
www.allitebooks.com

http://www.allitebooks.org

CoreOS in Action
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CoreOS in Action
RUNNING APPLICATIONS

ON CONTAINER LINUX

MATT BAILEY

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Review editor: Ivan Martinović
PO Box 761 Project editor: Tiffany Taylor
Shelter Island, NY 11964 Copyeditor: Tiffany Taylor
 Proofreader: Katie Tennant

Technical proofreader: Ivan Kirkpatrik
Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617293740
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17
www.allitebooks.com

http://www.allitebooks.org

 This book is dedicated to my wife, Jenn; and my kids, Adam and Melanie.
Without your gracious absence, I wouldn’t have been able to

substitute sleepless nights of diaper changing
for sleepless nights of book writing.
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

brief contents

PART 1 GETTING TO KNOW COREOS.. 1
1 ■ Introduction to the CoreOS family 3
2 ■ Getting started on your workstation 17
3 ■ Expecting failure: fault tolerance in CoreOS 35

PART 2 APPLICATION ARCHITECTURE.. 51
4 ■ CoreOS in production 53
5 ■ Application architecture and workflow 70
6 ■ Web stack application example 78
7 ■ Big Data stack 102

PART 3 COREOS IN PRODUCTION... 121
8 ■ CoreOS on AWS 123
9 ■ Bringing it together: deployment 145

10 ■ System administration 158
vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
acknowledgments xiii
preface xv
about this book xvi

PART 1 GETTING TO KNOW COREOS.............................1

1 Introduction to the CoreOS family 3
1.1 Meet CoreOS 4

The CoreOS family 5 ■ etcd and the distributed configuration
state 6 ■ fleet and the distributed service state 7 ■ systemd as
CoreOS’s init system 7 ■ Docker and/or rkt, your container
runtimes 7 ■ Initial configuration with cloud-config 8

1.2 Fitting together the core services 9
The CoreOS workflow 9 ■ Creating and running services 10
Creating your unit files 11 ■ Service topology and failover 13

1.3 Summary 16

2 Getting started on your workstation 17
2.1 Setting up Vagrant 18

Requirements and setup 19 ■ Getting Vagrant up and
running 20 ■ Getting a CoreOS cluster running in Vagrant 24
ix

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
2.2 Tooling for interacting with CoreOS 24
fleetctl 26 ■ etcdctl 30 ■ The Toolbox container 32
Conceptual shift for Linux admins 33

2.3 Summary 34

3 Expecting failure: fault tolerance in CoreOS 35
3.1 The current state of monitoring 36

What’s lacking 37 ■ What CoreOS does differently 38

3.2 Service scheduling and discovery 39
Deploying production NGINX and Express 40 ■ Using etcd
for configuration 40

3.3 Breaking things 46
Simulating a machine failure 46 ■ Self-repair 47

3.4 Application architectures and CoreOS 48
Common pitfalls 48 ■ Greenfield and legacy systems 49
Configuration management 49

3.5 Summary 49

PART 2 APPLICATION ARCHITECTURE...........................51

4 CoreOS in production 53
4.1 Planning and deployment options 54

Amazon Web Services 54 ■ Using in-house VM
infrastructure 56 ■ On bare metal 57

4.2 Networking considerations 57
How programmable is your network? 58 ■ Up and running
with flannel 59

4.3 Where is your mass storage? 62
Data systems background 63 ■ NAS and storage outsourcing 64
Ceph 65

4.4 Summary 69

5 Application architecture and workflow 70
5.1 Your application and the twelve-factor methodology 70

CoreOS’s approach 71 ■ The architecture checklist 73

CONTENTS xi
5.2 The software development cycle 74
Codebase and dependencies 74 ■ Environment logic and
microservices 75 ■ The application edge 77

5.3 Summary 77

6 Web stack application example 78
6.1 Scope of the example 79

What does this app do? 80 ■ App architecture overview 81
The target environment 82

6.2 Setting up persistence layers 83
Couchbase setup 84 ■ Setting up memcached 86

6.3 Application layer 88
The worker 88 ■ The web application 93

6.4 Where to from here? 99
Responding to failure 99 ■ What’s missing? 100

6.5 Summary 101

7 Big Data stack 102
7.1 Scope of this chapter’s example 103

Adding to the architecture 103 ■ New data source 104

7.2 New stack components 105
Twitter scraper 105 ■ Orchestrating Couchbase 107
Startup and verification 115 ■ Starting your workers 116

7.3 Breaking your stack 118
Watching the failure 118 ■ Restoring the machine 119

7.4 Summary 120

PART 3 COREOS IN PRODUCTION..............................121

8 CoreOS on AWS 123
8.1 AWS background 124

AWS regions and uptimes 125 ■ AWS services 125
Chapter requirements 126 ■ CloudFormation template 126
Cloud-config in AWS 137 ■ Deployment 141

8.2 Summary 144

CONTENTSxii
9 Bringing it together: deployment 145
9.1 New CloudFormation objects 147

Parameter and output 147 ■ AWS Lambda 148
API Gateway 150 ■ Updating your stack 151

9.2 Deploying the app! 152
Web sidekick 152 ■ Initial deployment 153

9.3 Automated deployment 155
Docker Hub setup 155 ■ Pushing a change 156

9.4 Summary 157

10 System administration 158
10.1 Logging and backups 159

Setting up logs 159 ■ Updating cloud-config 160
awslogs in units 161 ■ Viewing logs 162
Backing up data 163

10.2 Scaling systems 165
Scaling your cluster 165 ■ Scale partitioning 167
Migrating services 168

10.3 CoreOS horizon 169
New toys 169 ■ rkt 170

10.4 Summary 174

index 175

acknowledgments
I would like to thank Manning Publications for reaching out to me to start writing this
book; and express my thanks to publisher Marjan Bace, to Cynthia Kane for guiding
me through this long process, to Ivan Kirkpatrick for his very detailed effort in the
technical review of this book, to Tiffany Taylor for helping push the last bits over the
line, and to everyone on the editorial and production teams, including Janet Vail,
Katie Tennant, Dottie Marsico, and many others who worked behind the scenes. In
addition, I’d like to thank all my friends in #gh and #omgp (you know who you are) for
always providing encouragement.

 I can’t thank enough the amazing group of technical peer reviewers, led by Ivan
Martinović —Michael Bright, Raffaello Cimbro, Luke Greenleaf, Mike Haller, Sriram
Macharla, Palak Mathur, Javier Muñoz Mellid, Thomas Peklak, Austin Riendeau, Kent
Spillner, Antonis Tsaltas, Filippo Veneri, and Marco Zuppone—and the talented
forum contributors. Their contributions included catching technical mistakes, errors
in terminology, and typos, and making topic suggestions. Each pass through the
review process and each piece of feedback implemented through the forum topics
shaped and molded the manuscript.
xiii

preface
As is probably true for many of you reading this book, I started out in the technology
industry as a systems administrator for Linux and UNIX systems and networks. Also,
like many, I was never satisfied with the levels of (and confidence in) automation avail-
able to me. Some of us worked with things like CFEngine, Puppet, and Chef, to man-
age more with less and to do more serious engineering and less “systems janitoring”
with our technology. Then containers became popular, and CoreOS was launched to
bridge the gap between containers and systems administration at scale.

 I began using CoreOS in late 2013 when it was just getting started. It was the OS
that most systems admins knew had to exist eventually: an integrated way to orches-
trate services as an abstraction from the pool of compute resources they run on. Man-
ning reached out to me in late 2015 to see if I was interested in writing a CoreOS
book, and I pulled together a proposal and started writing. I also began to feel guilty
doing anything other than writing when I had spare time without my kids around. This
is my first book, and I’ve discovered that coming up with the content and typing it in
Vim isn’t the hardest part: it’s finding the magic alignment of motivated book-writing
time and uninterrupted free time. These things rarely happen at once, especially
when you have young kids.

 I hope this book informs and challenges you. The progression of this book, in a
way, follows the progression of my career and the progression of this slice of technol-
ogy. Specifically, CoreOS and systems like it are intended to turn mundane operations
work into software development, and to turn sysadmin firefighting into declarative
engineering. So, this book begins with nuts and bolts, and ends with a complete soft-
ware stack.
xv

about this book
This book serves as a resource for application architects, systems administrators, and
anyone seeking information on how to do computing at a large scale without sacrific-
ing development workflow or operational simplicity. CoreOS and its suite of compo-
nents provide a solid approach to systems design in which high availability, service
discovery, and fault tolerance become less painful to implement and are part of your
core infrastructure and application architecture from the beginning. CoreOS and the
concepts it espouses are useful to both developers and operations professionals;
CoreOS realizes the intents of containerization in a way that becomes much easier to
operationalize, maintain, and iterate.

 If you’re reading this book, you’ve probably noticed a general movement in tech-
nology to break down silos and bring together the worlds of development and opera-
tions. In many organizations, the roles of operations professionals and application
architects are being combined in a role such as DevOps or Site Reliability Engineer-
ing. As a result, some people may end up with knowledge gaps. At times, this book
may seem to mix information that’s obvious to you with more-advanced topics, but
that’s because I’ve tried to provide a complete picture for people who may be missing
parts of the foundational knowledge required to be successful with CoreOS.

Who should read this book
This book is intended for systems administrators, software engineers, and everyone in
between. The book goes into both the operationalization and software architecture of
building services using CoreOS; if you’re someone who has any interest in building
scalable, fault-tolerant systems, this book is for you.
xvi

ABOUT THIS BOOK xvii
 There isn’t a lot of functional code in this book—mostly, I show you configuration
files and some YAML templates for Amazon Web Services. A basic understanding of
Bash and general Linux system administration should be enough to get you started.
Later in the book, there are examples of a Node.js service with a JavaScript front end,
but JavaScript experience isn’t required.

 Before I describe the book’s chapters, let’s look at some technological background
and history that led to the creation of CoreOS.

Background
Since around 2008, the need to scale out systems to meet the needs of an organiza-
tion’s customers or manage the load of its own internal compute resources has
spawned an entire industry of services, tooling, and consultancies to achieve these
scale goals with varying amounts of ease. The ultimate goal was always to manage
more scale with less resources—and to do so quickly. These platform-as-a-service
(PaaS), infrastructure-as-a-service (IaaS), and configuration-management suites were
all designed to shift the burden of systems administration into automated systems so
that organizations could “easily” decouple IT manpower from scaling goals. The ideal
was captured in a metaphor (which should be attributed to Bill Baker, as best I can
find) that you should treat your infrastructure like cattle, not like pets. That is, your
unit of computing resource is a commodity or an appliance, not a discrete, well-
groomed server with a name. You dispose of cattle if they get sick; you nurse pets back
to health. You should make the most of automation, and you shouldn’t care too much
if you have to rebuild things; doing so should be easy and repeatable.

 But the reality of attempting to achieve these goals of repeatability and ephemeral-
ity is often exceedingly complex. Your particular way of doing it can become a black
box of siloed logic and workflow, even if you’re using widely used tools. Configuration-
management systems like Chef and Puppet are particularly vulnerable to this com-
plexity—not because they were designed to be, but because organizations often run
into obstacles (technical and nontechnical) that end up being solved in ways that are
orthogonal to the best practices for these tools. In the IaaS world, organizations often
treat their public cloud compute resources just like they treated their on-site
resources, mostly because IaaS has the flexibility to allow this, even if it leads to
unmaintainable systems. Enter containers.

Containers

LXC was an early effort to create a virtual runtime within the user space of Linux. It was
a heavier abstraction than chroots and jails, but a lighter abstraction than full virtual-
ization. Few people used or heard of LXC until Docker started up in 2013 and added a
lot of features around LXC’s technology, eventually entirely replacing LXC’s compo-
nents with its own. In my opinion, Docker, and containerization in general, solves the
problems that virtualization was supposed to: simple isolation of concerns, replication
of systems, and immutable runtime state. The benefits are obvious: dependency

ABOUT THIS BOOKxviii
management becomes easily contained; runtime is standardized; and the approach is
developer-friendly enough that development and operations can use the same tools
and, byte for byte, the same container. Thus, “It works for me, but not in production”
is uttered far fewer times. CoreOS is the operationalization of this computing model in
a way that uses the advantages of containerization in a generic, distributed system
model.

 Throughout this book, you’ll learn how to take advantage of this computing
model. You’ll learn how to deploy and manage CoreOS both in a prototype environ-
ment and in production in the cloud. You’ll also learn how to design and adapt your
application stacks to operate well in this context. In addition to the OS, I’ll cover each
of CoreOS’s components in detail, along with their application: etcd for configuration
and discovery, rkt for a different approach to the container runtime, fleet for distrib-
uted service scheduling, and flannel for network abstraction.

 Distributed computing is nothing new; many models and software packages for dis-
tributed systems have been around since the dawn of computing. But most of these
systems have been historically obscure, highly proprietary, or cloistered in particular
industries like scientific computing. Some of the oldest designs exist today only to sup-
port legacy systems from the 1970s that powered distributed computing for main-
frames and minicomputers.

History and motivations behind CoreOS

The concept of single system image (SSI) computing is an OS architecture that hasn’t
seen much activity since the 1990s, except for a few cases that have longstanding sup-
port to run legacy systems. SSI is an architecture that presents many computers in a
cluster as a single system. There is a single filesystem, shared interprocess communica-
tion (IPC) via shared runtime space, and process checkpointing/migration.
MOSIX/openMosix, Kerrighed, VMScluster, and Plan 9 (natively supported) are all
SSI systems. Plan 9 has probably received the most current development activity, which
should tell you something about the popularity of this computing model.

 The main drawbacks of SSI are, first, that the systems are often extremely difficult
to configure and maintain and aren’t geared toward generic use. Second, the field has
stagnated significantly: there’s nothing new in SSI, and it has failed to catch on as a
popular model. I think this is because scientific and other Big Data computing have
embraced grid-compute, batch operating models like Condor, BOINC, and Slurm.
These tools are designed to run compute jobs in a cluster and deliver a result; SSI’s
shared IPC provides little benefit for these applications, because the cost (in time) of
data transmission is eclipsed by the cost of the blocking batch process. In the world of
application server stacks, abstractions by protocols like HTTP and distributed queues
have also made shared IPC not worth investing in.

 The problem space now for distributed computing is how to effectively manage
large-scale systems. Whether you’re working on a web stack or distributed batch pro-
cessing, you may not need shared IPC, but the other things that came with SSI have
more apparent value: a shared filesystem means you configure only one system, and

ABOUT THIS BOOK xix
process checkpointing and migration mean nodes are disposable and more “cattle-
like.” Without shared IPC, these solutions can be difficult to implement. Some organi-
zations turn to configuration-management systems that apply configuration to many
machines, or set up extremely complicated monitoring systems full of custom logic. In
my experience, configuration-management systems fall short of the goal by only
ensuring any state exactly at runtime; after they’ve made their pass, the state becomes
unknown. These systems are more focused on repeatability than consistency, which is
a fine goal but doesn’t provide the reliability of a shared configuration via a distrib-
uted filesystem. Monitoring systems that attempt to also manage processes are often
either application-specific or hairy to implement and maintain.

 Intentionally or not, container systems like Docker laid the groundwork for resur-
recting the advantages of SSI without having to implement shared IPC. Docker guaran-
tees runtime state and provides an execution model that’s abstracted from the OS.
“But Matt,” you may think, “this is the complete opposite of SSI. Every discrete system
now has an even more isolated configuration and runtime, not shared!” Yes, this
approach is orthogonal, but it achieves the same goals. If runtime state is defined only
once (in the Dockerfile, for example) and maintained throughout the life of the con-
tainer, you’ve reached the goal of a single point of configuration. And if you can
orchestrate the discrete process state both remotely and independently from the OS
and the cluster node it’s running on, you’ve achieved the goal of cluster-wide process
scheduling of generic services.

 Realizing those possibilities is where there needs to be tooling independent of the
containerization system. This is where CoreOS and its suite of systems come in.
CoreOS provides just enough OS to run a few services; the rest is handled by the
orchestration efforts of etcd and fleet—etcd provides a distributed configuration from
which containers can define their runtime characteristics, and fleet manages distrib-
uted initialization and scheduling of containers. Internally, CoreOS also uses etcd to
provide a distributed lock to automatically manage OS upgrades, which in turn uses
fleet to balance services across the cluster so that a node can upgrade itself.

This book’s roadmap
Chapter 1 starts you off with a brief introduction to the CoreOS ecosystem. I offer
some explanation of the core systems in the container OS and a brief example that
isn’t really designed for you to execute, but rather to illustrate how the parts fit
together.

 Chapter 2 walks you through the process of setting up a local CoreOS environment
that you’ll use throughout most of the rest of the book as your sandbox. This is also
the process people use in the real world to build things for CoreOS, so it’s a good idea
to pay close attention to this chapter.

 Chapter 3 teaches you about CoreOS’s approach to fault tolerance and system
upgrades, and will walk you through setting up a fault-tolerant web application. You’ll
build on this “Hello World” example in the remainder of the book.

ABOUT THIS BOOKxx
 Chapter 4 discusses real-world requirements and targets for a production deploy-
ment of CoreOS, as well as a real-world example of how to deal with the option of dis-
tributed filesystems in a cluster.

 Chapter 5 goes into the twelve-factor app methodology and how to apply it to
application stacks that you want to deploy in CoreOS. The chapter ends with a preview
of how you’ll apply this methodology in chapter 6.

 Chapter 6 extends the example from chapter 3 into a more realistic web applica-
tion with many layers. You’ll also be introduced to a persistent database layer.

 Chapter 7 takes the persistence layer from chapter 6 and dives deep into how to
make it fault tolerant and scalable across an entire cluster of machines.

 Chapter 8 takes a dive into practical deployment of CoreOS into Amazon Web Ser-
vices (AWS).

 Chapter 9 teaches you how to take the entire software stack you built in chapters 6
and 7 and deploy it with automation into the AWS environment you constructed in
chapter 8.

 Chapter 10 wraps up the book by discussing the system administration portion of
CoreOS, including logging, backups, scaling, and CoreOS’s new rkt container system.

Downloading the code
The code for all the examples in this book, including some of the very long AWS tem-
plates, is available at www.manning.com/books/coreos-in-action.

About the author

Matt Bailey is currently a technical lead at ZeniMax. He has worked in
higher education and with scientific computing, medical, and net-
working technology companies, as well as a few startups. You can find
him online via http://mdb.io.

Author Online
Purchase of CoreOS in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/books/coreos-in-
action. This page provides information on how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to Author Online remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions lest his interest stray!

ABOUT THIS BOOK xxi
The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

About the cover
The figure on the cover of CoreOS in Action is a “Dervish of Syria.” Muslim dervishes lived
in religious communities, much like Christian monks, withdrawing from the world and
leading lives of poverty and contemplation; they were known as a source of wisdom,
medicine, poetry, enlightenment, and witticisms. The illustration is taken from a col-
lection of costumes of the Ottoman Empire published on January 1, 1802, by William
Miller of Old Bond Street, London. The title page is missing from the collection, and
we have been unable to track it down to date. The book’s table of contents identifies the
figures in both English and French, and each illustration bears the names of two artists
who worked on it, both of whom would no doubt be surprised to find their art gracing
the front cover of a computer programming book … 200 years later.

 Dress codes have changed since then, and the diversity by region, so rich at the time,
has faded away. It’s now often hard to tell the inhabitant of one continent from another.
Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for
a more varied personal life—or a more varied and interesting intellectual and technical
life. We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago, brought back to life by the pictures from this collection.

Part 1

Getting to know CoreOS

In these first three chapters, you’ll get to know what CoreOS is all about. I’ll
cover some terminology and the systems that form CoreOS and get you up and
running with a sandbox environment. You’ll also start working on an application
stack that you’ll build on throughout the book.

Introduction to the
CoreOS family
Suppose you’ve been hired by a new company that wants you to build out a modern
infrastructure and operational architecture for its developers. The company has a
wide range of application stacks, and you have strong requirements around hori-
zontal scalability and high availability. You know you want Linux, but the idea of
maintaining endless operating system updates and changes or setting up complex
configuration-management systems is unappealing. You recognize that container-
ization can make this far easier—you can separate the operational configuration
from the applications’—but you’re still left with how to manage all those containers
at scale. Plenty of distributions today support Docker, but not in a way that seems
designed for large-scale production use.

This chapter covers
 Overview of CoreOS systems and concepts

 Understanding common workflow patterns for
CoreOS

 Introducing fleet and etcd, and systemd units
3

4 CHAPTER 1 Introduction to the CoreOS family
 Enter CoreOS: an OS designed from the ground up to facilitate container opera-
tionalization at any scale. It’s highly fault tolerant and extremely lightweight, and it
appears performant, but how do you get started? You know the goal: you want to pro-
vide your engineers with a container-based platform as a service, and you know
CoreOS can be the hammer to hit that nail. But how do you get it running? How do
you adapt or design application architectures to best take advantage of this system?

NOTE If you want to know more about where the ideas in CoreOS came
from, be sure to read the “Background” section in the “About this book” por-
tion of this book’s front matter.

In this chapter, we’ll go over the various parts that make up the CoreOS family of sys-
tems, and we’ll look a little at how they can solve infrastructure and architecture prob-
lems like those just described. By the end of this chapter, you’ll have a clear
understanding of CoreOS and how its core components fit together, along with some
ideas about its utility that you can take into chapter 2, when we discuss building out a
local cluster.

1.1 Meet CoreOS
CoreOS is here to solve your scale, availability, and deployment workflow problems. In
this chapter, we’ll go through a simple application deployment of NGINX (a popular
HTTP server) to illustrate how CoreOS achieves some of these solutions, and review
some essential systems. With CoreOS, you won’t have to manage packages, initiate
lengthy upgrade processes, plan out complex configuration files, fiddle with permis-
sions, plan significant maintenance windows (for the OS), or deal with complicated
configuration schema changes. If you fully embrace CoreOS’s features, your cluster of
nodes will always have the latest version of the OS, and you won’t have any downtime.

 These ideas can be a little difficult to grasp when you’re first getting started with
CoreOS, but they embody the philosophy of an immutable OS after boot, which cre-
ates an experience with the OS that you probably aren’t used to. CoreOS’s distributed
scheduler, fleet, manages the state of your application stack, and CoreOS provides the
platform on which those systems orchestrate your services. If you have a computer sci-
ence background, you can consider traditional configuration-management systems as
relying heavily on side effects to constantly manipulate the state of the OS, whereas in
CoreOS, the state of the OS is created once on boot, never changes, and is lost on
shutdown. This is a powerful concept, and it forces architectures with high degrees of
idempotence and no hidden side effects, the results of which are vastly improved cer-
tainty about the reliability of your systems and drastically reduced need for layers of
complex tooling to monitor and manage OSs. In this section, I provide an overview of
the parts that make CoreOS tick and how they complement each other.

5Meet CoreOS

1.1.1 The CoreOS family

CoreOS consists of a few critical systems and services that manage all the scalability
and fault tolerance it claims to facilitate. Figure 1.1 provides a high-level idea of how
the cluster layout looks.

 We’ll go into each of these components in some detail in the next section, and sig-
nificantly more detail later in the book, but this represents the key systems that make
up CoreOS:

 etcd acts as your cluster’s persistent configuration state (see section 1.1.2).
 fleetd acts as your cluster’s distributed runtime scheduler (see section 1.1.3).
 systemd unit files are the mechanism by which fleetd executes the runtime (see

section 1.1.4).
 Docker and rkt are the common container platforms that your unit files will run.

CoreOS intends all of your runtime to happen in containers, and you can
choose from these two platforms (or a combination of both; see section 1.1.5).

The one essential system missing from figure 1.1 is cloud-config, which is used to set the
initial configuration state of a machine. It’s more a detail of infrastructure configura-
tion than a requirement to understand CoreOS’s concepts; section 1.1.6 covers it in
detail.

CoreOS background
CoreOS is a Linux distribution based, in a way, on Gentoo Linux. Similar to how Goo-
gle’s Chrome OS is based on Gentoo, this only matters for those interested in hack-
ing on CoreOS itself, which isn’t covered in this book (although this book would
certainly be an excellent guide to understanding what you’re working on).

The reason this probably doesn’t matter to you is a bit more complicated. CoreOS is
designed to present a small number of services that act as a lightweight, distributed
system; the point of CoreOS is that it mostly stays out of your way, and it’s immutably
configured on boot, much as a container is. This is very different from virtually all
other Linux distributions or OSs as a whole. In chapter 8, we’ll dive deeper into cloud-
config, which describes the state of the OS, most of which is concerned with cluster
discovery and initializing core services that you may want to manage outside of fleet.

On containerization
We’ll go into how you can tune your containers to best function with CoreOS, but you
should have some experience with Docker and the concepts of containerization to get
the most out of this book. You can also check out Docker in Action by Jeff Nickoloff
(Manning, 2016, www.manning.com/books/docker-in-action).

6 CHAPTER 1 Introduction to the CoreOS family
1.1.2 etcd and the distributed configuration state

etcd is a high-reliability distributed key/value store. If you’re familiar with mem-
cached or redis, it’s similar, but with more focus on (distributed) consistency and
availability over performance. It’s accessible via custom command-line tools and is
fully RESTful and JSON based. As its name implies, etcd is designed to distribute your
system and services configuration. It’s the data store for fleet (CoreOS’s distributed
scheduler).

 fleet and CoreOS use etcd to find peers, distribute locks for various purposes, and
orchestrate running systemd units across the cluster. Although it’s useful in that
regard alone, it’s also designed to be your place to persist configuration in the cluster.
In the example later in this chapter, you’ll use it to register NGINX instances for a load
balancer to discover.

 etcd isn’t designed for large-object storage or massive performance; its primary
purpose is to make the state of the cluster singular. Beyond cloud-config, which sets
initial state, no other state (that isn’t ephemeral) exists on any particular CoreOS
node. etcd provides a way to have state be a property of the compute cluster as a whole
and not of any discrete node. It also provides a common bus around which to design
more advanced features that take advantage of the single-system nature of the cluster.

 You can manipulate etcd with either its own CLI tool, etcdctl, or with any HTTP
client like curl, although the latter usually requires a lot more verbosity—the trade-
off for its ubiquity. We’ll go into more advanced usage and configuration of etcd later
in the book.

CoreOS machine

systemd units

init system with
CoreOS extensions

Docker and/or rkt

Your
containerization

platform

CoreOS machine

CoreOS cluster

systemd units

init system with
CoreOS extensions

Docker and/or rkt

Your
containerization

platform

CoreOS machine

systemd units

init system with
CoreOS extensions

Docker and/or rkt

Your
containerization

platform

fleetd Distributed scheduler for the system

etcd RESTful key/value store for the distributed configuration

Figure 1.1 CoreOS layout

7Meet CoreOS
1.1.3 fleet and the distributed service state

fleet is the other side of the coin from etcd. It enables CoreOS to act as a single
machine by distributing systemd units intelligently across your CoreOS cluster, using
etcd to distribute this state. Across the cluster, you can easily tell fleet to start up any
number of service units, and it will distribute what you’ve requested either evenly
across the cluster or based on some extended configuration of your unit files, which
we’ll discuss briefly later in this chapter.

 This is where the advantages of CoreOS begin to emerge. You can take advantage
of the size of your CoreOS cluster for both capacity and high availability with fleet and
start to use your entire deployment as a single pool of resources. We’ll go into further
detail about fleet and how it interacts with unit files throughout the book.

1.1.4 systemd as CoreOS’s init system

systemd is a relatively new init system designed to tackle significantly more features
than the traditional sysvinit system. It’s a bit maligned by many users who think it does
too much or is counter to how they think an init system should be designed. Neverthe-
less, it has gained significant momentum—enough that most Linux distributions have
switched or will switch entirely to systemd.

 CoreOS uses systemd extensively, and you’ll need to understand and write systemd
unit files to run services in CoreOS. There is, of course, a lot of documentation out
there on how to use systemd. I won’t go into great detail in this book but will focus on
what you need to know about systemd and unit files to be effective in CoreOS. You’ll
also learn how to use fleet’s extensions to systemd to give your units awareness of the
cluster; and you’ll learn how fleet interacts with the systemd journal, which is critical
to understanding how logging works in CoreOS.

1.1.5 Docker and/or rkt, your container runtimes

Docker and rkt are the supported runtimes in CoreOS for your services. rkt is a newer
container system developed by the CoreOS folks.

 First, for clarity, CoreOS supports both Docker and rkt runtime environments; rkt
can run Docker containers as well, right alongside the App Container (appc) specifi-
cation images (ACIs) it was built to support. rkt was built to have more robust privilege
separation and to integrate more easily with Linux init systems. It has no daemon like
Docker does, and it relies on whatever init system you use to manage process control
for a container. This is, of course, systemd in CoreOS, but rkt can be run anywhere.

 Whether you choose rkt or Docker (or both) for abstracting your runtimes, what
you gain from these container systems is fully realized in CoreOS. The ephemeral
nature of container runtimes becomes the way in which you abstract state from the
cluster as a whole, as long as you’re mindful to follow best practices of constructing
containerized architectures in general. We’ll cover application architecture in
CoreOS in far more depth later in the book.
www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 Introduction to the CoreOS family

1.1.6 Initial configuration with cloud-config

Much of the OS configuration of CoreOS is not meant to be manipulated unless
you’re debugging the OS itself for development. The scope of configuration for
CoreOS is entirely contained within the cloud-config file.

 Confusingly, the CoreOS folks named this system similarly to the system it’s
inspired by: cloud-init, which is a widely used, YAML-based, initial configuration system.
cloud-init isn’t unique to CoreOS; you’ll see it everywhere if you’ve had experience
using Ubuntu or CentOS in AWS or OpenStack. Developers often use cloud-init to
bootstrap other, heavier configuration-management systems like Chef and Puppet,
but CoreOS intends cloud-config to be the single source of truth for the OS configu-
ration. It would be possible to use cloud-config to bootstrap systems like Chef, but
doing so would be antithetical to the intentions of CoreOS nodes to be single-state
and ephemeral.

 The minimal cloud-config file usually consists of a discovery token and some
SSH keys.

Brief history of container-like systems
Although container systems like Docker have recently become extremely popular (no
doubt due to the vastly improved tooling versus other implementations), containeriza-
tion isn’t particularly new. Docker originally depended on LXC, and systems like
chroot jails, FreeBSD jail, Solaris Zones, and others have been around for quite a
while to try to solve these same problems. The goal is an abstracted runtime that
doesn’t require a full virtual machine hardware abstraction, which usually has a high
overhead and operational cost.

In my opinion, Docker has been successful because of the high-quality suite of tooling
it brings with it and the community that has grown around the product. It’s also rela-
tively easy to get up and running with Docker, which certainly can’t be said for the
other systems mentioned.

Why cloud-config vs. traditional configuration management?
The benefit of CoreOS building cloud-config is that it’s well tailored to fit the needs
of initial configuration in the context of how CoreOS approaches OS design. Rather
than learning filesystem layouts and nuances about how a distribution splits and
manages configuration files, you interface with the base configuration with a config-
uration abstraction that’s easy to use.

CoreOS is designed from the ground up to not have any configuration requirements
beyond what you can define in cloud-config, so other systems to do this are unnec-
essary. For example, you can define new service units by enumerating them in a
YAML list, and cloud-config will handle the rest.

9Fitting together the core services
1.2 Fitting together the core services
Now that you have an understanding of the essential systems that make CoreOS func-
tion, we’ll look at how they operate with each other to orchestrate running a high-
availability service. We’ll start with the workflow you’re likely to encounter in your day-
to-day operations and walk through the steps of setting up an example NGINX HTTP
server in a cluster.

 Orchestration of your application stacks is where CoreOS and its tools bring you a
lot of power and flexibility. But you need to learn how the instruments work before
you can compose sophisticated systems.

1.2.1 The CoreOS workflow

The workflow for setting up a basic cluster of NGINX instances looks like the flow in fig-
ure 1.2. It’s best if you consider CoreOS and its systems to be the manifestation of con-
tainer ideals in operations and infrastructure. Embrace ephemerality, and forget
notions about how you’ve managed servers in the past; most of them don’t apply.
Think of the cluster as a single mechanism to achieve your goals, not a group of devices
that need meticulous management. Once you’re in this mindset, the scaling vectors
will be obvious and the opportunities for fault tolerance will be easily accomplished.

 Figure 1.2 represents a basic workflow: you create the Docker or rkt containers and
systemd units to support your NGINX server, submit your units to the cluster with fleet,
and, based on any options specified in your unit file (or the absence of options), fleet
will decide on which machine your service should run. fleet has two main concerns:
machines, which are CoreOS nodes (actual physical servers or virtual machines) in the
cluster, and units, which are the systemd service units it manages. Specifically, units are
the plain-text configuration for systemd services; fleet adds context around them and
distributes them via etcd. I’ll use these terms consistently throughout the rest of the
book. There’s a lot of detail missing here, of course, but this is the day-to-day workflow
of making things happen on your CoreOS cluster.

 Many of the benefits you get from CoreOS are achieved from this pattern of deploy-
ment. You can submit your unit to any machine in the fleet—they all do exactly the
same thing. If a machine becomes unreachable, fleet will run NGINX on a different
machine. If you want at least two instances of NGINX running, fleet will distribute them
appropriately based on your parameters. fleet is the glue that holds the runtime of your
services together across the cluster and makes CoreOS the cluster-aware system it is.

 “But what about the rest?” you may ask. Distributing a process or processes across a
cluster isn’t the entire story, and we’ll go into more detail in the next section with a
brief example. What you should take away from this is the following: assuming that
your CoreOS cluster is set up and running (as discussed in chapter 2) and that your
NGINX server is already containerized, making a fault-tolerant, scalable environment
with your service is relatively simple.

 As your application stack increases in complexity, these goals become more com-
plex in implementation; but they still follow this basic pattern, which is generic

11Fitting together the core services
As a read-along example, this is intended to provide familiar terms and concepts so
that you have a basic understanding of how systemd, fleet, etcd, and Docker work
together in concert in a CoreOS cluster before the practical examples begin. It
assumes some things that you probably don’t have: a Docker container built with your
NGINX config, and a configured CoreOS cluster.

 First, you’ll get acquainted with the common infrastructure topology of your clus-
ter, shown in figure 1.3. This imagined infrastructure consists of three CoreOS
machines and a load balancer. We’ll assume that the load balancer is capable of poll-
ing a RESTful API for configuration, which will become important later when we go
into how services are discovered in your cluster with etcd.

1.2.3 Creating your unit files

fleet uses systemd as its init system to manage and distribute services; systemd also acts
as fleet’s entry point for gathering state and manipulating services. systemd is rela-
tively new, but as you may know, it’s becoming more of a standard across most popular
Linux distributions. If you aren’t familiar with systemd unit files, don’t worry; there
isn’t much complexity to what you have to know about unit files to be effective in
CoreOS, and you’ll learn progressively more about them throughout the book.

 You now need to write a couple of systemd unit-file templates: one for NGINX and
one for a sidekick. A sidekick service is a systemd unit that’s tied to your actual service
and that performs various actions based on the state of the service. Sidekick services
are primarily used for service discovery so that internal and external systems can
understand the state of your services. Sidekick units aren’t always required, but if
something will eventually rely on the announcement or discovery of a service—in this
case, your load balancer—you’ll need one to take care of that transaction.

 First, here’s an NGINX template unit that you might use to run your server
container.

CoreOS machine

IP: 10.0.0.1

VM or physical,
with at least one
network interface

CoreOS machine

HTTP load balancer with an API and/or some monitoring ability

IP: 10.0.0.2

CoreOS machine

IP: 10.0.0.3

Your network

Figure 1.3 Example cluster

12 CHAPTER 1 Introduction to the CoreOS family

Uni
op

specifi
for

[Unit]
Description=My Nginx Server - %i
Requires=docker.service
After=docker.service

[Service]
ExecStartPre=-/usr/bin/docker kill nginx-%i
ExecStartPre=-/usr/bin/docker rm nginx-%i
ExecStartPre=/usr/bin/docker pull my/nginx:latest
ExecStart=/usr/bin/docker run --name mynginx-%i -p 80:80 my/nginx:latest

[X-Fleet]
Conflicts=nginx@*.service

Such a unit file is called a template because it has an @ in the filename; it’s not runna-
ble directly, but anything you add after the @ and before .service is inserted into the
unit file wherever %i appears. For example, if your unit file is named nginx@.service
and you start your service with a command like fleetctl start nginx@1.service,
fleetctl will know to use that file and to replace any %i in the file with 1. More on
the mechanics later, but this is how you scale your services with multiple instances of
the same service.

 Next, you need to write an nginx-sidekick template.

[Unit]
Description=Register Nginx - %i
BindsTo=nginx@%i.service
After=nginx@%i.service

[Service]
ExecStart=/bin/sh -c "while true; \

do etcdctl set /services/www/nginx@%i \
'{ \"host\": \"%H\", \"port\": 80 }' --ttl 60;sleep 45; \

done"
ExecStop=/usr/bin/etcdctl rm /services/www/nginx@%i

[X-Fleet]
MachineOf=nginx@%i.service

Listing 1.1 NGINX unit file: nginx@.service

Listing 1.2 nginx-sidekick unit file: nginx-sidekick@.service

Ensures that the service only runs
after Docker has started, which is
important for reboot scenarios

t-file
tions
cally
 fleet

Conflicts ensures that only one instance of NGINX will run
on a single machine. It’s rare that you’d want two of the
same service on one machine, because the load would be
unpredictable. The * means this service will conflict with
any template argument between the @ and .service.

Means the sidekick will become dependent on the
NGINX service matching the same %i. This
dependency will function only if it’s running on the
same machine (see the last line of this listing).

Writes a JSON object to the etcd cluster every 45
seconds with a time to live of 60 seconds. As
long as the partner NGINX service is running,
the sidekick will continue to write configuration
information to etcd.

Removes the key on stop.
It will automatically be
removed if this is never
executed (for example,
due to a power failure).

Binds the sidekick to
the same machine as
its partner NGINX
service

16 CHAPTER 1 Introduction to the CoreOS family
1.3 Summary
 The basic components of CoreOS consist of etcd, fleet, systemd, and cloud-

config:
– etcd maintains configuration and discovery state.
– fleet schedules services across the cluster.
– systemd is used as an init system.
– cloud-config sets up the initial immutable state of a machine.

 systemd unit files and optional sidekicks are distributed by fleet to compose
high-availability services.

 With the appropriate configurations, fault tolerance can be built into most
existing systems.

Getting started
on your workstation
Much like setting up a development environment for writing software, it’s common
practice to run a CoreOS cluster on your local machine. You’ll be able to use this
environment to try out various configuration settings, clustering options, and, of
course, your unit files before starting them in a real compute cluster. This gives you
the ability to work on CoreOS without many dependencies, as well as the ability to
completely blow up your systems without impacting anyone else.

 You’ll use this virtualized local cluster on your machine as a workspace through-
out the book and build all the example application stacks using it until the discus-
sion gets to production deployments of CoreOS. This will let you dive into CoreOS
in a well-supported way without having to deal with any of the details of normal
infrastructure.

This chapter covers
 Running a Vagrant environment for CoreOS

 Configuring your local development cluster

 Starting to use the CoreOS set of tools
17

18 CHAPTER 2 Getting started on your workstation
 We’ll begin this chapter by looking at how to set up Vagrant, a common virtualiza-
tion tool, and deploy a CoreOS cluster to it. We’ll then explore some of the basic tool-
ing to interact with this workspace. Finally, we’ll go through the chapter 1 example of
deploying a simple NGINX service to your new cluster and see how to interact with it
in the context of CoreOS. By the end of this chapter, you should be set up with a
three-node cluster and have a basic understanding of how to administer CoreOS,
which will be essential once we dive into more-complex examples later in the book.

2.1 Setting up Vagrant
Vagrant (www.vagrantup.com) is an open source tool from HashiCorp to set up and
manage virtual machines for development. It’s great for consistent development-
environment bootstrapping; it’s a tool that acts as a configuration wrapper for a
VM hypervisor of your choice. It officially supports VMware and VirtualBox; we’ll use
VirtualBox (www.virtualbox.org) for all the examples in this book, because it’s also
open source and freely available.

NOTE This chapter is the only place I’ll provide instructions for Windows,
OS X, and Linux. After this, for the sake of simplicity, I’ll assume you have a
UNIX-like OS on your workstation. There are a few more hoops you have to
jump through on Windows that I’ll address later in this chapter.

NOTE Command-line examples throughout this chapter have two possible
locations from which they’re run. If the example command starts with host$,
it’s a command you’re running from your workstation; if it starts with
core@core-01 ~ $ (where 01 can be any number), it’s meant to be run from
the CoreOS machine. In section 2.2, you’ll see how to use fleetctl with an
SSH tunnel; command-line examples later in the book that begin with $
assume you’re using this tunnel, in which case it doesn’t matter whether
you’re running the command from your host or on a CoreOS node.

Other test environment options (AWS, GCE, and so on)
It’s not absolutely required that you run your development environment on your work-
station. Some people prefer to keep a development environment in the cloud for
mobility reasons, or share a development environment among coworkers, or have a
development environment that more closely resembles production. Although those
approaches aren’t as easy or convenient as using a local cluster, CoreOS offers
guides and resources for setting things up on public cloud providers with the least
friction possible.

The list of officially supported platforms and how to get started with them is available
at https://coreos.com/os/docs/latest/#running-coreos. Keep in mind that we’ll
explore a complete AWS production deployment later in this book.

19Setting up Vagrant
2.1.1 Requirements and setup

Ideally, you’re running Windows, Linux, or OS X in a 64-bit flavor and on x86. It’s prob-
ably not impossible to run this on ARM or in 32-bit, but CoreOS only supports x86 on
64-bit, and I don’t want to cover the performance and usability impact of using an alter-
native architecture on the hypervisor host machine. This book’s examples will also be
a lot easier to work through if you’re on anything but Windows, because you can run
some of the tools from your local workstation. I haven’t tried this with the new Ubuntu
for Windows 10 runtime: it may offer an easier environment for Windows users.

 You’ll also want at least 3 GB of memory available to run your VMs (1 GB for each
VM). You can get by with less, but this will be my assumption for the examples. You can
either tune the VMs to use less, or accept the performance impact of over-allocating
VM memory (meaning your host will start swapping). I also recommend having a four-
core CPU, but that’s a little less important for this setup. You’ll allocate one CPU per
VM, but over-allocating here shouldn’t have a huge impact. The biggest performance
bottleneck will, of course, be I/O; if you can use a solid-state drive for this, it will
greatly enhance your experience.

 Your first step in getting up and running is to install VirtualBox. You can get the
appropriate 64-bit version of VirtualBox from www.virtualbox.org; you may also
choose to install the Oracle VM VirtualBox Extension Pack if you meet the require-
ments of its license, but it isn’t required. Alternatively, you can install VirtualBox from
whatever package manager you use (APT, Homebrew, and so on). The installation
should be straightforward on any OS. You may need to reboot.

 Next, you need to install Vagrant. The same procedure applies: grab the installer
(64-bit) from www.vagrantup.com, or install it with your OS’s package manager. At the
time of writing, the latest versions of the VirtualBox and Vagrant packages (VirtualBox
5.0 and Vagrant 1.8) are well beyond the minimum required versions for CoreOS.

 You also need Git installed to clone the coreos/coreos-vagrant repository. This
should be available (or already installed, in some cases) through your OS’s package
manager. For Windows, the easiest option—if you’re not already conversant with Git
and you use some other client—is to install GitHub’s desktop client from
https://desktop.github.com. You can also use this in OS X, but the command-line Git
is provided for you in OS X. You don’t need a lot of Git experience; only one com-
mand is needed to get you up and running.

 You’ll also want to grab the code repository for this book. Although most of the
code listings (as with most technical books) are best committed to memory by typing
them out rather than copying and pasting, there are some very long listings in later
chapters that you should use from the repo. It’s available at www.manning.com/
books/coreos-in-action.

21Setting up Vagrant
 3 Choose a directory to clone the repo to, and click OK (see figure 2.3).

 4 If you’re in Windows, you’ll likely want to change the shell to Git Bash: it will
have better terminal compatibility once you get into CoreOS. To do so, open
the options for GitHub Desktop (as shown in figure 2.4); then, under Default
Shell, select Git Bash, and click Save (see figure 2.5).

Figure 2.3 Choose a path to save the repository to.

Figure 2.4 Open the GitHub Desktop options.

22 CHAPTER 2 Getting started on your workstation
EDITING VAGRANT’S SETTINGS

Now that everything is downloaded, we can look at how to configure Vagrant for your
CoreOS development environment:

1 Make copies of and rename the sample configuration files: copy user-data.sample
to just user-data (no extension), and copy and rename config.rb.sample to
config.rb.

2 Open config.rb so that you can change a few parameters to get Vagrant up and
running properly. On the first few lines, you’ll see the following:

Size of the CoreOS cluster created by Vagrant
$num_instances=1

To tell Vagrant (via the Vagrantfile configuration file) to start up three CoreOS
instances, change the variable to read as follows:

Size of the CoreOS cluster created by Vagrant
$num_instances=3

 3 You may also want to tweak some other settings in config.rb. CPU and memory
settings can be uncommented and changed near the end of the file:

Customize VMs
#$vm_gui = false
#$vm_memory = 1024
#$vm_cpus = 1

Figure 2.5 Select Git Bash as your default shell.

Cluster configuration
All the examples will show the benefits of CoreOS in a cluster configuration, and three
machines is the minimum for etcd clustering. If you’re resource-constrained on your
desktop, you can choose to do only one instance, but understand that you probably
won’t get a good sense of how CoreOS manages things at scale.

A single instance is fine for development once you’re comfortable with the platform,
but I highly recommend a cluster configuration to learn all of CoreOS’s features.

24 CHAPTER 2 Getting started on your workstation
At this point, I’m finished with screenshots until I start talking about Amazon Web
Services in chapter 8. All the commands are the same across all platforms—Vagrant is
great for standardizing these kinds of development environments.

2.1.3 Getting a CoreOS cluster running in Vagrant

You’re now ready to start up your cluster. If you had to opt for a single-instance
deployment, note that the output will look slightly different, but the commands are
the same.

 Let’s start Vagrant! With the coreos-vagrant repository as your current working
directory in your shell, issue this command:

host$ vagrant up

You’ll see a bunch of things happen, which will look something like this:

Bringing machine 'core-01' up with 'virtualbox' provider...
Bringing machine 'core-02' up with 'virtualbox' provider...
Bringing machine 'core-03' up with 'virtualbox' provider...
==> core-01: Importing base box 'coreos-alpha'...
...etc

Once the operation has completed, you can verify that everything is up and running
properly by logging in to one of the machines and using fleetctl to check the cluster:

host$ vagrant ssh core-01
CoreOS alpha (928.0.0)
core@core-01 ~ $ fleetctl list-machines
MACHINE IP METADATA
45b08438... 172.17.8.102 -
cac39fc1... 172.17.8.101 -
cf69ccab... 172.17.8.103 -

If something didn’t work right or was interrupted unexpectedly, you can always run
vagrant destroy to start over. If you see three machines, you’re finished! You now
have a local cluster of CoreOS machines.

NOTE It’s important to remember that you must remain in the directory
where your Vagrantfile is, to interact with your Vagrant machines. Once you
change directories in your shell, things like vagrant ssh won’t work.

2.2 Tooling for interacting with CoreOS
Your Vagrant cluster of CoreOS machines is up and running, and it’s time to learn
about the tooling that’s essential to interact with CoreOS. CoreOS uses the Bash shell,
and I’ll assume you have some familiarity with it as well as SSH.

 This section covers the essential tools to use CoreOS: fleetctl and etcdctl. We’ll
also visit the Toolbox, which is useful for debugging anything you might run into in a
more familiar Linux administration environment; and we’ll go over how CoreOS may
appear different than what you’re used to if you’re an experienced Linux admin.

Because this is your first time
connecting to this node, you may
have to accept an SSH host key,
which you should be familiar with.

25Tooling for interacting with CoreOS

fleetctl and etcdctl will be your most commonly used tools in CoreOS. They aren’t
especially complicated to use, but you’ll want to be well acquainted with how they
function to do anything in your CoreOS cluster. A bit of a refresher: fleet is CoreOS’s
distributed scheduler; it decides when, where, and how your containers run within
your cluster. It acts as an orchestrater for systemd and represents service state within
your cluster. Together, for example, fleet and systemd decide how many and which
machines run an NGINX service. etcd is CoreOS’s distributed configuration store; it
gives you a consistent place to manage and inspect the configuration state of your
cluster. These two systems make CoreOS work, and they’re the foundation on which
you can take advantage of what CoreOS offers.

 Before getting started with the tools, the handiest way to use fleet and etcd is from
your host machine, rather than having to ssh directly to a CoreOS node before you
do anything. But this will only work on OSs that aren’t Windows (although I haven’t
tried it on the new Ubuntu Windows 10 runtime). You can install these with your
package manager of choice, but I recommend using Homebrew for OS X or Linux-
brew for Linux specifically so you’re sure to have the latest version—some package
managers don’t keep up with these tools’ release cycles. To be clear: you’re installing
this software so you can use fleetctl and etcdctl from your workstation, but it’s not
intended that you’ll run the fleetd and etcd daemons on your workstation.

A note about editors
You should understand that Vim is the only installed editor on CoreOS. Ultimately,
your workflow won’t involve editing files directly on CoreOS, but for the sake of learn-
ing how things work on CoreOS, you’ll need some way to get systemd unit files on
your cluster.

If you absolutely don’t want to use Vim, here are a few options:

 As mentioned in the previous section, you can tell Vagrant to mount some
directories across from your host machine, and then you can use your favorite
editor to write your files (Windows users: be mindful of your line endings).

 CoreOS comes with Git, so you can put your files in a repository and push
and pull them to your instances.

 You’ll see later in this chapter how to use the CoreOS Toolbox, which allows
you to install various software packages in a Docker container that mounts
the CoreOS filesystem within it.

 If you’re using Linux or OS X, fleetctl and etcdctl work remotely (over
SSH) if you install them on your host machine. We’ll go into this in the next
section.

While you’re learning about the basics of CoreOS, this book will assume you’re edit-
ing some files directly on the box (with Vim), because that’s the most universal
option. Obviously, you’re going to want to set up a more formal workflow for using
CoreOS in production and across a team; we’ll go into that later in the book.

26 CHAPTER 2 Getting started on your workstation
2.2.1 fleetctl

As the client application for fleet, fleetctl gives you management over your cluster’s
services’ states. It also manages the distribution of your systemd unit files. As men-
tioned earlier, you’ll be using fleetctl on a CoreOS machine; but you can also use it
remotely with SSH tunneling. Using fleetctl with a tunnel requires that you do some
preconfiguration with SSH.

 You can choose one of two options to use remote fleetctl with your Vagrant clus-
ter. The best option is if you’re already running ssh-agent:

host$ ssh-add ${HOME}/.vagrant.d/insecure_private_key

Additionally, if you’re using ssh-agent, make sure you’re forwarding your agent
socket to remote hosts. In your ~/.ssh/config file, it should look something like this:

Host *
ForwardAgent yes

This ensures that your agent will be available within a CoreOS machine, once you’ve
ssh ed to it, so it can use the same agent to talk to another CoreOS machine. If you
aren’t using ssh-agent, you can add Vagrant’s SSH config to your local SSH config:

host$ vagrant ssh-config core-01 >> ~/.ssh/config

You also need to discover which port Vagrant has assigned to SSH on your host (it
almost always starts with 2222):

host$ vagrant port core-01
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2222 (host)

You should now be able to ssh manually into your CoreOS node:

host$ ssh -p2222 core@127.0.0.1
CoreOS alpha (928.0.0)
core@core-01 ~ $

You should also be able to use fleetctl with a tunnel:

host$ fleetctl --tunnel=127.0.0.1:2222 list-machines
The authenticity of host '[127.0.0.1]:2222' can't be established.
RSA key fingerprint is ac:d5:6a:3f:ea:b3:47:b4:8b:74:79:09:a7:f4:33:f2.
Are you sure you want to continue connecting (yes/no)? yes
MACHINE IP METADATA
45b08438... 172.17.8.102 -
cac39fc1... 172.17.8.101 -
cf69ccab... 172.17.8.103 -

If you’re on OS X, you may want
to add -K to ssh-add, or you’ll

have to add it for every reboot.

You can lock this down to core-* if you want to.

fleetctl maintains a separate, trusted
hosts file from your SSH config,

typically in ~/.fleetctl/known_hosts.

27Tooling for interacting with CoreOS
You can also export an environment variable for the tunnel, if you want to type less:

host$ export FLEETCTL_TUNNEL=127.0.0.1:2222

You’ve already used list-machines in a few examples to verify that the cluster is oper-
ating normally. You’ll see in the output of list-machines a unique hash representing
a particular node in the cluster; if you want to see the full ID, you can append --full
to list-machines. You can also do machine-specific operations on the short hash,
such as fleetctl ssh cac39fc1, which will ssh you into that particular machine.

 Let’s look at how fleetctl interacts with unit files. We’ll start with the simple
example we started in chapter 1: an NGINX server. The following listing changes the
example a bit to have one instance.

[Unit]
Description=My Nginx Server
Requires=docker.service
After=docker.service

[Service]
ExecStartPre=-/usr/bin/docker kill mynginx
ExecStartPre=-/usr/bin/docker rm -f mynginx
ExecStartPre=/usr/bin/docker pull nginx:latest
ExecStart=/usr/bin/docker run --rm --name mynginx -p 80:80 nginx:latest

Once you’ve saved that, you have a few options. fleetctl has some commands that
are effectively aliases for a few related commands.

 To start a service in some way, you can use the following:

 submit - fleetctl submit <unit file> will upload the unit file to the cluster.
 load - fleetctl load <unit file> will submit (if needed) and assign the unit

to a machine.
 start - fleetctl start <unit file> will submit (if needed), load (if needed),

and start the service on the appropriate machine.

Most of the time, you’ll want start. But load can be useful if you want to see where
units will start without actually starting them; and submit can be handy if you just want
to update your unit file and then restart the service at a later time.

NOTE fleetctl maintains its own SSH known_hosts file in $HOME/.fleetctl/
known_hosts. So, if you’ve ever destroyed your Vagrant cluster, new hosts may
now be running on the same IPs, which may throw a known-hosts error. Clear
this file.

For simplicity, you can start your service with start, although you’re welcome to use
the other two commands:

Listing 2.1 Single NGINX unit: code/ch2/nginx.service

These first two ExecStartPre lines ensure
that you have a clean runtime. ExecStartPre

lines in systemd that begin with a - after
the = won’t cause the unit to fail if they
don’t succeed. If you leave out the -, this

command must exit with a 0.
Docker

runtime
command
www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2 Getting started on your workstation

se
core@core-01 ~ $ fleetctl start code/ch2/nginx.service
Unit nginx.service inactive
Unit nginx.service launched on 45b08438.../172.17.8.102

Next, let’s look at how to inspect some things about the current state. The first thing
you can check is the status of all the units in the cluster:

core@core-01 ~ $ fleetctl list-units
UNIT MACHINE ACTIVE SUB
nginx.service 45b08438.../172.17.8.102 active running

This shows you that NGINX has successfully started on machine 45b08438. You can
inspect the status of the service as well:

core@core-01 ~ $ fleetctl status nginx
The authenticity of host '172.17.8.102' can't be established.
...
- nginx.service - My Nginx Server

Loaded: loaded (/run/fleet/units/nginx.service;

➥linked-runtime; vendor preset: disabled)
Active: active (running) since Mon 2016-01-18 04:51:20 UTC;

➥1min 28s ago
Process: 1482 ExecStartPre=/usr/bin/docker pull nginx:latest

➥(code=exited, status=0/SUCCESS)
Process: 1473 ExecStartPre=/usr/bin/docker rm nginx

➥(code=exited, status=1/FAILURE)
Process: 1415 ExecStartPre=/usr/bin/docker kill nginx

➥(code=exited, status=1/FAILURE)
Main PID: 1558 (docker)

Memory: 9.3M
CPU: 132ms

CGroup: /system.slice/nginx.service
∟1558 /usr/bin/docker run --name mynginx -p 80:80 nginx:latest

Jan 18 04:51:18 core-02 docker[1482]: b7a88d355049: Pull complete
...
Jan 18 04:51:20 core-02 systemd[1]: Started My Nginx Server.

fleetctl is trying to ssh into another machine. fleet knows
where it’s being run from and where the target service is
running, and will automatically use SSH to grab that
information from the other machine in the cluster.

Unit filename and
description you put in

line 2 of listing 2.1

Indicates that
the unit file is
loaded from
this particular
path, which is
only important
to fleetWhen the

rvice was
started

PID and results of each ExecStartPre line.
As explained earlier, it’s okay for the rm
and kill ones to fail.

PID of the
Docker
container

Statistical information about
the main PID and its children

Beginning of the last 10 lines of the stdout of the
unit file’s runtime; in this case, Docker pulling NGINX

from the Docker registry and starting it. This will
always show the last 10 lines of output, so the

output will vary. In this example, if I hit my NGINX
server with curl, you’d see some HTTP logging here.

Governing CGroup, which points to a relative location
you can access within sysfs (for this example, it’s in

/sys/fs/cgroup/systemd/system.slice/nginx.service)

29Tooling for interacting with CoreOS

st
NOTE Although it’s great that fleetctl status shows you a lot of informa-
tion, manipulating files in /run/fleet/ and in /sys/fs/cgroup/ is well outside
the scope of this book and also outside the scope of administrating CoreOS in
general. If you find yourself needing to do things with these files for any rea-
son other than your own edification and exploration, you’re probably going
down a road that’s difficult to maintain.

Let’s look at how you can use this information. First, let’s get into core-02, where the
service is running. fleetctl ssh has a handy feature that lets you ssh into a host by
passing the service name, so you don’t have to think too much about your cluster’s IPs
or machine IDs:

core@core-01 ~ $ fleetctl ssh nginx
Last login: Mon Jan 18 04:58:52 2016 from 172.17.8.101
CoreOS alpha (928.0.0)
core@core-02 ~ $

Now, you can curl localhost to see your NGINX server:

core@core-02 ~ $ curl -I localhost:80
HTTP/1.1 200 OK
Server: nginx/1.9.9
...

core@core-02 ~ $ fleetctl status nginx | tail -n 5
Jan 18 04:51:20 core-02 docker[1482]: 407195ab8b07: Pull complete
Jan 18 04:51:20 core-02 docker[1482]: Digest:

 ➥sha256:f732c04f585170ed3bc991e06404bb92504a1d25bfffa0aefd44279f35d1430c
Jan 18 04:51:20 core-02 docker[1482]: Status:

 ➥Downloaded newer image for nginx:latest
Jan 18 04:51:20 core-02 systemd[1]: Started My Nginx Server.
Jan 18 05:06:45 core-02 docker[1558]: 10.1.55.1 - -

 ➥[18/Jan/2016:05:06:45 +0000] "HEAD / HTTP/1.1" 200 0 "-" "curl/7.43.0" "-"

NOTE If the fleetctl status nginx command fails with something
about SSH_AUTH_SOCK, you probably didn’t add ForwardAgent yes to
your SSH config.

Another great informational feature is access to the journal. As you may know, sys-
temd uses journaled logging, which has the benefit of not filling up your filesystem
with logs. I’m sure, as a professional, you’ve never had a server go down from having a
filesystem full of logs (haha!). fleet has full access to this journal from any node, as
well as the ability to follow the log as you would have done in the past with tail -f:

core@core-01 ~ $ fleetctl journal -f nginx
-- Logs begin at Sun 2016-01-17 20:48:02 UTC. --
Jan 18 04:51:20 core-02 docker[1482]: 38267e0e16c7: Pull complete
Jan 18 04:51:20 core-02 docker[1482]: 407195ab8b07: Pull complete
... etc

Makes a simple request to
the running HTTP server

Looks at the la
10 lines of
fleetctl status

There’s the
curl request!

30 CHAPTER 2 Getting started on your workstation
Now, you can remove your service. Much like starting it, there’s the same set of
encompassing commands: stop, unload, and destroy. destroy both stops and
unloads as well as completely removes the service files, and unload both stops and
unloads the service. Let’s look at these in sequence to better understand the states.

 Here, the NGINX service is loaded but not running:

core@core-01 ~ $ fleetctl stop nginx
Unit nginx.service loaded on 45b08438.../172.17.8.102
core@core-01 ~ $ fleetctl list-units
UNIT MACHINE ACTIVE SUB
nginx.service 45b08438.../172.17.8.102 failed failed

Next, the NGINX service is removed from fleet’s registry, but the unit file is still avail-
able:

core@core-01 ~ $ fleetctl unload nginx
Unit nginx.service inactive
core@core-01 ~ $ fleetctl list-units
UNIT MACHINE ACTIVE SUB
core@core-01 ~ $ fleetctl list-unit-files
UNIT HASH DSTATE STATE TARGET
nginx.service fbf621b inactive inactive -

And finally, the NGINX service is completely destroyed:

core@core-01 ~ $ fleetctl destroy nginx
Destroyed nginx.service
core@core-01 ~ $ fleetctl list-unit-files
UNIT HASH DSTATE STATE TARGET
core@core-01 ~ $

You should now be pretty comfortable with how fleetctl functions and have an
understanding of how to access information you need to use and administer services
in CoreOS. To recap, you’ve done the following:

 Created a simple systemd unit file for NGINX

 Deployed the unit file to your CoreOS cluster
 Learned how to extract information from your service
 Removed the NGINX service from your cluster

Next, we can move on to the other crucial bit of cluster state: etcd!

2.2.2 etcdctl

etcdctl is the user-space tool for manipulating etcd. As the name implies, it’s a dae-
mon to store cluster-wide configuration. Everything you can do with etcdctl, you can
also do with curl; it just provides a friendly wrapper around accessing and changing
information.

 The etcd cluster is available to any machine in the CoreOS cluster. You can make it
available within a running container, but you should understand the security implications

31Tooling for interacting with CoreOS
of doing so. The latest version of etcd has basic role-based access control (RBAC) to
grant and restrict certain subcommands; we’ll get deeper into configuring etcd later in
the book. For now, we’ll look at the basics of using etcdctl for service registration and
discovery, which are the most common usage scenarios.

 You can begin by exploring your etcd directory recursively:

core@core-01 ~ $ etcdctl ls --recursive /
/coreos.com
/coreos.com/updateengine
/coreos.com/updateengine/rebootlock
/coreos.com/updateengine/rebootlock/semaphore
/coreos.com/network
/coreos.com/network/config
/coreos.com/network/subnets
/coreos.com/network/subnets/10.1.42.0-24
/coreos.com/network/subnets/10.1.55.0-24
/coreos.com/network/subnets/10.1.16.0-24

You can get any of these endpoints, and they will return some JSON:

core@core-01 ~ $ etcdctl get /coreos.com/network/config
{ "Network": "10.1.0.0/16" }
core@core-01 ~ $ etcdctl get /coreos.com/network/subnets/10.1.42.0-24
{ "PublicIP": "172.17.8.103" }

You may already see how some of this information can be useful for things like load
balancers and networking configuration outside of the cluster.

 Just as easily as getting information with etcdctl, you can set information, as well:

core@core-01 ~ $ etcdctl set /foo/bar '{ "baz": "quux" }'
{ "baz": "quux" }

You can also set a time-to-live (TTL) for any value:

core@core-01 ~ $ etcdctl set --ttl 3 /foo/bar '{ "baz": "quux" }'; \
> sleep 1; \
> etcdctl get /foo/bar; \
> sleep 3; \
> etcdctl get /foo/bar
{ "baz": "quux" }
{ "baz": "quux" }
Error: 100: Key not found (/foo/bar) [24861]

You’ll remember from chapter 1 that the sidekick examples used a TTL of 60 seconds
so that you could retain the value slightly longer than the loop sleep time to set it
again. Tuning this value is important for configuring when things like load-balancer
health checks run, or how long you want some kinds of failure to remain in a particu-
lar state.

The top-level coreos.com/ key
is populated and managed by
etcd and CoreOS.

The coreos.com/updateengine key
contains a semaphore for the rolling
CoreOS upgrade process (we’ll go into
the upgrade process in chapter 3).

The coreos.com/network key contains
basic network information.

This path will probably be different for you, so look at the
output of the previous example’s command if you want to try it.

32 CHAPTER 2 Getting started on your workstation
 etcdctl watch and watch-exec can also be used in creative ways to monitor and
set configurations for live services. We’ll go into more detail on how to use these fea-
tures later in the book. We’ll also go deeper into configuring etcd later; for now,
knowing these basic commands is enough to get started. As you can see, etcd has a
simple interface to a distributed configuration with a lot of potential. By default, any
query run against the cluster will ensure that the data is in sync before it returns, so it
guarantees consistency and accuracy above all else.

 etcdctl and fleetctl are the tools specific to CoreOS that you’ll use all the time.
But as I’m sure you know, a whole world of Linux tools and commands are available to
do various things in an operating system. This is where the Toolbox comes into play.

2.2.3 The Toolbox container

CoreOS has a strict philosophy of being a very static system. There’s no package man-
ager installed, and you should never rely on the local filesystem to maintain anything;
etcd and fleet are the only places you store any kind of state. But sometimes you need
to debug something from within the cluster—say, you need to run nmap to try to figure
out why you can’t reach another host on your network from CoreOS.

 This is where the Toolbox comes in. Essentially, the Toolbox is a basic Fedora
Linux Docker container where you can install and use all the tools you’re used to for
administration. You install and use the Toolbox as follows:

core@core-01 ~ $ toolbox
...
latest: Pulling from library/fedora
Spawning container core-fedora-latest on /var/lib/toolbox/core-fedora-latest.
Press ^] three times within 1s to kill container.
[root@core-01 ~]# dnf install nmap
...
Complete!
root@core-01 ~]# nmap -p80 google.com

Starting Nmap 7.00 (https://nmap.org) at 2016-01-18 06:54 UTC
...
80/tcp open http

Further, your entire filesystem is mounted within the Toolbox container. So, if you
want to install and use Emacs to edit files in the core home directory, you can find it
mounted in /media/root:

core@core-01 ~ $ toolbox
Spawning container core-fedora-latest on /var/lib/toolbox/core-fedora-latest.
Press ^] three times within 1s to kill container.
[root@core-01 ~]# touch /media/root/home/core/fromtoolbox
[root@core-01 ~]# logout
Container core-fedora-latest exited successfully.
core@core-01 ~ $ ls
fromtoolbox

Downloads the Toolbox Docker container
and executes it in your terminal

You’re now in a Fedora Linux container
and can use dnf to install nmap.

Normal-looking dnf installation
output omitted

Now you can use nmap as
you normally would.

33Tooling for interacting with CoreOS
Remember, though, that although your Toolbox will persist for the life of the
machine, an update will clobber anything you save there. It’s meant only for debug-
ging. Resist the temptation to use the Toolbox to serve anything or perform tasks that
require its persistence.

2.2.4 Conceptual shift for Linux admins

Some conceptual changes Linux admins face are probably obvious, given the circum-
stances in which you’d use the Toolbox (for example, just as a utility, not a workstation
environment). There’s no package manager in CoreOS by design, and poking around
in the OS from a terminal session on the host isn’t something you should do or have
to do on a regular basis. You should consider all the data on any particular filesystem
of any given machine to be ephemeral and unimportant on its own. If you’re already
used to working with public cloud systems, this shouldn’t be too much of a hurdle.

THINKING ABOUT DATA PERSISTENCE

Dealing with that ephemeral state can be a little daunting, and I’m sure your first
thought is, “Then how do I do databases?” The answer is a bit complex and depends
on the technologies you’re using. Some data systems handle this architecture within
their own design (Elasticsearch, Riak, Mongo, and so on), and others will probably
need some help (such as PostgreSQL). As a general rule, software that’s designed to
scale horizontally will be easier to implement here than software that isn’t. For the lat-
ter, there are a few solutions that we’ll get into later in the book.

TRADITIONAL USER MANAGEMENT AND OS CONFIGURATION

Because you almost never ssh into a machine to do anything for administration, you’ll
also find that you won’t need to be too concerned with managing users and permis-
sions in CoreOS. If you find you really, really, need to do that kind of thing, it’s possi-
ble, but expect your cloud-config to become more complex.

 You’ll also notice the lack of configuration management in general. I touched on this
in chapter 1, but the initial state is always defined by cloud-config. Beyond this initial
state, there isn’t much to do unless you’re debugging or testing things in your local test
cluster, and therefore there’s no need for traditional configuration-management
suites (Puppet, Chef, and so on). It’s entirely possible for you to set up cloud-config to

A note about the Toolbox
Don’t forget that the Toolbox image will take up about 200 MB of disk, which is a lot
considering how small CoreOS is to begin with. You can always use docker rmi
fedora to clean it up completely.

Remember, though, that the goal with CoreOS is that you only ever need to ssh into
a machine for development or for serious debugging needs. If you find yourself using
the Toolbox frequently or for some repeated tasks, you may want to consider how you
can automate your task with etcd and fleet.

34 CHAPTER 2 Getting started on your workstation
bootstrap Chef, but the point of CoreOS isn’t to alter the state of a machine once it’s up,
and doing so would serve little purpose.

UPDATES AND GENERAL SYSTEM ADMINISTRATION

Another aspect of normal system administration that you may be wondering about is
updates. Configuration management or something you have to set up has probably
been your go-to for keeping systems up at scale; what’s happening for CoreOS?

 If you’ve spun up your development cluster following the instructions in this chap-
ter, and it’s been running a few days on your workstation, and if you’re a very obser-
vant person, you may have noticed the login message change when you sshed into a
machine: for example, from CoreOS alpha (928.0.0) to CoreOS alpha (933.0.0). Or,
you may see that your machine’s uptime doesn’t match how long you know you’ve
been running this cluster. CoreOS updates itself. It does so by installing the new ver-
sion on a “B” partition and rebooting one machine at a time in the cluster. This
method solves a number of problems with update management, and it’s also a tunable
process that we’ll go into in much more depth later.

2.3 Summary
 CoreOS officially supports and maintains the tools to run your development

environment, available via GitHub.
 A CoreOS virtualized development environment provides a sandbox in which

you can simulate anything you would do in a production CoreOS deployment.
 You can use this environment to test and debug new systemd unit files so you

find issues early.
 Using etcd, you can develop consistent integrations between your services as

well as to any external system.
 With your development cluster, you can model how fleet will distribute your

application stack.
 OS updates and normal Linux system administration tasks are minimized or

nonexistent in CoreOS.

Expecting failure:
fault tolerance in CoreOS
If you work in infrastructure or operations in any capacity, you’ll understand the
importance of monitoring systems. When the alarms go off, it’s time to figure out
what’s happened. You might have also taken a crack at automating some of the
most common fixes to problems or mitigated situations with disaster-recovery
failover switches, multicasting, or a variety of other ways to react to failure. You
probably also have an understanding that technology always finds a way to break.
Hardware, software, connectivity, power grid—these are all things that wake us up
in the middle of the night. If you’ve been working in operations for a while, you
probably have the sense that although automating fault tolerance is possible, it’s
usually risky and difficult to maintain.

This chapter covers
 Monitoring and fault tolerance in CoreOS

 Getting your first complex service running

 Application architecture in the context of CoreOS
35

36 CHAPTER 3 Expecting failure: fault tolerance in CoreOS
 CoreOS tries to solve this problem; by providing generic abstractions for the state
of your application distributed over a cluster, the implementation details of automat-
ing fault tolerance become much clearer and reusable. The next logical benefit of
containers after abstracting the runtime from any particular machine is to allow that
runtime to be portable across a network, thus decoupling any container from the fail-
ure of its host.

 In this chapter, we’ll expand on what you learned in chapters 1 and 2 and dive into
more-complex examples of how to give your services greater resiliency and quicker
failure recovery. We’ll examine how to manage the ephemeral nature of application
stacks and explore some high-level concepts of systems architecture and design and
how they apply to CoreOS. By the end of this chapter, you’ll have a good understand-
ing of how to plan deployments of your applications to CoreOS; this will lead into
chapter 4, where we’ll move to production.

3.1 The current state of monitoring
If you’ve been in operations for any length of time, you’ve used some kind of monitor-
ing system. Usually such systems look like the typical monitoring architectures shown
in figures 3.1 and 3.2, or a combination.

 Your monitoring system can either send out probes to gather information about a
server and its services, as in figure 3.1, and/or an agent running on the server can
report status to a monitoring system, as in figure 3.2. You’ve probably experienced
the drawbacks of each approach. Probes are difficult to maintain, and they fire false
positives; and agents can be just as difficult to maintain, while also adding load to
your system and uncertainty around the agent’s reliability. With etcd, CoreOS
replaces much of the need for these systems by normalizing state information that’s
composed by the services.

 With traditional monitoring setups, you usually assume that your monitoring sys-
tem is at least as reliable as the thing it’s monitoring. Sometimes you rely on third-
party solutions for monitoring, and other times you end up monitoring your own
monitoring system. As your infrastructure and applications grow, your monitoring

Monitoring system
(Nagios, Sensu, and so on) Server

Other infrastructure or
service (issue trackers,
PagerDuty, and so on)

Service probe
sent by

monitoring

Response to
service probe

Automated actions based
on status (sometimes)

Other actions
(such as alerting)?

Figure 3.1 Monitoring with probes

38 CHAPTER 3 Expecting failure: fault tolerance in CoreOS
3.1.2 What CoreOS does differently

CoreOS takes back the responsibility of not letting your OS or its configuration be the
downfall of your application:

 It’s stripped down to eliminate a lot of configuration and administration prob-
lems out of the box.

 As we discussed in chapter 1, CoreOS takes advantage of containerization’s abil-
ity to abstract your application from the OS, as well as as abstract it from the
machine with fleet, to empower you to focus on your application and not OS
internals.

 Application failures are contained, and machine failures are mitigated so that
they can be handled outside of a maintenance window (or ignored in some
public cloud scenarios).

 Maintenance of the OS is also done without the need for interaction.

You can forget the fear of OS upgrades for two reasons. First, the behavior of a
CoreOS operating system upgrade from the perspective of your application is the
same as the behavior of a machine outage: that downtime is avoided by fleet shifting
around containers across the cluster to meet your specifications, regardless of the
state of the cluster. And second, because everything is abstracted by containers, nothing
in your application depends on anything in the base OS being available other than the
handful of CoreOS services.

 With these benefits in mind, see how figure 3.3 shows a CoreOS upgrade in prog-
ress. Although this level of OS automation might seem dangerous, the abstraction
afforded by containers and fleet significantly reduces the impact. Essentially, this is
CoreOS dogfooding its approach to providing fault tolerance for your applications
onto the OS. The upgrade process is part of the equation of how CoreOS reduces the
need for complex monitoring systems; the cluster-wide scheduling and discovery sys-
tems reveal a much more generic interface for gathering important data.

 The default setting for upgrade-locking (etcd-lock) is to have only one machine
upgrade in the cluster at a time. If the etcd cluster is in a problematic state, it won’t
upgrade any nodes. If you have a larger cluster, you can increase the number of nodes
that can upgrade and reboot simultaneously with locksmithctl:

core@core-01 $ locksmithctl set-max 2
Old: 1
New: 2

NOTE Don’t actually do this on your local three-node cluster! If two out of
three nodes reboot at the same time, you’ll lose the quorum in etcd. A quo-
rum in etcd can tolerate up to (N -1)/2 failures, where N is the number of
cluster members (machines).

39Service scheduling and discovery
3.2 Service scheduling and discovery
In chapters 1 and 2, you learned a bit about etcd and fleet and how they provide ser-
vice scheduling and discovery for your application. Together, they provide fault toler-
ance and composability for monitoring data within your application runtime, rather
than from outside of it. We’ll go a little deeper here and consider a more realistic
example to illustrate how these things can fit together. We’ll expand on the NGINX

CoreOS public
managed upgrade

service

CoreOS machine 0

etcd
/coreos.com/updateengine/rebootlock/semaphore

fleetd

Move all services off of
machine 0 and onto other
machines as appropriate.

Is any other
machine rebooting?
I’m going to upgrade.

CoreOS
machine
n …

Partition A Partition B

1. Install new version on partition B.
2. Tell cluster I’m upgrading.
3. Reboot into partition B.

Yes!
Do I need

to upgrade?

Figure 3.3 CoreOS
upgrade process

Cluster upgrades
CoreOS operating system upgrades require some level of public internet access to
*.release.core-os.net by default, via either an HTTP proxy or NAT. If you want more
control over upgrades beyond the three release channels, CoreOS, Inc. (the company)
provides a premium managed service to assist you.

Additionally, how you plan the capacity of your services should go hand in hand with
how you plan your cluster and upgrade configuration. Upgrades will occur only when
etcd has an available lock and has no errors (for example, another machine is down
or rebooting for some reason other than an upgrade). If your services can’t all live on
a cluster with the performance you expect while missing two nodes, don’t increase
your etcd-lock max. But at a minimum you should plan for one machine outage.
This isn’t much different from scaling mass storage: the more redundant units, the
higher your fault tolerance to some kinds of failure.

40 CHAPTER 3 Expecting failure: fault tolerance in CoreOS
example with an upstream Express example application, and we’ll look at how to fur-
ther use etcd in this application stack. In this example, NGINX will monitor the state
of the Express application and act accordingly without the need for an outside moni-
toring system.

 To observe how CoreOS can hedge your services against failure, you’ll build out an
application environment with fault tolerance built in. Then, you’ll try to break it with
partial failures in the cluster and observe how the fault tolerance reacts.

3.2.1 Deploying production NGINX and Express

A real-world example would involve at least a couple of tiers. We won’t get into the com-
plexities of database tiers yet (we will later!), but an application stack isn’t really a stack
unless some internal communication is going on. Say, for example, that you want to
deploy an application that consists of some Express node services behind an instance of
NGINX. Ultimately, you want your system to look like figure 3.4, which shows the simple
network topology between NGINX and the Express applications behind it.

In this scenario, NGINX acts like a load balancer but could be performing any number
of jobs (SSL termination, external reverse proxies, and so on). The next few sections
set up this architecture; it’s crucial for you to take away that the failure of any node
becomes a non-concern as you build toward a fault-tolerant application instead of a
monitoring-dependent one.

3.2.2 Using etcd for configuration

For this application stack, you’ll use what you learned in chapter 2: you’ll set up
NGINX in a CoreOS cluster and add a fairly common back-end service. The example
uses Node.js/Express mostly for simplicity, but it could be any HTTP service you want
to distribute across your cluster.

CoreOS machine
(core01)

Node.js/Express
(as your application)

NGINX (as your
load balancer)

CoreOS machine
(core02)

Node.js/Express
(as your application)

CoreOS machine
(core03)

Node.js/Express
(as your application)

etcd and fleet (to orchestrate this architecture)

Upstream proxy pass

Figure 3.4 NGINX and Express stack

41Service scheduling and discovery
 I’ve added some significant complexity to the previous example, in the form of a
new requirement to modify and deploy containers that are different from the publicly
available Docker images. But I’ll assume that you have a repository to which to upload
custom built containers and that you’re using the public, official Docker registry at
https://hub.docker.com.

 For the sake of the example, assume that it’s okay to publish your containers to
Docker’s public repository. In the real world, of course, this might not be possible.
There are many options for publishing private Docker images, using software-as-a-
service (SaaS) products or hosting your own repository, but that’s beyond the scope of
this book. For further reading, check out Docker in Action by Jeff Nickoloff (Manning,
2016, www.manning.com/books/docker-in-action).

THE EXPRESS APPLICATION

Let’s start with your Express instance. First you need to create a “Hello World” Express
app. You don’t need any experience with Node.js for this; you can paste the code from
listings 3.1, 3.2, and 3.3 into files in a new directory.

const app = require('express')()
app.get('/', (req, res) => { res.send('hello world').end() })
app.listen(3000)

FROM node:5-onbuild
EXPOSE 3000

{
"name": "helloworld",
"scripts": {

"start": "node app.js"
},
"dependencies": {

"express": "^4"
}

}

Next, build the image and push it to the Docker hub. You can do all this on a CoreOS
instance (because it has Docker running) or anywhere else you may be running
Docker, such as your workstation:

$ cd code/ch3/helloworld
$ docker build -t mattbailey/helloworld .
Sending build context to Docker daemon 1.166 MB
...
Successfully built f8945e023a8c

$ docker login # IF NECESSARY
$ docker push mattbailey/helloworld

Listing 3.1 code/ch3/helloworld/app.js

Listing 3.2 code/ch3/helloworld/Dockerfile

Listing 3.3 code/ch3/helloworld/package.json

42 CHAPTER 3 Expecting failure: fault tolerance in CoreOS
The push refers to a repository [docker.io/mattbailey/helloworld]
...
latest: digest: sha256:e803[...]190e size: 12374

You can drop your .service files in this directory as well. It’s somewhat common to
keep these service files under the same source control as the project. You’ll have a
main service file and a sidekick.

 The first service file looks at lot like what you saw with NGINX, but you reference
the Docker image you published earlier.

[Unit]
Description=Hello World Service
Requires=docker.service
After=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill helloworld
ExecStartPre=-/usr/bin/docker rm -f helloworld
ExecStartPre=/usr/bin/docker pull mattbailey/helloworld:latest
ExecStart=/usr/bin/docker run --name helloworld \

-p 3000:3000 mattbailey/helloworld:latest
ExecStop=-/usr/bin/docker stop helloworld

[X-Fleet]
Conflicts=helloworld@*

The sidekick also looks similar: it announces the presence of the helloworld service
in /services/helloworld/.

[Unit]
Description=Register Hello World %i
BindsTo=helloworld@%i.service
After=helloworld@%i.service

[Service]
TimeoutStartSec=0

Listing 3.4 code/ch3/helloworld/helloworld@.service

Listing 3.5 code/ch3/helloworld/helloworld-sidekick@.service

What is TimeoutStartSec?
Notice that you use TimeoutStartSec=0 in listing 3.4, to indicate that you don’t
want a timeout for this service. This can be helpful on slower connections or with
larger Docker images that may take a while to pull, especially if you’re pulling them
all at the same time in three VMs on a single workstation.

You may want to tune this setting in the future depending on your use cases (you
could, for example, set it from etcd), but it’s easier to have no timeout while you’re
testing and developing services.

43Service scheduling and discovery
EnvironmentFile=/etc/environment
ExecStartPre=/usr/bin/etcdctl set /services/changed/helloworld 1
ExecStart=/bin/bash -c 'while true; \

do \
["`etcdctl get /services/helloworld/${COREOS_PUBLIC_IPV4}`" \

!= "server ${COREOS_PUBLIC_IPV4}:3000;"] && \
etcdctl set /services/changed/helloworld 1; \
etcdctl set /services/helloworld/${COREOS_PUBLIC_IPV4} \

\'server ${COREOS_PUBLIC_IPV4}:3000;\' \
--ttl 60;sleep 45;done'

ExecStop=/usr/bin/etcdctl rm /services/helloworld/helloworld@%i
ExecStopPost=/usr/bin/etcdctl set /services/changed/helloworld 1

[X-Fleet]
MachineOf=helloworld@%i.service

Now, you can fire up helloworld on your cluster and verify that it has started:

$ fleetctl start code/ch3/helloworld/helloworld@{1..3}.service
Unit helloworld@1.service inactive
Unit helloworld@2.service inactive
Unit helloworld@3.service inactive
$ fleetctl start code/ch3/helloworld/helloworld-sidekick@{1..3}.service
Unit helloworld-sidekick@1.service inactive
Unit helloworld-sidekick@2.service inactive
Unit helloworld-sidekick@3.service inactive

Also, verify that helloworld is running:

$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
helloworld-sidekick@1.service a12d26db.../172.17.8.102 active running
helloworld-sidekick@2.service c1fc6b79.../172.17.8.103 active running
helloworld-sidekick@3.service c37d052c.../172.17.8.101 active running
helloworld@1.service a12d26db.../172.17.8.102 active running
helloworld@2.service c1fc6b79.../172.17.8.103 active running
helloworld@3.service c37d052c.../172.17.8.101 active running
$ curl 172.17.8.101:3000
hello world
$ etcdctl ls /services/helloworld/
/services/helloworld/172.17.8.101
/services/helloworld/172.17.8.103
/services/helloworld/172.17.8.102

The next section moves on to the NGINX configuration.

Organizing etcd keys
There are no strict guidelines or preset structures for how to organize your etcd
keys—doing so is completely free-form.

You will, of course, want to plan this structure much as you’d plan your infrastructure,
to keep things appropriately namespaced and flexible enough to accommodate your
future needs.

44 CHAPTER 3 Expecting failure: fault tolerance in CoreOS
THE NGINX APPLICATION

Create a new directory for your NGINX build. You’ll have three files for configuring
NGINX, not including the service units. The first is a fairly simple Dockerfile using the
official NGINX image as its base.

FROM nginx

COPY helloworld.conf /tmp/helloworld.conf
COPY start.sh /tmp/start.sh
RUN chmod +x /tmp/start.sh

EXPOSE 80

CMD ["/tmp/start.sh"]

Next is a start script. You’ll using Bash as the dynamic runtime configuration for sim-
plicity, so you won’t add any more dependencies to the example. But many tools are
available to help you template your configuration files at runtime, such as confd
(www.confd.io).

#!/usr/bin/env bash

Write dynamic nginx config
echo "upstream helloworld { ${UPSTREAM} }" > /etc/nginx/conf.d/default.conf

Write rest of static config
cat /tmp/helloworld.conf >> /etc/nginx/conf.d/default.conf

Now start nginx
nginx -g 'daemon off;'

Finally, here’s the static NGINX config file for the reverse proxy.

server {
listen 80;
location / {

proxy_pass http://helloworld;
}

}

Build and push this image to your repository, just as you did the Express app:

$ cd code/ch3/nginx/
$ docker build -t mattbailey/helloworld-nginx .
Sending build context to Docker daemon 4.096 kB
...
Successfully built e9cfe4f5f144

$ docker push mattbailey/helloworld-nginx

Listing 3.6 code/ch3/nginx/Dockerfile

Listing 3.7 code/ch3/nginx/start.sh

Listing 3.8 code/ch3/nginx/helloworld.conf

45Service scheduling and discovery
The push refers to a repository [docker.io/mattbailey/helloworld-nginx]
...
latest: digest: sha256:01e4[...]81f8 size: 7848

Now, you can write your service files, shown in listings 3.9 and 3.10.

[Unit]
Description=Hello World Nginx
Requires=docker.service
After=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill helloworld-nginx
ExecStartPre=-/usr/bin/docker rm -f helloworld-nginx
ExecStartPre=/usr/bin/docker pull mattbailey/helloworld-nginx:latest
ExecStart=/bin/sh -c /for host in `etcdctl ls /services/helloworld`; \

do UPSTREAM=$UPSTREAM`etcdctl get $host`; \
done; \
docker run -t -e UPSTREAM="$UPSTREAM" \

--name helloworld-nginx -p 80:80 mattbailey/helloworld-nginx:latest'
ExecStop=-/usr/bin/docker stop helloworld-nginx

[Unit]
Description=Restart Nginx On Change

[Service]
ExecStart=/usr/bin/etcdctl exec-watch \

/services/changed/helloworld -- \
/bin/sh -c "fleetctl stop helloworld-nginx.service; \
fleetctl start helloworld-nginx.service"

Next, start your NGINX service units:

$ fleetctl start code/ch3/nginx/helloworld-nginx.service
Unit helloworld-nginx.service inactive
Unit helloworld-nginx.service launched on a12d26db.../172.17.8.102
$ fleetctl start code/ch3/nginx/helloworld-nginx-sidekick.service
Unit helloworld-nginx-sidekick.service inactive
Unit helloworld-nginx-sidekick.service launched on a12d26db.../172.17.8.102

Notice that you don’t care which machine the sidekick runs on for NGINX, because it’s
interacting with NGINX entirely via etcdctl and fleetctl.

 You should now have a setup that looks like figure 3.4. NGINX is effectively watch-
ing for changes in the topology of Express applications and is set up to adapt to those
changes. Further, you did this without implementing any complex monitoring sys-
tems. You expect failure to occur, and CoreOS lets you integrate that notion into the
composition of the service architecture. You need to test this notion; so, in the next
section, you’ll see what happens when a machine fails.

Listing 3.9 code/ch3/nginx/helloworld-nginx.service

Listing 3.10 code/ch3/nginx/helloworld-nginx-sidekick.service

46 CHAPTER 3 Expecting failure: fault tolerance in CoreOS
3.3 Breaking things
Now that you have a “production-like” deployment in place, it’s time to try to break it!
What you’ve built should stand up pretty well to a single machine failure. We’ll look at
how a machine failure affects your application and the how CoreOS can bring the
cluster back together when it’s restored. Simulating more complex scenarios is a little
difficult on a local cluster of three machines; but as a baseline, the CoreOS cluster
considers any inability to resolve a node in etcd as a machine failure and will react as if
a machine is down. As mentioned in section 3.1.2, etcd can survive (N-1)/2 machine
failures, where N is the number of machines; because etcd is the source of truth for
your cluster state, your deployment of CoreOS machines (virtual or physical) should
consider this rate of failure a baseline.

3.3.1 Simulating a machine failure

The most destructive kind of scenario you can simulate is a complete failure of a
CoreOS machine. This scenario includes loss of network connectivity, because that’s
functionally equivalent to the CoreOS cluster. To simulate this, you’ll have to shut
down one of your machines. To make things interesting, you’ll shut down the
machine that’s also running NGINX, which will result in an outage, but one that is mit-
igated by fleet. You may want to open another terminal to a machine you’re not shut-
ting down to watch what happens:

$ vagrant ssh core-01
core@core-01 ~ $ fleetctl journal -f helloworld-nginx.service
...
Feb 17 05:00:59 core-02 systemd[1]: Started Hello World Nginx.

In a different terminal from your host, have Vagrant shut down the machine where
helloworld-nginx.service is running:

$ vagrant halt core-02

Watch on core-01 or any other machine that wasn’t running helloworld-nginx.service:

...
Connection to 127.0.0.1 closed by remote host.
Error running remote command: wait: remote command exited without exit status

or exit signal

When failure isn’t “failure”
In some scenarios, losing a machine in your cluster is intentional and doesn’t repre-
sent a fault of any kind. For example, this happens if you have CoreOS automatic OS
updates enabled, or you need to shut down some infrastructure for maintenance, or
you want to rebuild your AWS EC2 instance for any number of reasons. If you consider
machine “faults” to be occurrences that are part of the normal lifecycle of your sys-
tems, you’ll have a much easier time gaining the benefits of CoreOS.

47Breaking things
core@core-01 ~ $ fleetctl journal -f helloworld-nginx.service
...
Feb 17 05:16:32 core-01 systemd[1]: Started Hello World Nginx.

You can see that the service was shut down on core-02, and then fleet moved it to core-
01. You can also observe that NGINX has picked up the new upstream configuration:

core@core-01 ~ $ docker exec -it helloworld-
nginx cat /etc/nginx/conf.d/default.conf

upstream helloworld { server 172.17.8.101:3000;server 172.17.8.103:3000; }
server {

listen 80;
location / {

proxy_pass http://helloworld;
}

}

Now that you’ve seen your application stack adapt to a missing machine, in the next
section you’ll bring the machine back to see how the cluster deals with service resto-
ration.

3.3.2 Self-repair

Bring the machine back up, and watch everything go back to normal:

$ vagrant up core-02

Once it’s booted back up, wait about 45 seconds. Then you can confirm that the
machine is back in NGINX’s upstream:

core@core-01 ~ $ docker exec -it helloworld-
nginx cat /etc/nginx/conf.d/default.conf

upstream helloworld { server 172.17.8.101:3000;server 172.17.8.103:3000;
server 172.17.8.102:3000; }

server {
listen 80;
location / {

proxy_pass http://helloworld;
}

}

The upstream is again pointing to all three of your Express applications. It took rela-
tively little engineering to add fault tolerance to a system completely unfamiliar with
that concept. Additionally, you didn’t need to employ any additional tools to accom-
plish this, other than what is provided by CoreOS. Ultimately, building robust, self-
repairing systems is always a hard problem, but CoreOS provides a generic tool set
with fleet and etcd that gives you a pattern for building it into many scenarios.

 Application architecture is still an important skill. And adapting your architecture
to CoreOS requires some planning, as we’ll discuss next.

48 CHAPTER 3 Expecting failure: fault tolerance in CoreOS
3.4 Application architectures and CoreOS
Application architecture is a topic that could fill many volumes. This won’t be the last
time we discuss it in this book; but it’s worth looking at it and at how it relates to the big
picture, now that you’ve simulated things that application architects try to plan for.

 First we’ll look at some common pitfalls with designing applications for failure,
and then we’ll follow up with a discussion of what parts of the architecture you
can control. Finally, we’ll touch on what all this means with respect to configuration
management.

3.4.1 Common pitfalls

There are some common pitfalls when it comes to running application stacks in envi-
ronments where faults are common or expected, or where the scale of what you’re
doing statistically demands that faults will occur at some regular interval. You can prob-
ably recognize in the chapter’s example that the host on which NGINX is running
becomes somewhat of a single point of failure. Even though you’ve designed the system
to tolerate that machine’s failure by starting up NGINX on another instance, you still
could have a gap in availability. You can resolve this in your architecture in a few ways:

 The NGINX sidekick can update a DNS entry with a short TTL if you can tolerate
a minute of downtime.

 You can rely on upstream content delivery network (CDN) caching to carry you
through an outage.

 You can run NGINX on two or all three machines and have a load-balancer
appliance or something like AWS Elastic Load Balancer (ELB) with a health
check in front of them.

Most commonly, the last option is used if you need that level of reliability. You’re
building enough vertical capacity into your machines to run both services at the same
time, so there’s little reason not to. But here’s where you have to be careful. Assume
that NGINX is doing something specific for a user’s session. This isn’t likely; but for the
sake of an example, if NGINX stored some kind of state locally, that state wouldn’t be
shared to the other NGINX service running on the other machine. Often, you accept
that users may be logged out if some part of a cluster fails, but you also wouldn’t want
them to be logged out by hitting a different node behind your load balancer.

 The architectural choices you make, especially with respect to the software you use,
have an effect on your ability to make the architecture fault tolerant with CoreOS’s
tools. Even the complexity of applying fault tolerance to software that supports it can
be difficult. For example, before Redis 3.0 and the redis-cluster feature that comes
with it, clustering Redis involved a separate sentinel process to elect a write master and
realign the cluster. The Redis Sentinel system was designed to be applied in a fault-
tolerant system like CoreOS, but making it work was a complex task. The takeaway is
that you should always test your cluster configurations and fault scenarios in an envi-
ronment like a local Vagrant cluster, where you can control conditions.

49Summary
3.4.2 Greenfield and legacy systems

Sometimes you get to choose your architecture, and sometimes you don’t. Dealing
with legacy systems is part of every engineer’s career; obviously, it will be easier to
build fault tolerance into a greenfield project via CoreOS than to build it into a legacy
stack. You may find that it’s impossible to reach certain levels of reliability in some sys-
tems that you could with others. You can, however, mitigate some of the risk with the
patterns CoreOS provides.

 Mostly you’ll run into issues with legacy services that store some kind of state and
have no way to distribute it. Of those, the single most annoying problem is the “undis-
tributable” state being stored on the local filesystem. If the data that’s being stored
isn’t important, the only downside is that you can only run the service on one
machine; you can still rely on fleet to move it around. If the data is important, and you
can’t change how it works, you’ll have to implement distributed storage. We’ll go into
detail about your options in section 4.5.

3.4.3 Configuration management

If you’re dealing with greenfield applications, your approach to configuration man-
agement should assume that the application configuration is split between configura-
tion that needs to understand the runtime environment (such as database IPs) and
configuration that’s stateless (such as a database driver). The former should be man-
aged with etcd, and the latter should be managed with your container build process.
With that in mind, you’ll no longer need complex configuration-management
systems, and your software environment will become much more repeatable and
understandable.

3.5 Summary
 Follow the sidekick pattern to build complex application environments with

service discovery.
 Use service discovery to implement fault tolerance and self-healing capabilities.
 Design scenarios in which you can simulate failures that you might see in a pro-

duction environment, so you can test your cluster implementations.
 Application architectures are important in planning your CoreOS deployments

and always require review.

Part 2

Application architecture

Chapters 4–7 dive deep into application architecture concepts and how
they apply to CoreOS’s computing model. You’ll build increasingly complex soft-
ware stacks on your local cluster, using the example in chapter 3 as a foundation.
Your application will go from a simple “Hello World” to a multilayer, real-time
application with a scalable, fault-tolerant persistent database.

CoreOS in production
In chapter 3, we talked about how to achieve some fault tolerance using CoreOS’s
features; bringing everything together into production is, of course, more com-
plex. You have an unsurprisingly wide range of options to choose from in terms of
how and where you want to deploy CoreOS and how you and your organization will
maintain it long term. This chapter covers the planning and information gathering
you’ll need to do in a few of the most common scenarios.

 The first section of the chapter goes through the things you should consider
when you’re planning deployments on IaaS services, in-house VMs, and bare metal.
Then we’ll move on to how to approach the network topology and how to think
about mass storage and large data sets within your cluster.

NOTE To be prepared for this chapter, you should have a basic under-
standing of networking and storage and at least some notion of your target
for deployment.

This chapter covers
 CoreOS deployment options

 Networking layers to support your systems

 Large-scale persistent storage
53

54 CHAPTER 4 CoreOS in production
4.1 Planning and deployment options
CoreOS supports a wide range of deployment options, both those supported by the
CoreOS organization and community-supported efforts. You can check this list and
associated official documentation at https://coreos.com/os/docs/latest/#running-
coreos. By far the most common platforms for running CoreOS are these three:

 Amazon Web Services (AWS)
 Internal VM infrastructure (such as OpenStack)
 Bare metal (your own hardware)

Table 4.1 breaks down the costs for each option.

Of course, this table is just a guideline; capital expenditures and total cost of owner-
ship (TCO) can be complex topics and are unique for each organization. In my per-
sonal experience, it’s usually difficult to find personnel. The high recurring cost of
AWS is generally offset by needing fewer people and by its ability to get your infrastruc-
ture where you want to be much more quickly—a factor you should certainly consider.

 In chapter 9, we’ll go through a full end-to-end deployment in AWS, using some of
the information from this chapter. In addition to being the most likely target plat-
form, AWS’s flexibility lets you cover all of CoreOS’s features and scenarios without too
many caveats regarding your own infrastructure.

4.1.1 Amazon Web Services

Infrastructure as a service (IaaS) has gained significant momentum over the last 10
years, and there’s no denying that AWS is the market leader in this space. Its biggest
competitors are Microsoft Azure and Google Compute Engine (GCE); smaller (but
also rapidly growing) competitors include DigitalOcean and Rackspace Cloud.
CoreOS supports all of these officially, but we’ll primarily discuss IaaS in the context
of AWS; most IaaS providers share a lot of the same design patterns, so the examples
and language in this chapter should translate easily to any provider with which you
have experience.

Table 4.1 High-level cost breakdown of common CoreOS platform options

AWS Internal VMs Bare metal

Physical hardware investment X X

Personnel to manage host software X

Personnel to manage hardware X X

Personnel to manage CoreOS X X X

Personnel to manage cloud infrastructure X

High initial cost (not including personnel) X X

High recurring cost (not including personnel) X

55Planning and deployment options
The biggest difference with AWS is that you have to make an extra decision about your
architecture. You can choose to run CoreOS and all your applications on Elastic Com-
pute Cloud (EC2), or you can run a controlling CoreOS cluster (such as just fleet and
etcd) on EC2 and use Amazon’s ecs-agent to drive the runtime of your applications
in AWS’s relatively new Elastic Container Service (ECS). Figure 4.1 illustrates how a
cluster looks with just EC2, and figure 4.2 shows it with ECS. Public IaaS providers now
have pretty good convergence of features as far as simple compute services go; but
AWS is the only one supported by CoreOS that has this abstraction, which can drasti-
cally simplify your deployment—you can scale your compute independently of how
many CoreOS machines you must manage.

 With just EC2 (figure 4.1), the configuration looks a lot like the local workspace
you built in chapter 2: three instances, with your application containers running in
some configuration on each of the VMs and being controlled with fleet and etcd. Fig-
ure 4.2 introduces some interesting abstraction that you may find useful: ecs-agent,

CoreOS machine

Docker

Your application
container(s)

AWS EC2

CoreOS machine

Docker

Your application
container(s)

CoreOS machine

Docker

Your application
container(s)

fleet and etcd

Figure 4.1 AWS deployment with EC2

CoreOS machine

Docker

ecs agent

AWS EC2

AWS ECS

CoreOS machine

Docker

ecs agent

CoreOS machine

Docker

ecs agent
Your application

container(s)

fleet and etcd

Docker
commands
and runtime

Figure 4.2 AWS deployment with EC2 and ECS

56 CHAPTER 4 CoreOS in production
which is officially distributed by Amazon in a Docker container (https://hub.docker
.com/r/ amazon/amazon-ecs-agent). It essentially acts as a proxy for all of Docker’s
commands and runtime, forwarding them into your ECS environment. This means
you can have a more attractive separation of concerns between your controllers (your
EC2 CoreOS cluster), for which you can now use small instances, and the runtime
environment of your applications. fleet and etcd will still run the show, but they can
operate independently of ECS’s infrastructure. This also means you don’t even need
to run the CoreOS cluster in EC2, which opens other hybrid approaches: you can have
your CoreOS cluster running in your data center, controlling an ECS cluster in AWS.

 Chapter 8 will go through detailed examples using both of these models in AWS.
Luckily, you don’t need to make this choice at the outset. Because ecs-agent is trans-
parent to the Docker runtime, you can transition into or out of this model without a
huge effort. Either way, for both models, assume for the sake of this section that
you’re running a CoreOS cluster in AWS EC2.

 CoreOS (the company) suggests that you run your machine cluster in EC2 via
CloudFormation. If you’re unfamiliar with CloudFormation, or if you’re new to AWS,
check out Amazon Web Services in Action by Andreas Wittig and Michael Wittig (Man-
ning, 2015, www.manning.com/books/amazon-web-services-in-action). Briefly, Cloud-
Formation is an AWS system that allows you to write a descriptive manifest of your AWS
environment and manage the deployment and changes that occur in that environ-
ment. It’s a way to record your entire infrastructure and keep it in version control,
code review, and so on.

 CoreOS provides a basic CloudFormation template to get started with CoreOS in
EC2, available at https://coreos.com/os/docs/latest/booting-on-ec2.html. It’s a great
starting point, but keep in mind that it’s not sufficient for a robust production deploy-
ment, which we’ll go through in its entirety later in the book.

4.1.2 Using in-house VM infrastructure

You may already have some level of virtualization in your data center that you want to
use for the deployment of CoreOS. Currently, CoreOS only officially supports Open-
Stack as a target for VM deployment, but the community supports some commonly
used products like VMware. Additionally, nothing prevents you from creating
CoreOS images for any VM system you’re using, although doing so is likely to be time
consuming.

NOTE In my opinion, running CoreOS on a data-center VM platform for pro-
duction adds little value and a lot of unnecessary complexity. If you already
have the hardware, CoreOS is providing the application and infrastructure
abstraction for which you’d use virtualization. Running this on top of another
abstraction makes it difficult for fleet to understand the topological zones of
failure; and because you don’t care much about the machine image, the
advantages of VM image manipulation aren’t useful.

57Networking considerations
CoreOS on OpenStack uses the common tools glance to do image definition and
nova to initialize the cluster. The official documentation for CoreOS on OpenStack
can be found at https://coreos.com/os/docs/latest/booting-on-openstack.html.

4.1.3 On bare metal

CoreOS on bare metal (your own data-center hardware) is a great option if you have
the engineering resources to manage it and the capacity requirements to make it
worthwhile over IaaS. We won’t go too much into the economics of this approach, but
you’ll have to determine where the cost curves meet for IaaS versus bare metal for
your organization. Truly massive capacity can see some cost benefits in bare metal over
IaaS, if you can afford the time and resources. CoreOS is designed to facilitate that
kind of capacity, so it’s a great choice if that’s your type of environment. You may also
have security considerations that forbid the use of IaaS platforms.

 CoreOS on your own hardware is officially supported and has some up-front
requirements. For simple deployments (such as testing and development), you can
use the ISO that CoreOS provides burned onto a CD or thumb drive. This obviously
isn’t very scalable, so the real requirement for running CoreOS here is running a Pre-
boot Execution Environment (PXE) or iPXE server. With this configuration, CoreOS
runs entirely in memory. You can optionally install it to disk, but running in memory
from PXE yields a high-performance cluster out of the box.

 CoreOS on bare metal also likely means the somewhat manual configuration of a
network, the specifics of which we’ll cover in the next section.

4.2 Networking considerations
In all the previous examples in this book, we’ve assumed that your network for your
CoreOS machines is flat and internally open between nodes. This is how a develop-
ment environment in VirtualBox behaves, but of course this isn’t always the case, espe-
cially in production environments where you may want to lock things down a little
better internally. You have a few options when it comes to configuring networks along-
side your CoreOS cluster, some of which are very platform specific (for example, we’ll
go into how it’s done in AWS in chapter 8). Initially, you can refer to figure 4.3 to get an
idea of what your CoreOS cluster needs to be functional in terms of port mappings.

 Figure 4.3 shows two crucial classes of network configuration you have to do for a
CoreOS cluster. First, ports you need to open for administration are (obviously) SSH
(TCP/22) and, optionally, the client port for etcd (TCP/2379). Fundamentally, you
won’t often be sshing to your nodes directly; but you’ll remember from chapter 1 that
fleetctl can use SSH as a tunnel for executing commands to your cluster remotely.
You can get away with leaving SSH closed; if you open your etcd client port, fleetctl
can use the etcd API remotely with the --driver=API --endpoint=<URI> flags.

 The second critical class of services that need network communications are those
that CoreOS (and you!) use to message between machines. You’ll also use this internal
communication to talk to etcd with etcdctl or curl in your sidekick services, as you

58 CHAPTER 4 CoreOS in production
did in examples in chapters 2 and 3. etcd uses TCP/2379 for client communication
(etcdctl) and TCP/2380 to internally maintain the cluster configuration. If you want
to be able to run fleetctl from one node and have it automatically ssh to the correct
node for your command, you’ll also have to open SSH (TCP/22) between machines.
The legacy ports for etcd are TCP/4001 and TCP/7001. etcd still binds to these ports,
too, for backward compatibility, but opening them between machines is entirely
optional.

 Finally, you also have to decide what ports or ranges of ports to open between
machines internally for your application stack. For example, does your Ruby on Rails
app need to talk to a Redis instance on another CoreOS machine on port TCP/6379?

 The third class of network configuration, which is completely defined by you and
your applications (and not shown in figure 4.3) includes the ports and protocols you
wish to expose to the world or your customers, or to external firewalls, load balancers,
or other networking equipment. Managing this much more dynamic network configu-
ration, as well as the configuration of the networking for your services between
machines, is what we’ll dive deeply into in this section.

4.2.1 How programmable is your network?

As a simple scenario, let’s say you have a PHP application that needs to communicate
with MySQL. You can run your PHP app on all machines in your cluster, but MySQL
can run on only one machine. You have a security requirement to maintain a default
deny policy between every machine in your network, but you also want MySQL to be
able to run on any one machine so that it can move around if there are failures. How
can you make your network aware of service changes?

 You learned how service sidekick units can announce services on etcd. The same is
true in this scenario: your sidekicks should apply some configuration to the network-
ing infrastructure that opens the MySQL port to other machines when it moves. If
you’re in a public cloud, there are usually well-supported APIs to do this; if you’re

etcd: TCP/2379
Client communication

etcd: TCP/2380
Server communication

Optional: SSH: TCP/22
For some fleetctl features

Your services?

SSH: TCP/22

Open ports for administration

Open ports between machines

CoreOS
machine 1..n

Optional: etcd: TCP/2379

Figure 4.3 CoreOS port mappings

59Networking considerations
maintaining your own networking equipment, this can be much more difficult or
impossible if you can’t configure these access control lists (ACLs) programmatically.

 There are a couple of options to resolve these problems without an additional sys-
tem, as shown in figure 4.4 (described in the next subsection):

 Option 1—You have an easily programmable network, and you can set this policy
with a sidekick.

 Option 2—You open a range of ports reserved for internal service mapping.

The other difficulty with automated network configuration internally is that it can
become difficult to maintain over time, and you may end up with a lot of complex,
opaque configuration in your sidekick unit files. An alternative is to write custom soft-
ware that uses etcd’s ability to have clients listen or poll for changes and apply some
network configuration as a result. Obviously, this comes with its own set of complexi-
ties and maintenance challenges.

 You’ll also likely be using some kind of load balancer in front of your CoreOS
machines, and this device or service will need a level of programmability. You can ini-
tially configure your load balancer to only route requests to a machine based on a
health check, or you can use a sidekick service to announce the availability of a service
through whatever API your load balancer uses. This is typically less complex and more
likely to exist as a feature on load balancers than layer 3 switches, but you’ll need to
consider your approach (for example, will your service be available if it responds to a
port, or does it need to do some bootstrapping?).

4.2.2 Up and running with flannel

Flannel is CoreOS’s solution to managing a lot of this network complexity within the
CoreOS cluster rather than on your networking infrastructure. If you take the same
example of a PHP and MySQL app, the connection between the PHP app and MySQL
becomes encapsulated and sent over a single port. This way, the MySQL sidekick only
needs to tell the PHP app where it is (via etcd), not both the application and the net-
working infrastructure.

Option 1
mysqld: TP/3306

Opened from API call via sidekick

CoreOS
machine 1

CoreOS
machine n

Option 2
TCP/10000 TCP/11000

Exclusive range for your services
Figure 4.4 Internal
networking options

60 CHAPTER 4 CoreOS in production
Flannel creates an overlay network for all
of your containers across all the
machines in your CoreOS cluster. Flan-
nel encapsulates all this traffic over
UDP/8285, which will be the only ACL
you have to make between your
machines for your own services. Depend-
ing on the environment you’re in, you
can use back ends other than the UDP
one: for example, if you’re in an AWS
VPC, you can use a VPC route table as the
back end for flannel. The use of flannel
has almost no impact on bandwidth and
adds a small penalty to latency.

 Let’s dive into the example from
chapter 3, where you had an NGINX
server acting as a load-balancing proxy
for Node.js servers, and use the flannel
overlay network for communication
rather than the VirtualBox network
between machines. Refer to figures 4.5
and 4.6 to see the differences in topol-
ogy (simplified down to just two
machines).

 Figure 4.5 shows the original net-
work topology of the example in chap-
ter 3. It’s a simple internal network
topology: a shared /24 network between machines. VirtualBox and Vagrant set up an
internal network for the cluster in an address space like 172.17.8.0/24 and set up eth1
as an interface for your machines in that subnet. You use that internal network for ser-
vice discovery and attachment of the NGINX server to the Node.js processes.

 As you can see in figure 4.6, a lot more is going on in terms of networking. You still
have the same /24 private network between machines, but now its only purpose is to
provide an abstraction for flannel, which encapsulates all container traffic over
UDP/8285. An internal /16 network on each machine is created on the interface flan-
nel0, and a /24 network is created within that address space for docker0. This keeps
traffic between containers running on the same machine efficiently, and it also helps
flannel understand the topology.

 Back in section 2.1.2, you copied the default Vagrant repo file user-data.sample to
user-data. If you look at that file now, you’ll see that you already told CoreOS to set
up flannel. In the units: section, you can see flanneld.service and the 50-network-
config.conf file that fires etcdctl to set a network for flannel. This is the minimal

CoreOS machine
eth1: 172.17.8.101/24

(core01)

Node.js/Express

NGINX

CoreOS machine
eth1: 172.17.8.102/24

(core02)

172.17.8.0/24

Node.js/Express

Figure 4.5 Original topology

CoreOS machine
eth1: 172.17.8.101/24
flannel0: 10.1.41.0/16

(core01)

Node.js/Express

NGINX

CoreOS machine
eth1: 172.17.8.102/24
flannel0: 10.1.44.0/16

(core02)

172.17.8.0/24 UDP/8285

Node.js/Express

docker0
10.1.41.1/24

docker0
10.1.44.1/24

Figure 4.6 Topology with flannel

61Networking considerations
configuration to get flannel up and running, so if you followed along in chapter 2,
you should have everything you need already. flanneld should be running, and your
Docker containers are already using it.

NOTE You’ll use the tool jq here: it’s a command-line JSON processor, self-
described as “sed for JSON data.” It’s included by default in CoreOS, and you
can read more about it at https://stedolan.github.io/jq.

Let’s look at how you can change some things to use flannel. You won’t have to change
helloworld-nginx@ or helloworld-nginx-sidekick@ to make this work, just hel-
loworld@ and its sidekick. You still want NGINX to listen on the “real” machine port
eth1, because you’re considering NGINX to be the edge of this application stack; and
because you already have NGINX configured to dynamically change its configuration
when the upstream Node.js instances change (see section 3.2.2), you don’t have to
touch it. You do, of course, have to change helloworld@ (listing 4.1) and helloworld-
sidekick@ (listing 4.2).

[Unit]
Description=Hello World Service
Requires=docker.service
After=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill helloworld
ExecStartPre=-/usr/bin/docker rm -f helloworld
ExecStartPre=/usr/bin/docker pull mattbailey/helloworld:latest
ExecStart=/usr/bin/docker run --name helloworld mattbailey/helloworld:latest
ExecStartPost=/usr/bin/sh -c 'echo -n FLANNEL_IP= > /run/helloworld.env'
ExecStartPost=/usr/bin/sh -c 'sleep 5; docker inspect helloworld |

 ➥jq -r .[].NetworkSettings.IPAddress >> /run/helloworld.env'
ExecStop=-/usr/bin/docker stop helloworld

[X-Fleet]
Conflicts=helloworld@*

As you can see, there isn’t much to change in the service unit from chapter 3. You’re
just adding an extra step to provide a little more context to the service (its Docker IP).

[Unit]
Description=Register Hello World %i
BindsTo=helloworld@%i.service
After=helloworld@%i.service

Listing 4.1 code/ch4/helloworld/helloworld@.service: flannel version

Listing 4.2 code/ch4/helloworld/helloworld-sidekick@.service: flannel version

Remove the -p 3000:3000
port mapping from the

Docker runtime, because
you no longer need to open
a port to the host interface.

Starts writing an environment file
for the sidekick to consume

Writes the rest of the environment
file, using jq to parse the JSON

output of docker inspect helloworld
after giving it time to start up

62 CHAPTER 4 CoreOS in production
[Service]
EnvironmentFile=/run/helloworld.env
ExecStartPre=/usr/bin/etcdctl set /services/changed/helloworld 1
ExecStart=/usr/bin/bash -c 'while true; do

➥["`etcdctl get /services/helloworld/${FLANNEL_IP}`"

 ➥!= "server ${FLANNEL_IP}:3000;"] &&

➥etcdctl set /services/changed/helloworld 1;

 ➥etcdctl set /services/helloworld/${FLANNEL_IP}

 ➥\'server ${FLANNEL_IP}:3000;\' --ttl 60;sleep 45;done'
ExecStop=/usr/bin/etcdctl rm /services/helloworld/helloworld@%i
ExecStopPost=/usr/bin/etcdctl set /services/changed/helloworld 1

[X-Fleet]
MachineOf=helloworld@%i.service

Once you’ve updated the files, you should be able to destroy your current services and
start these updated ones:

$ fleetctl destroy helloworld@{1..3}.service \
 helloworld-sidekick@{1..3}.service
$ fleetctl start \

code/ch4/helloworld/helloworld@{1..3}.service \
code/ch4/helloworld/helloworld-sidekick@{1..3}.service

What does this get you?

 You no longer need to expose a port to the physical interface of your CoreOS
machines.

 Your container has internal ownership of a dedicated IP address.
 You don’t have to implement port-mapping logic to run the same container on

the same machine.
 You can lock down the network between your CoreOS machines.

Now that you have a better understanding of CoreOS networking with fleet, complex
application architectures should be much easier to compose, and you can abstract
your network configuration out of the docker command being run by your service
unit. In some situations, you can also remove the burden of some network configura-
tion from operations and make it easier for the implementers of a service to decide its
network configuration in a secure and controllable way. Next, we’ll look at the last
component of dealing with CoreOS in production: mass storage.

4.3 Where is your mass storage?
Mass storage in CoreOS can seem like a mystery. If you’re treating individual
machines as appliances, you shouldn’t care much about their storage. But the reality is
that almost all systems eventually need some capacity to manage important data, and
how to construct your storage system in a way that doesn’t add stateful dependencies
to CoreOS may be a little different than how you’ve done things in the past.

Change the
environment

file from /etc/
environment to
the new file the

service wrote: /run
/helloworld.env.

Uses the new environment variable
FLANNEL_IP to set your service discovery keys

63Where is your mass storage?
 Abstracting mass storage isn’t a new concept. People have been doing it in data
centers forever—storage area networks (SANs), network-attached storage (NAS), and
filesystems like NFS have been in use for a long time. Storage in public clouds is also
abstracted, with elastic volumes and services dedicated to storing data as files like AWS
S3 or in managed database systems like AWS RDS. But what do you do when you need
access to a filesystem shared among machines? This isn’t a problem exclusive to
CoreOS, of course. Horizontally scaling application stacks that are in some way heavily
reliant on local filesystem access is always difficult. There are a few ways to solve this
problem and a few factors to consider with respect to your application stack.

4.3.1 Data systems background

At the outset, I’d like to point out that, architecturally, relying on a local filesystem for
a source of state is generally a bad idea. It’s almost always better to keep your data in
some kind of distributed database that’s designed to maintain its own reliability across
a cluster of nodes to fit your specific needs. You may have heard of the CAP (consistency,
availability, partition tolerance) theorem applied to database systems. In any environ-
ment in which you’re treating computers as appliances for high horizontal scalability,
CoreOS or otherwise, partition tolerance becomes a strong requirement for your data
system. Famously, the CAP theorem suggests that you can “choose two of three” (see fig-
ure 4.7). This idea can be a little overused and misapplied, but it suggests that these
three reliability concepts are more or less impossible to implement simultaneously.

 You need partition tolerance, which means you’re limited by your application needs
when it comes to other reliability features you want to use. To achieve high consistency
with partition tolerance, some operations must be blocking until an operation com-
pletes. We can conclude that availability suffers in this scenario. To be clear, availability
doesn’t mean operations fail, but they might have to wait in a queue, which usually
affects write operations more than read operations. Data systems that guarantee high
consistency and high partition tolerance often use the Raft protocol (https://raft
.github.io). etcd in CoreOS is an example of a data system that uses Raft; it needs high
consistency so you can be sure of the state of your cluster at any point in time.

Pa
rti

tio
n

to
le

ra
nc

e Consistency

AvailabilityInconsistency

Unavailability

Partition intolerance

Figure 4.7 CAP theorem: “choose two”

64 CHAPTER 4 CoreOS in production
 Highly available data systems with partition tolerance are also sometimes required.
If your application has high-throughput write requirements or doesn’t have a strong
requirement for data to be consistent everywhere in the cluster at the same time, you
can use such a data system. These systems typically resolve consistency asynchronously;
people often use the term eventual consistency to describe them. They frequently align
with a Dynamo-like protocol.1 Examples of Dynamo-like databases are (of course)
AWS’s DynamoDB, Cassandra, and Riak.

 Describing modern data systems could comprise multiple volumes of books, so I
won’t go into much more depth; but it’s important to describe the context in which
your data choices will need to be made, and these terms are used throughout this sec-
tion. In any distributed system, partition tolerance is the most important factor in tech-
nology choices. We discussed at the end of chapter 3 how greenfield applications are
easier to implement in distributed systems than in legacy application stacks, and this is
one of the reasons. It can be difficult to migrate a stack that has a data layer that isn’t
very partition tolerant.

4.3.2 NAS and storage outsourcing

The first option for abstracting your persistent filesystems for distribution among
nodes is to completely host your filesystems elsewhere. To be clear, this option doesn’t
include SANs. Although a SAN can be involved at the appropriate layer, we care about
the actual filesystem when talking about mass storage in the context of CoreOS, not
necessarily how it’s attached at the block level. NAS solutions should be pretty familiar
to you if you’ve been in operations for any length of time.

 NFS has been the de facto standard NAS protocol for decades. This subsection’s title
includes “storage outsourcing” for a reason: it’s inadvisable to attempt to run NFS on
CoreOS as a server. NFS has no facility for sharing its block-level source (which would
be completely out of its scope as a service) across nodes, so you’re essentially adding
another layer of partition intolerance by trying to share a filesystem from CoreOS. The
other direction is fine, however. If you have a reliable NAS that provides NFS or another
networked filesystem in your infrastructure, CoreOS as a client of that service is a fine
way to add a shared filesystem among nodes. If you go this route, you should be sure to
use a system that runs NFSv4, because it has a robust built-in file-locking mechanism to
ensure high consistency, which is a requirement for using a filesystem.

 Various NAS products provide NFSv4. AWS’s new (still currently in preview) Elastic
File System (EFS) provides NFSv4, and a great many commercial NASs like NetApp
serve this protocol as well. The last option for external distributed filesystems is using
a user-space filesystem like s3Fs that mounts an S3 bucket as a filesystem. These solu-
tions tend to have pretty poor performance, especially on writes, but they may fit your
needs if performance isn’t a huge concern.

1 Named after this paper: Giuseppe DeCandia et al., “Dynamo: Amazon’s Highly Available Key-value Store,”
Amazon.com, 2007, http://mng.bz/YY5A.

65Where is your mass storage?
4.3.3 Ceph

The second option for common access to mass storage is a truly distributed filesystem.
There are a few out there, and one of the most popular is Ceph. The Ceph kernel
module is officially part of the CoreOS default install and is the only distributed paral-
lel filesystem module included. Setup for Ceph can be nontrivial, but it’s a lot less dif-
ficult than it was even a year ago. Ceph officially now supports etcd or consul (a system
similar to etcd by HashiCorp) as a configuration back end, which makes things signifi-
cantly easier. A vast array of tunable parameters are provided for Ceph; these are out
of scope for this book, but we’ll cover some basic usage.

 The goal of a Ceph cluster is to unify the storage of several machines in a reliable
way. At the end of this example, your Ceph cluster will look like figure 4.8.

This figure shows the discrete parts of a Ceph cluster: monitors and object storage
daemons (OSDs) run on as many machines in your cluster as you want (although, you
should have at least three monitors for a quorum). Together, they make up the storage
cluster on which the metadata server (MDS) coordinates access and namespacing. The
filesystem interface is provided through the ceph kernel module. Ceph has some
other interfaces available as well, which you can read about at ceph.com.

 Let’s jump into this example with the development cluster you set up in chapter 2.
Before you start running Ceph, you need to attach some more storage to your VMs.
You can do this with VirtualBox’s command-line utilities:

$ VBoxManage createhd \
--filename ceph-disks/ceph-core-01.vdi \
--size 1024

$ VBoxManage createhd --filename ceph-disks/ceph-core-02.vdi --size 1024
$ VBoxManage createhd --filename ceph-disks/ceph-core-03.vdi --size 1024

CoreOS
machine 1

CoreOS
machine 2

CoreOS
machine 3

CoreOS
machine 1

Monitors Object storage daemons (OSDs)

CoreOS
machine 2

CoreOS
machine 3

Metadata server (MDS; on any machine)

Storage cluster

Filesystem interface

Figure 4.8 Ceph cluster

This example uses a
1,024 MB disk.

You can choose any path or
filename for your new disks.

66 CHAPTER 4 CoreOS in production

H

a

Now that you have your disks, you need to shut down the cluster, get the VM names,
and attach your storage with the following commands:

$ vagrant halt
$ VBoxManage list vms
"vagrant_core-01_1459134252706_21974" {3c944e16-1fcd-4514-b693-98326963a51a}
"vagrant_core-02_1459134273920_21027" {a5bb3429-d9b7-48a7-94ef-99bb05fe1266}
"vagrant_core-03_1459134297702_67743" {71aec75d-aa93-4a6e-b286-f3f2f57a4cf2}
$ VBoxManage storageattach vagrant_core-01_1459134252706_21974 \

--storagectl 'IDE Controller' --port 1 --device 0 --type hdd \
--medium ceph-disks/ceph-core-01.vdi

$ VBoxManage storageattach vagrant_core-02_1459134273920_21027 \
--storagectl 'IDE Controller' --port 1 --device 0 --type hdd \
--medium ceph-disks/ceph-core-02.vdi

$ VBoxManage storageattach vagrant_core-03_1459134297702_67743 \
--storagectl 'IDE Controller' --port 1 --device 0 --type hdd \
--medium ceph-disks/ceph-core-03.vdi

$ vagrant up

The disks are attached to your VMs; you need to bootstrap one of your nodes with con-
figuration into etcd. ssh into one of your nodes (vagrant ssh core-01, for example),
and run the following command:

$ docker run --rm -d --net=host \
-e KV_TYPE=etcd \
-e KV_IP=127.0.0.1 \
-e KV_PORT=4001 \

ceph/daemon:build-master-jewel-ubuntu-14.04 \
populate_kvstore

This will exit quickly with a Ceph cluster key (which you don’t have to record). If you
want to, you can use etcdctl to explore what was written to etcd:

core@core-01 ~ $ etcdctl ls /ceph-config/ceph
/ceph-config/ceph/mds
/ceph-config/ceph/auth
/ceph-config/ceph/global
/ceph-config/ceph/mon
/ceph-config/ceph/osd
/ceph-config/ceph/client

Next, you need to write some unit files to get Ceph up and running; they’re shown in
listings 4.3, 4.4, and 4.5. Ceph requires three systems: the monitor (mon), the object
storage daemon (osd), and the metadata service (mds). You have to run mon and osd
on each machine, but you need only one mds (although you can run multiple).

In the directory where your Vagrant file from chapter 2
is located, make sure your cluster is shut down.

Get the VirtualBox VM names
created by Vagrant to attach
more storage to them.

Use the VM name with the
storageattach command to attach

the new disks to each node.Start up your cluster again.

Currently, this can be etcd or
consul (see section 4.3.3).

ow the
script

ccesses
etcd

Uses a specific image to ensure
this example works as intended

The ceph/daemon container
contains the populate_kvstore
script that you’ll need to run.

Show all the keys the
populate_kvstore
script created

67Where is your mass storage?

[Unit]
Description=Ceph Monitor
Requires=docker.service
After=docker.service

[Service]
Restart=always
RestartSec=5s
TimeoutStartSec=5
TimeoutStopSec=15
EnvironmentFile=/etc/environment
Environment=CEPH_NETWORK=172.17.8.0/24
Environment=CEPH_NETWORK=172.17.8.0/24
ExecStartPre=-/usr/bin/docker kill %p
ExecStartPre=-/usr/bin/docker rm -f %p
ExecStart=/usr/bin/sh -c "docker run \

--name %p \
--rm \
--net=host \
-v /var/lib/ceph:/var/lib/ceph \
-e MON_IP=$COREOS_PUBLIC_IPV4 \
-e CEPH_PUBLIC_NETWORK=$CEPH_NETWORK \
-e KV_TYPE=etcd \
-e KV_IP=127.0.0.1 \
-e KV_PORT=4001 \
ceph/daemon:build-master-jewel-ubuntu-14.04 mon"

ExecStop=-/usr/bin/docker stop %p

[X-Fleet]
Conflicts=%p@*

[Unit]
Description=Ceph OSD
Requires=docker.service
After=docker.service

[Service]
Restart=always
RestartSec=5s
TimeoutStartSec=10
TimeoutStopSec=15
EnvironmentFile=/etc/environment
ExecStartPre=-/usr/bin/docker kill %p
ExecStartPre=-/usr/bin/docker rm -f %p
ExecStart=/usr/bin/sh -c "docker run \

--rm \
--name %p \
--net=host \
--privileged=true \
--pid=host \
-v /dev/:/dev/ \
-e OSD_DEVICE=/dev/sdb \
-e OSD_TYPE=disk \

Listing 4.3 code/ch4/ceph/ceph-mon@.service

Listing 4.4 code/ch4/ceph/ceph-osd@service

Network of your
VirtualBox interfaces

The device that you attached, which
should appear as /dev/sdb in VirtualBox

68 CHAPTER 4 CoreOS in production
-e OSD_FORCE_ZAP=1 \
-e KV_TYPE=etcd \
-e KV_IP=127.0.0.1 \
-e KV_PORT=4001 \
ceph/daemon:build-master-jewel-ubuntu-14.04 osd"

ExecStop=-/usr/bin/docker stop %p

[X-Fleet]
Conflicts=%p@*

[Unit]
Description=Ceph Meta Data Service
Requires=docker.service
After=docker.service

[Service]
TimeoutStartSec=0
EnvironmentFile=/etc/environment
ExecStartPre=-/usr/bin/docker kill %p
ExecStartPre=-/usr/bin/docker rm -f %p
ExecStartPre=/usr/bin/docker pull ceph/daemon
ExecStart=/usr/bin/sh -c "docker run \

--rm \
--name %p \
--net=host \
-e CEPHFS_CREATE=1 \
-e KV_TYPE=etcd \
-e KV_IP=127.0.0.1 \
-e KV_PORT=4001 \

ceph/daemon:build-master-jewel-ubuntu-14.04 mds"
ExecStop=-/usr/bin/docker stop %p

[X-Fleet]
Conflicts=ceph-mds@*

Let’s get these files up and running on your machines with fleetctl:

$ fleetctl start \
code/ch4/ceph/ceph-mon@{1..3}.service \
code/ch4/ceph/ceph-osd@{1..3}.service \
code/ch4/ceph/ceph-mds.service

You now have Ceph distributing a filesystem across your cluster. You can optionally use
Ceph’s S3 API work-alike called RADOS to provide a distributed S3 interface to this
data, or you can mount it directly in CoreOS:

$ sudo mount -t ceph 72.17.8.101:/ /media -o

➥name=admin,secret=$(etcdctl get /ceph-config/ceph/adminKeyring

➥| grep key | cut -d' ' -f3)
$ df -h
172.17.8.101:/ 45G 100M 45G 1% /media

Listing 4.5 code/ch4/ceph/ceph-mds.service

Ensures that you clean up the
object store, because you’re adding
a new device. How you manage this
in production may be different, so
read Ceph’s documentation to
learn the implications.

Makes sure you’re creating a new
filesystem on Ceph for this example

Ceph uses some authentication;
the admin key is written in etcd.

Out of three 20 GB volumes, you’ve
lost a total of 15 GB to replication.

69Summary
This is only a basic example of how to get Ceph up and running as a solution to dis-
tributing stateful data across your cluster on a filesystem. Ceph is a complex system
and could fill a book by itself; this should get you started, but your exact implementa-
tion will have a lot of unique details. If you’re planning to (or must) use Ceph, read-
ing the documentation available at ceph.com is crucial.

 At the end of the day, you must determine the right kind of storage mechanism for
you and your organization. Ceph can be difficult to support. If you’re already in AWS,
using AWS EFS (although still currently in preview at the time of this writing) is proba-
bly a better bet for solving your problems around distributed storage and relieving
you of this kind of burden. But Ceph will remain a leader in this space; the company
was recently acquired by Red Hat, Inc., so the tooling and documentation should con-
tinue to improve.

4.4 Summary
 CoreOS officially supports some of the most popular IaaS platforms: AWS, GCE,

DigitalOcean, and Rackspace Cloud.
 CoreOS officially only supports OpenStack, but there is community support for

VMware.
 Bare-metal deployments are officially supported via iPXE.
 CoreOS clusters expect communication between its essential services (etcd and

fleet) and, optionally, your own services.
 You can use flannel to abstract network configuration into software with mini-

mal overhead and performant, pluggable back ends.
 Your choice of database system can affect various aspects of reliability in

CoreOS.
 Mass object storage can be a challenge when you’re porting legacy applications

that rely on filesystems.
 You can provide distributed filesystems either via external components (NAS or

AWS EFS) or internally via Ceph.

Application architecture
and workflow
At this point, you should have a basic, practical understanding of how CoreOS
functions. This chapter is intended as a primer for someone with a role like soft-
ware or systems architect. The assumption is that you’ll be building a new applica-
tion for, or migrating an existing application to, CoreOS. As such, this chapter is
less about technical practice and more about the planning you need to do before
any technical implementation.

5.1 Your application and the twelve-factor methodology
Suppose you’ve been tasked with drafting the architecture for a new SaaS product,
and you want to use CoreOS as your target platform. Where do you start? What are
the best practices in this space? Although it isn’t explicitly meant for CoreOS, the

This chapter covers
 Building CoreOS into your application architecture

 Understanding the twelve-factor methodology

 Harmonizing development, persistence, and
presentation
70

71Your application and the twelve-factor methodology
twelve-factor methodology (http://12factor.net) is a set of guidelines for successfully
architecting complex application stacks. This approach doesn’t define any technolo-
gies or processes but is specifically useful in one of two ways, depending on your start-
ing point:

 If you’re building an application from scratch, it can guide your choices of tech-
nology and workflows.

 If you’re migrating or figuring out how to scale an existing application, it can
show you where and how those tasks will be difficult.

Briefly, the 12 factors are as follows:

 Codebase—Your application’s code exists in source control, from which you do
many deploys.

 Dependencies—Supporting libraries should be explicit and isolated.
 Config—The application configuration should be per environment.
 Backing services—Data, persistence, and external services are all abstracted.
 Build, release, run—The codebase is deployed through these strictly separated

steps.
 Processes—Your application process(es) should be stateless and share nothing.
 Port binding—The application should be able to bind its own service.
 Concurrency—Scale is achieved by adding processes (a.k.a. horizontal scaling).
 Disposability—Processes should be disposable and have quick startup.
 Development/production parity—Your development environment should be as sim-

ilar to production as possible.
 Logs—Logs should act as event streams and exist in the application as unbuff-

ered writes to stdout.
 Admin processes—Management tools should be task-oriented one-offs.

Throughout this chapter, I’ll refer to these factors when they come into play for archi-
tecting an application for CoreOS. Some have less relevance than others with respect
to CoreOS, and it’s always up to you whether you want to implement this methodology
into your organization’s technical design process. CoreOS’s design resolves many of
these factors for you, so we’ll start by going over each of them and where CoreOS does
(or doesn’t) help you.

5.1.1 CoreOS’s approach

You’re reading this book, so I’m sure it’s no surprise that abstractions are how we
maintain sanity in complex systems. You’ve probably experienced that it can be hard
to find agreement on where those abstractions should be, how they function, and how
to use them. Even at the level most relevant to CoreOS, best practice is still an open
question: virtualization and containerization have overlaps and competing technolo-
gies internally. Obviously, with CoreOS, you’ve made a choice to go with containeriza-
tion over virtualization to abstract your services; you’ve chosen to rely on etcd and

72 CHAPTER 5 Application architecture and workflow
fleet to manage at least some of your configuration state and scheduling for scale.
With CoreOS, you can also manage stateful data services at scale, and you have a net-
working abstraction system through flannel.

 If these seem like opinionated systems, that’s because they are, by design. Orchestrated
together, they’re designed to immediately solve some of the twelve-factor problems.

CODEBASE

CoreOS doesn’t provide much here. As long as your final product consists of a con-
tainer and service units, the codebase and source control you use are inconsequential.
This is, of course, by design: the fundamentals of containerization provide an explic-
itly generic platform so you aren’t tied to any one technology. You will, however, have
to consider your CoreOS deployment in your codebase; section 5.2 goes into the
details of what this means.

DEPENDENCIES

Nothing is explicitly gained by using CoreOS for this factor, other than the inherent
dependency isolation you achieve by using containers. So, you’ll likely apply this fac-
tor implicitly.

CONFIG

This factor ensures that your software’s configuration is relative to its environment.
This means not baking your configuration parameters into a build, and making sure
that what needs to be changed in the config is available via environment variables.
CoreOS solves this problem at scale with etcd, which gives you a distributed store spe-
cifically designed for managing environment configuration.

BACKING SERVICES

This factor has more to do with ensuring that services that back your application (like
a database) are interchangeable. CoreOS doesn’t enforce or solve this problem explic-
itly but does make it easier to solve by better defining the dynamic configuration, as
per the third factor. And by using containers, you probably already have loose cou-
pling between services.

BUILD, RELEASE, RUN

The build and release processes are out of the scope of what CoreOS can help with. But
fleet and its version of systemd provide the standard for application runtime, and con-
tainerization implicitly provides some level of release context (such as Docker tags).

PROCESSES

CoreOS resolves process isolation with containerization. It also enforces that isolation
by requiring you to build your containers with the expectation that they could lose
state.

PORT BINDING

Port binding is well covered in CoreOS. Containerization and flannel give you the
tools to abstract and control the port binding of your applications.

73Your application and the twelve-factor methodology
CONCURRENCY

With fleet, CoreOS gives you a number of tools to control concurrency among your
service units. Flannel also helps you keep the port configuration consistent across
multiple instances of the same process.

DISPOSABILITY

CoreOS strictly enforces disposability. You must rely on fleet and etcd as the central
sources of truth for your architecture’s state.

DEVELOPMENT/PRODUCTION PARITY

This is a goal achieved by containerization, but not by CoreOS specifically.

LOGS

CoreOS expects all containers to output only to stdout and stderr. It controls this
stream with systemd’s journal and provides access to it via fleet.

ADMIN PROCESSES

CoreOS doesn’t facilitate creating administrative tools in any way, but it does provide
an interface via fleet and etcd to make creating those tools easier.

 As you design your application architecture, keep in mind these 12 factors and
how CoreOS augments their application. Remember, too, that these are just guide-
lines: especially if you’re migrating an application that has any components that don’t
fit the model, those components can be difficult or impossible to transform into an
optimal configuration.

5.1.2 The architecture checklist

To locate the holes in your architecture, learn how to begin writing your technical
design, and determine how far you are from an optimal twelve-factor configuration,
it’s useful to start with a checklist:

 What infrastructure are you using for CoreOS?
 Which services are stateful, and which are stateless?
 Are dependencies between services clear and documented?
 Is the configuration that will describe those dependencies well known, and can

you apply that model in etcd?
 What does your process model look like?
 What services and configuration of your system do you need to expose outside

of the cluster?

If you can answer all these questions in detail with information from this chapter and
chapter 4, you’ll be well prepared for building out a complex system in CoreOS.
Before you start applying your architecture, though, you need to address some
requirements in your application code.

74 CHAPTER 5 Application architecture and workflow
5.2 The software development cycle
You’ve gone through the process of mapping out the technical design for your latest
project with the twelve-factor methodology in mind, including everything CoreOS
brings to the table. What details need to be resolved in your various codebases to
make this design fully functional?

 Your codebase, dependency management, and build/release/run workflows are
all part of a software development lifecycle that may or may not be well defined in
your organization. Determining how you’ll build around or fit CoreOS into that cycle
is, of course, critical to your success. We won’t go into how Docker solves some of
these problems; for more detail on the benefits of containers, Docker in Action (Nickol-
off, 2016, www.manning.com/books/docker-in-action) is a good resource. Specifi-
cally, though, we’ll cover where the CoreOS-related components live in your
codebase, how that code resolves dependencies between services, and how to auto-
mate the deployment of your services. This will mostly be a high-level discussion: the
actual implementation will be very specific to your application and your organization.
Once you’ve mapped out all these components, you’ll be ready to create a develop-
ment and test plan for getting your application live.

5.2.1 Codebase and dependencies

In this book, you’ve seen a lot of custom scripts and logic being built to hook into
CoreOS’s various features and systems. You absolutely should retain your unit files in
source control. Where you do that starts to become a bit tricky. Unless you’re deploy-
ing a single monolithic application with no outside dependencies, you’ll have services
that are shared. Often these are persistence layers, which probably exist somewhat
outside of your development cycle. You also may be using a mix of containers that are
publicly available images (for example, official Docker Hub library containers), con-
tainers that are based on public images, and some that are entirely built from scratch.
Keeping the latter two types in the source control of their respective projects is easy,
but containers you’re using straight from the public Docker library need to have their
service unit files in source control as well.

 The unit files for public images probably contain more logic than your custom ones,
because custom applications are more likely to have environmental clustering logic
built in than a base Docker image is. We’ll look more at what that means in the next sub-
section. If you’re using Git, my recommendation is to maintain a repository for your
units with Git submodules in your custom applications. Taking a peek at chapter 6, the
file tree looks something like the following.

NOTE It’s a good idea to begin getting familiar with the layout of the project
you start in chapter 6. You’ll build on it throughout the rest of the book.

75The software development cycle
$ tree ch6
ch6
├── couchbase-sidekick@.service
├── couchbase@.service
├── memcached-sidekick@.service
├── memcached@.service
├── webapp
│ ├── Dockerfile
│ ├── app.js
│ ├── index.html
│ ├── package.json
│ ├── web@.service
└── worker

├── Dockerfile
├── package.json
├── worker.js
└── worker.service

Keeping a layout like this serves a few purposes:

 You can keep an eye on the big picture of the layout of your applications.
 There’s a clear separation between custom code and publicly available services.
 You can use this repository with its submodules as a template for big-picture,

continuous integration.
 Service dependencies become more obvious.

The last point is especially important: easily understanding how the different parts of
your project depend on one another is a great benefit in an organization where there
are many engineers. Understanding the layout at a glance makes this simple. For
example, if worker also depended on webapp, I probably would have made it a Git
submodule of webapp. But wait! What if I create a new service that depends on both
webapp and worker? The short answer is, don’t! Doing so would break the processes
factor in the twelve-factor model as well as, arguably, dependencies. We’ll go into
microservices a bit in the next section; but having a service with dependencies on mul-
tiple other services should be a big red flag that you’re creating very tight coupling
between services, which can exponentially compound complexity and add corner
cases of cascading application failures that may be difficult to predict. If you need to
do so and still want to maintain this kind of file tree, you can either duplicate the sub-
module or symlink one to the other.

 This brings us to environment logic and microservice interactions, which will
become important to your development cycle when you’re building services based on
infrastructure as code.

5.2.2 Environment logic and microservices

CoreOS is a platform that relies on your ability to build some kind of logic around the
way it expresses the state of the cluster via etcd. You’ve seen a lot of examples in this
book with sidekicks that react to or change this state in some way. This kind of logic
can get a little complex in Bash, not to mention being difficult to maintain over time.

Uses the public Docker Couchbase image
Uses the public Docker memcached image

The custom web app as a Git submodule…

…with a custom service unit in that repository.

The worker service is another
custom project with its own
service unit.

76 CHAPTER 5 Application architecture and workflow
It’s sometimes useful to be able to write things like sidekicks and functions in your
applications that respond or write to this state. Usually, you can gather more context
about your application from within its runtime, which opens up other opportunities
in your app to communicate its status with (and use information from) etcd.

 There are libraries for etcd in many different programming languages; if your lan-
guage of choice doesn’t have a library, you can always fall back on the simple HTTP
REST interface. Before we dive into using these APIs, let’s talk about the process
model. Many projects and tools are designed to add a second layer of supervision to
your processes; a good example is PM2 for Node.js applications (well, PM2 can launch
any kind of process). There are plenty of good reasons to use these kinds of systems:
for example, they can provide additional monitoring and performance-reporting met-
rics. But let’s look at what this looks like in practice in a process tree:

systemd
├── dockerd
└── docker

└── pm2
├── node
├── node
├── node
└── node

Although this isn’t explicitly stated in the twelve-factor model, it’s useful to try to think
about your applications in the context of the scheduler they’re running under, and to
understand them as dependencies with their own state. The node processes depend
on pm2, and pm2 depends on docker, which loosely depends on dockerd. systemd is
left not knowing the state of the node processes; essentially, you’re relying on a second
process scheduler. It’s debatable whether the benefits of whatever this second sched-
uler does outweigh the context lost to the system scheduler, but it’s certainly less com-
plex if only one scheduler is determining how things are run.

 Why is this important? If you’re following a microservices model, this begins to go
against the isolation of processes that gives you the benefits of loosely coupled sys-
tems. It also means you can’t easily derive state from the exit code of the node process
in this example. If you have small services doing discrete things, it’s convenient to exit
the program with an exit code that gives context to the scheduler to know whether it
should be restarted. For example, if only one of the node processes throws an excep-
tion and exits, should they all fail? Or will they fail one by one and be restarted by
pm2, and systemd will never be aware of the context?

 You’ll see how to use this in the next chapter. In the web service application, logic
checks etcd for a set operation on an etcd key set by Couchbase (the database used in
the next chapter). If it sees this operation, it will exit(0), which lets systemd know it
should be restarted—because that means Couchbase has moved to a different
machine. In a microservices architecture, where things are loosely coupled and
startup time is trivial for processes, exiting processes is usually the best way to reestab-
lish state. This pattern also adheres well to considering the initial state immutable
rather than something that’s copied and changed in the service.

77Summary
 I could fill many books with discussions of process architectures and state immuta-
bility. Ultimately, the implementation is up to you. How strictly you want to follow these
models may or may not be up to you as an implementer of services on CoreOS, but you
should be aware of how those choices affect the complexity of the overall system.

5.2.3 The application edge

The last consideration for a successful deployment is something that falls a bit out of
scope for this book: how to expose the edge of your application to the world. This will
be specific to your application, your organization, and your chosen platform for your
infrastructure.

 The last item on the checklist should cover the “what” of the items you need to
expose, and the construction of that component probably is coupled fairly tightly to
what you choose for your edge. Load balancers, DNS, external logging and alerting
systems, policies and reporting, and backup/recovery procedures are all part of the
edge of your system as a whole. They may be completely separate systems that you can
deploy with CoreOS in and of themselves. Deciding how this hierarchy works is usu-
ally a larger organizational question (enterprise architecture), but you’ll want to be
sure that these top-level components have separate zones of failure and scale vectors
from the stack you’re responsible for deploying.

5.3 Summary
 Apply the twelve-factor model to your application stack, where possible.
 Make a high-level checklist for your architecture, starting with the one included

in section 5.1.2.
 Have a clear mapping of dependencies between services.
 The application edge is the ultimate goal. It’s often useful to work on the archi-

tecture design both from the internal application requirements and from the
outside expectation of the product.
www.allitebooks.com

http://www.allitebooks.org

Web stack
application example
In this chapter, you’ll begin fleshing out a full application stack on CoreOS. This
isn’t an application development book, so the example is a bit contrived, but it’s
similar to any complex stack you might see that contains a number of different ser-
vices with different purposes. This example will develop the information you’ve
already learned about CoreOS into a more real-world scenario. The application
you’ll build and deploy will be iterated on throughout the rest of the book, just as
you’d expect in the real world.

This chapter covers
 Deploying a multitier web application to a CoreOS

cluster

 Applying autodiscovery systems in application logic
and service unit files

 Testing failover of discrete layers
78

80 CHAPTER 6 Web stack application example
A small caveat about Couchbase: this chapter won’t cover a high-availability (HA),
fault-tolerant deployment for Couchbase. You’ll deploy it in such a way that it won’t
cause downtime for this application, but you won’t persist the data after the applica-
tion is shut down. In chapter 7, you’ll expand on your knowledge from this chapter
and build out the Couchbase cluster for HA and fault tolerance when you extend the
example to cover a Big Data application example.

6.1.1 What does this app do?

The purpose of this application is to aggregate some information from Meetup.com’s
public WebSocket API, store it in Couchbase asynchronously, and serve it back up with
a high-availability web service via WebSockets. You’re also going to store sessions with
memcached. In short, the app collects, stores, and displays data, all while taking advan-
tage of CoreOS’s features for scalability and availability. You’ll need the following:

 Memcached instances you can scale horizontally
 A Couchbase node to store your critical data
 A single worker process to store data from Meetup.com
 The Express and Socket.IO Node.js app that you can scale horizontally

The express-connect sessions don’t serve any functional purpose in the example other
than adding a common component that relies on an ephemeral state mechanism
(memcached). Everything else is functionally designed to build this application stack,
which looks like any kind of web application designed to aggregate and display infor-
mation for a user. The example uses Meetup.com’s stream because it’s a convenient,
publicly available WebSocket API that has a lot of chatter so you can see it working.
You can read more about it at http://mng.bz/pEai, but those details aren’t particu-
larly important to this example.

 Everything that’s custom in this app is written in JavaScript. I’ve chosen this for a
few reasons:

 JS is arguably the most popular language right now, and most readers probably
have some familiarity with it.

Comment on learning
In college, I took an anthropology course in linguistics. In this course, we had to learn
a system called the International Phonetic Alphabet (IPA), which is a system of sym-
bols that represent all the sounds made by people’s mouths. The exams involved the
professor reciting a speech and us transcribing it in IPA. But the professor never gave
these exams in English, because it’s more difficult to transcribe into IPA a language
you already know: you end up parsing the information and not listening to the sounds.

The same concept applies here: these components aren’t part of any well-known full-
stack system as a whole, even though they may be well known individually. The focus
is on how the building blocks connect, not on how to move an entire building.

81Scope of the example
 The syntax is terse enough that I don’t have to make you read/copy pages of
code.

 There’s a ton of boilerplate you won’t have to write.
 There’s a high likelihood that you’ll encounter a requirement to deploy a

Node.js application in the real world.
 I know JS pretty well.

All that being said, JavaScript knowledge isn’t a prerequisite for readers of this book,
and you’ll see annotations throughout this example that explain what’s important as
takeaways for the applications in the context of CoreOS deployment, and also what
isn’t important. One thing that is important is what this architecture looks like, so you
understand what you’re deploying.

6.1.2 App architecture overview

Figure 6.2 shows how this application is put together. It should be simple enough to
understand what’s going on between all the components, but complex enough to be
an interesting exercise in deployment that covers a lot of common patterns.

THE MEMCACHED “CLUSTER”
Memcached doesn’t really “cluster” in any sense other than that you’ll be running a
bunch of memcached processes. The nodes don’t need to know about each other, and
the processes don’t write to disk. The connect-memcached back-end library for
express-connect (the session library) just needs to know where all the memcached
nodes are. The library uses an internal hash to know where to find data (you don’t
have to worry about any of that). You’ll know express-connect is working if you get a
cookie when you visit the app in a browser.

Client browser

HTTP

WebSocket

Data in Data in

Data out

React single page app

Meetup.com RSVP
public stream

web 1, web 2, or web 3
(node.js web server)

Worker
(node.js service) Couchbase

memcached 1

memcached 2

memcached 3

Figure 6.2 Example application architecture

82 CHAPTER 6 Web stack application example
THE COUCHBASE SERVER

Couchbase is a little more involved in the setup. As I mentioned earlier, you won’t be
persisting the data (yet), but you’ll have to do some setup automation so that you can
connect to your Couchbase server easily. Couchbase is a document store with robust
clustering capabilities; we’ll spend a lot more time in chapter 7 focusing on a custom
data-system deployment that uses it. For now, accept this HA “hole” in this deploy-
ment for the sake of staying focused. Couchbase is overkill for this application, but it’s
a good example to get started with, and its API is fairly easy to use.

THE WORKER

Many applications rely on an asynchronous worker to perform some task: in this case,
data aggregation. Like many APIs, Meetup’s RSVP WebSocket will rate-limit you if you
try to make too many connections to it. Assuming your network is behind some kind
of NAT, this means you’ll need no more than one worker to gather this data; the API
allows only one connection from an IP. Because it’s a WebSocket, you don’t gain any-
thing from having multiple workers gathering that data anyway. This is a great use case
for CoreOS, because once you get your service running, you don’t care which node
it’s running on; and it should require no state other than how to connect to Couch-
base, so it can be completely ephemeral.

THE WEB APP

You’ll be using a combination of Express.js (a popular Node.js web framework) and
Socket.IO (a popular WebSocket implementation in Node.js) to serve your applica-
tion. Express will handle the session with memcached as its session store and will serve
up the index.html file. In index.html is some very basic JavaScript to listen to the
socket.io WebSocket and update the page when a message is sent.

 The app contains an interval loop that fetches a view from Couchbase and sends a
message via Socket.IO to any clients listening. Socket.IO has the ability to react to Web-
Socket events on the same port on which Express is serving HTTP, so you only need to
worry about one port being exposed.

6.1.3 The target environment

Not surprisingly, you’ll use a Vagrant cluster of three nodes to go through this exam-
ple. We’ll approach each of these components individually, but we’ll start with Couch-
base because it may require some low-level changes to your Vagrant development
cluster.

 This architecture is a fairly common kind of layered web application you’ve likely
seen before. When you’re building out a system in CoreOS, these are the kinds of
details you’ll need to gather about the application in order to deploy it effectively.
Jumping into persistence layers next, you’ll see how to begin applying the architecture.

83Setting up persistence layers
6.2 Setting up persistence layers
You have two persistence layers (see figure 6.3) that represent state in the application:
Couchbase and memcached. As explained, in this example, both of these are some-
what ephemeral, but you’ll use Couchbase as if it weren’t.

When building out complex application stacks, especially in development, it’s a good
plan of attack to start with the persistence layer, because it’s usually the only compo-
nent you can’t wipe completely if you mess up. The other reason you’re starting with
Couchbase is that you may have to rebuild your Vagrant cluster if you didn’t provision
your instances with at least 1.5 GB of RAM. If you didn’t make this modification in
chapter 2, you can go back and look at how to change the RAM for your VMs, but the
quick version is as follows (config.rb in your vagrant directory):

Edit config.rb
so that you have this line:
//$vm_memory = 2048
$vm_cpus = 1
$ vagrant destroy -f
...
$ vagrant up
...

NOTE If you’re using fleetctl from your host workstation with the SSH
tunnel, creating new VMs creates a new SSH host key, so you’ll have to delete
the one in $HOME/.fleetctl/known_hosts.

Once you’re back up, you can move on to getting Couchbase initialized and running.

app.js

Application layers

CoreOS machine

memcached
Persistence layers

(you are here!)
Couchbase

app.js

CoreOS machine

memcached

app.js

worker.js

CoreOS machine

memcached

Figure 6.3 Persistence layers

Assigns 2 GB per VM.
You’ll need at least 1.5 GB.

You can bump this to two cores per
VM if you have the resources, but
doing so isn’t required.

Deletes your VMs

Re-creates your VMs

84 CHAPTER 6 Web stack application example
6.2.1 Couchbase setup

Now that your Vagrant cluster is ready, it’s time to set up Couchbase. First, you need to
create a new service-unit template.

[Unit]
Description=Couchbase Service %i
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutSec=0
Restart=always
RestartSec=20
ExecStartPre=-/usr/bin/docker kill couchbase-%i
ExecStartPre=/usr/bin/docker pull couchbase:community-4.0.0
ExecStartPre=-/usr/bin/docker rm -f couchbase-%i
ExecStart=/usr/bin/docker run \
--rm \
-p 8091:8091 \
--name couchbase-%i \
--ulimit nofile=40960:40960 \
couchbase:community-4.0.0

ExecStartPost=/usr/bin/bash -c 'sleep 5; \
FLANNELIP=`docker inspect couchbase-%i | jq -r .[].NetworkSettings.IPAddress`; \
echo "Started on $FLANNELIP"; sleep 2; \
until docker run --rm couchbase:community-4.0.0 \

couchbase-cli \
cluster-init \
-c $FLANNELIP:8091 \
--cluster-username=Administrator \
--cluster-password=Password1 \
--services=data,index,query \
--cluster-ramsize=500; \

Listing 6.1 code/ch6/couchbase@.service

You want Couchbase to
restart for any reason.

Gives a 20-second restart buffer because
Couchbase can take some time to cleanly
shut down and start

For now, cleans
up data on exit

Optional: opens a web
admin panel for

Couchbase to the host IP

ulimit specifically needed for Couchbase.
You can read more about what these do

in the Docker documentation.

Official Couchbase
Community Edition image

Same line used in chapter 4 when we
discussed using flannel to get the internal IP

Loops until this
succeeds: sets up the
server’s initial
configuration

Sets the initial cluster password. You can
choose whatever you want, but this is for
administration, not connecting. You’ll use
this again in chapter 7.

85Setting up persistence layers
do echo "Retrying init..."; sleep 2; done \
docker run --rm couchbase:community-4.0.0 \
couchbase-cli \
bucket-create \
-c $FLANNELIP:8091 \
-u Administrator \
-p Password1 \
--bucket=default \
--bucket-type=couchbase \
--bucket-ramsize=500 \
--bucket-replica=1 \
--cluster-ramsize=500'

ExecStop=-/usr/bin/docker kill --signal=SIGTERM couchbase-%i

Notice that you do quite a bit of initialization with magic numbers and strings. Later
in this chapter, we’ll talk about adding more configuration abstraction to the project
as a whole. Next, here’s the sidekick for the service.

[Unit]
Description=Couchbase Service Sidekick %i
BindsTo=couchbase@%i.service
After=couchbase@%i.service

[Service]
TimeoutStartSec=0
RestartSec=1
Restart=always
ExecStartPre=-/usr/bin/etcdctl rm /services/couchbase/%i
ExecStart=/usr/bin/bash -c ' \

while true; do \
sleep 5; \
FLANNELIP=`docker inspect couchbase-%i

➥| jq -r .[].NetworkSettings.IPAddress`; \
etcdctl update --ttl 8 /services/couchbase/%i $FLANNELIP || \
etcdctl set --ttl 8 /services/couchbase/%i $FLANNELIP; \

done'
ExecStop=-/usr/bin/etcdctl rm /services/couchbase/%i'

[X-Fleet]
MachineOf=couchbase@%i.service

This mostly looks like previous sidekick units you’ve seen, with one difference: you use
logic to either update or set the etcd key. This distinction is important, and the logic
works like this: if you’re refreshing the key so it doesn’t expire, you want to fire an
update event; but if this is a new location for the node, you want to fire a set event.
Later in this chapter, when we look at the application, you’ll see that you restart the web
service on set but not on update, so you’re not restarting the app every 5 seconds.

 Now let’s get Couchbase and the sidekick running:

$ fleetctl start code/ch6/couchbase@1.service code/ch6/couchbase-
sidekick@1.service

Listing 6.2 code/ch6/couchbase-sidekick@.service

Sets up an initial bucket, which
is the top-level Couchbase
namespace for you to use

Makes sure you start with a
clean slate, in case this

service switched hosts too
quickly for the TTL

Updates this value if it
exists, or sets it if it doesn’t,

with a TTL of 8 seconds

Explicitly cleans
up if you Stop

86 CHAPTER 6 Web stack application example
After waiting a few seconds, you should be able to look at the Couchbase admin con-
sole on http://172.17.8.101:8091 and log in with “Administrator” and “Password1”.
Notice that you start only one instance of Couchbase with the template. (You didn’t
have to make this a template, but you’ll build on this example in the following chapter
when you take this install and make it high availability.) Next, let’s move on to the
other piece of state: memcached.

NOTE Couchbase may start on a different machine, so you can either
check with fleetctl list-units or try http://172.17.8.102:8091 or
http://172.17.8.103:8091.

6.2.2 Setting up memcached

Setting up memcached is simple and follows a pattern similar to Couchbase, except that
you don’t need to deal with any bootstrapping or login information. As with Couch-
base, you also need a main unit template (listing 6.3) and a sidekick (listing 6.4). Unlike
Couchbase, you can (and should) start more than one instance.

[Unit]
Description=Memcached Instance %i
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutStartSec=0
RestartSec=1
Restart=always
ExecStartPre=-/usr/bin/docker rm -f memcached-%i
ExecStartPre=/usr/bin/docker pull memcached:1
ExecStart=/usr/bin/docker run --rm --name memcached-%i memcached:1
ExecStop=-/usr/bin/docker rm -f memcached-%i

This should look pretty familiar by now: it’s a simple service template that also cleans
up after itself. Now you’ll make an equally familiar sidekick.

[Unit]
Description=Register memcached %i
BindsTo=memcached@%i.service
After=memcached@%i.service

[Service]
TimeoutStartSec=0
RestartSec=1
Restart=always
ExecStartPre=-/usr/bin/etcdctl rm /services/memcached/%i
ExecStart=/usr/bin/bash -c ' \

while true; do \
sleep 5; \

Listing 6.3 code/ch6/memcached@.service

Listing 6.4 code/ch6/memcached-sidekick@.service

Makes sure you
start from

scratch Official
memcached

Docker image

87Setting up persistence layers
FLANNELIP=`docker inspect memcached-%i | jq -
r .[].NetworkSettings.IPAddress`; \

etcdctl update --ttl 8 /services/memcached/%i $FLANNELIP || \
etcdctl set --ttl 8 /services/memcached/%i $FLANNELIP; \

done'
ExecStop=-/usr/bin/etcdctl rm /services/memcached/%i'

[X-Fleet]
MachineOf=memcached@%i.service

Much like the Couchbase sidekick, you grab the flannel IP, update or set it to a key in
etcd with a TTL of 8 seconds, and attach it to the memcached unit. You can run as
many of these as you want.

 Notice that you did not give a Conflicts= line for memcached. Because you’re
using flannel, you can run multiple instances of memcached without having to step on
ports, because the instances will be running on their own IPs within the flannel net-
work. Go ahead and start the memcached cluster and sidekick:

$ fleetctl start \
code/ch6/memcached@{1..3}.service \
code/ch6/memcached-sidekick@{1..3}.service

...

With all these systems running, you can verify that things look good with fleetctl
list-units as usual, and check your etcd keys to make sure everything was set correctly:

$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
couchbase-sidekick@1.service 72476ea6.../172.17.8.101 active running
couchbase@1.service 72476ea6.../172.17.8.101 active running
memcached-sidekick@1.service ac6b3188.../172.17.8.101 active running
memcached-sidekick@2.service b598f557.../172.17.8.102 active running
memcached-sidekick@3.service ac6b3188.../172.17.8.103 active running
memcached@1.service ac6b3188.../172.17.8.101 active running
memcached@2.service b598f557.../172.17.8.102 active running
memcached@3.service ac6b3188.../172.17.8.103 active running
$ etcdctl ls --recursive /services
/services/couchbase
/services/couchbase/1
/services/memcached
/services/memcached/3
/services/memcached/1
/services/memcached/2
$ etcdctl get /services/memcached/1
10.1.35.2
$ etcdctl get /services/couchbase/1
10.1.1.2

Next, let’s move on to setting up the custom software application.

88 CHAPTER 6 Web stack application example
6.3 Application layer
The application for this example has two parts (see figure 6.4):

 A worker you’ll run only one of, which will watch the Meetup WebSocket for
any changes and write them to the Couchbase document store

 A cluster of many web servers running the custom back-end HTTP service with
Express

You’ll follow a single-process model for the web service, so each container will spawn
only one Node.js process. It’s possible to spawn multiple Node.js processes, but that’s
beyond the scope of this book. You do have the ability to spawn many within the same
container, or you can spawn one per container and add another load-balancer layer
(for example, with HAProxy) on each machine.

Earlier in the book, I mentioned that you have a choice when it comes to interacting
with etcd: you can do most of the interactions from your unit file; or your application
can communicate with etcd, which opens up a little more programmability for what
you’re trying to accomplish that might be painful in Bash. Because you’re deploying
custom software here, this example provides an opportunity to show that approach; so
your unit files will be simple, and the complexity of interacting with etcd will be built
into the application.

6.3.1 The worker

The worker pattern is common in software development today, especially in any sys-
tem that either processes or aggregates data in quantity. Anything that isn’t needed
for real-time consumption by a user and that you can do asynchronously can use a
worker.

app.js
Application layers

(you are here!)

CoreOS machine

memcached

Persistence layers

Couchbase

app.js

CoreOS machine

memcached

app.js

worker.js

CoreOS machine

memcached

Figure 6.4 Application layers

89Application layer
 By the end of this section, you’ll see your data start to populate the Couchbase
server you’ve set up (see figure 6.5). In this case, the worker gathers data from a Web-
Socket that emits RSVPs provided by Meetup.com and dumps the data into Couch-
base. You might want to do this because you can’t query Meetup.com’s historical
RSVPs and can only consume them in real time; so this is essentially archiving that
stream as it emits events. Let’s begin with the service unit file, because it’s extremely
simple.

Figure 6.5 Couchbase with data

90 CHAPTER 6 Web stack application example
[Unit]
Description=Worker Service
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutStartSec=0
RestartSec=10
Restart=always
ExecStartPre=-/usr/bin/docker rm -f worker
ExecStartPre=/usr/bin/docker pull mattbailey/ch6-worker:latest
ExecStart=/usr/bin/docker run --rm --name worker
 ➥-e NODE_ENV=production mattbailey/ch6-worker:latest
ExecStop=-/usr/bin/docker rm -f worker

The Dockerfile for the worker is also simple and is almost the same as the helloworld
example, except you don’t even have to expose a port.

FROM library/node:onbuild

Also, create the package.json file for the worker, with a few dependencies.

{
"name": "ch6-worker",
"version": "1.0.0",
"description": "Example Worker Process",
"main": "worker.js",
"scripts": { "start" : "node worker.js" },
"dependencies": {

"couchbase": "^2.1.6",
"node-etcd": "^4.2.1",
"websocket": "^1.0.23"

},
"author": "m@mdb.io",
"license": "ISC"

}

Listing 6.5 code/ch6/worker/worker.service

Listing 6.6 code/ch6/worker/Dockerfile

Listing 6.7 code/ch6/worker/package.json

The worker will always exit if it
can’t find a Couchbase server.
Here you give it a little time
between startups.

This will remain available on your public Docker Hub
account if you want to use it instead of building the app
yourself. You use :latest here so you’re automatically
always using the latest published version.

Passes an env var NODE_ENV=production.
This is a general convention for Node.js

apps, but you’ll use it to configure the app
depending on the environment.

Tells the node:onbuild
Docker container to run
this as its entry point

Library for communicating with Couchbase
Library for communicating with etcd
Library for general WebSocket use

91Application layer
That’s similar to the helloworld app as well, but with the new dependencies. Now,
let’s look at the worker.

const Etcd = require('node-etcd')
const W3CWebSocket = require('websocket').w3cwebsocket
const couchbase = require('couchbase')
const os = require('os')

const isProd = (process.env.NODE_ENV === 'production')

const thisIp = (isProd) ?
os.networkInterfaces().eth0
.filter(v => v.family === 'IPv4')[0].address
: '127.0.0.1'

const etcdAddress = (isProd) ?
thisIp
.split('.').slice(0,3).concat(['1'])
.join('.') : '127.0.0.1'

const etcd = new Etcd(etcdAddress, '2379')
const couchbaseWatcher = etcd

.watcher('services/couchbase', null, {recursive: true})

couchbaseWatcher.on('set', newCouchbase => {
console.log('new couchbase config',

newCouchbase.body.node.nodes)
process.exit(0)

})

const connection = (process.env.NODE_ENV === 'production') ?
`couchbase://${etcd.getSync('services/couchbase', {recursive: true})

.body.node.nodes.map(v => v.value).join(',')}` :
'couchbase://127.0.0.1'

console.log('current connection:', connection)
const client = new W3CWebSocket('ws://stream.meetup.com/2/rsvps')
const cluster = new couchbase.Cluster(connection)
const bucket = cluster.openBucket('default')
function store(data) {

bucket.upsert(Date.now().toString(),data || 'empty',() => {})
}
client.onmessage = data => { store(JSON.parse(data.data).event) }

Listing 6.8 code/ch6/worker/worker.js

Gets the IP address for eth0 in
the container (the flannel
address) if you’re in
production; localhost otherwise

If you’re in production,
figures out the IP on
which you can access etcd

Creates an event emitter for
watching this etcd endpoint (the
one the Couchbase sidekick sets)

Logging, so you can see in the journal that
the worker is going to restart, and why

If the watcher sees a set event on any
Couchbase etcd key, it will exit the
worker, causing systemd to restart it.

Assembles a connection-string URI for the
Couchbase connection from the contents of
keys under services/couchbase/

If you’re not in production, sets the connection
string to localhost (for development)

Logging, so you can see how
the worker is trying to connect

WebSocket client connection to
the Meetup.com RSVP stream

Pushes the data into Couchbase
when the client emits a message

Database insert function, using
a datestamp as the key

92 CHAPTER 6 Web stack application example
If this looks a little daunting, or you have little or no JavaScript experience, that’s
okay; we’ll go through the code step by step. There’s a lot here that isn’t important for
this book: to remove that from your cognitive load, the require() statements at the
top import libraries, and many of the unannotated lines at the end get set up to write
to the Couchbase server. I’ve used a lot of shorthand for the sake of page length, but
this is what you should take away as the program’s step-by-step process:

1 Determines its own IP address in flannel (only so you can figure out the etcd
IP); for example, 10.1.1.3

 2 Figures out the etcd IP; for example, 10.1.1.1
 3 Sets up a watch on the etcd keys for Couchbase
 4 Exits the program if there are any new keys in /services/couchbase/
 5 Puts together a connection string from etcd keys in /services/couchbase/ (for

example, couchbase://10.1.1.2)
6 Listens to the RSVP socket, and writes its messages to Couchbase

You’ll notice that most of this program deals with the context of the CoreOS environ-
ment. The functional worker part is only the last five lines. Of course, this is a simple
example; but you can see how sometimes, putting this kind of contextual logic outside
of a unit file can make it a little easier to do complex logic for services based on the
cluster state.

 Now, you can get your worker service running! But be warned: you’re connecting a
live service that will immediately start writing a stream to your database. This stream is
pretty slow—maybe four events per second—but if you forget to stop the worker,
you’ll fill up your VM’s hard drive. Also, be sure you’re going to run only one worker.
Fleet should prevent you from running multiple workers, but if you manage to do so,
Meetup.com will probably eventually blacklist your IP address for an unknown
amount of time. With that in mind, fire it up and begin looking at your log:

$ fleetctl start code/ch6/worker/worker.service
Unit worker.service launched on 72476ea6.../172.17.8.101
$ fleetctl journal -f worker
...
May 27 21:44:30 core-01 systemd[1]: Started Worker Service.
...
May 27 21:44:31 core-01 docker[14982]: current connection: couchbase://10.1.1.2

If you opened the web admin port for Couchbase when you started it, you can now go
visit it (http://172.17.8.101:8091/) and see data coming in. It should look something
like figure 6.5 at the beginning of this section: the main admin page should show one
bucket active, with a nice graph showing activity in operations per second.

 Congratulations! You now have a full data-aggregation system! This is the kind of
pattern you can follow for any worker-type program that you want to deploy on

You should see a
successful start …

... and a Couchbase URI
that makes sense.

93Application layer
CoreOS. Things like aggregators, crawlers, and scientific computing workers all fit well
in this model. Next, let’s move on to the web app, so you can look at some of the data.

6.3.2 The web application

Much like the worker, you’re going to do most of the complex context configuration
in the application logic, so the service unit is equally simple. The only difference is
that you’ll run multiple instances, so you need to make a template, shown in the next
listing. This is a simple app that just displays some data to prove that everything you’ve
set up is working properly; at the end of this chapter, you’ll have a site that looks some-
thing like figure 6.6.

[Unit]
Description=Express and Socket.io Web Service %i
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutStartSec=0
RestartSec=5
Restart=always
ExecStartPre=-/usr/bin/docker rm -f web-%i
ExecStartPre=/usr/bin/docker pull mattbailey/ch6-web:latest
ExecStart=/usr/bin/docker run \

--rm \
-p 3000:3000 \
-e NODE_ENV=production \
--name web-%i \
mattbailey/ch6-web:latest

Listing 6.9 code/ch6/webapp/web@.service

Figure 6.6 Exciting killer app

One small difference from the
worker is that you expose a port.

94 CHAPTER 6 Web stack application example
ExecStop=-/usr/bin/docker rm -f web-%i

[X-Fleet]
Conflicts=web@*.service

Like the mattbailey/ch6-worker image, I’ll leave this on the Docker Hub in case you
don’t want to build it from the Dockerfile yourself—which brings us to the simple
Dockerfile (it’s the same as the one from the helloworld examples).

FROM library/node:onbuild
EXPOSE 3000

The package.json file is also similar.

{
"name": "ch6-web",
"version": "1.0.0",
"description": "Example Web App",
"main": "app.js",
"scripts": { "start" : "node app.js" },
"dependencies": {

"connect-memcached": "^0.2.0",
"couchbase": "^2.1.6",
"express": "^4.13.4",
"express-session": "^1.13.0",
"node-etcd": "^4.2.1",
"socket.io": "^1.4.6"

},
"author": "m@mdb.io",
"license": "ISC"

}

This pulls in a few more libraries for Express, memcached, and Socket.IO. Before we
get into the back-end application, let’s look at the single index.html file you’ll serve a
user (see listing 6.11). This is essentially a single-page application, meaning the server
isn’t serving up any HTML in a dynamic way: it’s serving up a single document, and the
rest of the elements are dynamically created by JavaScript (well, JSX, to be specific)
within the page. This JavaScript only runs in the browser, and it also watches the
socket.io WebSocket for messages so it can update the page without requiring any
navigation. I’m using a UI framework called React for this, mostly because it’s currently
popular and, again, terse enough that it doesn’t take up too much room in the text.

Listing 6.10 code/ch6/webapp/Dockerfile

Listing 6.11 code/ch6/webapp/package.json

Because you expose a port, more than
one can’t run on the same machine.

95Application layer

<!DOCTYPE html>
<html>

<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs

 ➥/react/15.1.0/react.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs

 ➥react/15.1.0/react-dom.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs

 ➥/babel-core/5.8.23/browser.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs

 ➥/nprogress/0.2.0/nprogress.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs

 ➥/nprogress/0.2.0/nprogress.min.css">
<script src="/socket.io/socket.io.js"></script>

</head>
<body>

<div id="mount-point"></div>
<script type="text/babel">
const Rsvps = React.createClass({

_onMessage: function(data) {this.setState({items: data})},
getInitialState: function() { return { items: [] } },
render: function() {

const createItem = (item) =>
{ return { item.key } : { item.value } }

return { this.state.items.map(createItem) }
}

})
const rsvps = ReactDOM

.render(<Rsvps />, document.getElementById('mount-point'))
const meetupSocket = io()
meetupSocket.on('message', (data) => {

NProgress.start()
rsvps._onMessage(data)
NProgress.done()

})
</script>

</body>
</html>

Listing 6.12 code/ch6/webapp/index.html

This and the three scripts below it
are libraries that give you the
ability to write JSX within the page.

socket.io will serve up this script from the
web app to set up the WebSocket connection.

This and the CSS file below it are a simple YouTube-style
progress bar called NProgress to give you an indication

that things are working when you view the site.

Creates the dynamic unordered list
 element to display the RSVPs

Updates the state of the component
(with new data)

Every React component has a render
method that creates the page elements.

Mounts the Rsvps element to the <div
id="mount-point"></div> element

Sets up the socket.io
event emitter

In this listener, if a message is
seen on meetupSocket, you update
the element with the _onMessage

function in the Rsvps class.

96 CHAPTER 6 Web stack application example
If you don’t have much experience with client-side JavaScript programming, don’t
worry; most of this serves to build a dynamic element. Fundamentally, this code is sim-
ilar to the code in the worker! It listens to a WebSocket and updates the page when it
gets a new message, the same way the worker listens to a WebSocket and updates
Couchbase. Ultimately, this is just a view, and it’s not important for you to know about
it in depth for this example; but it’s the simplest way to show that your web app is
working, and it will absolutely be part of any complete web application.

 How do you serve this HTML and JavaScript? With more JavaScript, of course! The
following listing shows the application server.

const Etcd = require('node-etcd')
const path = require('path')
const app = require('express')()
const http = require('http').Server(app)
const session = require('express-session')
const MemcacheStore = require('connect-memcached')(session)
const couchbase = require('couchbase')
const io = require('socket.io')(http)
const os = require('os')

const isProd = (process.env.NODE_ENV === 'production')

const thisIp = (isProd) ?
os.networkInterfaces().eth0
.filter(v => v.family === 'IPv4')[0].address
: '127.0.0.1'

const etcdAddress = (isProd) ?
thisIp
.split('.').slice(0,3).concat(['1'])
.join('.') : '127.0.0.1'

const etcd = new Etcd(etcdAddress, '2379')
const memcacheWatcher = etcd

.watcher('services/memcached', null, {recursive: true})
const couchbaseWatcher = etcd

.watcher('services/couchbase', null, {recursive: true})

couchbaseWatcher.on('set', newCouchbase => {
console.log('new couchbase config', newCouchbase)
process.exit(0)

})
memcacheWatcher.on('set', newMemcache => {

console.log('new memcache config', newMemcache)
process.exit(0)

})

const config = (isProd) ?

{
couchbase: `couchbase://${etcd.getSync('services/couchbase',

 ➥{recursive: true})
.body.node.nodes.map(v => v.value).join(',')}`,

memcached: etcd.getSync('services/memcached', {recursive: true})

Listing 6.13 code/ch6/webapp/app.js

Event emitter for changes
to etcd keys in

services/memcached

Uses an object instead of a
string to set configuration,
so you can get the config for
Couchbase and memcached
at the same time

97Application layer
.body.node.nodes.map(v => `${v.value}:11211`)
} : {

couchbase: 'couchbase://127.0.0.1',
memcached: ['127.0.0.1:11211']

}

console.log('current config:', config)

const cluster = new couchbase.Cluster(config.couchbase)
const memStore = new MemcacheStore({ hosts: config.memcached })

const bucket = cluster.openBucket('default')
const bucketMgr = bucket.manager()
const ddocdata = {views:{by_id:{ map:'function (doc) {

 ➥emit(doc.event_id, doc.event_name) }'}}}
bucketMgr.upsertDesignDocument('ddocid', ddocdata, () => {})
const query = couchbase.ViewQuery

.from('ddocid', 'by_id').order(2).limit(10)
app.use(session({

saveUninitialized:true,
resave: false,store: memStore,
secret: 'coreosinaction' }))

app.get('/', (req, res) =>
res.sendFile('./index.html', {root: path.join(__dirname)}))

io.on('connection', socket =>
setInterval(() =>

bucket.query(query, (err, results) =>
io.emit('message', results)), 5000))

http.listen(3000)

This looks like a lot to take in, especially if you’re unfamiliar with Node.js. If you
didn’t read the section about the worker (section 6.3.1), be sure go to back, because a
lot of things are duplicated here.

 Libraries are imported at the top, and then you have a lot of the same contextual
logic as in the worker, to generate a connection to memcached and Couchbase and
exit the program if they change. The only difference here is that you do it for both
memcached and Couchbase; you only had Couchbase to worry about in the worker.

 Once you get down into the (again, relatively small, compared to the context
code) application logic, a few more things are going on:

Similar to the Couchbase
config, returns an array or
your memcached instances

Initializes the memcached
session store

Housekeeping in Couchbase that gives
the app the ability to create views

To read data from Couchbase, you have to assemble a
map function as a view. This is a simple one that emits

the RSVP ID and Meetup event name.

Saves the view
to the bucket

Query that uses the
view, limiting it to
returning 10 results
in reverse-key order

Sets up express-
session to use the
memcached store
as its back end

Serves up the index.html
file at the / URL

Opens the HTTP listener
for clients to connect

Sets up socket.io to run, and
emits the results of the query
(bucket.query()) every 5
seconds (5000 ms) to any
connected client

98 CHAPTER 6 Web stack application example
1 You set up a view in Couchbase. It’s not important how this functions, just that
you need one to query data from Couchbase. You can think of it as a stored pro-
cedure, if you’re used to SQL.

 2 You set up a session that sets a cookie in the browser. It’s backed by your mem-
cached cluster but not used for anything.

 3 You serve up the single index.html file at /.
 4 For every connection to the WebSocket, you begin sending queried data back

to the client every 5 seconds.
5 For clarity, both the WebSocket and HTTP data are served over port 3000.

That’s it! Now you can deploy the client-facing web service. Start up three web units
with fleet, and (optionally) watch the journal output:

$ fleetctl start code/ch6/webapp/web@{1..3}.service
...
$ fleetctl journal -f web@1
...
May 27 23:29:12 core-02 systemd[1]:

 ➥Started Express and Socket.io Web Service 1.
...
May 27 23:29:13 core-02 docker[10696]:
 ➥current config: { couchbase: 'couchbase://10.1.1.2',
May 27 23:29:13 core-02 docker[10696]:
 ➥memcached: ['10.1.35.2:11211', '10.1.57.2:11211', '10.1.35.3:11211'] }

The web application started up successfully. Let’s look at all the services running now.

UNIT MACHINE ACTIVE SUB
couchbase-sidekick@1.service 72476ea6.../172.17.8.101 active running
couchbase@1.service 72476ea6.../172.17.8.101 active running
memcached-sidekick@1.service ac6b3188.../172.17.8.103 active running
memcached-sidekick@2.service b598f557.../172.17.8.102 active running
memcached-sidekick@3.service ac6b3188.../172.17.8.103 active running
memcached@1.service ac6b3188.../172.17.8.103 active running
memcached@2.service b598f557.../172.17.8.102 active running
memcached@3.service ac6b3188.../172.17.8.103 active running
web@1.service 72476ea6.../172.17.8.101 active running
web@2.service b598f557.../172.17.8.102 active running
web@3.service ac6b3188.../172.17.8.103 active running
worker.service 72476ea6.../172.17.8.101 active running

You should be able to visit any of those hosts on port 3000 (for example,
http://172.17.8.103:3000) and see your fantastic new web app! The page should
update itself every 5 seconds from the socket.io event and show new data. You’ve
successfully deployed your first custom, full-stack application to a CoreOS cluster, but
there’s still more work to do.

Listing 6.14 All units

99Where to from here?

,
6.4 Where to from here?
Now that you’ve built out your application stack on CoreOS, how do you test for fail-
ure, and what does the next iteration look like? This section works through both of
these items and leads into the next chapter. By the end of this section, you should be
able to test the resilience of your application and have an idea of how to improve
what you’ve started. I talk a lot about fault tolerance in this book, so let’s begin with
an outage.

6.4.1 Responding to failure

As with any complex deployed application, you want to be able to test failures in your
systems. With the caveat that data loss in the Couchbase database will happen (in this
chapter) if the machine the Couchbase server is running on goes down, your entire
application stack should survive the failure of one machine pretty gracefully. Remem-
ber, though, that in a three-machine cluster, etcd can’t re-achieve quorum with a single
node. In a real-world deployment, you’d always provision enough machines because
you’d expect cluster partitioning to occur, as previously discussed in section 4.3.

 To see what’s going on, you’ll need to open two terminals: one to run the com-
mands to break a machine, and one to follow the log of a machine you’re not break-
ing to see how the services respond. The maximum failure would be to kill the node
that Couchbase is running on. You know that will cause data loss, but the service
should still migrate to another machine in the cluster.

 In one terminal, check to find a machine that Couchbase isn’t running on, and fol-
low the journal of the web service running on that machine:

$ fleetctl list-units | grep -E 'web|couchbase@'
couchbase@1.service 7c5009d9.../172.17.8.102 active running
web@1.service a54ea5bc.../172.17.8.103 active running
web@2.service 7c5009d9.../172.17.8.102 active running
web@3.service 9e08f1b2.../172.17.8.101 active running
$ fleetctl journal -lines 2 -f web@1
-- Logs begin at Sat 2016-05-28 04:13:47 UTC. --
May 28 04:29:46 core-03 docker[2964]:

 ➥current config: { couchbase: 'couchbase://10.1.15.2',
May 28 04:29:46 core-03 docker[2964]:

 ➥memcached: ['10.1.58.3:11211', '10.1.58.2:11211', '10.1.53.2:11211'] }

Now, you’re following the log for web@1. You can see the output of its log from the
initial configuration, connecting to your three memcached instances and Couchbase.
In a new terminal, kill core-02, where Couchbase and one memcached instance are
running (first, make sure you’re in the directory where your Vagrantfile is located):

$ vagrant halt core-02
==> core-02: Attempting graceful shutdown of VM...

Looks like web@1 is
running on a machine
that couchbase@1 isn’t
so let’s follow its log.

100 CHAPTER 6 Web stack application example
Let’s look back at the terminal where you were following the journal of web@1:

May 28 04:40:38 core-03 docker[2964]: new couchbase config{ action: 'set',
May 28 04:40:38 core-03 docker[2964]: node:
May 28 04:40:38 core-03 docker[2964]: { key: '/services/couchbase/1',
May 28 04:40:38 core-03 docker[2964]: value: '10.1.53.5',
...
May 28 04:40:43 core-03 systemd[1]:

 ➥web@1.service: Service hold-off time over, scheduling restart.
May 28 04:40:43 core-03 systemd[1]:

 ➥Stopped Express and Socket.io Web Service 1.
...
May 28 04:40:45 core-03 systemd[1]:

 ➥Started Express and Socket.io Web Service 1.
...
May 28 04:40:46 core-03 docker[7141]:

 ➥current config: { couchbase: 'couchbase://10.1.53.5',
May 28 04:40:46 core-03 docker[7141]:

 ➥memcached: ['10.1.58.3:11211', '10.1.58.2:11211', '10.1.53.2:11211'] }

6.4.2 What’s missing?

A few things are missing from this example. First is the reliability of the data store,
which we’ll address in the next chapter.

 Second, you now have three servers running your edge service (the web app). At
some point, you’ll need to put a load balancer in front of them, and that may mean
adding some new sidekicks to your web services or extending the application to pro-
vide a health-check endpoint. How that’s implemented is up to you. Optionally, you
could also do some clever round-robin DNS setup; for example, AWS Route 53 has
health checks built in that can change the DNS, as long as you’re comfortable with a
downtime the length of the DNS TTL for some clients if one goes down.

 Finally, there are a lot of magic numbers in the application configuration of ports,
timeouts, and so on. Optimally, in a production environment, you’ll want to abstract
all these into etcd and use it as your central source of truth, so you can configure these
items when you need to.

halt vs. destroy
Note that you always use vagrant halt in these scenarios rather than the more
forceful vagrant destroy. The behavior would be the same for the cluster when it
goes down (you can try it yourself if you want: it’s more like pulling the power cord).

What’s different with vagrant destroy is that you can’t have that node rejoin the
cluster with vagrant up—not because it isn’t possible in CoreOS, but because the
Vagrant scripts do a number of bootstrapping things to brand-new nodes that they
don’t do to a node that’s just stopped, so you end up with a node all by itself. In the
real world, you wouldn’t do the bootstrapping things that Vagrant does, so you can
remove and add nodes at will.

Log from the
etcd.watch() emitter

Log from the app after it
starts up again and generates

a new configuration

101Summary
6.5 Summary
 Have a plan of attack in applying complex architectures to CoreOS.
 Figure out how to test each part of your stack in isolation.
 Determine which parts of your stack need to be redundant.
 Understand the order of events when parts fail.
 Try to identify the shortcomings of your implementations (in this case, data loss

if the Couchbase machine fails).

Big Data stack
In this chapter, you’ll build a Big Data aggregation platform that seeds a database
with random search queries against Twitter. You’ll build a small corpus of data,
make Twitter rate-limit you (while still being a good API citizen), and see how to
take care of your mission-critical (although random) data. Your application will
function like this:

1 Six stateless workers will generate a random word and search for it on the
Twitter API.

 2 The results will be stored in Couchbase.
 3 Workers will continue to search every 100 ms in parallel until they’re rate

limited.
 4 Once they’re rate limited, they’ll set a distributed lock in etcd with a 15-minute TTL.
 5 All workers will fast-exit on the presence of that lock.
6 When the lock expires, workers will start over at step 1.

This chapter covers
 Adding reliability to the data store from chapter 6

 Managing a distributed persistent data store in
CoreOS

 Simulating failures in the data system
102

103Scope of this chapter’s example
This will be an evolution of the application from chapter 6, so you must finish that
project first. You’re moving to a distributed data system that will give you more perfor-
mance, greater capacity, and higher availability. You’re also moving to a data source
that will allow you to have multiple simultaneous connections to it, unlike the
Meetup.com stream. This lets you play with a swarm of workers and control them with
a distributed lock.

7.1 Scope of this chapter’s example
This expansion on the example from chapter 6 will make Couchbase a part of your
system that is resilient to failure and that provides some simple vectors for high avail-
ability and scaling for performance. Couchbase is certainly an overkill tool for the pre-
vious example; but this chapter goes through what it takes to use a system like
Couchbase as a Big Data platform in CoreOS, which is what Couchbase is intended
for. Of course, you won’t be adding petabytes of data to your local Couchbase cluster,
but this example will show you what that kind of architecture can look like in CoreOS.

 We’ll also take another look at the worker and some models of how to use etcd in
CoreOS as a distributed lock scheduler for large-scale data acquisition. And, of course,
we’ll finish with fault-testing scenarios that use this new persistent store and contain
mission-critical data.

 To achieve some of these goals with Couchbase, you’ll have to write additional cus-
tom software (Node.js) to orchestrate the automatic management of the cluster. This
piece of orchestration software is by far the largest program in this book; and because
there’s no expectation that you know JavaScript, I’ll break it down into a few parts and
explain them one by one.

7.1.1 Adding to the architecture

Figure 7.1 shows how the architecture will look once you’re finished with this chapter.
As you can see, it includes a few new components. The workers have expanded to a
small army of programs to more efficiently gather data from various sources, and the
Couchbase persistent store is now a cluster of units that will share and balance data.

 You’ll be deploying as many Couchbase units as you have CoreOS machines. Much
like etcd, Couchbase has limitations for failure states. In a cluster of three nodes, you
can retain only one extra copy of replicated data in a Couchbase cluster. The same for-
mula applies (as discussed in chapter 3): floor((N-1)/2), where N is the number of
nodes. This represents the maximum number of replicas you can set, but you can set
fewer than the maximum. For example, with seven nodes, you could have three repli-
cas and therefore lose three nodes at the same time and have no data loss; but you
could also have just one replica with seven nodes, if you chose. You don’t have a
choice with three nodes, though: you get one replica and one failure.

 Before you get started, give yourself a clean slate using vagrant destroy -f &&
vagrant up. Now let’s look at your data source.

104 CHAPTER 7 Big Data stack
7.1.2 New data source

The new data source for this project is Twitter. If you’re so inclined, you’re welcome to
change the code to fetch from any API. Like pretty much all public APIs these days,
Twitter requires that you generate a Twitter API key for you to connect with. Its pri-
mary purpose is to rate-limit you if you hit the API too much. This is perfect for this
example, because you’ll hit the rate limit intentionally to see how to use a distributed
lock in etcd to throttle your workers. It’ll also give you the opportunity to set some
extra configuration in etcd. So, begin by making a Twitter account if you don’t have
one, and then follow these steps:

1 At https://twitter.com/settings/devices, enter your mobile number (this is
required in order to create a key).

 2 Go to https://apps.twitter.com/, and click Create New App.
 3 Enter whatever you want in the three required fields. You can leave Callback

URL blank. Click Create Your Twitter Application.
 4 Once you’re in the application settings, click the Keys and Access Token tab.
 5 You can optionally change Access Level to read-only, because you’ll only be

reading data.
 6 At the bottom, click Create My Access Token.

Twitter search API

Client browser

React single page app
web 1, web 2, or web 3

(node.js web server)

memcached 1

memcached 2

memcached 3

Couchbase

Couchbase

Couchbase

Worker

Worker

Worker

Worker

Worker

Worker

Data out

Data out

Data out

Data inData in

WebSocket

HTTP

The web portion will remain the same as in chapter 6.

A new cluster of workers,
rather than just one worker

You’ll horizontally scale out
Couchbase to three nodes.

Figure 7.1 Big Data architecture

105New stack components
7 Save the following information somewhere handy:
– Consumer Key (API Key)
– Consumer Secret (API Secret)
– Access Token
– Access Token Secret

With all that information gathered, open a session to your CoreOS cluster, and store it
to etcd:

$ etcdctl set /config/worker/auth '{ "consumer_key":"Your Consumer Key",

 ➥"consumer_secret":"Your Consumer Secret", "access_token_key":

 ➥"Your Access Token",

 ➥"access_token_secret":"Your Access Token Secret" }'

Now that you’ve got some initial configuration in place, let’s dive into the new compo-
nents. We’ll start with the worker, because the changes there are minimal, and then
move on to the brand-new program to orchestrate your storage.

7.2 New stack components
You won’t change your web application at all in this chapter. For simplicity, you’ll
adjust the worker to store the data in Couchbase with the same schema so you don’t
have to touch the Express app. But you’ll make some significant changes to how you
manage the database, which is why an entire chapter is dedicated to managing this dis-
tributed persistence. If you skipped over anything in chapter 6, you should go back and
run through the full example, or the code in this chapter won’t make much sense.

7.2.1 Twitter scraper

You do have to make some changes to the worker, both for the new data source and so
that you can run as many workers as you want. Nothing is different in the worker Docker-
file (it’s still just one line), but make the following changes in the package.json file.

{
"name": "ch7-worker",
"version": "1.0.0",
"description": "Example Worker Process",
"main": "worker.js",
"scripts": { "start": "node worker.js" },
"dependencies": {

"couchbase": "^2.1.6",
"node-etcd": "^4.2.1",
"random-word": "^1.0.2",
"twitter": "^1.3.0"

},
"author": "m@mdb.io",
"license": "ISC"

}

Listing 7.1 code/ch7/worker/package.json

Set your values for
each of these items.

Simple name change

Library that generates a
random English word

The twitter library
simplifies API access.

106 CHAPTER 7 Big Data stack
You’ve also removed the websocket library, because you no longer need it. Next, let’s
look at the new unit template.

[Unit]
Description=Worker Service %i
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutStartSec=0
RestartSec=10
Restart=always
ExecStartPre=-/usr/bin/docker rm -f worker-%i
ExecStartPre=/usr/bin/docker pull mattbailey/ch7-worker:latest
ExecStart=/usr/bin/docker run --rm --name worker-%i -e \

NODE_ENV=production mattbailey/ch7-worker:latest
ExecStop=-/usr/bin/docker rm -f worker-%i

This isn’t much different than in chapter 6—you’re just making it a template and
changing the image. Now for the worker, which also looks familiar.

const Etcd = require('node-etcd')
const couchbase = require('couchbase')
const os = require('os')
const Twitter = require('twitter')
const randomWord = require('random-word')

const thisIp = (process.env.NODE_ENV === 'production') ?
os.networkInterfaces().eth0
.filter(v => v.family === 'IPv4')[0].address : '127.0.0.1'

const etcdAddress = (process.env.NODE_ENV === 'production') ?
thisIp .split('.').slice(0,3).concat(['1']).join('.') : '127.0.0.1'

const etcd = new Etcd(etcdAddress, '2379')
const couchbaseWatcher = etcd

.watcher('services/couchbase', null, {recursive: true})

if (!etcd.getSync('config/worker/lock').err) {
console.log('lock engaged, exiting')
process.exit(0)

}

couchbaseWatcher.on('set', newCouchbase => {
console.log('new couchbase config', newCouchbase.body.node.nodes)
process.exit(0)

})

const connection = (process.env.NODE_ENV === 'production') ?
`couchbase://${etcd.getSync('services/couchbase', {recursive: true})

.body.node.nodes.map(v => v.value).join(',')}` :
'couchbase://127.0.0.1'

Listing 7.2 code/ch7/worker/worker@.service

Listing 7.3 code/ch7/worker/worker.js

Change the container
name, with %i. This is where I’ve

posted this worker,
if you don’t want to

build it yourself.

Change the container
name and the image.

Change the container name again.

Adds the twitter library as a
requirement, and removes
the WebSocket client library

Lets the program exit quickly
if it sees a lock set in etcd

107New stack components

,

se the
 tweet
nt.

console.log('current connection:', connection)

const cluster = new couchbase.Cluster(connection)

const bucket = cluster.openBucket('default')

const client = new Twitter(JSON.parse(

etcd.getSync('config/worker/auth').body.node.value))

function store(data) {bucket.upsert(data.id_str,

{event_name: data.text}, () => {})}

setInterval(() => {

const word = randomWord()

client.get('search/tweets', {q: word}, (err, tweets) => {

if (err) {

console.error('Twitter threw error:', err)

etcd.setSync('config/worker/lock', {ttl: 900})

process.exit(1)

}

console.log(word, tweets.statuses.length)

if (tweets.statuses.length > 0) {

tweets.statuses.forEach(tweet => store(tweet))

}

})

}, 100)

The program is a little more complex now, but the vast majority of it is the same as in
chapter 6. It checks early for a distributed lock; and if Twitter ever throws an error, the
program sets a new lock and exits. You only store the tweet text, because tweet meta-
data is larger than you may think, and you don’t want to fill your hard drive. You set
the event_name key in the data; this is a holdover from the RSVP schema in chapter 6,
and you keep it here so you don’t have to change the web application code to view it.
You also make sure you only run this query every 100 ms. If you set this number much
lower, you’re pretty likely to be rate limited in under a second (180 queries), so you
artificially throttle the program so you can see what’s going on.

 You won’t start your workers right away, because (especially if you wiped your clus-
ter), you don’t have a database yet. Let’s move on to the assembly and management of
the database.

7.2.2 Orchestrating Couchbase

As I’ve mentioned many times, maintaining complex, persistent data systems in a
fault-tolerant, scalable way is difficult to achieve. There are always a number of edge
cases and a lot of things various components have to react to in order for everything
to work properly. This is often called service orchestration, so I’ve named the program
that does all this for Couchbase conductor. This is another reason I like using Node.js:
as an event-driven language, it’s relatively easy to construct logic on events that can
happen in any order, and it’s fairly simple for me to show you what’s going on.

 All that being said, this can seem like a complex application, so I’ll break it down
into progressive chunks in the conductor.js program. By the end of this section, your
Couchbase dashboard should look like figure 7.2.

Changes the client to Twitter
using the credentials you set
in etcd earlier in the chapter

Slight change here: you’ll u
tweet ID as the key and the
text as the document conte

Generates a random English word

Queries Twitter for
tweets containing
that word

If you get an error back from
Twitter, it’s almost certainly a
rate-limit error. This sets a lock
on etcd for 15 minutes, which is
Twitter’s rate-limiting timeout.

If you get back search results
(always limited to 15), store
them with the store function.Runs this loop every 100 ms

108 CHAPTER 7 Big Data stack
THE SIMPLE PARTS

First, before we dive into the complexity of conductor, let’s go over the things that will
look familiar. We’ll start with the service unit(s), which have less code in them now
because you’re doing way more logic in the conductor program.

[Unit]
Description=Couchbase Service %i
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutSec=0
Restart=always
RestartSec=10
ExecStartPre=-/usr/bin/docker kill couchbase-%i
ExecStartPre=-/usr/bin/docker rm -f couchbase-%i
ExecStartPre=/usr/bin/docker pull couchbase:community-4.0.0
ExecStart=/usr/bin/docker run \

--rm \
-p 8091:8091 \
--name couchbase-%i \
--ulimit nofile=40960:40960 \
couchbase:community-4.0.0

ExecStop=/usr/bin/docker kill --signal=SIGTERM couchbase-%i

[X-Fleet]
Conflicts=couchbase@*

Notice that you removed the ExecStartPost= entry. This will now start up Couchbase
and do no boostrapping. The couchbase-sidekick@.service will remain unchanged
for this project. You can copy the one you’ve already written.

Listing 7.4 code/ch7/couchbase@.service

Figure 7.2 Three Couchbase nodes

You add a conflicts line, because
you’ll be running more than one.

109New stack components
 In conductor, I had to add a bit of a strange dependency: there’s no API SDK for
Couchbase that lets you do administrative actions (such as manipulating the members
of a cluster), so I pulled in the official couchbase-cli app (which is written in
Python) so the program can use it to manipulate the cluster. Annoyingly, Couchbase
doesn’t distribute this tool independently of the server: you’ll have to extract it from
the .deb file so that you can pack it in your Docker container. I’ll describe how to do
that next; or, if you prefer, you can use the container I’ve put on Docker Hub
(mattbailey/ch7-conductor). If you’re running on OS X, you’ll also have to install
dpkg via Homebrew in order to extract the tool.

 First, download the package from http://mng.bz/8Clk. Then, do the following:

$ cd conductor
$ dpkg --fsys-tarfile \

~/Downloads/couchbase-server-community_4.0.0-debian7_amd64.deb | \
tar xf - ./opt/couchbase/bin/couchbase-cli ./opt/couchbase/lib/python
$ ls opt
couchbase

Once you’ve got that extracted, the following listing shows the simple service unit for
conductor.

[Unit]
Description=Conductor Service
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutStartSec=0
RestartSec=5
Restart=always
ExecStartPre=-/usr/bin/docker rm -f conductor
ExecStartPre=/usr/bin/docker pull mattbailey/ch7-conductor:latest
ExecStart=/usr/bin/docker run --rm --name conductor \

-e NODE_ENV=production mattbailey/ch7-conductor:latest
ExecStop=-/usr/bin/docker rm -f conductor

All of that should look familiar—almost identical to the worker. The Dockerfile is also
identical to the worker and consists of just one line: FROM library/node:onbuild.

 Next is package.json, the last item before you dive into the program.

{
"name": "ch7-conductor",
"version": "1.0.0",
"description": "Example Conductor Admin Service",
"main": "conductor.js",

Listing 7.5 code/ch7/conductor/conductor.service

Listing 7.6 code/ch7/conductor/package.json

Change the directory to wherever
you’re storing this program to
build your Docker image.

This single command (split
over two lines) will extract

the correct components.

You should see a new opt/couchbase directory.

110 CHAPTER 7 Big Data stack
"scripts": { "start" : "node conductor.js" },
"dependencies": {

"node-etcd": "^4.2.1"
},
"author": "m@mdb.io",
"license": "ISC"

}

Nothing much exciting here either: it has only one dependency, the etcd library. Now,
let’s get into the meat of the logic: the conductor program.

CONDUCTING THE ORCHESTRA

The beginning of the program isn’t particularly interesting and looks like many of the
other programs you’ve seen in this book.

const Etcd = require('node-etcd')
const spawn = require('child_process').spawn
const os = require('os')

const thisIp = (process.env.NODE_ENV === 'production') ?
os.networkInterfaces().eth0
.filter(v => v.family === 'IPv4')[0].address : '127.0.0.1'

const etcdAddress = (process.env.NODE_ENV === 'production') ?
thisIp .split('.').slice(0,3).concat(['1']).join('.') : '127.0.0.1'

const etcd = new Etcd(etcdAddress, '2379')
const cbWatcher = etcd

.watcher('services/couchbase', null, {recursive:true})
const cbConfigWatcher = etcd

.watcher('config/couchbase', null, {recursive:true})

This listing sets up the etcd connection and watches a few keys, as you’ve done in all of
this book’s other applications.

 Next, you’ll automate the construction of the Couchbase configuration and fall
back to a static default.

const cbDefaultConfig = {
password: 'Password1',
nodes: 3,
bucket: 'default',
ram: 500

}

let cbConfigGet = etcd.getSync('config/couchbase', {recursive:true})
let cbConfig = {}
let newCluster = false

Listing 7.7 code/ch7/conductor/conductor.js—section 1

Listing 7.8 code/ch7/conductor/conductor.js—section 2

Lets you spawn
child processes (for
couchbase-cli)

Adds one more
watcher than usual,
to watch the config
you’ll set for
Couchbase

Default configuration

Attempts to fetch an existing config from etcd

Initially sets the config for
the program to be empty

Sets a flag to let the program know
this (initially) isn’t a new cluster

111New stack components

if (cbConfigGet.err) {
console.log('no config, setting default:', cbDefaultConfig)
Object.keys(cbDefaultConfig).forEach(key => etcd

.setSync(`config/couchbase/${key}`, cbDefaultConfig[key]))
cbConfig = cbDefaultConfig
newCluster = true

} else {
cbConfig = cbConfigGet.body.node.nodes.reduce((p, c) => {

p[c.key.split('/').slice(-1)[0]] = c.value
return p

}, {})
}
console.log('LOADED CONFIG:', cbConfig)

This listing sets up some config for the rest of the program with context from etcd if
it’s there, or a default if it’s not. There’s a lot of logic here, but there’s also room for
improvement; you may want to set the default config in etcd as well, but for simplicity
in this case, you set it statically.

 Let’s move on and set up how you’ll communicate with the Couchbase nodes.

const nodeGet = etcd.getSync('services/couchbase', {recursive:true})

if (nodeGet.err || !nodeGet.body.node.nodes) {
console.log('NO NODES FOUND, EXITING')
process.exit(1)

}

const CB_CLI = '/usr/src/app/opt/couchbase/bin/couchbase-cli'
const CB_OPTS = ['-u', 'Administrator', '-p', cbConfig.password, '-c']
let FIRST_NODE = nodeGet.body.node.nodes[0].value

const cb = (cmd, ip = '127.0.0.1', flags = [], defaultOpts = CB_OPTS) =>
spawn(CB_CLI, [cmd, ...defaultOpts, `${ip}:8091`, ...flags])

If you want to look up the couchbase-cli documentation for reference, you can find
it at http://mng.bz/I915. Most of this code pretty self-explanatory, except the last line.
As I mentioned, because there’s no SDK (Node.js or otherwise) to interact with the
administrative operations of Couchbase, you’re spawning out to couchbase-cli; this

Listing 7.9 code/ch7/conductor/conductor.js—section 3

If the fetch from etcd returns an error,
sets the default config in etcd instead…

…and sets the program config to the default… …and tells the
program this is
a new cluster,
because there
was no prior
config

If fetching the config was
successful, maps the

values from etcd to the
single cbConfig object

Logs the
output

Fetches from etcd all the node
data your Couchbase sidekicks set

Exits if no data was set by sidekicks Path to the couchbase-cli program you
pulled in at the beginning of the

section. The Dockerfile placed it here.

Basic options almost every
couchbase-cli command needs

Function that returns a function to call
couchbase-cli with all the right flags

You need to get the IP address of any one
node here. This picks the first one returned.

112 CHAPTER 7 Big Data stack
code essentially generates a function that resembles what an SDK might look like, with
some built-in default flags. So, every time you want to call couchbase-cli, it’s as easy
as cb(<command>, <IP Address>, [<flags>, …])?

 Next, let’s go into each of the discrete functions before you call any of them.

function initCluster(callback) {
const replicas = nodes => Math.floor((parseInt(nodes)-1)/2)

if (newCluster) {
cb('cluster-init', FIRST_NODE, [

'--cluster-username=Administrator',
`--cluster-password=${cbConfig.password}`,
'--services=data,index,query',
`--cluster-ramsize=${cbConfig.ram}`

], ['-c']).stdout.on('data', initOut => {
console.log('cluster-init:', initOut.toString())
if (initOut.toString().match(/ERROR/)) { process.exit(1) }
cb('bucket-create', FIRST_NODE, [

`--bucket=${cbConfig.bucket}`,
`--bucket-type=couchbase`,
`--bucket-ramsize=${cbConfig.ram}`,
`--bucket-replica=${replicas(cbConfig.nodes)}`,
`--cluster-ramsize=${cbConfig.ram}`

]).stdout.on('data', createOut => {
callback(`bucket-

create: ${createOut.toString()}`)
})

})
} else {

callback('cluster & bucket already initialized')
}

}

This is the main function you’ll call at the end of the program to initialize the cluster of
Couchbase nodes. These are the same commands you used in chapter 6’s couchbase@
.service unit to do the same thing: cluster-init and bucket-create to create your
default bucket. There’s some room for improvement here, too: you might want to cre-
ate a bunch of buckets from etcd keys with different parameters, such as number of
replicas or RAM size. You’re using the formula for the maximum number of replicas for
the number of nodes you have here because your data is “super important.”

 Next is the addNode() function.

function addNode(newNode) {
console.log('attempting to add:', newNode)
return new Promise(resolve => {

cb('server-add', FIRST_NODE, [
`--server-add=${newNode}`,

Listing 7.10 code/ch7/conductor/conductor.js: initCluster()

Listing 7.11 code/ch7/conductor/conductor.js: addNode()

Inner function that provides a
formula for the maximum

number of replicas you can have
for as many nodes as you have

If cluster-init fails,
exits immediately

because something
really bad happened

Creates your initial
default bucket

When this
function is
called, does a
cluster-init if
this is a new
cluster

Executes the callback,
and returns log data

If this isn’t a new cluster,
calls the callback

Issues the server-add command
to add a node to a cluster

113New stack components
'--server-add-username=Administrator',
`--server-add-password=${cbConfig.password}`,
'--services=data,index,query'

]).stdout.on('data', addOut => {
resolve(addOut.toString())

})
})

}

This function takes an IP address as an argument and adds a Couchbase node to the clus-
ter. There’s some new logic you haven’t seen before: this function returns a Promise,
which is a function that gives you more control over asynchronous flow. It’s not critical
that you know how it works; it just lets you add multiple nodes at once and then do
initialAdd() (shown in the next listing) once all the Promises generated by this func-
tion resolve.

function initialAdd() {
if (nodeGet.body.node.nodes.length > 1) {

const notFirstNode = nodeGet.body.node.nodes.filter(v => v.value !==
 ➥FIRST_NODE)

console.log('found other nodes:', notFirstNode)
Promise.all(notFirstNode.map(node =>

 ➥addNode(node.value))).then(res => {
console.log(res)
setTimeout(rebalanceCluster, 10000)

})
}

}

In Couchbase, you want to add all of your nodes and then rebalance your data once
(see listing 7.13), or you’re going to waste a lot of processing power. As is the case for
many NoSQL servers with clustering capabilities, when you add nodes to the cluster,
an extra step is usually required to spread the data around to all nodes. This is neces-
sary in order for the replicas to distribute themselves and keep your data safe.

function rebalanceCluster() {
cb('rebalance', FIRST_NODE)

.stdout.on('data', rebalanceOut => {
console.log(rebalanceOut.toString())

})
}

All this function does is issue a single rebalance command. It only needs to be run on
one node to be cluster-wide.

 Next is the failNode() function, which you’ll use later when you see a node disap-
pear from etcd.

Listing 7.12 code/ch7/conductor/conductor.js: initialAdd()

Listing 7.13 code/ch7/conductor/conductor.js: rebalanceCluster()

Gets all IPs of
Couchbase nodes that
aren’t FIRST_NODE

Runs addNode() (from
listing 7.11) on each of
the IPs at the same timeOnce both nodes are added, waits

10 seconds and runs rebalanceCluster()
(see listing 7.13) once.

114 CHAPTER 7 Big Data stack

function failNode(failedNode, callback) {
cb('failover', FIRST_NODE, [

`--server-failover=${failedNode}`
]).stdout.on('data', failedOut => {

callback(failedOut)
})

}

Couchbase has some automatic failover capabilities, but the minimum timeout is
30 seconds for those to kick in. If you see a node disappear from etcd, you’ll want to
remove it immediately.

 The next listing contains all of your event listeners for elements in etcd.

cbWatcher.on('set', newCouchbase => {
setTimeout(() => {

addNode(newCouchbase.node.value)
.then(msg => {

console.log('Node added, rebalancing:', msg)
setTimeout(rebalanceCluster, 5000)

})
}, 5000)

})

cbWatcher.on('change', event => {
if (event.action === 'delete' || event.action === 'expire') {

if (event.prevNode.value === FIRST_NODE) {
FIRST_NODE = etcd

.getSync('services/couchbase', {recursive:true})

.body.node.nodes[0].value
console.log('FIRST_NODE lost, re-setting to:', FIRST_NODE)

}
failNode(event.prevNode.value, msg => {

rebalanceCluster()
console.log('NODE LOST:', msg.toString())

})
}

})

cbConfigWatcher.on('delete', deletedConfig => {
console.log('CONFIG DELETED, EXITING')
process.exit(5)

})

You want to listen for new nodes and add them to the cluster, and you should also lis-
ten for removed nodes so you can remove them from the cluster. You also need to
make sure conductor keeps working, so if you lose FIRST_NODE, you have to change it
to something else. If you lose your configuration entirely, you need to exit, because
that means you may be starting over from scratch.

Listing 7.14 code/ch7/conductor/conductor.js: failNode()

Listing 7.15 code/ch7/conductor/conductor.js: listening to etcd

If a new node is added to etcd, then…

…add the node after seconds, and…

…issue another rebalance
after another 5 seconds.

If a /services/couchbase/ entry
disappears or expires, then…

…if FIRST_NODE
was the node that
was lost, reset
FIRST_NODE to a
different etcd
element…

…run failNode() (listing 7.14)
on that IP, and…

…rebalance the cluster.

If your config is deleted,
exit the program.

115New stack components
 Finally, you’re at the program’s entry point: executing initCluster().

initCluster(msg => {
console.log(msg)
cb('setting-autofailover', FIRST_NODE, [

'--auto-failover-timeout=30',
'--enable-auto-failover=1'

]).stdout.on('data', afOut => {
setTimeout(initialAdd, 5000)
console.log('autofailover set:', afOut.toString())

})
})

Here, you enable Couchbase’s autofailover feature, which will “hard failover” any
node the cluster can’t reach after a minimum of 30 seconds. It won’t re-add nodes that
become available again. You need this in case you lose the node on which conductor is
running. If it takes more than 30 seconds for conductor to start up on another
machine in your CoreOS cluster, Couchbase should still fail the data service on that
node. As long as this timeout (30 seconds) is longer than your TTL for the key in etcd
(if you remember, you set this to 8 seconds), this should also prevent any race condi-
tions. After you ensure that this feature is on, you run the initialAdd() function
after giving Couchbase 5 seconds to start up to kick off the entire cluster.

 That’s it! Pull all of these parts in a single file named conductor.js, and you can
build your Docker image; or use mattbailey/ch7-conductor.

 I’ve covered a lot of logic, and you can probably see why I didn’t have you attempt
this example in BASH. It’s certainly possible in BASH—or in any language—and build-
ing orchestration programs like this will start to become your library of infrastructure as
code. You’ll iterate and improve on these programs just like any other software, and
you’ll be able to spin them up locally and test them in a variety of scenarios under
Vagrant just as you’ll do in the next sections.

7.2.3 Startup and verification

You’ve added a lot of moving parts to manage the persistence layer, so start it up and
make sure it’s running smoothly. Once your Vagrant cluster is ready, start up the ser-
vices as you’ve done throughout this book. It’s also useful to start watching conduc-
tor’s journal:

$ fleetctl start code/ch7/couchbase@{1..3}.service \
code/ch7/couchbase-sidekick@{1..3}.service \
code/ch7/conductor/conductor.service

$ fleetctl journal -f conductor

As you can see, you start up three nodes for Couchbase and one for conductor. It
doesn’t matter which machine conductor runs on; it will float around the cluster

Listing 7.16 code/ch7/conductor/conductor.js: initCluster()

Enables Couchbase autofailover in
case conductor fails for any reason

Waits 5 seconds, and runs
initialAdd() (listing 7.12)

116 CHAPTER 7 Big Data stack
when there are outages. It may take some time for the Docker images to download,
but when they’re ready, the output from conductor should look something like this:

core-03 docker[2568]: no config, setting default:

 ➥{ password: 'Password1', nodes: 3, bucket: 'default', ram: 500 }
core-03 docker[2568]: LOADED CONFIG:

 ➥{ password: 'Password1', nodes: 3, bucket: 'default', ram: 500 }
core-03 docker[2568]: cluster-init: SUCCESS: init/edit 10.1.74.2
core-03 docker[2568]: bucket-create: SUCCESS: bucket-create
core-03 docker[2568]: autofailover set:

 ➥SUCCESS: set auto failover settings
core-03 docker[2568]: found other nodes: [{ key: '/services/couchbase/1',
core-03 docker[2568]: value: '10.1.64.2',
core-03 docker[2568]: expiration: '2016-05-29T04:27:34.017167896Z',
core-03 docker[2568]: ttl: 7,
core-03 docker[2568]: modifiedIndex: 3303,
core-03 docker[2568]: createdIndex: 3249 },
core-03 docker[2568]: { key: '/services/couchbase/3',
core-03 docker[2568]: value: '10.1.13.2',
core-03 docker[2568]: expiration: '2016-05-29T04:27:31.688554998Z',
core-03 docker[2568]: ttl: 5,
core-03 docker[2568]: modifiedIndex: 3301,
core-03 docker[2568]: createdIndex: 3301 }]
core-03 docker[2568]: attempting to add: 10.1.64.2
core-03 docker[2568]: attempting to add: 10.1.13.2
core-03 docker[2568]: ['SUCCESS: server-add 10.1.64.2:8091\n',
core-03 docker[2568]: 'SUCCESS: server-add 10.1.13.2:8091\n']
core-03 docker[2568]: INFO: rebalancing
core-03 docker[2568]: .
core-03 docker[2568]: SUCCESS: rebalanced cluster

Your cluster should now be up and running with three nodes. You can check on any of
the nodes in the cluster via their web control panels; the Server Nodes tab should look
something like figure 7.2 earlier in the chapter.

 Now that your robust distributed data store is up, in the next section, you’ll start
pushing data into it with your new workers.

7.2.4 Starting your workers

You should have everything you need to get these workers started. You’ve put the API
keys into etcd, and the persistent store is ready to go. All you have to do is start up the
service units. Let’s start six instances of the worker. You’ll still probably hit the API
limit pretty quickly, but you want to see how this works and begin looking at one of the
instances right away:

Sets the default because conductor
couldn’t find any config

Conductor runs the
cluster-init

command first…

…and then
bucket-

create…

…and sets the autofailover feature.

Conductor has found
two other Couchbase

nodes in etcd…

…so it
attempts to
add them to
the cluster…

…and then rebalances.

You’ll see a lot of dots being output while
conductor is rebalancing, followed by

(hopefully) this success message.

117New stack components
$ fleetctl start code/ch7/worker/worker@{1..6}.service && \
fleetctl journal -f worker@1

...
Jun 01 02:51:28 core-01 docker[4846]: current connection:

 ➥couchbase://10.1.69.2,10.1.42.2,10.1.74.2
Jun 01 02:51:29 core-01 docker[4846]: zag 15
Jun 01 02:51:29 core-01 docker[4846]: theism 15
...
Jun 01 02:51:32 core-01 docker[4846]: Twitter threw error:

 ➥[{ message: 'Rate limit exceeded', code: 88 }]
...
Jun 01 02:51:43 core-01 systemd[1]: Stopped Worker Service 1.
...
Jun 01 02:51:45 core-01 systemd[1]: Started Worker Service 1.
Jun 01 02:51:47 core-01 docker[5113]: lock engaged, exiting

Here you can see the entire workflow of the worker: connecting to Couchbase, run-
ning and storing queries, exiting on rate limit, and then reacting to the distributed
lock on restart. If you want to, you can check out another worker and see that it’s
reacting to the lock the same way. When this lock expires, in 15 minutes, the next
worker to launch will begin gathering data again, and so on. You could conceivably
run this forever.

 Figure 7.3 shows how the database is doing. You now have a bunch of records in
the three-node Couchbase cluster.

If you go back and fire up the web app and memcached units from chapter 6, you can
view the tweets as well. Figure 7.4 shows the same real-time data; if you happen to
catch the log before the worker gets rate-limited by Twitter, you can also see it change
on update.

All the Couchbase nodes the
worker is connecting to

Starts collecting
search results. I
got about 40 per
worker in around
3 seconds until…

…Twitter rate-
limited me.

The service unit has a 10-second
RestartSec, so it starts up again.

There’s still a lock, so the
worker quickly exits.

The
worker
exits.

Figure 7.3 You have data.

118 CHAPTER 7 Big Data stack
Now you have a full stack with a backing database with a purpose, and clear lines of
scalability and fault tolerance. Where do you go from here? It’s time to break the
stack, of course!

7.3 Breaking your stack
As always, we’ll begin by simulating a node failure (on only one node, because you
have only three nodes to work with) and then go through how to recover. This will be
a little different: bringing the cluster back to a “green” state takes more processing
power, because you’re dealing with actual data that needs to be distributed. The
larger your data set gets, the longer the redistribution of data takes. But most distrib-
uted data stores (Couchbase included) improve the speed of recovery as you increase
the size of the cluster, so be sure you read up on how to plan this for the database
you’re using.

7.3.1 Watching the failure

It’s a good idea to watch the conductor service while you do this, so you can see in real
time what’s happening. The conductor program is configured to move to a different
machine if the one it’s running on fails, so, for the purpose of this example, you
should make sure you’re shutting down one that isn’t running it. You can, of course,
experiment on your own, to see the time difference between the conductor machine
failing and a different one; I encourage you to think about how you could get a con-
ductor running on all nodes using a distributed lock.

 Have Vagrant shut down a node, and watch conductor immediately after that:

$ vagrant halt core-01 && fleetctl journal -f conductor
==> core-01: Attempting graceful shutdown of VM...
...
Jun 01 03:25:38 core-03 docker[10041]:

 ➥NODE LOST: SUCCESS: failover ns_1@10.1.42.2

Figure 7.4 Browser view

Conductor saw the
service exit on etcd, so
it issued a failover.

119Breaking your stack
Jun 01 03:25:38 core-03 docker[10041]: INFO: rebalancing
...
Jun 01 03:26:07 core-03 docker[10041]: SUCCESS: rebalanced cluster

As you can see, this took about 30 seconds to complete. The larger your dataset gets,
the longer it will take for the cluster to rebalance. Also look at the journal for web@1.
You can see that it restarted too, to update its Couchbase connections:

$ fleetctl journal -f web@1
...
Jun 01 03:25:55 core-03 docker[19917]:

 ➥current config: { couchbase: 'couchbase://10.1.74.2,10.1.69.2',
...

This should leave your users with very little downtime, even though you’ve had a fairly
critical failure in one part of your system. Next, you’ll bring the node back up and
watch the same things happen to restore full service.

7.3.2 Restoring the machine

Do the same thing here—start up the instance, and immediately watch the conductor
service:

$ vagrant up core-01 && fleetctl journal -f conductor
Bringing machine 'core-01' up with 'virtualbox' provider...
...
Jun 01 03:33:53 core-03 docker[10041]: attempting to add: 10.1.42.3
Jun 01 03:33:55 core-03 docker[10041]:

 ➥Node added, rebalancing: SUCCESS: server-add 10.1.42.3:8091
Jun 01 03:34:01 core-03 docker[10041]: INFO: rebalancing
...
Jun 01 03:35:10 core-03 docker[10041]: SUCCESS: rebalanced cluster

Notice that it took more than a minute to rebalance the cluster on restoration. This is
typical behavior, and it makes sense if you think about how rebalancing data operates.
Usually, write I/O is the performance constraint on these operations. This is a simplis-
tic explanation, but when a node leaves the cluster, the data has to be split and then
written to two nodes, so the write load is distributed between them. When a node
rejoins, that same volume of data needs to be written to one node. Even though these
are VMs running on the same machine, the parallel operation is faster than the more
serial one. The disparity will probably be even more obvious if you’re using magnetic
drives rather than solid-state drives.

 You should now have a good understanding of how to build a Big Data platform on
CoreOS. I encourage you to play around with settings in Couchbase and experiment
with different scenarios.

A rebalance was triggered. Successful rebalance

As expected, conductor discovered the
new node, added it, and rebalanced.

120 CHAPTER 7 Big Data stack
7.4 Summary
 Do some research on the mechanics of how your chosen platform can scale.

This will have a major impact on how easy or difficult it is to write orchestration
programs.

 Always test failures on these systems before you go to production.
 I did not cover backups in this chapter, because Big Data archival methods can

present unique problems.
 Know your data system’s formula for replication and distribution, and how (if

possible) you can change it.
 If you’re doing data acquisition with workers, keep these tips in mind:

– Initialize rapidly.
– Store no state.
– Fail fast.

Part 3

CoreOS in production

In chapters 8–10, you’ll begin by spinning up a CoreOS cluster in Amazon
Web Services. Next, you’ll take the complex application you’ve built in your local
sandbox, and automate its deployment to your cluster in AWS. Finally, I’ll wrap
up the book by presenting a general systems administration guide that covers
some patterns for logging and backups, and I’ll touch on what’s on the horizon
for CoreOS.

CoreOS on AWS
This chapter shifts away from application architecture and local development
instances of CoreOS, and works through a production deployment of CoreOS in
Amazon Web Services (AWS). We’ll start small, with a simple cluster that looks simi-
lar to your development environment; then, we’ll build out some more-complex
infrastructures for performance and availability, scaling across different vectors.

 By the end of this chapter, you’ll have a scalable production platform on which
you can run your applications; and in chapter 9, you’ll work on deploying the appli-
cation stack you’ve built in the last few chapters onto this infrastructure. You’ll
learn how to stand up a basic CoreOS cluster in AWS that spans availability zones
and can act as a baseline for any application stack you want to build.

This chapter covers
 Supporting CoreOS with an AWS virtual

infrastructure

 Building out scalable CoreOS on that infrastructure

 Attaching a dynamic load balancer to a cluster

 Deploying services with the AWS CLI
123

124 CHAPTER 8 CoreOS on AWS
NOTE This chapter doesn’t require that you have strong AWS skills already,
but I assume you can read some AWS documentation and get your account set
up (see the requirements listed in section 8.1.3). The chapter may seem a lit-
tle less dense, though, if you have some experience or have read literature
such as Manning’s Amazon Web Services in Action (Michael Wittig and Andreas
Wittig, 2015, www.manning.com/books/amazon-web-services-in-action).

NOTE The examples in this chapter involve running live services in AWS. Nei-
ther I nor Manning Publications is responsible for costs you’ll incur by run-
ning these examples. You’ll be using a pretty small amount of resources—
about $1.00 to $2.00 per day if you forget to turn off the lights.

8.1 AWS background
As discussed in chapter 4, you have a lot of options when it comes to running CoreOS
in a public (or private) cloud environment. All cloud deployments have their
nuances, but AWS has been first to market with features in general and is the most
commonly used platform. AWS is also well supported by CoreOS, and it gives you a lot
of tools up front to get you started. This chapter will walk you through a production-
ready CloudFormation template, explaining each part of how it’s put together.

 This section reviews some AWS terminology and looks at the top-level view of what
you’re going to build. You’ll be using some advanced features of AWS, but we’ll cover
enough of the basic mechanics of these features that you don’t need to be an expert in
AWS. If you’re interested in a more in-depth book on AWS, see Amazon Web Services in Action.

 The goal of this chapter is to show you how to build a production infrastructure for
the product you’ve created in the previous few chapters. Figure 8.1 shows a diagram of
the end product: you’ll build a high-availability setup across three availability zones,
with an Auto Scaling group (ASG) to scale for capacity. You’ll also use flannel’s ability
to be backed by the AWS VPC API. If you already have experience with AWS, you may be
able to skip to section 8.2.

CoreOS machine
on EC2

CoreOS machine
on EC2

flannel via VPC

Auto Scaling group
(3 6 instances, 3 availability zones)

CoreOS machine
on EC2

Elastic load balancer

AWS VPC

Figure 8.1 Infrastructure architecture

125AWS background
8.1.1 AWS regions and uptimes

AWS has a service-level agreement (SLA; https://aws.amazon.com/ec2/sla) that states
it will make “commercially reasonable efforts” to maintain 99.95% uptime for EC2
(the virtual machine platform) and EBS (block storage for EC2) within a region. Each
region has availability zones (us-west-2a, us-west-2b, and so on). AWS defines downtime
(which it refers to as Region Unavailable) as more than one availability zone (AZ) within
a region being unavailable. This means if you’re not across more than one AZ, you
can’t ever guarantee an SLA for your customers. AWS does not have an SLA for a single
AZ. If your architecture is cross-AZ (meaning it can survive an AZ outage for any
period of time), the highest SLA you can claim for your customers is 99.95%, which
translates to about 22 minutes of downtime allowed per month. It’s also important to
note that when AWS fails its SLA, you’re issued a service credit; this likely won’t cover
the damage the downtime causes to your company or product.

All that being said, AWS typically exceeds its SLA. The last Region Unavailable event
occurred in 2014, and partial AZ outages are also rare. If your organization requires
hard numbers, you can only depend on having an SLA less than or equal to what AWS has.

8.1.2 AWS services

Your deployment into AWS will use a number of services, all deployed via a Cloud-
Formation template as the primary tool you’ll use to test, build, and make changes to
your infrastructure. CloudFormation allows you to define (in YAML) a template for a

Cross-region deployment
If you need more than 99.95% uptime, you must be cross-region as well as cross-AZ.
As you can imagine, there’s a significant cost in both runtime price and system com-
plexity for such a configuration (and possible diminishing returns). I won’t cover cross-
region deployments in this book, because they require highly customized setups with
virtual VPNs running on discrete instances—not to mention the huge complexity of
managing persistent data cross-region where latency is high.

AWS has no built-in model for cross-region communication, making any kind of auto-
mation difficult when you’re using things like security groups. VPC peering connec-
tions only work within the same region; peering across regions is a “planned feature.”

ECS
AWS has a new service called Elastic Container Service (ECS). As discussed briefly
in chapter 4, ECS provides an AWS API method for running Docker containers. With
CoreOS, fleet can control services via that API. Of course, this adds significant com-
plexity to the infrastructure. I won’t cover this option in the scenario here for the sake
of simplicity and so that you can focus on a single complete implementation.

126 CHAPTER 8 CoreOS on AWS
complete implementation of anything in AWS. The AWS web console GUI is great and
always getting better, but writing CloudFormation templates lets you keep your infra-
structure in a known state and under source control. If you build things with the con-
sole GUI, how you did so (especially for complex systems) is quickly forgotten and
difficult to reproduce. CloudFormation lets you design the entire layout and is abso-
lutely the best practice for deploying any system into AWS.

 This template will build out a virtual private cloud (VPC), which gives you a lot of
control over the networking of your systems; you’ll also take advantage of flannel’s
ability to use VPC as a back end for its network abstraction. Your template will define a
set of permissions using AWS Identity and Access Management (IAM) to allow your
CoreOS instances to perform a secure subset of AWS API actions; this is a requirement
for flannel backed by the VPC API to function.

 Finally, your CloudFormation template will cover elastic load balancers (ELBs) in
each VPC in each region, to load-balance incoming connections to the services run-
ning on CoreOS across AZs. You’ll also set up an empty S3 bucket that you’ll use for
backups in chapter 10.

8.1.3 Chapter requirements

The following sections jump right into setting up your infrastructure. Here’s what
you’ll need to get started:

 An activated AWS account (you can create one at https://console.aws.amazon.com)
 AWS access key ID and secret access key for your account (see http://mng

.bz/j0PP)
 The following tools installed on your workstation:

– AWS CLI (http://mng.bz/N8L6)
– SSH key-pair from EC2 (http://mng.bz/34ih)

8.1.4 CloudFormation template

As with other large listings in this book, I’ve split the template into a few parts and
will discuss them as I go. Start a new YAML file called ch8-cfn-cluster.yml. This is
loosely based on the example template provided by CoreOS, of which you can always
find the latest version at http://mng.bz/6fUO. This chapter’s version deviates signifi-
cantly in the custom VPC setup and represents a much more real-world production
implementation, rather than a simple example (you’ll also use YAML instead of JSON,
for readability).

 Let’s start with the boilerplate CloudFormation items and then break down the
resources by VPC, security groups, IAM role, Auto Scaling group, load balancer, and S3
bucket. This is a lot to type in, if you’re copying from the book, and probably error
prone if you’re pasting from the digital copy, so I recommend using the file from the
book’s code repository at www.manning.com/books/coreos-in-action (code/ch8/ch8-
cfn-cluster.yml). Don’t skip reading this section, though; you’ll need to be familiar
with the parts of this file later.

127AWS background

L

 This template will ultimately provide you with enough boilerplate configuration to
build any CoreOS system in AWS. You’ll continue to work on it in chapters 9 and 10.

MAPS, PARAMETERS, AND OUTPUTS

You’ll use four top-level objects (not including the description string) in this Cloud-
Formation file: Mappings, Parameters, and Outputs are covered in this subsection,
and Resources will be further broken down. Start your file with the following data
(code/ch8/ch8-cfn-cluster.yml).

Mappings:
RegionMap:

us-west-2:
AMI: ami-7d11c51d
a: 10.1.1.0/24
b: 10.1.2.0/24
c: 10.1.3.0/24
VPC: 10.1.0.0/16

Parameters:
InstanceType:

Description: EC2 HVM instance type (t2.small, etc).
Type: String
Default: t2.small
ConstraintDescription: Must be a valid EC2 HVM instance type.

DiscoveryURL:
Description: An unique etcd cluster discovery URL.

Grab a new token from https://discovery.etcd.io/new?size=<your cluster size>
Type: String

AllowSSHFrom:
Description: The net block (CIDR) that SSH is available to.
Default: 0.0.0.0/0
Type: String

KeyPair:
Description: The name of an EC2 Key Pair to allow
SSH access to the instance.

Type: AWS::EC2::KeyPair::KeyName
MinLength: 1

Outputs:
ELB:

Description: ELB Hostname
Value: !GetAtt [LoadBalancer, DNSName]

Backup:
Description: S3 Bucket for Backups
Value: !Ref S3Backup

Mappings is an object to map out relative parameters to some variable. Usually, this is
so you can maintain a single CloudFormation template with multiple purposes (such
as multiple regions). Parameters is a place for user input that you can reference in
the template (you’ll see later how this works).

Listing 8.1 Metadata

This mapping contains the official
CoreOS AMIs per region (at the time
of writing; this changes often, but
older ones will always work).

Subnet mappings per AZ in a region,
as well as the VPC network block

Friendly input to change
the instance type

Input to change
the discovery UR

Input to change
the IPs allowed to
ssh to your cluster

Input to set the SSH key
for your instances

Output to show you the ELB
hostname that will be created

Output to show you the S3
bucket name for the backup
bucket that will be created

128 CHAPTER 8 CoreOS on AWS
 If you want to fetch the latest CoreOS Amazon Machine Image (AMI) number for
RegionMap, you can find it at http://mng.bz/6fUO. To be clear, you don’t have to
change this all the time; CoreOS will do its auto-upgrade procedure from any image.
I’ve provided mappings for us-east-1 and us-west-2 for the sake of brevity; you can add
more if you like. The IP networks are arbitrary: the only caveat is that they must not
overlap per AZ, and they must not overlap whatever you plan to use for flannel.

 The input parameters should be self-explanatory, except for DiscoveryURL.
Vagrant managed creating this token for you automatically, but for this example, you
have to go to https://discovery.etcd.io/new. Then, paste the URL it generates as the
parameter (when you execute this template). If you wipe out your cluster in AWS,
you’ll have to generate a new one of these token URLs each time.

 The Outputs section emits useful data about your cluster. If you want to add to this
(or anything else), you can read the CloudFormation development docs at
http://mng.bz/27ww.

 Now, let’s get into the resources, starting with the VPC and network configuration.

VPC AND NETWORK CONFIGURATION

This section looks like a lot of detailed information, but most of it involves setting up
the different components of a VPC with their default settings for three AZs. You’ll
define the basic networking components of the VPC and essentially set up the virtual
layer 3 configuration of your private cloud. Figure 8.2 shows what you’re building for
the network topology.

As you can see, you’re setting up three /24 network segments, configuring their route
tables so they can communicate with each other, and attaching them all to an internet
gateway. This is all standard VPC configuration that you’d see in most CloudFormation
templates. To split up these boilerplate resources, let’s start with the ones that don’t
specify an AZ (code/ch8/ch8-cfn-cluster.yml).

SubnetA
10.1.1.0/24

SubnetB
10.1.2.0/24

Internet gateway

AWS VPC 10.1.0.0/16

SubnetC
10.1.3.0/24

Route tables

Figure 8.2 Network topology

129AWS background

Resources:
VPC:

Type: AWS::EC2::VPC
Properties:

CidrBlock: !FindInMap [RegionMap, !Ref "AWS::Region", VPC]
InstanceTenancy: default
EnableDnsSupport: true
EnableDnsHostnames: true

InternetGateway:
Type: AWS::EC2::InternetGateway
Properties: {}

AttachGateway:
Type: AWS::EC2::VPCGatewayAttachment
Properties:

VpcId: !Ref VPC
InternetGatewayId: !Ref InternetGateway

RouteTable:
Type: AWS::EC2::RouteTable
Properties: { VpcId: !Ref VPC }

InternetEgressRoute:
Type: AWS::EC2::Route
DependsOn: AttachGateway
Properties:

RouteTableId: !Ref RouteTable
DestinationCidrBlock: 0.0.0.0/0
GatewayId: !Ref InternetGateway

InternetNetworkAcl:
Type: AWS::EC2::NetworkAcl
Properties: { VpcId: !Ref VPC }

The VPC, gateway, basic routes, and ACL are finished. The next listing shows the subnet
configuration with three subnets, one for each AZ (code/ch8/ch8-cfn-cluster.yml).

SubnetA:
Type: AWS::EC2::Subnet
Properties:

CidrBlock: !FindInMap [RegionMap, !Ref "AWS::Region", a]
AvailabilityZone: !Sub ${AWS::Region}a
VpcId: !Ref VPC

SubnetB:
Type: AWS::EC2::Subnet
Properties:

CidrBlock: !FindInMap [RegionMap, !Ref "AWS::Region", b]
AvailabilityZone: !Sub ${AWS::Region}b
VpcId: !Ref VPC

SubnetC:
Type: AWS::EC2::Subnet
Properties:

CidrBlock: !FindInMap [RegionMap, !Ref "AWS::Region", c]
AvailabilityZone: !Sub ${AWS::Region}c

Listing 8.2 VPC 1

Listing 8.3 VPC 2

Creates the base VPC object in AWS

Everything is default
except this, which
you defined in the
Mappings settings

in listing 8.1.
Internet gateway router

Attaches the router to your VPC

Initializes the
default route table

Sets the default route
to the gateway router

Creates the default ACL

Uses the subnet mappings (listing 8.1)
to set the subnet network

130 CHAPTER 8 CoreOS on AWS
VpcId: !Ref VPC
AssociationSubnetA:

Type: AWS::EC2::SubnetRouteTableAssociation
Properties: { SubnetId: !Ref SubnetA, RouteTableId: !Ref RouteTable }

AssociationSubnetB:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties: { SubnetId: !Ref SubnetB, RouteTableId: !Ref RouteTable }

AssociationSubnetC:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties: { SubnetId: !Ref SubnetC, RouteTableId: !Ref RouteTable }

As you can see, you build out one subnet for each AZ and then ensure that their routes
are configured. You use the earlier mappings to define the network CIDR. This rep-
resents all the basic VPC setup; let’s move on to the IAM instance profile and security
groups.

IAM AND SECURITY GROUPS

IAM provides a standard, flexible way to securely grant access to EC2 (known as the
Principal element), so that you can perform actions on AWS resources. In listing 8.4
(code/ch8/ch8-cfn-cluster.yml), you’ll create the security group that lets you perform
certain actions on the AWS API from within the instance. This is a requirement for flannel
so that it can create and modify the VPC route tables and so that you can disable the
source/destination check on the EC2 instance. This modification is necessary because
flannel will be communicating from an IP other than the one assigned by the subnet.

CoreOSRole:
Type: AWS::IAM::Role
Properties:

AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:

- Effect: Allow
Principal: { Service: [ec2.amazonaws.com] }
Action: ["sts:AssumeRole"]

Path: /
Policies:

- PolicyName: coreos
PolicyDocument:

Version: 2012-10-17
Statement:

- Effect: Allow
Action:

- "ec2:CreateRoute"
- "ec2:DeleteRoute"
- "ec2:ReplaceRoute"
- "ec2:ModifyNetworkInterfaceAttribute"
- "ec2:ModifyInstanceAttribute"

Resource: "*"
- Effect: Allow

Action: ["ec2:DescribeRouteTables",

Listing 8.4 IAM

Associates the subnets
to the route table

Creates a role to put
your policies in

Set of permissions
that lets flannel
change the VPC config

These next two
actions allow you to
disable the
source/dest check.

131AWS background
 ➥"ec2:DescribeInstances"]
Resource: "*"

CoreOSInstanceProfile:
Type: AWS::IAM::InstanceProfile
DependsOn: [CoreOSRole]
Properties:

Path: /
Roles: [!Ref CoreOSRole]

This code looks complicated—IAM roles have a lot of nested objects—but it’s fairly
basic and pulled from a combination of the CloudFormation documentation and the
flannel VPC-backend documentation at https://coreos.com/flannel/docs/latest/aws-
vpc-backend.html. The IAM role you're creating here becomes attached to instance
profiles (which are then associated with EC2 instances), which will grant permission
for software running on these instances to perform actions on EC2. The actions
granted manipulate network routes and interfaces. This is usually preferable to pass-
ing around AWS API keys, because you don’t have to manage or secure these secrets in
any other tool.

 IAM roles are important components to learn for building stacks that have com-
plex interactions or integrations with AWS. They’re your keys to managing AWS fea-
tures in an automated way from within AWS.

 Next, you can define your security groups and their ingress definitions
(code/ch8/ch8-cfn-cluster.yml).

ELBSecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:

GroupDescription: LoadBalancer SecurityGroup
VpcId: !Ref VPC
SecurityGroupIngress:

- { IpProtocol: tcp, FromPort: 80, ToPort:

 ➥80, CidrIp: 0.0.0.0/0 }
- { IpProtocol: tcp, FromPort: 8091,

 ➥ToPort: 8091, CidrIp: 0.0.0.0/0 }
CoreOSSecurityGroup:

Type: AWS::EC2::SecurityGroup
DependsOn: [ELBSecurityGroup]
Properties:

GroupDescription: CoreOS SecurityGroup
VpcId: !Ref VPC
SecurityGroupIngress:

- { IpProtocol: tcp, FromPort: 22,

 ➥ToPort: 22, CidrIp: !Ref AllowSSHFrom }
- { IpProtocol: -1, CidrIp: 10.10.0.0/16 }
- { IpProtocol: -1, SourceSecurityGroupId:

 ➥!Ref ELBSecurityGroup }

Listing 8.5 Security groups

These two actions are so that flannel
can inspect the state of the routes.

Creates an EC2 instance profile
attached to the role you’ll
associate with your instances

Security group you’ll use
for the load balancer

You want the world to
access this load balancer
(you can scope this down
if you want).

You can leave this open for testing, but
this is your Couchbase admin panel.

Security group for
the CoreOS cluster

Opens SSH to the
network you specified
in Properties

Allows traffic from flannel

Allows all incoming traffic
from the load balancer

132 CHAPTER 8 CoreOS on AWS
The next listing adds a few discrete ingress rules (code/ch8/ch8-cfn-cluster.yml).

Ingress4001:
Type: AWS::EC2::SecurityGroupIngress
DependsOn: [CoreOSSecurityGroup]
Properties:

GroupId: !GetAtt [CoreOSSecurityGroup, GroupId]
IpProtocol: tcp
FromPort: 4001
ToPort: 4001
SourceSecurityGroupId: !GetAtt [CoreOSSecurityGroup, GroupId]

Ingress2379:
Type: AWS::EC2::SecurityGroupIngress
DependsOn: [CoreOSSecurityGroup]
Properties:

GroupId: !GetAtt [CoreOSSecurityGroup, GroupId]
IpProtocol: tcp
FromPort: 2379
ToPort: 2379
SourceSecurityGroupId: !GetAtt [CoreOSSecurityGroup, GroupId]

Ingress2380:
Type: AWS::EC2::SecurityGroupIngress
DependsOn: [CoreOSSecurityGroup]
Properties:

GroupId: !GetAtt [CoreOSSecurityGroup, GroupId]
IpProtocol: tcp
FromPort: 2380
ToPort: 2380
SourceSecurityGroupId: !GetAtt [CoreOSSecurityGroup, GroupId]

Normally, with security groups, you add ingress rules to the SecurityGroupIngress
property list when you create the security group. But to add ingress rules from a secu-
rity group to the same security group, you have to define them separately from the
group, as in this listing. This is to prevent a chicken-and-egg scenario, because the
security group can’t reference before it’s created; you’ll notice that each of the dis-
crete ingress rules depends on the group being created first.

 All of your communication settings are configured. Everything should be able to
talk to what it needs to, with a high level of security. At this point, you’ve completed
the networking configuration for your stack.

NOTE It’s common, either by way of policy or for your own sense of organiza-
tion, to break this configuration out into its own CloudFormation stack. We
won’t break this apart here, but the template up to this point might be owned
by an infrastructure team, whereas the remainder of the template might be
broken into a new stack for a development team, so they can be iterated on
separately.

Listing 8.6 Security group ingress rules

The rest of these ingress rules
are for internal communication
between fleet, etcd, and flannel.

133AWS background
Next you’ll (finally!) get into the actual CoreOS cluster deployment, which is where
you’ll build out the resources that depend on the infrastructure created thus far in the
template.

AUTO SCALING GROUP

You’ll set up a simple ASG with a static size of three nodes for your CoreOS cluster
(we’ll cover more-dynamic scaling in chapter 10). ASGs in CloudFormation consist of
two objects: the ASG, which tells where the group hooks up and how many instances to
create; and a launch configuration that tells AWS how each VM should function. The
ASG and associated launch configuration together define how a cluster of EC2 com-
pute resources behave in AWS in the following ways:

 Which VPC subnets the ASG can launch EC2 instances in
 How many instances are in the cluster
 What load balancers should automatically add the instances to their targets
 What EC2 machine image to use
 Normal EC2 configuration for all the instances in the ASG (such as instance

type, block storage, and SSH key)
 What the user data is for initial configuration and bootstrapping

First, let’s look at the ASG (code/ch8/ch8-cfn-cluster.yml).

CoreOSServerAutoScale:
Type: AWS::AutoScaling::AutoScalingGroup
DependsOn: [VPC, WebTargetGroup, CouchbaseTargetGroup]
Properties:

VPCZoneIdentifier: [!Ref SubnetA, !Ref SubnetB, !Ref SubnetC]
LaunchConfigurationName: !Ref CoreOSServerLaunchConfig
MinSize: 3
MaxSize: 3
DesiredCapacity: 3
LoadBalancerNames: [!Ref InternalEtcdLB]
TargetGroupARNs: [!Ref WebTargetGroup, !Ref CouchbaseTargetGroup]

You have two types of load-balancer attachments. InternalEtcdLB could also be a v2
ELB, but I’ve used the classic one here to demonstrate both options. TargetGroupARNs
are targets for ELBv2, and they’re new (and great: they support WebSockets and
HTTP/2). The goal for both of these properties is the same, though: you want Auto-
ScaleGroup to automatically associate its instances with these load-balancer resources.

Listing 8.7 AutoScaleGroup

Associated
VPC subnets

Reference to
the launch

configuration
(see listing 8.8)

Min and max cluster size
(remember, etcd needs at least three)

CloudFormation stack won’t enter a
CREATE_COMPLETE state until you
have at least this many nodes up.

Creates an attachment to the
classic load balancer for etcd

Creates attachments to target
groups for ELBv2 load balancers

for both the web app and the
Couchbase admin panel

134 CHAPTER 8 CoreOS on AWS

Refe
AM
in

t

NOTE The full load-balancer definitions are in the next subsection.

Now for the launch configuration (code/ch8/ch8-cfn-cluster.yml).

CoreOSServerLaunchConfig:
DependsOn: [VPC, CoreOSSecurityGroup, CoreOSInstanceProfile]
Type: AWS::AutoScaling::LaunchConfiguration
Properties:

ImageId: !FindInMap [RegionMap, !Ref "AWS::Region", AMI]
InstanceType: !Ref InstanceType
KeyName: !Ref KeyPair
SecurityGroups: [!Ref CoreOSSecurityGroup]
IamInstanceProfile: !Ref CoreOSInstanceProfile
AssociatePublicIpAddress: true
BlockDeviceMappings:

- DeviceName: /dev/xvdb
Ebs: { VolumeSize: 10, VolumeType:

 ➥gp2, DeleteOnTermination: true }
UserData:

"Fn::Base64": !Sub |

Let’s go through this in more depth, because this is where things get interesting. We’ll
ignore the content of UserData for the time being; but UserData is where CoreOS will
look for its cloud-config, so it will be a large YAML file that you have to encode. In AWS
CloudFormation, every property of a resource has an associated update requirement.
The AWS documentation on UserData (http://mng.bz/8th9) shows “Update requires:
Replacement.” This means if you change cloud-config in UserData, the configuration
of the instances that are already launched will not be changed. If you want to update
their cloud-config, they must be terminated and re-created. This also means every-
thing about your cluster will be destroyed if you do this, so cloud-config should be
generic. Further, if you end up changing it, you must be sure to generate a new discov-
ery token so you can initialize a new cluster.

 We’ll get into the cloud-config you’re using for this cluster later in the chapter, so
remember this UserData spot in the file. For now, let’s finish the template with the
load balancers and S3 bucket.

ELBS AND S3
In listing 8.9, you create a simple ELB for external access to the application you’ll
deploy, and an internal ELB that you’ll use in chapter 9 to talk to etcd from other AWS
services (code/ch8/ch8-cfn-cluster.yml). These are both referenced in the ASG. You

Listing 8.8 Launch configuration

rences the
I specified
 Mappings

References the
InstanceType specified

in Parameters

References
he SSH key
specified in
Parameters

Attaches to the CoreOSSecurityGroup
created in the last section

Make sure you give a public IP, so you can
ssh to it (this also becomes the egress IP).

Not all instances need drive
attachments, but all the
cheap t2 ones do.

This is the hard part: your
cloud-config, which gets
Base64-encoded.

Attaches to the IAM
profile created in the
last section

135AWS background
also deploy an S3 bucket and policy that you’ll use in chapter 10 for backups. You’re
using the newer ELBv2 type, because it plays more nicely with the WebSockets in the
example application. Within that ELB, you make a listener for both your web app and
the Couchbase admin panel. Normally, you might split these up more for security, but
for the sake of brevity, this example keeps them in the same ELB.

LoadBalancer:
Type: AWS::ElasticLoadBalancingV2::LoadBalancer
DependsOn: [ELBSecurityGroup]
Properties:

SecurityGroups: [!Ref ELBSecurityGroup]
Subnets: [!Ref SubnetA, !Ref SubnetB, !Ref SubnetC]

This is just the initial resource for the ELB. On its own, it doesn’t do a lot; it needs lis-
teners to expose to the internet, and target groups to know where to send connections.

 Define the web target group and listener first (which will point to your node.js
application; code/ch8/ch8-cfn-cluster.yml).

WebTargetGroup:
Type: AWS::ElasticLoadBalancingV2::TargetGroup
Properties:

Port: 3000
VpcId: !Ref VPC
Protocol: HTTP
TargetGroupAttributes:

- { Key: stickiness.enabled, Value: true }
- { Key: stickiness.type, Value: lb_cookie }

WebListener:
Type: AWS::ElasticLoadBalancingV2::Listener
DependsOn: [LoadBalancer, WebTargetGroup]
Properties:

DefaultActions: [{ Type: forward, TargetGroupArn:

 ➥!Ref WebTargetGroup }]
Port: 80
LoadBalancerArn: !Ref LoadBalancer
Protocol: HTTP

This listing creates a TCP port 80 listener on the load balancer, configured to balance
across targets on port 3000 (the node.js application port).

 Next, you’ll make a load balancer to get to your Couchbase admin panel
(code/ch8/ch8-cfn-cluster.yml).

Listing 8.9 ELBv2 base

Listing 8.10 ELBv2 web app

The base ELBv2 needs to
define its security group…

…and VPC subnets.

The target for the web app
runs on port 3000…

…and the targets live in your VPC.

You need stickiness
for WebSockets to
function correctly.

Attaches the
forwarding action
to the target group

Listens
on port 80 Attaches to the load balancer

136 CHAPTER 8 CoreOS on AWS

CouchbaseTargetGroup:
Type: AWS::ElasticLoadBalancingV2::TargetGroup
Properties:

Port: 8091
VpcId: !Ref VPC
Protocol: HTTP
TargetGroupAttributes:

- { Key: stickiness.enabled, Value: true }
- { Key: stickiness.type, Value: lb_cookie }

CouchbaseListener:
Type: AWS::ElasticLoadBalancingV2::Listener
DependsOn: [LoadBalancer, CouchbaseTargetGroup]
Properties:

DefaultActions: [{ Type: forward, TargetGroupArn:

 ➥!Ref CouchbaseTargetGroup }]
Port: 8091
LoadBalancerArn: !Ref LoadBalancer
Protocol: HTTP

For the admin panel, you listen on port 8091 and load-balance to the same port on
the targets.

 For the internal etcd load balancer, you’ll use the classic load balancer; this will let
you talk to etcd without having to know anything about the hosts in the cluster, from
within the VPC (code/ch8/ch8-cfn-cluster.yml). Essentially, this is a convenience for
not having to programmatically discover a host to connect to for services not in the
CoreOS cluster, such as AWS Lambda.

InternalEtcdLB:
Type: AWS::ElasticLoadBalancing::LoadBalancer
DependsOn: [CoreOSSecurityGroup]
Properties:

Scheme: internal

Listeners: [{ LoadBalancerPort: 2379,
 ➥InstancePort: 2379, Protocol: TCP }]

HealthCheck:
Target: TCP:2379
HealthyThreshold: 3
UnhealthyThreshold: 5
Interval: 10
Timeout: 5

SecurityGroups: [!Ref CoreOSSecurityGroup]
Subnets: [!Ref SubnetA, !Ref SubnetB, !Ref SubnetC]

Listing 8.11 ELBv2 Couchbase admin panel

Listing 8.12 ELB (internal)

The target for the Couchbase
admin runs on port 8091.

Listens on port 8091

This means this ELB can only be accessed
from within the VPC, on local IPs.

Default port for etcd

You want this tied to
the default internal
security group.

137AWS background
Now for the S3 backups bucket (code/ch8/ch8-cfn-cluster.yml).

S3Backup:
Type: AWS::S3::Bucket
Properties:

LifecycleConfiguration:
Rules: [{ ExpirationInDays: 10, Status: Enabled }]

BackupPolicy:
Type: AWS::S3::BucketPolicy
DependsOn: [CoreOSRole]
Properties:

Bucket: !Ref S3Backup
PolicyDocument:

Id: backup
Version: 2012-10-17
Statement:

- Sid: backup
Action: "s3:*"
Effect: Allow
Principal: { AWS: !GetAtt [CoreOSRole, Arn] }
Resource: [!Sub "arn:aws:s3:::${S3Backup}",

 ➥!Sub "arn:aws:s3:::${S3Backup}/*"]

Notice that you set up an S3 bucket with a policy to allow the CoreOS nodes to do any-
thing to this bucket. So, you can use it via its API without providing keys, the same way
the IAM role allows you to perform EC2 actions from within the cluster.

 Other than adding cloud-config via user data, this CloudFormation template is
functionally complete:

 The base networking, routing, and port-based security groups are all in place.
 You’ve configured your compute resources to fit into that base platform.
 You’ve configured your external-edge load balancers, internal load balancer,

and backup storage.

If you don’t have much AWS experience, this should also give you a cursory under-
standing of how the different resource in AWS fit together. We’ll get into cloud-config
next, so that you can paste it in and get your cluster running!

8.1.5 Cloud-config in AWS

Let’s look at where you are. Before we jump into cloud-config, take a look at figure
8.3; it shows all the infrastructure and resources you’ve defined and configured so far.
Fortunately, with the new addition of the !Sub function in CloudFormation (see
http://mng.bz/9D9L), it recently became a lot easier to drop the YAML-formatted
cloud-config into a CloudFormation template as user data—especially one where you
have to insert references to resources in the template. This was even harder if you
weren’t using YAML for your CloudFormation template, which is also a recent feature.

Listing 8.13 S3 bucket

Creates the bucket
Adds a rule to delete any

objects older than 10 days

Creates your
permissions policy

The CoreOS instance profile role
should have access to…

…write to the bucket
and any object in it.

138 CHAPTER 8 CoreOS on AWS
All of this cloud-config should fall under the !Sub | part of the ASG launch configura-
tion in section 8.2.4. If in doubt, download the template referenced at the beginning
of the chapter.

BOILERPLATE

The basic cloud-config for AWS is shown in the following listing.

#cloud-config
coreos:

etcd2:
discovery: ${DiscoveryURL}
advertise-client-urls: http://$private_ipv4:2379
initial-advertise-peer-urls: http://$private_ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://$private_ipv4:2380

units:
- name: etcd2.service

command: start
- name: fleet.service

command: start

Listing 8.14 Basic cloud-config

Internet gatewayS3 bucket AWS APIs

AWS VPC 10.1.0.0/16

CoreOS
node 2

ASG and launch config

SubnetB
10.1.2.0/24

Load balancers
Web, Couchbase, internal etcd

SubnetA
10.1.1.0/24

SubnetC
10.1.3.0/24

CoreOS
node 1

CoreOS
node 3

Via bucket policy Via IAM profile

Figure 8.3 Infrastructure architecture

etcd discovery URL from the
parameters at the beginning
of the template

139AWS background
This should be similar to the UserData from Vagrant, way back at the beginning of the
book. Here’s an example of how this should actually look in your template in the ASG
launch configuration:

...
UserData:

"Fn::Base64": !Sub |
#cloud-config
coreos:

etcd2:
...

With that explanation and the boilerplate cloud-config out of the way, you can con-
tinue with the rest of the unit definitions in cloud-config.

CUSTOM UNITS

The unit definitions in listing 8.15 should be appended under the basic cloud-config
from listing 8.14. These are all the extra units to make things completely functional
on boot, including flannel.

- name: set-metadata.service
runtime: true
command: start
content: |
[Unit]
Description=Puts metadata in /etc/instance
[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/bin/sh -c 'echo INSTANCEID=$(curl http://169.254.169.254/

 ➥latest/meta-data/instance-id) > /etc/instance'
ExecStart=/usr/bin/sh -c 'echo AZ=$(curl http://169.254.169.254/

 ➥latest/meta-data/placement/availability-zone) >> /etc/instance'
ExecStart=/usr/bin/sh -c 'echo REGION=$(curl http://169.254.169.254/

 ➥latest/meta-data/placement/availability-zone

 ➥| rev | cut -c 2- | rev) >> /etc/instance'

This one-shot service is entirely for convenience later, so you don’t have to query this
information all the time. From within an AWS instance, you can always hit the
http://169.254.169.254/latest/meta-data/ URL to get some information about the
context in which that instance is running; the details on this API are at http://mng
.bz/NvRT.

 The next two units format and mount the filesystem for Docker. This is the 10 GB
EBS device you added in the ASG launch configuration. You want to make sure this all
happens before Docker starts.

Listing 8.15 cloud-config.yml unit—metadata

This intrinsic function does a
Base64 encoding and uses the !Sub
function to create a template.

The rest is the cloud-config you started
in listing 8.14 and will continue with.

Puts instance id, AZ, and
region in /etc/instance

as env vars

140 CHAPTER 8 CoreOS on AWS

- name: format-docker.service
runtime: true
command: start
content: |

[Unit]
Description=Wipe Ephemeral
Before=docker.service
Before=docker-early.service
[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/sbin/wipefs -f /dev/xvdb
ExecStart=/usr/sbin/mkfs.ext4 -m0 -L

 ➥docker -b 4096 -i 4096 -I 128 /dev/xvdb
- name: var-lib-docker.mount

command: start
content: |

[Unit]
Description=Mount storage to /var/lib/docker
Requires=format-docker.service
After=format-docker.service
Before=docker.service
Before=docker-early.service
[Mount]
What=/dev/xvdb
Where=/var/lib/docker
Type=ext4

The following unit starts flannel automatically on your instances and configures it to
use a /16 network via the AWS VPC flannel driver. As a result, you should have zero
overhead from using flannel.

- name: flanneld.service
command: start
drop-ins:

- name: 50-network-config.conf
content: |

[Service]
ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/config

 ➥'{ "Network": "10.10.0.0/16", "Backend":

 ➥{"Type": "aws-vpc"} }'

We discussed that flannel requires you turn of the source-dest check on the instances.
Unfortunately (to date), AWS hasn’t created a CloudFormation key to switch that off in
an ASG. You can do it if you’re spinning up discrete EC2 instances, but not in autoscale.
That’s why you have to create this last service (listing 8.18). The exact timing of run-
ning it is a bit hairy because you can only use the AWS CLI tools via a Docker container,
and you’re also messing around with Docker on boot, formatting its drive and making

Listing 8.16 cloud-config.yml unit—Docker filesystem

Listing 8.17 cloud-config.yml unit—flannel

You want this to format
early in the boot process.

Wipes the drive you
created in the launch
configuration…

…formats it
with ext4…

…and mounts it to where
Docker stores its data.

Starts flannel

Sets the network
for flannel, and

tells it to use the
aws-vpc back end

141AWS background
flannel start. The source-dest check doesn’t have to be on for flannel to start—just for
it to function—so it’s okay if it waits until everything else is finished.

- name: set-sdcheck-off.service
runtime: true
command: start
content: |

[Unit]
Requires=var-lib-docker.mount

 ➥set-metadata.service flanneld.service
After=var-lib-docker.mount set-metadata.service flanneld.service
Description=Sets source-dest check to off
[Service]
EnvironmentFile=/etc/instance
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/bin/docker run cgswong/aws:aws

 ➥--region $REGION ec2 modify-instance-attribute

 ➥--no-source-dest-check --instance-id $INSTANCEID

This is a fairly generic baseline for cloud-config in AWS, and it should give you an
understanding of the few extra bootstrapping procedures you need CoreOS to do to
get the most out of running in AWS. Once this cloud-config YAML subdocument is fin-
ished and inserted with the appropriate indentation in your template, you should be
ready to deploy the CloudFormation stack!

8.1.6 Deployment

You’re finally ready to start up your CloudFormation stack. As a reminder: when you
do this, the money clock starts running in AWS. I’ll only cover deployment with the
CLI, but the web console is pretty easy to work with. In both cases, you can reference
either the file you’ve painstakingly assembled from this text or the file from the book’s
code repository.

 In this section, you’ll get a basic understanding of how to deploy and interact with
all the infrastructure you’ve defined in the CloudFormation template in this chapter.
The procedure is similar to any other CloudFormation stack you might create on your
own, and this will be the stack you use for the rest of the book.

EXECUTION AND PARAMETERS

To start the deployment, you’ll need the following as input parameters:

 A catchy name for your stack
 An IP in CIDR notation for SSH access (or 0.0.0.0/0)
 A new discovery URL (you can generate one at https://discovery.etcd.io/new)
 The instance type you want (see https://aws.amazon.com/ec2/instance-types)
 The name of the EC2 key-pair you created for this region

Listing 8.18 cloud-config.yml unit: source-dest check

You want this to run after
the metadata service,
Docker formatting, and
flannel have finished.

Uses the /etc/instance environment
file you created in the first one-shot

Runs the AWS
CLI tool to turn
off the source-
dest check on
this instance

142 CHAPTER 8 CoreOS on AWS
NOTE It’s fine to do a t2.micro while you’re playing around with these
stacks. But when you deploy your application from chapter 7, you’ll need at
least t2.small nodes for the RAM requirements of Couchbase. You can find
pricing information at https://aws.amazon.com/ec2/pricing.

NOTE If you haven’t yet set up your AWS CLI tools, do so now with aws
configure. The process is fairly self-explanatory, but you can read the docu-
mentation at http://mng.bz/fsfG.

Let’s fire it up:

$ aws cloudformation create-stack \
--stack-name coreosinaction \
--template-body file://./code/ch8/ch8-cfn-cluster.yml \
--capabilities CAPABILITY_IAM \
--parameters \

ParameterKey=InstanceType,ParameterValue=t2.small \
ParameterKey=DiscoveryURL,ParameterValue=\

https://discovery.etcd.io/8f18c772185022ff35d0c76f7f1d8ea9 \
ParameterKey=AllowSSHFrom,ParameterValue=0.0.0.0/0 \
ParameterKey=KeyPair,ParameterValue=my-keypair

You can check out the stack-creation status and also run the wait command to have
the CLI return only when creation is complete:

$ aws --output text cloudformation describe-stacks
... CREATE_IN_PROGRESS ...
$ aws cloudformation wait stack-create-complete --stack-name coreosinaction

NOTE If you get stuck or can’t make sense of the stack status, you can always
log in to the AWS web console and look at the CloudFormation event tab for
your stack.

You should be able to query the output object from your CloudFormation stack once
the status has reached CREATE_COMPLETE. These outputted configuration items will be
useful in chapters 8 and 9:

$ aws --output text cloudformation describe-stacks \
--stack-name coreosinaction \
--query 'Stacks[0].Outputs[*].[OutputValue]'

coreosinaction-s3backup-1eunpnsppx78f
coreosinaction-LoadBalan-D5IYNEXB783K-2021937736.

➥us-west-2.elb.amazonaws.com

Initial create-stack command

Name of your stack You have to set this flag to tell the API that you’re
okay with this stack creating IAM resources.

This can be any URI. To use a local file,
you can use file://./ for a relative path

or file://// for an absolute path.

Instance type

Full
discovery

URL

CIDR for sshing to your hosts
(you can put your own IP/32 here)

Name of your AWS key-
pair in the selected region

Returns 0 on
CREATE_COMPLETE and non-

0 if there are any failures

Query to get the
output values

S3 bucket name

ELB host name

143AWS background
Now that your stack is up and running, you can get into your cluster and confirm that
everything is set up.

LOGGING IN
First, find the IP of one of your instances so you can log in and check out the cluster.
You can do this through the web console, or you can use the AWS CLI. Unfortunately,
the EC2 instances aren’t considered stack resources, because they’re in an ASG, so you
have to tack on some filters and queries to get back the IPs:

$ aws --output text ec2 describe-instances \
--filter Name=tag:aws:cloudformation:stack-name,Values=coreosinaction \
--query 'Reservations[*].Instances[0].[PublicIpAddress]'

54.149.189.24
54.213.46.236
54.186.111.47

NOTE The AWS CLI tool is powerful. You can read more about its advanced
features at http://mng.bz/w17N.

Using the key-pair you specified in the parameters (make sure you’ve set the appropri-
ate permissions for it as an SSH key, as well), you can log in to one of your cluster
nodes:

$ ssh \
-i <path to your key> \
core@54.149.189.24

...
CoreOS stable (1068.10.0)

...
core@ip-10-1-2-246 ~ $

You can do some checks to make sure everything has been set up correctly:

core@ip-10-1-2-246 ~ $ fleetctl list-machines
MACHINE IP METADATA
4b3ea058... 10.1.2.246 -
6b113e17... 10.1.3.129 -
ba357666... 10.1.1.253 -

core@ip-10-1-2-246 ~ $ ip addr show dev docker0 scope global
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP>

 ➥mtu 1500 qdisc noqueue state DOWN group default
link/ether 02:42:63:ae:aa:30 brd ff:ff:ff:ff:ff:ff
inet 10.10.33.1/24 scope global docker0

valid_lft forever preferred_lft forever

core@ip-10-1-2-246 ~ $ df -h /var/lib/docker/
Filesystem Size Used Avail Use% Mounted on
/dev/xvdb 9.6G 137M 9.5G 2% /var/lib/docker

Generic describe-all-
instances API request

This filter is sent with the
request to get back a subset.

Output query that returns the
PublicIpAddress of each instance found

Optional if you set up the
key in your SSH config or
added it to ssh-agent

Checks the fleet
cluster status

Checks
docker0’s IP

This IP should be in the
subnet you assigned to
flannel in cloud-config in
section 8.3.2.

Ensures that /var/lib/docker
was mounted with your
new 10 GB volume

144 CHAPTER 8 CoreOS on AWS
NOTE If you ever need to delete your stack, use aws cloudformation
delete-stack --stackname coreosinaction. But remember, you can’t
have duplicate stack names; so, if you want to use coreosinaction again,
you’ll have to wait until it’s completely deleted, which can take a few minutes.

You now have a production-ready cluster in AWS. Feel free to change parameters
around and tune things exactly the way you want them. Add more parameters to refer-
ence in your CloudFormation template so you can have different inputs for different
deployments: for example, a staging environment with three nodes and a production
environment with six. You should be able to create and destroy stacks easily now. The
next chapter covers the deployment of your application stack to your new cluster in
AWS, as well as how to start automating all your deployments with tools in AWS.

 Don’t forget to turn off the lights. You may want to destroy your CloudFormation
cluster if you don’t want to pay for it overnight. You can check your billing dashboard
at https://console.aws.amazon.com/billing/home.

8.2 Summary
 Be sure to read AWS’s documentation on CloudFormation; it’s well constructed

and contains good examples.
 Pay close attention to dependent objects, which things you can change in

CloudFormation with no interruption, and which cause a replacement of the
object (resulting in downtime).

 Remember that changes to cloud-config require re-creation in order to take
effect.

 Keep the results from the OUTPUTS of your stack handy; they represent the criti-
cal touch-points for interacting with your system.

Bringing it together:
deployment
Your development cluster is set up, your production cluster is set up, and you’ve
architected a full application stack for performance scaling and availability. Now,
you have to figure out how you’re going to tackle deployment. There are many,
many models for constructing deployment mechanics, and many options for contin-
uous integration systems, task schedulers, and build systems. After chapter 8, you
have two major systems to rely on: CoreOS and AWS. You want to be able to do some-
thing that fits both systems without creating deep dependencies between them.

 In this chapter, you’ll create a workflow that’s pretty generic; it will cut a few cor-
ners to remain generic and avoid bringing more components into the system.
When you start building this kind of pipeline for your own applications, you’ll

This chapter covers
 Automating your deployment to AWS

 Deploying your application to your AWS
infrastructure

 Pushing incremental changes to your application
145

146 CHAPTER 9 Bringing it together: deployment
probably use a variety of other tools, but this example provides the basic inputs of a
deployment system that you can plug into your tooling.

 Ultimately, this means you’re going to create something in AWS that eventually
flips a value in etcd, but you want to do it without

 Building out new EC2 VMs to do orchestration
 Running an agent on your CoreOS nodes that only works in AWS

I’ve established these constraints for a couple of reasons. First, adding infrastructure
that becomes a dependency of other infrastructure is a bit of an antipattern for the
twelve-factor methodology; it tightly couples two systems. Second, your AWS deploy-
ments should be functionally similar to how deployments work in your local Vagrant
cluster, to reduce “it works on my machine” syndrome.

 Software development in your organization undoubtedly goes through some kind
of lifecycle. Services that support the software may go through a similar process. In the
process you followed in chapters 6 and 7 to architect your system, the final results
were Docker containers and service-unit files. You want to reliably (and with some
amount of abstraction) deploy that software and those services into your brand-new
production cluster, as rapidly as you did in your local development environment.

 In this chapter, you’ll add/build some new things:

 A pipeline in AWS to trigger etcd to give the sidekick’s context
 A gateway so you can execute that trigger remotely (from Docker Hub web-

hooks)
 Modified sidekicks to get deployment context from etcd

The big takeaway will be how to deploy software to a CoreOS cluster running in AWS with
a single touchpoint that doesn’t require you to directly interact with fleet. Figure 9.1
shows what you’ll build: you’ll use AWS Lambda, AWS API Gateway, and Docker Hub to
initiate a sidekick-controlled deploy via etcd.

Docker hub web hook

AWS API gateway

AWS Lambda function

Deployment
sidekick unit

Web@
units

etcd

CoreOS Auto Scaling group

Figure 9.1 Deployment pipeline

147New CloudFormation objects
9.1 New CloudFormation objects
Yes, you get to add more objects to the ever-growing CloudFormation template!

 An input parameter that serves as a pseudo API deploy key
 An output key that you can drop into Docker Hub’s webhook configuration
 A Lambda function that sets a key on your internal etcd load balancer
 An API Gateway configuration to create the endpoint for the webhook

In this chapter, I assume you’ve completed the previous chapter and understand, for
example, that a Parameter object goes into the Parameters section of the Cloud-
Formation file. You’ll create the parameter and output objects first, and at the end of
the section, you’ll run an update-stack command.

NOTE If in doubt about your YAML, just like the last chapter, the completed
CloudFormation template for this chapter is available in the book’s code
repository (code/ch9/ch9-cfn-cluster.yml).

9.1.1 Parameter and output

You’ll add one new parameter and one new output object. They’re related, as you’ll see.

DeployKeyPath:
Description: Long URI component used as a passphrase (in a URI)

 ➥for deployment. (e.g. pwgen -A 64 1)
Type: String
MinLength: 64
MaxLength: 128
NoEcho: true
AllowedPattern: "[a-z0-9]*"
ConstraintDescription: Must be 64-128 characters

DeployHook:
Description: URL to put in Docker Hub web hook
Value: !Sub "https://${DeployApi}.execute-api.${AWS::Region}

 ➥.amazonaws.com/prod/${DeployKeyPath}"

The final product from the modifications of your CloudFormation stack is a URL that
causes your CoreOS cluster to update the web application. Unfortunately, the Docker
Hub webhook feature doesn’t come from a specific IP block and doesn’t support cus-
tom headers, so you’re forced here to make this URL public. The (admittedly less-
than-secure) solution is to use the URL like an API key with a reasonable amount of

Listing 9.1 Parameters

Listing 9.2 Outputs

For this, you need a randomly
generated URL-safe string.

URL you can put into
Docker Hub webhook

Generates the URL from the
objects you’ll create shortly
and the DeployKeyPath

148 CHAPTER 9 Bringing it together: deployment
entropy, which would be extremely difficult to guess. Because you’re using AWS API
Gateway, though, if you wanted to add a more secure trigger—for example, from your
CI system—doing so would be trivial.

 Here’s the worst-case scenario, given the way you’re going to construct this.
If someone brute-forced—for example, https://<YOUR API GATEWAY>/prod/ iheph6
un2ropiodei7kamo7eegoo2kethai3cohfaicaegae4ea8ahheriedoo1w—and figured out
the right payload, the worst they could do would be to cause the service to restart very
quickly. When you hook up APIs like this in the real world, security is your responsibil-
ity. As mentioned in the introduction to this chapter, this is an interaction you may
want to control with another system that’s more appropriate to your workflow and
security requirements. You’ll get started with the Resources next.

9.1.2 AWS Lambda

AWS Lambda is a newer service in AWS that lets you run snippets of code (Node.js,
Python, or Java) in reaction to events in AWS. It has an interesting pricing model:
you’re charged in units of 100 ms for how long it takes a task to complete. This makes
it great for quick, task-oriented operations like asynchronous deployments. You’re
going to set up the event emitter (AWS API Gateway) in the next subsection, but you’ll
set up your Lambda function here.

 First, you need a new IAM role for Lambda so that it can do things in your VPCs.

LambdaDeployRole:
Type: AWS::IAM::Role
Properties:

AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:

- Action: "sts:AssumeRole"
Effect: Allow
Principal: { Service: lambda.amazonaws.com }

Path: /
ManagedPolicyArns:

- "arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole"
- "arn:aws:iam::aws:policy/service-

role/AWSLambdaVPCAccessExecutionRole"

Now let’s get into the Lambda function. The short script is inlined here, much like
cloud-config from chapter 8. Lambda does not support inlining Java; for consistency,
this example uses Node.js, so you don’t have to worry about newlines or whitespace in
the Code field.

DeployLambda:
Type: AWS::Lambda::Function
DependsOn: [CoreOSSecurityGroup, LambdaDeployRole]

Listing 9.3 Lambda role

Listing 9.4 Lambda function

These policies are
provided by AWS, so

you don’t have to
create custom policies
as you did for flannel.

149New CloudFormation objects

ly
f
n”.

g
Properties:
VpcConfig:

SubnetIds: [!Ref SubnetA, !Ref SubnetB, !Ref SubnetC]
SecurityGroupIds: [!Ref CoreOSSecurityGroup]

Role: !GetAtt [LambdaDeployRole, Arn]
Timeout: 2
Handler: index.handler
Runtime: nodejs4.3
Code:

ZipFile: !Sub
- |

const options = {
host: '${host}',
port: 2379,
path: '/v2/keys/coreos.com/deploy',
method: 'PUT',
headers: {'Content-Type': 'application/x-www-form-urlencoded'}

};
exports.handler = (event, context, callback) => {

if (event['push_data'].tag === 'production') {
const payload = event.repository.name;
const req = require('http').request(options);
req.write(`value=${!payload}`);
req.end(() => callback(null, `deploy:${!payload}`));

} else {
callback(null, 'non-production push');

}
};

- host: !GetAtt [InternalEtcdLB, DNSName]

There’s a little complexity here, but nothing you haven’t seen before if you read the
code for the sidekick units in previous chapters. The only difference here is that
you’re interacting with etcd without the help of a handy Node.js library (just the built-
in http module), and you’re hitting the internal etcd load balancer you created in
chapter 8 rather than hitting a node directly. You’re basically keying the deployment
on a particular Docker tag. If that tag is pushed to Docker Hub, this code pushes a
new value to an etcd key.

NOTE If you want to read more about the options for Lambda for Cloud-
Formation, you can find the documentation at http://mng.bz/57Br.

Finish by giving API Gateway permission to invoke the Lambda function.

LambdaPermission:
Type: AWS::Lambda::Permission
DependsOn: [DeployLambda]

Listing 9.5 Lambda permission

You want this Lambda function
to be able to talk on your
CoreOS subnets…

…and you want it in
the CoreOS security
group.

Attaches the function
to the role you
created in listing 9.3

2-second timeout: more than
enough for this simple function

Similar to the
Base64

function in
chapter 8,

except that it
makes a zip

file for Lambda
to consume

Sets up the options for the
connection, connects to the
internal etcd load balancer you
created in chapter 8, and targets
the /coreos.com/deploy key

Part of Docker Hub’s
payload contains the
container tag. You on
want to take actions i
that tag is “productio

Sets the Docker
repo name as

the value for the
deploy key Still emits a success if the

tag isn’t “production”.

Replaces the “${host}” strin
in the const options object.

150 CHAPTER 9 Bringing it together: deployment

C
i

A

Lam
Properties:
Action: "lambda:InvokeFunction"
FunctionName: !GetAtt [DeployLambda, Arn]
Principal: apigateway.amazonaws.com

9.1.3 API Gateway

API Gateway lets you trigger Lambda functions and pass any HTTP parameters along
with them. You’ll add only one resource with one method; but it requires a bunch of
discrete resources to work, so you have to include a good deal of boilerplate configu-
ration to initiate this resource.

DeployApi:
Type: AWS::ApiGateway::RestApi
Properties: { Name: deploy-coreosinaction }

DeployResource:
Type: AWS::ApiGateway::Resource
DependsOn: [DeployApi]
Properties:

ParentId: !GetAtt [DeployApi, RootResourceId]
PathPart: !Ref DeployKeyPath
RestApiId: !Ref DeployApi

The base resource is a lot like the base resource in the web load balancer in chapter 8;
it doesn’t do much of anything on its own until you attach API Gateway resources,
methods, deployments, and stages.

 Now, you need to define a POST method for this resource and attach it to the
Lambda.

DeployPOST:
Type: AWS::ApiGateway::Method
DependsOn: [DeployLambda]
Properties:

HttpMethod: POST
AuthorizationType: NONE
Integration:

PassthroughBehavior: WHEN_NO_MATCH
Type: AWS
IntegrationHttpMethod: POST
IntegrationResponses: [StatusCode: 200]
Uri: !Sub

- "arn:aws:apigateway:${region}:lambda:path/2015-03-31

 ➥/functions/${arn}/invocations"
- { arn: !GetAtt [DeployLambda, Arn], region: !Ref "AWS::Region" }

MethodResponses: [StatusCode: 200]
ResourceId: !Ref DeployResource
RestApiId: !Ref DeployApi

Listing 9.6 Rest API and resource

Listing 9.7 POST method

Base API Gateway resource

Reference to the
root (/) resource

Reference to the
DeployKeyPath input parameter

onnects
t to the

API

POST method of
the resource
that’s listening Open to the world, as

explained at the
beginning of this section

POST that API Gateway
will send to the Lambda

ssembles the
path to the

bda function

Attaches to the resource
and API from listing 9.6

151New CloudFormation objects

d

Next, you construct a “deployment” for API Gateway.

DeployDeployment:
DependsOn: DeployPOST
Type: AWS::ApiGateway::Deployment
Properties: { RestApiId: !Ref DeployApi, StageName: DummyStage }

DeployProdStage:
Type: AWS::ApiGateway::Stage
Properties:

DeploymentId: !Ref DeployDeployment
MethodSettings: [{ ResourcePath: !Sub "/${DeployKeyPath}",

 ➥HttpMethod: POST }]
RestApiId: !Ref DeployApi
StageName: prod

Your API Gateway should be ready to go, and you can move on to updating your stack.

9.1.4 Updating your stack

The command to update your stack is similar to the one you used to create it:

$ aws cloudformation update-stack \
--stack-name coreosinaction \
--template-body file://./code/ch9/ch9-cfn-cluster.yml \
--capabilities CAPABILITY_IAM \
--parameters \

ParameterKey=DeployKeyPath,ParameterValue=ahmup4equa... \
ParameterKey=InstanceType,UsePreviousValue=true \
ParameterKey=DiscoveryURL,UsePreviousValue=true \
ParameterKey=AllowSSHFrom,UsePreviousValue=true \
ParameterKey=KeyPair,UsePreviousValue=true

Once that’s finished, look at the outputs and take note of the generated API Gateway
URL:

aws --output text cloudformation describe-stacks \
--stack-name coreosinaction \
--query 'Stacks[0].Outputs[*].[OutputValue]'

https://zl2hgu19sk.execute-api.us-west-2.amazonaws.com/prod/ahmup4equa...
...

Test this endpoint:

$ curl -X POST -H 'Content-Type: application/json' \
https://zl2hgu19sk.execute-api.us-west-2.amazonaws.com/prod/ahmup4equa... \
--data '{"push_data": {"tag": "production"}, "repository":

 ➥{"name": "ch6-web"}}'

"deploy:ch6-web"

Listing 9.8 Deployment

Initial deployment: uses
DummyStage, as suggested
by the AWS documentation

In this stage deployment, you
need to reference your methods.

Names
the stage

eployment
“prod”

Stack that you already have

Path to the
updated
CloudFormation
template

New parameter for the deployment
URL, 64–128 characters

The rest of the
parameters have to
be there, but you
can set them to use
the previous value.

Truncated here for brevity,
but keep this handy

Important parts of the
Docker Hub payloadSuccess!

152 CHAPTER 9 Bringing it together: deployment
What you’ve built here is essentially a pathway into your CoreOS etcd cluster. You can
follow or extend this pattern to build any kind of administrative tooling to interact
with your cluster, effectively giving you the ability to build a custom API for specifically
managing your services. You can take this further and build more robust authentica-
tion and authorization systems into API Gateway, as well as add more interesting func-
tionality to your Lambdas. For example, you could build a Lambda to fire up more
compute workers or run a search on your Couchbase or any other data system.

 You can finally move on to the initial deployment of your software and test the
deployment trigger. The next section will briefly describe the new web sidekick to
orchestrate the deployment, and go over pushing out all of your service files.

9.2 Deploying the app!
You’re ready to get started on the actual deployment of your application. But not so
fast: the first thing you have to do is create a new sidekick unit file for the web that can
react to etcd events to redeploy your web application. If you apply this pattern to your
own applications, you’ll have to make deployment sidekicks for any of them that you
want to deploy automatically. Let’s get this out of the way first, and then move on to
deploying the application.

9.2.1 Web sidekick

You did a lot of sidekick functionality in chapters 4 and 7. You’re adding one more
here that you’ll attach to the state of the web@ unit template. Like your other side-
kicks, this should run on the same machine as the web instance it’s bound to. Call the
new sidekick web-sidekick@.service.

[Unit]
Description=Web Service Sidekick %i

[Service]
TimeoutStartSec=0
RestartSec=1
Restart=always
ExecStart=/usr/bin/etcdctl watch /coreos.com/deploy
ExecStop=/usr/bin/docker pull mattbailey/ch6-web:production
ExecStop=/usr/bin/fleetctl stop web@%i.service
ExecStop=/usr/bin/fleetctl start web@%i.service

[X-Fleet]
MachineOf=web@%i.service

Listing 9.9 code/ch9/webapp/web-sidekick@.service

You want a quick restart
for this sidekick. Exits when the

value changes…

…then pulls the
latest version of the
container with the
“production” tag…

…and restarts
the web service.

153Deploying the app!
Also tweak the web@.service file a little so that you’re pulling the production tag.

[Unit]
Description=Express and Socket.io Web Service %i
Requires=flanneld.service
After=flanneld.service

[Service]
RestartSec=5
Restart=always
ExecStartPre=-/usr/bin/docker rm -f web-%i
ExecStartPre=/usr/bin/docker pull mattbailey/ch6-web:production
ExecStart=/usr/bin/docker run \

--rm \
-p 3000:3000 \
-e NODE_ENV=production \
--name web-%i \
mattbailey/ch6-web:production

ExecStop=-/usr/bin/docker rm -f web-%i

[X-Fleet]
Conflicts=web@*.service

Now you can start up your services in your AWS cluster!

9.2.2 Initial deployment

Make sure your local fleetctl is set up properly to use your AWS cluster:

$ export FLEETCTL_TUNNEL=54.187.209.53
$ fleetctl list-machines
MACHINE IP METADATA
1efc44d5... 10.1.3.185 -
7aa773e3... 10.1.1.57 -
c2a9c9c4... 10.1.2.174 -

Also, set the etcd key for the workers to fetch some Twitter data:

$ etcdctl set /config/worker/auth '{ "consumer_key":"Your Consumer Key",

 ➥"consumer_secret":"Your Consumer Secret",

 ➥"access_token_key":"Your Access Token",

 ➥"access_token_secret":"Your Access Token Secret" }'

Now, change directory into where you have all your service units, and spin them all up:

$ fleetctl start \
code/ch9/couchbase@{1..3}.service \
code/ch9/couchbase-sidekick@{1..3}.service \
code/ch9/conductor/conductor.service \
code/ch9/memcached@{1..3}.service \
code/ch9/memcached-sidekick@{1..3}.service \
code/ch9/webapp/web@{1..3}.service \
code/ch9/webapp/web-sidekick@{1..3}.service

Listing 9.10 code/ch9/webapp/web@.service

Change the tag here…

…and here.

One of the public IPs you
fetched in chapter 8

You should be able to see the
machines in your cluster.

From chapter 7,
section 7.1.2

154 CHAPTER 9 Bringing it together: deployment

ch
 lis

u
servi

active/r
$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
conductor.service 1efc44d5.../10.1.3.185 active running
couchbase-sidekick@1.service 7aa773e3.../10.1.1.57 active running
couchbase-sidekick@2.service 1efc44d5.../10.1.3.185 active running
couchbase-sidekick@3.service c2a9c9c4.../10.1.2.174 active running
couchbase@1.service 7aa773e3.../10.1.1.57 active running
couchbase@2.service 1efc44d5.../10.1.3.185 active running
couchbase@3.service c2a9c9c4.../10.1.2.174 active running
memcached-sidekick@1.service 7aa773e3.../10.1.1.57 active running
memcached-sidekick@2.service c2a9c9c4.../10.1.2.174 active running
memcached-sidekick@3.service 7aa773e3.../10.1.1.57 active running
memcached@1.service 7aa773e3.../10.1.1.57 active running
memcached@2.service c2a9c9c4.../10.1.2.174 active running
memcached@3.service 7aa773e3.../10.1.1.57 active running
web-sidekick@1.service c2a9c9c4.../10.1.2.174 active running
web-sidekick@2.service 1efc44d5.../10.1.3.185 active running
web-sidekick@3.service 7aa773e3.../10.1.1.57 active running
web@1.service c2a9c9c4.../10.1.2.174 active running
web@2.service 1efc44d5.../10.1.3.185 active running
web@3.service 7aa773e3.../10.1.1.57 active running

Next, confirm that your application is up and running by hitting the ELB with curl.
You can fetch the ELB hostname with the AWS CLI:

$ aws --output text cloudformation describe-stacks \
--stack-name coreosinaction \
--query 'Stacks[0].Outputs[*]'

URL to put in Docker Hub web hook DeployHook

 ➥https://<YOUR API GATEWAY HOST>

 ➥/prod/eivi1leecojai3fephievie1ohsuo6sheenga2chaip8oph5doo5bethohg2uv6i
S3 Bucket for Backups Backup coreosinaction-s3backup-1swvnfetvdowk
ELB Hostname ELB coreo-LoadB-....us-west-2.elb.amazonaws.com

$ curl -I coreo-LoadB-19KFCGFCVRC7M-644524966.us-west-2.elb.amazonaws.com
HTTP/1.1 200 OK
X-Powered-By: Express
...

Also, start up the workers from chapter 7 for a bit—but remember to stop them,
because they’ll quickly be rate limited:

$ fleetctl start code/ch9/worker/worker@{1..6}.service
...
$ fleetctl destroy code/ch9/worker/worker@{1..6}.service

You can now visit the load balancer in your browser to see the same site you deployed
to your dev environment back in chapter 7. If you visit http://<YOUR ELB>:8091/
index.html, you should be able to access your Couchbase admin panel.

 You should be starting to see the big picture of deploying a complex application
out to your infrastructure in AWS by combining the tools and commands you’ve

Keep
ecking
t-units
ntil all
ces are
unning.

Gets the stack
outputs

ELB hostname

Should return with Express
as the X-Powered-By

Starts them

Destroys them
after a while

155Automated deployment
learned in the previous chapters. In the next section, you’ll make a change to your
web app and test your automated deployment.

9.3 Automated deployment
This section goes over how to use the Lambda hook you set up earlier. Keep handy the
URL that came out of the Outputs request for your stack in section 9.1.4:

URL to put in Docker Hub web hook DeployHook
 ➥https://<YOUR API GATEWAY HOST>
 ➥/prod/eivi1leecojai3fephievie1ohsuo6sheenga2chaip8oph5doo5bethohg2uv6i

If you want to follow along with this example, you’ll obviously have to use your own
Docker Hub account, along with your own published web app.

9.3.1 Docker Hub setup

Go to https://hub.docker.com, and go into the webhook config for your repository.
For example, mine is at https://hub.docker.com/r/mattbailey/ch6-web/~/settings/
webhooks/ (see figure 9.2). Click the + to add a new hook.

NOTE This example uses Docker Hub primarily because it’s an easy pathway
to set up and isn’t another service you have to construct for this example.
Anything could exist in its place: a CI system, task-execution system, GitHub
hook, Slack command, and so on.

Name your webhook, and then paste in the API Gateway URL (see figure 9.3) and click
Save.

 You’re ready to make some modifications to your app and automatically deploy it
when it’s pushed to Docker Hub. Let’s give it a shot.

Figure 9.2 Add a webhook.

156 CHAPTER 9 Bringing it together: deployment
9.3.2 Pushing a change

Let’s make a simple style change so it’s obvious what you’ve done. In the index.html
file, add the following new line after the <script> tag for socket.io:

<script src="/socket.io/socket.io.js"></script>
<style>body { background-color: #000; color: #fff; }</style>

Save the file, and build and run your Docker image. Then, push it to Docker Hub,
using the production tag:

$ docker build -t mattbailey/ch6-web:production .
Sending build context to Docker daemon 14.34 kB
Step 1 : FROM library/node:onbuild
...
$ docker push mattbailey/ch6-web:production
The push refers to a repository [docker.io/mattbailey/ch6-youb]
...

The rest should be automatic. Go back to your website and reload a few times; after
maybe a minute, your site should appear with white text on a black background. Con-
gratulations! You’ve set up an automated deployment pipeline.

 You can easily integrate this kind of workflow into the common continuous-
integration or source-control hooks you normally use. For example, perhaps you have
CircleCI or Jenkins do the Docker build on a push to a GitHub repo branch and then
push it out to Docker Hub to trigger this deploy. Now, instead of manually destroying
and re-creating services with fleetctl to deploy a new version, you’re more or less
hands-off your CoreOS cluster after the initial deployment, until you want to remove
or add new services. This is the point at which your CoreOS system becomes more self-
service for developers; you can continue to add automation around CoreOS to
remove a lot of human error related to running robust services.

 The final chapter looks at the long-term maintenance of this deployment, how to
tune the infrastructure for scale, and what’s on the horizon for CoreOS.

Figure 9.3 Save the webhook.

Existing line
Add this line.

Make sure you tag it with
“production” here…

…and in the push.

157Summary
9.4 Summary
 Use AWS’s features to automate as much as you can in your CoreOS cluster.
 Beware of tightly coupling AWS systems: note that you didn’t make your

Lambda function directly interact with fleet.
 Make sure you use etcd as an abstraction point of loose coupling: for example,

you should be able to trigger any automation from curl to etcd.
 Don’t forget to consider security and authorization restraints in your real-world

pipelines.
 Tune your stack outputs. CloudFormation can provide a lot of useful informa-

tion to help with automation.
 The final step to close the loop for your implementation is to integrate your CI

tools and source-control system.

System administration
You’ve come a long way in your journey with CoreOS: from the basics of under-
standing the OS to building an application and all the related components and
deploying it into a production AWS environment. This final chapter goes over
what’s involved in continued administration of a CoreOS cluster, enhancements
and tunables of the environment you built in chapters 8 and 9, and what the future
of CoreOS holds.

 By the end of this chapter, you should have some clarity about general system
administration tasks and workflows: how to consume logs from CoreOS in AWS,
how to deal with scaling your existing CoreOS cluster, and backing up persistent
data from your Couchbase install and etcd. I’ll also touch on how to create services
using rkt and give you some details about upcoming projects from CoreOS, like
Torus and Clair.

This chapter covers
 Logging and maintaining backups in your stack

 Horizontally scaling your cluster

 An introduction to rk
158

159Logging and backups
10.1 Logging and backups
Logs (obviously) are among the most basic sets of information for systems administra-
tors. AWS has a log-concentration service built in: CloudWatch Logs. Conveniently,
Docker supports this out of the box (along with a lot of other log drivers; see
http://mng.bz/m3R3). There are a couple places you can define this configuration:
either globally when you start dockerd (which means changing cloud-config) or at the
docker run runtime (which means changing your unit file). This section covers both
(and you can use both options at the same time), but first you’ll have to make some
small changes to your AWS environment.

NOTE Again, it’s best to use the code repository when you run this stack
(code/ch10/ch10-cfn-cluster.yml).

If you want to make this change in your cloud-config, remember that doing so will
cause an update to your launch configuration, which will trigger a replacement of all
your nodes—meaning you should generate a new discovery token. If you opt to do it
in your unit files, you won’t have to go through this step, but your unit files will
become a little less generic. If you update with the provided S3 linked template, it does
include the launch-configuration change.

10.1.1 Setting up logs

First, you’ll have to add a single resource to your CloudFormation stack. Anywhere in
the Resources object, add a CloudWatch LogGroup.

LogGroup:
Type: AWS::Logs::LogGroup
Properties: { RetentionInDays: 7 }

NOTE Only certain values are valid in the RetentionInDays field. You can
read more at http://mng.bz/kQ2T.

It’s also useful to add an output to reference this LogGroup so you can easily use the
CLI tools to check your logs. Place this in your Outputs object.

LogGroup:
Description: CoreOS Log Group Name
Value: !Ref LogGroup

Now that you have a LogGroup with some friendly outputs, you also need to modify the
IAM role for your instances so you can write to these logs with the AWS API. In section
8.2.3, you set up the IAM policy for your instances; next, add a few more log permissions.

Listing 10.1 LogGroup

Listing 10.2 Output

As the key implies, this sets
how long (in days) CloudWatch
will retain log entries.

Simple output of the
generated LogGroup name

160 CHAPTER 10 System administration

Action:
- "ec2:CreateRoute"
- "ec2:DeleteRoute"
- "ec2:ReplaceRoute"
- "ec2:ModifyNetworkInterfaceAttribute"
- "ec2:ModifyInstanceAttribute"
- "logs:CreateLogStream"
- "logs:PutLogEvents"

If you choose to do your log configuration in your unit files, these are the only changes
you have to make; you can go ahead and run your template update with the CLI com-
mands you learned in chapter 9 or via the web console. If you want to make the
changes global to the dockerd running in the cluster, continue to the next subsection.

10.1.2 Updating cloud-config

Much as you did with flannel, you need to create a drop-in unit for Docker to enable
this logging functionality in cloud-config. In section 8.3, you set up user data in the
!Sub | user-data document in the Auto Scaling launch configuration. Add the follow-
ing anywhere under units:.

- name: docker.service
drop-ins:

- name: 10-awslogs.conf
content: |

[Service]
Environment="DOCKER_OPTS=--log-driver=awslogs

 ➥--log-opt awslogs-region=${AWS::Region}

 ➥--log-opt awslogs-group=${LogGroup}"

Now, you can go ahead and update your stack and generate a new token at the same
time:

$ aws cloudformation update-stack \
--stack-name coreosinaction \
--template-body file://./code/ch10/ch10-cfn-cluster.yml \
--capabilities CAPABILITY_IAM \
--parameters \

ParameterKey=DeployKeyPath,UsePreviousValue=true \
ParameterKey=InstanceType,UsePreviousValue=true \
ParameterKey=DiscoveryURL,ParameterValue=

 ➥$(curl https://discovery.etcd.io/new) \
ParameterKey=AllowSSHFrom,UsePreviousValue=true \
ParameterKey=KeyPair,UsePreviousValue=true

Listing 10.3 IAM permissions for logs

Listing 10.4 Docker drop-in for awslogs

Original set of actions
from chapter 8

Two new permissions to
grant to your instances

Adds a drop-in to override some
settings for the dockerd runtime Sets a DOCKER_OPTS

environment variable to
use the awslogs driver
for logs

Tells the driver which AWS
region you’re in, as well as
the LogGroup you created in
the last subsection

Path to the
updated
template for
this chapter

Creates a new discovery token

161Logging and backups
Remember that, if you do this, you’ll need to reinitialize your application to apply the
change. All your data will be lost.

 That’s all you need for a global setup. Once you start your service again, it should
begin emitting logs into CloudWatch. The downside of this global method is that the
log streams are named after the Docker container ID, which isn’t very informative.
Doing this globally is usually in addition to defining the log configuration in service
units as a catch-all. Before you view your log events, let’s look at what it takes to put the
configuration in your units.

10.1.3 awslogs in units

This process is more or less the same as with the main docker.service drop-in; you’re
adding some flags to the runtime of your service units. Before you do that, get the
LogGroup name from the CloudFormation outputs:

OUTPUTS CoreOS Log Group Name LogGroup

 ➥coreosinaction-LogGroup-4OOCJWKBHIWP

Now that you have that name, you can put it in your unit files; for the sake of a
quick example, you’ll use the Hello World example from chapter 3 (code/ch10/
helloworld@.service).

[Unit]
Description=Helloworld Service %i
Requires=flanneld.service
After=flanneld.service

[Service]
RestartSec=5
Restart=always
ExecStartPre=-/usr/bin/docker rm -f helloworld-%i
ExecStartPre=/usr/bin/docker pull mattbailey/ch6-helloworld:latest
ExecStart=/usr/bin/docker run \

--log-driver=awslogs \
--log-opt awslogs-region=us-west-2 \
--log-opt awslogs-group=coreosinaction-LogGroup-4OOCJWKBHIWP \
--log-opt awslogs-stream=%m-helloworld-%i \
--rm \
-p 3000:3000 \
--name helloworld-%i \
mattbailey/helloworld:latest

ExecStop=-/usr/bin/docker rm -f helloworld-%i

[X-Fleet]
Conflicts=helloworld@*.service

Listing 10.5 awslogs logs in units

LogGroup name to capture

You’ll use the simple
example from this

chapter to show logging.

Tells Docker to use the awslogs driver,
same as with the dockerd config

Selects the appropriate region

Drops in the LogGroup name
from the previous snippet

Names the log stream
in the log group

162 CHAPTER 10 System administration
Start this service with fleetctl start helloworld@{1..3}.service as usual. The big
difference is the awslogs-stream option you add here. This lets you add a much
friendlier name to the log stream, so you can more easily identify the source of the
logs you’re looking at. You haven’t used the %m template variable before: it resolves to
the machine name in the CoreOS cluster, so you can identify which machine the ser-
vice is running on just by looking at the AWS CloudWatch logs. %i is the service
instance, as usual.

NOTE You might be tempted to do something like awslogs-stream=
helloworld and have all services then dump into the same stream. But AWS
strongly discourages doing this, due to the way the log-sequence API works.
You also don’t gain anything, because you can search and view logs across
multiple streams in the same LogGroup.

10.1.4 Viewing logs

Now that you’ve got your services configured one way or another to output to Cloud-
Watch logs, it’s time to view the logs you’re streaming to. If you’d like, you can do this
using the AWS console and the friendly web UI (https://console.aws.amazon.com/
cloudwatch/home), or use the CLI tools to dump some logs:

aws --output text \
logs filter-log-events \
--log-group-name coreosinaction-LogGroup-BSAQHK403YHL

EVENTS ...696 1475549121846 ...ecf-helloworld-2 npm info...

 ➥1475549117141

In text output mode, you’ll see a number of fields: the first is a type designator;
EVENTS is a log event; SEARCHEDLOGSTREAMS tells you which streams in your group were
searched; and NEXTTOKEN is a way to paginate output. The rest of the fields in the
EVENTS type are eventId (a unique key), ingestionTime (epoch time when Cloud-
Watch got the event), logStreamName, the actual message, and finally the emitted
epoch timestamp.

 I recommend looking through the documentation for aws logs to learn how to
search and get the most out of your logging. Logging with CloudWatch is a conve-
nient option, but you may have other log-aggregation systems in your infrastructure
already, likely with richer feature sets.

 Now that you’ve configured a simple log-aggregation service, we’ll move on to
backups for your persistent data.

You’ll probably want
text output here—JSON
output is verbose.

filter-log-events gives
the output from an
entire log group.

Specify the log
group name here.

Very truncated output

163Logging and backups

10.1.5 Backing up data

In chapter 8, you created an S3 bucket and a policy to go with it, in order to have a
place to back up your data. You now have some (presumably) important data in your
Couchbase cluster that you want to make sure you push into S3 on a regular basis. The
process would be similar for any database you’re using, with whatever backup tool it
ships with. Because you’ve done a lot of due diligence about setting appropriate keys
in etcd, the process becomes fairly simple. This section also demonstrates how to back
up the etcd cluster and store it in the S3 bucket.

 Before you get started, make sure you note the name of your S3 bucket, either in
the AWS web console or from the command-line output of the following command:

aws --output text cloudformation describe-stacks
 ➥--stack-name coreosinaction | grep Backup
OUTPUTS S3 Bucket for Backups Backup
 ➥coreosinaction-s3backup-1xu0sff666ebx

Now, let’s look at the units for backup. You’ll start with Couchbase: as your data store
of valuable business information, this is probably the most important thing you have
to back up. Other than from etcd (which you’ll also back up), Couchbase data is the
only thing in your system that isn’t ephemeral. Your first backup service should look
something like the following listing (code/ch10/couchbase-backup.service).

[Unit]
Description=Couchbase Backup

[Service]
TimeoutStartSec=0
RestartSec=3600
Restart=always
ExecStartPre=-/usr/bin/rm -rf /tmp/backup
ExecStartPre=/usr/bin/mkdir /tmp/backup
ExecStart=/bin/sh -c ' \

docker run --rm \
-v /tmp/backup:/tmp/backup \
couchbase:community-4.0.0 \

Listing 10.6 Couchbase backup service

A note on monitoring
Logs provide the most context for useful monitoring in a lot of ways. Setting up que-
ries for your CloudWatch logs to send alerts on some result sets is more suited for
an AWS book but is certainly within AWS’s feature set. This also goes for monitoring
system resources: CPU/RAM/disk usage are all relative to the hosting provider;
CoreOS doesn’t offer specific tools, although some new projects in the wild support
etcd for monitoring discovery (for example, Prometheus: https://prometheus.io).

You’ll use this bucket
for backup.

Waits an hour (3,600
seconds) to restart

Restarts, even on success

Cleans and creates a
new backup directory

Uses the same image you used
for your Couchbase deployment

164 CHAPTER 10 System administration

U
r

cl
cbbackup http://$(etcdctl get `etcdctl ls /services/couchbase/ |
 ➥head -n1`):8091 \

/tmp/backup \
-u Administrator -p $(etcdctl get /config/couchbase/password) && \

docker run --rm \
-v /tmp/backup:/tmp/backup \
samepagelabs/s3cmd \

--region=us-west-2 sync /tmp/backup s3://<INSERT_S3_BUCKET_NAME>/'

You do several things here. This new unit is meant to restart when it’s finished and
wait 3,600 seconds every time. You can set this to a smaller interval for testing if you
want. You do two Docker runs in this service and remove them (--rm) when they exit,
and they both mount the /tmp/backup directory you make. First the backup tool
cbbackup runs, and then you use a public image with s3cmd installed to sync the files
to S3.

 You don’t need this to run on any particular node, and you only need it to run on
one. So, as you should be used to by now, issue fleetctl start backup.service, and
you should be good to go with interval backups of your Couchbase data.

NOTE Couchbase’s cbbackup tool automatically creates directories with dates
in their names. If you’re using some other database, be sure you’re manually
creating that structure if the tool doesn’t do it for you. Alternatively, looking
into advanced features of S3, such as versioning, might be useful.

You’ll do roughly the same thing with etcd in listing 10.7 (code/ch10/etcd-
backup.service). You aren’t storing a lot of important stuff in etcd right now, but as a
canonical source of configuration in your system, it’s useful to be able to back this up.
As your application grows and you have to add more configuration around it, this data
will become increasingly critical. This backup task is a little easier, because you don’t
need to use Docker to perform the etcd backup. You do, however, need to make sure
you’re creating incremental backups, because the etcdctl tool won’t create named
directories for you.

[Unit]
Description=etcd Backup

[Service]
TimeoutStartSec=0
RestartSec=3600
Restart=always
ExecStartPre=-/usr/bin/rm -rf /tmp/etcdbackup
ExecStartPre=-/usr/bin/mkdir /tmp/etcdbackup
ExecStart=/bin/sh -c ' \

etcdctl backup --backup-dir /tmp/etcdbackup/`date +%%s` --data-dir
 ➥/var/lib/etcd2 && \

docker run --rm \

Listing 10.7 etcd backup service

ses the first
esult in the
uster config
you stored

in etcd

Inserts the S3 bucket name you got from
the output of the AWS CLI command

Dumps the backup into a directory
with the epoch time as its name

165Scaling systems
-v /tmp/etcdbackup:/tmp/etcdbackup \
samepagelabs/s3cmd \

--region=us-west-2 sync /tmp/etcdbackup

 ➥s3://<INSERT_S3_BUCKET_NAME>/'

This effectively does the same thing as the previous service, but for etcd. You can start
it as usual with fleetctl start etcd-backup.service.

 You’re now set for backups of your cluster and application stack for this book’s
example. Obviously, your backup needs for real applications will likely be more com-
plex than the simple cases here, but this is a pattern you should be able to use for any
data system. Sometimes, backup operations are fairly expensive to execute, and you
may eventually need to delegate those services to a different machine. The next sec-
tion talks about how to scale out your CoreOS cluster to add capacity for your services.

10.2 Scaling systems
The last part of the equation for a complete system is how to scale your system hori-
zontally. Let’s look at these resource dimensions:

 Storage capacity
 Memory
 CPU
 Storage I/O
 Network capacity

These limits are a function of your application stack’s performance characteristics,
and you’ll have to test your application to figure out which ones you’ll hit. Storage
capacity is usually something you can predict, and although you might want to scale
out horizontally for that, it might be worth considering logically splitting a cluster
between storage and compute. Memory usage is usually predictable, and you might
not need to monitor it for scale unless you’re running something like Elasticsearch or
Redis Cluster. Realistically, you’re unlikely to hit limits on network capacity or storage
I/O without also spiking the CPU pretty high, so CPU is a good metric to initially be
the driving force for scaling.

 You’ll start this section by making some small modifications to your CloudFormation
template to allow you to easily add capacity. Then, we’ll move on to discuss how to par-
tition scaling in the cluster.

10.2.1 Scaling your cluster

CoreOS provides a simple way to horizontally scale out a cluster of machines. Remov-
ing a machine is a little more difficult with etcd2, because it will no longer automati-
cally eject a machine as version 1 did. To change your scale, you have to make some
minimal changes. First, you have to modify your CloudFormation template. You’ll
parameterize this so you can adjust it more easily in the future. In the Parameters sec-
tion of the CloudFormation cluster, add the following.

Uses the same s3cmd image

166 CHAPTER 10 System administration

DesiredCapacity:
Description: Desired nodes in the CoreOS Cluster
Type: Number
Default: 3
MinValue: 3

This should be self-explanatory at this point. You add a new parameter value so you
can change the desired capacity more easily.

 Next, you need to reference that parameter in your Auto Scaling group ASG. Find
the CoreOSServerAutoScale resource in your template, and change the Desired-
Capacity property as shown next.

CoreOSServerAutoScale:
...
Properties:

DesiredCapacity: !Ref DesiredCapacity
...

Now, you can update your CloudFormation stack. Use the update-stack command
from section 10.1.2, and add the new parameter: ParameterKey=DesiredCapacity,
ParameterValue=4. You should see a new node in your ASG, and a new CoreOS node
should eventually appear in your cluster if you run the usual fleetctl list-machines.

 You have a new node in your cluster, but nothing is running on it. There are a few
ways you can get your services running. Either you can add a new instance of any ser-
vice (such as fleetctl start helloworld@4.service), or you can change your service
into a global one. Usually, you leave out the template designation for this service—for
example, helloworld@.service would become helloworld.service—and add the follow-
ing lines:

...
[X-Fleet]
Global=true

Now, when you fleetctl start helloworld.service, it will ensure that the service is
running on every available machine.

 Your services are up on the larger cluster. Next, you need a way to remove an
instance from the cluster. This is a little hairier. etcd won’t automatically remove a
machine from a cluster if it stops responding. This is mostly a good thing: you don’t
want a node completely removed if it’s rebooting or has become unresponsive. To
scale down, you need to check out the cluster’s health and then issue the etcdctl com-
mand to remove a node. You can do this in a quick script:

Listing 10.8 Manual scaling with a parameter

Listing 10.9 Desired capacity from the parameter

If you’ve been following along
exactly, this will be set to 3
before you change it.

167Scaling systems
$ etcdctl cluster-health | \
grep unreachable | \
cut -d' ' -f2 | \
xargs etcdctl member remove

This checks the cluster health and removes unreachable members by their machine
name. CoreOS is designed to be a complete platform, so the pattern for scaling down
a cluster isn’t as clean as adding new nodes. The intention is that you have a pool of
capacity in your CoreOS cluster, and you’re typically scaling various services within it.
You add nodes to that pool as you outgrow it; but in most cases, you’re not likely to
want to remove resources.

 Next, let’s look at how you can partition for scaling.

10.2.2 Scale partitioning

Now that you know how to scale up and down in your clusters, we can discuss the vari-
ous ways in which you might want to break up a cluster into logical groups for scaling.
Fleet has the ability to assign metadata to clusters that can help with this partitioning.
You’ll probably want to keep one cluster for etcd so that your configuration remains
consistent; but you may want to run, say, your Couchbase cluster on nodes with more
CPUs and larger disks.

 By partitioning your cluster into different logical groups with different scaling
goals, you can maintain a cluster that’s more flexible for your needs and that consists
of a heterogeneous mix of machines. ASGs in AWS have a fixed instance type, so in
order to do this, you have to write a new group resource in your CloudFormation
stack. For the sake of brevity, I won’t paste the entire second ASG into the book, but
you can find it in the CloudFormation template mentioned at the beginning of this
chapter.

 In short, you’ll add a new launch configuration called DatabaseCoreOSServer-
LaunchConfig and a new ASG called DatabaseCoreOSServerAutoScale. The launch
configuration has a small part added to its cloud-config in UserData:

#cloud-config
coreos:

fleet:
metadata: "role=database"

...

This is just a snippet from UserData to illustrate how you’d add metadata for fleet
(role=database). If you haven’t already done so, you can update your stack with the
linked template. You should have a total of seven nodes in your cluster: four from the
last section, where you added a new node to the three-node cluster, and three from
this new ASG.

 Now that you have a couple of partitions set up, you can make sure your database
services are running in the right place.

Already present

Adds metadata to fleet for this partition

168 CHAPTER 10 System administration
10.2.3 Migrating services

One feature of fleet’s extensions to systemd is that you can ensure that some services
run (or don’t run) on certain machines based on a number of parameters. One we
haven’t looked into yet is the metadata parameter. You have a logical partition of your
cluster with the fleet metadata role set to database, so you can tune your Couchbase
unit files to make sure they’re running on the correct machines.

 First, check your cluster to ensure that you have all the nodes and metadata is
properly set:

MACHINE IP METADATA
2e3ebbb2... 10.1.3.177 role=database
32616658... 10.1.3.21 -
540cfa08... 10.1.2.176 -
6db82152... 10.1.1.111 -
b0b00cea... 10.1.2.122 role=database
d684931b... 10.1.1.224 role=database
f1c9bf2f... 10.1.1.75 -

As you can see, three nodes have role=database in their metadata. To key on this,
change the couchbase@.service template by adding the following line at the end:

...
[X-Fleet]
Conflicts=couchbase@*
MachineMetadata=role=database

Now, you can migrate your Couchbase cluster over to the new machines in this role.
Because you designed this system to tolerate Couchbase nodes failing and moving
around, if you destroy and create new services one at a time, you should be able to
move the entire cluster without losing any data. You’ll have to make sure you watch
the output of the conductor as you’re doing this, to keep track of the data balancing
across the cluster. In a separate terminal, you can follow the conductor’s log with
fleetctl:

$ fleetctl journal -f conductor.service
... docker[1665]: FIRST_NODE lost, re-setting to: 10.10.81.2
... docker[1665]: INFO: rebalancing
... docker[1665]: SUCCESS: rebalanced cluster
... docker[1665]: Node added, rebalancing: SUCCESS: server-add 10.10.64.2:8091
... docker[1665]: SUCCESS: rebalanced cluster

NOTE If the IP addresses are confusing, remember that you’re using flannel,
so they’re not the same as the IPs reported by fleetctl list-machines.

The only line you add

You should see this when
you remove a node.

This will take some time,
as it did in chapter 9.

Wait for success before you
launch another node.

Wait for this rebalance before
you destroy another node.

You’ll see this when you
launch a new node.

169CoreOS horizon
One by one, issue fleetctl destroy couchbase@1.service (wait for rebalance) and
fleetctl start couchbase@1.service (wait for rebalance). Once this is finished, all
of your Couchbase services should be running only on the new nodes you designated
for that purpose. For the sake of simplicity in this book, the resource characteristics of
this partition are identical to the original cluster; but this illustrates how you could eas-
ily change just a part of your cluster to be larger AWS instances or have more storage.

10.3 CoreOS horizon
CoreOS is a rapidly evolving platform. During the writing of this book, new products
have been created in the CoreOS family, and more experimental features have stabi-
lized. Take all this at a pace you can handle: it’s easy to get overwhelmed by the world
of DevOps tooling. This section begins with an overview of some newer functionality
and products, and finishes with a deeper dive into rkt, the CoreOS team’s new con-
tainer runtime.

10.3.1 New toys

As of this writing, etcd version 3 has been in an experimental state for a while. It hasn’t
hit the CoreOS alpha build channel yet, but it’s under heavy development. Improve-
ments will include a new way to do TTLs with leases that can tie many keys to a single
expiration event, big performance increases from using gRPC over HTTP/2, and using
gRPC for watchers that don’t have to rely on polling. Coupled with changes to data
models and improved reliability and concurrency, version 3 should scale out to some
truly massive deployments.

 On the configuration side, cloud-config is slowly being replaced with a new system
called Ignition (https://coreos.com/ignition). Most of the CoreOS documentation
now shows Ignition configuration (in JSON) next to the equivalent cloud-config YAML.
It mostly serves the same purpose; as described by the documentation, Ignition “only
runs once and Ignition doesn’t handle variable substitution.” Amusingly, a week
before I started this chapter, AWS CloudFormation began to support YAML as tem-
plates and adding more robust variable substitution.

 For readers who are security engineers, CoreOS has also released Clair : a vulnera-
bility scanner for appc (rkt) and Docker containers (https://coreos.com/clair). It’s a
full-stack application running on a PostgreSQL database that reads the CVE database,
checks images, and sends notifications about issues it finds. Dex (https://github.com/
coreos/dex) is also something the security-minded may be interested in as an identity-
management system using the OIDC standard. Unfortunately, it doesn’t yet include a
built-in identity provider (IdP), although that’s planned.

 The last new product worth discussing is Torus (https://github.com/coreos/
torus). Torus solves the same problem that Ceph does: it provides a distributed filesys-
tem with some level of fault tolerance. It shows a lot of promise, but at the time of writ-
ing, it’s still advertised as being experimental and not suitable for production. It
didn’t even exist when I was writing the sections of this book that discuss Ceph.

170 CHAPTER 10 System administration
10.3.2 rkt

To wrap up this book, we’ll dive into rkt: a new container runtime developed by
CoreOS to run the arguably more “standardized” Application Container Image (ACI)
format. This appears at the end of the book because it’s not likely to be part of your
workflow any time soon. I’m including it for a couple of reasons: First, it represents a
significant development effort by the CoreOS team, and I don’t think this book would
be complete without at least showing its functionality. Second, while I’ve been wrap-
ping up these last few chapters, the community around Docker has become a little
contentious, and people are starting to look at alternatives—so you may see rkt sooner
rather than later. Everything in this section will be done with your Vagrant cluster,
rather than your AWS cluster, because rkt is somewhat experimental and the toolchain
requires complexity on the workstation side.

 The biggest difference between rkt and Docker is that it has no controlling dae-
mon as the parent process of all the containers you run with it. Rather than issue com-
mands to a daemon, when you run a service with rocket, it spawns a new rkt process
and your application as its only child or children. When your application exits, that
rkt process exits as well (with an exit code of its child). In practice, this means you
don’t have to rely on a daemon as a single point of failure or major security vector,
and also that your init system becomes the parent that directly controls your applica-
tion state, which takes out a lot of boilerplate configuration and simplifies the archi-
tecture from the standpoint of a distributed scheduler (see figure 10.1). If you’re
familiar with some older process-isolation systems like chroot jails, FreeBSD jail, or
Solaris zones, this implementation of containers will seem similar, but with the added
benefits of image layering and simple-to-use tooling.

 Figure 10.1 is similar to the diagram on the coreos.com page on rkt, but I want to
point out a few things. First, regardless of implementation, fleet controls what systemd
is doing and can understand the state of the system from context it gathers from sys-
temd. What fleet can’t do (without you adding some kind of programmatic callback in
a sidekick, for example) is understand the context of how the dockerd daemon is

System

Control via fleet

rkt

Your process

System

dockerd

Control via API

Docker

Your process

Figure 10.1 rkt vs. Docker process model

171CoreOS horizon
interacting with the Docker container process. I’ve seen rkt described as a way to
make containerization boring, and that’s essentially what it’s doing by not adding a
new layer of opaque context.

 The other facet of rkt is security by way of signing certificates with GNU Privacy
Guard (GPG). This provides an extra layer of certainty that the image you’re using is
the one you intended, in addition to SSL certificate validation. rkt and ACI are
intended as a suite of tools rather than a monolithic tool. If you’re going to use rkt in
production, and you aren’t going to convert Docker images to ACIs, the most import-
ant tools to know are ones to help you build rkt images. In this section, we’ll go
through a part of the Hello World application with Docker from chapter 3 and turn it
into an ACI so it can be run with rkt.

 Much like Docker, rkt and the appc user-land tools it depends on (such as
acbuild) run directly only on Linux. This means you’ll need to use virtualization for
this with Vagrant if you’re not using Linux natively. If you skipped any part of the
Vagrant setup in chapter 2, make sure you have it set up to deal with building ACIs.

 Before we get started, a note on the scope of this section. Much like with Docker,
there’s a “free if you want your project to be public, monthly cost if you want a private
image” service at https://quay.io from which ACIs are served. But a part is missing: you
can’t (currently) push an ACI that you create into quay.io. You can put a Docker pro-
ject into quay.io, and it will both serve up a Docker repository and convert and serve
up an ACI at the same time. So, if you want to, you can place your existing containers
there and not ever have to create an ACI by yourself, but still use your existing Docker
workflow as if they were ACIs.

 Unlike with Docker, you don’t need an API service to serve custom ACIs. All you
need is something to serve flat files over HTTPS; you can read more about it at
http://mng.bz/ma8X. This makes setting up your own “registry” for AMIs fairly sim-
ple; you can even drop them on AWS S3 following that guide. I won’t cover all of that
hosting here, but I’ll discuss how to build an ACI.

STEP 1: GETTING THE RKT TOOLS RUNNING

First, check out the rkt Git repository from GitHub; for simplicity, I assume you’re
using git via CLI. I also assume you’re cloning this repo in the same directory where
you have your helloworld project directory from chapter 3:

$ git clone https://github.com/coreos/rkt.git
...
$ ls
helloworld rkt # This directory has both helloworld and rkt
$ cd rkt

You should now be in the rkt directory. Make the following small edit to the Vagrant-
file so you can link the helloworld project into the Vagrant machine.

172 CHAPTER 10 System administration

Vagrant.configure('2') do |config|
grab Ubuntu 15.10 official image
config.vm.box = "ubuntu/wily64" # Ubuntu 15.10

fix issues with slow DNS http://serverfault.com/a/595010
config.vm.provider :virtualbox do |vb, override|

vb.customize ["modifyvm", :id, "--natdnshostresolver1", "on"]
vb.customize ["modifyvm", :id, "--natdnsproxy1", "on"]
add more ram, the default isn't enough for the build
vb.customize ["modifyvm", :id, "--memory", "1024"]

end

config.vm.provider :libvirt do |libvirt, override|
libvirt.memory = 1024

end

config.vm.synced_folder ".", "/vagrant", type: "rsync"
config.vm.synced_folder "../helloworld", "/app", type: "virtualbox"
config.vm.provision :shell,

 ➥:privileged => true, :path => "scripts/install-vagrant.sh"
end

All you’ve done so far is add a synced folder to your Vagrant machine config so that
you can use the rkt and app container tools for the helloworld project. Fire up the
Vagrant machine with vagrant up.

STEP 2: BUILDING YOUR APPLICATION WITH ACBUILD

Now that you’re set up with rkt, you can build your app container. Start with the build
script, which is similar in concept to a Dockerfile. Edit this file before you ssh into the
Vagrant machine.

acbuild begin
acbuild set-name mdb.io/helloworld
acbuild dependency add quay.io/coreos/alpine-sh
acbuild run -- apk add nodejs --update-cache --repository

 ➥http://nl.alpinelinux.org/alpine/edge/main
acbuild copy /app /app
acbuild run -- /bin/sh -c "cd /app; npm install"
acbuild set-exec -- /bin/sh -c "cd /app; node app.js"
acbuild port add www tcp 3000
acbuild label add version 0.0.1
acbuild label add arch amd64
acbuild label add os linux
acbuild write helloworld-0.0.1-linux-amd64.aci
acbuild end

Listing 10.10 Edited Vagrantfile

Listing 10.11 /helloworld/appc-build.sh

The line you add. If you
kept the helloworld app

somewhere other than in
the parent directory,

specify that path here.

Just like tags in Docker, set the
name of your ACI to the hostname
where it will eventually be hosted.

This means you’ll be using the
Alpine Linux base image from
CoreOS on Quay, a minimal
distribution.

You’re not using the
node:onbuild image,
so make sure your
dependencies are
installed.

Entry point for the ACI

Configures ports that this
container will use, much
like PORT in Docker

Various types of metadata are supported; see the
acbuild documentation for more examples.

Recommended ACI
naming convention

173CoreOS horizon
Next, ssh into your Vagrant box and build your ACI with this script:

$ vagrant ssh
vagrant@vagrant-ubuntu-wily-64:~$ ls /app
appc-build.sh app.js Dockerfile helloworld@.service

 ➥helloworld-sidekick@.service package.json
vagrant@vagrant-ubuntu-wily-64:~$ sudo apt-get install systemd-container
...
vagrant@vagrant-ubuntu-wily-64:~$ sudo sh /app/appc-build.sh
Downloading quay.io/coreos/alpine-sh: [===============] 2.65 MB/2.65 MB
...
vagrant@vagrant-ubuntu-wily-64:~$ ls -lh *.aci
-rw-r--r-- 1 root root 22M May 26 03:56 helloworld-0.0.1-linux-amd64.aci

Because the base image here is Alpine Linux (a very slim distribution), and because
you’re not adding a lot of things that might be required by node packages (but not for
this helloworld app), the container image weighs in at only 22 MB. Now you can run
it with rkt!

STEP 3: RUNNING THE ACI WITH RKT

While still sshed into your Vagrant box, issue the following commands to run and test
the ACI:

vagrant@vagrant-ubuntu-wily-64:~$ sudo rkt run \
--insecure-options=image \
--port=www:3000 \
helloworld-0.0.1-linux-amd64.aci &

[1] 6917
image: using image from file /usr/lib/rkt/stage1-images/stage1-coreos.aci
image: using image from file /usr/local/bin/stage1-coreos.aci
image: using image from file helloworld-0.0.1-linux-amd64.aci
image: using image from local store for image name quay.io/coreos/alpine-sh
networking: loading networks from /etc/rkt/net.d
networking: loading network default with type ptp
vagrant@vagrant-ubuntu-wily-64:~$ curl 10.0.3.1:3000
hello world
vagrant@vagrant-ubuntu-wily-64:~$ sudo kill -SIGKILL 6917

You’ve built and run your first ACI. As you’ve learned, how you get your ACIs to your
infrastructure is an open question, but with some simple proposed solutions. Serving

Makes sure the project
was synced properly

You need to install this additional
component in order for "acbuild

run" lines to run correctly.

Runs your build script, always
with sudo for this build VM

Only 22 MB. The ACI
has been created.

Required because you didn’t generate
GPG signatures for this image

Named port you defined
in appc-build.sh You can fork the

command to a subshell
into the background if
you want to, using &, or
open a new "vagrant
ssh" session to test.

Take note of the PID so you can
kill it later, if you forked.

It works!
Kills the rkt
process

Unless you’ve changed some settings in
VirtualBox, this should be the IP. If it’s not,

check for "ip addr show lxcbr0".

174 CHAPTER 10 System administration
up files over HTTP in production is beyond the scope of this book, but you should now
have an idea of how rkt compares to Docker and how you can use it.

10.4 Summary
 Consider how logging fits into your workflow. What do you want the log data to

provide?
 Backups can be expensive operations once your data grows, so plan accord-

ingly.
 Plan your top-level scale vectors, and perhaps partition clusters using something

like role=highcpu, for example.
 Keep an eye on rkt—it’s going to continue to make waves.
 If you’ve reached the end of this book, don’t forget to terminate your AWS

instances.

index

Symbols

@ character 12
* character 12
$ character 18

A

acbuild 172–173
ACI (Application Container

Image)
overview 170
running with rkt 173–174

ACLs (access control lists) 59
addNode() function 113
admin processes 73
Amazon Web Services. See AWS
AMI (Amazon Machine

Image) 128
API Gateway 150–151
app.js file 79
application architectures

48–49
checklist for 73
common pitfalls 48
configuration management

49
greenfield and legacy

systems 49
See also twelve-factor meth-

odology
Application Container Image.

See ACI
ASG (Auto Scaling group)

CloudFormation template
and 133–134

overview 124

Auto Scaling launch
configuration 160

automated deployment
155–156

Docker Hub setup 155
pushing changes 156

AutoScaleGroup 133
availability zones 125
AWS (Amazon Web Services)

cloud-config in 137–141
boilerplate 138–139
custom units 139–141

CloudFormation
template 126–137

ASG (Auto Scaling
group) 133–134

ELBs and S3 134–137
IAM and security

groups 130–133
maps, parameters, and

outputs 127–128
VPC and network

configuration 128–130
deployment 141–144

execution and parameters
141–143

logging in 143–144
overview 54–56
regions and uptimes 125
services 125–126

AWS Lambda service 148–149
awslogs, in units 161–162
awslogs-stream option 162

B

backing services 71–72
backing up data 163–165

Big Data stack
breaking 118–119

restoring machine 119
watching failure 118–119

examples, scope of 103–105
adding to architecture

103
new data source 104–105

new stack components
105–118

Couchbase 107–115
starting workers 116–118
startup and verification

115–116
Twitter scraper 105–107

blacklisting 92
bucket-create 112

C

CAP theorem 63
cbbackup 164
CDN (content delivery

network) 48
Ceph 65–69
Clair 169
cloning repository of Vagrant

tool 20–21
cloud-config system

boilerplate 138–139
configuration with 8
custom units 139–141
overview 5, 33, 134, 137
updating 160–161

CloudFormation template
126–137, 141

ASG (Auto Scaling
group) 133–134
175

176 INDEX
CloudFormation template
(continued)

ELBs and S3 134–137
IAM and security groups

130–133
maps, parameters, and

outputs 127–128
objects, adding to 147–152

API Gateway 150–151
AWS Lambda service

148–149
parameter and output

147–148
updating stack 151–152

VPC and network
configuration 128–130

cloud-init system 8
cluster-init 112
Code field 148
codebase 71–72
concurrency 71, 73
conductor 107
Config 71
config.rb 83
configuration

overview 72
traditional 33–34
with cloud-config 8

container runtimes
Docker 7–8
rkt 7–8

containerization 72
content delivery network.

See CDN
CoreOS

distributed configuration
state 6

distributed service state 7
Docker container runtime

7–8
etcd distributed key/value

store 6
fleet 7
init system 7
initial configuration with

cloud-config 8
newer functionality and

products 169
rkt container runtime 7–8
services

creating and running
10–11

topology and failover
13–15

systemd 7

unit files, creating 11–13
workflow 9–10

coreosinaction 144
CoreOSServerAutoScale 166
coreos-vagrant repository 24
Couchbase 76, 82, 84–86, 103,

107–115
couchbase-cli app 109, 111
CREATE_COMPLETE state

133
cross-AZ 125
curl 6, 29, 154

D

data persistence 33
DatabaseCoreOSServerAuto-

Scale 167
DatabaseCoreOSServerLaunch

Config 167
deny policy 58
dependencies 71–72
DeployKeyPath 147, 150
deployment 54–57, 152–155

Amazon Web Services 54–56
automated 155–156

Docker Hub setup 155
pushing changes 156

CloudFormation objects
147–152

API Gateway 150–151
AWS Lambda service

148–149
parameter and output

147–148
updating stack 151–152

in AWS 141–144
execution and parameters

141–143
logging in 143–144

initial deployment 153–155
own hardware 57
using in-house VM

infrastructure 56–57
web sidekick 152–153

DesiredCapacity property 166
DigitalOcean 54
DiscoveryURL 128
disposability 71, 73
distributed configuration state

6
distributed service state 7
Docker 5
Docker container runtime 7–8
Docker Hub, setup 155

docker rmi fedora 33
docker run 159
downtime 125

E

ECS (Elastic Container
Service) 55, 125

ecs-agent 56
EFS (Elastic File System) 64
ELB (Elastic Load Balancer)

CloudFormation template
and 134–137

overview 48, 126
environment variable 27
etcd

overview 5–6, 110
using for configuration

40–45
etcdctl tool 6, 25, 30–32, 166
etcd-lock 38
event_name key 107
eventual consistency 64
ExecStartPost 108
ExecStartPre lines 27
Express application 40–43

F

failNode() function 113
fault tolerance, machine failure

self repair 47
simulating 46–47
See also application architec-

tures; services, schedul-
ing and discovery

flannel 59–62
flanneld 61
FLANNEL_IP variable 62
flat files 171
fleet 7
fleetctl list-units 87
fleetctl status nginx command

29
fleetctl tool 26–30
fleetd 5
full-stack MVC framework 79

G

GCE (Google Compute
Engine) 54

Gentoo 5
Git 74

177INDEX
git clone 20
GitHub 19

H

HA (high availability) 14
HAProxy 88
helloworld-nginx.service 46
hooks 156
http module 149

I

IaaS (infrastructure as a
service) 54

IAM (Identity Access Manage-
ment)

CloudFormation template
and 130–133

overview 126
policy for 159

IdP (identity provider) 169
Ignition 169
in-house VM infrastructure,

deployment using
56–57

init system 7
initCluster() function 115
initialAdd() function 113, 115
InternalEtcdLB 133
IPA (International Phonetic

Alphabet) 80

J

jq tool 61

L

launch configuration 133
list-machines 27
load-balancer attachments 133
LogGroup 159
logs 71, 73, 159–165

awslogs in units 161–162
setting up 159–160
updating cloud-config

160–161
viewing 162–163

logStreamName 162

M

machine failure
self repair 47

simulating 46–47
Mappings 127
maps, CloudFormation tem-

plate and 127–128
mass storage 62–69

Ceph 65–69
data systems background

63–64
NAS and storage outsourcing

64
MDS (metadata server) 65
memcached 81, 86–87, 98
Microsoft Azure 54
monitoring, current state of

36–39
what CoreOS does differently

38–39
what’s lacking 37

N

NAS (network attached
storage) 63–64

network configuration, Cloud-
Formation template
and 128–130

networking 57–62
flannel and 59–62
programmable networks

58–59
NGINX application

deploying 40
overview 44–45

nginx-sidekick template 12
Nickoloff, Jeff 5
nmap command 32
nodes 9, 119
NProgress bar 95

O

_onMessage function 95
OpenStack 54
Outputs 128

P

package.json file 109
parameters, CloudFormation

template 127–128,
147–148

populate_kvstore script 66
port binding 71–72
POST method 150
Principal element 130

process isolation 72
production tag 152, 156
PublicIpAddress 143
PXE (Preboot Execution

Environment) 57

R

Rackspace Cloud 54
RADOS 68
Raft protocol 63
RBAC (role-based access

control) 31
React 94
redis-cluster feature 48
Region Unavailable 125
repository of Vagrant tool,

cloning 20–21
require() statement 92
RetentionInDays field 159
rkt 5, 7–8, 170–174

building application with
acbuild 172–173

getting tools running
171–172

running ACI with 173–174
root resource 150

S

S3 buckets, CloudFormation
template and 134–137

SANs (storage area networks)
63

scaling systems 165–169
migrating services 168–169
scale partitioning 167
scaling cluster 165–167

scripted guides 79
SEARCHEDLOGSTREAMS

162
security groups, CloudForma-

tion template and
130–133

self repair, of machine failure
47

server orchestration 107
server-add command 112
services

creating and running 10–11
scheduling and discovery

39–45
deploying production

NGINX and Express 40
using etcd for

configuration 40–45

178 INDEX
services (continued)
topology and failover 13–15

shell session, to interact with
Vagrant tool 23–24

sidekick service 11
simulating machine failure

46–47
socket.io event 98
software development cycle

74–77
application edge 77
codebase and dependencies

74–75
environment logic and

microservices 75–77
source-dest 140
SSH key 143
ssh-agent 26
storage area networks. See SANs
storage cluster 65
storage. See mass storage
!Sub function 137
subnets 149
system administration 33–34

backing up data 163–165
data persistence 33
logs 159–165

awslogs in units 161–162
setting up 159–160
updating cloud-config

160–161
viewing 162–163

scaling systems 165–169
migrating services

168–169
scale partitioning 167
scaling cluster 165–167

traditional user manage-
ment and OS
configuration 33–34

updates and general system
administration 34

systemd 5, 7

T

TargetGroupARNs 133
TCO (total cost of ownership)

54
text output mode 162
Toolbox container 32–33
Torus 169
traditional user management

and OS
configuration 33–34

twelve-factor methodology
70–73

admin processes 73
backing services 72
build, release, run 72
codebase 72
concurrency 73
configuration 72
dependencies 72
development/production

parity 73
disposability 73
logs 73
port binding 72
processes 72

Twitter scraper 105–107

U

unit files, creating 11–13
unload command 30
updates 34
update-stack command 147,

166
updating

cloud-config 160–161
stack, CloudFormation

template 151–152
user management, traditional

33–34
UserData 134

V

vagrant destroy command 24,
100

vagrant halt command 100
Vagrant tool 18–24

cloning repository of 20–21
getting CoreOS cluster run-

ning in 24
requirements and setup 19
settings, editing 22–23
shell session to interact

with 23–24
vagrant up command 100
Vagrantfile 171
VirtualBox 18–19
VPC (virtual private cloud)

CloudFormation template
and 128–130

overview 126

W

wait command 142
web sidekick 152–153
web stack application example

application layer 88–98
web app 93–98
worker 88–93

scope of 79–82
architecture overview

81–82
target environment 82

setting up persistence layers
83–87

Couchbase setup 84–86
memcached setup 86–87

web@ unit template 152
WebSocket 80
websocket library 106
Wittig, Andreas 56
Wittig, Michael 56
workflow 9–10

See also software development
cycle

