
www.allitebooks.com

http://www.allitebooks.org

ArcGIS for JavaScript
Developers by Example

A practical guide to get you creating powerful mapping
applications using the rich set of features provided by
the ArcGIS JavaScript API

Jayakrishnan Vijayaraghavan

Yogesh Dhanapal

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

ArcGIS for JavaScript Developers by Example

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1250416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-866-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Jayakrishnan Vijayaraghavan

Yogesh Dhanapal

Reviewer
Dobrin Ganev

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Ruchita Bhansali

Content Development Editor
Sumeet Sawant

Technical Editor
Shivani Kiran Mistry

Copy Editor
Yesha Gangani

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Jayakrishnan Vijayaraghavan is an Esri-certified web developer with
extensive experience in full stack web development, machine learning, and GIS.
Working in variegated domains and geographies and through graduate and
undergraduate studies in computer science and GIS, he has gained a solid grounding
in geospatial technologies and in data science. He is a DAAD scholar and a winner
of the UN-HABITAT special jury award. He's keen on developing intelligent and
ubiquitous mapping systems by integrating Machine Learning concepts with GIS.
He is also a novelist and poet too.

Yogesh Dhanapal has expertise in developing and delivering end-to-end web
mapping application for key clients, and he is proficient in many web technologies.
He also has many years of training and education in the geospatial domain.
A hardcore programmer and GIS enthusiast, Yogesh is a Microsoft-certified
solutions developer—web applications and Esri-certified web developer. He
has gained expertise in applying GIS for transportation and petroleum domain
and has extensive experience in customizing Esri roads and highways extension
with JavaScript dojo modules. He is keen on developing cross-platform and web
applications with a mobile-first approach.

We thank Timmons group, our employer and Mr. Matt McCracken,
our project manager for his immense support and encouragement
in this endeavor. We're also greatly obliged to the Packt team,
especially, Preethi and Shivani for their meticulous feedbacks and
enthusiasm in bringing out this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Dobrin Ganev is a software developer with years of experience in various
development environments from finance to business process management.
In recent years, he has been focused in geospatial development and data analytics
using languages such as JavaScript, Python, Scala, and R. He has extensive
knowledge with open source geospatial and the Esri platforms. Currently, he is
focused on big data, and its applications across broad industries and sectors.

chorStream Inc. (http://www.chorstream.com/) is a software development firm
focused on the use of big data and big data technologies to help clients work with
and leverage large and diverse volumes of data founded in 2015. Mr. Ganev, as a
co-founder, has worked with an accomplished team of professionals to create and
bring to market an application's framework similar to a Web AppBuilder that end
users are able to use to build custom and focused applications without having to
have any development skills.

I would like to thank Packt Publishing for seeking and asking me
to be part of this exciting book. I hope that the body of knowledge
stored in this book will be a great asset to those who want to learn
how they can leverage programming for GIS. I would also like to
extend a warm thank you to Guillermo Paniagua, a colleague of
mine, for his input and insight on GIS topics in this book, which
helped me review this book. The endeavor to continually learn
cannot be a solo activity, and the best results always come from team
work and peer review.

www.allitebooks.com

http://www.chorstream.com/
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

I dedicate this book to Mr.Vijayaraghavan V R, my father who sowed the first seeds
of writing and teaching in me.

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Foundation for the API 1

Setting up the development environment 1
Browser, web server, and IDE 2

Web browser 2
Web server 2
IDE 4

Setting up an ArcGIS Developer account 4
Hello, Map – the jump-start code 4
Understanding the jump-start code 6

The API reference link 6
The AMD pattern of coding 10
The esri/map module 11

Setting the initial map extent 11
Brushing up some coordinate geometry 12

Quiz time! 13
Spatial reference systems 14
The quiz results 14
Getting the current map extent 15
The template generator for loading modules 19

Understanding dojo and AMD 20
The key components of AMD 21

The define method 21
The require method 22

Some awesome dojo modules 22
Dojo dom modules 23
Dojo event handler module 23
Dojo array module 23

Table of Contents

[ii]

Understanding ArcGIS Server and the REST API 24
Types of service 25
Working with the Service Catalog 26

Map server 27
Summary 31

Chapter 2: Layers and Widgets 33
Data sources supported by the API 33

Flat file formats 34
KML 34
CSV files 34

ArcGIS Server 34
The concept of layers 35

Adding layers to a map 35
The functional classification of layers 36

Basemap layers 36
Functional layers 37
Graphics layers 38

Types of layers 38
The ArcGIS Tiledmap service layer 38
Spatial Reference 40
The ArcGIS DynamicMapService layer 42
Feature layers 47
Graphics layer 52

Map and layer properties 54
Map and layer events 55

Using Esri widgets – the genie's lamp 56
The BaseMapGallery widget 56
The Legend widget 57

Summary 58
Chapter 3: Writing Queries 59

Developing the Wildfire application 60
Registering the application in the developer portal 61
Using a proxy in the application 64
Bootstrapping the application 66

Types of querying operations 67
Query task 67
Find task 68
Identify task 68

Building and executing a Query task 68
The QueryTask constructor 68

Constructor parameters 69
Instantiating the QueryTask object 70

Table of Contents

[iii]

Building the Query object 70
Querying by spatial geometry 72

Executing the query 73
Querying for Count 73
Query for Features 76
Query for Extent 79

Building and executing IdentifyTask 80
Instantiating IdentifyTask 80
Constructing the identify parameters object 80
Executing IdentifyTask 81

Building and executing a Find task 82
Instantiating a Find task 83
Building the Find parameters 83
Executing a Find task 84

Building a feature table 85
Building popups 85

Building InfoTemplates 86
Summary 87

Chapter 4: Building Custom Widgets 89
Creating a simple class 89

Configuring dojo 90
Developing a standalone widget 93

The dijit life cycle 94
Creating templated widgets 95

Widget folder structure 97
Guidelines for creating project folders 98

Creating a single point of entry 98
Defining dojoConfig 99
Modularizing the code 99
Providing support for internationalization 100
An overview of the widget folder structure 103

Building a custom widget 104
Modules required for the widget 105

Modules for the class declaration and OOPS 105
Modules for using HTML templates 105
Module for using event 105
Modules for manipulating dom elements and their styles 105
Modules for using the draw toolbar and displaying graphics 106
Modules for querying data 106
Modules for internationalization support 106

Using the draw toolbar 106
Initiating the draw toolbar 107
The draw operation 109

Table of Contents

[iv]

The draw-end event handler 109
Symbolizing the drawn shape 109

Executing the query 112
Initializing the QueryTask and Query object 112
Query event handlers 113

Summary 118
Chapter 5: Working with Renderers 119

Working with colors 119
The RGB color model 119
The Esri color module 120

Working with symbols 121
SimpleLineSymbol 122
SimpleMarkerSymbol 123
ArcGIS symbol playground 124
SimpleFillSymbol 126
PictureMarkerSymbol 126

PictureFillSymbol 129
TextSymbol 129

Working with renderers 130
Choosing a renderer for a scenario 131
Developing a Stream Gauge application 131

The data source 132
Simple renderer 132
Applying unique value renderer 134
Class breaks renderer 136
HeatmapRenderer 137
DotDensityRenderer 138
BlendRenderer 138
SmartMapping 140
A classification method for classed renderers 140

Summary 141
Chapter 6: Working with Real-Time Data 143

Background about the application 143
Visualizing map data 144
Building a hurricane tracking app 148

Symbolizing active hurricane layers 149
Adding a global wind data gauge 154
Tracking the latest active hurricanes 156

Getting a unique list of storms 157
Fetching the latest data and displaying on the grid 159

Refreshing feature layer 160

Table of Contents

[v]

Creating a weather widget 161
The open weather API 161
Using the Geolocation API 162

Using geometry engine on input data 163
Displaying the weather data in the widget 164

Summary 167
Chapter 7: Map Analytics and Visualization Techniques 169

Building a demographics analytic portal 169
Basic statistical measures 170

Minimum 171
Maximum 171
Sum 171
Average 171
Standard deviation 171
Standardization 172

Statistical functionality provided by the API 172
StatisticDefinition module 172
Classification methods 174

Equal interval 174
Natural breaks 174
Quantile 175
Standard deviation 175

Concept of normalization 176
Feature layer statistics 176

Working with continuous and break renderers 180
ColorInfo 182

Selecting a color scheme 182
Creating a classed color renderer 185

opacityInfo 189
Using opacityInfo to create a classes opacity renderer 189

SizeInfo 191
RotationInfo 191
Multivariate mapping 192

Smart mapping 196
Summary 199

Chapter 8: Advanced Map Visualization and Charting Libraries 201
Charting with dojo 201

Dojo chart themes 202
Charting using the popup template 204

Types of 2D charts provided by dojox modules 206
Dojo charting methods 206

Defining your plot 207

Table of Contents

[vi]

Defining the theme 207
Pushing the data 208
Chart plugins 208

Charting with D3.js 213
Creating a column chart with D3 214

D3 selections 215
D3 data 216
D3 scaling 217
Integrating SVG into D3 charts 218

Charting with Cedar 224
Loading Cedar libraries 224

Loading using the script tags 225
Loading using the AMD pattern 225

Summary 233
Chapter 9: Visualization with Time Aware Layers 235

Time aware layers 235
Need for time aware layers 237
Understanding time aware layers 237

Building the Drought app 238
Using the Time Slider 238

Steps to create a TimeSlider 239
Querying based on time using D3 243

Scaling and formatting time 244
D3 brush 244

Advanced spatio-temporal visualization with Cedar 251
Summary 254

Index 257

[vii]

Preface
Web technologies are changing rapidly and so is the ArcGIS JavaScript API. Regardless
of your development experience, ArcGIS offers an easy way to create and manage
geospatial applications. It gives you access to mapping and visualization, analysis,
3D, data management, and support for real time data.

What this book covers
Chapter 1, Foundation for the API, endeavors to lay a firm foundation for the topics
dealt with throughout the book. The basic environment needed to follow the explained
topics further as well as to develop professional-looking code is set in this chapter. An
introduction to dojo and the modular pattern of JavaScript coding is provided along
with an explanation of basic ArcGIS concepts. Users are shown brief explanations with
code snippets or diagrams about basic concepts wherever needed.

Chapter 2, Layers and Widgets, deals with the different types of layers used in the API
along with the ideal context where each type is used. We will also be introduced to
some of the most commonly used in-built widgets provided by Esri to use in
our application.

Chapter 3, Writing Queries, will have an in-depth look into writing different types of
queries, retrieving the results and displaying it. We will be developing a Wildfire app
to understand how the types of query operations such as Identify, Find and Query
task. We will also learn how to display a tabular information using a FeatureTable
widget and format popup content using Infotemplates.

Chapter 4, Building Custom Widgets, will explain how to organize all the code into
modularized widgets, and use it in our application. We will discuss how to configure
dojo globally and how to provide support for internationalization. We will be
extending the Wildfire app we developed in the previous chapter by constructing a
spatial query that involves using the Draw toolbar.

Preface

[viii]

Chapter 5, Working with Renderers, gives an in-depth treatment on the topic of
colors, symbols, renderers, and the situations where each can be used effectively.
This chapter will also deal with the nuances of data visualization techniques along
with tips and tricks to create symbols and picture marker symbols easily. We will
demonstrate the utility of three basic renderers: simple renderer, unique value
renderer, and class breaks renderer by developing a Stream Gauge app.

Chapter 6, Working with Real-Time Data, will cover in detail what constitutes the
real-time data, and it will also cover how to visualize data and get the most recently
updated data. We will be building a hurricane tracking app to demonstrate this and
will be adding a Global wind data gauge and a weather widget using geometry
engine capability provided by the API and the geolocation feature provided by
modern browsers.

Chapter 7, Map Analytics and Visualization Techniques, will take you a step closer
toward becoming a map data scientist. We will cover a lot of ground in this chapter
starting with a brush up of a few introductory statistics concepts. We will see the
code in action and understand how statistics definition and feature layer statistics
module can give us invaluable statistic measures, which can be used to render the
map data meaningfully. We will then evaluate how to use the visual variables, such
as colorInfo, opacityInfo, rotationInfo, and sizeInfo effectively in a renderer. We will
use the knowledge gained to start building a demographics analytic portal.

Chapter 8, Advanced Map Visualization and Charting Libraries, will be using three
different charting libraries such as dojo, D3.js and Cedar to extend the Demographics
portal we started building in the previous chapter and more provide visual-
analytical information to the users.

Chapter 9, Visualization with Time Aware Layers, will explain how to visualize
spatiotemporal data using TimeSlider dijit, a custom D3.js timeslider as well a custom
Time series Histogram by incorporating these on a Time-aware US Drought data.

What you need for this book
For this book, we'll need NotePad++/Brackets Editor, Google Chrome/Mozilla
Firefox or any modern browser, Visual Studio Community Edition 2015,
and Node.js for Windows.

Who this book is for
This book is for JavaScript developers who wish to develop amazing mapping
applications using the rich set of features provided by the ArcGIS JavaScript API,
but more than this, a spatial frame of mind will help the user go a long way.

Preface

[ix]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"After installing IIS, you can find the executables in the IIS Express folder inside
the Program Files folder "

A block of code is set as follows:

<link rel="stylesheet" href="http://js.arcgis.com/3.15/esri/css/esri.
css">

<script src="http://js.arcgis.com/3.15/"></script>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

on(map, "layers-add-result", function (evt) {
console.log("1.", earthQuakeLayer.id);
...
console.log("5.", worldCities.layerInfos);
});

Any command-line input or output is written as follows:

1. Earthquake Layer

2. [Object,

Object,

. . .

Object]

 3. esriGeometryPoint

4. 1000

5. [Object, Object, Object]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Click
on the Add button against the IIS Express application name, and then click on the
Install button."

Preface

[x]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/ArcGISForJavaScriptDevelopersByExample_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

http://www.packtpub.com/sites/default/files/downloads/ArcGISForJavaScriptDevelopersByExample_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArcGISForJavaScriptDevelopersByExample_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArcGISForJavaScriptDevelopersByExample_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xii]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Foundation for the API
You are probably reading this book because you want to integrate spatial capability
into your web application using the ArcGIS JavaScript API and make it even more
amazing, or maybe you're hoping to become a web mapping data scientist very soon.
Whatever it is, we are with you. But don't you think we need a bit of groundwork
before working on the actual projects? This chapter is all about that—laying a strong
foundation for the concepts used later in this book. This chapter is by design diverse
in its content, covering a lot of ground on the following topics:

• Writing your first mapping application using the API
• Brushing up on coordinate geometry, extents, and spatial reference systems
• Introducing dojo and the AMD pattern of coding
• Understanding ArcGIS Server and the REST API
• Setting up the development environment

Setting up the development environment
This book is a by example book, and we will be explaining the concepts with the
applications that we'll develop. So, it's essential that you have the development
environment up and running at the onset of this chapter. Most of the environments
mentioned in the following sections are just our preferences and may not be
mandatory to implement the code samples provided in this book. All the code
samples have been targeted at running in a Windows-based OS and an Integrated
Development Environment (IDE) named Brackets. If you have a different choice
of OS and IDE, we welcome you to develop in the environment you're most
comfortable with.

Foundation for the API

[2]

Browser, web server, and IDE
To develop, deploy, and execute any web application, we need the following
components:

• Web browser
• Web server
• Integrated Development Environment (IDE)

Web browser
We have used Google Chrome throughout this book as it provides some great
developer tools and HTML inspection tools. We think Mozilla too, is a great browser
for development purposes.

Web server
Applications developed in this book are hosted using IIS Express. IIS Express is a
lightweight webserver mainly used for hosting .NET web applications. Though,
all the projects in this book are developed using pure HTML, CSS, and JavaScript,
we will be using the Esri .NET resource proxy to access the ArcGIS online secured
content and avoid cross domain issues.

Readers can install IIS Express either by installing Web Platform Installer or directly
from the Microsoft downloads page, as illustrated in the following steps:

1. To install IIS Express using Web Platform Installer visit https://www.
microsoft.com/web/downloads/platform.aspx to download Web
Platform Installer.

2. Once downloaded, search for IIS Express in the search text. The search
results will display the IIS Express application. Click on the Add button
against the IIS Express application name, and then click on the Install
button at the bottom of the page as shown in the following screenshot:

https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/web/downloads/platform.aspx

Chapter 1

[3]

3. Installing IIS Express from Web Platform Installer ensures that we can get IIS
Express' latest version against the direct download link, which we may not
be able to provide the link for the latest version. When this book was written,
the latest IIS Express direct download link was found at https://www.
microsoft.com/en-us/download/details.aspx?id=34679.

4. After installing IIS, you can find the executables in the IIS Express folder
inside the Program Files folder. The default location is usually C:\Program
Files\IIS Express.

5. We will provide an executable batch (.bat) file within each project that helps
to start the web server and host the project at the specified port.

6. You can find the following line of code in the executable file of each project
we have developed for this book:
"C:\Program Files\IIS Express\iisexpress.exe" /path:<app location>
/port:9098

7. The preceding line will host the application at port 9098. So, to access the
app, you just need to use the URL—http://localhost:9098/.

https://www.microsoft.com/en-us/download/details.aspx?id=34679
https://www.microsoft.com/en-us/download/details.aspx?id=34679

Foundation for the API

[4]

IDE
The choice of IDE for developing JavaScript code is wide, and experienced developers
already know what they need to use. We have used Brackets throughout this book as is
our preferred choice of IDE.

Setting up an ArcGIS Developer account
For a few exercises in the book, you will require an ArcGIS Developer account.
It's also an opportunity for you to explore various capabilities offered by ESRI
for the developers. To set up a Developer account, just sign up for free at
https://developers.arcgis.com/en/sign-up/.

Hello, Map – the jump-start code
If you're anything like us, you'd probably like to code your way to your first map
right away. So here it is. Try adding these lines of code to a new HTML file in your
Brackets IDE. You can also download the HTML source code, named B04959_01_
CODE01, from the code repository and double-click on the HTML file to run it.

https://developers.arcgis.com/en/sign-up/

Chapter 1

[5]

While observing the preceding lines of code, you may have observed these
two things:

• We didn't need any licensing, authentication, or key to run this code. In other
words, the API is free. You just had to use the CDN link.

• We will be seeing this beautiful cartographic map in our browser as shown in
the following screenshot:

• We encourage you to zoom or pan to location you want to see your map. If
you haven't figured how to zoom/pan the map, we'll deal with it right away:

Left-click dragging or pressing any arrow key causes a pan and the level of
detail doesn't change.
Shift + left-click drag, mouse scroll, a double click, or clicking on the + or -
buttons on the map causes a zoom and the level of detail displayed changes.

There are other ways to achieve zooming/panning functionality. The
ones mentioned here are just to gain a preliminary understanding.

Foundation for the API

[6]

Understanding the jump-start code
Let's try to understand the code we just saw. There are three concepts in this
code that we'd like to explain. The first one deals with the reference links for the
API or the Content Delivery Network (CDN) that we used to download the
ArcGIS JavaScript API (v 3.15) and its associated style sheets. The second concept
tries to introduce you to the pattern of coding employed, which is known as the
Asynchronous Modular Definition (AMD) pattern. This is used by the latest version
of dojo (v1.10). The next concept is about what you see in the browser when you ran
the code—the map and the parameters we supplied to it.

The API reference link
First things first. We need to reference the API to develop an ArcGIS JavaScript API-
based application. Esri is the organization that owns the API, yet the API is free and
available for public use. The latest version of the API as of March 2016 was 3.15 and
the corresponding dojo toolkit version was version 1.10.

The following libraries are the only ones you may probably need to reference to use
ArcGIS JavaScript API's capabilities as well many dojo toolkit packages, such as core
dojo, dijit, dgrid, and so on:

<link rel="stylesheet" href="http://js.arcgis.com/3.15/esri/css/esri.
css">

<script src="http://js.arcgis.com/3.15/"></script>

Refer to this link for complete documentation of the ArcGIS JavaScript API—
https://developers.arcgis.com/javascript/jsapi/.

https://developers.arcgis.com/javascript/jsapi/

Chapter 1

[7]

When you visit the preceding URL, you will see a web page providing complete
documentation of the API with multiple tabs such as API Reference, Guide, Sample
Code, Forum, and Home.

Downloading the example code
You can download the example code files for this book from your account
at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address and
password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the code

files.
• Choose from the drop-down menu where you purchased this

book from.
• Click on Code Download.

You can also download the code files by clicking on the Code Files button
on the book's webpage at the Packt Publishing website. This page can be
accessed by entering the book's name in the Search box. Please note that
you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Foundation for the API

[8]

The API reference lists all the modules available under the API as details, properties,
methods, and events available for each module. The left pane groups most of the
modules for easy reference. For example, the grouping named esri/layers has
multiple modules that inherit from it. The following screenshot gives a snapshot
of how the different modules that inherit from esri/layers are grouped:

Chapter 1

[9]

The Guide section provides detailed instructions on important topics such as
Working with the Query Task, Working with ArcGIS Online Widgets, and
Working with symbols and renderers. The following screenshot shows a detailed
guide on setting map extents:

The Sample Code tab is yet another useful section with hundreds of sample
applications, which are used to demonstrate different concepts in the API. The best
part of these sample codes is that they come with a sandbox facility, which you can
use to play around with the code by modifying it.

Foundation for the API

[10]

The Forum tab redirects you to the following URL—https://geonet.esri.com/
community/developers/web-developers/arcgis-api-for-javascript.

The GeoNet community forum is a great place to ask your questions and share your
solutions to questions from developers like you.

Due to its close integration with the dojo framework, a working knowledge of the
dojo toolkit is required and the reference documentation for it can be accessed at
http://dojotoolkit.org/reference-guide/1.10/.

The AMD pattern of coding
If you've observed the code structure, it may look as follows:

If you aren't familiar with this pattern of JavaScript coding, it is known as the AMD
pattern of coding, and the ArcGIS API for JavaScript emphasizes on using this
pattern of coding. In the initial chapters we will be introducing a lot about this to
get ourselves familiarized with dojo and AMD. From the code structure you might
have understood that the code requires certain modules and the function that loads
these modules requires that they are in the same order. Some of the modules in our
case were Esri modules (esri/..) and dojo modules (dojo/..). If you're wondering
whether you could require custom defined modules, the answer is absolutely yes, and
this will be a major part of our exercise in this book.

https://geonet.esri.com/community/developers/web-developers/arcgis-api-for-javascript
https://geonet.esri.com/community/developers/web-developers/arcgis-api-for-javascript
http://dojotoolkit.org/reference-guide/1.10/

Chapter 1

[11]

The esri/map module
The highlighted line in the code forms the crux of our jumpstart code:

 var map = new Map("mapDiv", {
 basemap: "national-geographic"
 });

The map module accepts two arguments. The first argument is the div container,
which will contain the map object. The second argument is an optional object,
which accepts a lot of properties that can used to set the map's properties.

In our jumpstart code, the basemap property in the optional object sets one of the
Esri's provided basemap code named national-geographic to be displayed as
the background map. We implore you to experiment with the other Esri provided
basemaps, such as the following:

• satellite
• dark-gray
• light-gray
• hybrid
• topo

Setting the initial map extent
At times when the application opens up, you may want to zoom it to a particular
area of interest, instead of showing the map at the world scale first, and then zoom
your way to the area you want to see. To accomplish this, the map module provides
a property to set its initial extent and also to programmatically change its extent any
time you want.

Before this, let's look at what an extent is in the context of a map.

An extent is the minimum bounding rectangle that encloses an area
of interest on the map.

Foundation for the API

[12]

Brushing up some coordinate geometry
To understand about extent, a grasp of coordinate geometry would help. Line
segments colored yellow will be referred to as polyline for our purposes. The blue
lines represents polygons (a rectangle in our case):

Now, try to observe the difference in the coordinates between the preceding diagram
and the following diagram:

Chapter 1

[13]

Here are some notes about the preceding diagrams:

• The point is represented by just one pair of coordinates; (2, 2) in figure 1
and (-1, -1) in figure 2

• The polylines are represented by a sequence of coordinates
• The polygon is also represented by a sequence of coordinates, similar to

the polyline

You might have figured out that apart from the coordinates and the axes, the shapes
of both the figures are the same. This might mean two things:

• The diagram has shifted its x positions by -3 units and its y positions
by -3 units

• Or it may mean that the origin has shifted its x and y positions by -3 units

The second possibility is more important for us to understand because it implies
that the actual position of the diagram hasn't changed and only the origin or the
coordinate axes has changed its position. So, in reference to the coordinate axes, the
coordinates of the diagram shapes (the rectangle, point, and line) have also changed.

The same shape can have different coordinates based on the reference
coordinate system. This kind of coordinate system is known as a
spatial reference in the context of GIS.

Quiz time!
Let's test our knowledge. Try solving the following quiz:

Q1. What would be the coordinates of the point (with the triangle symbol) if the
origin (the bottom-left corner of the rectangle) were (100000, 100000)?

Q2. Since the polygon and the polyline are both represented by a sequence of
coordinates, how can we conclude whether the shape is a polygon or polyline given
a sequence of coordinates?

Q3. How many coordinates are required to represent a rectangle?

Think about it and we'll give you the answers very soon.

Foundation for the API

[14]

Spatial reference systems
When displaying the world or a part of the world on a digital screen as a map, which
is a two-dimensional surface just like our graph, we need to use a spatial reference
system to identify the coordinates of locations on the map. There are numerous
standard spatial reference systems in use. The bare minimum we need to know to
proceed with using the API is that each reference system has a unique identification
number that is recognized by the API. The complete parameters (such as datum
used, origin coordinates, measurement units used, and so on) used to define a spatial
reference can also be used to identify a particular spatial reference system.

The unique ID with which an SRS is identified is known as Well-known
ID (wkid).
A string listing the parameters used to define a spatial reference system
is known as Well-known Text (wkt).

As you might have anticipated, each spatial reference system is associated with
different measurement systems such as feet, meters, or decimal degrees.

For example, 4326 is the wkid of the global coordinate system known as WGS 84.
The measurement unit for this reference system is decimal degrees.

102100 is the wkid of another global coordinate system whose measurement unit
is meters.

The following URLs give a list of wkids and the corresponding wkt at https://
developers.arcgis.com/javascript/jshelp/pcs.html and https://
developers.arcgis.com/javascript/jshelp/gcs.html.

The quiz results
A 1. (100002, 100002)—relative to the origin, the point is 2 units away in the positive
x-direction and 2 units away in the positive y-direction.

A 2. A sequence of coordinates can either be a polyline or a polygon unless mentioned
explicitly in the geometry object. But a polygon has one property that makes it
different from a polyline—the first and last coordinate must be the same. A polyline
can have the same first and last coordinates, but not all polylines fulfil this criteria.

A 3. If your answer was 4, that's great! But if your answer was 2, you're awesome.

https://developers.arcgis.com/javascript/jshelp/pcs.html
https://developers.arcgis.com/javascript/jshelp/pcs.html
https://developers.arcgis.com/javascript/jshelp/gcs.html
https://developers.arcgis.com/javascript/jshelp/gcs.html

Chapter 1

[15]

That's right. Just two coordinates are sufficient to define the rectangle, thanks to
its perpendicularity property. The two coordinates could be any pair of diagonally
opposite coordinates, but for the sake of the API, we will take the left-bottom
coordinate and the upper-right coordinate. The bottom-left coordinate has the
minimum x and y coordinate values among the 4 coordinate value pair, and the
upper-right coordinate has the maximum x and y coordinate values:

Getting the current map extent
Zoom the map to the extent you want to set as the initial extent of the map. In the
jump start code, the map variable is a global object since this is declared outside the
require function:

<script>
 var map; //Global variable
 require([
 "esri/map"
],
 function (
 Map
) {
 map = new Map("myMap", {
 basemap: "national-geographic"

Foundation for the API

[16]

 });
});
});
</script>

This means that we can access the map's properties in the browser console.
After zooming the map and the extent you want as the initial map extent, open the
developer tools using the Ctrl + Shift + I command (in Chrome). In the JavaScript
browser console, try to access the map properties, getMaxScale(), getMinZoom(),
getMinScale(), getMaxZoom(), getScale(), and extent:

Scale is literally the factor with which the map measures are scaled down from
the real-world measures. Maximum scale shows the greatest details on the map,
and the minimum scale of the map shows the least detail. The values for map.
getMaxScale() is smaller than that for map.getMinScale(), because the scale
values represent reciprocal numbers. Hence 1/591657527 < 1/9027 (1/9027.977411
and 1/591657527.59…, respectively, in our instance).

Zoom levels, on the other hand, are the discrete scale levels at which the map is
displayed. Most maps that involve Basemaps or Tiledmaps (which will be discussed
in later chapters) can only be displayed at specific scale levels known as zoom levels.
The minimum zoom level is mostly 0 and is associated with the maximum scale of
the map.

Chapter 1

[17]

map.getScale() gives us the current scale, and map.extent gives us the current
extent of the map. We can use this extent object to set the extent of the map using
the setExtent() method in the map. Refer to the API documentation for the map
module and navigate to the setExtent method of the map. The setExtent()
method accepts two parameters—the Extent object and an optional fit object. When
we click on the hyperlinked Extent object, as provided in the document, it redirects
us to the API documentation page for the Extent module:

Foundation for the API

[18]

The constructor for Extent accepts a JSON object and converts it into an extent
object. We can obtain this JSON object from the JSON string of the map's extent:

The preceding image shows us the JSON string of the extent of the map that we
have zoomed into. The following screenshot displays what the coordinates mean
with respect to the map area we intend to zoom into (which is highlighted with
the rectangle):

Chapter 1

[19]

Now, we can copy the JSON object, create an Extent object, and assign it the
setExtent method of the map. But before this, we need to import the Extent
module (esri/geometry/Extent). The following screenshot explains how to
implement this:

When we refresh the map now, the map will automatically zoom into the extent that
we have set.

The template generator for loading modules
In the previous code where we successfully set the initial extent of the map, we had to
use two modules: esri/map and esri/geometry/Extent. As the application grows,
we may need to add many more modules to add additional functionality to the app.
For a novice user, finding the module names from the API and incorporating them into
the app might be cumbersome. This has been made easy using a web app template
generator that can be found at http://swingley.github.io/arg/.

http://swingley.github.io/arg/

Foundation for the API

[20]

The following is a screenshot of the application:

The modules that are needed for our require function can be typed into the text
box provided at the top of the application. There are two multi-selection list boxes:
one listing the Esri modules and the other listing the dojo modules. Once we start
typing the name of the modules required for our application, the list gets populated
with the suggested modules matching the name we have typed. Once we select
the module we need from either list box, it gets added to the list of modules in the
require function, and an appropriate alias is added to the callback function as a
parameter. Once all the required modules are selected, we can use the bare bone
template being generated on the right side of the app. For setting the initial extent of
the map, you may load the required modules by searching for the following names:

• Map (esri/map)
• Extent (esri/geometry/Extent)

Understanding dojo and AMD
As the name suggests, the AMD pattern of coding relies on modularizing your
JavaScript code. There are lots of reason why you might need to start writing
modular code or modules:

• Modules are written for a single purpose and are focused
• Modules are hence reusable
• Modules have a cleaner global scope

Chapter 1

[21]

While there are many formats for writing modular JavaScript, such as CommonJS
and ES Harmony, we will be dealing with AMD only because the latest versions of
ArcGIS JavaScript API and the dojo toolkit upon which it is based uses the AMD
style of coding. Dojo loader resolves the dependencies and loads the modules
asynchronously while running the application.

The key components of AMD
In this section, we'll look at the define and require methods, which are the key
components of AMD.

The define method
The define method defines a module. A module can have its own private variables
and functions and only those variables and functions returned by the define
function are exposed by other functions importing this module. An example for the
define method is as follows:

Note the following in our code example:

• The first parameter in the define method is a module name or ID. This is
optional. dojoGreeting is the name of our module.

• The second parameter is an array of dependencies for our module. We didn't
need any dependencies for this module, so we just pass an empty array.

• The third parameter is a callback function that accepts any alias name for our
dependencies that we might have loaded. Note that the alias names that are
used as function parameters should be in the same order as it was defined in
the dependency array. Since we didn't use any dependencies, we don't pass
anything into this callback function.

• Inside the callback function, we can have as many privately scoped variables
and functions as required. Any variable or function we'd like to expose from
this module should be included in a return statement within the definition
function.

• In our example, _dojoGreeting is a privately scoped variable that is
returned by the define method.

Foundation for the API

[22]

The require method
The require method uses custom defined modules or modules defined in an
external library. Let's use the module we just defined with a require method:

That's about it. Pay close attention to the parameters of the require method:

• The first parameter is an array of module dependencies. The first module
dependency is the custom module we just defined, dojoGreeting.

• The dojo/dom module lets us interact with the dom elements in HTML.
• dojo/domReady! is an AMD plugin that will wait until the DOM has finished

loading before returning. Note that the plugin uses a special character "!" at
the end. We need not assign an alias in the callback function since its return
is meaningless. Hence this should be one of the last modules to be used in the
dependency array.

• The callback function uses dojoGreeting and dom as the alias for the
dojoGreeting and dojo/dom modules respectively. As mentioned earlier,
we need not use an alias for dojo/domReady!.

• The byId() method of the dom module returns a reference of a dom node by
its ID. It's very much equivalent to document.getElementById(), only that
the dom.byId() works across all browsers.

• In our register method, we are assuming we have a div element with its ID
as greeting.

Some awesome dojo modules
You have already been introduced to two dojo modules, namely dojo/dom and
dojo/domReady. Now, it's time to get familiarized with some other awesome dojo
modules, which you should try using wherever possible while writing an ArcGIS JS
API application. Sticking to using pure dojo and Esri JS modules will have enormous
kickbacks in terms of code integrity and cross-browser uniformity. What's more?
Dojo has some pleasant surprises for you in terms of the commonly used JavaScript
functionalities, some of which we are going to introduce very shortly.

Chapter 1

[23]

Dojo dom modules
You've already used the dojo/dom module. But there are other dojo dom modules,
which will let you manipulate and work with the dom nodes:

• dojo/dom-attr: This is the go-to module for anything related to dom
attributes:

 ° The has() method in the module checks whether an attribute is
present in a given node

 ° The get() method returns the value of the requested attribute
or null if that attribute does not have a specified or default value

 ° As you might have guessed, there is a set() method that you can
use to set values to an attribute

• dojo/dom-class: This module provides most of the operations you need to
do with CSS classes associated with the dom nodes

• dojo/dom-construct: The dojo/dom-construct module lets you construct
dom elements easily

Dojo event handler module
The dojo/on module is an event handler module that is supported by most
browsers. The dojo/on module could handle events from most types of object.

Dojo array module
You should prefer dojo's array module over the native JavaScript array functions
for a variety of reasons. Dojo's array module is named dojo/_base/array.

dojo/_base/array
As you would expect from an array module, there's an iterator method known as
forEach() as well as the indexOf() and lastIndexOf() methods. Now comes the
best part. There's a filter() method that returns an array filtered by a particular
condition. We find the map() method a gem since it not only iterates through an array
but also allows us to modify the items in the callback function and return the modified
array. Ever wanted to check whether each or at least one element of the array met a
particular condition? Check out the every() and some() methods in this module.

Foundation for the API

[24]

This sample code explains two main methods of the dojo array module:

The preceding code prints the following to the browser's console window:

Day #1 is Monday
Day #2 is Tuesday
Day #3 is Wednesday
Day #4 is Thursday
Day #5 is Friday
Day #6 is Saturday
Day #7 is Sunday

Understanding ArcGIS Server and the
REST API
ArcGIS Server is an Esri product for enabling WebGIS by sharing geospatial data
over the web. Our JavaScript API is capable of consuming a lot of services exposed
by this server through the REST API. It simply means that all these services exposed
by the ArcGIS Server is available through a URL. Now, let's look at how the REST
API interface is so helpful to developers.

Chapter 1

[25]

Types of service
When you ran the first code given in this book, you saw a cartographic map on
the web page. The map you saw in the browser was actually a collection of images
stitched together. You will realize this if you observed the Networks tab in the
developer tools when you loaded the map. The individual images are called tiles.
These tiles are also served by an ArcGIS MAP server. Here's a URL for one such tile:
http://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/
MapServer/tile/2/1/2.

This just means that any resource published via ArcGIS Server and available to the
API is through an URL, as shown in the following screenshot:

An ArcGIS service endpoint will have the following
format: <ArcGIS_Server_Name>/ArcGIS/rest/
services/<Folder_Name>/ <ServiceType>.

ArcGIS Server provides a user interface to view these REST endpoints. This interface
is popularly known as the Service Catalog.

The Service Catalog is something the developer needs to consult before planning
to use a particular GIS service. The Service Catalog supports multiple formats
such as JSON and HTML, HTML being the default format. If you're unable to
view the Service Catalog, you need to contact your GIS Administrator to enable
the service-browsing capability for the service you're interested in.

http://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer/tile/2/1/2
http://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer/tile/2/1/2

Foundation for the API

[26]

Working with the Service Catalog
Let's explore a sample GIS server provided by Esri named sampleserver3.
arcgisonline.com.

To view the Service Catalog for any GIS server, the syntax is <GIS Server Name>/
ArcGIS/rest/services.

So the URL we need to navigate to is: http://sampleserver3.arcgisonline.com/
ArcGIS/rest/services.

You will see this screen in your browser:

The items of interest in the Service Catalog are the list of links below the Folders
heading tag and the list of links under the Services heading tag. We encourage you to
navigate to each of these links and see the kinds of service they expose. You will find
the following types of service:

• MapServer: This serves geospatial data
• FeatureServer: This enables the editing functionality
• ImageServer: This serves image tiles

http://sampleserver3.arcgisonline.com/ArcGIS/rest/services
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services

Chapter 1

[27]

Didn't we mention that the Service Catalog supports multiple formats such as JSON?
We encourage you to append a query string parameter, such as ?f=json, at the end
of the URL. To view the Service Catalog as an HTML, just remove the query string
parameter from the URL.

Map server
A map server exposes GIS data as a REST endpoint.

Let's explore more about a particular map server named Parcels inside the folder
BloomfieldHillsMichigan. Navigate to this URL: http://sampleserver3.
arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/
Parcels/MapServer.

The following heading tags are of particular interest to us: layers, tables, and
description. Now, let's delve more into one of the layers in the map server. All
three layers are worth navigating through. For the purpose of explanation, let's
choose the first layer (Layer ID: 0), which can be navigated to directly using this
URL: http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/
BloomfieldHillsMichigan/Parcels/MapServer/0.

All the heading tags listed in this URL are worth contemplating. We'll discuss some
of these:

• Geometry Type describes the type of geometry of the particular layer. In our
URL under investigation, it is named 'esriGeometryPoint', which means it
is a point feature.

• Meta data such as 'Description', 'Copyright Text'.
• Information about the Geographic Extent of the data under the tags

'Extent' and 'Spatial Reference'.
• The Drawing Info tag defines how the data is rendered on the map.
• 'Fields' reveals the table schema of our layer. The actual field name

is mentioned along with the type of the field and the alias name of
the field. The alias and field type information is necessary to perform
queries on the data. A field type of 'esriFieldTypeString' and
'esriFieldTypeSmallInteger' indicates that the field should be treated as
a string and number respectively. 'esriFieldTypeOID' is a special type of
field that holds the unique Object ID of the features in the layer.

www.allitebooks.com

http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://www.allitebooks.org

Foundation for the API

[28]

The Query endpoint
At the bottom of the page, there will be a heading tag named Supported Operations
listing the links to the various endpoints exposed by this layer. There might a
link with a text called Query. This link is the reason for our delving into ArcGIS
Server and REST endpoints. Click on the link or navigate to it using this direct
URL: http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/
BloomfieldHillsMichigan/Parcels/MapServer/0/query.

The UI provides us all possible ways that we can query with that particular layer
(Building Footprints). The query operation seems to support both spatial as well as
flat table SQL queries. As of now, let's just discuss the flat table queries. The Where
field and the Return Fields (Comma Separated) are the ones that deal with flat
table queries. The Where field accepts a standard SQL where clause as input, and
the Return Fields accepts a comma-separated value of field names that needs to be
the output. But we're explorers at this stage of development, and we just need to
see the kind of data returned by this interface. Feed the following values into the
corresponding textbox:

• Where: 1 = 1
• Return Fields: *

http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer

Chapter 1

[29]

Click on the Query (GET) button and scroll to the bottom of the screen.

The query literally returns all the layer data from all the fields from the database,
but ArcGIS Server limits the results to 1000 features. Note that the browser URL
has changed. The following URL is the REST GET request URL that was used to fire
this query: http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/
BloomfieldHillsMichigan/Parcels/MapServer/0/query?text=&geometry=&geo
metryType=esriGeometryPoint&inSR=&spatialRel=esriSpatialRelIntersects
&relationParam=&objectIds=&where=1%3D1&time=&returnIdsOnly=false&retu
rnGeometry=true&maxAllowableOffset=&outSR=&outFields=*&f=html.

The following URL, removing all optional and undefined query parameters from
the preceding URL, will also yield the same result: http://sampleserver3.
arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/
Parcels/MapServer/0/query?where=1%3D1&outFields=*&f=html.

Now let's analyze the result data a bit more by narrowing down our Where clause.
Note the OBJECTID field of the first feature among the results:

1. Remove the value in the Where clause text box.
2. Enter the noted OBJECTID in the Object IDs text box. The object ID we noted

was 5991 (but you could very well pick any).
3. There's a drop-down labeled format. Select the drop-down value named

'json'

4. Click on the Query (GET) button.

Or, here's the direct URL achieving the same operation: http://sampleserver3.
arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/
Parcels/MapServer/0/query?objectIds=5991outFields=*&f=pjson.

Now, the results look very detailed. What we are looking at is the data of a single
feature. The JSON returns several features key value pairs with keys such as
displayFieldName, fieldAliases, geometryType, spatialReference, fields,
and features.

http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer/0/query?text=&geometry=&geometryType=esriGeometryPoint&inSR=&spatialRel=esriSpatialRelIntersects&relationParam=&objectIds=&where=1%3D1&time=&returnIdsOnly=fal
http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/MapServer/0/query?text=&geometry=&geometryType=esriGeometryPoint&inSR=&spatialRel=esriSpatialRelIntersects&relationParam=&objectIds=&where=1%3D1&time=&returnIdsOnly=fal

Foundation for the API

[30]

Let's look at the feature key value pair. The value for the features key is an array
of objects. Each object has keys named attributes and geometry. The attributes
hold the value of an object listing the key values of field names and its values. In our
case, PARCELID is the fieldname and "1916101009" is its value:

The geometry object represents the polygon feature with an array of ring objects.
And each ring is an array of floating point numbers. We earlier dealt with a polygon
as just an array of coordinates. But ArcGIS Server treats a polygon as an array of
rings. To understand the concept of rings, please look at the following illustration:

Chapter 1

[31]

In the preceding illustration, we dealt with two disjoint polygons, but it is considered
as a single unit in the real world, such as a house and garage. ArcGIS represents the
polygon feature with two rings. The first rings consists of coordinates called [[x1, y1],
[x2, y2],…[x6,y6]], and the second ring consists of coordinates called [[x7,y7],..[x10,
y10]].

Summary
We used the ArcGIS JS API's CDN to access the API and tried to understand the
map and Esri geometry modules. We tried to better understand extents and spatial
references by brushing up our knowledge of coordinate geometry. We now know
that an extent is just a minimum bounding rectangle that could be defined using two
coordinates, and a spatial reference system is akin to the coordinate axes on a graph.
We tried to look at some of the amazing modules that the dojo toolkit provides,
which we must consider using in our code. ArcGIS Server exposes its GIS data and
other resources as a REST API, that is, it is available as a URL. You also learned that
a developer must always consult the Service Catalog before starting to consume any
service through the API. we laid down our preferences in the way of development
environment for working through projects in this book. The next chapter deals with
the different types of layer used in the API and the ideal context where each type
is used. We will also be introduced to some of the most commonly used in-built
widgets provided by Esri, and we will use them in our application.

[33]

Layers and Widgets
The two basic components that make up our web mapping application are layers
and widgets. A map object is similar to a canvas that holds all the layers, and users
can interact with it, such as panning and zooming into the map. Layers are primarily
associated with a particular data source. Widgets are composed of JavaScript logic
and an HTML template (if it requires user interaction). Widgets can interact with
the map or can function independently. Esri has developed a lot of general-purpose
widgets, and these are bundled with the API. We will discuss how to use these widgets
throughout this book. We will also see how to develop custom widgets in the next
chapter. This chapter sets the starting point in the development of a full-fledged web
mapping application displaying historical earthquake data. We will be gaining a
strong foothold in the following topics as we progress through the chapter:

• Data sources supported by the API
• The concept of layers in the context of the API
• The functional classification of layers
• The different types of layers and their properties
• Featurelayers versus DynamicMapService versus graphics layer
• Using Esri's in-built widgets

Data sources supported by the API
The ArcGIS JavaScript API is a powerful and flexible client-side mapping software
that provides support for integrating a variety of spatial data sources, which is
currently in production. It also provides support for visualizing flat file formats,
such as CSV, with some latitude and longitude information.

In order to leverage full capabilities provided by the ArcGIS JavaScript API, it
is important to know the list of data sources it supports and the properties and
methods it exposes.

Layers and Widgets

[34]

The data sources supported by the ArcGIS JavaScript API as of version 3.14 can be
broadly grouped as follows:

• ArcGIS Server services
• OGC compliant GIS services
• Flat file formats
• Custom web services (preferably REST services)

Let's review the different data source formats and understand how to get the
necessary information about the data to consume in the ArcGIS JavaScript API.

Flat file formats
The API provides native support to render flat file formats such as KML and CSV.

KML
Keyhole Markup Language (KML) is a spatial file format that was initially
developed by Google and is currently maintained by OGC. It provides support for
point, line, and polygon geometry, and even image overlays. KML is an XML well
known for this versatility, but it is pretty verbose and is used in Google Maps. KML
files can be opened in any text edit such as Notepad++.

CSV files
The CSV file is a plain text file format that stores tabular data with field values
separated by commas. CSV files contain information about latitude and longitude
or coordinate values such as X and Y coordinates in separate fields. A CSV file can
be read by the API, and the location information can be converted to point to the
location on the API.

ArcGIS Server
ArcGIS Server can be used to share spatial data over the Web. In our case, if we
have data as shape files, personal geodatabases, file geodatabases, or enterprise
geodatabases, we can use ArcGIS Server to serve the data over the Web as REST
services. ArcGIS JavaScript is capable of consuming these services and displaying
them onto the map. In case of other spatial formats, such as DWG, we can either use
the ArcGIS desktop or Feature Manipulation Engine (FME), which is a spatial ETL
tool for converting into the Esri file format and publishing it via ArcGIS Server.

Chapter 2

[35]

The concept of layers
If you had taken an introductory course in GIS, you'd be familiar with the classic
image of GIS layers overlaid on each other. Layers, in the context of the API, are
data resources available as REST endpoints or a JSON object. (That's right, you can
construct a web map layer using a JSON string.) We will deal with the sources and
types of these map layers very soon, but before that, let's list the most important
considerations of any map layer:

• A layer is a container object for any data source
• Data can be added to the map object using the layer object
• Layers form a stack architecture—the first layer added is at the bottom

The norm is to have the Basemap layer at the bottom

• The map object has a special in-built layer to contain all map graphics
This is called the graphics layer and is at the top layer always

• All other functional layers are added in between
• The visibility of the layers can be turned on or off at any time

Adding layers to a map
Before dealing with the different types of layers, we will discuss how to add any layer
to the map object, because the process is going to be the same for any layer type, and
also it's very simple. In the following diagram, we can see all the types of layer:

Layers and Widgets

[36]

There are two methods by which you can add any layer to the map object. Suppose
prjMap is the name of the map object defined, and we need to add a layer; you can
adopt one of these two methods:

• Method 1:
//Method 1
prjMap.addLayer(layer1);
/*layer1 is the layer object we would like to add to the map. */

• Method 2:

//Method 2
prjMap.addLayers([layer1]);

It's as simple as that! The second method is the preferred method, as there are certain
widgets or functionalities that have to wait until all the layers in the map have been
loaded. Using the second method will enable us to use an event handler that gets
fired after all the layers are loaded. We will discuss about these event handlers
toward the end of this chapter.

The functional classification of layers
Functionally, the different types of layer that could be added to a map can be
classified as follows:

• Basemap or Tiledmap layers
• Functional layers
• Graphics layers

Let's discuss each of these independently.

Basemap layers
Basemap layers is are layers that can be used as a reference background map.
Usually, satellite imagery, topographical maps (maps showing elevation), or street
maps serve this purpose. Basemaps are usually cached image tiles. This means that
the Basemap is a static resource. Since they are static and are served as image tiles,
we can't interact with (as in query or select) the features seen on the Basemap. And
since this is the Basemap, this is the bottom-most layers as well as being the layer,
that's added first to the map.

Chapter 2

[37]

Now, the API provides different methods to add a basemap property to the map:

• Add the basemap property to the map object:
var map = new Map("mapDiv", {basemap: "streets"});

• Use the in-built basemap gallery provided by the API.
This allows us to toggle between multiple basemaps, such as satellite
imagery, Streets maps, Topographic maps, National Geographic maps,
OpenStreetMaps, and so on.

• Create your own basemaps by adding Tiledmap layers to the map object
(we'll discuss about Tiledmap layers very soon).

Download the project folder called B04959_02_CODE_01 and open index.html to get
a feel for the Basemap gallery widget:

Functional layers
Functional layers display all the recent changes and are hence dynamic in nature
as opposed to the relatively static nature of the Basemap or cached tile layers.
Functional layers are layers you can interact with. The API provides options to
perform different operations on most of these layers, such as:

• Selecting feature/s
• Retrieving the attributes and geometry of features
• Performing queries on the data
• Rendering features (applying styling to the features using different symbols,

colors, width, and other graphic properties)
• Allowing create, update, and delete (CRUD) operations on features

Layers and Widgets

[38]

Functional layers will be reprojected-on-the-fly, based on the spatial reference of the
Basemap. This means that functional layers could be of a different spatial reference
system than the Basemap and they'd still align with the Basemap, as the API will
request the reprojected data of the functional layers from the server. There are
different types of functional layer, such as dynamic layers and feature layers, which
will be dealt with very soon.

Graphics layers
Graphics layers have the greatest versatility in terms of operations. Here, you can
add as much data as you need to the attributes object. You can assign or modify its
geometry (using the Draw toolbar or even programmatically), add symbology, query
it (with functional layers, the query or update operations might be disabled), delete
it, use it for selecting features from functional layers, or just use it as a redlining tool.
But the graphics layer also has the shortest lifespan because it doesn't persist after
a session—these are just stored on the client side. And due to these properties, it
makes sense to have the graphics layer as the top-most layer, doesn't it?

A developer needs to be cautious about the spatial reference of the
input data source when dealing with graphic layers. esri/geometry/
webMercatorUtils is a handy module that lets us convert Web
Mercator coordinates to geographic and vice versa.

Types of layers
We got a glimpse of the functional classification of layers. The API provides a host
of modules to load layers from different data sources that generally fall into one of
the functional classifications that we looked into. We are going to review some of the
most important types of layers provided by the API and the methods and properties
it exposes.

The ArcGIS Tiledmap service layer
This is the cached Tiledmap layer served by the ArcGIS Server:

Name Value
Module Name esri/layers/ArcGISTiledMapServiceLayer

Data Source Type ArcGIS REST Service

Layer Type BaseMap /Tiled Cache Layer

Response Type Cached image tiles

Chapter 2

[39]

Name Value
Constructor new ArcGISTiledMapServiceLayer(url, options?)

Preferred Alias Name ArcGISTiledMapServiceLayer

Preferred alias names
Preferred alias names provided by the API as part of the code
convention and be accessed at https://developers.arcgis.com/
javascript/jsapi/argument_aliases.html.

Why do we need to use a different Basemap when we already have a lot of options
provided by Esri? Well, we found an aesthetic and visually informative tile map
service from NOAA displaying a color shaded relief of the world's topography and
bathymetry (ocean floor elevation differences):

You may consider using this as the Basemap for displaying any world-wide
phenomena such as hazards or earthquakes. How do we do that? If you look at the
constructor for this module, it looks for a required URL parameter and an optional
options parameter.

The URL of the NOAA service we were talking about is http://maps.ngdc.noaa.
gov/arcgis/rest/services/etopo1/MapServer.

Now, let's try to consume this as ArcGISTiledMapLayer (Code Reference:
B04959_02_CODE1.html):

require([
"esri/map",
"esri/layers/ArcGISTiledMapServiceLayer",

https://developers.arcgis.com/javascript/jsapi/argument_aliases.html
https://developers.arcgis.com/javascript/jsapi/argument_aliases.html
http://maps.ngdc.noaa.gov/arcgis/rest/services/etopo1/MapServer
http://maps.ngdc.noaa.gov/arcgis/rest/services/etopo1/MapServer

Layers and Widgets

[40]

"dojo/domReady!"
], function (
 Map, ArcGISTiledMapServiceLayer
) {
var map = new Map("mapDiv");
vartileMap = new ArcGISTiledMapServiceLayer("http://maps.ngdc.noaa.
gov/arcgis/rest/services/etopo1/MapServer");
map.addLayer(tileMap);
 });

That's all the code you need to write to see that beautiful map on your screen.

The service catalog of the Tiledmap service provides us with a lot of useful
information that a developer should consider before using the Tiledmap service
in the application. Let's consult the service catalog of the previously mentioned
ArcGISTiledMapServiceLayer. In the screenshot of the service catalog provided
in the next section, the developer can comprehend a lot of information about the
data source:

• Spatial Reference
• TileInfo
• Initial Extent and FullExtent
• Min Scale and Max Scale
• Layers contributing to the tiles

Spatial Reference
Spatial Reference of the Tiledmap service or Basemap is one of the important
properties overlooked by developers in the initial stages of coding. The Spatial
Reference of the Tiledmap service is set as the spatial reference of the entire map.
Operational layers, such as the dynamic map service and feature layers, added
to the map that conforms to this is Spatial Reference, whatever their individual
spatial reference is.

Chapter 2

[41]

Layers and Widgets

[42]

TileInfo
TileInfo provides information about the tiling scheme followed by TiledMapService.
The Level of Detail can be used to set the zoom extent of the map.

Extent and Scale Info
Extent and scale info provides us information about the extent within which the tiles
are visible.

Download the complete code from project folder B04959_02_CODE_02 and see your
beautiful Tiledmap in action.

The ArcGIS DynamicMapService layer
This module, as the name suggests, is a dynamically hosted resource from the
ArcGIS Server REST API:

Names Values
Module Name esri/layers/ArcGISDynamicMapServiceLayer

Data Source Type ArcGIS REST Service

Layer Type Functional Layer

Response Type Dynamically generated images

Constructor new ArcGISDynamicMapServiceLayer(url, options?)

The dynamic map layer actually represents all the data exposed by the non-cached
map service. For the same reason, dynamic map layers are a kind of composite layer
because a map service generally has more than one layer.

We'll see what this means in a moment. We'll refer to the service catalog (yeah, it's a
fancy term for the interface that appears when we navigate to the map service URL).

Open this URL of a map service in the browser—http://maps.ngdc.noaa.gov/
arcgis/rest/services/SampleWorldCities/MapServer.

You will be able to see all the data layers exposed by the map service. So, when you
consume this map service, all the data will be displayed on the map as part of a
single DynamicMapService layer:

http://maps.ngdc.noaa.gov/arcgis/rest/services/SampleWorldCities/MapServer
http://maps.ngdc.noaa.gov/arcgis/rest/services/SampleWorldCities/MapServer

Chapter 2

[43]

If you cannot see the service catalog for any service shown previously,
it doesn't mean that the service is offline; it might be that service
browsing is turned off on the production machine.
Make sure to try the URL by appending a query parameter named f
with a value as json, for example, {{url}}?f=json.

Earlier, we discussed how to add ArcGISTiledMapServiceLayer to the map.
The following code adds the ArcGISDynamicMapService layer upon the existing
tiled layer:

require(["esri/map",
"esri/layers/ArcGISTiledMapServiceLayer",
"esri/layers/ArcGISDynamicMapServiceLayer",
"dojo/domReady!"
],
function (
Map,
ArcGISTiledMapServiceLayer,
ArcGISDynamicMapServiceLayer
) {
var map = new Map("mapDiv");
varshadedTiledLayer = new ArcGISTiledMapServiceLayer('http://maps.
ngdc.noaa.gov/arcgis/rest/services/web_mercator/etopo1_hillshade/
MapServer');

varworldCities = new ArcGISDynamicMapServiceLayer("http://maps.ngdc.
noaa.gov/arcgis/rest/services/SampleWorldCities/MapServer");

map.addLayers([shadedTiledLayer, worldCities]);
 });

Layers and Widgets

[44]

Now, if you would have observed, both ArcGISDynamicMapServiceLayer and
ArcGISTiledMapServiceLayer consume a map service. So, how do we actually
know which map service should be used as a Tiledmap service or which can be used
as a DynamicMapService? You might have guessed it right. The service catalog is the
answer. There is a particular heading in the service catalog that you have to look for
in the map services that distinguishes a cached tile map service from the non-cached
map service. This is called TileInfo.

The attribute that differentiates cached tile map services from non-cached
map services is called Tile Info.

TileInfo has information on the level of detail information. The levels of details
determine the discrete scale levels at which the map will be displayed. These levels
of details are also known as the zoom levels, and the markers in the zoom control of
the map correspond with these zoom levels.

Now, there is a similarity with how Tiledmap service and DynamicMapService
responses are served. Both are served as images. While Tiledmap services serve
multiple image tiles for each extent, a DynamicMapService serves just one image
for a given extent.

If you notice your Networks tab, there will be a GET request method named export
appended to the DynamicMapService that we declared. This is the GET request that
fetched the dynamic map image from the server:

Chapter 2

[45]

Observe the name-value pairs in the query string of the preceding GET request. You'll
notice the following fieldnames:

• The dpi fieldname defines the resolution of the image in dots per inch
• The transparent fieldname defines that the response image is transparent,

and so, the background Basemap can be viewed
• The format fieldname has a value of png, which is the format of the

response image
• The value for the bbox fieldname requests the extent (consisting of four

coordinates—Xmin, Ymin, Xmax, and Ymax) for which the image is requested
• The value for the bboxSR fieldname defines the spatial reference in which the

bbox coordinates were defined, and imageSR defines the spatial reference in
which the response image is requested

• The value last fieldname called f defines the format of the response; it's an
image of course

Exercise
Change the value for the f field name from
image to html in the preceding GET request
and see what you get.

If you check out the API page, you will see that this module provides a lot of properties
and methods. The following table shows some of the most important methods:

Method Name Description
exportMapImage(imageParamete
rs?, callback_function?)

This exports a map using values as specified
by the imageParameters object. The
callback function event returns the map
image.

refresh() This refreshes the map by making a new
request to the server.

setDPI(dotsPerInch) This enables setting the image resolution in
dots per inch for the exported map.

setLayerDefinitions(stringArray
of Layerdefintions)

This enables us to filter the data displayed
by the DynamicMapService.

setVisibleLayers(Array_of_
LayerIds)

This makes visible only the layers whose IDs
are passed in as the parameter.

Layers and Widgets

[46]

Now, make sure you have the following requirements to display the
DynamicMapService:

• Only display the Cities layer
• Provide a transparency of 0.5 for the dynamic map image
• Display only cities with a population greater than 1 million

The following snippet guides you in how to accomplish this (Code Reference:
B04959_02_CODE2.html):

varworldCities = new ArcGISDynamicMapServiceLayer("http://maps.ngdc.
noaa.gov/arcgis/rest/services/SampleWorldCities/MapServer", {
"id": "worldCities",
"opacity": 0.5,
"showAttribution": false
});
worldCities.setVisibleLayers([0]);
worldCities.setLayerDefinitions(["POP > 1000000"]);

When the showAttribution property in the options object of any map
object is set to true, all the attributions for the data source are shown in
the bottom-right corner of the map.

The setLayerDefinitions() method accepts a string array of where clauses.
While passing the layer definitions for a DynamicMapService, keep the following
things in mind.

The index of the definition expression (where clause) should match the index of the
layer on which the expression is applied. For example, if the Cities layer had an
index of 5 in the preceding map service, the layer definition would look like this:

VarlayerDefintion = [];
layerDefinition[5] = "POP > 1000000";
worldCities.setLayerDefinitions(layerDefinition);

Once these conditions are met, the resulting map will look like this. The
semi-transparent blue dots are the world cities with a population greater than
one million:

Chapter 2

[47]

Feature layers
A feature layer is an individual layer of a map service that has a geometry type. An
individual layer in a map service could be a feature layer or even a raster layer; for
example, http://sampleserver4.arcgisonline.com/ArcGIS/rest/services/
Elevation/ESRI_Elevation_World/MapServer/1 and http://maps.ngdc.noaa.
gov/arcgis/rest/services/web_mercator/hazards/MapServer/0 are both
individual layers of a map service, but the former URL is a raster layer resource and
the latter is a feature layer resource. The raster layer doesn't have a geometry type
attribute in Service Catalog, whereas the feature layer has one of the geometry types
point, multipoint, polyline, or polygon.

A feature layer is a very versatile entity because it supports advanced querying,
selecting, rendering, and sometimes even editing facilities. A feature layer (or a raster
layer) is identified using the index in the map service it belongs to:

Names Values
Module Name esri/layers/FeatureLayer

Data Source Type ArcGIS REST Service

Layer Type Functional Layer

Response Type Feature Collection (Feature has geometry, attribute
and symbology)

Constructor new FeatureLayer(url, options?)

http://sampleserver4.arcgisonline.com/ArcGIS/rest/services/Elevation/ESRI_Elevation_World/MapServer/1
http://sampleserver4.arcgisonline.com/ArcGIS/rest/services/Elevation/ESRI_Elevation_World/MapServer/1
http://maps.ngdc.noaa.gov/arcgis/rest/services/web_mercator/hazards/MapServer/0
http://maps.ngdc.noaa.gov/arcgis/rest/services/web_mercator/hazards/MapServer/0

Layers and Widgets

[48]

Adding the feature layer/s to the map is the same as adding a DynamicMapService
layer or a Tiledmap service layer:

define([
"esri/map",
"esri/layers/FeatureLayer"
],
function(
Map,
FeatureLayer
){
var map = new Map("mapDiv");
var featureLayer1 = new FeatureLayer(featureLayer1URL);
var featureLayer2 = new FeatureLayer(featureLayer2URL);
map.addLayers([featureLayer1, featureLayer2]);
});

The FeatureLayer constructor
The FeatureLayer constructor has two arguments—the FeatureLayer URL and
an optional options object. The options object provides a bunch of options to
configure the FeatureLayer constructor. One of the most important options
property is named mode.

The mode property defines how the feature layer is rendered on the map. Since
feature layers stream the actual geometry of the feature, unlike the map service
(which provides a dynamically generated image) or a Tiledmap service (which just
serves pre-rendered cached tiles), the rendering of feature layers on a map has some
performance considerations. There are four types of mode by which a feature layer
can be rendered. The four modes are numeric values provided as constants by the
API. If the callback function alias of the feature layer module is a feature layer, the
four modes can be accessed using the following decorations:

• FeatureLayer.MODE_SNAPSHOT

 ° This fetches all the features from the server once and resides on the
client—a one-time overhead

 ° This is updated when the additional filters are applied

• FeatureLayer.MODE_ONDEMAND

 ° Features are fetched as needed
 ° Continuous little chunks of overhead
 ° Default MODE

Chapter 2

[49]

• FeatureLayer.MODE_SELECTION

 ° Only features selected using selectFeatures() method is displayed

• FeatureLayer.MODE_AUTO

 ° This switches between MODE_SNAPSHOT or MODE_ONDEMAND (this
choice is made by the API)

 ° Best of both worlds

We will try to add a FeatureLayer constructor for historical earthquakes to the map.
The map service providing these feature layers can be found at http://maps.ngdc.
noaa.gov/arcgis/rest/services/web_mercator/hazards/MapServer.

The earthquakes layer is the fifth layer in the map service. But you can try other
feature layers too. Here's a code snippet that lets you add a feature layer to the map
object (Code Reference: B04959_02_CODE3.html):

define(["esri/map",
"esri/layers/FeatureLayer",
"dojo/domReady!"],
function (Map, FeatureLayer
) {
varearthQuakeLayerURL = 'http://maps.ngdc.noaa.gov/arcgis/rest/
services/web_mercator/hazards/MapServer/5';
earthQuakeLayer = new FeatureLayer(earthQuakeLayerURL, {
id: "Earthquake Layer",
outFields : ["EQ_MAGNITUDE", "INTENSITY", "COUNTRY", "LOCATION_NAME",
"DAMAGE_DESCRIPTION", "DATE_STRING"],
opacity: 0.5,
mode: FeatureLayer.MODE_ONDEMAND,
definitionExpression: "EQ_MAGNITUDE > 6",
});

map.addLayers([earthQuakeLayer]);
});

The preceding code can be explained as follows:

• The id property assigns an ID to the feature layer
• The opacity property lets us define an opacity for the map
• The definitionExpression property is a where clause that lets us filter the

features shown on the map
• An outFields property lets us define the fields provided by the feature layer

http://maps.ngdc.noaa.gov/arcgis/rest/services/web_mercator/hazards/MapServer
http://maps.ngdc.noaa.gov/arcgis/rest/services/web_mercator/hazards/MapServer

Layers and Widgets

[50]

Here's a screenshot of the FeatureLayer superimposed over the
DynamicMapService layer and the Tiledmap service layer. The semi-transparent
colored circles represent the locations where any earthquake ever happened, which
had a magnitude of more than 6 Richter scale:

When you pan the map or zoom around the map, the features are fetched and a
corresponding GET request is fired, which fetches the features on demand. If you open
the Networks tab in the developer console just after loading a feature layer, you will
be able to understand a lot of things:

• The API uses the query method of the feature layer to fetch the features.
• In the query string, there will be query parameters, such as geometry,

spatialRel, geometryType, and inSR which define the extent for which
features need to be fetched. Other FeatureLayer constructor options, such as
outFields and the where clause (corresponding to definitionExpression),
can also be found in the query string.

• If you click on the Preview or Response tab, you will notice that the GET
request fetches an array of features. Each feature has an attributes object
and a geometry object. The attributes object will contain the field names
mentioned in the outFields array and the corresponding field value of
the particular feature:

Chapter 2

[51]

We'll deal with how to query and select the features in a feature layer in the next
chapter. As of now, we are better off knowing what the following method does to the
feature layer object:

Method Description
clear() Clears all graphics
clearSelection() Clears the current selection
getSelectedFeatures() Gets the currently selected features
hide() Sets the visibility of the layer to false
isEditable() Returns true if the FeatureLayer is editable

Layers and Widgets

[52]

Method Description
setInfoTemplate(infoTemplate) Specify or change the info template for a layer
setOpacity(opacity) Initial opacity of the layer (where 1 is opaque, 0

is transparent)
show() Sets the visibility of the layer to true

Infotemplates
Infotemplates provide a simple way to deliver an HTML popup displaying the
information about a feature when we on click it. We will discuss Infotemplates in
detail in the next chapter.

Graphics layer
We've already discussed about graphics layer a bit. We know that the map object,
by default, contains a graphics layer, and it can be referenced using the graphics
property of the map object. We can also create our own graphics layers and add
them to the map. However, the default graphics layer provided by the map remains
at the top.

Let's understand more about the graphics layer and the Graphic object that is added
to the graphics layer. The graphics layer is a container for the Graphic objects.

A Graphic object has the following values:

• Geometry
• Symbol
• Attributes
• Infotemplate

Chapter 2

[53]

Geometry
Geometry will have a type (point, multipoint, polyline, polygon, and extent),
a spatial reference, and the coordinates making up the geometry.

Symbol
A symbol is a much more complex object because it is associated with the geometry
it symbolizes. Also, the styling of the symbol is defined by the colors or picture used
to fill up the symbol and the size of the symbol.

Let's review a snippet to understand this better. This is a simple snippet to construct
a symbol for a polygon:

Attributes
The attributes of a graphic is a key-value pair object that stores information about
the graphic.

InfoTemplate
InfoTemplate is the HTML template that can be used to display relevant
information about a graphic when we click on it.

Layers and Widgets

[54]

Map and layer properties
There are many common properties between the layers that give us relevant
information about the layer. For example, properties such as fullExtent, id,
infoTemplates, initialExtent, layerInfos, maxRecordCount, maxScale,
minScale, opacity, spatialReference, units, url, and visibleLayers are the
same for dynamic map layer as well Tiledmap layer, whereas properties such as
dynamicLayerInfos and layerDefinitions are specific to the DynamicMapService
layer. So, is the tileInfo property specific to Tiledmap layer?

Try to explore these properties by logging the properties to the console. For example,
if you need to print a list of fields in a feature layer, use the fields property of the
feature layer.

Here's a code snippet that logs certain information regarding the feature layer and the
DynamicMapService layer to the console (code reference: B04959_02_CODE5.html):

on(map, "layers-add-result", function (evt) {
console.log("1.", earthQuakeLayer.id);
console.log("2.", earthQuakeLayer.fields);
console.log("3.", earthQuakeLayer.geometryType);
console.log("4.", earthQuakeLayer.maxRecordCount);

console.log("5.", worldCities.layerInfos);
});

The following is the screen output you will get in the console:

1. Earthquake Layer

2. [Object,

Object,

. . .

Object]

 3. esriGeometryPoint

4. 1000

5. [Object, Object, Object]

Featurelayer.fields returns an array of field objects. Each object contains
properties such as alias, length, name, nullable, and type. DynamicLayer.
layerInfos returns an array of the layerInfo object. The layerInfo object
provides information about the layer:

Chapter 2

[55]

Map and layer events
Changing the extent of the map, adding a layer to a map, adding a group of layers to
the map, or even clicking on the map or a mouse—the API has an event handler for
all of it. While using the event, let's stick to dojo's on module to handle events. Find
the prototype of handling events using dojo's "dojo/on" module:

Target Event Description
Map extent-change Fires when the extent of the map has changed
Map layers-add-result Fires whenever you use the map.

addLayers() method, after all the layers
being added to the map are loaded

Map load This one is obvious
Map basemap-change

Feature layer selection-complete After selecting features from a feature layer

In the preceding code snippet, which logged out certain layer properties, you might
have noticed that the entire code snippet was encompassed in an on statement:

on(map, "layers-add-result", function (evt) {
console.log("1.", earthQuakeLayer.id);
...
console.log("5.", worldCities.layerInfos);
});

Layers and Widgets

[56]

We needed to print out all the layer-related properties inside the on event since we
need to wait until all the layers are loaded, or we will get an undefined for most of
the properties. This particular event named layers-add-result is fired only after
all the layer arrays added to the map is loaded.

Using Esri widgets – the genie's lamp
Widgets are the cornerstone of dojo. Widgets are UI components that can be built,
configured, and extended in dojo to do a specific task. So, when someone provides us
with a widget that accomplishes a task we need to do, all we have to do to instantiate
it is configure it a bit and provide it with the container node reference where the
widget should reside.

So, the good news is Esri provides us with in-built widgets that accomplish a lot of
things, such as querying features, geocoding addresses (converting a text address into
a location on a map), adding a widget to display the map legend, adding widgets to
search for attributes, and even adding a widget to toggle between multiple basemaps.
All the Esri built widgets can be located under esri/dijits in the table of contents
section of the API reference page.

The BaseMapGallery widget
Well, you're not surprised that this widget does exist, right? We gave you a heads-up
at the beginning of this chapter when we were dealing with TiledMapLayers. The
Basemap layer widget provides us a with widget with which we can toggle a Basemap
from a gallery of basemaps. See the following prototype code for integrating basemaps
into our application (code reference: B04959_02_CODE6):

require(["esri/map",
"esri/dijit/BasemapGallery"], function (Map,
BasemapGallery){
varbasemapGallery = new BasemapGallery({
showArcGISBasemaps: true,
map: map
 }, "basemapGalleryDiv");
});

Chapter 2

[57]

The Legend widget
A map legend lists the layers in the map and the symbology used by all the
layers. Constructing a legend by ourselves involves getting the layerinfos and
drawinginfos and listing them in a div—the process sounds like a pain in the neck.
Luckily for us, Esri provides us dijit (probably a portmanteau for dojo and widget)
for constructing legends:

We use the following code to initiate the Legend widget (Code Reference:
B04959_02_CODE6)

require(["esri/map",
"esri/dijit/Legend"], function (Map, Legend){
 on(map, "layers-add-result", function (evt) {
varlegendDijit = new Legend({
map: map,
 }, "legendDiv");
legendDijit.startup();
 });
});

Layers and Widgets

[58]

Summary
We covered a lot of ground in this chapter. We tried to identify the process by which
data is added to the map. We identified the data source, such as ArcGIS Server
service, OGC data, CSV, KML, and so on. Then, we covered the API provided
modules that support the display of, and further operations on, three major ArcGIS
REST service data sources, namely the ArcGIS Tiledmap service layer, the ArcGIS
DynamicMapService layer, and the feature layer. You also learned how to instantiate
the layers and how to navigate their properties and events. We also dealt with a special
kind of layer namely graphics layer, which is the top-most layer in the map and is used
as a container object for all the graphics in the map. We got a taste of the plethora of
in-built widgets provided by Esri. In the next chapter, we will have an in-depth look
into writing spatial queries and retrieving the results. You will also learn how to use
geometry services and the geometry engine to process geometric operations.

[59]

Writing Queries
"The art and science of asking questions is the source of all knowledge."

– Thomas Berger

Queries are the gateways to asking questions to the map through the API. They
are considered as a task in the API terminology because the process of forming
queries and getting the answers is a sequence of operations that must be carried
out properly. In this chapter, we will be developing a Wildfire Location app to
understand the following concepts:

• Building and executing the Query task
• Building and executing the Identify task
• Building and executing the Find task
• Promises, deferred, and the result objects for the Query, Find,

and Identify tasks
• Using FeatureTable dijit
• Using Infotemplates

Writing Queries

[60]

Developing the Wildfire application
In this chapter, we will be developing an app that will display Active Wildfire
Locations in the United States with a background map showing the Wildfire
Potential for any location. We will also try to provide search/query functionalities by
harnessing the components provided by the API. The following screenshot provides
a rough rendition of our final application that we will have developed by the end of
this chapter:

The application will have the following components:

• Dark gray basemap
• Two operational map services, one displaying the Wildfire potential for the

United States (raster data) and the other displaying Active Wildfire Locations
(point data)

• A legend dijit (dojo widget) displaying the symbology of the layers added to
the map

• A report widget that shows all the records of the Active Wildfire Locations

Chapter 3

[61]

• A query widget where you can query Active Wildfire Locations based on the
areal extent of Wildfire (this information is available in a field in the data)

• A Find widget where you can enter any text, and all the States or Fire Names
matching the search text will be fetched

• A map click event that will identify and conspicuously display Wildfire
Potential at the map click location

• There are two operational data sources; one is the Wildfire Hazard Potential
map service available at http://maps7.arcgisonline.com/arcgis/rest/
services/USDA_USFS_2014_Wildfire_Hazard_Potential/MapServer and
the other is Active Wildfire Data available at http://livefeeds.arcgis.
com/arcgis/rest/services/LiveFeeds/Wildfire_Activity/MapServer

• The latter map service is a secured map service, meaning that we need an
ArcGIS Online account or an ArcGIS Developer account to use it. Apart from
the preceding data sources, to access the vast pool of ArcGIS Online Data and
the ones published in the Living Atlas of the World (http://doc.arcgis.
com/en/living-atlas/), we need to do the following:

 ° Register the app in ArcGIS Developer Portal and get a token for the app
 ° Incorporate ArcGIS Proxy Code in our application

Registering the application in the developer
portal
Using our ArcGIS Developer credentials (which we created as part of the Setting
up the development environment section in Chapter 1, Foundation for the API), sign into
the ArcGIS Developer portal (https://developers.arcgis.com/).

http://maps7.arcgisonline.com/arcgis/rest/services/USDA_USFS_2014_Wildfire_Hazard_Potential/MapServer
http://maps7.arcgisonline.com/arcgis/rest/services/USDA_USFS_2014_Wildfire_Hazard_Potential/MapServer
http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/Wildfire_Activity/MapServer
http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/Wildfire_Activity/MapServer
http://doc.arcgis.com/en/living-atlas/
http://doc.arcgis.com/en/living-atlas/
https://developers.arcgis.com/

Writing Queries

[62]

Next, navigate to the Applications page of the developer portal by clicking the
appropriate icon as highlighted in the following screenshot. You can even do so by
visiting https://developers.arcgis.com/applications/.

When we click on the Register New Application button, we will be prompted to
enter the details about our application, as shown in the following screenshot. After
providing the required details, if we click on the Register New Application button
again, we will be led to another screen that displays the token for the app. This
short-lived token can be used to access any secured ArcGIS Online map services. For
example, try accessing the this in your browser—http://livefeeds.arcgis.com/
arcgis/rest/services/LiveFeeds/Wildfire_Activity/MapServer.

https://developers.arcgis.com/applications/
http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/Wildfire_Activity/MapServer
http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/Wildfire_Activity/MapServer

Chapter 3

[63]

You'll be redirected to a page that requires you to enter a token. When you provide
the token that you got in the previous screen, you can see Service Catalog for the
map service that we intend to see. The following screenshot explains this process:

Writing Queries

[64]

Using a proxy in the application
In this project, we need to use an Esri resource proxy to access secure ArcGIS Online
data sources. The resource proxy is the server-side code that handles the request
from the client to ArcGIS Server and forwards the response back from ArcGIS Server
to the client. Esri has provided a proxy implementation that is specifically suitable
for ArcGIS Server and ArcGIS Online. The Github code can be found at https://
github.com/Esri/resource-proxy.

We will only be using the ASP.NET variant of the resource proxy that contains the
following important files:

• proxy.ashx

• proxy.config

• Web.config

The proxy.ashx file contains the server-side code logic for making the request and
forwarding the response back to the client. We need to configure proxy.config and
include our ArcGIS Developer credentials in it. A sample proxy.config page is
shown in the following screenshot:

https://github.com/Esri/resource-proxy
https://github.com/Esri/resource-proxy

Chapter 3

[65]

To configure the proxy.config file, perform the following steps:

1. In the proxy.config file, modify the property values for url, username,
and password in the serverUrl tag. For the tokenServiceUri property,
the value should always be https://www.arcgis.com/sharing/
generateToken.

2. For the url property, the value will be the location of the ArcGIS
Server service. Specify either the specific URL (in this case, you will set
matchAll="false") or just the root URL (as shown in the preceding
screenshot; in this case, the matchAll value will be "true").

For more details on configuring the proxy.config file,
refer to https://github.com/Esri/resource-
proxy/blob/master/README.md#proxy-
configuration-settings.

3. After configuring the proxy pages, we need to add a few more lines of code
to our application. We need to load the esri/config module and use the
following lines in our app code:

esriConfig.defaults.io.proxyUrl = "/proxy/proxy.ashx";
esriConfig.defaults.io.alwaysUseProxy = true;

In our application, the proxy.ashx page is located in the proxy folder at the
application root. If the proxy pages are at a different application, we need to change
the value for the esriConfig.defaults.io.proxyUrl variable. When we set the
esriConfig.defaults.io.alwaysUseProxy value as true, all requests are handled
by the proxy. If we need only specific URLs to be handled by the proxy, we may
need to add a few more lines of code like this:

urlUtils.addProxyRule({
urlPrefix: "route.arcgis.com",
proxyUrl: "/proxy/proxy.ashx"
 });

The urlUtils function is provided by the esri/urlUtils module.

https://github.com/Esri/resource-proxy/blob/master/README.md#proxy-configuration-settings
https://github.com/Esri/resource-proxy/blob/master/README.md#proxy-configuration-settings
https://github.com/Esri/resource-proxy/blob/master/README.md#proxy-configuration-settings

Writing Queries

[66]

The following diagram shows the flow of a HTTP REST request from the client to a
secure ArcGIS Server service:

Bootstrapping the application
All the applications throughout this book are styled and bootstrapped using
Bootstrap map libraries. The source code for these libraries can be found at
https://github.com/Esri/bootstrap-map-js.

Once you download the required libraries, we will need to add the following CSS
and JavaScript libraries to our application:

<head>
<!-- Bootstrap-map-js& custom styles -->
<link href="css/lib/bootstrap.min.css"rel="stylesheet">
<link rel="stylesheet" type="text/css"
href="css/lib/bootstrapmap.css">
<link rel="stylesheet" href="//netdna.bootstrapcdn.com/font-
awesome/4.0.3/css/font-awesome.css">
</head>
<body>

<script src="http://code.jquery.com/jquery-1.10.1.min.js"></script>
<script src="js/lib/bootstrap.min.js"></script>
</body>

Once these libraries are added, we need to add one more JavaScript file as a dojo
module and not as a script reference. In our application, the JavaScript library under
discussion is located at /js/lib/bootstrapmap.js.

https://github.com/Esri/bootstrap-map-js

Chapter 3

[67]

When adding this library as a module in the require function, we need to omit the
file extension. The following screenshot illustrates this statement:

So, instead of using the esri/map module, we will be using the bootstrapmap
module to create the map. The bootstrapmap module accepts all the properties and
methods that the esri/map provides, since the bootstrapmap module is just a wrap
around the esri/map module.

Types of querying operations
Various types of querying operations are possible on the ArcGIS Server provided
data. We will be dealing with the three most important querying operations
provided by the API in this chapter:

• Query task
• Find task
• Identify task

Query task
Query task lets us operate just one layer, so the constructor for a Query task requires
us to provide the URL of a feature layer. Query task lets us query the data using the
attributes (field values; for example, query cities whose population is greater than
2 million) or using the location (for example, find all the gas stations that are within
the current extent of the map or a custom-drawn extent). When the number
of features satisfying the query conditions is greater than the limit set by the server
(the maxRecordCount setting in ArcGIS Server), we can use a feature named paging
to retrieve all the features on a batch mode.

Writing Queries

[68]

Find task
Find task can operate on multiple layers in a map service and multiple fields. Find
task basically searches for a given text in all the fields throughout all the layers in a
given map service. When we don't know which field we are searching for and thus
can't construct a proper SQL where clause to query the data, this is an ideal operation
to rely upon.

Identify task
Identify task is predominantly a location-based search operation that returns all the
data from all the layers in a given map service that intersect with a given geometry
(such as a map-click point).

In all the preceding tasks, we can restrict the fields or layers upon which the search
operation is being performed. The following matrix summarizes all the options
available with the three different types of query operations:

Building and executing a Query task
Query tasks are designed to query featureLayer. Thus, to instantiate querytask,
we need to provide the URL of featurelayer. In version 3.15 of the API, the module
is named esri/tasks/QueryTask.

The QueryTask constructor
The syntax for the QueryTask constructor is as follows:

newQueryTask(url, options?)

The example for the QueryTask constructor is as follows:

require([
"esri/tasks/QueryTask", ...
], function(QueryTask, ...) {
varqueryTask = new QueryTask("<Feature Layer URL>")
});

Chapter 3

[69]

Constructor parameters
The URL of a feature layer that has query functionality is enabled, to verify that the
query functionality on a feature layer is enabled, we have to visit the Service Catalog
of the map service and check that Query is among the supported operations for the
feature layer we'd like to query upon.

For example, in the Active Wildfire map service that we were dealing with, we'd like
to query the layer containing data about Active Wildfire layers. There's just one layer
in the map service, hence the layer index for the feature layer is 0.

The URL of the feature layer is http://livefeeds.arcgis.com/arcgis/rest/
services/LiveFeeds/Wildfire_Activity/MapServer/0.

When we visit this link and scroll down to the bottom of the page where the
Supported Operations section is found, we will see the Query operation being
listed there:

Executing a query using a Query task involves the following steps:

http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/Wildfire_Activity/MapServer/0
http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/Wildfire_Activity/MapServer/0

Writing Queries

[70]

Instantiating the QueryTask object
A Query task is based on the Active Wildfire feature layer. Hence, we will be using
the feature layer's URL to instantiate the QueryTask object. The following lines of
code explain how to instantiate QueryTask:

var wildFireActivityURL = "http://livefeeds.arcgis.com/arcgis/rest/
services/LiveFeeds/Wildfire_Activity/MapServer/0";
var queryTask = new QueryTask(wildFireActivityURL);

Building the Query object
The QueryTask object just defines which layer or data you want to query, but we
need to use the Query object to define what the actual query is. The Query object is
provided by the esri/tasks/Query module.

The Query object does the following:

• It forms a SQL where clause to query by attributes.
• It uses a spatial geometry to perform the query.
• It indicates the spatial relationship with which the query has to be executed.
• It requests an array of feature fields from the server.
• It indicates whether the query result needs to return geometric information.

The Query object has a property named where. This property accepts SQL's where
clauses and fetches the data that satisfies the where clause.

The format of the where clause is as follows:

query.where = "<Query Expression 1><AND/OR><Query Expression 2> …<AND/
OR><QueryExpression n>"

Where Query Expression is "<FieldName><operator><value>";. And
<FieldName> is the name of the field in the feature that we would like to query.

<operator> is a kind of SQL operator, such as LIKE, =, >, <.

The following snippet demonstrates the use of the where clause:

query.where = "STATE = 'OK' OR STATE = 'WY'";

Chapter 3

[71]

When we would like to retrieve all the features from the feature class, the where
clause needs to be set to a truthy expression, such as 1=1. A truthy expression is
something that evaluates to true under all circumstances.

You can use a truthy expression to retrieve all features:

query.where = "1=1";

In practice, the number of features returned using this expression is
determined by the server setting known as MaxRecordCount, as shown
in the following screenshot. The default value is 1000. This limit can be
changed in the ArcGIS server settings.

When evaluating strings, do remember to enclose the string value within single quotes:

locQuery.where = "STATE_NAME = 'OK'";

The fields required in the output feature set can be passed as an array of field names
to the query object parameter called outFields:

query.outFields = ["FIRE_NAME", "STATE ", "LATITUDE", "LONGITUDE"];

We can indicate whether we need the geometric information of the features by passing
the value true or false to the query object parameter called returnGeometry:

query.returnGeometry = true;

The following screenshot shows how to construct a complete Query object that can
retrieve all the features from the feature layer set in the Query task object:

Writing Queries

[72]

Querying by spatial geometry
We can fetch features from a feature layer that has a spatial relationship with another
input geometry. We need to define what the spatial relationship between the input
geometry and the features to be retrieved are. When not defined, the default spatial
relationship becomes an intersection. This means that we are trying to fetch features
that intersect with an input geometry.

There are other types of spatial relationship provided by the Query object as constants:

• Query.SPATIAL_REL_CONTAINS: This retrieves all the features that are
entirely contained by the input geometry

• Query.SPATIAL_REL_INTERSECTS: This is the default spatial relationship
where all features that intersect with the input feature are fetched

• Query.SPATIAL_REL_TOUCHES: Here, all the features that touch the input
geometry are fetched

Normally, the input geometry maybe a selected feature from another feature, class,
or geometry from the draw object, or in our case, the current map's extent, as shown
in the following code snippet:

var query = new Query();
query.outFields = ["FIRE_NAME", "STATE", "LATITUDE", "LONGITUDE"];
query.returnGeometry = false;
query.where = "1=1";
query.geometry = map.extent;
query.returnGeometry = false;

Chapter 3

[73]

Executing the query
When we need to execute a query and retrieve the results, we need to invoke the
query execution methods in the Query task object. A Query task can be executed for
getting the actual features that satisfy the query. In some cases, we may only need the
count of features that satisfy the query or the spatial extent of the query result. There
are five types of query operation that can be performed on the query task object:

• Query for Features
• Query for Count
• Query for Extent
• Query for Object IDs
• Query for Relationship

All operations accepts the Query object as the first argument and return a deferred
object. Let's understand the use of the three most important query task operations:
Query for Count, Query for Extent and Query for Features.

Querying for Count
When we just want the count of the features that satisfy the query condition, we can
use this operation. The following screenshot shows the Query for Count operation on
a set of Query Features, given a Query object (with a Query Extent). The result will
be the count of features that satisfy the Query object:

Diagram illustrating Feature Querying by Count

Writing Queries

[74]

When we use the executeForCount() method of the query task, we still use the
query object as the method argument. This can be an attribute query, a spatial query,
or a combination of both. The main purpose of this method is to quickly assess the
number of features a query operation returns. Sometimes, this may be the only
information you need to display to the user.

Let's go ahead and create a UI to fetch the count of features that satisfy our query
condition. The following screenshot shows a bootstrap panel with a text box to input
the query text and the Get Count button. We have also provided another div, which
is hidden. The div contains a label that shows the count of features.

Chapter 3

[75]

Query execution should happen on clicking the Get Count button. When no input
is provided in the query text box, the query will evaluate to a truthy expression; that
is, the count of all the features within the map extent will be returned. The following
code accomplishes just that:

on(dom.byId("queryBtn"), "click", function () {
query.outFields = ["FIRE_NAME", "STATE", "LATITUDE", "LONGITUDE"];
query.returnGeometry = false;
query.where = dom.byId("queryTxt").value || "1=1";
query.geometry = map.extent;
varqueryCountDeferred = queryTask.executeForCount(query);
queryCountDeferred.then(function (count) {
dom.byId("FeatCountDiv").style.display = "block";
dom.byId("featCountLbl").innerHTML = "Result: " + count + " Features";
}, function (err) {
console.log(err);
});
});

In the preceding code snippet, on is the event handler module provided by dojo
(dojo/on). The byId() method of the dom module is used to get the reference of the
dom element with the ID—queryBtn. We are executing the preceding piece of code
on the click event of queryBtn. Notice that in the highlighted code, we handle the
situation when we receive no input from the query textbox. The executeForCount()
method returns a deferred. When the Deferred object is resolved, the .then()
method is used to trigger the callback. Within the .then method, we have defined
two functions; the first function is fired when the operation is successful, and the
second function is fired when the operation throws an error. We can also use the
execute-for-count-complete event on the queryTask object to retrieve the results.

The result object just returns the count number.

Refer to the following API documentation to get more information on the result
object returned by this method—https://developers.arcgis.com/javascript/
jsapi/querytask-amd.html#event-execute-for-count-complete.

https://developers.arcgis.com/javascript/jsapi/querytask-amd.html#event-execute-for-count-complete
https://developers.arcgis.com/javascript/jsapi/querytask-amd.html#event-execute-for-count-complete

Writing Queries

[76]

The result of our operation on the map will look like the following screenshot:

We have also introduced the Get Features button in the UI to retrieve the actual
feature records that satisfy the query condition and display them in an HTML table.
We will be executing the execute() method on the queryTask object to do this.

Query for Features
This method provides the maximum information about the features being queried.

Chapter 3

[77]

A figure illustrating the Query for Features operation is shown here:

The execute() method in the QueryTask object is used to Query for Features. This
method returns a Deferred object. This success event handler returns a Featureset
object. The Featureset object returns an array of features along with other ancillary
information regarding the geometry type and the spatial reference of the features.

The feature set contains the following:

• features: The graphic array. Each item in the graphic array has the following
properties:

 ° attributes: Name value pairs of fields and field values associated
with the graphic

 ° geometry: The geometry that defines the graphic

• geometryType: The geometry type of the features.
• spatialReference: The Spatial Reference of the features.

www.allitebooks.com

http://www.allitebooks.org

Writing Queries

[78]

In our application, we will try to call the execute method on the click of a button,
and we will construct an HTML string that will use the result called FeatureSet to
display it as an HTML table. The following screenshot demonstrates how to iterate
through the result feature set and create the HTML table string:

On clicking on the Get Features button, the Query object that was used to get the
count of the features is used to execute this query operation too. So ideally, every
time we change the query text or the map extent, the Get Features button and the
HTML query results will be hidden, and we need to click on the Get Count button
before clicking on the Get Features button. We have written a function that hides the
div that shows the feature count as well as clear the HTML table. The code is shown
as follows:

function clearQueryTbl() {
dom.byId("FeatCountDiv").style.display = "none";
dom.byId("QueryTbl").innerHTML = '';
}

The following screenshot illustrates our code in action on the map:

Chapter 3

[79]

Query for Extent
When we would like to know the extent of the features satisfying a query, we can use
this method. This will help us in many ways:

• We can get an idea about the spatial extent of the phenomena
• We can zoom the map to the extent of the features without actually receiving

the features

The following diagram illustrates the Query for the Extent operation:

Writing Queries

[80]

Building and executing IdentifyTask
IdentifyTask can operate on multiple layers in a map service and fetch information
from all the features intersecting with a given geometry. We will use IdentifyTask to
click on the map and get the value of the wildfire potential at the clicked location.
To execute IdentifyTask, we need to follow three steps:

1. Instantiate IdentifyTask.
2. Construct the Identify parameters.
3. Execute IdentifyTask.

Instantiating IdentifyTask
Instantiating IdentifyTask involves loading the required module and instantiating
it with a map service URL. The modules required for executing IdentifyTask are
the following:

• esri/tasks/IdentifyTask

• esri/tasks/IdentifyParameters

We will be operating IdentifyTask on the Wildfire Potential Map service. The map
service contains a single raster layer and pixel values representing wildfire potential
levels. The following snippet shows how IdentifyTask is instantiated:

varwildfirePotentialURL = "http://maps7.arcgisonline.com/arcgis/rest/
services/USDA_USFS_2014_Wildfire_Hazard_Potential/MapServer";
varidentifyTask = new IdentifyTask(wildfirePotentialURL);

Constructing the identify parameters object
Identify parameters provides a lot of properties to define the identify operation being
performed. While dealing with multiple layers, we can restrict the layers upon which
identify can be performed by using the layerIds property. The geometry property
lets us set the geometry that is used to select features in the map service upon which
identify operates. In our application, we are using the map click point as the input
geometry for the IdentifyParameter. When using a point geometry, we also need to
define the value for the tolerance property in the IdentifyParameters. The tolerance
value refers to the number of pixels around the input point geometry that can be
considered as part of the input geometry.

Chapter 3

[81]

In the following screenshot, we construct an identify parameter object, which is
wrapped around by the map click event handler. The mapPoint property of the
map click event handler provides the input geometry for the identify operation:

Executing IdentifyTask
The execute() method of IdentifyTask can be used to execute the task. The
execute() method returns the Deferred object, and the success callback of the
Deferred object returns the IdentifyResult array object.

An identify result represents a single identified feature from one of the layers in the
map service. The object has the following properties:

• displayFieldName: This is the name of the layer's primary display field
• feature: A feature object contains an array object and a geometry object
• layerId: This is the unique ID of the layer that contains the feature
• layerName: This is the name of the layer

Since the identify result is an array object, and we are only showing one value, we
will be taking only the first value from the identify result object (result[0]), as
shown in the following screenshot. The value that we need to show is in an attribute
field named CLASS_DESC. Since this value is prefixed by a class code separated from
the class description by a colon (:) (for example, 5: Very High), we will be separating
the string based on the colon and use the description part alone.

Writing Queries

[82]

The following screenshot shows the code that is used to perform the identify
operation as well as showing the identify result as a label for the map click location,
which is represented by a pointer cursor:

Building and executing a Find task
A Find task is pretty much an attribute-based search on all the fields in a map
service. Find task results are identical to IdentifyTask results with an extra value for
foundFieldName, which indicates the field name in which the search text was found.
Similar to Query task and IdentifyTask, the three steps to execute Find task are as
follows:

1. Instantiate a Find task.
2. Build Find parameters.
3. Executing a Find task.

Let's discuss these three steps one by one.

Chapter 3

[83]

Instantiating a Find task
To perform a Find task, the following modules need to be loaded:

• esri/tasks/FindTask

• esri/tasks/FindParameters

We need to provide the URL of a map service to instantiate a Find task.
The following snippet shows how we will do this in our application:

var find = new FindTask("http://livefeeds.arcgis.com/arcgis/rest/
services/LiveFeeds/Wildfire_Activity/MapServer");

Building the Find parameters
To construct the Find parameters, we need to use the esri/task/FindParameters
module. The Find parameter module has properties such as searchText, layerIds,
and seachFields, which let us define the Find task. The searchText property is the
text that needs to be searched. This needs to come from a UI textbox. layerIds lets us
define the layerIds upon which the Find task should operate. We can also restrict the
fields upon which the search is performed. The following screenshot shows how we
built the UI for the Find task and constructed the Find parameter object:

Writing Queries

[84]

Executing a Find task
The execute() method of Find task can be used to execute it. Calling this method
will return a Deferred object, which will return a Find results object in its success
callback function. We will try to build an HTML table, as we did for the Query
task result, and display it in FindTbl div. The following lines of code were used to
accomplish this:

var findTaskDeferred = find.execute(findParams);
findTaskDeferred.then(function (result) {
 vartblString = '<table class="table table-striped
 table-hover">';
 tblString += '<thead><tr><th>FIRE NAME</th>';
 tblString += '<th>STATE</th>';
 tblString += '<th>LOCATION</th>';
 array.forEach(result, function (searchitem) {
 tblString += '<tr><td>' + searchitem.feature.attributes["Fire
 Name"] + '</td>';
 tblString += '<td>' + searchitem.feature.attributes["State"] +
 '</td>';
 tblString += '<td> (' +
 searchitem.feature.attributes["Longitude"] + ',' +
 searchitem.feature.attributes["Latitude"] + ')</td></tr>';
 });
 tblString += '</tbody></table >';
 dom.byId("FindTbl").innerHTML = tblString;
}, function (err) {
 console.log(err);
});

In the following screenshot, we can see that the search text has fetched that from two
different fields, Fire Name and State when we inserted the search text W:

Chapter 3

[85]

Building a feature table
A feature table constructs a table, displays all the information of a given feature
layer, and places it in a given dom element. A feature table is an Esri widget can be
used by loading the esri/dijit/FeatureTable module. The module lets us choose
the fields to display. The following screenshot shows how a feature table should be
constructed and how it appears in the application:

Building popups
When users of your web application click on a feature of interest, they should be
shown a bundle of useful information about the feature that they clicked on. Popups
are the medium through which context-specific attribute information is shown to
users. Popups complement the map's spatial information.

The simplest popups just show all or selected attribute values. More advanced and
intuitive popups make use of charts and images in the pop-up window.

Writing Queries

[86]

The modules that help to create popups are esri/InfoTemplate, esri/dijit/
PopupTemplate, esri/dijit/InfoWindow, and esri/dijit/Popup.

esri/dijit/PopupTemplate extends esri/InfoTemplate, and esri/dijit/Popup
extends esri/dijit/InfoWindow. So, let's deal with InfoTemplate briefly and
move on to the Popup templates.

Building InfoTemplates
An InfoTemplate object can be created using placeholders. A placeholder is usually
the attribute field name, starting off with a dollar ($) sign and surrounded by curly
braces ({}), for example, ${Fieldname}.

When we need to retrieve all the fields provided by the feature of interest, the
fieldname can be substituted by *, for example, ${*}.

The feature layers and Graphics object have the InfoTemplate property.
infotemplate created could be set to these layers. The InfoTemplate constructor
takes two arguments, title and content:

Modules Values
Module name esri/InfoTemplate

Parent object Feature layer, Graphic object, dynamic layer, and the
Info window of the map

Constructor new InfoTemplate (title, content)

The following screenshot creates infotemplate for the Active wildfire feature
layer, and it displays fields such as state name, fire name, and the areal extent of the
wildfire feature being clicked in a popup. The title of Infotemplate is also created
by the placeholders:

Chapter 3

[87]

The code listings for this chapter can be found in the code folder named
B04959_03_CODE.

Summary
This chapter explained the different methods for searching and querying data. We
built an application that could perform a Query task, a Find task, as well as Identify
task. We also discovered the utility of the feature table called dijit along with
Infotemplates. In the next chapter, we will see how to organize all the code into
modularized widgets and use it in our application. We will also be discussing how
to construct spatial queries that involve using the draw toolbar, and we will create
input geometries that are defined by the user of the app.

[89]

Building Custom Widgets
The main objective of this chapter is to develop a custom widget that can perform
a spatial query and display the results in a simple HTML table. In the process of
building the custom widget, you will learn the following topics:

• How to create a simple class using dojo
• How to configure dojo globally
• What is the lifecycle of a dojo widget
• How to create a template widget
• How to provide support for internationalization
• How to organize the dojo code
• How the draw toolbar works
• How to build the custom widget using all the features discussed in

the chapter

Creating a simple class
Dojo classes provide a way to inherit and extend other modules to use templating
as well as create widgets. Classes in dojo reside within a module and the module
returns the class declaration. To declare classes within a module, we need to load a
module named dojo/_base/declare, which provides support for declaring classes.

Building Custom Widgets

[90]

The following screenshot shows a simple dojo class declaration:

In this screenshot, declare is the callback function decoration for the dojo/_base/
declare module. The class declaration accepts three arguments: classname, superclass,
and properties.

The classname argument is optional. When a classname string is provided, the
declaration is called a named class. When it is omitted, as in our case, it is called an
anonymous class. We will stick with using anonymous classes for a while as named
classes must be used only under particular conditions.

The superclass is the module or an array of modules that we would like to extend.
If the superclass argument is null (as in our snippet), it means that our class
declaration itself is a superclass.

The third argument in the class declaration is the class properties. We can define the
class constructor, other class properties, and class methods here.

Configuring dojo
Dojo has a global object named dojoConfig which holds all the configuration
parameters. We can modify the dojoConfig object to configure options and default
behavior for the various aspects of the dojo toolkit.

The dojoConfig object lets us define the location for the custom modules defined in
our web application and tags it with a package name. So, when we need to load these
custom modules, we can refer to the folder location using the package name instead.

Chapter 4

[91]

The dojoConfig object must be declared before referencing the
Esri JS API.

There are other configuration options such as async, parseOnLoad, waitSeconds,
and cacheBust. For detailed information on the dojoConfig topic, refer to the
dojo toolkit documentation at https://dojotoolkit.org/documentation/
tutorials/1.10/dojo_config/.

• The async option defines whether the dojo core should be loaded
asynchronously. The recommended value is true.

• The locale option lets us override the default language provided to dojo
by the browser. This will help us develop the app for a different target
locale and test our widgets for the internationalization support using dojo's
i18n module.

• The cacheBust option is a very useful option, which when configured to
true, appends the time string to each URL from the module, thus avoiding
module caching.

https://dojotoolkit.org/documentation/tutorials/1.10/dojo_config/
https://dojotoolkit.org/documentation/tutorials/1.10/dojo_config/

Building Custom Widgets

[92]

Let's see how these options work out for us:

<script>
 var dojoConfig = {
 has: {
 "dojo-debug-messages": true
 },
 parseOnLoad: false,
 locale: 'en-us',
 async: true,
 cacheBust: true,
 packages: [
 {
 name: "widgets",
 location: "/js/widgets"
 },
 {
 name: "utils",
 location: "/js/utils"
 }
]
 };
 </script>
 <script src="//js.arcgis.com/3.14/"></script>
 <script src="js/app.js"></script>

Effect of configuring cacheBust to True in the dojoConfig object

Chapter 4

[93]

Developing a standalone widget
Developing standalone widgets is the main purpose of writing classes in dojo.
Dojo exclusively provides us a module for supporting the development of widgets:
dijit/_WidgetBase. We also need other ancillary modules such as dijit
templating modules, the dojo parse, and dojo internationalization modules to
develop a full-fledged widget in a web application.

The key aspect associated with the WidgetBase module is the concept of the life cycle
of a widget. The widget life cycle gives us methods to work with during the different
stages of the widget, that is, from the initialization of the widget, to the stage when
its dom nodes are fully loaded and utilizable by the application, until the destruction
of the widget.

This module should be passed in as a superclass array in the class declaration.
Here is the snippet for a basic widget:

define([
 //class
 "dojo/_base/declare",

 //widgit class
 "dijit/_WidgetBase",

 "dojo/domReady!"
], function (
 declare,
 _WidgetBase
) {
 return declare([_WidgetBase], {
/*Class declaration inherits "dijit/_WidgetBase" module*/

 constructor: function () {}
 });
});

Building Custom Widgets

[94]

The dijit life cycle
The _WidgetBase option provides several methods that the program flow will
execute in a particular sequence. Some of the most important methods executed in
order are shown in the following infographic:

The widget lifecycle infographic

The preceding diagram can be described as follows:

• constructor: This is the first method called when the widget is instantiated.
The constructor function can used as a special property named domNode.
This can contain the value of the reference to domNode where the widget
will be placed. The first argument for the constructor function will be an
options object to which we can send any object value we would like to send
to the widget:

constructor: function (options, srcRefNode) {
 this.domNode = srcRefNode;
 }

• postCreate: This method is executed just after all the properties of the widget
are executed. All the event handlers for the widget will be defined here. A
particular line of code should be added in the postCreate() method so that
all the definitions made in WidgetBase will be inherited properly. In the
following code snippet, the particular line of code has been highlighted:

postCreate: function(){
 this.inherited(arguments);
 }

• postCreate(): This method is also the right place to host the special this.
own() method. The event handler defined within this method will release
event handles when the instance of the widget is destroyed.

• Startup: This method is fired after the dom nodes are constructed. So, any
modification to the dom node will be done here. This is the method through
which the widget will be called externally for execution.

Chapter 4

[95]

Creating templated widgets
Templated widgets are ones that allow the developer to load an HTML file as a
template string at runtime. All the dom nodes specific to the widget should be
defined in this HTML template. Dojo provides two more modules to make our
experience of using templates easier and more efficient. These modules are named
dijit/_TemplatedMixin and dijit/_WidgetsInTemplateMixin. Apart from these
two modules, we also need to load a dojo plugin named dojo/text!, which actually
loads the HTML page as a template string. The way the plugin works is that the
HTML file path should be appended after the exclamation (!) in dojo/text!:

 "dojo/text!app_widgets/widgettemplate/template/_widget.html"

The class properties should include a specific property named templateString.
The value of the this property will be the callback function decoration used to
represent the dojo/text!<filename.html> plugin.

Let's see a basic code snippet that covers all the topics discussed previously and tries
to develop a template widget:

Building Custom Widgets

[96]

Our template file is very innocuous, containing a simple h1 header tag. It is this
HTML string that the templateString property holds.

The contents of the app_widgets/widgettemplate/template/_widget.html file
are as follows:

<h1>This is Templated widget</h1>

Now, let's see how to instantiate this widget. As mentioned earlier, we need to call
the startup method in the widget to execute this widget. We will call this from
another JavaScript file, which will pass a reference to the dom node where our
widget will be placed:

Contents of /js/widgets/app.js

This file will be called from the index.html file, which has the dom element named
templatedWidgetDiv:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
 <title></title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">
 <link rel="stylesheet" type="text/css" href="css/style.css">

</head>

<body>
 <h1>Using Dojo Classes</h1>
 <div id="templatedWidgetDiv"/>
 <script>
 /* dojo config */

Chapter 4

[97]

 var dojoConfig = {
 has: {
 "dojo-debug-messages": true
 },
 parseOnLoad: false,
 locale: 'en-us',
 async: true,
 cacheBust: true,
 packages: [
 {
 name: "app_widgets",
 location: "/js/widgets"
 },
 {
 name: "utils",
 location: "/js/utils"
 }
]
 };
 </script>
 <!--Call the esri JS API library-->
 <script src="//js.arcgis.com/3.14/"></script>
 <!--Call the /js/utils/app.js file-->
 <script src="js/app.js"></script>
</body>

</html>

Widget folder structure
It is now time to discuss the widget folder structure. When developing large projects,
the folder structure is an important part of the project-building exercise that we
need to define at the initial stage of the project itself. We will be providing general
guidelines on how to decide upon the folder structure. This can be modified to suit
your preferences and project needs.

Building Custom Widgets

[98]

Guidelines for creating project folders
The guideline for creating project folders are describe in the following diagram:

Let's discuss each of these in a detailed manner.

Creating a single point of entry
We need not crowd the index page with all widget instantiation. It's better if we
can define a module that can serve as the single point of entry to instantiate all the
widgets we need.

Our HTML page will only contain a reference to the JS API and this single point of
entry JavaScript module:

 <!--Call the esri JS API library-->
 <script src="//js.arcgis.com/3.15/"></script>
 <!--Call the javaScript file which serves as the single point of
entry-->
 <script src="js/app.js"></script>

Chapter 4

[99]

The contents of the file serving as the single-point-of-entry are as follows:

Defining dojoConfig
We discussed this earlier. The dojoConfig object will be declared in the index page
itself. This is a global object whose values can be accessed anywhere in the program
by loading the module named dojo/_base/config.

Modularizing the code
This is the core tenet of the AMD pattern of coding. The concept of modularizing
means that we should decouple any code that is functionally different. As we
know, the dojo modules return a publicly accessible object. This object can be a class
declaration, as we saw earlier. A different use of the module is that this can be used
as a configuration file for the application.

A sample config file that has been created off a dojo module has been provided for
your reference:

define(function () {
 /* Private variables*/
 var baseMapUrl = "http://maps.ngdc.noaa.gov/arcgis/rest/services/
web_mercator/etopo1_hillshade/MapServer";
 var NOAAMapService = "http://maps.ngdc.noaa.gov/arcgis/rest/
services/web_mercator/hazards/MapServer";
 var earthquakeLayerId = 5;
 var volcanoLayerId = 6;

Building Custom Widgets

[100]

 /*publicly accessible object returned by the COnfig module */
 return {
 app: {
 currentVersion: "1.0.0"
 },

 // valid themes: "claro", "nihilo", "soria", "tundra",
"bootstrap", "metro"
 theme: "bootstrap",

 // url to your proxy page, must be on same machine hosting you
app. See proxy folder for readme.
 proxy: {
 url: "proxy/proxy.ashx",
 alwaysUseProxy: false,
 proxyRuleUrls: [NOAAMapService]
 },

 map: {

 // basemap: valid options: "streets", "satellite",
"hybrid", "topo", "gray", "oceans", "national-geographic", "osm"
 defaultBasemap: "streets",
 visibleLayerId: [this.earthquakeLayerId, this.
volcanoLayerId];

 earthQuakeLayerURL: this.NOAAMapService + "/" + this.
earthquakeLayerId,
 volcanoLayerURL: this.NOAAMapService + "/" + this.
volcanoLayerId
 }
 }
});

Providing support for internationalization
Customizing the text that is shown in the app according to the locale of the user
is known as internationalization. Dojo provides a plugin named dojo/i18n! to
provide this support. When we mention plugin, it means that it expects a file path
as an argument after the exclamation mark (!). The file path refers to a JavaScript
module, which mentions an object named root and lists all the supported locales.

Chapter 4

[101]

For example, dojo/i18n!app_widgets/widget_i18n/nls/strings refers to
the strings module defined within the app_widgets/widget_i18n/nls folder
(remember that app_widgets is the name package referring to the /js/widgets
location).

The current locale is determined by the user's browser. A locale in dojo is usually a
five-letter string; the first two characters represent the language, the third character is
a hyphen, and the last two characters represent the country.

For example, take a look at the following:

• The en-us value represents English as the language and the US as the country
• The ja-jp value represents Japanese as the language and Japan as the country
• The zh-cn value represents Simplified Chinese as the language and China as

the country
• The zh-tw value represents Simplified Chinese as the language and Taiwan

as the country

Steps to provide internationalization support
The steps to provide internationalization support are as follows:

1. Create a folder named nls in the folder where the widget resides.
2. Define a module that has an object named root and lists all the locales

supported below the root object. For example, take a look at the following:
"zh-cn" : true,
"de-at" : true

3. The root object will contain all the string variables for which language
support is provided, for example, widgetTitle and description.

Building Custom Widgets

[102]

4. Create a folder for each locale defined, such as zh-cn and de-at.
5. Create a module with the same name as that of the root module in each of

the language folders.
6. The new modules will contain all the properties of the root object. The

value of the properties will contain the language-specific translation of the
corresponding values.

7. Load the module named dojo/i18n! appended with the path to the root
module.

8. In the declare constructor, assign the callback function declaration of the
i18n module to the property named this.nls:

define([
 //class
 "dojo/_base/declare",
 "dojo/_base/lang",

 //widgit class
 "dijit/_WidgetBase",

 //templated widgit
 "dijit/_TemplatedMixin",

 // localization
 "dojo/i18n!app_widgets/widget_i18n/nls/strings",

 //loading template file
 "dojo/text!app_widgets/widget_i18n/template/_widget.html",

 "dojo/domReady!"
], function (
 declare, lang,
 _WidgetBase,
 _TemplatedMixin,
 nls,
 dijitTemplate
) {
 return declare([_WidgetBase, _TemplatedMixin], {
 //assigning html template to template string

Chapter 4

[103]

 templateString: dijitTemplate,
 constructor: function (options, srcRefNode) {
 console.log('constructor called');
 // widget node
 this.domNode = srcRefNode;
 this.nls = nls;
 },
 // start widget. called by user
 startup: function () {
 console.log('startup called');
 }
 });
});

An overview of the widget folder structure
Let's review the widget folder structure once again so that we can use this as a
template before starting any project:

1. We need a main file (say index.html). The main file should have the
dojoConfig object, a reference to all the CSS used in the app, and the Esri
CSS. It should also have a reference to the API and a reference to the module,
which serves as the point of entry (app.js).

2. All widgets go into the js folder.
3. All the site-wide CSS and images go into the CSS and image folders in the

application root directory, respectively.
4. All the widgets will be placed within the widgets folder inside the js folder.

Each widget can be placed within a separate folder within the widgets
folder too.

5. Templates will be placed inside the template folder within the widget folder.

Building Custom Widgets

[104]

6. Place the resources needed for internationalization within a folder named nls:

Building a custom widget
We will extend the app that we developed in the last chapter with advanced
functionalities and modularized code refactoring. Let's create a custom widget in the
app that does the following:

• Allows the user to draw a polygon on the map. The polygon will be
symbolized by a semi-transparent red fill and a dashed yellow outline.

• The polygon should fetch all the major wildfire events within the boundary
of the polygon.

• This shall be shown as a graphic and the data should be in a grid.
• Internationalization support must be provided.

Chapter 4

[105]

Modules required for the widget
Let's list the modules required to define classes and their corresponding intended
callback function decoration.

Modules for the class declaration and OOPS

Modules Values
dojo/_base/declare declare

dijit/_WidgetBase _WidgetBase

dojo/_base/lang lang

Modules for using HTML templates

Modules Values
dijit/_TemplatedMixin _TemplatedMixin

dojo/text! dijitTemplate

Module for using event

Modules Values
dojo/on on

dijit/a11yclick a11yclick

Modules for manipulating dom elements and their
styles

Modules Values
dojo/dom-style domStyle

dojo/dom-class domClass

dojo/domReady!

Building Custom Widgets

[106]

Modules for using the draw toolbar and displaying
graphics

Modules Values
esri/toolbars/draw Draw

esri/symbols/SimpleFillSymbol SimpleFillSymbol

esri/symbols/SimpleLineSymbol SimpleLineSymbol

esri/graphic Graphic

dojo/_base/Color Color

Modules for querying data

Modules Values
esri/tasks/query Query

esri/tasks/QueryTask QueryTask

Modules for internationalization support

Modules Values
dojo/i18n! nls

Using the draw toolbar
The draw toolbar enables us to draw graphics on the map. This toolbar has events
associated with it. When a draw operation is completed, it returns the object drawn on
the map as geometry. Follow these steps to create a graphic using the draw toolbar:

Chapter 4

[107]

Initiating the draw toolbar
The draw toolbar is provided by the module called esri/toolbars/draw. The draw
toolbar accepts the map object as an argument. Instantiate the draw toolbar within
the postCreate function. The draw toolbar also accepts an additional optional
argument named options. One of the properties in the options object is named
showTooltips. This can be set to true so that we can see a tooltip associated while
drawing. The text in the tooltip can be customized. Otherwise, a default tooltip
associated with draw geometry is displayed:

return declare([_WidgetBase, _TemplatedMixin], {
 //assigning html template to template string
 templateString: dijitTemplate,
 isDrawActive: false,
 map: null,
 tbDraw: null,
 constructor: function (options, srcRefNode) {
 this.map = options.map;
 },
 startup: function () {},
 postCreate: function () {
 this.inherited(arguments);
 this.tbDraw = new Draw(this.map, {showTooltips : true});
 }
...

Building Custom Widgets

[108]

The draw toolbar can be activated on the click or touch event (in case of smart
phones or tablets) of a button, which is intended to indicate the start of a draw
event. Dojo provides a module that takes care of touch as well as click events.
The module is named dijit/a11yclick.

To activate the draw toolbar, we need to provide the type of symbol to draw. The
draw toolbar provides a list of constants, which corresponds to the type of the draw
symbol. These constants are POINT, POLYGON, LINE, POLYLINE, FREEHAND_POLYGON,
FREEHAND_POLYLINE, MULTI_POINT, RECTANGLE, TRIANGLE, CIRCLE, ELLIPSE, ARROW,
UP_ARROW, DOWN_ARROW, LEFT_ARROW, and RIGHT_ARROW.

While activating the draw toolbar these constants must be used to define the type
of the draw operation required. Our objective is to draw a polygon at the click of a
draw button. The code is shown in the following screenshot:

Chapter 4

[109]

The draw operation
Once the draw toolbar is activated, the draw operation begins. For point geometry,
the draw operation is just a single click. For a polyline and a polygon, the single
click adds a vertex to the polyline, and a double-click ends the sketch. For a freehand
polyline or polygon, the click and drag operation draw the geometry and a
mouse-up operation ends the drawing.

The draw-end event handler
When the draw operation is complete, we need an event handler to do something
with the shape that was drawn by the draw toolbar. The API provides a draw-end
event, which is fired once the draw operation is complete. This event handler must
be connected to the draw toolbar. This event handler will be defined within the
this.own() function inside the postCreate() method of the widget. The event
result can be passed to a named or anonymous function:

postCreate: function () {
...
 this.tbDraw.on("draw-end", lang.hitch(this,
 this.querybyGeometry));
 },
...
querybyGeometry: function (evt) {
 this.isBusy(true);
 //Get the Drawn geometry
 var geometryInput = evt.geometry;
...
}

Symbolizing the drawn shape
In the draw-end event callback function, we will get the geometry of the drawn
shape as the result object. To add this geometry back to the map, we need to
symbolize it. A symbol is associated with the geometry that it symbolizes. Also, the
styling of the symbol is defined by the colors or pictures used to fill up the symbol
and its size. Just to symbolize a polygon, we need to use the SimpleFillSymbol and
SimpleLineSymbol modules. We may also need the esri/color module to define
the fill colors.

Building Custom Widgets

[110]

Let's review a snippet to understand this better. This is a simple snippet used to
construct a symbol for a polygon with a semi-transparent solid red color fill and a
yellow dash-dot line:

In the preceding screenshot, SimpleFillSymbol.STYLE_SOLID and
SimpleLineSymbol.STYLE_DASHDOT are the constants provided by the
SimpleFIllSymbol and SimpleLineSymbol modules respectively. These
constants are used to style the polygon and the line.

Two colors are defined in the construction of the symbol: one for filling up the
polygon and the other for coloring the outline. A color can be defined by four
components. They are as follows:

• Red
• Green
• Blue
• Opacity

Chapter 4

[111]

The red, green, and blue components takes values from 0 to 255 and the opacity
takes a value from 0 to 1. A combination of red, green, and blue components can be
used to produce any color according to the RGB color theory. So, to create a yellow
color, we use the maximum of red component (255) and the maximum of green
component (255); we don't want the blue component to contribute to our color, so
we use 0. An opacity value of 0 means 100% transparency, and an opacity value of
1 means 100% opaqueness. We have used 0.2 for the fill color. This means that we
need our polygon to be 20% opaque, or 80% transparent. The default value for this
component is 1.

A symbol is just a generic object. This means any polygon geometry can use the
symbol to render itself. Now, we need a container object to display the drawn
geometry with the previously defined symbol on the map. A graphic object provided
by the esri/Graphic module acts as a container object, which can accept a geometry
and symbol. The graphic object can be added to the map's graphic layer.

A graphic layer is always present in the map object, which
can be accessed by using the graphics property of the map
(this.map.graphics).

Building Custom Widgets

[112]

Executing the query
The widget's main function is to define and execute a query based on the user's draw
input. The following image will provide a general way for us to construct
a querytask and handle the execution:

Initializing the QueryTask and Query object
We will be working with Active Wildfire feature layers that we used in the previous
chapter. When providing the input geometry, we will be using the geometry that we
got from the draw-end event instead of using the map's current extent geometry, like
we did in the previous chapter. We will be fetching all the features within the draw
geometry, hence we will be using the truthy expression (1=1) as the where clause.
The following lines of code explain how the query object is constructed and how the
queryTask is executed and stored as a deferred variable:

var queryTask = new QueryTask(this.wildFireActivityURL);
var query = new Query();
query.where = "1=1";
query.geometry = geometryInput;
query.returnGeometry = true;
query.outFields = ["FIRE_NAME", "AREA_", "AREA_MEAS"];
var queryDeferred = queryTask.execute(query);

Chapter 4

[113]

Query event handlers
The execute method on the QueryTask object returns a deferred variable. This
means that we should use the .then() operation to elicit the task execution result.
The success handler returns a featureset. A featureset is an array of features.
A feature contains a graphic as well as some attributes.

Now, there are two operations that we needs to perform to display the query results:

1. Highlight the query result by symbolizing it appropriately and adding it as
appropriate graphics on the map.

2. Show the details of Active Wildfires satisfying the query conditions in
a simple HTML table. The HTML table should come from an HTML
template file.

Defining the HTML template
We need an HTML template to render the widget. This widget will have the
following components:

• A button whose click event will toggle the draw event
• A button to clear the draw graphic, as well as the result graphic and the

HTML table
• A dom element to hold onto the HTML table being constructed

Building Custom Widgets

[114]

The following screenshot explains how the HTML template is constructed:

This HTML file should be loaded as a plugin using the dojo/text! plugin. Once
this is done, all the dom elements referred by dojo-attach-point can be accessed
in the code using this notation. Also, functions to handle the click events for the
toggleDraw button and the clear button should be implemented. The following
screenshot shows a barebones implementation of this:

Chapter 4

[115]

Symbolizing query results
The features returned by the query are wildfire locations, all of which have a
point geometry. We can use SimpleMarkerSymbol or PictureMarkerSymbol
to symbolize features returned by the query. The PictureMarker symbol accepts
the following properties:

• angle

• xoffset

• yoffset

• type

• url

• contentType

• width

• height

Building Custom Widgets

[116]

We will use a PNG resource, which is part of the application to define
PictureMarkerSymbol:

 var symbolSelected = new PictureMarkerSymbol({
 "angle": 0,
 "xoffset": 0,
 "yoffset": 0,
 "type": "esriPMS",
 "url": "images/fire_sel.png",
 "contentType": "image/png",
 "width": 24,
 "height": 24
});

Adding the graphics to the map
All the query result features should be converted into a graphic with the
PictureMarkerSymbol that we just defined. Additionally, we will also be adding an
infotemplate to each graphic. The infotemplate content will be taken from query
result attributes. The HTML table can also be constructed by iterating through the
features returned by the query result object. The following screenshot illustrates the
entire process clearly:

Chapter 4

[117]

The complete code listing can be found in the folder called B049549_04_CODE02.

Building Custom Widgets

[118]

Summary
In this chapter, you learned how to create classes and custom widgets in dojo, and
you also learned about the life cycle of a dojo widget. Then, we walked through the
guidelines for creating a folder structure for any dojo-related project. We also looked
at how we can provide support for different languages using the internationalization
feature provide by the dojo module. Finally, we created a custom widget that uses
a draw tool to accept a user-drawn polygon and uses it to query a feature layer. We
showed the results in an HTML table as well as on the map. In the following chapters,
we will be dealing with how to symbolize the graphics better and intuitively using a
technique known as rendering. Rendering is a great visualization technique that lets
us define rules to symbolize features differently, based on the value of a particular
attribute in the feature. In further chapters, we will be extending the visualization
techniques to cover non-spatial representations of data such as charts and graphs.

[119]

Working with Renderers
Renderers provide us with a medium to visualize data intuitively using different
symbols and colors. More than a data visualization technique, renderers are
increasingly considered as a data analytic tool. The correct use of renderers will help
us see spatial patterns in the data and display the geographic distribution of various
phenomena. An understanding of basic cartography, color theory, and even statistics
will help us create better renderers and eventually better insights into the available
data. The following topics will be covered in this chapter:

• Learning about different symbols and colors provided by the API
• Learning how to create a SimpleRenderer method
• Learning how to create a UniqueValueRenderer method efficiently
• Learning when to use ClassBreakRenderer and HeatmapRenderers
• Discussing scenarios where ScaleDependantRenderers can be useful
• An introduction to smart mapping

Working with colors
The Esri module dealing with colors is called esri/Color. Before dealing with the
color module, let's have a fundamental understanding of colors.

The RGB color model
Any color in the visible spectrum (the range of colors between Violet to Red), can
be represented using a combination of Red (R), Green (G) or Blue (B) colors. This is
known as the RGB color model. There are other color models too, but let's stick with
the RGB color model for now. And each color R, G, or B can be expressed in a scale
from 0 to 255.

Working with Renderers

[120]

The following picture shows the relationship between the three primary colors
(R, G, and B) and their additive effect:

When the three colors (R, G, and B) are mixed in equal proportion, the resultant color
always lies somewhere in the grey scale. The following points are worth noting:

• For example, if the level of R = 0, G = 0, and B = 0, the mixture produces
black.

• If R = 255, G = 255, and B = 255, the mixture produces white.
• Any other number values, when mixed equally, produce a shade of grey.

For example, if R = 125, G = 125, and B = 125, it will be grey.

• The color model also shows that when Red and Green are mixed together
(R = 255, G = 255, and B = 0), we get yellow.

• When Red and Blue alone are mixed (R=255, G= 0, and B=255), we get
Magenta.

• When Green and Blue are mixed, we get Cyan (R=0, G=255, and B= 255).

The Esri color module
To define a color using the RGB color model, the following format can be used:

var r = g = b = 125;
var color = new Color([r, g, b]);

Chapter 5

[121]

In the preceding snippet, color is an instance of the esri/Color module and r, g,
and b are values for Red, Green, and Blue respectively. The colors should always be
ordered as (r, g, and b) and added as an array object. As expected, the color variable
stores a grey color. If we need to add transparency to the color, we can define the
transparency value known as alpha, which is an integer between 0 and 1.0, where
0 represents full transparency and 1.0 represents no transparency. The alpha value
will be added as the fourth value in the array:

define(["esri/Color"], function(Color){
var r = g = b = 100;
var alpha = 0.5; // 50 % transparency
var color2 = new Color ([r, g, b, alpha]);
})

The RGB values can be represented as a hexadecimal number. For example, [255,
0, 0] can be represented as #FF0000. The API also allows us to represent the color
by its English named string, for example, blue:

define(["esri/Color"], function(Color){
var colorString = "red";
var colorHex = "#FF0000";
var color1 = new Color(colorString);
var color2 = new Color(colorHex);

Working with symbols
Symbols are based on the geometry that they try to symbolize. Thus, the symbols
used to represent a point, line, and polygon are different from each other. Apart
from the geometry, the three important parameters required to define a symbol are
the following:

• Style
• Color
• Dimension (or size)

The style is usually provided as a module constant. For example,
SimpleLineSymbol.STYLE_DASHDOT, SimpleFillSymbol.STYLE_SOLID,
and SimpleMarkerSymbol.STYLE_CIRCLE where SimpleLineSymbol,
SimpleFillSymbol, and SimpleMarkerSymbol are the modules used to symbolize
the line, polygon, and point features respectively:

• The colors of these symbols can be defined by the color modules that we
discussed in earlier sections.

Working with Renderers

[122]

• The dimension or size means different things based on the geometry type.
For example, for a line symbol, we use the parameter known as width to
refer to the line thickness, whereas for a point, we use the parameter named
size to define its dimension.

Let's discuss about the three geometry-based symbols first, and then we will deal
with the non-geometry-based and special symbols.

The geometry-based symbols are as follows:

• SimpleLineSymbol: This is used to symbolize the line geometry
• SimpleMarkerSymbol: This is used to symbolize the point geometry
• SimpelFillSymbol: This is used to symbolize the polygon geometry

SimpleLineSymbol
The line symbol constructor is the simplest, because it can be defined with just three
parameters namely style, color, and width.

Name Value
Module name esri/symbols/SimpleLineSymbol

Constructor new SimpleLineSymbol(style,
color, and width)

The style is a module constant. The following styles are provided by the module:

• STYLE_DASH (to create lines made of dashes)
• STYLE_DASHDOT (to create lines made of a dash-dot pattern)
• STYLE_DOT (to create lines made of dots)

The module provides other style constants such as STYLE_LONGDASH, STYLE_
LONGDASHDOT, STYLE_NULL, STYLE_SHORTDASH, STYLE_SHORTDASHDOT, STYLE_
SHORTDASHDOTDOT, STYLE_SHORTDOT, and STYLE_SOLID.

STYLE_SOLID is the default style, which provides an uninterrupted solid line.

We can set the color of the line using the simpleLineSymbol.setColor(color)
method; here, color is Esri Color object, and simpleLineSymbol is an
instance of SimpleLineSymbol object. The style constant can be set using the
setStyle(style) method. SimpleLineSymbol.toJson() is an important method
that converts a SimpleLineSymbol to an ArcGIS Server JSON representation.

Chapter 5

[123]

The following code snippet will create a solid red line:

var simpleLineSymbol = new SimpleLineSymbol();
var color = new Color("red");
simpleLineSymbol.setColor(color);
simpleLineSymbol.setWidth(2);

SimpleMarkerSymbol
The SimpleMarkerSymbol method is used to symbolize a point. Symbolizing a point
geometry has an extra layer of complexity than symbolizing a line in that it accepts
an outline parameter which in itself is a SimpleLineSymbol object.

Name Value
Module name esri/symbols/SimpleMarkerSymbol

Constructor: new SimpleMarkerSymbol(style, size,
outline, color)

The following style constants are provided by the module:

• STYLE_CIRCLE

• STYLE_DIAMOND

• STYLE_SQUARE

Working with Renderers

[124]

The setAngle(angle) method rotates the symbol clockwise around its center by a
specified angle. The setColor(color) method sets the symbol color. setOffset
(x and y) sets the x and y offsets of a marker in screen units. setOutline(outline)
sets the outline of the marker symbol. setSize(size) lets us set the size of a marker
in pixels. setStyle(style) sets the marker symbol style. toJson() converts objects
into their ArcGIS Server JSON representation.

ArcGIS symbol playground
If selecting the appropriate color and style and other properties for a symbol seemed
like a difficult choice, the following web page tries to help you out by providing a
sandbox to generate any type of symbol and the code required to define a similar
symbol in your code. The webpage is at http://developers.arcgis.com/
javascript/samples/playground/index.html.

Navigating to this URL will land you in a page similar to the following screenshot.
We can select almost any type of symbol:

http://developers.arcgis.com/javascript/samples/playground/index.html
http://developers.arcgis.com/javascript/samples/playground/index.html

Chapter 5

[125]

Selecting one of them will navigate you to another page where you can select the
properties and generate the symbology code.

Well, we easily generated the code required to generate a semi-transparent,
red-colored, diamond-shaped SimpleMarkerSymbol (with no outline):

// Modules required:
// esri/symbols/SimpleMarkerSymbol
// esri/symbols/SimpleLineSymbol

var marker = new SimpleMarkerSymbol();
marker.setStyle(SimpleMarkerSymbol.STYLE_DIAMOND);
marker.setColor(new Color([255, 0, 0, 0.55]));
marker.setSize(25);

Working with Renderers

[126]

SimpleFillSymbol
The SimpleFillSymbol module helps us generate symbology for polygons.

• Module name: esri/symbols/SimpleFillSymbol
• new SimpleFillSymbol(style, outline, color)

Some of the module constants for the STYLE parameter are given here:

• STYLE_BACKWARD_DIAGONAL

• STYLE_CROSS

• STYLE_NULL

SimpleFillSymbol.STYLE_SOLID is the default styling.

PictureMarkerSymbol
When we need to picture an icon to symbolize a point geometry, we can use this
module. Instead of providing the color information as a parameter, we need an
image URL to display a picture as a marker symbol.

Name Value
Module esri/symbols/PictureMarkerSymbol

Constructor new PictureMarkerSymbol(url, width, height)

Searching for the appropriate PictureMarkerSymbol is aided by a web page found
at http://developers.arcgis.com/javascript/samples/portal_symbols/
index.html.

Navigating to this URL will open a page as shown next. When a picture icon
is selected, a code is generated below. This code can be reused to recreate
PictureMarkerSymbology as the one selected in the web page.

The generated code is a JSON representation of PictureMarkerSymbol. The JSON
object provides the following properties:

• angle

• xoffset

• yoffset

• type

• url

• contentType

http://developers.arcgis.com/javascript/samples/portal_symbols/index.html
http://developers.arcgis.com/javascript/samples/portal_symbols/index.html

Chapter 5

[127]

• width

• height

• imageData

Among these, imageData and url are redundant, so we can avoid the imageData
property, if we can use the URL property. The imageData property is just the Base64
representation of the image. To avoid this, we can uncheck a box at the top-right
corner of the web page, which reads something like Enable Base64 encoding.

Also, if the values for angle, xoffset, and yoffset are 0, we can omit these too.

Working with Renderers

[128]

Using the URL of the icon provided by this web page and in ArcGIS Symbol
Playground will enable us to further customize PictureMarkerSymbol.

To customize PictureMakerSymbol use the following:

// Modules required:
// esri/symbols/PictureMarkerSymbol

var marker = new PictureMarkerSymbol();
marker.setHeight(64);
marker.setWidth(64);
marker.setUrl("http://static.arcgis.com/images/Symbols/Basic/
RedStickpin.png");

Chapter 5

[129]

PictureFillSymbol
PictureFillSymbol goes a step further and lets us fill a polygon geometry with
an image.

TextSymbol
Text symbols can be generated in lieu of labels. Text symbols lack geometry, so it
needs to be attached to geometry.

Working with Renderers

[130]

The following snippet generated from ArcGIS Symbol Playground demonstrates the
components of generating TextSymbol:

// Modules required:
// esri/symbols/TextSymbol
// esri/symbols/Font

var font = new Font();
font.setWeight(Font.WEIGHT_BOLD);
font.setSize(65);
var textSym = new TextSymbol();
textSym.setFont(font);
textSym.setColor(new Color([255, 0, 0, 1]));
textSym.setText("Sample Text");

Working with renderers
When an application uses layers that are referenced from a web map or a GIS service,
the web map or service itself provides default drawing properties that determine
how the layer will be drawn. A developer can choose to override this behavior
by working with colors, symbols, and renderers to change and enhance how the
features are displayed.

You can use the setSymbol() method to apply a symbol to a single graphic. When
you want to apply symbology to all the graphics in a dynamic, feature, or a graphics
layer, you can use a renderer.

Renderers make it easy to symbolize many features quickly, using either a single
symbol or multiple symbols based on attribute values.

Several of the renderers available in the ArcGIS API for JavaScript are as follows:

• SimpleRenderer: This applies the same symbol to all the graphics in a layer
• UniqueValueRenderer: This applies specific symbols based on the unique

attribute values of each graphic
• ClassBreaksRenderer: This applies the symbols of different sizes or colors

based on the ranges of attribute values
• DotDensityRenderer: This shows the variation in the spatial density of a

discrete spatial phenomenon
• HeatmapRenderer: This converts point data into a raster display that shows

the high density or weighted areas of concentration using a blur radius and
the intensity value

Chapter 5

[131]

• TemporalRenderer: This visualizes real-time or historic observations in the
current extent of the map, factoring in relative feature aging and tracks along
which observed incidents occur, such as a hurricane

• ScaleDependentRenderer: This applies different renderers to the same layer
based on the current scale of the map

Choosing a renderer for a scenario
The symbols and renderers guide in the API documentation provides a great guide
on using symbols and renderers. The documentation can be accessed at https://
developers.arcgis.com/javascript/jshelp/inside_renderers.html.

UniqueValueRenderer and ClassBreaksRenderer are attribute-based renderers.
This means that attribute values determine how the features are symbolized. To
determine whether to use UniqueValueRenderer or ClassBreaksRenderer in a
given situation, consider the nature of the field values upon which the categorization
needs to be performed.

If the set of unique values over the field to be rendered is small
and discrete, consider using UniqueValueRenderer.
If the set of unique values over the field to be rendered
has a vast range and/or is continuous, consider using
ClassBreaksRenderer.

UniqueValueRenderer and ClassBreaksRenderer have the defaultSymbol
property that gets used when a value or break cannot be matched. During
development, you can use a default symbol with a high-contrast color to quickly
verify whether any feature has failed to match the renderer's criteria.

Developing a Stream Gauge application
We will be developing a Stream Gauge app to demonstrate how to use the
following renderers:

• Simple renderer
• Unique value renderer
• Class breaks renderer
• Heatmap renderer

https://developers.arcgis.com/javascript/jshelp/inside_renderers.html
https://developers.arcgis.com/javascript/jshelp/inside_renderers.html

Working with Renderers

[132]

The data source
The Stream Gauge data is provide by Esri as part of their Living Atlas of the World
portal. This means that we need to have an ArcGIS Developer login to access
the content. The URL to the Mapservice for the Stream Gauge data is http://
livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/StreamGauge/
MapServer/.

The map service provides the readings of Stream Gauges around the United States,
which depict the current water level in the measured areas. The application we are
trying to develop endeavors to demonstrate different rendering techniques over the
Gauge data. The upcoming snapshot in the next section provides a rough rendition
of our final application that we will have developed by the end of this chapter.

If you do not have an ArcGIS Developer account, refer to Chapter 3, Writing Queries,
for instructions on how to register an account and use the credentials in the
application proxy.

Simple renderer
Simple renderer is provided by the esri/renderers/SimpleRenderer module,
and its constructor accepts any appropriate symbol or a JSON. Since all the Gauge
locations are point locations, we will use SimpleMarkerSymbol to symbolize them.

Since we have already discussed how to construct a PictureMarkerSymbol from its
corresponding module, we will see how to use the JSON form of the symbol. Using
the JSON representation of the symbol means that we no longer need to load the
modules separately for each symbol and color. The following snapshot shows how
JSON is formed and used in the SimpleRenderer constructor:

http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/StreamGauge/MapServer/
http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/StreamGauge/MapServer/
http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/StreamGauge/MapServer/

Chapter 5

[133]

In the preceding code, after the renderer is assigned with SimpleRenderer, the
renderer object must be set to the feature layer by using the setRenderer() method.
Also, the legend should be refreshed once the rendering is applied to the feature layer:

streamLyr.setRenderer(renderer);
streamLyr.redraw();
legend.refresh();

Working with Renderers

[134]

Applying unique value renderer
Unique value renderer is provided by the esri/renderers/UniqueValueRenderer
module. Unique value renderer lets us define different symbols for a set of unique
values in the data. Up to three attribute fields can be provided to determine the
uniqueness of the data. Unique value renderer expects the uniqueValueInfos object.
This object is basically a mapping between the unique value and the symbol that is
used to represent the value. Therefore, all the features with a specific value will be
rendered by the corresponding mapped symbol. We can provide the defaultSymbol
object to the renderer that will be used to symbolize any value that is not defined in
the uniqueValueInfos object. The following is a JSON representation of a unique
value renderer object symbolizing unique values of flood stages. The unique values
for flood stages that we symbolize are as follows:

• major

• moderate

• minor

• action

var rendererJson = {
 "type": "uniqueValue",
 "field1": "STAGE",
 "defaultSymbol": {},
 "uniqueValueInfos": [{
 "value": "major",
 "symbol": {
 "color": [163, 193, 163],
 "size": 6,
 "type": "esriSMS",
 "style": "esriSMSCircle"
 }
 }, {
 "value": "moderate",
 "symbol": {
 "color": [253, 237, 178],
 "size": 6,
 "type": "esriSMS",
 "style": "esriSMSCircle"
 }
 }, {
 "value": "minor",
 "symbol": {
 "color": [242, 226, 206],
 "size": 6,

Chapter 5

[135]

 "type": "esriSMS",
 "style": "esriSMSCircle"
 }
 }, {
 "value": "action",
 "symbol": {
 "color": [210, 105, 30],
 "size": 6,
 "type": "esriSMS",
 "style": "esriSMSCircle"
 }
 }]
};
var renderer = new UniqueValueRenderer(rendererJson);

The preceding code renders in the app as follows:

The following properties can be used with feature layers to render it based on
multiple visual properties, such as color, rotation, size, and opacity:

Renderer method Purpose
setColorInfo() This shows an array of continuous values using a color ramp

setRotationInfo() This rotates a symbol to indicate variance in direction (for
example, a traveling vehicle or a hurricane event)

Working with Renderers

[136]

Renderer method Purpose
setSizeInfo() This changes the symbol size or width based on a range of

data values

setOpacityInfo This changes the alpha values used to display a layer

Class breaks renderer
When the field is classified and visually differentiated it is spread over a range of
values, we can use ClassBreaksRenderer. ClassBreaksRenderer can be used by
loading the esri/renderers/ClassBreaksRenderer module.

Class break renderer is very similar to unique value renderer in that the constructor
for Class break renderer expects a classBreakInfos object, which is similar to the
uniqueValueInfos object.

classBreakInfos is an array of classBreakInfo objects, which maps between
a class range and a symbol. A class range is defined by the class' minimum
(classMinValue) and the class' maximum (classMaxValue).

Chapter 5

[137]

The following snapshot shows how the ClassBreakRenderer JSON object is
constructed with the classBreakInfo array and rendered on the map:

HeatmapRenderer
HeatmapRenderer renders point data into a raster visualization that emphasizes
areas of higher density or weighted values. This renderer normal distribution curve
to spread value out in vertical and horizontal directions.

This averaging function is applied horizontally and vertically to produce a blurred
area of influence instead of a single specific point.

Working with Renderers

[138]

A HeatmapRenderer module constructor accepts an array of colors. The first color is
used to represent areas with least influence, and the last color in the array is used to
represent pixels with the highest influence. We can also define other parameters for
the HeatmapRenderer constructor such as blurRadius, the maximum pixel intensity,
and the minimum pixel intensity. The following snapshot of the code is used to
generate a HeatmapRenderer:

DotDensityRenderer
DotDensityRenderer provides the ability to create dot density visualizations of the
data. A dot density map can be used to visualize the variation in the spatial density
of a discrete spatial phenomenon. We can use multiple fields to visualize multiple
variables on one map with different colors. For example, we can use different colors
to show the distribution of various ethnic groups. The density on the map always
changes as the user zooms in or out. Use ScaleDependentRenderer to set a unique-
dot density renderer for each scale or zoom range, so dotValue and dotSize can
vary across multiple scale ranges.

BlendRenderer
The problem with ClassBreakRenderer or UniqueValueRenderer is that you have
to assign a specific color to any given value. When assigning discrete colors based on
clear boundary values isn't desirable, we can use BlendRenderer.

Chapter 5

[139]

BlendRenderer lets you do a fuzzy classification of data. It lets you assign different
colors for values from different fields and use some opacity to represent the
magnitude of the value. The final rendering will be a blend of these colors since we
are using opacity for each field. This diagram shows how color and opacity variables
can be blended to provide a rendering:

The following map shows a map of predominant minority groups throughout the
United States. Such illustrations give a sense of predominant features while not
completely suppressing other details:

Working with Renderers

[140]

SmartMapping
The SmartMapping module provides a lot of helper methods that help us choose the
best rendering method. The following illustration shows a list of methods available
with the SmartMapping module:

Smart Mapping Module: esri/renderers/smartMapping

A classification method for classed renderers
The classed renderer helper methods, such as createClassedColorRenderer()
and createClassedSizeRenderer(), need classificationMethod as a parameter.
Choosing this value is quite important if we need to understand the significance
of each.

Chapter 5

[141]

The following classification methods are available:

• equal-interval
• natural-breaks
• quantile
• standard-deviation

The default method is equal-interval.

Equal interval classification divides the data equally into a predefined number of
classes. Such a classification might not necessarily reflect the skewness in the data.
For example, if the data range is from 0-1 million, and the majority of the data is
concentrated between 300,000-500,000, then instead of classifying the data between
0-250,000, 250,000-500,000, 500,000-750,000, and 750,000-1,000,000, it would be a better
classification scheme if there were a greater number of classification ranges between
300,000-500,000.

Classification methods such as natural-breaks, quintile, and standard deviation
help to segregate the data better; hence, our data visualization technique would be
statistically much accurate. This topic will be discussed in greater detail in Chapter 7,
Map Analytics and Visualization Techniques.

Summary
This chapter gives an in-depth treatment on the topic of colors, symbols, renderers,
and the situations where each can be used effectively. This chapter also dealt with
the nuances of data visualization techniques along with tips and tricks to create
symbols and picture marker symbols easily. We demonstrated the utility of three
basic renderers: simple renderer, unique value renderer, and class breaks renderer
by developing a Stream Gauge app. In the following chapters, we will be dealing
with advanced visualization techniques to visually classify data on spatial as well
as temporal scales.

[143]

Working with Real-Time Data
Data that are updated constantly presents us with a significant challenge in
retrieving and rendering them. In this chapter, we will deal with two basic methods
to work with real-time data by developing an application that is meant to track
hurricanes. You will learn about the following topics in this chapter:

• Understand about the nature of real-time data such as hurricane data
• Use the in-built options given by ArcGIS to visualize the data
• Methods to get the latest data
• Methods to set the refresh interval for a layer

Background about the application
We are going to deal with hurricane data provided by the National Hurricane Center
(NHC). The NHC provides a map service that describes the path and forecast of
tropical hurricane activity. The live feeds provided as a map service by the NHC can
be found at http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/
Hurricane_Active/MapServer.

The map service provides data about the following:

• Forecast Position
• Observed Position
• Forecast Track
• Observed Track
• The Cone of Uncertainty
• Watches and Warnings
• Tropical Storm Force

http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/Hurricane_Active/MapServer
http://livefeeds.arcgis.com/arcgis/rest/services/LiveFeeds/Hurricane_Active/MapServer

Working with Real-Time Data

[144]

The forecast and observed positions represent the center of the cyclone, whereas
the track represents forecast and observed positions connected to give a sense of the
movement of the hurricane.

In the Service Catalog heading, click ArcGIS.com Map to get a holistic perspective
of the data in the map service.

Visualizing map data
ArcGIS Online is an effective medium to visualize and play with data hosted
on ArcGIS Server. When opening a map service in ArcGIS Online, the default
symbology is displayed and we can get a sense of the extent of the data we
would be using in our application.

Chapter 6

[145]

In the following screenshot, we can see the Forecast Position feature layer and its
default symbology. The symbology being used is PictureMarkerSymbol and it gives
a sense of what is the intensity of the hurricane over the past three days (72 hours).

The following screenshot gives a holistic picture of the entire data in the map service
including forecast locations and track, as well as observed locations:

Working with Real-Time Data

[146]

Turn off all the layers in the Table of Contents (TOC) and turn on just the Observed
Position layer. The Observed Position layer is just rendered by just a simple
Renderer. The symbology doesn't vary in size according to any field value. It just
shows the locations where storm activity was measured in the past 72 hours.

Now ArcGIS Online gives us options to set its symbology in various ways. When we
click the layer's name in the TOC, the following screen opens up. It shows various
styles based on which symbology can be changed. In the following screenshot,
INTENSITY of the storm is chosen as the field of display, and the size of the
symbol is based on the quantity of the INTENSITY value:

Chapter 6

[147]

The data can be classified into groups according to various classification techniques
such as Equal Breaks, Quantile, Natural Breaks, and so on.

Working with Real-Time Data

[148]

Finally, the Observed Track actually shows the track taken by the hurricane over the
past 72 hours and uses a unique value renderer to render the data.

Building a hurricane tracking app
Now that we have gained an understanding of our data using the ArcGIS Online
service, we can use the map service URL to build a web mapping application of our
own. In our application, we intend to incorporate the following:

• Add layers to the map that displays the past and present hurricane locations
• Add global wind data
• Add a gauge widget to display the wind speed
• Add a current weather widget, which displays the current weather

information at the user's browser location
• Add a Current Hurricane List widget, which shows the updated list of

current hurricanes and the details of each hurricane when selected

Chapter 6

[149]

Symbolizing active hurricane layers
We have more than one feature layer to deal with. Let's try to build a layer
dictionary. In the following code snippet, we will try to create an array of objects
where each object has properties such as a URL and title. The URL refers to the URL
of a feature layer and the title property refers to the title by which we would like to
refer to the feature layer:

var windDataURL = "http://livefeeds.arcgis.com/arcgis/rest/services/
LiveFeeds/NOAA_METAR_current_wind_speed_direction/MapServer";

var activeHurricaneURL = "http://livefeeds.arcgis.com/arcgis/rest/
services/LiveFeeds/Hurricane_Active/MapServer";

var layerDict = [
 {
 title: "Forecast Error Cone",
 URL: activeHurricaneURL + "/4"
 },
 {
 title: "Forecast Tracks",
 URL: activeHurricaneURL + "/2"
 },
 {
 title: "Observed Track",
 URL: activeHurricaneURL + "/3"
 },
 {
 title: "Watches and Warnings",
 URL: activeHurricaneURL + "/5"
 },
 {
 title: "Forecast Positions",
 URL: activeHurricaneURL + "/0"
 },
 {
 title: "Past Positions",
 URL: activeHurricaneURL + "/1"
 },
 {
 title: "Wind Data",
 URL: windDataURL + "/0"
 }
];

Working with Real-Time Data

[150]

This helps us retrieve the feature layer using the layer name or title property. Let's
use the array.map() method provided by the dojo/_base/array module to add
the corresponding feature layer for each object into the layerDict array. The array.
map() method, if you can recollect from Chapter 1, Foundation for the API, actually
iterates through the elements in the array and will return an array. Then, each item
being iterated can be modified. In our case we are trying to do the following for
each item:

1. Create a feature layer from the URL in each item.
2. Add the feature layer to the map.
3. Add an additional layer property to each item object in the layerDict array.

The following code snippet explains the process:

var layerDict = array.map(layerDict, function (item) {
 var featLayer = new FeatureLayer(item.URL, {
 mode: FeatureLayer.MODE_ONDEMAND,
 outFields: ["*"]
 //infoTemplate: infoTemplate
 });
 map.addLayer(featLayer);
 item.layer = featLayer;
 return item;
 });

Now each object in the layerDict array will have an additional layer property,
which holds the feature layer referred by the URL.

To retrieve a feature layer, we can use the layer name in the array.filter() method
provided by the dojo/_base/array module. The filter method() iterates through each
object item and returns a filtered array based on our predicate condition.

The following line of code returns the feature layer with the title "Forecast Error
Cone" and saves it in the variable named foreCastErrorConeFeatureLayer:

var foreCastErrorConeFeatureLayer = array.filter(layerDict, function
(item)
{
 return item.title == "Forecast Error Cone";
})[0].layer;

Chapter 6

[151]

We are trying to symbolize the features in some of the feature layers. We will start
off with the past positions. The past positions feature a layer, which by default
is represented by a circle with a dot in the center. We will try to use a red flag to
symbolize it. The following approach shall be taken to symbolize it:

1. Import the esri/symbols/PictureMarkerSymbol module.
2. Find the URL for a PNG representing a red flag and use it to create a

PictureMarkerSymbol.
3. Import the esri/renderers/SimpleRenderer module and create

a SimpleRenderer assigning the symbol for the renderer with the
PictureMarkerSymbol we just created.

4. Set the renderer for the feature layer with the simple renderer we
just created.

The following lines of code explain this process clearly:

var pastPositionLayer = array.filter(layerDict, function (item) {
 return item.title == "Past Positions";
})[0].layer;

var pastPositionSymbol = new PictureMarkerSymbol({
 "angle": 0,
 "type": "esriPMS",
 "url":
 http://static.arcgis.com/images/Symbols/Basic/RedFlag.png",
 "contentType": "image/png",
 "width": 18,
 "height": 18
});

var pastPositionRenderer = new SimpleRenderer(pastPositionSymbol);
pastPositionLayer.setRenderer(pastPositionRenderer);

Now, we can try and render the forecast error cones layer. Forecast error cones are
polygon feature layers that represent the uncertainty in the forecast predictions. Two
polygon features are present for each hurricane type. One of the polygon represents
a 72-hour forecast error polygon and the other represents a 120-hour forecast error
polygon. This information is available in the FCSTPRD field in the feature layer.

Working with Real-Time Data

[152]

Let's create a unique value renderer and symbolize each of these types of polygon
differently based on the value of the FCSTPRD field name. To create a unique value
renderer, we need to take the following approach:

1. Import the esri/renderers/UniqueValueRenderer, esri/symbols/
SimpleLineSymbol and esri/symbols/SimpleFillSymbol modules.

2. Create a default symbol for the renderer. Since we know that with all our
Forecast Error polygons the FCSTPRD field value will be either 72 or 120,
we will create a SimpleFillSymbol with empty symbology and also set its
outline as null line symbol.

3. Create a UniqueValueRenderer object from the esri/renderers/
UniqueValueRenderer module. Assign it the default symbology we just
created as well as the FCSTPRD as the fieldname upon which the rendering is
based.

4. Add values to the renderer using the addValue() method. The addValue()
method accepts the unique value (72 /120) and the corresponding symbol
for each unique value.

5. Set the renderer to the Forecast Error Cone Feature layer.
//Get the Forecast Error Cone feature layer
var foreCastErrorConeFeatureLayer = array.filter(layerDict,
function (item) {
 return item.title == "Forecast Error Cone";
})[0].layer;

//Create a Null SimpleFillSymbol
var defaultSymbol = new SimpleFillSymbol().
setStyle(SimpleFillSymbol.STYLE_NULL);

//With a null Line Symbol as its outline
defaultSymbol.outline.setStyle(SimpleLineSymbol.STYLE_NULL);

var renderer = new UniqueValueRenderer(defaultSymbol, "FCSTPRD");

//add symbol for each possible value
renderer.addValue('72', new SimpleFillSymbol().setColor(new
Color([255, 0, 0, 0.5])));
renderer.addValue('120', new SimpleFillSymbol().setColor(new
Color([255, 255, 0, 0.5])));

//Set Renderer
foreCastErrorConeFeatureLayer.setRenderer(renderer);

Chapter 6

[153]

We have tried symbolizing a feature layer with PictureMarkerSymbol and render it
using SimpleRenderer. For another feature layer, we used a unique value renderer
to render features having different values for a particular field differently. Now let's
try a special kind of symbology known as CartographicLineSymbol.

The CartographicLineSymbol provides additional properties such as cap and
join, which defines how the end cap of the lines and the edge joins are rendered. To
know more about these two properties, visit the API page at https://developers.
arcgis.com/javascript/jsapi/cartographiclinesymbol-amd.html.

We would like to use the CartographicLineSymbol to symbolize the forecast track
feature layer. The following shows us how to use the symbol and to render the
particular feature layer:

1. Import the esri/symbols/CartographicLineSymbol module.
2. Use STYLE_DASHDOT for the style parameter, yellow for the color parameter, 5

as the width in pixels, CAP_ROUND as the cap type, and JOIN_MITER as the join
type.

3. Use the symbol for a SimpleRenderer.
4. Set the renderer to the forecast track feature layer.

The following snippet codifies the previous approach:

var lineSymbol = new CartographicLineSymbol(
 CartographicLineSymbol.STYLE_DASHDOT,
 new Color([255, 255, 0]), 5,
 CartographicLineSymbol.CAP_ROUND,
 CartographicLineSymbol.JOIN_MITER, 5
);
var CartoLineRenderer = new SimpleRenderer(lineSymbol);

forecastTrackLayer.setRenderer(CartoLineRenderer);

https://developers.arcgis.com/javascript/jsapi/cartographiclinesymbol-amd.html
https://developers.arcgis.com/javascript/jsapi/cartographiclinesymbol-amd.html

Working with Real-Time Data

[154]

Our map looks like the following when the previous renderers are applied to the
past positions layer, Forecast Track, and the Forecast Error Cone layers:

Adding a global wind data gauge
Global wind data is also a map service provided by the ArcGIS livefeeds, providing
global-level wind data at various locations. Our objective is to incorporate a gauge
widget that changes its gauge reading based on the wind location being hovered
upon. The wind data has been appropriately symbolized by default.

The following screenshot shows a gauge widget based on our global wind data. The
arrows in the map are wind feature locations, the direction of the arrow represents
the direction of the wind, and the color and size of the arrow represents the speed
of the wind. The gauge reading in the two instances represents the feature being
hovered upon (which is highlighted by a thick yellow circle).

Chapter 6

[155]

The URL for the wind data has been provided in one of our earlier snippets and has
been added to the layerDict array:

var activeHurricaneURL = "http://livefeeds.arcgis.com/arcgis/rest/
services/LiveFeeds/Hurricane_Active/MapServer";

Since this URL has been added to the layerDict array already, we can go ahead and
create a feature layer representing the wind data from its title "Wind Data":

var windFeatureLayer = array.filter(layerDict, function (item) {
 return item.title == "Wind Data";
 })[0].layer;

Let's now add a gauge widget that can harness the data from this layer. The gauge
is provided by an Esri dijit (dojo widget) named esri/dijit/Gauge. The gauge
constructor is very simple. It accepts a GaugeParameter object and the container
dom ID.

The GaugeParameter object needs to be constructed by us. Keep the following in
mind before creating the GaugeParameter object:

1. The layer property accepts the reference to the feature layer it represents.
2. The dataField property indicates which field shall be used to get the

gauge reading.
3. The dataFormat property accepts two values—value or percent. When

percent is chosen, the maximum value of the gauge is automatically calculated
and the gauge reading is shown as a percentage of the maximum value. When
the dataFormat value is chosen as value, the actual value of the feature being
hovered upon is shown as the gauge reading.

Working with Real-Time Data

[156]

4. The dataLabelField property can be used to represent the station name or
any other ancillary property about the feature being hovered upon, which
can identify the feature. This shall be clubbed with the title property,
which represents what the dataLabelField property represents.

5. The color property lets us set the color of the gauge reading.
6. If value is chosen as the dataFormat value, we need to provide a value for

the maxDataValue property as well.

The following code is the one we used to create the wind gauge widget you saw in
the previous screenshot:

var windGaugeParams = {
 caption: "Wind Speed Meter",
 dataFormat: "value",
 dataField: 'WIND_SPEED',
 dataLabelField: "STATION_NAME",
 layer: windFeatureLayer,
 color: "#F00",
 maxDataValue: 80,
 title: 'Station Name',
 unitLabel: " mph"
 };
var windGauge = new Gauge(windGaugeParams, "gauge");
windGauge.startup();

Tracking the latest active hurricanes
Let's create a widget to track the latest active hurricanes. We already have all the
layers representing the active hurricanes positions. Our objective is to get all the
latest positions of active hurricanes and display it in a widget.

The following screenshot shows how our widget would look after development:

Chapter 6

[157]

The dropdown in the widget lists the names of all the prevalent active hurricanes.
The following grid displays the details of the selected hurricane.

The following thought process has been incorporated into the development
of this widget:

1. Use a cache-bust query to get the unique list of storm names and fill the
dropdown with this list.

2. On selection change of the dropdown, get the latest feature for the
selected storm.

3. Populate the details of the selected storm in the widget.
4. Get the updated details for every 30 seconds.

Getting a unique list of storms
To get the unique values in our data, the Query object has a property known
as returnDistinctValues, the value for which should be a Boolean true.
The following snippet explains the usage of the property:

query.returnDistinctValues = true;

Also the outfield property of the Query object should only list those fields for which
the unique values are required. In our case, the fieldname is STORMNAME. Refer to the
following snippet to understand this:

query.outFields = ["STORMNAME"];

Working with Real-Time Data

[158]

To get updated results every time, we need to avoid cached query results. So instead
of using a truthy expression such as 1=1, we may need to use a pattern that reads
something like:

"random_number = random_number".

This will help us get non-cached query results. Non-cached query results ensure that
we are viewing the latest data within a set time period. Let's write a function that can
create such a query string:

var _bust_cache_query_string: function () {
 var num = Math.random();
 return num + "=" + num;
}

We can now use this function every time we need to assign a value for the where
property of the Query object:

query.where = this._bust_cache_query_string();

When using the returnDistinctValues property in the Query object, we need to
set the returnGeometry property to a Boolean false. The following line of code
explains how to form the Query task and Query object, and how to use the result
from the query to populate the drop-down box. At the end of the code we would call
a ._update_hutticane_details() method. This method fetches the latest details
about the selected StormName:

events: function () {
 //initialize query task
 var queryTask = new QueryTask("http://livefeeds.arcgis.com/arcgis/
rest/services/LiveFeeds/Hurricane_Active/MapServer/1");

 //initialize query
 var query = new Query();
 query.returnGeometry = false;
 query.where = "1=1 AND " + this._bust_cache_query_string();
 query.outFields = ["STORMNAME"];
 query.returnDistinctValues = true;
 var that = this;

 queryTask.execute(query, function (result) {
 console.log(result);

 var i;
 //Remove all existing items

Chapter 6

[159]

 for (i = that.cbxactiveHurricane.options.length - 1; i >= 0;
 i--) {
 that.cbxactiveHurricane.remove(i);
 }
 //Fill n the new values
 array.forEach(result.features, function (feature) {
 console.debug(feature.attributes.STORMNAME);
 that.cbxactiveHurricane.options[that.cbxactiveHurricane.options.
length] = new Option(feature.attributes.STORMNAME, feature.attributes.
STORMNAME);
 });
 that._update_hutticane_details();
 });

this.updateTimmer = setInterval(lang.hitch(this, this._update_
hutticane_details), 30000);
}

In the previous lines of code, observe the last three lines. We are using a timer
function that calls the _update_hutticane_details() every 30 seconds. This is the
function that fetches the latest details about the hurricane.

Fetching the latest data and displaying
on the grid
When we tried to construct the Query object in the previous snippet, we used the
returnDistinctValues property to get the distinct values based on field names.
Now we will use the orderByFields property of the Query object to order the
features based on a field name. To get the latest features first, the fieldname should
represent a time field. In our case the field name is DTG. To ensure that we get the
latest time as the first feature of our query result, we can use the following line of
code while constructing the query object. The orderByField accepts a string array,
each item mentioning the field name to be ordered upon and whether the ordering
should be ascending (ASC) or descending (DESC). The default order is ascending:

query.orderByFields = ["DTG DESC"];

The following lines of code demonstrate how the required Query object is
constructed and how the result is used to populate information about the latest
storm in the widget:

_update_hutticane_details: function () {
 var selected_hurricane = this.cbxactiveHurricane.value;

Working with Real-Time Data

[160]

 var queryTask = new QueryTask("http://livefeeds.arcgis.com/arcgis/
rest/services/LiveFeeds/Hurricane_Active/MapServer/1");
 var query = new Query();
 query.returnGeometry = true;
 query.where = "STORMNAME='"+ selected_hurricane +"' AND " +
 this._bust_cache_query_string();
 query.outFields = ["*"];

 query.orderByFields = ["DTG DESC"];

 var that = this;
 queryTask.execute(query, function (result) {
 console.log(result);
 if (result.features.length>0){
 that._mslp.innerHTML = result.features[0].attributes.MSLP;
 that._basin.innerHTML = result.features[0].attributes.BASIN;
 that._stormnum.innerHTML =
 result.features[0].attributes.STORMNUM;
 that._stormtype.innerHTML =
 result.features[0].attributes.STORMTYPE;
 that._intensity.innerHTML =
 result.features[0].attributes.INTENSITY;
 that._ss.innerHTML = result.features[0].attributes.SS;
 }
 });
}

Notice the where clause in the previous chunk of code. We are selecting only the
details of StormName that we have selected from the drop-down box, as well as using
the cache-busting function to get the latest data:

query.where = "STORMNAME='"+ selected_hurricane +"' AND " + this._
bust_cache_query_string();

Refreshing feature layer
The feature layer displaying time data may need to refresh at various intervals.
We can use feature layers to refresh an interval property to set this:

featureLayer. refreshInterval = 5; // in minutes

This is in addition to the cache-busting techniques we dealt with earlier.

Chapter 6

[161]

Creating a weather widget
We will try to create a weather widget in our application, which displays the current
weather conditions at the user's location. The user's location actually means the
browser's location as recognized by the Geolocation API in modern browsers. When
the browser is unable to find the user's location, we will try to find the weather data
for the center of the map. Creating a weather widget presents us with the following
opportunities as well as challenges:

• Weather data is continuously updated in real time and is a spatio-temporal
phenomenon, meaning something that changes with place and time

• It presents us with an opportunity to use an external weather API, which is a
non-ArcGIS based data

• It presents us with an opportunity to explore the client-side geometric
operations such as buffer and converting between Geographic and Web
Mercator coordinates

The open weather API
We need to find a data source to fetch the latest weather data. Fortunately, the open
weather API is a simple and free option to fetch weather data in different formats.
Paid plans provide greater usage levels. For our purposes the free version works
splendidly.

The API provides REST endpoints, which provides access to the following kinds
of data:

• Current weather data
• 5-day/3-hour forecast
• 5-day/3-hour forecast
• Historical data
• UV Index
• Weather map layers
• Weather stations

We will be using the current weather data endpoint to fetch the weather details for a
given location.

To access the API you need to sign up for an API key. The following URL explains
how to get an appid and use it in the REST queries: http://openweathermap.org/
appid#get.

http://openweathermap.org/appid#get
http://openweathermap.org/appid#get

Working with Real-Time Data

[162]

The base URL we would be using would be this:

var url = "http://api.openweathermap.org/data/2.5/weathers";

We will be providing the latitude and longitude values to issue the request to
the open weather API. We have tried to make the HTTP GET request using the
esriRequest object for which the esri/request module needs to be imported.
The following snippet explains how the esriRequest object was constructed:

var request = esriRequest({
 // Location of the data
 url: this.url + '?lat=' + this.lat + '&lon=' + this.lon +
 '&appid=' + this.apikey,

 handleAs: "json"
});

If you observe the URL being constructed, it required three parameters, namely lat,
lon, and appid.

The appid parameter accepts the application key that we generated earlier. There are
two methods we are going to follow to get the latitude and longitude values:

1. If the Geolocation API is supported by the browser, get the latitude and
longitude values from the browser's location.

2. If the Geolocation API is not supported by the browser, the map extent's
centroid shall be projected to geographic coordinates and used to fetch the
weather data for that location.

Using the Geolocation API
Using the Geolocation API is as simple as a call to the navigator object's
geolocation.getCurrentPosition() method. The method returns a callback
object, which contains the location of the browser. The following lines of code show
how to call the geolocation API to get the current position of the browser:

getLocation: function () {
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(lang.hitch(this,
 this.showPosition));
 } else {
 console.log("Geolocation is not supported by this browser.");
 }
}

Chapter 6

[163]

In the previous code, the call object is a function by the name of showPosition().
The showPosition() function gets the position as the callback object. The
coordinates of the position can be accessed by using the property coords.

Using geometry engine on input data
The coords object gives three properties, namely:

• latitude

• longitude

• accuracy

We clearly understand what the latitude and longitude are, but what is accuracy?
Accuracy is the numeric quantity representing a possible error in meters with the
coordinates being provided by the API. Or, in other words, the location is accurate
within a circle of error. When we mention that it's a circle of error, wouldn't it be nice
to visualize it on our map, so that we know the approximate location of our browser
and maybe corroborate the results. We tried it; it seems pretty accurate. To create a
circle of error, we took the following approach:

1. Using the latitude and longitude values to create a point geometry.
2. Use the webMercatorUtils provided by the API to convert the point from

geographic coordinates to the Web Mercator coordinates.
3. Using the geometryEngine module provided by the API, create a buffer

around the projected point with the buffer radius equal to the accuracy
of the location.

4. Symbolize the buffer geometry using a SimpleFillSymbol.

The following lines of code explain the previous process clearly:

showPosition: function (position) {
 console.log(position);
 this.accuracy = position.coords.accuracy;
 this.lat = position.coords.latitude;
 this.lon = position.coords.longitude;

 //error circle
 var location_geom = new Point(this.lon, this.lat, new
 SpatialReference({ wkid: 4326 }));
 var loc_geom_proj =
 webMercatorUtils.geographicToWebMercator(location_geom);
 var location_buffer =
 geometryEngine.geodesicBuffer(loc_geom_proj, this.accuracy,
 "meters", false);

Working with Real-Time Data

[164]

 console.log(location_buffer);
 var symbol = new SimpleFillSymbol().setColor(new Color([255, 0,
 0, 0.5]));
 this.map.graphics.add(new Graphic(location_buffer, symbol));
 //this.map.setExtent(location_buffer.getExtent());
 this.getWeatherData();
}

We would be using the latitude and longitude obtained from the showPosition()
method to fetch the weather data for that location.

Displaying the weather data in the widget
We earlier visited how we used the esriRequest module to issue an HTTP GET
request to the weather API and request for the current weather data at the latitude
and longitude provided by the browser. The request is a promise and we will use a
then method upon the promise to resolve it.

The following chunk of code demonstrates how the esriRequest promise is
resolved and how it is used to display the current weather data:

request.then(function (data) {
 console.log("Data: ", data);
 that.weather.innerHTML = Math.round(data.main.temp - 270) + "
 deg C " +
 data.weather[0].main + ' (' + data.weather[0].description + ')';
 var imagePath = "http://openweathermap.org/img/w/" +
 data.weather[0].icon + ".png";
 // Set the image 'src' attribute
 domAttr.set(that.weatherIcon, "src", imagePath);
 that.windSpeed.innerHTML = data.wind.speed + ' kmph';
 that.cloudiness.innerHTML = data.clouds.all + ' %';
 that.pressure.innerHTML = data.main.pressure;
 that.humidity.innerHTML = data.main.humidity + ' %';
 that.pressure.innerHTML = data.main.pressure + ' Pa'
 that.sunrise.innerHTML = that._processDate(data.sys.sunrise);
 that.sunset.innerHTML = that._processDate(data.sys.sunset);
 that.coords.innerHTML = data.coord.lon + ', ' + data.coord.lat;
}

In the previous code, the temperature is always returned in kelvin. So to convert it
to centigrade, we need to subtract it by 270. The time conversions are being applied
using the function named _processDate(). The time issued by the open weather
API is Unix base time in UTC.

Chapter 6

[165]

The _processDate() function we wrote looks like this:

_processDate: function (dateStr) {
 if (dateStr == null) {
 return "";
 }
 var a = new Date(dateStr * 1000);
 return dateLocale.format(a, {
 selector: "date",
 datePattern: "yyyy-MM-dd HH.mm v"
 });
}

The dateLocale object used in the previous function is a dojo module (dojo/date/
locale), which provides localized time versions of the date object being dealt with.
The widget looks like the following screenshot shown. The red circle is the circle of
error we were talking about. We were also able to create a small weather icon, which
summarizes the weather condition.

Working with Real-Time Data

[166]

If you're curious what the HTML template for the previous widget would look like,
we have one thing to say—have we disappointed you? Here it is:

<div>
 <form role="form">
 <div class="form-group">
 <label dojoAttachPoint="weather"></label>

 </div>
 </form>
 <table class="table table-striped">
 <tbody>
 <tr>
 <td>Wind</td>
 <td dojoAttachPoint="windSpeed"></td>
 </tr>
 <tr>
 <td>Cloudiness</td>
 <td dojoAttachPoint="cloudiness"></td>
 </tr>
 <tr>
 <td>Pressure</td>
 <td dojoAttachPoint="pressure"></td>
 </tr>
 <tr>
 <td>Humidity</td>
 <td dojoAttachPoint="humidity"></td>
 </tr>
 <tr>
 <td>Sunrise</td>
 <td dojoAttachPoint="sunrise"></td>
 </tr>
 <tr>
 <td>Sunset</td>
 <td dojoAttachPoint="sunset"></td>
 </tr>
 <tr>
 <td>Geo coords</td>
 <td dojoAttachPoint="coords"></td>
 </tr>
 </tbody>
 </table>
</div>

Chapter 6

[167]

The innocuous HTML template was all we needed to develop the weather widget,
which we used to display the current weather data at our location.

Summary
In this chapter, we have covered in detail what constitutes real-time data and
how to visualize and get the latest features. We will be dealing with how to
deal with time-aware layers and how to visualize spatio-temporal layers in
later chapters. Thus, we will be able to build effective web applications that are
refreshed continuously. In the following chapters, we will be dealing with advanced
visualization techniques using the statistical capabilities of the feature layer,
and learning about charting libraries.

[169]

Map Analytics and
Visualization Techniques

Performing analytics on map data will reveal a lot of spatial patterns that would
otherwise stay hidden. The API provides a lot of methods to elicit such information
using advanced statistical queries on the data. Combine this with the intuitive data
visualization methods provided by the API and you're one step nearer to becoming
a map data scientist. We will be building a demographics analytic portal in this
chapter by first trying to understand a few basic statistical concepts, and then by
practically applying those in the code with the aid of the analytic and rendering
modules provided by the API. Specifically we will be covering the following topics:

• Introduction to the demographics analytic portal we're going to develop
• Introduction to basic statistical measures
• Modules provided by the API to calculate the feature statistics
• A brief introduction to the classification methods
• Code-backed explanation for developing renderers with visual variables
• Performing multivariate mapping
• Performing automatic mapping using smart mapping

Building a demographics analytic portal
We are going to build a demographic analytic portal to demonstrate the advanced
analytics capabilities of the API. Demographics refers to the classification of the
population living in an area based on various socio-economic factors such as age,
educational attainment, nationality, median household income, race, gender, and so
on. The demographic data is mostly based on Census data and other reliable sources.

Map Analytics and Visualization Techniques

[170]

The demographics can be used to perform various analytics and is equally useful to
government to make policy decisions and businesses to make marketing decisions.
The power of demographic data lies in performing appropriate analytics such
that we can extract useful information about the population living in an area in
comparison to the ones surrounding it. Let's consider this URL, which provides
detailed statistics on the median household income at block level—http://
demographics5.arcgis.com/arcgis/rest/services/USA_Demographics_and_
Boundaries_2015/MapServer.

This map service shows the most updated 2015 demographic data for the USA.
Among the hundreds of demographic parameters provided, we are interested in
the median household income in the United States in 2015. Income amounts are
expressed in current dollars, including an adjustment for inflation or cost-of-living
increases. The median is the value that divides the distribution of household income
into two equal parts. For more information on this map, including the terms of use,
visit this URL: http://doc.arcgis.com/en/living-atlas/item/?itemId=6db428
407492470b8db45edaa0de44c1&subType=demographics

These data are provided as a part of the Living Atlas endeavor of Esri. To use this
data, you will require an ArcGIS Online organizational subscription or an ArcGIS
Developer account. To access this item, you'll need to do one of the following:

• Sign in with an account that is a member of an organizational subscription
• Sign in with a developer account
• If you don't have an account, you can sign up for a free trial of ArcGIS or a

free ArcGIS Developer account at this link: https://developers.arcgis.
com/en/sign-up/

Basic statistical measures
Let's discuss some basic statistics so that we can utilize some of the statistical
functionality provided by the API to the fullest extent. The five basic statistical
parameters we may need to understand clearly before proceeding further are:

• Minimum
• Maximum
• Average
• Standard deviation
• Standardization

http://demographics5.arcgis.com/arcgis/rest/services/USA_Demographics_and_Boundaries_2015/MapServer
http://demographics5.arcgis.com/arcgis/rest/services/USA_Demographics_and_Boundaries_2015/MapServer
http://demographics5.arcgis.com/arcgis/rest/services/USA_Demographics_and_Boundaries_2015/MapServer
http://doc.arcgis.com/en/living-atlas/item/?itemId=6db428407492470b8db45edaa0de44c1&subType=demographics
http://doc.arcgis.com/en/living-atlas/item/?itemId=6db428407492470b8db45edaa0de44c1&subType=demographics
https://developers.arcgis.com/en/sign-up/
https://developers.arcgis.com/en/sign-up/

Chapter 7

[171]

Minimum
As the name suggests, this implies the least value in a dataset. In our case of the
block-level household income, the minimum statistic indicates the block with the least
median household income.

Maximum
Similar to the minimum, the maximum statistic defines the maximum median
household income value among all the blocks considered.

Sum
Sum is a simple yet effective statistic that gives us the total value of all the data
being considered.

Average
An Average statistic defines the arithmetic mean value of all the values. An average
is derived by dividing the Sum statistic by the count of the data values taken for the
calculation.

Average = Sum / Count

Standard deviation
Standard deviation is perhaps the most important statistic that one can derive from
any given data. Standard deviation is a measure of how spread out the data are or
how much the data deviates from the mean or average. When we know the standard
deviation, we can normally observe that:

• 68% of values are within plus or minus one times the standard deviation
from the mean

• 95% of values are within plus or minus two times standard deviation from
the mean

• 99.7% of values are within three times the standard deviation from the mean

This is based on the fact that most data follows the normal distribution curve.
When we order the data and plot the values, the histogram looks like a bell curve.

Map Analytics and Visualization Techniques

[172]

Standardization
Knowing the concept of standard deviation and mean, we can normalize our data.
This process is known as standardization and the statistical measure derived from the
process is known as the standard score (z-score). When we have datasets with large
values, standardization is an effective way to summarize the data and quantify it.

So to convert any value to a standard score (z-score), we need to first subtract the
value from the mean, then divide by the standard deviation.

z-score = (Value – Mean)/Standard_Deviation

Statistical functionality provided
by the API
Let's investigate what the API has to offer us in terms of these basic statistical
measures. Later we will use these statistical measures in our application to provide
better insight into the data. We will also use these techniques in our visualization
techniques.

StatisticDefinition module
The API provides a module called the StatisticalDefinition module, which can
be used in conjunction with the Query task and Query modules to extract the basic
statistical measures we just discussed.

Module name: esri/tasks/StatisticDefinition

The following are the properties used to define a statistic definition object:

• onStatisticField: Used to define the field on which statistics will
be calculated

• outStatisticFieldName: The name of the output field
• statisticType: Used to define the type of statistic. The accepted statistic

types are:
 ° min: to get the minimum statistic
 ° max: to get the maximum statistic
 ° sum: the get the sum statistic
 ° avg: to derive the average value statistic

• stddev: to derive the standard deviation statistic

Chapter 7

[173]

Let's try to use these and derive these statistical measures on the demographics layer
URL we just provided at the beginning of the chapter.

The following screenshot shows a code snippet and explains how these statistics are
derived for the county layer in the demographics map service:

The required statistics can be extracted using this simple code snippet.

The console screen should look like this after the code has been executed:

Object {MAX_MEDHINC_CY: 113282, MIN_MEDHINC_CY: 18549, STDDEV_MEDHINC_CY:
10960.43202775655, AVG_MEDHINC_CY: 42115.877187400576}

Object {Plus1StdDev: 53076.309215157125, Plus2StdDev: 64036.741242913675,
Plus3StdDev: 74997.17327067023, Minus1StdDev: 31155.445159644027,
Mius2StdDev: 20195.013131887477…}

The derived statistics such as Plus1StdDev, Plus2StdDev, Plus3StdDev,
Minus1StdDev, Minus2StdDev, and Minus3StdDev shall be used later to render
the data better.

Map Analytics and Visualization Techniques

[174]

Classification methods
When we have a large quantity of data, we use rendering methods to classify it.
We need to identify an appropriate classification method to create the class breaks.
The following classification methods are supported by the API:

• Equal interval
• Natural breaks
• Quantile
• Standard deviation

Let's discuss very briefly the implications of using each classification method.

Equal interval
This classification method breaks the data into equal parts. We need to know the
data range to use this classification method. This method should be used when the
data is dispersed and well distributed.

Natural breaks
Natural breaks is a classification method based on the Jenks Break Algorithm.
Basically, this algorithm creates more numbers of breaks at locations where data is
more clustered. This is done by seeking to minimize each class's average deviation
from the class mean, while maximizing each class's deviation from the means of the
other groups. In other words, the method seeks to reduce the variance within classes
and maximize the variance between classes.

Chapter 7

[175]

Quantile
This method classifies data such that there are an equal number of data points in
each group.

Standard deviation
As discussed previously, standard deviation is a measure of how much the data
deviates from the mean. Using this classification methodology, we can find how
much and also where the data is within beyond three standard deviations (outliers'
cases), between two and three standard deviations (higher and lower end values),
and within one standard deviation from the mean.

Map Analytics and Visualization Techniques

[176]

Concept of normalization
Normalizing a data value is useful for computing a lot of things. Consider the
following scenarios:

• Case 1: We need to symbolize how densely populated each state is.
Symbolizing based on the population field would give a wrong measure or
convey wrong information. All we might have to do is to divide each state's
population by its geographic area to get a measure of the population density.
Similarly, if we need to convey the percentage of youth population (age <
35) against the total population, we need to divide the field having the youth
population by the field displaying the total population.

• Case 2: When trying to symbolize the income distribution of the entire
world, we may encounter a large range of values. If we were to use a color
or opacity renderer, some countries would be on the higher end of the
spectrum, while some would be at the bottom with many in between, with
lots of color information not really used up. In such scenarios, it would be
more useful to display the income distribution using a logarithmic scale.

• Case 3: When we need to calculate the value as a percentage of totals such as
crime data or number of participants from each state in a marathon, we need
to divide the value by the total.

Many renderers have a normalizationField and normalizationType property to
implement such normalization.

normalizationField lets us define the field that is used for normalization.
For example, for Case 1, the Area field and Total Population field is the
normalizationField.

normalizationType is the type of normalizing that needs to be performed on the
value. The three possible values for normalizationType are field, log, and
percent-of-total. For example, for Case 1, we need to use the normalizationType
as field. For Case 2, we need to use log, and for Case 3, we need to use percent-of-
total as normalizationType.

Feature layer statistics
In version 3.13 of the API, this plugin was introduced that could prove handy for
calculating feature layer statistics. Using the feature layer statistics plugin, we can
calculate the statistics for the following:

Chapter 7

[177]

• The basic statistics on a field for a feature layer
• Class break statistics
• Unique values in a field
• Suggested scale range for viewing a layer
• Getting a sample feature
• Calculating a histogram

The plugin can be added to the feature layer using the following code snippet:

var featureLayerStats = new FeatureLayerStatistics({
 layer: CountyDemogrpahicsLayer
 });

In the previous snippet, CountyDemogrpahicsLayer is the name of the feature layer
to which the FeatureLayerStatistics plugin is being added.

The usual parameters expected by the methods used in the plugin are field and
classificationMethod. The field plugin refers to the name of the attribute field
based on which the statistic is computed. The classificationMethod refers to
one of the classification methods discussed previously based on which statistics
are computed:

var featureLayerStatsParams = {
 field: "MEDHINC_CY",
 classificationMethod : 'natural-breaks'
 };

The methods on the plugins always return a promise. The following
snippet calculates the basic statistical values on the field as defined in
featureLayerStatsParams:

featureLayerStats.getFieldStatistics(featureLayerStatsParams).
then(function (result) {
 console.log("Successfully calculated %s for field %s, %o",
"field statistics", featureLayerStatsParams.field, result);
 }).otherwise(function (error) {
 console.log("An error occurred while calculating %s, Error:
%o", "field statistics", error);
 });

Map Analytics and Visualization Techniques

[178]

The results look like this in the browser console:

Successfully calculated field statistics for field MEDHINC_CY,

Object {
 source:"service-query",
 min:20566,
 max:130615,
 avg:46193.26694241171,
 stddev:12564.308382029049,
 count:3143,
 sum:145185438,
 variance:157861845.1187254
}

The previous result provided about the same or more information as that derived
from the statistical definition module that we used earlier.

The following snippet calculates the class break values on the field as defined in
featureLayerStatsParams:

featureLayerStats.getClassBreaks(featureLayerStatsParams).
then(function (result) {
 console.log("Successfully calculated %s for field %s,
%o", "class breaks", featureLayerStatsParams["field"], JSON.
stringify(result));
 }).otherwise(function (error) {
 console.log("An error occurred while calculating %s, Error:
%o", "class breaks", error);
 });

The beautified result looks like this:

{

 "minValue": 20566,

 "maxValue": 130615,

 "classBreakInfos": [

 {

 "minValue": 20566,

 "maxValue": 27349.802772469,

 "label": " < -1.5 Std. Dev.",

 "minStdDev": null,

 "maxStdDev": -1.5

 },

 {

Chapter 7

[179]

 "minValue": 27349.802772469,

 "maxValue": 39912.112219098,

 "label": "-1.5 - -0.50 Std. Dev.",

 "minStdDev": -1.5,

 "maxStdDev": -0.5

 },

 {

 "minValue": 39912.112219098,

 "maxValue": 52474.421665726,

 "label": "-0.50 - 0.50 Std. Dev.",

 "minStdDev": -0.5,

 "maxStdDev": 0.5,

 "hasAvg": true

 },

 {

 "minValue": 52474.421665726,

 "maxValue": 65036.731112354,

 "label": "0.50 - 1.5 Std. Dev.",

 "minStdDev": 0.5,

 "maxStdDev": 1.5

 },

 {

 "minValue": 65036.731112354,

 "maxValue": 77599.040558982,

 "label": "1.5 - 2.5 Std. Dev.",

 "minStdDev": 1.5,

 "maxStdDev": 2.5

 },

 {

 "minValue": 77599.040558982,

 "maxValue": 130615,

 "label": " > 2.5 Std. Dev.",

 "minStdDev": 2.5,

 "maxStdDev": null

 }

],

 "source": "service-generate-renderer"

}

Map Analytics and Visualization Techniques

[180]

Working with continuous and break
renderers
Continuous renderers refers to renderers that symbolize features on a continuous
spectrum of values unlike unique value renderers. We need to define several stops
or breakpoints for such renderers. These stops define a class and the renderer
checks which class each value falls into. Based on the class, the data is visualized
with the aid of visualization variables such as color, size, opacity, or even rotation.

Using the statistics available, we can use the ClassBreaksRenderer provided by
the API to create classed and continuous renderers easily. ClassBreaksRenderer
symbolizes each graphic based on the value of some numeric attribute with different
visualization.

Module name: esri/renderers/ClassBreaksRenderer

The setting of color, size, or opacity is enabled on this module with the aid of
properties such as colorInfo, opacityInfo, and sizeInfo. The following methods
are available on the ClassBreaksRenderer:

• setColorInfo(colorInfo): Sets the colorInfo property
• setOpacityInfo(opacityInfo): Sets opacity info for the renderer as defined

by the info parameter
• setRotationInfo(rotationInfo): Modifies rotation info for the renderer
• setSizeInfo(sizeInfo): Sets size info of the renderer to modify the symbol

size based on the data value

Chapter 7

[181]

Let's discuss more about these in detail. The following diagram provides a brief
guide to developing a renderer:

Map Analytics and Visualization Techniques

[182]

ColorInfo
ColorInfo is an object used to define the color ramp to render the layer. We only
need to provide discrete sets of color values at the stops or sometimes just the color
values in the ramp:

A simple ColorInfo object example is as follows:

renderer.setColorInfo({
 field: "MEDHINC_CY",
 minDataValue: featureLayerStats.min,
 maxDataValue: featureLayerStats.max,
 colors: [
 new Color([255, 255, 255]),
 new Color([127, 127, 0])
]
});

To create a classed color renderer, we need define a stops object to define discrete
colors instead of continuous colors. A stops object will contain the color at each
stop. When defining stops, we need not define the minDataValue or maxDataValue.
Let's discuss a bit about where we can get an appropriate color scheme for
our renderer.

Selecting a color scheme
The following website provides us with an easy way to choose a color scheme
that can be used for constructing a colorInfo object or color ramps: http://
colorbrewer2.org/

In this website you can do the following:

1. Select the number of data classes—the default is 3. The API's default number
of classes is 5. So change the drop down value to 5 classes.

2. Select the nature of your data:
 ° sequential: Use this to show an incremental quantity such as

population or population density.

http://colorbrewer2.org/
http://colorbrewer2.org/

Chapter 7

[183]

 ° diverging: Use this to emphasize the difference in values, especially
at the extreme ends. For example, when mapping median income, the
lower end of the income scale may be displayed in red and the higher
end in blue.

Map Analytics and Visualization Techniques

[184]

 ° qualitative: This color scheme is used when we need to differentiate
distinct values or classes using different colors.

3. Pick as multihued or a single-hue color scheme.
4. Constraint the color hues based on:

 ° Purpose:
 ° Color-blind friendly
 ° Print friendly
 ° Photocopy safe

 ° Context:
 ° Roads
 ° Cities
 ° Borders

5. Export the color scheme as:

 ° JavaScript Array object—this is the handiest function
 ° Adobe PDF

Chapter 7

[185]

Creating a classed color renderer
As we discussed earlier, to create a classed color renderer, we need to define a stops
object to define discrete colors instead of continuous colors. A stops object will
contain the color at each stop. A stops object is an array object that is assigned to the
renderer object. A stops array object contains objects with the following properties:

• value

• color

• label

Map Analytics and Visualization Techniques

[186]

A stops object mostly looks like this:

var stops =

[

 {

 "value": 27349.802772469,

 "color": { "b": 226, "g": 235, "r": 254, "a": 1
},

 "label": " < -1.5 Std. Dev."

 },

 {

 "value": 39912.112219098,

 "color": { "b": 185, "g": 180, "r": 251, "a": 1
},

 "label": "-1.5 - -0.50 Std. Dev."

 },

 {

 "value": 52474.421665726,

 "color": { "b": 161, "g": 104, "r": 247, "a": 1
},

 "label": "-0.50 - 0.50 Std. Dev."

 },

 {

 "value": 65036.731112354,

 "color": { "b": 138, "g": 27, "r": 197, "a": 1
},

 "label": "0.50 - 1.5 Std. Dev."

 },

 {

 "value": 77599.040558982,

 "color": { "b": 119, "g": 1, "r": 122, "a": 1
},

 "label": "1.5 - 2.5 Std. Dev."

 }

]

Now let's find a way to automatically populate the stops object. Remember we can
get an array of colors based on a color scheme we select from the colorbrewer2.
org website. The color array can be used to fill the color property of each object
in the stops object. The value property of each object in the stops object can be
derived from the return object of the featureLayerStatistics computation. The
featureLayerStatistics computation provides the minimum, maximum, and label
values for each class. We can assign the maximum value of each class to the value
property for each object in the stops object:

Chapter 7

[187]

//Create a params object for use getClassBreaks method in
// FeatureLayerStatistics module
//Define the field upon which Stats is computed,
//The classification method which should be one among the following:
//standard-deviation, equal-interval, natural-breaks, quantile
//Number of classes the data should be classified. Default is 5
var featureLayerStatsParams_color = {
 field: "MEDHINC_CY",
 classificationMethod: selectedClassificationMethod,
 numClasses: 5
 };

//Compute the Class Break Statitics. This returns a promise

var color_stats_promise = featureLayerStats.getClassBreaks(featureLaye
rStatsParams_color);
color_stats_promise.then(function (color_stat_result) {

//The classBreakInfos property of the color_stat_result has all the
//class break values

var colorStops = [];

//Color JavaScript array exported from colorbrewer2.org
var colors = ['#feebe2', '#fbb4b9', '#f768a1', '#c51b8a', '#7a0177'];

//Loop through each Break info provided by the Feature Layer Stats
 array.forEach(color_stat_result.classBreakInfos,
function (classBreakInfo, i) {
 colorStops.push({
//Get value property from the Break value's maximum value
 value: classBreakInfo.maxValue,
//Get color from the color Array
 color: new Color(colors[i]),
//Get label value from the label value provided by the Feature Layer
//Stats
 label: classBreakInfo.label
 });
 });

//Define Default renderer symbol
var symbol = new SimpleFillSymbol();
symbol.setColor(new Color([255, 0, 0]));
symbol.setOutline(new SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID,
new Color([0, 0, 0]), 0.5));

var colorBreakRenderer = new ClassBreaksRenderer(symbol);

//Set the color stops to the stops property to setColorInfo method of

Map Analytics and Visualization Techniques

[188]

//the renderer
colorBreakRenderer.setColorInfo({
 field:"MEDHINC_CY",
 stops: colorStops
 });
});

Chapter 7

[189]

opacityInfo
opacityInfo is an object that defines how a feature's opacity is calculated.
The opacityInfo object can be used to set the opacity levels for the classes in a
ClassBreaksRenderer. The opacityInfo object can also be used to set a continuous
opacity renderer.

Similar to the colorInfo object, you can either specify the opacity values as an array
along with the minimum and maximum data value, or you can define the stops
object within which you can define the opacity value.

Using opacityInfo to create a continuous renderer:

var minOpacity = 0.2;
var maxOpacity = 1;

var opacityInfo = {
 field: "DIVINDX_CY",
 minDataValue: 0,
 maxDataValue: 100,
 opacityValues: [minOpacity, maxOpacity]
};

Using opacityInfo to create a classes opacity
renderer
Let's use the opacityInfo to render another field representing the diversity Index
of each county. The diversity index measures diversity on a scale from 0 to 100.
The diversity index, an Esri proprietary index, is defined as the likelihood that two
persons, selected at random from the same area, would belong to a different race or
ethnic group. The diversity index measures only the degree of diversity in an area,
not its racial composition.

Our objective is to display the counties with a higher diversity index with higher
opacity values, and counties with a lesser diversity index with lesser opacity values.
The opacity values can be broken between a minimum and maximum value by using
the following snippet:

var opacity = minOpacity + i * maxOpacity / (opacity_stat_result.
classBreakInfos.length - 1);

Map Analytics and Visualization Techniques

[190]

In the previous snippet, opacity_stat_result is the promise result of the
getClassBreaks() method of the FeatureLayerSatistics module:

var featureLayerStatsParams_opacity = {
 field: "DIVINDX_CY",
 classificationMethod: selectedClassificationMethod, //standard-
deviation, equal-interval, natural-breaks, quantile and standard-
deviation
 numClasses: 5
};

var opacity_stats_promise = featureLayerStats.getClassBreaks(featureLa
yerStatsParams_opacity);
opacity_stats_promise.then(function (opacity_stat_result) {

 var opacityStops = [];
 array.forEach(opacity_stat_result.classBreakInfos, function
(classBreakInfo, i) {
 var minOpacity = 0;
 var maxOpacity = 1;
//Calculate opacity by dividing between
 var opacity = minOpacity + i * maxOpacity / (opacity_stat_result.
classBreakInfos.length - 1);
 opacityStops.push({
 value: classBreakInfo.maxValue,
 opacity: opacity
 });
 });

var symbol = new SimpleFillSymbol();
symbol.setColor(new Color([255, 0, 0]));
var opacityBreakRenderer = new ClassBreaksRenderer(symbol);
opacityBreakRenderer.setOpacityInfo({
 field:"MEDHINC_CY",
 stops: stops
});

CountyDemogrpahicsLayer.setRenderer(opacityBreakRenderer);
CountyDemogrpahicsLayer.redraw();

Chapter 7

[191]

SizeInfo
The SizeInfo object defines the size of the symbol where feature size is proportional
to data value.

The API help page mentions that the symbol size can represent two different types
of data—distance and non-distance. The distance data type refers to the actual
distance on the field, and the non-distance data type refers to the cartographic size of
the symbols. Representing the tree canopy using the sizeInfo based on the actual
diameter of the canopy is an example of distance data-type. Representing the size
of the roads based on the traffic density or size of the states based on the population
density or median income enhances the cartographic presentation of the feature.

RotationInfo
RotationInfo can be used to define how marker symbols are rotated. RotationInfo
can be used to depict wind direction, vehicle heading, and so on. A field specifying
the rotation angle must be present to define the RotationInfo. There are two types
of rotation angle units allowed. They are:

• geographic: This represents angles from the geographic north in a clockwise
direction. Wind speeds and car directions are normally expressed in
geographic angles.

• arithmetic: This represents angles measured in an anticlockwise direction.

Map Analytics and Visualization Techniques

[192]

The following diagram shows the difference between geographic and arithmetic
angles:

Multivariate mapping
So far, we have been discussing rendering features using a single field name or
variable. And we have also been discussing the various visual variables that can be
used to render features such as color, opacity, size, rotation, and so on. What if we
could combine the visual variables and render features based on more than one field
value?

As an example, when mapping at county level, we may consider using color to
represent population density, opacity to indicate median household income, and size
to indicate the percentage of federal spending on education, which is normalized
by the population field. The number of fields we choose to use is limited to the four
visual variables, namely: color, opacity, size, and rotation.

Multivariate mapping is enabled by a property known as visualVariables in
ClassBreaksRenderer. Let's try to use two visual variables, namely colorInfo and
opacityInfo, which we used to demonstrate two different demographic parameters,
namely median household income and diversity index. Our current objective would
be to represent median house income using color, and at the same time determine
the opacity value of the features based on the diversity index:

function applySelectedRenderer(selectedClassificationMethod) {
 var featureLayerStatsParams_color = {
 field: "MEDHINC_CY",

Chapter 7

[193]

 classificationMethod: selectedClassificationMethod, //
standard-deviation, equal-interval, natural-breaks, quantile and
standard-deviation
 numClasses: 5
 };
 var featureLayerStatsParams_opacity = {
 field: "DIVINDX_CY",
 classificationMethod: selectedClassificationMethod, //
standard-deviation, equal-interval, natural-breaks, quantile and
standard-deviation
 numClasses: 5,
 //normalizationField: 'TOTPOP_CY'
 };

 var color_stats_promise = featureLayerStats.getClassBreaks(fea
tureLayerStatsParams_color);
 var opacity_stats_promise = featureLayerStats.getClassBreaks(f
eatureLayerStatsParams_opacity);
 all([color_stats_promise, opacity_stats_promise]).
then(function (results) {
 var color_stat_result = results[0];
 var opacity_stat_result = results[1];

 var colorStops = [];
 var colors = ['#d7191c', '#fdae61', '#ffffbf', '#abd9e9',
'#2c7bb6'];
 array.forEach(color_stat_result.classBreakInfos,
 function (classBreakInfo, i) {
 colorStops.push({
 value: classBreakInfo.maxValue,
 color: new Color(colors[i]),
 label: classBreakInfo.label
 });
 });
 var opacityStops = [];
 array.forEach(opacity_stat_result.classBreakInfos,
 function (classBreakInfo, i) {
 var minOpacity = 0;
 var maxOpacity = 1;
 var opacity = minOpacity + i * maxOpacity /
 (opacity_stat_result.classBreakInfos.length - 1);
 opacityStops.push({
 value: classBreakInfo.maxValue,
 opacity: opacity
 });

Map Analytics and Visualization Techniques

[194]

 });

 var visualVariables = [
 {
 "type": "colorInfo",
 "field": "MEDHINC_CY",
 "stops": colorStops
 }

 ,
 {
 "type": "opacityInfo",
 "field": "DIVINDX_CY",
 "stops": opacityStops
 }

];
 console.log(JSON.stringify(visualVariables));
 var symbol = new SimpleFillSymbol();
 symbol.setColor(new Color([0, 255, 0]));
 symbol.setOutline(new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([0, 0, 0]), 0.5));

 var colorBreakRenderer = new
 ClassBreaksRenderer(symbol);
 colorBreakRenderer.setVisualVariables(visualVariables);
 CountyDemogrpahicsLayer.setRenderer(colorBreakRenderer);
 CountyDemogrpahicsLayer.redraw();
 legend.refresh();
 });
 }

Chapter 7

[195]

Map Analytics and Visualization Techniques

[196]

Smart mapping
With the knowledge of all these statistics, it's time to go smart with mapping using the
smart mapping module provided by the API. Imagine a module that can automatically
call the renderer parameters on its own given a few basic inputs, such as the feature
layer on which the renderer needs to be generated and the classification method.

Module name: esri/renderers/smartMapping

The smart mapping module provides several methods, each of which produces a
renderer. The renderers that the smart mapping module can produce are:

• Color-based classed renderer
• Size-based classed renderer
• Type-based renderer
• Heat map renderer

Smart mapping even takes care of the rendering based on the Basemap. For example,
a certain color or opacity renderer works well with a darker-themed Basemap such
as satellite, and certain renderers work well with a light-themed Basemap such as
street maps.

With three simple steps, you can let the API decide the color scheme and create the
classes color renderer for you:

• Construct a schemes object from the Esri styles choropleth module
(import esri/styles/choropleth)

• Construct a classed color parameter object with the following properties:
 ° basemap

 ° classificationMethod

 ° layer

 ° field

 ° scheme—choose the primaryScheme property from the schemes
object constructed earlier

 ° numClasses

• Assign a classed color parameter object as a parameter to the
createClassedColorRenderer() method belonging to the smart
mapping module

Chapter 7

[197]

• Assign the renderer property returned by the smart mapping method to the
feature layer's setRenderer() method as a parameter

• Redraw the feature layer and refresh the legend object

The following code explains how smart mapping can be used to create a classed
color renderer:

//Call this function with the classification method as input
function applySmartRenderer(selectedClassificationMethod) {

//Create a scheme object assigning a theme
var schemes = esriStylesChoropleth.getSchemes({
 //The following options are available for theme:
 // high-to-low, above-and-below, centered-on, or extremes.
 theme: "high-to-low",
 basemap: map.getBasemap(),
 geometryType: "polygon"
});
console.log(JSON.stringify(schemes));

//Create a classed color Render Parameter object
var classedColorRenderParams = {
 basemap: map.getBasemap(),
 classificationMethod: selectedClassificationMethod,
 field: 'MEDHINC_CY',
 layer: CountyDemogrpahicsLayer,
 scheme: schemes.primaryScheme,
 numClasses: 5
};

SmartMapping.createClassedColorRenderer(classedColorRenderParams).
then(function (result) {
 CountyDemogrpahicsLayer.setRenderer(result.renderer);
 //Redraw the feature layer
 CountyDemogrpahicsLayer.redraw();
 //Update the legend
 legend.refresh();
}).otherwise(function (error) {
 console.log("An error occurred while performing%s, Error: %o",
"Smart Mapping", error);
});

The following screenshots show the classed color renderer created using the smart
mapping module for four different classifications, namely equal interval, natural
breaks, quantile, and standard deviation. The user's discretion is used to decide
which would serve as the best classification method based on the purpose of
mapping the data, and also the audience.

Map Analytics and Visualization Techniques

[198]

We can manually define the color scheme by editing the scheme object, which is a
property in the parameter object for the createClassedColorRenderer() method.

Chapter 7

[199]

Summary
We are one step closer to becoming a map data scientist. We covered a lot of ground
in this chapter, starting with a brush up of a few introductory statistics concepts. We
then saw the code in action in how a statistics definition and feature layer statistics
module can give us invaluable statistic measures that can be used to render the
map data meaningfully. We then evaluated how to use the visual variables such as
colorInfo, opacityInfo, rotationInfo, and sizeInfo effectively in a renderer.
We also tried to combine these visual variables and performed a multivariate
rendering. And, finally, we tried our hands at automatic rendering using the smart
mapping module. In the next chapter, we will be dealing with charts and other
advanced visualization techniques to provide analytical information to the users.

[201]

Advanced Map Visualization
and Charting Libraries

Rendering on a map may not be the only way to visualize spatial data. To put the
data into perspective, we may have to resort to non-spatial analytics and charting
capabilities provided by dojo and other popular libraries to complement the spatial
visualization capabilities of the map. In this chapter, we are going to extend the
Demographics Analytic Portal we started building in the last chapter with the
aid of charting libraries and other visualization methods such as data clustering.
This chapter deals with the following major topics:

• Charting with dojo
• Charting with D3 library
• Charting with Cedar

Charting with dojo
The ArcGIS API is well integrated for charting with dojo. The charting capabilities
are provided by the experimental modules of dojo, hence the name dojox, for which
the x refers to the experimental nature of the modules . Yet these modules are stable
enough to be integrated into any production environment. The following modules
are considered the bare minimum modules for developing charting functionality
with dojo:

• dojox/charting

• dojox/charting/themes/<themeName>

• dojox/charting/Chart2D

• dojox/charting/plot2d/Pie

Advanced Map Visualization and Charting Libraries

[202]

Dojo chart themes
The dojox charting library provides a lot of themes, and a theme name must be
selected among the list of themes provided by dojox. A list of all themes provided
by dojox is found under the following URL: http://archive.dojotoolkit.org/
nightly/dojotoolkit/dojox/charting/tests/theme_preview.html

Themes provided by dojox charting library are as follows:

Julie
ThreeD
Chris
Tom
Claro
PrimaryColors
Electric
Charged
Renkoo
Adobebricks
Algae
Bahamation
BlueDusk

Desert
Distinctive
Dollar
Grasshopper
Grasslands
GreySkies
Harmony
IndigoNation
Ireland
MiamiNice
Midwest
Minty
PurpleRain

CubanShirts
RoyalPurples
SageToLime
Shrooms
Tufte
WatersEdge
Wetland
PlotKit.blue
PlotKit.cyan
PlotKit.green
PlotKit.orange
PlotKit.purple
PlotKit.red

http://archive.dojotoolkit.org/nightly/dojotoolkit/dojox/charting/tests/theme_preview.html
http://archive.dojotoolkit.org/nightly/dojotoolkit/dojox/charting/tests/theme_preview.html

Chapter 8

[203]

The ideal location to test these different chart themes is at http://archive.
dojotoolkit.org/nightly/dojotoolkit/dojox/charting/tests/test_themes.
html?Julie.

http://archive.dojotoolkit.org/nightly/dojotoolkit/dojox/charting/tests/test_themes.html?Julie
http://archive.dojotoolkit.org/nightly/dojotoolkit/dojox/charting/tests/test_themes.html?Julie
http://archive.dojotoolkit.org/nightly/dojotoolkit/dojox/charting/tests/test_themes.html?Julie

Advanced Map Visualization and Charting Libraries

[204]

Charting using the popup template
Basic charting capabilities can be displayed in the popup of the feature layer using
the mediaInfos property of the popup template. We will use the county-level
demographics feature layer we used in the last chapter to create this chart. We are
interested in the following fields:

Fields Description
NAME Name of the county
STATE_NAME Name of the state
TOTPOP_CY Total population count for the county
MEDHINC_CY Median household income of the county
DIVINDX_CY Diversity index calculated for the county
WHITE_CY Count of white males and females
BLACK_CY Count of black males and females
AMERIND_CY Count of American Indians (male and female)
ASIAN_CY Count of Asians (male and female)
PACIFIC_CY Count of Pacific Islanders (male and female)
OTHRACE_CY Count of other races (male and female)

Creating a mediaInfos object involves constructing a fieldInfos object if we need
to change the field names, or give an alias to them in the chart. The mediaInfos
object accepts a theme property. Mention one of the dojo charting theme names or a
custom theme created by you:

var template = new PopupTemplate({
 title: "USA Demograpahics",
 description: "Median household income at {NAME}, {STATE_NAME} is
${MEDHINC_CY}",
 //define field infos so we can specify an alias in the chart
 fieldInfos: [
 {
 fieldName: "WHITE_CY",
 label: "White Americans"
 },
 {
 fieldName: "BLACK_CY",
 label: "Blacks"
 },
 {
 fieldName: "AMERIND_CY",
 label: "American Indians"

Chapter 8

[205]

 },
 { fieldName: "ASIAN_CY",
 label: "Asians"
 },
 {
 fieldName: "PACIFIC_CY",
 label: "Pacific Islanders"
 },
 {
 fieldName: "OTHRACE_CY",
 label: "Other Race Count"
 }
],
 mediaInfos: [{ //define the bar chart
 caption: "",
 type: "piechart", // image, piechart,
barchart,columnchart,linechart
 value:
 {
 theme: "Dollar",
 fields: ["WHITE_CY", "BLACK_CY", "AMERIND_CY", "ASIAN_CY",
"PACIFIC_CY", "OTHRACE_CY"]
 }
 }]
});

Advanced Map Visualization and Charting Libraries

[206]

Types of 2D charts provided by dojox
modules
We have seen a pie chart in action. Let's discuss some more chart types provided by
the dojox module and the utility of some of the more popular chart types. Notice
the difference between chart types such as Bars and Columns, as well as Scatter and
MarkersOnly.

Chart type Description
Areas Area under data line(s) will be filled
Bars Refers to horizontal bars
ClusteredBars Horizontal bars with grouped data sets
ClusteredColumns Vertical bars with grouped data sets
Columns Refers to charts with vertical bars
Grid For adding a grid layer to your chart
Lines Basic line chart
Markers Line chart with data points marked
MarkersOnly Only data points are shown
Pie Represents the distribution of data by representing it on a

circular dias
Scatter Used to plot data
Stacked Data sets charted in relation to the previous data set
StackedAreas Stacked data sets with filled areas under chart lines
StackedBars Stacked data sets with horizontal bars
StackedColumns Stacked data sets with vertical bars
StackedLines Stacked data sets using lines

Dojo charting methods
The charting module has four important methods that will help us create a chart.
They are:

• addPlot(): Defines the type of chart and other ancillary properties that
define the chart.

• setTheme(): Lets us set a dojo theme to the chart. The themes can be
customized too.

• addSeries(): Defines the data used by the chart.
• render(): Renders the chart.

Chapter 8

[207]

Defining your plot
Using the addPlot() method you can define your plot. The plot accepts a name and
an argument array:

var chart1 = new Chart2D(chartDomNode);
chart1.addPlot("default", plotArguments);

Let's see what constitutes the plotArguments object. The properties of the
plotArguments vary based on the type of chart we choose to use. If we choose
a chart type that uses a line, area, or data points to define the data, properties
such as line, areas, or markers should be set to a Boolean value. The lines option
determines whether or not lines are used to connect your data points. If the areas
type is selected, the area below your data line will be filled. The markers option will
determine whether markers are placed at your data points.

The plotArguments can accept the following properties:

• type: The type of chart to be rendered
• lines: Boolean to indicate whether the chart data needs to be enclosed

by lines
• areas: Boolean value to indicate whether the data is enclosed by an area
• markers: Boolean value which determines whether markers are placed at

data points

For chart types such as StackedLines or StackedAreas, we can use properties such
as tension and shadows to enhance the visualization of the chart. Tension smooths
the lines connecting the data points, and the shadows property will add shadows to
the lines. The shadow property itself is an object that accepts three properties named
dx, dy, and dw, which define what should be the x offset, y offset, and width of the
shadow line:

chart1.addPlot("default", {type: "StackedLines", lines: true, markers:
false, tension : 3, shadows: {dx:2, dy: 2, dw: 2}});

When rendering a bar chart, use the gap property to represent the number of pixels
between bars:

chart1.addPlot("default", {type: "Bars", gap: 3});

Defining the theme
Using the list of themes mentioned earlier, we can set the theme for our chart using
the setTheme() method:

chart.setTheme(dojoxTheme);

Advanced Map Visualization and Charting Libraries

[208]

Pushing the data
We can push the data into a chart using the addSeries() method:

chart.addSeries("PopulationSplit", chartSeriesArray);

The addSeries() method accepts two arguments. The first argument mentions a
name for the data and the second argument. The second argument is an array object
that holds the actual data. It can be one-dimensional data such as [10,20,30,40,50]
or two-dimensional data, in which case the x and y properties of the data can be
mentioned:

chart.addSeries("Students",[
{x: 1, y: 200 },
{x: 2, y: 185 }
]
});

The x component can be omitted if it is a pie chart.

Chart plugins
There are a few plugins that can be added to the chart module of dojo that add value
to the charting functions. These plugins provide interactivity to the chart data and
most of the plugins reveal extra information about the data item or emphasize the
data item being hovered upon. Some provide an overall sense of the data with the
aid of visualization elements such as a legend. Some of the functions accomplished
by the plugins are:

• Adding a tooltip to the chart
• Moving the pie slice and magnifying it
• Adding a legend
• Highlighting the data item

Plugin modules such as dojox/charting/widget/Legend provide support from the
Legend widget. The dojox/charting/action2d/Tooltip module supports tooltip
support on chart data. Including the dojox/charting/action2d/Magnify module
will magnify the chart data being hovered upon, giving greater interactivity with the
chart. The dojox/charting/action2d/MoveSlice module treats the chart data as a
slice and shifts the locations of the chart data being hovered upon. This, along with
the Magnify plugin, helps us to effectively give a sense of user interactivity with the
chart data. The dojox/charting/action2d/Highlight module highlights the data
being hovered upon with a different highlight color such as cyan.

Chapter 8

[209]

Implementing the plugin is very easy too. The following lines of code implements
the plugins such as Highlight, Tooltip, and MoveSlice on the dojo chart object:

new Highlight(chart, "default");
new Tooltip(chart, "default");
new MoveSlice(chart, "default");

Let's create a complete chart in a dynamic div on the infotemplate property of the
feature layer.

We will use the county-level demographics feature layer for this demonstration too.
Our objective is to create a pie chart to display the racial distribution of any county
that we click. We would be calling a function to create the Infowindow content for
each feature dynamically:

var template = new InfoTemplate();
template.setTitle("${STATE_NAME}");

//Get the info template content from the getWindowContent function
template.setContent(getWindowContent);

var statesLayer = new FeatureLayer("http://demographics5.arcgis.
com/arcgis/rest/services/USA_Demographics_and_Boundaries_2015/
MapServer/15", {
 mode: FeatureLayer.MODE_ONDEMAND,
 infoTemplate: template,
 outFields: ["NAME", "STATE_NAME", "TOTPOP_CY", "MEDHINC_CY",
"DIVINDX_CY", "WHITE_CY", "BLACK_CY", "AMERIND_CY", "ASIAN_CY",
"PACIFIC_CY", "OTHRACE_CY"]
});

In the function that returns the Infotemplate content, we will do the following:

1. Create a Tab container that will contain two content panes.
2. The first content will display details about the county being selected and the

Median Household Income data.
3. The second content pane will contain the dojo pie chart.
4. Before rendering the pie chart, we shall calculate the percentage of each racial

group against the total population.
5. Also, we shall assign a label for each racial group. This label will be used

while using the legend.
6. Also, pie chart data objects accept a tooltip property where we will mention

the label along with the data value.
7. We will try to use the chart plugins such as Highlight, Tooltip, and

Moveslice to highlight the selected sub data item.

Advanced Map Visualization and Charting Libraries

[210]

Now let's try to implement these steps in the code. We will write a function that
constructs the chart and returns the chart content as a dom element. We will use the
setContent() method of the infotemplate to set the dom element returned by the
following function:

function getWindowContent(graphic) {
 // Make a tab container.
 var tc = new TabContainer({
 style: "width:100%;height:100%;"
 }, domConstruct.create("div"));

// Make two content panes, one showing Median household income
//details. And the second showing the pie chart

 var cp1 = new ContentPane({
 title: "Details",
 content: "<a target='_blank' href='http://en.wikipedia.org/wiki/"
+ graphic.attributes.NAME + "'>Wikipedia Entry
" + "

Total Population: " + graphic.attributes.TOTPOP_CY + "
 Median
House Income: $" + graphic.attributes.MEDHINC_CY
 });
 // Display a dojo pie chart for the racial distribution in %
 var cp2 = new ContentPane({
 title: "Pie Chart"
 });
 tc.addChild(cp1);
 tc.addChild(cp2);

 // Create the chart that will display in the second tab.
 var c = domConstruct.create("div", {
 id: "demoChart"
 }, domConstruct.create("div"));
 var chart = new Chart2D(c);
 domClass.add(chart, "chart");

 // Apply a color theme to the chart.
 chart.setTheme(dojoxTheme);

 chart.addPlot("default", {
 type: "Pie",
 radius: 70,
 htmlLabels: true
 });
 tc.watch("selectedChildWidget", function (name, oldVal, newVal) {
 if (newVal.title === "Pie Chart") {
 chart.resize(180, 180);
 }
 });

Chapter 8

[211]

 // Calculate percent of each ethnic race
 //"WHITE_CY", "BLACK_CY", "AMERIND_CY", "ASIAN_CY", "PACIFIC_CY",
"OTHRACE_CY"
 var total = graphic.attributes.TOTPOP_CY;
 var white = {
 value: number.round(graphic.attributes.WHITE_CY / total * 100, 2),
 label: "White Americans"
 };
 var black = {
 value: number.round(graphic.attributes.BLACK_CY / total * 100, 2),
 label: "African Americans"
 };
 var AmericanIndians = {
 value: number.round(graphic.attributes.AMERIND_CY / total * 100,
2),
 label: "American Indians"
 };
 var Asians = {
 value: number.round(graphic.attributes.ASIAN_CY / total * 100, 2),
 label: "Asians"
 }
 var Pacific = {
 value: number.round(graphic.attributes.PACIFIC_CY / total * 100,
2),
 label: "Pacific Islanders"
 };
 var OtherRace = {
 value: number.round(graphic.attributes.OTHRACE_CY / total * 100,
2),
 label: "Other Race"
 };
 var chartFields = [white, black, AmericanIndians, Asians, Pacific,
OtherRace];
 var chartSeriesArray = [];
 array.forEach(chartFields, function (chartField) {
 var chartObject = {
 y: chartField.value,
 tooltip: chartField.label + ' : ' + chartField.value + ' %',
 text: chartField.label
 }
 chartSeriesArray.push(chartObject);

 });

 chart.addSeries("PopulationSplit", chartSeriesArray);
 //highlight the chart and display tooltips when you mouse over a
slice.
 new Highlight(chart, "default");

Advanced Map Visualization and Charting Libraries

[212]

 new Tooltip(chart, "default");
 new MoveSlice(chart, "default");

 cp2.set("content", chart.node);
 return tc.domNode;
}

When this code is implemented, we will get a popup after we click on any county.
The popup contains two tabs—the first tab gives details about the Total Population
of the tab and the Median Household Income in that county. The title for the entire
popup will mention the county name and the state name. The contents of the first tab
will have a dynamically generated Wikipedia link to the county and state.

The first tab of the pop-up container is shown in the following screenshot:

The second tab in the popup shows the dojo chart. We have a legend element for the
chart. When we hover over any of the data in the pie chart, it is sliced, magnified a
bit, and highlighted.

Chapter 8

[213]

Charting with D3.js
D3.js is a JavaScript library for manipulating documents based on data. D3 stands for
data-driven documents and this library provides powerful visualization components
and a data-driven approach to DOM manipulation.

To use D3 in our JavaScript application, we can download the library from the D#
website found at http://d3js.org/.

Or we can use the CDN in our script tag:

<script src="//d3js.org/d3.v3.min.js" charset="utf-8"></script>

A more dojo-centric approach would be to add this as a package in the dojoconfig
and use it as a module in the define function.

Here is a snippet to add D3 as a package to the dojoConfig:

var dojoConfig = {
 packages:
 [
 {
 name: "d3",
 location: "http://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5",

http://d3js.org/

Advanced Map Visualization and Charting Libraries

[214]

 main: "d3.min"
 }
]
};

Using d3 library as in the define function:

define([
 "dojo/_base/declare",
 "d3",
 "dojo/domReady!"
],
function
(
 declare,
 d3
)
{
 //Keep Calm and use D3 with dojo
});

Creating a column chart with D3
Let's create a column chart with D3 using the county-level demographics data. Our
objective is to use the column chart to display four measures of Median Household
Income centered upon the Median Household Income of the county of interest.
The four measures are:

• The National Minimum or value at 5th percentile (Average—three
Standard Deviation)

• The Median Household Income of the county being clicked
• The National Average value for Median Household Income
• The National Maximum or value at the 95th percentile

Chapter 8

[215]

The following image is a mock-up of how we intend to build our chart:

There are several reasons why we have chosen to demonstrate constructing this
chart using D3. D3 is entirely data driven, and hence flexible, especially for data
visualization. Many visualization libraries are built on top of D3 and a knowledge
of D3 will even help us build intuitive charts and data visualizations.

D3 selections
D3 works on selections. The selections in D3 are very similar to jQuery selections.
To select the body tag, all you have to do is declare:

d3.select("body")

To select all div tags with a particular style class named chart, use the
following snippet:

d3.select(".chart").selectAll("div")

To append an svg (scalable vector graphic) tag or any other HTML tag to a div
or the body tag, use the append method. The SVG element is used to render most
graphic elements:

d3.select("body").append("svg")

Advanced Map Visualization and Charting Libraries

[216]

Use it along with an enter() method to indicate that the element accepts the input:

d3.select("body").enter().append("svg")

D3 data
D3 is driven by data as its name suggests. All we need to render a simple chart is to
feed data to the D3 selection. Data can be as simple as an array:

var data = [45, 87, 15, 16, 23, 11];

 var d3Selection = d3.select(".chart").selectAll("div").data(data).
enter().append("div");

 d3Selection.style("width", function (d) {
 return d * 3 + "px";
 }).text(function (d) {
 return d;
 });

All we are doing in the previous snippet is we are setting the width property for the
style object of the D3 selection. And we get this:

The width value of each div in pixels is taken from the value of each element in the
data array multiplied by 20, and the text value within the bar is again taken from the
value of the individual data. There's something that needs to be done before, to get
this beautiful chart—we need to set the CSS styling for the div. Here's a simple CSS
snippet we used:

.chart div {
 font: 10px sans-serif;
 background-color: steelblue;

Chapter 8

[217]

 text-align: right;
 padding: 3px;
 margin: 1px;
 color: white;
}

D3 scaling
In the previous snippet to show a simple D3 chart, we used a multiplicand value
of 20 with each value of the data to get the pixel value for the div width. Since our
container div was around 400 pixels wide, this multiplicand value was fine. But
what multiplicand value should we use for a dynamic data? The rule of thumb is
that we should use some kind of scaling mechanism to scale the pixel values so that
our maximum-most data value fits inside the chart container div comfortably. D3
provides a mechanism to scale our data and calculate the scaling factor, which we
use to conveniently scale our data.

D3 provides a scale.linear() method to calculate the scaling factor. Additionally,
we need to use two more methods, namely domain() and range(), to actually
calculate the scaling factor. The domain() method accepts an array with two
elements. The first element should mention the minimum-most data value or 0
(whichever is appropriate) and the second element should mention the maximum-
most value of the data. We can use the D3 function d3.max to find the maximum
value of the data:

d3.max(data)

The range function also accepts an array with two elements, which should list the
pixel range of the container div element:

var x = d3.scale.linear()
 .domain([0, d3.max(data)])
 .range([0, 750]);

Once we find the scaling factor x, we can use this as the multiplicand for the data
item value to derive the pixel value:

d3.select(".chart").selectAll("div").data(data)
 .enter().append("div").style("width", function (d) {
 return x(d) + "px";
 }).text(function (d) {
 return d;
 });

Advanced Map Visualization and Charting Libraries

[218]

Integrating SVG into D3 charts
SVG, though intimidating in its entirety, offers several advantages while working
with data visualizations, and supports a lot of primitive shapes to be rendered in
HTML. One key thing to be noted is that the SVG coordinate system starts from
the top-left corner and we need to bear this is mind while calculating the desired
positions of our elements.

Appending an SVG element is similar to appending a div to our chart class:

var svg = d3.select(".chart").append("svg")
 .attr("width", 500)
 .attr("height", 500)
 .append("g")
 .attr("transform", "translate(20,20)";

In the previous snippet, we can actually set the styling and other attributes such as
width and height. transform is an important property by which we can move the
position of the svg element (remember the SVG coordinate system origin is in the
top-left corner).

Since we will be constructing a column chart, the first element in the array accepted
by the range() method while calculating D3 linear scaling should not be the
minimum-most value, but rather the maximum height value in pixels. The second
element in the array is the minimum pixel value:

 var y = d3.scale.linear()
 .range([700, 0]);

Chapter 8

[219]

Conversely, the x scaling factor should be based on an ordinal scale (meaning, we
don't use numbers to calculate the width and spacing of the bars):

var x = d3.scale.ordinal()
 .rangeRoundBands([0, width], .1);

From the feature statistics module we have discussed earlier, we should be able to
get the mean and standard deviation of a particular field in the feature layer.

From the previous two pieces of information, we know how to calculate the 2.5th
percentile (bottom 2.5% income) and 97.5th percentile (top 2.5% income level). We
intend to compare the Median Household Income of the selected feature along with
these values. The formula to calculate the 2.5th and 97.5th percentile is shown as follows:

1st percentile = mean - 2,33 * SD 99th percentile = mean + 2,33 * SD
2.5th percentile = mean - 1.96 * SD 97.5th percentile = mean + 1.96 * SD
5th percentile = mean - 1.65 * SD 95th percentile = mean + 1.65 * SD

From previous statistic computations, we know the following data:

mean = $46193
SD = $12564

We need the 2.5th and 97.5th percentile which can be calculated as follows:

2.5th percentile value = mean – 1.96 * SD
 = 46193 – 1.96*(12564)
 = 21567.56

And for the 97.5th:

97.5th percentile = mean + 1.96 * SD
 = 46193 + 1.96*(12564)
 = 70818.44

So, this is going to be the data for our chart:

var data = [
 {
 "label": "Top 2.5%ile",
 "Income": 70818
 },
 {
 "label": "Bottom 2.5%ile",
 "Income": 21568

Advanced Map Visualization and Charting Libraries

[220]

 },
 {
 "label": "National Avg",
 "Income": 46193
 },
 {
 "label": "Selected Value",
 "Income": 0
 }
];

The Income value for the Selected Value label is set to 0. This value will be
updated as we click a feature in the feature class. We will also define a margin
object as well as width and height variables for use in our chart. The margin object
we defined looked like this:

 var margin = {
 top: 20,
 right: 20,
 bottom: 30,
 left: 60
 },
 width = 400 - margin.left - margin.right,
 height = 400 - margin.top - margin.bottom;

While constructing the chart, we will be considering the following steps:

1. Determine the x scaling factor and y scaling factor.
2. Define the x and y axes.
3. Clear all the existing contents of the div with a chart class.
4. Define the x and y domain values based in the margin object, as well as

width and height values.
5. Define the SVG element that would hold our chart.
6. Add the axes as well as the chart data as rectangle graphic elements

in the SVG.

We will write the functionality in a function, and call the function as needed:

function drawChart() {

// Find X and Y scaling factor

 var x = d3.scale.ordinal()
 .rangeRoundBands([0, width], .1);

Chapter 8

[221]

 var y = d3.scale.linear()
 .range([height, 0]);

 // Define the X & y axes

 var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom");

 var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(10);

 //clear existing
 d3.select(".chart").selectAll("*").remove();
 var svg = d3.select(".chart").append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," +
 margin.top + ")");

 // Define the X & y domains
 x.domain(data. map(function (d) {
 return d.label;
 }));
 y.domain([0, d3.max(data, function (d) {
 return d.population;
 })]);

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis);

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis)
 .append("text")
 .attr("transform", "translate(-60, 150) rotate(-90)")
 .attr("y", 6)
 .attr("dy", ".71em")

Advanced Map Visualization and Charting Libraries

[222]

 .style("text-anchor", "end")
 .text("Population");

 svg.selectAll(".bar")
 .data(data)
 .enter().append("rect")
 .attr("class", "bar")
 .style("fill", function (d) {
 if (d.label == "Selected Value")
 return "yellowgreen";
 })
 .attr("x", function (d) {
 return x(d.label);
 })
 .attr("width", x.rangeBand())
 .attr("y", function (d) {
 return y(d.population);
 })
 .attr("height", function (d) {
 return height - y(d.population);
 });
}

We can call the previous function on the feature layer click event. In our project,
the feature click event is defined in a separate file, and the D3 chart code is in a
separate file. So, we can send the click results through the dojo topic:

//map.js file

define("dojo/topic",..){
on(CountyDemogrpahicsLayer, "click", function(evt){
 topic.publish("app/feature/selected", evt.graphic);
 });
}

The result can be accessed in any other file by using the subscribe() method under
the topic module. In the previous snippet, the result can be accessed by referring to
the name called app/feature/selected:

//chart_d3.js file

topic.subscribe("app/feature/selected", function () {
 var val = arguments[0].attributes.MEDHINC_CY;
 var title = arguments[0].attributes.NAME + ', ' +
 arguments[0].attributes.STATE_NAME;;

Chapter 8

[223]

 array.forEach(data, function (item) {
 if (item.label === "Selected Value") {
 item.Income = val;
 }
 });

 drawChart(title);
 console.log(JSON.stringify(data));
 });

The following screenshot is a representation of the output of our code. The D3 chart
represents a typical column chart with four columns. The first three data values are
static as per our code, because we can compute the top and bottom 2.5th percentile
as well as the national average from the feature layer data. The last column is the
actual value of the selected feature in the feature layer. In the following snapshot we
have clicked in Nassau county in New York state and the data value is a bit above
$100,000, which is well above the top 2.5th percentile mark:

Advanced Map Visualization and Charting Libraries

[224]

In the following screenshot, we have selected one of the counties with the least
Median Household Income. Notice how the Y axis re-calibrates itself based on the
maximum value of the data.

Charting with D3 using SVG components can be cumbersome, but a basic knowledge
of these will go a long way when we need to do high-level customizations.

Charting with Cedar
Cedar is a beta versioned library provided as an open source by Esri to create and
share data visualizations based on ArcGIS Server data. It is built upon the D3 and
Vega graphics libraries themselves. Cedar lets us create efficient data visualizations
and charts using a simple template.

Loading Cedar libraries
We can load Cedar using two methods. We either use the script tags or use the AMD
pattern. The latter method is preferred.

Chapter 8

[225]

Loading using the script tags
Load Cedar and its dependencies by including script tags. This will make the Cedar
global available to our application:

<script type="text/javascript" src="http://cdnjs.cloudflare.com/ajax/
libs/d3/3.5.5/d3.min.js"></script>
<script type="text/javascript" src="http://vega.github.io/vega/vega.
min.js"></script>
<script type="text/javascript" src="https://rawgit.com/Esri/cedar/
master/src/cedar.js"></script>

<script>
 var chart = new Cedar({"type": "bar"});
 ...
</script>

Loading using the AMD pattern
Alternatively, we can use the dojo loader, which is bundled with the ArcGIS API for
JavaScript, to load Cedar and its dependencies by declaring them as packages:

var package_path = window.location.pathname.substring(0, window.
location.pathname.lastIndexOf('/'));
var dojoConfig = {
packages: [{
 name: "application",
 location: package_path + '/js/lib'
 },
 {
 name: "d3",
 location: "http://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5",
 main: "d3.min"
 },
 {
 name: 'vega',
 location: 'http://vega.github.io/vega/',
 main: 'vega.min'
 }, {
 name: 'cedar',
 location: package_path + '/js/cedar',
 main: 'cedar'
 }]
};

Advanced Map Visualization and Charting Libraries

[226]

The dojo packages expect a set of Cedar library files at the /js/cedar location.
We can download the required files from the following github repository found
at https://github.com/Esri/cedar/tree/develop/src.

We need all the files found at the previously mentioned URL. Place these files in the
/js/cedar folder in the application.

We can now load the Cedar module within our own define function as demonstrated
in the following snippet:

define([
 "cedar",
 "dojo/domReady!"
], function (Cedar)
{
 var chart = new Cedar({
 ...

 });

 chart.show({
 elementId: "#cedarchartdiv",
 width: 900
 });
});

https://github.com/Esri/cedar/tree/develop/src

Chapter 8

[227]

To create a simple chart, all we need to define are two properties:

• type—defines the type of chart we are trying to construct (bar, bubble,
scatter, pie, and so on).

• dataset—defines where the data should come from; this can be either from a
URL or values (array). The dataset also accepts properties such as query and
mappings.

• The mappings property of the dataset defines the objects required to render
the map. The specifications for the corresponding type of chart can be found
at /js/cedar/charts/<chart_type>.js.

For a bar chart, the mappings property requires two objects, x and y. Let's try to
create a summarization for our county demographics layer. Here we are trying to
summarize the average of the Median Household Income of all counties grouped by
state. The following simple code does all that and displays a simple bar chart:

var chart = new Cedar({
 "type": "bar",
 "dataset": {
 "url": "/proxy/proxy.ashx?http://demographics5.arcgis.com/arcgis/
rest/services/USA_Demographics_and_Boundaries_2015/MapServer/15",
 "query": {
 "groupByFieldsForStatistics": "ST_ABBREV",

//Find the average value of Median Household Income
 "outStatistics": [{
 "statisticType": "avg",
 "onStatisticField": "MEDHINC_CY",
 "outStatisticFieldName": "AVG_MEDHINC_CY"
 }]
 },
 "mappings": {
 "sort": "AVG_MEDHINC_CY",
 "x": {
 "field": "ST_ABBREV",
 "label": "State"
 },
 "y": {
 "field": "AVG_MEDHINC_CY",
 "label": "Avg. Median Household Income"
 }
 }
 }
});

Advanced Map Visualization and Charting Libraries

[228]

chart.tooltip = {
 "title": "{ST_ABBREV}",
 "content": "{AVG_MEDHINC_CY} population in {ST_ABBREV}"
}

//show the chart
chart.show({
 elementId: "#cedarchartdiv",
 width: 900
});

The previous lines of code are all that are needed to configure the Cedar library,
which provides us with this great visualization of the average income levels of all
states and arranged in ascending order.

This kind of chart gives us a holistic picture of the data. Let's get our hands dirty and
try to construct a scatter plot, which lets us map more than one variable.

Our objective is to map the income levels of all states along the X axis, and the
diversity index along the Y axis, coloring the data points differently according
to the state.

Chapter 8

[229]

The demographics URL for the State-level data is: http://demographics5.arcgis.
com/arcgis/rest/services/USA_Demographics_and_Boundaries_2015/
MapServer/21

The mapping object should have an extra parameter named color:

//Get data from the Query Task

var query = new Query();
var queryTask = new QueryTask("http://demographics5.arcgis.com/arcgis/
rest/services/USA_Demographics_and_Boundaries_2015/MapServer/21");
query.where = "1 = 1";
query.returnGeometry = false;
query.outFields = ["MEDHINC_CY", "DIVINDX_CY", "NAME", "TOTPOP_CY"];
queryTask.execute(query).then(function (data) {
 /*scatter*/
 var scatter_chart = new Cedar({
 "type": "scatter",
 "dataset": {
 "data": data,
 "mappings": {
 "x": {
 "field": "MEDHINC_CY",
 "label": "Median Houseold Income"
 },
 "y": {
 "field": "DIVINDX_CY",
 "label": "Diversity Index"
 },
 "color": {
 "field": "NAME",
 "label": "State"
 }
 }
 }
 });

 scatter_chart.tooltip = {
 "title": "{NAME}",
 "content": "Median Income:{MEDHINC_CY}
Diversity:{DIVINDX_CY}"
 }

 scatter_chart.show({
 elementId: "#cedarScatterPlotDiv",
 width: 870,
 height: 600
 });

http://demographics5.arcgis.com/arcgis/rest/services/USA_Demographics_and_Boundaries_2015/MapServer/21
http://demographics5.arcgis.com/arcgis/rest/services/USA_Demographics_and_Boundaries_2015/MapServer/21
http://demographics5.arcgis.com/arcgis/rest/services/USA_Demographics_and_Boundaries_2015/MapServer/21

Advanced Map Visualization and Charting Libraries

[230]

The following screenshot is the result of the implementation of the code given
previously. The chart produces a legend based on the value that is colored
differently. In our case, the different states are colored differently. This kind of
coloring would be more appropriate if the number of values being colored was
small, for example if we were using the colors to represent states categorized into
some kind of regions such as North, North East, South, South West, and other
cardinal directions.

Chapter 8

[231]

Creating a bubble chart gives an extra handle—representing a third variable using
the size of the bubble:

var bubble_chart = new Cedar({
 "type": "bubble",
 "dataset": {
 "data": data,
 "mappings": {
 "x": {
 "field": "MEDHINC_CY",
 "label": "Median Houseold Income"
 },
 "y": {
 "field": "DIVINDX_CY",
 "label": "Diversity Index"
 },
 "size": {
 "field": "TOTPOP_CY",
 "label": "Population"
 }
 }
 }
 });

 bubble_chart.tooltip = {
 "title": "{NAME}",
 "content": "Median Income:{MEDHINC_CY}
Diversity:{DIVINDX_
CY}"
 }

 bubble_chart.show({
 elementId: "#cedarBubblePlotDiv"
 });

Advanced Map Visualization and Charting Libraries

[232]

The following screenshot shows a bubble chart; the x position of the bubble
represents the median household income of the county, the y position of the bubble
represents the diversity index of the county, and the radius or the size of the bubble
represents the total population of the county:

We began from creating a simple customizable chart in Infotemplate, which can
visualize one variable, to a chart that can actually visualize three variables at the
same time, thus enhancing our understanding of the data and increasing the value
it offers.

Chapter 8

[233]

Summary
We have covered how we can complement charting techniques along with spatial
data to provide a comprehensive insight into the data we have. While working
with Infotemplate and dojo chart is handy, working with D3 provides greater
flexibility and greater control over the graphical elements. Cedar, an open source
data visualization library provided by Esri, is a great library for creating refreshingly
new data visualizations very easily. Once we have mastered these techniques along
with the statistical methods, and have learned to look at our data from different
perspectives, we can claim ourselves as flag-bearers of map data science. There's one
more component missing in the way we visualize our spatial data. That component
is time. In the next chapter, we will see how to visualize spatio-temporal data
along with the knowledge gained in advanced charting capabilities and the ArcGIS
JavaScript API itself.

[235]

Visualization with Time
Aware Layers

We have dealt with reading and displaying time-based data in our earlier chapters,
as well as non-spatial charting methodologies using innovative libraries such as
D3 and Cedar. This chapter deals with visualizing space-time data using spatial
visualization, as well as other non-spatial visualization aids such as Time Slider
and Time Graph. The following topics are discussed in this chapter:

• Time aware layers and the need for them
• Building a drought app using Time Slider
• Querying based on time data using D3
• Advanced spatio-temporal visualization using Cedar charts

Time aware layers
ArcGIS 10 and above includes support for time aware layers. Time aware layers are
DynamicMapService or feature layers that have a TimeInfo property. The following
screenshot shows the Service Catalog of a Time aware feature layer.

Visualization with Time Aware Layers

[236]

Check out the TimeInfo property in the image:

Snapshot of TimeInfo information in the Service Catalog

Let's discuss the components of the TimeInfo object, which is something similar to
the one we saw in the previous image. The TimeInfo property provides us with the
following information:

• Which field in the layer stores the time information (State Time Field, End
Time Field).

• The minimum-most and maximum-most time for which data is available
(Time Extent).

• The Time Reference property refers to the time zone in which the date
time values are stored (if null, UTC time is followed; this shall be discussed
in detail).

• The Time Interval units is the time interval at which data is available for
each feature.

• Has Live Data property refers to a Boolean value, which indicates whether
data is continuously updated.

• Export Options provides a list of properties such as Use Time, Time Data
Cumulative, and Time Offset. The Time Data Cumulative is a Boolean value
referring to whether features retrieved are accumulated with time.

Chapter 9

[237]

Need for time aware layers
Time aware layers let us understand data in a spatio-temporal context; this means
we can see how spatial information changes over a time period. This kind of data has
various real-world applications such as:

• Understanding where the crime hotspots are in a city over time
• Tracking a hurricane and displaying its current position
• The spread of flood events in an area over a short span of time
• Displaying the proliferation of oil wells in a state
• How the drought conditions have affected a place over time

Understanding time aware layers
A certain basic understanding of the concept of time in ArcGIS will help us work
with time aware layers better. The following points are worth noting:

• Time should always be referred into the Coordinated Universal Time (UTC),
which is functionally equivalent to Greenwich Mean Time (GMT).

• Just like the spatial extent of the map, we can define the time extent of the
map, which has time aware layers. This will only affect map layers that have
the timeInfo property. Time extent is provided by the esri/TimeExtent
module. We can define a TimeExtent object with either of the following
properties:

 ° startTime

 ° endTime

 ° startTime and endTime

require(["esri/TimeExtent", ...],
function(TimeExtent, ...){
 var timeExtent = new TimeExtent();
 timeExtent.startTime = new Date("1/15/1989 UTC");
 map.setTimeExtent(timeExtent);
});

• The Time Data Cumulative property of the Export Options object under the
Time Info object determines whether data can be cumulated or not.

• When the data in the time aware layer cannot be cumulated in the map
display, we should be using just one thumb in the time slider. We will
discuss the time slider shortly.

Visualization with Time Aware Layers

[238]

Building the Drought app
Let's build an app displaying the drought conditions of the US to understand the
features supporting time aware layers in ArcGIS.

The following URL provides weekly updated values for drought intensity across the
United States from 2000 to the present: http://earthobs1.arcgis.com/arcgis/
rest/services/US_Drought/MapServer

You may need an ArcGIS Developer's account to access this data.

Drought in a region is defined as the imbalance between water supply and water
demand over an extended period of time. Since droughts can have direct and
indirect environmental, economic, and social consequences, monitoring drought
is instrumental in planning, preparedness, and mitigation efforts at all levels of
government.

Our application tries to display the current and historical drought values for the
entire US. These data have been produced weekly since January 4, 2000 by the US
Drought Monitor and the full time series is archived here. A new map is released
every Thursday to reflect the conditions of the previous week.

Using the Time Slider
The TimeSlider module provided by the API is capable of interacting with the time
aware layers. TimeSlider is a widget provided by the API, which we can use in
our code and query the time aware layers dynamically. It also provides support for
animation so that we can see how the spatial features change over time or how the
features accumulate between a time interval.

To use TimeSlider, we need to load the Esri dijit named esri/dijit/
TimeSlider. Apart from the TimeSlider dijit, we may also need to load the
module named esri/TimeExtent. The time extent is useful in defining the stops.
The following image tries to show the components of a TimeSlider dijit and
the physical representation of the programming terminology with respect to the
TimeSlider dijit, such as stops, timeInterval, thumb, and so on:

http://earthobs1.arcgis.com/arcgis/rest/services/US_Drought/MapServer
http://earthobs1.arcgis.com/arcgis/rest/services/US_Drought/MapServer

Chapter 9

[239]

Steps to create a TimeSlider
Following are the steps to create a Time Slider:

1. On the load event of the DynamicMapService or the feature layer, get the
time extent of the layer.

2. Initialize the TimeSlider dijit and assign it to a container element such as
div or content panel. Assign the timeslide to the map too.

3. Set the other properties of the timeslider, such as thumb count, creating time
stops given the layer's time extent and time units.

4. Set the moving rate for the thumb.
5. Create the labels for the time slider.
6. Start the time slider animation.

The time extent for the time slider can be obtained from the layer's timeInfo
property itself:

on(droughtcMapServiceLayer, "load", function (evt) {
var layerTimeExtent = evt.layer.timeInfo.timeExtent;
 _createEsriTimeSlider(layerTimeExtent);
});

The following code snippet explains how to set the time slider to the map and start
the animation:

//Pass the time extent to the function

function _createEsriTimeSlider(layerTimeExtent) {

/*Time Slider*/
 var timeSlider = new TimeSlider({
 style: "width: 100%;"
 }, dom.byId("timeSliderDiv"));
 map.setTimeSlider(timeSlider);

/* We just need one thumb for our time aware data */

 timeSlider.setThumbCount(1);

//Though a weekly data is available, let us Create Time stops
//for Yearly intervals
//

timeSlider.createTimeStopsByTimeInterval(layerTimeExtent, 1,
"esriTimeUnitsYears");

Visualization with Time Aware Layers

[240]

//Waits at each stop for 2 seconds

 timeSlider.setThumbMovingRate(2000);

//Start the time slider animation

 timeSlider.startup();

 //add labels for every other time stop

 var labels = array.map(timeSlider.timeStops, function (timeStop,
 i) {
 if (i % 2 === 0) {
 return timeStop.getUTCFullYear();
 } else {
 return "";
 }
 });

 timeSlider.setLabels(labels);

//Wait for the map service to load at each stop

 timeSlider.on("time-extent-change", function (evt) {
 //update the text

 var currentValString = evt.endTime.getUTCFullYear();
 dom.byId("daterange").innerHTML = "<i>" + currentValString +
 "<\/i>";
 });

 on(droughtcMapServiceLayer, "update-start", function (evt) {

 //When updating layer, pause the time slider animation

 timeSlider.pause();
 });

 on(droughtcMapServiceLayer, "update-end", function (evt) {

//When update is done, play the time slider animation

 timeSlider.play()
 });
}

Using the previous chunk of code, we were able to develop a simple app with the
timeSlider widget; a snapshot of the app during initial time stop can be seen here:

Chapter 9

[241]

Once the play button is clicked, the thumb starts moving. At each stop, the thumb
may pause beyond the stipulated time gap in the play animation. This pause is the
time the map service takes to fetch the dynamic map service at the particular time
stop. In the following image, the time slider animation stopped for a few seconds
more, giving us an opportunity to capture the instance of the map in the year 2004:

Visualization with Time Aware Layers

[242]

If you were observing the networks tab of your browser, you would have noticed
an HTTP GET request call being made every time the thumb moves to a stop along
the Time Slider. At every stop, a new dynamic map image is being fetched, which
corresponds to a map instance at a time. Let's consider this image that shows a
snapshot at a time instance, which is the year 2010:

The HTTP GET request issued to generate the dynamic image you've seen previously
is this URL with each of its query parameters separated by a new line:

http://localhost:9095/proxy/proxy.ashx?
http://earthobs1.arcgis.com/arcgis/rest/services/US_Drought/MapServer/
export?
dpi=96
&transparent=true
&format=png8
&time=946944000000%2C1262563200000
&bbox=-17599814.30461256%2C1159119.7738912208%2C-
4234952.783009615%2C6765317.176437697
&bboxSR=102100
&imageSR=102100
&size=1366%2C573
&f=image

Chapter 9

[243]

The URL gives a lot of information about the kind of image being generated. It
should be noted that the request goes through the proxy page. The time parameter
represents the year 2010 in ticks.

Querying based on time using D3
The previous example was based on querying time aware layers using the in-built
TimeSlider dijit provided by the API. We can further the capability of the Time
Slider using the rich support for time-based data provided by the D3 library.

Our objective in this section would be to create a D3 Time Slider that can interact
with our time aware layer.

The following code is inspired from the code listing given at the http://bl.ocks.
org/zanarmstrong/ddff7cd0b1220bc68a58.

The webpage explains how to effectively use the D3 object to read and display time
data in a time slider.

Here are some of the important concepts we have to understand before
implementing the code.

http://bl.ocks.org/zanarmstrong/ddff7cd0b1220bc68a58
http://bl.ocks.org/zanarmstrong/ddff7cd0b1220bc68a58

Visualization with Time Aware Layers

[244]

Scaling and formatting time
In our earlier chapter, we dealt with how D3 functions can be used to scale numerical
values as well as ordinal values. When we are dealing with time, we need to deal
with scaling as applied to time. The following snippet explains how time extents can
be scaled to the width of the container:

// parameters
 var margin = {
 top: 10,
 right: 50,
 bottom: 50,
 left: 50
 },
 width = 800 - margin.left - margin.right,
 height = 150 - margin.bottom - margin.top;

// scale function
 var timeScale = d3.time.scale()
 .domain([startDate, endDate])
 .range([0, width])
 .clamp(true);

In the previous snippet, we assume that we are able to provide the start and end data
values to the D3 time-scaling function from the layer's timeInfo property. We also
need a proper date format to render the date values we have. The following line of
code provides us with the date in the date-month-day format:

var formatDate = d3.time.format("%Y-%m-%d");

D3 brush
A D3 brush is equivalent to a thumb in a Time Slider dijit. Brush is a D3 SVG
element object that accepts a time extent. In the following snippet, we have a brush
element that accepts a timescale factor on the x axis:

 // defines brush
 var brush = d3.svg.brush()
 .x(timeScale)
 .extent([startingValue, startingValue])
 .on("brush", brushed);

Chapter 9

[245]

Another important aspect we need to understand about the brush is about events
such as mousedown. When the brush is moved by the user (on mousemove following a
mousedown), the extent will be recomputed by calling timescale.invert. This will
let us set the new extent for the brush. The following code explains this aspect:

svg.on("mousedown", function (data) {
 var value = brush.extent()[0];

 if (d3.event.sourceEvent) { // not a programmatic event
 value = timeScale.invert(d3.mouse(this)[0]);
 brush.extent([value, value]);
 }
 console.log(formatDate(value));
 });

Apart from the code listing provided in the web page, we need an additional piece of
code to fire the query to retrieve the time aware data only when the mousedown event
on the brush is persistent for at least 500 milliseconds. Else the event will be fired
numerous times as we move the brush along the timescale. The following function,
which is fired when the brush is moved, will publish a topic titled application/
d3slider/timeChanged:

function brushed() {
 var value = brush.extent()[0];

 if (d3.event.sourceEvent) { // not a programmatic event
 value = timeScale.invert(d3.mouse(this)[0]);
 brush.extent([value, value]);
 }

 handle.attr("transform", "translate(" + timeScale(value) +
 ",0)");
 handle.select('text').text(formatDate(value));
 var reqValue = formatDate(value);

 if (timer) {
 clearTimeout(timer);
 }
 timer = setTimeout(function () {
 //alert(reqValue);
 topic.publish("application/d3slider/timeChanged", value);
 }, 500);

}

Visualization with Time Aware Layers

[246]

The code subscribing to the topic will set the map to the time extent that is pointed
by the brush:

topic.subscribe("application/d3slider/timeChanged", function () {
 console.log("received:", arguments);
 var startDate = arguments[0];
 if (startDate) {
 var timeExtent = new TimeExtent();
 timeExtent.startTime = startDate;
 map.setTimeExtent(timeExtent);
 }
});

Find the full code listing to construct the D3 slider:

define([
 "dojo/_base/declare",
 "d3",
 "dojo/topic",
 "dojo/_base/array",
 "dojo/domReady!"
], function (
 declare,
 d3,
 topic,
 array) {
 //http://bl.ocks.org/zanarmstrong/ddff7cd0b1220bc68a58

 var isInitilaized = false;

 topic.subscribe("application/d3slider/initialize", function () {
 if (!isInitilaized) {
 console.log("received:", arguments);
 var startDate = arguments[0];
 var endDate = arguments[1];

 var formatDate = d3.time.format("%Y-%m-%d");
 var timer;
 // parameters
 var margin = {
 top: 10,
 right: 50,
 bottom: 50,
 left: 50
 },

Chapter 9

[247]

 width = 800 - margin.left - margin.right,
 height = 150 - margin.bottom - margin.top;

 // scale function
 var timeScale = d3.time.scale()
 .domain([startDate, endDate])
 .range([0, width])
 .clamp(true);

 // initial value
 var startValue = timeScale(new Date('2012-03-20'));
 startingValue = new Date('2012-03-20');

 //////////

 // defines brush
 var brush = d3.svg.brush()
 .x(timeScale)
 .extent([startingValue, startingValue])
 .on("brush", brushed);

 var svg = d3.select("#d3timeSliderDiv").append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top +
 margin.bottom)
 .append("g")
 // classic transform to position g
 .attr("transform", "translate(" + margin.left +
 "," + margin.top + ")");

 svg.on("mousedown", function (data) {
 var value = brush.extent()[0];

 if (d3.event.sourceEvent) {
 // not a programmatic event
 value = timeScale.invert(d3.mouse(this)[0]);
 brush.extent([value, value]);
 }
 console.log(formatDate(value));
 });

 svg.append("g")

Visualization with Time Aware Layers

[248]

 .attr("class", "x axis")
 // put in middle of screen
 .attr("transform", "translate(0," + height / 2 +
 ")")
 // inroduce axis
 .call(d3.svg.axis()
 .scale(timeScale)
 .orient("bottom")
 .tickFormat(function (d) {
 return formatDate(d);
 })
 .tickSize(0)
 .tickPadding(12)
 .tickValues([timeScale.domain()[0],
 timeScale.domain()[1]]))
 .select(".domain")
 .select(function () {
 console.log(this);
 return
 this.parentNode.appendChild(this.cloneNode(true));
 })
 .attr("class", "halo");

 var slider = svg.append("g")
 .attr("class", "slider")
 .call(brush);

 slider.selectAll(".extent,.resize")
 .remove();

 slider.select(".background")
 .attr("height", height);

 var handle = slider.append("g")
 .attr("class", "handle");

 handle.append("path")
 .attr("transform", "translate(0," + height / 2 +
 ")")
 .attr("d", "M 0 -20 V 20");

Chapter 9

[249]

 handle.append('text')
 .text(startingValue)
 .attr("transform", "translate(" + (-45) + " ," +
(height / 2 - 25) + ")");

 slider.call(brush.event);

 function brushed() {
 var value = brush.extent()[0];

 if (d3.event.sourceEvent) {
 // not a programmatic event
 value = timeScale.invert(d3.mouse(this)[0]);
 brush.extent([value, value]);
 }

 handle.attr("transform", "translate(" +
 timeScale(value) + ",0)");
 handle.select('text').text(formatDate(value));
 var reqValue = formatDate(value);

 if (timer) {
 clearTimeout(timer);
 }
 timer = setTimeout(function () {
 //alert(reqValue);
 topic.publish("application/d3slider/timeChanged",
value);
 }, 500);

 }
 isInitilaized = true;
 }
 });
});

Visualization with Time Aware Layers

[250]

When we incorporated the previous piece of code in our application, we got this
nice D3 Time Slider as seen in the following image, which lets us query through a
continuous time spectrum, instead of yearly stops:

The query to fetch the dynamic map image is not fired as we move or even
temporarily halt the D3 brush (thumb) to different positions along the time slider.
It is only fired when we let the thumb stay at a location for more than 0.5 seconds.
This is a safe trade-off between performance and responsiveness. The following
screenshot shows the dynamic map image at an instance of time (24th August 2002):

Chapter 9

[251]

Advanced spatio-temporal visualization
with Cedar
A time aware layer provides valuable information about the data—the entire set of
values for the features at each time stop for each feature. Until now, we have been
visualizing the entire spatial dataset at different time zones using a Time Slider
or a similar approach in D3. We have never been able to visualize the values for
a particular feature across the entire time extent, or at least across multiple time
extents. Our objective in this section would be just that—to visualize the values of a
selected feature across the entire time extent.

We will be using the following layer for our visualization purposes, available at
http://earthobs1.arcgis.com/arcgis/rest/services/US_Drought_by_
County/FeatureServer/0.

This layer shows the USA Drought intensity from 2000 to the present by county.
The temporal range of data is 01/04/2000 to the present and is updated every
Thursday to reflect the conditions occurring the previous week.

Our objective is to pull all the data for a selected feature. The following steps can be
followed to arrive at our objective:

1. Select a feature and perform an identify task on it to get the feature ID.
2. Use the feature ID to query the previous feature layer.
3. Pass the data to Cedar charts of the type time.

The following piece of code explains how identify parameters are formed.
The identify task is performed at each map click:

 function initIdentify () {
 map.on("click", doIdentify);

 identifyTask = new IdentifyTask("http://server.
arcgisonline.com/arcgis/rest/services/Demographics/USA_1990-2000_
Population_Change/MapServer");

 identifyParams = new IdentifyParameters();
 identifyParams.tolerance = 1;
 identifyParams.layerIds = [3];
 identifyParams.returnGeometry = true;
 identifyParams.layerOption =
 IdentifyParameters.LAYER_OPTION_ALL;
 identifyParams.width = map.width;
 identifyParams.height = map.height;
 }

http://earthobs1.arcgis.com/arcgis/rest/services/US_Drought_by_County/FeatureServer/0
http://earthobs1.arcgis.com/arcgis/rest/services/US_Drought_by_County/FeatureServer/0

Visualization with Time Aware Layers

[252]

The map click event calls the following function named doIdentify():

function doIdentify (event) {
 map.graphics.clear();

//Use the map click point for the identify task

 identifyParams.geometry = event.mapPoint;
 identifyParams.mapExtent = map.extent;
 identifyTask.execute(identifyParams, function (results) {
 console.log(results[0].feature.attributes);

//Initiate a Query Task

 var queryTask = new QueryTask("http://earthobs1.arcgis.com/
arcgis/rest/services/US_Drought_by_County/FeatureServer/0");
 var query = new Query();
 query.returnGeometry = true;
 query.outFields = ["*"];

//Query based on the feature id returned by the identify task

 query.where = "countycategories_admin_fips = '"+results[0].
feature.attributes.ID+"'";
 query.orderByFields = ["countycategories_date"];
 queryTask.execute(query).then(function(qresult){
 console.log(qresult);

//Send the query result to the topic "some/topic"

 topic.publish("some/topic", qresult);
 });
 });
}

The topic that sends the query data shall be subscribed by the function that will
construct the Cedar chart. The Cedar chart type required is time.

The time type Cedar chart expects the following types of fields in the field mapping:

• Esri date time field
• Any numerical value

Chapter 9

[253]

In our case, we will map the fields, namely countycategories_date (date time
field) and countycategories_d0 (numeric field):

topic.subscribe("some/topic", function () {
 var data = arguments[0];
 var chart = new Cedar({
 "type": "time"
 });
 var dataset = {
 "data": data,
 "mappings": {
 "time": {
 "field": "countycategories_date",
 "label": "Date"
 },
 "value": {
 "field": "countycategories_d0",
 "label": "Countycategories D0"
 },
 "sort": "countycategories_date"
 }
 };

//tool tip field
 chart.tooltip = {
 "title": "Countycategories D0",
 "content": "{countycategories_d0}"
 };

 chart.dataset = dataset;

//show the chart

chart.show({
 elementId: "#droughtHistoryMap",
 autolabels: true,
 height:150,
 width:800
 });
 chart.on('click', function(event,data){
 console.log(event,data);
 topic.publish("application/d3slider/timeChanged", new
Date(data.countycategories_date));
 });
 });

Visualization with Time Aware Layers

[254]

Incorporating the previous code into the application, we were able to see the time-
based graph of the drought values over a period for a selected county. In the following
image, the graph represents the timeline of drought values for the selected feature:

This representation gives a multidimensional perspective in more than one way.
One is that we are still seeing the spatial distribution of drought for the entire
country at a particular instance of time. At the same time, we are able to use a
non-spatial visualization aid, such as a time-graph, to visualize the entire set of
drought values throughout a time period for a particular feature at county level.

Summary
We have covered how data can be visualized in a spatio-temporal fashion using
three methods, namely Time Slider, D3, and Cedar. While Time Slider is an in-built
API provided dijit, the D3 solution is much more extensive and flexible. Charting
space-time data using the Cedar time type chart offers a different perspective of
space-time data. We started with the foundations of the API and progressed steadily
into the nuances of building a fully-fledged dojo web app with widgets. We dealt
with versatile query capabilities provided by the API and have used it throughout
the chapters in different forms. Displaying the query results was our later focus. The
query results can be displayed as a spatial graphic as well as in tabular form. We
later delved into more intuitive ways of rendering our spatial data displayed on the
map using rendering techniques.

Chapter 9

[255]

We then realized that a bit of statistical knowledge would not only help us
understand the data better, but also visualize it better so that the user can derive
new insights into the data. The last three chapters have been about adding multiple
dimensions with the aid of of non-spatial components, such as charting techniques
and time dimension, to our maps. This chapter culminates at perceiving our maps
in all the discussed dimensions, but certainly this is not the limit. Rather, this is the
starting point for an enterprising map data scientist like you!

[257]

Index
A
Active Wildfire Data

reference link 61
advanced spatio-temporal visualization

Cedar, using 251-254
reference link 251

AMD+
about 20
define method 21
key components 21
require method 22

appid
reference link 161

ArcGIS Developer
account, reference link 170
reference link 61

ArcGIS DynamicMapService layer 42-46
ArcGIS JavaScript API

reference link 6
ArcGIS Server

about 24-34
service, types 25

ArcGIS Tiledmap service layer 38-40
Asynchronous Modular Definition. See

AMD

B
BaseMapGallery widget 56
Basemap layers 36
BlendRenderer 138
bootstrap-map-js

reference link 66

Brackets 1
break renderers

working with 180

C
CartographicLineSymbol property

reference link 153
Cedar

about 224
libraries, loading 224
used, for advanced spatio-temporal

visualization 251, 252
used, for charting 224

Cedar libraries
loading 224
loading, AMD pattern used 225-232
loading, Script tags used 225

chart
plugins, adding 208-212

class breaks renderer 136, 137
ClassBreaksRenderer

setColorInfo(colorInfo) method 180
setOpacityInfo(opacityInfo) method 180
setRotationInfo(rotationInfo) method 180
setSizeInfo(sizeInfo) method 180

classed renderers
classification method 140, 141

classification methods
about 174
equal interval 174
natural breaks 174
Quantile 175
standard deviation 175

[258]

color brewer 2
reference link 182

ColorInfo object
about 182
classed color renderer, creating 185, 186
color scheme, selecting 182-184

colors
Esri color module 120, 121
RGB color model 119, 120
working with 119

column chart
creating, with D3 214, 215

Content Delivery Network (CDN) 6
continuous renderers

working with 180
Coordinated Universal Time (UTC) 237
coordinate geometry

about 12, 13
current map extent, obtaining 15-19
quiz results 14
quiz, solving 13
spatial reference systems 14
template generator, for loading modules 19

CSV files 34
custom widget

building 89
dojo, configuring 90, 91
draw toolbar, using 106
folder structure 97
modules 105
query, executing 112
simple class, creating 89, 90
standalone widget, developing 93

D
D3

data 216
scaling 217
selections 215
used, for creating column chart 214, 215
used, for querying based on time 243

D3 charts
SVG, integrating into 218-224

D3.js
about 213
reference link 213
used, for charting 213, 214

D3, used for querying based on time
about 243
D3 brush 244-250
time, formatting 244
time, scaling 244

data
pushing, into chart 208

data sources, supported by API
about 33, 34
ArcGIS Server 34
flat file formats 34

Deferred object
displayFieldName property 81
feature property 81
layerId property 81
layerName property 81

demographics analytic portal
about 169
building 169, 170
reference link 170

development environment
ArcGIS Developer account, setting up 4
browser 2
Hello, Map 4, 5
IDE 2, 4
jump-start code 6
setting up 1
web server 2

dijit life cycle
constructor 94
postCreate 94
startup 94

dojo
about 21
charting, popup templates used 204
chart themes 202
configuring 90, 91
modules 22
reference link 10

[259]

themes, reference link 202
used, for charting 201

dojo array module 23
dojo charting methods

addPlot() 206
addSeries() 206
render() 206
setTheme() 206

dojo dom modules
dojo/dom-attr 23
dojo/dom-class 23
dojo/dom-construct 23

dojo modules
about 22
array module 23
dom modules 23
event handler module 23

dojo packages
reference link 226

dojox modules
2D charts, types 206

DotDensityRenderer 138
draw toolbar, custom widget

draw-end event handler 109
drawn shape, symbolizing 109-111
draw operation 109
initiating 107, 108
using 106

Drought app
building 238
Time Slider, using 238

drought intensity values
reference link 238

E
Esri color module 120, 121
Esri widgets

BaseMapGallery widget 56
Legend widget 57
using 56

F
feature layer

about 47
FeatureLayer constructor 48, 50, 51
FeatureLayer.MODE_AUTO 49
FeatureLayer.MODE_ONDEMAND 48
FeatureLayer.MODE_SELECTION 49
FeatureLayer.MODE_SNAPSHOT 48
Infotemplates 52
reference link 69

Feature Manipulation Engine (FME) 34
feature set

features 77
geometryType 77

feature table
building 85

Find task
building 82
executing 82-84
instantiating 83
parameters, building 83

flat file formats
about 34
CSV files 34
Keyhole Markup Language(KML) 34

functional classification, layers
about 36
Basemap layers 36
functional layers 37
graphics layers 38

functional layers 37

G
Geolocation API

geometry engine, using on input
data 163, 164

using 162, 163
geometry-based symbols

SimpelFillSymbol 122
SimpleLineSymbol 122
SimpleMarkerSymbol 122

[260]

global wind data gauge
adding 154, 155

graphics layers
about 38-52
attributes 53
geometry 53
InfoTemplate 53
symbol 53

Greenwich Mean Time (GMT) 237

H
HeatmapRenderer 137, 138
hurricane tracking app

active hurricane layers, symbolizing 149
background 143, 144
building 148

I
IdentifyTask

building 80
executing 80, 81
identify parameters object, constructing 80
instantiating 80

IIS Express
download link 3
installation link 2

initial map extent
coordinate geometry 12
setting up 11

J
jump-start code

about 6
AMD pattern of coding 10
API reference link 6, 9
esri/map module 11

K
Keyhole Markup Language(KML) 34

L
latest active hurricanes

feature layer, refreshing 160
latest data, displaying on grid 159, 160
latest data, fetching 159
tracking 156, 157
unique list of storms, obtaining 157-159

layers
about 33, 35
adding, to map 35, 36
functional classification 36
map and layer events 55, 56
map and layer properties 54
types 38

Legend widget 57

M
map data

visualizing 144-148
map server

reference link 27
multivariate mapping 192

N
NOAA service

reference 39

O
opacityInfo object

about 189
used, for creating classes opacity

renderer 189

P
PictureMarkerSymbol module

about 126, 127
PictureFillSymbol 129
reference link 126
TextSymbol 129, 130

[261]

plot
defining 207

popups
building 85, 86
InfoTemplates, building 86, 87

project folders
code, modularizing 99
creating 98
dojoConfig, defining 99
internationalization support, providing

100, 101, 102
single point of entry, creating 98

proxy.config file
reference link 65

Q
query, custom widget

executing 112
query event handlers 113
Query object, initializing 112
QueryTask object, initializing 112

Query endpoint
reference link 28

query event handlers
about 113
graphics, adding to map 116, 117
HTML template, defining 113, 114
query results, symbolizing 115, 116

Query object
building 70, 71
querying, by spatial geometry 72

query operations
about 73
Query for Count operation 73-76
Query for Extent operation 79
Query for Features operation 76-78
reference link 75

Query task
building 68
executing 68
QueryTask object 70

QueryTask constructor
about 68
parameters 69

R
renderer methods

setColorInfo() 135
setOpacityInfo 136
setRotationInfo() 135
setSizeInfo() 136

renderers
about 119
BlendRenderer 138
class breaks renderer 136, 137
ClassBreaksRenderer 130
classification method , for classed

renderers 140, 141
DotDensityRenderer 130
HeatmapRenderer 130-138
reference link 131
ScaleDependentRenderer 131
selecting, for scenario 131
simple renderer 132, 133
SimpleRenderer 130
SmartMapping module 140
Stream Gauge application, developing 131
TemporalRenderer 131
UniqueValueRenderer 130
unique value renderer, applying 134, 135
working with 130, 131

resource-proxy
reference link 64

REST API
about 24
service, types 25

RGB color model 119, 120
RotationInfo object

about 191
arithmetic 191
geographic 191

[262]

S
Service Catalog

about 25
map server 27
map server, Query endpoint 28-31
working with 26

simple class
anonymous class 90
creating 89, 90
named class 90

simple renderer 132, 133
SizeInfo object 191
smart mapping 196, 197
SmartMapping module 140
Spatial Reference

about 40
Extent and Scale Info 42
TileInfo 42
types 72

standalone widget
developing 93
dijit life cycle 94
templated widgets, creating 95, 96

State-level data
reference link 229

statistical functionality, API
about 172
classification methods 174
feature layer statistics 176-178
normalization 176
statisticDefinition module 172, 173

statistical measures
about 170
Average statistic 171
maximum statistic 171
minimum statistic 171
standard deviation 171
standardization 172
sum 171

StatisticDefinition module
onStatisticField property 172
outStatisticFieldName property 172
statisticType property 172
stddev property 172

Stream Gauge application
data source 132
developing 131

superclass 90
symbols

ArcGIS Symbol playground 124, 125
PictureMarkerSymbol module 126
SimpleFillSymbol module 126
SimpleLineSymbol 122, 123
SimpleMarkerSymbol 123, 124
working with 121, 122

T
template generator

reference link 19
theme

defining 207
TileInfo 42
tiles

about 25
reference link 25

time aware layers
about 235, 236
considerations 237
need for 237

Time Data Cumulative property 237
Time Slider

creating, steps 239-242
using 238

types, layers
about 38
ArcGIS Tiledmap service layer 38-40
feature layer 47, 48
graphics layer 52
Spatial Reference 40
The ArcGIS DynamicMapService

layer 42-46
types, querying operations

about 67
find task 68
identify task 68
query task 67

[263]

U
unique value renderer

applying 134, 135

W
weather widget

creating 161
data, displaying 164-167
Geolocation API, using 162
open weather API 161, 162

Well-known ID (wkid)
about 14
reference link 14

Well-known Text (wkt) 14

widget folder structure
about 97
guideline, for creating project folders 98
guidelines, for creating project folders 98
overview 103

widgets 33
Wildfire application

bootstrapping 66, 67
developing 60, 61
proxy, updating 64, 65
reference link 62
registering, in developer portal 61, 62

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Preface
	Chapter 1: Foundation for the API
	Setting up the development environment
	Browser, web server, and IDE
	Web browser
	Web server
	IDE

	Setting up an ArcGIS Developer account
	Hello, Map – the jump-start code
	Understanding the jump-start code
	The API reference link
	The AMD pattern of coding
	The esri/map module

	Setting the initial map extent
	Brushing up some coordinate geometry
	Quiz time!
	Spatial reference systems
	The quiz results
	Getting the current map extent
	The template generator for loading modules

	Understanding dojo and AMD
	The key components of AMD
	The define method
	The require method

	Some awesome dojo modules
	Dojo dom modules
	Dojo event handler module
	Dojo array module

	Understanding ArcGIS Server and the REST API
	Types of service
	Working with the Service Catalog
	Map server

	Summary

	Chapter 2: Layers and Widgets
	Data sources supported by the API
	Flat file formats
	KML
	CSV files

	ArcGIS Server

	The concept of layers
	Adding layers to a map
	The functional classification of layers
	Basemap layers
	Functional layers
	Graphics layers

	Types of layers
	The ArcGIS Tiledmap service layer
	Spatial Reference
	The ArcGIS DynamicMapService layer
	Feature layers
	Graphics layer

	Map and layer properties
	Map and layer events

	Using Esri widgets – the genie's lamp
	The BaseMapGallery widget
	The Legend widget

	Summary

	Chapter 3: Writing Queries
	Developing the Wildfire application
	Registering the application in the developer portal
	Using a proxy in the application
	Bootstrapping the application

	Types of querying operations
	Query task
	Find task
	Identify task

	Building and executing a Query task
	The QueryTask constructor
	Constructor parameters

	Instantiating the QueryTask object
	Building the Query object
	Querying by spatial geometry

	Executing the query
	Querying for Count
	Query for Features
	Query for Extent

	Building and executing IdentifyTask
	Instantiating IdentifyTask
	Constructing the identify parameters object
	Executing IdentifyTask

	Building and executing a Find task
	Instantiating a Find task
	Building the Find parameters
	Executing a Find task

	Building a feature table
	Building popups
	Building InfoTemplates

	Summary

	Chapter 4: Building Custom Widgets
	Creating a simple class
	Configuring dojo

	Developing a standalone widget
	The dijit life cycle
	Creating templated widgets

	Widget folder structure
	Guidelines for creating project folders
	Creating a single point of entry
	Defining dojoConfig
	Modularizing the code
	Providing support for internationalization
	An overview of the widget folder structure

	Building a custom widget
	Modules required for the widget
	Modules for the class declaration and OOPS
	Modules for using HTML templates
	Module for using event
	Modules for manipulating dom elements and their styles
	Modules for using the draw toolbar and displaying graphics
	Modules for querying data
	Modules for internationalization support

	Using the draw toolbar
	Initiating the draw toolbar
	The draw operation
	The draw-end event handler
	Symbolizing the drawn shape

	Executing the query
	Initializing the QueryTask and Query object
	Query event handlers

	Summary

	Chapter 5: Working with Renderers
	Working with colors
	The RGB color model
	The Esri color module

	Working with symbols
	SimpleLineSymbol
	SimpleMarkerSymbol
	ArcGIS symbol playground
	SimpleFillSymbol
	PictureMarkerSymbol
	PictureFillSymbol
	TextSymbol

	Working with renderers
	Choosing a renderer for a scenario
	Developing a Stream Gauge application
	The data source

	Simple renderer
	Applying unique value renderer
	Class breaks renderer
	HeatmapRenderer
	DotDensityRenderer
	BlendRenderer
	SmartMapping
	A classification method for classed renderers

	Summary

	Chapter 6: Working with Real-Time Data
	Background about the application
	Visualizing map data
	Building a hurricane tracking app
	Symbolizing active hurricane layers

	Adding a global wind data gauge
	Tracking the latest active hurricanes
	Getting a unique list of storms
	Fetching the latest data and displaying on the grid
	Refreshing feature layer

	Creating a weather widget
	The open weather API
	Using the Geolocation API
	Using geometry engine on input data

	Displaying the weather data in the widget

	Summary

	Chapter 7: Map Analytics and Visualization Techniques
	Building a demographics analytic portal
	Basic statistical measures
	Minimum
	Maximum
	Sum
	Average
	Standard deviation
	Standardization

	Statistical functionality provided
by the API
	StatisticDefinition module
	Classification methods
	Equal interval
	Natural breaks
	Quantile
	Standard deviation

	Concept of normalization
	Feature layer statistics

	Working with continuous and break renderers
	ColorInfo
	Selecting a color scheme
	Creating a classed color renderer

	opacityInfo
	Using opacityInfo to create a classes opacity renderer

	SizeInfo
	RotationInfo
	Multivariate mapping

	Smart mapping
	Summary

	Chapter 8: Advanced Map Visualization and Charting Libraries
	Charting with dojo
	Dojo chart themes
	Charting using the popup template

	Types of 2D charts provided by dojox modules
	Dojo charting methods
	Defining your plot
	Defining the theme
	Pushing the data
	Chart plugins

	Charting with D3.js
	Creating a column chart with D3
	D3 selections
	D3 data
	D3 scaling
	Integrating SVG into D3 charts

	Charting with Cedar
	Loading Cedar libraries
	Loading using the script tags
	Loading using the AMD pattern

	Summary

	Chapter 9: Visualization with Time
Aware Layers
	Time aware layers
	Need for time aware layers
	Understanding time aware layers

	Building the Drought app
	Using the Time Slider
	Steps to create a TimeSlider

	Querying based on time using D3
	Scaling and formatting time
	D3 brush

	Advanced spatio-temporal visualization with Cedar
	Summary

	Index

