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Introduction

Welcome to Metaprogramming in R. I am writing this book, and my books on 
R programming in general, to help make more advanced teaching material 
available beyond the typical introductory level most textbooks on R have. This 
book covers some of the more advanced techniques used in R programming 
such as fully exploiting functional programming, writing metaprograms (code 
for actually manipulating the language structures), and writing domain-specific 
languages to embed in R.

This book introduces metaprogramming. Metaprogramming is when you 
write programs that manipulate other programs; in other words, you treat code 
as data that you can generate, analyze, or modify. R is a very high-level language 
where all operations are functions, and all functions are data that you can 
manipulate.

There is great flexibility in how function calls and expressions are evaluated. 
The lazy evaluation semantics of R mean that arguments to functions are passed 
as unevaluated expressions, and these expressions can be modified before they 
are evaluated, or they can be evaluated in other environments than the context 
where a function is defined. This can be exploited to create small domain-
specific languages and is a fundamental component in the “tidy verse” in 
packages such as dplyr or ggplot2 where expressions are evaluated in contexts 
defined by data frames.

There is some danger in modifying how the language evaluates function 
calls and expressions, of course. It makes it harder to reason about code. On 
the other hand, adding small embedded languages for dealing with everyday 
programming tasks adds expressiveness to the language that far outweighs the 
risks of programming confusion, as long as such metaprogramming is used 
sparingly and in well-understood (and well-documented) frameworks.

In this book, you will learn how to manipulate functions and expressions 
and how to evaluate expressions in nonstandard ways. Prerequisites for reading 
this book are familiarity with functional programming, at least familiarity with 
higher-order functions, that is, functions that take other functions as an input or 
that return functions.
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CHAPTER 1

Anatomy of a Function

Everything you do in R involves defining functions or calling functions. You cannot 
do any action without evaluating some function or other. Even assigning values to 
variables or subscripting vectors or lists involves evaluating functions. But functions 
are more than just recipes for how to perform different actions; they are also data 
objects in themselves, and there are ways of probing and modifying them.

Manipulating Functions
If you define a simple function like the following, you can examine the 
components it consists of:

f <- function(x) x

There are three parts to a function: its formal parameters, its body, and the 
environment it is defined in. The functions formals, body, and environment give 
you these:

formals(f)
## $x
body(f)
## x
environment(f)
## <environment: R_GlobalEnv>

Formals
The formal parameters are given as a list where element names are the 
parameter names and values are default parameters.

www.allitebooks.com
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g <- function(x = 1, y = 2, z = 3) x + y + z
parameters <- formals(g)
for (param in names(parameters)) {
  cat(param, "=>", parameters[[param]], "\n")
}
## x => 1
## y => 2
## z => 3

Strictly speaking, it is a so-called pairlist, but that is an implementation 
detail that has no bearing on how you treat it. You can treat it as if it is a list.

g <- function(x = 1, y = 2, z = 3) x + y + z
parameters <- formals(g)
for (param in names(parameters)) {
  cat(param, " => ", '"', parameters[[param]], '"', "\n", sep = "")
}
## x => "1"
## y => "2"
## z => "3"

For variables in this list that do not have default values, the list represents 
the values as the empty name. This is a special symbol that you cannot assign to, 
so it cannot be confused with a real value. You cannot use the missing function 
to check for a missing value in a formals function (that function is useful only 
inside a function call, and in any case there is a difference between a missing 
parameter and one that doesn’t have a default value), but you can always check 
whether the value is the empty symbol.

g <- function(x, y, z = 3) x + y + z
parameters <- formals(g)
for (param in names(parameters)) {
  cat(param, " => ", '"', parameters[[param]], '"',
      " (", class(parameters[[param]]), ")\n", sep = "")
}
## x => "" (name)
## y => "" (name)
## z => "3" (numeric)

Primitive functions (those that call into the runtime system, such as `+`) do 
not have formals. Only functions that are defined in R.

formals(`+`)
## NULL
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Function Bodies
The function body is an expression. For f it is a simple expression.

body(f)
## x

But even multistatement function bodies are expressions. They just evaluate 
to the result of the last expression in the sequence.

g <- function(x) {
  y <- 2*x
  z <- x**2
  x + y + z
}
body(g)
## {
##     y <- 2 * x
##     z <- x^2
##     x + y + z
## }

When a function is called, R sets up an environment for it to evaluate this 
expression in; this environment is called the evaluation environment for the 
function call. The evaluation environment is first populated with values for 
the function’s formal parameters, either provided in the function call or given 
as default parameters, and then the body executes inside this environment. 
Assignments will modify this local environment unless you use the <<- operator, 
and the result of the function is the last expression evaluated in the body. This is 
either the last expression in a sequence or an expression explicitly given to the 
return function.

When you just have the body of a function as an expression, you don’t get 
this function call semantics, but you can still try to evaluate the expression.

eval(body(f))
## Error in eval(expr, envir, enclos): object 'x' not found

It fails because you do not have a variable x defined anywhere. If you had a 
global x, the evaluation would use that and not any function parameter because 
the expression here doesn’t know it is part of a function. If we call the function, the 
expression will know about the function context, of course, but not when we simply 
evaluate the function body like this. You can give it a value for x, though, like this:

eval(body(f), list(x = 2))
## [1] 2
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The eval function evaluates an expression and uses the second argument 
to look up parameters. You can give it an environment, and the expression will 
then be evaluated in it, or you can use a list. Chapter 3 covers how to work with 
expressions and how to evaluate them; for now all you have to know is that 
you can evaluate an expression using eval if the variables in the expression 
are either found in the scope where you call eval or provided in the second 
argument to eval.

You can also set x as a default parameter and use that when you evaluate the 
expression.

f <- function(x = 2) x
formals(f)
## $x
## [1] 2
eval(body(f), formals(f))
## [1] 2

Things get a little more complicated if default parameters refer to each other. 
This has to do with the way the evaluation environment is set up and not so 
much with how expressions are evaluated, but consider the following example 
where one default parameter refers to another:

f <- function(x = y, y = 5) x + y

Both parameters have default values, so you can call f without any 
arguments.

f()
## [1] 10

You cannot, however, evaluate it just from the formal arguments without 
providing values.

eval(body(f), formals(f))
## Error in x + y: non-numeric argument to binary operator

In formals(f), x points to the symbol y, and y points to the numeric 5. 
But y is not used in the expression, and if you simply look up x, you just get the 
symbol y, and you don’t evaluate it further to figure out what y is. Therefore, 
you get an error.

http://dx.doi.org/10.1007/978-1-4842-2881-4_3
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Formal arguments are not evaluated this way when you call a function. They 
are transformed into so-called promises, which are unevaluated expressions 
with an associated scope. This is how the formal language definition puts it:

When a function is called, each formal argument is 
assigned a promise in the local environment of the call 
with the expression slot containing the actual argument 
(if it exists) and the environment slot containing the 
environment of the caller. If no actual argument for 
a formal argument is given in the call and there is 
a default expression, it is similarly assigned to the 
expression slot of the formal argument, but with the 
environment set to the local environment.

This means that in the evaluating environment, R first assigns all variables 
to these “promises.” The promises are placeholders for values but represented as 
expressions you haven’t evaluated yet. As soon as you access them, though, they 
will be evaluated (and R will remember the value). For default parameters, the 
promises will be evaluated in the evaluating environment, and for parameters 
passed to the function in the function call, the promises will be evaluated in the 
calling scope.

Since all the promises are unevaluated expressions, you don’t have to worry 
about the order in which you assign the variables. As long as the variables exist 
when you evaluate a promise, you are fine, and as long as there are no circular 
dependencies between the expressions, you can figure out all the values when 
you need them.

Don’t make circular dependencies. Don’t do something like this:

g <- function(x = 2*y, y = x/2) x + y

You can try to make a similar setup for f where you build an environment of 
its formals as promises. You can use the function delayedAssign to assign values 
to promises like this:

fenv <- new.env()
parameters <- formals(f)
for (param in names(parameters)) {
  delayedAssign(param, parameters[[param]], fenv, fenv)
}
eval(body(f), fenv)
## [1] 10
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Here you assign the expression y to variable x and the value 5 to variable y.  
Primitive values like a numeric vector are not handled as unevaluated 
expressions. They could be, but there is no point. So before you evaluate the 
body of f, the environment has y pointing to 5 and x pointing to the expression y, 
wrapped as a promise that says that the expression should be evaluated in fend 
when you need to know the value of y.

Function Environments
The environment of a function is the simplest of its components. It is just 
the environment where the function was defined. This environment is used 
to capture the enclosing scope and is what makes closures possible in R. 
The evaluating environment will be set up with the function’s environment 
when it is created such that variables not found in the local environment, 
consisting of local variables and formal parameters, will be searched for in 
the enclosing scope.

Calling a Function
Before continuing, it might be worthwhile to see how these components fit 
together when a function is called. I explained this in some detail in Functional 
Programming in R, but it is essential to understand how expressions are 
evaluated. When you start to fiddle around with nonstandard evaluation, it 
becomes even more important, so it bears repeating.

When expressions are evaluated, they are evaluated in an environment. 
Environments are chained in a tree structure. Each environment has a parent, 
and when R needs to look up a variable, it first looks in the current environment 
to see whether that environment holds the variable. If it doesn’t, R will look in 
the parent. If it doesn’t find it there either, it will look in the grandparent, and 
it will continue going up the tree until it either finds the variable or hits the 
global environment and sees that it isn’t there, at which point it will raise an 
error. You call the variables that an expression can find by searching this way 
its scope. Since the search always picks the first place it finds a given variable, 
local variables overshadow global variables, and while several environments on 
this parent-chain might contain the same variable name, only the innermost 
environment, the first you find, will be used.

When a function, f, is created, it gets associated with environment(f). This 
environment is the environment where f is defined. When f is invoked, R creates 
an evaluation environment for f; let’s call it evalenv. The parent of evalenv is 
set to environment(f). Since environment(f) is the environment where f is 
defined, having it as the parent of the evaluation environment means that the 
body of f can see its enclosing scope if f is a closure.
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After the evaluation environment is created, the formals of f are added to it 
as promises. As you saw from the language definition earlier, there is a difference 
between default parameters and parameters given to the function where it is 
called in how these promises are set up. Default parameters will be promises 
that should be evaluated in the evaluation scope, evalenv. This means they 
can refer to other local variables or formal parameters. Since these will be put 
in evalenv and since evalenv’s parent is environment(f), these promises can 
also refer to variables in the scope where f was defined. Expressions given to f 
where it is called, however, will be stored as promises that should be called in 
the calling environment. Let’s call that callenv. If they were evaluated in the 
evalenv, they would not be able to refer to variables in the scope where you call 
f; they would be able to refer only to local variables or variables in the scope 
where f was defined.

You can see it all in action in the following example:

enclosing <- function() {
  z <- 2
  function(x, y = x) {
    x + y + z
  }
}

f <- enclosing()

calling <- function() {
  w <- 5
  f(x = 2 * w)
}

calling()
## [1] 22

You start out in the global environment where you define enclosing to be 
a function. When you call enclosing, you create an evaluation environment 
in which you store the variable z and then return a function that you store in 
the global environment as f. Since this function was defined in the evaluation 
environment of enclosing, this environment is the environment of f.

Then you create calling, store that in the global environment, and call 
it. This creates, once again, an evaluation environment. In this, you store the 
variable w and then call f. You don’t have f in the evaluation environment, but 
because the parent of the evaluation environment is the global environment, you 
can find it. When you call f, you give it the expression 2 * w as parameter x.
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Inside the call to f, you have another evaluation environment. Its parent is 
the closure you got from enclosing. Here you need to evaluate f’s body: x + y + z.  
However, before that, the evaluation environment needs to be set up. Since x 
and y are formal parameters, they will be stored in the evaluation environment 
as promises. You provided x as a parameter when you called f, so this promise 
must be evaluated in the calling environment (the environment inside 
calling), while y has the default value, so it must be evaluated in the evaluation 
environment. In this environment, it can see x and y and through the parent 
environment z. You evaluate x, which is the expression 2 * w in the calling 
environment, where w is known, and you evaluate y in the local environment, 
where x is known. So, you can get the value of those two variables and then get z 
from the enclosing environment.

You can try to emulate all this using explicit environments and 
delayedAssign to store promises. You need three environments since you don’t 
need to simulate the global environment for this. You need the environment 
where the f function was defined; you call it defenv. Then you need the 
evaluating environment for the call to f, and you need the environment in which 
f is called.

defenv <- new.env()
evalenv <- new.env(parent = defenv)
callenv <- new.env()

Here, defenv and calling have the global environment as their parent, but 
you don’t need to worry about that. The evaluating environment has defend as 
its parent.

In the definition environment, you save the value of z.

defenv$z <- 2

In the calling environment, you save the value of w.

callenv$w <- 5

In the evaluation environment, you set up the promises. The delayedAssign 
function takes two environments as arguments. The first is the environment 
where the promise should be evaluated, and the second is where it should be 
stored. For x you want the expression to be evaluated in the calling environment, 
and for y you want it to be evaluated in the evaluation environment. Both 
variables should be stored in the evaluation environment.

delayedAssign("x", 2 * w, callenv, evalenv)
delayedAssign("y", x, evalenv, evalenv)



Chapter 1 ■ anatomy of a funCtion

9

In the evalenv you can now evaluate f.

f <- function(x, y = x) x + y + z
eval(body(f), evalenv)
## [1] 22

There is surprisingly much going on behind a function call, but it all follows 
these rules for how arguments are passed along as promises.

Modifying Functions
You can do more than just inspect functions. The three functions for inspecting 
also come in assignment versions, and you can use those to change the three 
components of a function. If you go back to the simple definition of f

f <- function(x) x
f
## function(x) x

you can try modifying its formal arguments by setting a default value for x

formals(f) <- list(x = 3)
f
## function (x = 3)
## x

where, with a default value for x, you can evaluate its body in the 
environment of its formals.

eval(body(f), formals(f))
## [1] 3

I will stress again, though, that evaluating a function is not quite as simple 
as evaluating its body in the context of its formals. It doesn’t matter that you 
change a function’s formal arguments outside of its definition when the function 
is invoked. The formal arguments will still be evaluated in the context where the 
function was defined.

If you define a closure, you can see this in action.

nested <- function() {
  y <- 5
  function(x) x
}
f <- nested()



Chapter 1 ■ anatomy of a funCtion

10

Since f was defined inside the evaluating environment of nested, its 
environment(f) will be that environment. When you call it, it will, therefore, be 
able to see the local variable y from nested. It doesn’t refer to that, but you can 
change this by modifying its formals.

formals(f) <- list(x = quote(y))
f
## function (x = y)
## x
## <environment: 0x7fc0f8c85908>

Here, you have to use the function quote to make y a name. If you didn’t, you 
would get an error, or you would get a reference to a y in the global environment. In 
function definitions, default arguments are automatically quoted to turn them into 
expressions, but when you modify formals, you have to do this explicitly.

If you now call f without arguments, x will take its default value as specified 
by formals(f). That is, it will refer to y. Since this is a default argument, it will 
be turned into a promise that will be evaluated in f’s evaluation environment. 
There is no local variable named y, so R will look in environment(f) for y and 
find it inside the nested environment.

f()
## [1] 5

Just because you modified formals(f) in the global environment, you do 
not change in which environment R evaluates promises for default parameters. 
If you have a global y, the y in f’s formals still refer to the one in nested.

y <- 2
f()
## [1] 5

Of course, if you provide y as a parameter when calling f, things change. 
Now it will be a promise that should be evaluated in the calling environment, so 
in that case, you get a reference to the global y.

f(x = y)
## [1] 2

You can modify the body of f as well. Instead of having its body refer to x, 
you can, for example, make it return the constant 6.



Chapter 1 ■ anatomy of a funCtion

11

body(f) <- 6
f
## function (x = y)
## 6
## <environment: 0x7fc0f8c85908>

Now it evaluates that constant, six, when we call it, regardless of what x is.

f()
## [1] 6
f(x = 12)
## [1] 6

You can also try making f’s body more complex and make it an actual 
expression.

body(f) <- 2 * y
f()
## [1] 4

Here, however, you don’t get quite what you want. You don’t want the body 
of a function to be evaluated before you call the function, but when you assign 
an expression like this, you do evaluate it before you assign. There is a limit to 
how far lazy evaluation goes. Since y was 2, you are in effect setting the body of  
f to 4. Changing y afterward doesn’t change this.

y <- 3
f()
## [1] 4

To get an unevaluated body, you must, again, use quote.

body(f) <- quote(2 * y)
f
## function (x = y)
## 2 * y
## <environment: 0x7fc0f8c85908>

Now, however, you get back to the semantics for function calls, which means 
that the body is evaluated in an evaluation environment whose parent is the 
environment inside nested, so y refers to the local and not the global parameter.

f()
## [1] 10
y <- 2
f()
## [1] 10
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You can change environment(f) if you want to make f use the global y.

environment(f) <- globalenv()
f()
## [1] 4
y <- 3
f()
## [1] 6

If you do this, though, it will no longer know about the environment inside 
nested. It takes a lot of environment hacking if you want to pick and choose 
which environments a function finds its variables in, and if that is what you 
want, you are probably better off rewriting the function to get access to variables 
in other ways.

If you want to set the formals of a function to missing values (that is, you 
want them to be parameters without default values), then you need to use list 
to create the arguments.

If you define a function f like this, it takes one parameter, x, and adds it to a 
global parameter y:

f <- function(x) x + y

If instead you want y to be a parameter but not give it a default value, you 
could try something like this:

formals(f) <- list(x =, y =)

This will not work, however, because list doesn’t like empty values. 
Instead, you can use alist. This function creates a pair-list, which is a data 
structure used internally in R for formal arguments. It is the only thing this data 
structure is used for, but if you start hacking around with modifying parameters 
of a function, it is the one to use.

formals(f) <- alist(x =, y =)

Using alist, expressions are also automatically quoted. In the earlier 
example where you wanted the parameter x to default to y, you needed to use 
quote(y) to keep y as a promise to be evaluated in environment(f) rather than 
the calling scope. With alist, you do not have to quote y.
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nested <- function() {
  y <- 5
  function(x) x
}
f <- nested()
formals(f) <- alist(x = y)
f
## function (x = y)
## x
## <environment: 0x7fc0fc408720>
f()
## [1] 5

Constructing Functions
You can also construct new functions by piecing together their components. The 
function to use for this is as.function. It takes an alist as input and interprets 
the last element in it as the new function’s body and the rest as the formal 
arguments.

f <- as.function(alist(x =, y = 2, x + y))
f
## function (x, y = 2)
## x + y
f(2)
## [1] 4

Don’t try to use a list here; it doesn’t do what you want.

f <- as.function(list(x = 2, y = 2, x + y))

If you give as.function a list, it interprets that as just an expression that 
then becomes the body of the new function. Here, if you have global definitions 
of x and y so you can evaluate x + y, you would get a body that is c(2, 2, x+y) 
where x+y refers to the value, not the expression, of the sum of global variables x 
and y.

The environment of the new function is by default the environment in which 
you call as.function. So to make a closure, you can just call as.function inside 
another function.
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nested <- function(z) {
  as.function(alist(x =, y = z, x + y))
}
(g <- nested(3))
## function (x, y = z)
## x + y
## <environment: 0x7fc0fc14a3f8>
(h <- nested(4))
## function (x, y = z)
## x + y
## <environment: 0x7fc0fc1bb778>

Here you call as.function inside nested, so the environment of the 
functions created here will know about the z parameter of nested and be able to 
use it in the default value for y.

Don’t try this:

nested <- function(y) {
  as.function(alist(x =, y = y, x + y))
}

Remember that expressions that are default parameters are lazily evaluated 
inside the body of the function you define. Here, you say that y should evaluate 
to y, which is a circular dependency. It has nothing to do with as.function. You 
have the same problem in this definition:

nested <- function(y) {
  function(x, y = y) x + y
}

If you want something like that, where you make a function with a given 
default y and you absolutely want the created function to call that parameter y, 
you need to evaluate the expression in the nesting scope and refer to it under a 
different name to avoid the nesting function’s argument to overshadow it.

nested <- function(y) {
  z <- y
  function(x, y = z) x + y
}
nested(2)(2)
## [1] 4
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You can give an environment to as.function to specify the definition scope 
of the new function if you do not want it to be the current environment. In the 
following example, you have two functions for constructing closures. The first 
creates a function that can see the enclosing z, while the other, instead, uses the 
global environment and is thus no closure at all, so the argument z is not visible. 
Instead, the global z is.

nested <- function(z) {
  as.function(alist(x =, y = z, x + y))
}
nested2 <- function(z) {
  as.function(alist(x =, y = z, x + y),
              envir = globalenv())
}

If you evaluate functions created with these two functions, the nested one 
will add x to the z value you provide in the call to nested, while the nested2 one 
will ignore its input and look for z in the global scope.

z <- -1
nested(3)(1)
## [1] 4
nested2(3)(1)
## [1] 0
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CHAPTER 2

Inside a Function Call

When you execute the body of a function, as you have seen, you do this in the 
evaluation environment. This evaluation environment is linked through its 
parent to the environment where the function was defined. It has its arguments 
stored as promises that will be evaluated either in the environment where the 
function was defined (for default parameters) or in the environment where the 
function was called (for parameters provided to the function there).  
In the previous chapter, you saw how you could get hold of the formal 
parameters of a function, the body of the function, and the environment in which 
the function was defined. In this chapter, you will examine how you can access 
these, and more, from inside a function while the function is being evaluated.

Getting the Components of the Current Function
In the previous chapter, you could get the formals, body, and environment of a 
function you had a reference to. Inside a function body, you do not have such a 
reference. Functions do not have names as such; you give functions names when 
you assign them to variables, but that is a property of the environment where 
you have the name, not of the function itself. Functions you use as closures are 
often never assigned to any name at all. So, how do you get hold of the current 
function to access its components?

To get hold of the current function, you can use the function sys.function. 
This function gives you the definition of the current function, which is what you 
need, not its name.

You can define this function to see how sys.function works.

f <- function(x = 5) {
  y <- 2 * x
  sys.function()
}
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If you just write the function name on the prompt, you get the function 
definition.

f
## function(x = 5) {
##   y <- 2 * x
##   sys.function()
## }

Since the function returns the definition of itself, you get the same when you 
evaluate it.

f()
## function(x = 5) {
##   y <- 2 * x
##   sys.function()
## }

When you call any of formals, body, or environment, you don’t use a 
function name as the first parameter; you give each of them a reference to a 
function, and they get the function definition from that.

You don’t need to explicitly call sys.function for formals and body, though, 
because these two functions already use a call to sys.function for the default 
value for the function parameter. If you want the components of the current 
function, you can simply leave out the function parameter.

Thus, to get the formal parameter of a function, inside the function body, 
you can just use formals without any parameters.

f <- function(x, y = 2 * x) formals()
params <- f(1, 2)
class(params)
## [1] "pairlist"
params
## $x
##
##
## $y
## 2 * x
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The same goes for the body of the current function.

f <- function(x, y = 2 * x) {
  z <- x - y
  body()
}
f(2)
## {
##     z <- x - y
##     body()
## }

The environment function works slightly differently. If you call it without 
parameters, you get the current (evaluating) environment.

f <- function() {
  x <- 1
  y <- 2
  z <- 3
  environment()
}
env <- f()
as.list(env)
## $z
## [1] 3
##
## $y
## [1] 2
##
## $x
## [1] 1

This is not what you would get with environment(f).

environment(f)
## <environment: R_GlobalEnv>

The f function is defined in the global environment, and environment(f) 
gives you the environment in which f is defined. If you call environment() 
inside f, you get the evaluating environment. The local variables x, y, and 
z can be found in the evaluating environment, but they are not part of 
environment(f)—or if they are, they are different, global parameters.
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To get the equivalent of environment(f) from inside f, you must get 
hold of the parent of the evaluating environment. You can get the parent of 
an environment using the function parent.env, so you can get the definition 
environment like this:

f <- function() {
  x <- 1
  y <- 2
  z <- 3
  parent.env(environment())
}
f()
## <environment: R_GlobalEnv>

When you have hold of a function definition, as in the previous chapter, you 
do not have an evaluating environment. That environment exists only when the 
function is called. A function you have defined, but not invoked, has the three 
components covered in the previous chapter, but there are more components 
to a function that is actively executed. There is a difference between a function 
definition, a description of what a function should do when it is called, and a 
function instantiation (the actual running code). One such difference is the 
evaluating environment. Another is that a function instantiation has actual 
parameters, while a function definition has only formal parameters. The latter 
are part of the function definition; the former are provided by the caller of the 
function.

Accessing Actual Function Parameters
You can see the difference between formal and actual parameters in the 
following example:

f <- function(x = 1:3) {
  print(formals()$x)
  x
}
f(x = 4:6)
## 1:3
## [1] 4 5 6

The formals give you the arguments as you gave them in the function 
definition, where x is set to the expression 1:3. It is a promise, to be evaluated 
in the defining scope when you access x in the cases where no parameters were 
provided in the function call. So, in the formals list, it is not equal to the values 
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1, 2, and 3; instead, it is the expression 1:3. In the actual call, though, you have 
provided the x parameter, so what this function call returns is 4:6. Because you 
return it as the result of an expression, this promise is evaluated. Therefore, f 
returns 4, 5, and 6.

If you actually want the arguments passed to the current function in the 
form of the promises they are really represented as, you need to get hold of them 
without evaluating them. If you take an argument and use it as an expression, 
the promise will be evaluated. This goes for both default parameters and 
parameters provided in the function call; they are all promises that will be 
evaluated in different environments, but they are all promises nonetheless.

One way to get the expression that the promises represent is to use the 
function substitute. This function, which you will get intimately familiar 
with in Chapter 4, substitutes into an expression the values that variables refer 
to. This means that variables are replaced by the verbatim expressions; the 
expressions are not evaluated before they are substituted into an expression.

This small function illustrates how you can get the expression passed to a 
function:

f <- function(x = 1:3) substitute(x)
f()
## 1:3

Here you see that calling f with default parameters gives you the expression 
1:3 back. This is similar to the formals you saw earlier. You substitute x with the 
expression it has in its formal arguments; you do not evaluate the expression. 
You can, of course, once you have the expression

eval(f())
## [1] 1 2 3

but it isn’t done when you call substitute.

f(5 * x)
## 5 * x
f(foo + bar)
## foo + bar

Because the substituted expression is not evaluated, you don’t even need to 
call the function with an expression that can be evaluated.

f(5 + "string")
## 5 + "string"

http://dx.doi.org/10.1007/978-1-4842-2881-4_4
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The substitution is verbatim. If you set up default parameters that depend 
on others, you just get them substituted with variable names; you do not get the 
value assigned to other variables.

f <- function(x = 1:3, y = x) substitute(x + y)
f()
## 1:3 + x
f(x = 4:6)
## 4:6 + x
f(y = 5 * x)
## 1:3 + 5 * x

In this example, you also see that you can call substitute with an 
expression instead of a single variable. In addition, you see that x gets replaced 
with the argument given to x, whether default or actual, and y gets replaced with 
x as the default parameter—not the values you provide for x in the function call 
and with the actual argument when you provide it.

If you try to evaluate the expression you get back from the call to f, you will 
not be evaluating it in the evaluation environment of f. That environment is not 
preserved in the substitution.

x <- 5
f(x = 5 * x)
## 5 * x + x
eval(f(x = 5 * x))
## [1] 30

The expression you evaluate is 5 * x + x, not 5 * x + 5 * x as it would 
be if you substituted the value of x into y (as you would if you evaluated the 
expression inside the function).

g <- function(x = 1:3, y = x) x + y
g(x = 5 * x)
## [1] 50

www.allitebooks.com

http://www.allitebooks.org
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A common use for substitute is to get the expression provided to a function 
as a string. This is used in the plot function, for instance, to set the default labels 
of a plot to the expressions that plot is called with. Here, substitute is used in 
combination with the deparse function. This function takes an expression and 
translates it into its text representation.

f <- function(x) {
  cat(deparse(substitute(x)), "==", x)
}
f(2 + x)
## 2 + x == 7
f(1:4)
## 1:4 == 1 2 3 4

Here, you use the deparse(substitute(x)) pattern to get a textual 
representation of the argument f was called with, and you use the plain x to get 
it evaluated.

The actual type of object returned by substitute depends on the expression 
you give the function and what the expression’s variables refer to. If the 
expression, after variables have been substituted, is a simple type, that is what 
substitute returns.

f <- function(x) substitute(x)
f(5)
## [1] 5
class(f(5))
## [1] "numeric"

If you give substitute a local variable you have assigned to, you also get a 
value back. This is not because substitute does anything special here. Local 
variables like these are not promises; you evaluated an expression when you 
assigned to one.

f <- function(x) {
  y <- 2 * x
  substitute(y)
}
f(5)
## [1] 10
class(f(5))
## [1] "numeric"
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This behavior works only inside functions, though. If we call substitute in 
the global environment, it considers variables as names and does not substitute 
them for their values.

x <- 5
class(substitute(5))
## [1] "numeric"
class(substitute(x))
## [1] "name"

It will substitute variables for values if we give a function a simple type as an 
argument.

f <- function(x, y = x) substitute(y)
f(5)
## x
class(f(5))
## [1] "name"
f(5, 5)
## [1] 5
class(f(5, 5))
## [1] "numeric"

If the expression that substitute evaluates to is a single variable, the type 
it returns is name, as you just saw. For anything more complicated, substitute 
will return a call object. Even if it is an expression that could easily be evaluated 
to a simple value, substitute does not evaluate expressions; it just substitutes 
variables.

f <- function(x, y) substitute(x + y)
f(5, 5)
## 5 + 5
class(f(5, 5))
## [1] "call"

A call object refers to an unevaluated function call. In this case, you have 
the expression 5 + 5, which is the function call `+`(5, 5).
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Such call objects can also be manipulated. You can translate a call into a 
list to get its components, and you can evaluate it to invoke the actual function 
call.

my_call <- f(5, 5)
as.list(my_call)
## [[1]]
## `+`
##
## [[2]]
## [1] 5
##
## [[3]]
## [1] 5
eval(my_call)
## [1] 10

Since substitute doesn’t evaluate a call, you can create function call 
objects with variables you can later evaluate in different environments.

rm(x) ; rm(y)
my_call <- f(x, y)
as.list(my_call)
## [[1]]
## `+`
##
## [[2]]
## x
##
## [[3]]
## y

Here, you have created the call x + y but removed the global variables x and 
y, so you cannot evaluate the call.

eval(my_call)
## Error in eval(expr, envir, enclos): object 'x' not found

You can, however, provide the variables when you evaluate the call.

eval(my_call, list(x = 5, y = x))
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Or, you can set global variables and evaluate the call in the global 
environment.

x <- 5; y <- 2
eval(my_call)
## [1] 7

You can treat a call as a list and modify it. The first element in a call is the 
function you will call, and you can replace it like this:

(my_call <- f(5, 5))
## 5 + 5
my_call[[1]] <- `-`
eval(my_call)
## [1] 0

The remaining elements in the call are the arguments to the function call, 
and you can modify these as well:

my_call[[2]] <- 10
eval(my_call)
## [1] 5

You can also create call objects manually using the call function. The 
first argument to call is the name of the function to call, and any additional 
arguments are passed on to this function when the call object is evaluated.

(my_call <- call("+", 2, 2))
## 2 + 2
eval(my_call)
## [1] 4

Unlike substitute inside a function, however, the arguments to call are 
evaluated when the call object is constructed. These are not lazy-evaluated.

(my_call <- call("+", x, y))
## 5 + 2
(my_call <- call("+", x - y, x + y))
## 3 + 7
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From inside a function, you can get the call used to invoke it using the 
match.call function.

f <- function(x, y, z) {
  match.call()
}
(my_call <- f(2, 4, sin(2 + 4)))
## f(x = 2, y = 4, z = sin(2 + 4))
as.list(my_call)
## [[1]]
## f
##
## $x
## [1] 2
##
## $y
## [1] 4
##
## $z
## sin(2 + 4)

From the first element in this call, you can get the name of the function as 
it was called. Remember that the function itself doesn’t have a name, but in 
the call to the function you have a reference to it, and you can get hold of that 
reference through the match.call function.

g <- f
(my_call <- g(2, 4, sin(2 + 4)))
## g(x = 2, y = 4, z = sin(2 + 4))
my_call[[1]]
## g

This function is often used to remember a function call in statistical models, 
where the call to the model constructor is saved together with the fitted model.
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Accessing the Calling Scope
Inside a function, expressions are evaluated in the scope defined by the 
evaluating environment and its parent environment (which is the environment 
where the function was defined), except for promises provided in the function 
call, which are evaluated in the calling scope. If you want direct access to the 
calling environment, inside a function, you can get hold of it using the function 
parent.frame.1

You can see this in action in this function:

nested <- function(x) {
  function(local) {
    if (local) x
    else get("x", parent.frame())
  }
}

You have a function, nested, whose local environment knows the value of 
the parameter x. Inside it, you create and return a function that, depending on 
its argument, either returns the value of the argument to nested or looks for x in 
the scope where the function is called.

f <- nested(2)
f(TRUE)
## [1] 2
x <- 1
f(FALSE)
## [1] 1

In the first call to f, you get the local value of x, the number 2. In the second 
call to f, you bypass the local scope and instead find x in the calling scope, which 
in this case is the global environment, where you find that x has the value 1.

1This is an unfortunate name since parent.frame has nothing to do with the parent 
environment, which you get using the parent.env function. The “frame” refers to 
environments on the call stack, often called stack frames, while the parent environment 
refers to the parents in environments.
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In a slightly more complicated version, you can try evaluating an expression 
either in the local evaluating environment or in the calling scope.

nested <- function(x) {
  y <- 2
  function(local) {
    z <- 2
    expr <- expression(x + y + z)
    if (local) eval(expr)
    else eval(expr, envir = parent.frame())
  }
}

The logic is the same as the previous function, except in this function you 
define an expression and use eval to evaluate it either in the local scope or 
in the calling scope. You need to create the expression using the expression 
function; if you did not, the expression would be evaluated (in the local scope) 
before eval gets to it. As the function is defined, you can explicitly choose which 
environment to use when you evaluate the expression.

f <- nested(2)
x <- y <- z <- 1
f(TRUE)
## [1] 6
f(FALSE)
## [1] 3

Like the previous example, you get a bit more inventive with what you can 
do with scopes, variables, and expressions. You want to write a function that lets 
you assign several variables at once from an expression, such as a function call, 
that returns a sequence of values. Rather than having to write

x <- 1
y <- 2
z <- 3

we want to be able to write the following and get the same effect:

bind(x, y, z) <- 1:3
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You can’t quite get there because of how R deals with replacement functions 
(as it would interpret this expression to be), but you can modify the assignment 
operator to your infix function `%<-%` and get the following:

bind(x, y, z) %<-% 1:3

It’s maybe not the prettiest syntax, but it’s good enough as an example. You 
can, however, get even more ambitious and have this bind function assign to 
variables based on expressions. So, for example, the following assigns 2 to x, 4 to 
y, and 6 to z:

bind(x, y = 2 * x, z = 3 * x) %<-% 2

The first because it is a positional parameter, and the other two because you 
give them as expressions that can be evaluated once you know x.

To implement this syntax, you need to define the bind function and the %<-% 
operator. Of these two, the bind function is the simplest.

bind <- function(...) {
  bindings <- eval(substitute(alist(...)))
  scope <- parent.frame()
  structure(list(bindings = bindings, scope = scope),
            class = "bindings")
}

You use the eval(substitute(alist(...))) expression to get all 
the function’s arguments into a pair-list without evaluating any potential 
expressions. You want to preserve lazy evaluation because expressions provided 
as arguments cannot be evaluated before you try to assign to variables you bind. 
Using eval(substitute(alist(...))) you can achieve this. The substitute 
call puts the actual arguments of the function into the expression alist(...), 
and when you then evaluate this expression, you get the pair-list. You get the 
scope where you should bind variables from parent.frame, and you then just 
combine the bindings and the scope in a class called bindings. You don’t need 
to make it into a class, but it doesn’t hurt, so you might as well.

The real work is done in the %<-% operator. Here, you need to do several 
things. You need to figure out which of the parameter bindings are just names, 
where you should assign values based on their position, and which are 
expressions that you need to evaluate. Positional parameters you can just assign 
a value and then store them in the scope you remembered in the bindings. 
Expressions should have both a name and the expression we need to evaluate 
(we cannot assign to an actual expression in any scope, so you need these 
expressions to be named parameters). If expressions refer to other parameters 
that you name in the bind call, they need to know what those are, so you need to 



Chapter 2 ■ InsIde a FunCtIon Call

31

evaluate the expressions in a scope given by bind. If the values you are assigning 
to the expressions have names, then you also want to be able to refer to them, for 
example, to write an assignment like this:

bind(y = 2 * x, z = 3 * x) %<-% c(x = 4)

To achieve this, you can make the values into an environment and make 
the parent scope of bind the parent of this environment as well. This way, 
they can refer to variables both in the values you assign and in the variables 
you assign to in the binding. The only tricky part about having expressions 
refer to other parameters you define is then the order in which to evaluate the 
expressions. For an expression to be evaluated, all the variables it refers to must 
be assigned to first. So, it seems you would need to parse the expressions and 
figure out an order, a topological sorting of the expressions based on which 
variables are used in which expressions, but you can instead steal a trick from 
how functions evaluate arguments: lazy evaluation. If instead of assigning a 
value to each parameter you assign a promise, you won’t have to worry about 
the order in which you assign the variables. R will handle this order whenever 
it sees a reference to any of these promises. This would mean that if you modify 
one of the assigned variables before you access another, you could get the lazy 
evaluation behavior of functions. For example, if you did the following, then y 
would refer to 10 and not 24:

bind(y = 2 * z, z = 3 * x) %<-% c(x = 4)
z <- 5

To avoid this problem, you can force evaluation of all the expressions once 
you are done assigning them all.

The entire function is as follows:

.unpack <- function(x) unname(unlist(x, use.names = FALSE))[1]
`%<-%` <- function(bindings, value) {

  var_names <- names(bindings$bindings)
  val_names <- names(value)
  has_names <- which(nchar(val_names) > 0)
  value_env <- list2env(as.list(value[has_names]),
                        parent = bindings$scope)

  for (i in seq_along(bindings$bindings)) {
    name <- var_names[i]
    if (length(var_names) == 0 || nchar(name) == 0) {
      # we don't have a name so the expression
      # should be a name and we are
      # going for a positional value
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      variable <- bindings$bindings[[i]]
      if (!is.name(variable)) {
        stop(paste0("Positional variables cannot be expressions ",
                     deparse(variable), "\n"))
      }
      val <- .unpack(value[i])
      assign(as.character(variable), val, envir = bindings$scope)

    } else {
      # if we have a name we also have an expression
      # and we evaluate that in the
      # environment of the value followed by the
      # enclosing environment and assign
      # the result to the name.
      assignment <- substitute(
        delayedAssign(name, expr,
                      eval.env = value_env,
                      assign.env = bindings$scope),
        list(expr = bindings$bindings[[i]]))
      eval(assignment)
    }
  }

  # force evaluation of variables to get rid of the lazy
  # promises.
  for (name in var_names) {
    if (nchar(name) > 0) force(bindings$scope[[name]])
  }
}

It works as intended.

bind(x, y, z) %<-% 1:3
c(x, y, z)
## [1] 1 2 3
bind(y = 2 * x, z = 3 * x) %<-% c(x = 4)
c(y, z)
## [1]  8 12
bind(y = 2 * z, z = 3 * x) %<-% c(x = 4)
c(y, z)
## [1] 24 12
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The only complicated part of this is how you handle the lazy assignment. 
You need to use delayedAssign for this, and you need the evaluation 
environment to be the environment that includes the values, and you need the 
assignment environment to be the one you stored in the bind function. The 
difficult bit is getting the expression evaluated. You cannot evaluate it. That is 
what you are actively trying to avoid, so you need to give it as an expression. This 
expression, however, will not be evaluated until later, and in a different scope, so 
you cannot simply use the bindings$bindings list for the expression. You need 
to substitute the expression into an expression for the entire assignment and 
then evaluate it. The eval(substitute(...)) pattern is how you can achieve 
this; in this function, it is split over two lines for readability, but it is a simple 
trick of using substitute to get an expression into another expression and then 
evaluating it.

If this whole exercise in expressions, substitutions, and evaluation makes 
your head spin, then take a deep breath and read on. You will take a deeper look 
at this in the next two chapters.
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CHAPTER 3

Expressions and 
Environments

This chapter digs deeper into how environments work and how you can evaluate 
expressions in different environments. Understanding how environments 
are chained together helps you understand how the language finds variables, 
and being able to create, manipulate, and chain together environments when 
evaluating expressions is a key trick for metaprogramming.

Expressions
You can consider everything that is evaluated in R to be an expression. Every 
statement you have in your programs is also an expression that evaluates to 
some value (which, of course, might be NULL). This includes control structures 
and function bodies. You can consider everything an expression; it’s just that 
some expressions involve evaluating several contained expressions for their side 
effects before returning the result of the last expression they evaluate. From a 
metaprogramming perspective, though, you are most interested in expressions 
you can get your hands on and examine, modify, or evaluate within a program.

Believe it or not, you have already seen most of the ways to get expression 
objects. You can get function bodies using the body function, or you can 
construct expressions using quote or call. Using any of these methods, you 
get an object you can manipulate and evaluate from within a program. Usually, 
expressions are just automatically evaluated when R gets to them during a 
program’s execution, but if you have an expression as the kind of object you can 
manipulate, you have to evaluate it explicitly. If you don’t evaluate it, its value is 
the actual expression; if you evaluate it, you get the value it corresponds to in a 
given scope.
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In this chapter, you will not concern yourself with the manipulation of 
expressions. That is the topic of Chapter 4. Instead, you will focus on how 
expressions are evaluated and how you can change the scope when you 
evaluate an expression. If you just write an expression as R source code, it will 
be evaluated in the scope where it is written. This is what you are used to doing. 
To evaluate it in a different scope, you need to use the eval function. If you don’t 
give eval an environment, it will just evaluate an expression in the scope where 
eval is called, similar to if you had just written the expression there. If you give it 
an environment, however, that environment determines the scope in which the 
expression is evaluated.

To understand how you can exploit scopes, though, you first need to 
understand how environments define scopes in detail.

Chains of Linked Environments
You have seen how functions have associated environments that capture where 
they were defined, and you have seen that when you evaluate a function call, you 
have an evaluation environment that is linked to this definition environment. 
You have also seen how this works through a linked list of parent environments. 
So far, though, you have claimed that this chain ends in the global environment, 
where you look for variables if you don’t find them in any nested scope. For all 
the examples you have seen so far, this might as well be true, but in any real use 
of R, you have packages loaded. The reason that you can find functions from 
packages is that these packages are also found in the chain of environments. 
The global environment also has a parent, and when you load packages, the 
last package you loaded will be the parent of the global environment, and the 
previous package will be the parent of the new package. This explains both how 
you can find variables in loaded packages and why loading new packages can 
overshadow variables defined in other packages.

It has to stop at some point, of course, and there is a special environment 
that terminates the sequence. This is known as the empty environment, and it 
is the only environment that doesn’t have a parent. When you start up R, the 
empty environment is there. Then R puts in the base environment, where all 
the base language functionality lives. Next it puts in an Autoload environment, 
responsible for loading data on demand, and on top of that, it puts in the global 
environment. The base environment and the empty environment are sufficiently 
important that you have functions to get hold of them. These are baseenv and 
emptying, respectively.

When you import packages, or generally attach a namespace, it gets put on 
the this list just below the global environment. The function search will give you 
the sequence of environments from the global environment and down. You can 
see how loading a library affects this list in this example:

http://dx.doi.org/10.1007/978-1-4842-2881-4_4
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search()
##  [1] ".GlobalEnv"            
##  [2] "package:ggplot2"      
##  [3] "package:purrr"        
##  [4] "package:microbenchmark"
##  [5] "package:pryr"          
##  [6] "package:magrittr"      
##  [7] "package:knitr"        
##  [8] "package:stats"        
##  [9] "package:graphics"      
## [10] "package:grDevices"     
## [11] "package:utils"         
## [12] "package:datasets"      
## [13] "Autoloads"             
## [14] "package:base"
library(MASS)
search()
##  [1] ".GlobalEnv"            
##  [2] "package:MASS"          
##  [3] "package:ggplot2"      
##  [4] "package:purrr"        
##  [5] "package:microbenchmark"
##  [6] "package:pryr"          
##  [7] "package:magrittr"      
##  [8] "package:knitr"        
##  [9] "package:stats"        
## [10] "package:graphics"      
## [11] "package:grDevices"     
## [12] "package:utils"         
## [13] "package:datasets"      
## [14] "Autoloads"             
## [15] "package:base"

The search function is an internal function, but you can write your own 
version to get a feeling for how it could work. While search searches from the 
global environment, though, you will make your function more general and give 
it an environment to start from. You simply need it to print out environment 
names and then move from the current environment to the parent until you hit 
the empty environment.
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To get the name of an environment, you can use the function 
environmentName. Not all environments have names; environments you create 
when you nest or call functions or environments you create with new.env do not 
have names. However, environments created when you are loading packages 
do.1 If an environment doesn’t have a name, though, environmentName will 
give you an empty string. In that case, you will instead just use str to get a 
representation of environments that you can print.

To check whether you have reached the end of the environment chain, you 
check identical(env, emptyenv()). You cannot compare two environments 
with ==, but you can use identical. Your function could look like this:

my_search <- function(env) {
  repeat {
    name <- environmentName(env)
    if (nchar(name) != 0)
      name <- paste0(name, "\n")
    else
      name <- str(env, give.attr = FALSE)
    cat(name)
    env <- parent.env(env)
    if (identical(env, emptyenv())) break
  }
}

Calling it with the global environment as the argument should give you a 
result similar to search, except you are printing the environments instead of 
returning a list of names.

my_search(globalenv())
## R_GlobalEnv
## package:MASS
## package:ggplot2
## package:purrr
## package:microbenchmark
## package:pryr
## package:magrittr
## package:knitr
## package:stats
## package:graphics

1If you want to name your environments, you can set the attribute “name.” It is generally 
not something you need, though.
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## package:grDevices
## package:utils
## package:datasets
## Autoloads
## base

Since you can give it any environment, you can try to get hold of the 
environment of a function. If you write a function nested into other function 
scopes, you can see that you get (nameless) environments for the functions.

f <- function() {
  g <- function() {
    h <- function() {
      function(x) x
    }
    h()
  }
  g()
}
my_search(environment(f()))
## <environment: 0x7fdc0043ced0>
## <environment: 0x7fdc0043cdb8>
## <environment: 0x7fdc0043cca0>
## R_GlobalEnv
## package:MASS
## package:ggplot2
## package:purrr
## package:microbenchmark
## package:pryr
## package:magrittr
## package:knitr
## package:stats
## package:graphics
## package:grDevices
## package:utils
## package:datasets
## Autoloads
## base
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You can also get hold of the environment of imported functions. For example, 
you can get the chain of environments starting at the ls function like this:

my_search(environment(ls))
## base
## R_GlobalEnv
## package:MASS
## package:ggplot2
## package:purrr
## package:microbenchmark
## package:pryr
## package:magrittr
## package:knitr
## package:stats
## package:graphics
## package:grDevices
## package:utils
## package:datasets
## Autoloads
## base

Here you see something that is a little weird. It looks like base is found 
both at the top and at the bottom of the list. Clearly, this can’t be the same 
environment; it would need to have, as its parent, both the global environment 
and the parent, and environments have only one parent. The only reason it looks 
like it is the same environment is that environmentName gives you the same 
name for two different environments. They are different.

environment(ls)
## <environment: namespace:base>
baseenv()
## <environment: base>

The environment of ls is a namespace defined by the base package. The 
baseenv() environment is how this package is exported into the environment 
below the global environment, making base functions available to you outside of 
the base package.

Having such extra environments is how packages manage to have private 
functions within a package and have other functions that are exported to users 
of a package. The base package is special in defining only two environments: the 
namespace for the package and the package environment. All other packages 
have three packages set up in their environment chain before the global 
environment: the package namespace, a namespace containing imported 
symbols, and then the base environment, which, as you just saw, connects to the 
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global environment. Figure 3-1 shows the graph of environments when three 
packages are loaded: MASS, stats, and graphics (here graphics was loaded first, 
then stats, and then MASS, so MASS appears first, followed by stats and then 
graphics on the path from the global environment to the base environment). 
The solid arrows indicate parent pointers for the environments, and the dashed 
arrows indicate from which package symbols are exported into package 
environments.

R_GlobalEnv

base

Autoloads

package:graphics

package:stats

package:MASS imports:MASSnamespace:MASS

namespace:base

imports:statsnamespace:stats

R_EmptyEnv

imports:graphicsnamespace:graphics

Figure 3-1. Environment graph with three loaded packages: MASS, stats, and 
graphics

If you try to access a symbol from a package, starting in the global 
environment, then you get access only to the exported functions, and some of 
these might be overshadowed by other packages you have loaded. For functions 
defined inside the package, their parent environment contains all the functions 
(and other variables) defined in the package, and because this package 
namespace environment sits before the global environment in the chain, 
variables from other packages do not overshadow variables inside the package 
when you execute functions from the package.

If a package imports other packages, these go into the import environment, 
below the package namespace and before the base environment. So, functions 
inside a package can see imported symbols, but only if they aren’t overshadowed 
inside the package. If a user of the package imports other packages, these cannot 
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overshadow any symbols the package functions can see, since such imports 
come later in the environment chain, as seen from inside the package. After the 
imports environment comes the base namespace. This gives all packages access 
to the basic R functionality, even if some of it should be overshadowed as seen 
from the global environment.2

There are three ways of specifying that a package depends on another in the 
DESCRIPTION file: using Suggests:, Depends:, and Imports:. The first doesn’t 
actually set up any dependencies; it is just a suggestion of other packages that 
might enhance the functionality of the one being defined.

The packages specified in the Depends: directive will be loaded into the 
search path when you load the package. For packages specified here, you will 
clutter up the global namespace—not the global environment but the search path 
below it—and you risk that functions you depend on will be overshadowed by 
packages that are loaded into the global namespace later. You should avoid using 
Depends: when you can, for these reasons.

Using Imports:, you just require that a set of other packages are installed 
before your own package can be installed. Those packages, however, are not put 
on the search path, nor are they imported in the imports environment. Using 
Imports: just enables you to access functions and data in another package 
using the package namespace prefix, so if you use Imports: to import the stats 
package, you know you can access stats::sd because that function is guaranteed 
to exist on the installation when your package is used.

When actually importing variables into the imports namespace, you need 
to modify the NAMESPACE file; you use the following directives for importing an 
entire package, functions, S4 classes, and S4 methods, respectively:

•	 imports()

•	 importFrom()

•	 importClassesFrom()

•	 importMethodsFrom()

The easiest way to handle the NAMESPACE file, though, is to use Roxygen, and 
here you can import names using the following:

•	 @import <package>

•	 @importFrom <package> <name>

•	 @importClassesFrom <package> <classes>

•	 @importMethodsFrom <package> <methods>

2Strictly speaking, there is a lot more to importing other packages than what I just 
explained here, but it’s beyond the scope of this book.
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To ensure that packages you write play well with other namespaces, you 
should use Imports: for dependencies you absolutely need (and Suggests: for 
other dependencies) and either use the package prefixes for dependencies in 
other packages or import the dependencies in the NAMESPACE.

The function sd sits in the package stats. Its parent is namespace:stats, its 
grandparent is imports:stats, and its great-grandparent is namespace:base. 
If you access sd from the global environment, though, you find it in 
package:stats.

my_search(environment(sd))
## stats
## imports:stats
## base
## R_GlobalEnv
## package:MASS
## package:ggplot2
## package:purrr
## package:microbenchmark
## package:pryr
## package:magrittr
## package:knitr
## package:stats
## package:graphics
## package:grDevices
## package:utils
## package:datasets
## Autoloads
## base
environment(sd)
## <environment: namespace:stats>
parent.env(environment(sd))
## <environment: 0x7fdbffb1fbc8>
## attr(,"name")
## [1] "imports:stats"
parent.env(parent.env(environment(sd)))
## <environment: namespace:base>
parent.env(parent.env(parent.env(environment(sd))))
## <environment: R_GlobalEnv>

Figure 3-2 shows how both ls and sd sit in package and namespace 
environments and how their parents are the namespace rather than the package 
environment.

www.allitebooks.com
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As you now see, this simple way of chaining environments not only gives you 
lexical scope in functions but also explains how namespaces in packages work.

Environments and Function Calls
How environments and package namespaces work together is interesting to 
understand and might give you some inspiration for how namespaces can be 
implemented for other uses, but in day-to-day programming, you should be 
more interested in how environments and functions work together. So from now 
on, I am going to pretend that the scope graph ends at the global environment 
and focus on how environments are chained together when you define and call 
functions.

You already know the rules for this: when you call a function, you get an 
evaluation environment, its parent points to the environment in which the 
function was defined, and if you want the environment of the caller of the 
function, you can get it using the parent.frame function. Just to test your 
knowledge, though, you should consider a more complex example of nested 
functions than you have done so far. Consider the following code at the point 
where you evaluate the i(3) call. Figure 3-3 shows how environments are 
chained together; here solid lines indicate parent pointers, and dashed lines are 
pointers from variables to their values. Figure 3-4 adds the call stack as parent 
frame environments. Follow along in the figures while you go through the code.

R_GlobalEnv

base

.

.

.

package:stats

namespace:base

imports:statsnamespace:stats

R_EmptyEnv

sd sd

.

.

.

ls

ls

Figure 3-2. Environment graph showing the positions of stats::sd and base::ls
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f <- function(x) {
  g <- function(y, z) x + y + z
  g
}
h <- function(a) {
  g <- f(x)
  i <- function(b) g(a + b, 5)
}
x <- 2
i <- h(1)
i(3)

R_GlobalEnv Evaluation env. for f
when we called f(x) in h

2

Evaluation env. for h
when we called h(1)

1

Evaluation env. for g
when we called g(a+b,5) 

in i inside h

Evaluation env. for i
when we called i(3)

3

5

in environment for i(3)

in the environment of the 
Promised evaluation of “X”

h(1) call

x  g  f  x  h i y  z  

a  i  g  

b  

Figure 3-3. Environment graph for a complex example of nested functions
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The first two statements in the code define the functions f and h. You don’t 
call them; you just define them, so you are not creating any new environments. 
The environment associated with both functions is the global environment. 
Then you set x to 2. Nothing interesting happens here either. When you call h, 
however, you start creating new evaluation environments. You first create one to 
evaluate h inside. This environment sets a to 1 since you called h with 1. It then 
calls f with x.

Here is where it gets a little tricky. Since you call f with a variable, which 
will be lazy-evaluated inside f, you are not calling f with the value of the global 
parameter x. So, f gets a promise it can later use to get a value for x, and this 
promise knows that x should be found in the scope of the h call you are currently 
evaluating. That x happens to be the global variable in this example, but you 
could assign to a local variable x inside h after you called f, and then f would 
be using this local x instead. When you create a promise in a function call, the 
promise knows it should be evaluated in the calling scope, but it doesn’t find any 
variables just yet; that happens only when the promise is evaluated.

R_GlobalEnv Evaluation env. for f
when we called f(x) in h

f  g  x  

2

x  h i 

Evaluation env. for h
when we called h(1)

a  

1

i  g  

Evaluation env. for g
when we called g(a+b,5) 

in i inside h

Evaluation env. for i
when we called i(3)

b  
3

y  z  

5

in environment for i(3)
Promised call(“+”, a+b)

in the environment of the 
Promised evaluation of “X”

h(1) call

Figure 3-4. Environment graph for a complex example of nested functions 
highlighting the call stack as you can get it with parent.frame
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Inside the call to f, you define the function g and then return it. Since g is 
defined inside the f call, its environment is set to the evaluation scope of the 
call. This will later let g know how to get a value for x. It doesn’t store x itself, but 
it can find it in the scope of the f call, where it will find it to be a promise that 
should be evaluated in the scope of the h call, where it will be found to be the 
global variable x. It already looks very complicated, but whenever you need a 
value, you should just follow the parent environment chain to see where you will 
eventually find it.

The h(1) call then defines a function, i, and returns it, and you save that in 
the global variable i. The environment of this function is the evaluation scope of 
the h(1) call, so this is where the function will be looking for the names a and g.

Now, finally, you call i(3). This first creates an evaluation environment 
where you set the variable b to 3 since that is what the argument for b is. Then 
you find the g function, which is the closer you created earlier, and you call g 
with the parameters a+b and 5. The 5 is just passed along as a number, and you 
don’t translate constants into promises; however, the a+b will be lazily evaluated, 
so it is a promise in the call to g. Calling g, you create a new evaluation 
environment for it. Inside this environment, you store the variables y and z. 
The former is set to the promise a+b and the latter to 5. Since promises should 
be evaluated where they are defined, here in the calling scope, this is stored 
together with the promise.

You evaluate g(a + b, 5) as such: You first need to figure out what x is, 
so you look for it in the local evaluation environment, where you don’t find it. 
Then you look in the parent environment, where you do find it, but see that it 
is a promise from the h(1) environment, so you have to look there for it now. It 
isn’t there either, so you continue down the parent chain and find it in the global 
environment where it is 2. Then you need to figure out what y is. You can find y 
in the local environment where you see that it is a promise, a+b, that should be 
evaluated in the i(3) environment. Here you need to find a and b. You can find 
b directly in the environment, so that is easy, but you need to search for a in the 
parent environment. Here you find it, so you can evaluate a+b as 1+3. This value 
now replaces the promise in y. Finally, you need to find z, but at least this is easy. 
That is just the number 5 stored in the local environment. You now have all the 
values you need to compute x + y + z. They are 2 + (1+3) + 5, so when you 
return from the i(3) call, you get the return value 11.

The environment graphs can get rather complicated, but the rules for finding 
values are quite simple. You just follow environment chains. The only pitfall that 
tends to confuse programmers is the lazy evaluation. Here, the rules are also 
simple; they are just not as familiar. Promises are evaluated in the scope where 
they are defined. So, a default parameter will be evaluated in the environment 
where the function is defined, and actual parameters will be evaluated in the 
calling scope. They will always be evaluated when you access a parameter, so 
if you don’t want side effects of modifying closure environments by changing 
variables in other scopes, you should use force before you create closures.
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Take some time to work through this example. Once you understand it, you 
understand how environments work. It doesn’t get more complicated than this 
(well, unless you start messing around with the environments!).

Manipulating Environments
So, how can you make working with environments even more complicated? You 
can, of course, start modifying them and chaining them up in all kinds of new 
ways. You see, not only can you access environments and put variables in them, 
but you can also modify the chain of parent environments. You can, for example, 
change the environment you execute a function in by changing the parent of the 
evaluation environment like this:

f <- function() {
  my_env <- environment()
  parent.env(my_env) <- parent.frame()
  x
}
g <- function(x) f()
g(2)
## [1] 2

You are not changing the local environment—that would be hard to do 
because you don’t have anywhere to put values if you don’t have that. However, 
you are making its parent point to the function call rather than the environment 
where the function was defined. If you didn’t mess with the parent environment, 
x would be searched for in the global environment, but because you set the 
parent environment to the parent frame, you will instead start the search in the 
caller where you find x.

The power to modify scopes in this way can be used for good but certainly 
also for evil. There is nothing complicated in how it works; if you understood 
how environment graphs work from the previous section, you will also 
understand how they work if you start changing parent pointers. The main 
problem is just that environments are mutable, so if you start modifying them in 
one place, it has consequences elsewhere.

Consider this example of a closure:

f <- function() {
  my_env <- environment()
  call_env <- parent.frame()
  parent.env(my_env) <- call_env
  y
}



Chapter 3 ■ expressions and environments

49

g <- function(x) {
  closure <- function(y) {
    z <- f()
    z + x
  }
  closure
}
add1 <- g(1)
add2 <- g(2)

It is just a complicated way of writing a closure for adding numbers, but you 
are not going for elegance here—you are seeing how modifying environments 
can affect you. Here you have a function f that sets up its calling environment 
as its scope and then returns y. Since y is not a local variable, it must be found 
in the enclosing scope with a search that starts in the parent environment; this 
is the environment you just changed to the calling scope. In the function g, you 
then define a closure that takes one argument, y, and then calls f and adds x to 
the result of the call. Since y is a parameter of the closure, f will be able to see 
it when it searches from its (modified) parent scope. Since x is not local to the 
closure, it will be searched for in the enclosing scope, where it was a parameter 
of the enclosing function.

It works as you would expect it to work. Even though it is a complicated way 
of achieving this effect, there are no traps in the code.

add1(3)
## [1] 4
add2(4)
## [1] 6

For reasons that will soon be apparent, I just want to show you that setting a 
global variable x does not change the behavior.

x <- 3
add1(3)
## [1] 4
add2(4)
## [1] 6

It also shouldn’t. When you read the definition of the closure, you can see 
that the x it refers to is the parameter of g, not a global variable.

But now you are going to break the closure without even touching it. You 
just do one simple extra thing in f. Don’t just change the enclosing scope of f, 
and do the same for the caller of f. Set the parent of the caller of f to be its caller 
instead of its enclosing environment.
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f <- function() {
  my_env <- environment()
  call_env <- parent.frame()
  parent.env(my_env) <- call_env
  parent.env(call_env) <- parent.frame(2)
  y
}

You haven’t touched the closure, g, of the add1 and add2 functions. You have 
just made a small change to f. Now, however, if you don’t have a global variable 
for x, the addition functions do not work. This would give you an error.

rm(x)
add1(3)

Even worse, if you do have a global variable x, you don’t get an error, but you 
don’t get the expected results either.

x <- 3
add1(3)
## [1] 6
add2(4)
## [1] 7

What happens here, of course, is that you change the enclosing scope of the 
closure from the g call to the global environment (which is the calling scope of g 
as well as its parent environment), so this is where you now start the search for x. 
The evaluation environment for the g call is not on the search path any longer.

While you can modify environments in this way, you should need an 
excellent reason to do so. Changing the behavior of completely unrelated 
functions causes the worst kind of side effects. It is one thing to mess up your 
own function, but don’t mess up other people’s functions. Of course, you are 
only modifying active environments here. You have not permanently damaged 
any function; you have just messed up the behavior of function calls on the 
stack. If you want to mess up functions permanently, you can do so using the 
environment function as well, but doing that tends to be a more deliberate and 
thought-through choice.

Don’t go modifying the scope of calling functions. If you want to change the 
scope of expressions you evaluate, you are better off creating new environment 
chains for this, rather than modifying existing ones. The latter solution can easily 
have unforeseen consequences, while the former at least has consequences 
restricted to the function you are writing.
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Explicitly Creating Environments
You create a new environment with the new.env function. By default, this 
environment will have the current environment as its parent,3 and you can use 
functions such as exists and get to check what it contains.

env <- new.env()
x <- 5
exists("x", env)
## [1] TRUE
get("x", env)
## [1] 5
f <- function() {
  x <- 7
  new.env()
}
env2 <- f()
get("x", env2)
## [1] 7

You can also use the $ subscript operator to access it, but in this case, R will 
not search up the parent list to find a variable; only if a variable is in the actual 
environment can you get to it.

env$x
## NULL

You can assign variables to environments using assign or through the $<- 
function.

assign("x", 3, envir = env)
env$x
## [1] 3
env$x <- 7
env$x
## [1] 7

Depending on what you want to do with the environment, you might not 
want it to have a parent environment. There is no way to achieve that.

env <- new.env(parent = NULL) # This won't work!

3If you check the documentation for new.env, you will see that the default argument is 
actually parent.frame(). If you think about it, this is how it becomes the current  
environment: when you call new.env, the current environment will be its parent frame.
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All environments have a parent except the empty environment, but you can 
get the next best thing by making this environment the parent of your new one.

global_x <- "foo"
env <- new.env(parent = emptyenv())
exists("global_x", env)
## [1] FALSE

You can try to do something a little more interesting with manually created 
environments, such as building a parallel call stack you can use to implement 
dynamic scoping rather than lexical scoping. Lexical scoping is the scoping you 
already have in R, where a function call’s parent is the definition scope of the 
function. Dynamic scope instead has the calling environment. It is terribly hard 
to reason about programs in languages with dynamic scope, so I advise that you 
avoid them, but for the purpose of education, you can try implementing it.

Since you don’t want to mess around with the actual call stack and modify 
parent pointers, you need to make a parallel sequence of environments, and you 
need to copy the content of each call stack frame into these. You can copy an 
environment like this:

copy_env <- function(from, to) {
  for (name in ls(from, all.names = TRUE)) {
    assign(name, get(name, from), to)
  }
}

Just for illustration purposes, you need a function that will show you what 
names you see in each environment when moving down toward the global 
environment. You don’t want to go all the way down to the empty environment 
here, so you stop a little early. This function lets you do that:

show_env <- function(env) {
  if (!identical(env, globalenv())) {
    print(env)
    print(names(env))
    show_env(parent.env(env))
  }
}

Now comes the function for creating the parallel sequence of environments. 
It is not that difficult; you can use parent.frame to get the frames on the call stack 
arbitrarily deep—well, down to the first function call—and you can get the depth of 
the call stack using the function sys.nframe. The only thing you have to be careful 
about is adjusting the depth of the stack by 1 since you want to create the call stack 
chain for the caller of the function, not for the function itself. The rest is just a loop.
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build_caller_chain <- function() {
  n <- sys.nframe() - 1
  env <- globalenv()
  for (i in seq(1,n)) {
    env <- new.env(parent = env)
    frame <- parent.frame(n - i + 1)
    copy_env(frame, env)
  }
  env
}

To see it in action, you need to set up a rather convoluted example with both 
nested scopes and a call stack. It doesn’t look pretty, but try to work through it 
and consider what the function environments must be and what the call stack 
must look like.

f <- function() {
  x <- 1
  function() {
    y <- 2
    function() {
      z <- 3

      print("---Enclosing environments---")
      show_env(environment())

      call_env <- build_caller_chain()
      print("---Calling environments---")
      show_env(call_env)
    }
  }
}
g <- f()()
h <- function() {
  x <- 4
  y <- 5
  g()
}
h()
## [1] "---Enclosing environments---"
## <environment: 0x1035937b8>
## [1] "z"
## <environment: 0x103596780>
## [1] "y"
## <environment: 0x1035964e0>
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## [1] "x"
## [1] "---Calling environments---"
## <environment: 0x10354b748>
## [1] "z"
## <environment: 0x103553b20>
## [1] "x" "y"

When you call h, it calls g, and you get the list of environments starting from the 
innermost level where you have a z and out until the outermost level, just before 
the global environment, where you have the x. On the (parallel) call stack, you also 
see a z first (it is in a copy of the function’s environment, but it is there), but this 
chain is only two steps long, and the second environment contains both x and y.

You can use the stack chain you constructed here to implement dynamic 
scoping. You simply need to evaluate expressions in the scope defined by this 
chain rather than the current evaluating environment. The <<- assignment 
operator won’t work—it would require you to write a similar function to get that 
behavior, and it would be a design choice to which degree changes made to this 
chain should be moved back into the actual call stack frames. However, as long 
as it comes to evaluating expressions, you can use it for dynamic scoping.

Environments and Expression Evaluation
Finally, this section covers how you combine expressions and environments 
to compute values. The good news is that you are past all the hard stuff, and it 
gets pretty simple after all of the previous stuff. All you have to do to evaluate 
an expression in any selected environment chain is to provide it to the eval 
function. You can see this in the following example that evaluates the same 
expression in the lexical scope and the dynamic scope:

f <- function() {
  x <- 1
  function() {
    y <- 2
    function() {
      z <- 3

      cat("Lexical scope: ", x + y + z, "\n")

      call_env <- build_caller_chain()
      cat("Dynamic scope: ", eval(quote(x + y + z), call_env), "\n")
    }
  }
}
g <- f()()
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h <- function() {
  x <- 4
  y <- 5
  g()
}
h()
## Lexical scope:  6
## Dynamic scope:  12

The hard part of working with environments really isn’t evaluating them. 
It is manipulating them.
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CHAPTER 4

Manipulating Expressions

Expressions, the kind you create using the quote function, come in four flavors: 
a primitive value, a name, a function call or a control structure, and a pairlist. 
Function calls include operators such as the arithmetic or logical operators 
because these are function calls as well in R, and control structures can be 
considered just a special kind of function calls—they only really differ from 
function calls in the syntax you use to invoke them.

class(quote(1))
## [1] "numeric"
class(quote("foo"))
## [1] "character"
class(quote(TRUE))
## [1] "logical"
class(quote(x))
## [1] "name"
class(quote(f(x)))
## [1] "call"
class(quote(2+2))
## [1] "call"
class(quote(if (TRUE) "foo" else "bar"))
## [1] "if"
class(quote(for (x in 1:3) x))
## [1] "for"

Of these, the calls and control structures are of course the more interesting; 
values and symbols are pretty simple, and you cannot do a lot with them. 
Pairlists are used for dealing with function parameters, so unless you are 
working with function arguments, you won’t see them in expressions. Calls 
and control structures, on the other hand, capture the action in an expression; 



Chapter 4 ■ Manipulating expressions

58

you can treat these as lists, and you can thus examine them and modify them.1 
Working with expressions this way is, I believe, the simplest approach and is the 
topic of this chapter. Substituting values for variables is another, complementary 
way that is the topic of the next chapter.

After you have learned the basics of expressions in the next section, the 
rest of the chapter will go through some potential real-life examples of how you 
would use metaprogramming. You can find a full version of the examples in the 
dfdr package in the book’s downloadable source code, available via  
www.apress.com/9781484228807.

The Basics of Expressions
Both function calls and control structures can be manipulated as lists. Of those 
two, I will mostly focus on calls since those are, in my experience, more likely to 
be modified in a program. So, let’s get control structures out of the way first. I will 
describe only if and for; the rest are similar.

Accessing and Manipulating Control Structures
Statements involving control structures are expressions like any other 
expressions in R, and you can create an unevaluated version of them using 
quote. As I explained earlier, you can then treat this expression object as a list. 
So, you can get the length of the object, and you can get access to the elements 
in the object. For a single if statement, you get expressions of length 3, while 
for if-else statements, you get expressions of length 4. The first element is 
the name if. For all control structures and function calls, the first element will 
always be the name of the function, so if you think of control structures as just 
functions with a slightly weird syntax, you don’t have to consider them a special 
case at all.2 The second element is the test condition in the if statement, and 
after that, you get the body of the statement. If it is an if-else statement, the 
fourth element is the else part of the expression.

x <- quote(if (foo) bar)
length(x)
## [1] 3

1To the extent that you can modify data in R. You are of course creating new objects with  
replacement operators.
2They basically are just special cases of calls. The is.call function will return TRUE for 
them, and there is no difference in how you can treat them. The only difference is in the 
syntax for how you write control-structure expressions compared to function calls.

http://www.apress.com/9781484228807
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x[[1]]
## `if`
x[[2]]
## foo
x[[3]]
## bar
y <- quote(if (foo) bar else baz)
length(y)
## [1] 4
y[[1]]
## `if`
y[[2]]
## foo
y[[3]]
## bar
y[[4]]
## baz

With for loops you get an expression of length 4 where the first element is, 
which is, of course, the name for. The second is the iteration variable, the third 
is the expression you iterate over, and the fourth is the loop body.

z <- quote(for (x in 1:4) print(x))
length(z)
## [1] 4
z[[1]]
## `for`
z[[2]]
## x
z[[3]]
## 1:4
z[[4]]
## print(x)

You can evaluate these control structures like any other expression.

eval(z)
## [1] 1
## [1] 2
## [1] 3
## [1] 4
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You can modify them by assigning values to their components to change 
their behavior before you evaluate them. Here’s an example of changing what 
you loop over:

z[[3]] <- 1:2
eval(z)
## [1] 1
## [1] 2

Here’s an example of changing what you do in the function body:

z[[4]] <- quote(print(x + 2))
eval(z)
## [1] 3
## [1] 4

Here’s an example of changing the index variable and the body:

z[[2]] <- quote(y)
z[[4]] <- quote(print(y))
eval(z)
## [1] 1
## [1] 2

Accessing and Manipulating Function Calls
For function calls, their class is call, and when you treat them as lists, the first 
element is the name of the function being called, and the remaining elements 
are the function call arguments.

x <- quote(f(x,y,z))
class(x)
## [1] "call"
length(x)
## [1] 4
x[[1]]
## f
x[[2]]
## x
x[[3]]
## y
x[[4]]
## z
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You can test whether an expression is a function call using the is.call function.

is.call(quote(x))
## [1] FALSE
is.call(quote(f(x)))
## [1] TRUE

You don’t have access to any function body or environment or anything 
like that here. This is just the name of a function; it is not until you evaluate the 
expression that you will have to associate the name with an actual function. You 
can, of course, always evaluate the function call using eval, and you can modify 
the expression if you want to change how it should be evaluated.

x <- quote(sin(2))
eval(x)
## [1] 0.9092974
x[[1]] <- quote(cos)
eval(x)
## [1] -0.4161468
x[[2]] <- 0
eval(x)
## [1] 1

Note that I didn’t quote the zero in the last assignment; I didn’t have to since 
numeric values are already expressions and do not need to be quoted.

To explore an expression, you usually need a recursive function. The two basic 
cases in a recursion are is.atomic (for values) and is.name (for symbols), and the 
recursive cases are is.call for function calls and is.pairlist if you want to deal 
with those. In the following function, which just prints the structure of an expression 
(I did not handle the case where the expression is a pairlist in this function):

f <- function(expr, indent = "") {
  if (is.atomic(expr) || is.name(expr)) { # basic case
    print(paste0(indent, expr))

  } else if (is.call(expr)) { # a function call / subexpression
    print(paste0(indent, expr[[1]]))
    n <- length(expr)
    if (n > 1) {
      new_indent <- paste0(indent, "  ")
      for (i in 2:n) {
        f(expr[[i]], new_indent)
      }
    }
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  } else {
    print(paste0(indent, "Unexpected expression: ", expr[[1]]))
  }
}

f(quote(2 + 3*(x + y)))
## [1] "+"
## [1] "  2"
## [1] "  *"
## [1] "    3"
## [1] "    ("
## [1] "      +"
## [1] "        x"
## [1] "        y"

You might find the output here a little odd, but it captures the structure  
of the expression 2+3*(x+y). The outermost function call is the function +,  
and it has two arguments: 2 and the call to *. The call to * also has two 
arguments—naturally—where one is 3 and the other is a call to the function  
(. If you find this odd, then welcome to the club, but parentheses are functions 
in R. The call to ( has only a single argument, which happens to be a function 
call to + with the arguments x and y.

This is all there is to the direct manipulation of function calls, but of course, 
there is much that can be done with these simple tools. The following sections 
will show how you can use them to achieve powerful effects.

Expression Simplification
To see the manipulation of expressions in action, let’s consider a scenario where 
you want to simplify an expression. Say you want to evaluate subexpressions that 
you can immediately evaluate because they consist only of atomic values where 
you do not depend on variables, and you want to reduce multiplication by 1 or 
addition by 0. It looks something like this:

simplify_expr(quote(2*(0 + ((4 + 5)*x)*1)))
## 2 * (9 * x)

This isn’t quite perfect; if you really reduced the expression, you would see 
that you could rearrange the parentheses and multiply 2 by 9, but you are going 
to simplify expressions locally and not attempt to rewrite them here.

Since you are dealing with expressions, you need a recursive function that 
handles the basic cases (atomic values and names) and the recursive cases (calls 
and pairlists). You don’t expect to see a pairlist in an expression, so you simply 
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give up if you see anything except atomic, name, or call objects. If you see any 
basic case, you just return that; you can’t simplify those further. For call objects, 
you call a function, simplify_call, which is responsible for handling calls.

simplify_expr <- function(expr) {
  if (is.atomic(expr) || is.name(expr)) {
    expr

  } else if (is.call(expr)) {
    simplify_call(expr)

  } else {
    stop(paste0("Unexpected expression ",
                deparse(expr),
                " in simplifying"))
  }
}

For call simplification, I don’t attempt to simplify function calls. I don’t know 
what any generic function is doing, so there is little I can do to simplify expressions 
that involve functions. I will assume, though, that if I am simplifying an expression, 
then functions in it behave as if they had call-by-value semantics and simplify their 
arguments. This is an assumption. It might be wrong, but for this exercises, you 
can assume it. So for general function calls, I will just simplify their arguments. For 
arithmetic expressions, I will try to simplify those further. I could also attempt to 
do that for other operations, but handling just the arithmetic operators shows how 
you would handle operators in sufficient detail that I trust you, dear reader, to be 
able to handle other operators if you need to do so.

Call handling can then look like this:

simplify_call <- function(expr) {
  if (expr[[1]] == as.name("+"))
    return(simplify_addition(expr[[2]], expr[[3]]))
  if (expr[[1]] == as.name("-")) {
    if (length(expr) == 2)
      return(simplify_unary_subtraction(expr[[2]]))
    else
      return(simplify_subtraction(expr[[2]], expr[[3]]))
  }

  if (expr[[1]] == as.name("*"))
    return(simplify_multiplication(expr[[2]], expr[[3]]))
  if (expr[[1]] == as.name("/"))
    return(simplify_division(expr[[2]], expr[[3]]))
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  if (expr[[1]] == as.name("^"))
    return(simplify_exponentiation(expr[[2]], expr[[3]]))

  if (expr[[1]] == as.name("(")) {
    subexpr <- simplify_expr(expr[[2]])
    if (is.atomic(subexpr) || is.name(subexpr))
      return(subexpr)
    else if (is.call(subexpr) && subexpr[[1]] == as.name("("))
      return(subexpr)
    else
      return(call("(", subexpr))
  }

  simplify_function_call(expr)
}

This code is mostly self-explanatory, but a few comments are in order:  
First, you need to compare the call names with name objects. They are  
not actually character strings but have the type name; thus, you need to use  
as.name. Second, the minus comes in two flavors: binary subtraction and unary 
negation. You can tell the two apart by checking whether the call has one or two 
arguments (i.e., whether it has length 2 or 3; remember that the first element 
is the call name), and you just use two different functions to handle the two 
cases. Third, parentheses are also calls, so you need to handle them. You just get 
hold of the expression inside the parentheses. If this is something that doesn’t 
need parentheses (single values, names, or an expression already surrounded 
by parentheses), you just return that subexpression. Otherwise, you put 
parentheses around it. Finally, if you don’t know what else to do, you just treat 
the expression as a function call.

Now you just handle each operator in turn. They are all handled similarly, 
only differing in what you can simplify given each operator. For addition, you 
can get rid of addition by 0, and if both your arguments are numbers, you 
can evaluate them right away. Otherwise, you need to return a call to + with 
simplified operands.

simplify_addition <- function(f, g) {
  left <- simplify_expr(f)
  right <- simplify_expr(g)
  if (left == 0) return(right)
  if (right == 0) return(left)
  if (is.numeric(left) && is.numeric(right))
    return(left + right)
  call("+", left, right)
}
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You can evaluate unary minus if its argument is numeric. Otherwise, you 
can get rid of an existing minus in the argument since two minuses make a plus, 
and if all else fails, you just have to return the simplified expression with a minus 
in front of it.

simplify_unary_subtraction <- function(f) {
   simplified <- simplify_expr(f)
   if (is.numeric(simplified))
     -simplified
   else if (is.call(simplified) && simplified[[1]] == "-")
     simplified[[2]]
   else
     bquote(-.(simplified))
}

For the final case here, you will use the function bquote. It works like 
quote but substitutes a value in where you put .(...). So, you essentially write 
quote(-simplified) except that you put the simplified expression inside the 
expression.

Binary subtraction is similar to addition but with a little more work when 
you subtract from 0. Here you need to use bquote again:

simplify_subtraction <- function(f, g) {
  left <- simplify_expr(f)
  right <- simplify_expr(g)
  if (left == 0) {
    if (is.numeric(right))
      return(-right)
    else
      return(bquote(-.(right)))
  }
  if (right == 0)
    return(left)
  if (is.numeric(left) && is.numeric(right))
    return(left - right)
  call("-", left, right)
}

For multiplication, you can simplify cases where the multiplication involves 
0 or 1, but otherwise, the function looks similar to what you have seen before.

simplify_multiplication <- function(f, g) {
  left <- simplify_expr(f)
  right <- simplify_expr(g)
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  if (left == 0 || right == 0)
    return(0)
  if (left == 1)
    return(right)
  if (right == 1)
    return(left)
  if (is.numeric(left) && is.numeric(right))
    return(left * right)
  call("*", left, right)
}

Division and exportation are just more of the same, with different cases  
to handle.

simplify_division <- function(f, g) {
  left <- simplify_expr(f)
  right <- simplify_expr(g)
  if (right == 1)
    return(left)
  if (is.numeric(left) && is.numeric(right))
    return(left / right)
  call("/", left, right)
}

simplify_exponentiation <- function(f, g) {
  left <- simplify_expr(f)
  right <- simplify_expr(g)
  if (right == 0) return(1)
  if (left == 0) return(0)
  if (left == 1) return(1)
  if (right == 1) return(left)
  if (is.numeric(left) && is.numeric(right))
    return(left ^ right)
  call("^", left, right)
}

The final function you need is a function-call simplification. Here you just have 
to simplify all the function’s arguments before returning a call. You can collect the 
arguments in a list and create a function call with an expression like this:

do.call("call", c(list(function_name), arguments))



Chapter 4 ■ Manipulating expressions

67

This would take the arguments, as a list, and turn them into arguments in a 
call to call. This will work fine if the function_name value is a function name, 
but expressions such as f(x,y)(z) are also function calls; here the function name 
is f(x,y), and the argument is z. You cannot wrap such an expression up in a 
call to call, but you can just take a list and turn it into a call using as.call.

simplify_function_call <- function(expr) {
  function_name <- expr[[1]]
  arguments <- vector("list", length(expr) - 1)
  for (i in seq_along(arguments)) {
    arguments[i] <- list(simplify_expr(expr[[i + 1]]))
  }
  as.call(c(list(function_name), arguments))
}

For the same reason, you have to remedy the simplify_call function. 
There, you compare expr[[1]] with names to dispatch to the various arithmetic 
operators. This works only if expr[[1]] is a name, so you have to make sure that 
you make these comparisons only when it is a name.

simplify_call <- function(expr) {
  if (is.name(expr[[1]])) {
    # Dispatch to operators...
  }

  simplify_function_call(expr)
}

You could also get a little more ambitious and try to evaluate functions when 
all their arguments are values and when you know what the functions are—or 
at least have a reasonable expectation that you would know. You could always 
check whether you can find the name in a relevant environment and whether it 
is a function, but since you are simplifying expressions where you don’t expect to 
know variables that are not functions, it is probably too much to demand that all 
function symbols are known. Still, you could say that functions such as sin and 
cos and such as exp and log are their usual selves and then do something like this:

simplify_function_call <- function(expr) {
  function_name <- expr[[1]]
  arguments <- vector("list", length(expr) - 1)
  for (i in seq_along(arguments)) {
    arguments[i] <- list(simplify_expr(expr[[i + 1]]))
  }
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  if (all(unlist(Map(is.numeric, arguments)))) {
    if (as.character(function_name) %in%
                c("sin", "cos", "exp", "log")) {
      result <- do.call(as.character(function_name), arguments)
      return(result)
    }
  }
  as.call(c(list(function_name), arguments))
}

You now have a simple program that lets you simplify expressions to a 
certain extent.

simplify_expr(quote(2*(0 + ((4 + 5)*x)*1)))
## 2 * (9 * x)

Neither function-call solution can handle named arguments. You simply 
work with positional arguments and just throw away the name information.

f <- function(x, y) x
expr1 <- quote(f(x = 2, y = 1))
expr2 <- quote(f(y = 2, x = 1))
eval(expr1)
## [1] 2
eval(expr2)
## [1] 1
simplify_expr(expr1)
## f(2, 1)
simplify_expr(expr2)
## f(2, 1)
eval(simplify_expr(expr1))
## [1] 2
eval(simplify_expr(expr2))
## [1] 2

It isn’t hard to remedy this, though. There is nothing special needed to work 
with named arguments when you deal with function calls; they are just accessed 
with the named function.

names(expr1)
## [1] ""  "x" "y"
names(expr2)
## [1] ""  "y" "x"
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If you make sure that the result of your simplification gets the same name as 
the original expression, you will be OK.

simplify_function_call <- function(expr) {
  function_name <- expr[[1]]
  arguments <- vector("list", length(expr) - 1)
  for (i in seq_along(arguments)) {
    arguments[i] <- list(simplify_expr(expr[[i + 1]]))
  }
  result <- as.call(c(list(function_name), arguments))
  names(result) <- names(expr)
  result
}
simplify_expr(expr1)
## f(x = 2, y = 1)
simplify_expr(expr2)
## f(y = 2, x = 1)
eval(simplify_expr(expr1))
## [1] 2
eval(simplify_expr(expr2))
## [1] 1

Automatic Differentiation
As a second and only slightly more involved example, let’s consider automatic 
differentiation, which means automatically translating a function that computes 
an expression into a function that calculates the derived expression. I will 
assume that you have a function whose body contains only a single expression—
one that doesn’t involve control structures or sequences of statements but just 
a single arithmetic expression—and recurse through this expression, applying 
the rules of differentiation. Although what you do with this metaprogram is more 
complicated than the expression simplification just implemented, you will see 
that the form of the program is similar.

You start with the main function, which you name d for differentiation. It 
takes two arguments: the function to be differentiated and the variable to take 
the derivative on. If you want the function to be able to handle the built-in 
mathematical functions, you need to handle these as special cases. These are 
implemented as so-called primitive functions and do not have a body. You need 
to handle them explicitly in the d function. For all other functions, you just need 
to compute the derivative of the expression in the function body. If you want 
to return a new function for the derivative, you can just take the function you 
are modifying and replace its body. Since R doesn’t let you modify arguments 
to a function, this will just create a copy you can return and leave the original 
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function intact. Reusing the argument this way makes sure that the new function 
has the same arguments, with the same names and same default values, as 
the original. It also ensures that the derivative will have the same enclosing 
environment as the original function, which is potentially important for when 
you evaluate it.

The d function can look like this, where I’ve handled only three of the 
primitive functions—you can add the remaining as an exercise:

d <- function(f, x) {
  if (is.null(body(f))) {
    if (identical(f, sin)) return(cos)
    if (identical(f, cos)) return(function(x) -sin(x))
    if (identical(f, exp)) return(exp)

    stop("unknown primitive")

  } else {
    df <- f
    e <- environment(f)
    body(df) <- simplify_expr(diff_expr(body(f), x, e))
    df
  }
}

You send the function environment along with the recursion because you 
will need it when you have to deal with function calls later. There, you will need 
to look up functions and analyze which parameters they take to apply the chain 
rule. For now, you just pass it along in the recursion.

For aesthetic reasons, you simplify the expression you get from 
differentiating the body of f, using the code you wrote in the previous section. 
You can use d like this:

f <- function(x) x^2 + sin(x)
df <- d(f, "x")
df
## function (x)
## 2 * x + cos(x)

For computing the derivative of the function body, you follow the pattern 
you used for the expression simplification: you write a recursive function for 
dealing with expressions, where you dispatch function calls to different cases for 
the different arithmetic operations.
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The two basic cases for the recursive function are numbers and names. 
Let’s assume that you do not get other atomic values such as logical vectors; you 
wouldn’t know how to differentiate them anyway. For numbers, the derivative 
is always 0, while for names it depends on whether you have the variable you 
are computing the derivative on or another variable. The recursive case for the 
function is function calls, where you just call another function to handle that case.

diff_expr <- function(expr, x, e) {
  if (is.numeric(expr)) {
    quote(0)

  } else if (is.name(expr)) {
    if (expr == x) quote(1)
    else quote(0)

  } else if (is.call(expr)) {
    diff_call(expr, x, e)

  } else {
    stop(paste0("Unexpected expression ",
                deparse(expr), " in parsing."))
  }
}

For calls, you dispatch based on the type of call; therefore, you deal with 
arithmetic expressions through a function for each operator, and you deal with 
parentheses similar to how you handled them in the expression simplification 
and when differentiating other function calls. You have to handle primitive 
functions and user-defined functions as two separate cases here as well. For 
user-defined functions, you can analyze them, figure out their formal arguments, 
and apply the chain rule. For primitive functions, formals will give you an empty 
list, so that strategy will not work for those. So, you handle them as a special 
case. I assume, here, that you have a list of names of the primitive functions. For 
example, you could have this if you need to handle only those three cases:

.built_in_functions <- c("sin", "cos", "exp")

Extend it as needed.
The function-handling calls look like this:

diff_call <- function(expr, x, e) {
  if (is.name(expr[[1]])) {
    if (expr[[1]] == as.name("+"))
      return(diff_addition(expr[[2]], expr[[3]], x, e))
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    if (expr[[1]] == as.name("-")) {
      if (length(expr) == 2)
        return(call("-", diff_expr(expr[[2]], x, e)))
      else
        return(diff_subtraction(expr[[2]], expr[[3]], x, e))
    }

    if (expr[[1]] == as.name("*"))
      return(diff_multiplication(expr[[2]], expr[[3]], x, e))
    if (expr[[1]] == as.name("/"))
      return(diff_division(expr[[2]], expr[[3]], x, e))

    if (expr[[1]] == as.name("^"))
      return(diff_exponentiation(expr[[2]], expr[[3]], x, e))

    if (expr[[1]] == as.name("(")) {
      subexpr <- diff_expr(expr[[2]], x, e)
      if (is.atomic(subexpr) || is.name(subexpr))
        return(subexpr)
      else if (is.call(subexpr) && subexpr[[1]] == as.name("("))
        return(subexpr)
      else
        return(call("(", subexpr))
    }
  }

  if (is.name(expr[[1]]) &&
      as.character(expr[[1]]) %in% .built_in_functions)
    return(diff_built_in_function_call(expr, x, e))
  else
    return(diff_general_function_call(expr, x, e))
}

You handle the arithmetic operations just by following the rules you learned 
in calculus class.

diff_addition <- function(f, g, x, e) {
  call("+", diff_expr(f, x, e), diff_expr(g, x, e))
}

diff_subtraction <- function(f, g, x, e) {
  call("-", diff_expr(f, x, e), diff_expr(g, x, e))
}
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diff_multiplication <- function(f, g, x, e) {
  # f' g + f g'
  call("+",
       call("*", diff_expr(f, x, e), g),
       call("*", f, diff_expr(g, x, e)))
}

diff_division <- function(f, g, x, e) {
  # (f' g − f g' )/g**2
  call("/",
       call("-",
        call("*", diff_expr(f, x, e), g),
        call("*", f, diff_expr(g, x, e))),
       call("^", g, 2))
}

diff_exponentiation <- function(f, g, x, e) {
  # Using the chain rule to handle this generally.
  dydf <- call("*", g,
               call("^", f, substitute(n - 1, list(n = g))))
  dfdx <- diff_expr(f, x, e)
  call("*", dydf, dfdx)
}

For function calls, you have to apply the chain rule. For primitive functions 
you cannot get a list of formal arguments, so you cannot handle these by 
inspecting the functions; you have to use their names to figure out what their 
arguments and derivatives are. I’m showing a few cases here, but I will leave 
handling other functions as an exercise for you:

diff_built_in_function_call <- function(expr, x, e) {
  # chain rule with a known function to differentiate...
  if (expr[[1]] == as.name("sin"))
    return(call("*", call("cos", expr[[2]]),
                diff_expr(expr[[2]], x, e)))

  if (expr[[1]] == as.name("cos"))
    return(call("*", call("-", call("sin", expr[[2]])),
                diff_expr(expr[[2]], x, e)))

  if (expr[[1]] == as.name("exp"))
    return(call("*", call("exp", expr[[2]]),
                diff_expr(expr[[2]], x, e)))
}
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For other function calls, you can inspect the function to work out which 
variables it has and apply the chain rules to those variables. This works only if 
you can figure out which function you are referring to, so you cannot handle 
cases where you have to compute the function. In those cases, you just give up. 
If you have a symbol for the function, however, you can look it up and inspect it. 
This isn’t entirely safe for general use. If you calculate the derivative of a function 
and then change a global function that it refers to, you will have a derivative 
that uses the old global function, while the actual function uses the new global 
function. There isn’t much you can do about this, though. At the point where 
you apply the chain rule, you need to know which arguments the function takes. 
That means you need to know which function you are working with.

You can assume that the arguments used in the function call are the 
relevant ones to consider when you apply the chain rules. Those that you are not 
passing along in the function call will have default values and will not depend 
on the arguments given to the derivative function so that you can ignore them. 
Therefore, you can take the arguments in the function call and sum over those 
in the chain rule. You need to know the names of the arguments to compute the 
derivatives of the function, and you need to handle both positional and named 
arguments, and this is where you have to look up the actual function.

In the environment you have passed along in the recursion—the 
environment of the original function you are computing the derivative of—you 
look up the function you have to apply the chain rule to. With that function in 
hand, you can use the function match.call to get all the names of the arguments 
in the function call. The match.call function takes care of merging named and 
positional arguments. For each argument, you build a function call by changing 
the function to its derivative to the appropriate variable. You use the bquote 
function to call d to compute these derivatives. You then multiply the function 
call with the argument differentiated with the original variable. Collecting all 
these terms in a sum completes the chain rule.

diff_general_function_call <- function(expr, x, e) {
  function_name <- expr[[1]]
  if (!is.name(function_name))
    stop(paste0("Unexpected call ", deparse(expr)))

  func <- get(as.character(function_name), e)
  full_call <- match.call(func, expr)
  variables <- names(full_call)

  arguments <- vector("list", length(full_call) - 1)
  for (i in seq_along(arguments)) {
    var <- variables[i + 1]
    dfdz <- full_call



Chapter 4 ■ Manipulating expressions

75

    dfdz[[1]] <- bquote(d(.(function_name), .(var)))
    dzdx <- diff_expr(expr[[i + 1]], x, e)
    arguments[[i]] <- bquote(.(dfdz) * .(dzdx))
  }
  as.call(c(list(sum), arguments))
}

There is one caveat with this solution: even if the original function is 
vectorized, the derivative won’t be. If you define the following functions, then g 
and h should be the same functions:

f <- function(x, y) x^2 * y
g <- function(z) f(2*z, z^2)
h <- function(z) 4*z^4

However, if you calculate d(g,"z") and d(h,"z") and call them with a 
vector of values, the former will add all the results together, while the latter will 
return a vector of values. The sum call in the derivative of g will gobble up all the 
values. You can fix this by calling Vectorize on d(g,"z").

Other than that, you now have a metaprogram for translating a function into 
its derivative. It doesn’t handle all possible functions; they have to be functions 
that evaluate simple expressions. The chain rule can be applied only to known 
functions mentioned by name, and you have handled only some of the primitive 
functions, but I trust you can see how you could build more functionality on top 
of what you have now.
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CHAPTER 5

Working with Substitutions

You can take expressions and manipulate them by treating them as strings, but 
you can also modify them by substituting variables for expressions. In addition, 
you can build expressions by using more advanced quoting, and you can move 
back and forth between strings and expressions.

A Little More on Quotes
This chapter starts with quickly revisiting the quote mechanism. You have 
already seen how to quote expressions, but you can do more than just create 
verbatim expressions. I have discussed the quote function in some detail, but 
I showed the bquote function only in passing. The bquote function allows you 
create expressions where you only partially quote—you can evaluate some 
values when you create the expression and leave other parts for later. While 
quote wraps an entire expression in quotes, the bquote function does partial 
substitution in an expression. You call it with an expression, as you would call 
quote, but any subexpression you wrap in a call to “dot” (that is, you write 
.(...)) will not be quoted but will instead be evaluated, and the value will be 
put into the expression you are constructing. If you use bquote without using 
.(...), it works just like quote.

quote(x + y)
## x + y
bquote(x + y)
## x + y
bquote(.(2+2) + y)
## 4 + y
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You used bquote when you constructed terms for the chain rule in your 
differentiation program. Here you used bquote(.(dfdz) * .(dzdx)) to 
construct the product of the differentiated function and the differentiated 
argument; you constructed dfdz and dzdx by constructing a differentiated 
function, using bquote again, for dfdz (as in bquote(d(.(function_name), 
.(var))))) and by calling the diff_expr function for dzdx.

In many situations where you need to create a call object, using bquote 
can be much simpler than constructing the call object explicitly. For the simple 
example shown previously, there is not a huge difference.

bquote(.(2+2) + y)
## 4 + y
call("+", 2+2, quote(y))
## 4 + y

However, once you start creating expressions with many nested calls (and 
you don’t need particularly complex expressions to need multiple nested calls), 
then explicitly creating calls becomes much more cumbersome than using 
bquote.

bquote((.(2+2) + x) * y)
## (4 + x) * y
call("*", call("(", call("+", 2+2, quote(x))), quote(y))
## (4 + x) * y

Parsing and Deparsing
When you use quoting to construct expressions, you get objects you can 
manipulate via recursive functions, but you can also work with expressions as 
strings and translate between strings and expressions using the functions parse 
and deparse.

The deparse function translates an expression into the R source code that 
would be used to create the expression (represented as a string), and the parse 
function parses a string or a file and returns the expressions in it.

deparse(quote(x + y))
## [1] "x + y"
parse(text = "x + y")
## expression(x + y)
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For the call to parse here, you need to specify that you are parsing a text 
string. Otherwise, parse will assume you are giving it a file name and try to parse 
the content of that file. The result of the call to parse is not, strictly speaking, an 
expression. However, the type it writes is expression. That is an unfortunate 
choice for this type because expression objects are actually lists of expressions. 
The parse function can parse more than one expression, and sequences of 
expressions are represented in the expression type. You can get the actual 
expressions by indexing into this object.

(expr <- parse(text = "x + y; z * x"))
## expression(x + y, z * x)
expr[[1]]
## x + y
expr[[2]]
## z * x

The deparse function is often used when you need a string that represents 
an R object, for example, for a label in a plot. Many functions extract expressions 
given as arguments and use those as default labels. There, you cannot just use 
deparse. That would evaluate the expression you are trying to deparse before 
you turn it into a string. You need to get the actual argument, and for that, you 
need the substitute function.

f <- function(x) deparse(x)
g <- function(x) deparse(substitute(x))

x <- 1:4; y <- x**2
f(x + y)
## [1] "c(2, 6, 12, 20)"
g(x + y)
## [1] "x + y"

Substitution
The substitute function replaces variables for values in an expression. The 
deparse(substitute(x)) construction you just saw exploits this by using 
substitute to get the expression that the function parameter x refers to before 
translating it into a string. If you just refer to x, you will force an evaluation of the 
argument and get the value it evaluates to; instead, because you use substitute, 
you get the expression that x refers to.

Getting the expression used as a function argument, rather than the value 
of the expression, is a common use of substitute. Together with deparse, 
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it is used to create labels for plots. It is also used for so-called nonstandard 
evaluation—functions that do not evaluate their arguments following the default 
rules for environments. Nonstandard evaluation, which you will return to in 
the next section, obtains the expressions in arguments using substitute and 
then evaluates them using eval in environments different from the function’s 
evaluation environment.

Before you consider evaluating expressions, however, you should get a 
handle on how substitute works. This depends a little bit on where it is called. 
In the global environment, substitute doesn’t do anything, at least not unless 
you give it more arguments than the expression (I get to that shortly). In all other 
environments, if you just call substitute with an expression, the function will 
search through the expression and find variables. If it finds a variable that has a 
value in the current environment—whether it is a promise for a function call or 
a variable you have assigned values to—it will substitute the variable with the 
value. If the variable does not have a value in the environment, it is left alone. In 
the global environment, it leaves all variables alone.

In the following example, you see that substitute(x + y) doesn’t get 
modified in the global environment, even though the variables x and y are 
defined. Inside the function environment for f, however, you substitute the two 
variables with their values.

x <- 2; y <- 3
substitute(x + y)
## x + y
f <- function(x, y) substitute(x + y)
f(2, 3)
## 2 + 3

With substitute, variables are not found the same way as they are in eval. 
When substitute looks in an environment, it does not follow the parent pointer. 
If it doesn’t find the variable to substitute in the exact environment in which it is 
called, it will not look further. So, if you write functions like these:

y - 3
## [1] 0
f <- function(x) substitute(x + y)
f(2)
## 2 + y
g <- function(x) function(y) substitute(x + y)
h <- g(2)
h(3)
## x + 3
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the function f, when called, will have x in its evaluation environment and y in 
the parent environment (which is the global environment), but substitute will 
substitute only the local variable, x. For h, it will know y as a local variable and x 
from its closure; however, only y, the local variable, will be substituted.

The actual environment that substitute uses to find variables is given as its 
second argument. The default is just the current evaluating environment. You 
can change that by providing either an environment or a list with a variable to 
value mapping.

e <- new.env(parent = emptyenv())
e$x <- 2
e$y <- 3
substitute(x + y, e)
## 2 + 3
substitute(x + y, list(x = 2, y = 3))
## 2 + 3

Again, substitute will not follow parent pointers. Whether these are set 
implicitly or explicitly in the environment, you pass on to the function.

x <- 2 ; y <- 3
e <- new.env(parent = globalenv())
substitute(x + y, e)
## x + y
e <- new.env(parent = globalenv())
e$x <- 2
e$y <- 3
e2 <- new.env(parent = e)
substitute(x + y, e2)
## x + y

If you want a variable substituted, you need to make sure it is in the exact 
environment you provide to substitute.

Substituting Expressions Held in Variables
A common case when you manipulate expressions is that you have a reference to 
an expression—for example, from a function argument—and you want to modify 
it. In the global environment, you cannot do this directly with substitute. If you 
give substitute a variable, it will just return that variable.

expr <- quote(x + y)
substitute(expr)
## expr
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This is because substitute doesn’t replace the variable in the global 
environment. You can get the expression substituted by explicitly giving 
substitute the expression in an environment or a list.

substitute(expr, list(expr = expr))
## x + y

Usually, though, you don’t manipulate expressions in the global 
environment, and inside a function you can substitute an expression.

f <- function() {
  expr <- quote(x + y)
  substitute(expr)
}
f()
## x + y

But what if you want to replace, say, y with 2 in the expression here? The 
substitution, both in the global environment with an explicit list or inside a 
function, will replace expr with quote(x + y), but you want to take that then 
and replace y with 2. You cannot just get y from the local environment and give it 
to substitute explicitly; that won’t work either.

f <- function() {
  expr <- quote(x + y)
  y <- 2
  substitute(expr)
}
f()
## x + y
f <- function() {
  expr <- quote(x + y)
  substitute(expr, list(y = 2))
}
f()
## expr

What you want to do is first replace expr with the expression quote(x + y) 
and then replace y with 2. So, the natural approach is to write the following code, 
which will not work:

substitute(substitute(expr, list(expr = expr)), list(y = 2))
## substitute(expr, list(expr = expr))
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The problem here is that y doesn’t appear anywhere in the expression given 
to the outermost substitute, so it won’t be substituted in anywhere. What you 
get is just the following expression:

substitute(expr, list(expr = expr))

You can evaluate this to get x + y.

eval(substitute(substitute(expr, list(expr = expr)), list(y = 2)))

However, the evaluation first substitutes y into the innermost substitute 
expression—where there is no y variable—and then substitutes expr into the 
expression expr. The order is wrong.

To substitute variables in an expression that you hold in another variable, 
you have to write the expression in the opposite order of what comes naturally. 
You don’t want to substitute expr at the innermost level and then y at the 
outermost level; you want to first substitute expr into a substitute expression 
that takes care of substituting y. The outermost level substitutes expr into 
substitute(expr, list(y = 2)), which you can evaluate to get y substituted 
into the expression.

So, you create the expression you need to evaluate like this:

substitute(substitute(expr, list(y = 2)), list(expr = expr))
## substitute(x + y, list(y = 2))

You complete the substitute like this:

eval(substitute(substitute(expr, list(y = 2)), list(expr = expr)))
## x + 2

It might take a little getting used to, but you just have to remember that you 
need to do the substitutions in this order.

Substituting Function Arguments
Function arguments are passed as unevaluated promises, but the second you 
access them, they get evaluated. If you want to get hold of the promises without 
evaluating them, you can use the substitute function. This gives you the 
argument as an unevaluated—or quoted—expression.

This can be useful if you want to manipulate expressions or evaluate them in 
ways different from the norm (as you will explore in the next section), but you do 
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throw away information about which context the expression was supposed to be 
evaluated in. Consider the following example:

f <- function(x) function(y = x) substitute(y)
g <- f(2)
g()
## x
x <- 4
g(x)
## x

In the first call to g, y has its default parameter, which is the one it gets 
from its closure, so it substitutes to the x that has the value 2. In the second call, 
however, you have the expression x from the global environment where x is 4. 
In both cases, you just have the expression quote(x). From inside R, there is no 
mechanism for getting the environment out of a promise, so you cannot write 
code that modifies input expressions and then evaluates them in the enclosing 
scope for default parameters and the calling scope for function arguments.1

You also have to be a little careful when you use substitute in functions 
that are called with other functions. The expression you get when you 
substitute is the exact expression a function gets called with. This expression 
doesn’t propagate through other functions. In the following example, you call 
the function g with the expression x + y, but since g calls f with expr, that is 
what you get in the substitution.

f <- function(expr) substitute(expr)
f(x + y)
## x + y
g <- function(expr) f(expr)
g(x + y)
## expr
x <- 2; y <- 3
eval(f(x + y))
## [1] 5
eval(g(x + y))
## x + y

1In the package pryr, which you will return to at the end of this chapter, there are 
functions, written in C, that do provide access to the internals of promises. Using pryr, 
you can get hold of both the expression and the associated environment of a promise in 
case you need it.
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The substitute function is harder to use safely and correctly than using 
bquote and explicitly modifying call objects, but it is the function you need to 
use to implement nonstandard evaluation.

Nonstandard Evaluation
Nonstandard evaluation refers to any evaluation that doesn’t follow the rules 
for how you evaluate expressions in the local evaluation environment. When 
you use eval to evaluate a function argument in an environment other than the 
default (which is what you get from a call to environment()), you are evaluating 
an expression in a nonstandard way.

Typical uses of nonstandard evaluation (NSE) are evaluating expressions 
in the calling scope, which you have already seen examples of, and evaluating 
expressions in data frames. You have already seen that you can use a list to 
provide a variable to value mapping when using substitute, but you can also do 
the same when using eval.

eval(quote(x + y), list(x = 2, y = 3))
## [1] 5

Since a data frame is just a list of vector elements of the same length, you 
can also evaluate expressions in the context of data frames.

d <- data.frame(x = 1:2, y = 3:3)
eval(quote(x + y), d)
## [1] 4 5

When you use eval this way, where you explicitly quote the expression, you 
are not really doing NSE. The quoted expression would not be evaluated in any 
other, standard way. After all, you explicitly quote it, and if you didn’t quote it 
here, x+y would be evaluated in the calling scope, not inside the data frame.

x <- 2; y <-  3
eval(x + y, d)
## [1] 5

To do NSE, you have to explicitly substitute an argument, so you do not 
evaluate the argument-promise in the calling scope and then evaluate it in an 
alternative scope. For example, you can implement your own version of the with 
function like this:

my_with <- function(df, expr) {
  eval(substitute(expr), df)
}
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d <- data.frame(x = rnorm(5), y = rnorm(5))
my_with(d, x + y)
## [1] -1.4437635  0.9121930 -1.8908632 -0.2156309
## [5]  1.8495491

Here, the expression x + y is not quoted in the function call, so normally 
you would expect x + y to be evaluated in the calling scope. Because you 
explicitly use substitute to swap in the argument in my_with, this does not 
happen. Instead, you evaluate the expression in the context of the data frame. 
This is nonstandard evaluation.

The real with function works a little better than your version. If the 
expression you evaluate contains variables that are not found in the data frame, 
then it takes these variables from the calling scope. Your version can also handle 
variables that do not appear in the data frame, but it works slightly differently.

If you use the two functions in the global scope, you don’t see a difference.

z <- 1
with(d, x + y + z)
## [1] -0.4437635  1.9121930 -0.8908632  0.7843691
## [5]  2.8495491
my_with(d, x + y + z)
## [1] -0.4437635  1.9121930 -0.8908632  0.7843691
## [5]  2.8495491

However, if you use them inside functions, you do.

f <- function(z) with(d, x + y + z)
f(2)
## [1] 0.5562365 2.9121930 0.1091368 1.7843691
## [5] 3.8495491
g <- function(z) my_with(d, x + y + z)
g(2)
## [1] -0.4437635  1.9121930 -0.8908632  0.7843691
## [5]  2.8495491

What is going on here?
Well, eval takes a third argument that gives the enclosing scope for the 

evaluation. In my_with you haven’t provided this, so you use the default value, 
which is the enclosing scope where you call eval, which is the evaluating 
environment of my_with. You haven’t defined z in this environment, but the 
enclosing scope includes the global environment where you have defined z. 
When you evaluate the expression in my_with, you find z in the global 
environment. In contrast, when you use with, the enclosing environment is the 
calling environment.
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You can change my_with to have the same behavior thusly:

my_with <- function(df, expr) {
  eval(substitute(expr), df, parent.frame())
}

f <- function(z) with(d, x + y + z)
f(2)
## [1] 0.5562365 2.9121930 0.1091368 1.7843691
## [5] 3.8495491
g <- function(z) my_with(d, x + y + z)
g(2)
## [1] 0.5562365 2.9121930 0.1091368 1.7843691
## [5] 3.8495491

Now, you have both typical uses of NSE: evaluating in a data frame and 
evaluating in the calling scope.

Nonstandard Evaluation from Inside Functions
Nonstandard evaluation is hard to get right once you start using it from inside 
other functions. It is a convenient approach to simplify the syntax for many 
operations when you work with R interactively or when you write analysis 
pipelines in the global scope, but because substitutions tend to work verbatim 
on the function arguments that you give functions, once arguments get passed 
from one function to another, NSE gets tricky.

Consider the following example:

x <- 2; y <- 3
f <- function(d, expr) my_with(d, expr)
f(d, x + y)
## [1] 5
g <- function(d, expr) my_with(d, substitute(expr))
g(d, x + y)
## expr

Here, you make two attempts at using my_with from inside a function, and 
neither works as intended. In f, the expr gets evaluated in the global scope. 
When you use the variable inside the function, the promise gets evaluated before 
it is passed along to my_with. In g, you do substitute, but it is substitute(expr) 
that my_with sees—remember, it does not see the expression as a promise but 
substitutes it to get an expression—so you don’t actually get the argument 
substituted. The NSE in my_with prevents this.
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If you want functions that do NSE, you really should write functions that work 
with expressions and do “normal” evaluation on those instead. You can make a 
version of my_with that expects the expression to be already quoted, which you 
can use in other functions, and then define my_with to do the NSE like this:

my_with_q <- function(df, expr) {
  eval(expr, df, parent.frame())
}
my_with <- function(df, expr) my_with_q(d, substitute(expr))

g <- function(d, expr) my_with_q(d, substitute(expr))
g(d, x + y)
## [1] -1.4437635  0.9121930 -1.8908632 -0.2156309
## [5]  1.8495491
my_with(d, x + y)
## [1] -1.4437635  0.9121930 -1.8908632 -0.2156309
## [5]  1.8495491

Writing Macros with NSE
Since NSE allows you to evaluate expressions in the calling scope, you can use 
it to write macros, that is, functions that work as shortcuts for statements where 
they are called. These differ from functions, which cannot generally modify data 
outside of their own scope. However, I do not recommend using macros unless 
you have very good reasons to—the immutability of data is an important feature 
of R, and violating it with macros goes against this. However, because it is a good 
example of what you can do with NSE, I will include the example here.

Consider the following code. This example is a modified implementation  
of the macro code presented in Programmer’s Niche: Macros in R  
(https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf) by Thomas 
Lumley (R Journal, 2001). I have simplified the macro-making function a bit;  
you can see the full version in the original article online.

make_param_names <- function(params) {
  param_names <- names(params)
  if (is.null(param_names))
    param_names <- rep("", length(params))
  for (i in seq_along(param_names)) {
    if (param_names[i] == "") {
      param_names[i] <- paste(params[[i]])
    }
  }
  param_names
}

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf
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make_macro <- function(..., body) {
  params <- eval(substitute(alist(...)))
  body <- substitute(body)

  # Construct macro
  f <- eval(substitute(
    function() eval(substitute(body), parent.frame())
  ))

  # Set macro arguments
  param_names <- make_param_names(params)
  names(params) <- param_names
  params <- as.list(params)
  formals(f) <- params

  f
}

The first function simply extracts the names from a list of function parameters 
and makes sure that all parameters have a name. This is necessary later when you 
construct the formals list of a function. In a formals list, all parameters must have 
a name, and you construct these names with this function. The second function is 
the interesting one. Here you construct a macro by constructing a function whose 
body will be evaluated in its calling scope. You first get hold of the parameters 
and body the macro should have. Then you get the parameters into a list by 
substituting ... in and then evaluating the alist(...) expression. Without the 
substitution you would get the argument list that just contains ..., but with the 
substitution you get the arguments that are passed to the make_macro function, 
except for the named argument body that you just translate into the expression 
passed to the make_macro with another substitute call.

The function you construct is where the magic happens. You create the 
expression

substitute(function() eval(substitute(body), parent.frame()))

where body will be replaced with the expression that you pass to the macro. 
When you evaluate this, you get the function

function() eval(substitute(<body>), parent.frame())

where <body> is not the symbol body but the body expression. This is a function 
that doesn’t take any arguments (yet) but will substitute variables in <body> 
that are known in its calling scope—the parent.frame()—before evaluating the 
resulting expression.
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You can see this in action with this small example:

(m <- make_macro(body = x + y))
## function ()
## eval(substitute(x + y), parent.frame())
## <environment: 0x7f8586d49178>

When you call m, it will evaluate x + y in its calling scope, so you can set the 
variables x and y in the global scope and evaluate it thusly:

x <- 2; y <- 4
m()
## [1] 6

The last part of the make_macro code sets the formal arguments of the macro. 
It simply takes the parameters you have specified, makes sure they all have a 
name, and then turns them into a list and sets formals(f). After that, make_
macro returns the constructed function.

You can use this function to create a macro that replaces specific values in a 
column in a data frame with NA like this:

set_NA_val <- make_macro(df, var, na_val,
                         body = df$var[df$var == na_val] <- NA)

The macro you construct takes three parameters: the data frame, df; the 
variable (column) in the data frame, var; and the value that corresponds to 
NA, na_val. Its body then is the following expression with df, var, and na_val 
replaced with the arguments passed to the macro:

df$var[df$var == na_val] <- NA

You can use it like this:

(d <- data.frame(x = c(1,-9,3,4), y = c(1,2,-9,-9)))
##    x  y
## 1  1  1
## 2 -9  2
## 3  3 -9
## 4  4 -9
set_NA_val(d, x, -9); d
##    x  y
## 1  1  1
## 2 NA  2
## 3  3 -9
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## 4  4 -9
set_NA_val(d, y, -9); d
##    x  y
## 1  1  1
## 2 NA  2
## 3  3 NA
## 4  4 NA

Here, you see that the constructed set_NA_val macro modifies a data frame in 
the calling scope. It saves some boilerplate code from being written, but at the cost of 
keeping parameter values immutable. The more traditional function solution where 
you return updated values is probably much more readable to most R programmers.

set_NA_val_fun <- function(df, var, na_val) {
  df[df[,var] == na_val, var] <- NA
  df
}
(d <- data.frame(x = c(1,-9,3,4), y = c(1,2,-9,-9)))
##    x  y
## 1  1  1
## 2 -9  2
## 3  3 -9
## 4  4 -9
(d <- set_NA_val_fun(d, "x", -9))
##    x  y
## 1  1  1
## 2 NA  2
## 3  3 -9
## 4  4 -9
(d <- set_NA_val_fun(d, "y", -9))
##    x  y
## 1  1  1
## 2 NA  2
## 3  3 NA
## 4  4 NA

Alternatively, here’s the magrittr pipeline version:

library(magrittr)
d <- data.frame(x = c(1,-9,3,4), y = c(1,2,-9,-9))
d %<>% set_NA_val_fun("x", -9) %>% set_NA_val_fun("y", -9)
d
##    x  y
## 1  1  1
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## 2 NA  2
## 3  3 NA
## 4  4 NA

Modifying Environments in Evaluations
The reason you can modify variables in macros is that you can modify 
environments. Actual values are immutable, but when you modify the data frame 
in the previous example, you are replacing the reference in the environment 
to the modified data. If other variables refer to the same data frame, they will 
still be referring to the original version. Even with macros, you cannot actually 
modify data, but you can modify environments, and because you can evaluate 
expressions in environments different from the current evaluating environment, 
you can make it appear as if you are modifying data in the calling environment.

You can see this by examining the evaluation environment explicitly when 
you evaluate an assignment. If you explicitly make an environment and evaluate 
an assignment in it, you see that it gets modified.

e <- list2env(list(x = 2, y = 3))
eval(quote(z <- x + y), e)
as.list(e)
## $z
## [1] 5
##
## $y
## [1] 3
##
## $x
## [1] 2

This environment has the global environment as its parent. Don’t try 
this with the empty environment as its parent. If you do, it won’t know the <- 
function. What you see here is that you modify e by setting the variable z.

You can also evaluate expressions in lists, so you can attempt the same here:

l <- list(x = 2, y = 3)
eval(quote(z <- x + y), l)
l
## $x
## [1] 2
##
## $y
## [1] 3
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Here you see that the list is not modified. It is only environments you can 
modify in lists, and while you can evaluate an assignment in a list using eval, 
you cannot actually modify the list.

Accessing Promises Using the pryr Package
As I mentioned, there is no mechanism in pure R to get access to the internals 
of promises, so if you use substitute to translate a function argument into its 
corresponding expression, then you lose information about which environment 
the expression should be evaluated in. You can, however, use the pryr package 
to examine promises. This package has the function promise_info that tells you 
both what the expression is and the environment it belongs to.

Consider this:

library(pryr)
f <- function(x, y) function(z = x + y) promise_info(z)
g <- f(2, 3)
g()
## $code
## x + y
##
## $env
## <environment: 0x7f8586232b78>
##
## $evaled
## [1] FALSE
##
## $value
## NULL
x <- 4; y <- 5
g(x + y)
## $code
## x + y
##
## $env
## <environment: R_GlobalEnv>
##
## $evaled
## [1] FALSE
##
## $value
## NULL
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For a promise you get the expression it corresponds to in the code field, the 
environment it belongs to in the env field, and whether it has been evaluated 
yet in the evaled field. If it has been evaluated, the corresponding value is in 
the value field. In the two different calls to g, you see that the code field is the 
same but the environment is different. In the first call, where you use the default 
values for parameter z, the environment is the f closure, and in the second, 
where you call g with an expression from the global environment, the promise 
environment is also the global environment.

You can see the difference between when a promise has been evaluated and 
before it is evaluated in the following example:

g <- function(x) {
  cat("=== Before evaluation =====\n")
  print(promise_info(x))
  force(x)
  cat("=== After evaluation ======\n")
  promise_info(x)
}
g(x + y)
## === Before evaluation =====
## $code
## x + y
##
## $env
## <environment: R_GlobalEnv>
##
## $evaled
## [1] FALSE
##
## $value
## NULL
##
## === After evaluation ======
## $code
## x + y
##
## $env
## NULL
##
## $evaled
## [1] TRUE
##
## $value
## [1] 9
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The code doesn’t change when you evaluate a promise, but the environment 
is removed. You do not need to hold a reference to an environment you no 
longer need, and if you are the only one holding on to this environment, you can 
free it for garbage collection by no longer holding on to it when you don’t need it 
any longer. The result of evaluating the promise is put in value, and evaled is set 
to TRUE.

You can use the promise information to modify an environment and still 
evaluate it in the right scope. You just need to get hold of the code, which you 
can get either by the expression

eval(substitute(
  substitute(code, list(y = quote(2 * y))),
  list(code = pi$code)))

or the expression

eval(substitute(
  substitute(expr, list(y = quote(2 * y)))))

where expr is the parameter that holds the promise, and pi is the result of calling 
promise_info(expr). Neither is particularly pretty, and you have to remember 
to construct the expressions inside out, but that is the way you can get an 
expression substituted in for a variable that holds it and then modify it. Of the 
two, the traditional approach—the second of the two—is probably the simplest.

In both cases, you are creating the expression

substitute(<expr>, list(y = quote(2 * y)))

where <expr> refers to the expression in the promise, and you then evaluate this 
expression to substitute y for quote(2 * y).

Evaluating the expression once you have modified it is almost trivial in 
comparison. You can just use eval(expr, pi$env).

f <- function(x, y) function(expr = x + y) {
  pi <- promise_info(expr)
  expr <- eval(substitute(
    substitute(expr, list(y = quote(2 * y)))))
  value <- eval(expr, pi$env)
  list(expr = expr, value = value)
}
g <- f(2, 2)
g()
## $expr

www.allitebooks.com

http://www.allitebooks.org
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## x + 2 * y
##
## $value
## [1] 6
x <- y <- 4
g(x + y)
## $expr
## x + 2 * y
##
## $value
## [1] 12
z <- 4
g(z)
## $expr
## z
##
## $value
## [1] 4

In the substitution, when you create expr, it is important that you replace y 
with quote(2 * y) and not simply 2 * y. If you did the latter, then y would be 
evaluated in the standard way and would refer to the y in the enclosing scope, 
which is the parameter given to the call to f that creates g. Of course, that could 
be what you wanted: substitute whatever y is in the input expression with the y 
you have in the enclosing scope. In that case, the code would simply look like this:

f <- function(x, y) function(expr = x + y) {
  pi <- promise_info(expr)
  expr <- eval(substitute(
    substitute(expr, list(y = 2 * y))))
  value <- eval(expr, pi$env)
  list(expr = expr, value = value)
}
g <- f(2, 2)
g()
## $expr
## x + 4
##
## $value
## [1] 6
x <- y <- 4
g(x + y)
## $expr
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## x + 4
##
## $value
## [1] 8
z <- 4
g(z)
## $expr
## z
##
## $value
## [1] 4

In both cases, you modify the expression in the promise—just in two 
different ways—and then you evaluate it in the promise scope. In the first case, 
y is taken from the promise scope if it appears in the modified expression; in the 
second case, y is replaced by the value you have in the enclosing scope.
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Afterword

You have now seen the various techniques used for manipulating the actual 
language constructs of R from within R programs. Manipulating the actual 
language, doing metaprogramming, gives you the tools to extend R in various 
ways. You can write functions for modifying other functions—as you did with 
the code for computing the derivative of a function—or you can write small 
embedded domain-specific languages for manipulating or querying data frames, 
as done in dplyr and ggplot2. You know how to do nonstandard evaluation, 
changing how expressions are evaluated so you can evaluate them in different 
scopes than what they would usually be evaluated in, which can often simplify 
how functions are used in pipelines; however, you should be careful with using 
such programming when writing programs since it can be hard to reason about 
expressions passed between functions.

You don’t want to overdo metaprogramming. Someone reading your code 
will, presumably, know how to read R code, so you shouldn’t break the person’s 
expectations for how the code will be evaluated. If you develop a domain-specific 
language and use metaprogramming for this, you are generally fine; someone 
who can read the expressions you implement there will know how they behave, 
but use metaprogramming with care. It is a powerful tool but also a very big gun 
to shoot yourself in the foot with if you are not careful.
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