
www.allitebooks.com

http://www.allitebooks.org

Mastering JBoss Drools 6

Discover the power of Drools 6 and Business Rules for
developing complex scenarios in your applications

Mauricio Salatino

Mariano De Maio

Esteban Aliverti

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering JBoss Drools 6

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1220316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-862-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Mauricio Salatino

Mariano De Maio

Esteban Aliverti

Reviewer
Mario Fusco

Commissioning Editor
Anthony Albuquerque

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Prashanth G Rao

Technical Editor
Danish Shaikh

Copy Editor
Vibha Shukla

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Mauricio Salatino is a Senior software engineer at JBoss/RedHat. Mauricio works
full time as a Drools and jBPM Core Developer and is in charge of developing the
new generation Business Process Management Suite, along with contributing to the
evolution of Drools and jBPM. Mauricio is the author of three Packt Publishing books
about jBPM: jBPM6 Developer Guide, jBPM5 Developer Guide, and jBPM Developer Guide.
Mauricio is based in London, UK, and in his spare time he likes to meet community
members of different open source projects to build interesting projects.

Mariano De Maio is an IT consultant and software developer with over eleven
years of experience in Java and open source frameworks. He has been working with
Drools and jBPM for the last six years and has collaborated with the Drools and jBPM
projects several items, including Infinispan's persistence modules, extensions to
the jBPM APIs, and different add-ons to the tooling functionality. In 2013, he wrote
jBPM6 Developer Guide for Packt Publishing, along with Mauricio Salatino and Esteban
Aliverti. In 2015, he co-founded jWoop, http://www.jwoop.com, which is a company
that provides consultancy and training around the world. He has participated in
international conferences, such as Decision Camp and other Decision Management
webinars. Mariano is based in Buenos Aires, where he is happily married to his wife,
Tamara, and takes care of his beautiful daughter, Sofia. In his free time, he likes
to work on contributions to the open source projects he is using. He also runs his
personal blog, http://marianbuenosayres.wordpress.com, about jBPM, Drools,
and Decision Management. You can find him through the official Drools IRC channel
#drools at irc.freenode.net, under the nickname mariano or mariano84.

www.allitebooks.com

http://www.jwoop.com
http://marianbuenosayres.wordpress.com
irc.freenode.net
http://www.allitebooks.org

Esteban Aliverti is a software engineer and a former Drools/JBPM consultant. He
is also a fervent open source promoter and developer with meaningful contributions
to the JBoss Drools and JBPM frameworks for the past six years. He is the coauthor
of jBPM5 Developer Guide and jBPM6 Developer Guide by Packt Publishing and was
awarded the JBoss' Community Recognition Award in 2012 and 2013.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Mario Fusco is a senior software engineer at Red Hat. He was born in Napoli,
Italy. He works on the development of the core of Drools, the open source JBoss rule
engine. He has huge experience as a Java developer, having been involved in (and
often leading) many enterprise level projects in several industries, ranging from
media companies to the financial sector.

Among his interests, there are also functional programming and Domain Specific
Languages. By leveraging these two passions, he has created the open source library
lambdaj with the purpose of providing an internal Java DSL for manipulating
collections and allowing a bit of functional programming in Java before the
introduction of lambda expressions.

He is the co-author of Java 8 in Action, published by Manning, and a technical
speaker at several conferences both international, such as Devoxx and JavaOne, and
local, such as Voxxed Days and Codemotion. He is also a co-lead of the Java User
Group of Milano, Italy, and the leader of the program committee at both Voxxed
Days Zurich and Voxxed Days Ticino.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Rules Declarative Nature 1

What are rules? 2
Rules basic structure 2
Declarative approach 3
Imperative versus Declarative implementation 3

Why do we use rules? 5
Rules independence 5
Rule execution chaining 6

Atomicity of rules 7
Ordering of rules 7

Rule execution life cycle 8
Collaboration with Rules 9
Involving more people with Rules using a BRMS 11

Letting the rule engine do its job 12
Rule engine algorithm 13

When should we use rules? 14
Complex scenario, simple rules 14
Ever-changing scenarios 15
Example–eShop system 16

When not to use a rule engine 17
Summary 18

Chapter 2: Writing and Executing Rules 19
Setting up our environment 20
Creating our first Drools project 21
Writing and executing our first rule 24

Using CDI to bootstrap the Rule Engine 28
The Rule language 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Organizing our projects 35
Summary 40

Chapter 3: Drools Runtime 41
Understanding the Drools runtime instances 41

KieModule & KieContainer 44
Loading rules from the classpath 45
Loading rules using Maven artifacts (Kie-CI) 48

KieModule configurations (KieBases, KieSessions &
StatelessKieSessions) 49
KieScanner 53

Artifacts version resolution 54
Dealing with unexpected issues and errors 57
Putting it all together 57

Summary 60
Chapter 4: Improving Our Rule Syntax 61

Adding external interactions with global variables 61
Modifying the data in the working memory 62

The insert keyword 63
The modify and update keywords 64
The delete/retract keywords 65

Rule attributes 66
Example – controlling which rules will fire 67
Example – splitting rule groups with agenda group 70
Other types of rule groups 72
Rule dates management 73

Controlling loops in rules 74
Lock-on-active 76
Model properties execution control 77
Declared types 78
Property-reactive beans 79

Special Drools operations 81
Boolean and numeric operations 82
Regex operations – matches 83
Collection operations – contains and memberOf 83

Working memory breakdown: the from clause 84
Collect from objects 86
Accumulate keyword 87
Advanced conditional elements 91

NOT keyword 92
EXISTS and FORALL keywords 92

Table of Contents

[iii]

Drools syntactic sugar 94
Nested accessors 94
Inline casts 95
Null-safe operators 95

Decorating our objects in memory 95
Adding traits with the don keyword 97
Removing traits with the shed keyword 97

Logical insertion of elements 98
Handling deviations of our rules 99
Deviations to our deviations 100

Rule inheritance 102
Conditional named consequences 102

Summary 103
Chapter 5: Understanding KIE Sessions 105

Stateless and stateful Kie Sessions 106
Stateless Kie Sessions 106
Stateful Kie Sessions 109

Kie runtime components 110
Globals 110

Globals as a way to parameterize the condition of a pattern 111
Globals as a way to introduce new information into a session in the LHS 114
Globals as a way to collect information from a session 116
Globals as a way to interact with external systems in the RHS 117

Channels 118
Queries 120

On-demand queries 121
Live queries 122

Event Listeners 123
Kie Base components 125

Functions 125
Custom operators 127
Custom accumulate functions 134

Summary 138
Chapter 6: Complex Event Processing 139

What is complex event processing? 139
What are events and complex events? 140

Declaring CEP-based Rules 141
Semantics of events 142
Declaring time-based-events in Drools 143
Temporal operators 144

Table of Contents

[iv]

Event-driven architecture 148
Split event sources with entry points 149
Sliding windows 150

Length-based sliding windows 150
Time-based sliding windows 151
Declared sliding windows 152

Running CEP-based Scenarios 153
Stream processing configuration 153
Continuous versus Discrete rule firing 154
Testing with the session clock 155

Drools CEP limitations 156
Summary 158

Chapter 7: Human-Readable Rules 159
Domain Specific Languages 160

The Dictionary file 160
Adding constraints to patterns 162

Rules files 163
DSL troubleshooting 164
A simple scenario 165

Decision tables 167
What is a decision table? 168
Decision tables structure 168

RuleSet section 169
RuleTable section 171

Coming back to our scenario 173
Decision table troubleshooting 175
Enhanced decision tables 176

Rule templates 178
Rule template structure 178
Working with rule templates 180

Spreadsheet data source 181
Array data source 182
Objects data source 183
SQL result set data source 184

PMML 185
PMML in Drools 186
Customer classification decision tree example 188

Header 189
DataDictionary 189
Model 190

PMML troubleshooting 191
PMML limitations 191

Summary 192

Table of Contents

[v]

Chapter 8: Rules' Testing and Troubleshooting 193
Create loosely coupled DRLs 194
Prefer KieHelper over a KieContainer classpath 194
Benefits of using globals 195
Debugging the left-hand side of a rule 196

Left-hand side troubleshooting 197
Compilation errors 197
Runtime errors 198
Rules not being triggered 200

Event listeners 204
Drools logs 207
Create simpler versions of a rule 207

Debugging the right-hand side of a rule 208
Right-hand side troubleshooting 209

Compilation errors 209
Runtime errors 210

Right-hand side good practices 211
Dumping the generated Java classes 212

Reporting a bug in Drools 213
Summary 213

Chapter 9: Introduction to PHREAK 215
Introducing PHREAK 216

Object Type Nodes 218
Alpha Nodes 220

Alpha Node sharing 221
Constraint JIT compilation 223

Beta Nodes 223
Beta Node sharing 225
Or between patterns 228

Special nodes in the network 229
The Not Node 230
The Exists Node 231
The Accumulate Node 233
The From Node 234

Queries and backward-chaining 236
Unification 237
Positional arguments 240
Backward reasoning in Drools 241
The Query Element Node 244

PHREAK improvements over RETE 245
Delayed rule evaluation 245
Set-oriented propagation 245
Network segmentation 246

Table of Contents

[vi]

Phreak Inspector 246
Summary 247

Chapter 10: Integrating Rules and Processes 249
jBPM – the process engine 250
Simple business process example 252

Kie Session advanced configurations 255
Kie Session event listeners 255
Kie Session Work Items 255

Understanding our process execution 260
Drools and jBPM: integration patterns 263

Accessing the process engine from our rules 264
Process instances as facts 265
BPMN2 Business Rule Tasks 267

Persistence and transactions 270
How is state persisted? 270
JPA implementation 272
Infinispan implementation 274
Extending persisted data 276
Transaction management 278

Summary 279
Chapter 11: Integrating Drools with our Apps 281

Architecture considerations 282
Asynchronous versus Synchronous Design 282

Integrating with the rest of an application 284
Embedding Drools into our application 284
Knowledge as a Service 286

CDI integration 288
Spring integration 288

Introducing Spring Framework 289
Kie Spring Config example 289

Camel integration 290
Integrating the Apache Camel framework 290
Creating our Kie endpoints 290

Kie Execution Server 292
Configuring Kie Server 293

Default exposed Kie Server endpoints 294
Kie Workbench 296
Drools and beyond: extending our functionality 299
Summary 301

Index 303

[vii]

Preface
Mastering JBoss Drools 6 was written to provide a comprehensive guide that helps
you understand the main principles used by the Drools project to build smarter
applications, using the power of business rules. This book covers important topics
such as the drools rule syntax, Drools runtime configurations, internal mechanisms
of the rule engine, and different ways of writing rules using domain-specific
languages, integration patterns, and tooling descriptions. All these topics are covered
with a technical perspective that will help developers adopt these technologies.
The book is also targeted at topics that are not always covered by business rule
systems, such as business processes, complex event processing, and tooling extension
capabilities that are introduced to demonstrate the power of mixing different
business knowledge descriptions into one smarter, adaptive platform.

What this book covers
Chapter 1, Rules Declarative Nature, talks about what the reader will need to
understand about rules to apply them to a project of their own. In short, it will cover
the main structure of rules and why said structure is so useful for solving complex
problems, along with some of the problems usually solved using rules. Also, we'll
explain how rules adjust within the development life cycle.

Chapter 2, Writing and Executing Rules, concentrates on creating a project with rules
defined in a simple text file in order to understand both the basic components of
rules and all the parts involved in a Drools rule project. This chapter also covers the
basics of installing the necessary libraries to work with Drools in a project.

Chapter 3, Drools Runtime, concentrates on the KIE modules (Knowledge Is
Everything modules) that are needed to create a rule environment and how to use
them to create a rule runtime. All the different ways of creating a runtime for rules
are introduced in this chapter.

Preface

[viii]

Chapter 4, Improving Our Rule Syntax, teaches the concepts we need to understand
the basic technical syntax used to define Business Rules in Drools. This chapter
concentrates on learning about rule attributes, such as salience, lock-on-active,
agenda-groups, and so on, which give a lot more control over which rules are to
be fired and when. Also, we'll learn about the from clause of rules, which allows for
different sources of data for evaluating our rule conditions.

Chapter 5, Understanding KIE Sessions, starts with an introduction to the different
types of session supported by Drools. It then covers many of the different
components that can be added to the session to make it register, alter, or change our
rules execution, such as global variables, channels, event listeners, operators, and
accumulate functions.

Chapter 6, Complex Event Processing, gives a brief introduction to the Complex Event
Processing (CEP) concept and how Drools allows us to work with complex events. It
covers features such as events, type declarations, temporal operators, sliding windows,
and other components of Drools for detecting and managing complex events.

Chapter 7, Human Readable Rules, explains human readable ways to define our rules,
such as Domain Specific Language (DSL), Decision Tables, and Templates. They
allow the user to create a mapping between the rule language (highly technical) and
the specific language that domain experts can easily understand. These mappings
will allow business users to be able to define and modify rules without much
knowledge of the technical aspects of Drools.

Chapter 8, Rules Testing and Troubleshooting, explains what the different challenges of
testing Drools' rules are. It gives an overview of the possible errors and problematic
scenarios we may find when testing our application. A set of good practices and
techniques to identify and mitigate these problems is also provided in this chapter.

Chapter 9, Introduction to PHREAK, is an introduction to the underlying algorithm
Drools uses for the evaluation of business rule assets. It provides an overview of how
a Knowledge Base is converted into a PHREAK network composed of specialized
nodes that perform different kinds of task, such as classification, constraint
evaluation, and join operations. This chapter provides concrete examples on how
rules are compiled and evaluated, covering some of the most used patterns and
operators in PHREAK.

Chapter 10, Integrating Rules and Processes, goes into detail about the workflow aspect
of rules. Specifically, it covers how rules can invoke processes and vice versa. In this
chapter, we will also cover the aspects required for implementing a persistent Kie
Session, to be used (and reused) both for Rules and for Processes execution.

Preface

[ix]

Chapter 11, Integrating Drools with our Apps, shows integration with the Spring and
Camel frameworks, in order to integrate Drools in more complex applications. It also
shows us how to make changes to our rules while the application runs and how to
make services to invoke rules remotely, using a component called Kie Execution Server.

What you need for this book
This is a developer guide, so the thing you will find most useful when you read this
book is a computer beside you, where you can try the examples and open, compile,
and test the provided projects. The main idea behind the book is to get you up to
speed in the development of applications or tooling that use Drools 6 and for this
reason the book spends a lot of time with code examples and unit tests to run. Good
programming skills are required to easily understand the examples presented in this
book. Most of the chapters complement the covered topics with a set of executable
Maven projects. A basic understanding of Maven, Java, and JUnit is required.

Who this book is for
This book is for Java developers and architects who need to have a deep
understanding of how Business Rule frameworks behave in real-life
implementations. The book assumes that you know the Java language well and also
have experience with some widely used frameworks, such as Hibernate. You should
also know the basics of relational databases and Maven-based applications.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the import directive."

A block of code is set as follows:

rule "Classify Item - Low price"
 when
 $i: Item(cost < 10.00)
 then
 insert(new IsLowRangeItem($i));
end

Preface

[x]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

rule "Classify Item - Low price"
 when
 $i: Item(cost < 10.00)
 then
 insert(new IsLowRangeItem($i));
end

Any command-line input or output is written as follows:

mvn -B archetype:generate

 -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=org.drools.devguide
 -DartifactId=myfirst-drools-project

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xi]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[xii]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Rules Declarative Nature
We developers have always had to deal with the complex problems in software
development and they're not going to get any simpler in the future. Systems such
as fraud detection software, shopping carts, activity monitors, credit and finance
applications, and generally any type of systems that take isolated pieces of data and
make a decision based on this information is a very common thing nowadays. Not only
is there a necessity to correlate all this data, but also do it as fast as possible for more
data each time, and be able to update the correlation mechanisms in a quick manner.

Great expectations spring from this sort of system, of which one of the most
trending right now is the Internet of Things. As more and more devices and pieces
of software interconnect, a great necessity arises for the systems that allow complex
situations to be detected in a simple collaborative way by more and more people
outside the development cycle, and be able to react quickly upon detection of these
situations. Traditional programming has strived to adjust to this ever-changing pace
of adaptation, through agile methodologies and continuous delivery. However,
when it comes to the task of actually creating the software that has to detect complex
situations and react to them by making a decision, the necessity for a new paradigm
for development arises and that's where business rules and Drools come to our aid.

In this chapter, we will cover a detailed explanation of business rules:

• The definition and structure of business rules
• The importance of business rules to the development life cycle
• The uses of technologies such as Drools and its tooling for the developers

and everyone in an organization

Rules Declarative Nature

[2]

What are rules?
Our everyday life is driven by rules. Every time we stop at a red light while driving,
we do so as we're following a rule that says we should stop when the light turns
red. We all also know the rule that states that when we are of a specific age, we are
allowed to take a test to get a driving license.

Even if we don't follow these rules, like the daredevil developers we all are, we're
still bound by the rules of nature; if you don't breathe in oxygen, you asphyxiate.
If you jump, you're going to touch the ground eventually as the rules of physics
determine that gravity will pull you down. Some of these rules (like gravity) have
been studied so much that they can be expressed as simple mathematical equations.
However, for our everyday rules that we consider common sense, we use a simpler
structure: for a group of conditions that we detect, we take specific actions.

These sort of structures are very important for organizations as they have to deal
increasingly with complex scenarios. These scenarios are composed of a large
number of individual simple decisions, which work together to provide a complex
evaluation of the full picture. This complex evaluation starts with simple assessments
used to determine the nature of our environment that we will call inferences. These
inferences might be crossed with other pieces of data or more inferences until a
complex view of the domain can be achieved, understood, and actions can be taken
for the benefit of the organization's goals.

These implied decisions were, for a long time, a part of the systems of an
organization through very static structures. Starting with the mainframe
applications, evolving over time as services, web applications, and middleware
solutions, these solutions always had a high coupling with the rest of the system.
business rules, on the other hand, allows for a specific, easy-to-read, and split
structure to be used to define these decisions in a way that make sense to different
groups in an organization—and not just the development areas—and can be quickly
implemented and updated automatically.

Rules basic structure
Depending on the specific syntax of each rule engine, the syntax might vary a bit.
Nonetheless, there are primal structures that are common to all the rule engines and
they look something similar to the following:

when a condition is found to be true,
then an action is executed

Chapter 1

[3]

We can add as much syntax sugar on top of this as we can think of; however, this
basic structure is what lies underneath it all: a list of conditions and actions. A
condition is basically a constraint or filter. These filters will look at the information
available in a domain to try and find data that meets the defined criteria. Once
a group of data is obtained matching the condition, an action or consequence is
scheduled to be executed, taking the matching data as a parameter.

A condition always works like a query; it narrows data from a specific domain by
specific filters. This means that a rule will make sense in a specific domain: If your
rules are designed to filter apples and the only data you feed these rules are oranges,
the rules will never find their conditions to be true.

As simple as this structure might be, it is the basis of all the business rules that we
will see in this book. Thanks to this structure, business rule systems provide a great
advantage over the conventional code for defining complex scenarios. Over the next
sections, we will explain these advantages.

Declarative approach
The business rules are based on a programming paradigm called Declarative
Programming. This paradigm sustains that you can express the logic of a program
without having to explicitly describe the flow of instructions that must be followed.
Since the condition works as a filter, whenever data is introduced to the rule engine
that matches a condition, a rule or group of rules is determined to be executed.

This means that the control of the flow is neither determined by the order of the rules
nor by the order of the incoming data, but by the conditions the rules declare. This
declarative approach allows any number of rules to be written without having to
worry about any specific place where they need to be written.

Imperative versus Declarative implementation
Imperative programming is the name we give to our everyday programming
paradigm. This type of programming is used by languages such as Java, C#, Perl,
and many others. It is defined by the control of the sequence flow of instructions, we
explicitly inform when each code instruction should be executed.

The declarative approach, on the other hand, doesn't allow a direct control of the
sequence flow to the developer, instead it lets the data guide the rule that should
be executed. At first, this might seem hard to grasp or be considered as a useful
trait for a language. However, we're about to see how Drools allows a very useful
union between declarative implementations based on Drools rules and imperative
implementations based on Java.

Rules Declarative Nature

[4]

Of course, these Drools-based rules will have to be run on a Java application, where
the sequence flow of the steps to be executed is determined by the code. In order
to achieve this, the Drools rule engine transforms the business rules into execution
trees, as shown in the following image:

As you can see in the preceding image, each rule condition is split in small blocks,
connected and reused within a tree structure. Each time data is fed to the rule engine,
it will be evaluated in a tree similar to this one and reach an action node, where they
will be marked as data ready for executing a specific rule.

This transformation from business rules to execution tree is possible as the Business
Rule structures are excellent for representing themselves as data. This means that the
very code of the rules can be quickly transformed into very performing execution
structures and also updated and changed during runtime. This happens because every
condition can be easily added, moved, or deleted by changing the tree structure.

It is worth mentioning that, however, the previous image is just
an example. The actual decision tree that is generated is a more
complex topic, which we will cover in the following chapters. The
previous image is just to show the objective of the decision tree.

In the next section, we will discuss the reasons these structures are very useful for
performance, collaboration, and maintenance of complex systems.

Chapter 1

[5]

Why do we use rules?
At this point, you might be still a bit puzzled about why rules are something useful.
If we think of it, in terms of one rule or a few, we might consider it better to do it
directly on the imperative code like Java, for example. As developers, we're used to
break down the requirements into a list of steps to be followed and having to give
away that control can be something intimidating.

However, the main strength behind business rules doesn't come from one rule or a
small group of rules, it comes from a large, ever-changing group of rules that define
a system so complex that it would require extensive work to maintain it if we did it
with regular code.

Many rules can work together to define complex systems as the growth of the
business rules code base happens organically. Whether we need to implement new
requirements, modify existing ones, replace parameters, or change the structure of
our system behaviour in new unexpected ways, the only thing we will need to do
with the rules is implement new rules that now apply and remove the ones that don't
apply anymore. This is possible as business rules work on the following principles:

• They're independent
• They can be easily updated
• Each rule controls minimal amount of information needed
• They allow more people of different backgrounds to collaborate

Rules independence
A Business Rule, all by itself, can't do much. The biggest strength of a business rule-
based system is created by having a lot of rules interacting with each other. This
interaction, however, is not something the rule should directly know most of the
time. That's what we mean when we say rules should be independent. Each rule
should be able to detect a particular set of circumstances and act upon it without
needing anything other than the data of its domain.

When we think about it, this is the usual way the rules exist once we start formalizing
them. Take any law book that you can find and you will see them represented as a
group of rules, each one in the form of a clause. Most of them just present a scenario
and any specific action or interpretation of that scenario. Most of these clauses won't
mention any other clauses. There are a few that do; however, they tend to be the
exception. There is a reason for it to be this way and it is to make the rules easier to
understand, define, and make them less prone to misinterpretation.

Rules Declarative Nature

[6]

The same principle applies when we define business rules for an organization.
Each rule should try not to depend on any other specific rule. Instead, rules should
depend only on the data provided by the domain. This allows a rule to be able to
make sense by itself, without having to create any other explanation besides the
content of the business rule.

However, sometimes rules do depend on others in an indirect way. The assumptions
we make on one rule can be used in the conditions of another one. These data
creations, through assumptions that a Business Rule engine can make, are called
inferences and they are of great use to extend the usability of our rules.

Rule execution chaining
As we mentioned in the previous section, a good Business Rule is an independent
entity, depending on nothing but the domain data to make sense. This doesn't mean
that each rule should work on completely different data structures. Otherwise, you
might end up with very complex rules that would be hard to maintain.

If a rule is too complex, it can be divided into smaller rules; however, even in said
case, the independence of rules is still important and you shouldn't have to explicitly
invoke rules from each other. That would imply control of the sequence flow and
we've already stated that declarative programming doesn't allow this.

Instead, we can split complexity by defining the rules that make assumptions about
the base domain and add information to the domain. These assumptions are called
inferences. Later on, other rules can use this new information, regardless of how
it is determined, as a part of their conditions. Let's see the following example to
completely understand this splitting of rules:

• When we get a signal from a fire alarm, we infer that there is a fire
• When there is a fire, we call the fire department
• When the fire department is present, we let them in to do their work

Each one of these three rules can be condensed into a single, more complex rule:
when we get a signal from a fire alarm, we call the fire department and let them in
to do their work. However, by splitting the rules into simpler components, we can
easily extend the abilities of our rule engine. We could reuse the first inference that
we make—about there being a fire—to trigger other actions such as activating the
emergency sprinklers, disabling the elevators, or calling our insurance company.

Chapter 1

[7]

When a rule no longer makes sense, we can remove it from the rule engine. If a new
rule is required, we can create it and take advantage of the already available inferred
data. As the sequence flow will be controlled by the engine, we don't have to worry
about the order in which things are going to be executed or where the new rules fit
among the rest of the existing rules.

Atomicity of rules
As we can create more rules that take advantage of already established inferences,
the simpler our rules are, the more extensible they become. Therefore, another
principle of good rule writing establishes that we should try to make our rules as
simple as possible to the point that they cannot be divided into anything smaller,
which could still be considered a rule. This principle is called Rule Atomicity.

The atomic rules are simple to understand. They are usually designed with minimal
amount of conditions to take an action or infer the occurrence of a situation. As
they are independent, they still make sense by themselves. Rule atomicity, rule
independence, and inference capabilities together make business rules the simplest
component that we can use to define the behaviour of any of our systems. Simplicity
allows a clear understanding of why the decisions are made in the system, making
rules self-explanatory and allowing us to keep a track of every rule that intervened in
a specific decision. This is the reason why laws have been the building blocks of the
society's internal regulations for thousands of years.

Ordering of rules
We've already mentioned that rules don't follow one specific order. Sequence flow
is determined by the rule engine, which means the rule engine will have to decide,
based on the available data from the domain, which rules should fire and in what
order. This means the order in which the rules are defined is not important, only the
data in their condition is required to match a specific rule.

There are ways of ordering rules that are competing for execution under the
same conditions being met in the domain. This ordering works as a second-level
prioritizing for rules, with the data in the domain model being the first one needed to
determine a rule to be activated. These ordering mechanisms, which we will discuss
later in more technical chapters, should be for special cases only. Exceptions to the
common way we define rules instead of the norm. If we find ourselves controlling
every single rule and the order in which it should fire, we should rethink of the way
we're writing our rule definitions.

Rules Declarative Nature

[8]

This is something difficult to absorb by the developers first getting a glance at
declarative programming. Nonetheless, it provides a lot of improvements in the
way that we can accelerate both our runtime and development efforts mainly based
on the fact that if the order doesn't matter, we can add rules wherever we prefer:

• Collaboration between rules becomes simpler to manage
• Conflict avoidance is simpler
• More people can work on the development of rules, which makes inclusion

of other areas a very real possibility

Rule execution life cycle
The rule engine optimizes the evaluation of conditions and makes sure that we
determine the rules to fire in the fastest way possible. However, the rule engine
doesn't execute our business rules immediately at a condition's detection unless we
specify so. When we reach a point where we find a rule evaluation to be true for a
group of data, the rule and the triggering data are added to a list. This is a part of
an explicit rule life cycle, where we have a clear splitting between rule evaluation
and rule execution. Rule evaluation adds rule actions and the data that has triggered
them to a component that we will call the Agenda. Rule execution is done on
command. The moment we notify the rule engine, it should fire all the rules that we
have in the said agenda.

As we stated earlier, we don't control the rules that are going to be fired. It's the
engine's responsibility to determine this based on the business rules that we create
and the data that we feed to the engine. However, once the engine determines the
business rules that it should fire, we have the control over the time when they should
be fired. This is done through a method invocation to the rule engine.

Once the rules are fired, each rule that matches in the agenda will be executed. Rule
execution might modify the data in our domain and if these modifications cause
some rule to match with the new data, new rule matches can be added to the agenda
or if these modifications cause a match to no longer be true, it will be cancelled.
This full cycle will continue until no more rules are available in the Agenda for the
available data or the rule engine execution is forced to stop. The following diagram
shows how this workflow is executed:

Chapter 1

[9]

This execution life cycle will continue firing all the rules that the rule engine has
decided to add to the Agenda based on the rule definitions and the domain data we
feed to it. Some rules might not fire and some rules might fire multiple times.

During the following chapters, we will learn how to control the rules that should
fire; however, we will always maintain the principles for Business Rule writing that
we already established—independence and atomicity. The more we learn about
the configuration of the rule engine, the more we will trust it to do its job. For the
moment, it will be a leap of faith; however, with every step, we will learn how to
control the rule engine until we can be 100% sure that it will do exactly what we
expect of it.

Collaboration with Rules
As the sequence flow is beyond our direct control when creating business rules,
one main advantage we have is that we don't have to worry about the code placing.
As all rules are independent and the sequence flow is determined by the engine at
runtime, it doesn't matter where we place the rule.

With common, imperative programming languages such as Java, each instruction
will happen at a specific moment in the program execution and finding said specific
point in the code, where we need to add our modifications, involves reviewing the
whole set of code. Entire design patterns have been created around managing this
limitation in ways that we can collaborate between developers while working on the
same system. Every major design pattern works on splitting the code base in groups
such as modules, methods, and classes to manage these collaborations between
developers with ease.

www.allitebooks.com

http://www.allitebooks.org

Rules Declarative Nature

[10]

However, the main limitation with the imperative code is that once the system has
been designed, we cannot break beyond the limit that we used to split our code base
easily. We are forced to foresee the probable changes that might be added in the
future when we create the design—something which can be very difficult to achieve.
If we fail to do so and many developers have to modify the same code sections due
to the different requirements, their code will be prone to conflicts.

This limitation can be avoided by declarative programming because the specific
order of the rules doesn't matter. Collaborations between different people defining
different aspects of a same domain module can be done without conflicts as a good
place to add another Business Rule is anywhere between the existing business rules.
The output execution will be relatively same, regardless of the order.

Let's take a look at the following pseudo code section comparison between the
Imperative and Declarative code. When we have to add any modifications to an
imperative block of code, we cannot just do it at any place. There are specific places
to add a specific correction and if you place them in a different spot, it either doesn't
work as expected or is not as performing as it could be, you can the comparison as
shown as follows:

The business rules, on the other hand, define each rule as an isolated block of code.
People could add work in any part without any problem. This makes application
development with business rules easier in collaborative environments as it is far less
prone to conflict problems, as shown in the following image:

Chapter 1

[11]

Having less chance for conflict, we can concentrate our time and energies on the
solution that we are trying to build instead of worrying about merging the solutions
between different components or within a same component.

The increased possibility of having more points on which to add code without
conflicts opens the door to have more people involved in the development life cycle.
This can help speed up the development and update of our software solutions
dramatically.

Involving more people with Rules using a BRMS
Thanks to the increased collaboration business rules provides us during the
development time, we can have an increased amount of people working on defining
the decisions for our systems. The immediately subsequent bottleneck that we usually
face at this point is finding more people who understand how to write the rules.

Writing rules is, at least in the beginning, a technical task. It requires a certain level
of knowledge about how to define conditions and actions—topics that we will cover
in detail in the next chapters—and getting more people to learn how to write these
rules takes a little time.

Even if we get technical people to learn how to write rules quickly, it is usually not
enough. It's not due to a technical limitation but mostly due to the people who hold
the practical knowledge that we need to write as business rules not being the most
available or tech-savvy group of people. It could be the case, of course, and you
may have probably found one of the best groups to work with Business Rule-based
systems. However, for most of the cases, they will have the practical knowledge but
not the time or desire to learn how to write technical rules.

Rules Declarative Nature

[12]

For these groups of business experts, there are platforms that allow them to access
rule writing in a more user-friendly way. These platforms are a composition of
user-friendly editors, with versioning and publishing capabilities, called Business
Rule Management Systems (BRMS). Basically, business experts will be able to
create rules using the same everyday language that they are familiar with and
use for thinking definitions for decisions. You will learn more about these user-
friendly ways of writing rules in Chapter 5, Human Readable Rules. For now, let's just
mention that we can define business rules in a natural language using editors that
allow business experts to work directly on the rules in a very similar speed to how
technical experts define business rules.

The following is a small screenshot where we can see one of these editors in the
KIE Workbench, a Drools based BRMS:

Letting the rule engine do its job
So far, we've covered an introductory explanation about the structure of business
rules. Whenever we had to explain how the rules were executed, we simply said
that the rule engine will take care of it. When we use business rules, we trust a rule
engine to determine the rules that should fire, based on the domain data that we
send to it. We will, at this stage, try to define how the rule engine will define the
rules that should be fired and when.

Chapter 1

[13]

In the previous sections, we saw a brief display about how rules can be translated to
execution trees, where decisions are taken based on the data, following a declarative
paradigm approach. In this section, we will try to explain how this structure helps in
creating the most performing execution possible based on our rule definitions.

Rule engine algorithm
The rule engine transforms the business rules that we define to an executable
decision tree through a specific algorithm. The performance of the execution tree
will depend on the optimization mechanisms the algorithm can generate. The
Drools 6 framework defines its own algorithm focused on higher performance. This
algorithm is called PHREAK and was created by Mark Proctor. It is based on a series
of optimizations and redesigns of a pre-existing algorithm called RETE, created by
Charles Forgy. PHREAK is one of the most efficient and performing algorithms
implemented as open source to the date.

In the generated execution tree, every condition in our rules will be transformed to a
node in the tree and how the different conditions connect to each other in our rules
will determine the way these nodes will be connected. As we add data to our rule
engine, it will be evaluated in batches, flowing through the network using the most
optimized paths possible. The execution tree finishes when the data reaches a leaf,
which represents a rule to be fired. These rules are added to a list, where a command
will be called to fire all the rules or a subgroup of rules.

Due to this continuous live evaluation of the condition of rules, this rule engine bases
its performance on having all the data for rule evaluation available in the memory.
The details about how the algorithm builds a decision tree will be introduced later in
this book.

Each time we add more data to the rule engine, it is introduced through the root of
the execution tree. Every optimization on this execution tree works according to the
following two main focus points:

• It will try to break down all the conditions to the smallest amount of units in
order to be able to reuse the execution tree as much as possible

• It will try to make only one operation to go to the next level below, until
it reaches a false evaluation of a condition or a leaf node, where a rule is
marked for execution

Every piece of data is evaluated in the most-performing way possible. The
optimizations of these evaluations are the main focus of the rule engine. In the
following chapters, we will discuss how to make rules that take advantage of each of
these advantages in order to make our business rules as fast as possible.

Rules Declarative Nature

[14]

When should we use rules?
The business rules are very powerful components. They introduce a large number
of changes in the way we define our business logic. They allow us to handle the
complexity, performance, and maintenance of our systems in order to accomplish a
lot in a very little time.

These improvements are of great value for any project and business rules can
be implemented and added to any type of project that you might find out there.
Nonetheless, we want to remark these projects that would benefit the most on
introducing business rules to their technological stack. These projects have one or
more of the following characteristics:

• They define a very complex scenario that is difficult to fully define even for
business experts

• They don't have a known or well-defined algorithmic solution
• They have volatile requirements and need to be updated very often
• They need to make decisions fast, usually based on partial amounts of data

Complex scenario, simple rules
Every once in a while, we find systems—or parts of systems—where small relations
among components start having more importance the more we investigate them. At
first, they might seem innocuous components that take very little decisions based on
small relations between two or three sources of data. As we start investigating them
further, these relations take on more and more importance. Eventually, we might
find the relationship between the parts produces more collective behaviors that even
the business experts were unaware could happen; however, this still make sense.
These kinds of systems are called Complex Systems and they are one of the places
where business rules provides a great aid.

Complex scenarios are usually defined by small statements. The full picture,
involving every single composition, aggregation or abstraction of data needed
to completely define the scenario, is usually something beyond our initial
grasp. Therefore, it is common that such systems start being defined through
partial explanations. Each small relation in the system gets defined as a different
requirement. When we analyze each one of these requirements, on splitting them
into their most basic elements, we find ourselves defining business rules.

Each Business Rule helps in defining every small component of a complex scenario. As
more and more rules are added to the system, more and more of these relations can be
handled in a simple-to-read way. Each rule then becomes a self-explanatory manual
for each small decision that the system takes when executing our complex scenario.

Chapter 1

[15]

The examples of complex applications can be very varied, as follows:

• Fraud detection systems: Usually they take information from every
transaction done within a central service and investigate the correlations
between them to determine situations that are unlikely to come from an
honest and legal use of the system. Things such as unusual credit card
operations, large amounts of activity in usually stable accounts, and
unexpected parameters in transactions are usually the things searched by
these systems.

• Customized retail coupons for returning clients: In all kinds of commercial
activities, client fidelity is always valued. A usual strategy to maximize it
is through special coupon generation based on the client's shopping habits.
To accomplish the right coupon, a complex system needs to evaluate the
purchase history of the client, frame the client in a specific demographic
subgroup, and select the best offer available for this subgroup. All these
things need to be done based on the complex relations between different
purchases and their tendencies.

• Credit scoring software: Credit scoring is a numerical expression based
on a level analysis of a person's credit files to represent the person's credit
worth. Every debt, credit, purchase, or relation can be a valid source of data
to determine the scoring of a person. The complexity of this scenario comes
from having to correlate, weigh, and return a specific score for a person
based on the correlation of all these sources of data.

Ever-changing scenarios
Even when we don't have a complex scenario in our hands, we might still benefit a
great deal from defining our application's logic using business rules. If the elements
involved in making a particular decision tend to change very frequently, business rules
can be a good solution for managing such volatility in the behaviour of a system.

The business rules are represented in the rule engine as a data tree. In the same
way that we can modify the elements of a list, we can remove or add a Business
Rule from a rule engine. This can be achieved without having to restart our
application or reinstalling any components. Internal mechanisms provided by the
Drools 6 framework can be used to update the rule definitions automatically from
external sources. The tooling provided by Drools 6 is also prepared to provide
update mechanisms for the business rules from user-friendly editors. The complete
architecture of the Drools 6 API is based on making this as adaptive as possible.

If we find a system where the requirements might change very frequently, even in a
daily or hourly frequency, business rules may be the best fit for such requirements
due to its update capabilities, regardless of the complexity of the system.

Rules Declarative Nature

[16]

Example–eShop system
Along the rest of the book, we will work on a set of decision services based on
business rules with a common domain: an eShop application. Practise is a crucial
component of learning about a new framework and in order to make it simple in
order to go into detail on the rule engine as fast as possible, we will define a basic
model shared between most of our examples.

To start with, we will define the model of our eShop system. This model will contain
all the different things that are relevant to make decisions about our application.
Some of these objects are as shown in the following:

• Product: Our shop will sell different kinds of items. Each kind will be
represented by a product object, containing the details about the specific item.

• Stock: This is the amount of each product that we have in storage.
• Provider: Our products come from different providers. Each one of them

can provide the eShop with specific kinds of products in a specific capacity
for delivery.

• Provider Request: When we run low or out of a specific product, we will
have to create a request for our providers to fill our stock.

• Client: The shop has clients that will have preferences for specific products,
pending and completed orders, specific demographic information, payment
preferences, and any type of data that we can obtain from their navigation on
our eShop.

• Order: When a client likes one or more products in our eShop, they can order
them to be delivered. The orders have different status, depending on whether
the client received it successfully or not. They also have information about its
specific products and their quantity.

• Discount: The eShop offers different types of discounts, depending on the
type of purchase.

• Sales channel: The eShop that we will emulate can work with multiple
sites and each one of them is treated as a different sales channel. Each sales
channel will have its own specific target audience, which is determined by
the clients who use it.

Chapter 1

[17]

As we need more types of objects to define the reality of our eShop, we will define
more classes to extend the understanding of our world. Once we start correlating all
these pieces of domain data together, we will be able to detect all types of situations
and act upon them in the benefit of both our eShop and its clients. Some of the things
that we will be able to do are shown in the following:

• Defining the best sales channel for a specific kind of product by correlating
products with each sales channel and comparing them with the rest of them.
Based on this information, we can create custom discounts for the products
in these channels.

• Defining the client preferences for specific products. Based on this information,
we can offer them discount tickets tailored for their specific tastes.

• Determine the average consumption of specific products and compare
them with our stock. In case of necessity, we can automatically trigger
provider requests.

• Based on how many orders we have in process for specific providers, we can
ask for a discount on the price.

• We can analyze the different purchases that our clients make in our eShops.
If, at some point, the purchases go beyond what we consider normal, we can
take a series of actions, from a simple warning to providing direct human
support for a specific purchase.

These are just a few things that we could do with business rules for such domains. As
we find more situations with specific requirements to be fulfilled, we will learn new
techniques to write our rules and configure our runtime. Each new necessity will guide
us to define new components in order to get the most out of the Drools 6 framework.

When not to use a rule engine
Every project, in one way or another, can benefit from using business rules. They
are highly performing, easy to change, and self-explanatory software components.
However, there are a group of conditions that a project might have that would make
use of business rules a bit of overkill. Some of the characteristics that make a project
benefit the least from business rules are shown in the following:

• There are very few, self-contained rules involved in the project: If the
business rules identified in the requirement gathering are very simple and
span about one or two objects at most, we don't need a rule engine to run
them. A good rule of thumb is that if we can write the business rules that we
need as the pseudo code in less than a page and with less than two nested
if-then clauses, we might not need a rule engine at this particular time.

Rules Declarative Nature

[18]

• The business logic doesn't change often: If changing rules at runtime is not
going to be needed but the logic is still complex, a rule engine might still be
a good idea. However, if the complexity behind the rules is not that high and
we can assume it will remain that way for a long time, we might not need a
rule engine.

• A very strict control of the execution flow is crucial for the application: As we
stated before, a sequence-flow control is not provided when we execute our
business rules. If the business logic behind the business rules depends a lot
on a strict set of steps that need to be executed sequentially, business rules
might not be the right fit. However, if it does change frequently, perhaps a
business process would be worth considering.

It is still a responsibility of the project team to determine whether business rules
might be a good fit even if these conditions are met. After all, our experience can lead
us to think that the amount of rules has a big chance of growing in the future or there
might be situations where the rules will eventually need to change more frequently.
Each project has its own unique characteristics and it might be that a project with no
need for business rules right now cannot be thought without them in the future.

Summary
The business rules is a very strange concept to deal with on our first encounter
as traditional developers, and the purpose of this first chapter was to present how
they fit in our everyday application development and why they can help us define
better systems.

We've seen what rules are, defined their structure, and covered their practical uses.
We've also covered a few examples of projects where rules are useful—and some
other examples where they might be not necessary. We've also introduced our eShop
project, which will guide us through the next few chapters in order to establish
all the benefits Drools 6 provides, from Business Rule writing to Rule Engine
configuration.

In the next chapter, we will start writing our first business rules and take our first
steps in defining our rule-based projects.

[19]

Writing and Executing Rules
The best way to learn something new is by trying it out. For this reason, in this
chapter, we are going to cut to the chase to write and execute our first rules. We will
also cover the most important points about the rule language and how to effectively
write rules that mean something to your domain. This chapter will use the eShop
model introduced in the previous chapter to demonstrate a set of scenarios where
rules can be applied.

Before we start coding, in the first half of this chapter, you will learn how to set up all
the standard tools required to work with Drools and the examples provided with this
book. We will be creating a project from scratch, therefore, you can use this chapter
as a reference to start your applications from the ground up. The second half of the
chapter will cover the introduction to the DRL language and how we recommend to
organize your projects when you are using rules or other knowledge assets such as
business processes.

Briefing this up, this chapter we will cover the following topics:

• Setting up our environment
• Creating our first Drools project
• Writing and executing our first rule
• Discussing the DRL rule language
• Organizing our projects

Writing and Executing Rules

[20]

Setting up our environment
In order to start working with rules, there are a couple of things that we need to
consider. First of all, we will be relying on Maven to provide the structure for our
projects. I strongly recommend you read about Maven if you are not familiar with
it as most of the Drools and jBPM infrastructure is nowadays aligned with Maven,
therefore, you will feel much more comfortable when you know how it works. I
recommend the following link from the Maven project website if you are completely
new to the subject:

https://maven.apache.org/guides/getting-started/index.html

This is not a strong requirement for Drools; however, it is a recommended way
to use it. Most of the integration with the project tooling and other modules relies
on Maven serving as the standard for project structure and project life cycle and
dependency management.

In order to get started, we need to make sure that we have the following software
installed on our computer:

• Java 8 JDK, notice that Drools doesn't require JDK 8, yet all the book
examples were created using that. To avoid problems with the examples, we
recommend using this version.

• Maven 3.1.x or newer version to compile, test, and package our projects.
• GIT 1.9.x or newer version for source version control.

We will be using Git to get the project examples from our repository hosted on
Bitbucket. If you are not familiar with Git, we recommend you to take a look at their
official documentation at http://git-scm.com/docs.

In order to get a copy of the examples in our local environment, we will clone the
remote repository by executing the following command in the terminal:

>git clone https://bitbucket.org/drools-6-developer-guide/drools6-dev-
guide.git

Depending on the platform (operating system) that you are running, you can use a
Git client to interact with the remote repositories. Feel free to look at the different
alternatives for your operating system, here is a list provided by the Git project at
http://git-scm.com/downloads/guis.

Now, you have a copy of all the examples of this book in your local environment.
To make sure that everything is correctly set up, go to the drools6-dev-guide/
directory and run the following command:

> mvn clean install

https://maven.apache.org/guides/getting-started/index.html
http://git-scm.com/docs
http://git-scm.com/downloads/guis

Chapter 2

[21]

This command tells Maven to clean all the previously compiled classes and packaged
resources and remove them from our projects to start a fresh compilation process.
In order to compile all the Java classes, Maven needs to make sure that it has all the
third-party dependencies required by this projects. In our case, Drools is one of the
third-party libraries that will need to be downloaded by Maven if we don't have
it locally. However, this will not only compile the Java classes, but also run all the
tests defined in the projects and package every project if, and only if, all the tests
are successful.

This process of downloading, compiling, and running the tests might take some time
the first time you run it in your local environment. This is mostly due to the initial
downloads and unless you are using nightly builds (SNAPSHOTS), it should only
happen the first time you run the command. Notice that the repository hosting the
examples doesn't host any third-party libraries, not even Drools.

If you are behind a proxy, read the Maven guide to set up your proxy configurations
at https://maven.apache.org/guides/mini/guide-proxies.html.

If this command ends with BUILD SUCCESS, we are good to go. It should look
similar to the following:

Now, we know that the JDK and Maven are working correctly, we are ready to move
forward and create our first Drools project.

Creating our first Drools project
As mentioned in the previous section, we will use Maven to provide us with the
project structure. For this, Maven provides the concept of archetypes, which are project
templates that we can use to bootstrap our projects. Most of the IDEs provide a way to
use these archetypes in order to create and initialize our projects. Check for your IDE if
you need to download a Maven plugin or if Maven support is already bundled. If you
want to do this via the command line, we can run the following command:

mvn -B archetype:generate
 -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=org.drools.devguide
 -DartifactId=myfirst-drools-project

https://maven.apache.org/guides/mini/guide-proxies.html

Writing and Executing Rules

[22]

I recommend you to run this command in the drools6-dev-guide/chapter-02/
directory. This will enable Maven to inherit all the configuration from the parent
project configuration defined in drools6-dev-guide/pom.xml. If you do this, your
project will know the version of Drools that all the other examples in the book are
using, avoiding you to define these versions in the following sections.

Notice that you can change the values for DgroupId, which represents the logical
group your application belongs to and DartifactId, which represents the name of
your specific Maven module. This command will create a myfirst-drools-project
directory in the directory.

Once we run this command, a new project structure will be ready for us to use.
This structure looks similar to the following image:

Here, some important things are as follows:

• pom.xml: This contains the project definition and first-level dependencies.
I strongly recommend you to open this file and take a look at it. You need to
become familiar with how to change this file to include new dependencies
and project configurations.

• src/main/java: This contains our Java classes that need to be compiled.
• src/test/java: This contains our test classes that need to be compiled and

executed during the test phase.
• src/main/resources: We need to create this directory when we need it (or

your IDE might need to create this one). It will contain all the static resources
that don't need to be compiled; however, it needs to be packaged along with
our compiled classes.

• src/test/resources: We will need to create this directory when we need
it (or your IDE might need to create this one). It will contain all the static test
resources that don't need to be compiled; however, they are required by our
test classes.

Chapter 2

[23]

This basic structure serves as a starting point for any Java project, no matter which
frameworks are you going to use in it. In order to use Drools in this project, we
will need to define the framework dependencies in the pom.xml file. The following
dependencies (in the dependencies tag) needs to be added to use Drools in our project:

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.drools.devguide</groupId>
 <artifactId>chapter-02</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>myfirst-drools-project</artifactId>

 <dependencies>
 <dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-core</artifactId>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
 </dependency>
 </dependencies>
</project>

The first org.kie:kie-api dependency contains all the public interfaces exposed
by the KIE Platform, which is composed by Drools, jBPM, and OptaPlanner. Next,
we include the org.drools:drools-core artifact, which contains the Drools rule
engine implementation. Finally, we will include the org.drools:drools-compiler
artifact that contains the algorithm to translate the rules written in different resources
(text files, spreadsheets, your own types, and so on) to executable rules. This artifact
is required only because we are compiling our rules in the project. It is possible to
separate the rules compilation from the rules execution to remove this dependency
from our project; however, for the sake of simplicity, we are going to compile our
rules in the same project.

Writing and Executing Rules

[24]

In order to start writing rules about our own domain, we will also need to add a
dependency to it. The dependency defined for the domain model provided by the
book examples is as follows:

<dependencies>
 (... Drools dependencies here …)
 <dependency>
 <groupId>org.drools.devguide</groupId>
 <artifactId>model</artifactId>
 </dependency>
</dependencies>

In this way, we can add any dependency that we want and directly start writing
the rules using the classes provided in this third-party library as we will see in the
next section.

There is one last thing that we need to do in order to complete our project
configuration, define a file in the chapter-02/myfirst-drools-project/src/
main/resources/META-INF/ directory called kmodule.xml. This file will be used
to configure how to load the rules defined in the project in the rule engine. For now,
the content of kmodule.xml will be quite simple as we will be using all the default
configurations. The following is an example of an empty kmodule.xml:

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://jboss.org/kie/6.0.0/kmodule">
</kmodule>

We will take a look at how to customize this file with more fine-grained settings
in Chapter 3, Drools Runtime. This file will be picked up when we instantiate a Rule
Engine session automatically to figure out what needs to be loaded.

We are now set up and ready to write and execute our first rule.

Writing and executing our first rule
Now that we have our project structure ready, we can write our first rule. For that,
we will create a new empty text file. This will be a static resource, therefore, we
need to place it in the src/main/resources directory. This text file needs to have
the .drl extension so that it can be picked up as a rule file. In the .drl files, we will
write as many rules as we want. Now, we will start easy with just one rule.

Let's write our first rule to classify the items based on what they cost us. Our rules.
drl text file will look similar to the following:

package myfirstproject.rules
import org.drools.devguide.eshop.model.Item;

Chapter 2

[25]

import org.drools.devguide.eshop.model.Item.Category;
rule "Classify Item - Low Range"
 when
 $i: Item(cost < 200)
 then
 $i.setCategory(Category.LOW_RANGE);
end

This rule checks for each item that costs less than 200 USD and automatically tags
it with a category, in this case, LOW_RANGE. For our shop, it makes sense to
differentiate our items in different ranges so that we can apply different discounts
and marketing strategies for them. This classification process can be done
automatically using rules, which centralize the point where we have this business
definition of what LOW_RANGE, MID_RANGE or HIGH_RANGE items they are.

In general, these files will be structured as follow:

• Package definition: This is the same as in Java, we will declare a package for
our rules

• Imports section: We need to import all the classes that we are going to use in
of our rules

• (Optional) declared types and events: We will look at this in more detail in
Chapter 4, Improving our Rule Syntax

• Rules: (1..N)/Queries (1..N)
Before analyzing further, let's try to execute the rule and see what happens. In order
to execute and test our new rule, we need to create a Java class, where we bootstrap
the Rule Engine and provide the required information for it to work. We can just
create an empty class with a main method, bootstrap the engine, and start using it
right away.

In order to do this, we just create an App.java class for this example and place it
in the src/main/java/ directory so that it can be compiled by Maven. For this
example, we have created the org/drools6/book directory that follows the standard
Java package structure, as follows:

package org.drools6.book;
import ...

public class App {
 public static void main(String[] args) {
 System.out.println("Bootstrapping the Rule Engine ...");
 //1) Bootstrapping a Rule Engine Session
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();

Writing and Executing Rules

[26]

 KieSession kSession = kContainer.newKieSession();

 Item item = new Item("A", 123.0,234.0);
 System.out.println("Item Category: " + item.getCategory());
 //2) Provide information to the Rule Engine Context
 kSession.insert(item);
 //3) Execute the rules that are matching
 int fired = kSession.fireAllRules();
 System.out.println("Number of Rules executed = " + fired);
 System.out.println("Item Category: " + item.getCategory());
 }
}

As you can see in the previous example, there are three main stages, as shown in
the following:

• Bootstrapping the Rule Engine session: We will look at what KieServices,
KieContainer, and KieSession's main responsibilities are in Chapter 3,
Drools Runtime. For now, we need to know that KieSession represents a
running instance of the Rule Engine with a specific configuration and set of
rules. It holds the evaluation algorithm used to match the rules against our
domain objects.

• Letting the Rule Engine know about our data: We are responsible for
providing all the information to the engine so that it can operate on it. In
order to do this, we use the insert() method on KieSession. We can also
remove the information from the Rule Engine context using the delete()
method or update the information using the modify() method. We will look
at the KieSession operations in Chapter 3, Drools Runtime.

• If the information that we provided matches with one or more defined rules,
we will get Matches. Calling the fireAllRules() method will execute these
matches. We will learn more about Matches in Chapter 3, Drools Runtime.

• You will need to compile the project in order to execute this class and you
can do this by executing from the terminal or your IDE, as follows:

> mvn clean install

This will compile and package your project, look for the Build Success output in the
terminal. After executing this line, you will find the /target directory containing
a myfirst-drools-project-1.0.0.jar jar file that you can use to execute the
previously compiled class using the following line:

mvn exec:java -Dexec.mainClass="org.drools6.book.App"

Chapter 2

[27]

You will see the following output on the terminal:

user$ mvn exec:java -Dexec.mainClass="org.drools6.book.App"

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building myfirst-drools-project 1.0.0

[INFO] --

[INFO]

[INFO] --- exec-maven-plugin:1.4.0:java (default-cli) @ myfirstproject ---

Bootstrapping the Rule Engine ...

...

Item Category: NA

Number of Rules executed = 1

Item Category: LOW_RANGE

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 2.945 s

[INFO] Finished at: 2015-04-02T09:55:08+01:00

[INFO] Final Memory: 20M/257M

[INFO] --

As you can see, the rule was executed as the category of the item was changed
accordingly with what the rule says. I would encourage you to change the cost of the
item to effectively see that the rule will not be executed if the cost is over the value
defined in the rule. You can also add more items with different costs to KieSession
and see what happens.

Writing and Executing Rules

[28]

Using CDI to bootstrap the Rule Engine
The Contexs and Dependency Injection (CDI) http://www.cdi-spec.org is a set
of standardized APIs defined to provide our applications with these features, while
it allows us to choose the context and dependency injection container that we want.
CDI is now becoming a part of the Java SE specification and its adoption is growing
every year. For this reason and due to the Drools Project added a lot of support for
the CDI environment, this section briefly shows how to simplify our Hello World
example that we wrote in the previous section.

In order to use CDI in our projects, we need to add a couple of dependencies to our
project, as follows:

<dependencies>
 ...
 <dependency>
 <groupId>javax.enterprise</groupId>
 <artifactId>cdi-api</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jboss.weld.se</groupId>
 <artifactId>weld-se-core</artifactId>
 </dependency>
</dependencies>

The javax.enterprise:cdi-api artifact contains all the interfaces defined in
the CDI specification and org.jboss.weld.se:weld-se-core is the container
that we are going to use, which implements the CDI interfaces. By adding these
dependencies, we will be able to @Inject our KieSessions and the Weld container
will take care of bootstrapping the Rule Engine for us.

CDI works based on the principle of convention over configuration and it introduced
the need to add a new file in src/main/resources/META-INF/ called beans.xml,
which will be used to configure how the container has the access to our beans in the
projects and some other configurations. Notice the similarity with the kmodule.xml
file that we introduced earlier. This is an example content of an empty beans.xml
file, which is used by the CDI containers to know the jars that need to be parsed and
made available to the container to @Inject beans, as follows:

<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
</beans>

http://www.cdi-spec.org

Chapter 2

[29]

As soon as we have the dependencies to the container and the beans.xml file, the
container can scan the class path (meaning our project and its dependencies) and
look for beans to inject, we can start using these features in our application.

The following class represents the same simple example that creates a default
KieSession with our first rule and then interacts with it.

The following code snippet initializes KieSession via CDI and interacts with it,
as follows:

public class App {
 @Inject
 @KSession
 KieSession kSession;

 public void go(PrintStream out){
 Item item = new Item("A", 123.0,234.0);
 out.println("Item Category: " + item.getCategory());
 kSession.insert(item);
 int fired = kSession.fireAllRules();
 out.println("Number of Rules executed = " + fired);
 out.println("Item Category: " + item.getCategory());
 }

 public static void main(String[] args)
 {
 // Bootstraping the WELD CDI container
 Weld w = new Weld();
 WeldContainer wc = w.initialize();
 App bean = wc.instance().select(App.class).get();
 bean.go(System.out);
 w.shutdown();
 }
}

Notice that the main(...) method is now bootstrapping the Weld container and
for this reason, our bean (App) can inject any bean. In this case, the @KSession
annotation is in charge of bootstrapping the engine and creating a fresh instance for
us to use. We will look at the annotations provided by the CDI extension in Chapter 3,
Drools Runtime.

Consider this as another very valid option to interact with the Drools Rule Engine.
If you are working with a Java EE container such as WildFly AS (http://www.
wildfly.org), which is constructed on top of a core that is purely based on CDI, this
way of working will be the way to go.

www.allitebooks.com

http://www.wildfly.org
http://www.wildfly.org
http://www.allitebooks.org

Writing and Executing Rules

[30]

For this example, we are using WELD, which is the reference CDI implementation
at http://weld.cdi-spec.org. Notice that you can use any other CDI
implementation, such as Apache Open Web Beans at http://openwebbeans.
apache.org.

Now, in order to understand how the rule is being applied and executed, we should
clearly understand the language that we are using to write the rules called Drools
Rule Language (DRL). The following section covers a more detailed view of this
language. The next chapter will cover the execution side in more detail, explaining
what is going on when we bootstrap the rule engine session and how to configure it
for different purposes.

The Rule language
Now that we have executed our first rule, it is time to learn a little bit more about the
language that we use to define them. In order to do this, we will start by analyzing the
rule that we wrote previously and then we will start creating more advanced rules.

All the rules and examples contained in this section can be found in the chapter-02/
chapter-02-kjar/ project. We will use this project throughout the rest of the
chapter to store different rules.

As it was mentioned in the first chapter, the rule structure is composed of the
conditions and consequence, as follows:

rule "name"
when
 (Conditions) - also called Left Hand Side of the Rule (LHS)
then
 (Actions/Consequence) - also called Right Hand Side of the Rule
(RHS)
end

The Conditions (LHS) of the rule are written following the DRL language, which for
the sake of simplicity, will not be entirely explained in here. We will be looking at the
most common usage of the DRL language throughout the book examples. We will
try to cover as much of the language as possible. You can always refer to the official
documentation for a complete and detailed explanation of its structure at http://
docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/
index.html#DroolsLanguageReferenceChapter.

http://weld.cdi-spec.org
http://openwebbeans.apache.org
http://openwebbeans.apache.org
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/index.html#DroolsLanguageReferenceChapter
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/index.html#DroolsLanguageReferenceChapter
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/index.html#DroolsLanguageReferenceChapter

Chapter 2

[31]

The LHS of the rule is composed by conditional elements, which serve as the filters
to define the conditions that need to be met for the rule to evaluate true. This
conditional element filter facts, which in our case are the object instances as we are
working in Java.

If you take a look at our first rule LHS, the condition expressed is quite simple, as
shown in the following:

rule "Classify Item - Low Range"
 when
 $i: Item(cost < 200)
 then
 $i.setCategory(Category.LOW_RANGE);
end

The line in the Left Hand Side of the rule can be separated in the following
three sections:

• The Item(...) filter for the item object type. This filter will pick up all the
item objects that we insert into our session and filter them for processing.

• The cost < 200 filter will take a look in the item objects and make sure that
the field cost contains a value under 200.

• The $i represents a variable binding, which is used to later reference the
matched object. Notice that we are using the $ symbol to name the variables
so that we can easily identify them in contrast with the object fields. Consider
this as good practice.

To summarize, we are filtering based on Objects and their properties. It is important
to understand that we will be filtering the Object instances that matches with these
conditions. For each item instance that evaluates to true to all the conditions, the rule
engine will create a match.

A little bit more complex rule could be to categorize our customers by the size of the
order that they make. A big difference between this new rule and the previous one is
that now the rule will need to evaluate orders and customers. Take a look at how the
rule looks:

//File classify-customer-rules.drl

rule "Classify Customer by order size"
 when
 $o: Order(orderLines.size >= 5, $customer: customer)
 $c: Customer(this == $customer, category == Customer.Category.
NA)

Writing and Executing Rules

[32]

 then
 ;
 modify($c){
 setCategory(Customer.Category.SILVER)
 };
end

In this rule, we are evaluating the orders with more than five order lines, which
means five different items. Then, we look for the customer associated to this order
and set this customer category. The relationship between the customer and order is
achieved by binding the customer reference in the Order object to a variable called
$customer and comparing Customer that we are evaluating against that reference by
doing the following: Customer(this == $customer…).The order of the conditional
elements is only defined by the bindings that we need. In this case, we are picking
Order.getCustomer() to match the customer fact. However, we can do it the other
way around as well and it will work in the same way, as shown in the following:

 $c: Customer(category == Customer.Category.NA)
 $o: Order(orderLines.size >= 5, customer == $c)

An important thing to understand at this point is that Customer() and Order() need
to be facts, in other words, they need to be explicitly inserted to KieSession using the
insert() method. While Order.getCustomer() is not a fact, it is an object in a fact.

For this rule to evaluate true, we need an Order and Customer object instances that
make all these conditions true. Between the Order(..) and Customer(...) filters,
there is an implicit AND, therefore, the rule can be read When there is an order with
more than 20 items AND a customer that is associated to that order, Then. This is also
equivalent and valid in the DRL language, as follows:

 $o: Order(orderLines.size >= 5, $customer: customer)
 and
 $c: Customer(this == $customer, category == Customer.Category.NA)

You may also have noticed the modify($c); sentence on the right-hand side of the
rule. This modify() method is another operation provided by the Rule Engine to
make sure that the engine knows that a fact has been changed and the change needs
to be notified to other rules that might be looking to match these changes. In this
case, we are letting the engine know about the modification of the category of the
customer. If you omit modify($c), no other rule will know about the change in the
category, which means that rules that depend on already categorized items will not
be matched. For this reason, you will notice that we are also updating the item fact
when the category is set in the rules located in the classify-item-rules.drl file.

Chapter 2

[33]

Now that our rules have become more complex, it is important to notice the fact that
we are clearly separating the business definition from our application code. We are
extracting the definition of how to categorize customers to these rules and we will be
able to update this definition if the business definition changes without modifying
the rest of the application. This is one of the core concepts of using business rules.

Now, based on this categorization, we can create different types of coupons for
different customers, allowing us to treat each of our customers differently, based on
their loyalty and previous orders:

coupons-creation.drl:
rule "Create Coupons for Silver Customers"
 when
 $o: Order($customer: customer)
 $c: Customer(this == $customer, category == Category.SILVER)
 then
 insert(new Coupon($c, $o, Coupon.CouponType.POINTS));
end

Like the previous example, here, the rule is filtering by Orders and Customers;
however, as you can see in the rule RHS, we are creating a new Object of the Coupon
type and making it available to the Rule Engine using the insert() method. This
means that as soon as this rule gets executed by the Rule Engine, it will trigger
any other rule that is expecting Coupons. Here the things become a little bit more
interesting. We saw how the rules can generate new data and chain different rules
together as soon as we make the new data available to the Rule Engine.

If you feel the need to experiment, we encourage you to write a rule in the coupons-
creation.drl file to match the created coupon and see what happens.

Now let's make things a little bit more complex, let's imagine that we want to check
an order with two or more items that only contain HIGH_RANGE items and we want to
apply some discounts to these specific orders.

Writing and Executing Rules

[34]

In order to write a rule that check for this situation, we will also need to evaluate the
OrderLine objects (we will need to add this import as well). This can be translated to
adding more filters to our rules. Now, we will need to put constraints on the Order
object, OrderLines and Item associated. The following UML diagram shows the
relationships among these objects:

+ orderId: Long

+ customer: Customer

+ orderLines: List<OrderLine>

+ state: OrderState

+ discount: Discount

+ order: Order

+ percentage: int

+ item: Item

+ int: quantity + itemId: Long

+ cost: Double

+ salePrice: Double

+ category: Category

+ customerId: Long

+ name: String

+ category: Category

+ couponId: Long

+ customer: Customer

+ validFrom: Date

+ validUntil: Date

Discount

Order

OrderLine

Coupon

Customer

Item

The following rule file expresses the previously introduced rule for discounts:

rule "High Range Order - 10% Discount"
 when
 $o: Order($lines : orderLines.size >= 2, discount == null)
 forall(OrderLine(this memberOf $lines, $item : item)
 Item(this == $item, category == Item.Category.HIGH_
RANGE)
)
 then

modify($o){
setDiscount(new Discount(10.0))
};
end

Chapter 2

[35]

We have three different object filters for Order(), OrderLine(), and Item(). Notice
that this rule also depends on having our items classified; however, there is no
explicit relationship between this rule and our first rule that categorize our items.
One new thing introduced by this rule is the conditional element forall, which
makes sure that all OrderLines and the associated items of the order are categorized
as HIGH_RANGE items. If there is at least one item with a different category set
associated with the current order, this rule will not get activated and fired. In the
same way as earlier, we are updating the order so that if another rule is looking at
the discount applied, the information is available to the engine.

You can find these rules in the chapter-02/chapter-02-kjar/src/resources/
directory. In the following section, we will analyze a little bit of these project
structures and tests provided to execute these rules.

We will be covering more of the DRL language in this book, but feel free to access
the following official documentation if you need a detailed explanation of each of the
DRL constructs:

http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_
single/index.html#DroolsLanguageReferenceChapter

As you will see in the previous link, there is no way to include a detailed explanation
about the constructs in a book; however, we will make sure to cover the most
common ones using examples.

Organizing our projects
The more complex our rules become, the more important it is to have tests for them
and keep them organized as much as possible. In this section, we will discuss how
we organized our example projects for keeping our rules, their tests, and related
classes in a structure that can be easily maintained.

We recommend this way of structuring the projects so that each of them keeps a
very well-defined scope, set of dependencies, and they can be tested independently.
You should keep all the application infrastructural code (user interfaces, system
integration, services, and so on) in separate Maven modules as well, therefore, the
infrastructure can be maintained in separate cycles from the business knowledge that
tends to be updated more frequently by the business needs.

The example repository contains a high-level parent project that is composed by each
individual chapter modules. Each individual chapter contains the following three
main modules:

• -kjar: This will contain our business assets such as rules, business processes,
and so on

http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/index.html#DroolsLanguageReferenceChapter
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/index.html#DroolsLanguageReferenceChapter

Writing and Executing Rules

[36]

• -tests: We will include all the tests here
• -extras (optional): This module usually contains classes to extend the

Drools and jBPM functionality, such as custom evaluators for rules, work
item handlers for business processes, and so on

The -kjar and -tests modules are considered to be knowledge projects as they
contain the rules, definitions, and tests to ensure that the defined knowledge is
behaving correctly. As you can see in the following image, the *-test project will
depend on the domain model project from your application. It might also depend
on the service layer to execute operations; however, as good practice, these services
can be mocked. From the application perspective, it is most likely that the Services
and User Interfaces modules end up having dependencies to knowledge-related
projects. If the knowledge-related projects are only defining the core business logic,
the services from your application will end up using them in order to make decisions
internally. From the user interface's perspective, we can also define knowledge
projects to assist the user at the UI level, as shown in the following diagram:

At this point, don't worry about this structure, it will become more clear when we
move forward on the next chapters. Now, if you take a look at the chapter-02-
test/ project, you will find that we need to define some extra dependencies for the
testing frameworks that we will be using, as follows:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.hamcrest</groupId>

Chapter 2

[37]

 <artifactId>hamcrest-library</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <scope>test</scope>
</dependency>

After adding these dependencies to our projects, we can create our first JUnit test
to make sure that our rules are working as expected. Notice that we have defined
several rules in different rule files throughout this chapter, and for now, we are
going to load all of them in the same KieSession. This means that when we insert
information in the engine, all the rules will be evaluated and probably fired.

The first test that we will look into is the one in the ClassifyItemsTest.java
class and it is located in the src/tests/java/org/drools/devguide/chapter-02
directory in the chapter-02/chapter-02-test project, as follows:

public class ClassifyItemsTest extends BaseTest {
 @Test
 public void simpleClassification() {
 KieSession kSession = createDefaultSession();
 Item item = new Item("A", 123.0, 234.0);
 kSession.insert(item);
 int fired = kSession.fireAllRules();
 assertThat(1, is(fired));
 assertThat(Category.LOW_RANGE, is(item.getCategory()));
 }
}

This test shows how to make sure that our item is categorized correctly. We
encourage you to open the classify-item-rules.drl file, look at the other rules,
and write tests to make sure that other categories are also being processed correctly.

When we compile this project using Maven (clean install), these tests will be
executed, assuring us that our items are classified accordingly. If we use a
continuous build system (such as Jenkins CI at https://jenkins-ci.org), we will
get notified as soon as a rule changes and one of these tests breaks. Allowing us to
review whether the test needs to be changed or the change introduced in the rules is
breaking some other policies that are already defined in the system.

https://jenkins-ci.org

Writing and Executing Rules

[38]

Another test class called OrderDiscountTest.java, is located in the same package
as the previous one. Lets see the code for this as follows:

@Test
public void highRangeOrderDiscountTest() {
 KieSession kSession = createDefaultSession();
 Order o = ModelFactory.getOrderWithFiveHighRangeItems();

 kSession.insert(o.getCustomer());
 kSession.insert(o.getOrderLines().get(0));
 kSession.insert(o.getOrderLines().get(1));
 kSession.insert(o.getOrderLines().get(2));
 kSession.insert(o.getOrderLines().get(3));
 kSession.insert(o.getOrderLines().get(4));
 kSession.insert(o.getOrderLines().get(0).getItem());
 kSession.insert(o.getOrderLines().get(1).getItem());
 kSession.insert(o.getOrderLines().get(2).getItem());
 kSession.insert(o.getOrderLines().get(3).getItem());
 kSession.insert(o.getOrderLines().get(4).getItem());
 kSession.insert(o);

 int fired = kSession.fireAllRules();

 // We have 5 Items that are categorized -> 5 rules were fired
 // We have 1 Customer that needs to be categorized -> 1 rule fired
 // We have just one order with all HIGH RAnge items -> 1 rule fired
 // One Coupon is created for the SILVER Customer -> 1 rule fired
 assertThat(8, is(fired));
 assertThat(o.getCustomer().getCategory(), is(Category.SILVER));
 assertThat(o.getDiscount(), not(nullValue()));
 assertThat(o.getDiscount().getPercentage(), is(10.0));
 assertThat(o.getOrderLines().get(0).getItem().getCategory(),
 is(Item.Category.HIGH_RANGE));
 ..

 // The Coupon Object was created by the Rule Engine so we need to
 get it from the KieSession
 Collection<Coupon> coupons =
 getFactsFromSession(kSession, Coupon.class);
 assertThat(1, is(coupons.size()));

}

Chapter 2

[39]

A common requirement for these tests is to consume our domain models, which can
contain complex structures and a lot of data. Usually, we end up having helpers to
retrieve these information from a data store such as a database or we can create local
instances for the sake of the tests.

For these tests, we are using the ModelFactory helper, which initialize different
orders, customers, and items for us. Feel free to review the different methods of this
factory to understand the information that is being initialized there. We encourage you
to create more methods in the ModelFactory class to provide more data for your tests.

This test loads all the rules (in no particular order) that we defined so far in the
following DRL files:

• classify-customer-rules.drl

• classify-item-rules.drl

• coupons-creation.drl

• order-discount-rules.drl

After KieSession is created by the helper method createDefaultSession(),
ModelFactory provides us with an order that gives us access to OrderLines,
Customer, and Items. In order to enable the Rule Engine to work and match these
objects with the previously defined rules, we need to insert each of them using the
insert() method. As you may have noticed, this could become a problem quite
easily if we need to insert all the objects separately. There are a couple of alternatives
to solve this issue and we will cover them in the following chapters. For now, we
need to know if we have rules that filter facts by type. We need to make these facts
available to the Engine.

Now, after inserting all the facts to KieSession, the evaluations are done by the
engine and matches are created. It is important to understand that not all matches
need to be executed on the fireAllRules() call, some of them might be cancelled
and new matches can also be created during execution. We will analyze a detailed
rules-execution flow in Chapter 3, Drools Runtime. For now, we need to understand
why we have eight rules fired in the test and in order to do this, we need to do some
simple math.

Writing and Executing Rules

[40]

We know that one rule will be fired per item that needs to be categorized. In this test,
we have five Items, therefore, we have five rules fired there. We don't know the order
in which these rules will be fired; however, we know that they will be fired before
a rule that depends on this categorization. The same happens with the customer,
therefore, one more rule fired. Again, we don't know or care about the order in which
the items and customers are categorized. Finally, one rule is fired for the Coupon
creation and one rule is fired to apply the discount to the order. As we mentioned
earlier, the firing order is not important, the results are, and for this reason, the test
checks whether the objects have being changed as expected. At the end of the test, we
cannot check the Coupon object as we didn't have any reference from it. The Coupon
object was created by the Rule Engine internally, and for us to get hold of it, we can
use the getFactsFromSession (kSession, Coupon.class) helper method, which will
get all the Coupon objects that were inserted as facts in KieSession.

If you had written more rules about coupons, customers, orders, and so on, these
tests might fail. If you did so, make sure to update the tests so that they keep passing.

Summary
In this chapter, we covered the basics to start a Drools project from scratch. This is
extremely important, therefore, you can get started with a very basic project that
uses Drools. All the other examples in the book are using this structure, which is also
recommended as a way of working for your own projects. We have created our first
rule, analyzed the basics of the execution, and tested it using JUnit. The section about
CDI introduced how Drools 6 can be used in CDI-enabled contexts, leveraging all the
integration provided by the framework.

In the next chapter, we are going to look at the KieContainer, KieServices, and
KieSession and how they work internally. We will also analyze the rules-execution
flow in detail so that we can understand how the rules behave.

[41]

Drools Runtime
In the previous chapter, we covered how to start a project from scratch, write some
rules, and execute them. Now, we need to understand how the Drools internal
components work together, their main responsibilities, and their configurations.
Knowing this, we will be able to fine-tune the engine and the surrounding services
to our specific needs. We will see how Drools can be used in different contexts and
ways so that you can decide which fits the best for your projects. This chapter will
cover the following topics:

• Understanding the Drools runtime instances
• Common configurations
• Loading dynamic changes using KieScanner

Understanding the Drools runtime
instances
Drools allows us to create instances of the Rule Engine in different ways, so that we
can choose which fits better to the problem that we are trying to solve. Each Rule
Engine instance is an encapsulated context, where the rules that we define will be
evaluated against the data that we provide to this particular instance. Historically,
Rule Engines were seen as big and monolithic processes that run them in a server
and we can send data to it to be processed. Drools, on the other hand, allows us to
locally spawn lightweight instances to our application. It is common to have multiple
instances dealing with different rules and data than just one big instance.

Drools Runtime

[42]

In order to spawn a new instance of the rule engine, we need to understand the
following concepts:

• KieServices
• KieContainer
• KieModule
• KieBase
• KieSession

By using these five concepts, we will be able to define how each instance is
configured and rules that will be available to each of them. In cases where we need
to create multiple rule engines, it is important to understand what exactly happens
under the hood to avoid unnecessary bottleneck and performance issues.

It is important also to understand that these five concepts are extended versions of
what was provided in the previous versions of Drools. Notice that the Knowledge
is Everything (KIE) prefix that indicates the fact that now we are not only dealing
with Rule Engine instances, but with more ways of defining and executing business
knowledge in general.

We will start by looking at the KieServices class that gives us access to all these other
concepts by providing a registry of services where we can find helpers for different
purposes. In the future versions of Drools, more services may be included to fulfill
different use cases. For now, we need to know how to get hold of a KieServices instance,
and we do that by using the following static KieServices.Factory.get() method:

KieServices ks = KieServices.Factory.get();

Using the KieServices, we can access a number of factories, services, and utility
methods used along with Rule Engine instances. We will use KieServices to create a
new instance of KieContainer, which defines the scope of the rules that will be used
to create new instances of the Rule Engine. A KieContainer can host a KieModule
and its dependencies. It means that a hierarchical structure of KieModules can be
loaded into an instance of the KieContainer.

Chapter 3

[43]

The relations among these concepts are depicted in the following diagram:

In Drools 6, everything is created around KieModules. Each KieModule contains
business assets (business rules, business processes, decision tables, and so on) related
to a certain area or domain. These KieModules can include other KieModules,
allowing us to compose a top-level KieModule, containing several assets from
different domains.

A KieModule is a standard Java-Maven project containing the rules, business process
and other assets among its resources. A special file called kmodule.xml (in the META-
INF/ directory) that defines the internal configuration about how to group and
consume these particular assets must also be present in it.

Drools Runtime

[44]

As we can see in the previous diagram, KieContainer will allow us to instantiate a
KieModule in order to create one or multiple instances of the Rule Engine. These
instances can be all configured to have the same rules in it or a completely different
setup. The previous diagram also shows how to decide which KieModule to load; for
example, we can decide to load KieModule A as we are just going to use the Rules
defined in it or we can load KieModule Parent, which depends on KieModule A
and KieModule B, therefore, every configuration in these modules will be loaded.

The following section will go deep into the KieModule and KieContainer specifics. In
the beginning, this might sound confusing as there are too many options, however,
that's exactly the reason behind the flexibility that Drools provides to configure and
instantiate the Rule Engine. Towards the end of this book, we expect you to be an
intermediate Drools user that can configure and tune the engine to your specific needs.

KieModule & KieContainer
Once we get hold of the KieServices, we can create new KieContainers. Internally,
the KieContainer has references to all the business assets (rules, processes,
spreadsheets, PMML documents, and so on) that will be loaded when we create new
Rule Engine instances. As it was depicted in the previous section, a KieContainer
can spawn multiple Rule Engine instances with different configurations and hosting
different rule sets, depending on what our application requires.

In Drools 6, we can choose between two options to define the scope of the resources
and configurations that will be included in an instance of KieContainer, as shown in
the following:

• Based on the classpath
• Using Maven dependency resolution techniques (KIE-CI)

The first option will look at all the business assets in the application classpath and
allow us to load them in different instances of the rule engine. The second option
will delegate the responsibility of finding out predefined artifacts and their transitive
dependencies into Maven to find out all the resources that need to be included.

Let's look at these two options in detail. First, we will start by looking at how
the classpath is being scanned and rules are picked up. The best way for us to
understand how this works is to take a look at the projects provided in this chapter.

This chapter provides the following five projects to demonstrate the different setups
that can be used for our KieModules:

• chapter-03-classpath-tests: This project provides tests showing the classpath
resolution strategy to create KieContainers.

Chapter 3

[45]

• chapter-03-maven-tests: This project provides tests showing how to leverage
the power of Maven to resolve the KieModules as Maven artifacts.

• chapter-03-kjar-simple-discounts: This is a KieModule containing a set of
rules for simple discounts.

• chapter-03-kjar-premium-discounts: This is another KieModule containing a
set of rules for premium discounts.

• chapter-03-kjar-parent: This is a KieModule that contains a reference to
the previous KieModules. It doesn't include any asset internally, but it
makes references to the simple and premium discounts so that they can be
referenced together.

The next two sections will cover the following two alternatives:

• Loading rules from the classpath
• Loading rules using Maven artifacts (using Kie-CI)

Loading rules from the classpath
For this section, we will be using the chapter-03-classpath-tests project,
therefore, we recommend you to open this project in your IDE to review the
provided tests together, while we discuss the different options that we have to set up
our Rule Engine instances.

The first test in the KieContainerClassPathTests class (located in src/
test/java/) called loadingRulesFromClassPath() demonstrates how a new
KieContainer can be created by scanning the current application classpath. In this
case, we are bootstrapping Drools in a JUnit Test and Maven takes care of setting up
the classpath for us based on the definitions in the pom.xml file. If we are not using
Maven to run the application (or the Unit Test), Drools will scan the application
classpath, no matter how it is defined. For this example, as we are in a Maven project,
all the dependencies defined for the project and the dependencies defined with the
test scope will be added to the classpath before running the test.

If we take a look at the pom.xml file (located in the root of project /chapter-03/
chapter-03-tests/pom.xml), we will notice that there are three dependencies to
projects that contain the kmodule.xml file, as follows:

<!-- Start dependencies for the other KieModules -->
<dependency>
<groupId>org.drools.devguide</groupId>
<artifactId>chapter-03-kjar-simple-discounts</artifactId>
<version>${project.version}</version>
<scope>test</scope>
</dependency>

Drools Runtime

[46]

<dependency>
<groupId>org.drools.devguide</groupId>
<artifactId>chapter-03-kjar-premium-discounts</artifactId>
<version>${project.version}</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.drools.devguide</groupId>
<artifactId>chapter-03-kjar-parent</artifactId>
<version>${project.version}</version>
<scope>test</scope>
</dependency>
<!-- End dependencies for the other KieModules -->

When we create a new KieContainer based on the classpath, all the available jars will
be scanned. In order to create a new KieContainer, we use the KieServices (ks) to
provide us with a new instance of the KieContainer, as follows:

KieContainer kContainer = ks.newKieClasspathContainer();

Drools will scan all the jars in the classpath looking for the kmodule.xml file in the
META-INF/ directory. When found, this file will load the provided configurations to
make them available to use in our applications. For this particular example that we
are reviewing, four kmodule.xml files will be found: the three in the dependencies
defined in the pom.xml file and the one included in the project itself (in the src/
test/resources/META-INF/ directory). All the configurations in each of the
kmodule.xml files will be loaded and made available to the KieContainer, ready to
be used. Also, notice that there is a DRL file called classpath-discount-rules.drl
in the src/test/resources/rules/cp/discount directory:

Chapter 3

[47]

Now, our KieContainer has loaded all these configurations and we can start using
them right away. Going back to our loadingRulesFromClassPath()test, which
shows how the rules can be loaded from the classpath, as follows:

...
KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.newKieClasspathContainer();

// Let's verify that all the resources are loaded correctly
Results results = kContainer.verify();
// We can iterate the results
results.getMessages().stream()
 .forEach((message) -> {
 System.out.println(">> Message ("+message.getLevel()+"): "
 +message.getText());
 });
// If there is an Error we need to stop and correct it
assertThat(false, is(results.hasMessages(Message.Level.ERROR)));

//Here we make sure that all the KieBases and KieSessions
// that we are expecting are loaded.
kContainer.getKieBaseNames().stream().map((kieBase) -> {
 System.out.println(">> Loading KieBase: "+ kieBase);
 return kieBase;
 }).forEach((kieBase) -> {
 kContainer.getKieSessionNamesInKieBase(kieBase).stream().
forEach((kieSession) -> {
 System.out.println("\t >> Containing KieSession: "+
kieSession);
 });
 });

As we can see, the verify() method will allow us to make sure that our business
assets are correct and are loaded correctly in the KieContainer instance. If the
verify() method returns Results containing errors, we should stop and correct
these errors before moving forward. Notice that the Message object returned by the
results.getMessages() method also contains the line and column in the file where
the problem is. If everything is okay, we can move forward and check whether all the
KieBases and KieSessions that we are expecting to use are loaded. For this test, we
are only printing them out, however, making assertions is recommended here.

As mentioned earlier, the kmodule.xml file contains what will be made available to the
KieContainer, therefore, let's take a look at the kmodule.xml file content to understand
a little bit more of what is loaded when we create a KieContainer classpath.

Drools Runtime

[48]

Briefing up, this simple test demonstrates how all the KieModules are loaded in the
container based on a classpath scanning. Make sure that you run this test to verify
the results and understand why the different configurations are loaded.

Let's quickly take a look at the second approach before looking at the kmodule.xml
configurations in detail.

Loading rules using Maven artifacts (Kie-CI)
As we saw in the previous section, all the KieModules that are found in the classpath
of the application will be loaded in the KieContainer. There are some cases where
we don't want that to happen. Maybe because we don't have these jars locally to the
application or we want to decouple our application dependencies from the business
rules artifact dependencies, therefore, it is clear what is required for the application
to run and what are the Knowledge Artifacts that will provide the business logic.

If we now open the chapter-03-maven-tests project and look at the pom.xml file,
we will notice a huge difference. There is no KieModule dependency in this pom.xml
file, however, a new dependency was added to a kie-ci module, as follows:

<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>

 <scope>test</scope>
</dependency>

This new dependency will enable Drools to use the Maven mechanism to resolve
artifacts that are outside of the application classpath. Let's take a look at the tests in
the KieContainerMavenTests class. We will see that now we can use the KieServices
to create a new container in a different way, as shown in the following:

KieContainer kContainer = ks.newKieContainer(ks.newReleaseId(
 "org.drools.devguide", "chapter-03-kjar-simple-discounts",
 "1.0.0"));

Notice that now, instead of adding the dependency to our project/application,
we are letting the KieContainer resolve an artifact that we are providing based on
GroupId, ArtifactId, and Version (also referred as GAV). As you can see, the
newKieContainer() method is expecting a ReleaseId object, which is also created
using a helper method of the KieServices.

Chapter 3

[49]

The Drools API allows us to not only use this ReleaseId specific version of the
KieModule, but also upgrade it to a newer version, should it be necessary, through the
updateToVersion() method. This method will recreate the KieContainer to become
an access point to the KieBases and KieSessions of a newer version of the KieModule.

Using this mechanism, the container will only load the configurations from this
artifact and all its dependencies. If you execute these tests, you will see that each of
the individual tests is only loading the kmodule.xml configuration contained in the
artifact that is being requested at the time of the KieContainer creation.

It is time to look at the content of the kmodule.xml file, which allows us to configure
our KieBases and KieSessions to define exactly how the rule engine instances will be
created for us to use in our applications.

KieModule configurations (KieBases,
KieSessions & StatelessKieSessions)
The kmodule.xml file is used to customize the KieModule configurations. In this
file, we can define how the rules are grouped together in different KieBases that
can be loaded for different purposes. It also allows us to define more fine-grained
configurations for the rule engine instance that will be created.

In this section, we will cover the basic configurations for KieBases, KieSessions, and
StatelessKieSessions. In the end, we will also review a mechanism that we can use to
include other KieBases from other KieModules in our KieModule.

Let's start simple with the kmodule.xml file defined in the chapter-03-classpath-
tests/src/test/resources/META-INF/ directory, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://jboss.org/kie/6.0.0/kmodule">
 <kbase name="rules.cp.discount">
 <ksession name="rules.cp.discount.session" type="stateful"/>
 </kbase>
</kmodule>

Using the concepts of KieBase and KieSession, we can define the granularity of how
the rules will need to be loaded. A KieBase represents a compiled version of a set of
assets, and a KieSession represents an instance of the rule engine containing the rules
in the KieBase. For this reason, it makes sense to have multiple sessions defined with
different configurations for the same KieBase. In other words, we can use the same
rules, but have a session configured in a different way for different needs.

Drools Runtime

[50]

In this case, we are defining a KieBase called rules.cp.discount. Notice that the
name attribute of the KieBase is the same as the directory structure that we are using
under the /src/test/resources/ directory, where the rules are stored. In the
KieBase, we are defining a KieSession called rules.cp.discount.session. This
KieSession will represent the Rule Engine instance containing all the rules defined
in the KieBase. In Drools 6, similar to the previous versions of Drools, there are two
types of KieSessions (previously called KnowledgeSession): Stateful and Stateless.

The stateful KieSession allows us to keep the state between several interactions
with the Rule Engine. In Drools 6, Stateful Knowledge Sessions were renamed to
KieSessions, as there are the most common type of session, the name was kept short.
In contrast, StatelessKieSession only allows us to interact once, take the results out,
and no state is stored for the next interaction. We will see more about KieSessions in
Chapter 5, Understanding KIE Sessions.

If you take a look at the tests, for example,
loadingRulesFromDependencyParentKieModule() in the
KieContainerClasspathTests class, you will notice that we are using a (Stateful)
KieSession as we insert a set of facts, then call the fireAllRules() method, and
then we keep inserting more facts and call fireAllRules() again. Between the
two calls to the fireAllRules() method, the state (meaning the facts and the rules
evaluations) are kept. There will be cases where the second set of facts triggers new
rules in conjunction with the first set of facts, as follows:

...
KieSession kieSession = kContainer.newKieSession("rules.discount.
all");
Customer customer = new Customer();
customer.setCustomerId(1L);
customer.setCategory(Customer.Category.SILVER);

Order order = new Order();
order.setCustomer(customer);

kieSession.insert(customer);
kieSession.insert(order);

int fired = kieSession.fireAllRules();

assertThat(1, is(fired));
assertThat(10.0, is(order.getDiscount().getPercentage()));

Customer customerGold = new Customer();
customerGold.setCustomerId(2L);

Chapter 3

[51]

customerGold.setCategory(Customer.Category.GOLD);

Order orderGold = new Order();
orderGold.setCustomer(customerGold);

kieSession.insert(customerGold);
kieSession.insert(orderGold);

fired = kieSession.fireAllRules();

assertThat(1, is(fired));
assertThat(20.0, is(orderGold.getDiscount().getPercentage()));

As you can see, the Silver Order and customer are still in the KieSession when we
insert the Gold Customer and Order. In the next chapter, you will learn how to write
more complex rules that, for example, evaluate two orders and their relationships. In
such cases, more than one rule can be fired.

Now, we can take a look at the statelessSessionTest() test, which shows
the interaction against a StatelessKieSession in contrast to a KieSession (which is
Stateful). Notice that we need to define the session as stateless in the kmodule.xml
file, as follows:

<ksession name="rules.simple.sl.discount" type="stateless"/>

Now we can get a new StatelessKieSession from our kContainer, as shown in the
following:

...
StatelessKieSession statelessKieSession =
 kContainer.newStatelessKieSession("rules.simple.sl.discount");

Customer customer = new Customer();
customer.setCategory(Customer.Category.SILVER);

Order order = new Order();
order.setCustomer(customer);

Command newInsertOrder = ks.getCommands().newInsert(order,
"orderOut");
Command newInsertCustomer = ks.getCommands().newInsert(customer);
Command newFireAllRules = ks.getCommands().
newFireAllRules("outFired");

List<Command> cmds = new ArrayList<Command>();
cmds.add(newInsertOrder);

Drools Runtime

[52]

cmds.add(newInsertCustomer);
cmds.add(newFireAllRules);

ExecutionResults execResults = statelessKieSession
 .execute(ks.getCommands().
newBatchExecution(cmds));

order = (Order)execResults.getValue("orderOut");
int fired = (Integer)execResults.getValue("outFired");

assertThat(1, is(fired));
assertThat(10.0, is(order.getDiscount().getPercentage()));

Notice that now we need to use the newStatelessKieSession() method to create
a new StatelessKieSession. In this type of session, we don't have the insert() or
fireAllRules() methods, instead we have the execute() method that allows us to
send a command or a set of commands to be executed. From this execution, you can
get the ExecutionResults object that will contain all the results that we will want to
collect after the rule execution. After the interaction (execute and get the results), there
is no state hold in the StatelessKieSession and if we call the execute() method again,
all the rules will be evaluated only against the facts that we send for this interaction.

Finally, if we want to aggregate KieModules, we can use the includes option in the
KieBases configuration. You can take a look at chapter-03-kjar-parent/src/
main/resources/kmodule.xml, as follows:

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://jboss.org/kie/6.0.0/kmodule">
 <kbase name="discount" default="true" includes="rules.premium,
 rules.simple">
 <ksession name="rules.discount.all" type="stateful"/>
 </kbase>
</kmodule>

As we can see, the includes property of the kbase tag is making reference to other
KieBases defined in other modules. If these KieBases are available at the initialization
time, they will be included and now the KieSession called rules.discount.all will
contain all the resources defined in these two KieBases.

Just for the sake of completeness, here is the full schema for the kmodule.xml file:

https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/master/kie-
api/src/main/resources/org/kie/api/kmodule.xsd

https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/master/kie-api/src/main/resources/org/kie/api/kmodule.xsd
https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/master/kie-api/src/main/resources/org/kie/api/kmodule.xsd

Chapter 3

[53]

We will be using most of the options provided to configure our KieBases and
KieSession in the book. Now, it is time to look at one of the most required features
provided by Drools to dynamically load changes that we make in our business
assets. The second half of this chapter will cover the KieScanner and how to use it in
our applications.

KieScanner
If there is a universal truth about applications, it is that business rules will change over
time. The criteria used to apply a discount, or even the amount of the discount itself,
we are using today will—without any doubt—have to be modified tomorrow. We, as
the architects and developers of these applications, have to be prepared for this.

Drools provides us with a way to mitigate this issue already. The separation
that Drools introduces between the applications and the business logic allows
us to decouple the changes happening in the business logic—which are usually
frequent—from the changes happening in the application's infrastructure or UI,
which are not so frequent.

Regardless of all the advantages provided by this separation, there is still one
major problem that remains: every time our business logic (rules) changes, any
KieContainer that referenced it has to be notified.

We already saw how a KieContainer can be manually updated when a new version
of a KieModule is deployed, one of the limitations of this approach is that we have
to manually notify each of the applications that depend on the modified KieModule.
What if there were a way to automatically let out the applications to be notified when
a KieModule that they depend on gets updated? Fortunately for us, Drools provides
this mechanism out of the box, its name is KieScanner.

In order to use KieScanner in our application, the org.kie::kie-ci
artifact must be added to the application's classpath.

The KieScanner component in Drools is nothing but a wrapper around a
KieContainer that can be configured to automatically detect changes in the resources
that the container depends on. There is a catch though, the resources referenced by
the KieContainer being monitored must be KieJars residing in a Maven repository.
By default, kie-ci will use Maven's settings.xml in the .m2 folder of the user's
home. This behavior can be overridden using the -Dkie.maven.settings.custom
system property, as follows:

KieServices ks = KieServices.Factory.get();

Drools Runtime

[54]

KieContainer kieContainer = ks.newKieContainer(
 ks.newReleaseId("group.test","artifact-test", "1.0"));
KieScanner scanner = ks.newKieScanner(kieContainer);

As we can see, a KieScanner can be instantiated—just like most of the Drools 6
components—from the KieServices class. After KieScanner is instantiated, we have
two options, we could either configure it to poll for new versions of the underlying
KieJars on every fixed amount of milliseconds or we can manually force it to check
for new versions on demand, as follows:

//Manually run a check for new versions
scanner.scanNow();
//Configure the scanner to check for new versions every 10 seconds
scanner.start(10_000);

If the start()method was used to start the KieScanner, the antagonic stop()
method can be used to stop the polling mechanism.

When a new version of a KieJar is found by KieScanner, an incremental build
resources is triggered. From this moment, all the new KieBases and KieSessions
created from the KieContainer being wrapped will use the new version of the
resources. It is important to mention that any pre-existing KieBase and KieSession
will also be updated to the latest version of the resources found by the KieScanner.

At first, it is easy to think that an incremental build of a KieContainer could be useful
for adding, modifying, or removing rules from it; however, the truth is that a more
complex modification of the resources such as new type of declarations, modification
on existing type declarations, addition of global variables and/or functions, and
pretty much everything you could think of are also allowed to happen when a
KieContainer is rebuilt.

Artifacts version resolution
The way KieScanner checks for new versions of the KieJars being monitored is
according to Maven's rules for artifact versions: the newest version is always the one
with the greatest version number, unless the version is a SNAPSHOT. If two artifacts
have the same GroupId, ArtifactId and Version, the timestamp of each artifact is
compared in order to determine which one is the newest. KieScanner only checks for
versions in the KieJar that are compatible with the one defined in the KieContainer
being wrapped. In other words, if the KieContainer is using version 1.0 of a
particular KieJar, the corresponding KieScanner will check for new versions of the
underlying KieJar that are compatible with 1.0.

Chapter 3

[55]

The following tables show what compatible version means in the context of
different KieContainer versions and the versions of a newly deployed KieJar in
Maven repository:

KieContainer version: 1.0

New KieJar
version

KieScanner
triggers?

Reason

0.9 No 0.9 is a different (lower) version than 1.0 (the version
that the KieContainer is using).

1.0-SNAPSHOT No 1.0-SNAPSHOT is considered a different version than
1.0 (the version that the KieContainer is using).

1.0 Yes 1.0 is the same version defined in KieContainer. The
newly deployed version has a bigger timestamp than
the one the KieContainer is using.

1.1 No 1.1 is a different (higher) version than 1.0 (the version
that the KieContainer is using).

As we can see in the preceding table, KieScanner is only triggered when a new
(according to its timestamp) version of the KieJar being monitored is detected in
the Maven repository. As far as KieScanner concerns, SNAPSHOT versions are
treated in the same way as the final ones. The following table shows the behavior of
SNAPSHOT KieJar versions:

KieContainer version: 1.0-SNAPSHOT

New KieJar
version

KieScanner
triggers?

Reason

0.9 No 0.9 is a different (lower) version than
1.0-SNAPSHOT (the version that the KieContainer
is using).

1.0-SNAPSHOT Yes 1.0-SNAPSHOT is the same version defined in
KieContainer. The newly deployed version has a
bigger timestamp than the one the KieContainer is
using.

1.0 No 1.0 is considered a different version than
1.0-SNAPSHOT (the version that the KieContainer
is using).

1.1 No Same as the previous case.

Drools Runtime

[56]

A KieScanner can be defined to use a fixed KieJar version (that is, 1.0 or
1.0-SNAPSHOT), but it could also be configured to use Maven's LATEST or
RELEASE magic version name or even a range. These special version definitions are
useful when we want to keep our KieContainers updated with the latest version—or
a range of them—of a KieJar irrespective of its specific version number:

KieContainer version: LATEST/RELEASE (original KieJar version: 0.9)

New KieJar
version

KieScanner
triggers?

Reason

0.9 Yes 0.9 is the same version defined in KieContainer. The
newly deployed version has a bigger timestamp than
the one the KieContainer is using.

1.0-SNAPSHOT No KieScanner treats the LATEST version as RELEASE.
Snapshot versions are not used when specifying
these magic version names. Consider using ranges if
you want SNAPSHOTS to be used.

1.0 Yes 1.0 is a different (higher) version than 0.9 (the version
that the KieContainer is using).

1.1 Yes Same as the previous case.

As noted in the preceding table, KieScanner differs from Maven's specification and
treats LATEST magic version name in the same way that it treats the RELEASE:
SNAPSHOT versions are being taken into account when using any of these magic
version names.

Just like LATEST and RELEASE, magic version names are supported by KieScanner
as well as the ranges (more about Maven versions and ranges can be found here:
https://docs.oracle.com/middleware/1212/core/MAVEN/maven_version.
htm#MAVEN8903). A version range allows us to specify a range of valid versions for
the KieJar being used by the KieContainer being wrapped by a KieScanner. Ranges
support both open and closed-ended ranges.

KieContainer version: (0.9), (original KieJar version: 0.9)

New KieJar
version

KieScanner
triggers?

Reason

0.9 Yes 0.9 is the same version defined in the KieContainer.
The newly deployed version has a bigger timestamp
than the one the KieContainer is using.

1.0-SNAPSHOT Yes 1.0-SNAPSHOT is a different (higher) version than 0.9
(the version that the KieContainer is currently using).

https://docs.oracle.com/middleware/1212/core/MAVEN/maven_version.htm#MAVEN8903
https://docs.oracle.com/middleware/1212/core/MAVEN/maven_version.htm#MAVEN8903

Chapter 3

[57]

KieContainer version: (0.9), (original KieJar version: 0.9)

New KieJar
version

KieScanner
triggers?

Reason

1.0 Yes 1.0 is a different (higher) version than 1.0-SNAPSHOT
(the version that the KieContainer is currently using).

1.1 Yes 1.1 is a different (higher) version than 1.0 (the version
that the KieContainer is currently using).

In the preceding example, an open-ended version ([0.9,]) is specified in the
KieContainer. The range is basically saying that the KieContainer allows any version
higher than 0.9, including SNAPSHOT versions too.

Dealing with unexpected issues and errors
So far, we have covered how and when a KieContainer is updated when it is used
in conjunction with a KieScanner; however, there is an important question that is
still open: what happens if there is an error while upgrading a KieContainer to a
newer version?

First thing we need to understand is the kind of errors could occur while upgrading
the version of a KieJar. Generally speaking, we are talking about the compilation
errors in the new version of the KieJar such as the following:

• Syntax errors
• Adding rules with duplicated names
• Removing globals that are still being used, and so on.

KieScanner treats the whole process of a KieJar as an atomic action. When the
upgrade of a KieContainer fails for any reason, the entire process is rolledback
and the KieContainer remains in its original form. Any error generated during the
upgrade process will be silently discarded.

Putting it all together
After the rather long introduction of KieScanner, it's time to put it all together in a
unit test that we can play with.

Drools Runtime

[58]

In the chapter-03/chapter-03-tests project, there is a KieScannerTest.java
test class. This class contains a kieContainerUpdateKieJarTest JUnit test. This
test shows how a KieScanner can be used to update the KieJar that a KieContainer
is using. The test also shows how, after the underlying KieContainer is updated, a
previously created KieSession is automatically updated to the latest version of the
KieJar being used by the KieContainer.

The test starts by creating two SILVER Customers (customerA and customerB) and
an Order for each of them (orderA and orderB). The idea behind this unit test is to
create a KieJar with a single rule that will apply a discount to Orders from SILVER
Customers. The first version of the KieJar will give SILVER Customers a 10%
discount on their Orders. The second version—the test will programmatically create
and deploy a new version of the KieJar—will give SILVER Customers a discount of
25% instead:

ReleaseId releaseId = ks.newReleaseId(groupId, artifactId, version);
InternalKieModule originalKJar = createKieJar(ks, releaseId,
 createDiscountRuleForSilverCustomers(10.0));

The preceding lines (this is an extract of the code that you will find in the unit test)
programmatically creates a KieJar with a single rule to apply 10% discount on
SILVER Customers Orders:

repository.deployArtifact(releaseId, originalKJar, createKPom
 (fileManager, releaseId));
KieContainer kieContainer = ks.newKieContainer(releaseId);
KieScanner scanner = ks.newKieScanner(kieContainer);

Once the KieJar is created, it is deployed to a local Maven repository and a
KieContainer is then created from it. The code excerpt also shows how the
KieContainer is wrapped using a KieScanner. In real-life scenarios, we should start
the KieScanner using its start method; however, given that we require our unit
test to be deterministic, we don't want the KieScanner checking for updates in an
asynchronous way. Instead of this, the test will use KieScanner's scanNow method
when required, as follows:

KieSession ksession = kieContainer.newKieSession();
this.calculateAndAssertDiscount(customerA, orderA, ksession, 10.0);

Chapter 3

[59]

From the generated KieContainer, we will create a new KieSession; the
calculateAndAssertDiscount helper method is used to insert customerA and
orderA in the KieSession and assert that the generated discount is 10.0, as shown in
the following:

InternalKieModule newKJar = createKieJar(ks, releaseId,
createDiscountRuleForSilverCustomers(25.0));
repository.deployArtifact(releaseId, newKJar, createKPom(fileManager,
releaseId));

The next step is to create a different version of the same KieJar (same group ID,
artifact ID, and version) this time, having a rule that will give 25% discount to
SILVER Customers. Just like before, this KieJar is deployed in Maven's repository,
overriding its previous version.

It's important to note that the KieContainer will not notice this change. The
KieContainer was built using the previous version of the KieJar and will not
update its content until explicitly told (either by the use of a KieScanner or by the
KieContainer.updateToVersion method).

scanner.scanNow();
this.calculateAndAssertDiscount(customerB, orderB, ksession, 25.0);

In the preceding code, we can see how the test is explicitly telling the KieScanner to
scan the monitored KieContainer and check for updates on the underlying KieJar.
Note that, in contrast to KieScanner.start, KieScanner.scanNow is synchronous.
After it returns, the KieContainer will be updated to the latest version of the KieJar
detected by the scanner.

When the KieContainer gets updated to the latest version of the KieJar being used,
any previously created KieBase—and thus, KieSession—will also be updated. The
test demonstrates this behavior by inserting customerB and orderB in the same
session that was previously used for customerA and orderA. The result, this time,
will be different though. The KieSession will now contain the version of the rule that
gives 25% discount instead of 10% and that is what the test is actually asserting.

Drools Runtime

[60]

Summary
In this chapter, we covered the main classes that we will be using to bootstrap,
configure, and manage our Rule Engine instances. The first half of the chapter
covered how different approaches can be used to define the rules that will be
available to each rule engine instance. We also took a look at how Drools can
load everything from the classpath and how the KIE-CI module can be used to
delegate the KieModules resolution into Maven. We also covered how important
the hierarchical structures of KieModules are and how they can be used to group
different set of rules so that they can be loaded in the same container, to be used
together. The second half of the chapter covered how to update our business
knowledge (rules, processes, and so on) using the KieScanner to update the modified
assets. This is a quite common requirement due the fact that we need to be able to
update the business knowledge quickly so that we can adapt and deal with real-life
business changes.

In the next chapter, we will cover more advanced rule structures in order to be
able to provide more complex solutions to more complex business needs. We will
continue developing our eShop scenario into a more complex application.

[61]

Improving Our Rule Syntax
In the previous chapters, we've seen how to configure our environment in order to
run our first Drools-based rules, written in the DRL language. We've played with
the basic structure of rules and how to configure an environment for them to run,
however, we've barely seen the surface of the Drools rule language (DRL) capacity.
Like an iceberg, there's much more to it than what you see at first.

In this chapter, we'll discuss the DRL language, its syntax and possibilities, and
examples from our eShop case in detail. We will cover the following topics:

• Discussing the different ways in which the rules can read and modify the
data, along with their understanding of the world

• Configuring the rules using attributes, global variables, and many other
features required to use the rules to its full potential

• Discussing how the execution of Drools rules can be controlled by many
different mechanisms

Adding external interactions with global
variables
Interactions between our code and the business rules are mainly done by the rules
that we define and the data that we feed in our running rule engine. In order to
interact with data that is not in the Rule Engine context, Drools allows quite a variety
of communication mechanisms to the other parts of our code and even to other
systems. One of the most used tools for this are called global variables.

Improving Our Rule Syntax

[62]

Global variables are defined in the DRL code in a similar way that we would define
a variable in regular Java code. The syntax to follow is the global keyword, followed
by the type of data, and then by the variable name:

global EShopConfigService configService;

Global variables can be a lot of things such as external services, lists of cached data,
parameter values for our rule configurations, and anything that we might define in a
Java code and we wish to have as a configurable component from our runtime.

In our DRL code examples (which we can find in the chapter-04-kjar project in
the code bundle), we can find an example of how to define a service to configure
our eShop example, called EShopConfigService. We will use it for demonstrative
purposes only; however, if we replaced it with real interactions with external
systems, such as a Data Access Object or a Web Service stub, the interconnectivity
possibilities for business rules are endless. More about globals and the way they can
be used in Drools can be found in the next chapter.

Modifying the data in the working
memory
In the previous chapters, we've already seen the basic structure for a business rule:
conditions and actions. When a specific set of conditions defined in a rule are met,
we trigger specific actions defined in that rule. So far, these actions have only been
basic modifications of Java beans or system logs. However, the Drools rule language
allows us to do much more.

When a rule becomes too complex or it comprises of multiple complex conditions,
defining them in one single rule might not be the best way to go. In imperative
programming (such as Java and C++), we would break down a method or function,
which is complex, into many smaller, simpler methods. In Drools, we should follow
a similar structure defining multiple, simpler rules that work together.

Due to the nature of declarative programming that the DRL language follows,
we cannot call one rule from another one, therefore, this splitting has to be done
differently. To be able to split our rules into simpler ones, the actions of a rule
requires to add or modify data so that other rules will re-evaluate themselves against
the data and see if they should trigger their actions or not.

Chapter 4

[63]

The insert keyword
In the then part of our rules, new information might be inferred by a rule. More data
can be made available to the working memory for further evaluations against all the
rules using the insert keyword, as follows:

rule "Classify Customer - Gold"
 when
 $c: Customer(category == Customer.Category.GOLD)
 then
 insert(new IsGoldCustomer($c));
end

rule "Classify Item - Low price"
 when
 $i: Item(cost < 10.00)
 then
 insert(new IsLowRangeItem($i));
end

rule "Suggest gift"
 when
 IsGoldCustomer($c: customer)
 IsLowRangeItem($i: item)
 then
 System.out.println("Suggest giving a gift of item "+$i.
getName()+" to customer +"$c.getName());
end

In the previous example (which we can find in the chapter-04/chapter-04-
kjar/src/main/resources/chapter04/workingMemoryModif/classify-item-
rules.drl file in the code bundle), we can see a simple example of inserting and
breaking down a rule into multiple ones. We can just check whether a client has a
gold category and we have a low-cost product, and make a suggestion for the gift
product all in the same rule. However, we're breaking down the rule in three parts
and inserting new model elements (IsGoldCustomer and IsLowRangeItem) to let
another rule make the main decision for us based on these two elements.

By breaking down the rule in smaller sections, having some rules in charge of
determining what a gold customer is and other rules in charge of what to do with
them, we can define a gold customer in many different ways. Later on, all the rules
have to rely on the IsGoldCustomer fact and any extra condition to determine what
to do.

Improving Our Rule Syntax

[64]

The modify and update keywords
We can also take the already existing data, which might have triggered the condition
of a rule, and notify the engine should re-evaluate it. This can be done using the
modify keyword, as follows:

rule "Categorize Customer - Gold"
 when
 $c: Customer(category == Customer.Category.NA)
 $o: Order(customer == $c, orderLines.size() > 10)
 then
 modify($c){setCategory(Customer.Category.GOLD);}
end

This rule is modifying the Customer object to set it to gold category. After this
modification, the engine will be notified that this object needs to be re-evaluated
for all rules in the engine. This means that if we insert a Customer with no category
and an Order on its name with over 10 items, it will not only set the corresponding
category, but also trigger any rule that depends on this condition.

Another word that you can use instead of modify in the consequence of the rule is
the update keyword. The update keyword does not take a code block as the modify
keyword. Instead, it just receives a variable so that the modifications have to be done
beforehand to the variable. The following code example would replace the modify
keyword in the previous code section, as follows:

$c.setCategory(Customer.Category.GOLD);
update($c);

However, the use of update is discouraged in favor of modify blocks as they allow to
syntactically group the fact's execution that should trigger rule re-evaluations.

As you can see, the modification of the working memory is essential to split a rule
into multiple ones as all the rules will be triggered depending—at first—on the
data that the engine has available. By modifying the data, the engine can continue
triggering rules until no more rules match the available data. If we don't modify/
update the data, the engine will not be able to see the changes that you may do in
a fact and this object won't trigger any more rules than the ones that had already
matched before the change.

Chapter 4

[65]

The delete/retract keywords
Also, we might let the engine know it should re-evaluate rules as one element of
data, which was present in the working memory, is no longer there. This could
cancel future rules, which weren't evaluated yet, or trigger other rules, as follows:

rule "Init current date"
 when
 then insert(new Date());
end

rule "Expire coupons"
 when
 $now: Date()
 $cp: Coupon(validUntil before $now)
 then
 delete($cp);
end

rule "Execute coupon"
 when
 $o: Order()
 $cp: Coupon(order == $o)
 then
 System.out.println("We have a coupon for this order!");
end

In the previous rule, we first make sure that we have a current-date object available
for comparison with the Init current date rule (which, as its condition is empty,
will evaluate to true). After that, if we have an expired coupon in the working
memory, the second rule will remove it. Even if we add an order with this associated
coupon, the second rule will not be triggered because even after matching, the
execution of the first rule will cancel it.

The delete and retract keyword are both valid to remove the objects from the
working memory—though the retract keyword is deprecated. Their syntax is
equivalent and they are mutually exchangeable in the DRL code.

As you can see, changing the working memory in the rules means that, when we
call fireAllRules on our KieSession, not only the rules that matched the data at that
moment will fire, but also new rules might be triggered and fired or cancelled during
the rule execution.

Improving Our Rule Syntax

[66]

This is both a very powerful tool as it allows us to control the execution of rules
without explicitly calling them and dangerous as, without any control, it could
quite easily lead to infinite loops. We will see this problem and how to avoid it
in the next section.

Rule attributes
Drools rules are data-driven. This means that the only way to activate a rule is by
adding data to the engine that matches the conditions of that rule. However, there
are multiple circumstances where we will want some rules with matching situations
to be filtered out. One of this filtering mechanism is called rule attributes.

Rule attributes are extra features that we add to our rules to modify their behavior in
a specific way. There are many rule attributes (of which, we'll explain the most used
ones and some of their possible combinations) and each one modifies the way we
filter rules execution in a different way, as follows:

rule "simple attribute example"
enabled false
 when Customer()
 then System.out.println("we have a customer");
end

If the enabled attribute is set to false, the rule will be evaluated, however, it won't
be executed. It is perhaps the simplest example of a rule attribute shown here to see
that the rule attributes are written before the when part of a rule. However, even if
that's their syntactic position, they come second to the conditions of the rule. This
means that if the conditions of the rule don't find a match for the working memory,
attributes won't even play a part in the execution. However, when a rule set of
conditions matches a group of objects in the working memory, rule attributes will
come as an extra component to decide whether this match should fire now, later, or
not at all.

The following subsections will show some of the most commonly used rule attributes
and how they influence the execution of our rules is shown as follows

• Deciding the rule matches that will fire and the rule matches that won't fire
• Splitting our rules in groups, which might be valid or invalid in different

situations
• Controlling other special situations in which rules might or might not be

valid

Chapter 4

[67]

Example – controlling which rules will fire
When we define rules, the rule that matches the data with its conditions first will be
the first in the list of rules to fire. This means that the order of the execution of rules is
not deterministic. However, sometimes, we might need some rules to take precedence
over the rest. For example, in our example about classifying items of rules, we saw
in the previous chapter that we might have a specific subcategory in a special set of
values between the mid range and we might want the cases where this rule finds a
match to take precedence over the common mid-range classifying, as follows:

rule "Classify Item - Mid Range"
 when $i: Item(
 cost > 200 && cost < 500,
 category == Category.NA)
 then
 $i.setCategory(Item.Category.MID_RANGE);
 update($i);
end
rule "Classify Item - Mid/High Range (special)"
 when
 $i: Item(cost > 300 && cost < 400,
 category == Category.NA)
 then
 $i.setCategory(
 Item.Category.SPECIAL_MIDHIGH_RANGE);
 update($i);
end

In this example, if we add an item with the cost being 350, the first rule might be
evaluated before the second one. If we want the second rule to take precedence, we
can set a higher priority to it using the salience rule attribute. The higher the salience,
the higher the priority of the rule is, as shown in the following:

rule "Classify Item - Mid/High Range (special)"
salience 10
 when
 $i: Item(cost > 300 && cost < 400)
 then
 $i.setCategory(
 Item.Category.SPECIAL_MIDHIGH_RANGE);
 update($i);
end

Improving Our Rule Syntax

[68]

By default, all rules have an implicit salience attribute of 0 and you can assign
positive or negative values to the salience attribute in order to execute them before
or after the rest of the rules. Please take into account that rule attributes will only be
evaluated after the rule conditions have matched with a group of data in the working
memory, therefore, if the rule was not going to be triggered with the existing data, it
won't be triggered regardless of how high or low the salience value is set.

Note that in Drools 6, rules have an implicit relative salience by default
that prioritizes the rules that appear earlier in the same DRL file. There's
no relative implicit salience between rules in different DRL files though.

There is a catch in the rule that we rewrote here, we stopped checking for the
category attribute being set to NA. We did this on purpose in order to explain a
common problem when getting started with Drools rules. As you can see, the rule
consequence is updating the item and setting a category for it. Once update is called,
the object will be re-evaluated for all the rules, including this one. This means that
the item will be re-evaluated for this rule and if it still matches its condition (the cost
being between 300 and 400), it will trigger the rule multiple times.

This sort of infinite loops can be managed in different ways. In the earlier versions,
we checked whether, in the condition of the rule, the category was still NA. Once we
modified the category, updating the object would trigger a re-evaluation of the rule,
however, as it no longer has an NA category, it wouldn't match the condition. This
is the preferred way to do things when possible, however, if checking for a condition
of this type becomes too complex, a rule attribute exists to let the engine know that a
specific rule should not re-evaluate itself after it modifies the working memory. This
attribute is the no-loop attribute, as shown in the following:

rule "Classify Item - Mid/High Range (special)"
no-loop
salience 10
 when
 $i: Item(cost > 300 && cost < 400)
 then
 $i.setCategory(
 Item.Category.SPECIAL_MIDHIGH_RANGE);
 update($i);
end

You can test what happens when this attribute is removed in the RuleAttributesTest
class of the chapter-04-tests project in the code bundle. The infinite loop is
stopped through this attribute as it is this very rule that retriggers itself over and
over again.

Chapter 4

[69]

One other rule attribute that is very simple is the enabled rule attribute. It receives
a boolean parameter to let the engine know whether the rule should be executed or
not. If false, the rule is not evaluated, as follows:

rule "Classify Item - Mid/High Range (special)"
enabled true
no-loop
salience 10
 when
 $i: Item(cost > 300 && cost < 400)
 then
 $i.setCategory(
 Item.Category.SPECIAL_MIDHIGH_RANGE);
 update($i);
end

This might seem like a weird rule attribute. Why would we want to use a rule
attribute to disable a rule? You could just comment it out or delete the rule. In order
to understand why it exists, we need to understand that rule attributes, even if they
are written before the conditions of a rule, are always evaluated after the conditions
of a rule. This means that they can use the data from the condition to decide the
boolean value of the enabled attribute, integer value of the salience attribute, or any
other attribute value that we might define in the future.

Given this information, we're going to rewrite our rule with two different uses of
variable values for rule attributes, we're going to set the salience value based on the
item's cost from the condition and we're going to set whether the rule is enabled or
not based on a boolean method from a global variable, as follows:

global EShopConfigService configService;
...
rule "Classify Item - Mid/High Range (special)"
no-loop
salience ($i.getCost())
enabled(configService.isMidHighCategoryEnabled())
 when
 $i: Item(cost > 300 && cost < 400)
 then
 $i.setCategory(
 Item.Category.SPECIAL_MIDHIGH_RANGE);
 update($i);
end

Improving Our Rule Syntax

[70]

As you can see in the previous example, we're defining the salience of the rule
based on a variable numeric value (specifically, the cost of the item detected in
the condition), and we're setting the enabled attribute based on the return value
of a boolean method in the global variable. As long as the condition is written in
parentheses and Java code, the engine is capable of understanding them.

Example – splitting rule groups with agenda
group
Now that we've understood the structure of rule attributes and played a bit with the
simplest three attributes that are available, it is time to continue stepping up our rule
game by going into even more complex rule attributes. The next set that we're going
to see are the ones used to define groupings of rules.

Rules should not be microcontrolled in such a way that we say exactly which rule
will fire next, however, this doesn't mean that we should let the engine run every
single rule we define all at the same time. Even if we create a moderate-size rule-
based project, we are going to see our rules fall in different categories. In our eShop
example, some rules are going to be for data input validation, some are going to
validate promotions that apply to the existing purchases, some will apply different
taxes to our purchase invoice, and so on and so forth. Each rule makes sense to be
applied at a different time. Drools provides grouping mechanisms for our rules to
be able to activate a group of rules each time. These groups are also defined through
rule attributes.

It might seem against the declarative approach, however, it is still controlled by the
data fed to our rule engine. The fundamental difference between trying to control
one rule against a group of rules is that the group is still managed by the rule engine.
The declarative approach still applies, but only for a subset of all the rules that we
defined.

The most used type of grouping for rules is defined with the agenda-group rule
attribute. This rule attribute defines a key, which can be activated by a code in the
KieSession and changed as required as many times as it makes sense in our case, as
shown in the following:

rule "Promotion: more than 10 pencils get 10% discount"
 agenda-group "promotions"
 when
 OrderLine(item.name == "pencil", quantity > 10)
 then
 insert(new Discount(0.10));
end

Chapter 4

[71]

The previous rule defines a rule under the "promotions" grouping. This particular
group should have all the rules that involve applying promotions to a shopping cart
and it will still be the rule engine's job to determine the rule that should be fired next,
if any.

The agenda group will be manually activated through an API call to the KieSession
object (before calling fireAllRules), as follows:

KieSession ksession = …;
 ksession.getAgenda().getAgendaGroup("promotions").
 setFocus();
 ksession.fireAllRules();

It's worth mentioning here that, by default, all the rules have an implicit MAIN agenda
group. The KieSession has the group active by default and all rules that don't define
an agenda-group attribute fall into this group.

Also, every rule, whether it is in the active agenda group or not, will be evaluated
when rule evaluations get triggered. The active agenda group will determine the
group of rule matches that should be executed at rule-execution time.

It's also worth mentioning that, when a rule is fired, it can also define the agenda
group that is going to be activated through the implicit global variable called
kcontext, as follows:

rule "Done with promotions. Onward with printing invoice"
 salience -100 //last rule of group to run
 agenda-group "promotions"
 when
 OrderLine()
 then
 kcontext.getKnowledgeRuntime().getAgenda().
 getAgendaGroup("MAIN").setFocus();
end

Take a good look at the previous rule. There are many tricks placed together in there.
First of all, you have a negative value in the salience attribute. This means that this
rule will take a very low priority so that even if it is activated, as long as there is
another rule match, it will take precedence to this one. This makes this rule the last
rule of the group likely to run. The condition asks for an OrderLine object, therefore,
as long as we have an order line and the rules have done everything they need with
it, we'll execute this rule's action.

Improving Our Rule Syntax

[72]

As the consequence of this rule, the kcontext default variable is used to access the
KieSession, using the getKnowledgeRuntime method. Through this, it can activate
the next agenda group just like it did on the plain Java code. You can see that the
agenda group activated is the MAIN agenda group, which is the default agenda group
so that the next set of rules to be matched and possibly fired is the group that didn't
define an agenda group.

Other types of rule groups
Agenda groups are very useful to not only define a specific sequence in our rules,
but also let the rules determine the next group of rules that is to be activated. Very
complex situations where rules have to control, the next set of actions to follow can
be represented using these types of rules. However, there are times when rules are
exposed through user-friendly editors to business users and they usually want a
more graphical way of defining rule group sequences.

There is a tool for Business Process Management (BPM) called jBPM, which uses
Drools as its base API and rule engine. It allows the end users to define diagrams to
show the sequence of steps in a process. Some of these steps can be rule executions
and to determine the rules that should fire at that particular point, they use a
common attribute between the rule step in the process and the rules that are going to
be invoked: the ruleflow-group rule attribute.

Ruleflow groups are used for exclusive interaction with business processes and there
isn't an exposed API to invoke the ruleflow group that should be activated. Instead,
this is done directly by the runtime of jBPM.

Groupings are used to split rules in groups; however, sometimes, we need these
groups to have an even more specific behavior. For example, we might define that a
specific group of rules should be mutually exclusive. To define such behavior, Drools
defines a rule attribute called activation-group, which defines that only one rule
should fire in that group. If the data that we feed the KieSession matches five rules in
the same activation group, the first one to fire will cancel the other four rules.

Note that rule attributes can only be defined once per rule, however,
you can have multiple rule attributes defined in a single rule. The
combinations of rule attributes is a very powerful tool once we
understand the purpose of all the attribute types.

Chapter 4

[73]

Rule dates management
There are times when we want our rules to be considered only in specific moments in
time. Some rules, specially company policies, such as special discounts for retail, tax
calculations, and holiday specials, make sense only on specific dates or days of the
week. There are rule attributes with this very purpose and they allow you to control
whether or not a rule is enabled at a specific point in time.

Two of these attributes, date-effective and date-expires, determine the start and end
date for a specific rule to be enabled. If we assume the government establishes a
specific tax to be added to every purchase from 2015 to 2020, this would be a good
way to define this rule, as follows:

rule "Add special tax of 3%"
 date-effective "01-Jan-2015"
 date-expires "31-Dec-2020"
 when $i: Item()
 then $i.setSalePrice($i.getSalePrice() * 1.03);
end

The dd-mmm-yyyy date format is supported by default. You can customize this
by providing an alternative date format mask as a drools.dateformat system
property.

There is another type of common case, where we might need to switch the rule from
enabled to disabled periodically or based on a specific date configuration. In our
eShop example, this could be related to promotions such as 2 x 1 on the purchase of
beers on Saturdays. This rule should not apply to any other day, therefore, we use a
special attribute called calendars to specify the days when a rule is enabled.

Also, we might need to retrigger a specific rule on a specific schedule as long as the
condition of the rule continues to match the specific data. For this kind of situation,
there is a timer rule attribute that allows you to set either cron or interval-based
timers to your rules.

Here's an example of these two types of attributes working together on some rules:

rule "Weekday notifications of pending orders"
 calendars "weekdays"
 timer (int:0 1h)
 when Order($id: orderId)
 then emailService.sendEmail("Pending order: "+$id);
end
rule "Weekend notifications of pending orders"
 calendars "weekends"
 timer (cron:0 0 0/8 * * ?)

Improving Our Rule Syntax

[74]

 when Order($id: orderId)
 then emailService.sendEmail("Pending order: "+$id);
end

As you can see, these two rules do pretty much the same. If there is an order on the
working memory, they send an e-mail through a helper class set as a global variable
called emailService. The main difference between the two rules is provided by the
rule attributes. The first rule will only be active on the days the weekdays calendar
tells it to be, while the second rule will only be active on the weekends calendar.
Also, each rule will fire at different rates as long as the condition is still fulfilled, the
first rule will fire at one hour intervals (with zero time of delay for the first time) and
the second rule will fire exactly at 00:00, 08:00, and 16:00 hours. They both require
that the rule execution is invoked so that fireAllRules should be called continuously
in order to get the firing rate going.

The calendars have to be configured through the KIESession using the
getCalendars method, as follows:

ksession.getCalendars().set("weekday", new Calendar() {
 //for simplicity, any date/time matches this calendar
 public void isTimeIncluded(long timestamp) {
 return true;
 }
});

You can find an example of its configuration in the chapter's code bundle, under the
name TimersAndCalendarsTest. Any object that matches the org.kie.api.time.
Calendar interface can define any form of calendar with any kind of business logic
behind it.

Controlling loops in rules
So far, we've seen some ways in which we can manage our rules to trigger new rule
invocations. This will help us enormously in order to be able to split our rules into
simple components that interact in the background through the data in the working
memory. Powerful as it is, however, it can bring us a few extra complications along
the line of the rules getting fired more times than we desire. Fortunately, Drools
provides us with a set of elements to control rule execution from the very syntax
where we define them.

Chapter 4

[75]

The first and the most simple case where we can get into an infinite rule execution
loop happens when a rule modifies the working memory in a way that it retriggers
itself. Let's see an example of this problem in the following:

rule "Apply 10% discount on notepads"
 when $i: Item(name == "notepad", $sp: salePrice)
 then modify($i) { setSalePrice($sp * 0.9); }
end

In this rule, our intention is to reduce the sale price of the notepads in our inventory.
We just don't change the value of our items, however, we also want to notify the
engine that it changed. This is done using the modify keyword, as discussed earlier
in this chapter, and we do it as we might have other rules that need to re-evaluate the
item now that the price is different.

The problem is that if the modified object still matches the condition of this rule (and
it does as its name is still notepad), it will also re-evaluate itself. This will lead to an
infinite amount of rule executions for the same element.

The method to avoid this unwanted loop is a very simple attribute called, by no
surprise, no-loop. The no-loop rule attribute prevents a rule from reactivating itself,
irrespective of the changes the rule makes to the working memory. Its syntax is very
simple, as the following example depicts:

rule "Apply 10% discount on notepads BUT ONLY ONCE"
 no-loop true
 when $i: Item(name == "notepad", $sp: salePrice)
 then modify($i) { setSalePrice($sp * 0.9); }
end

The true condition is optional, and writing no-loop is enough. The boolean
parameter is there because, as we previously mentioned, it can be a variable from the
context that determines whether or not this rule is to be set as no loop or not.

It's worth mentioning that no-loop only prevents this rule from refiring for the
same data if it was the last rule to fire. If another rule changes the working memory
in a way that matches this rule again, the no-loop condition won't prevent it from
executing a second time. Sometimes, this is a desired behavior, however, if this isn't
the case, there are other types of loop-prevention strategies that we need to discuss.

Improving Our Rule Syntax

[76]

Lock-on-active
Let's see an example of how this works:

rule "Give extra 2% discount for orders larger than 15 items"
 no-loop true
 when $o: Order(totalItems > 15)
 then modify ($o) { increaseDiscount(0.02); }
end
rule "Give extra 2% discount for orders larger than $100"
 no-loop true
 when $o: Order(total > 100.00)
 then modify ($o) { increaseDiscount(0.02); }
end

These rules have the no-loop attribute so that even if they modify the order object,
they won't retrigger themselves. However, nothing is stopping them from activating
each other. Therefore, the first rule will trigger the second one, which will trigger the
first one again, and so on and so forth. This type of infinite loop requires something a
bit stronger than the no-loop attribute.

One quick way of making sure that a rule doesn't get retriggered for the same objects
is to add an attribute called lock-on-active to the troublesome rules. Whenever a
ruleflow-group becomes active or an agenda-group receives the focus, any rule
within this group that has lock-on-active set to true will not be activated any more
for the same objects. Irrespective of the origin of the update, the activation of a
matching rule is discarded. The following is an example of one of the rules rewritten
to use lock-on-active:

rule "Give extra 2% discount for orders larger than $100"
 lock-on-active true
 when $o: Order(total > 100.00)
 then modify ($o) { increaseDiscount(0.02); }
end

In this second case, the rules will trigger only once for the same objects. You can see
a running example of these rules in the LoopingExamplesTest class of the chapter's
code bundle.

This is a stronger version of no-loop as the change can now be caused not only by
the rule itself. It's ideal for calculation rules, where you have a number of rules that
modify a fact and you don't want any rule re-matching and firing again. Only when
the ruleflow-group is no longer active or the agenda group loses the focus; these
rules, with lock-on-active set to true, become eligible again for matching on the same
objects to be possible again.

Chapter 4

[77]

Model properties execution control
The no-loop and lock-on-active attributes give us a great amount of power when it
comes to controlling undesired execution loops. The problem with these attributes,
however, arises from the fact that the whole objects used in the condition will not
retrigger the rule, no matter how much they are modified by the same or other rules.
This might not be the desired behavior for a lot of cases where the model is complex
or hard to change and we might still need to re-evaluate some of the changes if they
occur to specific properties.

This sort of fine-grained control is possible, in its most simple form, by adding flag
attributes to the objects that store the conditions that we want to check. Some rules
will alter these flags and some other rules will check against them to see whether
they should or should not evaluate again. Here's an example:

rule "Add 2% discount for orders larger than $100"
 when $o:
 Order(total > 100.00, has100DollarsDiscount == false)
 then
 modify($o){
 increaseDiscount(0.02);
 setHas100DollarsDiscount(true);
 }
end

rule "Add 2% discount for orders larger than 15 items"
 when $o:
 Order(total > 100.00, has15ItemsDiscount == false)
 then
 modify($o){
 increaseDiscount(0.02);
 setHas15ItemsDiscount(true);
 }
end

In the previous rule, there was no need to add the rule attributes to the rules as the
use of two flag attributes (has15ItemsDiscount and has100DollarsDiscount) had
already flagged the object to not be evaluated again. If any other modification was
done to the object in the working memory, it would retrigger the rule.

Improving Our Rule Syntax

[78]

This solution has two main problems. One problem is that we will eventually
saturate the model with extra properties with no direct relation to the actual content
of the model, however, they are more related to the execution of rules. The second
problem arises when we have so many rules that we need to check on too many
flags in order to make the rule easy to understand. Remember our main goals when
writing rules: keep them independent and as simple (atomic) as possible. If we have
too many flags that relate to specific rules, the independence starts to break.

Let's not worry. There are more tricks within Drools that will help us with these
situations.

Declared types
Drools rules conditions are build, based on Java types. This means that we need to
have a defined set of Java classes to define our model and use it from our rules. All
our previous examples have been based on the existence of Java classes to represent
orders, discounts, clients, and so on.

This is not the only way that Drools has to define a data model. Within the DRL files,
where we define our rules, we can also define new types that will be created, compiled,
and made available in the runtime at the same moment as the rules and it can be
changed just as easily. These are called declared types and they play a very useful
part in defining data models that only make sense for specific groups of rules (such as
inference objects that might not necessarily be a part of the rules output result). They
are defined before the rules in the DRL structure, with the following syntax:

declare SpecialOrder extends Order
 whatsSoSpecialAboutIt: String
 order: Order
 applicableDiscount: Discount
 end

The previous example contains a few things all together that are worth mentioning,
as follows:

• They are defined between the declare and end keywords
• They can define object attributes (such as String) and primitive attributes

(such as long)
• They can extend other types, including Java classes and other declared types
• They can even declare attributes that are a part of your own model (such

as the applicableDiscount attribute in the previous example, of type
Discount) and they can also have other declared types as attributes

Chapter 4

[79]

These types can be used from the conditions and consequences of the rules in
the same way as any other Java class. You can access the getters/setters of all the
attributes that will be automatically generated by the rule engine at the compilation
time. The only difference arises from trying to access these objects from outside
the rules in the plain Java code. It is possible to do so, however, it requires using a
reflection API accessible through the KieBase, as follows:

KieSession ksession = ...; //previously initialized
FactType type = ksession.getKieBase().getFactType(
 "chapter04.declaredTypes", "SpecialOrder");
Object instance = type.newInstance();
type.set(instance, "relevance", 2L);
Object attr = type.get(instance, "relevance");

Due to this complex syntax for use in Java code, it is best to use declared types only
if they're going to be used exclusively from the rules code. The use of declared types
can be seen in the DeclaredTypesTest class in the chapter-04/chapter-04-tests
project of the code bundle.

Property-reactive beans
Whenever we use the modify or update keywords in the consequence of a rule, we're
notify the engine that rules that filter similar object types should re-evaluate the
object again. This re-evaluation, by default, occurs on the whole object; As long as
one property of the object changes, the rules will consider it as a new object to match.

This could lead to some issues when we don't wish to have a rule re-evaluated for
some changes. The loop-control mechanisms, such as no-loop and lock-on-active,
could be helpful in these situations. However, if we want the rule to control changes
on some properties only, we need to write very complex conditions. Also, if the
model changes in the future for a large rule base, you may have to modify a lot of
rules to avoid undesired rule re-executions.

Fortunately, Drools provides a feature that allows the engine to work around this
problem. It allows the rule writers to define the attributes of a bean that should be
monitored if they're updated in the working memory. This feature is defined in the
data model (Java classes or declared types) that are used in the rules and it is called
property-reactive beans.

www.allitebooks.com

http://www.allitebooks.org

Improving Our Rule Syntax

[80]

To use this feature, we first need to mark the types that we will use in the rules
with the Property Reactive annotation. This annotation allows the engine know that
whenever an object of this type is added to the working memory, special filtering
on its changes needs to apply. This annotation can be added to a Java class (at class
level) or declared type (right after the first line, defining the type name), as follows:

 declare PropertyReactiveOrder
 @propertyReactive
 discount: Discount
 totalItems: Integer
 total: Double
 end

After we have our types "marked" as property-reactive beans, we can make our rules
define the properties of these beans that should be monitored for changes, and the
properties that should not. To do so, we use the @Watch annotation after each specific
condition of the rule that should have this type of filtering applied, as shown in the
following:

rule "Larger than 20 items orders are special orders"
 when
 $o: PropertyReactiveOrder(
 totalItems > 20
) @Watch (!discount)
 then
 modify ($o) {
 setDiscount(new Discount(0.05));
 }
 end

In the previous rule, the @Watch annotation makes the rule behave similar to adding
a no-loop or a lock-on-active rule attribute. It will avoid this and the other rules to
be re-fired for the same element. However, if any rule modifies the object in a way
other than changing its discount, it will not avoid the retriggering of this rule. This
is the main power of the property-reactive beans; you can determine which attribute
changes could retrigger the rule and which could not.

The @Watch annotation can be used in the rule to monitor different situations
regarding the attributes of a property-reactive bean. If not present, the watched fields
can be inferred by default, depending on the condition structure. Here, we can see a
few examples:

• @Watch(discount, total): This only monitors changes in the discount and
total attributes

Chapter 4

[81]

• @Watch(!discount): This means that we should disregard changes to the
discount attribute of the bean

• @Watch(!*, total): This means that we should disregard all the attributes of
the bean, except for the total attribute

• @Watch(!*, total, totalItems): This means that we should only pay attention
to changes of the total and totalItems attributes, other changes are
disregarded

Property reactive beans changes should be notified to the rule engine only using the
modify keyword. The update keyword won't be able to tell the difference between
the attributes of the bean that are being changed. This is another reason to discourage
the use of the update keyword.

We've seen, so far, how malleable and extensible the data model that we use in our
rules is. Based on its modifications and the conditions that our rules define, we can
create very complex environments in very simple ways. The next thing we need to
learn is how to define the conditions in our rules in a simple yet powerful way. To do
so, let's take a look at some of the most used operations that we can use to compare
our data in our rule definitions.

Special Drools operations
We've seen, so far, the simplest cases to check attribute values against the boolean
expressions in our rules. We've also discussed all the different ways in which rules
can manage data updates, which might retrigger checking our rules. However, the
power of rules doesn't stop there as there are many different ways in which the rule
conditions can be written, which will allow us to create rules that are both powerful
and simple to understand.

Drools already provides a set of operations that you can use to compare different
objects against each other. These objects might be living directly on the working
memory, global variables, literal values, or any combination of these types. We're
going to enumerate the most used ones in the following sections, splitting them into
the following:

• Boolean and numeric operations
• Collection-based operations
• Regex operations
• Custom operations

Improving Our Rule Syntax

[82]

Boolean and numeric operations
We've seen some examples of these operations in our previous rules as they are
the simplest to understand for anyone with programming experience. Boolean
operations are the ones that use AND, OR, XOR, and so on. Numeric operations are
the ones that compare two numeric values. Here's an example of some of these
operations against an attribute of the Item type:

Item(
 salePrice > 100.00 && salePrice <= 500.00
 && salePrice != 101.00
)

In the previous example of a condition, we checked whether the salePrice attribute
of our Item object has a value greater than 100, lesser or equal to 500, and different
from 101, in that order.

Some of these operations are intrinsic to Drools, such as the use of the AND operation.
Using the && method is not necessary in the conditions of the previous example as
any comparison that is separated by a comma is considered a new condition that
must be checked as well. However, boolean conditions are required to express the
situations where either one of the two conditions needs to be true (that is, an OR
boolean expression).

Using boolean expressions is possible, but if required, they will usually mark places
where the design of our rules needs revision. This is because the AND expressions
are intrinsic to the language and rules that use OR expressions should be considered
as more than one condition in the same rule (and therefore, non-atomic). Whenever
an OR expression is required to express a rule, consider splitting the rule into two
different rules, as shown in the following example:

rule "Add 5% discount for minors or seniors"
 when $o: Order(customer.age < 18 || customer.age > 60)
 then $o.increaseDiscount(0.05);
end

This could be broken into this two rules:

rule "Add 5% discount for minors"
 when $o: Order(customer.age < 18)
 then $o.increaseDiscount(0.05);
end
rule "Add 5% discount for seniors"
 when $o: Order(customer.age > 60)
 then $o.increaseDiscount(0.05);
end

Chapter 4

[83]

It might seem that boolean expressions are something to avoid as much as possible,
however, we will see some other uses that they have when combining other
operations later in this chapter. For the moment, let's just remember that they exist
and try to use them only if really needed.

Regex operations – matches
Matches is an operator that we can use against string-based objects and attributes. It
allows us to check whether they follow a specific regular expression. Most common
uses of them are to check whether a string represents a valid number, e-mail, or
any special character order that we need to validate. Regular expressions are a very
complex topic to cover here and you can learn more about them online. We will see
a small example of how matches are used in a rule condition by creating a rule to
check whether customers in our KieSession have a valid e-mail address, as follows:

rule "validate customer emails"
 when $c: Customer(email not matches
 "[A-Za-z0-9-.]+@[A-Za-z0-9-.]+$")
 then $c.setEmail(null); //invalidate email
 end

The previous rule has a simplified regular expression to validate e-mails. Any Java
regular expression could be used with the matches and not matches operators and
they can both work with variables and literal values. This means that the regular
expression could be a global variable defined somewhere else.

Collection operations – contains and
memberOf
The collection operations are the ones prepared to work with one or more collections,
whether they are variables, attributes, or literal values. They are used to determine
whether a collection has an element in them. An example of using these operations
would be something similar to the following:

rule "print orders with pencils in them"
 when
 $i: Item(name == "pencil")
 $ol: OrderLine(item == $i)
 $o: Order($ol memberOf orderLines,
 orderLines contains $ol)
 then
 System.out.println("order with pencils: " + $o);
 end

Improving Our Rule Syntax

[84]

In the previous rule, we're using both operations one after the other. They are both
checking for the same condition, whether the found order line is in the orderLines
collection of the order object.

Operations in Drools have an open syntax. This means that you can write your own
operation if you need to. This is a useful tool when a comparison of two objects has too
many complexities to be easily written as a simple boolean operation. Some common
uses for custom operations are comparing GPS location data to determine facts near to
each other in space or comparing time data to determine time relationships between
events. We will see more about custom operations in the next chapter.

Working memory breakdown: the from
clause
We've seen how rule conditions are written. So far, all these conditions have
filtered data that was inserted in our KieSession (that is, inserted in the working
memory). However, in some situations, we might need to check special conditions
on collections that are different from the working memory, such as attributes of some
objects, global variables, or subsets of the working memory itself that we can create
dynamically. To be able to do so, Drools provides the from clause, which we can be
used to define a specific search space outside of the working memory.

The following rule is a simple example of how we can use the from clause to look for
specific attributes:

rule "For every notebook order apply points coupon"
 when
 $o: Order($c: customer, $lines: orderLines)
 OrderLine($item: item) from $lines
 Item(name == "notebook") from $item
 then
 insert(new Coupon($c, $o, CouponType.POINTS));
 end

The previous rule looks for orders in our working memory first. It will store both the
order lines collection as a $lines variable and the customer in a $c variable (this last
variable is stored to use it from the consequence of the rule). After finding an order,
it looks in the $lines variable (which holds all the order lines) and stores the item
in another variable. After that, the third line of the rule condition directly searches a
single object (the item), and checks whether the item is a notebook.

Chapter 4

[85]

As you can see, if we only have the Order object in our working memory (and not
all of its subcomponents), we can still go deep into its structure in a way that the
following conditions are satisfied:

• It is easy to read and break down into multiple conditions
• It can take into account the situations where we might have collections of

objects to dig into (such as the orderLines attribute in the second part of our
rule condition)

• It can make a rule easier to read

The from clause is a very versatile tool. It can be used to get data from multiple
sources and not only from attributes. You can invoke methods from global variables
that return specific values or lists and use it from the from clause. You can basically
use it with anything that returns a value.

Drools 6.3, and higher, comes with a feature called OOPath expressions,
which allows to define the previous rule in a more compact way, as
follows:

rule "For every notebook order apply points coupon"
 when
 $o: Order($c: customer,
 /orderLines/item{name == "notebook"}
)
 then
 insert(new Coupon($c, $o, CouponType.POINTS));
 end

One common use of global variables is to retrieve data that doesn't need to be in the
working memory all the time. Thanks to the from clause, we can directly filter this
data from our rules as soon as we execute a global variable method, as follows:

global QueryService qServ

 rule "get stored coupons for new order"
 when
 Order(totalItems > 10, $c:customer)
 Coupon(customer == $c) from qServ.queryCoupons()
 then
 System.out.println("We have a stored coupon");
 end

Improving Our Rule Syntax

[86]

This can be useful to compare the data between the working memory and outside
storages, such as databases and web services. We need to be careful when using
these external queries by realizing when the engine will invoke the global variable
method, though. In the previous example, every time we add a new Order object
to the working memory, the first line will be evaluated once again. If the first line
fills the required conditions, it will call the second line, invoking the global variable
method. If we add 50 orders that fill the first condition, the global variable method
will be called 50 times by this rule.

Another thing to be careful about when using from clauses like these is how deep
you nest them; if you have to execute five global variable methods one after the other
in the same rule and they are all process-intensive, you will have a very slow rule.
If you need to do something of this type, it is best to work with caches for your slow
methods whenever possible.

Note that if the return value of a global variable method changes, it will not retrigger
a rule that invokes it, even if it is the first condition of the rule. This is because global
variables are outside the working memory, and therefore, they are not re-evaluated
when they change. If you need to re-evaluate things used in the from clause, the
best way to go is to use a subset of the working memory, which you can create using
collect or accumulate keywords along with the from clause. These keywords and
their uses are described in the following two sections.

Collect from objects
So far, we've seen ways to write conditions in our rules that will get triggered for
every single match against the working memory. Let's analyze a simple rule to fully
understand this mechanism:

rule "Simple order condition"
 when $o: Order()
 then System.out.println("order found: " + $o);
 end

The previous rule is defined in such a way that if we insert 50 orders in the
KieSession, we will trigger this rule 50 times when we fire the rules. This is useful
when we want to do something on each element that matches a condition. However,
if we want to act against all the elements that match a condition at once, we need an
extra syntax to help us. This is where the collect keyword comes into play.

Chapter 4

[87]

The "collect" keyword is used to find all the elements that match a specific condition
and group them into a collection. Later on, this collection can be assigned to a
variable or submitted to further conditions, as follows:

rule "Grouping orders"
 when $list: List() from collect(Order())
 then
 System.out.println("we've found " +
 $list.size() + " orders");
 end

In the previous case, if we insert 50 orders to KieSession and then fire the rules, the
rule will fire only once, producing a list of 50 orders. However, if we fire all the rules
without inserting any orders first, this rule would still fire returning an empty list in
the $list variable. To avoid so, we should add conditions in the List object by writing
it as follows:

$list: List(size > 0) from collect(Order())

The collect keyword can be combined with the from clause to create new
collections from different sources. It is very useful whenever we can find objects
through the rule conditions and add them directly to a collection.

Accumulate keyword
In the previous section, we saw that the collect keyword allows us to gather
information directly from a source into a collection. This is a very useful component
when we already have the elements as we need them to be somewhere accessible in
the working memory. However, sometimes we need to apply transformations to the
data that matches a condition. For these cases, the accumulate keyword is used to
transform every match of a condition to a specific type of data.

You can think of the accumulate keyword as a collect on steroids. You not only
get to group every item that matches a condition, but also extrapolate the data from
these elements in a specific programmatic way. Some common examples where the
accumulate keyword is used are counting elements that match a specific condition,
get average values of an attribute of certain type of objects, and to find the average,
minimum, or maximum values of a specific attribute in a condition.

Improving Our Rule Syntax

[88]

Perhaps an example could help clarify the use of accumulate. In the previous rules,
we've used a method of the Order object, called getTotalItems, to return the
count of items that we were purchasing in this order. So far, this has been the only
way we would have to get this information from the Order object. However, using
accumulate, we can obtain this information while filtering specific items using the
full power of rules. Let's see this in an example:

rule "10+ items with sale price over 20 get discount"
 when
 $o: Order($lines: orderLines)
 Number(intValue >= 10) from accumulate(
 OrderLine(
 item.salePrice > 20.00,
 $q: quantity
) from $lines,
 init(int count = 0;),
 action(count += $q),
 reverse(count -= $q),
 result(count)
)
 then
 $o.increaseDiscount(0.05);
 end

We've got a lot to explain from the previous rule. It's main objective is to get the
total number of items in the order that follows a specific condition: having a sale
price value higher than 20. The getTotalItems method would be able to give us
a count of all the items, however, it wouldn't be able to filter through them. The
accumulate here, however, would allow us to apply a condition to the elements and
apply a predicate to transform the elements that match the accumulate condition
in the information that we need. Let's analyze the parts of the accumulate to fully
understand its structure, as follows:

• $o: Order($lines: orderLines): This part is simple. We're checking every
Order object that we have in our working memory and storing the order lines
attribute in a variable for later use.

• Number(intValue >= 10): Our rule is trying to check whether we have at
least, 10 items with price higher than 20. This first part of the accumulate line
is checking the return value from the accumulate. It can be anything that you
want, but for this first example, it is going to be a number. If that number is
10 or more, we consider the return value of the accumulate to be fulfilling
our rule. This means that the accumulate should count all the items that
match the specific condition.

Chapter 4

[89]

• Condition inside accumulate: In the accumulate, we have a first part that
matches a specific condition. In this case, it goes all over the OrderLine
objects of the order (which were stored in the $lines variable), checks
whether the sale price is over 20 and stores the quantity attribute value in a
$q variable to be used later. Notice how you have a second from clause in the
accumulate as you can nest them when needed.

The following four parts of the accumulate (init, action, reverse, and result) contain
information about what to do whenever we find an object that matches the condition:

• init: This is done at the beginning of the accumulate. It initializes the
variables to be used every time we find a match in the accumulate condition.
In our case, we're initializing a count variable.

• action: Whenever we find an element in the working memory that matches
the accumulate condition, the rule engine will trigger the action section of
code in the accumulate. In our example, we're increasing the count of the
elements by the value of the $q variable, which holds the quantity of the
OrderLine object.

• reverse: This is an optional code block. As every object inserted, modified,
or deleted from the working memory might trigger the condition (and
activate the action code block), it can also make an element that had already
matched the accumulate condition to stop doing so. In order to increase the
performance, the reverse code block can be provided to avoid having to
recalculate all the accumulate again if it is too processor-intensive. In our
example, whenever OrderLine stops matching the condition, the reverse code
will just decrease the count variable by the amount of the $q variable that is
previously stored.

• result: This code block holds the return variable name or formula for the
finished accumulate section. Once every object that matches a condition has
been processed and all the action code blocks have been called accordingly,
the result code block will return the specific data that we collected, which
will dictate the type that we'll write on the right-hand side of the from
accumulate expression. In our example, we return the count value (an
integer value), which is matched against the first part of the accumulate
function: Number(intValue > 10).

Improving Our Rule Syntax

[90]

Although this is the full syntax for using accumulate, it doesn't necessarily have to
be this complex every single time. Drools provides a set of predefined accumulate
functions that you can directly use in your rules. Here's the previous rule that is
rewritten to show how to use one of these built-in functions:

rule "10+ items with sale price over 20 get discount"
 when
 $o: Order($lines: orderLines)
 Number(intValue >= 10) from accumulate(
 OrderLine(
 item.salePrice > 20.00,
 $q: quantity
) from $lines,
 sum($q)
)
 then
 $o.increaseDiscount(0.05);
 end

The already provided accumulate functions are as follows:

• count: This keeps a count of a variable that matches a condition
• sum: This sums up a variable, as shown in the previous example
• avg: This gets the average value of a variable for all the matches in the

accumulate
• min: From all the variable values obtained in the accumulate condition, this

returns the minimal one
• max: From all the variable values obtained in the accumulate condition, this

returns the maximum one
• collectList: This stores all the values of a specified variable in the condition in

an ordered list and returns them at the end of the accumulate
• collectSet: This stores all the values of a specified variable in the condition in

a unique elements' set and returns them at the end of the accumulate

Chapter 4

[91]

Using a predefined function is preferred as it makes the rule more readable and is
less prone to errors. You can even use many of them at once, one after the other,
separated by a comma, as shown in the following example:

rule "multi-function accumulate example"
 when accumulate(Order($total: total),
 $maximum: max($total),
 $minimum: min($total),
 $average: avg($total)
)
 then //...
 end

The previous rule stores the maximum, minimum, and average of the totals of all the
orders in the working memory. As you can see, the from clause is not mandatory for
the accumulate keyword. It is even discouraged with multifunction accumulates as
it might return completely different types of objects (such as Lists and Numbers).

If you want to do an accumulate in a way that is not provided by these functions,
Drools provides an API to create our own accumulate functions, similar to that
used to create our own custom operators. We will see more about the API in the
next chapter.

Advanced conditional elements
The previous sections have been about how to extract data, however, we've been
very straightforward with the order of our conditions. Always every condition
has been separated by a comma and the execution of the rule was basically each
condition followed by an implicit AND. It is time to see how to apply more complex
boolean operations to our rules.

We've seen how to use boolean operations in a single object, checking whether its
internal attributes matched the specific combinations of conditions. We'll see now
how to do the same with different objects and how it would get translated to the
rule language.

Improving Our Rule Syntax

[92]

NOT keyword
Whenever we've written a condition so far, it's been translated to a search for any
object (or group of objects) that matches the condition in the working memory. If we
precede the condition of an object (or group) with the not keyword, we can check
whether no incidence of the condition is found in the working memory and trigger a
rule for these cases. Let's see the following example of this keyword:

rule "warn about empty working memory"
 when
 not(Order() or Item())
 then
 System.out.println("we don't have elements");
 end

The previous rule uses the not keyword to make sure that at the moment of firing the
rules, we have at least an Order or Item object. If we don't, it will print a warning.

Notice how we use the OR keyword to share a condition in not. This is because
the NOT keyword will contain a boolean expression. In this case, since we want to
search for both Orders or Items to exist in the working memory, we can group them
together in a single expression inside NOT. Another way of writing this rule would
be as follows:

rule "warn about empty working memory"
 when
 not(Order())
 not(Item())
 then
 System.out.println("we don't have elements");
 end

It would act in the same way.

EXISTS and FORALL keywords
In a similar fashion to the not keyword, we have a few other keywords that we can
use to check the existence of elements in the working memory. The exists keyword
is used for the purpose of checking whether any object is present in the working
memory that fulfills the condition in it.

Chapter 4

[93]

Let's take a look at the following two rules, one with exists and one without it:

rule "with exists"
 when
 exists(Order())
 then
 System.out.prinltn(
 "We have orders");
end

rule "without exists"
 when
 $o: Order()
 then
 System.out.println($o);
end

The main difference between them is how many times these rules will fire for one or
many Order objects. For the case on the right-hand side, if you have multiple orders,
the rule will fire once for every order. On the left-hand side, whether you have one
element, five, or five million Orders, you will fire the rule once.

The other difference that you can see in the declaration is that the rule on the right-
hand side has a variable declaration. This can be done only in the case of the right-
hand side components as it will execute for every Order in the working memory
and you can have a reference to each one of them. In the case of the left-hand side
component, it is only checking for a boolean expression (whether or not the Order
objects exist in the working memory), so it is not storing any reference we could use
in the consequence of the rule.

A similar pattern is used in the forall keyword. When using forall, we check two
conditions against the working memory. Any object that matches the first condition
must match the second condition to make forall true.

Let's see the following example of forall and exists working together:

rule "make sure all orders have at least one line"
 when
 exists(Order())
 forall(
 Order()
 Order(orderLines.size() > 0)
)
 then
 System.out.println("all orders have lines");
 end

In the previous rule, you can see the first condition uses exists to check whether
there's any Order object in the working memory. If there is one order or a thousand,
this will evaluate once.

Improving Our Rule Syntax

[94]

The second part of the rule is using two conditions. For every item that fills the first
condition (being an Order object), it will also need to fill the second one (having at
least one order line). This means that every order in the working memory must have
at least one order line for this rule to fire.

There's a reason for using both exists and forall in the same rule, beyond just
providing a short example of both. The forall structure checks whether the
collection of objects that fills both conditions are the same. This means if nothing fills
the first and second conditions of the forall, it will evaluate to true. To avoid this,
before every forall, we usually use exists with the first condition that we will use
in the forall.

You can find examples of running rules about these advanced conditional elements
in ConditionalElementsTest of the code base.

Drools syntactic sugar
Drools provides all sorts of special syntactic features. As much as we'd like, all of
them won't fit in this book and more features are added constantly. Some of them,
however, come in very handy when having to define our rules in a simple and
comprehensive manner. We'll discuss the top three of these extra features, as follows:

• Nested accessors for the attributes of our types
• Inline casts for attributes of our types
• Null-safe operators

Nested accessors
Nested accessors allow us to simplify our conditions when we have to define
conditions on nested beans. Using parentheses, it allows us access the nested
properties without having to redeclare the path to get to them. Let's see the following
example to fully understand it:

OrderLine(item.cost < 30.0, item.salePrice < 25.0)

In the previous condition, we're filtering order lines that have an item with a cost
under 30 and a sale price under 25. We could simplify the expression using nested
accessors, as follows:

OrderLine(item.(cost < 30.0,salePrice < 25.0))

This allows us to access multiple properties of the item attribute, without having to
rewrite the path to reach these properties.

Chapter 4

[95]

Inline casts
Inline casts allow us to quickly filter properties in a type without having to abuse
from clauses. It allows us to cast an attribute of a type to a specific subclass and add
a condition that would only make sense after casting. Let's see the following example
to clarify it:

Order(customer#SpecialCustomer.specialDiscount > 0.0)

Here, we used the # symbol to mark our inline cast. We have a customer associated
with our order. For some cases, the customer will not be of the Customer type, but
a subclass of it called SpecialCustomer. This type of specialized customer has a
special discount attribute. In the previous condition, we're trying to filter the orders
that have a SpecialCustomer type of object and for these cases, the ones where the
special customer has a discount greater than zero. Using inline casts, we can check all
of these conditions in a single line.

Null-safe operators
Null-safe operators are very useful when dealing with possibly incomplete models,
where we might not have to write the null-checking conditions over and over
again. Using a special character, we can make sure that the conditions we write on
attributes are only checked if the attribute is not null. Here's a case where we're using
the null-safe operators to access the category of the customer of an order:

Order(customer!.category != Category.NA)

The previous condition, without null-safe operators, would be similar to the
following:

 Order(
 customer != null,
 customer.category != Category.NA
)

For deeply nested attributes, the null-safe operator allows us to save a lot of writing.

Decorating our objects in memory
We've seen examples where we modify the working memory whenever we detect
that a specific condition is happening. We might remove objects, modify existing
ones, and even delete them to trigger other rule executions. We've also seen that,
sometimes, these elements make sense mostly within the rule executions and used
declared types for these cases.

Improving Our Rule Syntax

[96]

Whether we use declared types of external classes, most of the cases imply one of the
following two strategies:

• We add new objects (declared types or Java classes) to the working memory,
representing some inference about our domain model

• We modify attributes of existing objects in the working memory, adding the
inferred data to these properties

These strategies have a few disadvantages when it comes to decorating an existing
model. The first case (adding new objects) might imply having to keep a reference
between the domain model object and the new inferred object in some form. The
second case (modifying attributes) might imply modifying the domain model when
we might not wish to do so.

There is a third alternative to these strategies, which implies adding a new nature
to already existing objects without having to create extra attributes in the original
beans. This dynamic decoration of existing objects in the working memory is known
as traits.

Traits are like adjectives from an object-oriented perspective. We can say a house
is pretty or a car is pretty. Adjectives can apply to many different types. However,
these types don't need to share a common structure. This means that traits act like a
flag that we can apply to multiple types and have specific attributes that apply to the
adjective itself, and therefore, to the beans that apply the trait.

To explain this in a simpler way, think of traits as extra characteristics that we can
dynamically add to certain objects in the working memory. We can filter these
objects using these characteristics later in other rules. To do so, we need to do the
following two things:

• Define a trait: We can do this using Java classes, marking them with the @
Trait annotation at class level, or with declared types such as the following:
 declare trait KidFriendly
 kidsAppeal: String
 end

• Mark the classes and declared types that will have the trait applied with the
@Traitable annotation.

Once we follow these steps, we can define the rules that apply the trait to the
traitable objects. Let's consider an example based on our eShop case. Consider that
we want to start classifying specific elements as kid-friendly in order to add
advertising to them based on an age tier.

Chapter 4

[97]

We can have items that are kid friendly, such as colored paper, toys, or special clothes.
We might also have kid-friendly providers (they provide us with a lot of school-related
items) or kid-friendly sales channels (such as parent-based sites where our eShop
placed offers). If it wasn't for this qualification as kid-friendly, these elements wouldn't
have any common structure. This is a good situation to apply traits.

Before we start using these traits, we need to see how to apply traits to our objects.
To do so, we'll see the syntax of the don keyword.

Adding traits with the don keyword
Whenever we have an object where we want to apply a trait, we can do so using
the don keyword. It receives the traitable object first, the trait type second, and an
optional third boolean parameter to decide whether it should be logically inserted in
the working memory. It returns an object casted to the type of the trait. Let's see the
following example of its use:

rule "toy items are kid friendly"
 no-loop
 when $i: TraitableItem(name contains "toy")
 then
 KidFriendly kf = don($i, KidFriendly.class);
 kf.setKidAppeal("can play with it");
 end

The previous rule defines the conditions where we would consider a TraitableItem
object (an object similar to Item, except it is annotated with @Traitable) as being
kid-friendly. The reason for the no loop attribute on the rule is that don is not
creating a new element, it is only decorating an existing one in the working memory.
As this decoration doesn't make the object stop fulfilling the rule condition, the no
loop avoids re-evaluations.

After using the don keyword, we will be able to treat this object as a kid-friendly
object in any other rule. This means that rules that filter objects by the KidFriendly
type can treat the traited object as a KidFriendly element.

Removing traits with the shed keyword
If, at some point, after applying a trait to an object, we decide that this trait needs to
be removed, we can do so with the shed keyword. Shed will cause the deletion of the
trait corresponding to the given argument type, as follows:

Object o = shed($traitedObject, KidFriendly.class)

Improving Our Rule Syntax

[98]

This syntax, and the use you can give to the traits, is also exemplified in TraitTest
of the code base.

Logical insertion of elements
As we've discussed earlier, we should strive to keep our rules simple. To do so,
sometimes, we break down a rule into multiple rules, making insertions of new
data in the engine to trigger other simple rules. This helps in keeping the rules
manageable as simpler rules will be easily understood. Here's a small example of
how we can do such a thing:

rule "determine large orders"
 when $o: Order(total > 150)
 then insert(new IsLargeOrder($o));
end

In this way, we won't have to define what we consider a large order more than once.
If we want to change this consideration in the future to, let's say, a total larger than
200, we will only have to change it once.

The one consideration that we need to have with this approach is that if the
condition that triggered the insertion of IsLargeOrder might stop being true in
the future. If some rule or a piece of code changes the order to have a smaller total,
the IsLargeOrder object would still be in the working memory. We can avoid this
by creating a rule to sanitize the working memory when the condition is not true
anymore, but rules helps in avoiding this unnecessary rule duplication using
logical insertion.

Logical insertion of objects binds the inserted objects with the condition that
triggered their insertion. This means that if we rewrite the previous rule as follows:

rule "determine large orders"
 when $o: Order(total > 150)
 then insertLogical(new IsLargeOrder($o));
end

Then, if at some point in the future, the order changes its total to less than 150, the
IsLargeOrder object will be automatically removed from the working memory.

Chapter 4

[99]

Handling deviations of our rules
Logical insertion not only avoid needing extra rules to sanitize our working memory,
but also open the possibility of locking objects to specific conditions. This is very
powerful because if we bind some form of negation of object to a condition, we can
define the deviations or exceptions to our inferences.

Binding a negation of an object is simple. Just use the insertLogical keyword with
a second parameter with the neg string on it. Let's see the following example, where
we will add an exception for what we consider a large order, the total items being
less than five, regardless of the price:

rule "large orders exception"
 when $o: Order(total > 150, totalItems < 5)
 then insertLogical(new IsLargeOrder($o), "neg");
 end

If we take the previous two rules, we will have one IsLargeOrder object in the
working memory for every order that has a total greater than 150 and more than five
items. If, at some point, the total of an order decreases below 150, the corresponding
IsLargeOrder object will automatically be deleted. If an order with a total above 150
and only four items gets another item, a corresponding IsLargeOrder object will
automatically be inserted.

This deviation management has the advantage of keeping the rules independent of
each other. The deviation rules don't need to understand how many rules are adding
an IsLargeOrder object to the working memory, but only the situation where the
object should not be added.

Note that the logical insertion can be done also for creation of traits. The don
keyword has a third optional boolean parameter and if you set it to true, the trait
gets logically inserted in the working memory and only exists in it while the rule is
evaluated to true, as follows:

don($traitObj, SomeTrait.class, true);

Improving Our Rule Syntax

[100]

Deviations to our deviations
The previous approach allows us to have independent rules, but it doesn't let us
add more than one level of deviations. If, at some point, we want to nest deviations
(which means to add a deviation to an existing deviation), the previous syntax won't
be enough. Let's first discuss an example of this double deviation situation:

• If you have an order over 150 dollars, you consider it a large order
• In these orders, if they have less than five items, you consider them a

large order
• If it's less than five items, but over 300 dollars (well over 150 dollars), you

also consider them a large order

For these cases, Drools provides a set of annotations that allows us to implement
deviation trees in our rules. This method of writing rules, however, comes with a
disadvantage. Using these annotations will break the rule independence as we have
to specify that to which rules we are providing a deviation or else you might find
yourself having rules and deviations to deviations competing with each other and
possibly lead to the rules getting executed more than designed.

Nevertheless, we might still require to do a case involving deviations to deviations
and this strategy manages the situation quite nicely. The set of provided annotations
mark the rules to identify which of them are deviations and which of them can or
cannot have them. These annotations are as follows:

• @Strict: This marks a rule that cannot be defeated. In this type of scenario, it
is useful to mark rules that should not be overridden by any other.

• @Defeasible: This marks a rule that can have deviations.
• @Defeats: This annotation receives a list of specific rules it can defeat. It is

the point where the rule independence gets broken as it has to know the
name of other rules.

• @Defeater: This marks a special case of defeats. It can defeat other rules,
but the changes it makes won't be propagated in the working memory. This
means that the rules marked with @Defeater won't trigger other rules. In
very complex scenarios, this can be useful to stop deviation chains.

Chapter 4

[101]

Each of the rules should use insertLogical to bind their inferences to the rule
engine. Let's see the following example of the previous double deviation case
implemented in Drools:

rule "large orders" @Defeasible
 when Order($id: orderId, total>150.00)
 then insertLogical(new IsLargeOrder($id));
end
rule "large orders exception" @Defeats("large orders")
 when Order($id:orderId, total>150.00, totalItems < 5)
 then insertLogical(new IsLargeOrder($id), "neg");
end
rule "large orders double exception"
 @Defeats("large orders exception")
 when Order($id:orderId, total>300.00)
 then insertLogical(new IsLargeOrder($id));
end

In the previous set of rules, we first check for orders of more than 150 dollars and
mark everything we find as a large order. The second rule establishes an exception,
stating orders with less than five items are not large orders. The third rule, an
exception to the second case, establishes that orders with less than five items are
considered large as long as the total is over 300 dollars.

You will also need to specify in the kmodule.xml configuration that the KieSession
will use defeasible logic. To do so, define your kbase and ksession tags as follows:

<kbase name="ruleExceptionsKbase"
 equalsBehavior="equality"
 packages="chapter04.ruleExceptions">
 <ksession name="ruleExceptionsKsession"
 beliefSystem="defeasible"/>
</kbase>

You can run this example in the RuleExceptionsTest class in the code base.

Improving Our Rule Syntax

[102]

Rule inheritance
One last important aspect of rule creation is the possibility of having a rule hierarchy.
Just like classes, rules allow inheritance between them. If rule B inherits rule A, it will
be the same as having all the conditions in rule A at the beginning of the conditions
of rule B. The following table shows two rules using inheritance and their equivalent
without it:

rule "A"
when
 s: String(this == "A")
then
 System.out.println(s);
end

rule "B" extends "A"
when
 i: Integer(intValue > 2)
then System.out.println(i);
end

rule "A"
when
 s: String(this == "A")
then
 System.out.println(s);
end

rule "B"
when
 s: String(this == "A")
 i: Integer(intValue > 2)
then
 System.out.println(i);
end

This can be a good strategy to manage rules that have repetitive conditions but
still change structure. However, you need to be careful when deciding to use rule
inheritance. Inheriting from another rule means that your sub-classed rule will not
be independent; people reading your rule will need to refer to the parent rule to fully
understand the behavior of your rule. Use this feature with caution.

Conditional named consequences
Rule inheritance allows us to avoid rewriting conditions as separate rules by
extending an existing rule. Another interesting feature that allows us to avoid
rewriting conditions is the possibility of using conditionally named consequences.
They are basically extra then clauses marked by an identifier to make one rule
behave as several. The same identifier has to be used in the rule condition with
the go keyword to identify when you should go to that specific consequence. For
example, if we wanted to write the two rules that we saw in the rule inheritance
subsection as a single rule, we could do it in the following way:

rule "A and B combined"
 when
 s: String(this == "A")
 do[aCase]

Chapter 4

[103]

 i: Integer(intValue > 2)
 then
 System.out.println(i);
 then[aCase]
 System.out.println(s);
end

As you can see in the previous rule, we can use the do keyword to mark a point in
the conditions where we can go to a specific consequence. If all the conditions in the
rule are true, both consequences would execute, similar to the case that we would see
if we defined two different rules.

Same as with rule inheritance, we must be very careful of using this feature. It
can save us a lot of rewriting, but it can also provoke one rule to become very
cumbersome to read in the long run. It is usually a good workaround when required
to quickly update an existing rule, but not something you want to abuse so much
that the rule becomes hard to read. Simplicity is key to making rules easy to
understand and modify.

Summary
Throughout this chapter, we've acquired a large amount of tools to write very
powerful rules. Working memory manipulation, communication with outside of the
rule engine through global variables, and control of the flow through groupings will
come in handy for different aspects of each specific rule.

The next step is to get everything that we've defined so far working together.
Rule engines provide an enormous amount of flexibility by taking care of all the
optimizations from a code perspective. In a way, we're here to write all the rules,
and let the engine sort them out.

In the next chapter, we will start tuning our runtime environment to control how
the rules should be executed, what information is to be logged in, and the rest of the
details that exceed rule definition and are related to rule runtime configuration.

[105]

Understanding KIE Sessions
So far, we have covered what Kie Sessions are and how to create them and interact
with them. In this chapter, we are going to dive deeper into some of the advanced
configuration options and components available in Drools 6, when configuring and
defining a Kie Session.

Before going deeper though, we are going to cover the two flavors of Kie Sessions
that are present in Drools: stateless and stateful. The type of Kie Session that
we choose for our applications has its advantages and disadvantages, which
will eventually determine the way we interact with them—whether it's storing
information between calls or satisfying a single use case for our business rules.

Once we have a better understanding of the different types of Kie Sessions provided
by Drools, we will move on to some of their configuration aspects. In this section,
topics such as globals, channels, and event listeners will be covered. All these
elements will allow us to create better applications where dependencies with
external services and monitoring over the Kie Sessions can be easily decoupled.

The last section of this chapter will focus on the options that we have to enhance the
DRL language by creating functions, custom operators, and accumulate functions.
These features are one of the most powerful tools we have in Drools to create
customized rules without affecting their readability or maintainability.

The following topics will be covered in this chapter:

• Stateless and stateful Kie Sessions
• Globals, channels, and event listeners
• Queries both on-demand and live
• Functions
• Custom operators and accumulate functions

Understanding KIE Sessions

[106]

This chapter has a corresponding module in the chapter-05 code bundle. Most of
the examples described in this chapter, and more, can be found in this module in the
form of unit tests.

Stateless and stateful Kie Sessions
As we already know, Kie Sessions come in two different flavors: stateless and
stateful. Most of the examples we covered so far involved only stateful Kie Sessions;
and there is a good reason why, stateful Kie Sessions are, by far, the most powerful
type of sessions supported by Drools.

Before we can decide which kind of session we want to use for a particular situation,
we need to understand the differences and similarities between these two type of
sessions. In order to do so, we are going to start with the most simple type of session:
the stateless Kie Session.

Stateless Kie Sessions
From a development perspective, the type of session we want to use for a particular
scenario is not determined by the rules—or any other asset type—we want to use.
The type of session is determined either when we define it in the kmodule.xml file or
when we programmatically instantiate it in our code. In most of the cases, the same
set of assets (.drl files, decision tables, and so on) can be executed inside either a
stateless or a stateful session.

So, what is a stateless Kie Session? One of the best analogies to understand what a
stateless Kie Session is would be to describe this kind of session as a function.

Typically, a function is something that receives a set of predefined parameters,
processes them, and generates an output or result. In many programming languages,
the result of a function can be the return value itself, or it can also be the modification
of some of the input parameters. Ideally, a function shouldn't have any collateral
effect, meaning that if it is invoked multiple times with the same set of parameters,
the result should be the same.

A stateless Kie Session shares some of the concepts we described for functions: it has
some loosely defined set of input parameters, it processes these parameters in a way,
and generates a response. In the same way as a function does, different invocations
on the same stateless Kie Session don't interfere with each other.

Chapter 5

[107]

In order to get a stateless Kie Session, we first need to define the Kie Base we want to
use to instantiate it. One way to do this is by creating a kmodule.xml file, as follows:

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://jboss.org/kie/6.0.0/kmodule">
<kbase name="KBase1">
 <ksession name="KSession1" type="stateless" default="true/">
</kbase>

The important thing to notice in the previous code is that we are specifically defining
KSession1 as a stateless session.

If not specified, the default type of a Kie Session is
stateful.

The next step is to get an instance of the Ksession1 session. For this, we may use the
following code snippet:

KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();
StatelessKieSession statelessKsession = kContainer.newStatelessKieSess
ion("KSession1");

The API exposed by the StatelessKieSession class is a subset of the one exposed
by its stateful counterpart, KieSession. The way we usually interact with a stateful
session is that we insert a set of facts into it, execute any activated rule, and then
we extract the response we are looking for in some way. In a stateful session,
the insertion and execution is separated into two different methods: insert()
and fireAllRules(). In the case of a stateless session, these two operations
are combined in a single method called execute(). The execute() method of
StatelessKieSession comes in the following three versions:

execute(Object fact)
execute(Iterable facts)
execute(Command command)

These first two versions of execute() will insert the facts passed as arguments, fire
all the activated rules, and dispose the created session. Successive invocations of
these methods will execute all these three steps again. Remember that everything
related to any previous invocation will be discarded after execute() ends.

Understanding KIE Sessions

[108]

The third version of execute() allows us to interact with the session using
a command pattern (http://en.wikipedia.org/wiki/Command_pattern).
Drools already comes with a predefined set of available commands such as
InsertObjectCommand, SetGlobalCommand, FireAllRulesCommand, and so
on. All the available commands can be instantiated using the CommandFactory
class. Commands can be grouped together using an instance of the
BatchExecutionCommand interface.

A typical use of a stateless Kie Session would be as shown in the following code:

List<Command> cmds = new ArrayList<>();
cmds.add(CommandFactory.newSetGlobal("list1", new ArrayList(), true
));
cmds.add(CommandFactory.newInsert(new CustomerBuilder().withId(1L).
build(), "customer1"));
cmds.add(CommandFactory.newQuery("Get Customers" "getCustomers");
ExecutionResults results = ksession.execute(CommandFactory.
newBatchExecution(cmds));
results.getValue("list1"); // returns the ArrayList
results.getValue("customer1"); // returns the inserted Customer fact
results.getValue("Get Customers");// returns the query as a
QueryResults instance

If stateless sessions provide a subset of the operations present in the stateful
counterpart, why do we need them? Well, technically, we don't. Everything that
could be done by StatelessKIESession, can be also done using a stateful one.
Using a stateless session is more like an explicit statement saying that we just want
to use a single-shot session that it is going to be used just for a one-time evaluation.
Stateless sessions are ideal for stateless scenarios such as data validation, calculations
(such as risk evaluation or mortgage rate), and data filtering.

Due to its stateless nature, a stateless Kie Session doesn't need to be disposed.
After each invocation of any of the execute() methods, the resources used for the
execution are freed. At this point, the same stateless Kie Session is ready for another
execution round if required. Each execute() invocation will then be independent
from the previous one.

Summing up, stateless Kie Sessions are ideal for stateless evaluations such as:

• Data validation
• Calculations
• Data filtering
• Message routing
• Any complex function or formula could be described as rules

http://en.wikipedia.org/wiki/Command_pattern

Chapter 5

[109]

Stateful Kie Sessions
We have already covered stateful Kie Sessions in great detail in the previous
chapters. This kind of session is the most powerful type of session supported by
Drools. Whenever we read or hear about a session in Drools, 99% chances are that
it refers to a stateful one. In fact, the stateful Kie Session is so common that they
changed its class name from StatefulKnowledgeSession in Drools 5 to simply
KieSession in Drools 6.

The main advantage of a stateful session over a stateless one is that the former keeps
its state between interactions. We already explained how different invocations to the
execute() method on a StatelessKieSession object are isolated from each other.
For stateful scenarios, this is not enough. These kinds of scenarios require a session
to span across multiple invocations. A common example for these type of scenarios
is a session that we are using to monitor a process. Ideally, we would like to insert
any incoming event from the process that we are monitoring as soon as we can.
We also want to detect a problem as soon as possible. In these situations, we can't
wait until we have all the incoming events (maybe they never end) so that we can
create our BatchExecutionCommand object to execute it against a stateless session.
A better approach here would be to insert each event as soon as it arrives, execute
an activated rule, get a generated result, and then wait for the next event to arrive.
When the next event arrives, we don't want to treat it in a new session, we want to
use the same session where any previous event already is.

When we don't want to use a KieSession anymore, we must explicitly state this
by invoking its dispose() method. The dispose method will free any resource the
session may have acquired and release any memory it may have allocated. After
dispose() is invoked, the session stays in an invalid state, further interactions with
this session will throw a exception as java.lang.IllegalStateException.

Just like StatelessKieSession, the KieSession interface also supports the
command pattern-like interaction via its execute() method. This command
pattern-like interaction is relevant when we are dealing with persistent sessions. In
this situation, all the commands passed in a single execute() call are executed in
a single transaction. More about the persistent session can be found in Chapter 10,
Integrating Rules and Processes.

Now that we have a better understanding about the different type of sessions
provided by Drools, let's take a look at some advanced configuration options we
have for them.

Understanding KIE Sessions

[110]

Kie runtime components
Drools presents us with several configuration options for its sessions—whether they
are stateless or stateful. In this section, we are going to cover some of the options that
we have in order to configure our sessions in a way that allows us to make full use of
Drools' potential.

The most common way we usually interact with a Drools session is by inserting/
modifying/retracting facts from it and executing any rule activation that may have
happened as a consequence of these operations. All these operations target different
aspects of the rule engine—such as knowledge assertion and inference—but there are
also some other ways to interact with a session that can be used to provide or extract
information to or from it. These operations are more oriented to the application
where Drools is running and not to the rule engine itself. The options that we are
going to review in this section are globals, channels, queries, and event listeners.

Even if the four options are available in both stateless and stateful
sessions, we are going to focus on the examples of stateful ones.

Globals
Global variables were briefly mentioned in Chapter 3, Drool Runtime and explained in
greater detail in Chapter 4, Improving Our Rule Syntax. In this section, we are going to
cover the most common patterns of globals usage inside a session.

Even when globals can be used internally in a session and never be exposed to the
outside world, they are typically used as a way to introduce/extract information
to/from a session. A global is, in many cases, a contact point between a session and
the external word.

When working with stateful sessions, there are three methods in the KieSession
class that are related to globals. These methods are shown in the following table:

Method Description
void setGlobal(String
identifier, Object
value)

This method is used to set the value of a global.
Invoking this method more than once in the same
session will update any previously set value of the
global.
The identifier used in the invocation of this method
must match the identifier (name) of the global in the
knowledge base.

Chapter 5

[111]

Method Description
Globals getGlobals() This method is used to retrieve all the globals in a

session. The resulting object can be used to retrieve
individual globals by their identifiers.

Object getGlobal(String
identifier)

This method is used to retrieve a global using its
identifier.

As you can see, there is not too much to learn about how to interact with global
variables inside a session. The three methods described in the preceding table are
almost self-explanatory.

There are four common ways to use a global in Drools, as shown in the following:

• In the LHS of a rule, as a way to parameterize the condition of a pattern
• In the LHS of a rule, as a way to introduce new information in a session
• In the RHS of a rule, as a way to collect information from a session
• In the RHS of a rule, as a way to interact with external systems

No matter how a global is used in a session, it is important to notice that a global is not
a fact. Drools will treat globals and facts in a completely different way; changes in a
global are never detected by Drools, and thus, Drools will never react upon them.

Globals in Drools are not facts! Drools will never be
notified nor react when a global is set or modified.

Let's analyze each of the four common scenarios for a global that we have
previously listed.

Globals as a way to parameterize the condition of a
pattern
One way globals are normally used in Drools is as a way to externally parameterize
the condition of a rule. The idea is to use globals instead of hardcoded values in the
conditions of our rules.

As an example, let's go back to our eShop example. Let's say that we want a Drools
session to detect suspicious operations for customers in our eShop application. We
will define a suspicious operation as a customer with pending operations summing
more than 10,000 dollars.

Understanding KIE Sessions

[112]

The input of our session will be the customers of our application and their orders.
For each customer with pending orders for more than 10,000 dollars, we are going to
insert a new object of the SuspiciousOperation type. The SuspiciousOperation
class has the following structure:

public class SuspiciousOperation {
 public static enum Type {
 SUSPICIOUS_AMOUNT,
 SUSPICIOUS_FREQUENCY;
 }
 private Customer customer;
 private Type type;
 private Date date;
 private String comment;

 public SuspiciousOperation(Customer customer, Type type) {
 this.customer = customer;
 this.type = type;
 }

 //setters and getters
}

The following rule is enough to accomplish our goal of detecting suspicious operations:

rule "Detect suspicious amount operations"
when
 $c: Customer()
 Number(doubleValue > 10000.0) from accumulate (
 Order (customer == $c, state != OrderState.COMPLETED, $total:
total),
 sum($total)
)
then
 insert(new SuspiciousOperation($c, SuspiciousOperation.Type.
SUSPICIOUS_AMOUNT));
end

The rule is straightforward: for each Customer, it collects any Order whose
OrderState is not COMPLETED and calculates the sum of their totals. If the total is
more than 10,000, then the rule is activated. When the RHS of the rule is executed, it
will insert a new object of the SuspiciousOperation type in the session.

Chapter 5

[113]

As we already know, if we want to execute this rule, we need to include it as part of
a knowledge base, create a session from it, and provide some facts to it, as follows:

 //Create a customer with PENDING orders for a value > 10000
 Customer customer1 = new CustomerBuilder()
 .withId(1L).build();
 Order customer1Order = ModelFactory.getPendingOrderWithTotalValueG
reaterThan10000(customer1);

 //Create a customer with PENDING orders for a value < 10000
 Customer customer2 = new CustomerBuilder()
 .withId(2L).build();
 Order customer2Order = ModelFactory.getPendingOrderWithTotalValueL
essThan10000(customer1);

 //insert the customers in a session and fire all the rules
 ksession.insert(customer1);
 ksession.insert(customer1Order);
 ksession.insert(customer2);
 ksession.insert(customer2Order);

 ksession.fireAllRules();

A running example of the preceding code can be found in the code bundle under the
chapter-05 module.

The previous example works fine as long as the threshold for what we consider a
suspicious operation remains unchanged. However, what if we want to make this
threshold variable?

One way of the many different ways to achieve this is to replace the hardcoded value
in our rule with a global variable that can be defined whenever we want to run our
session, as follows:

global Double amountThreshold;

rule "Detect suspicious amount operations"
when
 $c: Customer()
 Number(doubleValue > amountThreshold) from accumulate (
 Order (customer == $c, state != OrderState.COMPLETED, $total:
total),
 sum($total)
)
then
 insert(new SuspiciousOperation($c, SuspiciousOperation.Type.
SUSPICIOUS_AMOUNT));
end

Understanding KIE Sessions

[114]

In the preceding example, we can see how the hardcoded threshold is no longer
present in the DRL. We are now using a global of the Double type in the condition
of our rule. Using this approach, the threshold of what we consider a suspicious
operation can now be modified among the different executions of the session.

There is nothing that prevents us from modifying our global
variables during the execution of our session from within a rule. Even
if this is possible, modifying the value of a global that is being used in
a constraint during runtime is not encouraged. Given the declarative
nature of Drools, we can't predict what is the effect of modifying the
value of a global variable in these situations.

One important thing to mention is that when global variables are used as part of
a rule constraint, the global must be set before the pattern where it is being used
is evaluated. To avoid race conditions, it is considered good practice to set the
global variables of a session before any fact is inserted. A downside of using global
variables in the constraints of our rules is that their values are not cached by Drools.
Every time a global variable needs to be evaluated, its value is accessed. In large
knowledge bases, this could create performance issues.

Given all the drawbacks of using globals to parameterize our rules, this
pattern is not recommended. A much better approach to parameterize
the conditions of our rules would be to make the parameters as facts
themselves in our session and treat them as any other type of fact. The
inclusion of this pattern in this book was just for the sake of completeness.

Globals as a way to introduce new information into
a session in the LHS
Another common pattern related to globals is their usage as data sources for
a session. Usually, this type of globals encapsulate the invocation of a service
(database, in-memory map, web service, and so on) that introduces new objects into
the session. This usage pattern always involves the from conditional element.

In order to demonstrate this scenario, we are going to modify the example introduced
in the previous section and introduce a service call to retrieve the orders of our
customers. The service will be modeled as an OrderService interface, containing a
single method—getOrdersByCustomer—as shown in the following code:

public interface OrderService {
 public Collection<Order> getOrdersByCustomer(String customerId);
}

Chapter 5

[115]

The idea here is to use this interface as a global that our rule can use to retrieve all
the orders related to a customer. The final version of the DRL for this example will
look similar to the following code:

global Double amountThreshold;
global OrderService orderService;

rule "Detect suspicious amount operations"
when
 $c: Customer()
 Number(doubleValue > amountThreshold) from accumulate (
 Order (state != OrderState.COMPLETED, $total: total) from
 orderService.getOrdersByCustomer($c.customerId),sum($total))
then
 insert(new SuspiciousOperation($c,
 SuspiciousOperation.Type.SUSPICIOUS_AMOUNT));
end

In this version of our example, we are still using a global to hold the threshold of
what we consider a suspicious operation, but we now also have a new global called
orderService. Our rule is now invoking the global's getOrdersByCustomer method
to get all the orders for a particular customer instead of getting the orders from the
customer's orders property.

In this simple example, we may not realize the advantage of this approach—the
orders of a customer are now being fetched only when/if required. In the previous
version of the rule, we had to prefetch all the orders for all the customers before
inserting them into the session. We didn't know, at the insertion time, whether the
session will actually require all the orders for all the customers or not.

As mentioned earlier, we need to remember to set the value of the orderService
global before we insert any Customer into the session, as follows:

OrderService orderServiceImpl = new OrderServiceImpl();
//a concrete implementation of OrderService.
ksession.setGlobal("orderService", orderServiceImpl);
ksession.insert(customer1);
ksession.insert(customer2);
ksession.fireAllRules();

One important thing to notice in the previous code is that we are no longer inserting
the Orders as facts. The Orders will be retrieved on demand by the rules themselves.
There is a catch though, a condition of a rule could be evaluated multiple times while
rules are being executed. Every time the rule is re-evaluated, the data source will be
invoked. When using this kind of pattern, the latency of the data source has to be
taken into account.

Understanding KIE Sessions

[116]

We saw how to use a global as an interface to an external system in order to retrieve
and introduce (but not insert) new information into the session. The question now is
how to extract the generated SuspiciousOperation objects out of the session?

Globals as a way to collect information from a
session
The rule from the previous example inserted a SuspiciousOperation object for each
suspicious operation found. The problem is that these facts are not accessible from
outside the session. A common pattern to extract information from a session is by
using globals.

The idea behind this pattern is to use a global variable to collect the information
we want to extract from the session. As the global is accessible from outside the
session, any fact, object, or value that it references will also be accessible. The most
common class of this type of globals is any instance of java.util.Collection or
java.util.Map.

We are now going to modify the knowledge base we used in the previous section by
adding a new rule that will collect any SuspiciousOperation fact into a global set:

global Double amountThreshold;
global OrderService orderService;
global Set results;

rule "Detect suspicious amount operations"
when
 $c: Customer()
 Number(doubleValue > amountThreshold) from accumulate (
 Order (state != OrderState.COMPLETED, $total: total) from
 orderService.getOrdersByCustomer($c.customerId),
 sum($total))
then
 insert(new SuspiciousOperation($c, SuspiciousOperation.Type.
SUSPICIOUS_AMOUNT));
end

rule "Collect results"
when
 $so: SuspiciousOperation()
then
 results.add($so);
end

Chapter 5

[117]

The code shows that we now have a new global called results and a new rule that
will collect any instance of the SuspiciousOperation class into it.

The relevant Java code to execute this new version of the example is shown in
the following:

Set<SuspiciousOperation> results = new HashSet<>();
ksession.setGlobal("results", results);

ksession.insert(customer1);
ksession.insert(customer2);
ksession.fireAllRules();

//variable 'results' now holds all the generated SuspiciousOperation
objects.

After the rules are executed, the global set will contain the references of any
SuspiciousOperation object generated during the session's execution. We can then
use these objects outside the session where they were created.

Globals as a way to interact with external systems
in the RHS
The last common usage pattern regarding globals that we are going to cover is the
usage of globals on the right-hand side of a rule as a way to interact with an external
system. The idea behind this pattern is simple, we saw that we can use a global
to introduce new information into a pattern (using the from conditional element).
We can also use a global to interact with external systems on the right-hand side
of a rule. The interaction with this external system could be unidirectional (getting
information from the system or sending information to the system) or bidirectional
(sending and receiving information from the system).

Continuing the previous example, let's say that now we want to notify each
SuspiciousOperation found to an external audit system. We have two options
here, we now know that we can access these generated facts using the global set
introduced in the previous section. We could, from within the Java code, iterate
over this list and send each of its elements to the audit system. Another option is to
leverage this in the session itself.

Understanding KIE Sessions

[118]

This new interface will be represented in our code by an interface
called AuditService. This interface will define a single method—
notifySuspiciousOperation—as shown in the following code:

public interface AuditService {
 public void notifySuspiciousOperation(SuspiciousOperation
 operation);
}

We need to add an instance of this interface as a global and create either a new
rule that invokes its notifySuspiciousOperation method or modify the Collect
results rule so that it now invokes this method too. Let's take the first approach and
add a new rule to notify the audit system:

...
global AuditService auditService;
...
rule "Send Suspicious Operation to Audit Service"
when
 $so: SuspiciousOperation()
then
 auditService.notifySuspiciousOperation($so);
end

In the preceding code snippet, we are only showing the new code that we have
introduced in the previous example. The new rule we have created is using the
new global that we defined to notify the audit system about each generated
SuspiciousOperation objects. It is important to remember that Drools will
always execute the rules in a single thread. Ideally, the RHS of our rules should not
involve blocking operations. In the case where blocking operations are required, the
introduction of an asynchronous mechanism to execute the blocking operation in a
separate thread is considered as a good option most of the time.

We have covered the four common usage patterns of globals in Drools. We are now
going to introduce a similar concept: channels.

Channels
A channel is a standardized way to transmit data from within a session to the
external world. A channel can be used exactly for what we discussed in the previous
section: globals as a way to interact with external systems in the RHS. Instead of
using a global, we can accomplish the same task by using a channel.

Chapter 5

[119]

Technically, Channel is a Java interface with a single method—void send(Object
object)—as shown in the following:

public interface Channel {
 void send(Object object);
}

Channels can only be used in the RHS of our rules as a way to send data to outside
the session. Before we can use a channel, we need to register it in our session. The
KieSession class provides the following three methods to deal with channels:

Method Description
void registerChannel(String
name,Channel channel)

This method is used to register a channel in
the session. When a channel is registered, a
name must be provided. This name is then
used by the session to identify the channel.

void unregisterChannel(String
name)

This is the counterpart of
registerChannel and it is used to
unregister a previously registered channel.
The name parameter passed to this
method is the same name used during the
registration.

Map< String, Channel>
getChannels()

This method can be used to retrieve any
previously registered channel. The key
of the returned Map corresponds to the
name that was used during the channel
registration.

In the RHS of a rule, whenever we want to interact with a channel, we can obtain a
reference to it through the predefined channels RHS variable. This variable provides
an interface similar to a map that allows us to reference a specific channel by its
name. For example, if we have registered a channel with the notifications name,
we can interact with it using the following code snippet in the RHS of our rules:

channels["notifications"].send(new Object());

Concrete implementations of the Channel interface can be used to route data to
external systems, notify about events, and so no. Just remember that a channel
represents a unidirectional way to transmit data: the send()method in the Channel
interface returns void.

Let's refactor the example from the previous section to make use of a channel instead
of a global to notify an audit system about suspicious operations.

Understanding KIE Sessions

[120]

The first thing we need to do is to get rid of the auditService that we had in our
knowledge base. The whole point of this example is to replace this global with a
channel. Then, we need to replace the RHS from the "Send Suspicious Operation
to Audit Service" rule so that it makes use of a channel instead of the old global:

rule "Send Suspicious Operation to Audit Channel"
when
 $so: SuspiciousOperation()
then
 channels["audit-channel"].send($so);
end

Now, before we can execute a session based on this knowledge base, we need to
register a new channel in the session with the audit-channel name. In order to do
so, we can use the registerChannel method we have already covered, as follows:

ksession.registerChannel("audit-channel", auditChannel);

In this case, the auditChannel object is an implementation of the Channel interface.

As we can see, a channel provides a more rigid, but well-defined, contract than a
global. Just like with globals, we can use different implementations of a channel to
provide different runtime behaviors in our rules.

One of the advantages of channels is the versatility they provide due to the fact that
they are indexed using a String key. The key of a channel could be determined in
runtime either in the LHS as a binding or in the RHS of a rule. This gives us more
flexibility than plain variables, where the name of the variable we want to use is
fixed in the DRL.

Let's move to a much more flexible way to extract information from within a session:
queries.

Queries
A query, in Drools, can be seen as a regular rule without its right-hand side
section. A major difference between a query and a rule is that the former may take
arguments. With queries, we can use all the power of Drools' pattern-matching
syntax to extract information from within a session. During runtime, we can execute
a query and do whatever we want with its results. In some way, a query is a rule
with a dynamic right-hand side.

Chapter 5

[121]

A query can also be used as a regular pattern inside a rule.
This is the foundation of Drools' backward chaining reasoning
capability. This section is only focused on queries as a way to
extract information from a session. Queries used as patterns are
covered in Chapter 9, Introduction to PHREAK.

Continuing with the example we were using before, let's now create a query to
extract all the generated SuspiciousOperation facts from the session. The query
required to do this looks similar to the following one:

query "Get All Suspicious Operations"
 $so: SuspiciousOperation()
end

As we can see, the query we have created looks exactly like a rule without its
right-hand side. If we are interested in a particular customer, we can define
another query that takes the customer ID as a parameter and filters all their
related SuspiciousOperation objects, as follows:

query "Get Customer Suspicious Operations" (String $customerId)
 $so: SuspiciousOperation(customer.customerId == $customerId)
end

The arguments of a query are defined like the parameters of a method in a Java class:
each argument has a type and a name.

There are two ways to execute a query from outside a session: on-demand queries
and live queries. Let's analyze them in more detail.

On-demand queries
A query is evaluated on-demand by invoking KieSession's getQueryResults
method:

public QueryResults getQueryResults(String query, Object...
arguments);

This method takes the name of the query and the list of its arguments (if any). The
order of the arguments corresponds to the order of the parameters in the query
definition. The result of this method is a QueryResults object:

public interface QueryResults extends Iterable<QueryResultsRow> {
 String[] getIdentifiers();
 Iterator<QueryResultsRow> iterator();
 int size();
}

Understanding KIE Sessions

[122]

The QueryResults interface extends Iterable and represents a collection of
QueryResultsRow objects. The getIdentifiers() method returns an array of
the query's identifiers. Any bound variable defined in the query will became an
identifier in its result. For example, our Get All Suspicious Operations query
only defined one identifier, $so. Identifiers are used to retrieve the concrete value of
a bound variable when a query is executed.

The following code can be used to execute the Get All Suspicious Operations
query:

QueryResults queryResults = ksession.getQueryResults("Get All
Suspicious Operations");
for (QueryResultsRow queryResult : queryResults) {
 SuspiciousOperation so = (SuspiciousOperation)
 queryResult.get("$so");
 //do whatever we want with so
 //...
}

The preceding code executes the Get All Suspicious Operations query and
then iterates over the results extracting the value of the $so identifier, in this case,
instances of the SuspiciousOperation class.

Live queries
On-demand queries are used when we want to execute a particular query at a
particular point in time. Drools also provides another way to execute queries, it
allows us to attach a listener to a query so that we can be notified about the results as
soon as they become available.

Live queries are executed using the following Kie Session's method:

public LiveQuery openLiveQuery(String query,Object[] arguments,
 ViewChangedEventListener listener);

Just like with on-demand queries, the first argument we need to pass to this method
is the name of the query we want to attach a listener to. The second parameter is
the array of arguments that the query is expecting to receive. The third parameter is
the actual listener that we want to attach to the query. The result of this method is a
LiveQuery class instance.

Chapter 5

[123]

Let's take a closer look at the ViewChangedEventListener interface:

public interface ViewChangedEventListener {
 public void rowInserted(Row row);
 public void rowDeleted(Row row);
 public void rowUpdated(Row row);
}

As we can see, the ViewChangedEventListener interface is used not only
for receiving new facts matching the specified query, but we can also detect
modifications or retractions of these facts. Drools engine will notify this listener as
soon as a fact matches the specified query, when a previously matching fact gets
modified or the modifications of a previously matching fact excludes it from the
query's filter.

In the previous section, we saw how to use global variables to communicate the
results, actions, and general rule execution information to the outside world. However,
what if we wanted to do so in a generic way—for every rule—without modifying
existing rules? To do so, we have other mechanisms such as Event Listeners.

Event Listeners
Drools framework provides the users a mechanism to attach event listeners into two
of its main components: Kie Bases and Kie Sessions.

Events from a Kie Base are related to the structure of the packages it contains. Using
org.kie.api.event.kiebase.KieBaseEventListener, for example, we can be
notified after or before a package is added or removed from a KieBase. Using
this same event listener, we can go deeper into detail about what is actually being
modified inside a KieBase, such as individual rules, functions, and processes being
added/removed.

A KieBaseEventListener can be attached to a KieBase using KieBase public
void addEventListener(KieBaseEventListener listener) method. A KieBase
could have none, one, or more event listeners attached to it. When a particular event
has to be fired, the KieBase will sequentially execute the corresponding method
in each of the previously registered event listeners. The order of execution of the
listener doesn't necessarily corresponds to the order they were registered.

Kie Session's events are related to the Drools' runtime execution. The events that a
Kie Session could fire are separated into three different categories: rules execution
runtime (org.kie.api.event.rule.RuleRuntimeEventListener), agenda-related
events (org.kie.api.event.rule.AgendaEventListener), and processes execution
runtime (org.kie.api.event.process.ProcessEventListener).

Understanding KIE Sessions

[124]

All these three types of event listeners can be attached into a Kie Session using one of
KieSession addEventListener methods:

public void addEventListener(RuleRuntimeEventListener listener)
public void addEventListener(AgendaEventListener listener)
public void addEventListener(ProcessEventListener listener)

A RuleRuntimeEventListener can be used to notify about the events that are
related to the state of the facts inside a Kie Session. The state of the facts inside a
Kie Session is modified when they are inserted, modified, or retracted from the
session. This kind of listener is usually used for reporting or statistical analysis of the
execution of the session.

The AgendaEventListener is the interface we could use to be notified about the
events happening inside Drools' agenda. Agenda events are related to rules match
being created, canceled, or fired; agenda groups being pushed or popped from the
active agenda stack and about rule-flow groups being activated and deactivated. The
AgendaEventListeners are a fundamental aid for auditing tools. Being able to know
when a rule gets activated, for example, is a valuable piece of information when
analyzing the execution of a Kie Session.

The ProcessEventListeners are related to jBPM events and allow us to be notified
when a process instance is started or completed or before/after the individual nodes
inside a process instance are triggered.

A more declarative way to configure the event listeners that we want to use in
a session is to define them inside the kmodule.xml file as part of a <ksession>
component:

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://jboss.org/kie/6.0.0/kmodule">
 <kbase name="KBase1" default="true" packages="org.domain">
 <ksession name="ksession1" type="stateful">
 <ruleRuntimeEventListener type="org.domain.
RuleRuntimeListener"/>
 <agendaEventListener type="org.domain.FirstAgendaListener"/>
 <processEventListener type="org.domain.ProcessListener"/>
 </ksession>
 </kbase>
</kmodule>

Chapter 5

[125]

All the event listeners in Drools are executed in the same thread
where the Drools framework is running. This behavior has two
implications: the event listeners should be lightweight and fast and
they should never throw an exception. Event listeners that perform
heavy processing tasks—or even worst, blocking tasks—should be
avoided, if possible. When an event is fired, the Drools execution
will not continue until all the registered listeners for such events are
completed. The execution time of an action in Drools that may fire
events is the sum of the execution time of the task itself, plus the
execution time of each individual event listener that is fired. Drools
current implementation not only executes the event listeners in the
same thread where it is running, but it doesn't take any precaution
when an event listener is fired either. An event listener throwing an
exception will break the execution of the underlying action that was
being executed. Catching any possible exception in an event listener
is then mandatory if we don't want to interfere with the Drools
execution when something goes wrong in our listener.
In the code bundle of this chapter, there are some unit tests showing
how listeners are registered and used in Drools. We strongly
recommend the reader to take a look at these tests and run, debug,
and even enhance them in order to get a better understanding of
Drools' event listeners capabilities.

Kie Base components
We have covered some of the most used components in a knowledge base, such as
rules, globals, queries, and channels. It is time to move on to more advanced topics
that will allow us to create more concise and reusable knowledge.

In this section, we are going to cover topics such as functions, custom operators,
and custom accumulate functions. All these components can be used to model
our knowledge in a simpler yet powerful way.

Functions
So far, we have covered three of the most common knowledge declarations that
we have in Drools: rules, queries, and declared types. There is another kind of
knowledge declaration that can be used to express stateless logic in a knowledge
base: functions. Functions in Drools are basically isolated pieces of code that will
optionally take arguments and may or may not return a value. Functions are useful
for situations where we want to define some logic in a knowledge base instead of
having it, for example, in an external Java class.

Understanding KIE Sessions

[126]

The syntax to define a function is similar to the one used in Java to declare a method
with the addition of the keyword function at the beginning. A function has a return
type (it could be any Java class including declared types or void), name, and optional
set of typed parameters, as follows:

function String formatCustomer(Customer c){
 return String.format(
 "[%s] %s", c.getCategory(), c.getName());
}

In the preceding example, a function called formatCustomer is defined. This
function takes a Customer instance as a parameter and returns a String parameter.
The body of the function uses a regular Java syntax; in this case, it is using String.
format() to concatenate the category and name of the provided customer.

Just as with declared types, functions defined in the knowledge base are a good way
to keep logic together in just one place. Functions in Drools also give us the flexibility
to modify them without having to recompile any code.

The without having to recompile any code part of the last paragraph
is not 100% accurate. Behind the scenes, when the knowledge
base gets compiled, Drools will create a helper class containing
the functions defined in it.

Even if the use of functions in Drools gives us a certain degree of flexibility, they do
have some limitations, which are as follows:

• A function can't be used outside the package where it is defined. This means
that a function defined inside a DRL file can't be used in any other DRL file,
unless both have the same package declaration.

• Functions can't make use of any global variable, fact, or predefined variables
such as kcontext. The context of a function is only the set of arguments that
are passed when it is invoked.

• As a corollary of the previous limitation, functions can't insert, modify, or
retract facts from the session.

When thinking about reusability and maintainability, the functions declared inside
a knowledge base may not be the best approach. Drools, fortunately, also allows us
to import a static method from the Java classes as a function and use it in our rules.
In order to import a static method, we need to make use of the function keyword
combined with the import keyword.

import function org.drools.devguide.chapter05.utils.CustomerUtils.
formatCustomer;

Chapter 5

[127]

As you can see, importing a static method of a class as a function resembles, in a
way, how static methods can be imported in Java.

It does not matter if our function is being imported from a Java class or declared
inside the knowledge base, the way we invoke them in our rules or from another
function is by simply using its name, as shown in the following code:

rule "Prepare Customers List"
when
 $c: Customer()
then
 globalList.add(formatCustomer($c));
end

The preceding example shows the use of the formatCustomer function within the
right-hand side of a rule, but functions can be also used in the conditional part of a
rule, as follows:

rule "Prepare Customers List"
when
 $c: Customer($formatted: formatCustomer($c))
then
 ...
end

Let's now move to another powerful feature in Drools that allows us to enhance
the DRL language with tailored operators that can be used to create more concise,
readable, and maintainable rules: custom operators.

Custom operators
In Chapter 4, Improving Our Rule Syntax, we saw most of the comparison operators
that can be used when specifying the left-hand side of our rules. Operators such as
==, !=, <, > ,and so on are already supported by Drools, out of the box. There are
some situations though, when the available operators are not enough. Comparisons
involving complex logic, external services, or semantic reasoning are good examples
of situations where the power of Drools falls short. However, there's nothing to be
worried about; Drools provides a mechanism for the creation of custom operators
that can then be used when authoring our rules.

In Drools, custom operators are defined as Java classes implementing the org.
drools.core.base.evaluators.EvaluatorDefinition interface. This interface
represents only the definition of the operator. The concrete implementation is
delegated to an implementation of the org.drools.core.spi.Evaluator interface.

Understanding KIE Sessions

[128]

Before a custom operator can be used as part of a rule, it must be first registered in
the knowledge base being used. The registration of a custom operator is performed
using a configuration file in the classpath or by specifying it inside the kmodule.xml
file. However, before we move on to see how a custom operator is registered, let's see
an example first.

In order to clarify what a custom operator is and how it is defined, let's use an
example from our eShop use case. For this example, we are going to implement a
trivial operator that will tell us whether an Order function contains a specific Item
given its ID. This example may not be the most interesting example for custom
operators as it can be resolved in many different ways. Nevertheless, it represents a
good and concise example to show how custom operators are built.

The idea of our new custom operator is to be able to write rules as the following:

rule "Apply discount to Orders with item 123"
when
 $o: Order(this containsItem 123) @Watch(!*)
Then
 modify ($o){ setDiscount(new Discount(0.1))};
end

The important thing to notice in the previous rule is the use of a custom operator
called containsItem. All custom operators—and by extension, any operator in
Drools—take two arguments. In this particular case, the first argument is of the
Order type and the second is of the Long type. An operator will always evaluate to a
boolean value. In this case, the boolean result will indicate whether the specified item
is present in the provided Order or not.

The first thing we need to do in order to implement our custom
operator is to implement org.drools.core.base.evaluators.
EvaluatorDefinition. In our example, the implementation class will be called
ContainsItemEvaluatorDefinition:

package org.drools.devguide.chapter05.evaluator;
public class ContainsItemEvaluatorDefinition implements
 EvaluatorDefinition {

 protected static final String containsItemOp = "containsItem";

 public static Operator CONTAINS_ITEM;
 public static Operator NOT_CONTAINS_ITEM;

 private static String[] SUPPORTED_IDS;

 private ContainsItemEvaluator evaluator;

Chapter 5

[129]

 private ContainsItemEvaluator negatedEvaluator;

 static {
 if (SUPPORTED_IDS == null) {
 CONTAINS_ITEM = Operator.addOperatorToRegistry
 (containsItemOp, false);
 NOT_CONTAINS_ITEM = Operator.
 addOperatorToRegistry(containsItemOp, true);
 SUPPORTED_IDS = new String[]{containsItemOp};
 }
 }

 @Override
 public String[] getEvaluatorIds() {
 return new String[]{containsItemOp};
 }

 @Override
 public boolean isNegatable() {
 return true;
 }

 @Override
 public Evaluator getEvaluator(ValueType type, Operator
 operator) {
 return this.getEvaluator(type, operator.
 getOperatorString(),
 operator.isNegated(), null);
 }

 @Override
 public Evaluator getEvaluator(ValueType type, Operator
 operator,
 String parameterText) {
 return this.getEvaluator(type, operator.getOperator
 String(),
 operator.isNegated(), parameterText);
 }

 @Override
 public Evaluator getEvaluator(ValueType type, String
 operatorId,
 boolean isNegated, String parameterText) {
 return getEvaluator(type, operatorId, isNegated,
parameterText,
 Target.BOTH, Target.BOTH);

Understanding KIE Sessions

[130]

 }

 @Override
 public Evaluator getEvaluator(ValueType type, String
 operatorId,
 boolean isNegated, String parameterText,
 Target leftTarget,
 Target rightTarget) {
 return isNegated ?
 negatedEvaluator == null ?
 new ContainsItemEvaluator(type, isNegated) :
 negatedEvaluator
 : evaluator == null ?
 new ContainsItemEvaluator(type, isNegated) :
 evaluator;
 }

 @Override
 public boolean supportsType(ValueType type) {
 return true;
 }

 @Override
 public Target getTarget() {
 return Target.BOTH;
 }
 ...
}

There is a lot of information to process in the previous class, so let's go by
parts. The static block at the beginning registers two new operators into Drools'
operators registry. The two new operators are indeed our new containsItem
operator and its counterpart not containsItem. The next important method is
getEvaluatorsIds(), which tells Drools all the possible IDs for the operator that
we are defining. Following this method, comes isNegatable(), which indicates
whether the operator that we are creating can be negated or not. Then, four different
versions of the getEvaluator() method are defined. These methods will return,
at compile time, the concrete instance of org.drools.core.base.evaluators.
EvaluatorDefinition, which should be used for each specific scenario. The
arguments that are passed to these methods are as follows:

• type: This is the type of operator's operands.
• operatorId: This is the identifier of the operator being parsed. A single

operator definition can handle multiple IDs.

Chapter 5

[131]

• isNegated: This indicates whether the operator being parsed is using the not
prefix (is negated) or not.

• parameterText: An operand in Drools could have fixed the parameters that
are defined in the angle brackets. Examples of operators with parameters
are the CEP operators from Drools Fusion. Refer to Chapter 6, Complex Event
Processing for more information about Drools Fusion.

• leftTarget/rightTarget: These two arguments specify whether this
operator operates on facts, fact handles, or both.

The four versions of getEvaluator() return an instance of ContainsItemEvaluator.
The ContainsItemEvaluator is the concrete implementation of Drools' org.drools.
core.spi.Evaluator and is the class in charge of the runtime behavior of our
operator. This class is where the real logic of our operator—check whether a specific
Item is contained by an Order—is implemented:

public class ContainsItemEvaluator extends BaseEvaluator {

 private final boolean isNegated;

 public ContainsItemEvaluator(ValueType type, boolean
 isNegated) {
 super(type ,isNegated?
 ContainsItemEvaluatorDefinition.NOT_CONTAINS_ITEM :
 ContainsItemEvaluatorDefinition.CONTAINS_ITEM);
 this.isNegated = isNegated;
 }

 @Override
 public boolean evaluate(InternalWorkingMemory workingMemory,
 InternalReadAccessor extractor, InternalFactHandle
 factHandle,FieldValue value) {
 Object order = extractor.getValue(workingMemory, factHandle.
getObject());
 return this.isNegated ^ this.evaluateUnsafe(order,
 value.getValue());
 }
 @Override
 public boolean evaluate(InternalWorkingMemory workingMemory,
 InternalReadAccessor leftExtractor,
 InternalFactHandle left,
 InternalReadAccessor rightExtractor,
 InternalFactHandle right) {
 Object order = leftExtractor.getValue(workingMemory,
 left.getObject());

Understanding KIE Sessions

[132]

 Object itemId = rightExtractor.getValue(workingMemory, right.
getObject());
 return this.isNegated ^ this.evaluateUnsafe(order,
 itemId);
 }

 @Override
 public boolean evaluateCachedLeft(InternalWorkingMemory
workingMemory,
 VariableRestriction.VariableContextEntry context,
 InternalFactHandle right) {
 Object order = context.getFieldExtractor().
getValue(workingMemory,
 right.getObject());
 Object itemId = ((ObjectVariableContextEntry)context).left;

 return this.isNegated ^ this.evaluateUnsafe(order, itemId);
 }

 @Override
 public boolean evaluateCachedRight(InternalWorkingMemory
workingMemory,
 VariableRestriction.VariableContextEntry context,
 InternalFactHandle left) {
 Object order = ((ObjectVariableContextEntry)context).right;
 Object itemId = context.getFieldExtractor().
getValue(workingMemory,
 left.getObject());

 return this.isNegated ^ this.evaluateUnsafe(order, itemId);
 }

 private boolean evaluateUnsafe(Object order, Object itemId){
 //if the object is not an Order return false.
 if (!(order instanceof Order)){
 throw new IllegalArgumentException(
 order.getClass()+" can't be casted to type
Order");
 }

 //if the value we are comparing against is not a Long, return
false.
 Long itemIdAsLong;
 try{

Chapter 5

[133]

 itemIdAsLong = Long.parseLong(itemId.toString());
 } catch (NumberFormatException e){
 throw new IllegalArgumentException(
 itemId.getClass()+" can't be converted to Long");
 }

 return this.evaluate((Order)order, itemIdAsLong);
 }

 private boolean evaluate(Order order, long itemId){
 //no order lines -> no item
 if (order.getOrderLines() == null){
 return false;
 }

 return order.getOrderLines().stream()
 .map(ol -> ol.getItem().getId())
 .anyMatch(id -> id.equals(itemId));
 }
}

Instead of implementing org.drools.core.spi.Evaluator,
ContainsItemEvaluator extends from org.drools.core.base.BaseEvaluator,
which is a class that implements the boilerplate code of the interface, leaving the
implementation of the concrete methods where the operator evaluation actually
happens to us. There are four methods that we have to implement, as follows:

• evaluate: There are two versions of this method that need to be
implemented. These methods are used by Drools when the operator appears
as part of a condition involving a single fact (in Phreak algorithm, these type
of conditions are part of the so called alpha network. Phreak will be covered
in more detail in Chapter 9, Introduction to Phreak). The first version is used
when literal constraints are involved and the second when variable bindings
are involved.

• evaluateCachedLeft/evaluateCachedRight: These two methods are used
by Drools when the operator is used in conditions involving multiple facts
(in Phreak algorithm, these conditions are part of it's beta network).

Before we can actually use this new operator in our rules, we need to register it in the
knowledge base where we want to use it. There are two ways of doing this: using the
drools.packagebuilder.conf file or via the kmodule.xml file.

Understanding KIE Sessions

[134]

The first way to register a custom operator is by using a special file in Drools
called drools.packagebuilder.conf. This file, which must be located under the
META-INF directory, is automatically used by the Drools' package builder to read
configuration parameters of the knowledge base being created. In order to register a
custom operator, we need to add the following line to this file:

drools.evaluator.containsItem= org.drools.devguide.chapter05.
 evaluator.ContainsItemEvaluatorDefinition

The line must start with drools.evaluator and the ID of the custom operator must
follow. After that, the fully qualified name of the class, where the custom operator is
defined, must be specified.

The second way to register a custom operator in Drools is to use the kmodule.xml
file. A specific section for configurations can be defined in this file, where properties
can be specified as key/value pairs. In order to register our created custom operator
in a kmodule.xml file, the following configuration section must be added to it:

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://jboss.org/kie/6.0.0/kmodule">
 <configuration>
 <property key="drools.evaluator.containsItem" value="org.
drools.devguide.chapter05.evaluator.ContainsItemEvaluatorDefinition"/>
 </configuration>
</kmodule>

A complete example of a custom operator can be found in the code bundle under
the chapter-05 module. This module defines the custom operator covered by this
section and it also includes a couple of unit tests showing its behavior. The tests
can be found in chapter-05/chapter-05-tests/src/test/java/org/drools/
devguide/chapter05/CustomOperatorTest.java.

So far, we have covered how to define our own custom operators to create tailored
solutions for our domain and enhance Drools pattern-matching capabilities. Let's
move to another way, we have to create a customized logic in order to be used in our
rules: the custom accumulate functions.

Custom accumulate functions
In Chapter 4, Improving Our Rule Syntax, we covered the accumulate conditional
element and the different ways we can use it. The structure of an accumulate
conditional element is composed of a pattern section and one or more accumulate
functions. In the previous chapter, we saw two different types of accumulate
functions: inline accumulate functions and built-in accumulate functions.

Chapter 5

[135]

Inline accumulate functions are explicitly defined in the rule being created. These
functions have the four sections that are already explained in the previous chapter:
init, action, reverse, and result. On the other hand, the built-in functions
are supported by Drools, out of the box. These functions include count, sum, avg,
collectList, and so on.

Even if the inline accumulate functions are a powerful and flexible way to enhance
Drools' capabilities, their definition and maintainability is fairly complex. Inline
accumulate functions are cumbersome to write, debug, and maintain. Inline
accumulate functions are basically chunks of the Java/MVEL code embedded
in DRL. Writing the code in each section can be very confusing if we are not
implementing a trivial function. Even worst, debugging what's going on inside an
inline accumulate function is almost impossible. However, maybe the worst thing
about inline accumulate functions is that they can't be reused. If the same function
is required in multiple rules, it has to be redefined in each of them. Due to all of
these inconveniences, the use of inline accumulate functions is kind of discouraged.
Instead of defining our accumulate functions embedded in DRL, Drools allows us
to define them in Java and then import them into our knowledge base. Decoupling
the definition of the accumulate function from its usage in the rules solves all the
problems that we have mentioned before.

A custom accumulate function is a Java class that implements Drools' org.kie.api.
runtime.rule.AccumulateFunction interface. As an example, let's implement a
custom accumulate function to retrieve the one item with the biggest total (including
discounts) from a group of Orders, as follows:

public class BiggestOrderFunction implements AccumulateFunction{

 public static class Context implements Externalizable{
 public Order maxOrder = null;
 public double maxTotal = -Double.MAX_VALUE;

 public Context() {}
 ...
 }

 @Override
 public Serializable createContext() {
 return new Context();
 }

 @Override

Understanding KIE Sessions

[136]

 public void init(Serializable context) throws Exception {
 }

 @Override
 public void accumulate(Serializable context, Object value) {
 Context c = (Context)context;

 Order order = (Order) value;
 double discount =
 order.getDiscount() == null ? 0 : order.
 getDiscount()
 .getPercentage();
 double orderTotal = order.getTotal() - (order.getTotal()
 * discount);

 if (orderTotal > c.maxTotal){
 c.maxOrder = order;
 c.maxTotal = orderTotal;
 }

 }

 @Override
 public boolean supportsReverse() {
 return false;
 }

 @Override
 public void reverse(Serializable context, Object value) throws
Exception {
 }

 @Override
 public Object getResult(Serializable context) throws Exception {
 return ((Context)context).maxOrder;
 }

 @Override
 public Class<?> getResultType() {
 return Order.class;
 }
 ...
}

Chapter 5

[137]

The BiggestOrderFunction class can be found in the source bundles of this
chapter. Let's analyze the different sections of this class now. The first thing to
notice is that this class is implementing Drools' org.kie.api.runtime.rule.
AccumulateFunction interface. This interface defines all the methods required
to implement a custom accumulate function. However, before we can even start
implementing these methods, we need to define a context class. Every time an
accumulate function is used in Drools, an individual context will be created for it.
The context will contain all the necessary information for the accumulate function to
work. In this case, a Context static class is defined, containing an Order instance and
a double maxTotal attribute. This context will keep track of the biggest Order class
found so far.

Once we have defined our context, we can implement the methods from
the AccumulateFunction interface. The name of these methods, except for
createContext(), and their semantics are closely related to the name of the
different sections of the inline accumulate functions, as shown in the following:

• createContext: This method is created the first time the accumulate
function is being used. The purpose of this method is to create the context
that is going to be used for this particular instance of the accumulate
function. In our example, it is creating a new instance of our Context class.

• init: This method is also invoked the first time the accumulate function
is used in a rule. The argument of this method is the context created in
createContext().

• accumulate: This is where the real accumulate logic happens. In our case, we
are detecting whether current Order being processed is bigger than the one
held by the context. If it is, the context is updated accordingly. This method
corresponds to the action section of an inline accumulate function.

• supportsReverse: This method indicates whether this accumulate function
supports the reverse operation. In our case, we don't support it (otherwise,
we would need to keep the collection of all analyzed Orders in the context).

• reverse: This method contains the logic involved when a fact that had
previously matched the pattern of the accumulate conditional element no
longer does. In our case, given that we don't support the reverse operation,
this method remains empty.

• getResult: This method returns the actual result of the accumulate function.
In our case, the result is the Order instance contained in our context object.

• getResultType: This method tells Drools the result type of this accumulate
function. In our case, the type is Order.class.

Understanding KIE Sessions

[138]

Before our custom accumulate function can be used in our rules, we need to import
it in our knowledge package. A custom accumulate function can be imported into a
DRL asset in the following way:

import accumulate org.drools.devguide.chapter05.acc.
BiggestOrderFunction biggestOrder

The import statement starts with the import accumulate keywords and what
follows is the fully qualified name of the class, implementing the function. The
last part of the import statement is the name that we want to give to this function
in our DRL.

Once the function is imported, we can use it as any of the Drools built-in accumulate
functions:

rule "Find Biggest Order"
when
 $bigO: Order() from accumulate (
 $o: Order(),
 biggestOrder($o)
)
then
 biggestOrder.setObject($bigO);
end

Summary
In this chapter, we saw an overview of the different type of sessions that Drools
supports and their advantages and disadvantages. Knowing the available type of
sessions will allow us to take better decisions when implementing our solutions
with Drools.

We also covered the common patterns of interactions between Drools and our
applications. The way how global variables, channels, and queries can be used to
extract or provide information to Drools was also explained in great detail. When and
what is needed for getting information on what is going on inside Drools internals, we
now know that we have a powerful mechanism in our hands by using event listeners.

The last part of this chapter focused on the different ways to enhance and customize
the DRL language to create more readable and maintainable rules.

It is time now to move to another important topic in Drools that deals with temporal
reasoning inside a Kie Session: Complex Event Processing.

[139]

Complex Event Processing
So far, we've seen how to use rules to make decisions based on a set of data (called
facts). This information is pretty much any group of Java objects describing the state
of the domain on which we're making the decisions, but it has always represented
the state of the world at one particular point in time. In this chapter, we're going to
see a set of concepts, configurations, and rule syntax components that will allow
us to make decisions based on time relationships between facts. These concepts are
often called complex event processing (CEP).

Drools provides support for this under the name of Drools Fusion or Drools CEP,
a conceptual module fully integrated into the Drools core features. This is just
a conceptual separation as all the CEP features are fully supported by the same
modules that provide the rule engine functionality. To fully understand this, the
chapter will cover the following topics:

• Discussing different concepts associated with complex event processing,
including sliding windows, entry points, and time operations

• Fitting complex event processing into a special kind of architecture called
event-driven architecture

• Writing rules and configuring the runtime to take full advantage of the
Drools CEP features

What is complex event processing?
The main focus of CEP is to correlate small units of time-based data within an ever-
changing, ever-growing data cloud in order to detect hard-to-find special situations
and to do something for these cases. In order to fully understand how it works, we
first need to define a few other concepts. Let's start by defining events.

Complex Event Processing

[140]

What are events and complex events?
In order to understand events, let's first talk about a familiar concept. So far, we've
dealt with facts that we insert into a Kie Session and how they can match a specific
rule. Facts are very similar to events, except events have one extra feature: time of
occurrence. Events are simply the data about any domain (represented as a Java
object), along with the information about the time in which this information was true.

Pretty much anything that we record taking place at a specific time can be an event,
as follows:

• A sale in our eShop has a time for the transaction
• A phone call has a starting time and ending time
• Any sort of sensor reading will tell you its specific reading (temperature,

humidity, and movement) in relation to a specific moment in time

Events, by themselves, are the basic structure of event processing. Every input we
have from the outside world can be perceived as an event. However, we're going to
be mostly interested in detecting complex events.

A complex event is simply an aggregation, composition, or abstraction of other
events. The real power of complex event processing comes from being able to
correlate simple incoming events in such a way that we can detect complex
situations, which cannot be detected by any device or individual directly, as shown
in the following:

• All the transactions that we have at a specific moment can be correlated to
detect any possible fraud attempts (and take preemptive measures against it)

• At a call center, all the incoming calls, grouped by specific areas, can
determine a massive outage of service at these areas to automatically notify
the users of the case

Even sensor readings, combined on a large scale, can detect complex situations by
just combining simpler events. Let's consider a set of sensor readings all over the
city as our input events. A group of seismic events can tell us where an earthquake
is happening in the city and its intensity. A set of fire alarms can tell us where in the
city there is a fire.

Chapter 6

[141]

In case of a large earthquake, combined with the information of the city
infrastructure, we can infer the possible structural collapses and send experts to
evaluate the current situation. If we have fire alarms going off, we can send the fire
brigade to put the fire out.

If we find a set of small earthquakes, one after another and at the interval of one
second, in the same direction, we might infer that something very large is moving in
that general direction. If we also detect fires, one after the other in the same direction,
we might aggregate all the seismic and fire-alarm events into a complex event,
maybe Godzilla is moving in this direction, as shown in the following image:

If that's the case, we might not want to send architects and fire brigades in that
general direction (they will most likely be eaten). Instead, we might take a different
action, such as sending the military. As you can see, very small simple events can
correlate time wise for us to be able to infer a lot more information from them. This is
the main power of complex event processing.

Declaring CEP-based Rules
Previously, we've discussed how rules should attempt to be atomic and work
together to achieve management of complex scenarios. This is very well aligned with
CEP as each different rule can deal with one aspect of the aggregation, composition,
or abstraction of other events. They can work together to achieve real-time resolution
of very complex event situations. We will still need a few added features of Drools to
be able to do so, as follows:

• How to instruct Drools that an object is to be treated as an event
• How to compare two events in time

In the next subsections, we will see how to achieve this using the DRL syntax.

Complex Event Processing

[142]

Semantics of events
Before we get into the detail about how to define an event, we need to understand a
few characteristics of the events. The first characteristic marks a difference between
two main types of events—punctual and interval events—as shown in the following:

• Punctual events: They are the events that occurred at a specific instance in
time. They may represent the exact moment when a change in the reality of
our domain model appeared, or they may have a lifespan that is too short to
be considered. An example of punctual events is sensor readings, which will
associate a specific value from the sensor with a specific time of the reading.
Transactions can also be considered punctual events if they are so short lived
that we can ignore their duration.

• Interval events: They are events that have two distinctive moments in
time: the moment they started and the moment they ended. This makes the
interval events a bit more complex to compare than the punctual events;
if you have two punctual events, you can only compare whether they
happened at the same time, before, or after each other. For interval events on
the other hand, you might compare cases where one event started and ended
during another one, just to name a scenario.

Also, regardless of being punctual or interval events, they share a set of conceptual
characteristics worth mentioning before we look into the code:

• They are usually immutable: Events are supposed to be a record of the state
of our domain model at a particular moment in time. You cannot change the
past, therefore, you shouldn't have to change your event information. The
engine doesn't force this feature, but it is something to keep in mind when
designing our events. They might be decorated by adding extra information
to them, but you shouldn't have to modify their internal data with which
they were inserted in the Kie Session.

• They have a managed lifecycle: As the engine understands all the events as
mere objects with a time relation, the Kie Session can determine, based on the
rules defined in it, when an event will no longer trigger the rules (as it is too
old for the relations considered in these rules) and can automatically delete it
from a session.

Chapter 6

[143]

Declaring time-based-events in Drools
The first thing we'll need to do in order to create the CEP rules is to specify the type
of objects that need to be treated as events to the engine. That is, the objects that
should have the time metadata. This will allow the Kie Session to apply temporal
reasoning to these types. There are a few ways to define that a specific type should
be treated as an event, but they all define the same set of metadata. The properties to
be defined are as shown in the following:

• Role of the type: This is the only mandatory piece of metadata used to define
a type as an event. It will have two specific types: fact and event.

• Timestamp: This is an optional property to define the attribute of the type that
will define the moment when the event took place. If not present, the timestamp
of each event instance will be the moment it was inserted in the Kie Session.

• Duration: This is an optional property to define the attribute of the type that
will specify the duration of the event. If not present, the event will be treated
as a punctual event. This property is required for interval events.

• Expires: This is an optional character string to determine how long this type
of event should be present in the Kie Session before automatic deletion.

Now that we understand the properties, let's see the different ways to apply them
to our types. This metadata can be directly defined as class-level annotations in our
Java beans, as follows:

@org.kie.api.definition.type.Role(Role.Type.EVENT)
@org.kie.api.definition.type.Duration("durationAttr")
@org.kie.api.definition.type.Timestamp("executionTime")
@org.kie.api.definition.type.Expires("2h30m")
public class TransactionEvent implements Serializable {
 private Date executionTime;
 private Long durationAttr;
 /* class content skipped */
}

As you can see in the previous code section, we can define the annotations for the
role, duration, timestamp, and expiration properties of an event type. Duration
should identify an attribute of the Long type and Timestamp should identify an
attribute of the Date type. This way, the Kie Session will be able to understand the
inserted objects of said type as events.

Another way to define these properties is in the declared types. Similar annotations
can be used to define a declared type as an event, as follows:

declare PhoneCallEvent
 @role(event)

Complex Event Processing

[144]

 @timestamp(whenDidWeReceiveTheCall)
 @duration(howLongWasTheCall)
 @expires(2h30m)
 whenDidWeReceiveTheCall: Date
 howLongWasTheCall: Long
 callInfo: String
end

The previous code section shows that we can create our own declared type and
annotate it accordingly in order to make it an event.

Another way to declare the events is to grab an existing class and declare it as an
event inside the DRL. This is very common when events are created to be shared
between different applications and we cannot directly modify them in order to have
the annotations on the Java bean. We can do something as shown in the following
code section to declare the existing Java beans as events:

import path.to.my.shared.ExternalEvent;
...
declare ExternalEvent
 @role(event)
end

Just as the previous code section shows, we can redeclare this non-annotated
Java bean inside the DRL to be treated as an event. As previously stated, all the
annotations are optional. The only necessary annotation to treat the declared type as
an event type is to have the @role(event) annotation. You can see the examples of
events like these in the chapter-06/chapter-06-events project of the code bundle.

Now that we've seen how to declare our event types, we need to start seeing how to
compare them. To do so, we will review the existing temporal operators.

Temporal operators
Once we define our event types, we need a way to compare the events based on their
timestamp. To do so, there are 13 temporal operators that we can use in Drools. Some
of these operators only make sense for comparing interval events, but given two
events, they can compare them as the following code snippet shows:

declare MyEvent
 @role(event)
 @timestamp(executionTime)
End
rule "my first time operators example"
when
 $e1: MyEvent()

Chapter 6

[145]

 $e2: MyEvent(this after[5m] $e1)
Then
 System.out.println("We have two events" +
 " 5 minutes apart");
end

In the previous example, we make use of the after operator to determine whether
an event is at least five minutes newer than another event. As you can see, the
comparison is done on the specific event instances. Internally, the time comparison
will happen against the timestamp attribute called executionTime, but we can
disregard that fact when dealing with events. This provides an advantage if we need
to modify the timestamp nature of an event type in the future as we don't have to
change the CEP rules where it is used.

Also, we can notice the use of a parameter in the operator, passed inside the square
brackets. Each temporal operator will be prepared to receive between zero and
four parameters to make use of the operator in a more specific way. In the previous
scenario, we pass a 5m parameter to specify that an event should be at least five
minutes after the other.

There are many temporal operators with which we can work. Here's a list of them
and what they mean:

Complex Event Processing

[146]

The previous diagram shows the different temporal operators and how they will
compare between different events. They all share certain qualities, as shown in
the following:

• They operate against two events. They are prepared to compare two events
against each other.

• They can also be used to compare the Date objects as dates are, by definition,
the most minimalistic representation of an event (only the temporal
information without any extra data).

• They can receive parameters to specify their internal work. The operation of
these parameters is thoroughly explained at the product documentation at
https://docs.jboss.org/drools/release/latest/drools-docs/html/
under the Temporal Operators title.

One more thing worth mentioning about events is that they are still facts too. The
engine will add the temporal features to the event types, but we can still compare
any of their internal attributes and methods to create conditions and constraints on
the rules, like we have done in the previous chapters.

In order to get familiar with a CEP rule, let's analyze one of the rules that we can find
in the chapter-06/chapter-06-rules project of the code bundle and aim to detect
fraud attempts, as follows:

rule "More than 10 transactions in an hour from one client"
 when
 $t1: TransactionEvent($cId: customerId)
 Number(intValue >= 10) from accumulate(
 $t2: TransactionEvent(this != $t1,
 customerId == $cId, this meets[1h] $t1),
 count($t2))
 not (SuspiciousCustomerEvent(customerId == $cId,
 reason == "Many transactions"))
 then
 insert(new SuspiciousCustomerEvent($cId,
 "Many transactions"));
end

This example DRL file can be found at chapter-06-rules/src/main/resources/
chapter06/cep/cep-rules.drl. In order to run this example, we start with our
previously defined TransactionEvent event type. We will check two main things in
our rule: whether we have 10 transactions from the same customer within an hour,
and that we still don't have a complex event to reflect this situation.

https://docs.jboss.org/drools/release/latest/drools-docs/html/

Chapter 6

[147]

The first condition is written inside an accumulate. We count the number of
TransactionEvent objects we have that contain the same customer ID and we also
check whether they happened within an hour of the original reference transaction
using this meets [1h] $t1.

The consequence of this rule is not a particular action against the outside. Instead,
we just detect a complex event called SuspiciousCustomerEvent (a declared type in
our example). This will represent an aggregation of our transaction events.

The second condition is a simple not clause, where we just check whether
we haven't already fired this rule for the specific customer by checking the
SuspiciousCustomerEvent object, which we need to add in the consequence if in
case it hasn't been already added.

This rule will only detect the situation as that's the smallest responsibility we can
break it down to. We could do a lot with suspicious customers, but this rule only
has the responsibility of understanding a specific situation where a customer acts
suspiciously. We need to remember to always keep our rules as atomic as possible.
Other rules might detect a suspicious activity from a customer by other means.

Once the suspicious customer is detected, another rule can take care of deciding
what to do when we detect a few suspicious customer events. For that case, we will
create a different rule:

rule "More than 3 suspicious cases: warn the owner"
 when
 SuspiciousCustomerEvent($cId: customerId)
 not (AlarmTriggered(customerId == $cId))
 Number(intValue >= 2) from accumulate(
 $s: SuspiciousCustomerEvent(customerId==$cId),
 count($s)
)
 then //warn the owner
 System.out.println("WARNING: Suspicious fraud" +
 " case. Client " + $cId);
 insert(new AlarmTriggered($cId));
end

As we previously stated, we can have multiple rules detecting suspicious customer
activities. This rule will trigger when two or more of these rules get triggered for the
same customer. Once this happens, we send a warning to the owner. In this example,
it is represented as a system output for simplicity, but it could just as easily be a
helper method or global variable method programmed to send an e-mail or SMS.

Complex Event Processing

[148]

As we can see from the previous examples, we can break down our complex event
processing cases into multiple rules, each one connected to the rest of the CEP
scenario by the events it consumes or produces. These aggregations of events lead to
a special kind of architecture for our systems, where events and their relation with
isolated application components allow us to create very decoupled, highly extensible
components. This architecture is known as event driven architecture, and we'll
describe it in the next subsection.

Event-driven architecture
Event-driven architecture is a concept that is very easy to bond to the CEP as it defines
a simple architecture to promote the production, detection, consumption, and reaction
to the events. The concept of this architecture is to focus on application components as
one of the four possible elements, related as shown in the following diagram:

The idea of event-driven architecture (EDA) is to classify the components in the
following four different categories:

• Event Producer: Their role in EDA is solely to be creators of events.
Everything that can produce an event is considered a producer, whether it is
a hardware-based sensor, application-gathering requests, business processes,
or any other form of application that can introduce a new event into our
architecture.

• Event Consumer: Their role in EDA is to listen to the events produced by
other components. They can also range from a wide variety of components,
from simple listeners in apps to complex dashboards. They usually represent
the final output of this architecture and point the produced value to the
outside world.

Chapter 6

[149]

• Event Channels: They are communication protocols between all the other
components. Event channels encapsulate any component used to transmit
events from one component to another, from a physical wire transmitting
a sensor reading to a logical component, such as a Java Message Service
(JMS) queue.

• Event Processing Agents: These are the core components that group the
events to detect and process complex events. In Drools, every rule that deals
with CEP would be considered an event processing agent. The grouping
for them to detect and react to more complex situations is called the event
processing network.

This architecture is a very useful concept when designing a system around complex
event processing. It can easily be integrated into any other type of architecture as it is
only concerned about how events interconnect the components, leaving room for all
sorts of other features.

Most applications that start using CEP need to consider, at some point in their design,
a concept similar to the one proposed by EDA, where multiple event producers are
connected to a network of event processing agents (our CEP rules) and produce data to
multiple event consumers. Drools provides this concept of source pluralism through a
component called entry points, which we'll discuss in the next subsection.

Split event sources with entry points
Entry points are provided in Drools as a way to partition the working memory. Each
Kie Session can have multiple entry points that it can use to determine the source
of incoming data. For complex event processing, entry points are a great way of
defining multiple sources for events.

In order to insert objects of any kind into an entry point, all we need to do is use the
following API:

KieSession ksession = …; //kie session initialization
 ksession.getEntryPoint("some entry point").
 insert(new Object());

The previous code section will only work if we have declared an entry point in our DRL
file with the name some entry point; otherwise, it will throw an exception. Declaring
and using an entry point is something that can occur directly in any rule. They can be
used within the condition or consequence of a rule, as shown in the following example:

rule "Routing transactions from small resellers"
 when
 t: TransactionEvent() from
 entry-point "small resellers"

Complex Event Processing

[150]

 then
 entryPoints["Stream Y"].insert(t);
end

In the previous rule, we're filtering the TransactionEvent objects that came from
the small resellers entry point. Then, in the consequence, we will insert each one
of these matching events into another entry point, called Stream Y. As you can see,
we can create as many entry points as needed to split the sources of our information.

Events inserted in one entry point will never lose a reference to it. This means that
the Kie session will treat different entry points as a completely different group of
events. You will need to specify, in your rules, from which entry point you want to
filter the data and to which entry point you want to modify the data. However, you
can cross reference information from multiple entry points in a single rule and also
between entry points and the regular working memory.

You can see an example of rules working on different entry points in the
CEPEntryPointsTest class, in the chapter-06-tests project of the code bundle.
In the example, we use two entry points to separate the incoming transactions from
big and small clients. Each one will have a different amount of transactions that they
would consider suspicious, therefore, each one handles the case with a different rule.

Sliding windows
Another very useful concept among Drools CEP features is the use of sliding
windows. As events have a timestamp associated, they also have an intrinsic order.
We can filter the events coming directly from the working memory or any entry
point by this particular order. We have two types of sliding windows, as follows:

• Length-based sliding windows
• Time-based sliding windows

Length-based sliding windows
The simplest type of sliding window is the length-based sliding window. You use it
to specify the last N elements inserted into a stream. Every time a new event is added
into the stream, the last element of the window is replaced by a new one. Using a
length-based sliding window is easy. The following rule shows a simple way to
declare a sliding window to get the last six events of the TransactionEvent type
from the working memory:

rule "last 6 transactions are more than 100 dollars"
 when

Chapter 6

[151]

 Number(doubleValue > 100.00) from accumulate(
 TransactionEvent($amount: totalAmount)
 over window:length(6),
 sum($amount)
)
 then
 //... TBD
end

In the previous rule, we will sum up all the amounts of the last six transactions and
trigger the rule if this amount is over 100 dollars. To get the last six transactions, we
are using a sliding window.

If there are six or less elements in the working memory of the TransactionEvent
type, the window will have all the elements. The moment we add the seventh
TransactionEvent object, we will only have the last six returned by this sliding
window. This is why it is called sliding window. You will see only a specific group
of events and every time you add a new one, the window will move to see the last
elements that fit the condition.

Time-based sliding windows
A similar window can be created that will return any elements that happened within
a specific time lapse from now. This is done through a time-based sliding window.
Let's take a look at the following example of this case:

rule "obtain last five hours of operations"
 when
 $n: Number() from accumulate(
 TransactionEvent($a: totalAmount)
 over window:time(5h),sum($a)
)
 Then
 System.out.println("total = " + $n);
end

In the previous example, we will have a transaction added between now and five
hours ago. If a transaction took place five hours and one second ago, it will no
longer be active here. It doesn't matter if we had one transaction or five hundred
transactions during this time, the time window will contain all of them.

Note that this window will slide following an internal clock
of the Kie Session, which we will see how to configure in the
Testing with the session clock section later in this chapter.

Complex Event Processing

[152]

Declared sliding windows
Sliding windows are usually defined within the rule that uses them. This is a
very common practice as it was originally the only way to use sliding windows.
Nevertheless, this caused the rules that needed to filter elements from the same
window to have to redefine it in every rule. If we define our sliding windows like
this and later need to change the nature of the window that we use, for example, to
transform a length-based sliding window to a time-based sliding window, we would
have to edit every rule that uses it. To avoid doing this, there is a feature in Drools
called window declaration.

Window declaration allows you to define a window as a pre-established component
and invoke it through any number of rules by name. This allows the changes in the
declared window that should be shared among multiple rules to be done in a single
place. The syntax is as follows:

declare window Beats
 @doc("last 10 seconds heart beats")
 HeartBeat() over window:time(10s)
 from entry-point "heart beat monitor"
end

Rules can then use the declared window by referencing the name, as shown in the
following example:

rule "beats in the window"
 when
 accumulate(
 HeartBeat() from window Beats,
 $cnt : count(1)
)
 then
 // there has been $cnt beats over the last 10s
end

As you can see, the window declaration allows simple reuse of windows and even
declares initial common filters for a particular entry point. This can be used to avoid
rewriting many rules that might share a logically identical sliding window.

Chapter 6

[153]

Running CEP-based Scenarios
Now that we've seen the main components of CEP rules, we need to start paying
attention to some configuration steps required to run the CEP scenarios successfully
in Drools. Both the Kie Base and Session that run the CEP cases need special
management and we will see in the next subsections, as follows:

• How to configure the Kie Base to support complex event processing
• The difference between continuous and discrete rule execution
• How the Kie Session internal clock works to evaluate temporal events

Stream processing configuration
In order to create a CEP Drools runtime, we need to provide a few extra
configurations from the default initialization. The first one we need to add is the
event processing mode of the Kie Base that we'll use.

The event processing mode will determine the manner in which the new data
inserted into the runtime will be processed. The default event processing mode
is called the CLOUD mode and basically treats any incoming data the same way,
regardless of being events or simple facts. This means that the runtime will not
understand the concept of events, so that we cannot use it for CEP.

We will need to configure our Kie Base to use the STREAM event processing mode.
This configuration will inform the runtime that it should manage events and keep
them internally ordered by their timestamp. Due to this ordering, we are able to run
time operations against events and use sliding windows on them.

There are many ways to configure the STREAM event processing mode in a Kie
Base. The simplest one is to do it directly in the kmodule.xml as an attribute of the
kbase tag:

<kbase name="cepKbase" eventProcessingMode="stream"
 packages="chapter06.cep">
 <ksession name="cepKsession"/>
</kbase>

In this way, we can later on use the Kie Base or Kie Session directly from the
corresponding Kie Container and the configuration for its runtime will be using the
STREAM event processing mode. We can see an example of this configuration in the
chapter-06/chapter-06-rules/src/main/resources/META-INF/kmodule.xml file.

Complex Event Processing

[154]

Another way to configure this event processing mode is programmatically. To do
so, we will make use of a KieBaseConfiguration bean and its setOption method,
as follows:

KieServices ks = KieServices.Factory.get();
 KieContainer kc = ks.getKieClasspathContainer();
 KieBaseConfiguration kbconf = ks.
 newKieBaseConfiguration();
 kbconf.setOption(EventProcessingOption.STREAM);
 KieBase kbase = kc.newKieBase(kbconf, null);

In the previous example, we used the Kie classpath container for simplicity, but
we could be using any Kie Container to create the Kie Base. It is very useful when
defining dynamic knowledge modules.

Once we define a Kie Base with the STREAM processing mode, we will need to
understand the different options that we will have to run a KIE Session and manage
our CEP scenarios.

Continuous versus Discrete rule firing
The first thing we'll need to understand when running our CEP rules is whether or
not we need to run them in a continuous or discrete fashion. The main difference
between the two is as follows:

• Discrete rule firing will fire rules at specific points in time. Our application
will add events and facts to the Kie Session, and at a specific point, it will use
the fireAllRules method to fire any rules that matched with the working
memory at that specific moment.

• Continuous rule firing will have a specific thread dedicated to firing the rules
the very moment some data matches a rule. It will use the fireUntilHalt
method of the Kie Session to do so, while one or more other threads will be
inserting events and facts into the Kie Session.

These two ways of firing rules will depend entirely on our case and the situations
that might trigger a rule. If we have a scenario where the absence of events will
trigger a rule, or to put it in other words, the absence of events could be abstracted
into another event, then you should use continuous rule firing. If, on the other hand,
the only thing that could trigger new rules is the insertion of new events into the Kie
Session, then discrete rule firing will be enough for our case.

Let's discuss a couple of examples to understand these two scenarios.

Chapter 6

[155]

First, let's discuss a common case for discrete rule firing: fraud detection. Most fraud
detection systems will work based on the cumulative information from transactions.
Basically, if we have a specific number of transactions with specific parameters,
we might consider the possibility of fraud. In this type of scenario, the only way
we would trigger a rule is if we insert a new transaction to match the conditions
of our rules. For this case, we can just call fireAllRules after every transaction or
transaction batch is inserted in our Kie Session. No rules will need to fire if they don't
do it immediately after adding the latest data.

In a different scenario, let's imagine that a heart monitor is sending events to our CEP
engine. About once every second, we get a heart beat event from an oscilloscope. If
we get events too close in time or at an irregular pace, we might detect a stroke or
arrhythmia complex events. What would happen if we wanted to detect whether the
heart stops beating? This case would be a cardiac arrest event. If we want to detect it,
our system will need the ability to fire rules when no events are being inserted. This
type of scenario is typical of a continuous rule firing case.

Testing with the session clock
One more useful configuration when creating Kie Sessions to run CEP-based
scenarios is the possibility to configure its internal clock. By default, Kie Sessions will
understand the passing of time using the clock of the machine on which it is running.
However, this is just one of the two available configurations, called runtime clock.
The other configuration allows us to define a clock controlled by the application,
called pseudo clock.

Both runtime and pseudo session clocks only move in one direction (forward in
time). However, the pseudo clock will only do so if you call a specific method on it,
called advanceTime. Here's a small example of how you can use the pseudo clock
from inside the Kie Session:

SessionPseudoClock clock = ksession.
 getSessionClock();
clock.advanceTime(2, TimeUnit.HOURS);
clock.advanceTime(5, TimeUnit.MINUTES);

In the previous example, we told the clock to advance two hours and five minutes.
These two calls will take only milliseconds, which make this clock an excellent
option for testing CEP scenarios. If you had to check the case where two events with
default timestamps (the moment they are inserted in the Kie Session) happen apart
from each other by two hours, the pseudo clock would let you run this case almost
immediately, while the runtime clock would need at least two hours to run.

Complex Event Processing

[156]

In order to use the pseudo clock in our Kie Session, we need to provide a specific
configuration for it through the kmodule.xml file:

<kbase name="cepKbase" eventProcessingMode="stream"
 packages="chapter06.cep">
 <ksession name="cepKsession" clockType="pseudo"/>
</kbase>

We can even use it through a KieSessionConfiguration bean:

KieServices ks = KieServices.Factory.get();
KieContainer kc = ks.getKieClasspathContainer();
KieSessionConfiguration ksconf = ks.
 newKieSessionConfiguration();
ksconf.setOption(ClockTypeOption.get(
 ClockType.PSEUDO_CLOCK.getId()));
KieSession ksession = kc.newKieSession(ksconf);

You can see an example of this code running in the chapter-06-tests project of
the code bundle.

Even if the most common use for the pseudo clock is to test, another case where it is
commonly used is, oddly, distributed production environments. The reason for this
is that, for large environments where CEP scenarios might be executed in multiple
servers, the pseudo clock is usually used to easily synchronize the clocks of all the
sessions in different servers. An extra thread or server can have the responsibility of
invoking a ticking mechanism in each server at almost the same time and each server
with a Kie Session can advance the time to make sure that they all are operating at
almost the same clock values. This is usually simpler than having all the internal
clocks of multiple servers synchronized, which is a requirement when rules are in
charge of real-time decisions.

Drools CEP limitations
Drools CEP features are really powerful and are as quick to resolve decisions as any
other type of Drools-based rules. However, it has a few architectural elements that
we need to be aware of in order to make the most of it.

Chapter 6

[157]

First of all, all Kie Sessions operate in memory. This means that all events living
inside a Kie Session have to be in memory while they are still relevant to at least one
rule in its Kie Base. This can be overcome by the @expires annotation of an event
type, but it will still require to plan ahead for the amount of memory required to
define a Drools CEP service. One quick way of determining how much memory a
server will need to run a Drools CEP scenario is as follows:

• Determine how long each event instance should be present in the Kie Session
(because it might still be used in triggering a rule). Let's call this value A.

• Determine how many events can be received in a specific period of time.
Let's call this value B.

• Determine how big an event instance is (using any Java profiler tool such
as JProfiler available at https://www.ej-technologies.com/download/
jprofiler/files). Let's call this value C.

A times B times C equals X, a very rough estimate of the minimal amount of memory
required by the Kie Session only to keep the reference of all live events. We'll need to
be careful though as we're still not considering the memory consumption of storing
interrelations between events provoked by rule conditions and the Beta network.
We'll discuss these topics in more detail in Chapter 9, Introduction to PHREAK.

Another limitation to take into account involves the possibility of storing the Kie
Session in any persistence mechanism (something that we will discuss in Chapter 10,
Integrating Rules and Processes). The KIE Session is usually persisted when something
changes in its internal representation, whether it is the working memory or its
matching agenda. For the case of a regular CEP scenario, this might mean storing all
the working memory data every time a rule fires or a new event is inserted. Doing so
with a CEP-based KIE Session could mean as much as gigabytes of data being stored
multiple times per second. Therefore, other mechanisms for replicating a Kie Session
in another system are required.

Currently, the only methods available for replicating a CEP-based Kie Session
involve replicating small deltas between Kie sessions (as to not have to replicate the
whole working memory) and coordination strategies for firing the rules (so that only
one of the replicated Kie Sessions actually fires the rules for the replicated matching
data). These are custom mechanisms and each user should implement their own
at their own risk, therefore, the suggested alternative is to break down the CEP
scenarios by domain and have different servers handle only a subgroup of cases.

To do so, usually the first step is to filter the events by type or specific components
in its data and forward it to the specific Kie Sessions that take care of managing a
specific scenario at a time.

https://www.ej-technologies.com/download/jprofiler/files
https://www.ej-technologies.com/download/jprofiler/files

Complex Event Processing

[158]

To name an example, all the fraud detection cases from small providers are
handled in a server and fraud detection for two large providers could be done in
two dedicated servers. Even the filtering could be a Kie Stateless session, created
to redirect each event to its corresponding Kie Stateful session, as shown in the
following diagram:

In this way, an increase in the event throughput can be achieved within a Drools CEP
Session and handled (at least to some extent) by adding additional servers.

Summary
In this chapter, we've learned about complex event processing and its relation
to Drools. CEP can provide a lot of value to make complex decisions on a large
number of events for the same reasons Drools is a great tool for making fast reliable
decisions. We've seen the use of time and length-based sliding windows, temporal
operators, and entry points.

We've also seen how to declare our events from new classes, declared types, and
existing types. We've covered a few examples of rules for fraud detection cases and
how they align with CEP principles. Among these principles, we've also briefly
discussed event-driven architecture, a very useful design for applications that need
to focus on CEP solutions.

In the next chapter, we will start looking into defining our rules in more user-friendly
ways by studying how to define rules in natural language and decision tables.

[159]

Human-Readable Rules
The title of this chapter could be offensive to some developers. Aren't all the rules
we have covered so far human-readable? Aren't we humans? The idea behind this
chapter is to introduce other ways to define rules in Drools that are more user-
friendly. In this chapter, "human" means a non-technical person.

So far, we have covered a single way to define rules and knowledge: the DRL
language. This language—even if powerful—is inappropriate, most of the time, for
users without a technical background. And even then, DRL requires a certain amount
of time to become familiar with it. Drools provides other means of knowledge creation
by supporting different abstractions over DRL that make the language simpler.

Having a simpler and more concrete language provides us with a great advantage:
we can include Subject Matter Experts (SME) in the development cycle. Business
requirements no longer have to be translated into technical artifacts (such as classes,
rules, and so on) by the developers. The people writing these artifacts can be the
people who have business expertise. This is one step towards to the holy grail of
business rule engines: business rules written by business people.

This chapter will cover some of the abstractions that Drools provides over DRL, and
some other ways in which we can generate DRL from various resource types. The
topics included in this chapter are:

• How to define and use a Domain-Specific Language (DSL) in Drools
• How to define rules using spreadsheets
• How to use templates to generate DRL from structured data
• An introduction on how to use PMML (Predictive Model Markup Language)

in Drools

Human-Readable Rules

[160]

Domain Specific Languages
The first abstraction over DRL that we are going to cover is Domain Specific
Languages, or simply DSL. DSL is a great way to tailor DRL for a specific context.
In the previous six chapters, we covered all the concepts required to create rules
and execute rules in Drools. These concepts require a certain amount of knowledge.
For the left-hand side of a rule, we need to understand the DRL syntax and to have
an idea of things such as pattern matching, the internal structure of our model,
invocation to external systems, and so on. For the right-hand side, we need to know
Java and some of the automatic variables present in this context, such as kcontext
and drools. Having to master all this knowledge in order to write a business rule
seems like overkill, and indeed it is. One of the ways to fill the gap between the
technical requirements from DRL and the SMEs is by using a DSL.

The concept behind a Drools DSL is simple: to create a dictionary file containing
business-oriented concepts and their translations to DRL. The SME then only has to
know about the business-oriented concepts when writing rules without worrying
about the technical aspects of DRL.

The dictionary file that defines the translation between business concepts and DRL is
simply called DSL in Drools. A file containing rules defined using business concepts
is called DSLR. While the technical team is in charge of the creation and maintenance
of the dictionary file (DSL), the SME is in charge of the creation and maintenance of
the business rules (DSLR).

DSL is supported out of the box by Drools; there are no special dependencies, and no
configuration is required before we can start using it.

The Dictionary file
The Dictionary file (or DSL) is a text file (with a .dsl extension) that contains DSL
entries. Each line of this file starting with an opening bracket "[" is considered a DSL
entry. Lines starting with hash character # are considered comments. Lines starting
with something other than an opening bracket or a hash symbol are considered to be
part of the previous DSL entry. The format of a DSL entry is as follows:

[<scope>][<type definition>]<dsl expression>=<replacement text>

The <scope> section currently supports four different types:

• [when] or [condition]: This DSL entry can only be used in the left-hand
side of a rule

• [then] or [consequence]: This DSL entry is only valid for the action part
of a rule

Chapter 7

[161]

• [*]: This DSL entry is valid in both the condition and action part of a rule
• [keyword]: This DSL entry is valid in any part of a DSLR file, even outside

a rule definition
The <type definition> section is not mandatory (we can either omit it or use
empty brackets []) and it is used as a hint for editors such as KIE-Workbench.

After the <type definition> comes the <dsl expression>. This is the text that
will be matched and replaced in the DSLR file. A <dsl expression> consists of a
Java regular expression (https://docs.oracle.com/javase/8/docs/api/java/
util/regex/Pattern.html) and any number of embedded variable definitions.
A variable definition is enclosed in braces ("{" and "}") and it consists in a variable
name and two optional sections separated by a colon ":". If only one optional section
is present, it is used as a regular expression to match text that will be assigned to the
variable; if the two optional sections are present, the first one is used as a hint for an
editor (such as the KIE-Workbench) and the second one is the regular expression. A
<dsl expression> always ends with an equal sign (=).

What follows after the equals sign is the <replacement text> that will be used to
replace any part of the DSLR file matching the <dsl expression>. Variables defined
in the <dsl expression> section can be used in this section, just like named regular
expression matching groups, by using the name of the variable enclosed in braces.
Optionally, the variable name may be followed by an exclamation point "!" and a
transformation function. The supported transformation functions are detailed in the
following table.

Name Description
uc Converts all letters to upper case.
lc Converts all letters to lower case.
ucfirst Converts the first letter to upper case, and all other letters to lower case.
num Extracts all digits and - from the string. If the last two digits in the original

string are preceded by (.) or (,) a decimal period is inserted in the
corresponding position.

a?b/c Compares the string with string a, and if they are equal, replaces it with b,
otherwise with c. But c can be another triplet a, b, c, so that the entire structure
is, in fact, a translation table.

A typical (and very simplistic) DSL entry might look like the following:

[when]There is a Customer=Customer()

The previous entry is defining a DSL entry that will replace any occurrence of
the text There is a Customer inside a DSLR file with the corresponding DRL
Customer().

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Human-Readable Rules

[162]

Adding constraints to patterns
A common requirement when creating a domain-specific language is to have the
ability to add an arbitrary number of constraints to a pattern. For example, we may
want to be able to express filters, such as a customer with age greater than
40, a customer with GOLD category, and even combined expressions such as
a customer in the GOLD category and older than 40 years. Having an
individual DSL entry for each possible combination of constraints in our model makes
no sense at all. Drools allows us to specify individual constraints for a pattern in DSL
and to combine them in any way we want in the DSLR file. This magic is done by
appending a hyphen sign "-" to the <dsl expression> section of a DSL entry:

[when]There is a Customer=Customer()
[when]- age greater than {years:\d*} years=age > {years}
[when]- category is {category:\w*}=category == Customer.Category.
{category}

The previous DSL definition allows us to create a rule such as the following in DSLR:

rule "A GOLD Customer older than 31 years"
when
 There is a Customer
 - age greater than 31 years
 - category is GOLD
then
 ...
end

When a hyphen-prefixed <dsl expression> is processed, its result is not added
as a new line in the generated DRL, but instead it is added to the last pattern line
preceding it as a constraint. The previous DSLR code will then be translated into the
following DRL:

rule "A GOLD Customer older than 31 years"
when
 Customer(age > 31, category == Customer.Category.GOLD)
then
 ...
end

When multiple constraints are present for a single pattern, they are always appended
using a comma (,). This means that constraints are always ANDed in DSL.

Chapter 7

[163]

Hyphens can also be used for DSL entries, which are defined inside the [then]
context. In this case, the entry is assumed to be part of a modify statement and its
content is added to the previous line (this must be a valid modify statement):

[when]There is a Customer=$c: Customer()
[when]- age greater than {years:\d*} years=age > {years}
[then]Update Customer=modify($c)\{\}
[then]- set Category to {category:\w*}= setCategory(Customer.Category.
{category})

Using the previous DSL, we can write the following rule in DSLR:

rule "Mark Customers older than 31 years as BRONZE"
when
 There is a Customer
 - age greater than 31 years
then
 Update Customer
 - set Category to BRONZE
end

The resulting DRL from the following example will be:

rule "Mark Customers older than 31 years as BRONZE"
when
 $c: Customer(age > 31)
then
 modify ($c) { setCategory(Customer.Category.BRONZE) }
end

Rules files
A rules file, also referred to as a DSLR file, is a text file with a .dslr extension. DSLR
files define Drools rules using a domain-specific language. Previous versions of
Drools required the DSLR file to specify which DSL had to be used to process it. This
is no longer the case in the current version of Drools; all DSL files included in a KIE
Base are going to be used to process any DSLR file also found in that same KIE Base.

The translation of a DSLR file into DRL follows these steps:

1. Each of the [keyword] entries is applied to the entire DSLR. If the [keyword]
contains variables, these variables are captured and replaced by the
corresponding value.

Human-Readable Rules

[164]

2. The left-hand side and right-hand side of all the rules present in the DSLR
are processed. Each of the lines in the DSLR text is matched against each
individual DSL entry in the order in which they are defined in the DSL file.
This means that the order of the entries in a DSL file matters. When a match
is found, the DSLR text is replaced by the corresponding DRL. If the DSL
entry defines any variable, its value is taken from the DSLR and copied into
the generated text.

3. If a DSLR line is written with a leading hyphen, the expanded result is added
to the previously expanded pattern—if the context is [when]—or to the
previously expanded modify statement, if the context is [then].

A detailed explanation of the translation process can be found in Drools'
documentation: http://docs.jboss.org/drools/release/6.3.0.Final/drools-
docs/html/ch08.html#d0e11300.

By default, plain DRL or Java syntax is not allowed in a DSLR file. However, there
is a mechanism to mix DRL and Java sentences along with DSL inside a DSLR file
for experienced users. Any line in a DSLR resource starting with a greater than sign
> will be skipped by the translator and will remain unmodified in the final DRL
resource. This facility provides the means to overcome some limitations of DSL.

DSL troubleshooting
One of the most difficult aspects of working with DSL/DSLR is understanding and
fixing errors. The fundamental issue is that errors are reported based on the generated
DRL, and will not refer to the high-level DSLR statements used to create the DRL.

There are some methods we can use though to make the detection and correction of
errors easier.

The first handy feature we have resides in the DSL itself. Using a special type of
comment starting with # we can make Drools log certain information regarding the
DSL translation process. This special comment could contain the following keywords
that will enable specific features of the DSL debug capabilities:

Keyword Description
result Prints the resulting DRL text, with line numbers.
steps Prints each expansion step of condition and consequence lines.
keyword Dumps the internal representation of all DSL entries with scope "keyword".
when Dumps the internal representation of all DSL entries with scope "when" or "*".
then Dumps the internal representation of all DSL entries with scope "then" or "*".
usage Displays a usage statistic of all DSL entries.

http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch08.html#d0e11300
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch08.html#d0e11300

Chapter 7

[165]

As an example, we could add the following line to one of the DSL examples in the
source bundle:

#/ debug display result, steps and usage

By adding this line, Drools will log some statistics regarding the usage of each DSL
sentence (usage), the conversion steps involved in each DSLR sentence (steps), and
the final DRL (result).

Drools will use SLF4j to log the output of the debugging
options in DSL. Make sure you have a proper logger
configured for the org.drools package.

There is another way we can use to generate DRL from DSL/DSLR for debugging
purposes, and it involves the internal classes that Drools' compiler uses for this task:
org.drools.compiler.compiler.DrlParser, and org.drools.compiler.lang.
dsl.DefaultExpanderResolver. Using a combination of these two classes we can
convert DSL and DSLR resources into DRL to analyze what the final result looks like.
The following lines will convert some DSL and DSLR resources into plain DRL:

String dslContent = //Get the DSL content from somewhere
String dslrContent = //Get the DSLR content from somewhere
DrlParser parser = new DrlParser();
DefaultExpanderResolver resolver = new DefaultExpanderResolver(new
StringReader(dslContent));
String drl = parser.getExpandedDRL(dslrContent, resolver);

After this code gets executed, the drl String will contain the expanded DRL code.

Let's now move to a concrete scenario showing all the topics introduced so far.

A simple scenario
Let's now put it all together in a simple example. Going back to our e-shop, let's
assume we want to create some classification rules for our Customers. In this simple
example, the classification logic will be based on the age of the Customer. Because we
want SMEs to write the rules, we have to provide them with a simple, domain-specific
language containing only those expressions that apply to this scenario. The SME will
then use this tailored language to express the necessary business logic. Let's assume
that the business logic we want to implement is the following:

Age Category
Between 18 and 21 (inclusive) N/A
Between 22 and 30 (inclusive) BRONZE

Human-Readable Rules

[166]

Age Category
Between 31 and 40 (inclusive) SILVER
More than 40 GOLD

The categorization rules must only be applied if the customer doesn't have a category
already assigned (meaning that the current category is N/A).

A proposed DSL for the described scenario is shown next:

Simple DSL example file
[keyword]avoid looping=no-loop true
[when]There is a Customer=$c:Customer()
[when]- with age between {low:\d*} and {high:\d*}=age >= {low}, age <=
{high}
[when]- who is older than {low:\d*}=age > {low}
[when]- without a Category set=category == Customer.Category.NA
[then]Set Customer Category to {category:\w*}=modify($c)\{
setCategory(Customer.Category.{category}) \};

The first sentence after the initial comment is a [keyword] that will allow us to use a
more user-friendly alternative for the no-loop attribute in our rules. Following the
[keyword] we find four [when] sentences. These sentences will allow us to write the
necessary rules for the scenario we are dealing with. The last sentence is a [then].
This sentence can be used to set a category to the customer. The braces belonging
to the modify statement have to be escaped (\{ and \}) so they don't conflict with a
variable reference.

The following DSLR rule is only one of the four required rules the SME needs to
write. A complete implementation and unit test of this scenario can be found in the
source bundle associated with this chapter:

rule "Categorize Customers between 22 and 30"
avoid looping
when
 There is a Customer
 - with age between 22 and 30
 - without a Category set
then
 Set Customer Category to BRONZE
end

Chapter 7

[167]

After the previous rule gets translated into DRL, the result will look like the
following:

rule "Categorize Customers between 22 and 30"
no-loop true
when
 $c: Customer(age >= 22, age <= 30, category == Customer.Category.
NA)
then
 modify($c){ setCategory(Customer.Category.BRONZE) }
end

We can clearly identify which of the previous 2 rules is more business-oriented.

One of the limitations of DSL is that SMEs still need to know what the available
sentences are and how they can interact with each other. They still need to manually
write the rules in a text editor. But one of the advantages of DSL is that, by having a
limited set of sentences, it is easy to build a tailored UI for the SMEs to use. Both the
Drools Eclipse plugin and KIE-Workbench have support for DSL and DSLR creation
and usage. These two applications are, unfortunately, beyond the scope of this book.

As mentioned before, the source bundle included with this chapter contains a
complete implementation of the previously described scenario as well as a more
elaborated scenario, where the categorization of the Customers is based on the
number of Orders they have.

Categorization rules allow us to introduce the next topic in this chapter.

Decision tables
If there is a tool every business person—from a CEO to a secretary—knows how to
use, it is a spreadsheet. In fact, most of the time, they know more about spreadsheets
than most people in the IT department. If one of the goals of Drools is to be a
business-oriented rule engine, then what could be better than to provide first-class
integration with spreadsheets?

DSLs are very powerful, but, without a proper UI, the users still need to write their
rules by themselves. Even if, by using a DSL, the available options to write rules
are narrowed down to very specific sentences, the probability of syntax errors,
misplaced statements, invalid code, and so on is still high.

Decision tables, on the other hand, provide a much more constrained environment
than DSL, thus mitigating most of the risks DSL has.

Human-Readable Rules

[168]

What is a decision table?
A decision table in Drools is a document stored in an XLS (Microsoft Excel) or CSV
(Comma Separated Value) formatted file, which defines a set of rules using a very
compact syntax.

The advantage of using XLS and not any other spreadsheet format is that many of the
office suite products already support it. An XLS file can be edited nowadays with any
of the most popular office suites such as MS Office, LibreOffice, OpenOffice, and so on.

A decision table in Drools requires a specific structure in order to be executed.
This structure aids the compiler in the identification of different sections of the
spreadsheet that play different roles in the rules that get ultimately generated when
the decision table is compiled. That's right, just like with DSL/DSLR, a decision table
is first converted into DRL before it is compiled as part of a KIE Container.

Following our simple categorization scenario, where customer categories were
assigned according to age, they could easily be rewritten using a very simple
decision table, such as the one shown next:

Even if we haven't talked about the structure of a decision table yet, it's quite simple
to understand what's going on by simply looking at it. The tabular nature of a
decision table makes it easy to read and modify.

Let's now analyze what the different sections of a decision table are and what
they mean.

Decision tables structure
There are 2 main keywords when defining a decision table: RuleSet and RuleTable.
The RuleSet (B2) keyword identifies where the decision table actually begins. The
column where this keyword is used is also important; it determines the column
that has to be used for any of the other keywords in the sheet. The RuleTable (B6)
keyword identifies the beginning of a group of rules.

Chapter 7

[169]

Only the first worksheet of an XLS file will be scanned for
rule definitions.

RuleSet section
The cell after RuleSet (C2) is optional and defines the package name for all the rules
contained in this sheet. If empty, the default package name is rule_table.

The following section the RuleSet can be used to define DRL construct (except for
rules) and rule attributes for all the rules contained in the document.

In our example, two key-value pair entries (B3-C3 and B4-C4) are used to specify the
Java imports required by the rules and a global attribute of NO-LOOP. The available
keywords in this section are:

Keyword Value Usage
RuleSet The package name for the generated DRL

file. Optional, the default is rule_table.
Must be the first entry.

Sequential true or false. If true, then salience is
used to ensure that rules fire from the top
down.

Optional, at most once. If
omitted, no firing order
is imposed.

EscapeQuotes true or false. If true, then quotation
marks are escaped so that they appear
literally in the DRL.

Optional, at most once. If
omitted, quotation marks
are escaped.

Import A comma-separated list of Java classes to
import.

Optional, may be used
repeatedly.

Variables Declarations of DRL globals—that is, a type
followed by a variable name. Multiple global
definitions must be separated with a comma.

Optional, may be used
repeatedly.

Functions One or more function definitions, according
to DRL syntax.

Optional, may be used
repeatedly.

Queries One or more query definitions, according to
DRL syntax.

Optional, may be used
repeatedly.

Declare One or more declarative types, according to
DRL syntax.

Optional, may be used
repeatedly.

Keywords inside a Drools decision table are case-insensitive.

Human-Readable Rules

[170]

Along with the previous keywords, a set of attributes could also be specified in the
RuleSet section. These attributes will affect the behavior of all the rules present in
the current document. A list of all available attributes is:

Keyword Attribute
PRIORITY An integer defining the "salience" value for the rule.

Overridden by the "Sequential" flag.
DURATION A long integer value defining the "duration" value for the

rule.
TIMER A timer definition. See "Timers and Calendars".
ENABLED A Boolean value. true enables the rule; false disables the

rule.
CALENDARS A calendars definition. See "Timers and Calendars".
NO-LOOP A Boolean value. true inhibits looping of rules due to

changes made by its consequence.
LOCK-ON-ACTIVE A Boolean value. true inhibits additional activations of all

rules with this flag set within the same ruleflow or agenda
group.

AUTO-FOCUS A Boolean value. true for a rule within an agenda group
causes activations of the rule to automatically give the focus
to the group.

ACTIVATION-GROUP A string identifying an activation (or XOR) group.
AGENDA-GROUP A string identifying an agenda group, which has to be

activated by giving it the "focus".
RULEFLOW-GROUP A string identifying a ruleflow group.

All these attributes can only be used once per decision table.

Attributes in the RuleSet section will affect the entire
package where the rules are defined. This may include
rules defined in other assets outside the decision table
where they are defined. In order to get a more fine-grained
control, the attributes can be used in the RuleTable section
and its particular value for a particular rule can then
independently be configured.

Let's now move on to the section where the rules themselves are defined: the
RuleTable section.

Chapter 7

[171]

RuleTable section
The second most important keyword after RuleSet is RuleTable. This keyword,
which must be in the same column as RuleSet, identifies a section where rule
templates are present. A single sheet in a decision table document could contain
multiple RuleTable entries.

A String could be appended to the content of the RuleSet cell (C5) to specify a
common prefix that will be shared among the names of all the generated rules.
The name of the generated rules will be composed of this value and the row number
where each rule is defined.

The row after RuleTable specifies the column type. There are five supported types
of columns:

Keyword Value Usage
NAME Provides the name for the rule generated

from the row overriding the default name.
Optional, at most one
column

DESCRIPTION A text, resulting in a comment within the
generated rule.

Optional, at most one
column

CONDITION Code snippet and interpolated values for
constructing a constraint within a pattern
in a condition.

At least one per rule
table

ACTION Code snippet and interpolated values for
constructing an action for the consequence
of the rule.

At least one per rule
table

METADATA Code snippet and interpolated values for
constructing a metadata entry for the rule.

Optional, any number
of columns

In addition, all the attributes introduced in the previous section can also be used in
this row.

In our example, we have three conditions (B7, C7, and D7) and only one action (E7).
Each condition corresponds to a pattern or a constraint inside a pattern. Each action
represents the code to be executed in the right-hand side of the generated rules.

The cells in the row after the column type have a different meaning according to the
type of the column.

Human-Readable Rules

[172]

For columns of type CONDITION, the values in these cells represent a pattern in the
left-hand side of the generated rules. If multiple constraints inside a single pattern
are intended, the cells can be merged into one (just like B8 in our example). The
second row below a CONDITION column is used to specify one or more constraints
in a pattern. A special variable called $param can be used to specify parts of the cell
that will be interpolated with the values further down in the column. If the columns
below specify a comma-separated list of values—as opposed to a single value, as in
our example—the variables $1, $2, and so on, can be used to access each individual
value. A text value matching the pattern forall(delimiter){snippet} could also
be used to expand the list of values by repeating the snippet once for each of the
values, inserting the value in place of the symbol $, and by joining these expansions
by the given delimiter.

For columns of type ACTION, the value of the cell in the next row is optional and, if
present, it represents an object reference, a global variable, or a bound variable from
the left-hand side.

The second row after an ACTION column is the action's code. This code, which
also accepts interpolation variables, will be appended to the right-hand side of the
corresponding rule. If the preceding cell contained an object reference (that is, it was
not empty), the code in this cell is appended to the reference by adding a leading
period and an ending semicolon. If the object reference cell was empty, the value in
this cell—with its variables interpolated—is used as is. The forall construct is also
allowed in this cell.

For columns of type METADATA, the first row below is ignored and the second row
is used as the value of the generated rule metadata. Interpolation variables are also
allowed in this cell. To the value of this cell after interpolation, a @ character will be
prepended and the result will be added in the metadata section (between the name
of the rule and the when keyword) of the generated rule.

For columns of type NAME and DESCRIPTION, the preceding two rows are not
used. The third row after the column type row is used to provide a friendly name
for the column. Drools will not use the values in this row at all, but having this row
makes decision tables easier to read.

From the fourth row on, non-blank entries provide data for interpolation as
described earlier. A blank cell results in the omission of the corresponding
condition/action/metadata statement for this rule.

Chapter 7

[173]

Coming back to our scenario
In the previous section, we introduced how a decision table could be used for our
simple scenario of customer classification by age. Let's now analyze how the example
decision table, shown next, gets converted into DRL:

The preceding spreadsheet can be found as part of the sources bundle associated
with this chapter, along with the corresponding unit tests.

As opposed to DSL, decision tables in Drools require a specific
dependency that allows the translation to DRL. This dependency
is org.drools:drools-decisiontables.

As we already know, the two keywords used in the RuleSet section of our decision
table specify the package name and the no-loop attribute of the rules defined in it.

The rules, according to the spreadsheet, are composed of three conditions applied
to a single pattern. In this case, the pattern is of type Customer. Notice that we have
bound a variable to our pattern: $c. The first two conditions make reference to the
age attribute of our Customer class. When a condition is only composed of a binary
operator (such as ==, >, <, and so on), the use of $param is optional. The condition
in cell B9 could have been written as age >. In these cases, Drools will understand
that the interpolation value has to be placed at the end of the condition. When the
operator is ==, things are even simpler: it's enough to just name the attribute we want
to use for the comparison—that is, age.

When a data cell is left empty (like C14 in our example), the associated condition
will not be included in the generated rule. In our scenario, the rule in row 14 doesn't
impose a maximum value for the age of a customer; condition C9 is then not required.

The spreadsheet also shows that the generated rules will contain a single action
composed of a modify statement. This statement is used to set the category of the
matching customer $c.

Human-Readable Rules

[174]

Starting from row 11, we find the definition of four rules. Column A for those rows is
just a descriptive name of the rule and it is ignored by Drools. The values in columns
B, C, D, and E provide the interpolation data used for the conditions and actions.

If we look closer, the values for the third condition (D11-D14) look suspicious. They
all have the same "NA" value. For these types of fixed values, we have three options:
we can repeat the value for each of the rules, we can merge all the cells together
to avoid repeating the same value over and over, or we can set the value in the
constraint itself. The latter option presents some challenges though. If we change the
value of the condition (in D9) to "category == Customer.Category.NA" we still
need to come up with a value for the cells D11:D14; otherwise, the entire condition
will be omitted in the generated rules. The problem is that, if we do set a value in
these cells, Drools will recognize that the condition doesn't contain any interpolation
variable and will assume that we are trying to use an implicit " == $param "
operator. The generated code will then become invalid. A possible solution to deal
with conditions without interpolation variables is to append them to some other
condition by using a comma. In our example, we could modify the B9 condition to
look like "age > $param, category == Customer.Category.NA" or "category ==
Customer.Category.NA, age > $param". The condition on cell C9 is not a good
candidate in this case because there is a blank cell in this column. As we can see, a
condition is not restricted to a singular DRL condition.

Taking the rules in rows 11 and 14 as an example, let's see what the generated DRL
for these rules looks like:

package chapter07.dtable.simple;
import org.drools.devguide.eshop.model.Customer;
no-loop true

rule "Simple Customer Categorization_11"
when
 $c: Customer(age > 18, age <= 21, category == Customer.Category.
NA)
then
 modify($c) { setCategory(Customer.Category.NA)}
end
rule "Simple Customer Categorization_14"
when
 $c: Customer(age > 40, category == Customer.Category.NA)
then
 modify($c) { setCategory(Customer.Category.GOLD)}
end

Chapter 7

[175]

In the preceding DRL we can see the result of rows 11 and 14 being converted to
DRL. There are some important things to be noted in that DRL:

• The package name is the one specified by the RuleSet keyword.
• The import sentence and global no-loop attribute also match with the

attributes used in the RuleSet section.
• Because we didn't use a NAME column for our rules, the default name was

used. The default name is composed of the RuleTable value and the row
number that originated the rule.

• Given that row 14 contained a blank cell, the corresponding condition is not
present in the generated rule.

Decision table troubleshooting
Because decision tables introduce a level of indirection between what the user writes
and the DRL that actually gets generated, dealing with errors can be challenging.

As an example, let's assume that there is a typo in the condition present in C9.
Instead of the correct value "age <= $param", let's assume that we inadvertently
wrote "age =< $param". When the decision table containing this typo is compiled, it
will generate the following error message:

Error while creating KieBase[

Message [id=1, level=ERROR, path=chapter07/dtable-simple/customer-
classification-simple.xls, line=8, column=0 text=[ERR 102] Line 8:29
mismatched input '=' in rule "Simple Customer Categorization_11"],

Message [id=2, level=ERROR, path=chapter07/dtable-simple/customer-
classification-simple.xls, line=16, column=0 text=[ERR 102] Line 16:29
mismatched input '=' in rule "Simple Customer Categorization_12"],

Message [id=3, level=ERROR, path=chapter07/dtable-simple/customer-
classification-simple.xls, line=24, column=0 text=[ERR 102] Line 24:29
mismatched input '=' in rule "Simple Customer Categorization_13"],

Message [id=4, level=ERROR, path=chapter07/dtable-simple/customer-
classification-simple.xls, line=0, column=0 text=Parser returned a null
Package]]

The messages make reference to errors in three different rules: Simple Customer
Categorization_11, Simple Customer Categorization_12, and Simple Customer
Categorization_13. In all the cases, the error is the same: "mismatched input '='".
The problem here is that each error makes reference to the line and column inside the
generated DRL, but we don't actually know what that DRL looks like.

One of the ways, and probably the best way, to deal with errors in a decision table's
generated DRL is to dump it into a place where it can be analyzed.

Human-Readable Rules

[176]

A decision table can easily be converted into DRL by using the class org.drools.
decisiontable.DecisionTableProviderImpl from the drools-decisiontables
project:

InputStream dtableIS = //get the input stream to the decision table
file
DecisionTableProviderImpl dtp = new DecisionTableProviderImpl();
String drl = dtp.loadFromInputStream(dtableIS, null);

DecisionTableProviderImpl defines a loadFromInputStream method that takes
two arguments:

• The InputStream to the decision table file
• An optional org.kie.internal.builder.DecisionTableConfiguration

instance that allow us to configure some of the aspects of the DRL conversion

The sources bundle associated with this chapter has a working example of the
preceding code.

Being able to reproduce the DRL generated from a decision table is a valuable help
when we deal with errors. The line and column numbers in the error messages can
be traced to the DRL generated by the DecisionTableProviderImpl class.

Enhanced decision tables
The example we just covered shows the basics of decision tables in Drools.
There are many more interesting things we can do to make the life of the users
of these spreadsheets easier. Most of the nice features spreadsheets support are
also supported by Drools' decision tables. The features we are talking about are:
collapsed/fixed/merged rows and columns, functions, colors, links between cells,
and so on. By combining these features, we can create much more customized
spreadsheets that enhance the overall experience of the user.

As an example, we can take the original decision table introduced in this chapter and
apply some changes to leave it like the one bellow:

This enhanced version of the original decision table can be found in the source
bundle with the name customer-classification-enhanced.xls.

Chapter 7

[177]

Some of the enhancements present in this new version of the decision table are:

• Rows 3, 4, 8, and 9 are hidden to avoid showing cells with technical content.
• D11:D14 are merged to avoid duplicated "NA" values.
• E11:E14 are now using a drop-down to select a value between NA, BRONZE,

SILVER, or GOLD. This drop-down is not visible in the image but we can
check this in the spreadsheet associated with this example in the source bundle.

• Cells in column B are using a conditional format that will mark them in
red (that is, B13) when its value overlaps with the upper bound of the
previous rule.

This example shows only a few of all the possibilities decision tables bring to the
table to create a more elegant and concise way to define rules. The source bundle
includes the decision table version of our advanced classification rules that uses the
number of orders of a customer in order to set its category. The name of this decision
table file is customer-classification-advanced.xls.

Decision tables provide an excellent way to easily create a considerable number of
rules without too much work. Once the structure of the decision table is defined,
the only job the rule author has is to add, update, or delete values in its cells. The
possibility of making mistakes while authoring rules is still there, but, compared to
DSLs/DSLRs, the risk is much lower.

Another advantage of decision tables over DSL is that we don't need any special
UI for the former. Business users, most of the time, are already familiar with
spreadsheets. There is no need to introduce a new UI to users before they can start
writing their own rules.

But decision tables are not ideal for every situation: one of the biggest limitations
is that rules we can model using decision tables must have the same structure. For
cases like scoring, categorization, and classification, where the structure of the rules
is almost the same and the only thing that changes is the values of their constraints,
decision tables are a very efficient option. For situations where the structure of the
rules doesn't necessarily remain the same, decision tables give us no benefits at all.

Another limitation decision tables have is that the structure of both the rules and the
data is tightly coupled; they can't be reused separately from each other.

For situations where more flexibility is required, there is another option we may
want to consider: rule templates.

Human-Readable Rules

[178]

Rule templates
Rule templates in Drools are a way to generate DRL rules on-the-fly using template
files and tabular data sources. By tabular data sources, we mean data that can be
expressed in a table. Typical examples of this kind of data source are spreadsheets
and tables in databases.

Probably one of the most common questions in Drools mailing lists and forums is
how to generate rules from data that is stored outside our application. The typical
case is data inside a database. One of the ways to deal with this scenario is by using
rule templates.

Another great advantage of rule templates is that the data and the structure of the
rule are completely decoupled. The same template can be used for different data
sets and the same data set can be used for different templates. This provides great
flexibility in comparison with decision tables.

Rule template structure
A Drools rule template is a text file containing special keywords to demarcate the
different sections of the template and to define what the variables inside a template
are and where should they be used.

As an example, let's analyze the template file called customer-classification-
simple.drt that can be found in the source bundle of this chapter:

template header
minAge
maxAge
previousCategory
newCategory

package chapter07.ruletemplate.simple;

import org.drools.devguide.eshop.model.Customer;

template "classification-rules"

rule "Categorize Customers_@{row.rowNumber}"
no-loop true
when
 $c: Customer(age >= @{minAge}, age <= @{maxAge}, category ==
Customer.Category.@{previousCategory})
then
 modify ($c){ setCategory(Customer.Category.@{newCategory})};
end
end template

Chapter 7

[179]

The first line of the template file contains the keyword that marks the beginning of a
template: template header. The four lines below the template header are the names
of the variables this template will use. In a template, the names of the variables
are defined inline and are not part of the data set. Each of the columns in the data
set used with this template will be named according to the corresponding variable
name. The relation between a column and a variable is the position it has in the data
set. In this case, the first column will be named minAge, the second maxAge, the third
previousCategory, and the fourth newCategory. The white space that follows the
variable definitions marks the end of that section.

After the template variable definitions section comes the standard rule header text
containing the package definition and import statement. In the event we want to
include globals, type declarations, or functions in our templates, this section is also
the place to do it.

The keyword template indicates the beginning of a rule template. For each of the
rows in the data set, an instance of this template will be generated. The name of the
template must be unique in the entire template file.

What follows next is the rule template itself. Inside the rule template, variables
previously defined can be accessed by using the syntax @{var_name}. For each
row in the data set, the variables will be set and their placeholders substituted in
the template. If any of the variables used in a rule template are empty, the entire
template is omitted. A single template section can contain multiple rule definitions.

There is a special variable we can use in our templates called @{row.rowNumber}.
This variable will contain the number of the row being processed and is useful,
among other things, to avoid duplicated names in the generated rules.

One of the advantages of rule templates over a decision
table is that the variables in a rule template can be used
anywhere in a rule: as the class name of a pattern, an
operator, a property name, and so on.
Another advantage of rule templates is that variables
can be used in any order and can be used multiple
times if needed.

To mark the end of a rule template, the keyword end template must be used.

Now that we understand the basics of the structure of a rule template, let's see how
they are processed along with a data set in order to generate DRL rules.

Human-Readable Rules

[180]

Working with rule templates
Rule template-related classes are defined inside an individual project:
drools-templates. This project contains the necessary classes to parse a template
and create concrete DRL out of a data set. Four types of data source are already
supported out of the box: spreadsheets, arrays, objects, and SQL result sets.

For spreadsheet-based templates, Drools supports their declarative definition in
the kmodule.xml file using the special <ruleTemplate> configuration element of
a KIE Base:

<kbase name="template-simple-KBase" packages="chapter07.template-
dtable">
 <ruleTemplate
 dtable="chapter07/template-dtable/template-data.xls"
 template="chapter07/template-dtable/customer-
classification-simple.drt"
 row="3" col="2"/>
 <ksession name="templateSimpleKsession"/>
</kbase>

The previous code snippet shows how a template named customer-
classification-simple.drt with a data source file named template-data.xls is
included in the template-simple-KBase KIE Base. This code snippet is part of the
source bundle associated with this chapter.

The examples we will cover in the rest of this section will all use a programmatic
way to process a template, create DRL out of it, and then, with the generated DRL,
create a KIE Base.

All the tests associated with this section (look for the RuleTemplatesTest class) use
a helper method to create a KIE Session from a String containing DRL code. To avoid
repetition of this method in the following sections of this chapter, let's analyze this
method here:

 private KieSession createKieSessionFromDRL(String drl){
 KieHelper kieHelper = new KieHelper();
 kieHelper.addContent(drl, ResourceType.DRL);

 Results results = kieHelper.verify();

 if (results.hasMessages(Message.Level.WARNING, Message.Level.
ERROR)){
 List<Message> messages = results.getMessages(Message.
Level.WARNING, Message.Level.ERROR);
 for (Message message : messages) {

Chapter 7

[181]

 System.out.println("Error: "+message.getText());
 }

 throw new IllegalStateException("Compilation errors were
found. Check the logs.");
 }

 return kieHelper.build().newKieSession();
 }

The implementation of the method is straightforward. It takes a String containing
DRL syntax as a parameter and it uses the KieHelper utility class to compile it and
create a KIE Base from it. This method also checks for errors or warnings during the
DRL compilation. Once a KIE Base is built, a new KIE Session is returned.

The KieHelper utility class is not part of Drools' public API.
This class provides some convenient methods to avoid most of the
boilerplate code required to get a Kie Base or KIE Session up and
running. Given that this class is not part of the kie-api artifact, it
may suffer from backwards-incompatible changes in the future.

Let's now take a detailed look at the four data source types supported by Drools
rule templates.

Spreadsheet data source
The first type of data source we are going to cover resembles, in some ways, a
decision table. When working with rule templates, the data we want to use to
generate the concrete rules can be stored in a spreadsheet file. We have already
discussed the benefits of using spreadsheets, especially for non-technical users.

As the input of our rule template, a spreadsheet like the following one could be used:

The preceding spreadsheet contains only the necessary data for the template, plus
some useful headers for the person who has to edit this table. The spreadsheet does
not contain any information regarding the template that has to be used nor the
structure of the rules that need to be generated.

Human-Readable Rules

[182]

In order to convert this spreadsheet into DRL, we are going to use the template file
we have previously introduced (customer-classification-simple.drt) and the
createKieSessionFromDRL()helper function:

 InputStream template = RuleTemplatesTest.class.
getResourceAsStream("/chapter07/template-dtable/customer-
classification-simple.drt");
 InputStream data = RuleTemplatesTest.class.
getResourceAsStream("/chapter07/template-dtable/template-data.xls");
 ExternalSpreadsheetCompiler converter = new
ExternalSpreadsheetCompiler();
 String drl = converter.compile(data, template, 3, 2);
 KieSession ksession = this.createKieSessionFromDRL(drl);

The first two lines of the code are getting the template and data files as
InputStream instances. The fourth line is using an instance of the helper class
ExternalSpreadsheetCompiler to convert the template file and the data in the
spreadsheet into DRL. The compile() method in ExternalSpreadsheetCompiler
takes four arguments: the data, the template, and the row and column inside the
spreadsheet where the data starts. In this case, the data starts in row 3 and column 2 (B).

Array data source
Another way to provide the data to a template is by using a two-dimensional array
of Strings. In this case, the first dimension of the array is used as the row, and the
second dimension as the column:

 InputStream template = RuleTemplatesTest.class.
getResourceAsStream("/chapter07/template-dtable/customer-
classification-simple.drt");

 DataProvider dataProvider = new ArrayDataProvider(new String[]
[]{
 new String[]{"18", "21", "NA", "NA"},
 new String[]{"22", "30", "NA", "BRONZE"},
 new String[]{"31", "40", "NA", "SILVER"},
 new String[]{"41", "150", "NA", "GOLD"},
 });

 DataProviderCompiler converter = new DataProviderCompiler();
 String drl = converter.compile(dataProvider, template);

 KieSession ksession = this.createKieSessionFromDRL(drl);

Chapter 7

[183]

The preceding code shows how an instance of the DataProviderCompiler class
can be used to process a template using a two-dimensional array of Strings as the
data source. The data is encapsulated inside an ArrayDataProvider instance. The
ArrayDataProvider class implements the DataProvider interface. If you have a
special, custom source of information that needs to be fed into your rule template,
you could implement your own DataProvider and connect it with the template
using a DataProviderCompiler.

Objects data source
A more object-oriented friendly way to present the data to a template is by using
objects as the model. Instead of a two-dimensional array of Strings, we could use
a collection of objects to hold the data required by our templates. When objects
are used as the data source of a template, the name of the variables defined in the
template must match the name of the attributes in our model class:

As an example, let's create a class to contain the data for our classification scenario:

public class ClassificationTemplateModel {

 private int minAge;
 private int maxAge;
 private Customer.Category previousCategory;
 private Customer.Category newCategory;

 //constructors, getters and setters
}

An instance of this class will correspond to a rule after the template is processed.
Note that the names of the attributes of this class correspond to the name of the
variables in the template header:

 InputStream template = RuleTemplatesTest.class.
getResourceAsStream("/chapter07/template-dtable/customer-
classification-simple.drt");

 List<ClassificationTemplateModel> data = new ArrayList<>();

 data.add(new ClassificationTemplateModel(18, 21, Customer.
Category.NA, Customer.Category.NA));
 data.add(new ClassificationTemplateModel(22, 30, Customer.
Category.NA, Customer.Category.BRONZE));
 data.add(new ClassificationTemplateModel(31, 40, Customer.
Category.NA, Customer.Category.SILVER));

Human-Readable Rules

[184]

 data.add(new ClassificationTemplateModel(41, 150, Customer.
Category.NA, Customer.Category.GOLD));

 ObjectDataCompiler converter = new ObjectDataCompiler();
 String drl = converter.compile(data, template);

 KieSession ksession = this.createKieSessionFromDRL(drl);

The preceding code shows how a List of ClassificationTemplateModel
objects is used as the data source for the template. In this case, an instance of the
ObjectDataCompiler class is used to process the template and the list of objects.

SQL result set data source
The last option we are going to be covering to process a template file is using SQL result
sets as the data source. By SQL result sets we mean the java.sql.ResultSet class. A
ResultSet class can be obtained in multiple ways using—for example, JDBC. Even if
we could easily convert a ResultSet into a two-dimensional array, or a collection of
objects, and use one of the previously introduced ways of processing a template, Drools
already provides us with a way to deal directly with ResultSet instances.

Let's assume we have the following table, called ClassificationRules, inside
a database:

id minAge maxAge previousCategory newCategory
1 18 21 NA NA
2 22 30 NA BRONZE
3 31 40 NA SILVER
4 41 150 NA GOLD

If we want to use the information in that table to generate DRL using a rule template,
we can use the following code:

 Connection conn = //get a connection to our DB
 Statement sta = conn.createStatement();
 ResultSet rs = sta.executeQuery("SELECT minAge, maxAge,
previousCategory, newCategory " +
 " FROM ClassificationRules");

 final ResultSetGenerator converter = new ResultSetGenerator();
 final String drl = converter.compile(rs, template);

Chapter 7

[185]

The previous example uses standard JDBC classes, such as Connection, Statement,
and ResultSet. This code executes a query against the ClassificationRules table
and gets its result as a ResultSet. Then, using Drools' ResultSetGenerator class,
the ResultSet and the template are converted into DRL.

It is important to notice that, even though Drools Templates comes with a handy set
of functions, we can still use any other template engine, such as Velocity (https://
velocity.apache.org/), or StringTemplate (http://www.stringtemplate.org/).
Of course, we will not have any of the DataProvider classes, but remember that the
ultimate goal of these classes is the generation of DRL code. And, after all, DRL is
just plain text; so we can use whatever technique or framework we want.

Let's now move to the last topic of this chapter, which will teach us how to integrate
Drools with PMML resources to allow non-rule based knowledge assets to be used
inside the rule engine.

PMML
The Predictive Model Markup Language (PMML) is an XML-based language aimed
at providing a way to exchange different predictive models, for classification or
regression purposes, generated using a data mining or machine learning technique.
PMML was originally developed by the Data Mining Group (http://www.dmg.
org/) in 1997 and its latest version (4.2.1) dates from May 2014.

Even if PMML itself is not a business-oriented language, it is currently possible to
generate PMML documents from a variety of well known applications, such as Knime
(https://www.knime.org/), or R language (https://www.r-project.org/).

PMML support in Drools is relatively new. It originally started as an experimental
module but, with effect from version 6.1, PMML is a first-class citizen of the Drools
ecosystem. PMML standard can be used to encode and interchange classification
and regression models, such as neural networks, decision trees, scorecards, and
others. By adopting PMML, Drools has gained access to a broader set of options for
knowledge representation.

Unfortunately, not all of the models supported in PMML are supported in Drools.
The list of supported models is growing, and the currently supported set is this:

• Clustering
• Simple Regression
• Naïve Bayes
• Neural Networks

https://velocity.apache.org/
https://velocity.apache.org/
http://www.stringtemplate.org/
http://www.dmg.org/
http://www.dmg.org/
https://www.knime.org/
https://www.r-project.org/

Human-Readable Rules

[186]

• Scorecards
• Decision Trees
• Support Vector Machines

An explanation of each of these model types is outside the scope of this section.
More information about PMML and the models it supports can be found in the Data
Mining Group website (http://www.dmg.org/v4-2-1/GeneralStructure.html).

PMML in Drools
A PMML document is an XML document composed of up to four main sections:
Header, Data Dictionary, Data Transformation, and Model.

The Header section contains meta-information about the document itself. Elements
such as information about the model being used, the application that was used to
generate it, and a creation timestamp can be found in this section.

The Data Dictionary section defines all the possible data fields the document may
use. For each data field, a name and its type are specified.

A Data Transformation section can be specified in the document to define any
mapping between the incoming data and the data required by the model.

The concrete type of model is specified in the Model section of the document.
The content of this section depends on the model being used (for example, neural
network, scorecard, and so on.). The Model section may contain the following
sub-sections:

• Mining Schema: this defines the subset of the fields in the Data Dictionary
section used in the model, along with some metadata such as their usage type

• Output: this defines the model's output fields
• Targets: this allows post-processing of the output fields of the model.

Just like with any other resource type in Drools, a PMML asset can be compiled in
two different ways: declaratively by using a kmodule.xml file or programmatically
by using KieHelper or KieBuilder instances.

If we want to include PMML resources in our knowledge bases, our project must
declare a dependency on the org.drools:drools-pmml Maven artifact (or include
the drools-pmml JAR in the classpath).

The source bundle associated with this chapter contains a simple PMML example
(org.drools.devguide.chapter07.PMMLTest) that programmatically creates a
KIE Base from a PMML resource.

http://www.dmg.org/v4-2-1/GeneralStructure.html

Chapter 7

[187]

When a PMML document is compiled by Drools, its components are analyzed and
the appropriate combination of rules, declared types, and entry points is created to
emulate the calculations performed by the model being processed. The final result
will be a set of Drools assets that will mimic the behavior of the original model.

The generated entry points are one possible way to evaluate a predictive model
on some input data, facilitating the binding of external data streams (see later for
alternative evaluation techniques). The declared types (implementing the base
interface org.drools.pmml.pmml_4_2.PMML4Field) hold the current input, internal
and output values, together with their metadata (for instance, probabilities and
missing/invalid flags); the production rules generate the output values based on the
model's evaluation semantics.

Evaluating a PMML model in Drools is slower than evaluating it in a native engine
that compiles the model into a sequence of mathematical operations. Drools' goal is
not performance at this point, but rather to provide a uniform abstraction of a hybrid
KIE Base containing both rule-, and non-rule-based, reasoning elements.

In a future version, Drools will support both compiled
and "explicit" (rule-based) models and the ability to switch
between the alternative implementations. An important
feature of a rule-based model is that the model's parameters
are always asserted as facts in working memory and can
be modified by other rules implementing adaptive, online
training strategies.

The way we have to specify the value of the input fields of a model in a KIE Session
is by using the corresponding entry points that got generated by the PMML
compiler. Each of the Mining Fields in the PMML model will create an entry point
with the name in_<FIELD_NAME>, where <FIELD_NAME> is the name of the field.

There are three other ways to specify the inputs of a model:

Instantiating the input types directly, as declared types. We covered how to
instantiate declared types in Chapter 4, Improving Our Rule Syntax. Now that we know
that each input field in the model will generate a declared type, we can instantiate
them and insert them into the corresponding session:

• Binding a Java bean to the model, which contains a field for each entry in the
data dictionary.

• Enabling the declaration of a trait that mimics the data dictionary. Each input
field in the model will generate a corresponding Trait class definition with
the name <FIELD_NAME>Trait. We can then don an object containing a field
for each entry in the data dictionary to feed the model.

Human-Readable Rules

[188]

After inserting the corresponding fields into a KIE Session, and calling
fireAllRules(), the corresponding output fields will be generated inside the
session. These output fields are also modeled as declared types. We can then use
some of the techniques introduced in Chapter 5, Understanding KIE Sessions to extract
these values from the session.

PMML models are stateless. Any change in the input values
will be reflected by a change in the outputs. Parallel or
persistent evaluation is currently not supported.

In order to get a better understanding of how a PMML is compiled and used, let us
implement a very simple model for our customer classification scenario.

Customer classification decision tree example
One of the supported PMML models in Drools is the Decision Tree. A decision tree
allows the creation of a tree-like graph, where each node represents a condition that,
when evaluated, determines whether the branches under it should also be evaluated.
We can refer to Data Mining Group's website for more information about decision
trees (http://www.dmg.org/v4-2-1/TreeModel.html).

For our simple classification scenario—where the category of a customer is
dictated by his current category and age—the following decision tree would
satisfy our requirements:

http://www.dmg.org/v4-2-1/TreeModel.html

Chapter 7

[189]

The preceding figure shows the decision tree for our example. We start with a
Customer object and the first attribute we evaluate is its category. If the category is
already set (that is, is not NA), then a special result is generated by the tree indicating
that the current category should not be modified. If the category is NA, the next
attribute to be evaluated is the age. For the age, we have our four well known
segments. Each of them will generate a different category to be assigned to the
customer. A PMML version of this decision tree can be found in the source bundle
associated with this chapter (customer-classification-simple.pmml.xml). Let's
now analyze the different sections of this PMML file.

Header
The first section is the Header:

<Header description="A simple decision tree model for customer
categorization."/>

In this case, this section only defines a description for the document.

DataDictionary
This section defines three fields: previousCategory, age, and result:

<DataDictionary numberOfFields="3">
 <DataField name="previousCategory" optype="categorical"
dataType="string">
 <Value value="NA"/>
 <Value value="BRONZE"/>
 <Value value="SILVER"/>
 <Value value="GOLD"/>
 </DataField>
 <DataField name="age" optype="continuous" dataType="integer"/>
 <DataField name="result" optype="categorical"
dataType="string">
 <Value value="NO_CHANGE"/>
 <Value value="NA"/>
 <Value value="BRONZE"/>
 <Value value="SILVER"/>
 <Value value="GOLD"/>
 </DataField>
 </DataDictionary>

PMML is not object-oriented; this is why we need to decompose the attributes of our
customer into simple elements.

Each of these fields will create a declared type and an entry point when compiled.

Human-Readable Rules

[190]

Model
In this particular example, the model is defined by a <TreeModel> element. This
section is composed of a series of <Node> elements defining the structure of the tree.

This section also defines two important sub-sections: mining schema and output.

The mining schema identifies the set of the fields from the data dictionary used in
this model:

<MiningSchema>
<MiningField name="previousCategory"/>
<MiningField name="age"/>
<MiningField name="result" usageType="predicted"/>
</MiningSchema>

In this case, the field result is marked as "predicted". This will tell the model that
this field needs to be calculated when the model is executed.

The output section defines the output of the model:

<Output>
 <OutputField name="newCategory" targetField="result" />
</Output>

This output field, mapped to the result mining field, will also generate a declared
type in Drools when the model is compiled. Instances of this declared type will
contain the result of the execution.

The test included in the source bundle (org.drools.devguide.chapter07.
PMMLTest class) uses a separate DRL resource that defines a query to extract the
results generated by this model:

query getNewCategory()

 NewCategory($cat: value, valid == true)

end

The query basically filters all the objects of type NewCategory (this is the declared
type generated by Drools) that are in a valid state and returns their value.

Once we have a session containing the compiled version of this PMML file, we can
use the following code snippet to provide the value of the input fields of the model:

KieSession ksession = //obtain a KIE Session reference.
ksession.getEntryPoint("in_PreviousCategory").insert("NA");
ksession.getEntryPoint("in_Age").insert(34);
ksession.fireAllRules();
//execute 'getNewCategory' query to get the result.

Chapter 7

[191]

As we have previously mentioned, each input field will generate a unique entry
point that can be used to set its value. The preceding example sets the value "NA" to
the previousCategory field and the value 34 to age. According to our decision tree,
the expected result will be SILVER.

PMML troubleshooting
Just like with DSL, decision tables, and rule templates, PMML adds an abstraction
level over the DRL that actually gets executed. When something goes wrong, the
cause of the error is not always easy to identify.

The good news is that—unlike DSL, decision tables, and rule templates—PMML
is an XML-based language that uses well defined schemas for it structure and
values (http://www.dmg.org/v4-2-1/pmml-4-2.xsd). Having a schema to validate
our documents against will eliminate premature errors caused by a malformed or
invalid XML.

But if we still need to know what's going on under the hood when a PMML
document is compiled, there is a way to dump the DRL that the compilation process
generates. In the unit test associated with this section there is a method called
printGeneratedDRL() that does exactly that. This method uses the org.drools.
pmml.pmml_4_2.PMML4Compiler class to convert a PMML into DRL. This class is the
same class used internally by the KIE Builder when compiling a PMML resource.

PMML limitations
We already mentioned that PMML support in Drools is relatively new, and there are
some consequences to this. The first obvious consequence is that not all of the models
supported by PMML are currently supported by Drools. This gap should shrink
with every new version of the drools-pmml module. Another consequence is that
this module has not yet been exposed to a considerable audience. While using this
module, expect some rough edges, unsupported features, and even bugs.

When modeling our scenarios using PMML, we have to bear in mind that predictive
models are quantitative and process primitive values—continuous or categorical.
Coming from an Object Oriented environment such as Java could present some
challenges when designing a solution involving PMML documents. As hinted in the
model binding discussion, one or more objects can be used to deliver and collect the
values of the features used by the model, but the predictive models themselves will not
be aware of the domain-specific nature of those values. This is inherent to the nature of
predictive models, and developers should not make additional assumptions.

http://www.dmg.org/v4-2-1/pmml-4-2.xsd

Human-Readable Rules

[192]

Probably one of the biggest limitations of the current implementation of drools-pmml
is the fact that a session can only be used to execute a single instance of a model. If
we want to evaluate two customers in our sample tree, we will need to either create
two independent KIE Sessions or sequentially evaluate each customer in a single KIE
session. The problem with having simultaneous evaluations is that there is no way to
identify which result instance corresponds to which set of input parameters.

Summary
In this chapter we have covered different ways to represent our knowledge
in Drools.

For a tailored language for specific use cases, DSL/DSLR could be a solution that
hides the complexity of the DRL syntax behind a language that is more familiar to
an SME.

For situations where a big set of rules with a common structure is required, decision
tables could be a perfect fit. The big advantage of decision tables is that they are very
concise and user-friendly.

When more flexibility in the structure of the rules is required, rule templates could
be a good help. The out of the box support for data sources such as spreadsheets,
objects, or even a SQL store makes rule templates a very interesting option.

If we are dealing with non-rule based knowledge such as neural networks, decision
trees, or scorecards, we must consider the use of the drools-pmml module. Maybe
this is not the best performance solution but it allows us to easily integrate these
models with our current rule-based solution.

Now that we have a better understanding about the DRL language and the more
human-friendly alternatives that we can use to express our knowledge bases, it is
time to understand the best practices regarding how rules can be tested in Drools
and how to detect and troubleshoot our KIE Bases and KIE Sessions. The next
chapter is all about this topic.

[193]

Rules' Testing and
Troubleshooting

One of the most difficult aspects of working with Drools is probably dealing with
errors or unexpected behavior of a rule. The problem is even harder if we are talking
about a knowledge base (KB) composed of multiple rules. Add interaction with
external systems to the equation and see how the complexity grows even further.

The declarative nature of Drools also presents some unique challenges when testing
our code. Unlike classes and functions, rules can't be directly invoked. If we want to
test a single rule, we need to recreate the necessary state of the session required by the
left-hand side of this rule. The problem is that the same state could also trigger other
rules in the same knowledge base. This is the reason why, usually, when testing a
knowledge base, we test complete scenarios that may involve multiple rules.

In Drools, there is no magic bullet that allows us to easily test and debug our rules;
instead, what we have is a set of good practices, techniques, and tips that will put
us in a better position to identify, mitigate, and solve problematic situations in our
Drools-based applications.

This chapter is a collection of these good practices, techniques, and tips, covering the
following topics:

• KIE Base partition and testing
• Rules' left-hand side troubleshooting
• Rules' right-hand side troubleshooting

Let's start with some good practices regarding the partition of a knowledge base and
how to facilitate its overall testing.

Rules' Testing and Troubleshooting

[194]

Create loosely coupled DRLs
The same principles that apply to a good system design apply to the resources
in a KIE Base and even to the KIE Bases themselves: create tightly-integrated,
loosely-coupled assets.

Regarding the Drools Rule Language (DRL) resources (and any other resource that
will eventually be converted into DRL, such as Decision Tables, Rule Templates,
DSL, and so on), it is always a good idea to keep them separated by some criteria.
The criteria could be the input of the rules (that is, all the rules about Customers), the
topic of the rules (that is, risk evaluation rules, customer scoring rules, and so on), or
any other criteria that makes sense in our current implementation.

If the rules belong to independent modules of our system or even if these modules
are not tightly related, it is also considered a good practice to create separate
knowledge bases for them. Having separated knowledge bases not only makes our
modules easier to test, but it will also render our system more flexible; the less rules
we have in our Kie Base, the simpler it will be to test it as there will be lesser chance
of triggering an unexpected rule from an unexpected resource in the classpath when
we try to run our tests.

Depending on the structure of our rules, having separated knowledge bases could
also lead to better execution times.

Prefer KieHelper over a KieContainer
classpath
While testing, the use of a KieContainer classpath—the one you get from invoking
KieServices.Factory.get().getKieClasspathContainer()—is not always the
best approach. The thing with a KieContainer classpath is that it will scan the entire
classpath looking for any META-INF/kmodule.xml file.

If we are only interested in testing a single rule or a subset of the rules present in the
application's classpath, there is no need to scan the entire classpath looking for all the
kmodule.xml files present.

There are different ways in Drools to create narrow containers with only the
specific resources required for the specific scenario that we are testing. Probably,
the easiest way is to make use of the org.kie.internal.utils.KieHelper class.
The KieHelper class is a utility class that allows us to programmatically create a
KIEContainer by specifying the resources that we want to include in it. We have
already seen examples making use of this class in the previous chapters.

Chapter 8

[195]

The KieHelper class provides different ways to add resources to the KIE Container
that we want to build. It also contains methods to validate these resources and to,
finally, create a KieContainer instance from them.

A typical use of the KieHelper class can be seen in the following code snippet:

KieHelper kieHelper = new KieHelper();
kieHelper.addResource(ResourceFactory.newClassPathResource("some/file.
drl"), ResourceType.DRL);
//add more resources if needed
Results results = kieHelper.verify();
if (results.hasMessages(Message.Level.WARNING, Message.Level.ERROR)){
 //fail
}
KieBase kieBase = kieHelper.build()

There is no factory for the KieHelper class, it can be simply instantiated in our
code. Once we have an instance, we can use its addResource(), addContent(),
and addFromClassPath() methods to add resources to it. Once we have added all
the resources we want, we can verify them by invoking the verify() method. This
method will return the verification results indicating whether or not the warnings or
errors are present. If everything is OK, we can build a KieBase instances by invoking
the build() method.

However, KieHelper is not only useful when dealing with unit/integration tests.
Applications may also use this class when a fine-grained control over the resources
that should be included in a KIE Container is required. Typical scenarios could
be the creation of KIE Bases containing only a certain resources based on certain
conditions or the creation of a dynamic KIE Base from a string containing DRL.

Benefits of using globals
In Chapter 5, Understanding KIE Sessions, global variables were introduced as a way of
interacting with external services. Even if the chapter never explicitly stated this, its
tests showed another important benefit of using global: different implementations
of the same global may be provided, depending on the context. Right now, the
particular context that we are interested in is the testing context.

When testing, mock versions of the global variables requiring interaction with
external services, can be provided. These mock variables will immensely reduce the
complexity and boiler-plate code required by our tests.

Rules' Testing and Troubleshooting

[196]

Let's take the following example from the code bundle of Chapter 5, Human
Readable Rules:

global AuditService auditService;
rule "Send Suspicious Operation to Audit Service"
when
 $so: SuspiciousOperation()
then
 auditService.notifySuspiciousOperation($so);
end

The preceding rule uses a global to interact with an audit service and notify it about
suspicious operations found in the session.

If, in the previous example, we had just instantiated a concrete AuditService
instance on the right-hand side of the rule instead of using a global, it would have
made the whole testing process more complicated.

Having this kind of Contexts and Dependency Injection (CDI) global variables
makes our knowledge bases more test-friendly, we can always provide mock
versions of them that facilitate the particular testing process that we are dealing with.

Debugging the left-hand side of a rule
From all the different components of a KIE Base (rules, functions, globals, and so on),
the most difficult one to debug/troubleshoot is the left-hand side of a rule.

Unlike the right-hand side of a rule, the left-hand side translation to Java is not
straightforward. As we will see in the next chapter, a first glance of this was already
introduced in Chapter 1, Rules Declarative Nature—the left-hand side of all the rules in
a KIE Base is compiled into a network of nodes (which is also known as the PHREAK
network). Inside this network, the relation between a pattern, or even conditions
inside a pattern, and the individual rule that it belongs to can't be determined most
of the time. A single pattern or condition in the PHREAK network could potentially
be related to multiple rules.

While this network of nodes dramatically improves the evaluation time of our
rules, it also makes potential errors more obscure and difficult to troubleshoot.
The following sections in this chapter will try to shed some light over this topic by
providing some techniques and tips to make our work as testers easier.

Chapter 8

[197]

Left-hand side troubleshooting
We have already stated that the left-hand side of a rule is probably one of the most
difficult things to troubleshoot in Drools. Nevertheless, we still have some options to
identify and fix problems in this area. This section is all about that.

However, before we can even start talking about fixing problems, we first need to
identify them. There are typically three types of problems that we can find in the left-
hand side of a rule in Drools:

• Compilation errors
• Runtime errors
• Rules not being triggered when they should

Let's go over these three problem types in greater detail.

Compilation errors
Compilation errors on the left-hand side of a rule are the easiest to identify. If
compilation errors are present in a resource, the entire KIE Base where this resource
is used will not be built.

KieContainer will not complain about the compilation errors
in the KIE bases that it contains, it will return an empty KIE
Base (without rules, globals, and so on) when they are requested
instead. This is the reason why it is so important to always verify
the KIE Container before using it.

Typical cases for compilation errors are as follows:

• Syntax errors: The DRL itself is malformed
• Use of unregistered components: Such as custom accumulate functions

or operators
• Errors related to the model: Non-existing classes, attributes, and so on
• Missing or wrong imports

No matter what type of compilation error we are dealing with, the error message
generated when the corresponding KIE Container is verified will contain enough
information for us to quickly identify its cause.

Rules' Testing and Troubleshooting

[198]

As an example, let's go back to the rule that we took from Chapter 5, Human Readable
Rules, and introduce a compilation error to it, as follows:

rule "Send Suspicious Operation to Audit Service"
when
 $so: SuspiciousOperationXXX()
then
 auditService.notifySuspiciousOperation($so);
end

If you take a close look at the preceding rule, you will notice that now it refers to
a non-existing class called SuspiciousOperationXXX. If we try to validate a KIE
Container that includes this resource, we will receive the following error results:

[ERROR] - chapter05/globals-5/globals-5.drl[28,0]: Unable to resolve
ObjectType 'SuspiciousOperationXXX'
[ERROR] - chapter05/globals-5/globals-5.drl[26,0]: Rule Compilation
error $so cannot be resolved to a variable

Take a look at the org.drools.devguide.BaseTest
class to see how the error messages are formatted.

As we can see, the error results contain a descriptive message about what the specific
error was, along with the failing resource name and the line and column of the error.

Remember that when dealing with resources other than DRL (such as
DSL, Decision tables, Rule Template, and so on), the line and column
numbers of the error results will reference to the generated DRL
resource and not to the concrete resource itself.

Let's now move to a more annoying type of errors: runtime errors.

Runtime errors
Similar to runtime errors in any application, these kinds of errors in Drools are
usually painful to identify beforehand. The consequence of runtime errors in Drools
is particularly risky as they may leave a KIE Session in an invalid state. Drools is
not transactional (unless we use a persistent Drools session, which we will discuss
in Chapter 10, Integrating Rules and Processes) in the sense that if the insertion /
modification / deletion of a fact caused an error, the execution of this session will
be halted at whatever point it is—leaving the offending fact in the session, and most
likely, also leaving rules without being evaluated or executed.

Chapter 8

[199]

This is the reason why testing our rules when using Drools is absolutely mandatory:
the best way to mitigate and reduce the number of potential runtime errors is to
have an extensive set of testing scenarios covering most (if not all) of the possible
situations that our sessions could be exposed to.

The most common causes of runtime errors in Drools are as follows:

• Exceptions thrown by the model: Some of the getters or methods of the
models classes invoked from the left-hand side of a rule may throw an
exception

• Exceptions thrown by a component: Such as functions, custom accumulate
functions, custom operators, and so on

• A bug in Drools: Well…yes, Drools may also have some bugs

Usually, the exceptions generated by runtime errors in Drools will provide a stack
trace showing two important exceptions: the main exception will be related to
Drools' internal classes where the exception occurred and the root exception that is
related to the real cause of the problem.

Let's take the rule about suspicious operations detection from Chapter 5,
Understanding KIE Sessions, as follows:

rule "Detect suspicious amount operations"
when
 $c: Customer()
 Number(doubleValue > amountThreshold) from accumulate (
 Order (state != OrderState.COMPLETED, $total: total)
 from orderService.getOrdersByCustomer($c.customerId),
 sum($total)
)
then
 insert(new SuspiciousOperation(
 $c,
 SuspiciousOperation.Type.SUSPICIOUS_AMOUNT)
);
end

Rules' Testing and Troubleshooting

[200]

Now, let's assume that the getOrdersByCustomer method in the OrderService
implementation we are using may fail with IllegalStateException if there is no
connection to the external host where the service is running. When this exception
occurs, the following stack trace will be generated (the stack trace was shortened to
make it easier to read), as follows:

[Error: orderService.getOrdersByCustomer($c.customerId): No connection
to host]
[Near : {... orderService.getOrdersByCustom}]
 ^
[Line: 1, Column: 1]
at o.m.o.i.r.ReflectiveAccessorOptimizer.compileGetChain(ReflectiveAcc
essorOptimizer.java:435)
… 55 more
Caused by: java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
... 61 more
Caused by: java.lang.IllegalStateException: No connection to host
at org.drools.devguide.chapter05.GlobalsTest$3.
getOrdersByCustomer(GlobalsTest.java:263)
... 62 more

In this case, the main exception provides some information about the
problem and the region in the DRL where it occurred. The root exception
(IllegalStateException) is then shown as the root exception at the end of the
stack trace. This exception shows us exactly where the problem is: GlobalsTest.
java:263.

Even if our rules compile without any problem and we have covered all of the
possible scenarios with unit and integration tests to reduce the risk of runtime errors,
there is still one problem that most of the Drools developers struggle with at some
point: why is the rule not being triggered when it is supposed to?

Rules not being triggered
One of the most frustrating situations when working with Drools is to find that a rule
that should be triggered is not. We are not talking about an error here; this is just the
situation where we build our KIE Base, create a KIE Session, and insert some facts
into it, but for some reason, the rule that we are expecting to be triggered is not.

Now, let's be clear here, 99% of the time, this situation is related to the following
obvious cases:

• The rule is not written to do what we think it is. A common situation is to
misinterpret the intention of a rule and make wrong assumptions about it.

Chapter 8

[201]

• The facts that we are inserting in our KIE Session are different from what we
think they are.

• The KIE Base that we are using doesn't contain the resources that we think it
does. This may sound obvious, but it happens.

The other 1% may be related to a bug in Drools. So, when facing this situation where
our rules are not being triggered, we first have to check, double-check, and triple-
check the three previous bullet points. The following two subsections will present us
some techniques to aid us in this process.

All of the preceding bullet points look pretty obvious, but the first one could
sometimes be trickier than it looks. Inadvertently using the wrong attribute of
a class or wrong operator in a comparison are things that, even when they could
easily happen, are easy to detect and correct. There are some other situations
though where things are not so obvious. Let's take an example of two situations
where the from keyword is used in a way that may look correct but doesn't yield
the expected behavior.

The Chapter 4, Stepping up our Rule Game introduced the from keyword as a way to
write patterns about information that is not a part of the session. The sources of this
information can be external services, global variables, bound variables, and so on.
Contrary to what we may think, Drools doesn't perform any type check between the
left-hand side and the right-hand side of a from keyword; actually, it does check the
types, but it doesn't fail if a mismatch is found.

As an example, let's say we want to write a rule to mark orders having a discount
greater than 90% as a suspicious operation. The rule could be written as follows:

rule "Detect suspicious discount operations"
when
 $c: Customer()
 $o: Order(customer == $c)
 Discount(percentage > 90.0) from $o.discount
then
 insert(new SuspiciousOperation(
 $c,
 SuspiciousOperation.Type.SUSPICIOUS_DISCOUNT)
);
end

Rules' Testing and Troubleshooting

[202]

Let's say we make a mistake (maybe a copy and paste error) when writing the rule
and we use Item.id instead of the Discount.percentage method:

rule "Detect suspicious discount operations"
when
 $c: Customer()
 $o: Order(customer == $c)
 Item(id > 90.0) from $o.discount
 then
 insert(new SuspiciousOperation(
 $c,
 SuspiciousOperation.Type.SUSPICIOUS_DISCOUNT)
);
end

Our first impression is that Drools will fail when the previous rule is compiled, but
that is not the case. Nevertheless, this should throw an exception during runtime,
right? Well, no. What Drools is actually going to do is evaluate the entire pattern as
false. After all, a Discount is not an Item. This behavior, which may look awkward
to Drools' newcomers, is a design feature that allows, among other things, the usage
of heterogeneous collections in the right-hand side of a from keyword without
generating unnecessary errors.

Talking about collections, there is another not-so-obvious situation regarding the
usage of collections in the right-hand side of a from keyword. Imagine that we want
to write a rule to lower the category of a GOLD customers having more than three
suspicious operations. Let's also assume that we have the following service that
returns the collection of suspicious operations for a given customer:

public interface SuspiciousOperationService {
 public Collection<SuspiciousOperation>
 getSuspiciousOperationsByCustomer(Long customerId);
}

As we now know, there are several ways to write the required rule, but let's say that
we come up with the following one:

rule "Low category of customers with suspicious operations"
when
 $c: Customer(category == Category.GOLD)
 Collection(size > 3) from suspiciousOperationService
 .getSuspiciousOperationsByCustomer($c.customerId)
then
 modify($c){setCategory(Category.SILVER)};
end

Chapter 8

[203]

Notice that the rule is using the global service called suspiciousOperationService
to retrieve the collection of suspicious operations for a customer and is also checking
whether the returned collection contains more than three elements.

Now, even if our suspiciousOperationService service is returning a collection
containing more than three SuspiciousOperations for a particular customer, the
rule will not fire.

The reason this rule is never going to be triggered is because of the way Drools
treats collections on the right-hand side of a from keyword. Some of the examples
introduced in the previous chapters already showed this behavior, but it was never
discussed before. Whenever a Collection is found on the right-hand side of a
from keyword, Drools will implicitly iterate over its elements and will evaluate the
corresponding pattern for each of them.

In this particular case, the objects being evaluated on the left-hand side of the pattern
containing the from keyword will be instances of SuspiciousOperation and not a
collection. The pattern will be evaluated once for each of the elements of the collection
on the right-hand side of the from keyword. Because we now know what happens
when incompatible types are evaluated using a from keyword, we can deduce why the
mentioned pattern will always evaluate to false in Drools (unless the service returns a
Collection of Collections of SuspiciousOperations, of course).

The way to avoid the implicit loop in this rule is to collect all the
SuspiciousOperation objects using a from collect pattern:

rule "Low category of GOLD customers with suspicious operations"
when
 $c: Customer(category == Category.GOLD)
 List(size > 3) from collect (
 SuspiciousOperation() from suspiciousOperationService
 .getSuspiciousOperationsByCustomer($c.customerId))
then
 modify($c){setCategory(Category.SILVER)};
end

Even if this implicit loop seems unnatural at first, once we get used to it, we will
discover that it actually provides a very powerful, flexible, and compact way
to iterate over collections, including heterogeneous ones. We can go back to the
examples in Chapter 5, Understanding KIE Sessions to see how services returning a
collection of elements are properly used in a rule.

Rules' Testing and Troubleshooting

[204]

We now know the things that could go wrong on the left-hand side of our rules.
Compilation time and runtime errors are the less problematic of these situations.
Having rules that are not activated when they are supposed to be is one of the
biggest problems we face when authoring rules. Let's introduce some techniques
we could use to understand, detect, and fix these complicated situations in the
following subsections.

Event listeners
Event listeners have already been introduced in Chapter 5, Understanding KIE
Sessions. Out of all the different types of event listeners Drools supports, there are
two that are particularly helpful for identifying problematic situations in our rules:
RuleRuntimeEventListener and AgendaEventListener.

The RuleRuntimeEventListener is more related to the right-hand side of the rules
and can be used to notify whenever a fact is inserted, updated, or removed from
the session. On the other hand, AgendaEventListener can be used to know when
a match (a rule whose left-hand side evaluates to true) is created or cancelled and
when the right-hand side of a rule is actually fired.

One of the situations that was not covered in the previous section when we talked
about rules not being triggered was the possibility of conflicts between different
rules in the same KIE Base.

Let's assume we have the following rule in our KIE Base to lower the category of a
GOLD customer with more than three suspicious operations (this rule is similar to
the one introduced in the previous section, but it doesn't use an external service to
retrieve the suspicious operations of a customer anymore):

rule "Low category of GOLD customers with suspicious operations"
when
 $c: Customer(category == Category.GOLD)
 List(size > 3) from collect (SuspiciousOperation(customer == $c))
then
 modify($c){setCategory(Category.SILVER)};
end

Chapter 8

[205]

As we now know, we have to provide strict tests for any rule we introduce in our
system, so we go ahead and create some unit tests that prove that the rule works
as expected. So far, so good. But remember that unit tests alone are never enough.
Depending on the other rules present in the KIE Base where this rule is deployed, its
behavior may appear to change. All of a sudden, the rule may no longer be triggered
depending on some of the rules included in the KIE Base. What may be happening
is that another rule in the KIE Base is interfering in some way with the rule we just
created. As an example, let's say we also have the following rule in the same KIE Base:

rule "Categorize Customers between 22 and 30"
when
 $c: Customer(age > 21, age < 31, category != Category.BRONZE)
then
 modify($c){setCategory(Category.BRONZE)};
end

This rule sets the category of a customer according to their age. The question is: what
happens if this rule fires before our previous rule? What if we have a 24-year-old
GOLD Customer? In this situation, both rules will match, but depending on which
rule gets executed first, chances are that the rule about suspicious operations never
gets fired.

In large knowledge bases, conflicting rules could create more than a headache.
Event listeners in Drools are one of the resources that we can use to identify where
the problem is. Using a combination of a RuleRuntimeEventListener and an
AgendaEventListener, we could determine when an activation (match) for a rule is
created when a fact is inserted, modified, and more. This information is really useful
when dealing with conflicting rules.

If we don't want to implement our own listeners, Drools already provides some
predefined implementation that will log the information they receive into a
PrintStream. The concrete implementations we are talking about are org.kie.api.
event.rule.DebugRuleRuntimeEventListener and org.kie.api.event.rule.
DebugAgendaEventListener. In Chapter 5, Understanding KIE Sessions, we already
covered how we can register these listeners into a KIE Base. The default behavior
of these implementations is to use System.err as the PrintStream. The concrete
stream to be used can be modified using the corresponding constructor.

Rules' Testing and Troubleshooting

[206]

A simplified example of the output generated by these two event listeners in the
example we have introduced is shown here:

For the complete log, we can run the test in the EventListenerTest
class that is included in the chapter's source bundle.

==>[ObjectInsertedEventImpl: [object: [Customer [id = 1, age=24,
category = GOLD]]]
==>[ObjectInsertedEventImpl: [object: [SuspiciousOperation
[customer=Customer [id = 1, age=24, category = GOLD], type=SUSPICIOUS_
AMOUNT]]]
==>[ObjectInsertedEventImpl: [object: [SuspiciousOperation
[customer=Customer [id = 1, age=24, category = GOLD], type=SUSPICIOUS_
AMOUNT]]]
==>[ObjectInsertedEventImpl: [object: [SuspiciousOperation
[customer=Customer [id = 1, age=24, category = GOLD], type=SUSPICIOUS_
AMOUNT]]]
==>[ObjectInsertedEventImpl: [object: [SuspiciousOperation
[customer=Customer [id = 1, age=24, category = GOLD], type=SUSPICIOUS_
AMOUNT]]]
==>[ObjectInsertedEventImpl: [object: [SuspiciousOperation
[customer=Customer [id = 1, age=24, category = GOLD], type=SUSPICIOUS_
AMOUNT]]]
==>[ActivationCreatedEvent: rule: [Categorize Customers between 22 and
30]]
==>[ObjectUpdatedEventImpl: [object: [Customer [id = 1, age=24,
category = BRONZE]]]
==>[AfterActivationFiredEvent: rule: [Categorize Customers between 22
and 30]]

The first line of the logs (each line starts with the ==> prefix) corresponds to
the insertion of a Customer instance into the session. The following five lines
correspond to the insertion of five SuspiciousOperation objects for the customer
we have inserted before. After this point, the activation (match) of the Categorize
Customers between 22 and 30 rule is created and executed. The execution of this
rule results in the creation of an ObjectUpdatedEventImpl event, which indicates
that a fact was updated in the session. In the logs, we don't see any activation
or execution of the Low category of GOLD customers with suspicious
operations rule. By analyzing the logs and rules, we can deduce that the execution
of Categorize Customers between 22 and 30 results in the modification of the
Customer object in a way that it no longer matches the conditions of Low category
of GOLD customers with suspicious operations—the category of that
customer is now BRONZE.

Chapter 8

[207]

Drools logs
Drools internally uses SLF4J (http://www.slf4j.org/) as its logging framework.
SLF4J is a facade for various logging frameworks, such as Logback (http://
logback.qos.ch/), Log4j (http://logging.apache.org/log4j), and Apache
Commons Logging (https://commons.apache.org/proper/commons-logging/).
By providing a concrete binding to any of these frameworks for SLF4J, we can
enable Drools log messages. The log level we want to use will depend on how much
information we want to get. A good idea is to start with a TRACE level (the name
may change according to the concrete implementation we are using) on the org.
drools package and then narrow down the scope according to the output we get.

Drools internal logs are a very convenient and powerful way to get low-level
information on what's going on inside the PHREAK algorithm and the framework
in general.

Create simpler versions of a rule
Another good technique we could use when dealing with apparently inexplicable
behavior in our rules is to create simpler versions of them just for testing purposes.

Let's say that we have a rule with 10 different patterns and some unit tests for it. Let's
say that, for some reason, a particular test is failing: the rule is not being triggered.
Let's now assume that after applying all the tips and techniques that we have
covered so far, we were not able to find the cause of the problem. What can we do
then?

Even if it may sound obvious, a widely-used technique is to create different versions
of the problematic rule with fewer patterns or fewer conditions in the patterns. The
idea behind this technique is to create a version of the rule that actually fires in order
to find the pattern or condition in a pattern that is preventing the rule to be triggered.

Once the problem is identified, it will typically fall under one of the following points
mentioned in the Rules not being triggered section in this chapter:

• The rule is not written to do what we think
• The facts we are inserting in our KIE Session are not the ones we think

they are

http://www.slf4j.org/
http://logback.qos.ch/
http://logback.qos.ch/
http://logging.apache.org/log4j
https://commons.apache.org/proper/commons-logging/

Rules' Testing and Troubleshooting

[208]

Making our rules simple is not just something we want to do only for testing
purposes. If we have a rule with too many patterns, it is a good practice to split it
into multiple rules, each one inserting a specific object to mark the rule as fired.
Later, another small rule can group those marked objects and trigger the main
consequence of our really complex rule. This would not only allow us to increase the
performance of the session when having many objects, but also to create warning
rules, which check whether only some of the marked objects are present and not the
rest and take compensatory actions, such as sending a warning or invoking some
external service to retrieve more data from a global variable.

Debugging the right-hand side of a rule
As we already know, the right-hand side of a rule in Drools may contain a
combination of the following elements:

• Java sentences: Any regular Java sentence that is allowed in a Java method
can also be used on the right-hand side of a rule in Drools.

• MVEL expressions: If the dialect of the rule is set to mvel, MVEL expressions
are enabled on the right-hand side of the rule in Drools.

• Predefined variables and methods: Variables such as drools and kcontext
and methods such as insert, update, and delete are also allowed. The
special modify(){} structure could also be used on the right-hand side of the
rule in Drools.

In the previous section, we introduced the notion of how, when compiled, the left-
hand side of all the rules in a KIE Base is converted into a network of nodes. For the
right-hand side of the rules, the situation is different. When a KIE Base is compiled,
the right-hand side of each of the rules that it contains is converted into a Java class.
This Java class will basically define a single method containing all the code that was
on the right-hand side of the source rule. Inside the PHREAK network, a reference
to this class is then added as a terminal node (this will be covered in greater detail in
the next chapter).

Even if there is a way to use breakpoints to debug the right-hand side of the rule in
a traditional way, this is only possible under some strict circumstances; this is why
having a useful set of good practices and techniques to make the right-hand side of a
rule easier to debug becomes mandatory.

Chapter 8

[209]

There is a Drools Eclipse plugin that can be used, among other things,
to debug the right-hand side of the rules in a DRL resource. This
capability is only enabled for Drools projects. The scope of this plugin
is beyond this book. More information about how to set up this plugin
in Eclipse can be found in the following Drools' documentation:
http://docs.jboss.org/drools/release/latestFinal/
drools-docs/html/ch01.html#d0e368

Right-hand side troubleshooting
The good news about the right-hand side of a rule being converted into a Java class
is that the errors that we may experience will look much more familiar to us than the
errors found on the left-hand side of it.

Just like with any piece of Java code, two types of errors might be found: compilation
errors and runtime errors.

Compilation errors
Compilation errors are caused by invalid syntax or grammar on the right-hand side
of a rule. Similar to the compilation errors on the left-hand side of a rule, compilation
errors on the right-hand side will create an error containing information about
what the error was and where in the corresponding resource it occurred. The same
consideration for compilation errors on the left-hand side of a rule also applies
here: Drools will not complain about compilation errors in a KIE Base by itself. The
verification of a newly created KIE Container is mandatory.

As an example, let's go back to the rule that was used to send suspicious operations
to an audit service introduced in Chapter 5, Understanding KIE Sessions:

rule "Send Suspicious Operation to Audit Service"
when
 $so: SuspiciousOperation()
then
 auditServiceXXX.notifySuspiciousOperation($so);
end

In the preceding rule, we have intentionally introduced a compilation error: the
name of the global being used as a service was changed from auditService to
auditServiceXXX.

http://docs.jboss.org/drools/release/latestFinal/drools-docs/html/ch01.html#d0e368
http://docs.jboss.org/drools/release/latestFinal/drools-docs/html/ch01.html#d0e368

Rules' Testing and Troubleshooting

[210]

When a KIE Container containing the erroneous rule is validated, the following error
will be generated:

[ERROR] - chapter05/globals-5/globals-5.drl[26,0]: Rule Compilation
error auditServiceXXX cannot be resolved

Similar to the compilation errors on the left-hand side of a rule, the generated error
will indicate what the error was (auditServiceXXX cannot be resolved) and resource
where the error occurred (chapter05/globals-5/globals-5.drl). An estimated
line (26) and column (0) for the error will also be generated.

Using all this information, the identification and resolution of compilation errors in
the right-hand side of a rule is, most of the times, trivial.

Runtime errors
Runtime errors on the right-hand side of a rule are caused by unhandled exceptions
in the code. This type of errors on the right-hand side of the rule are as potentially
harmful as runtime errors on the left-hand side: they can leave a session in an
inconsistent and irrecoverable state. Special attention is then required for this type
of errors in our knowledge bases. Just like we stated before for runtime errors on the
left-hand side of our rules, the best mechanism to mitigate this kind of errors is to
provide an extensive set of test scenarios covering all the different situations that our
sessions could be exposed to.

Using the same rule from the previous section, now let's see what happens if the
audit service used by this rule throws an exception during runtime. In this scenario,
IllegalStateException will be thrown if the audit service can't be contacted.
The stack trace generated during runtime for this scenario will look similar to the
following (the stack trace was shortened to make it easier to read):

Exception executing consequence for rule "Send Suspicious Operation to
Audit Service" in chapter05.globals5: java.lang.IllegalStateException:
Unable to contact Audit Service: No route to host.
 at o.d.c.r.r.i.DefaultConsequenceExceptionHandler.handleException(
DefaultConsequenceExceptionHandler.java:39)
 at o.d.c.c.DefaultAgenda.fireActivation(DefaultAgenda.java:1083)
... 37 more
Caused by: java.lang.IllegalStateException: Unable to contact Audit
Service: No route to host.
 at org.drools.devguide.chapter05.GlobalsTest$4.notifySuspiciousOpe
ration(GlobalsTest.java:286)
 at chapter05.globals5.Rule_Send_Suspicious_Operation_to_Audit_
Service1050594099.defaultConsequence(Rule_Send_Suspicious_Operation_
to_Audit_Service1050594099.java:7)
... 40 more

Chapter 8

[211]

The preceding stack trace shows the IllegalStateException being thrown by the
service, and where in our code, the exception actually takes place. There are two
important things to notice in the stack trace, other than the concrete exception: one
is where the exception actually occurred. In this case, the concrete implementation
of the service being used is defined as an anonymous class (GlobalsTest$4) in
GlobalTest.java. The second thing to notice is where in our rule is the exception
thrown. In this case, the class where the exception is thrown is Rule_Send_
Suspicious_Operation_to_Audit_Service1050594099. This is the class that
Drools generated for the right-hand side of the rule when it was compiled. We will
come back to these generated classes later in this chapter.

Right-hand side good practices
Some of the good practices regarding the right-hand side of the rules that were
already covered in this chapter and some of the good practices regarding the left-
hand side also apply here. The use of global variables to reference services, for
example, makes our rules independent of the context. Different context (that is,
production, testing, and so on) could use different implementations of these global
variables to obtain different behaviors. Using event listeners, we can also be aware
of when the right-hand side of a rule modifies the state of the session by inserting,
updating, or deleting facts.

As debugging the right-hand side of the rules requires some extra steps (either the
Drools Eclipse plug-in or the generation of the corresponding Java classes), creating
simple right-hand sides, when possible, is always a good idea. For example, instead
of having 10 lines of code in the action part of a rule, we could extract this into a
regular Java class and invoke it from the rule. This simplification will allow us to
easily debug our Java class and not worry about the rule itself.

Along with keeping the right-hand side of our rules simple, we must also avoid any
unhandled exception to happen in it. We already talked about the problems that this
kind of exceptions cause in Drools.

Another good practice that should sound obvious for any experienced developer is
to use a logger framework. Remember that the right-hand side of our rules is just
Java. We could, and should, use a logger in our rules to get a more detailed idea of
what is going on in our knowledge bases.

Rules' Testing and Troubleshooting

[212]

Dumping the generated Java classes
As already mentioned earlier, the right-hand side of our rules is converted, on
the fly, into Java classes by Drools. This conversion is, by default, invisible to the
application using Drools: we never get to see these generated classes. When dealing
with errors on the right-hand side of a rule it is, sometimes, useful to understand
which exact Java code is being executed during runtime.

Thankfully, Drools allows us to dump the generated Java classes from our rules into
a directory in the filesystem. These classes are not only useful to understand what
is the concrete Java code that is being executed by Drools, but they can also be used
to attach a debugger to them in order to debug the right-hand side of the rules as a
regular class.

Drools provides two simple ways to enable the dump of the generated classes into a
directory via a system property or declaratively in the kmodule.xml file.

Using the drools.dump.dir system variable, the directory where we want to dump
the generated classes can be specified. For example, if we are using Maven to run our
tests and want to dump any generated class, we can invoke the following command:

mvn test -Ddrools.dump.dir="/tmp/classes"

We could achieve the same result by adding the following property to our
<kmodule> section in the kmodule.xml files:

<kmodule>
 <configuration>
 <property key="drools.dump.dir" value="/tmp/classes"/>
 </configuration>
 ...
</kmodule>

If we take a look at the kmodule.xml file present in the code bundle associated with
this chapter, we will notice that it is actually using the property that was mentioned
earlier.

To get a better understanding of how these classes look and how the code on the
right-hand side of our rules is executed inside them, it is highly recommended to
execute the tests associated with this chapter. To get an even better understanding,
try to use the drools.dump.dir property in other examples of this book.

Chapter 8

[213]

Reporting a bug in Drools
Despite being a mature framework, Drools is not immune to bugs of course. When a
bug is found, the best thing we can do as a Drools' user is report it. Drools' issues are
tracked in the following web application: https://issues.jboss.org/projects/
DROOLS

Before reporting an issue, we should always do some research and check whether
the issue is not already reported. If we are dealing with an unreported issue, the best
way to make it attractive to the Drools' team—and probably increasing the chances
to be resolved—is to provide a complete description of the problem along with
a self-contained Maven project, exposing the issue in one or more unit tests.
Self-contained tests can also be submitted via pull-requests to the Drools
GitHub repository at https://github.com/droolsjbpm/drools.

Once the issue is created, we can keep a track of it either in the issue tracker
application or by joining the #drools channel on www.freenode.net IRC and
politely asking the team if they have any update.

Summary
After reading this chapter, you should have a better understanding of why
debugging and testing our rules in Drools is, most of the time, not trivial. The
declarative nature of Drools might be a double-edged sword—very powerful for
knowledge declaration but not so easy to test. Errors in the rules were categorized
according to their source and cause and a detailed explanation on how they can be
prevented or mitigated was also included. The chapter also provided a list of good
practices and techniques to make the whole process easier. The techniques that were
covered involved the use of global variables, event listeners, loggers, and some other
good practices to both simplify and enhance the overall testing experience in Drools.

This chapter also introduced some concepts such as the PHREAK network and its
nodes that serve as a kick off for the next chapter. Let's move to the next chapter and
start talking about Drools' internals.

https://issues.jboss.org/projects/DROOLS
https://issues.jboss.org/projects/DROOLS
https://github.com/droolsjbpm/drools
www.freenode.net

[215]

Introduction to PHREAK
As we already know, the pattern matching algorithm behind Drools 6 is called
PHREAK. This algorithm is an evolution of the one used in previous versions of
Drools: the RETE (also known as RETEOO) algorithm.

Even if, from previous chapters, we already have some idea of what PHREAK is and
how it works, understanding its internals in more detail will give us the opportunity
to write better and more performant rules. Another advantage of knowing how
Drools works internally is that it will considerably increase our options when
troubleshooting our knowledge assets.

One of the major drawbacks of PHREAK (in contrast to RETE) is that the former is
a brand new algorithm that was developed for Drools and by the Drools team itself.
The disadvantages of this young algorithm are the lack of adoption and the scarce
documentation it provides. But don't be alarmed! PHREAK has so far shown itself
to be a production-quality algorithm, able to deal with the complexities of critical
applications in a variety of scenarios.

The idea of this chapter is to provide an introduction to the PHREAK algorithm,
its characteristics, and particularities. To better understand the algorithm, different
concrete examples will be presented and explained throughout this chapter.

The topics covered in this chapter are:

• A PHREAK introduction
• PHREAK network and nodes
• Concrete examples of different PHREAK networks
• Queries and backward-chaining reasoning in the context of PHREAK

Introduction to PHREAK

[216]

Given the finite space we have, the goal of this chapter is to
serve as an introduction to Drools' PHREAK algorithm. Most
of the concepts in this chapter are oversimplified to make
them easier to explain and learn. After grasping the initial
ideas behind PHREAK, you are recommended to head to
Drools' documentation at: (http://docs.jboss.org/
drools/release/6.3.0.Final/drools-docs/html_
single/#ReteOO), if a deeper understanding is required.

Let's start with an introduction to the PHREAK algorithm and its components.

Introducing PHREAK
One of the first assumptions Drools' newcomers make is that rules in a DRL file are
evaluated in the same order they are defined, as if each rule were some kind of if
statement from an imperative language forming a sequential evaluation structure.
But evaluating rule conditions in sequence is neither efficient nor scalable at all. Even
worse, adding inference capabilities into this scenario would also be a nightmare.

In the mid-seventies, Dr. Charles L. Forgy introduced a new pattern matching
algorithm to be used in production systems, called RETE (https://en.wikipedia.
org/wiki/Rete_algorithm). The RETE algorithm sacrificed memory for increased
speed, providing an improvement in several orders of magnitude over traditional
pattern-matching algorithms. Ever since, multiple production rule systems have been
using a derived or customized version of RETE as their pattern matching internal
algorithm. This chapter is based on Drools' implementation of RETE and its latest
evolution: PHREAK.

PHREAK shares most of the concepts present in RETE— especially with the
object-oriented version of RETE implemented since Drools 2.0—and it is impossible
to explain one without the other. We will first start with the common concepts
between the two algorithms and then focus on the improvements of PHREAK
over RETE.

http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/#ReteOO
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/#ReteOO
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/#ReteOO
https://en.wikipedia.org/wiki/Rete_algorithm
https://en.wikipedia.org/wiki/Rete_algorithm

Chapter 9

[217]

Like RETE, PHREAK decomposes the patterns and constraints present in the
left-hand side of the rules to create a directed network of nodes:

In PHREAK, the first level of nodes in the network is composed of entry-point (EP)
nodes. Entry-points were introduced in Chapter 6, Complex Event Processing, as a way
to partition the source of our facts. Each entry-point defined in a knowledge base will
correspond to a node in the generated network.

Whenever a fact is inserted into a session, it will enter the PHREAK network through
the corresponding entry-point node where the fact was inserted; if not specified, the
default entry-point in Drools is called DEFAULT. The fact will then traverse each of the
connected nodes in the network. Each node will perform some kind of evaluation on
the fact that will determine whether it should be propagated or not to the next node.

Introduction to PHREAK

[218]

The nodes in the PHREAK network are divided into three different categories,
according to the type of evaluation they perform on the fact that is traversing it:
Object Type Nodes (OTN), Alpha Nodes, and Beta Nodes. Every possible path in
the PHREAK network ends either in a Rule Terminal Node or a Query Terminal
Node (QTN). The former are in charge of the execution of the right-hand side logic
of the rule they represent (in PHREAK there is one Rule Terminal Node for each of
the rules in the knowledge base), and the latter are associated with the execution of
the queries present in the knowledge base.

The following sections in this chapter are focused on the three types of evaluation
nodes present in the PHREAK network: Object Type Nodes, Alpha Nodes, and
Beta Nodes.

Object Type Nodes
Object Type Nodes perform a type evaluation on the fact being tested. This evaluation
can be seen as an instanceof operation over the fact. Only when the current fact is an
instance of the type (Java class) the node represents, will the fact be propagated to the
next node/s in the network. The PHREAK network will contain as many Object Type
Nodes as distinct classes used in the patterns of the rules it represents. This implies
that rules using the same class in a pattern will share the same Object Type Node in
the PHREAK network. So, when a particular Object Type Node is being evaluated, all
the rules related to it are being evaluated at the same time.

It is important to note that a single fact may satisfy multiple
Object Type Nodes in a network. For example, a fact of type
java.lang.String will satisfy an Object Type Node of
type java.lang.String, but it will also satisfy another
node of type java.lang.Object.

As an example, let's analyze the PHREAK network generated by the following
two rules:

rule "Sample Rule 1"
when
 $c: Customer()
then
 channels["customer-channel"].send($c);
end

rule "Sample Rule 2"
when
 $o: Order()

Chapter 9

[219]

then
 channels["order-channel"].send($o);
end

The preceding rules each define a simple pattern. The patterns in this case are of two
different classes: Customer and Order, which means that the generated PHREAK
network will contain two different Object Type Nodes:

The preceding network is composed of a single Entry-point Node (EP), three Object
Type Nodes (OTN), and two Rule Terminal Nodes (RTN). The extra Object Type
Node in the network—of type InitialFactImpl—is used to support some special
patterns in Drools that will be covered later in this chapter.

When a fact is inserted through the only entry-point in the knowledge base, the three
Object Type nodes will be evaluated. If the fact is of type Customer or Order, the
corresponding Rule Terminal Node will be executed. It is important to remember
at this point that Drools separates the rule evaluation phase from the rule execution
phase. The execution of a Rule Terminal Node will not execute the right-hand side
code from the corresponding rule; it will just notify the Drools Agenda that a new
match for the corresponding rule is ready to be executed.

The code bundled with this book contains a module called
phreak-inspector used to generate the PHREAK diagrams
for this chapter. The code associated with this chapter shows
how phreak-inspector can be used and how the diagrams
in this chapter can be recreated.

The Object Type sub-network (composed of all the Object Type Nodes in the
network) is always present in PHREAK and its depth is always 1: we will never find
an Object Type Node followed by another Object Type Node.

Introduction to PHREAK

[220]

Alpha Nodes
In Drools, a pattern may contain no or multiple constraints. Each individual constraint
a pattern has is represented in the PHREAK network as an Alpha Node. This type of
node is then in charge of the evaluation of the particular constraint it represents. If the
constraint evaluates to true, the next node in the network will be evaluated:

rule "Sample Rule 1"
when
 $c: Customer(age > 30, category == Category.GOLD)
then
 channels["customer-channel"].send($c);
end

The preceding rule contains a single pattern with two constraints: one on the age
attribute and another on the category attribute. Each of these constraints will be
represented as an Alpha Node in the corresponding PHREAK network:

When a Customer fact is inserted in the network shown earlier, the first Alpha
Node will be evaluated. If the age of the Customer is less than or equal to 30, the
propagation will stop and the next Alpha Node in this path will not be evaluated at
all. If the age of the Customer is indeed greater than 30, the next Alpha Node will be
evaluated and, if it also evaluates to true (meaning that the Customer's category is
GOLD), a match will be created in the Agenda for the Sample Rule 1 rule.

The order of the Alpha Nodes in the PHREAK network depends on the order
in which the corresponding constraints are defined in DRL. If the age constraint
precedes the category constraint in a rule, the age Alpha Node will precede the
category Alpha Node in the generated network.

Chapter 9

[221]

Alpha Node sharing
Just like with Object Type Nodes, Alpha Nodes can be shared among multiple rules
(or patterns inside a rule) in a knowledge base. If the same constraint is used in more
than one pattern, Drools will optimize the creation of the PHREAK network and a
single Alpha Node will be used.

Let's assume the following two rules:

rule "Sample Rule 1"
when
 $c: Customer(age > 30, category == Category.GOLD)
then
 channels["gold-customer-channel"].send($c);
end

rule "Sample Rule 2"
when
 $c: Customer(age > 30, category == Category.SILVER)
then
 channels["silver-customer-channel"].send($c);
end

The earlier two rules have the same condition (age > 30) duplicated. The
corresponding PHREAK network for these two rules will look like the following one:

As we can see, the Alpha Node that corresponds to the duplicated constraint only
appears once in the network. In addition to saving some memory, Alpha Node
sharing reduces the evaluation time of a knowledge base because a condition that is
present in multiple rules needs to be evaluated just once.

Introduction to PHREAK

[222]

We have already mentioned that the order of the constraints in a pattern dictates
the order of the corresponding Alpha Node in the PHREAK network. This concept
is particularly important regarding Alpha Node sharing. For an Alpha Node to be
shared, the order of the constraint must be the same in all the patterns. For example,
the following two rules are semantically identical to the two rules introduced before,
but the order of the constraints in the pattern in the second rule was altered:

rule "Sample Rule 1"
when
 $c: Customer(age > 30, category == Category.GOLD)
then
 channels["gold-customer-channel"].send($c);
end

rule "Sample Rule 2"
when
 $c: Customer(category == Category.SILVER, age > 30)
then
 channels["silver-customer-channel"].send($c);
end

If we analyze the PHREAK network generated by the new version of our rules, we
will notice something interesting:

Because the order of the age constraint is not the same in the two rules, the
corresponding PHREAK network will contain a duplicated alpha node. The major
drawback here is that certain facts (for example, a SILVER Customer) will trigger the
same evaluation over the same logical constraint multiple times.

Chapter 9

[223]

Constraint JIT compilation
In order to evaluate the constraints of the rules in a knowledge base, Drools heavily
relies on MVEL. MVEL, by default, uses an interpreter to evaluate the constraint
expressions. This means that, most of the time, the evaluation of a constraint is not
really happening at the Java bytecode level, which means that it is not as efficient as
it could be.

Fortunately, Drools provides a way to compile an MVEL expression into Java
bytecode. Because this compilation happens in runtime, it is usually referred as
JIT (just-in-time) compilation. But of course, there is a catch. Otherwise, why does
Drools not simply compile to bytecode all the constraints in a knowledge base? One
of the major drawbacks of JIT compilation is that it could be memory-intensive and
may create problems related to the permanent generation heap.

The way Drools deals with this drawback in JIT compilation is by using a threshold
on the number of times a constraint is evaluated before it is compiled into bytecode.
The assumption here is that, if a constraint is never evaluated, or is only evaluated
a couple of times, it is more efficient to evaluate it in interpreted mode than to JIT-
compile it. In Drools 6.3 the default threshold is 20 times.

There are two common ways in Drools to tune the default JIT threshold according to
the specific needs of an application:

• By using the drools.jittingThreshold system property when running
our application—that is, -Ddrools.jittingThreshold=10 to reduce the
threshold to 10 times

• By setting the desired threshold value in the KieBaseConfiguration object
used to create our KIE Bases:
KieBaseConfiguration kbConfig = KieServices.Factory.get().
newKieBaseConfiguration();
kbCofig.setOption(ConstraintJittingThresholdOption.get(10);

The entire JIT compilation can be disabled by setting a negative threshold value.

Beta Nodes
The rules covered so far in this chapter were constrained to none or a single pattern.
We know so far that the type of the pattern is converted by Drools into an Object
Type Node and that each of the constraints they contain is translated into an Alpha
Node. But what happens when a rule is composed of more than one pattern? The
answer is simple: a Beta Node representing the join operation between each pair of
patterns is created.

Introduction to PHREAK

[224]

A Beta Node has two inputs and one or more outputs and it will wait until data is
available in both inputs before moving to the next node/s in the network.

As an example, let's evaluate the PHREAK network generated by the following rule:

rule "Sample Rule 1"
when
 $p: Provider(rating > 50)
 $pr: ProviderRequest()
then
 channels["request-channel"].send($pr);
end

The rule is straightforward: for each Provider with a rating greater than 50 and the
ProviderRequest fact, an activation of the rule will be placed in Drools Agenda. The
corresponding PHREAK network for this rule will look like the following:

In the preceding PHREAK network, we can easily identify the two Object Type
Nodes for our two patterns and the Alpha Node for the rating constraint. We can
also see that the patterns in the network are joined by a Beta Node. Because there
is no explicit relation between the Provider and the ProviderRequest in our
sample rule, the Beta Node will create the Cartesian product of all the Provider
and ProviderRequest facts it has in its inputs. Each of the generated tuples will be
propagated to the next node. In this case, the Rule Terminal Node will determine
that a new activation for the rule should be placed in the Agenda.

If we want to avoid the full Cartesian product of our facts, we can set a constraint on
the provider attribute of the ProviderRequest pattern:

rule "Sample Rule 1"
when
 $p: Provider(rating > 50)
 $pr: ProviderRequest(provider == $p)
then
 channels["request-channel"].send($pr);
end

Chapter 9

[225]

Now, the rule is not interested in any ProviderRequest, but only in those who
are related to the Provider matched in the previous pattern. When a constraint
involves a variable that is bound to something that is external to the pattern where it
is defined, the evaluation of the constraint doesn't happen inside an Alpha Node but
instead inside the Beta Node performing the corresponding joining. In our sample,
the PHREAK network will now look like the following:

The Beta Node in the preceding network will not create the full Cartesian product of
the facts coming from its inputs this time. Only those tuples matching the constraint
in the Beta Node will be forwarded to the next node in the network.

Beta Node sharing
It shouldn't come as a surprise at this point that Beta Nodes can also be shared
among multiple rules in the PHREAK network. As an example, let's see how Drools
models the PHREAK network for the following two rules:

rule "Sample Rule 1"
when
 $p: Provider(rating > 50)
 $pr: ProviderRequest()
then
 channels["provider-channel"].send($pr);
end

rule "Sample Rule 2"
when
 $p: Provider(rating > 50)
 $pr: ProviderRequest()
 $o: Order()
then
 channels["order-channel"].send($o);
end

Introduction to PHREAK

[226]

The first two patterns in the preceding rules are identical. We already know that the
Alpha Node belonging to the constraint on the first pattern will be shared among
the rules. What we didn't know yet was that the Beta Node for the join between the
Provider and ProviderRequest patterns will also be shared:

As we can see, the Beta Node at the top is shared among both rules.

It is important to note that, in order for a Beta Node to be shared, the order of the
patterns in the rules matters. The concept is similar to the order of the constraints in
a pattern when we were talking about Alpha Node sharing: if the order is not the
same, Drools will not optimize it. For example, if we modify the second rule in our
example by inverting the order of the first two patterns, the semantics of the rule
doesn't change, but its underlying implementation in PHREAK does:

rule "Sample Rule 2"
when
 $pr: ProviderRequest()
 $p: Provider(rating > 50)
 $o: Order()
then
 channels["order-channel"].send($o);
end

The resulting PHREAK network in this case will look like the following:

Chapter 9

[227]

Because the order of the first two patterns in our rules is no longer the same, a new
Beta Node now appears in the corresponding PHREAK network. But the order of
the patterns is not the only thing that matters when it comes to Beta Node sharing:
the nodes previous to a shared Beta Node must also be the same in order for Drools
to optimize it. As an example, let's go back to our original rules, but let's change the
rating constraint of the Provider in the second rule to 60:

rule "Sample Rule 2"
when
 $p: Provider(rating > 60)
 $pr: ProviderRequest()
 $o: Order()
then
 channels["order-channel"].send($o);
end

What we have basically done is to break the shared Alpha Node both rules had. This
means that our Beta Nodes for the first two patterns have different inputs now:

Introduction to PHREAK

[228]

The preceding network now shows two different Alpha Nodes that result in two
different Beta Nodes.

As we can see, Beta Node sharing is not particularly easy to achieve; when designing
our rules, we must always try to keep the same order between patterns and
constraints inside the patterns when they are reused among multiple rules. DSL,
Templates, and Decision Tables are all good alternatives to ensure that this order is
kept for large knowledge bases.

Or between patterns
A curious thing happens in the PHREAK network when the or conditional element
is used between patterns. As a matter of fact, Drools doesn't really understand the or
conditional element at all; what it does is to convert it into a semantically equivalent
set of sub-rules inside the PHREAK network.

As an example, let's assume we have a rule to detect when a Customer that is not
GOLD has a SuspiciousOperation or an Order bigger than $100,000. This rule can be
written as follows:

rule "Sample Rule 1"
when
 $c: Customer(category != Category.GOLD)
 (
 Order(customer == $c, total > 10000) or
 SuspiciousOperation(customer == $c)
)
then
 channels["suspicious-customer"].send($c);
end

Ideally, we should have used the conditional element exists to make sure
we don't have multiple activations of this rule when multiple Orders or
SuspiciousOperations for a customer exist. But, given that we haven't yet
introduced the exists conditional element in this chapter, we will not use it.

Chapter 9

[229]

The preceding rule will be converted by Drools into the following PHREAK network:

The network above shows the two sub-rules generated by Drools, evidenced by
the presence of a duplicated Rule Terminal Node for the single rule we had. What
Drools has basically done is to split the original rule into the following two rules:

rule "Sample Rule 1.1"
when
 $c: Customer(category != Category.GOLD)
 Order(customer == $c, total > 10000)
then
 channels["suspicious-customer"].send($c);
end

rule "Sample Rule 1.2"
when
 $c: Customer(category != Category.GOLD)
 SuspiciousOperation(customer == $c)
then
 channels["suspicious-customer"].send($c);
end

Each sub-rule in the PHREAK network is now independent: both of them can be
independently activated and fired. This explains why there is no such thing as a
short-circuit between patterns in Drools.

Special nodes in the network
So far we have covered the basic types of nodes present in PHREAK that allow us
to create simple rules in Drools. But there are some others nodes with very specific
behaviors that are used for some conditional elements we haven't discussed so far.
This section will analyze the most commonly used of these conditional elements: not,
exists, accumulate, and from.

Introduction to PHREAK

[230]

The Not Node
The not conditional element is the non-existential quantifier in Drools that checks for
the absence of one or more patterns in the working memory.

Drools provides a specialized version of a Beta Node to implement the necessary
logic of the not conditional element.

As an example, let's use the following rule:

rule "Sample Rule 1"
when
 $c: Customer()
 not (SuspiciousOperation(customer == $c))
then
 channels["clean-customer-channel"].send($c);
end

This rule is activated when there is a Customer in the session without any
SuspiciousOperation. With this example, we can tell that the not element must be
some kind of Beta Node because it is actually performing a join operation between
two patterns. But the join operation is not the one we have covered so far. For this
particular node, the execution should only continue if the negated pattern is not
present in the session:

In the generated network, the Not Node looks like a regular Beta Node, but we now
know that its behavior is not. If we first insert a Customer fact in our session, the
Not Node will have data in one if its inputs (Customer OTN) but not in the other
(SuspiciousOperation OTN). In this case, the execution will continue to the next node
in the path.

If, before a Customer, we first insert a SuspiciousOperation fact, when the Not
Node is evaluated it will have data in both of its inputs; the execution will then be
terminated. If we then retract our SuspiciousOperation from the session, the Not
Node will now evaluate to true and the next node in the path will be executed.

Chapter 9

[231]

Let's now consider a situation where we want a rule to be executed when we don't
have any SuspiciousOperation in our session regardless of the Customer. This rule
could be written as follows:

rule "Sample Rule 1"
when
 not (SuspiciousOperation())
then
 channels["audit-channel"].send("OK");
end

We mentioned before that the Not Node is a specialized type of Beta Node. We
also know that Beta Nodes require two inputs. But, in this scenario, there is no
other pattern in our rule we can join to the Not Node. How does Drools solve this
situation? In the previous version of this rule, the Customer pattern triggered the
evaluation of the Not Node. In other words, when a Customer was inserted, the
corresponding OTN was evaluated and then the Not Node was. But now we don't
have any fact that could trigger our node:

The answer to this problem is the InitialFactImpl fact. The InitialFactImpl fact
is a special fact that is always present (but not always used) in a PHREAK network.
Every time a new KIE Session is created, an InitialFactImpl is automatically
inserted into it. This will allow patterns such as the not conditional element to be
evaluated in situations such as the one we have described here.

The implication of the InitialFactImpl fact in our particular PHREAK network
is that, as soon as a KIE Session is created from it, the Sample Rule 1 rule will
be activated.

The Exists Node
The exists conditional element is used to test the presence of one or more patterns
in the working memory. No matter how often this pattern is present, the exists
conditional element will only be triggered once. Just like the not conditional event,
exists is also implemented in Drools by a specialized version of a Beta Node: the
Exists Node.

Introduction to PHREAK

[232]

To demonstrate how this node is implemented in Drools, let's take the opposite
of the rule we introduced in the previous section: a rule that is activated when a
Customer has one or more SuspiciousOperations:

rule "Sample Rule 1"
when
 $c: Customer()
 exists SuspiciousOperation(customer == $c)
then
 channels["dirty-customer-channel"].send($c);
end

Without the exists conditional element, this rule will be individually activated for
each of the SuspiciousOperations a Customer may have. With the use of the exists
conditional element, we are telling Drools that we only want this rule to be activated at
most once per Customer. The PHREAK network generated by the preceding rule looks
exactly like the one we had when using the not conditional element. The difference
here is in the behavior of the Exists Node compared to the Not Node:

In this case, the Exists Node will keep track of the SuspiciousOperations facts
and will only evaluate to true when it has at least one of them in the corresponding
input. As soon as this input is empty, the Exists Node will evaluate to false.

It is also common in Drools to use an exists conditional element without any
other pattern preceding it. For example, a rule that is activated when at least one
SuspiciousOperations is present in our session could be written as follows:

rule "Sample Rule 1"
when
 exists SuspiciousOperation()
then
 channels["audit-channel"].send("FAIL");
end

In this case, like when we were using the not conditional element, we don't have any
pattern (or node, in our PHREAK network) that causes the evaluation of our Exists
Node. The solution here is similar to the one before: the InitialFactImpl fact.

Chapter 9

[233]

In this case, the InitialFactImpl fact is used as an aid: its corresponding input in
the Exists Node will always contain a fact. This means that the only fact this node, in
this particular situation, is interested in, is the SuspiciousOperation one.

The Accumulate Node
Another very useful conditional element in Drools is the accumulate element. This
conditional element was introduced in Chapter 4, Improving Our Rule Syntax, as a
way to execute accumulate functions over the facts in a KIE Session. In PHREAK,
an accumulate conditional element is represented with a variation of a Beta Node,
called an Accumulate Node. The Accumulate Node will execute the corresponding
accumulate functions over the facts incoming from one of its inputs. After the
functions are applied, the execution will always continue to the next node in the path.

To see how an accumulate conditional element is treated by Drools, let's analyze the
following rule:

rule "Sample Rule 1"
when
 $c: Customer()
 accumulate(Order(customer == $c), $n: count(1))
then
 channels["audit-channel"].send($n);
end

Nothing new here. The rule is just counting all the Orders of each Customer we have
in our session. Let's now see how the corresponding PHREAK network looks:

Introduction to PHREAK

[234]

The first thing to notice in the network is the new Accumulate Node. In our scenario,
the Accumulate Node will apply the count function to each of the incoming Order
facts. Then, a tuple containing the result of the accumulate function and each of the
Customers present in the other input will be propagated to the next node.

Another important thing to notice is that the constraints in the Order pattern
(customer == $c) are not part of the network itself. The Accumulate Node
will internally resolve any constraint before executing the corresponding
accumulate function.

When an accumulate conditional element is used before any other pattern in a rule,
the InitialFactImpl fact is again used as an aid. For example, the following rule
could be used to count all the Order facts in a session:

rule "Sample Rule 1"
when
 accumulate(Order(), $n: count(1))
then
 channels["audit-channel"].send($n);
end

In this case, the generated PHREAK network will look like the following one:

Once again, the InitialFactImpl fact comes to the rescue of Beta Nodes without
two explicit input nodes.

The From Node
Chapter 4, Improving Our Rule Syntax also introduced a way to reason about objects
that are not facts in our session through the use of the from conditional element.
Because the PHREAK network is all about the evaluation of actual facts in a session,
the implementation of the from conditional element in Drools is a bit obscure: the
conditional element is represented in the PHREAK network as a single node, where
both its right-hand side and left-hand side are executed and evaluated.

Chapter 9

[235]

To illustrate how a from conditional element is represented in PHREAK, let's
consider the following rule:

rule "Sample Rule 1"
when
 $o: Order()
 $ol: OrderLine(
item.category == Category.HIGH_RANGE,
quantity > 10) from $o.getOrderLines()
then
 channels["audit-channel"].send($ol);
end

The preceding rule is activated for each OrderLine in an Order fact containing more
than 10 High Range items. In this case, the OrderLines themselves are not facts in
the session: they are taken from each Order using a from conditional event. Now
that we know how patterns and their constraints are represented in PHREAK, we
would expect the generated network for this example to contain an OrderLine OTN
followed by two Alpha Nodes: one for the category constraint and another for the
quantity constraint:

To our surprise, the entire left-hand side of the from conditional element was
not translated into PHREAK nodes. As mentioned before, the truth is that the
OrderLines we are evaluating in our rule are not facts; that is why the evaluation
path is not represented in PHREAK. When the From Node is executed in the
preceding network, the right-hand side will be executed and the pattern on the
left-hand side evaluated for each of the resulting objects.

Now that we have some understanding of how Drools evaluates the rules in our
knowledge bases, let's move to another topic that was not covered so far in this book:
backward-chaining reasoning.

Introduction to PHREAK

[236]

Queries and backward-chaining
Queries were introduced in Chapter 5, Understanding KIE Sessions, as a way to retrieve
information from a KIE Session. But queries are much more powerful than that in
Drools. As a matter of fact, queries are the way Drools implements what is called
backward-chaining reasoning. But before entering this new topic, and given that
we were already talking about PHREAK, let's see how a regular query looks in the
PHREAK network.

For this section of the book, we are going to introduce a new Java class that will be
used to establish a whole-part relationship between Item objects. What this means it
that an Item can now be composed of other Items:

The whole-part relationship between Items is modeled as a generic class, called
IsPartOf. This generic class allows us to define non-intrusive relationships, not
just between Items, but also between any other types of object in our model. As
an example, if we want to specify the relation between a car, an engine, and a
distributor Item, we can do it with the following code snippet:

//The constructor arguments are: name, cost and sale price.
Item car = new Item("car", 15000D, 20000D);
Item engine = new Item("engine", 5000D, 7000D);
Item distributor = new Item("distributor", 200D, 280D);
//The constructor arguments are: whole and part
IsPartOf<Item> r1 = new IsPartOf<>(car, engine);
IsPartOf<Item> r2 = new IsPartOf<>(engine, distributor);

If all the Item and IsPartOf objects are facts in a knowledge base, we can write the
following query to know whether an Item is part of another:

query isItemContainedIn(Item p, Item w)
 IsPartOf(whole == w, part == p)
end

Chapter 9

[237]

The preceding query has one major limitation: it doesn't expose the transitivity
of the IsPartOf relationship. In other words, if we use this query to ask whether
a distributor is part of a car, the answer will be no. We will take care of this
limitation later; for now, let's see how the PHREAK representation of the preceding
query looks:

The first interesting thing to notice in the preceding PHREAK network is the
presence of a DroolsQuery OTN. This class is used to represent every query in
Drools, and it contains information such as the name and arguments of the query
it represents. When a query is invoked in Drools, a new instance of this fact will
be created with the corresponding name and arguments and inserted into the KIE
Session as a fact.

The first node after the DroolsQuery OTN is the Alpha node that discriminates
the name of the query. The Beta Node that follows joins the DroolsQuery and the
IsPartOf patterns. This is indeed a Beta Node because the w and t variables used in
the IsPartOf pattern are bound to the arguments of the DroolsQuery fact.

The last node in the network is a new type of node: a Query Terminal Node. This
node will be in charge of the generation of the query result.

Unification
Drools supports argument unification in its patterns via the := symbol. This means
that the same variable can be used in multiple places: the first occurrence of the
variable will bind it to a value and any other occurrence will constrain to that
same value.

Let's take the following rule from Chapter 6, Complex Event Processing and rewrite it
using unification:

rule "More than 10 transactions in an hour from one client"
 when
 $t1: TransactionEvent($cId: customerId)
 Number(intValue >= 10) from accumulate(
 $t2: TransactionEvent(
 this != $t1,

Introduction to PHREAK

[238]

 customerId == $cId,
 this meets[1h] $t1
),
 count($t2)
)
 not (SuspiciousCustomerEvent(customerId == $cId, reason ==
"Many transactions"))
 then
 insert(new SuspiciousCustomerEvent($cId, "Many
transactions"));
end

The variable $cId in the preceding rule is bound (defined) in the first pattern and
then used in the following two. Using unification, this same rule could have been
written as follows:

rule "More than 10 transactions in an hour from one client"
 when
 $t1: TransactionEvent($cId := customerId)
 Number(intValue >= 10) from accumulate(
 $t2: TransactionEvent(
 this != $t1,
 $cId := customerId,
 this meets[1h] $t1
),
 count($t2)
)
 not (SuspiciousCustomerEvent($cId := customerId, reason ==
"Many transactions"))
 then
 insert(new SuspiciousCustomerEvent($cId, "Many
transactions"));
end

When the variable $cId is first used in the first pattern, it is bound to the value of the
customerId property of the TransactionEvent fact. Any other occurrence of this
variable is then converted by Drools into an equals constraint.

For rules, the unification feature in Drools is mostly syntactic sugar. But when
unification is used inside a query, things get interesting.

Chapter 9

[239]

Going back to our isItemContainedIn query, let's assume that now we are also
interested in knowing all the Items a specific Item is part of or what all the parts of
a specified Item are. With our current knowledge, the new requirements introduce
two new queries:

//Query to know if an Item is part of another
query isItemContainedIn(Item p, Item w)
 IsPartOf(whole == w, part == p)
end

//Query to know all the parts of an Item
query getItemParts(Item w)
 IsPartOf(whole == w, $p: part)
end

//Query to know all the Items a specific Item is part of
query getItemsFromAPart(Item p)
 IsPartOf($w: whole, part == p)
end

The good news is that unification in queries gives us the possibility of having
optional arguments. Using unification, the three previous queries can be rewritten
as a single one:

query isItemContainedIn(Item p, Item w)
 IsPartOf(w := whole, p := part)
end

When the query is executed, if both arguments are provided, the unification symbols
in the IsPartOf pattern will be treated as constraints. For any argument that is
not provided, the unification symbol will act as a binding. The results of this query
according to its inputs are explained in the next table:

p w Resulting Pattern
bound bound IsPartOf (whole == w, part == p)

bound not bound IsPartOf (w: whole, part == p)

not bound bound IsPartOf (whole == w, p: part)

not bound not bound IsPartOf (w: whole, p: part)

Bound arguments in a query are referred to input argument and unbound ones as
output arguments.

Introduction to PHREAK

[240]

In Java, the way we have to use unbound arguments when executing a query is
by using the special object org.kie.api.runtime.rule.Variable.v for the
unbound arguments:

//engine and car are Item instances inserted as facts.
//Both arguments are bound
QueryResults qr1 = ksession.getQueryResults("isItemContainedIn",
engine, car);

//Argument 'p' is bound. Argument 'w' will be bound in the result of
the query to
//the corresponding values.
QueryResults qr2 = ksession.getQueryResults("isItemContainedIn",
engine, Variable.v);

The sources associated with this chapter contain different tests, showing how
unification can be used in a query to allow the use of optional arguments.
The PhreakInspectorQueryTest class is a good starting point.

Positional arguments
Positional arguments in Drools are a way to add equality constraints to fields of a
fact without having to explicitly name them. The order of a positional argument in
a pattern determines which field of the pattern's class it refers to. So, for example,
the pattern IsPartOf(w == whole, p == part) can be rewritten simply as
IsPartOf(w, p;). Given that conditional arguments can be used along with
regular constraints, a semicolon is used to indicate the end of the positional
arguments section.

The map between the position of an argument in a pattern and the field it represents
is explicitly stated using the org.kie.api.definition.type.Position annotation.
This annotation, which can only be used at the field level of a class, will take an
integer value that specifies its order. In order to be able to use positional arguments
with our IsPartOf class, we then have to annotate its fields in the following way:

public class IsPartOf<T> {
 @Position(0)
 private final T whole;
 @Position(1)
 private final T part;
 ...
}

Chapter 9

[241]

Fields in declared types can also be annotated with the @Position annotation but
this is not required: by default the order in which the fields of a declared type are
declared is used as its positional argument order.

Because the @Position annotation can be inherited by subclasses, possible
conflicting values may appear. In these situations, the field in the superclasses
will have precedence over the ones in the subclasses.

Another important feature about positional arguments is that they are always
resolved using unification; if the variable used as an argument is not already
bound, a new bind is created.

Backward reasoning in Drools
Now that we know some new tricks about queries in Drools, we are ready to
introduce a new topic that will rely on them: backward reasoning (also known as
backwards chaining).

Ever since its early development, Drools has always been a reactive forward-chaining
engine: the rules react to the state of the session, and their action partintroduces or
modify the available knowledge that can lead to the activation and execution of new
rules. In this type of system, the available data is processed until a goal is reached.

The other side of the spectrum belongs to backward-chaining systems. Here, the
starting point is the desired goal and the system works backward, checking whether
the data in the session satisfies it or not. Both reasoning methods may involve the
generation (inference) of new data in the process.

The way Drools implements a certain degree of backward reasoning is by using
queries. In a backward-chaining world, queries can be seen as goals or sub-goals that
need to be satisfied by the engine. But in an expert rule system, such as Drools, the
individual conditions of a rule can also be seen as sub-goals. The way Drools came
up with to bring both forward and backward reasoning together was by allowing
queries to be used as conditions in a rule.

Introduction to PHREAK

[242]

As an example, let's assume we have the following Items in our system and we
know the Is Part Of relationship between them:

In code, the preceding diagram can be written as:

Item car = new Item("car", 15000D, 20000D);
Item engine = new Item("engine", 5000D, 7000D);
Item wheel = new Item("wheel", 50D, 75D);
Item battery = new Item("battery", 100D, 150D);
Item distributor = new Item("distributor", 200D, 280D);
IsPartOf<Item> r1 = new IsPartOf<>(car, engine));
IsPartOf<Item> r2 = ksession.insert(new IsPartOf<>(car, wheel));
IsPartOf<Item> r3 = ksession.insert(new IsPartOf<>(engine, battery));
IsPartOf<Item> r4 = ksession.insert(new IsPartOf<>(engine,
distributor));

Let's also assume that we want to apply a 5% discount to Orders containing related
(via the IsPartOf relation) Items. So, an order containing, for example, an Engine
and a Battery will get a discount, but an order containing a Wheel and a Distributor
will not. In this case, one of the "sub-goals" to apply a discount is then whether an
IsPartOf relation exists between two items in an order. In the previous section of
this chapter, we have already worked on a query that will allow us to determine this
relation between items. What we can do then is use the query we had already created
in a new rule that will apply the corresponding discount:

rule "Apply discount to orders with related items"
no-loop true
when

Chapter 9

[243]

 $o: Order()
 exists (
 OrderLine($item1 := item) from $o.orderLines and
 OrderLine($item2 := item) from $o.orderLines and
 isItemContainedIn($item1, $item2;)
)
then
 modify ($o){ increaseDiscount(0.05) };
end

The preceding rule can be read as: When there is an Order and it contains at
least two items (that could be the same) where one is part of the other, then
apply a 5% discount. The highlighted pattern in the rule is the invocation to the
isItemContainedIn query. In this particular scenario, the query will be evaluated
as soon as the $item1 and $item2 variables have a value. Drool will then try to see if
both items satisfy the IsPartOf goal or not.

But remember that we know there is a major limitation in our query: an Order
containing a Distributor and a Car will not get any discount, even if they are
transitively related via the IsPartOf relationship. Now that we know that queries
can be used as a pattern in Drools, there is an easy way to fix this:

query isItemContainedIn(Item p, Item w)
 IsPartOf(w, p;)
 or (IsPartOf(x, p;) and isItemContainedIn(x, w;))
end

The new version of our query now contains a recursive invocation that will deal with
the transitive aspect of our relation.

When this query is invoked as isItemContainedIn(engine, car), its first pattern
will match because we have an explicit relation between those two items. When it is
invoked as isItemContainedIn(distributor, car) though, there is no explicit
IsPartOf for those two items, so the first pattern of the query will not match. But we
have now introduced a new path in our query; when the IsPartOf(x, p;) pattern
is evaluated, x is an unbound variable that Drools will replace with the engine item
(because we do have an IsPartOf fact for engine and distributor). Now that the
x is bound, the query is recursively invoked now as isItemContainedIn(engine,
car). The recursive call will indeed result in a match (we do have an IsPartOf fact
for car and engine), meaning that the original query will also result in one.

Introduction to PHREAK

[244]

The Query Element Node
The last remaining question regarding queries is, "How is a query invocation
resolved in PHREAK?" The answer relies on a new type of node we haven't yet
introduced: the Query Element Node.

In Chapter 5, Understanding KIE Sessions we learnt about live queries and how we can
attach a ViewChangedEventListener to them in order to be notified in real-time
when new information is available. This is pretty much how a reactive Query Element
Node works. It registers itself as a ViewChangedEventListener to the corresponding
query to react to new results or modifications in previously generated results.

The PHREAK network for a Knowledge Base containing the recursive version of the
isItemContainedIn query and the Apply discount to orders with related
items rule will then look like the following:

The network was visually split into two sections: one corresponding to the query and
the other corresponding to the rule. Some interesting aspects of this network are:

• It contains two Query Terminal Nodes because of the or method we used in
the query.

• It contains two Query Element Nodes: one for the recursive invocation inside
the query itself and the other for the invocation of the query in the rule.

• There is no explicit relationship (no arrow) connecting any of the nodes from
the query with a node of the rule. This relationship is not required because
the communication between a query and any related Query Element Node is
done using a ViewChangedEventListener.

Chapter 9

[245]

PHREAK improvements over RETE
Most of the topics introduced so far in this chapter are not exclusive to the PHREAK
algorithm. And this is not really a surprise; after all, the PHREAK algorithm is an
evolution of the RETE algorithm implementation from previous versions of Drools
(RETEOO). Even if both algorithms have a lot in common, PHREAK introduces some
interesting modifications in the way the network of nodes is evaluated. Let's cover
the most important improvements of PHREAK over RETEOO.

Delayed rule evaluation
When the PHREAK engine is started, all the rules are said to be unlinked. An
unlinked rule is never going to be evaluated by Drools. When the insert, update,
and/or delete actions modify the state of a KIE Session, the modification is only
propagated up to the alpha sub-network and queued before it enters the beta
sub-network. Unlike RETEOO, in PHREAK no Beta Node is then evaluated as a
consequence of any of these operations. A heuristic determines which rule is the
most likely to result in a match and thus imposes an evaluation order between them.

Only when all the nodes of a rule have data to be evaluated is the rule considered to
be linked. But the nodes of a rule are not evaluated as soon as they become linked;
all linked rules are added into a queue that is ordered according to the salience of
each rule. Different Agenda Groups have different queues and only rules from the
queue of the active Agenda Group are evaluated.

From an API perspective, there is no difference between RETEOO and PHREAK.
But internally, PHREAK will delay the evaluation of the beta sub-network until the
fireAllRules() method is invoked, and not until the insert, update, or delete
operations are invoked.

Set-oriented propagation
In RETEOO, every time a fact was inserted/updated/deleted, the network was
traversed from the top (the Entry Point) to the bottom (the Rule Terminal Node in
the best-case scenario). Each node that was evaluated in the network created a tuple
that was propagated to the next node in the path. This behavior was the one we used
throughout this chapter to explain the basics of PHREAK. But, in reality, PHREAK
doesn't work that way. All the insert/update/delete operations that were queued
for a Beta Node are batch-processed and their results added to a set. This set is
then forwarded to the next node in the path where all the queued actions are again
evaluated and added into the same set. This set-oriented propagation provides
performance advantages for certain rules and it leaves the door open for future
optimizations regarding multi-threading evaluation of a network.

Introduction to PHREAK

[246]

Network segmentation
The nodes that are shared among different rules in a KIE Base form segments. A rule
is then seen by PHREAK as a path of segments rather than a path of nodes. A rule
that doesn't share any of its nodes with any other rule is formed by a single segment.
Each node inside a segment is assigned to a bit-mask offset. Each segment in a path is
also assigned with a bit-mask offset. When a node contains enough data in its input to
be evaluated, its bit is set to on. When all the nodes in a segment are on, the segment
itself is set to on. A rule is then considered linked when all its segments are on. These
bit-mask offsets are utilized by Drools to avoid the re-evaluation of already evaluated
nodes and segments, providing more efficient evaluation of the PHREAK network.

Drools 6.4 will introduce more interesting changes
regarding how and when rules are evaluated in PHREAK.
More information can be found in the following blog
post: http://blog.athico.com/2015/12/drools-
detailed-description-of-internal.html.

The goal of this section was to provide a simple and comprehensive list of the
differences between RETEOO and PHREAK, but this list is by no means complete.
For a better and deeper understanding of what PHREAK is and how it works, you are
recommended to read Drools' documentation section for PHREAK: http://docs.
jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch05.html#PHREAK.

Phreak Inspector
Before moving to the next chapter in this book, it is important to introduce a utility
class (from the source bundle associated with this book) that was extensively used
for the creation of this chapter: org.drools.devguide.phreakinspector.model.
PhreakInspector.

None of the PHREAK network graphs shown in this chapter were manually
generated; on the contrary, all of them were automatically generated from a KIE Base
containing the rules and/or queries we wanted to show. The PhreakInspector class
in the phreak-inspector module was created for this purpose. This class is able to
output a PHREAK network graph from a variety of resources, including:

• A manually built KIE Base
• A KIE Base defined in a kmodule.xml file
• A set of resources, such as DRL, DSL, Decision Table, and so on

http://blog.athico.com/2015/12/drools-detailed-description-of-internal.html
http://blog.athico.com/2015/12/drools-detailed-description-of-internal.html
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch05.html#PHREAK
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch05.html#PHREAK

Chapter 9

[247]

In the source bundle associated with this chapter, you will find that most of the tests
actually use the PhreakInspector class. In fact, you will find that all of the graphs
displayed in this chapter can be recreated from the tests. The basic usage of the
PhreakInspector class is:

KieBase kbase = //Obtain a KIE Base from somewhere.
PhreakInspector inspector = new PhreakInspector();
InputStream is = inspector.fromKieBase(kbase);

The resulting graph uses the DOT language (https://en.wikipedia.org/wiki/
DOT_(graph_description_language)). DOT is a text-based format used to define
graphs. There are several tools available to display DOT graphs, Graphviz (http://
graphviz.org/) being one of the most popular.

Once we become familiar with the PhreakInspector class, we can use it to graph
any of the Kie Bases, rules, and queries introduced in this book. We can even use this
class in our own projects to get a better understanding of the internal representation
of our KIE Bases in order to look for ways to improve them.

Summary
This chapter served as an introduction to the underlying pattern matching algorithm
used by Drools. An explanation on how the rules and their internal patterns and
constraints are decomposed into a network of nodes was provided. Some important
tips on how to improve the performance of our KIE Bases was also included.

This chapter also covered a major topic in Drools: backward-chaining. We saw how,
using queries, we can construct knowledge that follows the backward reasoning
concept: start from a goal and try to fulfill it. The hybrid approach between forward
and backward reasoning that Drools takes gives us a powerful and very expressive
way to define our knowledge.

The main differences between RETEOO (the algorithm used in previous versions of
Drools) and PHREAK were also explained in this chapter. Features such as delayed
rule evaluation, set-oriented propagation, and network segmentation, not only make
PHREAK a more efficient algorithm, but also facilitate real parallel evaluation and
the execution of KIE Bases in Drools.

It is time to move on to a very different topic now. Rules are great at expressing
business knowledge, but there is another—and complementary—way to define how
a business works: business processes. The next chapter will introduce a business
process framework that has achieved a lot of traction in the last couple of years and
that is tightly integrated with Drools: jBPM.

https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://graphviz.org/
http://graphviz.org/

[249]

Integrating Rules
and Processes

By shortening the gap between Business Users and the IT Department, business
processes help us to define in a declarative way how systems and people will
collaborate to achieve meaningful goals.

This chapter is about why Drools and jBPM were designed together and how they
can be used together. First, we will start with a short introduction about what jBPM
is followed by a quick example. In the second half of the chapter, we will discuss
more technical aspects of the Rules and Process engine integrations, such as how to
start a business process from a Rule, how to use a rule from inside a process instance,
persistence and transaction configurations for long-running business processes, and
so on.

Other good books have already been published about jBPM 6, so you can consider
this chapter as an introduction to jBPM plus a set of pointers and references that will
get you started with this framework.

This chapter will cover the following topics:

• jBPM – The Process Engine
• Creating a simple process
• Drools and jBPM
• Integration patterns
• Persistence and transactions

Integrating Rules and Processes

[250]

jBPM – the process engine
jBPM is a lightweight and embeddable Business Process Engine. In the same way
that Drools allows us to define declarative knowledge, jBPM allows us to define
business process models that can be executed and automated. Luckily for us,
Business Processes are more evolved than rules in the sense that they have a whole
methodology defined around them. This methodology (also known as a discipline)
is called Business Process Management (BPM) and it describes the whole life cycle
of how to discover, formalize, execute, and monitor our business processes. You can
find more about BPM here: https://en.wikipedia.org/wiki/Business_process_
management.

Instead of using the DRL language, jBPM uses the standard notation called BPMN
v2 (Business Process Modeling and Notation Version 2, defined by the OMG group)
to define business process models. These models have a completely different nature
from rules, in the sense that the former have a graphical representation (in contrast to
the textual nature of the DRL and DSL languages). These graphical diagrams show
the exact sequence of the activities that are going to be executed. When we introduce
the concept of business processes to the uninitiated, the concepts and ideas sound
generic and vague until we show them an example and then everything makes sense.
So the following business process is an example extracted from our eShop use case:

This business process represents how the eShop deals with customer orders. This
process defines the activities that need to be performed by people inside and outside
the eShop company to process an order from the moment that it is created in the
customer portal until it is dispatched via a courier to its final destination. We enhanced
the next diagram with all the external services and people surrounding the business
process execution so it is clear who, and which systems/services, are involved:

https://en.wikipedia.org/wiki/Business_process_management
https://en.wikipedia.org/wiki/Business_process_management

Chapter 10

[251]

There are different types of activities in a business process. In this simple example,
we can quickly identify two of them: User Tasks and Service Tasks. User Tasks
will be performed by people inside or outside the company. In this simple example
"Customer" and "Courier" represent groups of people. So anyone belonging to that
group will be able to perform these activities. The Create Order activity will be
triggered from the Customer User Interface when the Customer wants to checkout
all the items in the shopping cart. Services Tasks are system-to-system interactions.
For this example we have several systems and services involved; this is quite
common in real-life scenarios. We can see that the Authorize Order activity will
need to contact the Authorization Service in order to determine if the Order created
by the customer is valid and if it can be processed further. Another thing to notice is
that the Audits Service is not linked to any activity in the process and that's because
it is in charge of keeping track of everything that the process engine does. Every
time that we run one of these processes, we can record the process execution and the
information that is created and used by the process, so we can analyze how things
are working and how they can be improved.

Notice that the diagram represents what needs to be done in order to
process an order and not how to process it. The diagram purposefully
doesn't include too many technicalities. One of the main advantages of
using the Business Process Management methodology is using these
models to explain and train people in how the company works.

The graphical notation, and each of the icons and shapes in the diagram, have been
specified in the BPMN2 specification and they not only have a standard graphical
representation but also an execution semantic. In other words, these process models
will be executed by the process engine following the BPMN2 specification.

Integrating Rules and Processes

[252]

As mentioned in the introduction to this chapter, there are several resources that we
can use to learn more about jBPM and the BPMN2 specification. Starting from the
specification itself that you can find here: http://www.omg.org/spec/BPMN/, there
are a couple of books about jBPM6 (published by Packt) that we recommend:

• jPM6 Developer Guide (2014): https://www.packtpub.com/networking-
and-servers/jbpm-6-developer-guide

• Mastering jBPM6 (2015): https://www.packtpub.com/application-
development/mastering-jbpm6

The official documentation gives a lot more in-depth information and details of
specific topics. You can find the up-to-date documentation here: http://docs.
jboss.org/jbpm/v6.3/userguide/.

The next section shows how to create a very simple process with jBPM and
introduces process-related methods inside the KEI APIs. While we look at the APIs,
we will also learn about how our process behaves, deals with information, and how
it interacts with people and external systems.

Simple business process example
Let's create the simplest process ever and see how we can execute it inside our Kie
Containers. This section will give you a quick overview about how you can create a
Process Instance based on a process model using the KEI APIs. As you can imagine,
we cannot cover all the details about jBPM in just one chapter, so consider this as a
very short introduction.

So let's get started by creating the following process:

This process has just one User Task and two events, the Start Event and the End
Event. We will start this process by submitting a value to be reviewed; the process
engine will create an activity to a user so it can review the submitted value and
approve or reject it.

http://www.omg.org/spec/BPMN/
https://www.packtpub.com/networking-and-servers/jbpm-6-developer-guide
https://www.packtpub.com/networking-and-servers/jbpm-6-developer-guide
https://www.packtpub.com/application-development/mastering-jbpm6
https://www.packtpub.com/application-development/mastering-jbpm6
http://docs.jboss.org/jbpm/v6.3/userguide/
http://docs.jboss.org/jbpm/v6.3/userguide/

Chapter 10

[253]

The BPMN2 Specification also defines how these diagrams are stored and the XML
schemas that are used to validate that our models are correct. So, at the end of the
day, our process models will be stored in XML files that will need to be parsed by the
Process Engine in order to be executed.

Most of the time, we will use a graphical tool to model our business processes,
instead of manipulating the XML files. We strongly recommend you to take a
look at KIE Workbench and Process Designer to model your business processes.
You can find more about these projects here: http://docs.jboss.org/drools/
release/6.3.0.Final/drools-docs/html_single/index.html#d0e15772.

You can also find it here:

http://docs.jboss.org/jbpm/v6.3/userguide/ch12.html

The following XML is a stripped down version of the XML generated by the Process
Designer for this very simple example:

Notice that the XML file tends to become huge, mostly because
it stores all the graphical elements, their positions, colors, and
everything needed to render the process diagram.

<bpmn2:definitions … >
 <bpmn2:process id="simple" name="simple" isExecutable="true">
 <bpmn2:property id="requested_amount"/>
 <bpmn2:property id="request_status" />
 <bpmn2:startEvent name="Start"></bpmn2:startEvent>
 <bpmn2:userTask name="Approve">
 <bpmn2:ioSpecification id="">
 <bpmn2:dataInput drools:dtype="Integer" name="amount"/>
 <bpmn2:dataOutput drools:dtype="Integer" name="status"/>
 </bpmn2:ioSpecification>
 <bpmn2:potentialOwner >
 <bpmn2:resourceAssignmentExpression >
 <bpmn2:formalExpression>manager</bpmn2:formalExpression>
 </bpmn2:resourceAssignmentExpression>
 </bpmn2:potentialOwner>
 </bpmn2:userTask>
 <bpmn2:endEvent name="End"> </bpmn2:endEvent>
 <bpmn2:sequenceFlow sourceRef="..." targetRef="..."/>
 <bpmn2:sequenceFlow sourceRef="..." targetRef="..."/>
 </bpmn2:process>

http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/index.html#d0e15772
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html_single/index.html#d0e15772
http://docs.jboss.org/jbpm/v6.3/userguide/ch12.html

Integrating Rules and Processes

[254]

The complete XML file of this example can be found inside chapter-10/chapter-
10-kjar/src/main/resources/chapter10/simple.bpmn2.

Highlighted in the XML snippet are the three tasks, the process variables (bpmn2:
properties, information that the process will handle or generate), and sequence flows,
which are the connection between the activities.

Using a similar parser to the one the rule engine uses to read DRL files, these XML
files are parsed and compiled to become part of our Kie Basess. As soon as we have
them inside our Kie Basess we can start using them by creating Process Instances. So
let's take a look at the KIE API to interact with processes. In the same way that we
used the Kie Session to interact with the Rule Engine to insert/update/retract facts
and fire all the rules, we have a specific method to start process instances:

ProcessInstance pI = ksession.startProcess("simple", params);

The first argument is the process id that we specified in the <bpmn2:process> tag
and the second argument is the initial information that we want to pass to the newly
created Process Instance.

Some other methods to interact with our process instances are:

• We can abort instances that were previously created if they are no longer
needed or if they don't make sense anymore:
ksession.abortProcessInstance(processInstanceId);

• We can create Process Instances without starting them. Once we have created
them, we can start them by using the generated Process Instance Id:
ksession.createProcessInstance("simple", params);

• We can use this method if we have already created a process instance
without starting it:
ksession.startProcessInstance(id);

• We can use this method to get hold of all the process instances created inside
a session:
ksession.getProcessInstances(...);

• We can notify the Process Instances (or even all the processes inside a
session) about an external event. The Process Instances might (or might not)
react, based on the process definitions:
ksession.signalEvent(...);

Chapter 10

[255]

Kie Session advanced configurations
The following sections describe some of the most important methods on the Kie
Session interface to configure our Process and Rule engine for specific needs.

Kie Session event listeners
Event listeners allow us to attach more functionality to the internal events generated
by the Rule and Process engines while they are operating. The following event
listener allow us to get hold of all the events internally generated by the process
engine so we can get real-time information about our business processe executions:

ksession.addEventListener(new MyProcessEventListener());

We can attach to the Kie Session any number of the following: org.kie.api.event.
process.ProcessEventListener. These listeners will let us know what the process
engine is doing for every process that we run inside that session. Some of the events
that are captured by the ProcessEventListener implementations are:

• before/after ProcessStarted
• before/after ProcessCompleted
• before/after NodeTriggered
• before/after NodeLeft
• before/after VariableChanged

We can create our own implementation to store the trace of the process execution
in a separate database or storage to track progress, or for later analysis. This is an
extension point provided by the engine for us to externalize the data that we might
want to expose to the people interested in the execution of our processes.

Kie Session Work Items
Work Items provide our process with a way to interact with the outside world. In
other words, Work Items represent any external work that needs to be performed
by an external service or a person. We can define and register our own work
item handlers to the Kie Session, so that, every time that we need to perform
the same task, we can rely on the same implementation. Let's take a look at the
registerWorkItemHandler() method and at a simple example:

 ksession.getWorkItemManager().
registerWorkItemHandler("Human Task", new MyWorkItemHandler());

Integrating Rules and Processes

[256]

The WorkItemHandlers allows us to hook integration points with external entities.
As you can see in this example, we are registering a new implementation of the
WorkItemHandler interface to handle our Human Tasks inside the process. Human
Tasks are represented by the User Task Activities inside the BPMN2 specification.
For the sake of the example, we are creating a Handler that will automatically
complete the activity created.

Let's take a look at our first test scenario:

@Test
public void testSimpleBPMN2Rejected() {
 KieSession ksession = this.createDefaultSession();
 ksession.addEventListener(new SystemOutProcessEventListener());
 ksession.getWorkItemManager()
 .registerWorkItemHandler("Human Task",
 new ManagerApprovalSimpleWorkItemHandler());
 Map<String, Object> params = new HashMap<String, Object>();
 params.put("requested_amount", 1005);
 ProcessInstance processInstance =
 ksession.startProcess("simple", params);
 WorkflowProcessInstance wpi = (WorkflowProcessInstance)
 processInstance;
 assertThat(processInstance, notNullValue());
 assertThat(ProcessInstance.STATE_COMPLETED,
 is(processInstance.getState()));
 assertThat("rejected", is(wpi.getVariable("request_status")));
}

The source code of this test can be found in chapter-10/chapter-10-tests/src/
test/java/org/drools/devguide/chapter10/SimpleProcessTest.java.

The test starts by creating the default session that will include our simple.
bpmn2 file. Once we have the session for running our process instances, we
register a new ProcessEventListener. We can find the implementation of the
SystemOutProcessEventListener also in the project sources:

1. For this simple example the SystemOutProcessEventListener will just log
to the console every activity executed by the process engine. If you execute
the test you will see all the events that are being captured and printed out to
the console.

2. We now register a new WorkItemHandler to deal with the User Tasks inside
our process: ManagerApprovalSimpleWorkItemHandler. Now, for every
User Task that we have in our processes running inside this session, this
WorkItemHandler will be used.

Chapter 10

[257]

Let's take a look at the implementation for this example:

private class ManagerApprovalSimpleWorkItemHandler
 implements WorkItemHandler {
 @Override
 public void executeWorkItem(WorkItem wi, WorkItemManager wim) {
 String actorId = (String) wi.getParameters().get("ActorId");
 if (actorId.equals("manager")) {
 Integer amount = (Integer) wi.getParameters().get("amount");
 Map<String, Object> results = new HashMap<String, Object>();
 if (amount >= 1000) {
 results.put("status", "rejected");
 wim.completeWorkItem(wi.getId(), results);
 } else {
 results.put("status", "approved");
 wim.completeWorkItem(wi.getId(), results);
 }
 }
 }
 @Override
 public void abortWorkItem(WorkItem wi, WorkItemManager wim) {}
}

The WorkItemHandler interface pushes us to implement two methods:

• This method will be called every time that an activity in our process is
delegated to our WorkItemHandler implementation. This method gives us
access to the WorkItem itself, which contains all the contextual information
that we can use to interact with external systems or services. And it also
allows us to execute operations using the WorkItemManager, such as
completing or aborting the WorkItem:
void executeWorkItem(WorkItem wi, WorkItemManager wim)

• For the sake of simplicity, in this example the abort WorkItem method is not
executing any logic, but we should include here the logic to handle cases
where the WorkItem is no longer needed and, for that reason, aborted:
void abortWorkItem(WorkItem wi, WorkItemManager wim)

Integrating Rules and Processes

[258]

The logic inside the ManagerApprovalSimpleWorkItemHandler implementation
works as follows:

1. Check that the activity is targeted to the manager user.
2. Get the initial amount value:

 ° If the amount is greater than or equal to 1000 it will set the status
variable to rejected

 ° If the amount is less than 1000 it will set the status variable to
approved

3. The last step is to complete the WorkItem by using the WorkItemManager and
setting the results.

Now we are ready to start our process instances, and we can see that the test does
exactly that after registering our WorkItemHandler implementation:

Map<String, Object> params = new HashMap<String, Object>();
params.put("requested_amount", 1005);
ProcessInstance processInstance = ksession.startProcess("simple",
params);

Notice that we are only setting one of the two Process Variables defined
in the process. We are starting the process with the requested_amount
process variable set to 1005. The other process variable will be filled by
our WorkItemHandler implementation based on the evaluation of the
requested_amount value.

In order to move information (process variables) from the Process Instance scope
to the WorkItems, these variables will be copied so they can be manipulated. We
can observe that, for each activity defined in the process definition, DataInput/
DataOutput associations are needed to define how data will be copied from the
Process Variables to the WorkItem scope and the other way around (how the results
created by the WorkItem execution will be copied back to the process variables).
For this reason we will see that in the WorkItemHandler implementation we make
reference to amount and status instead of using the names of the Process Variables.

Let's see the output of our test case called testSimpleBPMN2Rejected, which is
starting a new Process Instance with the initial requested_amount set to 1005.

Starting Simple BPMN2
>>> Requesting $1005
>>> BeforeVariableChanged: requested_amount new Value: 1005 - old
Value: null
>>> AfterVariableChanged: requested_amount new Value: 1005 - old
Value: null

Chapter 10

[259]

>>> BeforeProcessStarted: simple
>>> BeforeNodeTriggered: Start
>>> BeforeNodeLeft: Start
>>> BeforeNodeTriggered: Approve
>>> Here the Manager reviewing requested amount
>>> Requested Amount: $1005
>>> But I can approve until $1000, so I'm rejecting the request
>>> BeforeVariableChanged: request_status new Value: rejected - old
Value: null
>>> AfterVariableChanged: request_status new Value: rejected - old
Value: null
>>> BeforeNodeLeft: Approve
>>> BeforeNodeTriggered: End
>>> BeforeNodeLeft: End
>>> BeforeProcessCompleted: simple
>>> AfterProcessCompleted: simple
>>> AfterNodeLeft: End
>>> AfterNodeTriggered: End
>>> AfterNodeLeft: Approve
>>> AfterNodeTriggered: Approve
>>> AfterNodeLeft: Start
>>> AfterNodeTriggered: Start
>>> AfterProcessStarted: simple
>>> Request Status rejected
Completed Simple BPMN2

The output in the console shows all the steps internally executed by the
process engine; as we mentioned before, we have plugged in our own
ProcessEventListener, which is creating this output for us, but we can come up
with a much more interesting use of this information such as:

• Using this information for real-time monitoring in a dashboard-like interface
• Keeping track of unfinished processes or activities and meaningful send alerts
• If something fails, making sure that we know why
• Measuring activities—for example, their average time of completion
• Triggering new processes in the case of anomalies or unexpected situations

If we already have a Dashboard to monitor other applications or resources, we can
always create a ProcessEventListener then send information to it or to a database
of our choice.

Integrating Rules and Processes

[260]

Understanding our process execution
In the previous log, half of the entries seem to be linear as expected; we can
follow the process graph jumping from one activity to the next one. But after the
AfterProcessCompleted event, everything seems to go backwards. The next figure
shows how the events are related to activity execution:

As we can see, the Process Engine nests the execution of the activities together
and, from inside the Start Event, calls the Approve User Task; from inside the
Approve User Task, it calls the End Event. When it reaches the end of the process,
it needs to go back to the stack and this is where all the AfterNodeLeft and
AfterNodeTriggered events are dispatched.

You can also take a look at the testSimpleBPMN2Approved() test, which shows how
the requested amount is approved if it is under $1,000.

The last step in analyzing our very simple example is to simulate a more real-life
scenario. If we have a User Task in our process, the execution will not go straight
from Start to End in just one go. We will need to wait for external input and, as we
know, human input is not always available. In reality, when we deal with people we
need to wait for them; the same happens with some systems, so knowing how to deal
with this waiting period is a must.

Let's jump to our last test called testAsyncSimpleBPMN2Approved(), which shows
how to implement a WorkItemHandler that doesn't automatically complete the
WorkItem after executing its internal logic.

Chapter 10

[261]

This is the executeWorkItem(...) method of the
AsyncManagerApprovalSimpleWorkItemHandler implementation:

@Override
public void executeWorkItem(WorkItem wi, WorkItemManager wim) {
 String actorId = (String) wi.getParameters().get("ActorId");
 if (actorId.equals("manager")) {
 Integer amount = (Integer) wi.getParameters().get("amount");
 if (amount >= 1000) {
 results.put("status", "rejected");
 results.put("workItemId", wi.getId());
 } else {
 results.put("status", "approved");
 results.put("workItemId", wi.getId());
 }
 }
}

We have two options while implementing an Async WorkItemHandler: we can do
some processing internally and then wait for external completion or we can just send
the contextual information needed to complete the activity and allow the external
system or person in charge of completing it to do the calculations. We will need to
choose what's best based on our domain and the information and systems that we
are trying to integrate together. As we can see here, we are keeping the WorkItem Id
inside the results map so that, from outside the WorkItemHandler, we know how to
complete it later on.

By having an Async WorkItemHandler we will see that the execution now changes
and it is clearly represented in the process logs:

Integrating Rules and Processes

[262]

The process will run until there is nothing else to do, in this case after the logic
inside the WorkItemHandler is executed, and it will return the control to the
caller. In the test, the first thing that we do after getting the control back from the
startProcess(...) method is to check the state of the process:

...
ProcessInstance processInstance =
 ksession.startProcess("simple", params);
assertThat(processInstance, notNullValue());
assertThat(ProcessInstance.STATE_ACTIVE,
 is(processInstance.getState()));
WorkflowProcessInstance wpi = (WorkflowProcessInstance)
 processInstance;
assertThat(null, is(wpi.getVariable("request_status")));
System.out.println(" ###### >>> Now I'm completing the WorkItem
 externally ###### ");
ksession.getWorkItemManager()
 .completeWorkItem((long)results.get("workItemId"),
 results);
assertThat(ProcessInstance.STATE_COMPLETED,
 is(processInstance.getState()));

Now the state of the process instance is Active, meaning that the process hasn't yet
reached any End Event. We can also check the value of the process variable called
request_status to see that it is in fact null. This is because, the WorkItem has not
been completed yet; hence the process variable hasn't been updated. Next we can
use the ksession.getWorkItemManager().completeWorkItem() call to complete
the WorkItem, this time from outside the process engine scope. This simulates an
external application or person completing the activity by using a form in a web
application or a JMS message that is being picked up from a queue, for example.
This will trigger the completion of the process instance by copying the results to the
process variable and executing the End Event.

Look at a more advanced example in the test called ProcessOrderTest, which can
be found here: chapter-10/chapter-10-tests/src/test/java/org/drools/
devguide/chapter10/ProcessOrderTest.java.

Chapter 10

[263]

This test executes the process-order.bpmn2 file, which implements the process
introduced at the beginning of the chapter:

This process includes the use of Service Tasks and the Exclusive Gateway, which
allows us to choose different paths from the process based on an expression that can
evaluate Process Variables.

The tests are all using synchronous WorkItemHandlers for User Tasks and Java Bean
Service calls for ServiceTasks. It is strongly recommended you take a look at the tests
and play around with the idea of implementing Asynchronous interactions instead.

In the following sections, we will be reviewing some integration patterns that can be
used to leverage processes while using rules and vice-versa. Again consider this as
an introduction and not as an detailed guide.

Drools and jBPM: integration patterns
It is fundamental for us to understand why jBPM and Drools coexist under the KIE
umbrella. The relationship between the two projects and the similarities they have
make them share most tools and methodologies. These two projects complement each
other, allowing end users to describe business knowledge using different paradigms
and languages to model business scenarios. We will be able to choose the right tool
for the job and then combine the power of the Rule world with the Process world.

This section will cover three of the most common patterns of rule and process
integration. The main idea here is to open our mind to look for new alternatives to
implement our business solutions.

We already learned in this chapter how to start new process instances by using the
KIE APIs, but now we will see how we can interact with the process engine from
within our rules.

In the next section we will learn how to interact with the Process engine from our
rules. This will open the door for more advanced modeling techniques, giving us
even more flexibility to implement our business scenarios.

Integrating Rules and Processes

[264]

Accessing the process engine from our rules
Using rules to start a process is one of the most common patterns that we can benefit
from. The main idea is to use processes to deal with different scenarios that we might
find difficult to perform by chaining rules.

One common scenario is Human Validation; as we saw before, the simple.bpmn2
process's only mission was to request the input from an external actor to validate
an amount. Most of the time, we will want to perform this kind of validation using
rules, but we will find it difficult to cover all the possibilities, and sometimes there
are sensible decisions and validations that must be performed by people. We can
detect these situations by using rules and then delegate to a business process for
further processing.

The following rule will create a new process instance via OrderLine, which we insert
in our Kie Session:

rule "Validate OrderLine Item's cost"
 when
 $ol: OrderLine()
 then
 Map<String, Object> params = new HashMap<String, Oject>();
 params.put("requested_amount", $ol.getItem().getCost());
 kcontext.getKieRuntime().startProcess("simple", params);
end

Once again, we are starting our simple.bpmn2 process, but here we are binding
the OrderLine item cost to the requested_amount process variable required by the
process.

If we have too much procedural logic on the right-hand side of our rules, decoupling
it as a business process can help us to have more maintainable rules and processes.

It is recommended that, if we want to interact with external systems or if we require
human intervention, we just delegate that to a process, where we can easily make
changes and plug different connectors. When human interventions are required,
using a process engine allows us to automatically track their progress without
needing to build all those mechanisms in our application.

By using the kcontext.getKieRuntime() we will be able to create, abort, and signal
business processes. We can also access the WorkItemManager to complete WorkItems
based on rules.

Chapter 10

[265]

Process instances as facts
Another way to integrate processes and rules is to insert our Process Instances
as facts in the Rule Engine; by doing this, we can start writing rules about our
processes. We could even write rules about groups of processes that will enable
us to enforce some business requirements.

We could manually insert our ProcessInstances objects into our Kie Session, but
there is already a ProcessEventListener that does all the work for us. This listener
is provided by jBPM and is called RuleAwareProcessEventLister. This listener will
automatically insert our ProcessInstances and update them whenever a variable is
changed.

The only catch with using this listener is that our processes need to include Async
activities to be able to be evaluated by the Rule Engine. This is mostly because,
if we run a simple process such as our simple.bpmn2 example, the process will
start and end inside the startProcess call, not allowing the Rule Engine to
evaluate the ProcessInstance fact. This is usually not a big deal, due the fact
that most of the processes end up containing multiple safe points to demarcate
transactions, as we will see in the second half of this chapter. If we take a look at the
RuleAwareProcessEventLister implementation, we will notice that the listener is
in charge of inserting the WorkflowProcessInstance object as a fact and keeping it
updated every time that a process variable is changed.

This allows us to start writing rules about those instances. A test class in the chapter
source code called ProcessInstancesAsFactsTest shows a couple of example rules
that evaluate our process instances as we create them.

Let's take a look at these rules. The first one will evaluate to true for every process
instance that we start inside this Kie Session:

rule "There is a WorkflowProcessInstance fact"
 when
 $wi: WorkflowProcessInstance()
 then
 // There is a WorkflowProcessInstance fact: "+$wi
end

Integrating Rules and Processes

[266]

The next one will only evaluate to true for our "process-order" business process
instances. For any other fact, we can filter our process instances by their field/
property values.

rule "There is a Process Order Instance"
 when
 $wi: WorkflowProcessInstance(processId == "process-order")
 then
 // There is a Process Order Instance: "+$wi
end

In the same way, we can get the value of the process variables. Notice that we need
to check for null, due the fact that in the example process the Order process variable
is set inside a User Task and not when we start the process. It is really useful to
control what our process is doing. Remember that we can leverage all this power
without doing much, besides adding the RuleAwareProcessEventLister.

rule "Process Order Instance with a big order"
 when
 $wi: WorkflowProcessInstance(
 processId == "process-order",
 $o: getVariable("order") != null &&
 ((Order)getVariable("order")).getTotal() > 1000)
 then
 // We can abort or create another process instance
 // to review this big orders here
end

Finally, it is important to understand that we can write rules to evaluate a set of
Process Instances and mix that information with some other facts. The following rule,
for example, checks how many Process Order instances are currently started. We can
use this information to make decisions about whether the company can cope with
a high number of concurrent orders. Notice that it is possible get a list of process
instances and then execute operations on them, such as aborting them if they are not
high-priority:

rule "Too many orders for just one Manager"
 when
 List($managersCount:size > 0) from collect(Manager())
 List(size > ($managersCount * 3)) from
 collect(WorkflowProcessInstance(processId == "process-
order"))
 then
 //There are more than 3 Process Order Flows per manager.
 // Please hire more people :)
end

Chapter 10

[267]

This rule will evaluate to false if the number of Managers inside the Kie Session is
not enough to handle the orders.

BPMN2 Business Rule Tasks
Finally the BPMN2 specification proposes a specific type of task called a Business
Rule Task. This task type proposes the most traditional integration between
processes and Rules. Traditionally, a Rule Engine was seen as a stateless service
that can be called with some data to get some results. As we saw in the rest of this
book, Drools is much more than a simple stateless service, and for that reason using
the Business Rule Task approach is, most of the time, a very limited approach. In
this short section, we will see how the Business Rule Task can be used in a very
simple example. In jBPM, the Business Rule Task is used in conjunction with a Rule
Property called ruleflow-group. This rule property allows us to specify which rules
can be fired when the Business Rule Task is executed as part of a process instance.
We can have as many groups as we need, but we need to remember to set up the
correct Rule Flow Group inside the Business Rule Task.

Note that rules inside a ruleflow-group are evaluated and
activated as soon as data is available, but those rules will not be
fired until the ruleflow-group where they belong is activated
by a process instance triggering a Business Rule Task that
corresponds with that ruleflow-group.

In the following example a process uses two Business Rule Tasks to validate and
apply discounts to an Order:

Integrating Rules and Processes

[268]

The Order is modeled as a process variable so our rules will pick up the
ProcessInstance as a fact (as explained in the previous section) and it will
analyze the Process Variable that contains the order. Two different ruleflow-
groups are defined:

• Validation (ruleflow-group Validation):
This ruleflow-group is in charge of validating different aspects of the order.
Three simple rules validate that the order has a customer associated with it,
that the order is not empty (at least one or more OrderLines), and that the
state of the Order is pending.

• Discounts (ruleflow-group Discounts):
This ruleflow-group can contain any number of rules to apply discounts
based on the Order data. In this example two different rules were defined
to evaluate the Order total and the Customer Category to apply different
discounts.

These rules can be found here: chapter-10/chapter-10-kjar/src/main/
resources/chapter10/order-validation-rules.drl.

Looking at the BPMN2 process file (here: chapter-10/chapter-10-kjar/src/
main/resources/chapter10/order-validation.bpmn2), we can notice that each
Business Rule Task has its correspondent ruleflow-group set:

<bpmn2:businessRuleTask id="..." drools:selectable="true" drools:ruleF
lowGroup="Validation" name="Validate Order">

Let's do this for Discounts as well:

<bpmn2:businessRuleTask id="..." drools:selectable="true" drools:ruleF
lowGroup="Discounts" name="Apply Discounts">

By adding this relationship with each ruleflow-group the engine will know which
rules can be triggered at each point in our process instance.

Chapter 10

[269]

Business Rule Tasks are just another way of defining when rules can be
fired. We usually recommend creating a separate WorkItemHandler
with a separate Kie Session to handle more complex rule sets. If you
really want to interact with Drools in a stateless fashion, having a
Rules Service and delegating to a WorkItemHandler implementation
the interaction with this services is most of the time the best solution.
We can take a look at what happens on the execution of this process
looking at a test called: BusinessRuleTasksTest (chapter-10/
chapter-10-tests/src/test/java/org/drools/devguide/
chapter10/BusinessRuleTasksTest.java). This test class
contains four unit tests that validate the correct behavior of our process
and rules by inserting different orders as process variables.

These tests all use RuleAwareProcessEventLister, which will automatically add
each ProcessInstance as a fact, and the TriggerRulesEventListener, which is
in charge of firing our rules as soon as our ruleflow-groups get activated in our
process instances.

Note that there is no strict rule for what the rules inside a ruleflow-
group need to evaluate. For this example the rules are evaluating process
instances as facts, but there is no restriction to adding any other Fact type
on the conditional side of the rules. Because of this flexibility, you need to
be careful how you write those rules; remember that they will evaluate all
the data in the Kie Session and not only the data in your process instance.

We hope that these examples demonstrate how powerful these tools are when used
together. The previous three patterns give us a wide range of possibilities to model
complex scenarios. By mastering these three patterns, we should be able to simplify
solutions that have been previously written based only on rules or processes into
more natural and decoupled models. Instead of forcing rules to behave sequentially,
we should be able to formalize a business process for the tasks that need to be
performed in sequence. If we need to make decisions exclusively based on data, rules
are the right tool for that job. Knowing when to choose rules over processes is a skill
that we will learn by practicing and testing different approaches for implementing
our business scenarios.

In the second half of this chapter, we will look at more advanced topics related to
how we persist our processes and how to demarcate transaction boundaries. Both
persistence and transaction mechanisms are shared by Drools and jBPM so we
need to understand how these mechanisms impact the execution of our rules and
processes.

Integrating Rules and Processes

[270]

Persistence and transactions
Drools is usually used in situations where persisting its contents is somewhat
impractical. Either we want to execute rules as quickly as possible, and don't
want the overhead of having to persist on a database, or we want to keep as much
information as possible from the session in memory, so we can reuse it rapidly. The
situation with jBPM is a bit different, because we are going to need to use the Kie
Session to keep track of the immediate (automatic) steps of a process; then we might
have long wait periods while a task is completed or until a signal is received. This
scenario implies a sizable need to release resources when not being used; for that, the
Kie Session provides persistence mechanisms.

In the following sub sections, we're going to see how Drools and jBPM provide a
series of storing mechanisms to release resources from memory and place them into
persistence. We will explore:

• Different persistence configurations we can use
• How transactions are managed and demarcated
• How we can use different strategies to customize how the data is persisted

How is state persisted?
As we have already seen, each process instance can interact with a lot of different
things within a Kie Session: rules, other processes, external systems, and so on. The
best way to keep Kie Session state properly persisted is to wrap every method we
have in the Kie Session with a persistence mechanism. To do so, Drools relies on the
command-pattern to create a command-based implementation of the Kie Session.

The command-pattern is a way of encapsulating a method call as a specific object;
instead of doing multiple different method calls, you always end up doing the
same call to the "execute" with a different command parameter, as introduced in
Chapter 5, Understanding KIE Sessions. This means that, for each method of the Kie
Session (insert, fireAllRules, and so on), there is an equivalent command object
(InsertObjectCommand, FireAllRulesCommand, and so on) that will be passed to a
single "execute" method.

The command-pattern's main purpose is to wrap the call of the execute method with
anything we need. In our case, the execute method (being internally used for any
operation done on the Kie session) will be preceded by a transaction initialization,
and followed by a commit or a rollback depending on the success of the operation.
The following diagram shows how the command-pattern is implemented for the
Kie Session:

Chapter 10

[271]

This class structure allows Drools to provide a way of wrapping every call in some
extra operations, defined in the SingleSessionComandService class. We can see
how they operate in the following sequence diagram:

As you can see, instead of directly implementing a startProcess method, jBPM
provides a StartProcessCommand, which does the same operation but lets the
engine wrap the call in a transaction. In this same manner, each operation has its
corresponding command in Drools.

Integrating Rules and Processes

[272]

After this pattern is implemented, the Kie Session will have a place to start and
finish a transaction for each call done into it, but it will still need information about
how to do it (which transaction manager to use, what type of persistence to use
for persisting objects, and a few other configurations). Currently there are two
persistence implementations available in Drools and jBPM off-the-shelf: JPA and
Infinispan. Even though JPA is the recommended one to use because it is the most
maintained of the two, we will explore each in some detail to understand the hookup
points for Drools and jBPM persistence by comparison. Drools and jBPM also allow
us to write our own persistence layer—for example, if we want to persist the state of
the Kie Session using any other storage mechanism.

JPA implementation
This is the default suggested implementation for Drools persistence. It relies on the
Java Persistence API to store all the content of the Kie Session, its Process instances,
and extra info in tables in a relational database. It relies on a few configuration
elements:

• A persistence.xml configuration file in the META-INF classpath folder
• Drools and jBPM persistence JPA dependencies in the class path
• An EntityManagerFactory (from JPA) passed to the Kie Session initialization

We can see the persistence.xml with minimal requirements in the chapter-
10-persistence-jpa project in the source bundle. It contains all the initial
classes needed to persist Kie Sessions and process instances. The main
classes to pay attention to are SessionInfo (which persists the Kie Session
data), ProcessInstanceInfo (which persists the process instance data), and
WorkItemInfo (which persists the work items under execution). Each of these tables
only persists information relevant to recreating the same state in a different thread
depending only on the database, so most of the information is just binary data stored
in a blob. Remember that every time we invoke a method on the Kie Session, every
piece of data in it will be persisted, so performance is key to this operation.

Once we have the right persistence.xml, we need to add two important
dependencies into the classpath by adding these two XML blocks into our pom.xml:

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-persistence-jpa</artifactId>
 <version>6.3.0.Final</version>
</dependency>
<dependency>
 <groupId>org.jbpm</groupId>

Chapter 10

[273]

 <artifactId>jbpm-persistence-jpa</artifactId>
 <version>6.3.0.Final</version>
</dependency>

These dependencies will add the needed components in our application to start
working with persistent Kie Sessions. Also, we will need to add all the relevant
dependencies for the JPA implementation we want to use. Drools and jBPM
Persistence modules don't enforce any specific JPA implementation to make it as
adjustable as possible to the client's needs, though the JPA version targeted by the
provided configuration examples is JPA 2.0. In our chapter-10-persistence-jpa/
pom.xml file, we have hibernate dependencies, a Bitronix Transaction Manager (org.
codehaus.btm:btm:2.1.4), and an H2 database (com.h2database:h2:1.3.168) we
use for testing.

After we have these components, the next thing to do is get into our code. Most
of the change is done to the way we obtain the Kie Session. After the Kie Session
is created, we can use it like any other Kie Session object we've used before. In
chapter-10-persistence-jpa, there is a test called PersistentProcessTest
where we can see this initialization in detail. This test is based on the "process order"
business process we've seen earlier, and relies on special database access methods to
create and load Kie Sessions into and from the database, respectively. Let's see the
block of code needed to create a new persistent Kie Session:

KieServices ks = KieServices.Factory.get();
KieBase kieBase = ...
KieSessionConfiguration kieSessionConf = ...
Environment env = EnvironmentFactory.
 newEnvironment();
EntityManagerFactory emf = Persistence.
 createEntityManagerFactory(
 "org.jbpm.persistence.jpa");
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
...
KieStoreServices kstore = ks.getStoreServices();
KieSession ksession = kstore.newKieSession(
 env, kSessionConf, kieBase);

The first few methods are used to create a Kie Base, an optional Kie Session
configuration bean, and an environment variable. The environment variable will be a
collection of elements needed to initialize the Kie Session. The one required element
is this entity manager factory from JPA, which references the persistence unit defined
in our persistence.xml file. It can also have other parameters; we will explore these
in detail later on.

Integrating Rules and Processes

[274]

For loading an existing Kie Session, there is another method:

KieSession oldKieSession =
 Long id = oldKieSession.getIdentifier();
KieSession reloadedKieSession = kstore.
 loadKieSession(id, env, kSessionConf, kieBase);

The loadKieSession method lets us obtain an existing Kie Session from the
database. The parameters are the same as for creating a Kie Session, plus an ID
we can obtain from a persistent Kie Session. The Kie Base needs to be a parameter
when we create or load the Kie Session because, in order to make serialization/
deserialization of the Kie Session as fast as possible, only runtime data is stored in
the database.

After we've restored our Kie Session, we can use it like any other Kie Session we
have just created. We will be able to register listeners, work item handlers, globals,
and channels. This will have to be done also to load the Kie Session, since listeners,
work item managers, channels, and global variable references are not persisted in the
database.

Infinispan implementation
Infinispan (http://infinispan.org/) is an open source data grid framework and
platform. It provides a way to store information so that it is both distributed and
easy to access, using a NoSQL (Not-Only-SQL) document structure. In a way that
is very similar to how Drools and jBPM provide a persistence mechanism for JPA,
it also provides a mechanism for working with Infinispan as storage for our Kie
Sessions and process instances. This implementation, as with JPA, depends on
three things:

• An infinispan.xml configuration file in the classpath
• Drools and jBPM persistence Infinispan dependencies in the class path
• A DefaultCacheManager (from Infinispan) passed to the Kie Session

initialization

An example of the infinispan.xml is provided in the chapter-10/chapter-10-
persistence-inf project in the code bundle. We won't go into too much detail
about Infinispan configuration, but will just mention that the internal entity that
will hold all the information for this storage is called EntityHolder. It will store
Kie Sessions and process instance data in a Base64-encoded string representing the
binary data of the serialized runtime.

http://infinispan.org/

Chapter 10

[275]

As for the dependencies, we will need to add three main dependencies for our
Infinispan persistence run:

<dependency>
 <groupId>org.kie</groupId>
 <artifactId>drools-infinispan-persistence</artifactId>
 <version>6.3.0.Final</version>
</dependency>
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>jbpm-infinispan-persistence</artifactId>
 <version>6.3.0.Final</version>
</dependency>
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>jbpm-infinispan-persistence</artifactId>
 <version>6.3.0.Final</version>
 <type>test-jar</type>
</dependency>

The third one is related to using Bitronix as the transaction manager, but it is not
enforced by the implementation.

The code we will use for using our persistent Kie Session is very similar to the one
we saw for JPA. We will have two calls we can make (one for creating a persistent
Kie Session, and one for loading it back from the storage), but the calls will be done
through a helper class called InfinispanKnowledgeService, and the environment
variable will hold a DefaultCacheManager instead of an EntityManagerFactory.
Let's examine an example of the code for the creation of a persistent Kie Session:

KieServices ks = KieServices.Factory.get();
KieBase kieBase =
 KieSessionConfiguration kieSessionConf =
 Environment env = EnvironmentFactory.
 newEnvironment();
DefaultCacheManager cm = new DefaultCacheManager(
 "infinispan.xml");
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, cm);
...
KieSession ksession = InifnispanKnowledgeService.
 newStatefulKnowledgeSession(
 env, kSessionConf, kieBase);

Integrating Rules and Processes

[276]

The previous code will register a DefaultCacheManager using the same key the JPA
implementation used to register an entity manager factory. After that is provided,
along with a Kie Base and an optional Kie Session configuration, we will use the
newStatefulKnowledgeSession method of the helper class to obtain an Infinispan
persisted Kie Session.

Here's the code for loading a persistent Kie Session:

KieSession oldKieSession =
 Long id = oldKieSession.getIdentifier();
KieSession reloadedKieSession =
 InfinispanKnowledgeService.
 loadStatefulKnowledgeSession(
 id, env, kSessionConf, kieBase);

The Infinispan implementation is a valid alternative to the JPA implementation, but
it is relatively new and very few people are currently using it. Use it with caution, as
it is not currently recommended for production environments.

Extending persisted data
Now that we've seen the different flavors of persistent Kie Sessions, and what
information is stored, we should note a few important restrictions:

• Only binary data is stored, so querying from outside the engine would be
difficult

• The model is somewhat fixed, so reusing possibly existing persistence
mechanisms and relating them to our persistent Kie Session is complicated

To solve these issues, there are a few tricks and tools we can use. The first one we
will discuss is event listeners.

Event listeners can be registered in the Kie Session to notify external components
about changes in the agenda, the working memory, and the process instance state.
When using a persistent Kie Session, the calls inside event listeners are executed
inside the same transaction that wraps each operation of the Kie Session, so we can
extend items that are persisted from the Kie Session in these methods.

Chapter 10

[277]

Actually, this is something that the Kie Session already does out of the box. There is
an AuditLoggerFactory class that we can use to build event listeners that can export
more data to other tables (specifically, ProcessInstanceLog, NodeInstanceLog, and
VariableInstanceLog tables). This audit logger can be found in the jbpm-audit
dependency and can be added to our Kie Session with the following code:

ksession.addEventListener(AuditLoggerFactory.
 newJPAInstance(environment));

When using persistent Kie Sessions, process instance information is only
kept in memory while the processes are referenced and active. Using this
audit logger is the only way to actually query for a completed process
instance. Refer to the end of the test in PersistentProcessTest to
see the audit log service for info retrieval.

The other type of persistence extension mechanism provided by the Kie Session is
called object marshaling strategies. They give the Kie Session a special way to map
certain types of objects in and out of the database.

By default, all entities inserted into the persistent Kie Session will be persisted
serialized into the binary blob of data for the Kie Session. This is done in this way
because the default object marshaling strategy used by the persistent Kie Session is
prepared to take any object in the working memory and serialize/deserialize it on
read or write operations from the database.

However, we can define more types of object marshaling strategy, and the Kie
Session environment allows us to define more than one strategy at the same time.
Let's take a look at how the environment variable can hold information about object
marshaling strategies:

Environment env = EnvironmentFactory.newEnvironment();
env.set(EnvironmentName.OBJECT_MARSHALLING_STRATEGIES,
 new ObjectMarshallingStrategy[] {
 new JPAPlaceholderResolverStrategy(emf),
 new SerializablePlaceholderResolverStrategy(
 ClassObjectMarshallingStrategyAcceptor.DEFAULT)
});

In the previous code, we set two object marshaling strategies. As we can see, they
are passed to the environment as an array of ObjectMarshallingStrategy objects.
Each one of its elements will define an accept method (to decide if an object should
be serialized or deserialized using this strategy). The engine will take this array of
strategies and, for each one in the presented order, it will test whether it accepts each
object that has to be written into/read from the database. If it doesn't, the engine will
try with the next available strategy.

Integrating Rules and Processes

[278]

Specifically in this case, we're using two out of the box implementations of this type
of strategy. The first strategy will try to read objects from a JPA-based entity. If an
object is not a JPA entity, it will not accept it. For those cases, it will store the data
entirely inside the binary blob of the SessionInfo table, by using the serialization
strategy.

We can find a more detailed example of how these strategies interact with the Kie
Session in the OMSTest file in the chapter-10/chapter-10-persistence-jpa project.

Transaction management
Transactions are managed internally by the Kie Session, to guarantee that, whenever
we call an operation inside the Kie Session, we're inside one transaction. This means
any call to persistence mechanisms inside event listeners, work item handlers, and
any possible interaction component, should take into account joining an existing
transaction when we implement them.

Transactions will be searched in the JNDI context of the application if not provided
explicitly. This makes the configuration easy in most application servers. However,
to create a test, if we want to specify a transaction manager, user transaction, or
transaction synchronization registry, we can do so through the Environment bean we
use to create or load the Kie Session:

Environment env = EnvironmentFactory.newEnvironment();
env.set(EnvironmentName.TRANSACTION, myUserTransaction);
env.set(EnvironmentName.TRANSACTION_MANAGER, transManager);
env.set(EnvironmentName.
 TRANSACTION_SYNCHRONIZATION_REGISTRY,
 transSynchronizationRegistry);

All of these components are optional. You can see an example of how this is used to
configure a Bitronix Transaction Manager instance inside PersistentProcessTest
in the chapter-10-persistence-jpa project.

Chapter 10

[279]

Summary
In this chapter we have analyzed jBPM and how it can be used in conjunction
with Drools. We analyzed the two most important patterns with regard to how
rules can benefit from processes and vice-versa. In the second half of the chapter
we reviewed how shared mechanisms such as persistence and transactions can be
configured and used.

The next chapter is about how to integrate Drools (and jBPM) with our applications
and services. We will be looking at the new Kie Server introduced in version 6.3, and
how Drools and jBPM integrate with popular frameworks such as Apache Camel,
Spring, and CDI.

[281]

Integrating Drools with
our Apps

We have covered all the important aspects of using Drools as a rule engine. We've
explored stateless and stateful Kie Sessions and interaction with business processes,
and seen how complex event processing is managed. The last step we need to take is
to understand the different ways Drools can interact with the rest of our application.

Drools is a framework; as such, it can interact with other frameworks in as many
ways as we can imagine. In the next sections, we will discuss some of the most
common design and architecture approaches to integrating Drools with the rest of
our design, including some pros and cons for each approach. We will cover an in-
detail explanation of:

• Types of Drools integration and architecture considerations
• How to integrate Drools with popular integration frameworks such as

Spring and Camel
• Available examples of integrations, such as the Kie Server

Integrating Drools with our Apps

[282]

Architecture considerations
The first thing we will need to address when designing how Drools should interact
with the rest of our application components is how they will fit in the overall
architecture; we will have specific requirements regarding how data will be fed into
the rule engine, either from our own application or from external sources. Also, we
must decide how information should be published back to our application from the
rule engine, or how it should be exposed to external applications. We've already seen
many mechanisms throughout previous chapters to communicate between Drools
and the rest of the application (to name a few):

• We can use global variables to send and receive information outside the Kie
Session, and to communicate with different systems. These global variables
could represent any Java component, from simple lists, to database accessors,
to web service client stubs, allowing the session to communicate with any
part of our infrastructure.

• We can use entry points to identify different sources of information Drools
will receive facts and events from. In our application, we could use each
entry point in a different endpoint that communicates with our Kie Sessions.

• We can register channels to send new information inferred from the Drools
runtime out to any other component. Registering listener-like classes, we can
send information about specific domain situations.

• We can use any of the pluggable components to detect changes in the
status of information inside the working memory (from event listeners to
object marshalling strategies) to publish information about our Kie Session
to any form of data source. Later on, other services can be built to query
those data sources.

Also, we need to decide whether or not our rules should be running in a discrete or
continuous fashion, based on the necessities of our domain logic. We will discuss this
case in the next subsection.

Asynchronous versus Synchronous Design
As we discussed in Chapter 6, Complex Event Processing, we might have situations
where the absence of input data on a Drools runtime might trigger a rule. For such
cases, asynchronous management of rule execution is required. Even if this is not
the case, we might still design our application as a set of asynchronous components
connected through a common messaging bus, such as JMS, and still need to manage
our rules in a way that accommodates asynchronous management.

Chapter 11

[283]

If we need to execute our business rules in a synchronous manner, we can take a series
of actions to simplify integrating our rule execution to our application, including:

• Using stateless Kie Sessions, if keeping state between rule executions is not
something we need to worry about. If you do this, you can create as many
Kie Sessions as potential service requests.

• Use global variables to store specific rule execution information. Since we
will invoke fireAllRules after the insertion of new data, we can get the rule
execution information that might modify a global variable, and expose it in
the response.

If we need to execute our business rules in an asynchronous manner, we need to take
care of a few other things:

• Kie Sessions may be shared between different threads, because some of them
may insert new information and others might take care of firing rules (that is,
using fireUntilHalt).

• If rule execution is delayed to a different thread, we need to think about
our rules in such a way that they notify special cases to other parts of the
application, also asynchronously. One way to accomplish this would be to
register special listeners as global variables that take care of notifying other
components about special situations detected by the rules, instead of using lists
of data as global variables to store information deferred to after rule execution.
This is mainly because rule execution will not cease for rule-firing threads.

• Entry points become a very useful component when multiple sources will
be inserting information into a single Kie Session, since it lets the rules easily
identify the source of the information.

These considerations will be affecting the full structure of our application, and not
just the Drools runtime. The purpose of this discussion of common practices used in
Drools asynchronous and synchronous uses is just to understand that we can adapt
to any situation we design our applications to handle.

Once we take care of these considerations, we might start considering how the
Drools runtime will be deployed along with the rest of our application.

Integrating Drools with our Apps

[284]

Integrating with the rest of an application
Drools has been historically used (and will most likely continue to be used) to
cover many different use cases. Since, as a framework, it acts as a behavior injection
component, we can use it to inject all sorts of logic anywhere in our applications.
Since we cannot cover all possible types of integration, we will try to cover the most
common cases here, and discuss the natural evolution that is usually seen for Drools
integration in diverse applications.

The first most common step for integrating Drools is usually embedding its
dependencies and code inside our own application and using it as a library.

Embedding Drools into our application
This is usually the first scenario for integrating Drools with our own apps because it
is the quickest way to start using Drools. We just need to add the right dependencies
and start using the APIs directly in the locations we want. The following figure
shows this integration as it happens in the first stage:

First stage: Drools embedded inside our application

The first rule projects we defined in this book followed this structure. As you can see,
Drools can interact with any and all layers of our application, depending on what we
expect to accomplish with it:

• It could interact with the UI to provide complex form validations
• It could interact with data sources to load persisted data when a rule

evaluation determines it is needed
• It could interact with outside services, to either load complex information

into the rules or send messages to outside services about the outcome of the
rules execution

Chapter 11

[285]

During this first stage in the development of rule-based projects, all the components
needed to run our rules are usually included in our application, including the rules.
This means we will have to redeploy our application if we want to change the
business rules running in it.

The first thing we usually need to do in these situations is to start updating the
business logic inside the rules at a faster rate than the rest of the application. This
leads us to upgrade our architecture so as to move business rules as an outside
dependency, defined as a KJAR. Components in our rule runtime can dynamically
load these rules from outside repositories, as the following diagram shows:

Second stage: Drools getting our rules from an external repository

In this structure, we moved the rules away from our application. Instead, we take
them from an external JAR. This change is not just a project rearrangement, because
the actual JAR with all the rules won't be a dependency at the moment of deploying
our application. Instead, the Drools runtime will read the JAR directly from our
Maven repository (local or remote) and load the rules whenever it needs to do it. The
Drools runtime can do so by letting CDI directly inject our Kie-related objects with
the appropriate version using a @KReleaseId annotation:

@Inject @KSession
@KReleaseId(groupId = "org.drools.devguide",
 artifactId = "chapter-11-kjar",
 version = "0.1-SNAPSHOT")
KieSession kSession;

Alternatively, we can directly build our Kie Container objects based on a specific
version of our code. If done this way, we can use a KieScanner to let our runtime
know it should monitor the repository for possible future changes, so that the
runtime can change versions without even having to restart:

KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.newKieContainer(
 ks.newReleaseId("org.drools.devguide",
 "chapter-11-kjar", "0.1-SNAPSHOT"));

Integrating Drools with our Apps

[286]

KieScanner kScanner = ks.newKieScanner(kContainer);
kScanner.start(10_000);
KieSession kSession = kContainer.newKieSession();

We should mention at this stage that nowhere else in the project have we added
a direct dependency to the specific JAR from which we want our Kie Session to be
built. Dependency resolving is entirely managed by the runtime, by having org.
kie:kie-ci as a dependency. You can see examples of these two cases in the
chapter-11/chapter-11-ci project in the code bundle. Both examples are inside
the KieCITest class.

Note: In the previous code snippet, we use a specific Maven
Release ID. But, just like in Maven, we can use ranges
to define the version of the release on which we want to
work. Also, the use of SNAPSHOT and LATEST can let
the Maven components worry about the right version they
should obtain, instead of returning a single specific version.

This is a necessary step toward having an independent development life cycle for our
business rules. This independence will allow for the rules to be developed, deployed,
and managed as many times as needed without having to redeploy our applications.

The main disadvantage at this stage of having Drools embedded in our application
is the amount of dependencies needed to do all this. We started our case with only a
few DRL files and about a dozen lightweight dependencies added to our classpath,
but at this stage we will have a few other dependencies directly in our runtime that
we might want to keep out of our classpath. This is the point where we start looking
at exporting our rule runtime to external components, and we will discuss this in the
next subsection.

Knowledge as a Service
Once our business rule requirements start growing—including dynamic rule reload,
more and more calls, and interactions with external systems—we get to the point
where multiple applications would need to replicate a lot of things in their own
runtimes to reach the same behavior for what could be common business logic. The
natural transition at this point is creating knowledge-based external services outside
our application. Managing independent rule development life cycles becomes easier,
as does the possibility of replicating the service environment for higher demands.
The following diagram shows a common way to design such services:

Chapter 11

[287]

Third stage: Drools as a Service

In the previous diagram, we can notice two important aspects:

• As many client applications as desired can access the Drools runtime
without adding big complexities to their own technology stack, because that
complexity is entirely on the Drools Service side.

• All the rules are stored in a Maven repository. This allows for all
environments to work with the same Business Rules if they share business
logic, and for all of them to have the same versions of that knowledge
updated at the same time, if rules are modified.

Creating this sort of component makes most sense when we want to add several
custom configurations to our Drools runtime—for example, accessing external
services in a legacy way, or when we want to provide custom responses to outside
clients. We can use common integration tools, such as the Spring Framework
(http://projects.spring.io/spring-framework/) and Apache Camel (http://
camel.apache.org/), to integrate other components and environments with our
Drools runtime. We will see how to configure these elements in further subsections.

However, when we need to use the Drools runtime internally (where the specific
structure of the response can be adjusted later), and configurations are standard in
terms of what Drools expects in a kmodule.xml, we might use a simpler approach.
Drools provides a module called kie-server, which can be used to configure similar
environments that are only responsible for running Drools rules and processes,
taking the kJAR from outside sources, as the following diagram shows:

http://projects.spring.io/spring-framework/
http://camel.apache.org/
http://camel.apache.org/

Integrating Drools with our Apps

[288]

We will see how the kie-server is configured in a further section.

As you can see, there are multiple ways of integrating Drools, depending on our
architecture, design, and performance-oriented decisions. Let's discuss some of the
off-the-shelf integration tools available to make Drools interact with the rest of our
components and applications.

CDI integration
One of the first integration frameworks we discussed in this book was the Contexts
and Dependency Injection (CDI) standard. It lets us define how we should bind
beans together depending on @Inject annotations, to avoid having to write code to
init and bind all our beans together. If we are already using CDI in our application,
we have already seen we can use injected Kie Sessions, Kie Containers, and Kie Bases
in previous chapter. There is no other required change in our application, other than
a CDI implementation dependency.

In our chapter-11/chapter-11-ci example, we use Weld (http://weld.cdi-
spec.org/) as an implementation by adding this dependency into our POM file:

<dependency>
 <groupId>org.jboss.weld.se</groupId>
 <artifactId>weld-se-core</artifactId>
 <version>1.1.28.Final</version>
</dependency>

Also, we need to define an empty beans.xml file inside our project, in the src/
main/resources/META-INF folder. Doing these two things lets our Java runtime
understand it should start injecting beans, depending on our class annotations.

Spring integration
Another well known framework for dependency injection is the Spring Framework
(http://projects.spring.io/spring-framework/). Drools can be easily
integrated to other components in an application using Spring, and we have an
example of this integration in the chapter-11/chapter-11-spring project of the
code bundle.

http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://projects.spring.io/spring-framework/

Chapter 11

[289]

Introducing Spring Framework
The Spring Framework is, in its core, an integration framework that allows binding
of different Java components together using Inversion of Control. Through XML
configuration files or injection annotations, it lets us tie together bean constructors
and setters to initialize the runtime of our applications. Besides that base
functionality, Spring has been in the market for several years now, and has a lot of
adoption and pluggable libraries that allow us to bind all sorts of functionalities to
our apps, including Data Access libraries, Aspect-oriented programming features,
URL binding, and Transaction management.

Kie Spring Config example
Drools provides a module to integrate with the Spring framework called Kie Spring.
It lets us define Kie Modules, Bases, Sessions, and set components on them and bind
them together with the rest of our Spring configurations. To start using it, we first
need to define this dependency inside our POM file:

<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-spring</artifactId>
 <version>6.3.0.Final</version>
</dependency>

And after that, we define our Kie components inside our Spring context file. Here's
a section of the chapter-11-spring/src/main/resources/spring-context.xml
file that shows the configuration we need to use to define a Kie Session:

<kie:import releaseId-ref="kjarToUse" />
 <kie:releaseId id="kjarToUse"
 groupId="org.drools.devguide"
 artifactId="chapter-11-kjar"
 version="0.1-SNAPSHOT" />
 <kie:kmodule id="kie-spring-sample">
 <kie:kbase name="kbase1">
 <kie:ksession name="ksession1"/>
 </kie:kbase>
 </kie:kmodule>

In the previous example, we defined a set of important components:

• kie:import and kie:releaseId: With these two tags, we announce the context
we should dynamically load in a specific release of a Kie JAR, and load it into
the classpath.

Integrating Drools with our Apps

[290]

• kie:module, kie:base, and kie:session: These components are used in a very
similar fashion to what we would define inside kmodule.xml. It will let us
define Kie Bases and Sessions we can later on reference from other Spring
managed components.

• The kie:batch tag: It lets us define a specific set of commands that needs to
be executed to initialize our Kie Sessions; using kie:batch, we can set globals,
insert initial facts, or anything specific we need to do to initialize our Kie
Session, without having to write any code for it.

• We can run this example by running the KieSpringTest JUnit test in the
chapter-11-spring project of the code bundle. If you want to see a full
explanation of the types of tags available for configuring Kie Spring contexts,
you can find it at: http://docs.jboss.org/drools/release/latest/
drools-docs/html/ch13.html.

Camel integration
Spring and CDI are great frameworks for integrating Drools inside our own
applications. In cases where we want to expose Drools functionality as a service
to other applications, we need to start looking at frameworks that expose service
endpoints. For this purpose, there is an integration component that allows us to
expose Drools components through Apache Camel (http://camel.apache.org/)
endpoints, called Kie Camel.

Integrating the Apache Camel framework
Apache Camel is an integration framework that lets us define routes that merge
together different types of services and components, using a series of predefined
and market accepted patterns called Enterprise Integration Patterns (EIP). Similarly
to a design pattern, an EIP allows us to define reusable, easy to understand and
extensible components. The main focus of EIP is to provide simple, reusable
structures to define service endpoints.

Creating our Kie endpoints
In order to use Kie Camel, the first thing we need to do is add a dependency to our
POM file:

<dependency>
 <groupId>org.jboss.integration.fuse</groupId>
 <artifactId>kie-camel</artifactId>
 <version>1.3.0-SNAPSHOT</version>
</dependency>

http://docs.jboss.org/drools/release/latest/drools-docs/html/ch13.html
http://docs.jboss.org/drools/release/latest/drools-docs/html/ch13.html
http://camel.apache.org/

Chapter 11

[291]

Note: the kie-camel component is managed as part of the JBoss
integration tooling, outside the Drools projects, and that is why
it uses a different versioning scheme from the rest of the Kie
components. Version 1.3.0-SNAPSHOT is the current version,
which uses Drools 6.3.0.Final dependencies internally.

This component will have all the dependencies as Camel core libraries, which
will make it easier to define our endpoints. These endpoints will be defined using
a Camel concept called routes; routes are specific Enterprise Integration Pattern
implementations, where we configure how different endpoints interact with each
other. We can define them using a Spring context file, and here's a short example of
how to create a route that uses Drools:

<bean id="kPolicy" class="org.kie.camel.component.KiePolicy" />
<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct://someOriginalRoute"/>
 <policy ref="kPolicy">
 <unmarshal ref="xstream" />
 <to uri="kie:ksession1" />
 <marshal ref="xstream" />
 </policy>
 </route>
</camelContext>

This simple piece of Spring context does a lot of things:

1. It defines a KiePolicy bean: This is done to expose Drools-related paths
through a REST endpoint, in order to enable these paths to parse Kie
commands that can be fed into a Kie Session.

2. It defines a route: The route contains three main steps: unmarshalling a
message using the XStream framework, passing the unmarshalled object
directly into a previously defined Kie Session "ksession1", and then
marshalling the response back using XStream once again.

As we can imagine, there is a lot more that we can do with Apache Camel to expose
different parts of this Kie Session to other beans. We could feed information from
its listeners to other endpoints, perform previous validations to the data being
introduced into the Kie Session, or anything else we can imagine.

Integrating Drools with our Apps

[292]

When we expose the endpoint through a REST server (you can find the rest of this
configuration in the chapter-11-camel/src/test/resources/cxf-rs-spring.
xml file), we can invoke it by passing XML representations of a Drools Kie Session
command, such as the following:

<batch-execution lookup="ksession1">
 <insert out-identifier="myItem">
 <org.drools.devguide.eshop.model.Item>
 <cost>119.0</cost>
 <category>NA</category>
 </org.drools.devguide.eshop.model.Item>
 </insert>
 <fire-all-rules/>
</batch-execution>

This will cause the command to be fed into the Kie Session, which will then insert
the specified Item object into the working memory and fire all the rules. A full list of
the XML commands which can be fed into a Kie Session in this manner can be found
at http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/
ch11.html.

We can run this example by running the KieCamelTest JUnit test in the chapter-
11-camel project in the code bundle. Apache Camel is a very large topic to be fully
covered in this book, but for those who still find it useful and want to start looking
into Camel, you can get started at http://camel.apache.org/manual.html.

Kie Execution Server
We've already discussed the possibility of having a specific Drools oriented service
to run our rules in an isolated environment. The Kie Execution Server (or Kie Server
for short) is an out of the box implementation of such a service. It is a modular,
standalone server component that can be used to execute rules and processes,
configured as a WAR file. It is currently available for web containers and JEE6 and
JEE7 application containers.

The main purpose of the Kie Server is to be a runtime environment for Kie
components, and one that uses as few resources as possible in order for it to be easily
deployed in cloud environments. Each instance of the Kie Server can create and
use many Kie Containers, and its functionality can be extended through the use of
something called Kie Server Extensions.

Also, the Kie Server allows us to provide Kie Server Controllers. These are
endpoints which will expose Kie Server functionalities. In a sense, they will be the
front-end of our Kie Server.

http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch11.html
http://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch11.html
http://camel.apache.org/manual.html

Chapter 11

[293]

Let's take a look at how we can configure these components inside our Kie
Server instances.

Configuring Kie Server
Kie Server provides two default Kie Server Extensions: one for Drools and one for
jBPM. Even though they are the only ones currently provided, Kie Server Extensions
are thought to be something we can add to the Kie Server in as many flavors as we
need. The way the Kie Server will load them is through the ServiceLoader standard:
a set of files included in the META-INF/services folder of the application classpath
with information about the different implementations of expected interfaces.

In our case, the expected interface is KieServerExtension, so we will need a META-
INF/services/org.kie.services.api.KieServerExtension file, whose only
contents will be the name of the implementations of that interface.

In this case, we have an example of such a configuration in the projects under the
chapter-11/chapter-11-kie-server folder of our code bundle. This project adds
an extra feature to the Kie Server by making sure all Kie Bases inside it have statistics
published through JMX. We have a CustomKieServerExtension Java class that
defines a series of methods:

• init/destroy: These let us define how to start/stop the associated server
components related to providing a specific service in our Kie server. In
our case, we're just making sure we have JMX enabled by asking for the
MBean Server.

• createContainer/disposeContainer: For every Kie Container used in our
Kie Server, we can define these methods to do special treatment for them.
Since our functionalities will be targeted at Kie components mostly, this is
the proper connection point for our special services targeted at created Kie
components. In our case, we're registering the JMX beans using the special
methods in the DroolsManagementAgent singleton class:
DroolsManagementAgent.getInstance().
 registerKnowledgeBase(kbase);

• getAppComponents: These methods will be used by other extensions to
get information about the exposed services we started with in our extension
(if any).

Integrating Drools with our Apps

[294]

Once these have been deployed in an app server, we will need to create a user with
the kie-server role in the aforementioned server, and we will be able to access our
deployment through the http://SERVER/CONTEXT/services/rest/server/ URL.
The following is an example of an expected response:

Inside the capabilities, we can see Statistics is one of the exposed capabilities.
That is the one extension we created. Any functionality can be exposed in this way,
like a special protocol exposition to our other Kie Server Extensions (that is, through
the Apache Mina - https://mina.apache.org - or RabbitMQ - https://www.
rabbitmq.com - communication protocols).

Note: When we run this example inside our test, it will create
a Wildfly App Server (http://wildfly.org) instance and
deploy our customized Kie Server inside it. In order for it to
work properly, we also create a few configuration files inside
that server. You can review the assembly steps of the project
inside the POM file of the kie-server-tests project for
the Wildfly server. If you wish to configure it for any other
App or Web Server, here's a detailed list of how to configure
it for other environments: https://docs.jboss.org/
drools/release/6.3.0.Final/drools-docs/html/
ch22.html#d0e21933.

Default exposed Kie Server endpoints
As for the API exposition from the Kie Server, it comes in two main flavors: REST
and JMS. These two endpoints work with the same commands for creating/
disposing containers, and operating against Kie Sessions. These two endpoints are
used in almost the same way if we use a client utility called KieServiceClient,
available in the org.kie.remote:kie-remote-client Maven dependency. Internally,
however, they work in very different ways.

http://SERVER/CONTEXT/services/rest/server/
https://mina.apache.org
https://www.rabbitmq.com
https://www.rabbitmq.com
http://wildfly.org
https://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch22.html#d0e21933
https://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch22.html#d0e21933
https://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch22.html#d0e21933

Chapter 11

[295]

REST exposes the functionality of Kie Containers through a REST API. It provides
a very useful way to interact with any type of system, since any commercially used
language now comes with APIs to invoke REST APIs. This is the best choice both for
interacting with applications written in other languages and for the initial use of the
API. A full description of the REST API exposed through the Kie Server can be found
here: https://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/
html/ch22.html#d0e22326.

JMS exposes the functionality of Kie Containers through three specific JMS queues,
called Kie.SERVER.REQUEST (for handling incoming Command requests), Kie.
SERVER.RESPONSE (to send back a response), and Kie.SERVER.EXECUTOR (for
asynchronous calls, mostly used by BPM components). Since JMS is naturally
asynchronous, it makes it the best choice when creating distributed environments;
Each of the Kie Servers available at any time can compete to take messages from
these queues, so high availability and performance are naturally managed with the
growth of requests.

There are two examples in the code bundle of using these APIs. Both can be found
in the chapter-11/chapter-11-kie-server/kie-server-test folder, under
the names RESTClientExampleTest and JMSClientExampleTest, for REST
and JMS respectively. They are extremely similar, with the exception of how the
KieServicesClient class is initialized:

KieServicesConfiguration config =
KieServicesFactory.newRestConfiguration(
 "http://localhost:8080/kie-server/services/rest/server",
"testuser", "test", 60000);
KieServicesClient client = KieServicesFactory.
 newKieServicesClient(config);

In the previous code, we see the initialization block for a Kie Server Client that
uses REST as an endpoint configuration for a Kie Server running in http://
localhost:8080.

Besides performing these deployment managements through code, the Kie projects
provide a set of usable workbench tools that allow us to create, build, and deploy
rule definitions in any Kie Server without having to write any code. These tools are
referred to as Workbenches, and we'll see an introduction to how they work in the
next section.

https://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch22.html#d0e22326
https://docs.jboss.org/drools/release/6.3.0.Final/drools-docs/html/ch22.html#d0e22326

Integrating Drools with our Apps

[296]

Kie Workbench
There is one more component we have briefly mentioned before, Kie Workbench.
Kie Workbench is a web environment where we can create and test all sorts of Kie
assets, such as rules, processes, and data models. It is a very useful tool to include
business people with little technical knowledge of the specifics of implementation
into the development cycle, because it provides a user-friendly environment for rule
writing. Go to chapter-11-workbench-tests, compile it, and run the standalone
script from the target/wildfly.8.1.0.Final/bin/ folder to start the environment.
After it starts, go to http://localhost:8080/kie-wb on your machine and log in
using the "testuser" username and test password to get to the following page:

Note: it will take a few minutes to start, so if you get a 404
from the URL, just give it a few more minutes to load

Chapter 11

[297]

Once it loads, we will be able to see the options involving authoring Kie Assets if we
go to the Authoring | Project Authoring option in the top menu:

From the opening perspective, we will have a lot of screens available, where we will
be able to create rules, processes, data models, and many more elements using the
New Item option. We can also create new projects to group these assets, and they
will be internally managed as Maven projects versioned inside (also internally) a Git
repository. We have a few predefined projects to start playing with.

We will open the mortgages project editor. To do so, we'll click on the uf-playground
option next to the demo organizational unit (in the Project Explorer screen on the
left), and then on the mortgages option in the list next to it. Once that is open, click
on the button that appears over the listboxes, called Open Project Editor. Then, on
the opening editor we can see to the right, we will see a set of options on the top.
Clicking on the Build option will display the Build & Deploy option, and clicking
on it will deploy the project in an internal Maven repository:

We will use this deployed project to test a Kie Execution Server. There is a very large
set of tools we could use inside the Kie Workbench, but unfortunately we cannot
explain them all within this book. There is a very good set of training sessions for
using the Workbench features available online, created by Eric D. Schabell. You
can find them at the following URL: http://bpmworkshop-onthe.rhcloud.com/
brms6_1/lab01.html.

http://bpmworkshop-onthe.rhcloud.com/brms6_1/lab01.html
http://bpmworkshop-onthe.rhcloud.com/brms6_1/lab01.html

Integrating Drools with our Apps

[298]

We will concentrate on the specific components of the Kie Workbench that bind it
to the Kie Server we just discussed. Once we have built and deployed a project, it
will be available inside the Maven repository exposed by the workbench (for the
mortgages project, it can be found at http://localhost:8080/kie-wb/maven2/
mortgages/mortgages/0.0.1/mortgages-0.0.1.jar). This JAR will be available
with the same credentials used by the Kie Workbench. From there, we can perform
deploys through the UI to any Kie Execution Server we have available. To do so,
we must go to the top menu option Deploy | Rule Deployments, and click on the
Register button:

We've already deployed a Kie Execution Server inside the same environment,
using the customized WAR we created in the previous section. In order to be able
to deploy to it, we must register it with the proper data. The Identifier property
must have the base REST endpoint of the Kie Server. For our environment, it will
be http://localhost:8080/kie-server/services/rest/server. For the Name
property, we will just write some identifying text, such as devguide-server.

Once the Kie Server is created in the Rule Deployments view of the Kie Workbench,
we can select it and click on the plus sign visible on the right of the devguide-server
line. By clicking on that button, we can see a window with a form to deploy a specific
container in the given Kie Server. We will use it to deploy the mortgages project, as
shown in the following screenshot:

Chapter 11

[299]

After we deploy the container, we can see its details by clicking on the small arrow
to the right of the created container (it will appear right below the plus sign button
we clicked before). We can also select it by clicking on the radio button to the left
of the created container, and clicking on the Start button on the top left of the Rule
Deployment screen. After you deploy and start the container, it can start resolving
requests with the rules and processes defined in the given project.

Using these tools can allow non-technical people to write, deploy, and execute rules,
without having to write a single line of code in a conventional IDE setup. Everything
can be done through the tool. This allows business specialists to be more easily
introduced to the realm of rules, and can be a great tool to help them collaborate in
the development process of Drools-based projects.

Drools and beyond: extending our
functionality
We've seen in this chapter, and throughout the whole book, a lot of different ways
to use Drools. Whether we use it as an embedded library, a service, or a closed
product, the main goal is to enable our applications to grow in a manageable way.
We must consider our design, inside and around business rules, to achieve this. We
will try to cover a few tricks that have facilitated growing our Business Rule-enabled
applications in the past.

Integrating Drools with our Apps

[300]

One of the first extensions of functionality we've seen for Drools components has
been global variables. If we define them as interfaces or abstract classes, we can
define them by using different classes for different runtime components (that is, test
cases, local versus QA, or production environments, and so on). They are a very
simple way of providing ease of extensibility because of their pluggable nature.

Global variables also provide a very useful feature that sometimes gets overused;
because we can keep a reference to the global variables we set, and we can store
information from our rule executions into it, we end up storing a lot of information
in global variables that is clutter our rule consequences—for example, a log of rules
is triggered:

global List rulesExecuted;

rule "example of bad action"
 when
 //our conditions
 Then
 //our actions
 rulesExecuted.add("example of bad action");
end

KieSession ksession = ...;
List rulesExecuted = new ArrayList();
ksession.setGlobal("rulesExecuted", rulesExecuted);
...
ksession.fireAllRules();
System.out.println(rulesExecuted.size());

In the previous example, we can see a common point where we start abusing global
variables. Global variables, if used to record information about our rule execution,
should be used to store specific business-related information. If we just want to store
which rules were triggered (or a sub-group of them) or anything common to all
our Drools executions, we are better off using Event Listeners. Event Listeners are
the best choice when we want to audit our execution, rather than obtaining specific
information about our domain. We need to keep the difference in mind when we
design our runtime.

Chapter 11

[301]

Another important aspect of rule-related application design is to make our runtime
code as agnostic as possible about which specific rules are triggered. If you couple
your execution to the firing of specific rules, it will be very hard to extend your
application. This is also true when it comes to designing our rules. Like we said
before, rules should be independent of each other, and that extends to the application
that runs them; all we should care about in the execution of our rules is the final
decisions made by them. Otherwise, any change or add-on in our rules will need to
be impacted into our runtime as well.

This applies to creating tests for our rules. We should try to avoid validating that
specific rules have fired, and rather verify that the consequences of the rule execution
have been followed. For example, when testing the execution of our online shop case,
we should strive to test whether the final outcome of the rules has been followed
(items have been catalogued, discounts have been applied, and so on), and not just
whether one specific rule or another has been tested. To put it more simply, we
should let the rule engine do its job.

Summary
Business Rules adoption is a very rewarding task once we get past the first learning
curve. Once we reach a point where rule stakeholders have control over the rules
used in their environment (and the tools to do so), the speed of development and
deployment increases enormously. Also, Business Rules become an easy way to
break down requirements and leave them registered in a traceable, understandable
way. This helps intercommunication between technical groups and domain experts,
thanks to this common language. No organization has ever regretted learning
Drools, much less adopting it in their everyday activities.

We have learnt in this chapter about the many different tricks and tools to use Drools
with common designs and architectures, and an introduction to the tools provided
by the Kie Workbench and the Kie Server; we have also learned how to access them.
It is up to the end user to determine the best way to make use of these components
to link Drools to their existing enterprise infrastructure, but it is our honest hope that
now you will have all the tools to make the best decision for your needs.

[303]

Index
A
accumulate keyword 87
action 3
Agenda 8
Alpha Nodes

about 220
constraint JIT compilation 223
sharing 221, 222

Apache Camel framework
integrating 290
reference link 287-292

Apache Commons Logging
URL 207

Apache Mina
URL 294

Apache Open Web Beans
URL 30

application
Drools, embedding into 284-286
Drools, integrating with 284

B
backward-chaining reasoning 236, 237
Beta Nodes

about 224, 225
or between patterns 228, 229
sharing 225-228

Bitronix 275
Boolean operations 82, 83
business process example

about 252-254
Kie Session advanced configurations 255

Business Process Management (BPM)
about 72

URL 250
Business Rule Management Systems

(BRMS) 12

C
Camel integration

about 290
Kie endpoints, creating 290, 291

CDI integration 288
CEP-based Rules, declaring

about 141
events, semantics 142
temporal operators 144
time-based-events, declaring 143, 144

CEP-based Scenarios
about 153
continuous versus discrete

rule firing 154, 155
limitations 156, 158
session clock, testing 155, 156
stream processing, configuring 153, 154

channels 118-120
collect from objects 86
collection operations 83, 84
command pattern

URL 108
complex event 140
complex event processing (CEP)

about 139
CEP-based Rules, declaring 141
events and complex events 140, 141

Complex Systems 14
condition 3
conditional

named consequences 102, 103

[304]

conditional elements 91
consequence 3
Context & Dependency Injection (CDI)

about 28, 29, 30
global variables 196
URL 28

Contexts and Dependency
Injection (CDI) 288

customer classification decision tree
example

about 188, 189
DataDictionary 189
header 189
model 190

CustomKieServerExtension Java class
createContainer/disposeContainer

method 293
init/destroy method 293

D
Data Access Object 62
data, in working memory

delete/retract keywords 65
insert keyword 63
insert memory 63
modify and update keywords 64

Data Mining Group
URL 185, 186

decision tables
about 167, 168
enhanced decision tables 176, 177
RuleSet section 169, 170
RuleTable section 171, 172
scenario 173-175
structure 168
troubleshooting 175

Declarative Programming 3
declared types 78, 79
default exposed Kie Server

endpoints 294, 295
delete/retract keywords 65, 66
dictionary file, DSL

about 160, 161
constraints, adding to pattern 162, 163

Domain Specific Languages
about 160

dictionary file 160, 161
rules file 163, 164
simple scenario 165, 166
troubleshooting 164, 165

don keyword 97
DOT language

URL 247
DRL constructs

URL 35
Drools

about 1, 160, 281
architecture considerations 282
asynchronous, versus synchronous

design 282, 283
backward reasoning 241-243
bugs, reporting 213
embedding, into application 284-286
functionality, extending 299, 301
inline casts 95
integrating, with application 284
issues, URL 213
nested accessors 94
null-safe operators 95
persistence 270
positional arguments 240, 241
Query Element Node 244
unification 237-239

Drools CEP 139
Drools DSL 160
Drools Eclipse plugin 209
Drools Fusion 139
Drools GitHub repository

URL 213
Drools project

creating 21-24
Drools Rule Language (DRL)

about 30, 61
loosely coupled DRLs, creating 194

Drools runtime instances 41

E
elements

deviations 100, 101
logical insertion 98

end template 179
Enterprise Integration Patterns (EIP) 290

[305]

entry-point (EP) nodes 217-219
environment

setting up 20, 21
event-driven architecture (EDA)

about 148, 149
Event Channels 149
Event Consumer 148
Event Processing Agents 149
Event Producer 148
sliding windows 150
split event sources, with entry

points 149, 150
event listeners

about 123-125
Kie Bases 123
Kie Sessions 123

events, semantics
about 142
interval events 142
punctual events 142

EXISTS keyword 92-94
exists node 231, 232
external interactions

adding, with global variables 61, 62

F
FORALL keyword 92-94
from clause 84-86
from keyword 201-203

G
Git

URL 20
globals

about 110, 111
benefits 195, 196
information, collecting from

session 116, 117
interacting with external systems,

in RHS 117, 118
new information, introducing

in LHS 114-116
pattern condition, parameterizing 111-114

global variables
external interactions, adding 61, 62

Graphviz
URL 247

H
H2 database 273

I
Imperative programming

versus Declarative implementation 3, 4
inferences 6
Infinispan

implementing 274, 275
URL 274

inline casts 95
insert keyword 63
integration patterns

about 263
BPMN2 Business Rule Tasks 267-269
process engine, accessing from rules 264
process instances, as facts 265, 266

J
Java Message Service (JMS) queue 149
jBPM 72 250-252, 263
jBPM6

books, URL 252
JMSClientExampleTest 295
JPA

implementing 272, 273
JProfiler

URL 157

K
kcontext 160
kie-api artifact 181
kie:base component 290
Kie Base components

about 123-125
custom accumulate functions 134-138
custom operators 127-134
functions 125-127

KieBases 49
kie:batch tag 290
Kie Camel 290

[306]

KieContainer classpath
about 44, 45
KieHelper, preferring over 194, 195

Kie endpoints
creating 290, 291

Kie Execution Server 292
KieHelper

over KieContainer classpath 195
preferring, over KieContainer classpath 194

kie:import tag 289
KieModule

about 43, 44
and KieContainer 44
configurations 49-52
KieModule A 44
KieModule B 44
KieModule Parent 44
rules, loading from classpath 45-47
rules loading, Maven artifacts

(Kie-CI) used 48
kie:module component 290
KieModules 44, 45
kie:releaseId tag 289
Kie runtime components

about 110
channels 118, 119
event listeners 123-125
globals 110, 111
queries 120, 121

KieScanner
about 53, 54
Artifacts version resolution 54-56
unexpected issues and errors,

dealing with 57-59
Kie Server

configuring 293, 294
default exposed KIE Server

endpoints 294, 295
Kie Server Controllers 292
Kie Server Extensions 292
KieServices (ks) 46
KieSession

about 49, 123
advanced configurations 255
event listeners 255
work items 255-259

kie:session component 290

Kie Spring Config example 289, 290
Kie Workbench

about 296-299
and Process Designer, URL 253

KJAR 285
kmodule.xml file

URL 52
Knime

URL 185
Knowledge Artifacts 48
Knowledge as a Service 286-288
knowledge base (KB) 193
Knowledge is Everything (KIE) 42

L
left-hand side, troubleshooting

about 197
compilation errors 197, 198
runtime errors 198-200
untriggered rules 200-204

Log4j
URL 207

Logback
URL 207

loops
controlling 75
model properties, execution control 77, 78
property reactive beans 79-81

M
matches operators 83
Maven project

URL 20
Maven versions

URL 56
modify keywords 64

N
nested accessors 94
network, special nodes

about 229
accumulate node 233, 234
exists node 231, 232
from node 234, 235
not node 230, 231

[307]

no-loop attribute 173
non matches operators 83
NOT keyword 92
not node 230, 231
null-safe operators 95
numeric operations 82, 83

O
objects

in memory, decorating 95-97
Object Type Nodes (OTN) 218, 219
operations

about 81
Boolean operations 82
collection operations 83
numeric operations 82
regex operations 83

org.kie.remote:kie-remote-client 294

P
persisted data

extending 276, 277
PHREAK

about 13, 216-218
Alpha Nodes 220
Beta Nodes 223
improvements, over RETE 245
Inspector 246
Object Type Nodes 218, 219
URL 246

PHREAK, improvements over RETE
about 245
delayed rule evaluation 245
network segmentation 246
set-oriented propagation 245

phreak-inspector module 246
Predictive Model Markup Language

(PMML)
about 185, 186
customer classification decision

tree example 188, 189
in Drools 186, 187
limitations 191, 192
troubleshooting 191

process execution 260-263

projects
organizing 35-40

Q
queries

about 120, 121
live 122
on-demand queries 121, 122

Query Element Node 244

R
RabbitMQ

reference link 294
regex operations 83
REST API, Kie Server

reference link 295
RESTClientExampleTest 295
RETE 216
RETEOO 215
right-hand side, troubleshooting

about 209
compilation errors 209
runtime errors 210, 211

R language
URL 185

rule atomicity 7
rule attributes

about 66
example 67-72
rule dates, management 73, 74
rule groups, types 72

rule engine
about 12, 41
algorithm 13
bootstrapping, CDI used 28-30
uses 17, 18

rule execution, life cycle
about 8, 9
collaboration, with rules 9-11
people involvement with rules,

BRMS used 11
rule inheritance 102
rule, left-hand side

debugging 196
Drools logs 207
event listeners 204-206

[308]

rule, simpler versions 207
troubleshooting 197

rule, right-hand side
about 208
compilation errors 209
generated Java classes, dumping 212
good practices 211
runtime errors 211
troubleshooting 209

rules
about 2, 5
atomicity of rules 7
basic structure 2, 3
complex applications, examples 15
Complex Systems 14
date, management 73, 74
Declarative Programming 3
deviations, handling 99
eShop system, example 16, 17
ever-changing scenarios 15
executing 24-27
execution chaining 6
groups, types 72
independence 5
language 30-35
loops, controlling 74, 75
ordering rules 7
uses 14
writing 24-27

rules file, DSL 163, 164
rule templates

about 178
array data source 182
objects data source 183, 184
spreadsheet data source 181, 182
SQL result set data source 184, 185
structure 178, 179
template header 179
working with 180, 181

Rule Terminal Nodes (RTN) 218, 219

S
shed keyword 97
single template section 179
SLF4J

URL 207

sliding windows, event-driven architecture
declared 152
length-based 150
time-based 151

Spring Framework
about 289
reference link 287, 288

Spring integration
about 288
Kie Spring Config example 289

state
persistence 270, 272

Stateful Kie Sessions 106, 109
Stateless Kie Sessions 49-52, 106-108
Subject Matter Experts (SME) 159

T
tags, for Kie Spring contexts configuration

reference link 290
template 179
temporal operators

about 144-148
URL 146

time-based-events
declaring 143, 144

TRACE level 207
transactions

managing 278

U
update keywords 64

W
Web Service 62
Weld

URL 30, 288
Wildfly App Server

reference link 294
WildFly AS

URL 29

X
XML commands, Kie Session

reference link 292

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Rules Declarative Nature
	What are rules?
	Rules basic structure
	Declarative approach
	Imperative versus Declarative implementation

	Why do we use rules?
	Rules independence
	Rule execution chaining
	Atomicity of rules
	Ordering of rules

	Rule execution life cycle
	Collaboration with Rules
	Involving more people with Rules using a BRMS

	Letting the rule engine do its job
	Rule engine algorithm

	When should we use rules?
	Complex scenario, simple rules
	Ever-changing scenarios
	Example–eShop system

	When not to use a rule engine
	Summary

	Chapter 2: Writing and Executing Rules
	Setting up our environment
	Creating our first Drools project
	Writing and executing our first rule
	Using CDI to bootstrap the Rule Engine

	The Rule language
	Organizing our projects
	Summary

	Chapter 3: Drools Runtime
	Understanding the Drools runtime instances
	KieModule & KieContainer
	Loading rules from the classpath
	Loading rules using Maven artifacts (Kie-CI)

	KieModule configurations (KieBases, KieSessions & StatelessKieSessions)
	KieScanner
	Artifacts version resolution
	Dealing with unexpected issues and errors
	Putting it all together

	Summary

	Chapter 4: Improving Our Rule Syntax
	Adding external interactions with global variables
	Modifying the data in the working memory
	The insert keyword
	The modify and update keywords
	The delete/retract keywords

	Rule attributes
	Example – controlling which rules will fire
	Example – splitting rule groups with agenda group
	Other types of rule groups
	Rule dates management

	Controlling loops in rules
	Lock-on-active
	Model properties execution control
	Declared types
	Property-reactive beans

	Special Drools operations
	Boolean and numeric operations
	Regex operations – matches
	Collection operations – contains and memberOf

	Working memory breakdown: the from clause
	Collect from objects
	Accumulate keyword
	Advanced conditional elements
	NOT keyword
	EXISTS and FORALL keywords

	Drools syntactic sugar
	Nested accessors
	Inline casts
	Null-safe operators

	Decorating our objects in memory
	Adding traits with the don keyword
	Removing traits with the shed keyword

	Logical insertion of elements
	Handling deviations of our rules
	Deviations to our deviations

	Rule inheritance
	Conditional named consequences

	Summary

	Chapter 5: Understanding KIE Sessions
	Stateless and stateful Kie Sessions
	Stateless Kie Sessions
	Stateful Kie Sessions

	Kie runtime components
	Globals
	Globals as a way to parameterize the condition of a pattern
	Globals as a way to introduce new information into a session in the LHS
	Globals as a way to collect information from a session
	Globals as a way to interact with external systems in the RHS

	Channels
	Queries
	On-demand queries
	Live queries

	Event Listeners

	Kie Base components
	Functions
	Custom operators
	Custom accumulate functions

	Summary

	Chapter 6: Complex Event Processing
	What is complex event processing?
	What are events and complex events?

	Declaring CEP-based Rules
	Semantics of events
	Declaring time-based-events in Drools
	Temporal operators

	Event-driven architecture
	Split event sources with entry points
	Sliding windows
	Length-based sliding windows
	Time-based sliding windows
	Declared sliding windows

	Running CEP-based Scenarios
	Stream processing configuration
	Continuous versus Discrete rule firing
	Testing with the session clock

	Drools CEP limitations
	Summary

	Chapter 7: Human-Readable Rules
	Domain Specific Languages
	The Dictionary file
	Adding constraints to patterns

	Rules files
	DSL troubleshooting
	A simple scenario

	Decision tables
	What is a decision table?
	Decision tables structure
	RuleSet section
	RuleTable section

	Coming back to our scenario
	Decision table troubleshooting
	Enhanced decision tables

	Rule templates
	Rule template structure
	Working with rule templates
	Spreadsheet data source
	Array data source
	Objects data source
	SQL result set data source

	PMML
	PMML in Drools
	Customer classification decision tree example
	Header
	DataDictionary
	Model

	PMML troubleshooting
	PMML limitations

	Summary

	Chapter 8: Rules' Testing and Troubleshooting
	Create loosely coupled DRLs
	Prefer KieHelper over a KieContainer classpath
	Benefits of using globals
	Debugging the left-hand side of a rule
	Left-hand side troubleshooting
	Compilation errors
	Runtime errors
	Rules not being triggered

	Event listeners
	Drools logs
	Create simpler versions of a rule

	Debugging the right-hand side of a rule
	Right-hand side troubleshooting
	Compilation errors
	Runtime errors

	Right-hand side good practices
	Dumping the generated Java classes

	Reporting a bug in Drools
	Summary

	Chapter 9: Introduction to PHREAK
	Introducing PHREAK
	Object Type Nodes
	Alpha Nodes
	Alpha Node sharing
	Constraint JIT compilation

	Beta Nodes
	Beta Node sharing
	Or between patterns

	Special nodes in the network
	The Not Node
	The Exists Node
	The Accumulate Node
	The From Node

	Queries and backward-chaining
	Unification
	Positional arguments
	Backward reasoning in Drools
	The Query Element Node

	PHREAK improvements over RETE
	Delayed rule evaluation
	Set-oriented propagation
	Network segmentation

	Phreak Inspector
	Summary

	Chapter 10: Integrating Rules and Processes
	jBPM – the process engine
	Simple business process example
	Kie Session advanced configurations
	Kie Session event listeners
	Kie Session Work Items

	Understanding our process execution

	Drools and jBPM: integration patterns
	Accessing the process engine from our rules
	Process instances as facts
	BPMN2 Business Rule Tasks

	Persistence and transactions
	How is state persisted?
	JPA implementation
	Infinispan implementation
	Extending persisted data
	Transaction management

	Summary

	Chapter 11: Integrating Drools with our Apps
	Architecture considerations
	Asynchronous versus Synchronous Design

	Integrating with the rest of an application
	Embedding Drools into our application
	Knowledge as a Service

	CDI integration
	Spring integration
	Introducing Spring Framework
	Kie Spring Config example

	Camel integration
	Integrating the Apache Camel framework
	Creating our Kie endpoints

	Kie Execution Server
	Configuring Kie Server
	Default exposed Kie Server endpoints

	Kie Workbench
	Drools and beyond: extending our functionality
	Summary

	Index

