards-based 
approach, code can be recycled from other projects. Some of the code might also run 
in the development workstation. Compiling it with GCC and debugging it there will 
be easier than downloading it to the ARTIK every time for testing. Your development 
environment may be able to emulate the internals of an ARTIK sufficiently well that your 
code behaves as if it were embedded inside the ARTIK module. 

 If you want to develop in an object-oriented fashion, consider the  GNUStep  library. 
This is an open-source project that emulates the NeXT Step functionality in an API-
compatible way. Then you can write applications in Objective-C to exploit this library. 
The abstraction of Model-View-Controller (MVC) techniques and other object-oriented 
patterns in your design could be beneficial. Find out more about GNUStep here:  

   http://www.gnustep.org/        
   https://en.wikipedia.org/wiki/GNUstep     

http://www.gnustep.org/
https://en.wikipedia.org/wiki/GNUstep


CHAPTER 14 ■ USING THE COMMAND LINE

234

  A server-side design that runs without a visible UI would be a good starting point 
for an ARTIK-based project. The ARTIK modules all have a video display output. Your 
application could incorporate a graphical user interface presented on that display. 

 The Temboo support libraries are all included in the ARTIK modules. Use them to 
communicate with a cloud-based IoT service. Temboo will be covered in Chapter   19    . 

 Samsung also provides a distributed IoT system that that is securely integrated with 
the ARTIK modules. The SAMI ecosystem will be described in Chapter   18    .  

     GCC ARM Compiler  Support   
 With the right support, GCC on your development workstation can compile your source 
code into ARM-compatible executable images. To do this you need the GCC ARM EABI kits. 
The setup process is different for each operating system. On Windows, the Linaro toolkit 
might be sufficient and is designed to work on Linux too. The Linaro toolchain is not a viable 
solution for Mac OS X, however, because it has not been ported to the Macintosh platform. 
The installation of the toolchain is different for each Linux distribution. Here are some 
helpful guidelines for different operating systems so as to tailor the process for your needs. 
Download the PDF describing how to build the toolchain from scratch here. This web page 
has links to release notes, installation kits, technical guides and license documents. All of the 
downloads are presented in a menu on the right hand side of the page: 

    https://launchpad.net/gcc-arm-embedded     

  Once you have the toolchain working for ARM processors in ARTIK 5 and 10 modules, 
add the support for compiling MIPS®32 binaries if you intend to develop for your 
ARTIK 1 modules.  

     Getting GCC Up and  Running   
 The GCC compiler in your ARTIK module or development workstation can be enhanced 
with additional libraries. They can be added now or later on to enhance the linker 
compatibility with open-source projects. Your GCC compiler command will normally 
have a format like this: 

   gcc -L{directory_to_search} -l{library} -I{source_file} -o {output_application}  

    The  -L  directory to search indicates where the compiler should look for libraries, 
which are specified with the  -l  option. Both of these options can be used multiple times 
in more complex builds. The  -I  source file is a description of your code that the compiler 
is going to build. The output application is the name of the executable that the compiler 
will create when it finishes linking all the pieces together. 

 Some of the command-line options are position sensitive. Adding them randomly 
to your compiler instructions may not work unless you are very lucky. This is why an 
integrated development environment (IDE) in your development workstation is particularly 
useful — it manages the construction of these command lines for you and assembles the 
options in the correct order. Get more help on the command-line options here: 

    https://gcc.gnu.org/onlinedocs/gcc/Option-Index.html     

http://dx.doi.org/10.1007/978-1-4842-1952-2_19
http://dx.doi.org/10.1007/978-1-4842-1952-2_18
https://launchpad.net/gcc-arm-embedded
https://gcc.gnu.org/onlinedocs/gcc/Option-Index.html


CHAPTER 14 ■ USING THE COMMAND LINE

235

  If you get an error about  cdefs.h  not being found, you should install the  glibc-
headers  and try compiling your application again. Use the  dnf  or  yum  installer tools like this: 

   yum reinstall glibc-headers     
 dnf reinstall glibc-headers 

 Watch carefully for any errors in this installation. It should go smoothly, and once it 
is complete your application should compile correctly.  

     Writing a Simple  Program   (Hello World) 
 Here is the classic C-language Hello World program source code. It has a couple of small 
modifications so as to avoid generating compiler warnings. A  main()  function would 
normally return an integer value to indicate that it executed correctly or had a problem. 
A zero value indicates that everything was good. New-line markers are added to separate 
the lines and space out the output text. Follow these steps to create a source file you can 
compile with  gcc :

    1.    Go to the temporary directory: 

   cd /tmp  

        2.    Open a new file with the vi editor: 

   vi ./hello. c    

        3.    Go into insert mode by pressing the letter [I] key.  

    4.    Type the following source code into the vi editor. The 
 #include  line in the source file adds the standard I/O 
functions: 

    #include<stdio.h>  

    int main()  
  {  
     printf("\nARTIK says:\n\nHello World\n\n");  
     return 0;  
  }  

         5.    Type these keystrokes to exit from vi and save the changes to 
disk: 

   [Escape] [:] [w] [q] [Return]  

        6.    Check that the previous steps worked by viewing the file that 
was created: 

   cat hello.c  

        7.    You should see the text you just edited listed on the screen.  



CHAPTER 14 ■ USING THE COMMAND LINE

236

    8.    Compile the Hello World program with a simple GCC 
command, as no additional libraries are needed: 

   gcc -Wall hello.c -o hello  

        9.    Run the application you just built. Use the  ./  prefix to indicate 
that it lives in the current working directory: 

   ./hello  

        10.    You should see this message echoed on the screen: 

    ARTIK says:  

    Hello  World    

         This proves the ARTIK has a viable compiler. Move forward with your development 
plans and create more complex applications.  

      Compiler Warnings   
 It is a good idea to fully understand your application code and eliminate any error messages 
and warnings as early as possible. When you introduce a faulty line of code, it is immediately 
obvious that you broke something. It is hard to spot a genuine and important error message if 
you get 100 lines of warnings about trivial things that have not yet been optimized. 

 Adding the  -Wall  option turns on all warnings and error messages. Work down these 
systematically and eliminate them either by fixing code or by adding extra command-line 
options to control the compiler until there are no warnings left. 

 You should always use all of the help the compiler can give you and work to 
eliminate all errors. When you see a warning message, you know it is something you 
have just done when you last edited your source code. If you have hundreds of warnings, 
spotting a new one is hard, and the debugging process is more difficult. Zero warnings 
= good code. This is no guarantee that your application is perfectly conceived and well 
designed, but at least it builds successfully. That is a good first step.   

     Next Steps 
 Make use of the GCC compiler from an Eclipse IDE or transfer the output from a  Temboo 
session   to the ARTIK module and compile it there. The Temboo code is too long to retype 
again manually. Instead, just copy the code from the Temboo website and put it in a local 
file on the development workstation. Use a serial copy tool to transfer the code to your 
target ARTIK module. Log in to the ARTIK and compile it there.  

     SCP: Secure Copy 
 Once you have your ARTIK configured for IP networking, use the IP address to send files 
to it from your desktop workstation. The  scp  command is specifically designed for that 
task. You would use this from the UNIX command line on your desktop development 
system. For example, you can use this from the Cygwin terminal application on Windows. 



CHAPTER 14 ■ USING THE COMMAND LINE

237

     File Upload to ARTIK  Module   
 The source file to copy can be anywhere on your local workstation, but you need a UNIX 
path to reach it. The account name needs to have sufficient privileges to write to the 
destination directory where you are copying the files. In most ARTIK-based examples, the 
 root  account is used. The IP address is where your ARTIK is configured to exist on your 
local area network (LAN). The destination directory indicates where to deposit the file 
inside the ARTIK module. The format of an  scp  command is as follows: 

   scp {source_file_to_copy} {account_name}@{remote_IP_address}:/{destination_
directory}  

    Using  scp  to copy the  hello.c  source file from a development workstation to a target 
ARTIK module looks like this: 

   scp /my_files/hello.c root@192.168.1.57:/tmp  

         File Download from ARTIK  Module   
 Use the  scp  tool to bring files back from an ARTIK module to your hosting development 
workstation. Just switch the parameters around the other way. The remote directory is 
described as a source rather than as a destination: 

   scp {account_name}@{remote_IP_address}:/{source_directory + file_path} 
{local_directory}  

          Summary 
 This chapter is not just about building applications from the command line, although that 
is useful. Acquiring UNIX command-line skills is a valuable thing. It is career enhancing, 
because manipulating text files and lists is very easy to do from a command line. 
Automating the process by putting those commands in a shell script adds more leverage. 
These things are extraordinarily difficult to do with a GUI-based workstation. Organize 
scheduled automatic runs of your scripts so that data is collated regularly and without 
manual intervention and you will have your text processing available on an industrial 
scale. Incorporate the command-line programming inside AppleScripts or Automator 
workflows to create drag and drop tools you can use from the Finder on a Macintosh 
workstation. Then you will have a range of new abilities at your fingertips with which to 
amplify your productivity.     



239© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_15

    CHAPTER 15   

 Programming in C Language           

     Programming Your ARTIK Natively in C 
 This chapter will concentrate on the internals of the ARTIK modules. Accessing the 
internal logic and peripherals of the ARTIK from a natively coded C-language application 
is arguably the simplest approach to developing ARTIK solutions. Log on to your ARTIK 
module and do everything from the command line. You are working on the “bare metal” 
without the help of an IDE, and indeed without much help from your development 
workstation other than it being a place where you open a terminal window. You can work 
very effectively in this environment by editing your source files in vi and compiling and 
linking them directly with the GCC compiler. You can increase your leverage by using an 
IDE such as Eclipse or Arduino in your development workstation. Keep your source code 
on that computer. Archive and version-control it with Git or SVN.  

      Coding Strategies   
 Let’s just spend a moment to recap the source code Edit ➤ Compile ➤ Link ➤ Run cycle. 
You will repeat this sequence many times to iterate your design from a concept to a 
finished application. 

 I like to type only a couple of lines of code and then test that right away so that if 
there are errors, it is really easy to find what caused them. I assert certain things about my 
application and use logging and printing often to check that the application is generating 
what I expect. I find this “debugging as I go” approach to be very productive because it 
imparts a level of confidence that the code written so far is functional and trustworthy; 
that is, providing my architectural design and concepts were sound to begin with. 
Consequently, I develop from the bottom up, ensuring working foundations are running 
properly before I build a superstructure on top. Skyscrapers are built like that, and it 
makes sense to build software that way too.    

 The goal is to create a working application with good performance and reliability. 
Everyone has a preferred creative style. You may have a completely different way of 
working, and that is just fine. If your technique works for you and leads to a satisfactory 
outcome, it completely vindicates your approach. The most important thing is to plan the 
design first. Only start to write code when you know what you want to build.  



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

240

     Creating a Simple  Application   
 Here is an example application that reads and displays the contents of the Fedora release-
version file in the  /etc  directory:

    1.    Go to the temporary files directory: 

   cd /tmp  

        2.    Use the vi editor to create a file called  file_reader.c : 

   vi file_reader.c  

        3.    Switch to the insert mode by pressing the uppercase letter [I] 
key and type this code into the editor: 

    #include <stdio.h>  

    int main()  
  {  
     FILE *fp;  
     char str[60];  

       /* open a file for reading */  
     fp = fopen("/etc/fedora-release" , "r");  

       if(fp == NULL)  
     {  
        perror("Error opening file");  
        return(-1);  
     }  
     if( fgets (str, 60, fp)!= NULL )  
     {  
        /* write the file content to stdout */  
        puts(str);  
     }  
     fclose(fp);     

       return(0);  
  }  

         4.    Type the following keystrokes to exit from vi and save the 
changes to disk: 

   [Escape] [:] [w] [q] [Return]  



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

241

        5.    Now compile the source code with GCC: 

   gcc -Wall file_reader.c -o file_reader  

        6.    Run your compiled program with this command: 

   ./file_reader  

        7.    You should see the following text echoed on the screen. If 
your ARTIK operating system has been updated, you will see a 
different version number: 

   Fedora release 22 (Twenty Two)  

             Looking Deeper Inside Your ARTIK 
 The  Linux kernel   exports a lot of the internal values out to virtual file-system locations 
that are mapped into your user-accessible domain. From your point of view, these kernel 
parameters look just like regular files that you can open and read or write to. This makes 
it much easier to find and communicate with the kernel internals — if the file access is 
permitted — without needing to understand a lot about the mechanics of kernel messaging 
and its internals. Most of the time you will be reading the contents of these virtual file-
system locations. Very occasionally you will write to them to configure something or to 
set a value of a pin. You should understand what you are doing if you attempt to alter 
anything with a write. Read about this  virtual file-system mapping   here: 

    https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard     
   http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/     
   https://en.wikipedia.org/wiki/Sysfs     
   https://en.wikipedia.org/wiki/Procfs     
   https://en.wikipedia.org/wiki/Device_tree     
   https://en.wikipedia.org/wiki/Configfs     

  You will learn a lot by reading the documentation on how the kernel of your OS 
handles embedded hardware devices. This is not for the faint of heart. This is seriously 
deep and complex stuff. As much as possible, you should try to use libraries that 
encapsulate all of this complexity. They are there to help you. 

 However, the pins on your ARTIK may not have such mature library support, and 
you may only be able to access them directly through the  /sys  virtual file system. Logical 
devices are accessible via the  /dev  virtual file system. The allocated memory space and 
other properties of running processes can be accessed through the  /proc  virtual file 
system. All of these require that your account, and hence your running application, has 
sufficient privileges to access these locations in the file system. Find out more about the 
kernel here: 

    https://www.kernel.org/doc/Documentation/     

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/

https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Configfs

https://www.kernel.org/doc/Documentation/


CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

242

       About the /sys Virtual File System 
 This tree of virtual file-system entities provides direct access to the system hardware 
and attached peripherals. Explore this to find the locations of the SPI, PCI, I2C, and I2S 
hardware API endpoints. Consult the online documentation about those peripheral 
devices to work out how to interact with them. Listing  15-1  shows a map of the basic 
organization of the  /sys  directory: 

     Listing 15-1.    The  sys Virtual File System     

 [/sys]  
    !  
    +- [block]              - Block structured devices such as disks & memory  
    !  
    +- [bus]                - Registered buses (only two shown as examples)  
    !    !  
    !    +- [i2c]           - I2C bus  
    !    !    !  
    !    !    +- [devices]  - I2C devices with loaded drivers  
    !    !  
    !    +- [spi]           - SPI bus  
    !  
    +- [class]              - Devices organized into classes  
    !  
    +- [dev]                -  Devices collated by type (block or 

character access)  
    !  
    +- [devices]            - Devices known by the kernel  
    !  
    +- [firmware]           - Embedded firmware images  
    !  
    +- [fs]                 - User-accessible file systems  
    !  
    +- [kernel]             - Mount points for other virtual file systems  
    !  
    +- [module]             - Currently loaded kernel modules  
    !  
    +- [power]              - Power management sub- system    

    The peripherals are mapped into the ARTIK file system to allow your code to 
operate on them as if they were regular files. Just open the relevant virtual file to get a 
file descriptor. Read or write the value and close the file. This uses the file-system tree 
that starts at the  /sys  directory. This is the head of the  sysfs  virtual file system. These 
peripheral accessors are examined in much more detail in the companion Apress  ARTIK 
Reference Guide . 



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

243

 ■  Note Always carefully list the contents of the  /sys  virtual file system to explore the 
layout and determine the exact spelling of any peripheral device paths you intend to use. 
They might change as the OS is upgraded. Spending some time examining the layout of this 
file system for differences will save you a lot of debugging heartache later.  

     GPIO Pins 
 One way to access the General Purpose Input Output (GPIO) pins is to work in the 
 Arduino domain  , but that limits the complexity of the applications you can build. A 
better way to access the GPIO pins is by referencing them as a file in the  /   sys  virtual file 
system  . The operating system exports them from a secure, protected, kernel-controlled 
environment and presents them to you in a simple-to-use manner. Files have properties 
that control whether you can read or write to them. The existence of a virtual file tells 
you whether a feature is present on the board or not. Virtual file systems respond in ways 
that normal files do not. A value written to a virtual file is intercepted by the file-system 
manager, which sends a message to the kernel rather than storing the value in a physical 
file within the file system. Read this document first and then try experimenting: 

    https://www.kernel.org/doc/Documentation/gpio/sysfs.txt     

  Read it again to reinforce the learning experience. Each time you go through a 
read-and-experiment cycle, you build a more complete mental model of the technology 
you are learning about. Practice and repetition works for engineering just as effectively as 
for learning a musical instrument. 

     GPIO: Pin  Mapping   
 To access the GPIO pins, set the direction of the pin first and then read or write a value to 
it. Some pin numbers are different between the ARTIK 5 and 10 modules. For example, 
GPIO 8 on an ARTIK 10 is equivalent to GPIO 121 on an ARTIK 5. Figure  15-1  shows the 
general arrangement of the pins on the developer reference boards.  

https://www.kernel.org/doc/Documentation/gpio/sysfs.txt


CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

244

 Table  15-1  lists the available GPIO pin connections for a Type 5 or Type 10 developer 
reference board.   

  Figure 15-1.    Type 5 and Type 10 developer reference board  GPIO pins         

   Table 15-1.     GPIO Pin Connections        

 Header label  Logical name  ARTIK 5  ARTIK 10 

 J26-2  GPX0[0]  GPIO 121  GPIO 8 

 J26-3  GPX0[1]  GPIO 122  GPIO 9 

 J26-4  GPX0[2]  GPIO 123  GPIO 10 

 J26-7  GPX0[3]  GPIO 124  GPIO 11 

 J27-8  GPX0[4]  GPIO 125  GPIO 12 

 J27-9  GPX0[5]  GPIO 126  GPIO 13 

 J27-10  GPX0[6]  GPIO 127  GPIO 14 

 J27-11  GPX1[0]  GPIO 129  GPIO 16 

 J27-12  GPX1[5]  GPIO 134  GPIO 21 

 J27-13  GPX1[6]  GPIO 135  GPIO 22 

 



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

245

     GPIO: Pin Export to the User Domain 
 Because the GPIO interface is managed as a virtual file system and presents each entity as 
a regular file, the standard UNIX file-system permissions will conditionally allow you to 
perform these operations on the GPIO pins it manages. To make a GPIO available to your 
application, you need to export it first. While it is exported, your application owns that pin 
and another application cannot access it. Make sure you relinquish it when you are done. 
Open the  /sys/class/gpio/export  file and write a GPIO pin number to it. Listing  15-2  is 
an example code fragment that writes to a GPIO pin. 

     Listing 15-2.     Writing   to a GPIO Pin   

  // Define the target pin number  
  myGPIOPinNumber = 19;  

    // Open a messaging channel to the kernel  
  if((myGPIoExportFd = fopen("/sys/class/gpio/export", "w")) == NULL)  
  {  
     printf("Error: unable to export GPIO pin\n");  
     return false;  
  }  

    // Tell the kernel which pin to use  
  fprintf(myGPIoExportFd, "%d\n", myGPIOPinNumber);  

    // Close the kernel messaging channel  
  fclose(myGPIoExportFd);  

     The following code is the command-line equivalent that you must embed inside 
a shell script. Python and Node.js programmers can reproduce this by doing the same 
simple file access: 

   echo 19 > /sys/class/gpio/export  

    When you are done with this GPIO, release it for use by other applications by writing 
the pin number to the  unexport  file location. Here is the replacement line you need: 

   if((myGPIoExportFd = fopen("/sys/class/gpio/unexport", "w")) == NULL)  

    And from the command line or shell scripts you do this: 

   echo 19 > /sys/class/gpio/unexport  



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

246

         GPIO: Pin  Direction Setting   
 When your application asks the kernel to export a GPIO into the user-accessible domain, 
the kernel creates a new node within the  /sys  virtual file system to represent that pin. 
After the kernel has created it for you, your application can read or write to that node as if 
it were a regular file. Ask the kernel to configure the pin direction. Then you can request 
the current value if it is configured for input or send a value to the pin if it is an output. 
The path to the new node representing the pin will be: 

   /sys/class/gpio/gpio{pin_number}  

    Give that GPIO pin instructions by writing to sub-directories within it. The pin mode 
or direction (for this node) is controlled by this virtual file-system location: 

   /sys/class/gpio/gpio{pin_number}/direction  

    Use the  sprintf()  function to manufacture a path name from the pin number, 
like this: 

   sprintf(myGPIOModeName, "/sys/class/gpio/gpio%d/direction", 
myGPIOPinNumber);  

    Write the message “ out ” or “ in ” depending on whether the code controls something 
by setting its output level or reads a sensor value by treating the value as an input. 
Open the direction-configuration virtual file and set it to the required mode as shown in 
Listing  15-3 . 

     Listing 15-3.    Setting a GPIO Pin Mode   

  // Select one of these values to choose a mode  
  myGPIOMode = "out";  
  //myGPIOMode = "in";  

    // Open the direction configuration for the GPIO node  
  if((myGPIOModeFd = fopen(myGPIOModeName, "w")) == NULL)  
  {  
     printf("Error: can't open pin direction\n");  
     return false;  
  }  

    // Set the pin mode with the passed-in direction  
  fprintf(myGPIOModeFd, "%s\n", myGPIOMode);  

    // Close the direction configurator  
  fclose(myGPIOModeFd);  



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

247

          GPIO:  Digital Value Setting   
 When you set the pin mode for a GPIO to be an output, writing to a special path within 
the GPIO node can set the value in the virtual file system: 

   /sys/class/gpio/gpio{pin_number}/value  

    Manufacture the path to that value-setting location with  sprintf() , like this: 

   sprintf(myGPIOValueName, "/sys/class/gpio/gpio%d/value", myGPIOPinNumber);  

    Listing  15-4  shows how to set the value on that GPIO having already synthesized the 
path to reach it. 

     Listing 15-4.    Setting a GPIO Pin Value   

  // Select one of these values to set on the pin  
  myGPIOValue = 1;  // Represents HIGH  
  //myGPIOValue = 0; // Represents LOW  

    // Open the value configuration for the GPIO node  
  if((myGPIOValueFd = fopen(myGPIOValueName, "w")) == NULL)  
  {  
     printf("Error: can't open pin value for writing\n");  
     return false;  
  }  

    // Set the pin value with the passed-in setting  
  fprintf(myGPIOValueFd, "%d\n", myGPIOValue);  

    // Close the value configurator  
  fclose(myGPIOValueFd);  

          GPIO:  Digital Value Reading   
 To read the value of the GPIO pin, just set the pin mode for input, then open the path to 
the value configurator and read in the value from the virtual file. The following values are 
available from an input GPIO pin: 

   0 - Low  
  1 - High  

    When you set the pin mode for a GPIO to be an input, the value can be acquired by 
reading from a special path within the GPIO node in the virtual file system: 

   /sys/class/gpio/gpio{pin_number}/ value    



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

248

    Manufacture the path to that value-setting location with  sprintf() , like this: 

   sprintf(myGPIOValueName, "/sys/class/gpio/gpio%d/value", myGPIOPinNumber);  

    Acquire the value from the GPIO pin with an  fgets()  function that is configured to 
read just  two  characters at a time. Listing  15-5  provides an example code fragment that 
reads a GPIO pin. 

     Listing 15-5.    Reading a GPIO Pin Value   

  // Open the value configuration for the GPIO node  
  if((myGPIOValueFd = fopen(myGPIOValueName, "r")) == NULL)  
  {  
     printf("Error: can't open pin value for reading\n");  
     return false;  
  }  

    // Read the pin value  
  fgets(myResult, 2, myGPIOValueFd);  

    // Close the value configurator  
  fclose(myGPIOValueFd);  

     Convert the value to an integer before returning it to your application: 

   myInteger = atoi(myResult);  

         GPIO:  Edge Detecting   
 By taking the value-reading example further, the virtual file  edge  can be used instead 
of a  value  to detect rising or falling edges. Detecting button press or button release 
actions becomes much easier because state management and button changes become 
atomic functions. Atomic functionality encapsulates things so only a single line of code is 
necessary where an entire function was required before. 

 This virtual file path will only exist if the driver for the GPIO supports this functionality. 
Inspect the file system embedded in your ARTIK to see if this feature is available. The read 
path for detecting an edge on the same example  {pin_number}  would be: 

   /sys/class/gpio/gpio{pin_number}/ edge    

    The following values will be returned:

•     none  - No change detected  

•    rising  - The value was low but has just gone high  

•    falling  - The value was high but has just gone low    



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

249

 ■  Note The GPIO documentation describes this feature, but it may not be implemented in 
all drivers to begin with and may show up as a feature addition later on.  

     Reading Analog Input Values 
 GPIO is only  available   for digital input and output. A different virtual file-system location 
accesses the analog voltage being imposed on a pin by a sensor. This example is good for 
an ARTIK 5 module. Here is the path to the analog-to-digital convertors (ADC) that are 
connected to the analog input pins A0 to A5: 

   /sys/devices/12d10000.adc/iio:device0/in_voltage{pin_number}_raw  

    Create your own suite of functions to manufacture a path to the virtual file-system 
location with a  sprintf() , like this: 

   sprintf(myPinName, "/sys/devices/12d10000.adc/iio:device0/in_voltage%d_raw", 
myPinNumber);  

    Acquire the value from the analog pin with an  fgets()  function that is configured to 
read  eight  characters at a time. The example code in Listing  15-6  shows how to read an 
analog pin value: 

     Listing 15-6.     Reading Analog Pins     

  // Open the value configuration for the GPIO node  
  if((myFileDescriptor = fopen(myPinName, "r")) == NULL)  
  {  
     printf("Error: can't open analog voltage value for reading\n");  
     return false;  
  }  

    // Read the pin value  
  fgets(myResult, 8, myFileDescriptor);  

    // Close the value configurator  
  fclose(myFileDescriptor);  

     Convert the value to an integer before returning it to your application with the 
 atoi()  function: 

   myInteger = atoi(myResult);  



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

250

    You will get a value between  0  and  4096  that represents the voltage on that input pin. 
The value  4096  represents  5  volts. Scale the value accordingly like this: 

   myVoltage = (5 * myResult) / 4096;  

    You may want to apply different conversion factors depending on what your sensor is 
measuring and how it maps the values it detects to a voltage.  

     Analog Read Differences Between ARTIK 5 and  10   
 The  sysfs  virtual file-system base address for analog pins is different for the ARTIK 5 
and 10 modules. Note the different hex-coded hardware addresses. Table  15-2  shows the 
alternative file-system locations.  

 Get around this by defining a manifest constant to map the analog pins. An  include  
file that is different for each ARTIK module type will decouple the reference to the 
hardware. 

 ■   Note   The organization of the  sysfs  virtual file system is prone to change as the 
ARTIK OS evolves. Predicting what the addresses within  sysfs  will be for later operating 
system versions is impossible to do. Therefore, you should apply some forensic inspection 
techniques to your ARTIK file system to determine the exact location of these addresses. If 
the addresses change after an OS upgrade or if you purchase later hardware, they should be 
quite easy to find because the format will be similar, but the specific hex-code portion of the 
address might change. The defined manifest constant will help you a lot.    

     Library Function Toolkit 
 Create a library of tools to make it easier to reuse common fragments of code multiple 
times. Listings  15-7  to  15-12  illustrate how to wrap  GPIO configuration and value 
management   within functions so they can be reused multiple times. Call these from 
your main application code. Define the  INPUT ,  OUTPUT ,  HIGH , and  LOW  values as manifest 
constants in a file included at the start of the source code so that your applications can 
share values and be coded consistently. 

   Table 15-2.     Analog Pin Addresses     

 Module  Virtual File-system Address 

 ARTIK 5   /sys/devices/12d10000.adc/iio:device0/in_voltageX_raw  

 ARTIK 10   /sys/devices/126c0000.adc/iio:device0/in_voltageX_raw  



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

251

     Listing 15-7.     Manifest Constant Definitions     

  #define INPUT 0  
  #define OUTPUT 1  

    #define LOW 0  
  #define HIGH 1  

        Listing 15-8.     Main Application Code     

  myStatusResult = setDigitalPinMode(19, OUTPUT);  
  myStatusResult = setDigitalPinMode(20, INPUT);  

    myStatusResult = digitalWrite(19, HIGH);  
  myStatusResult = digitalWrite(19, LOW);  

    myValue = digitalRead(20);  
  myValue = analogRead(1);  

        Listing 15-9.    The  setDigitalPinMode() Function     

  bool setDigitalPinMode(int aPinNumber, int aPinMode)  
  {  
     FILE * myFileDescriptor;  
     char myNodeName[128];  

       // Exporting the pin to be used  
     if(( myFileDescriptor = fopen("/sys/class/gpio/export", "w")) == NULL)  
     {  
        printf("Error: unable to export pin number %d\n", aPinNumber);  
        return false;  
     }  

       fprintf(myFileDescriptor, "%d\n", aPinNumber);  

       fclose(myFileDescriptor);  

       // Setting direction of the pin (pin mode)  
     sprintf(myNodeName, "/sys/class/gpio/gpio%d/direction", aPinNumber);  

       if((myFileDescriptor = fopen(myNodeName, "w")) == NULL)  
     {  
        printf("Error: can't open pin direction for node %s\n", myNodeName);  
        return false;     
     }  

       if(aPinMode == OUTPUT)  
     {  
        fprintf(myFileDescriptor, "out\n");  
     }  



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

252

     else  
     {  
        fprintf(myFileDescriptor, "in\n");  
     }  

       fclose(myFileDescriptor);  

       return true;  
  }  

        Listing 15-10.    The  digitalWrite() Function     

  bool digitalWrite(int aPinNumber, int aPinValue)  
  {  
     FILE * myFileDescriptor;  
     char myNodeName[128];  

       // Open pin value file  
     sprintf(myNodeName, "/sys/class/gpio/gpio%d/value", aPinNumber);  

       if((myFileDescriptor = fopen(myNodeName, "w")) == NULL)  
     {  
        printf("Error: can't open pin value for node %s\n", myNodeName);  
        return false;  
     }  
     if(aPinValue == HIGH)  
     {  
        fprintf(myFileDescriptor, "1\n");  
     }  
     else  
     {  
        fprintf(myFileDescriptor, "0\n");  
     }  

       fclose(myFileDescriptor);  

       return true;     
  }  

        Listing 15-11.    The  digitalRead() Function     

  int digitalRead(int aPinNumber)  
  {  
     FILE * myFileDescriptor;  
     char myNodeName[128];  
     char myResultValue[2];  

       // Open pin value file  



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

253

     sprintf(myNodeName, "/sys/class/gpio/gpio%d/value", aPinNumber);  

       if((myFileDescriptor = fopen(myNodeName, "r")) == NULL)  
     {  
        printf("Error: can't open pin value for node %s\n", myNodeName);  
        return false;  
     }  

       fgets(myResultValue, 2, myFileDescriptor);  

       fclose(myFileDescriptor);  

       return atoi(myResultValue);  
  }  

         Listing 15-12.    The  analogRead() Function     

  int analogRead(int aPinNumber)  
  {  
     FILE * myFileDescriptor;  
     char myNodeName[64];  
     char myResultValue[8];  

       // open value file  
      sprintf(myNodeName, "/sys/devices/12d10000.adc/iio:device0/in_

voltage%d_raw", aPinNumber);  

       if((myFileDescriptor = fopen(myNodeName, "r")) == NULL)  
     {  
        printf("Error: can't open analog voltage value\n");  
        return 0;  
     }  

       fgets(myResultValue, 8, myFileDescriptor);  
     fclose(myFileDescriptor);  

       return atoi(myResultValue);     
  }  

     It is possible to simplify this code by combining some of these different examples 
into one function to set the GPIO pin mode before writing and eliminate the need for a 
separate configuration function call. This would make the pins automatically configure 
each time they are used, but this is wasteful if you want to write a series of values out 
through the same GPIO pin.  



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

254

     An Example 
 Once you have a library of low-level functions with simple names with which to access 
the hardware, your high-level application code will become less complex. The example 
in Listing  15-13  is based on the tutorial for reading a temperature sensor and exploits the 
 analogRead()  function to do the hard work. 

     Listing 15-13.    Read a Temperature  Sensor     

  int inputPin = 7;  

    int currentRun = 0;  
  const int MAX_RUNS = 10;  

    int main(void)  
  {  

       // Loop just 10 times  
     while(currentRun < MAX_RUNS)  
     {  
        // Acquire the value  
        int sensorVal = analogRead(inputPin);  

          // Output a message  
        printf("current sensor is %f\n", sensorVal);  

          // Increment the run counter  
        currentRun++;  

          // Wait for a  second    
        sleep(1);  
     }  
  }  

          Accessing Remote Systems with libCurl 
 Communicate with a remote system such as SAMI via an  HTTP:  or  REST  API interface. 
Use  wget  or   curl  commands   from the command line. If you link your C language 
application with the  libCurl  library by adding it to your project build instructions, you 
can access the low-level  curl  functions directly from your source code. Binding the 
library directly to your application is more efficient than delegating to a command line 
and the equivalent functionality is identical. Both  libCurl  and the  curl  command line 
support are pre-installed by default. 

 The   libCurl  client-side library   is thread-safe, fast, and IPv6 portable. Use the “easy” 
interface to make ARTIK applications communicate with SAMI programmatically. 



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

255

 Create a reference to the  curl  entity defined by  libCurl  and pass values to it. Ask 
it to execute the transaction with the remote system and dispose of it neatly at the end. 
Create a source file with the code shown in Listing  15-14  in it. Edit it with vi and save the 
code in the  my_application.c  file. 

     Listing 15-14.     Calling libCurl     

  // --- Include the header file to use libCurl from your source code  
  //     or you will see compiler errors:  
  #include <curl/curl.h>  

    // --- Define a variable to act as a handle (or pointer) to reference  
  //     the curl entity.  
  //     Create another to store the result string when you send the  
  //     curl call to action.  
     CURL *myCurlEntity;  
     CURLcode myCurlResult;  

    // --- Initialize the curl entity  
     myCurlEntity = curl_easy_init();     

    // --- Create a set of request headers  
     struct curl_slist *requestHeader = NULL;  

       char bearer[60]="";  

       requestHeader = curl_slist_append(requestHeader,  
                     "Content-Type: application/json");  

       sprintf(bearer, "Authorization: Bearer %s", device_token);  

       requestHeader = curl_slist_append(requestHeader, bearer);  

    // --- Create a request body to transmit to the remote system.  
  //     In this example, it is a SAMI transaction request  
  //     formatted with JSON data structures:  

       char requestBody[256]="";  

       sprintf(requestBody,"{\n  
       \"sdid\": \"%s\",\n  
       \"type\": \"message\",\n  
       \"data\": {\n  
             \"temperature\": %f                \n  
        }\n  
     }", device_id, temperature);  



CHAPTER 15 ■ PROGRAMMING IN C LANGUAGE

256

    // --- Now configure the options on the curl entity to make it ready:  
     curl_easy_setopt(myCurlEntity, CURLOPT_URL, samiUrl);  
     curl_easy_setopt(myCurlEntity, CURLOPT_HTTPHEADER, requestHeader);  
     curl_easy_setopt(myCurlEntity, CURLOPT_POSTFIELDS, requestBody);  
     curl_easy_setopt(myCurlEntity, CURLOPT_VERBOSE, 1L);  

    // --- Make the call and capture the result:  
     myCurlResult = curl_easy_perform(myCurlEntity);  

    // --- Handle an error if there was one:  
     if (myCurlResult != CURLE_OK)     
     {  
        fprintf(stderr, "curl_easy_perform() failed: %s\n",  
        curl_easy_strerror(myCurlResult));  
     }  

    // --- Free up the memory allocated to the headers when they were created  
  //     and clean up any other internal storage managed by the libCurl tools:  
     curl_slist_free_all(requestHeader);  

       curl_easy_cleanup(myCurlEntity);  

     Now your  libCurl -based application is ready to be built. Compiling and linking your 
application to include the  libCurl  library is done by adding a library option to the linker 
command, like this: 

   gcc my_application.c -o my_application –lcurl  

         Summary 
 Although this chapter discusses the GPIO and other peripherals from the perspective 
of a C-language program, because they are presented through a virtual file system, they 
can be accessed by any language or programming tool that can operate on a file. Node.
js, Python, shell scripts, or even raw command-line  echo  tools can be used to access the 
GPIO pins. 

 The closer you get to the “bare metal” when programming, the more efficiently your 
applications will run. Developing ARTIK applications natively in C language is almost 
the most efficient coding method. Writing ARM assembler code specifically for the kind 
of ARM CPU you have is arguably better. Modern compilers are very adept at optimizing 
the code they compile. It is unlikely you would do a better job if you wrote the assembly 
language code yourself. The C language is a good choice for ease of coding versus 
performance, memory footprint, and access to ARTIK internals. 

 The companion Apress  ARTIK Reference Guide  describes techniques to exploit the 
capabilities of the C-language compiler to make your code easier to maintain and port to 
different variants of the ARTIK modules.     



257© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_16

    CHAPTER 16   

 Programming with Node.js           

      Developing   with Node.js 
 The ARTIK modules are equipped with a Node.js interpreter as part of the standard OS 
configuration. Use the Node.js tool to run applications written in JavaScript directly inside 
your ARTIK module. Because it is an open-source project, there are installable runtime 
environments for all current development platforms. Figure  16-1  shows the Node.js logo.  

 Using Node.js may be an attractive solution for creating experimental applications 
very quickly, as the learning curve is easy and there are a lot of people out there who 
know how to code JavaScript. JavaScript has had a lot of work done on it to improve its 
performance and capabilities. It is useful for prototyping your designs to test out your 
ideas. If the performance is good enough then it could be shipped in that form, subject 
to a risk analysis to test it for security. Otherwise, rewrite the critical performance and 
security parts in a more suitable compiled language and run them as a native application. 
Find out more about Node.js here: 

   https://nodejs.org/en/about/     
    https://en.wikipedia.org/wiki/Node.js      
    https://nodejs.org/api/      

   The  JavaScript interpreter   inside Node.js is based on the Google V8 engine 
(See Figure  16-2 ).  

  Figure 16-1.    Node.js  logo         

 

https://nodejs.org/en/about/
https://en.wikipedia.org/wiki/Node.js
https://nodejs.org/api/


CHAPTER 16 ■ PROGRAMMING WITH NODE.JS

258

 It is important to know the provenance of the JavaScript interpreter you are using, 
because there are many different implementations. This fragmentation results in different 
functionality being available on each interpreter. Find out what features are supported by 
your JavaScript interpreter so as to avoid depending on unsupported functions or objects. 
Read about the Google V8 JavaScript interpreter here: 

    https://en.wikipedia.org/wiki/V8_(JavaScript_engine)      
    http://code.google.com/p/v8      

   JavaScript is based on ECMAScript at its core, and there are several versions 
published by the European Computer Manufacturers Association (ECMA). JavaScript 
interpreter developers then layer additional functionality on top of that, some of which 
is proprietary. Some JavaScript language support is based on W3C specifications that 
describe bindings between the language and the Document Object Model (DOM), and 
interpreters may support experimental features that are currently being worked on by 
the standards organizations. Propriateray V8 features are defined by Google. Often, you 
will see interpreter owners declare that their product is standards compliant, but this is 
an opaque description unless the specific standards are enumerated. This statement is 
technically true if the interpreter is only compliant with ECMAScript or W3C but is not 
necessarily completely supportive of any others. 

 The Node.js runtime environment compiles the JavaScript down to executable machine 
code that runs directly in the CPU. This is very efficient, and your code will run extremely fast 
compared with the traditional way of interpreting JavaScript line by line at runtime.  

     The Architectural Design 
 The Node.js  architecture   is event driven, and its I/O calls are all designed to be non-blocking. 
Scripts will not halt while they wait for incoming data. Instead of waiting, scripts register 
an event to be called when the incoming data is ready to be accessed. This is essentially 
like AJAX programming in a web page. Learn about the different coding strategies so as to 
understand this paradigm. This behavior is different than that of a linear coding strategy 
where everything is a nested function call on a stack. In this scenario, your event-handling 
code can be called at any time and in any order, none of which is under your control. 

  Figure 16-2.     Google V8 logo         

 

https://en.wikipedia.org/wiki/V8_(JavaScript_engine)
http://code.google.com/p/v8


CHAPTER 16 ■ PROGRAMMING WITH NODE.JS

259

Your event handler will only be called after you have made a request that it listens for. 
The timing and order of calls back to your event handlers cannot be predicted, because 
they are dependent on the duration of a request-return loop on a remote resource. This 
architectural design allows a Node.js application to run as if it were a real-time web app.  

      Compiled Binary Code   
 Unlike the GCC-complied C-language approach, your JavaScript code needs to be executed 
in Node.js every time you want to run it. Internally, the Google V8 engine will compile the 
JavaScript into machine code, but you cannot save this as a compiled application because it 
happens at runtime inside the interpreter and is discarded after use. 

 There is a command-line tool called  nexe  that is in an early stage of development. It 
will compile your Node.js code into an executable binary, but there is still a lot of work to 
be done before it is finished. Find out more here: 

    https://github.com/jaredallard/nexe      

        Checking the Version of Your Node.js Installation 
 Before starting  to   build applications either directly in Node.js by itself or combined with 
Temboo, your Node.js interpreter should be installed and working properly on your 
ARTIK. Version 0.8.0 or later is needed in order for Temboo to work correctly. You should 
have Node.js installed already as part of the ARTIK base operating system, but it might 
need updating. According to the Node.js release summary and downloads page, there 
are much later versions of Node.js available. Before installing a later version, you should 
make a note of the currently installed version so you can reinstate it later if necessary. The 
authoritative list of releases is available here: 

    https://nodejs.org/en/download/releases/      

   Follow these  instructions   to check what version of Node.js you have:

    1.    Type the following command to see what version of Node.js 
you have: 

   node -v  

        2.    You should see this output or something similar: 

   v0.10.36  

        3.    If your version is lower than 0.8 or if you know there is a later 
version of Node.js than the one you already have, you can 
download new versions at the following URL. Navigate into 
the release folder on the web server for known good and stable 
builds. The  npm  tool is included in the installer by default: 

    http://nodejs.org/download/      

https://github.com/jaredallard/nexe
https://nodejs.org/en/download/releases/
http://nodejs.org/download/


CHAPTER 16 ■ PROGRAMMING WITH NODE.JS

260

       4.    If you are installing Node.js on your Windows development 
workstation without intending to run your code as a 
command line script in Cygwin, then get an MSI installer for 
the Node.js runtime instead.  

    5.    Mac OS X users can use a packaged installer as an alternative 
to running a command-line install script. That installer 
package is also available at the download site. Get more help 
installing Node.js here: 

    http://nodejs.org/      
    http://www.thegeekstuff.com/2015/10/install-nodejs-npm-linux/      
    https://nodejs.org/en/download/package-manager/      

            Extending Node.js 
 The Node.js interpreter  has   useful utility libraries included by default. Extend it by adding 
other packages. The Node Package Manager (NPM) gathers those packages from the 
repositories where they are hosted, downloads them, and installs them so they are ready 
for you to include in your projects. 

     Installing  NPM   
 Your ARTIK should come with the Node Package Manager already installed, but if it is not 
there or if you want to upgrade it, follow these steps to download a script using the  curl  
command. That script is executed right away to install NPM for you. It carries out various 
checks along the way and reports any show-stopping errors for you to fix before running 
it again:

    1.    Log in to your ARTIK from the terminal.  

    2.    Check the version of NPM you have with this command: 

   npm version  

        3.    To install NPM, type the following command exactly. This 
should also work on a Linux or Mac OS X workstation if you 
want to build a test environment. You should also be able to 
run it within Cygwin on Windows: 

   curl -L https://www.npmjs.com/install.sh | sh  

        4.    The script figures out what kind of environment you have for 
executing scripts.  

    5.    It checks the NPM configuration settings in case they have 
already been set up. If they have, the existing values are 
preserved for reinstatement after the install is done.  

http://nodejs.org/
http://www.thegeekstuff.com/2015/10/install-nodejs-npm-linux/
https://nodejs.org/en/download/package-manager/


CHAPTER 16 ■ PROGRAMMING WITH NODE.JS

261

    6.    The installer script then checks to see whether you already 
have Node.js installed. It must be present before running this 
 NPM  installer script again. Some Node.js installers will install 
NPM for you anyway. Pausing at this point and reinstalling 
Node.js might accomplish the same thing you are trying to do 
and update your Node.js interpreter at the same time.  

    7.    Because this script is designed to work in all operating 
systems, it then checks to see if the  tar  utility for unpacking 
archives is available.     

    8.    The script will build directly from source files. It checks for the 
availability of the  make  tools before trying to use them.  

    9.    Having earlier established that Node.js is installed, the script 
checks to see if your version is high enough and warns you 
accordingly if it does not meet the required specification.  

    10.    The script figures out which NPM installer version to 
download based on a compatibility table it requests from the 
repository.  

    11.    The appropriate archived installer package is downloaded 
and unpacked before building and installing the contents.     

 ■  Note On the Beta version of the ARTIK modules, this installation process fails because 
the installer script tries to use the UNIX  which  command to locate the node interpreter. 
Because that command is not present in this ARTIK version, the test fails and the installer 
thinks that Node.js is not installed, even though it is. You may need to explore other ways to 
install NPM if you need it on your ARTIK module. More details are available here: 
   https://nodejs.org/en/download/package-manager/       

     Node Packages and  Modules   
 Once you have NPM installed and working, you can use it to manage your Node.js toolkit. 
Check to see what modules you have installed with this command: 

   npm ls  

    Install a node package if you need it with this command: 

   npm install {package_name}  

https://nodejs.org/en/download/package-manager/


CHAPTER 16 ■ PROGRAMMING WITH NODE.JS

262

    Find out more about NPM and the packages available for download with it here: 

    https://www.npmjs.com/      
    https://docs.npmjs.com/      
    https://github.com/npm/npm/wiki/Troubleshooting      

        Installing the WebSocket Module 
 The  WebSocket module   is required to develop applications with Node.js and transmit 
data to SAMI. Install the WebSocket module with this command: 

   npm install ws  

          Let’s Write Some Node.js Code 
 Now that the Node.js and NPM tools are all up to scratch, your ARTIK is ready to run 
JavaScript-based code. Follow these steps to build and run a  Hello World application   in 
Node.js:

    1.    Open a terminal window on your ARTIK module.  

    2.    Use the vi editor to create a file called  hello_world.js .  

    3.    Put this code into the file: 

   console.log("Hello World!");  

        4.    Save the file and quit out of the vi editor.  

    5.    Run your code in Node.js with this command: 

   node hello_world.js  

        6.    You should see the text  "Hello World!"  echoed on your 
console screen.     

 Get more learning resources online. There are lots of books available to teach you the 
fine points of Node.js programming. If you already have experience developing JavaScript 
in web pages, then you have a head start. This is a different context, however, and some 
techniques from web-page building are not appropriate while others will be unfamiliar.     

     Reading a Pin Voltage with Node.js 
 To read a pin  voltage  , locate the address of the analog-to-digital convertor (ADC) for 
the pin you want to read. Include the pin number within the virtual file-system path you 
compose: 

   /sys/devices/12d10000.adc/iio:device0/in_voltage{pin_number}_raw  

https://www.npmjs.com/
https://docs.npmjs.com/
https://github.com/npm/npm/wiki/Troubleshooting


CHAPTER 16 ■ PROGRAMMING WITH NODE.JS

263

    The complete path to the input for pin 7 is this: 

   /sys/devices/12d10000.adc/iio:device0/in_voltage7_raw  

    The  sysfs  virtual file-system base address for analog pins is different for the ARTIK 5 
and 10 modules. Note the different hex-coded hardware addresses. Table  16-1  shows the 
alternative file-system locations.  

 Because this value is accessible as a virtual file, it can be exploited very easily with 
the Node. fs  extension module in your ARTIK. The result is logged to the console output 
on your ARTIK. Listing  16-1  shows some example Node.js code for an ARTIK 5. Modify 
the file path to accommodate the different base path for an ARTIK 10. 

     Listing 16-1.    Node.js Example   

  // Load the file-system support module  
  var fs = require('fs');  

    // Define the path to the analog pin  
  var myVirtualFile = "/sys/devices/12d10000.adc/iio:device0/in_voltage7_raw";  

    // Callback function to process output  
  function logTheOutput(err,data)  
  {  
     console.log(data);     
  }  

    // Asynchronously read the pin voltage with this function  
  function readPinVoltage()  
  {  
     fs.readFile(myVirtualFile,'utf8', logTheOutput);  
  }  

    // Run the interval timer every second  
  setInterval(readPinVoltage,1000);  

     Save this script as  read_pin_7.js  and then run it with this Node.js command: 

   node read_pin_7.js  

   Table 16-1.     Analog Pin Addresses     

 Module  Virtual File System Address 

 ARTIK 5   /sys/devices/12d10000.adc/iio:device0/in_voltageX_raw  

 ARTIK 10   /sys/devices/126c0000.adc/iio:device0/in_voltageX_raw  



CHAPTER 16 ■ PROGRAMMING WITH NODE.JS

264

         Sending Data to SAMI with Node.js 
 This can get complicated when you combine multiple connections. Fortunately, there is a 
very good blog article by Martin Kronberg that shows you how to do just that and provides 
sample code. The main blog article describes how to read the analog input pins and links 
to another page that describes how to create a manifest. The sample code is hosted on Git. 
This approach builds JavaScript Object Notation (JSON) formatted messages for dispatch to 
the remove service. Here are the URLs where you can download the code: 

    https://www.hackster.io/martinkronberg/artik10-sami-eab8f7      
    https://www.hackster.io/monica/getting-started-with-sami-grove-weather-
station-e0b4e3      
    https://github.com/martinkronberg/node-code/blob/master/read_and_send_to_
sami.js      

   Here is a step-by-step guide to registering a new device with SAMI:   

    1.    Sign on to the SAMI developer portal with your Samsung 
account: 

    https://devportal.samsungsami.io/      

       2.    Add a new SAMI device type where the manifest can live.  

    3.    Input the human-readable name to describe it.  

    4.    Give it a unique name that you know does not exist 
anywhere else.  

    5.    Add a data field to describe the data you intend to transmit. 
Use temperature value, as shown in the example.  

    6.    Define the data type.     

    7.    Click the Next button.  

    8.    Save the new manifest.  

    9.    Open another browser window.  

    10.    Sign on to the SAMI user portal with your Samsung account: 

    https://portal.samsungsami.io/      

       11.    Connect to a new device.  

    12.    Enter the details of the manifest you just created.  

    13.    Generate a SAMI device token.  

    14.    Make a note of the device ID that is displayed. You will need 
this shortly.  

https://www.hackster.io/martinkronberg/artik10-sami-eab8f7
https://www.hackster.io/monica/getting-started-with-sami-grove-weather-station-e0b4e3
https://www.hackster.io/monica/getting-started-with-sami-grove-weather-station-e0b4e3
https://github.com/martinkronberg/node-code/blob/master/read_and_send_to_sami.js
https://github.com/martinkronberg/node-code/blob/master/read_and_send_to_sami.js
https://devportal.samsungsami.io/
https://portal.samsungsami.io/


CHAPTER 16 ■ PROGRAMMING WITH NODE.JS

265

    15.    Make a note of the device token that is displayed. You will 
need this shortly.  

    16.    Install and use the WebSocket module with NPM if necessary: 

   npm install ws  

        17.    Define the path to the WebSocket API in a global variable: 

   var webSocketUrl = "wss://api.samsungsami.io/v1.1/
websocket?ack=true";  

        18.    Define your device ID in a global variable to use it wherever 
you need it: 

   var device_id = "{your_device_ID}";  

        19.    Define your device token in a global variable: 

   var device_token = "{your_device_token}";     

        20.    Your script can now load up the WebSocket module and 
create a new object with it: 

   var WebSocket = require('ws');  

        21.    Make a new connection and add logging callbacks for when 
the socket is opened and closed, and for when a message 
arrives: 

    ws = new WebSocket(webSocketUrl);  

    ws.on('open', function()  
  {  
     console.log("WebSocket connection is open ....");  
     register();  
  });  

    ws.on('message', function(data, flags)  
  {  
     console.log("Received message: " + data + '\n');  
  });  

    ws.on('close', function()  
  {  
     console.log("WebSocket connection is closed ....");  
  });  



CHAPTER 16 ■ PROGRAMMING WITH NODE.JS

266

         22.    Build a message to register the device with SAMI: 

   var registerMessage = '{"type":"register", 
"sdid":"'+device_id+'",   
  "Authorization":"bearer '+device_token+'", 
"cid":"'+getTimeMillis()+'"}';  

        23.    Send the registration request: 

   ws.send(registerMessage, {mask: true});  

        24.    Make a timestamp to use with the data message: 

   ts = ', "ts": '+getTimeMillis();     

        25.    Build the payload data body as a simple JSON message: 

   payload_data = {"button": button, "light": light};  

        26.    Wrap the payload data body in a SAMI message envelope: 

   var payload = '{"sdid":"'+device_id+'"'+ts+', "data":’+   
  JSON.stringify(payload_data)+', "cid":"'+getTimeMillis()+'"}';  

        27.    Send the data message: 

   ws.send(payload, {mask: true});  

        The fundamentals of sending messages to SAMI are not hugely complex. Download 
and inspect the Node.js example source code from the blog article to see these calls in 
context.  

     Summary 
 The Node.js approach is a neat way to get started with developing prototype applications 
to run in your ARTIK. This is most appropriate when you come from a web development 
background and do not yet know how to code in C language. You may already know how 
to code in JavaScript. There are special considerations and new functionality to grasp, 
however. You will also have to extend your repertoire of JavaScript coding skills as you are 
no longer writing code that runs within a web page; it runs in an application container. 
More importantly, you may not have a display on which to present things. Function calls 
you are familiar with for debugging, such as  alert() , are problematic because there is no 
display surface for you to see them on. Access to files for input and output becomes much 
more important.     



267© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_17

    CHAPTER 17   

 Programming with Python           

      Developing   with Python 
 The Python interpreter is installed as a standard part of the ARTIK operating system. 
You can run your Python-based applications directly inside the  ARTIK module   without 
needing to install additional software. Upgrade the Python interpreter as new versions 
become available. Figure  17-1  shows the Python logo.  

 Python is one of the most popular programming languages. Each language has 
strengths and weaknesses and is useful for particular kinds of logic design. Choosing the 
right language depends on the kind of problem you are trying to solve. If you choose the 
wrong one or you only ever use one language for everything, you might be making a lot 
more work for yourself. 

 ■   Note   If the only tool in your toolbox is a hammer, everything looks like a nail. To put it 
another way, hammering wood screws into pine boarding as if you were using nails to hold 
it together will create a very nasty looking piece of furniture.  

 Python is designed to be useful for general-purpose development. It sets out to 
require fewer lines of code to create your application than the equivalent C++ language 
or Java source code would require. Python encapsulates things like file access as objects. 
Use  object-oriented design   or the more traditional procedural approach with Python 
depending on your architectural needs. 

 If there are any caveats to using Python, they are much the same arguments as for 
using Node.js. Because this is an interpreted language, the performance will be limited 
when compared to a compiled language such as C. The raw source of your code is visible 

  Figure 17-1.    Python  logo         

 



CHAPTER 17 ■ PROGRAMMING WITH PYTHON

268

to intruders. That will at the very least give them clues about the deeper parts of your 
product, even if they cannot gain sufficient permissions to alter your code. A fundamental 
rule of thumb is to prototype in interpreted code but ship compiled applications to make 
things inherently more secure and performant.    

 Python is probably best suited to building script frameworks with which to call 
up compiled components. Use it in place of conventional shell scripts if they are not 
capable of implementing the kind of logic you need. Prototyping your application logic in 
Python before incorporating it into compiled code can save you some development time, 
because you can compose your experimental code and run it directly without needing a 
build process.  

     Checking Your Python Interpreter 
 The Python  interpreter   is installed by default on your ARTIK module. Follow these 
instructions to see what version of Python you have installed:

    1.    Request the version: 

   python --version  

        2.    You should see something like this: 

   Python 2.7.10  

        The version you have in a production ARTIK may be later than this version, which 
was installed in a Beta prototype ARTIK 5 module.  

     Installing the Python Package Manager    
 Enhance Python by adding  extension   libraries. This is much easier to do if you have the 
pip package manager installed. Follow these instructions to install pip:

    1.    Open a terminal window and log in to your ARTIK command 
line.  

    2.    Type this command exactly: 

   wget https://bootstrap.pypa.io/get-pip.py  

        3.    The  wget  command downloads the  get-pip.py  script. This 
script contains a self-loading archive of the latest version of 
the pip installer.  

    4.    Now run the self-loading installer: 

   python get-pip.py  



CHAPTER 17 ■ PROGRAMMING WITH PYTHON

269

        5.    The installer locates the blob of encoded binary code and 
extracts it to a temporary file.  

    6.    The installer unpacks the archive and installs the pip tools.  

    7.    At the end of the process, the self-loading installer cleans up 
the temporary files automatically. If necessary, remove the 
 get-pip.py  script yourself with this command: 

   rm get-pip.py  

             Installing Python  Packages   
 Once you have pip installed, use it to install new packages: 

   pip install {some_package_name}  

    The pip utility can also remove packages you no longer need, like this: 

   pip uninstall {some_package_name}  

    Conditionally install different packages based on the version of Python you have 
installed. Get more information about PIP here: 

      https://en.wikipedia.org/wiki/Pip_(package_manager)       

    Use pip to access the Python Package Index. This has extension packages uploaded 
by Python developers all over the world. Before starting to write an extension yourself, 
check the index to see if it has already been done: 

      https://en.wikipedia.org/wiki/Pip_(package_manager)       
     https://pypi.python.org/pypi       
     https://python-packaging-user-guide.readthedocs.org/en/latest/       

         Run a Simple Python Test 
 It is time to write a small test application to exercise Python. Just enough to prove that it 
works. In fact, the Python interpreter was already tested thoroughly by using it to install 
the pip package manager. Follow these steps to build and run a  Hello World application   
in Python:

    1.    Open a terminal window on your ARTIK module.  

    2.    Use the vi editor to create a file called  hello_world.py .  

    3.    Put this code into the file: 

   print "Python says Hello World!"  

https://en.wikipedia.org/wiki/Pip_(package_manager)
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://pypi.python.org/pypi
https://python-packaging-user-guide.readthedocs.org/en/latest/


CHAPTER 17 ■ PROGRAMMING WITH PYTHON

270

        4.    Save the file and quit out of the vi editor.  

    5.    Run your code in Python with this command: 

   python hello_world.py  

        6.    You should see the text “ Python says Hello World! ” echoed 
on your terminal screen.     

 Get more learning resources online. There are lots of books available to teach you 
 Python programming.    

     Reading a Pin  Voltage   with Python 
 To read a pin voltage, locate the address of the  analog-to-digital convertor (ADC)      for 
the pin you want to read. Include the pin number within the virtual file-system path you 
compose: 

   /sys/devices/12d10000.adc/iio:device0/in_voltage{pin_number}_raw  

    So the complete path to the input for pin 7 is this: 

   /sys/devices/12d10000.adc/iio:device0/in_voltage7_raw  

    The  sysfs  virtual file-system base address for analog pins is different for the 
ARTIK 5 and 10 modules. Note the different hex-coded hardware address. Table  17-1  
shows the alternative file-system locations:  

 Because this value is accessible as a virtual file, it can be exploited very easily with 
Python, which has a similar file I/O sub-system to ANSI-standard C language. Listing  17-1  
shows a snippet of Python code for an ARTIK 5. Modify the file path to accommodate the 
different base path for an ARTIK 10, and then use the  write()  method on the file object 
to set pin values. Refer to chapter   15     for detailed guidance on GPIO pin functions and 
addresses and convert those into Python code for yourself. 

   Table 17-1.     Analog Pin Addresses     

 Module  Virtual File System Address 

 ARTIK 5   /sys/devices/12d10000.adc/iio:device0/in_voltageX_raw  

 ARTIK 10   /sys/devices/126c0000.adc/iio:device0/in_voltageX_raw  

http://dx.doi.org/10.1007/978-1-4842-1952-2_15


CHAPTER 17 ■ PROGRAMMING WITH PYTHON

271

     Listing 17-1.    Python  Code Snippet     

  // Define the path to the analog  pin    
  myVirtualFile = "/sys/devices/12d10000.adc/iio:device0/in_voltage7_raw";  

    // Create a file object  
  target = open(myVirtualFile, 'r');  

    // Read the pin voltage (only eight characters required)  
  target.read(8);  

    // Dispose of the file  
  target.close();  

          Summary 
 Python is the last of the classic programming languages we will look at for now. Add 
Perl or other languages from open-source projects that you can cross-compile to run in 
the ARTIK. Interpreted languages will be easier to get working. Adding other compiled 
languages to the ARTIK or to your Eclipse IDE just requires that they can cross-compile 
into ARM executable code and that the right CPU model is supported. 

 The next goal is to deploy ARTIK applications in a production context and build 
an Internet of Things connected network. The first of these illustrations will use SAMI, 
because it is provided by Samsung and can be integrated with any language that can 
make an  HTTPS:  request. The other one is Temboo, which is a complete programming 
and deployment environment that exists online. Let’s look at SAMI first.     



273© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_18

    CHAPTER 18   

 Integrating with SAMI                          

     About SAMI 
 The ARTIK operating system comes with a suite of tools that implement the Samsung 
SAMI interface. You can share data from each ARTIK with other networked devices 
through the SAMI data exchange. Figure  18-1  shows the SAMI logo.  

  Figure 18-1.     Samsung SAMI logo         

 SAMI reconciles the behavior of all your IoT devices in order to exchange compatible 
data regardless of who developed the devices. This interoperability and security are based 
on data-driven development. The data format and transformations are described in a 
manifest, which decouples the framework from hard wiring the support for different 
devices. SAMI is also extensible enough to support new and as yet unknown devices. 

 



CHAPTER 18 ■ INTEGRATING WITH SAMI

274

When designing a new product idea, think beyond single, self-contained devices. Data 
belonging to different users and devices can be shared to a much greater extent when 
you aggregate the data with hub like SAMI. Rule-based configurations can then trigger 
actions. The SAMI data exchange then becomes much more than a simple data-
conversion nexus. Samsung describes this as data fusion, and it is a key enabler of what 
you can do with your ARTIK. 

 Designing the SAMI capabilities into your applications is possible no matter what 
language you use to develop them. The  REST  API  interface      that SAMI supports is easy 
to access with a simple web request that is already available in all languages, or can be 
added very easily. 

 Read these Samsung blog articles for more examples of how to integrate SAMI with 
your projects: 

     https://blog.samsungsami.io/topics/data/        

         What Is SAMI? 
 Because SAMI is a data-driven development platform with simple open API endpoints 
and SDK libraries, it can send and receive diverse data, regardless of the source. The 
SAMI tools integrate applications and hardware to exchange data in order to enrich the 
user experience. Your smartphone can share data with wearable devices built with an 
ARTIK module, and both can transmit data that is then imported into another device 
at your workplace or home. Figure  18-2  shows the various data flows that transfer 
information between devices, users, and the  SAMI data exchange  .  

SAMI

Cloud Storage & Brokerage

Privacy Management

Ingestion APIs
(REST & WebSockets)

Web & Mobile
Clients

Query APIs

Firehose APIs
(real-time data)

Users

3rd Party Apps
& Services

Sensors, Wearables
& Devices

Store Results

EULA & Privacy

  Figure 18-2.    SAMI  data flows         

 SAMI is a data-exchange platform that enables any online device, ARTIK module, or 
attached sensor to push data to the cloud for aggregation with data from other devices. 

 

https://blog.samsungsami.io/topics/data/


CHAPTER 18 ■ INTEGRATING WITH SAMI

275

 SAMI is open and agnostic. To save data or send a message to the cloud, do it in 
the format most convenient to you. SAMI will do the work of interpreting it, and it can 
interoperate with other manufacturers’ devices. 

 This foundation is powerful enough that the Samsung SmartThings Open Cloud 
ecosystem has been built on top of it.  

     Interacting with SAMI 
 There is a variety of ways to interact with SAMI. As a developer, adding SAMI support to 
your devices and software applications is easy. You introduce those products to SAMI via 
the  Developer Portal  , which is a web-based user interface to the SAMI registry. End users 
can register their SAMI-compatible devices and applications with their personal account 
via the  User Portal  . This is a web-based dashboard where the aggregated data flowing 
between your SAMI-compatible devices and applications is managed. Only the devices 
and applications that you register with your account will contribute to this aggregated 
data set. Both portals require a Samsung account to log in. You should create one as soon 
as you can. Instructions are provided in Chapter   4     (“Understanding Security”). The 
signup process is simple. Find out more about the User and Developer ortals here: 

     https://developer.samsungsami.io/sami/sami-documentation/
developer-user-portals.html        

         How SAMI Works 
 SAMI defines a new paradigm for developers to create services and applications. It offers 
a new dimension that thinks beyond a single device and also enables developers to 
connect and analyze all sorts of data. This is called  data-driven development      (D3).

•    Client applications can access and aggregate historical data from 
different sources, thus opening a new perspective on big data.  

•   Client applications that subscribe to a WebSocket can receive data 
in real-time, enabling different modules and applications to talk 
to each other.  

•   SAMI gives users complete control over their data. By granting 
access to modules and applications, users promote an ecosystem 
of services around data.  

•   Through the definition of a manifest, developers can support 
diverse modules and data.          

 Use SAMI to track any kind of device, from health and fitness trackers to home 
appliances and fixtures. Control your data by toggling access with simple on/off switches. 
Grant permissions based on your devices or on the applications you use. Watch your data 
as it is collected with the live views. The SAMI dashboard provides elegant, attractive, and 
easy-to-use data-visualization tools that make it simple to track your data. 

http://dx.doi.org/10.1007/978-1-4842-1952-2_4
https://developer.samsungsami.io/sami/sami-documentation/
developer-user-portals.html
https://developer.samsungsami.io/sami/sami-documentation/
developer-user-portals.html


CHAPTER 18 ■ INTEGRATING WITH SAMI

276

 The core services in SAMI are flexible in working out what kind of data you are 
transmitting and process whatever data or message format you use. The transactions are 
all sent and received in real-time (subject to the limitations of your network).  

     SAMI  Developer Documentation   
 Sign up for a Samsung account and log in to the Developer Portal. Your account will give 
you access to the supporting SAMI documentation here: 

     https://developer.samsungsami.io/sami/sami-documentation/        

    The documentation is organized into sections so as to navigate it more easily:

•    Overview of all the component parts of the SAMI system  

•   The API specification  

•   Descriptions of native SDK libraries to help you build applications 
in a variety of languages  

•   Tools and tutorial exercises as examples  

•   Sample projects  

•   FAQs     

     Security 
 When you use SAMI for data aggregation, the device setup takes advantage of the  security 
features   that SAMI provides. SAMI supports secure device registration to ensure secure 
communication to and from devices:

•    The device is checked against the registration to ensure it is 
genuine.  

•   The device owner can be challenged to verify that they have the 
device in their hand.  

•   Every message exchanged between the device and SAMI 
is verified.  

•   The security certificate cannot be forged or copied because it 
is managed by the ARTIK Embedded Secure Element (ESE) 
technology.    

 If you are a device manufacturer, follow these steps to create your own secure 
device – type manifests:

•    Obtain a client certificate for your device type.  

•   Obtain an access key for your device type.  

https://developer.samsungsami.io/sami/sami-documentation/


CHAPTER 18 ■ INTEGRATING WITH SAMI

277

•   Use the Developer Portal to update and manage your device type 
to support secure device registration.  

•   Implement software logic in your device for secure registration 
with SAMI.  

•   Implement software logic in your device for secure message 
exchange with SAMI.    

 Read the following guidance in the developer documentation for more detailed 
instructions on how to secure your devices: 

     https://developer.samsungsami.io/sami/sami-documentation/
secure-your-devices.html        

         Authentication 
  Authentication      within the SAMI ecosystem is very simple. It describes just two privileges: 
read data from SAMI entities or write new data to them. Removing both permissions 
effectively puts your device or application offline. Grant both permissions if necessary. 
Without these permissions you are prohibited from using the SAMI API calls. 

 User accounts can access data that they own without any additional permissions. An 
administrative user account can be granted limited permission to manipulate data owned 
by other user accounts on their behalf. 

 Users can grant permissions to applications to share information with the 
application about the user profile and registered devices list.  

     Messages 
  Messages transport   the data that is incoming from devices. SAMI treats applications 
as if they were devices from the data-messaging perspective. Functionally, it makes no 
difference how the message originated since it ends up in the same place and is described 
in the same way. Messages may also describe outgoing data that SAMI dispatches to a 
remote device. Messages are tagged with the following identifying metadata, which is 
carried as a payload:

•    Device ID  

•   User ID  

•   Application ID    

 The metadata assists in the browsing and filtering of messages when aggregating 
them to produce timeline tables and charts. 

https://developer.samsungsami.io/sami/sami-documentation/
secure-your-devices.html
https://developer.samsungsami.io/sami/sami-documentation/
secure-your-devices.html


CHAPTER 18 ■ INTEGRATING WITH SAMI

278

 You may want to impose rate-limiting constraints on your messaging traffic, which 
helps improve performance overall. You do not want to flood your SAMI account with 
unnecessary traffic, which would deny the service to new traffic if it is too busy handling 
incoming data to aggregate it for feedback before the next arrival. Apply limits to the 
throughput based on these criteria:

•    Per user  

•   Per  device    

•   Per application    

 Read more about message traffic, send/receive logic, and rate limiting here: 

     https://developer.samsungsami.io/sami/sami-documentation/rate-limiting.html     
   https://developer.samsungsami.io/sami/sami-documentation/
sending-and-receiving-data.html     
   https://developer.samsungsami.io/sami/sami-documentation/
data-collection-with-trials.html                

         User 
 A SAMI user is represented by a Samsung account. Create these  users   yourself whenever 
you need them. If you are developing and testing, you may want to create one account 
for development and another for testing as if you were an end user. Or perhaps you want 
to segregate user accounts so they are only used for testing a sub-set of your ARTIK- and 
SAMI-based products. Carefully document your account setups to avoid confusion later 
on about why you created them. Documenting everything should become a habit. 

 ■   Note    Making plenty of notes will pay dividends later on when you need to come 
back to something and work on it again. It also helps to clear the mind of distractions.
Documenting some work after it is completed also walks through the process again in your 
mind and may reveal something you forgot to do.   

     User ID 
 This is the identifying value that must be unique on the SAMI system in order to connect 
with a specific Samsung user account. Incoming messages will be associated with this 
account via their metadata. Only those messages that are tagged with this user ID are 
considered to be a part of the aggregated data set for this user. 

 Applications can quote this  user ID   to acquire the public parts of the user profile and 
device list. With that information, they can then create and manage an application profile 
for that user.  

https://developer.samsungsami.io/sami/sami-documentation/rate-limiting.html
https://developer.samsungsami.io/sami/sami-documentation/
sending-and-receiving-data.html
https://developer.samsungsami.io/sami/sami-documentation/
sending-and-receiving-data.html
https://developer.samsungsami.io/sami/sami-documentation/
data-collection-with-trials.html
https://developer.samsungsami.io/sami/sami-documentation/
data-collection-with-trials.html


CHAPTER 18 ■ INTEGRATING WITH SAMI

279

     Devices 
 Developers create devices and describe them using the device-type manifests. Your end 
users purchase or obtain these devices in many different ways, but each must make sure 
that their own personal, unique device is paired with their own SAMI account. They must 
not be able to see someone else’s devices, nor should anyone else be able to see their 
devices. This pairing creates a unique one-to-one relationship that maps a device to a 
single SAMI account. SAMI devices can act as data sources. These  devices   will be one of 
the following types (or even a combination of them):

•    Sensor  

•   Appliance  

•   Application  

•   Service  

•   Hub    

 An ARTIK module might be a single stand-alone device with sensors that create 
feeds for SAMI to manage. Alternatively, that ARTIK module might be the front end for 
a collection of legacy devices, none of which could talk to SAMI on their own. In that 
scenario, the ARTIK module acts as an intermediary, and data appears to stream from 
the ARTIK but is actually forwarded on behalf of another (possibly much less smart) 
device. The legacy devices might be implemented as individual sensors belonging to an 
ARTIK module. 

 The following referenced blog articles go into much more detail about how to set up 
an ARTIK module as an aggregation hub and how to integrate that with SAMI: 

     https://blog.samsungsami.io/topics/security/        

         Device Type 
 A device  type   groups devices into categories. These identify a unique product type. 
Liken this to the model number for a production run of devices you have designed and 
manufactured. The device type only identifies a generic type of device, not a specific 
instance of it. This identifier allows properties and behaviors to be defined for all devices 
of the same type. 

 Develop private device types on SAMI, with security supported as the standard. Any 
data or message can be sent and received in real-time subject to the latency and speed of 
the network route between the remote entity and the SAMI server. 

 Samsung has created SDK libraries for many devices that already have manifests 
ready to access and use right away. This is useful at the outset and may provide all 
that you need. As your designs become more sophisticated, you may outgrow these 
prototypes. Add more of your own as you develop new and unique devices and 
applications. Create your own device types via your Developer Portal dashboard.  

https://blog.samsungsami.io/topics/security/


CHAPTER 18 ■ INTEGRATING WITH SAMI

280

     Device ID 
 A device  ID   describes a unique instance of a device type. Where the device type describes 
generic behaviors, the device ID identifies one of many devices in that family. Two 
ARTIK-based wearable devices would each have a different device ID even if they were 
both of the same device type. This identifier is fundamental to creating a Secure Device 
Registration (SDR). 

 Add new devices to your User Portal dashboard. As you create them, each one will be 
granted a specific and unique ID. As the user, you are responsible for keeping the name 
and description of that device up to date.  

     Applications 
 Applications can run inside an ARTIK-based product or in other contexts, such as 
workstations or devices made by other manufacturers. They all communicate with SAMI 
using API calls, just like any other SAMI-compatible device. 

 Build applications that can read historical and real-time data from any connected 
device. SAMI is a platform rich in API endpoints for managing user and device 
connectivity while you focus on your application design and feature set.  

     Application ID 
 Each  application   is assigned a unique identifier by SAMI when you create it in your User 
Portal dashboard. This ID value is used to acquire an OAuth2 access token. Without that 
token you cannot send a message to the SAMI system. You also need the user to have 
been granted access to your application first. 

 Each developer can request as many application identifiers as needed. Document 
them carefully as you acquire them to avoid mixing them up and embedding them into 
the wrong device.  

     OAuth2 Access Tokens 
 It is not necessary to deeply understand how  OAuth2   works.    It is a robust and proven 
security technology. It is used industry wide and is well maintained. It is embedded inside 
SAMI and creates access tokens that your application or device can use to authenticate 
the messages being transmitted inward to SAMI. Request a token and embed that in the 
messages you transmit. Tokens have a limited lifetime, and after a short while they will 
expire and cannot be reused. It makes sense to always request a new one at the start of any 
transaction-handling process.  

     Manifest 
 The internal  mechanisms   within SAMI must function in a predictable way. The  SAMI   
engineers cannot know in advance what you want to build or what kind of data you will 
transmit to SAMI. They would have had to incorporate data types and variable names that 
cover every potential developer’s needs. That is an impossible task. 



CHAPTER 18 ■ INTEGRATING WITH SAMI

281

 Instead, SAMI provides the means to map your data formats and descriptors to 
internal representations and gives you the tools and responsibility for managing that 
descriptive configuration. SAMI calls this a   manifest   . 

 Build a manifest to describe each of your own device types. In fact it is your responsibility 
to do this, because SAMI cannot do it for you. Register the manifest via your Developer 
Portal. After that, your users can select that device type when adding devices to their profile. 
Applications can request the manifest to discover the kind of data values your device type 
expects. A manifest describes a type of device. If you have multiple identical devices, they will 
all share one manifest and use their device ID to distinguish one from another. Different types 
of devices require different manifests because the device type maps to an appropriate manifest. 

 You cannot send data to SAMI unless there is a  manifest   to describe it. SAMI uses 
the manifests internally to steer the data-parsing activity. Without a manifest, SAMI has 
no way to understand what format your data has been presented in. This mechanism 
decouples SAMI from your data, because it is no longer hard wired. Because it is data 
driven, the data parsing is infinitely configurable. 

 You create a manifest by adding a new device type to your Developer Portal. In that 
definition, you describe the kinds of data being delivered. There are predefined standard 
fields to use, or you can synthesize your own new ones. The form-based manifest editor 
makes this process very easy. 

 A simple manifest only has data fields. Add user-defined actions to create a more 
advanced manifest. After your manifest is complete, publish it to make it available to the 
general public or they will not be able to see and select it in their own profiles. Once your 
manifest is complete, the manifest editor will simulate a call and display to you a sample 
JSON response. This is going to be invaluable when you want to build receivers into an 
application, as you can define a manifest and capture the output for testing. 

 Once a manifest has been created, it cannot be deleted. Upload a new one to 
supersede the behavior. The older ones must be maintained to ensure data integrity, 
because they may have been used for data that has already arrived and been processed 
into the SAMI data-storage repository. Deleting a manifest associated with that data 
would render the data orphaned and unusable. It is imperative that you think through 
your manifest design before creating any. Otherwise, you risk filling your account with 
garbage data and unusable legacy manifests. If you expect your manifests to change and 
therefore be replaced, develop a consistent naming scheme that incorporates a version-
numbering index so you can keep things neat and tidy. 

 These online resources provide additional material that describes the  manifest      and 
how to use it:   

   https://developer.samsungsami.io/sami/sami-documentation/the-manifest.html     
   https://blog.samsungsami.io/development/data/2015/04/21/
send-actions-to-devices.html     
   https://blog.samsungsami.io/development/portals/2015/08/06/
see-all-the-standard-fields-and-actions-in-sami.html     
   https://blog.samsungsami.io/portals/development/data/2015/03/26/
the-simple-manifest-device-types-in-1-minute.html     
   https://developer.samsungsami.io/sami/demos-tools/manifest-sdk.html     
   https://developer.samsungsami.io/sami/demos-tools/
manifest-advanced-example.html     
   https://developer.samsungsami.io/sami/demos-tools/your-first-iot-device.html                  

https://developer.samsungsami.io/sami/sami-documentation/the-manifest.html
https://blog.samsungsami.io/development/data/2015/04/21/
send-actions-to-devices.html
https://blog.samsungsami.io/development/data/2015/04/21/
send-actions-to-devices.html
https://blog.samsungsami.io/development/portals/2015/08/06/see-all-the-standard-fields-and-actions-in-sami.html
https://blog.samsungsami.io/development/portals/2015/08/06/see-all-the-standard-fields-and-actions-in-sami.html
https://blog.samsungsami.io/portals/development/data/2015/03/26/
the-simple-manifest-device-types-in-1-minute.html
https://blog.samsungsami.io/portals/development/data/2015/03/26/
the-simple-manifest-device-types-in-1-minute.html
https://developer.samsungsami.io/sami/demos-tools/manifest-sdk.html
https://developer.samsungsami.io/sami/demos-tools/
manifest-advanced-example.html
https://developer.samsungsami.io/sami/demos-tools/
manifest-advanced-example.html
https://developer.samsungsami.io/sami/demos-tools/your-first-iot-device.html


CHAPTER 18 ■ INTEGRATING WITH SAMI

282

         Raw Data 
 Your incoming messages are formatted according your own needs. These may use 
product-specific names for the value containers, and the format will be one of several that 
are compatible with the SAMI incoming data – parsing processes.  

     Normalized Data 
 SAMI uses the descriptions in the manifest to parse your incoming data and transform 
it into a standard format. This  normalization process      converts your variable container 
names to internally compatible names. Your application might describe a variable as 
 temp , but SAMI translates that into  temperature . The data is also stored in a normalized 
format based on JSON. Values are also converted where necessary. This makes the data 
storage consistent regardless of its provenance. 

 A developer can request either the normalized data or the raw data because SAMI 
stores both in the database.  

     The  SAMI API   
 Applications, services, and modules can exchange data with SAMI through simple  API   
endpoints. Access the details of that API specification and other helpful information 
about the API at the following URLs: 

     https://developer.samsungsami.io/sami/api-spec.html     
   https://developer.samsungsami.io/sami/sami-documentation/
administrative-apis.html     
   https://developer.samsungsami.io/sami/sami-documentation/
sending-and-receiving-data.html     
   https://developer.samsungsami.io/sami/demos-tools/api-console.html                    

    Using the administrative calls in the SAMI API, you have the ability to retrieve a 
user’s profile, update applications for a user, and retrieve a list of a user’s device types 
and devices, as well as the data they have sent to SAMI. This is useful for creating threads 
of related messaging events or browsing the contents of the message traffic on a remote 
device. 

 Access historical data according to a specific timestamp or range and apply analytic 
tools to observe trends. Perhaps you are monitoring a remote system where you are 
trying to diagnose an intermittent fault. Logging the observations and analyzing them for 
patterns is a useful diagnostic approach. 

 You also can send actions to SAMI that will be routed to the destination device to 
trigger something to happen. In a home-automation context, that might turn on a light or 
activate a streaming video camera.  

https://developer.samsungsami.io/sami/api-spec.html
https://developer.samsungsami.io/sami/sami-documentation/
administrative-apis.html
https://developer.samsungsami.io/sami/sami-documentation/
administrative-apis.html
https://developer.samsungsami.io/sami/sami-documentation/
sending-and-receiving-data.html
https://developer.samsungsami.io/sami/sami-documentation/
sending-and-receiving-data.html
https://developer.samsungsami.io/sami/demos-tools/api-console.html


CHAPTER 18 ■ INTEGRATING WITH SAMI

283

     Developer  SDK Libraries   
 There are  Software Development Kit libraries (SDK)   available for the main platforms with 
which you are likely to build applications. Language support for others is in development. 
Table  18-1  summarizes the supporting kits or alternatives to them for each language. 

   Table 18-1.    SAMI Language-Supporting API  Kits     

 Kit  Availability 

 Java/Android  Available now for development of applications to run in 
Android-based  devices   

 Objective-C/iOS  Available now for developing iOS applications to run in Apple 
mobile devices 

 PHP  Available now for building server-side support in web-based 
solutions 

 Ruby  Available but currently in Beta testing 

 Python 2  Available but currently in Beta testing 

 Python 3  Available but currently in Beta testing 

 C language  Use  libCurl  and manufacture the API calls as described in the 
documentation. This would work inside an ARTIK or any other 
application that has  libCurl  and network access available. 

 Node.js  Construct the payload and SAMI envelope manually and 
dispatch it via a WebSocket connection. 

 UNIX command line  Use the  wget  and  curl  commands to dispatch messages to SAMI 
from a shell script, or write small C-language utilities and call 
them from scripts or command lines directly. 

 Mac OS X  Use the C-language approach with  libCurl . You may be able to 
use some of the capabilities of the iOS library. 

 Objective C  Encapsulate your sessions in objects and write their methods in 
C language, and use  libCurl . 

 Swift language  Manufacture the payloads and wrap them in a SAMI envelope 
in a similar way to the raw C language or Node.js approach, then 
deliver them via a WebSocket connection.    

 The SAMI developer documentation at the following URLs has details of the SAMI 
 SDK libraries   and how to obtain them for use in your own projects. The API specifications 
will provide enough insight for you to construct payloads and SAMI envelopes. Study the 
worked example by Martin Kronberg on the HacksterIO blog to see how to do this with 
Node.js:    

     https://developer.samsungsami.io/sami/native-SDKs/     
   https://www.hackster.io/martinkronberg/artik10-sami-eab8f7            

https://developer.samsungsami.io/sami/native-SDKs/
https://www.hackster.io/martinkronberg/artik10-sami-eab8f7


CHAPTER 18 ■ INTEGRATING WITH SAMI

284

         SAMI Tools 
 Samsung has provided developer tools that assist you in getting your devices and 
manifests working more quickly. The Developer Portal dashboard itself is one of those 
tools, and you may have already used it to create experimental resources. The User Portal 
is a dashboard for managing the devices that provide data to be aggregated under your 
SAMI user ID. The API Console helps you to exercise API calls and see their results, and 
the Device Simulator gives you a way to send test data to SAMI as if it had come from your 
device before you even create it. 

     The  Developer Portal   
 This is where  you   construct prototypes that describe your own devices. Introduce 
handlers for the data that your device will want to send to SAMI through the creation of a 
manifest. Manage these additional resources from your developer account:

•    Applications that you develop and vend on the application store 
for other users to access  

•   Device types that you create and share with other developers    

 A Samsung account is required in order to access SAMI as a developer. You must be 
signed in to see the developer support pages. SAMI developers can do more powerful 
things with their ARTIK-based product development. User Portal access is all about 
configuring the data exchanges with your own personal devices. Developer Portal access 
is concerned with creating new applications and device types for your customers to use. 

 Here are the steps for device development when you integrate new devices with SAMI:

    1.    Define the device type via the Developer Portal to associate 
the device with a user account in the User Portal.  

    2.    Obtain an access token via the User Portal.  

    3.    Make API calls to send data to SAMI.     

 Developing an application that connects to SAMI follows slightly different steps:

    1.    Discover the device-type data by accessing the manifest to 
find out the required field names.  

    2.    Create the application in the Developer Portal.  

    3.    Request permissions.  

    4.    Obtain an access token using the OAuth2 messaging 
protocols.  

    5.    Make the API calls to SAMI.  

    6.    Collect the response  data   that SAMI sends back to the calling 
application.        



CHAPTER 18 ■ INTEGRATING WITH SAMI

285

 Find out more about the Developer Portal at the following: 

     https://developer.samsungsami.io/sami/sami-documentation/
developer-user-portals.html     
   https://blog.samsungsami.io/portals/development/2015/02/12/
how-to-use-the-developer-portal.html            

         The  User   Portal 
 This is where you  securely   pair a personal device you own with your secure SAMI 
account. Within your SAMI account, you have collections of resources to configure and 
edit. SAMI maintains these collections for you as a casual user of the system:

•    Devices that are allowed to exchange data with your 
SAMI account  

•   Rules governing actions that can be triggered when incoming 
messages arrive  

•   Charts showing trends based on incoming data  

•   Data logs containing lists of raw messages and actions 
performed by them  

•   Exports where you have aggregated data into a tabular form for 
external  processing      

 Add new items to these collections or alter the configuration of them whenever 
you want to. Access SAMI via the User Portal to do this. If you want to register new SAMI 
devices or monitor the  data   being received, go to the User Portal and sign in with your 
Samsung account: 

     https://portal.samsungsami.io/        

    Click on the Get  Started   or Sign In buttons to access your data via the portal. Find out 
more about the User Portal here: 

     https://developer.samsungsami.io/sami/sami-documentation/
developer-user-portals.html     
   https://blog.samsungsami.io/portals/datavisualization/2015/01/09/
opening-the-user-portal.html            

https://developer.samsungsami.io/sami/sami-documentation/
developer-user-portals.html
https://developer.samsungsami.io/sami/sami-documentation/
developer-user-portals.html
https://blog.samsungsami.io/portals/development/2015/02/12/
how-to-use-the-developer-portal.html
https://blog.samsungsami.io/portals/development/2015/02/12/
how-to-use-the-developer-portal.html
https://portal.samsungsami.io/
https://developer.samsungsami.io/sami/sami-documentation/
developer-user-portals.html
https://developer.samsungsami.io/sami/sami-documentation/
developer-user-portals.html
https://blog.samsungsami.io/portals/datavisualization/2015/01/09/
opening-the-user-portal.html
https://blog.samsungsami.io/portals/datavisualization/2015/01/09/
opening-the-user-portal.html


CHAPTER 18 ■ INTEGRATING WITH SAMI

286

          API Console   
 The  API Console      is a web-based tool for testing SAMI API calls to verify that you are 
using them correctly in your own code. Quickly retrieve important information such as 
device IDs and normalized messages in the format that your device would see them in if 
it made a call to the API. It also works as a hands-on reference for required and optional 
parameters discussed in the API specification. Go to the online API Console and try it 
out here: 

     https://api-console.samsungsami.io/sami        

         Device Simulator 
 The  SAMI Device Simulator      is a command-line tool developed in Java. It  is   meant to help 
you send messages to SAMI on behalf of any device in the system. You can run this from 
the command line in a terminal window on your developer workstation. If you have a 
viable connection from your prototype ARTIK module to the SAMI infrastructure, this 
would work in your ARTIK too. Read more about it here: 

     https://developer.samsungsami.io/sami/demos-tools/device-simulator.html        

          Manifest Validator   
  Validating   your  manifest   is a vital step before you upload it to SAMI. There is a Java 
command-line tool to download and run with your manifest as the input. The tool will 
check that your manifest is correctly constructed and tell you if it thinks there is anything 
wrong with it. Think of this as being a bit like a source-code compiler. See this SAMI 
developer documentation for more details and how to download the tool for use in your 
development workstation: 

   https://developer.samsungsami.io/sami/demos-tools/manifest-sdk.html  

          User Portal: Managing Devices 
 Register your device to get an ID and token value to use when you transmit data to SAMI. 
Keep a copy of your device ID and device token so you can use them again later. 

 Read the “Connect to SAMI” section in the SAMI tutorial that describes how to make 
an IoT weather station. This shows you how to create a temperature sensor entry in SAMI 
and transmit data to it from your device: 

     https://blog.samsungsami.io/architecture/tutorial/beginner/2015/04/30/
make-an-iot-weather-station-with-sami.html#connect-to-sami-its-free-really        

https://api-console.samsungsami.io/sami
https://developer.samsungsami.io/sami/demos-tools/device-simulator.html
https://blog.samsungsami.io/architecture/tutorial/beginner/2015/04/30/
make-an-iot-weather-station-with-sami.html#connect-to-sami-its-free-really
https://blog.samsungsami.io/architecture/tutorial/beginner/2015/04/30/
make-an-iot-weather-station-with-sami.html#connect-to-sami-its-free-really


CHAPTER 18 ■ INTEGRATING WITH SAMI

287

    Once you are logged in to the User Portal, SAMI invites you to add your IoT devices. 
This permits them to access your SAMI account and exchange data with it. Return to this 
starting page by clicking on the Devices button in the menu bar at the top of the page. 
Figure  18-3  illustrates the initial connection dialog.  

 If you have no devices attached to your account, SAMI invites you to connect your 
first one. Since this book is about programming your ARTIK module, add that as the first 
device in your SAMI account. Use that device to transmit data to SAMI directly from your 
applications. 

 Click in the search box and choose the kind of device you want to associate with 
your account from the menu. Filter the list by typing the first few letters of the device type. 
Click on the one you want. Choose  Artik  from the available list (shown in Figure  18-4 ).  

  Figure 18-3.    Let’s connect your first device       

  Figure 18-4.    Choose a device type       

 

 



CHAPTER 18 ■ INTEGRATING WITH SAMI

288

 SAMI then automatically creates a device name cell and pre-fills the name based on 
the chosen device type. Replace this with your preferred unique device name up to 
32 characters long. Figure  18-5  illustrates how SAMI shows you how many characters you 
have left as you type the name.  

 Click on the CONNECT DEVICE button when you are ready. You should see your 
new device added to the Connected Devices panel (see Figure  18-6 ).  

 Click on the device name to view the data as it transmits information. At the 
moment, it is not transmitting anything, because the code is not yet fully implemented 
in the ARTIK module. If it had already been configured, the data streaming would be 
evident here. Use the data browser to select different time periods and dates. Click on the 
gear icon to adjust the device settings or click on the DISCONNECT button to remove this 
device from your SAMI account. 

     Device Details 
 Clicking on the gear for a device presents the Properties panel, shown in Figure  18-7 . 
This panel contains vital information that your application will need in order to transmit 
data into a specific SAMI account. Your data messages will be tagged with your SAMI 
account name, password, and the device type ID. SAMI uses the device type ID to invoke 
an appropriate data parser. You will also tag your messages with a unique device ID that 
identifies each instance of a device type ID. This tags the data for more than one instance 
of the same type of device.  

  Figure 18-6.    New device added       

  Figure 18-5.    Name your new device       

 

 



CHAPTER 18 ■ INTEGRATING WITH SAMI

289

 Click on the GENERATE DEVICE TOKEN button to create a secure token that your 
device will use to tag the data it transmits to SAMI. 

 Note your device ID and token and device type ID values so you can use them in the 
application running on the ARTIK module. Use this panel to rename or disconnect your 
devices as well as to revoke the device tokens. 

 Click on the SAVE CHANGES button when you are done.   

     User Portal: Managing Rules 
 Once you have set up a device, describe the rules that manage the incoming data. When 
a SAMI rule matches  True , an action can be triggered as a consequence. Figure  18-8  
illustrates the relationship between the various participating sensors (SAMI calls these 
 buttons ) and output controls (SAMI calls these  lights ).  

  Figure 18-7.    Device properties panel       

  Figure 18-8.    SAMI  rules mechanism         

 

 



CHAPTER 18 ■ INTEGRATING WITH SAMI

290

 Rules define a  matching pattern   between an incoming data message and a value. 
The matching can be one of the following:

•    is equal to  

•   is not equal to  

•   is in message  

•   is not in message  

•   is less than  

•   is less than or equal to  

•   is more than  

•   is more than or equal to    

 Stack the conditions to trigger the action only when several conditions hold true. 
Find out more about rules in these blog articles: 

     https://blog.samsungsami.io/data/rules/iot/2015/09/23/
sami-rules-make-your-devices-work-together.html     
   https://blog.samsungsami.io/rules/iot/2015/10/13/
sami-rules-your-devices-can-speak-up.html            

        Rule-based Actions 
 An action can send a message back to an ARTIK module as a response or onward to 
another device. Messages can only be routed to devices you have previously registered. 
Perhaps your action can send an e-mail that can go anywhere. Simply pressing a button 
connected to your ARTIK module could transmit a message to SAMI that delivers an 
e-mail somewhere on your behalf. 

  Actions   can also be stacked so a trigger can do a variety of things each time it is 
invoked. This makes SAMI extremely powerful.  

     Adding New Rules 
 Click on the RULES button in the heading menu bar. Your current rules will be displayed 
if you have any. Follow these steps to create additional  rules  :

    1.    Click on the Create New Rule button to access the rule editor.  

    2.    Choose one of your devices from the menu. Your new rule will 
be associated with that device.  

    3.    By default, an ARTIK has two properties that collate the data. 
One is called  button  and the other is called  light . These 
correspond to inputs and outputs. Choose the one that you 
are creating a rule for. You now have a value defined to test 
with a conditional operator.  

    4.    Specify a conditional operator from the listed options.  

https://blog.samsungsami.io/data/rules/iot/2015/09/23/
sami-rules-make-your-devices-work-together.html
https://blog.samsungsami.io/data/rules/iot/2015/09/23/
sami-rules-make-your-devices-work-together.html
https://blog.samsungsami.io/rules/iot/2015/10/13/
sami-rules-your-devices-can-speak-up.html
https://blog.samsungsami.io/rules/iot/2015/10/13/
sami-rules-your-devices-can-speak-up.html


CHAPTER 18 ■ INTEGRATING WITH SAMI

291

    5.    Add a value that the condition will be tested against.  

    6.    When the condition tests the incoming data message against 
the rule, you want it to perform an action. Enter the details of 
the action you want to trigger.  

    7.    Add a title for your rule so you can find it again in among all 
your other rules. It makes sense to plan this and use sensible 
naming conventions, but SAMI will not impose any of these 
on you itself. Create a registry of your own to manage a 
collection of naming conventions for your products.  

    8.    Use a more lengthy description to document your design. SAMI 
pre-populates this based on the conditions and actions you have 
already defined, but you can replace that with your own text.

text.      



CHAPTER 18 ■ INTEGRATING WITH SAMI

292

      9.    Click on the SAVE RULE button when you are done.     

    10.    Your rules browser then shows you the new rule in an 
abbreviated listing together with all your other rules.          

     User Portal: Displaying Charts 
 Your incoming data  streams   are visible in the SAMI Charts panel. Choose this from the 
menu bar. Figure  18-9  shows an example chart from the weather station project.  

  Figure 18-9.    A SAMI chart       

 Figure  18-10  is a more complex chart. This time, the chart is recreated from data 
logged and stored in the SAMI database.   

 



CHAPTER 18 ■ INTEGRATING WITH SAMI

293

     User Portal: Viewing Data Logs 
 Data  logs   are an alternative to viewing a graphical chart. They list the raw data that 
SAMI is managing. This can be useful when you are debugging SAMI transactions. Each 
individual message transaction is separately recorded in the log. Figure  18-11  illustrates 
part of a data log with the events filtered; a calendar defines a date range.  

  Figure 18-10.    Chart of stored  data         

  Figure 18-11.    Table view of a SAMI data log       

 

 



CHAPTER 18 ■ INTEGRATING WITH SAMI

294

 Find out more about the data-logging capabilities of SAMI here: 

     https://blog.samsungsami.io/portals/datavisualization/2015/04/07/
check-out-table-view.html        

         User Portal: Exporting Data 
 After gathering some data, auditing that data and generating reports with a spreadsheet 
application is easier if you can extract it from SAMI in a useful format first. The Export 
tools provide a way to choose a time range and data format and extract the data in 
a spreadsheet-compatible form. Requesting an export presents the page shown in 
Figure  18-12 .  

  Figure 18-12.     Export SAMI data         

 When you click on the EXPORT DATA button, SAMI works in the background, 
sending you an e-mail message when it is done. When you receive the e-mail, return to 
your SAMI account and download the exported data.  

     Developer Portal:  Managing Device Types   
 SAMI is open and device agnostic. It integrates data sources and destinations on devices 
made by other manufacturers. Potentially any mobile or permanently sited device can join 
the franchise. Participating devices can upload data to SAMI in any format that works for 

 

https://blog.samsungsami.io/portals/datavisualization/2015/04/07/
check-out-table-view.html
https://blog.samsungsami.io/portals/datavisualization/2015/04/07/
check-out-table-view.html


CHAPTER 18 ■ INTEGRATING WITH SAMI

295

them and SAMI will then parse that data to integrate it. This makes SAMI an important 
nexus in the data-exchange process. Develop your own private device types with security 
already supported. Collaborate and share device-type capabilities with other developers to 
enrich the SAMI community. 

 Click on the + NEW DEVICE TYPE button to tell SAMI what your device type is 
called, then start building a new manifest to describe it further.  

     Developer Portal: Managing Applications 
 Create  applications   that unite devices around a common shared exchange of data. Your 
SAMI applications are limited only by your own imagination. From the Developer Portal, 
name your first application, add a device type, and get ready to do new things with real-
time and historical data. Registering the application with  SAMI      grants a set of credentials 
to embed in your application so as to transmit messages that are uniquely associated 
with it. Analyze and apply rules to those data feeds in order to add the centralized SAMI 
mechanisms to your application portfolio, such as the following:

•    Use SAMI to control a device by sending actions from your 
application.  

•   Subscribe to activity on a device via SAMI notifications.  

•   Use simple communications over WebSocket and  REST  API 
endpoints.    

 Click on the  APPLICATIONS   button in the menu bar to get help with developing new 
SAMI-based apps. Be aware that by introducing your application to SAMI, it is available 
for other users on the application store: 

     https://developer.samsungsami.io/sami/sami-documentation/sami-basics.html     
   https://developer.samsungsami.io/sami/demos-tools/     
   https://developer.samsungsami.io/sami/api-spec.html                

         Connecting to SAMI from Your Applications 
 Connect to SAMI from any  application   that can generate an  HTTP:  request and access the 
 REST  API that SAMI supports. These development environments are introduced in this 
book, but there are other alternatives:

•    Online access via Temboo (see Chapter   19    )  

•   Native development with C language (see Chapter   15    )  

•   Native development with Python (see Chapter   17    )  

•   Native development with Node.js (see Chapter   16    )     

https://developer.samsungsami.io/sami/sami-documentation/sami-basics.html
https://developer.samsungsami.io/sami/demos-tools/
https://developer.samsungsami.io/sami/api-spec.html
http://dx.doi.org/10.1007/978-1-4842-1952-2_19
http://dx.doi.org/10.1007/978-1-4842-1952-2_15
http://dx.doi.org/10.1007/978-1-4842-1952-2_17
http://dx.doi.org/10.1007/978-1-4842-1952-2_16


CHAPTER 18 ■ INTEGRATING WITH SAMI

296

     Acquiring an Access Token for Your Application 
  Access tokens      in SAMI are generated with OAuth2. First, make an authentication call 
to initiate the process. Then, respond to a callback when OAuth2 is ready to deliver the 
token back to you. Provide the account ID for the User Portal account that is paired with 
the calling application. You make the authentication request like this: 

     https://accounts.samsungsami.io/authorize?client_id={your_account_id}
                 &response_type=token&redirect_uri=artik_app://redirect            

    The SAMI responder will extract the callback URI from the  redirect_uri  parameter 
and use that to construct a call back to your device. It knows you want an access token 
because that was what you requested for the  response_type  value. Therefore, your device 
needs to be ready and listening on an  HTTPS:  port and must map a response to this URL: 

   artik_app://redirect  

     SAMI   will call that response handler with URL parameters that tell you the expiry 
time and the access token. You will not  get   a token back if the application is unrecognized 
by the user account. SAMI will call back with a URL that looks like this: 

   artik_app://redirect#expires_in={milliseconds}&token_type=bearer   
  &access_token={access_token_val}  

    The token is typically only valid for a few minutes at most. You should request a new 
one if you make a fresh inquiry.  

     Getting Data from SAMI for Your Application 
 Your application can request data from SAMI with a simple  HTTPS:  request that sends 
back a JSON-style response. You need the access token you just obtained and a known 
good device ID to validate the request. The request construction is shown in Listing  18-1 . 

     Listing 18-1.    SAMI  Request Format        

    https://api.samsungsami.io/v1.1/messages/last?count=1&sdids={valid_device_id}        

    headers:  
  {  
     "Authorization":"bearer {access_token}"  
  },  

https://accounts.samsungsami.io/authorize?client_id={your_account_id}&response_type=token&redirect_uri=artik_app://redirect
https://accounts.samsungsami.io/authorize?client_id={your_account_id}&response_type=token&redirect_uri=artik_app://redirect


CHAPTER 18 ■ INTEGRATING WITH SAMI

297

     If the request is successful, you should also receive a response body with a JSON data 
block. Listing  18-2  shows an example layout. Your results will have real values inserted 
instead of the placeholder tags. 

     Listing 18-2.    SAMI  Response Body        

 "data":  
  {    
   "value1":{some_value},  
     "value2":{another_value}  
  },  

          Sending Data   to SAMI from Your Device 
 Construct a JSON-formatted message containing your data and wrap it in an  HTTP:  
envelope, then transmit it to the SAMI  REST  API. To create the message body, you will 
need a valid device ID value, which you should have created earlier via your account on 
the Developer Portal. Your sensor values are passed within the data array. The timestamp 
is used inside SAMI to organize the messages according to their chronological sequence. 
An example message body structure is shown in Listing  18-3 . 

     Listing 18-3.    SAMI Example Message Body   

 {  
     "sdid":"{a_valid_device_id}",  
     "data":  
     {  
        "value1":{some_value},  
        "value2":{another_value}  
     },  
     "ts":{time_stamp}  
  }  

    The  HTTP:  envelope needs the device token in order for SAMI to associate the 
incoming message with the correct user account. The same message body is shown in 
Listing  18-4 . This is wrapped in an  HTTP:  envelope ready for dispatch using the  curl  
command. 

     Listing 18-4.    SAMI Message Body Delivered via curl   

  POST: https://api.samsungsami.io/v1.1/messages  

    headers:  
  {  
     "Authorization":"bearer {device_token}"  
  },  



CHAPTER 18 ■ INTEGRATING WITH SAMI

298

    body:  
  {  
     "sdid":"{a_valid_device_id}",  
     "data":  
     {  
        "value1":{some_value},  
        "value2":{another_value}  
     },  
     "ts":{time_stamp}  
  }     

          Try Out More Examples 
 The SAMI developer documentation has a section with more  tutorial code samples   for 
you to experiment with. The SAMI GitHub has useful repositories of source code for you 
to download. These are applications that demonstrate advanced ways of using SAMI 
in practice. Each application is separately available on GitHub, and the collection is 
designed to be modular. This is an ideal starting point, and you can take the applications 
apart and reuse them in your own project designs: 

     https://developer.samsungsami.io/sami/samples/     
   https://developer.samsungsami.io/sami/demos-tools/     
   https:// developer.samsungsami.io/sami/demos-tools/

your-first-application.html     
   https://developer.samsungsami.io/sami/sami-documentation/hello-world.html     
   https://github.com/samsungsamiio/                        

         Want to Know More? 
 Find out all about SAMI from a dedicated website and the articles posted on the SAMI blog: 

      https://developer.samsungsami.io/       
     https://blog.samsungsami.io/       

    The developer documentation you should read to create your own SAMI-based data 
interactions is found here: 

      https://developer.samsungsami.io/sami/sami-documentation/       

    The discussion forum is located at the following URL in case you want to ask 
questions or see the answers to questions that other SAMI developers have posted: 

      https://developer.samsungsami.io/community/       

https://developer.samsungsami.io/sami/samples/
https://developer.samsungsami.io/sami/demos-tools/
https://�developer.samsungsami.io/sami/demos-tools/
your-first-application.html
https://�developer.samsungsami.io/sami/demos-tools/
your-first-application.html
https://developer.samsungsami.io/sami/sami-documentation/hello-world.html
https://github.com/samsungsamiio/
https://developer.samsungsami.io/
https://blog.samsungsami.io/
https://developer.samsungsami.io/sami/sami-documentation/
https://developer.samsungsami.io/community/


CHAPTER 18 ■ INTEGRATING WITH SAMI

299

    Take a look at the Samsung SmartThings Open Cloud ecosystem. This is a useful 
foundation on which to build wired home systems, although in the fullness of time it 
is likely to be used for other kinds of integration across a range of mobile and static IoT 
devices. Find out more about that here: 

     http://www.smartthings.com/opencloud/        

         Summary 
 The Samsung SAMI system is an example of the kind of connecting hub that will become 
commonplace as the Internet of Things industry gathers pace. Already there are other 
similar services. 

 Partitioning different kinds of activity into different hubs prevents everything from 
failing when the one and only aggregation system in the world goes offline. These hubs 
can be interconnected themselves. Perhaps a factory can host a hub of its own with a 
gateway to other systems with which it needs to share an aggregated data feed. 

 If your design works with SAMI, it can very likely use other alternative aggregation 
systems. Create your own aggregation hub if you want to scale your product or service up 
to a large enterprise. Samsung has ensured that the crypto support in the ARTIK and the 
SAMI service architecture are compatible. 

 Samsung has integrated a lot of intelligent home solutions with the SmartThings 
devices and connected hub. Find out more in order to integrate your ARTIK-based 
solutions with it: 

     https://www.smartthings.com/uk        

    Check out the ARTIK partner company, Medium One. They support data streaming 
and real-time analytics. This would be useful in a manufacturing context: 

     https://mediumone.com/        

    The SIGFOX partner company provides cellular connectivity for reaching online 
services from mobile devices. As an ARTIK partner, their technologies will integrate with 
an ARTIK module more easily: 

     http://www.sigfox.com/        

    The next chapter will examine Temboo. This is an alternative to using SAMI, 
although it is oriented more toward the software development of the applications that 
run inside your ARTIK module. Build simple application components using the online 
Temboo GUI tools and then generate the code to compile and run in the ARTIK. That 
code could have SAMI calls integrated with it too.     

http://www.smartthings.com/opencloud/
https://www.smartthings.com/uk
https://mediumone.com/
http://www.sigfox.com/en/#!/


301© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_19

    CHAPTER 19   

 Integrating with Temboo                          

     Hello Temboo 
 Temboo is an exciting new technology for developers to create reusable code with that 
can run across a range of devices and architectures. There is a lot to explore, and new 
features are being added all the time. You can see the logo in Figure  19-1 .  

  Figure 19-1.    Temboo  logo         

 Temboo is accessed via the  web-based dashboard   on the Temboo website. There 
you connect together various components without needing to write code. Temboo 
generates the source code for you to copy to your ARTIK module and compile into an 
executable application that runs natively inside the ARTIK. Find out more about Temboo 
here:   

   http://www.temboo.com/        

    The whole Temboo user experience is very well conceived and rather beautifully 
engineered. Once you have chosen a target platform, everything reconfigures itself 
around that choice. This reconfiguration includes the code-generation tools and access to 
the library of additional plugin functionality (choreographies).  

 

http://www.temboo.com/


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

302

      Developing   with Temboo 
 With Temboo, it becomes very easy to reach more than 100 web-based services and 
resources, such as Facebook, Dropbox, or census data published by various open 
government initiatives. Temboo acts as a central location that gathers these data 
resources or makes connections to them on your behalf. Use the tools on your ARTIK 
module to connect to your Temboo account and ask it to act as an intermediary for you. 

 The coding process is very visual and takes place online in a web-based dashboard. 
The outcome can be shared very easily. You can build sophisticated solutions without ever 
writing a line of code. There is also a Software Developer Kit (SDK) for programmers who 
like to write code themselves. The visual approach will not prevent traditional coding from 
taking place. It just gets you started more quickly. Use Temboo without the SDK just by 
calling API endpoints via a  REST  interface. Use the  curl  command for this, but  wget  and 
even a custom, handmade  HTTP GET  call via raw Berkeley Software Distribution (BSD) 
sockets would work. Watch these tutorial videos for insight into how powerful Temboo is: 

     https://www.temboo.com/videos        

    Temboo is a technology stack for connected devices and the Internet of Things. 
Generate production-ready code for robust IoT applications in minutes by going to 
the Temboo website and choosing components that Temboo uses to construct your 
application’s source code. 

 The Temboo IoT technology stack makes the computing power of the cloud easily 
accessible from ARTIK hardware. A lightweight Temboo library is installed on every 
ARTIK module, enabling developers building ARTIK applications to quickly and easily 
connect their hardware to any web-based resource. 

 Temboo packages complex processes as choreos. This is an abbreviation for 
choreographies. Assembling these choreos is somewhat like building with pre-formed 
bricks. They already have built-in smartness. Connect them to create an application. 

 Explore choreo processes on the Temboo website, and then generate production-
ready code to execute those processes in your ARTIK IoT applications. Most of the code 
behind each choreo executes in the cloud and not directly in your ARTIK. Your devices 
only do what is necessary to communicate with Temboo. This approach conserves 
memory and builds more efficient and dynamic applications. By integrating Temboo into 
the ARTIK, you have a complete IoT programming solution ready to use from inside the 
Samsung ARTIK hardware ecosystem.     

     Registering Your  Temboo Account   
 To use Temboo, you need to register an account at the Temboo website. Before 
registering, you should read about the privacy policy describing the information that 
Temboo collects about you. Their terms of service are also covered here:   

   https://temboo.com/privacy     
   https://temboo.com/terms            

https://www.temboo.com/videos
https://temboo.com/privacy

https://temboo.com/terms


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

303

    The registration process is simple, and the signup form is presented on the Temboo 
home page. Choose a unique name, add your e-mail address, and define a robust 
password. After you enter your account details and accept the terms and conditions, 
click on the Sign Up button. Note your password in a safe place or use one that is easy to 
remember. 

 By default, you will be signed up for a free account to start with. This gives you full 
access to the Temboo infrastructure but limits the number of calls you can make. Each 
time you run a choreo, it counts against your total. The free developer accounts start 
with 250 choreo runs per month. You will probably use these up rather quickly when 
developing your code. Purchase more if you are running your choreos often to test them. 
Different plans are available to purchase depending on the capacity you need. Go to your 
account page to upgrade from a free to a paid account. There is a special low-cost plan for 
developers to experiment with: 

     https://www.temboo.com/account        

    The Library page also gives you statistics describing your usage of choreos and how 
many calls you have made: 

     https://www.temboo.com/library/        

    Once you are logged in, access your account dashboard and see how much Temboo 
capacity you are using. This is available from the Activity page: 

     https://www.temboo.com/activity        

         Your Temboo Account Dashboard 
 The  Account dashboard   is where you manage your relationship with Temboo. Access 
it here: 

     https://www.temboo.com/account        

    You will be prompted for a password if you are not signed in already. Change your 
billing plan in here from the default free account and upgrade it to cope with more traffic. 
Running a choreo deducts a token from a total that you must keep in credit. When you 
run out of tokens, your choreos will stop running. When you deploy a product based on 
Temboo and ARTIK, it needs to be associated with an account that will be kept topped 
up with credits or your customers will find their devices will stop working. That account 
is probably not your own personal one. Figure  19-2  shows a typical account dashboard, 
although Temboo will update the design of this from time to time.  

https://www.temboo.com/account
https://www.temboo.com/library/
https://www.temboo.com/activity
https://www.temboo.com/account


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

304

 Click on the “Change Password” link to change your password or the “Change Plan” 
link to purchase additional capacity. 

 Click on the Applications item in the left navigation menu to configure your 
Temboo-compliant application credentials. Create multiple applications and give each 
of them a unique and secure identification key. These values must be compiled into your 
application via the  TembooAccount.h  header file that you include in your application’s 
source code.    

 The Profiles menu item takes you to a page for creating profile containers where your 
application can offload data for storage. 

 Upgrade your whole Temboo experience to operate across an entire organization or 
enterprise. The default account is for only you to access and use. To embed Temboo into 
a product, you will probably need one of these power-user upgrades to create new users 
and share profile data between them and the rest of your organization.     

     Monitoring Your Activity 
 As you develop and run your Temboo  choreo-based applications  , you will gradually 
consume your credit balance. You may want to see a more detailed record of your traffic. 
Go to this page to see your activity metrics: 

     https://www.temboo.com/activity        

  Figure 19-2.    Temboo  account dashboard         

 

https://www.temboo.com/activity


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

305

    The summary in Figure  19-3  shows how many different choreos have been executed 
and displays historical graphs of data usage measured in bytes.  

 Filter this report by individual applications or view the grand total. Sub-set the data 
to show it one month or one day at a time. The Logs view shows you individual calls to 
your choreos from your Temboo applications. These logs can be downloaded as a CSV file 
for you to import into a spreadsheet or management reporting system. 

 The  Notifications panel   helps you set up automated notifications by e-mail for when 
your choreos fail to execute correctly. Notify your own Temboo-registered e-mail address 
and up to ten others. Some of these can be automated email-handling robots in your 
monitoring system. Adjust the frequency of these notifications to arrive at hourly or daily 
intervals. You only receive messages if there are new errors to report.  

  Figure 19-3.    Temboo  activity dashboard         

 



CHAPTER 19 ■ INTEGRATING WITH TEMBOO

306

     Your Choreo Library Dashboard 
 If you go to the Library  page   on the Temboo website without being signed in first, Temboo 
cannot report any statistics about your usage of the choreos because it does not know 
who you are. You just get a page for exploring the library in a passive way: 

     https://www.temboo.com/library/        

    Logging in to your account and going to the Library page presents much more 
information. Your Library dashboard will look similar to the one in Figure  19-4 .  

  Figure 19-4.     Library dashboard         

 

https://www.temboo.com/library/


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

307

 The Library dashboard presents summary details of your Temboo account traffic. 
This is great for tracking how fast you are using your capacity and deciding whether to 
upgrade your account. Check at a glance whether your choreos are functioning correctly; 
any problems are accessible by clicking on the shortcut that displays the logs. 

 The lower part of the screen is for training you in how to get the best out of Temboo. 
The first box chooses a platform to work with and the rest of the boxes then reconfigure 
themselves around that choice to provide the most appropriate learning resources.  

     Supported Platforms 
 Temboo supports a variety of different hardware  platforms  . Choose your platform 
first, and then the Temboo website will take you through the process of building your 
application before generating the code to compile and embed. These target hardware 
platforms are supported:

•    Samsung ARTIK modules  

•   Arduino  

•   Texas Instruments  

•   Android mobile devices  

•   IOS mobile devices    

 Temboo also generates raw code to incorporate into other projects written in these 
languages:   

•    C#  

•   Java  

•   JavaScript  

•   Node.js  

•   PHP  

•   Processing  

•   Python  

•   Ruby  

•   REST API    

 Each of these would require the inclusion of a Temboo SDK file to provide the 
necessary supporting calls. The code that calls the Temboo SDK is straightforward. 
Choose any of these from the tutorial interface at the Temboo website to see the code 
they create. 

 Some SDK libraries are already installed. Additional Temboo toolkits for embedding 
raw code can be downloaded from this page: 

     https://www.temboo.com/download        

https://www.temboo.com/download


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

308

 ■     Note As of Spring 2016, Temboo only supports the ARTIK 10 modules and is developing 
the support for ARTIK 5 modules. The ARTIK 5 support will be released in due course when it 
is ready.  

      Supported Connectivity   
 As you build your application, you may want to incorporate wireless connectivity to 
remote services and systems. The following modes of connection are supported, and 
others may become available as the technology is developed:

•    Bluetooth  

•   Ethernet  

•   GSM  

•   Wi-Fi     

      Online Data Storage   
 Shared data storage helps you avoid the need to be located in a single place where your 
bulk data is stored. Temboo already supports the following storage architectures. Others 
will surely become available as Temboo evolves:

•    Microsoft Power BI  

•   Google BigQuery    

 You may also be able to exploit similar tools via the SAMI infrastructure.  

     Choreographies 
 Interacting with databases  and   other connected services happens via pre-built blocks 
of code that Temboo provides. These are like library functions or objects in an object-
oriented programming (OOP) development environment, but they do much more 
because they are inherently connected. Temboo calls these blocks of reusable code 
 choreographies  and abbreviates that to the term  choreos . There is a large library of choreos 
already in existence at the Temboo website. Each choreo manages a different online 
service or toolkit. Explore the library here: 

     https://www.temboo.com/library/        

    Table  19-1  is a list of the library contents that can be presented in various sub-sets by 
selecting a topic from the category menu item.  

https://www.temboo.com/library/


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

309

 The OAuth support is particularly useful. Interacting with an authentication system 
can be very tricky sometimes. If all of the details are managed for you via a choreo, it 
becomes easier to develop secure applications — and that has to be good for all of us!    

 Temboo also provides  libraries of utility code   to embed and call as part of your 
application:

•    HTTP Forms submits for  GET ,  POST ,  PUT , and  DELETE   

•   Encode for URLS or base 64  

•   Authenticate via OAuth 1.0 and 2.0  

•   Hashing functions  

•   Text-processing tools  

•   JSON-parsing tools  

•   Random number generators  

   Table 19-1.    Temboo  Choreo Library Index     

 23andMe  EnviroFacts  LastFm  SunlightLabs 

 Amazon  Facebook  LinkedIn  Tumblr 

 AuthorizeNet  Factual  LittleSis  Twilio 

 Basecamp  FedEx  MailChimp  Twitter 

 Bitly  FedSpending  Microsoft  Uber 

 Box  FilesAnywhere  Mixpanel  UnlockPlaces 

 Bugzilla  Fitbit  Nexmo  USPS 

 Clicky  Flickr  NOAA  Withings 

 CloudMine  Foursquare  NPR  WolframAlpha 

 ConstantContact  Genability  NYTimes  Wordnik 

 CorpWatch  GitHub  OneLogin  Xively 

 DailyMed  Google  PagerDuty  Yahoo 

 DataGov  GovTrack  Parse  Yelp 

 Delicious  Highrise  PayPal  YouTube 

 Disqus  InfluenceExplorer  RunKeeper  Zendesk 

 DonorsChoose  Instagram  Salesforce  Zillow 

 Dropbox  Instapaper  SchoolFinder  Zoho 

 DuckDuckGo  KhanAcademy  SendGrid 

 Dwolla  Kiva  Socrata 

 eBay  Klout  Stripe 



CHAPTER 19 ■ INTEGRATING WITH TEMBOO

310

•   Email send or receive  

•   Data-format conversion and transforms  

•   Validation  

•   Search and find with regular expression functions  

•   Date-handling tools  

•   XML parsing  

•   Data cleaning and formatting     

      Condition Handling   
 The Temboo conditions handling logic interacts with the ARTIK hardware to read sensor 
values and performs actions if the conditions are met. A choreo can then be triggered 
from a switch connected to your ARTIK or when a sensor has a particular value. 

 As you build your code, apply hardware conditions to the outcome of a Temboo 
choreo. This is all presented in a wizard-like user interface for constructing your 
application code. Figure  19-5  shows a pin selector built to look like an ARTIK 10. You can 
pick the pins visually and associate them with a condition; in this case, triggering an SMS 
message transmittal:      

  Figure 19-5.    Selecting an  ARTIK pin   to trigger an SMS message       

 



CHAPTER 19 ■ INTEGRATING WITH TEMBOO

311

     Remote  Storage   in Profiles 
 Temboo profiles are used to keep your API credentials for other services organized in a 
central place. Your Temboo account profile can also be used to store persistent data for 
your applications. You save memory in your device by uploading bulky data sets to your 
profile for storage and to share them with other devices. 

 Your profile access is managed via code you write that interacts with the Temboo 
libraries in the ARTIK. Be aware that since Temboo works across multiple platforms and 
architectures, storing something in your profile from one device can affect how a different 
type of device from a different manufacturer will respond. 

 This feature can also help you to economize on RAM usage in memory-constrained 
devices. It is also helpful when memory is volatile, and it reduces the chance of losing 
important data when devices cease to function or are mislaid. 

 Reprogram your device remotely by sending messages to your profile on the Temboo 
system, which then forwards them to your device based on rules you set up yourself.     

      Output Filters   
 The output from a choreo can be filtered to isolate just the data you want and discard the 
rest. That data can be cleaned and formatted for downstream processes to make use of 
without having to work around lots of formatting inadequacies. 

 This takes place in the Temboo server. The filtering reduces the bulkiness of message 
transfers to your device and avoids consuming valuable mobile data bandwidth. Your 
mobile data tariff – controlled capacity is eked out more sparingly and will go further.  

      Data Streaming   
 Temboo has collaborative arrangements with Microsoft and Google for streaming data to 
their cloud services directly from your application regardless of the hardware or platform 
it is running on. The Microsoft Power BI database integration is illustrated with a working 
example here: 

     https://temboo.com/hardware/microsoft-power-bi-getting-started        

    This shows how to authenticate your connection with a Microsoft Power BI database 
using OAuth protocols. Set up a Microsoft BI client account first, then connect to it from 
your application. Temboo provides a link to a tutorial for setting up your Microsoft Azure 
and Power BI credentials. 

 The process is simplified because Temboo has created a choreo to manage the 
authentication once you have set that up with the client ID you got from Microsoft. 
Although the next step in the online example describes how to do this with an Arduino, 
you can choose the ARTIK platform instead to generate the right kind of code for your 
device. The setup process then shows you how to map a specific sensor pin on your 
hardware to a column name in your Microsoft Power BI database. 

https://temboo.com/hardware/microsoft-power-bi-getting-started


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

312

 Now all you have to do is generate the code, load it into your ARTIK, and run it. You 
should then see your Microsoft Power BI database fill up with data as your ARTIK reads 
the sensor pins and dispatches the data via the stream.    

 The process is very similar for integrating with the Google BigQuery database, as 
shown in this online example: 

     https://temboo.com/hardware/google-big-query-getting-started        

    The authentication takes place with the OAuth choreo again. This assumes you 
have a Google BigQuery account already set up. Temboo provides another tutorial 
guide for that. 

 The code description that you integrate with Google BigQuery is formatted as SQL 
code. Extrapolate this technique and apply it to other database scenarios. Learning SQL 
is a valuable skill you can apply to many other database-driven projects whether they are 
Temboo based or not. 

 This level of detail in the Temboo tutorials is very useful. When you are just 
beginning to learn about a new and unfamiliar system, having step-by-step guides and 
lots of example screenshots is very helpful. Temboo has done a great job here.  

     Machine-to-Machine (M2M)    with Temboo 
 Temboo now supports messaging between peers in order to have one of your mobile 
devices control another. Either or both can still share their data with the cloud-based 
services as before. The main benefit is that the devices can communicate with one 
another without the need for an Internet connection. This is useful where you have 
multiple devices that share data with each other. An industrial process control situation is 
a typical example. Sending messages up to the cloud and back down again is somewhat 
wasteful of network capacity. Machine-to-machine (M2M) communication accomplishes 
effectively the same transfer of data between two nodes for half the network traffic, since 
there is no up and down link needed, just a peer-to-peer link. Aggregate hundreds of 
devices distributed around a factory and then delegate the cloud connectivity to just a few 
of them to uplink data on behalf of the other devices. Read this blog article to see why this 
is such a great idea: 

     http://blog.temboo.com/post/134612682871/why-m2m-a-behind-the-scenes-
look-at-what-we- were          

         Temboo  and ARTIK   
 The Temboo SDK is already installed in your ARTIK module. A few easy steps will 
turn it on: 

     https://www.temboo.com/hardware/samsung/getting-started        

https://temboo.com/hardware/google-big-query-getting-started
http://blog.temboo.com/post/134612682871/why-m2m-a-behind-the-scenes-
look-at-what-we-were
http://blog.temboo.com/post/134612682871/why-m2m-a-behind-the-scenes-
look-at-what-we-were
https://www.temboo.com/hardware/samsung/getting-started


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

313

    The Getting Started page shows you how to check that your ARTIK module is ready 
to use the Temboo resources. It also takes you through a simple example project to try it 
out. The example uses a combination of conditions, profiles, and output filters that are all 
provided by Temboo. 

 Temboo returns choreo result data to the Samsung ARTIK as a key-value pair. Read 
the incoming stream two lines at a time and strip off the ASCII control characters that are 
used for formatting and delimiting. The lines alternate between key-names and values, 
with the trailing control character telling you which is which to synchronize the parser 
(see Listing  19-1 ):

•    The key names are followed by a newline ( \n ) and an ASCII unit-
separator character ( \x1F ).  

•   The value items are followed by a newline ( \n ) and an ASCII 
record-separator character ( \x1E ).    

     Listing 19-1.    Example Choreo Result Data Presented to the ARTIK   

 Name1\n\x1F  
  Value1\n\x1E  
  Name2\n\x1F  
  Value2\n\x1E  

    The Temboo library does a lot of work for you as it unpacks this data. See the 
companion Apress  ARTIK Reference Guide  for more in-depth coverage of this topic. 
Temboo has a helpful discussion that goes into a lot more detail here:    

     https://temboo.com/hardware/samsung/interpreting-outputs        

         Temboo  and ARTIK 5   
 When Temboo was initially launched, it only worked with the ARTIK 10 models. It is 
feasible to reconfigure it to run on an ARTIK 5 if you manually modify the code that it 
generates for an ARTIK 10 module. Temboo is working on ARTIK 5 support. It will be 
released and fully supported as the ARTIK production revision devices come on-stream. 
See this web page for details on how to modify ARTIK 10 code to run on an ARTIK 5: 

     https://www.artik.io/developer/documentation/developer-guide/using-temboo-
with-artik-5.html        

         Getting Ready to  Tango   with Temboo 
 To compile an application natively inside your ARTIK 10 module and link it against the 
Temboo SDK library, locate the library and describe the path to it in every compiler 
invocation. Set up the Temboo library as one of the default libraries to make life easier. 
This library will be ignored when you build applications without using Temboo. 

https://temboo.com/hardware/samsung/interpreting-outputs
https://www.artik.io/developer/documentation/developer-guide/using-temboo-with-artik-5.html
https://www.artik.io/developer/documentation/developer-guide/using-temboo-with-artik-5.html


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

314

 Type this command to see what libraries are already configured. Each one needs a 
configuration file: 

   ls /etc/ld.so.conf.d  

    If you see  temboo.conf  listed, it has already been set up. If not, follow these steps to 
create a new configuration file:

    1.    Go to the library configuration files directory: 

   cd /etc/ld.so.conf.d  

        2.    Open a new file with the vi editor: 

   vi ./temboo.conf  

        3.    Press the letter [I] key to go into insert mode.  

    4.    Type this line into the file: 

   /opt/iothub/artik/temboo/temboo_artik_library/lib  

        5.    Type these keystrokes to exit from vi and save the 
changes to disk: 

   [Escape] [:] [w] [q] [Return]  

        6.    After saving  temboo.conf , add the directory containing the 
Temboo library to the system library search path with this 
command: 

    ldconfig    

        Now when you build applications, the compiler will check to see if it needs any 
of the Temboo code. It will incorporate it from the library container described in the 
configuration file only if it is needed. Replacing the library will automatically have 
ARTIK 10 use the new version. Reconfiguration is not necessary provided the library has 
the same name as before. 

 As you configured your ARTIK network connection you should have noted all the 
details of the IP address and configuration in order to use them in a Temboo application. 
The  ifconfig  command with no options will present a list of network interfaces and their 
properties for you to check them again. Type that instruction on an ARTIK command line 
and not on your development workstation. The  eth0:  device will communicate via the 
Ethernet cable. The  wlan0:  device communicates via Wi-Fi if you have configured it. 



CHAPTER 19 ■ INTEGRATING WITH TEMBOO

315

 ■   Note   The location of the Temboo library in this example is based on what was observed 
in a prototype ARTIK module. It might have moved to another location. Read the instructions 
on the Temboo website and follow those if they describe a different location.   

     An Example of Code  Generated   by Temboo 
 The pre-built examples are a good introduction to working with Temboo. A simple 
Temboo choreography shows you how to request the weather in New York via the Yahoo 
weather service. This involves a call across the Internet to acquire source data. The 
Temboo server acts as an intermediary for us. Your login credentials will be used to call 
the Temboo server and ask it to make the inquiry for you. 

 Embed a Temboo account name into the code to authenticate and access your 
account. Clearly this should not be your private Temboo account if you are building 
code for distribution in an ARTIK embedded inside a product, but it is OK when you 
are testing. In the tutorial examples on the Temboo website this substitution happens 
automatically. Follow these instructions to build a simple application and generate the 
code for loading it into your ARTIK:

    1.    Log in to Temboo using the account you created earlier.  

    2.    Find the Yahoo ➤ Weather ➤ GetWeatherByAddress choreo 
in the Temboo library: 

     https://www.temboo.com/library/Library/Yahoo/Weather/
GetWeatherByAddress/        

        3.    Enter any address in the Address input field. Anything that 
Yahoo understands as an address that it can translate to 
latitude and longitude coordinates will work. Yahoo calls this 
the  PlaceFinder  method. In New York, type something like 
this  104 Franklin St New York, NY 10013 . In the United 
Kingdom a street address and postcode works well. An 
address formatted like this will work:  10 Downing St, London 
SW1A 2AA . Yahoo provides a helpful page that describes how 
this works here: 

     https://developer.yahoo.com/weather/documentation.html        

https://www.temboo.com/library/Library/Yahoo/Weather/GetWeatherByAddress/
https://www.temboo.com/library/Library/Yahoo/Weather/GetWeatherByAddress/
https://developer.yahoo.com/weather/documentation.html


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

316

        4.    Test the choreo by clicking the Run button. You will get 
details of the values returned by the choreo. An extract of the 
complete response looks like this: 

    <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>  
  <rss version="2.0" xmlns:yweather="http://xml.weather.yahoo.com/
ns/rss/1.0" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">  
  <channel>  

    <title>Yahoo! Weather - London, GB</title>  
  <link>http://us.rd.yahoo.com/dailynews/rss/weather/London__
GB/*http://weather.yahoo.com/forecast/UKXX0085_f.html</link>     
  <description>Yahoo! Weather for London, GB</description>  
  <language>en-us</language>  
  <lastBuildDate>Tue, 10 Nov 2015 3:20 pm GMT</lastBuildDate>  
  <ttl>60</ttl>  
  <yweather:location city="London" region="" country="United Kingdom"/>  
  <yweather:units temperature="F" distance="mi" pressure="in" speed="mph"/>  
  <yweather:wind chill="59"  direction="230"  speed="15" />  
  <yweather:atmosphere humidity="82" visibility="6.21" 
pressure="30.15" rising="0" />  
  <yweather:astronomy sunrise="7:07 am"  sunset="4:17 pm"/>  
  <image>  
  <title>Yahoo! Weather</title>  
  <width>142</width>  
  <height>18</height>  
  <link>http://weather.yahoo.com</link>  
  <url>http://l.yimg.com/a/i/brand/purplelogo//uh/us/news-wea.gif</url>  

         5.    Switch on the IoT mode with the control at the top of the page:      

      6.    Running a choreo also generates the code to install in your 
ARTIK to do the same thing. At the top of the Choreo page, 
choose your target hardware device type.  

    7.    Choose what kind of communications interface to use. 
The ARTIK modules only support Ethernet or Wi-Fi for 
long distances, but these both generate the same code for 
managing a connection so there is only one option needed.     

    8.    Now configure any sensor triggering based on what Temboo 
knows about your ARTIK. Turn on the sensor configuration 
tool by clicking on the small plus symbol just above the input 
configuration block.  



CHAPTER 19 ■ INTEGRATING WITH TEMBOO

317

    9.    Choose an input to sense on the pin board at the right. Pins 
 0 ,  1 ,  2 ,  5 ,  6 , and  7  can be selected as inputs. This selector is 
modal. When it is blue, the setting is locked. Click on the 
selected pin number to unlock it and change the color to 
magenta and then choose that pin.  

    10.    Decide whether to sense in analog or digital mode.  

    11.    Set the sensing condition value. For analog the range is  0  to 
 1023 . For digital the value can be  low  or  high . Add appropriate 
pull-up or pull-down resistors to your hardware, which will 
stop the input from floating and generating random values. 
Now, when the value on that sensor pin changes to match the 
condition, the choreo will run.  

    12.    If you want to define a hardware action that happens when 
the choreo has finished running and returns the results, add 
it by clicking on the small plus-sign symbol underneath the 
choreo condition configurator.  

    13.    Choose which of the returned conditions to base your 
hardware actions on. This menu selector is different for 
each choreo because they each return different condition 
values. Choose a comparison operator and value. When the 
temperature is larger than the value, the hardware action will 
be triggered, for example. The ARTIK can set the value of an 
output digital pin to a high or low value to operate a relay or 
turn on an LED indicator.  

    14.    Now run the choreo again to generate the code.  

    15.    Here is an extract of the example code that Temboo has 
generated. The code is written in C language and must be 
compiled on your ARTIK, as it includes the Temboo code 
installed there by default:    

    ... Headers and defines go here ...  

    // SocketConnection is a struct containing data needed  
  // for communicating with the network interface  
  SocketConnection theSocket;  

    // There should only be one TembooSession per device. It 
represents  
  // the connection to Temboo  
  TembooSession theSession;  



CHAPTER 19 ■ INTEGRATING WITH TEMBOO

318

    // Limit the number of times the choreo is to be run. 
This avoids  
  // inadvertently using up your monthly choreo limit  
  int currentRun = 0;  
  const int MAX_RUNS = 10;  

    // Defines a time in seconds for how long the choreo  
  // has to complete before timing  
  const int CHOREO_TIMEOUT = 300;  

    int inputPin = 7;  
  int outputPin = 8;  

    ... Callable functions go here ...  

    TembooError setup()  
    {  
    // Initialize the TembooSession struct exactly once.  
    TembooError returnCode = TEMBOO_SUCCESS;  

    #ifndef USE_SSL  
    returnCode = initTembooSession(  
              &theSession,  
              TEMBOO_ACCOUNT,  
              TEMBOO_APP_KEY_NAME,  
              TEMBOO_APP_KEY,  
              &theSocket);  
  #else  
    printf("Enabling TLS...\n");  
    returnCode = initTembooSessionSSL(  
              &theSession,  
              TEMBOO_ACCOUNT,  
              TEMBOO_APP_KEY_NAME,     
              TEMBOO_APP_KEY,  
              &theSocket,  

   "/opt/iothub/artik/temboo/temboo_artik_library/lib/
temboo.pem",  
              NULL);  
  #endif  



CHAPTER 19 ■ INTEGRATING WITH TEMBOO

319

      if (!digitalPinMode(inputPin, INPUT))  
    {  
      return -1;  
    }  
    if (!digitalPinMode(outputPin, OUTPUT))  
    {  
      return -1;  
    }  

      return returnCode;  
  }  

    // Call a Temboo choreo  
  ... More Temboo proprietary code here ...  

         16.    ARTIK sets the pin modes and operates the pins like an 
Arduino. Examine the source file to see how Temboo sets 
things up. Soon you will become familiar enough with this 
to create your own applications from scratch. This code 
fragment checks for the value of the temperature in the results 
and conditionally fires the hardware action: 

   if (0 == strcmp(name, "Temperature"))  
  {  
       if (choreoResultReadStringUntil(session->

connectionData, value, sizeof(value),   
             '\x1E') == -1)  
    {  
      printf("Error: char array is not large enough to 

store the string\n");  
    }  
    else  
    {  
      if (atoi(value) > 15)     
      {  
         digitalWrite(outputPin, HIGH);  
      }  
    }  
  }  

        17.    Now download the Temboo code package to your computer. 
Temboo will package this in a Zip file. Your Zip file should 
contain these two files: 

   getweatherbyaddress.c  
  TembooAccount.h  



CHAPTER 19 ■ INTEGRATING WITH TEMBOO

320

        18.    Copy the Zip archive file to your ARTIK to access it from 
there. Do this from the command line of your development 
workstation. Substitute the IP address you noted earlier: 

   scp getweatherbyaddress.zip root@{remote_IP_address_of_
your_ARTIK}:/home  

        19.    Now log in to your ARTIK (or resume an earlier session).  

    20.    Go to the directory where the  scp  command copied the 
Zip file: 

   cd /home  

        21.    Check that the Zip file is present with an  ls  command if you 
want to.  

    22.    Now unzip the archive package:    

   unzip getweatherbyaddress.zip  

        23.    Go into the  getweatherbyaddress  directory to see the source-
code files: 

   cd getweatherbyaddress  

        24.    Compile the code with this command: 

   gcc -L/opt/iothub/artik/temboo/temboo_artik_library/
lib -ltemboo   
  -I/opt/iothub/artik/temboo/temboo_artik_library/include   
  getweatherbyaddress.c -o getweatherbyaddress  

        25.    Now run your compiled application: 

   ./getweatherbyaddress  

              Shared Login Credentials   
 When you join Temboo, your account is credited with enough cycles to run a few 
Choreos to exercise your development project. That starter pack is not enough to sustain 
heavy usage so as you start to need Temboo more, you would purchase a low cost 
developer pack which gives you a stash of credits for testing. Every project you build in 
Temboo will be imprinted with your account credentials. When you deploy a product 
to manufacturering, your own personal account credentials should be replaced with an 
account that you have set up to manage Temboo Choreo runs on a commercial basis.  



CHAPTER 19 ■ INTEGRATING WITH TEMBOO

321

 By default, the  TembooAccount.h  header file contains the login credentials for the 
account you just used to create this code example. You should edit this file to use the 
production account if you are building a software image that you intend to redistribute in 
thousands of ARTIK modules embedded in your product.  

 You should design your production software to abstract login credentials out of the 
source code and store them safely somewhere else that can be shared by all the processes 
that need them. Defining them in one place and referring to it with a simple loading 
instruction makes your product easier to maintain.     

     Missing cdefs.h Message 
 If you get a warning message about a  missing  cdefs.h  file  , it suggests that the  glibc-
headers  are not yet installed. They should be there by default. You can reinstate them 
with this command if they have been compromised: 

   yum reinstall glibc-headers     
  dnf reinstall glibc-headers  

 Try the GCC compile again and then run your finished application.  

     Using CURL via a REST API Instead of C 
 Listing  19-2  shows an example of a similar choreo setup based on calling a URL endpoint 
with a  curl  command, where the string  xxxxx  should be substituted with your Temboo 
account profile name. This example is separated into multiple lines for clarity but should 
be executed as a single line when you construct the command yourself. 

     Listing 19-2.    Constructing a  curl Command     

 curl --basic   
       -u "myFirstApp":"e3271099b5f248778ec3d3e5b7103961"   
       --header "x-temboo-domain: /xxxxx/master"   
       --header "Content-Type: application/json"   
       --header "Accept: application/json" -X POST   
       --data '{ "inputs": [{"name":"Address", "value":"New York, NY"}] }'   
        "https://xxxxx.temboolive.com/temboo-api/1.0/choreos/Library/Yahoo/

Weather/GetTemperature"  

    Find out more about  REST  API endpoints here: 

   https://www.temboo.com/restapi/reference  

    Use this API to get a list of available choreos, or drill down and find out about a specific 
one. Set your choreos running with a call to action via the REST API. If the choreo is likely 
to take a while, find out the current status to see if it is making progress. Gather the results 
from completed choreos or shut one down if you no longer need the output it generates.     



CHAPTER 19 ■ INTEGRATING WITH TEMBOO

322

     Using Temboo with  Node.js   
 Temboo works very well with Node.js and gives you access to all of the same platforms 
and choreos that are available with other development tools. 

 Once you have verified that you have Node.js installed and working on your ARTIK, 
download the Temboo Node.js SDK and use the choreo-building tools on the Temboo 
website to create a sample script. Download that script and run it in your ARTIK. The 
process is similar to the way you generate C code. Temboo provides a helpful guide to 
exercising a choreo that encapsulates the Google GeoLocation code here: 

     https://www.temboo.com/nodejs/getting-started        

         Sample Code to Experiment With 
 A code generator like Temboo is a good way to create blocks of reusable code, but it 
cannot build a complete and finished product on its own. Eventually your needs will 
become more complex and you will have to use several choreos within a project. Temboo 
may evolve one day to become more sophisticated and help you, but for now, it is good 
for creating components that you need to integrate yourself. If you use the Temboo library 
of choreos as a playground on which to experiment, you can create lots of example code 
files to inspect and take apart to build your own apps. As you experiment with each 
choreo, you are creating the body for a potential new function within your own source 
code. It is only a small step to take the example code and wrap it in a function block to call 
it from your own main process thread. 

 ■   Note   For private experimentation, the Temboo code is a good way to learn. Read the 
licensing terms carefully if you plan to integrate Temboo into a commercial product. It is 
polite to ask permission before incorporating their code into your product and establishing 
any limitations on usage. It is better to ask first than to find out later that you have infringed 
upon someone else’s intellectual property rights.  

 When you step it up a gear and want to integrate different hardware, sensors, and 
controls, the Temboo website provides a rich source of example  IoT applications   with 
instructions, breadboard diagrams, and details of the components you will need. Some 
of these are truly awesome in the potential for wiring the world with IoT devices. Find out 
more about these example projects here: 

     https://temboo.com/iot-applications        

https://www.temboo.com/nodejs/getting-started
https://temboo.com/iot-applications


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

323

    Log in to your Temboo developer account to see these examples. Watch the video first 
and then look at the bill of materials to see what components to order. Gather a stock of 
useful components so as to be ready to start building a project as soon as you have an idea. 

 Now that Temboo is becoming more popular, more helpful example code is being 
made available by developers working at the leading edge. Paul Stoffregen describes 
how to send an e-mail via Gmail from an Arduino with the Temboo library. Porting this 
to work on an ARTIK should be straightforward, because the code is all based on using 
Temboo choreographies: 

     https://github.com/PaulStoffregen/Bridge/blob/master/examples/Temboo/
SendAnEmail        

    Another example shows how to update a Facebook status from inside your Arduino. 
This example could be modified to run in an ARTIK instead: 

     https://github.com/PaulStoffregen/Bridge/blob/master/examples/Temboo/
UpdateFacebookStatus        

    This example shows you how to send an SMS message: 

     https://github.com/PaulStoffregen/Bridge/blob/master/examples/Temboo/
SendAnSMS        

    Here are tutorial videos to help you understand Temboo better: 

     https://www.temboo.com/videos        

    The  Deconstructing IoT blog   is also a good place to go for tutorial help: 

     https://www.temboo.com/deconstructingiot        

    Send an e-mail directly to the Temboo support team for more advice if you have 
questions about how Temboo works: 

     support@temboo.com        

    This blog article describes how to integrate an ARTIK 10 with Temboo and SAMI to 
create a weather station that feeds data directly into SAMI: 

     https://blog.samsungsami.io/iot/development/tutorial/architecture/2015/09/08/
     building-a-weather-station-with-sami-artik-10-and-temboo.html        
    

https://github.com/PaulStoffregen/Bridge/blob/master/examples/Temboo/SendAnEmail
https://github.com/PaulStoffregen/Bridge/blob/master/examples/Temboo/SendAnEmail
https://github.com/PaulStoffregen/Bridge/blob/master/examples/Temboo/UpdateFacebookStatus
https://github.com/PaulStoffregen/Bridge/blob/master/examples/Temboo/UpdateFacebookStatus
https://github.com/PaulStoffregen/Bridge/blob/master/examples/Temboo/SendAnSMS
https://github.com/PaulStoffregen/Bridge/blob/master/examples/Temboo/SendAnSMS
https://www.temboo.com/videos
https://www.temboo.com/deconstructingiot
https://support@temboo.com
https://blog.samsungsami.io/iot/development/tutorial/architecture/2015/09/08/building-a-weather-station-with-sami-artik-10-and-temboo.html
https://blog.samsungsami.io/iot/development/tutorial/architecture/2015/09/08/building-a-weather-station-with-sami-artik-10-and-temboo.html


CHAPTER 19 ■ INTEGRATING WITH TEMBOO

324

         Summary 
 I hope you will see the merits of using Temboo for your projects. It is an elegant and 
well-engineered tool that is also remarkably easy to use for creating quite complex 
sub-systems. If you build individual application components using their online GUI 
tools and generate the code to compile and run in the ARTIK, you’ll have had a valuable 
learning experience. Temboo generates raw source code that can be integrated into 
your application piece by piece. Create a library of reusable components by wrapping 
the example Temboo code in function calls. Study the Temboo terms and conditions 
to understand the limits of what you are allowed to do with their code in a commercial 
context. 

 This chapter has illustrated accessing Temboo from C language and Node.js. Because 
Temboo uses a  REST  API, it can be used from any language that supports an  HTTPS:  web 
request/response call. Most languages have this capability already, or it can be added 
easily with plugin modules and code libraries.     



325© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_20

    CHAPTER 20   

 Debugging Your Application                          

     Debugging Your App 
 Setting up the debugging tools and processes for your application development is an 
important part of your workflow. If you have a reliable set of debugging tools available, 
getting your application running correctly is much easier. 

 The time-honored printing to console or logging to a debug file from an application 
running inside your ARTIK module are good approaches, but they will not help you 
inspect the state of the application internals and modify them on the fly. A  graphical 
debugger   is much more helpful. This needs to run via a remote connection to an 
application in another machine. 

 Embedded operating systems and  applications   are harder to debug because they 
are usually running in a context where you have no view of their output unless you add 
indicators to the application somehow. You could turn some attached LED indicators 
on and off, for example. Run your application in an emulator to shake out faults in your 
fundamental logic and design. 

 Attach a hardware debugger to the JTAG connector on your development system. 
The debugger will monitor the embedded CPU with an application that runs on your 
development workstation. You must buy the hardware, but if you work out how much 
time it saves you, the expense is worth it.  

     Software Debugging with GDB 
 This is generally easier if you are using an  integrated development environment (IDE)      
such as Eclipse, because the debugger output is presented in a window within the IDE. 
It is much easier to work with. 

 The GCC toolkit includes a useful set of debugging tools. Use them to set break 
points and step through your code one line at a time. The GNU  Debugger   ( GDB  ) is part of 
the software development tools and can be deployed by adding command-line options to 
the build process. This is done under the control of the Eclipse IDE or by adding a  -g  flag 
if you are using a command-line approach. Make sure you remove all these debugging 
hooks when you deploy your product to manufacturing. 



CHAPTER 20 ■ DEBUGGING YOUR APPLICATION

326

 Use the following commands to compile the standard  hello_world.c  and  
hello_world.cpp  source files with GDB support included. Note the additional  -g  option: 

   arm-linux-gnueabihf-gcc -g -o hello hello_world.c  
  arm-linux-gnueabihf-g++ -g -o hello_cpp hello_world.cpp  

    Deploy the application to your ARTIK and debug from the development workstation 
or from a logged-in session on your target ARTIK module. 

 There are many tutorials and books available on this topic. To become a power user, 
you must devote effort to learning how your tools work, and there is no substitute for 
practice. Here are some online resources to help you get started with GDB: 

    http://www.gnu.org/software/gdb/documentation/     
   http://sourceware.org/gdb/current/onlinedocs/gdb/     
   https://sourceware.org/gdb/wiki/Internals     
   http://www.thegeekstuff.com/2010/03/debug-c-program-using-gdb/     
   http://www.tutorialspoint.com/gnu_debugger/     

       Onboard Native Debugging   with GDB 
 If you log in to your ARTIK and run the application from the command line there, invoke 
the debugger inside the ARTIK and trace the execution of your application as it runs. 
Follow these steps to invoke the debugger:

    1.    Go to the directory where you installed your application.  

    2.    Use this command to run your application as normal 
(just to check it runs OK): 

   ./myapplication  

        3.    To run the same application in debug mode, use this 
command instead: 

   gdb ./myapplication  

        4.    You should now see the GDB message screen presented 
before any message your application displays: 

   GNU gdb (GDB) Fedora 7.7.1-21.fc20  
  Copyright (C) 2014 Free Software Foundation,Inc.  
  License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>  
  This is free software: you are free to change and redistribute it.  
  There is NO WARRANTY, to the extent permitted by law. Type "show 
copying"  
  and "show warranty" for details.  
  This GDB was configured as "armv7hl-redhat-linux-gnueabi".  

http://www.gnu.org/software/gdb/documentation/
http://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/gdb/wiki/Internals
http://www.thegeekstuff.com/2010/03/debug-c-program-using-gdb/
http://www.tutorialspoint.com/gnu_debugger/


CHAPTER 20 ■ DEBUGGING YOUR APPLICATION

327

  Type "show configuration" for configuration details.  
  For bug reporting instructions, please see:  
  <http://www.gnu.org/software/gdb/bugs/>.  
  Find the GDB manual and other documentation resources online at:  
  <http://www.gnu.org/software/gdb/documentation/>.  
  For help, type "help".  
  Type "apropos word" to search for commands related to "word"...  
  Reading symbols from my_bin ...done.  

        5.    Use the GDB commands to set break points and run your 
application under control of the debugger. Your application 
may not run as fast as normal because of the additional 
debugging code overhead.         

     Remote Debugging with GDB 
 If you want to debug the application running inside your ARTIK from a remote 
workstation (such as your hosting development system), first start a GDB server running 
inside the ARTIK module. This would be a good approach if your application is running 
in a device that operates in a stand-alone scenario without generating any output 
messages and has no screen to display them on anyways. Follow these steps to turn on 
 remote debugging tools  :

    1.    Go to the directory where you installed your application.  

    2.    Use this command to run your application as normal 
(just to check it runs OK): 

   ./myapplication  

        3.    Start GDB Server on your ARTIK with this command, 
which will make it available on port  1234  and load up your 
application for debugging: 

   gdbserver localhost:1234 ./myapplication  

        4.    You should see a message from GDB server telling you it is up 
and running: 

   Process target_process created; pid = 262  
  Listening on port 1234  

        5.    Now go to your development machine’s command line 
and type this command to run GDB on the development 
workstation (host system): 

   gdb  



CHAPTER 20 ■ DEBUGGING YOUR APPLICATION

328

        6.    In the GDB command line, connect to the GDB server 
running on your ARTIK module with the  target remote  
command. The format of the command is like this: 

   target remote {target_IP_address}:{remote_port_number}  

        7.    Assuming the IP address of your ARTIK is 192.168.1.38, you 
would type this: 

   target remote 192.168.1.38:1234  

        8.    You should see something like this on your screen: 

   Remote debugging using 192.168.1.38:1234  

  0xb029a9a2 in ?? ()  

        9.    At this point the application will pause and wait for you to give 
it some debugging instructions.     

    10.    Set the application in motion with this command: 

   continue  

              IDE Support for Debugging 
 Modern  IDE tools   like Eclipse use the semi-hosting stubs to insert debugging hooks into 
the code and handle the callbacks. This is why you must strip out the debugging when 
you create a releasable application for your shipped commercial products. These are the 
recommended debugging tools to add to your Eclipse IDE, for example:

•    QEMU  

•   SEGGER J-Link  

•   OpenOCD    

 Read the guidance on the Eclipse debugging page, which describes a variety of 
debugging strategies: 

    http://gnuarmeclipse.github.io/debug/     

http://gnuarmeclipse.github.io/debug/


CHAPTER 20 ■ DEBUGGING YOUR APPLICATION

329

       Emulating Your Hardware with  QEMU   
 Running your application code in an emulator makes it much easier to debug things that 
would be embedded in a remote device. The emulator lets you run the code in the hosting 
development environment but keeps a leash on it in order to probe it with software debugging 
tools. Read the documentation that describes how  QEMU   works and how to install it here: 

    http://gnuarmeclipse.github.io/debug/qemu/     

  QEMU runs in a secondary terminal window and echoes the calls that are made to 
it onto that console. This is the end-point for the debugging stubs that were added to the 
application source code to satisfy the missing calls that the linker detected. There is an 
interesting technical paper from the Real Time Linux Workshop 2011 that describes how 
QEMU works: 

    https://static.lwn.net/images/conf/rtlws11/papers/proc/p09.pdf     

  This next web page provides installation details for QEMU and describes what to do 
for Windows, Mac OS X, and Linux: 

    http://gnuarmeclipse.github.io/qemu/install/     

  After installing QEMU, you will need to install debugging plugins for the GNU/ARM 
cross-compiler.  

     Using the  JTAG Connectors   
 The developer  reference   boards are all equipped with JTAG hardware debugging 
connectors. The Type 1 developer reference board has a 14-pin connector for debugging 
the MIPS architecture. The Type 5 and Type 10 developer reference boards have 20-pin 
JTAG connectors that are compatible with the more powerful ARM CPU architectures. 
Acquire a set of adapter cables for plugging your hardware debugging tools into all the 
different configurations. The companion Apress  ARTIK Reference  book describes these 
connectors in more detail. Find out more about JTAG here: 

    https://en.wikipedia.org/wiki/Joint_Test_Action_Group     
   https://en.wikipedia.org/wiki/Open_JTAG     

        Hardware Debugging   with  SEGGER J-Link   
 The  SEGGER J-Link   shown in Figure  20-1  is a hardware probe designed to work with the 
JTAG connector on the developer reference boards. There are several models. One is 
designed for educational (non-profit) use. This is an inexpensive way to learn how this 
debugging technique works. There are other more powerful (and more expensive) probes 
for commercial application development.  

http://gnuarmeclipse.github.io/debug/qemu/
https://static.lwn.net/images/conf/rtlws11/papers/proc/p09.pdf
http://gnuarmeclipse.github.io/qemu/install/
https://en.wikipedia.org/wiki/Open_JTAG
https://en.wikipedia.org/wiki/Open_JTAG


CHAPTER 20 ■ DEBUGGING YOUR APPLICATION

330

 The J-Link debugging probes implement the ARM Serial Wire Debug (SWD) protocol 
and support tracing via the Serial Wire Output (SWO) pin. This is advanced debugging, 
and if you want to know more, study the SEGGER website. These hardware-debugging 
interfaces are not hugely expensive when you consider how much time they can save 
you. If you buy the educational version, the price is about fifty dollars. The commercial-
use versions are more expensive, and there are several models starting at a few hundred 
dollars and increasing in price as they implement more features. This debugging 
hardware helps you design a product that you expect to make a lot of money from. It is 
a false economy to avoid buying the best tools available. This may be the only way to 
properly  debug   your product if it is designed to run completely stand-alone.  Here      are 
some links that can tell you all about it: 

    https://www.segger.com/jlink-general-info.html     
   https://www.segger.com/index.html     
   https://www.segger.com/j-link-edu.html     
   https://www.segger.com/jlink_base.html     

  Install the Eclipse support for J-Link in order to attach the hardware to your 
application when it is running in debug mode. Here are some Eclipse guidelines for you: 

    http://gnuarmeclipse.github.io/debug/jlink/     

  Figure 20-1.    J-Link adapter for JTAG connections       

 

https://www.segger.com/jlink-general-info.html
https://www.segger.com/index.html
https://www.segger.com/j-link-edu.html
https://www.segger.com/jlink_base.html
http://gnuarmeclipse.github.io/debug/jlink/


CHAPTER 20 ■ DEBUGGING YOUR APPLICATION

331

  Find out more about the JTAG connectors here: 

    https://en.wikipedia.org/wiki/Joint_Test_Action_Group     

       Hardware Debugging with OpenOCD 
 This is another  hardware   debugging solution. It uses the same JTAG connection as the 
SEGGER J-Link probe. 

 Read more  about    OpenOCD   and install this instead of the J-Link debugging tools if 
you find that there are problems that you cannot trace with J-Link. Sometimes, viewing 
the problem from another angle helps to see what is going wrong. These will be helpful: 

    http://gnuarmeclipse.github.io/debug/openocd/     
   http://gnuarmeclipse.github.io/openocd/install/     

        Cleaning Up   after Debugging 
 Make sure you remove any debugging software from your application when you ship your 
product. If you can attach a debugging tool to it, the nefarious hacker community out 
there in the “Wild Wide Web” can also do that. You should also run your product through 
a complete regression test to see if any bugs come back after you have removed the 
debugging code. It may be that the debugging code was what allowed your application 
to run in the first place due to it having fixed something as a by-product of turning it on. 
These bugs are very hard to find. 

 If you  have   used object-oriented techniques to build your application, check 
specifically for memory leaks. These are extremely easy to add to your code without 
realizing it. Make sure that you properly de-allocate any memory when you tear things 
down at the end of a run of code. Your application will expect to run for an extended time, 
and an unfixed memory leak is going to kill it prematurely when the memory runs out.  

     Summary 
 You should always look for opportunities to develop and enhance your debugging skills. 
The more you improve your debugging skills, the quicker you can resolve potential 
problems. Ensuring that your application works before you ever ship products to 
customers is a huge cost saving. Sending updates to many hundreds or thousands of your 
customers can become painfully expensive. Making sure the code was bug free before 
committing it to production saves you a lot of money. You should also bear in mind the 
damage to your brand and product reputation that bad software can cause. Because 
debugging happens late in the product lifecycle, it is one of the tasks that is often skipped 
or truncated because project deadlines are looming. Quality assurance and technical 
documentation are two other project tasks that can easily become neglected in the rush 
to get a product out the door. Do the sensible thing and hone your debugging and QA 
skills to make great products that your customers will love. Let them be ambassadors who 
tell all their friends to buy your products.     

https://en.wikipedia.org/wiki/Joint_Test_Action_Group
http://gnuarmeclipse.github.io/debug/openocd/
http://gnuarmeclipse.github.io/openocd/install/


333© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_21

    CHAPTER 21   

 Deploying Your Application                          

     Getting Ready 
 Eventually you will reach the end of your debugging process. You are now ready to deploy 
your product to the manufacturing facility. A quality and security audit is appropriate at 
this point just to make sure your design is protected against unauthorized access. 

 After you build the final version of the application and run the audits, deploy the 
binary to the target ARTIK module and test it there. For mass production, the image you 
want installed needs to be loaded as the modules are manufactured, unless you want to 
set up a production line process of your own. There are several easy ways to deploy, and 
several other possibilities with varying levels of security risks attached:

•    Use the  scp  command to network copy.  

•   Mount an SD card and copy locally in the ARTIK.  

•   Mount a flash drive via the USB connection.    

 You could deploy applications to the ARTIK directly from the Eclipse IDE so the 
entire process is automated, but this is only realistic while you are developing the 
application software.  

     Deploy Files to  ARTIK with scp   
 The secure copy  scp  command is useful for deploying your application to a development 
ARTIK module provided it is reachable across your local area network. You should be able 
to do this whether it is a wired connection via Ethernet or a wireless connection via Wi-Fi. 
The format of the  scp  command is as follows: 

   scp {source_file_to_copy} {account_name}@{remote_IP_address}:
/{destination_directory}  



CHAPTER 21 ■ DEPLOYING YOUR APPLICATION

334

         Deploy Files across the  Network   
 There are other ways to deploy your content to the ARTIK. A file-sharing service in the 
ARTIK, with the ARTIK storage mounted on your development workstation, would be 
very convenient. There is a risk that you would forget to deactivate this before shipping. It 
is not the optimum solution for use on a production line. 

 Alternatively, write a scheduled script to run in the ARTIK and pull something from a 
network-reachable location. This is safer but is an unnecessary process when the remote 
location is no longer reachable. It is also not particularly secure, because a hacker could 
subvert it. At least build in authentication to make it safer. 

 The  file transfer protocol (FTP)   is an alternative to the  scp  command. Turn on an 
FTP service in the ARTIK module first and then use an FTP client application on your 
development workstation. Make sure your shipping product does not have an open FTP 
service running. 

 If you want to automatically update your ARTIK from the development workstation, 
use  rsync  running on a scheduled or event-triggered basis in your development 
workstation. This is a good solution because it will ensure the ARTIK module is updated 
whenever your content changes if you monitor the file system and use that as a trigger. 
Install a responder in the ARTIK to receive the files and store them, but remember that 
this is another item to remove when you go into production.  

     Deploy Files to Your ARTIK with a Micro SD Card 
 Deploying with a  Micro SD card   is a more secure solution. The ARTIK 5 and 10 modules 
have support for mounting and reading Micro SD memory cards. There is a Micro SD 
socket on the developer reference board. The downside is that every ARTIK will need 
to be plugged into a developer reference board or your system will need to implement 
a Micro SD card socket, which adds expense to your design. Micro SD cards compatible 
with these specifications can be used:

•    No larger than 32GB in capacity  

•   File system initialized as W95 FAT32    

 ■   Note    Historically, the technical documentation indicates that both 16GB and 32GB are 
the maximum depending on the vintage of the specification you read. If you have problems 
with a 32GB Micro SD card, try using a 16GB Micro SD card instead. You may only need a 
1GB or 4GB card, which should be fine.  

 You will need a card reader so your development system can load Micro SD cards 
with the files to transfer to your ARTIK. The examples shown in Figure  21-1  are compact 
designs that are compatible with only one kind of card. Other readers support multiple 
types of memory cards.  



CHAPTER 21 ■ DEPLOYING YOUR APPLICATION

335

 Your Micro SD card must be set up with a Master Boot Record partition system and 
then formatted with an MSDOS FAT file-system partition. Keeping things simple and only 
having one partition on your Micro SD card is a good idea. Follow these steps to prepare 
and load your Micro SD card and transfer the files to your target ARTIK module:

    1.    Plug the Micro SD card reader into your development system.  

    2.    Plug the Micro SD card into the reader.  

    3.    Configure a blank Micro SD card with a Master Boot Record 
partition scheme.  

    4.    Create a single MSDOS FAT file-system partition with a 
sensibly short name.  

    5.    Copy the files you want to transfer onto the Micro SD card.  

    6.    Dismount/eject the Micro SD card to properly flush the file 
system before unplugging it.     

    7.    Install the Micro SD card into the ARTIK development system.  

    8.    Type this command to list the visible file systems on your ARTIK: 

   fdisk -l  

        9.    The Micro SD card should present itself like this: 

   Device          Boot   Start     End       Blocks  Id   System  
  /dev/mmcblk1p1  8192   65535999  32763904  b       W95   FAT32  

        10.    Use this command to view more detail about the Micro SD card: 

   blkid  

  Figure 21-1.    Example  Micro SD card readers           

 



CHAPTER 21 ■ DEPLOYING YOUR APPLICATION

336

        11.    You should see a more extensive output like this: 

   /dev/mmcblk0p1: SEC_TYPE="msdos" LABEL="boot" UUID="AC7E-B03B" 
TYPE="vfat" PARTLABEL="boot" PARTUUID="d117f98e-6f2c-d04b-a5b2-
331a19f91cb2"  
   /dev/mmcblk0p2: LABEL="rootfs" UUID="ddd680fb-4343-4c74-b816-
e8c81f1ccc5c" TYPE="ext4" PARTLABEL="rootfs" PARTUUID="25718777-
d0ad-7443-9e60-02cb591c9737"  
   /dev/mmcblk1p1: LABEL="UNTITLED" UUID="3974-16F0" TYPE="vfat"  
   /dev/mmcblk0: PTUUID="00042021-0408-4601-9dcc-a8c51255994f" 
PTTYPE="gpt"  
   /dev/mmcblk1: PTTYPE="dos"  

        12.    Create a mount point in the ARTIK file system where the 
Micro SD card will be mounted with this command. Name 
the mount point as something other than  SD  if you prefer a 
different name: 

   mkdir /mnt/ SD    

        13.    Type this command to mount the Micro SD card at the specified 
mount point. Note your command will be slightly different if the 
Micro SD card has a different device name identifier or if you 
chose to name the mount point other than  SD : 

   mount /dev/mmcblk1p1 /mnt/SD  

        14.    The contents of the MSDOS FAT file system should now be 
available at the mount point.  

    15.    Check that with this command: 

   ls -la /mnt/SD  

        16.    Copy files on and off of the Micro SD card with the  cp  
command.  

    17.    When you are done, safely unmount the Micro SD card with 
this command: 

   umount /mnt/SD -l  

        18.    Now remove the Micro SD card from the ARTIK 
development system.      



CHAPTER 21 ■ DEPLOYING YOUR APPLICATION

337

     Deploy Files to Your ARTIK with a  USB Flash Drive   
 Loading your data with a USB flash drive is similar to mounting a Micro SD card, but a 
few details are different. You can only do this with an ARTIK 10 module. Your USB flash 
drive should be compatible with these specifications:

•    Partition map should be set up as MSDOS compatible  

•   Just one single partition (multiple partitions are confusing)  

•   File system initialized as W95 FAT32 or MSDOS FAT    

 Follow these steps to prepare and deploy your files:

    1.    Plug your USB flash drive into your development system.  

    2.    Configure the USB flash drive with a Master Boot Record 
partition scheme.  

    3.    Create a single MSDOS FAT file-system partition with a 
sensibly short name.  

    4.    Copy the files you want to transfer onto the USB flash drive.  

    5.    Dismount/eject the USB flash drive to properly flush the file 
system before unplugging it.  

    6.    Plug the USB flash drive into the ARTIK development system’s 
USB connector.  

    7.    Type this command to list the visible file systems on your ARTIK: 

   fdisk -l  

        8.    The USB flash drive should be visible in the  /dev  directory. 
The name will start with  sda  or  sdb  followed by a number that 
is incremented every time a new drive is attached: 

   Device      Boot  Start     End       Blocks Id  System  
  /dev/sda1   2     60751871  30375935  b      W95  FAT32  

        9.    Use this command to view more detail about the  USB 
flash drive:   

   blkid  

        10.    You should see a more extensive output like this: 

   /dev/loop0: UUID="2fd71144-7dfa-4caa-90c6-08c822a7b9ca" TYPE="ext4"  
   /dev/mmcblk0: PTTYPE="dos"  
   /dev/mmcblk0p1: UUID="847cfc70-1bda-4096-9a57-cff780001e5a" TYPE="ext4"  
   /dev/sda1: LABEL="UNTITLED" UUID="8417-1618" TYPE="vfat"  



CHAPTER 21 ■ DEPLOYING YOUR APPLICATION

338

        11.    Create a mount point in the ARTIK file system where the USB 
flash drive will be mounted with this command: 

   mkdir /mnt/mydrive  

        12.    Type this command to load the USB flash drive at the 
specified mount point: 

   mount /dev/sda1 /mnt/mydrive  

        13.    The contents of the USB flash drive should now be available at 
the mount point.  

    14.    Check that with this command: 

   ls -la /mnt/mydrive  

        15.    Copy files on and off of the USB flash drive with the  cp  command.  

    16.    When you are done, safely unmount the USB flash drive with 
this command: 

   umount /mnt/mydrive -l  

        17.    Now remove the USB flash drive from the USB port on the 
ARTIK development system.         

      Prototypes vs. Production   
 The end product  is   an image of your design that can be replicated many thousands of 
times. Installing manually is great for building and testing prototypes. It is a less than 
ideal solution for production. Contact your Samsung sales representative to discuss 
whether it is possible to have your software imaged onto the devices as they are 
manufactured. The downside of this is that the further away it is from your control the 
harder it is to make last-minute changes or reworks to the software. However, it may just 
be expedient to load software as part of your production line.  

     Integrating the ARTIK into your Products 
 The developer reference boards are intended to help you build prototype code and learn 
about the ARTIK modules. They are not practical for building into shipping products. 
What you build into your finished shipping product will most likely be derived from 
experiments you do with an ARTIK module mounted on a developer reference board. The 
ARTIK would then be integrated directly into your product design. Look closely at your 
ARTIK development system and you will see some multi-pin connectors underneath the 
ARTIK module. The companion Apress  ARTIK Reference Guide  describes the pinouts of 
these Panasonic AXT connectors. Recreate those physical connections in your products 
to plug the ARTIK module directly into your product.  



CHAPTER 21 ■ DEPLOYING YOUR APPLICATION

339

     Summary 
 This chapter covers the deployment of your finished design. Now you can show off your 
design and exchange ideas with other developers before starting a new project or moving 
on to the next cycle of design changes on this one. In the next chapter we draw things to a 
close and make plans for the next stage of our ARTIK project development.     



341© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2_22

    CHAPTER 22   

 Next Steps                          

     What Do You Want to Make? 
 Now that you have your ARTIK development environment assembled and working, 
start developing your applications. This introductory book concentrates on getting your 
system up and running. It is now up you to work out what you want to build with it. 

 The companion Apress  ARTIK Reference Guide  supplements the coverage in this 
book. There was far more information than a single book could accommodate without 
it becoming too big. The sheer bulk of available material made it necessary to split the 
coverage. The  Reference Guide  delves much more deeply inside the ARTIK modules and 
describes more of their inner workings. Use what you learned from this book to go and 
explore your ARTIK module to see what you can do with it. 

 There are already many intriguing ideas out there. Can you come up with something 
new and original and carve out your own niche in the industry? Table  22-1  lists some 
examples of already existing projects to inspire you. Invent something new and original of 
your own that will amaze and amuse your audience.  

  Table 22-1.    Existing  Project Ideas    

 Idea  Find Out More Here 

 Smart shoes     https://boogio.com/      

 Wired home     https://www.smartthings.com/uk      

 Baby clothing     http://mimobaby.com/         

 Hearing aids     http://news.rice.edu/2015/04/08/vest-helps-deaf-feel-
understand-speech/      

 Sensory     http://www.bbc.co.uk/news/technology-26487218      

 Industrial IoT     http://www.ge.com/digital/sites/default/files/industrial-
internet-insights-report.pdf      

 Engineering     http://www.ge.com/digital/      

(continued)

https://boogio.com/
https://www.smartthings.com/uk
http://mimobaby.com/
http://news.rice.edu/2015/04/08/vest-helps-deaf-feel-understand-speech/
http://news.rice.edu/2015/04/08/vest-helps-deaf-feel-understand-speech/
http://www.bbc.co.uk/news/technology-26487218
http://www.ge.com/digital/sites/default/files/industrial-internet-insights-report.pdf
http://www.ge.com/digital/sites/default/files/industrial-internet-insights-report.pdf
http://www.ge.com/digital/


CHAPTER 22 ■ NEXT STEPS

342

 Idea  Find Out More Here 

 Future-casting     https://www.artik.io/blog/2015/samsung-iot-2020-and-beyond      

 Skateboards     http://www.inboardskate.com/      

 Model railways     https://en.wikipedia.org/wiki/Digital_model_railway_
control_systems      

 IoT drones     http://www.broadcom.com/      

 Digital health     http://www.bbc.co.uk/news/uk-wales-35061369      

 Thermal image     http://www.bbc.co.uk/news/business-35049606      

 Farming     http://www.weenat.com/         

 Table  22-2  maps some potential scenarios for applying each kind of ARTIK module 
to tasks that are most suitable for each module.  

Table 22-1. (continued)

  Table 22-2.    Potential  Product Ideas    

 ARTIK  Application 

 1  Bluetooth tags 

 1  Low-end mobile devices 

 1  Industrial systems 

 1  Wi-Fi location beacons 

 1  Activity bands 

 1  Fitness trackers 

 1  Smart home endpoints (sensors and controllers) 

 1  Pet monitoring 

 1  Smart toys 

 1  Medical  sensors   

 5  Smart home hubs 

 5  High-end smart watches 

 5  Drones and model aircraft 

 5  IP cameras 

 5  Interactive games 

 5  Digital signage 

 5  Medical devices connected to a hub 

(continued)

https://www.artik.io/blog/2015/samsung-iot-2020-and-beyond
http://www.inboardskate.com/
https://en.wikipedia.org/wiki/Digital_model_railway_control_systems
https://en.wikipedia.org/wiki/Digital_model_railway_control_systems
http://www.broadcom.com/
http://www.bbc.co.uk/news/uk-wales-35061369
http://www.bbc.co.uk/news/business-35049606
http://www.weenat.com/


CHAPTER 22 ■ NEXT STEPS

343

 ARTIK  Application 

 5  Telecare hubs 

 10  Home servers 

 10  Smartphone systems 

 10  Media hubs 

 10  Shared gaming systems 

 10  Virtual reality 

 10  Augmented reality 

 10  Personal medical-system hubs 

 10  Broadcast video ingest tools 

     Finding Out about More Project Ideas 
 Look for ARTIK tutorials  online   and try to reproduce the example projects in your own 
lab. Take what you learn from them and extrapolate the knowledge to synthesize your 
own designs. Soon you will be able to call yourself a Master ARTIK Developer. 

 The Temboo website is gradually releasing more worked tutorial examples. This 
approach is interesting, because it is well organized and built within a framework. 
Evaluate the same project concept in a variety of different architectures to choose the 
best one. To understand how the Temboo project builder works in more detail, make 
an ARTIK version and a PHP or Arduino or raw C language variant to compare the 
differences. 

 Another rich  source   of project ideas is the HacksterIO website. There are only a few 
ARTIK projects there so far, but that is only because the ARTIK module is a new product. 
As developers get to know it better, more project examples will be posted. Use these 
search queries to list the ARTIK-related projects: 

   https://www.hackster.io/search?q=artik    
  https://www.hackster.io/search?q=sami    

  Search for SAMI-related projects on HacksterIO as your project may span a diverse 
set of remote devices. Some of them may be applications running on a mobile phone or 
tablet. HacksterIO covers many different platforms. 

 There are great example projects on the Instructables blog website as well. That 
collection will grow as more developers create projects and post them on the site. 
Subscribe and pay a small fee to get access to the more advanced materials. You can 
access a great deal of the site for free and then upgrade your membership when you are 
ready. This is all in the same kind of spirit as paying shareware fees to use open-source 
software; it is good to put a little something back into the pockets of people who work very 
hard to bring these resources to you. Find out more here: 

   http://www.instructables.com/member/SamsungIoT/    

Table 22-2. (continued)

https://www.hackster.io/search?q=artik
https://www.hackster.io/search?q=sami
http://www.instructables.com/member/SamsungIoT/


CHAPTER 22 ■ NEXT STEPS

344

  There are a lot more tutorials that illustrate how to use SAMI on the HacksterIO, 
Temboo, Instructables, and Samsung developer websites.  

     Becoming a Partner Organization 
 If you have projects, products, or services that you think may be of benefit to the ARTIK 
developer community, then perhaps it is worth joining Samsung as an ARTIK partner 
organization. Check out the existing partners for an idea of the kind of products that are 
appropriate. 

 Becoming a partner gives you early access to ARTIK technology, as Samsung 
releases it to partners first. Contact the product team from the partner page to request the 
partnership registration: 

   https://www.artik.io/partners

        Scroll to the bottom and click on the Registration button to send a partnership 
request to Samsung.  

     Going Deeper into ARTIK Development 
 The goal of this book was to introduce you to the ARTIK development tools and boards 
that Samsung has engineered to help you exercise your ARTIK and connect your existing 
systems to it. 

 To develop a product based on the ARTIK modules, your hardware design will have 
a mounting connector where the ARTIK module can be plugged in. You will need the 
mechanical dimensions and pinout details of the Panasonic AXT connectors on the 
underside of the ARTIK module. Each kind of ARTIK module is different, and you cannot 
interchange them without re-engineering this connector configuration. Deciding the best 
technology to use at an early stage of your project is important. 

 The companion Apress  ARTIK Reference Guide  book (designed as a follow up to this 
introductory book) covers these and other more advanced topics. 

 The current state of the ARTIK is that we are working with a Commercial Beta. This 
implies that things are certainly going to change. Indeed, during the writing of this book, 
a lot of things have been updated, even at the very last stage. We can expect more things 
to be revised as Samsung complete the engineering work and evolve the Commercial 
Beta product to a version 1.0 release. If you use the tutorials in the book and they do not 
work correctly, bear in mind that your ARTIK may have later software installed. Provided 
Samsung keep the developer documentation updated, you should be able to rely on that 
as the definitive source of knowledge.  

https://www.artik.io/partners
https://www.artik.io/partners


CHAPTER 22 ■ NEXT STEPS

345

     My Challenge to You 
 Writing this book has been a hugely enjoyable process. Executing a project like this leads 
to significant learning outcomes. Even as you complete your first ARTIK-based project, 
you should have significantly expanded what you know. 

 Your journey will be different than mine, and you will discover things that I missed. 
Your challenge is to find topics that interest you within the context of ARTIK development 
and become an expert in them. When you discover new things about the ARTIK, get in 
touch with Apress and talk to them about writing a book about your new-found area of 
expertise. 

 There is so much still to be covered in the ARTIK world, and the developer 
community is only just beginning to discover what it can do. The Internet of Things is 
going to bring a disruptive change to everyone's lifestyles. The ARTIK community is at the 
spearhead of this, and it is going to be an exciting ride.     



© Cliff Wootton 2016 
C. Wootton, Beginning Samsung ARTIK, DOI 10.1007/978-1-4842-1952-2

347

   A 
  Access tokens , 280, 296   
  ADC   . See  Analog-to-Digital 

Convertor (ADC)  
  Advanced Linux Sound 

Architecture (ALSA) , 34   
  Analog Pin Addresses , 263, 270   
  Analog-to-digital convertor (ADC) , 270   
  Apache Subversion (SVN) , 171   
  API Console , 286   
  Apple Lisa computer , 65   
  Arduino IDE 

 analog output pin values, 
setting , 212–213  

 analogRead() function , 213  
 Arduino pins 

 Type 1 developer reference 
board , 204–205  

 Type 5 and Type 10 developer 
reference boards , 206–207  

 Arduino sketch compiler , 215  
 ARTIK module confi guration , 201  
 board version , 208  
 confi guring and installing , 199–200  
 cross-compiling , 204  
 delay() function , 214  
 digital output pin values, 

setting , 211–212  
 digitalRead() function , 211  
 IDE preferences , 197–199  
 installation steps , 196  
 interrupts, detecting , 214  
 JRE , 195  
 JVM , 195  
 libArduino SDK , 204  
 native sketch compilation , 203  
 network upload method , 202  

 pin modes , 210–211  
 powersaving mode , 215  
 serial object , 209–210  
 serial upload method , 203  
 SPI , 214  
 switches and LED indicators , 216  
 systemCommand() function , 208  
 troubleshooting 

 CPU utilization , 217  
 digitalRead() function , 217  
 logic levels , 218  
 pin numbering , 217  
 porting projects, 

architectures , 218   
  ARM software , 62   
  ARM Toolchain, Mac OS , 182–185   
  ARTIK 

 Alpha and Beta prototype modules , 3  
 Arduino compatible pins , 2  
 Arduino suppliers , 59  
 ARM software , 62  
 booting up , 104–105  
 breadboard/PCB , 60  
 command-line user interface , 2  
 cross-compiler tools , 62  
 development system , 66–67  
 developer reference board , 63–64  
 development systems , 5  
 digital multimeter , 61–62  
 forensic techniques , 2  
 hardware and software solution , 2  
 JTAG probes , 2  
 kernel driver code , 63  
 kernel startup , 101–103  
 LAN , 66  
 Linux and Mac OS , 5  
 Linux kernel , 241  
 open-source technologies , 2  

            Index 



■ INDEX

348

 oscilloscope , 62  
 reference guide , 6–7  
 SAMI/Temboo ecosystems , 1  
 Samsung account , 5  
 self-directed study approach , 6  
 software installing , 157–158  
 starting up , 99  
 static discharge and blowing , 59  
 UNIX command-line shell , 62  
 UNIX systems administration , 4  
 USB interfaces    (see  USB serial 

interfaces )  
 USB Vendor Identifi ers , 78–79  
 virtual fi le-system mapping , 241  
 Windows , 4  
 wire Color Conventions , 60   

  ARTIK 1 module 
 block diagram , 22  
 bluetooth location-based beacons , 21  
 design , 22  
 embedded operating system , 22  
 functional organization , 22  
 memory storage , 23  
 spatial sensors , 23  
 wireless communications , 22  
 WVGA video output driver , 23   

  ARTIK 5 module 
 block diagram , 25  
 computing capacity , 26  
 Fedora Linux , 25  
 functional organization , 25  
 GPU , 26  
 hardware video codec support , 27  
 memory storage , 27  
 networking protocol support , 26  
 radio frequency (RF) shielding , 24  
 Samsung secure element protocols , 24  
 wireless communications , 25–26   

  ARTIK 10 module 
 audio codec support , 32  
 block diagram , 30  
 computing capacity , 31  
 design , 29  
 fi le-based edit/storage systems , 28  
 GPU , 31–32  
 hardware video codec support , 33  
 HD video output , 28  
 home intranet server , 28  
 internal sub-systems , 29–30  
 29mm x 39mm form factor , 28  

 networking protocol support , 31  
 OpenGL implementation , 32  
 OpenHAB and OpenStack 

networking , 31  
 operating system , 30  
 PMIC support , 34  
 Samsung secure element protocols , 28  
 video playback formats , 28  
 wireless communications , 30   

  ARTIK development 
 online tutorials , 343  
 product ideas , 342–343  
 project ideas , 341–342   

  ARTIK ecosystem , 15   
  ARTIK fi rmware release versions 

history , 155   
  ARTIK module 

 Arduino modules , 20  
 artifi cial intelligence , 16  
 ARTIK 1    (see  ARTIK 1 module )  
 ARTIK 5    (see  ARTIK 5 module )  
 ARTIK 10    (see  ARTIK 10 module )  
 audio coding support , 34  
 centralized SAMI connecting hub , 15  
 communications challenges , 19–20  
 community websites , 18  
 connected cloud service , 19  
 consumers benefi ts , 21  
 core-enabling technology , 21  
 ecosystem , 15  
 embedded UNIX operating systems , 16  
 ESE , 15  
 input/output sensors , 16  
 IoT , 15–16  
 Panasonic AXT multi-pin connectors , 35  
 Samsung , 16  
 security and privacy , 18  
 security management , 34  
 sensory capabilities , 19  
 software support , 17–18  
 Temboo ecosystem , 15  
 types , 16  
 video coding support , 34   

  ARTIK module CPU architectures , 170   
  ARTIK networking , 109   
  ARTIK operating systems 

 Fedora Linux , 37  
 Nucleus real-time , 35–36  
 Snappy Ubuntu , 38  
 Tizen , 38  
 Yocto project , 37–38   

ARTIK (cont.)



■ INDEX

349

  ARTIK processor hardware identifi ers , 208   
  Authentication , 277    

   B 
  BLE   . See  Bluetooth low energy (BLE)  
  Bluetooth low energy (BLE) , 111   
  Bluetooth wireless interface 

confi guration , 139–141   
  Boot mode switches, setting , 103–104    

   C 
  C language programming 

 coding strategies , 239  
 simple application, creation , 240  
 temperature sensor, coding , 254   

  Cloud-based Services , 43   
  CoAP   . See  Constrained application 

protocol (CoAP)  
  Code-editing tools , 160–161   
  Command line 

 ARM Toolchains , 219  
 curl commands , 225  
 Mac OS X , 220  
 top-level directory structure , 222–223  
 Ubuntu linux , 219  
 UNIX, ARTIK 

 date setting , 228  
 debugging messages , 227  
 memory usage, checking , 228  
 quitting and aborting 

processes , 226–227  
 UNIX I/O streams and 

redirection , 221  
 UNIX, windows , 221   

  Command-line ARM toolchains , 219   
  Command-line interface (CLI) , 161   
  command-line shells , 167–168   
  Constrained application 

protocol (CoAP) , 26, 31, 113   
  Cross-compiling , 169–170   
  curl tool , 224    

   D 
  Data-driven development , 275   
  Data Encryption , 44   
  Datagram Transport Layer 

Security (DTLS) , 44   
  Debian linux , 220   

  Debugging 
 cleaning up , 331  
 embedded OS and applications , 325  
 GNU Debugger (GDB) , 325  
 IDE , 325, 328  
 JTAG connectors , 329  
 OpenOCD , 331  
 QEMU , 329  
 SEGGER J-Link , 329–330   

  Debug  vs . Release , 170   
  Deploy fi les 

 ARTIK with scp , 333  
 micro SD card , 334–336  
 network , 334  
 prototypes  vs . production , 338  
 USB fl ash drive , 337–338   

  Developer portal 
 description , 275  
 managing applications , 295  
 managing device types , 294   

  Developer reference board , 63–65  
 ARTIK 1 module 

 Connections , 51  
 Panasonic AXT connectors , 50  

 ARTIK 5 and 10 modules 
 Beta versions , 51, 53  
 connectors , 53–54  
 jumpers , 56  
 LED indicators , 55–56  
 switches , 55  

 connectivity, external hardware , 56  
 and module versions , 48  
 static discharge damage , 47   

  Development workstation   . See  ARTIK  
  Digital multimeter , 61   
  DNS confi gurations 

 GUI network-management tools , 126  
 IP link report , 128–129  
 network device names , 129–130  
 static confi guration, servers , 127–128  
 system 

 impact , 126  
 UNIX operating system , 126    

   E 
  Eclipse IDE 

 ARTIK development , 180  
 cross-compiling , 175  
 default Toolchain, setting up , 188  
 eclipse smart home , 190  



■ INDEX

350

 getting help , 175  
 GNU ARM eclipse plugin, 

installing , 181–182  
 installing , 175–176  
 MIPS architecture , 190  
 new ARM project , 190–193  
 new tools adding , 179  
 on Mac OS X , 176–178  
 semi-hosting stubs , 189–190  
 setup instructions , 186–187  
 windows build tools , 181  
 workspace preferences , 178–179   

  Embedded Secure Element (ESE) , 15, 45   
  Ethernet connection confi guration , 117   
  Extending Node.js 

 node packages and modules , 261  
 NPM installing , 260–261  
 WebSocket module , 262    

   F 
  File system mapped properties 

 CPU confi guration , 223  
 processor speed , 224  
 virtual fi le listing , 223   

  File transfer protocol (FTP) , 334   
  Firmware security , 44   
  Firmware versions , 155   
  Folder separator characters , 161–162   
  Folders  vs . Directories , 161   
  FT232R USB UART , 72–74   
  FTDI   . See  Future Technology Devices 

International (FTDI)  
  FTDI Driver , 74–75   
  Future Technology Devices 

International (FTDI) 
 Arduino boards , 72  
  vs . OS X Versions , 75  
 USB serial device properties , 72    

   G 
  GDB 

 Onboard native debugging , 326–327  
 remote debugging tools , 327–328   

  General Electric (GE) , 12   
  Ghost disks, Mac OS X , 149   
  GNU ARM Eclipse IDE support , 181   
  GNU ARM Eclipse plugin, 

Mac OS X , 181–182   

  GNU compiler collection (GCC) 
 application-building tool , 232  
 ARM compiler support , 234  
 ARTIK module , 232  
 compiler warnings , 236  
 language support , 233  
 logo , 232  
 simple program 

(Hello World) , 235–236  
 supporting libraries , 233–234  
 Temboo session , 236  
 up and running, command , 234  
 Xcode tools, Mac OS X , 232   

  GNU Debugger (GDB) , 325   
  GPIO pins 

 analog pin addresses , 250  
 Arduino domain , 243  
 ARTIK 5 and analog read , 10, 250  
 connections , 244  
 digital value reading , 247  
 digital value setting , 247  
 direction setting , 246  
 Edge detecting , 248  
 mapping , 243–244  
 reading analog pins , 249  
 sys virtual fi le system , 243  
 writing, code , 245   

  GPU   . See  Graphics 
processing unit (GPU)  

  Graphical debugger , 325   
  Graphics processing 

unit (GPU) , 26, 31–32    

   H 
  Hardware Debugging 

 OpenOCD , 331  
 SEGGER J-Link , 329–330    

   I 
  IDE   . See  Integrated development 

environment (IDE)  
  IETF   . See  Internet engineering task 

force (IETF)  
  IIoT   . See  Industrial Internet of 

Th ings (IIoT)  
  Industrial Internet of 

Th ings (IIoT) , 13   
  Integrated development environment 

(IDE) , 160, 169, 325   

Eclipse IDE (cont.)



■ INDEX

351

  Internet engineering task 
force (IETF) , 117   

  Internet of Th ings (IoT) 
 Cisco , 11  
 climate change and energy 

supply issues , 12  
 defi ning point , 11  
 GE Predix and Apple HealthKit , 12  
 industrial , 13  
 lifestyles changes , 12  
 map concept , 9–10  
 medicine and care community, 

revolution , 12  
 network architecture and 

design , 11  
 revolution , 10  
 Samsung ARTIK , 9, 11  
 sensors , 11  
 statistical cusp , 11   

  IoT   . See  Internet of Th ings (IoT)  
  IP address confi guration 

 DHCP , 122  
 ethernet IP interface , 123  
 IP network confi guration 

report , 122–123  
 IPv6 operation , 125  
 static IP address , 124   

  IPv4 addressing notation , 118–119   
  IPv6 addressing notation , 120–121   
  IPv6 via Low-power Wireless Personal 

Networks (6LoWPAN) , 31    

   J 
  Java 

 Arduino IDE tools , 172  
 ARTIK , 174  
 installation guidelines , 173  
 JRE , 172–173  
 version 

 on Linux , 173  
 on Mac OS X , 172  
 on Windows , 172   

  Java development kit (JDK) , 172   
  Java runtime environment (JRE) , 172   
  Java virtual machine (JVM) , 195   
  JDK   . See  Java development kit (JDK)  
  JRE   . See  Java Runtime 

Environment (JRE)  
  JTAG Connectors , 329   
  JTAG hardware-debugging probe , 109    

   K 
  Kernel booting , 100–101    

   L 
  LAN   . See  Local Area 

Network (LAN)  
  Library function toolkit 

 analogRead() Function , 253  
 digitalRead() Function , 252–253  
 digitalWrite() Function , 252  
 GPIO confi guration and value 

management , 250  
 main application code , 251  
 manifest constant 

defi nitions , 251  
 setDigitalPinMode() 

Function , 251   
  Links  vs . Aliases , 164   
  Linux 

 terminal emulator application 
 logging , 96  
 minicom    (see  minicom 

application )   
  Local Area Network (LAN) , 66   
  Login credentials , 105   
  6LoWPAN protocol , 114    

   M 
  Mac OS resource forks , 165   
  Mac OS X , 220  

 Alpha prototype board , 69–70  
 drivers  vs . device names , 75  
 FT232R USB UART , 72  
 FTDI , 73, 75  
 Prolifi c 2303 Driver URLs , 70  
 security issues , 69  
 terminal emulator application 

 dialup connection tool , 86  
 logging , 89  
 output redirection , 91  
 process ID (PID) , 88  
 Screen Command Logging , 90  
 Script Command Logging , 92  
 scroll-back buff er , 90  
 Stream Duplexing , 91   

  Manifest validator , 286   
  mDNS   . See  Multicast domain name 

system (mDNS)  



■ INDEX

352

  Message Queue Telemetry Transport 
(MQTT) , 26, 31, 113   

  Micro SD card readers , 335   
  Micro USB OTG adapter cable , 78   
  Minicom application 

 apt-get , 93  
 ARM CPU architecture , 97  
 confi guration , 94–95  
 Source Code Files , 93  
 Windows , 82–85  
 yum tool , 93   

  Mobile to mobile (M2M) , 112   
  MQTT   . See  Message queue telemetry 

transport pprotocol (MQTT)  
  Multicast Domain Name System 

(mDNS) , 26, 31, 111    

   N 
  Native sketch compilation , 203   
  Network confi guration 

 CoAP , 113  
 dynamic name auto-discovery 

support , 111–112  
 IPv4 addressing , 118–119  
 IP v6 addressing , 120  
 M2M , 112  
 MQTT , 113–114  
 port numbers , 121–122  
 protocol support , 112  
 Telnet via SSH , 138  
 ZigBee and thread 

protocols , 114   
  Network connection strategy , 110   
  Networking protocol support , 109   
  New-Line characters , 166   
  Node.js 

 architecture design , 258  
 compiled binary code , 259  
 developing , 257  
 Google V8 logo , 258  
 Hello World application , 262  
 instructions, version 

checking , 259  
 JavaScript interpreter , 257  
 logo , 257  
 new device registering, 

SAMI , 264–266  
 pin voltage reading , 262–263   

  Node.js. Extending Node.js  
  Normalization process , 282    

   O 
  OAuth2 access tokens , 280   
  OMA Lightweight M2M protocol 

(LW M2M) , 26, 31, 112   
  OpenHAB   . See  Open home automation 

bus (OpenHAB)  
  Open home automation bus 

(OpenHAB) , 31, 115–116   
  OpenOCD , 331   
  OpenStack (Swift) framework , 31, 116   
  Operating systems 

 case preservation and sensitivity , 163  
 upper-and lowercase issues , 162–163   

  Oscilloscope , 62   
  OS kernel startup , 101–103    

   P 
  PIP   . See  Python package manager (PIP)  
  PMIC   . See  Power management 

integrated circuit (PMIC)  
  Port numbers , 121–122   
  Power management integrated 

circuit (PMIC) , 33   
  Programming, ARTIK 

 code developing , 169  
 code-editing tools , 160–161  
 code management , 171  
 debug  vs . release , 170  
 fi le names and paths , 162  
 fi le-system path , 161–162  
 software development environment, 

setting up , 159–160   
  Prototypes  vs . production , 338   
  Pulse-width modulated 

(PWM) , 210, 213   
  PuTTY application 

 ARTIK development , 84  
 fi le-naming meta-characters , 85  
 logging , 85  
 Windows , 82–83   

  Python package manager (PIP) , 268   
  Python programming 

 ARTIK module , 267  
 code snippet , 271  
 developing , 267–268  
 Hello World application , 269–270  
 interpreter , 268  
 logo , 267  
 object-oriented design , 267  



■ INDEX

353

 pin voltage, reading , 270–271  
 Python packages installation , 269    

   Q 
  QEMU , 329    

   R 
  Radio frequency interference (RFI) , 24   
  Real-Time Operating System (RTOS) , 22   
  Redhat package manager (RPM) , 157   
  Remote systems, libCurl 

 calling libCurl , 255–256  
 curl commands , 254  
 libCurl client-side library , 254   

  Remote web servers 
 wget and curl tools , 224   

  REST API interface , 274   
  RFI   . See  Radio frequency 

interference (RFI)  
  RPM   . See  Redhat package 

manager (RPM)   

   S 
  SAMI 

 access tokens , 296  
 API , 282  
 application , 280  
 authentication , 277  
 connecting to application , 295  
 data-driven development , 275  
 data fl ows , 274  
 developer documentation , 276  
 Developer portal    (see  Developer 

portal )  
 device 

 ID , 280  
 pairing , 279  
 type , 279  

 manifest , 280–281  
 messages transport , 277–278  
 normalization process , 282  
 OAuth2 access tokens , 280  
 request format , 296  
 response body , 297  
 REST API interface , 274  
 Samsung SAMI logo , 273  
 SDK libraries , 283  
 security features , 276  

 sending data , 297–298  
 tools 

 API Console , 286  
 developer portal , 284–285  
 Manifest validator , 286  
 SAMI Device Simulator , 286  
 user portal , 285  

 tutorial code samples , 298  
 user ID , 278  
 User portal    (see  User portal )   

  SAMI API , 282   
  SAMI cloud-based protocols , 24, 28   
  SAMI cloud-based service , 19   
  SAMI data-aggregation system , 15   
  SAMI data exchange , 274   
  SAMI Device Simulator , 286   
  SAMI Request Format , 296   
  SAMI Response Body , 297   
  SAMI tools 

 API Console , 286  
 developer portal , 284  
 Manifest validator , 286  
 SAMI Device Simulator , 286  
 user portal , 285   

  Samsung ARTIK modules , 16   
  Samsung ARTIK platform , 1   
  Secure copy, SCP 

 fi le download, ARTIK module , 237  
 fi le upload, ARTIK module , 237   

  Security 
 cloud-based services , 43  
 data encryption , 44  
 data safe , 43  
 device authentication , 44  
 ecosystem , 42  
 embedded secure element , 45  
 fi rmware , 44  
 hardware crypto engine , 45–46  
 OAuth2 protocols , 42  
 open technologies, sharing , 43  
 operating system , 43  
 risk factors and Dystopian 

futures , 41  
 SAMI , 42  
 Samsung account, SAMI 

services , 44–45  
 segregated trust zone , 46   

  SEGGER J-Link , 329–330   
  Semi-hosting Stubs , 189   
  Serial object TTY addresses , 209–210   
  Serial peripheral interface (SPI) , 23, 214   



■ INDEX

354

  Shell command prompt-formatting 
meta-characters , 168   

  Shutdown commands , 106–107   
  Shutdown console logging messages , 108   
  Shutdown warnings , 107   
  Software Development Kit 

libraries (SDK) , 283   
  SPI   . See  Serial peripheral interface (SPI)  
  Switch OpenStack cluster server , 116   
  Switchover , 122   
  System administrator console , 99   
  Systems on Modules (SOM) , 16   
  sys virtual fi le system , 242    

   T 
  Target CPU, code , 170   
  Telnet , 138   
  Temboo 

 account dashboard , 303–304  
 account registration , 302–303  
 activity dashboard , 305  
 and ARTIK , 5, 312–313  
 missing cdefs.h fi le , 321  
 choreo-based applications , 304  
 Choreo Library Index , 308–309  
 code generation , 315–320  
 condition handling , 310  
 curl command , 321  
 data streaming , 311–312  
 deconstructing IoT blog , 323  
 developing , 302  
 IoT applications , 322  
 libraries of utility code , 309  
 library dashboard , 306  
 logo , 301  
 machine-to-machine (M2M) , 312  
 Node.js , 322  
 notifi cations panel , 305  
 online data storage , 308  
 output fi lters , 311  
 platforms support , 307  
 profi les, remote storage , 311  
 shared login credentials , 320–321  
 supported connectivity , 308  
 Tango , 313–314  
 web-based dashboard , 301   

  Terminal emulator application 
 installation , 82  
 Linux , 92–97  

 old-fashioned tele-typewriter 
devices , 81   

  Toolchain 
 ARM installing, Mac OS , 182–185  
 defi nition , 180  
 setting up , 188   

  Trusted execution environment 
(TEE) , 15, 46   

  Typical developer kit , 49   
  Typographers quotes , 166    

   U 
  U-boot universal boot loader 

messages , 99–100   
  Ubuntu Linux , 75–77, 219   
  Updating, ARTIK 5/10 

 boot switches , 152  
 instructions, upgrade OS , 152–155  
 SD card reader socket , 152   

  USB-Serial Controller D , 70–71   
  USB serial interfaces 

 drivers  vs . device Names , 76–77  
 FT232R USB UART , 73–74  
 Mac OS X , 69  
 Prolifi c Technologies driver , 67  
 Ubuntu Linux , 75–77  
 Windows , 68   

  USB Vendor Identifi ers , 78   
  User portal 

 description , 275  
 displaying charts , 292–293  
 Export SAMI data , 294  
 managing rules 

 matching pattern , 290  
 rule-based actions , 290  
 rules creation , 290, 292  
 rules mechanism , 289  

 SAMI data logs , 293    

   V 
  vi editor 

 command mode keystrokes , 230–232  
 exit and save , 229  
 GUI , 229  
 insert mode , 229  
 UNIX system , 228  
 use , 229  
 vim command, fi le open , 228–229    



■ INDEX

355

   W, X 
  wget tool , 224   
  Wi-Fi , 66   
  Wi-Fi networking confi gurations 

 advanced , 136  
 Apple Airport wireless network , 135  
 Broadcom driver , 135  
 “Failed to Connect” message , 135–136  
 Martin Kronenberg documents, nmcli 

command , 133–134  
 reconfi guration, reboot , 136–137  
 setting up Wi-Fi 

communications , 130–132  
 troubleshooting , 135   

  Windows , 68  
 Terminal emulator application 

 PuTTY    (see  PuTTY application )   
  Wireless networking 

 ARTIK modules , 110  
 BLE , 111  

 IEEE 802.11 Wi-Fi , 111  
 mDNS , 111  
 power consumption  vs . range , 110  
 protocols, module type , 111  
 ZigBee and thread 

protocols , 111   
  Writing downloaded images, SD card 

 on Linux , 144–146  
 on Mac OS X , 146–149  
 partition maps, OS X , 149  
 repartition, SD card , 149–151  
 on windows , 143–144    

   Y 
  Yocto long-term support 

initiative (LTSI) , 38    

   Z 
  ZigBee and thread protocols , 66, 114          


	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Trademarks
	Foreword
	Introduction
	Chapter 1: Getting Started
	Introducing the ARTIK Family
	Reinventing the Engineering Process
	About This Book
	Finding Out About ARTIK
	Provenance
	Experience Helps
	Your Journey Through the Book
	Do You Use Windows, Linux, or Mac OS X?
	Get Your Samsung Account
	Buy an ARTIK Development System Now
	Would You Like to Know More?
	What to Read Next
	Quick Start

	Chapter 2: Welcome to the Internet of Things
	What Is the Internet of Things?
	Concept Map
	An Example You Can Build Today

	The Internet Is Changing—Rapidly
	Disruptive Changes
	Network Architecture and Design
	Sensors

	Lifestyle Changes
	A Revolution in Medicine and the Care Community

	Industrial Internet of Things
	Revenue-generating Opportunities


	Chapter 3: Hello, ARTIK
	What Is an ARTIK Module?
	What Is an Ecosystem?
	The ARTIK Modules
	Software Support
	The ARTIK Community

	Security and Privacy Are Core Needs
	The Connected Cloud Service
	Sensory Capabilities
	Communications Challenges
	Integration with Other Platforms
	Benefits to Consumers
	Introducing the ARTIK 1
	Functional Organization
	Operating System
	Wireless Communications
	Spatial Sensors
	Computing Capacity
	Memory Storage
	Video Display Output

	Introducing the ARTIK 5
	Functional Organization
	Operating System
	Wireless Communications
	Networking Protocol Support
	Computing Capacity
	Graphics Processing Unit (GPU)
	Memory Storage
	Hardware Video Codec Support

	Introducing the ARTIK 10
	Functional Organization
	Operating System
	Wireless Communications
	Networking Protocol Support
	Computing Capacity
	Graphics Processing Unit (GPU)
	Memory Storage
	Audio Codec Support
	Hardware Video Codec Support

	Comparing the ARTIK Modules
	Power Management Integrated Circuit (PMIC)
	Security Management
	Support for Audio Coding
	Support for Video Coding
	Physical Connections

	About the ARTIK Operating Systems
	Nucleus RTOS
	Linux: Fedora OS
	But What Is Yocto?
	Other Operating Systems

	Summary

	Chapter 4: Understanding Security
	Risk Factors and Dystopian Futures
	Security Ecosystem
	SAMI
	OAuth2
	Cloud-based Services
	Open Technologies for Sharing
	Keeping Your Data Safe and Secure
	Secure Operating System
	Firmware Security
	Device Authentication
	Data Encryption
	Get Your Samsung Account Now
	Embedded Secure Element
	Hardware Crypto Engine
	Segregated Trust Zone
	Current Status
	Summary

	Chapter 5: Your Development Kit
	The Developer Reference Board
	About the Developer Reference Boards

	What Is in the Box?
	The Type 1 Developer Reference Board
	The Type 5 & 10 Developer Reference Boards (Beta)
	Early Production Models
	Type 5 and 10 Developer Reference Board Connectors
	Type 5 and 10 Developer Reference Board Switches
	Type 5 and 10 Developer Reference Board LED Indicators
	Type 5 and 10 Developer Reference Board Jumpers
	Connecting External Devices
	Summary

	Chapter 6: Getting Your Hardware Together
	Your Workbench
	Setting Up a Hardware Workbench
	Wiring Up Your Circuits
	Test Equipment

	Setting Up a Software Workbench
	Risk Managing Your Software Development

	Configuring the Developer Reference Board
	Communicating with Your ARTIK
	Connecting the ARTIK Development System
	USB Serial Interfaces
	Hooking Up the Serial Interface
	Setting Up a USB Serial Interface Driver on Windows
	Setting Up a USB Serial Interface Driver on Mac OS X
	OS X and Security Issues
	Is a New Driver Necessary?
	Is the Hardware Detected?
	Installing a Driver (USB-Serial Controller D)
	Installing a Driver (FT232R USB UART)
	FTDI Driver Versions
	Drivers vs. Device Names

	Setting Up a USB Serial Interface Driver on Ubuntu Linux
	Setting Up a USB Serial Interface on Android Devices

	USB Vendor IDs
	Summary

	Chapter 7: Setting Up a Terminal Emulator
	Serial Connections with a Terminal Emulator
	Installing Your Terminal Emulator
	Adding a Terminal Emulator to Windows
	Install PuTTY on Windows
	Connecting to the ARTIK Development System from PuTTY
	Closing the Connection
	Logging the Output to a File
	PuTTY Log File Naming

	Using the Default Terminal Application on Mac OS X
	Closing the Connection
	Recovering from a Bad Screen Exit
	Other Useful Screen Commands
	Logging the Output to a File
	Log Capture Example 1 (Clipboard Cut and Paste)
	Log Capture Example 2 (Screen Command Logging)
	Log Capture Example 3 (Output Redirection)
	Log Capture Example 4 (Stream Duplexing)
	Log Capture Example 5 (Script Command Logging)
	Alternatives to the Mac OS X Terminal App

	Using the Minicom Terminal Application on Linux
	Installing Minicom with yum
	Installing Minicom with apt-get
	Building Minicom from the Source Code Files
	Configure Minicom to Talk to the ARTIK Developer �Reference Board
	Connecting to the ARTIK Development System from Minicom
	Closing the Connection
	Logging the Output to a File
	Pausing the Screen Output

	Using Minicom Inside Your ARTIK
	Summary

	Chapter 8: Talking to Your ARTIK
	Starting Up the ARTIK
	The System Administrator Console
	U-boot Universal Boot Loader Messages
	Booting the Kernel
	OS Kernel Startup
	Setting the Boot Mode Switches
	Booting Up Your ARTIK Development System
	Login Credentials
	Shutdown Commands
	Shutdown Warnings
	Shutdown Console Logging Messages
	Summary

	Chapter 9: Network Configuration
	Networking Your ARTIK
	Networking Protocol Support
	Choosing the Best Networking Strategy
	Wireless Networking
	Dynamic Name Auto-discovery Support
	Protocol Support
	OMA Lightweight M2M Protocol (LW M2M)
	Constrained Application Protocol (CoAP)
	Message Queue Telemetry Transport Protocol (MQTT)
	6LoWPAN Protocol
	Using ZigBee and Thread Protocols
	OpenHAB Support in ARTIK 10 Modules
	OpenStack (Swift) Framework
	Configuring Your Ethernet Connection
	How It Works
	IPv4 Addressing Notation
	IPv6 Addressing Notation
	Port Numbers
	The Switchover
	IP Address Configuration in Your ARTIK
	Inspecting the IP Addresses
	Setting a Temporary IP Address on the Ethernet Interface
	Setting a Default Persistent Static IP Address
	Configuring Your ARTIK for IPv6 Operation

	DNS Configurations
	Introducing systemd
	The Impact of systemd on DNS Configuration
	Statically Configuring Your DNS Servers
	Getting State of Your IP Links

	Configure the Wi-Fi Networking
	Setting Up Wi-Fi Communications
	Another Way to Configure Your Wi-Fi
	Troubleshooting FAQ
	No Suitable Device Found for This Connection
	No Network Configuration Set Up
	“Failed to Connect” Message

	Advanced Wi-Fi Configuration
	Automatically Reconnect Your Wi-Fi after Each Reboot

	Connecting with Telnet via SSH
	Configuring Your Bluetooth Wireless Interface
	Setting Up Bluetooth for an ARTIK 5 or 10

	Summary

	Chapter 10: Configuring and Upgrading
	Updating Your Operating System
	Writing Downloaded Images to an SD Card
	Writing Micro SD Card Images on Windows
	Writing Micro SD Card Images on Linux
	Writing Micro SD Card Images on Mac OS X
	Ghost Disks on Mac OS X
	About Partition Maps on OS X


	Updating Your ARTIK 5 or 10
	Known Firmware Versions
	Installing Software on Your ARTIK
	Summary

	Chapter 11: Programming Your ARTIK
	Everything Is the Same but Different
	Programming Your ARTIK
	Setting Up Your Software Development Environment
	Code-Editing Tools
	Folders vs. Directories
	File-System Path: Folder Separator Characters
	Spaces in File Names and Paths
	Upper- and Lowercase Issues
	Of Camels and Underscores
	Let the Environment Do the Heavy Lifting
	Links vs. Aliases
	Mac OS Resource Forks
	New-Line Characters
	Typographers Quotes
	Being in Two Places at Once
	Developing Your Code
	What Is Cross-Compiling?
	Building Code for the Correct Target CPU

	Debug vs. Release
	Managing Your Code
	Why Do You Need Java?
	Checking the Java Version on Windows
	Checking the Java Version on Mac OS X
	Checking the Java Version on Linux
	Installing Java
	Do You Need Java on Your ARTIK?

	Summary

	Chapter 12: Using Eclipse IDE
	Installing, Configuring, and Using Eclipse IDE
	Before You Install Eclipse IDE
	Getting Help
	Installing Eclipse IDE
	Eclipse on Mac OS X
	Workspace Preferences
	Adding New Tools to Your Eclipse IDE
	What Is a Toolchain?
	Installing Support for ARTIK Development
	Why Build Tools Are Needed
	Installing the GNU ARM Eclipse Plugin on Mac OS X
	Installing an ARM Toolchain on Mac OS
	Configuring Your IDE for Remote Exploring
	Setting Up a Default Toolchain
	Semi-hosting Stubs
	Support for the MIPS Architecture
	Support for Eclipse Smart Home
	Making a New ARM Project
	Deploy the Binary to Your ARTIK
	Summary

	Chapter 13: Using Arduino IDE
	Installing, Configuring, and Using Arduino IDE
	Before You Install Arduino IDE
	How To
	Recommended Settings for Your Arduino IDE
	Installing and Configuring libArduino
	Configuring Your ARTIK for Uploads (Board Setup)
	Uploading a Sketch to Your ARTIK with Arduino IDE
	Network Upload Method
	Serial Upload Method

	Native Sketch Compilation
	Recommended Update Cycle
	Developing with libArduino SDK
	Arduino Pins: Type 1 Developer Reference Board
	Arduino Pins: Type 5 and Type 10 Developer Reference Boards
	System Commands
	Detecting the Board Version
	The Serial Object
	The Serial1 Object
	The DebugSerial Object
	Pin Modes
	Reading Digital Input Pin Values
	Setting Digital Output Pin Values
	Setting Analog Output Pin Values
	Reading the Analog Inputs
	Serial Peripheral Interface (SPI)
	Detecting Interrupts
	Pausing for Breath
	Powersaving Mode
	Compiling and Running Sketches Natively
	Where to Find Out More
	Troubleshooting
	Managing the Type 5 vs. Type 10 Pin-Number Differences
	CPU Utilization at 100 Percent
	Digital Read Only Ever Reports a 1 Value
	Porting Projects from Other Architectures
	Logic Levels

	Summary

	Chapter 14: Using the Command Line
	Command-Line ARM Toolchains
	Ubuntu Linux
	Debian Linux
	Mac OS X
	Adding a UNIX Command Line to Windows
	UNIX I/O Streams and Redirection
	What’s Where?
	File System Mapped Properties Inside the ARTIK
	What CPU Is Available?
	Detecting Current Processor Speed

	Connecting to Remote Web Servers
	Examples with curl

	Useful UNIX Commands Inside Your ARTIK
	Quitting and Aborting Processes
	Inhibiting the Debugging Messages
	Setting the Correct Date
	Checking Your Memory Usage

	The vi Editor (Why vi?)
	How to Use vi
	Open a File for Editing or Create a New One
	Inside the vi Editor
	Saving and Exiting
	Command Mode

	The GCC Compiler
	Language Support
	Supporting Libraries
	GCC ARM Compiler Support
	Getting GCC Up and Running
	Writing a Simple Program (Hello World)
	Compiler Warnings

	Next Steps
	SCP: Secure Copy
	File Upload to ARTIK Module
	File Download from ARTIK Module

	Summary

	Chapter 15: Programming in C Language
	Programming Your ARTIK Natively in C
	Coding Strategies
	Creating a Simple Application
	Looking Deeper Inside Your ARTIK
	About the /sys Virtual File System
	GPIO Pins
	GPIO: Pin Mapping
	GPIO: Pin Export to the User Domain
	GPIO: Pin Direction Setting
	GPIO: Digital Value Setting
	GPIO: Digital Value Reading
	GPIO: Edge Detecting
	Reading Analog Input Values
	Analog Read Differences Between ARTIK 5 and 10

	Library Function Toolkit
	An Example
	Accessing Remote Systems with libCurl
	Summary

	Chapter 16: Programming with Node.js
	Developing with Node.js
	The Architectural Design
	Compiled Binary Code
	Checking the Version of Your Node.js Installation
	Extending Node.js
	Installing NPM
	Node Packages and Modules
	Installing the WebSocket Module

	Let’s Write Some Node.js Code
	Reading a Pin Voltage with Node.js
	Sending Data to SAMI with Node.js
	Summary

	Chapter 17: Programming with Python
	Developing with Python
	Checking Your Python Interpreter
	Installing the Python Package Manager
	Installing Python Packages
	Run a Simple Python Test
	Reading a Pin Voltage with Python
	Summary

	Chapter 18: Integrating with SAMI
	About SAMI
	What Is SAMI?
	Interacting with SAMI
	How SAMI Works
	SAMI Developer Documentation
	Security
	Authentication
	Messages
	User
	User ID
	Devices
	Device Type
	Device ID
	Applications
	Application ID
	OAuth2 Access Tokens
	Manifest
	Raw Data
	Normalized Data
	The SAMI API
	Developer SDK Libraries
	SAMI Tools
	The Developer Portal
	The User Portal
	API Console
	Device Simulator
	Manifest Validator

	User Portal: Managing Devices
	Device Details

	User Portal: Managing Rules
	Rule-based Actions
	Adding New Rules

	User Portal: Displaying Charts
	User Portal: Viewing Data Logs
	User Portal: Exporting Data
	Developer Portal: Managing Device Types
	Developer Portal: Managing Applications
	Connecting to SAMI from Your Applications
	Acquiring an Access Token for Your Application
	Getting Data from SAMI for Your Application
	Sending Data to SAMI from Your Device
	Try Out More Examples
	Want to Know More?
	Summary

	Chapter 19: Integrating with Temboo
	Hello Temboo
	Developing with Temboo
	Registering Your Temboo Account
	Your Temboo Account Dashboard
	Monitoring Your Activity
	Your Choreo Library Dashboard
	Supported Platforms
	Supported Connectivity
	Online Data Storage
	Choreographies
	Condition Handling
	Remote Storage in Profiles
	Output Filters
	Data Streaming
	Machine-to-Machine (M2M) with Temboo
	Temboo and ARTIK
	Temboo and ARTIK 5
	Getting Ready to Tango with Temboo
	An Example of Code Generated by Temboo
	Shared Login Credentials
	Missing cdefs.h Message
	Using CURL via a REST API Instead of C
	Using Temboo with Node.js
	Sample Code to Experiment With
	Summary

	Chapter 20: Debugging Your Application
	Debugging Your App
	Software Debugging with GDB
	Onboard Native Debugging with GDB
	Remote Debugging with GDB

	IDE Support for Debugging
	Emulating Your Hardware with QEMU
	Using the JTAG Connectors
	Hardware Debugging with SEGGER J-Link
	Hardware Debugging with OpenOCD
	Cleaning Up after Debugging
	Summary

	Chapter 21: Deploying Your Application
	Getting Ready
	Deploy Files to ARTIK with scp
	Deploy Files across the Network
	Deploy Files to Your ARTIK with a Micro SD Card
	Deploy Files to Your ARTIK with a USB Flash Drive
	Prototypes vs. Production
	Integrating the ARTIK into your Products
	Summary

	Chapter 22: Next Steps
	What Do You Want to Make?
	Finding Out about More Project Ideas
	Becoming a Partner Organization
	Going Deeper into ARTIK Development
	My Challenge to You

	Index



