
Metaprogramming
in R

Advanced Statistical Programming
for Data Science, Analysis and Finance
—
Thomas Mailund

www.allitebooks.com

http://www.allitebooks.org

Metaprogramming
in R

Advanced Statistical Programming
for Data Science, Analysis and

Finance

Thomas Mailund

www.allitebooks.com

http://www.allitebooks.org

Metaprogramming in R: Advanced Statistical Programming for Data Science,
Analysis and Finance

Thomas Mailund
Aarhus N, Denmark

ISBN-13 (pbk): 978-1-4842-2880-7 ISBN-13 (electronic): 978-1-4842-2881-4
DOI 10.1007/978-1-4842-2881-4

Library of Congress Control Number: 2017943347

Copyright © 2017 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms
or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in
this book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484228807. For more detailed information, please visit
www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484228807
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents at a Glance

About the Author ��� vii

About the Technical Reviewer �� ix

Introduction �� xi

 ■Chapter 1: Anatomy of a Function �� 1

 ■Chapter 2: Inside a Function Call �� 17

 ■Chapter 3: Expressions and Environments ����������������������������������� 35

 ■Chapter 4: Manipulating Expressions ��� 57

 ■Chapter 5: Working with Substitutions �� 77

Afterword ��� 99

Index �� 101

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author ��� vii

About the Technical Reviewer �� ix

Introduction �� xi

 ■Chapter 1: Anatomy of a Function �� 1

Manipulating Functions ��� 1

Formals ��� 1

Function Bodies �� 3

Function Environments ��� 6

Calling a Function �� 6

Modifying Functions �� 9

Constructing Functions ��� 13

 ■Chapter 2: Inside a Function Call �� 17

Getting the Components of the Current Function ���������������������������������� 17

Accessing Actual Function Parameters ��� 20

Accessing the Calling Scope ��� 28

 ■Chapter 3: Expressions and Environments ����������������������������������� 35

Expressions ��� 35

Chains of Linked Environments ��� 36

Environments and Function Calls �� 44

Manipulating Environments��� 48

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vi

Explicitly Creating Environments ��� 51

Environments and Expression Evaluation ��� 54

 ■Chapter 4: Manipulating Expressions ��� 57

The Basics of Expressions ��� 58

Accessing and Manipulating Control Structures �� 58

Accessing and Manipulating Function Calls ��� 60

Expression Simplification �� 62

Automatic Differentiation �� 69

 ■Chapter 5: Working with Substitutions �� 77

A Little More on Quotes ��� 77

Parsing and Deparsing �� 78

Substitution ��� 79

Substituting Expressions Held in Variables �� 81

Substituting Function Arguments ��� 83

Nonstandard Evaluation �� 85

Nonstandard Evaluation from Inside Functions �� 87

Writing Macros with NSE �� 88

Modifying Environments in Evaluations �� 92

Accessing Promises Using the pryr Package �� 93

Afterword ��� 99

Index �� 101

www.allitebooks.com

http://www.allitebooks.org

vii

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus
University, Denmark. His background is in math and computer science, but for
the last decade his main focus has been on genetics and evolutionary studies,
particularly comparative genomics, speciation, and gene flow between emerging
species.

www.allitebooks.com

http://www.allitebooks.org

ix

About the Technical
Reviewer

Massimo Nardone has more than 22 years of
experience in security, web/mobile development,
the cloud, and IT architecture. His true IT
passions are security and Android.

He has been programming and teaching how
to program with Android, Perl, PHP, Java, VB,
Python, C/C++, and MySQL for more than 20 years.

He holds a master of science degree in
computing science from the University of Salerno,
Italy.

He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor,

and senior lead IT security/cloud/SCADA architect for many years.
He currently works as a chief information security officer (CISO) for

Cargotec Oyj.
He was a visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University), and he
holds four international patents (PKI, SIP, SAML, and proxy areas).

Massimo has reviewed more than 40 IT books for different publishing
companies, and he is the coauthor of Pro Android Games (Apress, 2015).

www.allitebooks.com

http://www.allitebooks.org

xi

Introduction

Welcome to Metaprogramming in R. I am writing this book, and my books on
R programming in general, to help make more advanced teaching material
available beyond the typical introductory level most textbooks on R have. This
book covers some of the more advanced techniques used in R programming
such as fully exploiting functional programming, writing metaprograms (code
for actually manipulating the language structures), and writing domain-specific
languages to embed in R.

This book introduces metaprogramming. Metaprogramming is when you
write programs that manipulate other programs; in other words, you treat code
as data that you can generate, analyze, or modify. R is a very high-level language
where all operations are functions, and all functions are data that you can
manipulate.

There is great flexibility in how function calls and expressions are evaluated.
The lazy evaluation semantics of R mean that arguments to functions are passed
as unevaluated expressions, and these expressions can be modified before they
are evaluated, or they can be evaluated in other environments than the context
where a function is defined. This can be exploited to create small domain-
specific languages and is a fundamental component in the “tidy verse” in
packages such as dplyr or ggplot2 where expressions are evaluated in contexts
defined by data frames.

There is some danger in modifying how the language evaluates function
calls and expressions, of course. It makes it harder to reason about code. On
the other hand, adding small embedded languages for dealing with everyday
programming tasks adds expressiveness to the language that far outweighs the
risks of programming confusion, as long as such metaprogramming is used
sparingly and in well-understood (and well-documented) frameworks.

In this book, you will learn how to manipulate functions and expressions
and how to evaluate expressions in nonstandard ways. Prerequisites for reading
this book are familiarity with functional programming, at least familiarity with
higher-order functions, that is, functions that take other functions as an input or
that return functions.

www.allitebooks.com

http://www.allitebooks.org

1© Thomas Mailund 2017
T. Mailund, Metaprogramming in R, DOI 10.1007/978-1-4842-2881-4_1

CHAPTER 1

Anatomy of a Function

Everything you do in R involves defining functions or calling functions. You cannot
do any action without evaluating some function or other. Even assigning values to
variables or subscripting vectors or lists involves evaluating functions. But functions
are more than just recipes for how to perform different actions; they are also data
objects in themselves, and there are ways of probing and modifying them.

Manipulating Functions
If you define a simple function like the following, you can examine the
components it consists of:

f <- function(x) x

There are three parts to a function: its formal parameters, its body, and the
environment it is defined in. The functions formals, body, and environment give
you these:

formals(f)
$x
body(f)
x
environment(f)
<environment: R_GlobalEnv>

Formals
The formal parameters are given as a list where element names are the
parameter names and values are default parameters.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ anatomy of a funCtion

2

g <- function(x = 1, y = 2, z = 3) x + y + z
parameters <- formals(g)
for (param in names(parameters)) {
 cat(param, "=>", parameters[[param]], "\n")
}
x => 1
y => 2
z => 3

Strictly speaking, it is a so-called pairlist, but that is an implementation
detail that has no bearing on how you treat it. You can treat it as if it is a list.

g <- function(x = 1, y = 2, z = 3) x + y + z
parameters <- formals(g)
for (param in names(parameters)) {
 cat(param, " => ", '"', parameters[[param]], '"', "\n", sep = "")
}
x => "1"
y => "2"
z => "3"

For variables in this list that do not have default values, the list represents
the values as the empty name. This is a special symbol that you cannot assign to,
so it cannot be confused with a real value. You cannot use the missing function
to check for a missing value in a formals function (that function is useful only
inside a function call, and in any case there is a difference between a missing
parameter and one that doesn’t have a default value), but you can always check
whether the value is the empty symbol.

g <- function(x, y, z = 3) x + y + z
parameters <- formals(g)
for (param in names(parameters)) {
 cat(param, " => ", '"', parameters[[param]], '"',
 " (", class(parameters[[param]]), ")\n", sep = "")
}
x => "" (name)
y => "" (name)
z => "3" (numeric)

Primitive functions (those that call into the runtime system, such as `+`) do
not have formals. Only functions that are defined in R.

formals(`+`)
NULL

Chapter 1 ■ anatomy of a funCtion

3

Function Bodies
The function body is an expression. For f it is a simple expression.

body(f)
x

But even multistatement function bodies are expressions. They just evaluate
to the result of the last expression in the sequence.

g <- function(x) {
 y <- 2*x
 z <- x**2
 x + y + z
}
body(g)
{
y <- 2 * x
z <- x^2
x + y + z
}

When a function is called, R sets up an environment for it to evaluate this
expression in; this environment is called the evaluation environment for the
function call. The evaluation environment is first populated with values for
the function’s formal parameters, either provided in the function call or given
as default parameters, and then the body executes inside this environment.
Assignments will modify this local environment unless you use the <<- operator,
and the result of the function is the last expression evaluated in the body. This is
either the last expression in a sequence or an expression explicitly given to the
return function.

When you just have the body of a function as an expression, you don’t get
this function call semantics, but you can still try to evaluate the expression.

eval(body(f))
Error in eval(expr, envir, enclos): object 'x' not found

It fails because you do not have a variable x defined anywhere. If you had a
global x, the evaluation would use that and not any function parameter because
the expression here doesn’t know it is part of a function. If we call the function, the
expression will know about the function context, of course, but not when we simply
evaluate the function body like this. You can give it a value for x, though, like this:

eval(body(f), list(x = 2))
[1] 2

Chapter 1 ■ anatomy of a funCtion

4

The eval function evaluates an expression and uses the second argument
to look up parameters. You can give it an environment, and the expression will
then be evaluated in it, or you can use a list. Chapter 3 covers how to work with
expressions and how to evaluate them; for now all you have to know is that
you can evaluate an expression using eval if the variables in the expression
are either found in the scope where you call eval or provided in the second
argument to eval.

You can also set x as a default parameter and use that when you evaluate the
expression.

f <- function(x = 2) x
formals(f)
$x
[1] 2
eval(body(f), formals(f))
[1] 2

Things get a little more complicated if default parameters refer to each other.
This has to do with the way the evaluation environment is set up and not so
much with how expressions are evaluated, but consider the following example
where one default parameter refers to another:

f <- function(x = y, y = 5) x + y

Both parameters have default values, so you can call f without any
arguments.

f()
[1] 10

You cannot, however, evaluate it just from the formal arguments without
providing values.

eval(body(f), formals(f))
Error in x + y: non-numeric argument to binary operator

In formals(f), x points to the symbol y, and y points to the numeric 5.
But y is not used in the expression, and if you simply look up x, you just get the
symbol y, and you don’t evaluate it further to figure out what y is. Therefore,
you get an error.

http://dx.doi.org/10.1007/978-1-4842-2881-4_3

Chapter 1 ■ anatomy of a funCtion

5

Formal arguments are not evaluated this way when you call a function. They
are transformed into so-called promises, which are unevaluated expressions
with an associated scope. This is how the formal language definition puts it:

When a function is called, each formal argument is
assigned a promise in the local environment of the call
with the expression slot containing the actual argument
(if it exists) and the environment slot containing the
environment of the caller. If no actual argument for
a formal argument is given in the call and there is
a default expression, it is similarly assigned to the
expression slot of the formal argument, but with the
environment set to the local environment.

This means that in the evaluating environment, R first assigns all variables
to these “promises.” The promises are placeholders for values but represented as
expressions you haven’t evaluated yet. As soon as you access them, though, they
will be evaluated (and R will remember the value). For default parameters, the
promises will be evaluated in the evaluating environment, and for parameters
passed to the function in the function call, the promises will be evaluated in the
calling scope.

Since all the promises are unevaluated expressions, you don’t have to worry
about the order in which you assign the variables. As long as the variables exist
when you evaluate a promise, you are fine, and as long as there are no circular
dependencies between the expressions, you can figure out all the values when
you need them.

Don’t make circular dependencies. Don’t do something like this:

g <- function(x = 2*y, y = x/2) x + y

You can try to make a similar setup for f where you build an environment of
its formals as promises. You can use the function delayedAssign to assign values
to promises like this:

fenv <- new.env()
parameters <- formals(f)
for (param in names(parameters)) {
 delayedAssign(param, parameters[[param]], fenv, fenv)
}
eval(body(f), fenv)
[1] 10

Chapter 1 ■ anatomy of a funCtion

6

Here you assign the expression y to variable x and the value 5 to variable y.
Primitive values like a numeric vector are not handled as unevaluated
expressions. They could be, but there is no point. So before you evaluate the
body of f, the environment has y pointing to 5 and x pointing to the expression y,
wrapped as a promise that says that the expression should be evaluated in fend
when you need to know the value of y.

Function Environments
The environment of a function is the simplest of its components. It is just
the environment where the function was defined. This environment is used
to capture the enclosing scope and is what makes closures possible in R.
The evaluating environment will be set up with the function’s environment
when it is created such that variables not found in the local environment,
consisting of local variables and formal parameters, will be searched for in
the enclosing scope.

Calling a Function
Before continuing, it might be worthwhile to see how these components fit
together when a function is called. I explained this in some detail in Functional
Programming in R, but it is essential to understand how expressions are
evaluated. When you start to fiddle around with nonstandard evaluation, it
becomes even more important, so it bears repeating.

When expressions are evaluated, they are evaluated in an environment.
Environments are chained in a tree structure. Each environment has a parent,
and when R needs to look up a variable, it first looks in the current environment
to see whether that environment holds the variable. If it doesn’t, R will look in
the parent. If it doesn’t find it there either, it will look in the grandparent, and
it will continue going up the tree until it either finds the variable or hits the
global environment and sees that it isn’t there, at which point it will raise an
error. You call the variables that an expression can find by searching this way
its scope. Since the search always picks the first place it finds a given variable,
local variables overshadow global variables, and while several environments on
this parent-chain might contain the same variable name, only the innermost
environment, the first you find, will be used.

When a function, f, is created, it gets associated with environment(f). This
environment is the environment where f is defined. When f is invoked, R creates
an evaluation environment for f; let’s call it evalenv. The parent of evalenv is
set to environment(f). Since environment(f) is the environment where f is
defined, having it as the parent of the evaluation environment means that the
body of f can see its enclosing scope if f is a closure.

Chapter 1 ■ anatomy of a funCtion

7

After the evaluation environment is created, the formals of f are added to it
as promises. As you saw from the language definition earlier, there is a difference
between default parameters and parameters given to the function where it is
called in how these promises are set up. Default parameters will be promises
that should be evaluated in the evaluation scope, evalenv. This means they
can refer to other local variables or formal parameters. Since these will be put
in evalenv and since evalenv’s parent is environment(f), these promises can
also refer to variables in the scope where f was defined. Expressions given to f
where it is called, however, will be stored as promises that should be called in
the calling environment. Let’s call that callenv. If they were evaluated in the
evalenv, they would not be able to refer to variables in the scope where you call
f; they would be able to refer only to local variables or variables in the scope
where f was defined.

You can see it all in action in the following example:

enclosing <- function() {
 z <- 2
 function(x, y = x) {
 x + y + z
 }
}

f <- enclosing()

calling <- function() {
 w <- 5
 f(x = 2 * w)
}

calling()
[1] 22

You start out in the global environment where you define enclosing to be
a function. When you call enclosing, you create an evaluation environment
in which you store the variable z and then return a function that you store in
the global environment as f. Since this function was defined in the evaluation
environment of enclosing, this environment is the environment of f.

Then you create calling, store that in the global environment, and call
it. This creates, once again, an evaluation environment. In this, you store the
variable w and then call f. You don’t have f in the evaluation environment, but
because the parent of the evaluation environment is the global environment, you
can find it. When you call f, you give it the expression 2 * w as parameter x.

Chapter 1 ■ anatomy of a funCtion

8

Inside the call to f, you have another evaluation environment. Its parent is
the closure you got from enclosing. Here you need to evaluate f’s body: x + y + z.
However, before that, the evaluation environment needs to be set up. Since x
and y are formal parameters, they will be stored in the evaluation environment
as promises. You provided x as a parameter when you called f, so this promise
must be evaluated in the calling environment (the environment inside
calling), while y has the default value, so it must be evaluated in the evaluation
environment. In this environment, it can see x and y and through the parent
environment z. You evaluate x, which is the expression 2 * w in the calling
environment, where w is known, and you evaluate y in the local environment,
where x is known. So, you can get the value of those two variables and then get z
from the enclosing environment.

You can try to emulate all this using explicit environments and
delayedAssign to store promises. You need three environments since you don’t
need to simulate the global environment for this. You need the environment
where the f function was defined; you call it defenv. Then you need the
evaluating environment for the call to f, and you need the environment in which
f is called.

defenv <- new.env()
evalenv <- new.env(parent = defenv)
callenv <- new.env()

Here, defenv and calling have the global environment as their parent, but
you don’t need to worry about that. The evaluating environment has defend as
its parent.

In the definition environment, you save the value of z.

defenv$z <- 2

In the calling environment, you save the value of w.

callenv$w <- 5

In the evaluation environment, you set up the promises. The delayedAssign
function takes two environments as arguments. The first is the environment
where the promise should be evaluated, and the second is where it should be
stored. For x you want the expression to be evaluated in the calling environment,
and for y you want it to be evaluated in the evaluation environment. Both
variables should be stored in the evaluation environment.

delayedAssign("x", 2 * w, callenv, evalenv)
delayedAssign("y", x, evalenv, evalenv)

Chapter 1 ■ anatomy of a funCtion

9

In the evalenv you can now evaluate f.

f <- function(x, y = x) x + y + z
eval(body(f), evalenv)
[1] 22

There is surprisingly much going on behind a function call, but it all follows
these rules for how arguments are passed along as promises.

Modifying Functions
You can do more than just inspect functions. The three functions for inspecting
also come in assignment versions, and you can use those to change the three
components of a function. If you go back to the simple definition of f

f <- function(x) x
f
function(x) x

you can try modifying its formal arguments by setting a default value for x

formals(f) <- list(x = 3)
f
function (x = 3)
x

where, with a default value for x, you can evaluate its body in the
environment of its formals.

eval(body(f), formals(f))
[1] 3

I will stress again, though, that evaluating a function is not quite as simple
as evaluating its body in the context of its formals. It doesn’t matter that you
change a function’s formal arguments outside of its definition when the function
is invoked. The formal arguments will still be evaluated in the context where the
function was defined.

If you define a closure, you can see this in action.

nested <- function() {
 y <- 5
 function(x) x
}
f <- nested()

Chapter 1 ■ anatomy of a funCtion

10

Since f was defined inside the evaluating environment of nested, its
environment(f) will be that environment. When you call it, it will, therefore, be
able to see the local variable y from nested. It doesn’t refer to that, but you can
change this by modifying its formals.

formals(f) <- list(x = quote(y))
f
function (x = y)
x
<environment: 0x7fc0f8c85908>

Here, you have to use the function quote to make y a name. If you didn’t, you
would get an error, or you would get a reference to a y in the global environment. In
function definitions, default arguments are automatically quoted to turn them into
expressions, but when you modify formals, you have to do this explicitly.

If you now call f without arguments, x will take its default value as specified
by formals(f). That is, it will refer to y. Since this is a default argument, it will
be turned into a promise that will be evaluated in f’s evaluation environment.
There is no local variable named y, so R will look in environment(f) for y and
find it inside the nested environment.

f()
[1] 5

Just because you modified formals(f) in the global environment, you do
not change in which environment R evaluates promises for default parameters.
If you have a global y, the y in f’s formals still refer to the one in nested.

y <- 2
f()
[1] 5

Of course, if you provide y as a parameter when calling f, things change.
Now it will be a promise that should be evaluated in the calling environment, so
in that case, you get a reference to the global y.

f(x = y)
[1] 2

You can modify the body of f as well. Instead of having its body refer to x,
you can, for example, make it return the constant 6.

Chapter 1 ■ anatomy of a funCtion

11

body(f) <- 6
f
function (x = y)
6
<environment: 0x7fc0f8c85908>

Now it evaluates that constant, six, when we call it, regardless of what x is.

f()
[1] 6
f(x = 12)
[1] 6

You can also try making f’s body more complex and make it an actual
expression.

body(f) <- 2 * y
f()
[1] 4

Here, however, you don’t get quite what you want. You don’t want the body
of a function to be evaluated before you call the function, but when you assign
an expression like this, you do evaluate it before you assign. There is a limit to
how far lazy evaluation goes. Since y was 2, you are in effect setting the body of
f to 4. Changing y afterward doesn’t change this.

y <- 3
f()
[1] 4

To get an unevaluated body, you must, again, use quote.

body(f) <- quote(2 * y)
f
function (x = y)
2 * y
<environment: 0x7fc0f8c85908>

Now, however, you get back to the semantics for function calls, which means
that the body is evaluated in an evaluation environment whose parent is the
environment inside nested, so y refers to the local and not the global parameter.

f()
[1] 10
y <- 2
f()
[1] 10

Chapter 1 ■ anatomy of a funCtion

12

You can change environment(f) if you want to make f use the global y.

environment(f) <- globalenv()
f()
[1] 4
y <- 3
f()
[1] 6

If you do this, though, it will no longer know about the environment inside
nested. It takes a lot of environment hacking if you want to pick and choose
which environments a function finds its variables in, and if that is what you
want, you are probably better off rewriting the function to get access to variables
in other ways.

If you want to set the formals of a function to missing values (that is, you
want them to be parameters without default values), then you need to use list
to create the arguments.

If you define a function f like this, it takes one parameter, x, and adds it to a
global parameter y:

f <- function(x) x + y

If instead you want y to be a parameter but not give it a default value, you
could try something like this:

formals(f) <- list(x =, y =)

This will not work, however, because list doesn’t like empty values.
Instead, you can use alist. This function creates a pair-list, which is a data
structure used internally in R for formal arguments. It is the only thing this data
structure is used for, but if you start hacking around with modifying parameters
of a function, it is the one to use.

formals(f) <- alist(x =, y =)

Using alist, expressions are also automatically quoted. In the earlier
example where you wanted the parameter x to default to y, you needed to use
quote(y) to keep y as a promise to be evaluated in environment(f) rather than
the calling scope. With alist, you do not have to quote y.

Chapter 1 ■ anatomy of a funCtion

13

nested <- function() {
 y <- 5
 function(x) x
}
f <- nested()
formals(f) <- alist(x = y)
f
function (x = y)
x
<environment: 0x7fc0fc408720>
f()
[1] 5

Constructing Functions
You can also construct new functions by piecing together their components. The
function to use for this is as.function. It takes an alist as input and interprets
the last element in it as the new function’s body and the rest as the formal
arguments.

f <- as.function(alist(x =, y = 2, x + y))
f
function (x, y = 2)
x + y
f(2)
[1] 4

Don’t try to use a list here; it doesn’t do what you want.

f <- as.function(list(x = 2, y = 2, x + y))

If you give as.function a list, it interprets that as just an expression that
then becomes the body of the new function. Here, if you have global definitions
of x and y so you can evaluate x + y, you would get a body that is c(2, 2, x+y)
where x+y refers to the value, not the expression, of the sum of global variables x
and y.

The environment of the new function is by default the environment in which
you call as.function. So to make a closure, you can just call as.function inside
another function.

Chapter 1 ■ anatomy of a funCtion

14

nested <- function(z) {
 as.function(alist(x =, y = z, x + y))
}
(g <- nested(3))
function (x, y = z)
x + y
<environment: 0x7fc0fc14a3f8>
(h <- nested(4))
function (x, y = z)
x + y
<environment: 0x7fc0fc1bb778>

Here you call as.function inside nested, so the environment of the
functions created here will know about the z parameter of nested and be able to
use it in the default value for y.

Don’t try this:

nested <- function(y) {
 as.function(alist(x =, y = y, x + y))
}

Remember that expressions that are default parameters are lazily evaluated
inside the body of the function you define. Here, you say that y should evaluate
to y, which is a circular dependency. It has nothing to do with as.function. You
have the same problem in this definition:

nested <- function(y) {
 function(x, y = y) x + y
}

If you want something like that, where you make a function with a given
default y and you absolutely want the created function to call that parameter y,
you need to evaluate the expression in the nesting scope and refer to it under a
different name to avoid the nesting function’s argument to overshadow it.

nested <- function(y) {
 z <- y
 function(x, y = z) x + y
}
nested(2)(2)
[1] 4

Chapter 1 ■ anatomy of a funCtion

15

You can give an environment to as.function to specify the definition scope
of the new function if you do not want it to be the current environment. In the
following example, you have two functions for constructing closures. The first
creates a function that can see the enclosing z, while the other, instead, uses the
global environment and is thus no closure at all, so the argument z is not visible.
Instead, the global z is.

nested <- function(z) {
 as.function(alist(x =, y = z, x + y))
}
nested2 <- function(z) {
 as.function(alist(x =, y = z, x + y),
 envir = globalenv())
}

If you evaluate functions created with these two functions, the nested one
will add x to the z value you provide in the call to nested, while the nested2 one
will ignore its input and look for z in the global scope.

z <- -1
nested(3)(1)
[1] 4
nested2(3)(1)
[1] 0

17© Thomas Mailund 2017
T. Mailund, Metaprogramming in R, DOI 10.1007/978-1-4842-2881-4_2

CHAPTER 2

Inside a Function Call

When you execute the body of a function, as you have seen, you do this in the
evaluation environment. This evaluation environment is linked through its
parent to the environment where the function was defined. It has its arguments
stored as promises that will be evaluated either in the environment where the
function was defined (for default parameters) or in the environment where the
function was called (for parameters provided to the function there).
In the previous chapter, you saw how you could get hold of the formal
parameters of a function, the body of the function, and the environment in which
the function was defined. In this chapter, you will examine how you can access
these, and more, from inside a function while the function is being evaluated.

Getting the Components of the Current Function
In the previous chapter, you could get the formals, body, and environment of a
function you had a reference to. Inside a function body, you do not have such a
reference. Functions do not have names as such; you give functions names when
you assign them to variables, but that is a property of the environment where
you have the name, not of the function itself. Functions you use as closures are
often never assigned to any name at all. So, how do you get hold of the current
function to access its components?

To get hold of the current function, you can use the function sys.function.
This function gives you the definition of the current function, which is what you
need, not its name.

You can define this function to see how sys.function works.

f <- function(x = 5) {
 y <- 2 * x
 sys.function()
}

Chapter 2 ■ InsIde a FunCtIon Call

18

If you just write the function name on the prompt, you get the function
definition.

f
function(x = 5) {
y <- 2 * x
sys.function()
}

Since the function returns the definition of itself, you get the same when you
evaluate it.

f()
function(x = 5) {
y <- 2 * x
sys.function()
}

When you call any of formals, body, or environment, you don’t use a
function name as the first parameter; you give each of them a reference to a
function, and they get the function definition from that.

You don’t need to explicitly call sys.function for formals and body, though,
because these two functions already use a call to sys.function for the default
value for the function parameter. If you want the components of the current
function, you can simply leave out the function parameter.

Thus, to get the formal parameter of a function, inside the function body,
you can just use formals without any parameters.

f <- function(x, y = 2 * x) formals()
params <- f(1, 2)
class(params)
[1] "pairlist"
params
$x
##
##
$y
2 * x

Chapter 2 ■ InsIde a FunCtIon Call

19

The same goes for the body of the current function.

f <- function(x, y = 2 * x) {
 z <- x - y
 body()
}
f(2)
{
z <- x - y
body()
}

The environment function works slightly differently. If you call it without
parameters, you get the current (evaluating) environment.

f <- function() {
 x <- 1
 y <- 2
 z <- 3
 environment()
}
env <- f()
as.list(env)
$z
[1] 3
##
$y
[1] 2
##
$x
[1] 1

This is not what you would get with environment(f).

environment(f)
<environment: R_GlobalEnv>

The f function is defined in the global environment, and environment(f)
gives you the environment in which f is defined. If you call environment()
inside f, you get the evaluating environment. The local variables x, y, and
z can be found in the evaluating environment, but they are not part of
environment(f)—or if they are, they are different, global parameters.

Chapter 2 ■ InsIde a FunCtIon Call

20

To get the equivalent of environment(f) from inside f, you must get
hold of the parent of the evaluating environment. You can get the parent of
an environment using the function parent.env, so you can get the definition
environment like this:

f <- function() {
 x <- 1
 y <- 2
 z <- 3
 parent.env(environment())
}
f()
<environment: R_GlobalEnv>

When you have hold of a function definition, as in the previous chapter, you
do not have an evaluating environment. That environment exists only when the
function is called. A function you have defined, but not invoked, has the three
components covered in the previous chapter, but there are more components
to a function that is actively executed. There is a difference between a function
definition, a description of what a function should do when it is called, and a
function instantiation (the actual running code). One such difference is the
evaluating environment. Another is that a function instantiation has actual
parameters, while a function definition has only formal parameters. The latter
are part of the function definition; the former are provided by the caller of the
function.

Accessing Actual Function Parameters
You can see the difference between formal and actual parameters in the
following example:

f <- function(x = 1:3) {
 print(formals()$x)
 x
}
f(x = 4:6)
1:3
[1] 4 5 6

The formals give you the arguments as you gave them in the function
definition, where x is set to the expression 1:3. It is a promise, to be evaluated
in the defining scope when you access x in the cases where no parameters were
provided in the function call. So, in the formals list, it is not equal to the values

Chapter 2 ■ InsIde a FunCtIon Call

21

1, 2, and 3; instead, it is the expression 1:3. In the actual call, though, you have
provided the x parameter, so what this function call returns is 4:6. Because you
return it as the result of an expression, this promise is evaluated. Therefore, f
returns 4, 5, and 6.

If you actually want the arguments passed to the current function in the
form of the promises they are really represented as, you need to get hold of them
without evaluating them. If you take an argument and use it as an expression,
the promise will be evaluated. This goes for both default parameters and
parameters provided in the function call; they are all promises that will be
evaluated in different environments, but they are all promises nonetheless.

One way to get the expression that the promises represent is to use the
function substitute. This function, which you will get intimately familiar
with in Chapter 4, substitutes into an expression the values that variables refer
to. This means that variables are replaced by the verbatim expressions; the
expressions are not evaluated before they are substituted into an expression.

This small function illustrates how you can get the expression passed to a
function:

f <- function(x = 1:3) substitute(x)
f()
1:3

Here you see that calling f with default parameters gives you the expression
1:3 back. This is similar to the formals you saw earlier. You substitute x with the
expression it has in its formal arguments; you do not evaluate the expression.
You can, of course, once you have the expression

eval(f())
[1] 1 2 3

but it isn’t done when you call substitute.

f(5 * x)
5 * x
f(foo + bar)
foo + bar

Because the substituted expression is not evaluated, you don’t even need to
call the function with an expression that can be evaluated.

f(5 + "string")
5 + "string"

http://dx.doi.org/10.1007/978-1-4842-2881-4_4

Chapter 2 ■ InsIde a FunCtIon Call

22

The substitution is verbatim. If you set up default parameters that depend
on others, you just get them substituted with variable names; you do not get the
value assigned to other variables.

f <- function(x = 1:3, y = x) substitute(x + y)
f()
1:3 + x
f(x = 4:6)
4:6 + x
f(y = 5 * x)
1:3 + 5 * x

In this example, you also see that you can call substitute with an
expression instead of a single variable. In addition, you see that x gets replaced
with the argument given to x, whether default or actual, and y gets replaced with
x as the default parameter—not the values you provide for x in the function call
and with the actual argument when you provide it.

If you try to evaluate the expression you get back from the call to f, you will
not be evaluating it in the evaluation environment of f. That environment is not
preserved in the substitution.

x <- 5
f(x = 5 * x)
5 * x + x
eval(f(x = 5 * x))
[1] 30

The expression you evaluate is 5 * x + x, not 5 * x + 5 * x as it would
be if you substituted the value of x into y (as you would if you evaluated the
expression inside the function).

g <- function(x = 1:3, y = x) x + y
g(x = 5 * x)
[1] 50

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ InsIde a FunCtIon Call

23

A common use for substitute is to get the expression provided to a function
as a string. This is used in the plot function, for instance, to set the default labels
of a plot to the expressions that plot is called with. Here, substitute is used in
combination with the deparse function. This function takes an expression and
translates it into its text representation.

f <- function(x) {
 cat(deparse(substitute(x)), "==", x)
}
f(2 + x)
2 + x == 7
f(1:4)
1:4 == 1 2 3 4

Here, you use the deparse(substitute(x)) pattern to get a textual
representation of the argument f was called with, and you use the plain x to get
it evaluated.

The actual type of object returned by substitute depends on the expression
you give the function and what the expression’s variables refer to. If the
expression, after variables have been substituted, is a simple type, that is what
substitute returns.

f <- function(x) substitute(x)
f(5)
[1] 5
class(f(5))
[1] "numeric"

If you give substitute a local variable you have assigned to, you also get a
value back. This is not because substitute does anything special here. Local
variables like these are not promises; you evaluated an expression when you
assigned to one.

f <- function(x) {
 y <- 2 * x
 substitute(y)
}
f(5)
[1] 10
class(f(5))
[1] "numeric"

Chapter 2 ■ InsIde a FunCtIon Call

24

This behavior works only inside functions, though. If we call substitute in
the global environment, it considers variables as names and does not substitute
them for their values.

x <- 5
class(substitute(5))
[1] "numeric"
class(substitute(x))
[1] "name"

It will substitute variables for values if we give a function a simple type as an
argument.

f <- function(x, y = x) substitute(y)
f(5)
x
class(f(5))
[1] "name"
f(5, 5)
[1] 5
class(f(5, 5))
[1] "numeric"

If the expression that substitute evaluates to is a single variable, the type
it returns is name, as you just saw. For anything more complicated, substitute
will return a call object. Even if it is an expression that could easily be evaluated
to a simple value, substitute does not evaluate expressions; it just substitutes
variables.

f <- function(x, y) substitute(x + y)
f(5, 5)
5 + 5
class(f(5, 5))
[1] "call"

A call object refers to an unevaluated function call. In this case, you have
the expression 5 + 5, which is the function call `+`(5, 5).

Chapter 2 ■ InsIde a FunCtIon Call

25

Such call objects can also be manipulated. You can translate a call into a
list to get its components, and you can evaluate it to invoke the actual function
call.

my_call <- f(5, 5)
as.list(my_call)
[[1]]
`+`
##
[[2]]
[1] 5
##
[[3]]
[1] 5
eval(my_call)
[1] 10

Since substitute doesn’t evaluate a call, you can create function call
objects with variables you can later evaluate in different environments.

rm(x) ; rm(y)
my_call <- f(x, y)
as.list(my_call)
[[1]]
`+`
##
[[2]]
x
##
[[3]]
y

Here, you have created the call x + y but removed the global variables x and
y, so you cannot evaluate the call.

eval(my_call)
Error in eval(expr, envir, enclos): object 'x' not found

You can, however, provide the variables when you evaluate the call.

eval(my_call, list(x = 5, y = x))

Chapter 2 ■ InsIde a FunCtIon Call

26

Or, you can set global variables and evaluate the call in the global
environment.

x <- 5; y <- 2
eval(my_call)
[1] 7

You can treat a call as a list and modify it. The first element in a call is the
function you will call, and you can replace it like this:

(my_call <- f(5, 5))
5 + 5
my_call[[1]] <- `-`
eval(my_call)
[1] 0

The remaining elements in the call are the arguments to the function call,
and you can modify these as well:

my_call[[2]] <- 10
eval(my_call)
[1] 5

You can also create call objects manually using the call function. The
first argument to call is the name of the function to call, and any additional
arguments are passed on to this function when the call object is evaluated.

(my_call <- call("+", 2, 2))
2 + 2
eval(my_call)
[1] 4

Unlike substitute inside a function, however, the arguments to call are
evaluated when the call object is constructed. These are not lazy-evaluated.

(my_call <- call("+", x, y))
5 + 2
(my_call <- call("+", x - y, x + y))
3 + 7

Chapter 2 ■ InsIde a FunCtIon Call

27

From inside a function, you can get the call used to invoke it using the
match.call function.

f <- function(x, y, z) {
 match.call()
}
(my_call <- f(2, 4, sin(2 + 4)))
f(x = 2, y = 4, z = sin(2 + 4))
as.list(my_call)
[[1]]
f
##
$x
[1] 2
##
$y
[1] 4
##
$z
sin(2 + 4)

From the first element in this call, you can get the name of the function as
it was called. Remember that the function itself doesn’t have a name, but in
the call to the function you have a reference to it, and you can get hold of that
reference through the match.call function.

g <- f
(my_call <- g(2, 4, sin(2 + 4)))
g(x = 2, y = 4, z = sin(2 + 4))
my_call[[1]]
g

This function is often used to remember a function call in statistical models,
where the call to the model constructor is saved together with the fitted model.

Chapter 2 ■ InsIde a FunCtIon Call

28

Accessing the Calling Scope
Inside a function, expressions are evaluated in the scope defined by the
evaluating environment and its parent environment (which is the environment
where the function was defined), except for promises provided in the function
call, which are evaluated in the calling scope. If you want direct access to the
calling environment, inside a function, you can get hold of it using the function
parent.frame.1

You can see this in action in this function:

nested <- function(x) {
 function(local) {
 if (local) x
 else get("x", parent.frame())
 }
}

You have a function, nested, whose local environment knows the value of
the parameter x. Inside it, you create and return a function that, depending on
its argument, either returns the value of the argument to nested or looks for x in
the scope where the function is called.

f <- nested(2)
f(TRUE)
[1] 2
x <- 1
f(FALSE)
[1] 1

In the first call to f, you get the local value of x, the number 2. In the second
call to f, you bypass the local scope and instead find x in the calling scope, which
in this case is the global environment, where you find that x has the value 1.

1This is an unfortunate name since parent.frame has nothing to do with the parent
environment, which you get using the parent.env function. The “frame” refers to
environments on the call stack, often called stack frames, while the parent environment
refers to the parents in environments.

Chapter 2 ■ InsIde a FunCtIon Call

29

In a slightly more complicated version, you can try evaluating an expression
either in the local evaluating environment or in the calling scope.

nested <- function(x) {
 y <- 2
 function(local) {
 z <- 2
 expr <- expression(x + y + z)
 if (local) eval(expr)
 else eval(expr, envir = parent.frame())
 }
}

The logic is the same as the previous function, except in this function you
define an expression and use eval to evaluate it either in the local scope or
in the calling scope. You need to create the expression using the expression
function; if you did not, the expression would be evaluated (in the local scope)
before eval gets to it. As the function is defined, you can explicitly choose which
environment to use when you evaluate the expression.

f <- nested(2)
x <- y <- z <- 1
f(TRUE)
[1] 6
f(FALSE)
[1] 3

Like the previous example, you get a bit more inventive with what you can
do with scopes, variables, and expressions. You want to write a function that lets
you assign several variables at once from an expression, such as a function call,
that returns a sequence of values. Rather than having to write

x <- 1
y <- 2
z <- 3

we want to be able to write the following and get the same effect:

bind(x, y, z) <- 1:3

Chapter 2 ■ InsIde a FunCtIon Call

30

You can’t quite get there because of how R deals with replacement functions
(as it would interpret this expression to be), but you can modify the assignment
operator to your infix function `%<-%` and get the following:

bind(x, y, z) %<-% 1:3

It’s maybe not the prettiest syntax, but it’s good enough as an example. You
can, however, get even more ambitious and have this bind function assign to
variables based on expressions. So, for example, the following assigns 2 to x, 4 to
y, and 6 to z:

bind(x, y = 2 * x, z = 3 * x) %<-% 2

The first because it is a positional parameter, and the other two because you
give them as expressions that can be evaluated once you know x.

To implement this syntax, you need to define the bind function and the %<-%
operator. Of these two, the bind function is the simplest.

bind <- function(...) {
 bindings <- eval(substitute(alist(...)))
 scope <- parent.frame()
 structure(list(bindings = bindings, scope = scope),
 class = "bindings")
}

You use the eval(substitute(alist(...))) expression to get all
the function’s arguments into a pair-list without evaluating any potential
expressions. You want to preserve lazy evaluation because expressions provided
as arguments cannot be evaluated before you try to assign to variables you bind.
Using eval(substitute(alist(...))) you can achieve this. The substitute
call puts the actual arguments of the function into the expression alist(...),
and when you then evaluate this expression, you get the pair-list. You get the
scope where you should bind variables from parent.frame, and you then just
combine the bindings and the scope in a class called bindings. You don’t need
to make it into a class, but it doesn’t hurt, so you might as well.

The real work is done in the %<-% operator. Here, you need to do several
things. You need to figure out which of the parameter bindings are just names,
where you should assign values based on their position, and which are
expressions that you need to evaluate. Positional parameters you can just assign
a value and then store them in the scope you remembered in the bindings.
Expressions should have both a name and the expression we need to evaluate
(we cannot assign to an actual expression in any scope, so you need these
expressions to be named parameters). If expressions refer to other parameters
that you name in the bind call, they need to know what those are, so you need to

Chapter 2 ■ InsIde a FunCtIon Call

31

evaluate the expressions in a scope given by bind. If the values you are assigning
to the expressions have names, then you also want to be able to refer to them, for
example, to write an assignment like this:

bind(y = 2 * x, z = 3 * x) %<-% c(x = 4)

To achieve this, you can make the values into an environment and make
the parent scope of bind the parent of this environment as well. This way,
they can refer to variables both in the values you assign and in the variables
you assign to in the binding. The only tricky part about having expressions
refer to other parameters you define is then the order in which to evaluate the
expressions. For an expression to be evaluated, all the variables it refers to must
be assigned to first. So, it seems you would need to parse the expressions and
figure out an order, a topological sorting of the expressions based on which
variables are used in which expressions, but you can instead steal a trick from
how functions evaluate arguments: lazy evaluation. If instead of assigning a
value to each parameter you assign a promise, you won’t have to worry about
the order in which you assign the variables. R will handle this order whenever
it sees a reference to any of these promises. This would mean that if you modify
one of the assigned variables before you access another, you could get the lazy
evaluation behavior of functions. For example, if you did the following, then y
would refer to 10 and not 24:

bind(y = 2 * z, z = 3 * x) %<-% c(x = 4)
z <- 5

To avoid this problem, you can force evaluation of all the expressions once
you are done assigning them all.

The entire function is as follows:

.unpack <- function(x) unname(unlist(x, use.names = FALSE))[1]
`%<-%` <- function(bindings, value) {

 var_names <- names(bindings$bindings)
 val_names <- names(value)
 has_names <- which(nchar(val_names) > 0)
 value_env <- list2env(as.list(value[has_names]),
 parent = bindings$scope)

 for (i in seq_along(bindings$bindings)) {
 name <- var_names[i]
 if (length(var_names) == 0 || nchar(name) == 0) {
 # we don't have a name so the expression
 # should be a name and we are
 # going for a positional value

Chapter 2 ■ InsIde a FunCtIon Call

32

 variable <- bindings$bindings[[i]]
 if (!is.name(variable)) {
 stop(paste0("Positional variables cannot be expressions ",
 deparse(variable), "\n"))
 }
 val <- .unpack(value[i])
 assign(as.character(variable), val, envir = bindings$scope)

 } else {
 # if we have a name we also have an expression
 # and we evaluate that in the
 # environment of the value followed by the
 # enclosing environment and assign
 # the result to the name.
 assignment <- substitute(
 delayedAssign(name, expr,
 eval.env = value_env,
 assign.env = bindings$scope),
 list(expr = bindings$bindings[[i]]))
 eval(assignment)
 }
 }

 # force evaluation of variables to get rid of the lazy
 # promises.
 for (name in var_names) {
 if (nchar(name) > 0) force(bindings$scope[[name]])
 }
}

It works as intended.

bind(x, y, z) %<-% 1:3
c(x, y, z)
[1] 1 2 3
bind(y = 2 * x, z = 3 * x) %<-% c(x = 4)
c(y, z)
[1] 8 12
bind(y = 2 * z, z = 3 * x) %<-% c(x = 4)
c(y, z)
[1] 24 12

Chapter 2 ■ InsIde a FunCtIon Call

33

The only complicated part of this is how you handle the lazy assignment.
You need to use delayedAssign for this, and you need the evaluation
environment to be the environment that includes the values, and you need the
assignment environment to be the one you stored in the bind function. The
difficult bit is getting the expression evaluated. You cannot evaluate it. That is
what you are actively trying to avoid, so you need to give it as an expression. This
expression, however, will not be evaluated until later, and in a different scope, so
you cannot simply use the bindings$bindings list for the expression. You need
to substitute the expression into an expression for the entire assignment and
then evaluate it. The eval(substitute(...)) pattern is how you can achieve
this; in this function, it is split over two lines for readability, but it is a simple
trick of using substitute to get an expression into another expression and then
evaluating it.

If this whole exercise in expressions, substitutions, and evaluation makes
your head spin, then take a deep breath and read on. You will take a deeper look
at this in the next two chapters.

35© Thomas Mailund 2017
T. Mailund, Metaprogramming in R, DOI 10.1007/978-1-4842-2881-4_3

CHAPTER 3

Expressions and
Environments

This chapter digs deeper into how environments work and how you can evaluate
expressions in different environments. Understanding how environments
are chained together helps you understand how the language finds variables,
and being able to create, manipulate, and chain together environments when
evaluating expressions is a key trick for metaprogramming.

Expressions
You can consider everything that is evaluated in R to be an expression. Every
statement you have in your programs is also an expression that evaluates to
some value (which, of course, might be NULL). This includes control structures
and function bodies. You can consider everything an expression; it’s just that
some expressions involve evaluating several contained expressions for their side
effects before returning the result of the last expression they evaluate. From a
metaprogramming perspective, though, you are most interested in expressions
you can get your hands on and examine, modify, or evaluate within a program.

Believe it or not, you have already seen most of the ways to get expression
objects. You can get function bodies using the body function, or you can
construct expressions using quote or call. Using any of these methods, you
get an object you can manipulate and evaluate from within a program. Usually,
expressions are just automatically evaluated when R gets to them during a
program’s execution, but if you have an expression as the kind of object you can
manipulate, you have to evaluate it explicitly. If you don’t evaluate it, its value is
the actual expression; if you evaluate it, you get the value it corresponds to in a
given scope.

Chapter 3 ■ expressions and environments

36

In this chapter, you will not concern yourself with the manipulation of
expressions. That is the topic of Chapter 4. Instead, you will focus on how
expressions are evaluated and how you can change the scope when you
evaluate an expression. If you just write an expression as R source code, it will
be evaluated in the scope where it is written. This is what you are used to doing.
To evaluate it in a different scope, you need to use the eval function. If you don’t
give eval an environment, it will just evaluate an expression in the scope where
eval is called, similar to if you had just written the expression there. If you give it
an environment, however, that environment determines the scope in which the
expression is evaluated.

To understand how you can exploit scopes, though, you first need to
understand how environments define scopes in detail.

Chains of Linked Environments
You have seen how functions have associated environments that capture where
they were defined, and you have seen that when you evaluate a function call, you
have an evaluation environment that is linked to this definition environment.
You have also seen how this works through a linked list of parent environments.
So far, though, you have claimed that this chain ends in the global environment,
where you look for variables if you don’t find them in any nested scope. For all
the examples you have seen so far, this might as well be true, but in any real use
of R, you have packages loaded. The reason that you can find functions from
packages is that these packages are also found in the chain of environments.
The global environment also has a parent, and when you load packages, the
last package you loaded will be the parent of the global environment, and the
previous package will be the parent of the new package. This explains both how
you can find variables in loaded packages and why loading new packages can
overshadow variables defined in other packages.

It has to stop at some point, of course, and there is a special environment
that terminates the sequence. This is known as the empty environment, and it
is the only environment that doesn’t have a parent. When you start up R, the
empty environment is there. Then R puts in the base environment, where all
the base language functionality lives. Next it puts in an Autoload environment,
responsible for loading data on demand, and on top of that, it puts in the global
environment. The base environment and the empty environment are sufficiently
important that you have functions to get hold of them. These are baseenv and
emptying, respectively.

When you import packages, or generally attach a namespace, it gets put on
the this list just below the global environment. The function search will give you
the sequence of environments from the global environment and down. You can
see how loading a library affects this list in this example:

http://dx.doi.org/10.1007/978-1-4842-2881-4_4

Chapter 3 ■ expressions and environments

37

search()
[1] ".GlobalEnv"
[2] "package:ggplot2"
[3] "package:purrr"
[4] "package:microbenchmark"
[5] "package:pryr"
[6] "package:magrittr"
[7] "package:knitr"
[8] "package:stats"
[9] "package:graphics"
[10] "package:grDevices"
[11] "package:utils"
[12] "package:datasets"
[13] "Autoloads"
[14] "package:base"
library(MASS)
search()
[1] ".GlobalEnv"
[2] "package:MASS"
[3] "package:ggplot2"
[4] "package:purrr"
[5] "package:microbenchmark"
[6] "package:pryr"
[7] "package:magrittr"
[8] "package:knitr"
[9] "package:stats"
[10] "package:graphics"
[11] "package:grDevices"
[12] "package:utils"
[13] "package:datasets"
[14] "Autoloads"
[15] "package:base"

The search function is an internal function, but you can write your own
version to get a feeling for how it could work. While search searches from the
global environment, though, you will make your function more general and give
it an environment to start from. You simply need it to print out environment
names and then move from the current environment to the parent until you hit
the empty environment.

Chapter 3 ■ expressions and environments

38

To get the name of an environment, you can use the function
environmentName. Not all environments have names; environments you create
when you nest or call functions or environments you create with new.env do not
have names. However, environments created when you are loading packages
do.1 If an environment doesn’t have a name, though, environmentName will
give you an empty string. In that case, you will instead just use str to get a
representation of environments that you can print.

To check whether you have reached the end of the environment chain, you
check identical(env, emptyenv()). You cannot compare two environments
with ==, but you can use identical. Your function could look like this:

my_search <- function(env) {
 repeat {
 name <- environmentName(env)
 if (nchar(name) != 0)
 name <- paste0(name, "\n")
 else
 name <- str(env, give.attr = FALSE)
 cat(name)
 env <- parent.env(env)
 if (identical(env, emptyenv())) break
 }
}

Calling it with the global environment as the argument should give you a
result similar to search, except you are printing the environments instead of
returning a list of names.

my_search(globalenv())
R_GlobalEnv
package:MASS
package:ggplot2
package:purrr
package:microbenchmark
package:pryr
package:magrittr
package:knitr
package:stats
package:graphics

1If you want to name your environments, you can set the attribute “name.” It is generally
not something you need, though.

Chapter 3 ■ expressions and environments

39

package:grDevices
package:utils
package:datasets
Autoloads
base

Since you can give it any environment, you can try to get hold of the
environment of a function. If you write a function nested into other function
scopes, you can see that you get (nameless) environments for the functions.

f <- function() {
 g <- function() {
 h <- function() {
 function(x) x
 }
 h()
 }
 g()
}
my_search(environment(f()))
<environment: 0x7fdc0043ced0>
<environment: 0x7fdc0043cdb8>
<environment: 0x7fdc0043cca0>
R_GlobalEnv
package:MASS
package:ggplot2
package:purrr
package:microbenchmark
package:pryr
package:magrittr
package:knitr
package:stats
package:graphics
package:grDevices
package:utils
package:datasets
Autoloads
base

Chapter 3 ■ expressions and environments

40

You can also get hold of the environment of imported functions. For example,
you can get the chain of environments starting at the ls function like this:

my_search(environment(ls))
base
R_GlobalEnv
package:MASS
package:ggplot2
package:purrr
package:microbenchmark
package:pryr
package:magrittr
package:knitr
package:stats
package:graphics
package:grDevices
package:utils
package:datasets
Autoloads
base

Here you see something that is a little weird. It looks like base is found
both at the top and at the bottom of the list. Clearly, this can’t be the same
environment; it would need to have, as its parent, both the global environment
and the parent, and environments have only one parent. The only reason it looks
like it is the same environment is that environmentName gives you the same
name for two different environments. They are different.

environment(ls)
<environment: namespace:base>
baseenv()
<environment: base>

The environment of ls is a namespace defined by the base package. The
baseenv() environment is how this package is exported into the environment
below the global environment, making base functions available to you outside of
the base package.

Having such extra environments is how packages manage to have private
functions within a package and have other functions that are exported to users
of a package. The base package is special in defining only two environments: the
namespace for the package and the package environment. All other packages
have three packages set up in their environment chain before the global
environment: the package namespace, a namespace containing imported
symbols, and then the base environment, which, as you just saw, connects to the

Chapter 3 ■ expressions and environments

41

global environment. Figure 3-1 shows the graph of environments when three
packages are loaded: MASS, stats, and graphics (here graphics was loaded first,
then stats, and then MASS, so MASS appears first, followed by stats and then
graphics on the path from the global environment to the base environment).
The solid arrows indicate parent pointers for the environments, and the dashed
arrows indicate from which package symbols are exported into package
environments.

R_GlobalEnv

base

Autoloads

package:graphics

package:stats

package:MASS imports:MASSnamespace:MASS

namespace:base

imports:statsnamespace:stats

R_EmptyEnv

imports:graphicsnamespace:graphics

Figure 3-1. Environment graph with three loaded packages: MASS, stats, and
graphics

If you try to access a symbol from a package, starting in the global
environment, then you get access only to the exported functions, and some of
these might be overshadowed by other packages you have loaded. For functions
defined inside the package, their parent environment contains all the functions
(and other variables) defined in the package, and because this package
namespace environment sits before the global environment in the chain,
variables from other packages do not overshadow variables inside the package
when you execute functions from the package.

If a package imports other packages, these go into the import environment,
below the package namespace and before the base environment. So, functions
inside a package can see imported symbols, but only if they aren’t overshadowed
inside the package. If a user of the package imports other packages, these cannot

Chapter 3 ■ expressions and environments

42

overshadow any symbols the package functions can see, since such imports
come later in the environment chain, as seen from inside the package. After the
imports environment comes the base namespace. This gives all packages access
to the basic R functionality, even if some of it should be overshadowed as seen
from the global environment.2

There are three ways of specifying that a package depends on another in the
DESCRIPTION file: using Suggests:, Depends:, and Imports:. The first doesn’t
actually set up any dependencies; it is just a suggestion of other packages that
might enhance the functionality of the one being defined.

The packages specified in the Depends: directive will be loaded into the
search path when you load the package. For packages specified here, you will
clutter up the global namespace—not the global environment but the search path
below it—and you risk that functions you depend on will be overshadowed by
packages that are loaded into the global namespace later. You should avoid using
Depends: when you can, for these reasons.

Using Imports:, you just require that a set of other packages are installed
before your own package can be installed. Those packages, however, are not put
on the search path, nor are they imported in the imports environment. Using
Imports: just enables you to access functions and data in another package
using the package namespace prefix, so if you use Imports: to import the stats
package, you know you can access stats::sd because that function is guaranteed
to exist on the installation when your package is used.

When actually importing variables into the imports namespace, you need
to modify the NAMESPACE file; you use the following directives for importing an
entire package, functions, S4 classes, and S4 methods, respectively:

•	 imports()

•	 importFrom()

•	 importClassesFrom()

•	 importMethodsFrom()

The easiest way to handle the NAMESPACE file, though, is to use Roxygen, and
here you can import names using the following:

•	 @import <package>

•	 @importFrom <package> <name>

•	 @importClassesFrom <package> <classes>

•	 @importMethodsFrom <package> <methods>

2Strictly speaking, there is a lot more to importing other packages than what I just
explained here, but it’s beyond the scope of this book.

Chapter 3 ■ expressions and environments

43

To ensure that packages you write play well with other namespaces, you
should use Imports: for dependencies you absolutely need (and Suggests: for
other dependencies) and either use the package prefixes for dependencies in
other packages or import the dependencies in the NAMESPACE.

The function sd sits in the package stats. Its parent is namespace:stats, its
grandparent is imports:stats, and its great-grandparent is namespace:base.
If you access sd from the global environment, though, you find it in
package:stats.

my_search(environment(sd))
stats
imports:stats
base
R_GlobalEnv
package:MASS
package:ggplot2
package:purrr
package:microbenchmark
package:pryr
package:magrittr
package:knitr
package:stats
package:graphics
package:grDevices
package:utils
package:datasets
Autoloads
base
environment(sd)
<environment: namespace:stats>
parent.env(environment(sd))
<environment: 0x7fdbffb1fbc8>
attr(,"name")
[1] "imports:stats"
parent.env(parent.env(environment(sd)))
<environment: namespace:base>
parent.env(parent.env(parent.env(environment(sd))))
<environment: R_GlobalEnv>

Figure 3-2 shows how both ls and sd sit in package and namespace
environments and how their parents are the namespace rather than the package
environment.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ expressions and environments

44

As you now see, this simple way of chaining environments not only gives you
lexical scope in functions but also explains how namespaces in packages work.

Environments and Function Calls
How environments and package namespaces work together is interesting to
understand and might give you some inspiration for how namespaces can be
implemented for other uses, but in day-to-day programming, you should be
more interested in how environments and functions work together. So from now
on, I am going to pretend that the scope graph ends at the global environment
and focus on how environments are chained together when you define and call
functions.

You already know the rules for this: when you call a function, you get an
evaluation environment, its parent points to the environment in which the
function was defined, and if you want the environment of the caller of the
function, you can get it using the parent.frame function. Just to test your
knowledge, though, you should consider a more complex example of nested
functions than you have done so far. Consider the following code at the point
where you evaluate the i(3) call. Figure 3-3 shows how environments are
chained together; here solid lines indicate parent pointers, and dashed lines are
pointers from variables to their values. Figure 3-4 adds the call stack as parent
frame environments. Follow along in the figures while you go through the code.

R_GlobalEnv

base

.

.

.

package:stats

namespace:base

imports:statsnamespace:stats

R_EmptyEnv

sd sd

.

.

.

ls

ls

Figure 3-2. Environment graph showing the positions of stats::sd and base::ls

Chapter 3 ■ expressions and environments

45

f <- function(x) {
 g <- function(y, z) x + y + z
 g
}
h <- function(a) {
 g <- f(x)
 i <- function(b) g(a + b, 5)
}
x <- 2
i <- h(1)
i(3)

R_GlobalEnv Evaluation env. for f
when we called f(x) in h

2

Evaluation env. for h
when we called h(1)

1

Evaluation env. for g
when we called g(a+b,5)

in i inside h

Evaluation env. for i
when we called i(3)

3

5

in environment for i(3)

in the environment of the
Promised evaluation of “X”

h(1) call

x g f x h i y z

a i g

b

Figure 3-3. Environment graph for a complex example of nested functions

Chapter 3 ■ expressions and environments

46

The first two statements in the code define the functions f and h. You don’t
call them; you just define them, so you are not creating any new environments.
The environment associated with both functions is the global environment.
Then you set x to 2. Nothing interesting happens here either. When you call h,
however, you start creating new evaluation environments. You first create one to
evaluate h inside. This environment sets a to 1 since you called h with 1. It then
calls f with x.

Here is where it gets a little tricky. Since you call f with a variable, which
will be lazy-evaluated inside f, you are not calling f with the value of the global
parameter x. So, f gets a promise it can later use to get a value for x, and this
promise knows that x should be found in the scope of the h call you are currently
evaluating. That x happens to be the global variable in this example, but you
could assign to a local variable x inside h after you called f, and then f would
be using this local x instead. When you create a promise in a function call, the
promise knows it should be evaluated in the calling scope, but it doesn’t find any
variables just yet; that happens only when the promise is evaluated.

R_GlobalEnv Evaluation env. for f
when we called f(x) in h

f g x

2

x h i

Evaluation env. for h
when we called h(1)

a

1

i g

Evaluation env. for g
when we called g(a+b,5)

in i inside h

Evaluation env. for i
when we called i(3)

b
3

y z

5

in environment for i(3)
Promised call(“+”, a+b)

in the environment of the
Promised evaluation of “X”

h(1) call

Figure 3-4. Environment graph for a complex example of nested functions
highlighting the call stack as you can get it with parent.frame

Chapter 3 ■ expressions and environments

47

Inside the call to f, you define the function g and then return it. Since g is
defined inside the f call, its environment is set to the evaluation scope of the
call. This will later let g know how to get a value for x. It doesn’t store x itself, but
it can find it in the scope of the f call, where it will find it to be a promise that
should be evaluated in the scope of the h call, where it will be found to be the
global variable x. It already looks very complicated, but whenever you need a
value, you should just follow the parent environment chain to see where you will
eventually find it.

The h(1) call then defines a function, i, and returns it, and you save that in
the global variable i. The environment of this function is the evaluation scope of
the h(1) call, so this is where the function will be looking for the names a and g.

Now, finally, you call i(3). This first creates an evaluation environment
where you set the variable b to 3 since that is what the argument for b is. Then
you find the g function, which is the closer you created earlier, and you call g
with the parameters a+b and 5. The 5 is just passed along as a number, and you
don’t translate constants into promises; however, the a+b will be lazily evaluated,
so it is a promise in the call to g. Calling g, you create a new evaluation
environment for it. Inside this environment, you store the variables y and z.
The former is set to the promise a+b and the latter to 5. Since promises should
be evaluated where they are defined, here in the calling scope, this is stored
together with the promise.

You evaluate g(a + b, 5) as such: You first need to figure out what x is,
so you look for it in the local evaluation environment, where you don’t find it.
Then you look in the parent environment, where you do find it, but see that it
is a promise from the h(1) environment, so you have to look there for it now. It
isn’t there either, so you continue down the parent chain and find it in the global
environment where it is 2. Then you need to figure out what y is. You can find y
in the local environment where you see that it is a promise, a+b, that should be
evaluated in the i(3) environment. Here you need to find a and b. You can find
b directly in the environment, so that is easy, but you need to search for a in the
parent environment. Here you find it, so you can evaluate a+b as 1+3. This value
now replaces the promise in y. Finally, you need to find z, but at least this is easy.
That is just the number 5 stored in the local environment. You now have all the
values you need to compute x + y + z. They are 2 + (1+3) + 5, so when you
return from the i(3) call, you get the return value 11.

The environment graphs can get rather complicated, but the rules for finding
values are quite simple. You just follow environment chains. The only pitfall that
tends to confuse programmers is the lazy evaluation. Here, the rules are also
simple; they are just not as familiar. Promises are evaluated in the scope where
they are defined. So, a default parameter will be evaluated in the environment
where the function is defined, and actual parameters will be evaluated in the
calling scope. They will always be evaluated when you access a parameter, so
if you don’t want side effects of modifying closure environments by changing
variables in other scopes, you should use force before you create closures.

Chapter 3 ■ expressions and environments

48

Take some time to work through this example. Once you understand it, you
understand how environments work. It doesn’t get more complicated than this
(well, unless you start messing around with the environments!).

Manipulating Environments
So, how can you make working with environments even more complicated? You
can, of course, start modifying them and chaining them up in all kinds of new
ways. You see, not only can you access environments and put variables in them,
but you can also modify the chain of parent environments. You can, for example,
change the environment you execute a function in by changing the parent of the
evaluation environment like this:

f <- function() {
 my_env <- environment()
 parent.env(my_env) <- parent.frame()
 x
}
g <- function(x) f()
g(2)
[1] 2

You are not changing the local environment—that would be hard to do
because you don’t have anywhere to put values if you don’t have that. However,
you are making its parent point to the function call rather than the environment
where the function was defined. If you didn’t mess with the parent environment,
x would be searched for in the global environment, but because you set the
parent environment to the parent frame, you will instead start the search in the
caller where you find x.

The power to modify scopes in this way can be used for good but certainly
also for evil. There is nothing complicated in how it works; if you understood
how environment graphs work from the previous section, you will also
understand how they work if you start changing parent pointers. The main
problem is just that environments are mutable, so if you start modifying them in
one place, it has consequences elsewhere.

Consider this example of a closure:

f <- function() {
 my_env <- environment()
 call_env <- parent.frame()
 parent.env(my_env) <- call_env
 y
}

Chapter 3 ■ expressions and environments

49

g <- function(x) {
 closure <- function(y) {
 z <- f()
 z + x
 }
 closure
}
add1 <- g(1)
add2 <- g(2)

It is just a complicated way of writing a closure for adding numbers, but you
are not going for elegance here—you are seeing how modifying environments
can affect you. Here you have a function f that sets up its calling environment
as its scope and then returns y. Since y is not a local variable, it must be found
in the enclosing scope with a search that starts in the parent environment; this
is the environment you just changed to the calling scope. In the function g, you
then define a closure that takes one argument, y, and then calls f and adds x to
the result of the call. Since y is a parameter of the closure, f will be able to see
it when it searches from its (modified) parent scope. Since x is not local to the
closure, it will be searched for in the enclosing scope, where it was a parameter
of the enclosing function.

It works as you would expect it to work. Even though it is a complicated way
of achieving this effect, there are no traps in the code.

add1(3)
[1] 4
add2(4)
[1] 6

For reasons that will soon be apparent, I just want to show you that setting a
global variable x does not change the behavior.

x <- 3
add1(3)
[1] 4
add2(4)
[1] 6

It also shouldn’t. When you read the definition of the closure, you can see
that the x it refers to is the parameter of g, not a global variable.

But now you are going to break the closure without even touching it. You
just do one simple extra thing in f. Don’t just change the enclosing scope of f,
and do the same for the caller of f. Set the parent of the caller of f to be its caller
instead of its enclosing environment.

Chapter 3 ■ expressions and environments

50

f <- function() {
 my_env <- environment()
 call_env <- parent.frame()
 parent.env(my_env) <- call_env
 parent.env(call_env) <- parent.frame(2)
 y
}

You haven’t touched the closure, g, of the add1 and add2 functions. You have
just made a small change to f. Now, however, if you don’t have a global variable
for x, the addition functions do not work. This would give you an error.

rm(x)
add1(3)

Even worse, if you do have a global variable x, you don’t get an error, but you
don’t get the expected results either.

x <- 3
add1(3)
[1] 6
add2(4)
[1] 7

What happens here, of course, is that you change the enclosing scope of the
closure from the g call to the global environment (which is the calling scope of g
as well as its parent environment), so this is where you now start the search for x.
The evaluation environment for the g call is not on the search path any longer.

While you can modify environments in this way, you should need an
excellent reason to do so. Changing the behavior of completely unrelated
functions causes the worst kind of side effects. It is one thing to mess up your
own function, but don’t mess up other people’s functions. Of course, you are
only modifying active environments here. You have not permanently damaged
any function; you have just messed up the behavior of function calls on the
stack. If you want to mess up functions permanently, you can do so using the
environment function as well, but doing that tends to be a more deliberate and
thought-through choice.

Don’t go modifying the scope of calling functions. If you want to change the
scope of expressions you evaluate, you are better off creating new environment
chains for this, rather than modifying existing ones. The latter solution can easily
have unforeseen consequences, while the former at least has consequences
restricted to the function you are writing.

Chapter 3 ■ expressions and environments

51

Explicitly Creating Environments
You create a new environment with the new.env function. By default, this
environment will have the current environment as its parent,3 and you can use
functions such as exists and get to check what it contains.

env <- new.env()
x <- 5
exists("x", env)
[1] TRUE
get("x", env)
[1] 5
f <- function() {
 x <- 7
 new.env()
}
env2 <- f()
get("x", env2)
[1] 7

You can also use the $ subscript operator to access it, but in this case, R will
not search up the parent list to find a variable; only if a variable is in the actual
environment can you get to it.

env$x
NULL

You can assign variables to environments using assign or through the $<-
function.

assign("x", 3, envir = env)
env$x
[1] 3
env$x <- 7
env$x
[1] 7

Depending on what you want to do with the environment, you might not
want it to have a parent environment. There is no way to achieve that.

env <- new.env(parent = NULL) # This won't work!

3If you check the documentation for new.env, you will see that the default argument is
actually parent.frame(). If you think about it, this is how it becomes the current
environment: when you call new.env, the current environment will be its parent frame.

Chapter 3 ■ expressions and environments

52

All environments have a parent except the empty environment, but you can
get the next best thing by making this environment the parent of your new one.

global_x <- "foo"
env <- new.env(parent = emptyenv())
exists("global_x", env)
[1] FALSE

You can try to do something a little more interesting with manually created
environments, such as building a parallel call stack you can use to implement
dynamic scoping rather than lexical scoping. Lexical scoping is the scoping you
already have in R, where a function call’s parent is the definition scope of the
function. Dynamic scope instead has the calling environment. It is terribly hard
to reason about programs in languages with dynamic scope, so I advise that you
avoid them, but for the purpose of education, you can try implementing it.

Since you don’t want to mess around with the actual call stack and modify
parent pointers, you need to make a parallel sequence of environments, and you
need to copy the content of each call stack frame into these. You can copy an
environment like this:

copy_env <- function(from, to) {
 for (name in ls(from, all.names = TRUE)) {
 assign(name, get(name, from), to)
 }
}

Just for illustration purposes, you need a function that will show you what
names you see in each environment when moving down toward the global
environment. You don’t want to go all the way down to the empty environment
here, so you stop a little early. This function lets you do that:

show_env <- function(env) {
 if (!identical(env, globalenv())) {
 print(env)
 print(names(env))
 show_env(parent.env(env))
 }
}

Now comes the function for creating the parallel sequence of environments.
It is not that difficult; you can use parent.frame to get the frames on the call stack
arbitrarily deep—well, down to the first function call—and you can get the depth of
the call stack using the function sys.nframe. The only thing you have to be careful
about is adjusting the depth of the stack by 1 since you want to create the call stack
chain for the caller of the function, not for the function itself. The rest is just a loop.

Chapter 3 ■ expressions and environments

53

build_caller_chain <- function() {
 n <- sys.nframe() - 1
 env <- globalenv()
 for (i in seq(1,n)) {
 env <- new.env(parent = env)
 frame <- parent.frame(n - i + 1)
 copy_env(frame, env)
 }
 env
}

To see it in action, you need to set up a rather convoluted example with both
nested scopes and a call stack. It doesn’t look pretty, but try to work through it
and consider what the function environments must be and what the call stack
must look like.

f <- function() {
 x <- 1
 function() {
 y <- 2
 function() {
 z <- 3

 print("---Enclosing environments---")
 show_env(environment())

 call_env <- build_caller_chain()
 print("---Calling environments---")
 show_env(call_env)
 }
 }
}
g <- f()()
h <- function() {
 x <- 4
 y <- 5
 g()
}
h()
[1] "---Enclosing environments---"
<environment: 0x1035937b8>
[1] "z"
<environment: 0x103596780>
[1] "y"
<environment: 0x1035964e0>

Chapter 3 ■ expressions and environments

54

[1] "x"
[1] "---Calling environments---"
<environment: 0x10354b748>
[1] "z"
<environment: 0x103553b20>
[1] "x" "y"

When you call h, it calls g, and you get the list of environments starting from the
innermost level where you have a z and out until the outermost level, just before
the global environment, where you have the x. On the (parallel) call stack, you also
see a z first (it is in a copy of the function’s environment, but it is there), but this
chain is only two steps long, and the second environment contains both x and y.

You can use the stack chain you constructed here to implement dynamic
scoping. You simply need to evaluate expressions in the scope defined by this
chain rather than the current evaluating environment. The <<- assignment
operator won’t work—it would require you to write a similar function to get that
behavior, and it would be a design choice to which degree changes made to this
chain should be moved back into the actual call stack frames. However, as long
as it comes to evaluating expressions, you can use it for dynamic scoping.

Environments and Expression Evaluation
Finally, this section covers how you combine expressions and environments
to compute values. The good news is that you are past all the hard stuff, and it
gets pretty simple after all of the previous stuff. All you have to do to evaluate
an expression in any selected environment chain is to provide it to the eval
function. You can see this in the following example that evaluates the same
expression in the lexical scope and the dynamic scope:

f <- function() {
 x <- 1
 function() {
 y <- 2
 function() {
 z <- 3

 cat("Lexical scope: ", x + y + z, "\n")

 call_env <- build_caller_chain()
 cat("Dynamic scope: ", eval(quote(x + y + z), call_env), "\n")
 }
 }
}
g <- f()()

Chapter 3 ■ expressions and environments

55

h <- function() {
 x <- 4
 y <- 5
 g()
}
h()
Lexical scope: 6
Dynamic scope: 12

The hard part of working with environments really isn’t evaluating them.
It is manipulating them.

57© Thomas Mailund 2017
T. Mailund, Metaprogramming in R, DOI 10.1007/978-1-4842-2881-4_4

CHAPTER 4

Manipulating Expressions

Expressions, the kind you create using the quote function, come in four flavors:
a primitive value, a name, a function call or a control structure, and a pairlist.
Function calls include operators such as the arithmetic or logical operators
because these are function calls as well in R, and control structures can be
considered just a special kind of function calls—they only really differ from
function calls in the syntax you use to invoke them.

class(quote(1))
[1] "numeric"
class(quote("foo"))
[1] "character"
class(quote(TRUE))
[1] "logical"
class(quote(x))
[1] "name"
class(quote(f(x)))
[1] "call"
class(quote(2+2))
[1] "call"
class(quote(if (TRUE) "foo" else "bar"))
[1] "if"
class(quote(for (x in 1:3) x))
[1] "for"

Of these, the calls and control structures are of course the more interesting;
values and symbols are pretty simple, and you cannot do a lot with them.
Pairlists are used for dealing with function parameters, so unless you are
working with function arguments, you won’t see them in expressions. Calls
and control structures, on the other hand, capture the action in an expression;

Chapter 4 ■ Manipulating expressions

58

you can treat these as lists, and you can thus examine them and modify them.1
Working with expressions this way is, I believe, the simplest approach and is the
topic of this chapter. Substituting values for variables is another, complementary
way that is the topic of the next chapter.

After you have learned the basics of expressions in the next section, the
rest of the chapter will go through some potential real-life examples of how you
would use metaprogramming. You can find a full version of the examples in the
dfdr package in the book’s downloadable source code, available via
www.apress.com/9781484228807.

The Basics of Expressions
Both function calls and control structures can be manipulated as lists. Of those
two, I will mostly focus on calls since those are, in my experience, more likely to
be modified in a program. So, let’s get control structures out of the way first. I will
describe only if and for; the rest are similar.

Accessing and Manipulating Control Structures
Statements involving control structures are expressions like any other
expressions in R, and you can create an unevaluated version of them using
quote. As I explained earlier, you can then treat this expression object as a list.
So, you can get the length of the object, and you can get access to the elements
in the object. For a single if statement, you get expressions of length 3, while
for if-else statements, you get expressions of length 4. The first element is
the name if. For all control structures and function calls, the first element will
always be the name of the function, so if you think of control structures as just
functions with a slightly weird syntax, you don’t have to consider them a special
case at all.2 The second element is the test condition in the if statement, and
after that, you get the body of the statement. If it is an if-else statement, the
fourth element is the else part of the expression.

x <- quote(if (foo) bar)
length(x)
[1] 3

1To the extent that you can modify data in R. You are of course creating new objects with
replacement operators.
2They basically are just special cases of calls. The is.call function will return TRUE for
them, and there is no difference in how you can treat them. The only difference is in the
syntax for how you write control-structure expressions compared to function calls.

http://www.apress.com/9781484228807

Chapter 4 ■ Manipulating expressions

59

x[[1]]
`if`
x[[2]]
foo
x[[3]]
bar
y <- quote(if (foo) bar else baz)
length(y)
[1] 4
y[[1]]
`if`
y[[2]]
foo
y[[3]]
bar
y[[4]]
baz

With for loops you get an expression of length 4 where the first element is,
which is, of course, the name for. The second is the iteration variable, the third
is the expression you iterate over, and the fourth is the loop body.

z <- quote(for (x in 1:4) print(x))
length(z)
[1] 4
z[[1]]
`for`
z[[2]]
x
z[[3]]
1:4
z[[4]]
print(x)

You can evaluate these control structures like any other expression.

eval(z)
[1] 1
[1] 2
[1] 3
[1] 4

Chapter 4 ■ Manipulating expressions

60

You can modify them by assigning values to their components to change
their behavior before you evaluate them. Here’s an example of changing what
you loop over:

z[[3]] <- 1:2
eval(z)
[1] 1
[1] 2

Here’s an example of changing what you do in the function body:

z[[4]] <- quote(print(x + 2))
eval(z)
[1] 3
[1] 4

Here’s an example of changing the index variable and the body:

z[[2]] <- quote(y)
z[[4]] <- quote(print(y))
eval(z)
[1] 1
[1] 2

Accessing and Manipulating Function Calls
For function calls, their class is call, and when you treat them as lists, the first
element is the name of the function being called, and the remaining elements
are the function call arguments.

x <- quote(f(x,y,z))
class(x)
[1] "call"
length(x)
[1] 4
x[[1]]
f
x[[2]]
x
x[[3]]
y
x[[4]]
z

Chapter 4 ■ Manipulating expressions

61

You can test whether an expression is a function call using the is.call function.

is.call(quote(x))
[1] FALSE
is.call(quote(f(x)))
[1] TRUE

You don’t have access to any function body or environment or anything
like that here. This is just the name of a function; it is not until you evaluate the
expression that you will have to associate the name with an actual function. You
can, of course, always evaluate the function call using eval, and you can modify
the expression if you want to change how it should be evaluated.

x <- quote(sin(2))
eval(x)
[1] 0.9092974
x[[1]] <- quote(cos)
eval(x)
[1] -0.4161468
x[[2]] <- 0
eval(x)
[1] 1

Note that I didn’t quote the zero in the last assignment; I didn’t have to since
numeric values are already expressions and do not need to be quoted.

To explore an expression, you usually need a recursive function. The two basic
cases in a recursion are is.atomic (for values) and is.name (for symbols), and the
recursive cases are is.call for function calls and is.pairlist if you want to deal
with those. In the following function, which just prints the structure of an expression
(I did not handle the case where the expression is a pairlist in this function):

f <- function(expr, indent = "") {
 if (is.atomic(expr) || is.name(expr)) { # basic case
 print(paste0(indent, expr))

 } else if (is.call(expr)) { # a function call / subexpression
 print(paste0(indent, expr[[1]]))
 n <- length(expr)
 if (n > 1) {
 new_indent <- paste0(indent, " ")
 for (i in 2:n) {
 f(expr[[i]], new_indent)
 }
 }

Chapter 4 ■ Manipulating expressions

62

 } else {
 print(paste0(indent, "Unexpected expression: ", expr[[1]]))
 }
}

f(quote(2 + 3*(x + y)))
[1] "+"
[1] " 2"
[1] " *"
[1] " 3"
[1] " ("
[1] " +"
[1] " x"
[1] " y"

You might find the output here a little odd, but it captures the structure
of the expression 2+3*(x+y). The outermost function call is the function +,
and it has two arguments: 2 and the call to *. The call to * also has two
arguments—naturally—where one is 3 and the other is a call to the function
(. If you find this odd, then welcome to the club, but parentheses are functions
in R. The call to (has only a single argument, which happens to be a function
call to + with the arguments x and y.

This is all there is to the direct manipulation of function calls, but of course,
there is much that can be done with these simple tools. The following sections
will show how you can use them to achieve powerful effects.

Expression Simplification
To see the manipulation of expressions in action, let’s consider a scenario where
you want to simplify an expression. Say you want to evaluate subexpressions that
you can immediately evaluate because they consist only of atomic values where
you do not depend on variables, and you want to reduce multiplication by 1 or
addition by 0. It looks something like this:

simplify_expr(quote(2*(0 + ((4 + 5)*x)*1)))
2 * (9 * x)

This isn’t quite perfect; if you really reduced the expression, you would see
that you could rearrange the parentheses and multiply 2 by 9, but you are going
to simplify expressions locally and not attempt to rewrite them here.

Since you are dealing with expressions, you need a recursive function that
handles the basic cases (atomic values and names) and the recursive cases (calls
and pairlists). You don’t expect to see a pairlist in an expression, so you simply

Chapter 4 ■ Manipulating expressions

63

give up if you see anything except atomic, name, or call objects. If you see any
basic case, you just return that; you can’t simplify those further. For call objects,
you call a function, simplify_call, which is responsible for handling calls.

simplify_expr <- function(expr) {
 if (is.atomic(expr) || is.name(expr)) {
 expr

 } else if (is.call(expr)) {
 simplify_call(expr)

 } else {
 stop(paste0("Unexpected expression ",
 deparse(expr),
 " in simplifying"))
 }
}

For call simplification, I don’t attempt to simplify function calls. I don’t know
what any generic function is doing, so there is little I can do to simplify expressions
that involve functions. I will assume, though, that if I am simplifying an expression,
then functions in it behave as if they had call-by-value semantics and simplify their
arguments. This is an assumption. It might be wrong, but for this exercises, you
can assume it. So for general function calls, I will just simplify their arguments. For
arithmetic expressions, I will try to simplify those further. I could also attempt to
do that for other operations, but handling just the arithmetic operators shows how
you would handle operators in sufficient detail that I trust you, dear reader, to be
able to handle other operators if you need to do so.

Call handling can then look like this:

simplify_call <- function(expr) {
 if (expr[[1]] == as.name("+"))
 return(simplify_addition(expr[[2]], expr[[3]]))
 if (expr[[1]] == as.name("-")) {
 if (length(expr) == 2)
 return(simplify_unary_subtraction(expr[[2]]))
 else
 return(simplify_subtraction(expr[[2]], expr[[3]]))
 }

 if (expr[[1]] == as.name("*"))
 return(simplify_multiplication(expr[[2]], expr[[3]]))
 if (expr[[1]] == as.name("/"))
 return(simplify_division(expr[[2]], expr[[3]]))

Chapter 4 ■ Manipulating expressions

64

 if (expr[[1]] == as.name("^"))
 return(simplify_exponentiation(expr[[2]], expr[[3]]))

 if (expr[[1]] == as.name("(")) {
 subexpr <- simplify_expr(expr[[2]])
 if (is.atomic(subexpr) || is.name(subexpr))
 return(subexpr)
 else if (is.call(subexpr) && subexpr[[1]] == as.name("("))
 return(subexpr)
 else
 return(call("(", subexpr))
 }

 simplify_function_call(expr)
}

This code is mostly self-explanatory, but a few comments are in order:
First, you need to compare the call names with name objects. They are
not actually character strings but have the type name; thus, you need to use
as.name. Second, the minus comes in two flavors: binary subtraction and unary
negation. You can tell the two apart by checking whether the call has one or two
arguments (i.e., whether it has length 2 or 3; remember that the first element
is the call name), and you just use two different functions to handle the two
cases. Third, parentheses are also calls, so you need to handle them. You just get
hold of the expression inside the parentheses. If this is something that doesn’t
need parentheses (single values, names, or an expression already surrounded
by parentheses), you just return that subexpression. Otherwise, you put
parentheses around it. Finally, if you don’t know what else to do, you just treat
the expression as a function call.

Now you just handle each operator in turn. They are all handled similarly,
only differing in what you can simplify given each operator. For addition, you
can get rid of addition by 0, and if both your arguments are numbers, you
can evaluate them right away. Otherwise, you need to return a call to + with
simplified operands.

simplify_addition <- function(f, g) {
 left <- simplify_expr(f)
 right <- simplify_expr(g)
 if (left == 0) return(right)
 if (right == 0) return(left)
 if (is.numeric(left) && is.numeric(right))
 return(left + right)
 call("+", left, right)
}

Chapter 4 ■ Manipulating expressions

65

You can evaluate unary minus if its argument is numeric. Otherwise, you
can get rid of an existing minus in the argument since two minuses make a plus,
and if all else fails, you just have to return the simplified expression with a minus
in front of it.

simplify_unary_subtraction <- function(f) {
 simplified <- simplify_expr(f)
 if (is.numeric(simplified))
 -simplified
 else if (is.call(simplified) && simplified[[1]] == "-")
 simplified[[2]]
 else
 bquote(-.(simplified))
}

For the final case here, you will use the function bquote. It works like
quote but substitutes a value in where you put .(...). So, you essentially write
quote(-simplified) except that you put the simplified expression inside the
expression.

Binary subtraction is similar to addition but with a little more work when
you subtract from 0. Here you need to use bquote again:

simplify_subtraction <- function(f, g) {
 left <- simplify_expr(f)
 right <- simplify_expr(g)
 if (left == 0) {
 if (is.numeric(right))
 return(-right)
 else
 return(bquote(-.(right)))
 }
 if (right == 0)
 return(left)
 if (is.numeric(left) && is.numeric(right))
 return(left - right)
 call("-", left, right)
}

For multiplication, you can simplify cases where the multiplication involves
0 or 1, but otherwise, the function looks similar to what you have seen before.

simplify_multiplication <- function(f, g) {
 left <- simplify_expr(f)
 right <- simplify_expr(g)

Chapter 4 ■ Manipulating expressions

66

 if (left == 0 || right == 0)
 return(0)
 if (left == 1)
 return(right)
 if (right == 1)
 return(left)
 if (is.numeric(left) && is.numeric(right))
 return(left * right)
 call("*", left, right)
}

Division and exportation are just more of the same, with different cases
to handle.

simplify_division <- function(f, g) {
 left <- simplify_expr(f)
 right <- simplify_expr(g)
 if (right == 1)
 return(left)
 if (is.numeric(left) && is.numeric(right))
 return(left / right)
 call("/", left, right)
}

simplify_exponentiation <- function(f, g) {
 left <- simplify_expr(f)
 right <- simplify_expr(g)
 if (right == 0) return(1)
 if (left == 0) return(0)
 if (left == 1) return(1)
 if (right == 1) return(left)
 if (is.numeric(left) && is.numeric(right))
 return(left ^ right)
 call("^", left, right)
}

The final function you need is a function-call simplification. Here you just have
to simplify all the function’s arguments before returning a call. You can collect the
arguments in a list and create a function call with an expression like this:

do.call("call", c(list(function_name), arguments))

Chapter 4 ■ Manipulating expressions

67

This would take the arguments, as a list, and turn them into arguments in a
call to call. This will work fine if the function_name value is a function name,
but expressions such as f(x,y)(z) are also function calls; here the function name
is f(x,y), and the argument is z. You cannot wrap such an expression up in a
call to call, but you can just take a list and turn it into a call using as.call.

simplify_function_call <- function(expr) {
 function_name <- expr[[1]]
 arguments <- vector("list", length(expr) - 1)
 for (i in seq_along(arguments)) {
 arguments[i] <- list(simplify_expr(expr[[i + 1]]))
 }
 as.call(c(list(function_name), arguments))
}

For the same reason, you have to remedy the simplify_call function.
There, you compare expr[[1]] with names to dispatch to the various arithmetic
operators. This works only if expr[[1]] is a name, so you have to make sure that
you make these comparisons only when it is a name.

simplify_call <- function(expr) {
 if (is.name(expr[[1]])) {
 # Dispatch to operators...
 }

 simplify_function_call(expr)
}

You could also get a little more ambitious and try to evaluate functions when
all their arguments are values and when you know what the functions are—or
at least have a reasonable expectation that you would know. You could always
check whether you can find the name in a relevant environment and whether it
is a function, but since you are simplifying expressions where you don’t expect to
know variables that are not functions, it is probably too much to demand that all
function symbols are known. Still, you could say that functions such as sin and
cos and such as exp and log are their usual selves and then do something like this:

simplify_function_call <- function(expr) {
 function_name <- expr[[1]]
 arguments <- vector("list", length(expr) - 1)
 for (i in seq_along(arguments)) {
 arguments[i] <- list(simplify_expr(expr[[i + 1]]))
 }

Chapter 4 ■ Manipulating expressions

68

 if (all(unlist(Map(is.numeric, arguments)))) {
 if (as.character(function_name) %in%
 c("sin", "cos", "exp", "log")) {
 result <- do.call(as.character(function_name), arguments)
 return(result)
 }
 }
 as.call(c(list(function_name), arguments))
}

You now have a simple program that lets you simplify expressions to a
certain extent.

simplify_expr(quote(2*(0 + ((4 + 5)*x)*1)))
2 * (9 * x)

Neither function-call solution can handle named arguments. You simply
work with positional arguments and just throw away the name information.

f <- function(x, y) x
expr1 <- quote(f(x = 2, y = 1))
expr2 <- quote(f(y = 2, x = 1))
eval(expr1)
[1] 2
eval(expr2)
[1] 1
simplify_expr(expr1)
f(2, 1)
simplify_expr(expr2)
f(2, 1)
eval(simplify_expr(expr1))
[1] 2
eval(simplify_expr(expr2))
[1] 2

It isn’t hard to remedy this, though. There is nothing special needed to work
with named arguments when you deal with function calls; they are just accessed
with the named function.

names(expr1)
[1] "" "x" "y"
names(expr2)
[1] "" "y" "x"

Chapter 4 ■ Manipulating expressions

69

If you make sure that the result of your simplification gets the same name as
the original expression, you will be OK.

simplify_function_call <- function(expr) {
 function_name <- expr[[1]]
 arguments <- vector("list", length(expr) - 1)
 for (i in seq_along(arguments)) {
 arguments[i] <- list(simplify_expr(expr[[i + 1]]))
 }
 result <- as.call(c(list(function_name), arguments))
 names(result) <- names(expr)
 result
}
simplify_expr(expr1)
f(x = 2, y = 1)
simplify_expr(expr2)
f(y = 2, x = 1)
eval(simplify_expr(expr1))
[1] 2
eval(simplify_expr(expr2))
[1] 1

Automatic Differentiation
As a second and only slightly more involved example, let’s consider automatic
differentiation, which means automatically translating a function that computes
an expression into a function that calculates the derived expression. I will
assume that you have a function whose body contains only a single expression—
one that doesn’t involve control structures or sequences of statements but just
a single arithmetic expression—and recurse through this expression, applying
the rules of differentiation. Although what you do with this metaprogram is more
complicated than the expression simplification just implemented, you will see
that the form of the program is similar.

You start with the main function, which you name d for differentiation. It
takes two arguments: the function to be differentiated and the variable to take
the derivative on. If you want the function to be able to handle the built-in
mathematical functions, you need to handle these as special cases. These are
implemented as so-called primitive functions and do not have a body. You need
to handle them explicitly in the d function. For all other functions, you just need
to compute the derivative of the expression in the function body. If you want
to return a new function for the derivative, you can just take the function you
are modifying and replace its body. Since R doesn’t let you modify arguments
to a function, this will just create a copy you can return and leave the original

Chapter 4 ■ Manipulating expressions

70

function intact. Reusing the argument this way makes sure that the new function
has the same arguments, with the same names and same default values, as
the original. It also ensures that the derivative will have the same enclosing
environment as the original function, which is potentially important for when
you evaluate it.

The d function can look like this, where I’ve handled only three of the
primitive functions—you can add the remaining as an exercise:

d <- function(f, x) {
 if (is.null(body(f))) {
 if (identical(f, sin)) return(cos)
 if (identical(f, cos)) return(function(x) -sin(x))
 if (identical(f, exp)) return(exp)

 stop("unknown primitive")

 } else {
 df <- f
 e <- environment(f)
 body(df) <- simplify_expr(diff_expr(body(f), x, e))
 df
 }
}

You send the function environment along with the recursion because you
will need it when you have to deal with function calls later. There, you will need
to look up functions and analyze which parameters they take to apply the chain
rule. For now, you just pass it along in the recursion.

For aesthetic reasons, you simplify the expression you get from
differentiating the body of f, using the code you wrote in the previous section.
You can use d like this:

f <- function(x) x^2 + sin(x)
df <- d(f, "x")
df
function (x)
2 * x + cos(x)

For computing the derivative of the function body, you follow the pattern
you used for the expression simplification: you write a recursive function for
dealing with expressions, where you dispatch function calls to different cases for
the different arithmetic operations.

Chapter 4 ■ Manipulating expressions

71

The two basic cases for the recursive function are numbers and names.
Let’s assume that you do not get other atomic values such as logical vectors; you
wouldn’t know how to differentiate them anyway. For numbers, the derivative
is always 0, while for names it depends on whether you have the variable you
are computing the derivative on or another variable. The recursive case for the
function is function calls, where you just call another function to handle that case.

diff_expr <- function(expr, x, e) {
 if (is.numeric(expr)) {
 quote(0)

 } else if (is.name(expr)) {
 if (expr == x) quote(1)
 else quote(0)

 } else if (is.call(expr)) {
 diff_call(expr, x, e)

 } else {
 stop(paste0("Unexpected expression ",
 deparse(expr), " in parsing."))
 }
}

For calls, you dispatch based on the type of call; therefore, you deal with
arithmetic expressions through a function for each operator, and you deal with
parentheses similar to how you handled them in the expression simplification
and when differentiating other function calls. You have to handle primitive
functions and user-defined functions as two separate cases here as well. For
user-defined functions, you can analyze them, figure out their formal arguments,
and apply the chain rule. For primitive functions, formals will give you an empty
list, so that strategy will not work for those. So, you handle them as a special
case. I assume, here, that you have a list of names of the primitive functions. For
example, you could have this if you need to handle only those three cases:

.built_in_functions <- c("sin", "cos", "exp")

Extend it as needed.
The function-handling calls look like this:

diff_call <- function(expr, x, e) {
 if (is.name(expr[[1]])) {
 if (expr[[1]] == as.name("+"))
 return(diff_addition(expr[[2]], expr[[3]], x, e))

Chapter 4 ■ Manipulating expressions

72

 if (expr[[1]] == as.name("-")) {
 if (length(expr) == 2)
 return(call("-", diff_expr(expr[[2]], x, e)))
 else
 return(diff_subtraction(expr[[2]], expr[[3]], x, e))
 }

 if (expr[[1]] == as.name("*"))
 return(diff_multiplication(expr[[2]], expr[[3]], x, e))
 if (expr[[1]] == as.name("/"))
 return(diff_division(expr[[2]], expr[[3]], x, e))

 if (expr[[1]] == as.name("^"))
 return(diff_exponentiation(expr[[2]], expr[[3]], x, e))

 if (expr[[1]] == as.name("(")) {
 subexpr <- diff_expr(expr[[2]], x, e)
 if (is.atomic(subexpr) || is.name(subexpr))
 return(subexpr)
 else if (is.call(subexpr) && subexpr[[1]] == as.name("("))
 return(subexpr)
 else
 return(call("(", subexpr))
 }
 }

 if (is.name(expr[[1]]) &&
 as.character(expr[[1]]) %in% .built_in_functions)
 return(diff_built_in_function_call(expr, x, e))
 else
 return(diff_general_function_call(expr, x, e))
}

You handle the arithmetic operations just by following the rules you learned
in calculus class.

diff_addition <- function(f, g, x, e) {
 call("+", diff_expr(f, x, e), diff_expr(g, x, e))
}

diff_subtraction <- function(f, g, x, e) {
 call("-", diff_expr(f, x, e), diff_expr(g, x, e))
}

Chapter 4 ■ Manipulating expressions

73

diff_multiplication <- function(f, g, x, e) {
 # f' g + f g'
 call("+",
 call("*", diff_expr(f, x, e), g),
 call("*", f, diff_expr(g, x, e)))
}

diff_division <- function(f, g, x, e) {
 # (f' g − f g')/g**2
 call("/",
 call("-",
 call("*", diff_expr(f, x, e), g),
 call("*", f, diff_expr(g, x, e))),
 call("^", g, 2))
}

diff_exponentiation <- function(f, g, x, e) {
 # Using the chain rule to handle this generally.
 dydf <- call("*", g,
 call("^", f, substitute(n - 1, list(n = g))))
 dfdx <- diff_expr(f, x, e)
 call("*", dydf, dfdx)
}

For function calls, you have to apply the chain rule. For primitive functions
you cannot get a list of formal arguments, so you cannot handle these by
inspecting the functions; you have to use their names to figure out what their
arguments and derivatives are. I’m showing a few cases here, but I will leave
handling other functions as an exercise for you:

diff_built_in_function_call <- function(expr, x, e) {
 # chain rule with a known function to differentiate...
 if (expr[[1]] == as.name("sin"))
 return(call("*", call("cos", expr[[2]]),
 diff_expr(expr[[2]], x, e)))

 if (expr[[1]] == as.name("cos"))
 return(call("*", call("-", call("sin", expr[[2]])),
 diff_expr(expr[[2]], x, e)))

 if (expr[[1]] == as.name("exp"))
 return(call("*", call("exp", expr[[2]]),
 diff_expr(expr[[2]], x, e)))
}

Chapter 4 ■ Manipulating expressions

74

For other function calls, you can inspect the function to work out which
variables it has and apply the chain rules to those variables. This works only if
you can figure out which function you are referring to, so you cannot handle
cases where you have to compute the function. In those cases, you just give up.
If you have a symbol for the function, however, you can look it up and inspect it.
This isn’t entirely safe for general use. If you calculate the derivative of a function
and then change a global function that it refers to, you will have a derivative
that uses the old global function, while the actual function uses the new global
function. There isn’t much you can do about this, though. At the point where
you apply the chain rule, you need to know which arguments the function takes.
That means you need to know which function you are working with.

You can assume that the arguments used in the function call are the
relevant ones to consider when you apply the chain rules. Those that you are not
passing along in the function call will have default values and will not depend
on the arguments given to the derivative function so that you can ignore them.
Therefore, you can take the arguments in the function call and sum over those
in the chain rule. You need to know the names of the arguments to compute the
derivatives of the function, and you need to handle both positional and named
arguments, and this is where you have to look up the actual function.

In the environment you have passed along in the recursion—the
environment of the original function you are computing the derivative of—you
look up the function you have to apply the chain rule to. With that function in
hand, you can use the function match.call to get all the names of the arguments
in the function call. The match.call function takes care of merging named and
positional arguments. For each argument, you build a function call by changing
the function to its derivative to the appropriate variable. You use the bquote
function to call d to compute these derivatives. You then multiply the function
call with the argument differentiated with the original variable. Collecting all
these terms in a sum completes the chain rule.

diff_general_function_call <- function(expr, x, e) {
 function_name <- expr[[1]]
 if (!is.name(function_name))
 stop(paste0("Unexpected call ", deparse(expr)))

 func <- get(as.character(function_name), e)
 full_call <- match.call(func, expr)
 variables <- names(full_call)

 arguments <- vector("list", length(full_call) - 1)
 for (i in seq_along(arguments)) {
 var <- variables[i + 1]
 dfdz <- full_call

Chapter 4 ■ Manipulating expressions

75

 dfdz[[1]] <- bquote(d(.(function_name), .(var)))
 dzdx <- diff_expr(expr[[i + 1]], x, e)
 arguments[[i]] <- bquote(.(dfdz) * .(dzdx))
 }
 as.call(c(list(sum), arguments))
}

There is one caveat with this solution: even if the original function is
vectorized, the derivative won’t be. If you define the following functions, then g
and h should be the same functions:

f <- function(x, y) x^2 * y
g <- function(z) f(2*z, z^2)
h <- function(z) 4*z^4

However, if you calculate d(g,"z") and d(h,"z") and call them with a
vector of values, the former will add all the results together, while the latter will
return a vector of values. The sum call in the derivative of g will gobble up all the
values. You can fix this by calling Vectorize on d(g,"z").

Other than that, you now have a metaprogram for translating a function into
its derivative. It doesn’t handle all possible functions; they have to be functions
that evaluate simple expressions. The chain rule can be applied only to known
functions mentioned by name, and you have handled only some of the primitive
functions, but I trust you can see how you could build more functionality on top
of what you have now.

77© Thomas Mailund 2017
T. Mailund, Metaprogramming in R, DOI 10.1007/978-1-4842-2881-4_5

CHAPTER 5

Working with Substitutions

You can take expressions and manipulate them by treating them as strings, but
you can also modify them by substituting variables for expressions. In addition,
you can build expressions by using more advanced quoting, and you can move
back and forth between strings and expressions.

A Little More on Quotes
This chapter starts with quickly revisiting the quote mechanism. You have
already seen how to quote expressions, but you can do more than just create
verbatim expressions. I have discussed the quote function in some detail, but
I showed the bquote function only in passing. The bquote function allows you
create expressions where you only partially quote—you can evaluate some
values when you create the expression and leave other parts for later. While
quote wraps an entire expression in quotes, the bquote function does partial
substitution in an expression. You call it with an expression, as you would call
quote, but any subexpression you wrap in a call to “dot” (that is, you write
.(...)) will not be quoted but will instead be evaluated, and the value will be
put into the expression you are constructing. If you use bquote without using
.(...), it works just like quote.

quote(x + y)
x + y
bquote(x + y)
x + y
bquote(.(2+2) + y)
4 + y

Chapter 5 ■ Working With SubStitutionS

78

You used bquote when you constructed terms for the chain rule in your
differentiation program. Here you used bquote(.(dfdz) * .(dzdx)) to
construct the product of the differentiated function and the differentiated
argument; you constructed dfdz and dzdx by constructing a differentiated
function, using bquote again, for dfdz (as in bquote(d(.(function_name),
.(var))))) and by calling the diff_expr function for dzdx.

In many situations where you need to create a call object, using bquote
can be much simpler than constructing the call object explicitly. For the simple
example shown previously, there is not a huge difference.

bquote(.(2+2) + y)
4 + y
call("+", 2+2, quote(y))
4 + y

However, once you start creating expressions with many nested calls (and
you don’t need particularly complex expressions to need multiple nested calls),
then explicitly creating calls becomes much more cumbersome than using
bquote.

bquote((.(2+2) + x) * y)
(4 + x) * y
call("*", call("(", call("+", 2+2, quote(x))), quote(y))
(4 + x) * y

Parsing and Deparsing
When you use quoting to construct expressions, you get objects you can
manipulate via recursive functions, but you can also work with expressions as
strings and translate between strings and expressions using the functions parse
and deparse.

The deparse function translates an expression into the R source code that
would be used to create the expression (represented as a string), and the parse
function parses a string or a file and returns the expressions in it.

deparse(quote(x + y))
[1] "x + y"
parse(text = "x + y")
expression(x + y)

Chapter 5 ■ Working With SubStitutionS

79

For the call to parse here, you need to specify that you are parsing a text
string. Otherwise, parse will assume you are giving it a file name and try to parse
the content of that file. The result of the call to parse is not, strictly speaking, an
expression. However, the type it writes is expression. That is an unfortunate
choice for this type because expression objects are actually lists of expressions.
The parse function can parse more than one expression, and sequences of
expressions are represented in the expression type. You can get the actual
expressions by indexing into this object.

(expr <- parse(text = "x + y; z * x"))
expression(x + y, z * x)
expr[[1]]
x + y
expr[[2]]
z * x

The deparse function is often used when you need a string that represents
an R object, for example, for a label in a plot. Many functions extract expressions
given as arguments and use those as default labels. There, you cannot just use
deparse. That would evaluate the expression you are trying to deparse before
you turn it into a string. You need to get the actual argument, and for that, you
need the substitute function.

f <- function(x) deparse(x)
g <- function(x) deparse(substitute(x))

x <- 1:4; y <- x**2
f(x + y)
[1] "c(2, 6, 12, 20)"
g(x + y)
[1] "x + y"

Substitution
The substitute function replaces variables for values in an expression. The
deparse(substitute(x)) construction you just saw exploits this by using
substitute to get the expression that the function parameter x refers to before
translating it into a string. If you just refer to x, you will force an evaluation of the
argument and get the value it evaluates to; instead, because you use substitute,
you get the expression that x refers to.

Getting the expression used as a function argument, rather than the value
of the expression, is a common use of substitute. Together with deparse,

Chapter 5 ■ Working With SubStitutionS

80

it is used to create labels for plots. It is also used for so-called nonstandard
evaluation—functions that do not evaluate their arguments following the default
rules for environments. Nonstandard evaluation, which you will return to in
the next section, obtains the expressions in arguments using substitute and
then evaluates them using eval in environments different from the function’s
evaluation environment.

Before you consider evaluating expressions, however, you should get a
handle on how substitute works. This depends a little bit on where it is called.
In the global environment, substitute doesn’t do anything, at least not unless
you give it more arguments than the expression (I get to that shortly). In all other
environments, if you just call substitute with an expression, the function will
search through the expression and find variables. If it finds a variable that has a
value in the current environment—whether it is a promise for a function call or
a variable you have assigned values to—it will substitute the variable with the
value. If the variable does not have a value in the environment, it is left alone. In
the global environment, it leaves all variables alone.

In the following example, you see that substitute(x + y) doesn’t get
modified in the global environment, even though the variables x and y are
defined. Inside the function environment for f, however, you substitute the two
variables with their values.

x <- 2; y <- 3
substitute(x + y)
x + y
f <- function(x, y) substitute(x + y)
f(2, 3)
2 + 3

With substitute, variables are not found the same way as they are in eval.
When substitute looks in an environment, it does not follow the parent pointer.
If it doesn’t find the variable to substitute in the exact environment in which it is
called, it will not look further. So, if you write functions like these:

y - 3
[1] 0
f <- function(x) substitute(x + y)
f(2)
2 + y
g <- function(x) function(y) substitute(x + y)
h <- g(2)
h(3)
x + 3

Chapter 5 ■ Working With SubStitutionS

81

the function f, when called, will have x in its evaluation environment and y in
the parent environment (which is the global environment), but substitute will
substitute only the local variable, x. For h, it will know y as a local variable and x
from its closure; however, only y, the local variable, will be substituted.

The actual environment that substitute uses to find variables is given as its
second argument. The default is just the current evaluating environment. You
can change that by providing either an environment or a list with a variable to
value mapping.

e <- new.env(parent = emptyenv())
e$x <- 2
e$y <- 3
substitute(x + y, e)
2 + 3
substitute(x + y, list(x = 2, y = 3))
2 + 3

Again, substitute will not follow parent pointers. Whether these are set
implicitly or explicitly in the environment, you pass on to the function.

x <- 2 ; y <- 3
e <- new.env(parent = globalenv())
substitute(x + y, e)
x + y
e <- new.env(parent = globalenv())
e$x <- 2
e$y <- 3
e2 <- new.env(parent = e)
substitute(x + y, e2)
x + y

If you want a variable substituted, you need to make sure it is in the exact
environment you provide to substitute.

Substituting Expressions Held in Variables
A common case when you manipulate expressions is that you have a reference to
an expression—for example, from a function argument—and you want to modify
it. In the global environment, you cannot do this directly with substitute. If you
give substitute a variable, it will just return that variable.

expr <- quote(x + y)
substitute(expr)
expr

Chapter 5 ■ Working With SubStitutionS

82

This is because substitute doesn’t replace the variable in the global
environment. You can get the expression substituted by explicitly giving
substitute the expression in an environment or a list.

substitute(expr, list(expr = expr))
x + y

Usually, though, you don’t manipulate expressions in the global
environment, and inside a function you can substitute an expression.

f <- function() {
 expr <- quote(x + y)
 substitute(expr)
}
f()
x + y

But what if you want to replace, say, y with 2 in the expression here? The
substitution, both in the global environment with an explicit list or inside a
function, will replace expr with quote(x + y), but you want to take that then
and replace y with 2. You cannot just get y from the local environment and give it
to substitute explicitly; that won’t work either.

f <- function() {
 expr <- quote(x + y)
 y <- 2
 substitute(expr)
}
f()
x + y
f <- function() {
 expr <- quote(x + y)
 substitute(expr, list(y = 2))
}
f()
expr

What you want to do is first replace expr with the expression quote(x + y)
and then replace y with 2. So, the natural approach is to write the following code,
which will not work:

substitute(substitute(expr, list(expr = expr)), list(y = 2))
substitute(expr, list(expr = expr))

Chapter 5 ■ Working With SubStitutionS

83

The problem here is that y doesn’t appear anywhere in the expression given
to the outermost substitute, so it won’t be substituted in anywhere. What you
get is just the following expression:

substitute(expr, list(expr = expr))

You can evaluate this to get x + y.

eval(substitute(substitute(expr, list(expr = expr)), list(y = 2)))

However, the evaluation first substitutes y into the innermost substitute
expression—where there is no y variable—and then substitutes expr into the
expression expr. The order is wrong.

To substitute variables in an expression that you hold in another variable,
you have to write the expression in the opposite order of what comes naturally.
You don’t want to substitute expr at the innermost level and then y at the
outermost level; you want to first substitute expr into a substitute expression
that takes care of substituting y. The outermost level substitutes expr into
substitute(expr, list(y = 2)), which you can evaluate to get y substituted
into the expression.

So, you create the expression you need to evaluate like this:

substitute(substitute(expr, list(y = 2)), list(expr = expr))
substitute(x + y, list(y = 2))

You complete the substitute like this:

eval(substitute(substitute(expr, list(y = 2)), list(expr = expr)))
x + 2

It might take a little getting used to, but you just have to remember that you
need to do the substitutions in this order.

Substituting Function Arguments
Function arguments are passed as unevaluated promises, but the second you
access them, they get evaluated. If you want to get hold of the promises without
evaluating them, you can use the substitute function. This gives you the
argument as an unevaluated—or quoted—expression.

This can be useful if you want to manipulate expressions or evaluate them in
ways different from the norm (as you will explore in the next section), but you do

Chapter 5 ■ Working With SubStitutionS

84

throw away information about which context the expression was supposed to be
evaluated in. Consider the following example:

f <- function(x) function(y = x) substitute(y)
g <- f(2)
g()
x
x <- 4
g(x)
x

In the first call to g, y has its default parameter, which is the one it gets
from its closure, so it substitutes to the x that has the value 2. In the second call,
however, you have the expression x from the global environment where x is 4.
In both cases, you just have the expression quote(x). From inside R, there is no
mechanism for getting the environment out of a promise, so you cannot write
code that modifies input expressions and then evaluates them in the enclosing
scope for default parameters and the calling scope for function arguments.1

You also have to be a little careful when you use substitute in functions
that are called with other functions. The expression you get when you
substitute is the exact expression a function gets called with. This expression
doesn’t propagate through other functions. In the following example, you call
the function g with the expression x + y, but since g calls f with expr, that is
what you get in the substitution.

f <- function(expr) substitute(expr)
f(x + y)
x + y
g <- function(expr) f(expr)
g(x + y)
expr
x <- 2; y <- 3
eval(f(x + y))
[1] 5
eval(g(x + y))
x + y

1In the package pryr, which you will return to at the end of this chapter, there are
functions, written in C, that do provide access to the internals of promises. Using pryr,
you can get hold of both the expression and the associated environment of a promise in
case you need it.

Chapter 5 ■ Working With SubStitutionS

85

The substitute function is harder to use safely and correctly than using
bquote and explicitly modifying call objects, but it is the function you need to
use to implement nonstandard evaluation.

Nonstandard Evaluation
Nonstandard evaluation refers to any evaluation that doesn’t follow the rules
for how you evaluate expressions in the local evaluation environment. When
you use eval to evaluate a function argument in an environment other than the
default (which is what you get from a call to environment()), you are evaluating
an expression in a nonstandard way.

Typical uses of nonstandard evaluation (NSE) are evaluating expressions
in the calling scope, which you have already seen examples of, and evaluating
expressions in data frames. You have already seen that you can use a list to
provide a variable to value mapping when using substitute, but you can also do
the same when using eval.

eval(quote(x + y), list(x = 2, y = 3))
[1] 5

Since a data frame is just a list of vector elements of the same length, you
can also evaluate expressions in the context of data frames.

d <- data.frame(x = 1:2, y = 3:3)
eval(quote(x + y), d)
[1] 4 5

When you use eval this way, where you explicitly quote the expression, you
are not really doing NSE. The quoted expression would not be evaluated in any
other, standard way. After all, you explicitly quote it, and if you didn’t quote it
here, x+y would be evaluated in the calling scope, not inside the data frame.

x <- 2; y <- 3
eval(x + y, d)
[1] 5

To do NSE, you have to explicitly substitute an argument, so you do not
evaluate the argument-promise in the calling scope and then evaluate it in an
alternative scope. For example, you can implement your own version of the with
function like this:

my_with <- function(df, expr) {
 eval(substitute(expr), df)
}

Chapter 5 ■ Working With SubStitutionS

86

d <- data.frame(x = rnorm(5), y = rnorm(5))
my_with(d, x + y)
[1] -1.4437635 0.9121930 -1.8908632 -0.2156309
[5] 1.8495491

Here, the expression x + y is not quoted in the function call, so normally
you would expect x + y to be evaluated in the calling scope. Because you
explicitly use substitute to swap in the argument in my_with, this does not
happen. Instead, you evaluate the expression in the context of the data frame.
This is nonstandard evaluation.

The real with function works a little better than your version. If the
expression you evaluate contains variables that are not found in the data frame,
then it takes these variables from the calling scope. Your version can also handle
variables that do not appear in the data frame, but it works slightly differently.

If you use the two functions in the global scope, you don’t see a difference.

z <- 1
with(d, x + y + z)
[1] -0.4437635 1.9121930 -0.8908632 0.7843691
[5] 2.8495491
my_with(d, x + y + z)
[1] -0.4437635 1.9121930 -0.8908632 0.7843691
[5] 2.8495491

However, if you use them inside functions, you do.

f <- function(z) with(d, x + y + z)
f(2)
[1] 0.5562365 2.9121930 0.1091368 1.7843691
[5] 3.8495491
g <- function(z) my_with(d, x + y + z)
g(2)
[1] -0.4437635 1.9121930 -0.8908632 0.7843691
[5] 2.8495491

What is going on here?
Well, eval takes a third argument that gives the enclosing scope for the

evaluation. In my_with you haven’t provided this, so you use the default value,
which is the enclosing scope where you call eval, which is the evaluating
environment of my_with. You haven’t defined z in this environment, but the
enclosing scope includes the global environment where you have defined z.
When you evaluate the expression in my_with, you find z in the global
environment. In contrast, when you use with, the enclosing environment is the
calling environment.

Chapter 5 ■ Working With SubStitutionS

87

You can change my_with to have the same behavior thusly:

my_with <- function(df, expr) {
 eval(substitute(expr), df, parent.frame())
}

f <- function(z) with(d, x + y + z)
f(2)
[1] 0.5562365 2.9121930 0.1091368 1.7843691
[5] 3.8495491
g <- function(z) my_with(d, x + y + z)
g(2)
[1] 0.5562365 2.9121930 0.1091368 1.7843691
[5] 3.8495491

Now, you have both typical uses of NSE: evaluating in a data frame and
evaluating in the calling scope.

Nonstandard Evaluation from Inside Functions
Nonstandard evaluation is hard to get right once you start using it from inside
other functions. It is a convenient approach to simplify the syntax for many
operations when you work with R interactively or when you write analysis
pipelines in the global scope, but because substitutions tend to work verbatim
on the function arguments that you give functions, once arguments get passed
from one function to another, NSE gets tricky.

Consider the following example:

x <- 2; y <- 3
f <- function(d, expr) my_with(d, expr)
f(d, x + y)
[1] 5
g <- function(d, expr) my_with(d, substitute(expr))
g(d, x + y)
expr

Here, you make two attempts at using my_with from inside a function, and
neither works as intended. In f, the expr gets evaluated in the global scope.
When you use the variable inside the function, the promise gets evaluated before
it is passed along to my_with. In g, you do substitute, but it is substitute(expr)
that my_with sees—remember, it does not see the expression as a promise but
substitutes it to get an expression—so you don’t actually get the argument
substituted. The NSE in my_with prevents this.

Chapter 5 ■ Working With SubStitutionS

88

If you want functions that do NSE, you really should write functions that work
with expressions and do “normal” evaluation on those instead. You can make a
version of my_with that expects the expression to be already quoted, which you
can use in other functions, and then define my_with to do the NSE like this:

my_with_q <- function(df, expr) {
 eval(expr, df, parent.frame())
}
my_with <- function(df, expr) my_with_q(d, substitute(expr))

g <- function(d, expr) my_with_q(d, substitute(expr))
g(d, x + y)
[1] -1.4437635 0.9121930 -1.8908632 -0.2156309
[5] 1.8495491
my_with(d, x + y)
[1] -1.4437635 0.9121930 -1.8908632 -0.2156309
[5] 1.8495491

Writing Macros with NSE
Since NSE allows you to evaluate expressions in the calling scope, you can use
it to write macros, that is, functions that work as shortcuts for statements where
they are called. These differ from functions, which cannot generally modify data
outside of their own scope. However, I do not recommend using macros unless
you have very good reasons to—the immutability of data is an important feature
of R, and violating it with macros goes against this. However, because it is a good
example of what you can do with NSE, I will include the example here.

Consider the following code. This example is a modified implementation
of the macro code presented in Programmer’s Niche: Macros in R
(https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf) by Thomas
Lumley (R Journal, 2001). I have simplified the macro-making function a bit;
you can see the full version in the original article online.

make_param_names <- function(params) {
 param_names <- names(params)
 if (is.null(param_names))
 param_names <- rep("", length(params))
 for (i in seq_along(param_names)) {
 if (param_names[i] == "") {
 param_names[i] <- paste(params[[i]])
 }
 }
 param_names
}

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

Chapter 5 ■ Working With SubStitutionS

89

make_macro <- function(..., body) {
 params <- eval(substitute(alist(...)))
 body <- substitute(body)

 # Construct macro
 f <- eval(substitute(
 function() eval(substitute(body), parent.frame())
))

 # Set macro arguments
 param_names <- make_param_names(params)
 names(params) <- param_names
 params <- as.list(params)
 formals(f) <- params

 f
}

The first function simply extracts the names from a list of function parameters
and makes sure that all parameters have a name. This is necessary later when you
construct the formals list of a function. In a formals list, all parameters must have
a name, and you construct these names with this function. The second function is
the interesting one. Here you construct a macro by constructing a function whose
body will be evaluated in its calling scope. You first get hold of the parameters
and body the macro should have. Then you get the parameters into a list by
substituting ... in and then evaluating the alist(...) expression. Without the
substitution you would get the argument list that just contains ..., but with the
substitution you get the arguments that are passed to the make_macro function,
except for the named argument body that you just translate into the expression
passed to the make_macro with another substitute call.

The function you construct is where the magic happens. You create the
expression

substitute(function() eval(substitute(body), parent.frame()))

where body will be replaced with the expression that you pass to the macro.
When you evaluate this, you get the function

function() eval(substitute(<body>), parent.frame())

where <body> is not the symbol body but the body expression. This is a function
that doesn’t take any arguments (yet) but will substitute variables in <body>
that are known in its calling scope—the parent.frame()—before evaluating the
resulting expression.

Chapter 5 ■ Working With SubStitutionS

90

You can see this in action with this small example:

(m <- make_macro(body = x + y))
function ()
eval(substitute(x + y), parent.frame())
<environment: 0x7f8586d49178>

When you call m, it will evaluate x + y in its calling scope, so you can set the
variables x and y in the global scope and evaluate it thusly:

x <- 2; y <- 4
m()
[1] 6

The last part of the make_macro code sets the formal arguments of the macro.
It simply takes the parameters you have specified, makes sure they all have a
name, and then turns them into a list and sets formals(f). After that, make_
macro returns the constructed function.

You can use this function to create a macro that replaces specific values in a
column in a data frame with NA like this:

set_NA_val <- make_macro(df, var, na_val,
 body = df$var[df$var == na_val] <- NA)

The macro you construct takes three parameters: the data frame, df; the
variable (column) in the data frame, var; and the value that corresponds to
NA, na_val. Its body then is the following expression with df, var, and na_val
replaced with the arguments passed to the macro:

df$var[df$var == na_val] <- NA

You can use it like this:

(d <- data.frame(x = c(1,-9,3,4), y = c(1,2,-9,-9)))
x y
1 1 1
2 -9 2
3 3 -9
4 4 -9
set_NA_val(d, x, -9); d
x y
1 1 1
2 NA 2
3 3 -9

Chapter 5 ■ Working With SubStitutionS

91

4 4 -9
set_NA_val(d, y, -9); d
x y
1 1 1
2 NA 2
3 3 NA
4 4 NA

Here, you see that the constructed set_NA_val macro modifies a data frame in
the calling scope. It saves some boilerplate code from being written, but at the cost of
keeping parameter values immutable. The more traditional function solution where
you return updated values is probably much more readable to most R programmers.

set_NA_val_fun <- function(df, var, na_val) {
 df[df[,var] == na_val, var] <- NA
 df
}
(d <- data.frame(x = c(1,-9,3,4), y = c(1,2,-9,-9)))
x y
1 1 1
2 -9 2
3 3 -9
4 4 -9
(d <- set_NA_val_fun(d, "x", -9))
x y
1 1 1
2 NA 2
3 3 -9
4 4 -9
(d <- set_NA_val_fun(d, "y", -9))
x y
1 1 1
2 NA 2
3 3 NA
4 4 NA

Alternatively, here’s the magrittr pipeline version:

library(magrittr)
d <- data.frame(x = c(1,-9,3,4), y = c(1,2,-9,-9))
d %<>% set_NA_val_fun("x", -9) %>% set_NA_val_fun("y", -9)
d
x y
1 1 1

Chapter 5 ■ Working With SubStitutionS

92

2 NA 2
3 3 NA
4 4 NA

Modifying Environments in Evaluations
The reason you can modify variables in macros is that you can modify
environments. Actual values are immutable, but when you modify the data frame
in the previous example, you are replacing the reference in the environment
to the modified data. If other variables refer to the same data frame, they will
still be referring to the original version. Even with macros, you cannot actually
modify data, but you can modify environments, and because you can evaluate
expressions in environments different from the current evaluating environment,
you can make it appear as if you are modifying data in the calling environment.

You can see this by examining the evaluation environment explicitly when
you evaluate an assignment. If you explicitly make an environment and evaluate
an assignment in it, you see that it gets modified.

e <- list2env(list(x = 2, y = 3))
eval(quote(z <- x + y), e)
as.list(e)
$z
[1] 5
##
$y
[1] 3
##
$x
[1] 2

This environment has the global environment as its parent. Don’t try
this with the empty environment as its parent. If you do, it won’t know the <-
function. What you see here is that you modify e by setting the variable z.

You can also evaluate expressions in lists, so you can attempt the same here:

l <- list(x = 2, y = 3)
eval(quote(z <- x + y), l)
l
$x
[1] 2
##
$y
[1] 3

Chapter 5 ■ Working With SubStitutionS

93

Here you see that the list is not modified. It is only environments you can
modify in lists, and while you can evaluate an assignment in a list using eval,
you cannot actually modify the list.

Accessing Promises Using the pryr Package
As I mentioned, there is no mechanism in pure R to get access to the internals
of promises, so if you use substitute to translate a function argument into its
corresponding expression, then you lose information about which environment
the expression should be evaluated in. You can, however, use the pryr package
to examine promises. This package has the function promise_info that tells you
both what the expression is and the environment it belongs to.

Consider this:

library(pryr)
f <- function(x, y) function(z = x + y) promise_info(z)
g <- f(2, 3)
g()
$code
x + y
##
$env
<environment: 0x7f8586232b78>
##
$evaled
[1] FALSE
##
$value
NULL
x <- 4; y <- 5
g(x + y)
$code
x + y
##
$env
<environment: R_GlobalEnv>
##
$evaled
[1] FALSE
##
$value
NULL

Chapter 5 ■ Working With SubStitutionS

94

For a promise you get the expression it corresponds to in the code field, the
environment it belongs to in the env field, and whether it has been evaluated
yet in the evaled field. If it has been evaluated, the corresponding value is in
the value field. In the two different calls to g, you see that the code field is the
same but the environment is different. In the first call, where you use the default
values for parameter z, the environment is the f closure, and in the second,
where you call g with an expression from the global environment, the promise
environment is also the global environment.

You can see the difference between when a promise has been evaluated and
before it is evaluated in the following example:

g <- function(x) {
 cat("=== Before evaluation =====\n")
 print(promise_info(x))
 force(x)
 cat("=== After evaluation ======\n")
 promise_info(x)
}
g(x + y)
=== Before evaluation =====
$code
x + y
##
$env
<environment: R_GlobalEnv>
##
$evaled
[1] FALSE
##
$value
NULL
##
=== After evaluation ======
$code
x + y
##
$env
NULL
##
$evaled
[1] TRUE
##
$value
[1] 9

Chapter 5 ■ Working With SubStitutionS

95

The code doesn’t change when you evaluate a promise, but the environment
is removed. You do not need to hold a reference to an environment you no
longer need, and if you are the only one holding on to this environment, you can
free it for garbage collection by no longer holding on to it when you don’t need it
any longer. The result of evaluating the promise is put in value, and evaled is set
to TRUE.

You can use the promise information to modify an environment and still
evaluate it in the right scope. You just need to get hold of the code, which you
can get either by the expression

eval(substitute(
 substitute(code, list(y = quote(2 * y))),
 list(code = pi$code)))

or the expression

eval(substitute(
 substitute(expr, list(y = quote(2 * y)))))

where expr is the parameter that holds the promise, and pi is the result of calling
promise_info(expr). Neither is particularly pretty, and you have to remember
to construct the expressions inside out, but that is the way you can get an
expression substituted in for a variable that holds it and then modify it. Of the
two, the traditional approach—the second of the two—is probably the simplest.

In both cases, you are creating the expression

substitute(<expr>, list(y = quote(2 * y)))

where <expr> refers to the expression in the promise, and you then evaluate this
expression to substitute y for quote(2 * y).

Evaluating the expression once you have modified it is almost trivial in
comparison. You can just use eval(expr, pi$env).

f <- function(x, y) function(expr = x + y) {
 pi <- promise_info(expr)
 expr <- eval(substitute(
 substitute(expr, list(y = quote(2 * y)))))
 value <- eval(expr, pi$env)
 list(expr = expr, value = value)
}
g <- f(2, 2)
g()
$expr

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Working With SubStitutionS

96

x + 2 * y
##
$value
[1] 6
x <- y <- 4
g(x + y)
$expr
x + 2 * y
##
$value
[1] 12
z <- 4
g(z)
$expr
z
##
$value
[1] 4

In the substitution, when you create expr, it is important that you replace y
with quote(2 * y) and not simply 2 * y. If you did the latter, then y would be
evaluated in the standard way and would refer to the y in the enclosing scope,
which is the parameter given to the call to f that creates g. Of course, that could
be what you wanted: substitute whatever y is in the input expression with the y
you have in the enclosing scope. In that case, the code would simply look like this:

f <- function(x, y) function(expr = x + y) {
 pi <- promise_info(expr)
 expr <- eval(substitute(
 substitute(expr, list(y = 2 * y))))
 value <- eval(expr, pi$env)
 list(expr = expr, value = value)
}
g <- f(2, 2)
g()
$expr
x + 4
##
$value
[1] 6
x <- y <- 4
g(x + y)
$expr

Chapter 5 ■ Working With SubStitutionS

97

x + 4
##
$value
[1] 8
z <- 4
g(z)
$expr
z
##
$value
[1] 4

In both cases, you modify the expression in the promise—just in two
different ways—and then you evaluate it in the promise scope. In the first case,
y is taken from the promise scope if it appears in the modified expression; in the
second case, y is replaced by the value you have in the enclosing scope.

99© Thomas Mailund 2017
T. Mailund, Metaprogramming in R, DOI 10.1007/978-1-4842-2881-4

Afterword

You have now seen the various techniques used for manipulating the actual
language constructs of R from within R programs. Manipulating the actual
language, doing metaprogramming, gives you the tools to extend R in various
ways. You can write functions for modifying other functions—as you did with
the code for computing the derivative of a function—or you can write small
embedded domain-specific languages for manipulating or querying data frames,
as done in dplyr and ggplot2. You know how to do nonstandard evaluation,
changing how expressions are evaluated so you can evaluate them in different
scopes than what they would usually be evaluated in, which can often simplify
how functions are used in pipelines; however, you should be careful with using
such programming when writing programs since it can be hard to reason about
expressions passed between functions.

You don’t want to overdo metaprogramming. Someone reading your code
will, presumably, know how to read R code, so you shouldn’t break the person’s
expectations for how the code will be evaluated. If you develop a domain-specific
language and use metaprogramming for this, you are generally fine; someone
who can read the expressions you implement there will know how they behave,
but use metaprogramming with care. It is a powerful tool but also a very big gun
to shoot yourself in the foot with if you are not careful.

101© Thomas Mailund 2017
T. Mailund, Metaprogramming in R, DOI 10.1007/978-1-4842-2881-4

��������� A
Accessing promises, pryr package, 97
Actual function parameters

call, 24, 26
deparse function, 23
global variables, 25–26
match.call function, 27
plot function, 23
substitute, 21–23

alist(…) expression, 89
Autoload environment, 36
Automatic differentiation, 69–75

��������� B
bquote function, 74, 77–78

��������� C
Calling function

accessing actual function
parameters (see Actual
function parameters)

accessing, calling
environment

bind function, 30
bindings$bindings, 33
delayedAssign, 33
evaluating

environment, 29
expression function, 29, 31

expression function, 32
nested, 28
parent.frame, 28, 30

components, current function, 20
Constructing functions, 13–14

��������� D
delayedAssign function, 8
deparse function, 78
diff_expr function, 78

��������� E
Empty environment, 36
Environment graph, 45–46
Environments

Autoload, 36
base package, 40
baseenv() environment, 40
call stack, parent frame

environments, 44, 46
chains of linked, 44
environmentName, 38, 40
explicitly creation, 51–53
and expression evaluation, 54
function calls, 44–47
graph, nested

functions, 45–46
graph, packages

Depends:, 42
graphics, 41

Index

■ INDEX

102

Imports:, 42
MASS, 41
NAMESPACE, 42
sd function, 43
stats, 41–43
stats::sd and base::ls, 44
Suggests:, 42

imported functions, 40
manipulating, 48–50
new.env function, 51
parent.frame function, 44
search function, 37, 38

Evaluation environment, 3
Expressions, 35–36

accessing and manipulating
control structures, 58–60
function calls, 60–62

automatic differentiation, 69–75
simplification

arguments, 64, 67
bquote, 65
character strings, 64
division and

exportation, 66
expr[[1]], 67
function call, 64, 66, 68
function symbols, 67–68
handling calls, 63
multiplication, 65
named function, 68
quote(-simplified), 65
simplify_call function, 63, 67

��������� F, G, H, I, J, K, L
Formals parameters, 20
Function arguments, 83
Functions

actual parameters (see Actual
function parameters)

calling, 6–8
components, current function

environment function, 19
formal parameter, 18
parent.env, 20
sys.function, 17–18

constructing, 13–14
delayedAssign, 8
manipulating

environment, 6
eval function, 4
formal parameters, 1–2
function bodies, 3–5

modifying, 9–12

��������� M
make_macro, 89–90
match.call function, 27
Modifying functions, 9–12

��������� N, O
Nonstandard evaluation (NSE)

evaluate expressions, 85
explicitly substitute, 85–86
inside functions, 87
modifying

environments, 92
my_with, 86
substitute, 85
with function, 85–86
writing macros, 88–92

��������� P
parse function, 79
pryr package, 93

��������� Q
Quote function, 57
Quote expressions, 77

��������� R
Recursive functions, 78

Environments (cont.)

■ INDEX

103

��������� S, T, U
Search function, 37
Substitution

deparse(substitute(x)), 79
expressions, variables, 81–83
function arguments, 83–84

implicitly/explicitly, 81
substitute function, 79–80
variables, 80–81

��������� V, W, X, Y, Z
verbatim expressions, 77

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Anatomy of a Function
	Manipulating Functions
	Formals
	Function Bodies
	Function Environments

	Calling a Function
	Modifying Functions
	Constructing Functions

	Chapter 2: Inside a Function Call
	Getting the Components of the Current Function
	Accessing Actual Function Parameters
	Accessing the Calling Scope

	Chapter 3: Expressions and Environments
	Expressions
	Chains of Linked Environments
	Environments and Function Calls
	Manipulating Environments
	Explicitly Creating Environments
	Environments and Expression Evaluation

	Chapter 4: Manipulating Expressions
	The Basics of Expressions
	Accessing and Manipulating Control Structures
	Accessing and Manipulating Function Calls

	Expression Simplification
	Automatic Differentiation

	Chapter 5: Working with Substitutions
	A Little More on Quotes
	Parsing and Deparsing
	Substitution
	Substituting Expressions Held in Variables
	Substituting Function Arguments

	Nonstandard Evaluation
	Nonstandard Evaluation from Inside Functions
	Writing Macros with NSE
	Modifying Environments in Evaluations

	Accessing Promises Using the pryr Package

	Afterword
	Index

