
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Codermetrics

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Codermetrics
Analytics for Improving Software Teams

Jonathan Alexander

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Codermetrics
by Jonathan Alexander

Copyright © 2011 Jonathan Alexander. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Mike Hendrickson
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
August 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Codermetrics, the image of a whitebar surgeonfish, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30515-4

[LSI]

1312293627

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.allitebooks.org

Table of Contents

Preface . ix

Part I. Concepts

1. Introduction . 3

2. Measuring What Coders Do . 11
The Purpose of Metrics 11

Metrics Are Not Grades 13
Team Dynamics 13
Connecting Activities to Goals 15
Good Metrics Shed a Light 15
Examining Assumptions 16

Timeout for an Example: The Magic Triangle (Partially) Debunked 18
Patterns, Anomalies, and Outliers 20

Peaks and Valleys 22
Ripple Effects 23
Repeatable Success 24

Understanding the Limits 25
Timeout for an Example: An Unexpected Factor in Success 25
Useful Data 27

Choosing Data 30
Obtaining Data 30
Spotters and Stat Sheets 32
Fairness and Consistency 33

Timeout for an Example: Metrics and the Skeptic 34

3. The Right Data . 37
Questions That Metrics Can Help Answer 37

How Well Do Coders Handle Their Core Responsibilities? 38

v

www.allitebooks.com

http://www.allitebooks.org

How Much Do Coders Contribute Beyond Their Core Responsibilities? 38
How Well Do Coders Interact With Others? 40
Is the Software Team Succeeding or Failing? 41

Timeout for an Example: An MVP Season 44
The Data for Metrics 45

Data on Coder Skills and Contributions 45
Data on Software Adoption, Issues, and Competition 56

Timeout for An Example: A Tale of Two Teams 62

Part II. Metrics

4. Skill Metrics . 69
Input Data 69
Offensive Metrics 70
Defensive Metrics 80
Precision Metrics 86
Skill Metric Scorecards 93
Observations on Coder Types 96

Architects 96
Senior Coders 97
Junior Coders 98

5. Response Metrics . 101
Input Data 101
Win Metrics 102
Loss Metrics 109
Momentum Metrics 116
Response Metric Scorecards 126
Observations on Project Types 128

Consumer Software 128
Enterprise Software 129
Developer and IT Tools 130
Cloud Services 131

6. Value Metrics . 133
Input Data 133
Contribution Metrics 134
Rating Metrics 143
Value Metric Scorecards 151
Observations on Team Stages 151

Early Stage 151
Growth Stage 153

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Mature Stage 155

Part III. Processes

7. Metrics in Use . 159
Getting Started 160

Find a Sponsor 160
Create a Focus Group 160
Choose Trial Metrics 161
Conduct a Trial and Review The Findings 163
Introduce Metrics to the Team 165
Create a Metrics Storage System 166
Expand the Metrics Used 167
Establish a Forum for Discourse 168

Timeout for an Example: The Seven Percent Rule 168
Utilizing Metrics in the Development Process 170

Team Meetings 170
Project Post-Mortems 173
Mentoring 175
Establishing Team Goals and Rewards 176

Timeout for an Example: The Turn-Around 178
Using Metrics in Performance Reviews 183

Choosing Appropriate Metrics 183
Self-Evaluations and Peer Feedback 185
Peer Comparison 186
Setting Goals for Improvement 187
Promotions 187

Taking Metrics Further 189
Create a Codermetrics Council 189
Assign Analysis Projects 191
Hire a Stats Guy or Gal 192

Timeout for an Example: The Same But Different 193

8. Building Software Teams . 201
Goals and Profiles 201

Set Key Goals 202
Identify Constraints 202
Find Comparable Team Profiles 203
Build a Target Team Profile 208

Roles 211
Playmakers and Scorers 211
Defensive Stoppers 212

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Utility Players 213
Role Players 214
Backups 215
Motivators 215
Veterans and Rookies 216

Timeout for an Example: Two All-Nighters 218
Personnel 220

Recruit for Comps 221
Establish a Farm System 224
Make Trades 225
Coach the Skills You Need 226

Timeout for an Example: No Such Thing As a Perfect Team 227

9. Conclusion . 229

A. Codermetrics Quick Reference . 233

B. Bibliography . 237

Index . 239

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Is there a rational way to measure coder skills and contributions and the way that
software teams fit together? Could metrics help you improve coder self-awareness,
teamwork, mentoring, and goal-setting? Could more detailed data help you make better
hiring decisions, help make performance reviews fairer, and help your software teams
become more successful?

Whether you are a coder, team leader, or manager, if you are interested in any of these
topics or in how metrics can be applied in a variety of other ways for software devel-
opment teams, then this book is designed with you in mind. The ideas in this book are
a departure from how metrics have been applied to software development in the past.
The concepts and techniques presented here are meant to help you think differently
about building software teams and to help get you started on your own journey using
metrics in new and better ways as part of the software development process.

As a manager of software teams, I myself am on that journey. I believe the techniques
in this book have helped “turn around” troubled software teams and have helped good
software teams become even better. Gathering metrics on a wider set of activities and
outcomes isn’t the only path to success, of course, but it has worked for me, and I
believe it can work for you, too.

Maybe you measure success by the number of people who use your software, or by
how efficiently you deliver releases, or by how few errors you have. Will the use of
metrics improve your teams and your success by 5%, 10%, 25%, or more? You will
only know by testing these ideas yourself. But even if it’s just 5% (though I think it can
be much more), how much is that worth? Even if using metrics simply helps the coders
on a team become more self-aware and become better teammates, how much is that
worth? At the very least, I believe the potential benefits justify the small amount of time
and effort it takes to start gathering and using the kind of metrics described in this book.
And if you don’t decide to gather metrics, I believe there are many concepts here that
you can still learn from and apply to your own teams.

ix

Organization of This Book
This book is written in three parts, designed to be read in order, although you may find
specific parts of the book more useful for later review if you are putting metrics into
practice. Part I, “Concepts”, provides a more detailed introduction behind the thinking
of codermetrics, the variety of analyses that metrics can enable, and the data that can
be measured for coders and software development teams. Part II, “Metrics”, is set up
as a kind of metrics reference guide, with each metric explained with examples and
notes. Part III, “Processes”, covers techniques to introduce metrics in your teams and
put them to use in the development process, as well as how to use metrics to improve
and build better software teams.

Part I, “Concepts”, consists of the following chapters:

Chapter 1, Introduction, provides a more detailed explanation of the thoughts,
motivations, and goals behind this book.
Chapter 2, Measuring What Coders Do, talks about the general concepts behind
metrics, measuring coders, and analyzing teamwork and team performance.
Chapter 3, The Right Data, discusses what constitutes useful data, how to obtain
it, and the detailed data elements that will be used for codermetrics.

Part II, “Metrics”, consists of the following chapters:

Chapter 4, Skill Metrics, covers metrics for a wide variety of coder skills and
contributions.
Chapter 5, Response Metrics, covers metrics that measure various types of positive
and negative user response to software.
Chapter 6, Value Metrics, covers metrics that highlight the value that coders bring
to a team.

Part III, “Processes”, consists of the following chapters:

Chapter 7, Metrics in Use, provides a multistep approach to test and introduce
metrics in an organization, and offers techniques to use metrics in the development
process and performance reviews.
Chapter 8, Building Software Teams, describes how to use metrics to determine
team needs, and how to apply them in personnel planning, hiring, and coaching
of current team members.
Chapter 9, Conclusion, provides final thoughts on the value of metrics, how to
deal with key qualities that are hard to quantify, and how metrics might be im-
proved or expanded in the future.

x | Preface

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449305154/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/9781449305154/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
The ideas in this book were inspired by Michael Lewis’s writing on sabermetrics and
sports statistics, which led me to the writing of Bill James. They are the epitome of
informed, informative, and entertaining writers. Although they’ll never have a reason
to read this book, my initial thanks is to them.

My thanks also goes to all the excellent coders I’ve worked with over the years, and the
fine managers and executives. I’ve been very lucky and I can’t really think of a single
professional situation where I didn’t learn a tremendous amount. Particular thanks to
Wain Kellum, CEO, and the entire team at Vocalocity, who supported my efforts in
writing this book.

I want to thank Andy Oram, my editor at O’Reilly, who helped me through this process
and to whom a great deal of credit goes for making this far better than it would have
been otherwise. It was a pleasure to work with you, Andy. Also, thanks to Mike Hen-
drickson at O’Reilly who originally supported and encouraged this idea. And to the
entire O’Reilly Media production team, thanks, too.

For the feedback and reviews they provided on this book during the process, I want to
thank Brian Jackson at Google, Nagaraj Nadendla at Taleo, and Ben Wu at Zuora.
They are all excellent leaders and managers themselves. Thanks guys.

To my dad, thanks for giving me a love of sports, which has become a love for statistics
too. To my mom, thanks for encouraging me to write a book.

Most of all I want to thank my wife, Barbara, who did the most to support my efforts
in writing this book, not the least of which was using her excellent editorial skills to
proofread this book, catch a number of flaws, and point out a number of improvements,
even though she’s a lawyer so she can’t write a line of code (OK, maybe a line). Thanks
honey! And to my two beautiful daughters, Naomi and Vivian, because they make every
day special, my loving thanks.

xii | Preface

PART I

Concepts

This section covers general concepts about metrics, pattern analysis, data gathering,
and data elements.

CHAPTER 1

Introduction

Let’s not be too sure that we haven’t been missing something important.

—Bill James, baseball statistician and author, from his article “Underestimating the Fog”

This is a book about coders, software development teams, metrics and patterns. The
ideas in this book originated a few years ago when I started to think about the makeup
of software teams, both good and bad, and all the subtle contributions and unsung
heroes that are a critical part of success. For almost two decades now, I’ve been re-
sponsible for building and managing teams of designers, coders, and testers. Over this
time I’ve realized that software teams, similar to sports teams, require a variety of play-
ers and skills to succeed. I’ve also learned that there are patterns to success and failure
that are not necessarily what I assumed before.

Here’s a simple pattern I’ve seen, and maybe you’ve seen it too: every successful soft-
ware team I’ve been on has always had at least one person who uncomplainingly does
the little things, like creating the installer, improving the build scripts, or fixing other
people’s bugs to get features done. The projects never would have been done, or at least
not done well, if someone hadn’t taken on these smaller but detail-oriented tasks.

Another pattern: many seasoned software teams I’ve seen had one or two coders who
were the clear technical leaders, the go-to people, although they may not necessarily
have had the titles to match. These go-to coders not only solved problems, but they
exerted a strong influence on others, such that the skills of the other coders often
evolved rapidly, closer to the level of the technical leaders. As a result, one or two great
coders raised the level of the entire team.

Here’s a pattern I’ve observed on some of the longer projects I’ve been a part of, espe-
cially with small teams in start-up environments: the project team hit a “wall” when
the project was about 80% complete. Like a marathon runner at the 20-mile mark, after
months of pushing hard, everyone is suffering from real mental and physical fatigue.
Sometimes when the teams hit the wall, we broke down and never really recovered.
The final 20% of the project seemed to go on forever, and we basically limped to the
finish line. But sometimes the team went through the wall, recovered, and picked up
the pace again. In every case, this recovery happened because someone on the team

3

had the personality to lighten the load, tell jokes, lift spirits, and make everyone feel
better. Thanks to the “joker” on the team, everyone got back to a (mostly) positive
mindset, ready to sprint to the finish.

Patterns of success seem obvious once we see them, but to see them we must learn
where and how to look. Once I started to think about this, I began to wonder whether
we could create a set of metrics that would give us a clear and objective way to identify,
analyze, and discuss the successes or failures of our software teams and the full range
of coder skills and contributions. Not as a way to rate performance, but as a way to
help us better understand and foster the keys to success, and where and how we might
improve. In my own teams I began to experiment, and the positive results have me very
encouraged that these methods could be useful for others, too.

This book is my attempt to share some of these ideas and practices. To this point, there
is very little material written or otherwise available regarding metrics that can be used
to analyze coders and software teams. We have thoughtful books on interviewing,
skills-testing, project estimation, project management, team management—and on
Agile and other methodologies that make the development process more effective. But
we have never had much discussion or explored a quantitative and analytical approach
to understanding the skills and work of individual coders to improve software teams.

Our metrics, to the extent that most software teams use them today, are commonly a
simple set of counts that we use in project estimation or in ongoing project manage-
ment. We use bug counts, task counts, time increments (hours/days/weeks)—and with
Agile, some of us use story points and velocity. There are also more advanced systems
and tools for project estimation that make use of sizing metrics such as KLOCs and
Function Points.

But the metrics we commonly deal with don’t provide enough insight to answer many
key questions that we have, such as:

• How well is our software team succeeding?

• How are individual team members contributing to the team’s success?

• What capabilities can be improved to achieve greater success?

These are simple but profound questions. If we can’t answer these questions, or lack a
clear way to discuss and think about the answers, then as individuals and team mem-
bers, we are not doing all we can to succeed. Of course, we must fundamentally explore
what we mean by success and how we measure success for software teams, but assum-
ing this can be sufficiently settled, then the above questions remain. In the pages that
follow, I will try to suggest new and different ways for us to achieve greater under-
standing and perhaps answers, too.

4 | Chapter 1: Introduction

I’m a big sports fan, and so in many parts of this book, I’ve chosen to use sports anal-
ogies. It’s not necessary, however, for you to like or understand sports to understand
the concepts in this book. Like all analogies, the purpose is just to help make the ideas
quicker to grasp and easier to remember. Personally, I think using sports analogies to
discuss software teams is apt—and fun.

I think of software development as a team sport. Software products are typically not
produced by an individual but by a team, and even in the case where one coder works
alone, that coder must fill the various roles of a larger team. In sports, we know that
successful teams require players that complement each other, and not everyone needs
nor should have the same skills. A football team needs players who can block and tackle
as well as those that can run, pass, and catch. Not everyone is good at the same thing.
In fact, a team where all players have the same strengths, no matter how strong, is in
many cases worse than a team where players have different and contrasting skills. In
the end, every player on the team matters, and every player must do their part if the
team is going to succeed.

My first thoughts about applying quantitative analysis to coders came from the atten-
tion that statistical analysis has recently garnered in major organized sports. Computers
and software have contributed to enormous changes in how professional sports teams
analyze player statistics, and how they determine the player skills that most directly
contribute to winning teams. Bill James and other noted analysts have created a disci-
pline around statistical analysis of baseball players referred to as “sabermetrics”. And
author Michael Lewis has popularized these newer approaches to sports team man-
agement in his books Moneyball and The Blind Side, and in his articles in The New York
Times Magazine and other publications.

Many of the people who have pioneered these new approaches in sports management
have training in more analytical fields, such as Daryl Morey (GM of the NBA Houston
Rockets) who majored in computer science at Northwestern, and Paul DePodesta (VP
of the MLB New York Mets and former GM of the Los Angeles Dodgers) who majored
in economics at Harvard. This “new” approach in sports is often depicted as a reaction
to and move away from the more subjective, gut-feel approach of talent evaluation and
team-building. Major sports teams are now very big businesses, with huge amounts
of money involved. In this new era, managers responsible for these teams spend more
time gathering and analyzing metrics, to help them build winning teams in a more
rational and predictable way (and as Moneyball illustrates, in a way that can be
more cost-effective and profitable, too). This doesn’t eliminate individual intuition and
creativity, but augments it with better knowledge. The key steps followed in this new
approach are:

• Find a way to measure the differences between winning and losing teams.

• Find a way to measure the contributions of individual players to their teams.

• Determine key player characteristics that are highly correlated with winning or
losing.

Introduction | 5

The process of finding meaningful metrics and formulas in sports is not static, but
continuously evolving. It’s well understood that there are many important but subtle
skills that are hard to measure and analyze, such as a defensive football player’s instinct
to find the ball carrier or a player’s ability to perform under pressure. Bill James, for
example, publishes regular articles and annual books on baseball in which he introdu-
ces new metrics and ideas, some of which others adopt and use, some of which others
improve, and some of which turn out to be less useful and eventually fade away.

And metrics evolve privately as well as publicly. The actual statistics and formulas that
sports teams favor are secretly guarded, since sports is, of course, a competitive field.
Many analysts who write publicly also work as private consultants for individual teams.
Theo Epstein (GM of the MLB Boston Red Sox) and Billy Beane (GM of the MLB
Oakland A’s) may share some information with each other, and they may both benefit
by the metrics known to the wider community as a whole—but in the end they are
trying to win against each other, so there are some elements about their approach that
will never be known outside their organizations.

Our field of software development is less public, with different competitive pressures
than major sports leagues, and most coders are not in the public eye. We don’t and
probably never will have fans poring over our statistics or putting our poster on their
wall (now there’s a scary thought). But it seems a little ironic that those of us who work
in a field that in many ways enabled deeper statistical analysis in sports (as well as in
other industries), have not yet embraced or fully considered the potential benefits of
quantitative analysis in our own domain of software development.

Naturally we, like any workers, might be suspicious about whether good metrics can
be found and tell an effective story, and we might be worried that statistics can be
misused by managers in performance reviews and such. It is the premise of this book,
however, that within our discipline there are a variety of skills and results that we can
indeed measure, and from which we can obtain meaningful and useful insights about
ourselves and our teams. These numbers are not black and white, and individual num-
bers never tell the whole story. Knowing Derek Jeter’s batting average or Tim Duncan’s
shooting percentage tells you only a very small part of how effective they are as players
and teammates. But when we look at a range of statistics, we can begin to identify
patterns for individuals and teams, and sometimes what we find is surprising, even
revelatory.

As an example, let me tell you about one of the software teams I managed for many
years.

A note about the stories in this book: these come from my own experi-
ence. However in many cases, the stories have been simplified or gen-
eralized to convey the key points. I will not use names in order to protect
the innocent and the guilty alike, including me.

6 | Chapter 1: Introduction

This example was at a venture-backed start-up, with a team of six coders and three
testers (we are focusing on coders in this book, so I will focus on them in this example).
There were three key phases that we went through in the first two years: initial devel-
opment of our 1.0 product release, which took nine months; the period after release
when we supported the first customers and developed our 1.1, which took six months;
and the development of our 2.0 product release, which took another nine months. The
team itself had three senior coders, each with more than ten years of experience and
excellent domain knowledge, and three junior coders each with excellent educational
backgrounds and about two years of commercial coding experience. During this two
year period, all the senior coders remained, but two of the junior coders left after the
first year and we brought on two more.

Our executives and our investors thought our initial 1.0 release was a great success.
We won a major award at a key industry show and received multiple positive product
reviews. We had a large amount of reseller interest, and the number of customer eval-
uations were double our expectations, so our sales staff was incredibly busy (this was
an on-premise enterprise software solution). Revenues in the first quarters after release
were also well ahead of plan.

There were plenty of reasons for our software team to feel good, and everyone was
patting us on the back. But was our 1.0 release really a success?

It took us a while to realize it, but a deeper look at the numbers at the time would have
revealed some serious problems. The key and troubling facts were this: while we had
succeeded in generating public awareness and solid customer interest, every customer
trial was generating, on average, seven calls to customer support—despite the fact that
each customer received installation and setup assistance. These seven calls were re-
sulting in an average support time of three full days to work with the customer and
investigate issues, and on average it turned out that every customer was identifying
three new bugs in the product that had not been previously found. Coder time to sup-
port every customer trial, including the time to assist support and the time to fix sig-
nificant product issues, was measured in weeks, not hours or even days.

And the seemingly positive revenue results were also misleading. We were ahead of our
early revenue plans thanks to a few bigger deals, but our overall rate of converting
evaluators to real customers and the time it was taking for conversion were much worse
than we required to build a successful business. This was at least in part due to the
usability and quality issues that were reflected in the support load and bugs found.

In other words, while outsiders might have thought that our initial release was very
successful, in reality it was only a partial success at best. The data shown in Fig-
ure 1-1 reveals how bugs and support issues were vastly outweighing new users.

Introduction | 7

Figure 1-1. A look at key metrics of this 1.0 product reveals serious problems

There was another big issue, too. As time went on, certain coders on the team were
having trouble getting along. The decreased amount of time spent working on more
“exciting” new features, and the increased time spent on less glamorous investigation
and bug fixing, combined with the stress related to support in a start-up environment,
began to reveal cracks in individuals and in our software team. Personality differences
were exacerbated, to the point that certain coders were avoiding each other, and we
even had a few incidents of people yelling in the workplace.

The six months following the 1.0 release, during which the team provided support and
worked on the 1.1 release, were filled with turmoil and were a near disaster, even though
those outside the team still thought everything was fine. Most of each coder’s time went
into bug fixing, and we had to delay most of our incremental product improvements.
The 1.1 release fixed all the critical bugs—but there were still so many issues remaining
that even after the release, the support load and conversion rates did not materially
change.

Then, suddenly, everything got much better inside the software team. Even though the
support rate remained constant, the team started handling issues much more efficiently,
with less people involved on every issue. More time was freed up for new features and
major improvements in the most problematic areas. The 1.1 release, which had almost
no feature improvements, took six months. The 2.0 release, which had multiple new
features and major product improvements, took only nine months with the same size
team. Following the 2.0 release, the conversion rate and issue rate noticeably improved,
to the point that we could clearly say that the 2.0 release was a much greater success.

So what happened? Was it that everyone got used to handling the issues, or that the
issues became repetitive or less severe? To a certain extent that was true. But the key
change was that two junior coders left the team, and two other junior coders joined.

8 | Chapter 1: Introduction

The two coders who left did so of their own accord. While they had been mostly happy
during the work on our 1.0 release, they were the ones who disliked the post-release
support work the most. They were the ones who most regularly wanted or needed
others, specifically the senior coders, to help them if they weren’t familiar with a prob-
lem or an area of code. And one of them was the one who had a temper and fought
increasingly with other team members over time.

The new coders who joined the team were not measurably different from those who
left in terms of education, experience, or aptitude. Where they were different, however,
were in two key skill areas that became highly critical and useful following our first
product release: the desire and willingness to solve problems independently and the
ability to handle somewhat stressful situations calmly, even happily. Figure 1-2 shows
how one replacement outperformed their predecessor.

Figure 1-2. A comparison of Coder A to their replacement Coder B shows an important factor in team
success

Because the new coders possessed the right skills, they were able to take on and finish
more problems themselves. It wasn’t necessarily that we were putting less time into
support or fixing specific issues, but we were able to get less people involved and have
less interruptions, so that other team members were able to stay focused on other work.
In the end, we got lucky. Since we had some personality conflicts with the two coders
who left, we consciously favored and selected job candidates who had very different
personalities. But we didn’t realize the full benefits this would bring to our overall
productivity and team success.

At the time all this occurred, we did not pay close attention to our metrics. Looking
back, I realize how focusing the team on key metrics could have helped us react more
quickly and effectively after the first product release. It’s hard to make everyone believe
there are problems or understand the magnitude when they are being congratulated by

Introduction | 9

outsiders for all the good things they’ve done. It is easy for a team to develop a false
sense of complacency—or in the reverse case, to develop poor morale when they don’t
get the praise they feel they deserve. Looking at a full range of product and team metrics
can balance the adulation or criticism you receive, and provide much-needed perspec-
tive around where you’re really at and what needs to be done. Measuring and discussing
skills such as self-reliance and thoroughness can help foster those skills, and help ensure
that coders with those skills receive the credit and recognition they deserve for their
contributions to the team.

The objective of this book is to present a method and a set of metrics—that is, coder-
metrics—that cover a variety of areas related to individual coders and software devel-
opment teams. This method is designed to challenge our assumptions, in hopes that
we can better discover what is knowable about the patterns that lead to success. To
make them easier to understand and remember, the metrics in this book are named
after analogous sports statistics. These metrics are designed to give us some terminology
to better communicate, and hopefully to make us think generally about how these types
of metrics can be useful in our field. In the end, their value can be measured by how
well they help us answer the key questions that we face as to what it means to “win”
and how we can better ourselves and our teams.

It is my hope that the concepts in this book will lead to further productive dialog be-
tween coders, team leaders, and managers, both within and across organizations. There
is no doubt that many individual metrics introduced here can and will be improved;
and that some of the ideas here will be dismissed, and even better metrics will be found.
Personally, I have seen great value within teams in working to define a wider variety of
items to measure, in figuring out how to measure and relate individual and team ac-
tivities to organization goals, and then in sharing the data and discussing it among the
team. Even for those of you who never actively use metrics, I hope that you can find
value here and that some of the ideas in this book will positively affect how you think
about coders and software development teams. If others begin to consider these con-
cepts and perhaps use some of the approaches outlined in this book, working towards
a broader and deeper rational analysis of coder contributions and software team-
building, then I will feel this book is a success.

It should be noted, in case it’s not obvious, that there are many participants and skills
in the software development process that are outside the scope of this book. This is
partially because the full scope of participants and skills is too much to cover in a single
book, and mostly because I personally have not defined a set of metrics for other skills.
Perhaps in the future we will develop metrics for designers, testers, managers, or others
—and maybe there will be writing on these, too.

10 | Chapter 1: Introduction

CHAPTER 2

Measuring What Coders Do

Never mistake activity for achievement.

—John Wooden, UCLA men’s basketball coach, 1946–1975

What are metrics about? How can they help? How are they used elsewhere and how
might they be applicable to coders and software development teams?

This chapter begins to explore the general purpose of metrics, and the qualities that
make certain metrics relevant and useful, and others not. I will discuss various patterns
and noteworthy information that metrics can help you identify and understand. I’ll also
look at various types of data you can use, along with ways you can gather the data and
ensure that it is as accurate and consistent as possible. The concepts covered here pro-
vide a basic introduction to the key concepts of metrics and will serve as a basis for
further discussions through the remainder of this book.

The Purpose of Metrics
There are three reasons to gather and use metrics. Of course there may be more reasons
too, but in this book I will focus on three.

The first purpose of metrics is simply to help you track and understand what has hap-
pened. The subjective observation of situations, while sometimes insightful, is often
colored by personal biases and experiences. It is dominated by the details you notice
and are attuned to, and it misses the things you don’t see or recognize.

For example, if you attend a baseball game, and at the end someone asks what you
remember, you will describe some of the plays that stood out. Maybe a big hit, or an
exciting defensive play. But there will be a lot of details you forget, even though they
just happened in the last few hours. Some you just won’t remember, maybe some you
didn’t notice, maybe others you didn’t even see because you were at the hot dog stand.
Also, how much you remember and what you describe will depend on how familiar
you are with baseball, how many games you’ve seen before, and how much you know
about different aspects of the game.

11

Alternatively, if you look at a box score of key statistics from a game, you can tell a lot
about what happened in the game, whether or not you attended. And if you look at a
complete statistical breakdown, with full offensive and defensive statistics and details
on all scoring, then provided that you know what the statistics mean you can tell a great
deal about the game, the players’ contributions, and the key factors that went into
winning or losing.

Statistics, or metrics, are the detailed documentation of what has occurred. They pro-
vide a historical record that allows for a more “scientific,” empirical analysis of what
players and teams have done, and why they’ve won or lost.

Metrics also preserve the past. Week by week, month by month, time inevitably colors
and clouds what you remember and what you think was significant. The more statistical
data you have, the less you are likely to forget or distort the past. For example, when I
was young my dad took me to many UCLA basketball games. I remember that Brad
Holland was one of my favorite players in the late 1970s, and a great scorer, but I can’t
remember specific details. If I go to a book or website with player statistics, however,
many details come flooding back. The same forgetting can occur for things that hap-
pened last year as for those that occurred 30 years ago. Having a statistical record allows
us to review and in some sense relive what happened, and balances our selective
memories.

The second purpose of metrics is to help people communicate about what has hap-
pened. The metrics themselves become part of the terminology, allowing a group of
people to discuss situations with some level of confidence that they are talking about
the same thing. Defining and naming metrics forces you to clarify the language that
you use to communicate. Without such definition and clear terminology, you are more
apt to have misunderstandings or, more typically, you may fail to discuss certain issues
that might in fact matter a lot.

In baseball, for example, a well-known pitching statistic is Earned Run Average (ERA).
The “earned run” refers to a run for the opposing team that did not result from an error,
and ERA represents the average number of earned runs a pitcher gives up for every 9
innings pitched (meaning for every complete game). That’s a lot to understand and
describe. But if you just say that “the pitcher’s ERA is 4.29”, then for someone familiar
with baseball, you have quickly and concisely conveyed a rich set of information.

The third purpose of metrics is to help people focus on what they need to improve.
Metrics document what you have done and accomplished, and that gives you a point
of comparison to what you hope to do and achieve. Without points of reference, it’s
very difficult to know where you stand, how far you might have to go, and whether
you’ve arrived.

American football players measure their performance on and off the field. They measure
yards gained, touchdowns, and tackles during games. But they also measure their times
in the 40-yard dash and repetitions when bench-pressing 225 pounds, which are not
actually part of a football game. They do this because they know that speed and strength

12 | Chapter 2: Measuring What Coders Do

are important factors to success in their sport. They also have years of data to show the
range of speed and strength that is required for different positions such as cornerbacks,
linebackers, running backs, and linemen. Taking measurements to show where they
stand allows players to focus on what they most need to improve.

Metrics Are Not Grades
In grammar school, high school, and college, you receive grades for your work. Grades
are supposed to reflect your mastery of a subject and your relative ranking to others in
the class. They may be strictly correlated to your performance on objective tests, al-
though in most cases either the tests or some other element of the grade involves sub-
jective evaluation by the instructor. In your earlier years, grades provide feedback to
help identify the need for improvement, but in your later years the grades become
increasingly competitive, with ranking and rewards. For reasons both institutional and
traditional, for better or worse, the school system is not only responsible for teaching
students, but also for ranking them.

If you are going to embrace metrics, it is important to establish and understand that
metrics are not grades. Metrics measure specific individual skills and contributions,
and as I will examine in this book, there is often no fixed scale of what is “good” or
“bad.” Successful teams can and will have many individuals whose personal metrics
vary widely. It’s similar to a football team, where linemen are slower than running
backs, and great cornerbacks often have less tackles or passes defended because quar-
terbacks don’t throw towards them.

The purpose of metrics, as discussed above, is to provide a clearer picture of what
happened, to improve communication, and to help you identify and develop useful
skills. Later in this chapter and in this book I will explore how metrics may come into
play in recruiting, performance reviews, and other aspects of team management. How-
ever, in all cases this will only work if the metrics are not seen or used as grades, but as
a fair reflection of each coder’s current skills, strengths, and weaknesses.

Team Dynamics
While metrics should not be thought of strictly as grades, there is no way to avoid the
fact that any good system of metrics will identify the inevitable differences between
people. And as such, in any organization where people are paid for labor and their pay
scale is tied to their contributions and skills, good metrics will have some correlation
to pay scales and other perks. This should not, however, cause you undue concern
about capturing and utilizing metrics, or make you believe that people will seek to
distort the data in untruthful ways.

The Purpose of Metrics | 13

As James Surowiecki points out in his book The Wisdom of Crowds, people mainly
expect there to be a true and equitable relationship between accomplishments and
rewards. Most people don’t expect to be rewarded equally for unequal accomplish-
ments, and in fact most people are content when the reward system is seen as fairest
and most in line with their relative contributions. In the sense that metrics provide
greater detail and more accuracy in understanding people’s relative skills and contri-
butions (and this can help you make sure that people are fairly compensated), the use
of metrics can therefore result in increased satisfaction among individuals and teams.
People just want to be treated and recognized fairly—ask yourself whether fairness is
even possible without a rational, metrics-based approach.

In professional sports, players statistics are scrutinized endlessly, and their annual sal-
aries are generally known to the public as well. For leading players, their personal
contract negotiations are closely followed and discussed in the media. But while some
negotiations are stickier than others, in the end both the players and teams typically
seek contracts that are “fair” and in line with their industry standard and other players
of similar skills. Many sports contract disputes are now settled in arbitration where an
independent party determines the fair salary through a comparison process. Player
statistics play a large role in arbitration.

Jed Lowrie, a utility infielder for the Boston Red Sox, does not expect to be paid the
same as second-baseman Dustin Pedroia, who is one of the team’s proven stars. While
we can assume Lowrie would be happy to receive more money, we also believe he and
other players like him are satisfied as long as they feel that their compensation is fair.
And, of course, they are still very important to the team’s success. If anything, the use
of statistics in salary negotiations makes the process more fair, so that players no longer
feel mistreated in the way they did in the past when someone like Dodgers GM Buzzie
Bavasi just told Sandy Koufax how much money he would make despite how well he
performed, and that was that.

In software development you don’t typically make salaries public, and you certainly
don’t have reporters following your salary negotiations. Even if you did, you can assume
not all team members would expect the same salary. But you can also assume that
everyone would want the system to be as fair and objective as possible.

All of this is not to say that you should base your salary discussions and performance
reviews solely on metrics, which would be tantamount to treating the metrics as grades.
This is only to say that the open exposure of metrics related to people’s skills and
achievements is not anathema to creating a healthy and cooperative team environment.
Rather, metrics can directly contribute to a healthier environment if they are used to
help the team improve and succeed—and if they result in better understanding of in-
dividual contributions that might not have been fully appreciated before.

14 | Chapter 2: Measuring What Coders Do

Connecting Activities to Goals
Coders are players on a software team that itself is part of a bigger team, namely the
business or the organization. At least some of the goals of the organization are also the
goals of the software team (and therefore the goals of the coders too). The most mean-
ingful and useful metrics will allow you to connect and relate coders and teams to their
organizational goals.

To do this, you must define those organizational goals that the software team shares
and how those goals can be exactly or approximately measured. Then you need to
determine the coder and team skills that can be measured, and finally, you must create
models or metrics that relate the skills to the goals.

You could say that sports teams have one clear goal, to win games (and in the end, to
win championships). They might have other goals, like making money, but clearly
winning games is one key goal, and it’s easy to measure and track. The trick is deter-
mining which player and team skills are most relevant to winning games. This can only
be done by gathering individual statistics and then analyzing the historical record in
light of past wins and losses. From there, team managers can spot trends that reveal
key insights—for example, that bases on balls are more critical to winning than stolen
bases.

The evaluation of the historical record and how the bottom-up metrics connect to the
top-down goals is an ongoing process. New insights are discovered over time, and
findings evolve as your understanding grows and circumstances change.

Good Metrics Shed a Light
While metrics will not tell you which skills are good or bad, individual metrics them-
selves can definitely be good or bad. Bad metrics waste your time with details that aren’t
useful or don’t really matter, distracting you from deeper understanding. Good metrics
help you pull back the curtain and shed a light on things that matter, particularly things
you might have missed, forgotten, or otherwise failed to fully appreciate over time.

The problem is that you can’t always tell good metrics from bad until you try to use
them. Metrics can turn out to be bad if they are either too hard to gather, or too abstract
and confusing. To evaluate whether a metric itself is good or bad, you can ask yourself
the following questions:

• Is the metric relatively easy to describe and understand?

• Can the metric show me something I don’t already know?

• Does the metric clearly relate to a goal I care about?

If the answer to any of the above questions is clearly no, then the metric either needs
more work, or it should probably be discarded.

The Purpose of Metrics | 15

Individuals and teams will naturally choose the metrics that make the most sense to
them and that provide them the most value. Over time there’s no need to hang on to
less meaningful, less useful metrics if better ones exist or can be found. You want de-
scriptive metrics and metrics covering a wider variety of skills, but too many metrics
are just confusing and impractical.

Literally hundreds of statistics have been devised to track all kinds of details on baseball
players, including such creatively named gems like Vultured Runs, Ghost Runs, the
Component ERA (CERA), and the Defense-Independent Component ERA (DICE). No
one regularly uses or understands all of these. Maybe at one time someone thought
each of these metrics might be good, but over time some of them have proven to be
useless. Each analyst and each team, through a process of trial and error, examines the
statistics that are most meaningful for specific player positions and situations, and the
good metrics remain in use.

Good metrics do more than track activity. The quote at the beginning of this chapter
from John Wooden notes that activity does not equal achievement. Good metrics can
be directly related to achievement or outcomes. Tracking how many hours someone
worked, for example, is not a useful metric by itself. In basketball, no one keeps sta-
tistics on how many times someone dribbles the ball because to do so would just track
activity that isn’t related to the outcome of games. But people do keep track when
someone loses the ball dribbling (a turnover), since change of possession can be critical
to winning or losing games.

In baseball, Saves and Blown Saves are two examples of good stats. When a relief pitcher
enters a close game that their team is leading, if they successfully preserve the lead then
they are credited with a Save. If they lose the lead then it is a Blown Save. These stats
meet the criteria for good metrics presented above: namely, they are relatively easy to
understand, they show us something that we otherwise wouldn’t easily track, and they
relate directly to key goals for players and teams (wins and losses).

You could imagine a metric similar to baseball saves, but for coders. A coder could get
credit for fixing critical issues at the late stages of a project or after release. Having such
a metric would allow you to track these special “saves,” which in turn allows you to
communicate with each other about it, discuss its value, and possibly identify when
the team has missed opportunities for “saves.” You could make sure that a coder with
many “saves” is properly recognized and appreciated. Finally, as you begin to under-
stand the metrics on good teams, you might begin to identify if your software team is
lacking “saves” and needs to improve focus or skills in this area.

Examining Assumptions
The truth is not always obvious. For this reason, it’s healthy to question your assump-
tions about what matters and what doesn’t when it comes to the factors of success. In
the search for useful metrics, you should look beyond the obvious and consider pos-
sibilities both large and small. Sometimes where others have failed to look, new data

16 | Chapter 2: Measuring What Coders Do

www.allitebooks.com

http://www.allitebooks.org

may help you find hidden truths. You can gather and use metrics to challenge your
assumptions, and if that only ends up proving your assumptions that’s helpful too,
because then you really know.

In American football for almost 100 years, it was an accepted coaching philosophy that
if your team failed to gain a first down (advancing the ball 10 yards) after three plays,
and you were too far away to kick a field goal, then you should punt the ball. That way,
if the punt is successful, you back the other team up. If you try to convert the first down
and you fail, you would give the other team the ball in a better position to score, so the
punt seemed to be the safer approach.

But about 10 years ago, a group of statisticians began to analyze data on fourth-down
conversions, punts, and the likelihood of scoring when you have the ball on first-down
from different positions on the field. What they determined is that, statistically speak-
ing, if a team has short yardage remaining and they have the ball around mid-field, their
likelihood to convert on fourth down combined with the resulting opportunity to score
makes it a superior choice to go for it on fourth down instead of punting. Open-minded
coaches such as the New England Patriots’ Bill Belichick began to put this thinking into
effect, and now it has become pretty standard for teams to try and convert fourth down
in certain situations, because it directly increases their chance to win. If someone had
not taken the time to examine the assumption that punting was the best choice, based
on data gathered from previous outcomes, this old-school philosophy might never have
changed.

How many assumptions do you have about what it takes to deliver successful software
that might similarly turn out to be wrong? As an example, here are some statements
about coders and software development that you might consider:

• Adding development time will increase quality and customer satisfaction.

• Larger teams are less efficient.

• Difficult tasks will be done better by more experienced coders.

Whether you assume the above statements are true or false, without good data and
proof, you don’t really know. Metrics give you the data to examine your assumptions.

Identifying the key assumptions that you would like to investigate more closely, espe-
cially those that drive key decisions in your daily work, is also a great way to determine
what kind of metrics you should gather and use. For example, if you want to examine
the assumption that “difficult tasks will be done better by more experienced coders,”
you need to gather metrics on the complexity of tasks, the experience level of coders,
and the relative quality of completed work.

The Purpose of Metrics | 17

Timeout for an Example: The Magic Triangle (Partially)
Debunked
A lesson from one set of projects provides a thought-provoking example of how metrics
can challenge your assumptions. This example involves a team that worked on a rapid
product schedule, typical for an early stage start-up, meaning that we were delivering
quarterly releases with new features, enhancements, and bug fixes. There were ten
coders working on the project.

I had an assumption about the contents of each release. Looking back, I’m not really
sure where or when I arrived at the assumption. I guess it just seemed like common
sense, but it’s one of those oft-repeated assumptions that you come to believe is based
on objective fact and experience, when really it is based on something someone told
you.

Given the hard deadlines, I assumed that the more we tried to cram complex features
in the release, the less quality we would get. Following this logic, I believed that a
quarterly release with more complex features would also have more bugs. My belief
was based on a concept that you probably have heard of, the software development
“magic triangle.” This adage says that, among the three choices of more features, tighter
schedule, and higher quality, you can pick two and the other one has to give. Since we
were already committed to a tight schedule with many features, I assumed if we added
more features, then lower quality would result. Makes sense, right?

To measure the contents of each release, I rated every coder task (feature, enhancement,
or bug fix) on a scale from 1 to 4, from easiest to most complex. The average complexity
of a release was determined by the average complexity of the tasks, and the total amount
of work was calculated as the sum of all the task complexities. To measure the quality
problems of each release, I ranked all the bugs found post-release on the same scale,
and performed similar calculations.

Well, here’s the surprise. Over six releases in a period just under two years, as shown
in Table 2-1, after normalizing the data for the actual time on each release, the two
releases with the highest complexity and most work did not have lower quality, meas-
ured by the bugs found post-release. In fact, the best quality results came from one of
the releases where we packed the most stuff in, and when looking at issues found rel-
ative to the amount of work done in each release, the two most complex releases had
better relative quality.

18 | Chapter 2: Measuring What Coders Do

Table 2-1. Quality on the most complex releases was better than other releases

 Avg. Complexity
(all work items)

Total Complexity
(sum of all work)

Quality Problems
(total complexity)

Release Quality %
(100 - Problems / Complexity)

Release 1 1.2 272 86 68%

Release 2 1.6 248 77 69%

Release 3 1.5 274 109 60%

Release 4 2.8 318 69 78%

Release 5 2.4 347 88 75%

Release 6 1.4 261 92 65%

How could that be? First, it should be noted that although we packed more into certain
releases, we did plan carefully and did began each release believing we had at least a
chance to get all the work done. The releases with more complexity, however, had
schedules that were much tighter, with more risk and much less room for error. The
second thing to note is that we had an excellent team that worked together very well.
The final note is that we did not allow any meaningful feature creep in any of these
releases, since we were already working on a tight schedule, so the team knew the
complexity target at the beginning of each release.

One explanation would be that our planning was too conservative, so we actually had
room to deliver more complexity in the releases. Maybe what we thought was a stretch
really wasn’t. But that wouldn’t explain why the quality of the more complex releases
was higher. If our less complex releases were too conservatively planned, the quality
on those should have been even higher, not lower.

You could theorize other potential explanations. For example, perhaps the quality of
certain areas was just improving over time. Suffice to say that there are multiple po-
tential explanations, and that more data could be gathered and studied to prove or
disprove them. My personal theory, however, based on my intimate working knowl-
edge of the team, is that there is another more interesting story here.

Here’s what I believe the data illustrates. Good teams like to be challenged, and when
challenged they rise to the occasion. If you give them more to do, if you set the bar
higher, they get more focused, more motivated, and they actually do better work. So it
is possible to add more work and more complexity to a release with a tight schedule
and not give way on quality. In fact, you may even gain quality if your team reacts well
under pressure and is well motivated. The concept of the magic triangle does not con-
sider this aspect of human behavior. In some sense I think this is reflective of many
false assumptions we have in our planning methods, where we base plans and schedules
on the belief that coders produce a consistent level of quality all the time.

Much more real-world data would be needed to say anything more authoritative about
this. But, at the very least, examples like this show that the magic triangle is potentially
an oversimplified concept, and one that could lead to incorrect assumptions (like mine).

Timeout for an Example: The Magic Triangle (Partially) Debunked | 19

Because of what I learned, I am no longer quick to dismiss the idea that adding more
complexity to an already difficult release—maybe even stretching a team’s previous
limits—could be a good thing.

Patterns, Anomalies, and Outliers
The longer you gather and keep metrics, generally speaking, the more useful they
become. Analyzing metrics is a process of pattern recognition, which means finding
repetitive patterns that provide insight. While a single set of metrics taken from a single
time period might reveal interesting information, and possibly allow you to form in-
teresting hypotheses, it takes multiple metrics over multiple periods of time to improve
your theories, or to convert your theories to knowledge.

While you are looking for patterns, it is important to realize that not all patterns are
simplistic. You should be careful to not just focus on the obvious, because the patterns
and explanations found in combinations of metrics may far exceed the power and use-
fulness of individual metrics. For this reason again, it is useful to have metrics gathered
at discrete intervals over longer periods of time, and to have a good variety of metrics
to examine together.

Although voluminous, for thought-provoking material on complex pattern recognition
and the richness of patterns, it is worth reviewing Stephen Wolfram’s A New Kind of
Science. His studies focus on computer models and the natural world, but his point
that what appears chaotic or extremely complex may actually be based on discoverable
patterns is directly applicable to statistical analysis in any field.

In baseball, one of the most widely used and powerful statistics is OPS, which stands
for On Base Percentage plus Slugging Percentage. After decades of close examination
by hundreds of statisticians, this formula is now considered one of the best at identifying
a batter’s effectiveness and overall value to the offense of a team. OPS is more descriptive
than just looking at single statistics such as Home Runs (HR) or Runs Batted In (RBI).
Without going into all the details here, suffice to say that the complex formula [OPS =
AB(H + BB + HBP) + TB(AB + BB + SF + HBP) / AB(AB + BB + SF + HBP)] was only
discovered through a process of complex pattern analysis, utilizing years and years of
data.

As you look at metrics over time, you should also try to distinguish between anomalies
and outliers. Numbers that appear “unusual” or outside the norm have a tendency to
be discarded or overlooked. For example, if Coder A typically completes a certain
amount of work every few weeks, but then during one period has an extreme drop-off
or a big spike, you might just ignore it. If you mainly review averages over time, the fact
that this even occurred might soon be forgotten or lost. But there is a big difference
between an “anomaly” that is an aberrant occurrence with no future explanatory power
or likelihood to recur, and an “outlier” that represents a significant departure from the

20 | Chapter 2: Measuring What Coders Do

norm that might recur over time, perhaps even following some “predictable” pattern.
Here are definitions:

anomaly (noun): an incongruity or inconsistency, a deviation from the norm

outlier (noun): a person or thing that lies outside, a point widely separated from the main
cluster

In his noteworthy book The Black Swan, Nassim Nicholas Taleb explores the power
of outliers, as does Malcolm Gladwell in his book Outliers. In both cases, the authors
introduce examples where outliers play a significant role in large successes. In
Outliers, we see, however, that when studied more closely there are often explainable
patterns behind these seeming exceptional successes. And in The Black Swan, we see
that outliers can be viewed as a probable occurrence in complex systems. One fact is
clear: to overlook outliers is to limit our understanding about the patterns of success.

The first thing we should do when we see particularly unexpected or unusual results
is try to determine whether it is an anomaly or an outlier. For example, if a sudden
drop-off in Coder A’s results is attributable to the fact that the coder had personal
problems during the measured period, then this can be seen as an anomaly. A rule of
thumb to approach this is:

• If there is a clear explanation for a one-time occurrence, the result is an anomaly.

• If there is no clear explanation for what appears to be a one-time occurrence, the
result is an outlier and should be examined more closely and watched over time to
determine if it is meaningful or part of a pattern.

From 1993 through 2007, Ivan Rodriguez was a remarkably consistent catcher in Major
League Baseball. Signed as a 16-year-old phenom in 1988, he was eventually voted to
the All-Star team 14 times. The dips in his statistics over that period can mostly be
explained by injuries or being on worse teams (which affected Rodriguez’s opportuni-
ties and, therefore, his stats), so these were anomalies.

Mike Piazza was the other great catcher during the same period, with 12 All-Star ap-
pearances and similarly consistent statistics. Both Rodriguez and Piazza will undoubt-
edly end up in the Baseball Hall of Fame. However, Piazza was also noteworthy in
baseball history because he was the 1,390th player drafted in 1988 when the Los
Angeles Dodgers picked him in the 62nd round. He was overlooked because he did not
fit the pattern that baseball scouts looked for. Although he broke school hitting records
in high school, he had an unremarkable college career. He didn’t have the physical
appearance of a star, not like Ivan Rodriguez, and his name and ethnic background
were unusual for baseball at the time. The bottom line is that these superficial analyses
of what makes a great ballplayer were dead wrong. This nearly undrafted player is now
a sure Hall-of-Famer and the top home run hitter among catchers all time.

Mike Piazza and players like him are outliers. In software development, you can apply
a lesson here to your own methods of recruiting and hiring. Does your recruiting process
allow you to find the Mike Piazzas, the future Hall-of-Famers whose background

Patterns, Anomalies, and Outliers | 21

doesn’t fit your expectations or the pattern of great coders you’ve seen before? Do you
have objective methods you use to help you understand what skills your team really
needs, and to find those coders who can meet or exceed those needs, even though they
might not have the background or appearance you typically expect? Metrics are not the
entire answer here, but they certainly can be part of the answer.

You tend to see what you are looking for, biased by what you believe and what you
think you know. As so many success stories show, surprises that “break the mold,”
that almost no one predicted, happen regularly enough to show that such stories will
continue to happen time and time again. When these surprises occur, they provide a
chance to learn, and maybe to discover that they really weren’t surprises at all. If you
had just known more or had a deeper understanding about the patterns of success, then
you might have predicted the result and it wouldn’t have been a surprise.

Outliers are the surprises and unexpected results in the data. As you gather metrics and
analyze patterns, it behooves you to study outliers carefully.

Peaks and Valleys
As metrics allow you to spot patterns over time, they also reveal peaks and valleys. Like
outliers, these can be extremely significant and therefore are worth examining.

Sometimes the high points and low points in any particular time range are merely part
of the normal variance in activity and achievement, but sometimes they can reveal useful
insights. The “local maximum” and “local minimum” values are worth studying to see
if they can be explained.

A baseball player who is an average hitter may have one great game every few weeks or
every month, and conversely a baseball player who is a great hitter will still have bad
games. In many cases, this is just part of the normal ebb and flow in performance and
outcomes. But, in some cases, there could be an explanation. Maybe the hitter does
particularly well or poorly against a specific pitcher, for example, or in a specific ball-
park. If the hitter’s surges or dips in performance are dismissed and not studied, then
the instances where explanatory reasons exist will be missed.

When particularly high or low metric values are seen, you should track and examine
them, and look for patterns that emerge over time. You are hoping to find the reasons
and the causes behind the higher or lower results. Discovering these explanations, ei-
ther for individuals or for teams, might help you adjust circumstances to improve the
results as you like.

Even more significant than infrequent peaks or valleys are sustained peaks and valleys.
In sports, these are referred to as “hot streaks” and “cold streaks” or “slumps.” Over
longer periods of time (such as entire seasons), these are referred to as “peak years”,
“career years,” and “down years.” In sports, when someone is on a hot streak, teams
seek to get them more opportunities (particularly in significant situations—giving them
the ball more or getting them more at bats), in order to maximize the team’s success.

22 | Chapter 2: Measuring What Coders Do

And if a player is having a cold streak, teams try to change the player’s circumstances,
possibly with a new assignment or even a few days off, in order to shake the slump.

In software development, isn’t it possible that coders have hot streaks and cold streaks,
too? If you could spot these more sustained highs and lows, then just like sports teams
you might take further advantage of hot streaks or look for ways to shake slumps.

Ripple Effects
Another important pattern that metrics can help you identify is the impact or influence
that one person has on other members of the team. A great coder, for example, can
“rub off” on others, or may help others more rapidly advance their own skills. These
kind of ripple effect patterns are among the hardest to identify and confirm, but when
found, can be among the most valuable. The positive or negative effects of individuals
on teams are the factors that make a team either greater or less than the sum of its parts.

A related pattern you can examine and that is equally important is the result of specific
people working together. In this case you are not looking so much at the impact one
individual has on others, but whether specific combinations of people are more or less
effective. The obvious intention here is to identify relationships that demonstrably
flourish or flounder, so you can use that information to successfully align your teams.

Basketball and hockey statisticians over the past decade have put much time and effort
into analyzing the results when specific players are in the game or out, and the results
of specific combinations of players together. The analysis focuses on the team results,
offensively and defensively, during the game and at specific points in a game, such as
in a basketball game during the all-important final four minutes known as “crunch
time.” These statistics are considered very important both in analyzing player effec-
tiveness but also in making coaching decisions related to who should play together at
specific times.

It’s likely that in any human endeavor involving teams, there are ripple effects related
to the specific impact of individuals or combinations of people. And the effects may
not be what individuals themselves believe, since their judgment is most times biased
by personality traits, meaning with whom they feel most compatible and whom they
don’t. But sometimes the most effective combinations of people are not necessarily the
ones who like each other the most.

Within software development teams we can expect to find the same patterns. Some
coders make everyone around them better, and some combinations of coders turn out
to be particularly effective together, while others are not. The hard part is figuring out
how to objectively identify and measure ripple effects, especially knowing that the in-
dividual perspectives of team members might not reflect the truth.

Patterns, Anomalies, and Outliers | 23

Repeatable Success
While metrics can increase your understanding and provide benefits in many ways,
among the top things you are searching for are the patterns of repeatable success. If
found, these patterns indicate what your team needs to maximize its chance of success
and minimize its chance of failure.

An oft heard quote is that “it’s better to be lucky than good.” In the short term, that
might be true. But luck is not some innate factor that remains consistent (although
many gamblers wish it was). Highly skilled individuals or teams might appear to be
lucky, but it’s their hard work and planning that makes them a consistent success.
Someone might get a “lucky break” or go on a “lucky streak.” But over time, luck of
this sort evens out—which is to say that over a longer period of time, an individual or
team (in any area involving skill and teamwork) will normally achieve the level of suc-
cess it deserves.

In sports, you see many instances where players or teams have one-time or short-term
success, but that success doesn’t last over the long term. Many teams might have a week
or two (or even a month) where they get “hot” and go on a winning streak. But over
the course of a season, if those teams don’t really have the elements to win consistently,
the hot streaks don’t last and are often offset by “cold” streaks. You also see players
whose isolated results benefit from circumstances. A baseball pitcher can win a game
when they pitch badly, if their own team scores a lot of runs to win. Should the pitcher
get credit for the win? In baseball they do, which is why wins and losses are not a great
measurement of a pitcher’s skills or value to their team, and are not a great indicator
of repeatable success.

In software, the way you define and measure success needs careful thought. Sometimes,
for example, the software team might succeed but the business fails, or the other way
around. Success or failure of the business is not necessarily reflective of a software
development team. I will discuss this in much more detail later.

Once you have defined success, then the software teams that achieve a consistent level
of such success become models you can analyze. You can also analyze those teams that
achieve success for a period of time, but aren’t able to maintain that level. Finally, there
are teams that never achieve success, and you should look at those, too. Examining all
the cases you are exposed to, you can begin to identify the factors and patterns of
success, and better understand all the skills and contributions that make for successful
teams.

The more data you gather from more projects, the better chance you have to identify
the patterns of repeatable success. Finding metrics that correlate to success, and metrics
that correlate to failure, adds to your knowledge. Your data may not be conclusive, but
it can provide enough insight that you can make improvements.

24 | Chapter 2: Measuring What Coders Do

As a simple example, you might see that on more successful projects, your teams had
many coders who helped each other—and on less successful projects, your coders
interacted less. If this was true, it would be very useful for everyone on the team to
understand, in order to improve projects in the future. Metrics are the means to help
you identify such patterns and to communicate your findings to others.

Understanding the Limits
The use of metrics and statistical analysis is a practice, a methodology, useful to find
patterns, examine assumptions, and increase understanding of the past in hopes that
you can improve the future. It is not a science, and clearly the explanatory capability
of metrics is abstract and imperfect. Practically speaking, the metrics you gather will
never provide a complete picture of all that coders do, or of the complex team dynamics
and all the elements that lead to success.

While baseball’s WHIP statistic (walks plus hits per inning pitched) may help identify
what makes pitchers effective, it cannot fully describe what made Sandy Koufax unique
and special. No stats can fully measure his ability to focus and his desire to compete.
And while victories and team stats are clear indicators of winning teams, those and
individual stats cannot fully explain why the 1975 Cincinnati Reds stand out in fans’
minds as the greatest team of their era—because of their personalities and charisma.

This shouldn’t discourage you or make you believe that metrics aren’t useful, simply
because there is so much they don’t capture. Instead you should be encouraged to use
metrics for what they can provide, while accepting their limitations. You can continue
on in the pursuit of better metrics in the happy knowledge that perfect understanding
will never be achieved, and there will always be more you can measure and learn.

Timeout for an Example: An Unexpected Factor in Success
Here is a story about a surprising metric that I’ve come to believe indicates a greater
likelihood of success for coders and software teams. This example involves a software
development team working inside a large organization, with about 500 total employees
of this company located on a single floor, in an open floor plan mostly made up of
cubicles.

I have always been a big believer in the “closed door” policy. That is to say that I have
been an advocate of coders getting extended “quiet” time, without interruptions, so
they can remain focused once they get in the flow of their work. For this reason, I am
always very careful to avoid lots of meetings in the middle of the day, and, personally,
I try not to interrupt coders when they are working. I don’t like to be interrupted myself.
My theory used to be that an increase in uninterrupted work time would translate to
an increase in productivity and high-quality results.

There is a reason I say that “used to be” my theory.

Timeout for an Example: An Unexpected Factor in Success | 25

This is just something I happened to notice, not something I was looking to find. As I
said, I was already biased. If I had my preference, every coder would sit in an office and
could close their door. As it was, in this company everyone was in a cubicle, and was
subject to random walk-by interruptions any minute of the day.

In the middle of one of our release cycles, while the coders were working hard on
product enhancements and new features, a few team members began to complain to
me that they were being interrupted too much. Support people were asking them about
issues, sales engineers were asking about how new features worked, and product man-
agers and product marketers were asking for answers to questions from customers,
analysts, and the press. I was getting many of these interruptions, too, so I knew what
they were talking about. Part of it was a direct output of our product’s success, but that
didn’t make it seem less aggravating or counterproductive. Based on the complaints, I
started thinking about what we could do. Maybe we could come in one weekend with
bricks and cement and just build a big wall.

But then, as time went on, I noticed something else. The coders who were getting
interrupted the most, and were complaining, were producing great software: new fea-
tures, key improvements, and bug fixes. They were proactively tackling stuff that had
sat dormant for a long time before, and there was a noticeable increase in innovation.
These were some of our top team members, which was why they were getting inter-
rupted more than other coders. But even though they were complaining, their work
wasn’t really suffering. Their work, in fact, was better than ever before.

I realized that even though the increased interruptions were annoying the coders, they
were actually helping them. It was causing them to think more about the real customer
problems, to learn more about what people were interested in, and it made them more
sensitive to quality and craftsmanship. The frequent interactions with others outside
the development team was healthy and educational. Following interruptions, it would
take time to return to the flow of coding, but they might know something that they
didn’t before. The result was better software and more innovative solutions. Since that
time, once I started looking for it, I have seen this pattern over and over again.

I used to think that interruptions were a bad thing, and I tried to shield myself and
coders during times of work. Today I still avoid meetings in the middle of the day. But
now I actually include “interruptions” as a key metric I like to track. I don’t do it to
make sure the coders aren’t getting too many interruptions. I do it to make sure they
are getting interrupted enough. Now I want coders to be interrupted. I want them to
interact spontaneously with people outside the development team. For coders who are
not getting interrupted, once they have sufficient experience, I try to get them in the
flow of the interruptions as well. I now prefer departments to be co-located, with open
floor plans and open doors.

Whether interruptions are valuable or have the same effect for coders who work at
home or remotely, I don’t know. I’m not talking about the interruptions they get from
outsiders in their remote workplace, for example if their kids interrupt them at home.

26 | Chapter 2: Measuring What Coders Do

But perhaps if they receive emails or calls from people inside and outside the software
development team, and they deal with those, the interruptions might have the same
effect as in-person. In my metrics, I track email and phone call interruptions the same
as in-person, but all the coders I’ve worked with are normally co-located, so I don’t
have good data on remote workers. What I can say is that I believe email and phone
interruptions appear to have much the same effect as in-person for coders who work
together in an office, so I believe they would have the same effect for coders working
remote.

Having a metric for interruptions helps us track the effects, but also it creates a means
to communicate with coders about the value of these interactions. It may not make the
moment of interruption less aggravating, but when you understand how interruptions
can positively educate team members and positively influence the software, they are
easier to put up with.

Useful Data
Later chapters of this book will cover a variety of specific codermetrics. Some of these
will be fairly simple, based on atomic data elements such as production bugs, and some
will be more complex, based on formulas leveraging and combining multiple elements
of data.

Before I delve into specific metrics, however, you might consider all the types of data
you could use for coders, and think about the data that might be useful or not. You
want to think broadly and contemplate new and interesting data elements that could
make for more meaningful metrics. You can also think about how to identify data that
would measure how coders and software teams are doing relative to team and organi-
zation goals.

Below is a list of example data that I have found to be useful and that will be discussed
more in later sections. This list is just meant to be illustrative and, as such, describes
the type or category of information, not the specific numeric data (such as counts or
averages) that will be discussed later:

• How long a coder has been part of a team

• Size, growth, and contraction of a team

• Tasks completed by a coder, categorized by complexity

• Tasks where coders worked together, or where one coder helped another

• Tasks that had extreme urgency, such as fixing severe production issues

• Tasks where a coder demonstrated exceptional creativity, innovation, or initiative

• Tasks that were delayed, failed, or cancelled

• Projects, products, and product areas a coder worked on

• Time spent on tasks

Useful Data | 27

• Time in meetings or dealing with in-person interruptions

• Issues found by customers, categorized by severity and complexity

• Customer contacts (calls, emails, or chats) in need of support

• Customers who buy or use a product or feature

• Customers who try a product or feature, but decide not to use it

• Customers who cancel or stop using a product or feature

• Customers maintained, gained, or lost by direct competitors

• Existing customers who benefited by a product or feature change

• Internal employees who benefited by a product, feature, or other completed task

These are just examples of the type of data I will suggest using for metrics. Beyond the
data I cover in this book, there are undoubtedly many other types of data that may
prove useful for codermetrics, too. Given all the possibilities, it’s a good bet that most
of the potential data I probably haven’t fully examined or thought about. There are
some data types, however, that I have personally tried or contemplated, and for various
reasons decided they were not extremely useful or that there were better options, so
they will not be used in this book. Below are a few examples and my reasoning in regards
to some of these excluded data types:

KLOCs
It seems reasonable to think that lines of code (KLOC stands for 1,000 lines of
code) could be useful as a way to measure coder productivity, and by many ac-
counts KLOCs have proven useful in estimation techniques and tools designed to
reduce project estimation errors, especially on larger projects. But in general, I
believe KLOCs are indicative of activity more than identifiable accomplishment,
and I think it is hard to relate this metric to specific team goals, such as customer
adoption or satisfaction or product quality. Another issue with KLOCs is that they
are not uniform across different programming languages. For example, 1,000 lines
of Java takes a different amount of time and requires a different level of capability
than 1,000 lines of Javascript or XML or PHP or Ruby (although theoretically, we
could figure out a way to normalize KLOCs across languages). Finally I think coders
themselves have difficulty in feeling that “lines of code” is an important or mean-
ingful metric in relation to their achievements and successes or failures—and if
coders don’t embrace a metric, then it’s hard to use it effectively as a means to
discuss their skills and contributions. Therefore, for the purposes that are discussed
in this book, I’ve found that focusing on tasks and categorizing the tasks by com-
plexity is more meaningful than using KLOCs.

Development bugs
Bug count is certainly a metric to look at to evaluate code quality. But unlike post-
release “production” bugs, in my experience, there is too much variability around
bugs found during development to make “development bug count” a highly useful
metric. The number of bugs found in development will fluctuate based on the

28 | Chapter 2: Measuring What Coders Do

number of testers, the depth of testing, and the maturity or immaturity of the code
in development. If you start in-depth testing on a complex piece of code early in
the development cycle, you’ll find many bugs, but that tells you very little about
the progress made to that point. You could argue that there are certain sets of
development bugs, such as those found after a coder has deemed a feature complete
and unit-tested, that could make for useful metrics. But personally I’ve found in
practice it’s too inconsistent and too hard to pin down. In the end, I think we can
get the meaningful information we need by just keeping metrics around the com-
plexity of tasks and the time it takes to complete those tasks. That should include
the time it takes to fix the development bugs sufficiently so that the code can be
released. If a coder creates a lot of bugs, then the effect is that their tasks will take
much longer to complete. That coder will typically take longer than another coder,
working on similarly complex tasks, who is methodical but who creates less bugs.

Product revenues
Product revenues (gross or net) are a critical part of business planning and product
planning. Which products you build, which features you add, and which problems
are worth spending time on all require financial analysis. Your budget for software
development is also in most cases directly tied to product revenues. This is all as
it should be. However, as a metric to be used in the software development process,
to measure the success and relative contributions of coders and teams, I think
product revenues are problematic. One issue is that a lot of software has no revenue
(open source and internal projects are two examples). Where revenues do exist,
they are not always tied directly to the software and the work of the software de-
velopment team. They may vary wildly based on discounting, the ability of various
sales people, and many other factors including the national or global economy.
Another significant issue is that using money as a metric can be distracting and
misleading. Everyone tends to focus too much on the money and not enough on
the “purpose” or meaning of the metric. For example, if you charge $2 for a new
iPhone app, and 1,000 people purchased it today, in many ways the customer count
provides more clarity and meaning (and sounds more positive) than the $2,000
gross revenue (which doesn’t sound as impressive). Conversely, if your company
made just one $100,000 sale this week, the dollar figure might sound very impres-
sive but adding just one customer in a lot of businesses would be cause for concern.
My feeling is that it’s useful for the software team in general to be aware of how
product revenues and revenue forecasts are driving product planning decisions,
but as metrics for the progress of a software team’s work I would rather measure
features delivered, conversion rates of trial user to customers, production bugs,
and keep a close eye on the number of users and the amount of usage.

Overall, however, there is very little to lose by exploring new data types and trying them
out. You should be willing to test new ideas. You can expect that highly useful and
reasonably obtainable data will stand out, and you can throw away the rest.

Useful Data | 29

Choosing Data
Finding good data for metrics is a little bit science, a little bit art, and a lot of trial and
error. You face many choices when deciding on which data to use, clearly you can come
up with a variety of measurements that aspire to the same result or equate to nearly the
same thing. As an example, to determine how well a coder does on quality testing, you
could choose to measure the number of test cases written, the amount of code covered
by tests, or the number and severity of bugs found. Or you could measure all the above.

Generally speaking, when I have to choose among multiple measurements that might
be used, I apply the following rules of thumb to decide which is “best”:

• Choose the data that is most easily obtained.

• Choose the data that is easiest for non-coders to explain and understand.

While the first rule of thumb might be obvious, the second rule of thumb might seem
more curious. Why should you care if non-coders can explain and understand the
measurements and data? This rule suggests a specific test for clarity and simplicity,
namely that a non-coder, such as a tester or a technical writer, should be able to un-
derstand the data and how it relates to software development. Since a key benefit of
good metrics is their descriptive power, along with their ability to improve communi-
cation and to help drive desirable behaviors, it is essential that metrics and the data
behind them be easy to grasp. This rule could be rewritten as “choose the simpler
measurements,” or just “keep it simple,” but I like the litmus test of non-coders being
able to explain and understand the measurements and the data.

Consider, for example, how to measure code complexity. One way to do it would be
through a statistical analysis of the source code, which could produce a variety of data
for you to analyze, such as keyword frequency, method lengths, nesting levels, and loop
complexity. Or you could measure the complexity of the code by how long it takes a
coder to change a feature, fix a bug, or by the rate of bugs in the code over time. Per-
sonally, I have favored measuring complexity by time involved and post-release issues
rather than via automated code analysis. This is because the data is generally easier to
obtain and is more “explainable and understandable” by non-coders and coders alike.
In my view, such data will result in metrics that are also more explainable and under-
standable, and therefore will be more powerful and useful, too.

Obtaining Data
There are a number of systems you can tap into to gather data elements. Some may
provide easy access to useful data, especially the development-related systems that you
directly interact with or control. One of the most useful systems for metrics can be your
actual product itself, which if properly instrumented and monitored can provide a
wealth of data on customer adoption and the use or success of specific features and
product changes.

30 | Chapter 2: Measuring What Coders Do

Some systems may be hard to access, usually because they belong to other parts of the
business that you are not normally authorized to use. My experience is that if you
explain the usefulness and purpose of the data to the system owners or administrators,
along with the fact that you don’t need any security-sensitive data, you should get
cooperation. Sometimes you can pull the data directly from the systems, or you may
get it indirectly through regularly generated reports or other documents such as de-
partmental or financial summaries.

In most cases, weekly or monthly collection of the target data will be sufficient, and
most modern systems have the capability to schedule reports and exports. For the data
obtained from systems used to track coder work, such as project or bug tracking sys-
tems, you may choose to obtain data weekly, and you will want to obtain data for
individual coders, teams, and product areas. For the data obtained from business
systems outside development, such as a customer support system, it may be fine to get
monthly summaries, but you will still want data broken down by product areas. Here
are some systems that may provide key data elements:

Project tracking systems

Examples: VersionOne, Greenhopper, Rally, Microsoft Project Manager
Useful data: task counts, task durations, task complexity
Granularity: weekly by coder and product area

Bug tracking systems

Examples: Bugzilla, JIRA, FogBugz
Useful data: post-release bug counts, bug severity, bug complexity
Granularity: weekly by coder and product area

Sales lead tracking systems

Examples: Salesforce.com, Microsoft Dynamics, Siebel
Useful data: opportunity count, opportunity loss count, deal close count
Granularity: monthly by product (and feature where applicable)

Customer support issue tracking systems

Examples: Salesforce.com, Microsoft Dynamics, RightNow, Zendesk
Useful data: support contact counts, support case counts, case severity
Granularity: Weekly by product area

Your software product (instrumented for appropriate monitoring)

Useful data: user activations, logins, feature usage, user errors, performance
Granularity: weekly by product

As you obtain data, you will need to decide how to store it. If you have time to put it
into an actual database, that is great and certainly would help in analysis over time. My
suggestion, however, is to not worry too much about the storage mechanism to start
with. Simply putting the data into spreadsheets—and possibly generating monthly

Useful Data | 31

summaries in presentation slides or documents—is a great place to start. Don’t let
storage concerns stand in your way. Just accumulating the data and putting it to use
will provide a great advantage, even if it is dispersed each month over a set of spread-
sheets and documents.

Spotters and Stat Sheets
Where data cannot be obtained from existing systems, the best way to get it is to use
the same method as professional sports teams—namely spotters and stat sheets.

Pro teams use assigned stat-keepers, called spotters, to watch games and fill out stat
sheets on individual players and on the teams. In some sports, such as baseball, there
may be an official scorer who tracks a number of statistics and who is responsible for
judgment calls when necessary, such as determining if a certain play was a hit or an
error. But even in these cases the scorer usually has spotters assisting them, and in
addition, the teams have their own spotters assigned to keep track of the statistics that
the scorer does not keep. Technology has in some cases automated the statistics col-
lection process, but humans are still needed for many tasks.

Spotters use stat sheets designed by the teams, which are usually just simple forms or
spreadsheets. They mark stats down on their computers, or in the cases where they use
paper (since these sheets are certainly simple enough to use on paper) then they enter
them into computers later. The spotters are trained to know about all the statistics they
track and how to spot them, and they are trusted to enter accurate stats. In some cases
multiple spotters are used, just to ensure or increase accuracy.

This same approach can easily be applied for coders and software teams. First, you
need to identify the data you want to track that is not easily obtained from existing
systems, such as when a coder helps another figure out how to complete a task or when
a coder works extended hours to solve a critical production issue. Second, you need to
set up a stat sheet, which may just be a simple spreadsheet.

Finally, you need to choose your spotters. These assigned team members need to have
enough visibility to track the chosen items, such as a team leader, a project manager,
or a scrum master. They can fill in stat sheets at your desired granularity, for example
weekly by coder and by team. Then this data gets combined with the system-extracted
data that contributes to your overall codermetrics data set. For smaller teams, having
one assigned spotter should be fine. For larger teams, having multiple spotters might
increase accuracy, the same as in pro sports.

It is also certainly possible to have coders act as their own spotters and fill in their own
personal stat sheets daily or weekly. In very small teams this may be the best or only
alternative. Where coders do act as their own spotters, they can be trusted to provide
accurate information, since they know that the data may eventually be shared with the
whole team. In general, you can expect the use of spotters to provide very accurate data
as long as the resulting metrics are not used specifically as grades, and as long as the

32 | Chapter 2: Measuring What Coders Do

metrics are seen as a fair and accurate representation of the work coders are doing and
the achievements of the software team. Overall, using spotters and stat sheets can be a
highly efficient and effective way to gather the data you need.

Fairness and Consistency
One legitimate concern you should have when using metrics is that they are fair, which
means that as far as possible they are accurate and consistent. It’s not necessary to be
perfect, but it’s necessary that the numbers are a fair representation of the truth. If a
basketball player is told he scored six points when he really scored sixteen, then that
isn’t fair and the player or anyone else would quickly ignore such inaccurate stats. But
if a player is credited with a steal in a situation where two players helped knock the ball
loose and a judgment call was made as to which one got the steal, that is fair enough
and small issues like these won’t affect the overall usefulness of the stats.

Data accuracy is generally addressed by making sure your systems are reliable and your
spotters understand what they are supposed to record. It is not that hard to keep track
of accurate production bug counts, for example, or how long certain tasks took to
complete. As far as “judgment calls” go, you can define guidelines for decisions and
adjust them over time.

Consistency in some cases may prove more difficult to ensure. Data can be inconsistent
for a variety of reasons, including general inflation or deflation of a common range over
time, or the differences between teams in subjective ratings such as severity or com-
plexity. As development tools improve or coders use higher-level programming lan-
guages, for example, the time it takes to complete more complex tasks goes down. And
one person may decide that a specific task is medium complexity while another person
thinks the same task is high complexity.

Normalization and calibration are two techniques that you can use to improve the
consistency of your data. Calibration is the process of removing “subjective” inconsis-
tencies introduced by people’s ratings, and normalization is the process of removing
“non-subjective” inconsistencies that occur between groups or over time.

A product that has 1,000 users might naturally have many fewer calls to customer
support than a product with a million users. If you want to analyze the support incident
metrics across these products, rather than using the raw count of customer calls you
might instead normalize the data by looking at “calls per 1,000 users”. As another
example where normalization might be used, consider a development team that has
large productivity gains over a period of years due to the evolution and maturation of
libraries used. A new product feature might take one-quarter of the time than it did
before thanks to better libraries or code reuse. If you want to compare productivity
metrics over time, you can normalize the data based on the average productivity for
each time period. Table 2-2 shows an example.

Useful Data | 33

Table 2-2. Data normalization helps us make better comparisons across projects

 Total Users Total Support Calls Total Bugs Reported Calls Per 1K Users Bugs Per 1K Users

Product A 57,850 518 86 8.95 1.49

Feature 1 12,378 187 31 15.11 2.50

Product B 6,582 54 28 8.20 4.25

Feature 2 758 22 8 29.02 10.55

This is similar to the way statisticians compare different eras in sports. In baseball’s
“dead ball” era of the early 1900s, it was much rarer for players to hit home runs than
it is today. There were multiple reasons including the use of more worn balls, the size
of ballparks, and rules of the game that have since changed. Knowing this, and knowing
that 30 home runs in a season was almost unheard of at the time (Babe Ruth set the
league record with 29 home runs in 1919), statisticians can compare home run hitters
of different eras by normalizing the data. For example, rather than raw home run counts
they can look at ranking among peers, or they might treat every home run in the dead
ball era as the equivalent of two in more recent years.

Calibration can be used to correct inconsistencies that may arise when some element
of subjective ratings is included in your data. Many organizations use a calibration
process in performance reviews (which in the end contain much subjective content),
and a similar process can be used here. One typical approach is to conduct an in-person
meeting, where all the people handling the ratings convene to review each other’s rat-
ings, and to decide whether any of the ratings should be adjusted to make them fairer
and more consistent across all groups. The goal is not to review individual ratings, but
to review the criteria and rating scale that each group is using, and finally to “calibrate”
to a common scale.

For example, if you have three agile software teams and each one rates the complexity
of tasks using t-shirt sizes (Small, Medium, Large or X-Large) you might have the scrum
masters and team leaders meet to review the current and upcoming task ratings. If one
person or team has a tendency to categorize tasks on an easier or harder scale, such as
listing tasks as X-Large when other teams would typically call similar tasks Large, then
these meetings should identify these differences. The group can discuss the differences
and decide how to adjust so that everyone tries to use the same criteria and scale. Even
one session of calibration might be enough to establish a common scale.

Timeout for an Example: Metrics and the Skeptic
The grizzled, seasoned coder on our team gave me that look. Just a little eyebrow raise
and a smirk. Sure, that look said, go ahead and tell these young guys about metrics,
and how they are going to help us improve as a team. I won’t spoil it, his silence foretold,
I won’t say anything, but his raised chin let me knew that he wasn’t buying it. He was
a skeptic.

34 | Chapter 2: Measuring What Coders Do

One month passed. We had a team meeting, and I showed everyone a set of company
and product metrics. It showed how our product was doing, how we compared to the
competition (as far as we knew), and how individual features were being received. We
focused on the features we had implemented in the last six months. Everyone was very
engaged. It was the liveliest team meeting we’d had the whole year. Our grizzled coder
even made a couple of comments.

Another month passed. We had another team meeting. This time we looked at updates
of company and product metrics, but we also looked at team metrics taken from our
recent sprints (we used agile methodology so we worked in incremental “sprints”). We
had just released a new feature. We speculated about how our team metrics might
correlate to the reception of the new feature and which metrics we thought might be
significant and why. The grizzled coder said the complexity of the work that we did on
the feature in the final sprint probably was too high, that he expected our testing prob-
ably had missed issues, and so we would probably see a decent influx of issues found
in production. Our QA Manager pointed out that we had completed all our planned
tests and a full round of regression, but we all agreed that there was likely cause for
some concern.

Two more months passed. Now we had good data on the customer reception for the
new feature, which was solid although not spectacular, and the issues found in pro-
duction. Our coder had been right. The rate and complexity of issues on the feature
was clearly higher than on other features we tracked. Most of those issues had been
fixed by that point, but still the team took note for future consideration. For the first
time, we also started looking at individual coder metrics. We looked at complexity of
work done in sprints, including feature development and product bug fixes. We looked
at interruptions that each coder dealt with, and we looked at how many different parts
of code everyone worked on. We looked at how many times a coder helped someone
else, which we called “assists.” We also looked at these metrics aggregated by team.
We discussed how these might correlate to team goals, team success, product success,
and company goals. We agreed in coming months we would continue to watch these
metrics to see what we could learn.

Some interesting metrics stood out, and some team members commented on them. For
example, a few coders had very high total workloads, but the average complexity of
items they worked on was low. Other coders had the opposite, meaning smaller work-
loads but high average complexity. No conclusions were drawn from these, we just
found it interesting and some wondered aloud whether this seemingly uneven distri-
bution of task complexity was a good thing for the team. Another fact that stood out
was that some coders had a very high number of “assists,” while other coders had none
at all. We talked about how we had measured this, letting team leaders act as spotters.
No one seemed to have a problem with that. The seasoned coder didn’t say anything
at all.

Timeout for an Example: Metrics and the Skeptic | 35

Two days later, however, he walked into my office. “Dang,” the coder said. “A bunch
of the guys are helping the younger guys a lot. I didn’t have any assists—I wasn’t helping
out. I just wanted you to know I got it. I’m definitely going to do my part.” And that
was it.

Another skeptic converted.

36 | Chapter 2: Measuring What Coders Do

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

The Right Data

The big challenge is to measure the right things.

—Michael Lewis, from his article “The No-Stats All-Star”

Before you have metrics, you need data. For “good” metrics, you need the “right” data.
This chapter will help you choose the data you want to collect and use to improve the
performance of your software team and the people in it. I’ll start by helping you decide
what questions you want to ask, which in turn will help you determine the data you
need to collect.

The first section of this chapter covers key questions that you might ask about coders,
software teams, and software projects or releases. These are the questions that you
would want metrics to help you answer. The second section of this chapter dives into
the data sources and data elements that can be used to create metrics that will, at least
in part, answer the key questions. All of this is to lay the groundwork for the specific
metrics that will be covered in detail in the coming chapters.

Questions That Metrics Can Help Answer
The first step in building metrics is to think about the key questions that you want to
answer for coders and software development teams. To create meaningful and useful
metrics, you need to have an idea of what you are looking for. Some of these questions
are obvious, some are not. Once the set of questions are determined, you can determine
what data is available, and among the available data which elements would be the best
to help create meaningful metrics and to serve the overall purpose of helping you to
learn about the patterns of successful teams.

37

How Well Do Coders Handle Their Core Responsibilities?
Sports statistics begin with the basics. In baseball, this means measuring individual
accomplishments such as Hits, Home Runs, Runs Batted In, or Runs Scored. For
pitchers, it means tracking Hits and Runs Allowed. In basketball, we begin with basic
offensive statistics such as Points Scored or defensive statistics such as Blocked Shots.

How well do coders write code?

The most obvious thing that coders do, of course, is write code. Some code may be
excellent, some may be poor. Some might be beautiful, and some might be just good
enough. Some coders might write a lot of code, and some might write a little, maybe
because that’s all they were required to do. Some coders follow a certain style, some
don’t, and some edit their code after the first draft to make it better. Some may write
code every day and some only once in awhile. But if you don’t write code at all—well
then, you’re not a coder.

How well do coders design their code?

Coders also design code. Even if they are not explicitly identified as designers or ar-
chitects, every coder makes design decisions in nearly every line of code they write,
from variable names to syntax. And certainly when creating new objects and methods,
design is central to the coding process. The design of the code may conceptually stand
prior to and apart from the code, but in the end it is a part of the code itself. So it too
may be excellent or poor, beautiful or maybe just good enough. Some coders are re-
quired to do more design than others, but every coder must do design.

How well do coders test their code?

And so too with testing—the coder who never tests code probably never was a coder,
or isn’t anymore. If the code is compiled, there’s a syntax test every time the compiler
is run. Beyond that, every coder tests at least some part of their code at least once. Some
coders make test development and writing tests a key part of their work, an extension
of the coding itself. Some coders use analysis and simulation tools. Some coders are
detailed and thorough testers, while others do very little or just enough.

How Much Do Coders Contribute Beyond Their Core Responsibilities?
Beyond the obvious, there are many other things that coders do that are important to
the success of projects and the software development team. These less obvious things
are equally important to consider as the basics of code, design, test. In sports, the less
obvious statistics have proven very valuable in determining key ways that players con-
tribute to team success. For example, in baseball it is very useful to know how selective
a hitter is in the pitches they swing at, or how much range fielders have in getting to
balls hit near them.

38 | Chapter 3: The Right Data

How many areas do coders cover?

Some coders are required to demonstrate “range” when they need to move from one
area of code to another or from one type of work to another. For most coders this
happens at a gradual pace, over longer periods of time. For example, a coder may work
on a specific area of code for a few months, then move on to another while perhaps still
maintaining the previous area of code. Some coders, however, must juggle multiple
areas simultaneously. For instance, a coder might be bug-fixing for multiple features
while also improving build scripts and updating the installer code.

How effectively do coders take initiative?

Another important thing some coders do is take initiative. If there is a problem or an
opportunity, they see it and they take it on themselves to address it and get it done.
Often these actions may be unplanned and unscheduled. A different type of initiative,
but also important, is when a coder makes the effort to point out something that is
wrong, or about to go wrong, to other members of the team. This could be coming
forward proactively to point out a piece of code that someone else has written that
needs work, or it could be telling a team leader or manager about some problem, maybe
even a personal problem with another team member. When coders do take such ini-
tiative, it is noteworthy, so it is worth mentioning here as something you should con-
sider measuring.

Do coders innovate?

Closely related to initiative is innovation. Coders often come up with unique solutions
or improvements, or new capabilities that weren’t thought of before. Sometimes the
benefits are small or marginal, but sometimes they are great. As with initiative, some-
times innovation comes from one coder alone, and sometimes from multiple coders
working together. Innovation can obviously be a strong contributor to project success.

How well do coders handle pressure?

Coders also sometimes have to deal with pressure and stress. This may be in the form
of looming deadlines or having to fix critical production issues. In different environ-
ments the fluctuations and frequency of stress differs, so what is considered “high
stress” versus “normal stress” will be relative. For example, in a bootstrapped start-up,
what is considered normal stress might drive some coders crazy. But from time to time
many coders do have to deal with pressure, and these situations can be especially crit-
ical, much like the last two minutes of a basketball game, the fourth quarter in football,
or the bottom of the ninth in baseball.

Questions That Metrics Can Help Answer | 39

How well do coders deal with adversity?

Similar to pressure situations, but worth calling out on its own, is adversity. Lucky
coders will never have to deal with adversity, which can come in many forms. The
failure of a product. Financial troubles at a company that result in layoffs on the soft-
ware team. The illness or death of a team member. Some coders do have to deal with
adversity, and to succeed they will need to make it through or bounce back. This is
worth noting as an item to consider for metrics, too.

How Well Do Coders Interact With Others?
The other aspect to consider about coders is how they interact with others, including
other members of the team, team mangers, and people outside the team such as support
personnel or customers. How well members of the team interact and help each other
is an important part of success. In basketball and hockey, the statisticians pay close
attention to teamwork, such as tracking assists and measuring how well certain com-
binations of players do together. Tracking and measuring teamwork is a way for you
to better understand which interactions are most meaningful for team success, and to
help you focus individual team members on the positive interactions that you want to
encourage.

Do coders demonstrate leadership?

Leadership on any team is important. To lead means to help others see the goal, the
way to reach the goal, and to help them along the way. Some coders may be assigned
leadership responsibilities, and some coders may just provide leadership within the
team. In some cases, they may lead an entire project or sometimes just a particular task.
Many forms of leadership are subtle, such as when a coder influences others by working
hard during a period of adversity. Whether you measure it directly or indirectly, you
want to pay attention to times when coders provide leadership—and the results.

Do coders inspire or motivate their teammates?

Sometimes leadership also involves inspiring and motivating others or lifting team mo-
rale. Some coders also lift others’ morale even though they are not typical leaders. They
might do this by telling jokes, keeping a happy attitude during stressful times, or by
demonstrating passion about a project in team meetings. They might help arrange a
beer bash, a foosball tournament, or some other type of team outing or party. It might
be something they do from time to time, or it might be a constant effect that comes
from their personality. The effect that a coder has on team morale is another type of
interaction to keep in mind as we think about what we measure.

40 | Chapter 3: The Right Data

How well do coders mentor others?

A different form of leadership, worth noting by itself, is when a coder mentors others.
Again, for some this may be an assigned role, and for others this may be something
they just choose to do, or that they do as a matter of course in their regular work. Most
of us think of a mentor as a seasoned veteran who transfers knowledge to younger
coders to help them progress quickly. But mentoring does not always follow traditional
patterns. In our line of work, with ever-changing technologies and programming lan-
guages, in many cases it may be the younger coders who mentor the seasoned veteran.
Mentoring and the results of mentoring, in its various forms, is another important factor
in team success and, therefore, something to address in metrics.

How well do coders understand and follow directions?

While some coders may never be leaders or mentors, every coder must be able to take
direction. Accepting a defined role and completing assigned tasks is fundamental to
coders working within a software development team. Implicit in being able to take
direction is the ability to understand direction, to grasp the bigger picture and how
one’s individual role and tasks fit into that. A coder who lacks such understanding is
more likely to misinterpret direction or to make individual decisions that are not con-
sistent with the intended direction. The resulting work is unlikely to meet the intended
goals. It is well worth considering how to capture this in metrics, because following
direction and understanding goals is certainly critical to success.

How much do coders assist others?

Every member of a team has opportunities, from time to time, to help others on the
team. A coder, for example, may assist another coder by helping them find the cause
of a bug or by discussing implementation alternatives and helping to choose the right
one. There are also opportunities—and sometimes needs—to assist people outside the
team. A coder might help a support person or salesperson understand how a new fea-
ture works, or they might help someone diagnose a product configuration problem.
This in turn might help the coder learn about ways to improve the software. Assistance
that coders provide within the team or outside the team often improves the team’s
chance for success, and therefore these are important interactions to track and measure.

Is the Software Team Succeeding or Failing?
Unlike sports, where every team strives to win and the definition of success is clear and
precise, in software development we lack exact measurements of success. The best
strategy I have found is to triangulate the success of software development teams based
on three factors: customer response, quality indicators, and efficiency. Each of these
can be measured, release by release and feature by feature, and evaluated against prior
levels, team targets, and organization goals.

Questions That Metrics Can Help Answer | 41

What is the user response to each software release?

To start, you might measure that customer adoption of a new release is up 20% over a
three-month period. You can compare that to established goals. Performing this type
of examination for customer response, quality indicators, and efficiency, provides the
team an objective and well-rounded way to analyze team success. Historically, product
managers have been tasked to gather some this kind of data, and in fact you may obtain
some or all of the data from your product management team. I believe, however, that
this data should be examined more regularly and carefully by the software teams them-
selves, and that you should seek to gather it whether or not you have product managers
to assist. Establishing a way to measure progress and success is fundamental to being
able to identify the patterns and contributing factors that lead to software team success.

The first part of measuring success or failure, then, is to measure response. Customer
or user response includes clear demonstrations of interest, as when a customer tries or
tests a product or feature. It includes adoption, as when a customer registers for a
product, or chooses to buy or actively use a product or feature. It’s also important to
measure negative responses, such as when a customer chooses to discontinue use of a
product or feature, or when a customer tests a product or feature but then decides not
to use it. Obviously, some customer choices are not directly reflective on the software
development team, for instance a customer may choose not to buy the product based
on price or some other factor outside of the product itself. However, because we lack
more precise ways to measure product success, customer interest and customer adop-
tion, or lack thereof, is the best indicator most of us have. Customers may be people
who pay for the service, or they may be non-paying users. They may also be internal
users, in a situation where the software development team is delivering tools or projects
for use within their own company.

Many people associate product success with product revenues. Current and estimated
product revenues are clearly important for establishing budgets and for product plan-
ning, and to a certain extent it can be very healthy for coders to be aware of these
revenues and forecasts so they know why business decisions and product planning
decisions are being made. But in terms of regular metrics that the software team itself
will track and refer to, I don’t like using product or feature revenues. Obviously, there
are certain cases where revenues cannot be used, because certain products or features
may not be charged for. But even in cases where revenues exist, I believe that it is better
to focus on the number of users and the amount of usage. I feel that when looking at
revenues, people tend to focus too much on the cash amounts (which can also cause
them to overfocus on revenue-related metrics instead of other equally or more impor-
tant data). Also, people are overly impressed by large revenues and underwhelmed by
small revenues, but neither may be an accurate indicator of success or failure. For
example, if a product makes $10 million, that sounds really impressive and the software
development team might feel pretty good about itself regardless of anything else that’s
discussed. But if this represented a 10% decline in customer adoption and was 33%
below organization goals, the team should be concerned. Just looking at the large

42 | Chapter 3: The Right Data

revenue figure might cause coders to not fully appreciate how poor the results really
are. Or take the alternative case where a product only earned $5,000. The team might
not feel too good about itself or the results, regardless of whatever else you might say.
But if this represents a rapid increase in customer adoption (maybe it’s a mobile phone
application that sells for $2) then this might be a great result. By focusing on the number
of users rather than the revenues, you eliminate or at least reduce some of these sub-
jective side effects. There are certainly times when discussing revenues can be useful,
but as a metric that a software team will review frequently, I think it is distracting.

How is the software doing versus competitors?

While I don’t suggest using product revenues, I do recommend trying to figure out how
your product ranks versus competitors. This is another way to evaluate how your
product is doing in terms of customer interest and response. To the extent that you can
obtain the data, you might rank your product versus competitors on features or user
adoption. There might also be third-party competitive analyses you could use. How
you rank, of course, is not only attributable to the coders and the software development
team. Marketing, sales, and many other external factors including the size of your
business and how long you’ve been in business may affect your product’s competitive
position. Competitive ranking, therefore, should not be your only measure of success,
but one more input for you to evaluate when determining your relative level of success.

What is the quality of each software release?

Another part of measuring success is to measure software quality. Typically you will
have one very good measure of this, which is the number of bugs found in production
releases. The amount and frequency of customer support issues can also provide you
an indirect measure of product quality, as well as of customer sentiment. Success or
failure will be determined by examining the trends of these quality measurements, and
comparing them to your goals. Over time, the trend of quality measurements reveals
not only a lot about the success of each subsequent release, but also the success of the
software architecture and design.

How efficiently does the team deliver new software releases?

The last factor to measure in determining the success of software development teams
is efficiency, meaning how much functionality the software team is able to deliver in a
specific time period, working within budgetary constraints. The team’s efficiency and
speed of delivery can be measured against past performance and against team goals to
determine the level of success. A team that is very inefficient may not be considered
successful even if it achieves good quality and positive user response. And a software
team that delivers releases on time, but has poor customer response or bad quality is
also not a success. This is why I suggest looking at all three areas: response, quality,
and efficiency.

Questions That Metrics Can Help Answer | 43

Timeout for an Example: An MVP Season
In sports, there is an award called Most Valuable Player (MVP). It may be awarded
within a team or judged across all players in a league. The concept is simple—to award
the player at the end of a season who was determined most valuable in helping their
team win. When judged for a league, the award may go to the player who was consid-
ered the best overall in the league.

I have wondered whether it would be worthwhile to award an MVP on software de-
velopment teams. Maybe awarded on an annual basis, it could be used as a way to
highlight and reward team-oriented skills. Designating an MVP might reinforce the
value of measuring coder contributions to the team, since these metrics would be em-
phasized in making the case for the recipient. I could imagine giving out some sort of
plaque, maybe even a monetary award. But I’ve never done this. I’ve never been
completely comfortable with individual “public” awards, since I worry about creating
resentment or other issues that would actually be detrimental to the team. Still, team-
oriented awards like MVP are worth considering.

Although I’ve never given out an MVP award, I do have a story to share about one coder
who clearly would have deserved the award if it existed. In this case, it was so clear that
I don’t think it would have generated any controversy or jealousy within the team, but
would have been seen as a well-deserved and positive reward.

We were a one-product start-up, and we had just finished our second release. In the
six months following that release, this coder I am thinking of did not work on a single
new feature or enhancement. That’s because there wasn’t time, since during that period
the coder had to:

• Spend approximately 15 hours per week responding to emails or handling support
calls with new customers and prospects, including calls to far regions in different
time zones at strange hours.

• Travel five times to customer locations to assist in large-scale deployments.

• Diagnose and fix over 30 serious product bugs.

• Make our product work with “older” technologies that key customers still had
running.

• Tune performance on key backend processes that were dealing with many more
records and more complex interactions than we expected to hit so soon.

There were a number of reasons why this particular coder took all this on. The coder
was the lead on the configuration and backend integration elements that were critical
to large deployments, and that area required the most support. Many of the bugs fell
into this area too because the integrations dealt with many unforeseen and untested
scenarios. Also, this coder was particularly good at working with our support team and
our field engineers, partially because the coder had a great personality, and partially
because the coder enjoyed providing support. Finally, the coder was young and single,

44 | Chapter 3: The Right Data

so working strange hours and making last-second trips did not cause any personal
problems—and again in some sense, was something the coder enjoyed.

During this time, we converted more than two dozen prospects that this coder directly
helped with, and the vast majority became long-term, satisfied customers. All the bug
fixes and related improvements that the coder implemented were an important part of
enabling the product to go on to further success, and in general the coder’s work during
this time shielded other team members, allowing them to continue on with product
enhancements.

There is no doubt that this coder was the team MVP for that “season.” While, as I said,
I have never actually given out an MVP award, I’ve found it a useful concept to keep
in mind when evaluating the breadth and depth of metrics. My theory is that any system
of metrics I use should be descriptive and accurate enough so that it could be used to
make the case for team MVPs. Applying this theory, it is clear that there should be
metrics that track support activities, and make special note of exceptional effort, such
as off-hour work or travel. Also, in my mind I can’t identify the MVP if I don’t have
metrics that cover post-release work, such as production fixes and product tuning. And
since any MVP must be measured by the contribution to the organization, clearly there
should be metrics that appropriately track and value the assistance that coders provide
in converting opportunities to deals, and in enabling future product adoption for cus-
tomers who have similar needs.

The MVP in my example clearly stood out among the team in his value to support,
value to his teammates, value to the customers and value to the business. Whether or
not you choose to give MVP awards to coders, you can check that your metrics are
inclusive and meaningful enough that, were you to choose an MVP, the data you’re
collecting would help support your choice.

The Data for Metrics
Having explored the key questions that metrics can help you answer, the next step is
to determine the specific data elements and the means to gather them. You want to find
the key data elements in each area that meet the goals of being obtainable and under-
standable and of providing explanatory power. These data elements will be the building
blocks for the subsequent metrics.

Data on Coder Skills and Contributions
To measure coder skills, you want to obtain data and key indicators for all of the obvious
and not-so-obvious things coders do, as well as the variety of ways that coders interact
with each other. The data should provide a full and well-rounded picture of all the skills
that individual coders may possess and measure the key ways that coders contribute
to software projects and software teams.

The Data for Metrics | 45

Productivity

By productivity, I mean specifically the amount of work done, which is separate from
the speed or quality of the work (both of which I’ll examine later). For coders, basic
productivity will focus on the obvious things that coders do, namely coding, design
and testing.

There are a number of ways you could try to measure coder productivity. As it pertains
to writing code, for example, you could measure lines of code written (LOCs) or non-
comment source statements written (NCSSs). You could track objects, functions, or
methods implemented, or you could track other individual items created such as serv-
lets or database tables. You could measure version control submissions.

Among the options for measuring productivity on work completed, I believe the easiest
and clearest way to track is by counting the individual coder-assigned work tasks that
were completed. A task may equate to a feature or enhancement, or part of a feature.
A task may also equate to other work, such as design, investigation, writing tests, or
bug fixing (although you may choose to group different types of tasks under different
metrics). The “task” is the unit of work that is used to organize, plan, and manage coder
work and software projects.

To differentiate among the amount of work contained in each, I believe it is also nec-
essary to rate every task for complexity. Complexity ratings can be assigned in planning,
but they can also be assigned or adjusted after the completion of tasks. Since they are
an important part of the productivity data used for metrics, it is important that the
ratings be consistent, meaningful, and fair. The complexity rating is based on an
evaluation of the size and difficulty of the task broken down into a straightforward
categorization system, such as Small, Medium, or Large. The complexity should be
evaluated and defined independently of the coder who is assigned the task. So if you
rate a task as high complexity, that rating should remain the same whether it is assigned
to a very experienced coder or a novice. For this reason, it is best to not use “estimated
time” or “actual time” as the complexity rating, since coders will complete tasks in
different amounts of time based on experience and skill.

Each task must fit within the defined complexity scale. For example, if I am using a
complexity rating system based on a scale of one for very simple to five for very complex,
then all tasks must fit within the range. Tasks assigned a one should be of similar
complexity, and tasks assigned a five should have a similar level of difficulty. If my team
has smaller tasks, meaning tasks that are less than a one in complexity, then I will
combine such tasks together with others to create a single task that meets the minimum
complexity rating of one. If my team has defined tasks that are much larger and therefore
exceed the level of difficulty normally assigned a rating of five, I will break those down
into smaller tasks so that no single task exceeds the maximum complexity rating of five.

Utilizing this higher level concept of “coder tasks” rated by “complexity,” is the most
consistent way I’ve found to measure productivity across projects and across different
types of work and various programming languages. Part of what makes this true is that

46 | Chapter 3: The Right Data

it fits the way many teams already manage projects today. Many of us already have a
system for defining, rating, and managing tasks. For example, if we are using Agile
methodology, we probably have a project management system where tasks are entered
and tracked (as stories) and are rated for complexity (using story points, t-shirt sizing,
or some other method). Some teams keep track of development tasks in a central
database or bug-tracking system, where new features, enhancements, and bugs are all
tracked together.

The critical factor is to make sure that all development tasks are defined and that they
are rated for complexity in a reasonably consistent manner. Once the tasks are identified
and the results are recorded, then it becomes possible to measure productivity among
coders on different projects, or between coders who do different types of work (al-
though certain types of work may turn out to have inherently different rates of pro-
ductivity). You might see, for instance, that Coder A completed twenty user interface
development tasks on a project with an average complexity of two, and Coder B com-
pleted ten backend development tasks on the project with an average complexity of
three. I will later inspect in more detail how we might use such data. But the point I
want to make here is that, personally, I have found this provides more plentiful and
useful data on productivity than aforementioned options like LOCs or NCSSs.

If multiple coders work on a task, I prefer to simply divide the task into multiple tasks,
one for each coder. In this case the complexity is also divided. I prefer to divide com-
plexity equally, since it is usually difficult to accurately assess the proportion of
complexity handled by each coder. So, for instance, if two coders are working together
on a task that has a complexity rating of four, for tracking and measurement I would
treat this as two tasks, one assigned to each coder, each with a complexity rating of two.

In my view, bugs found and fixed during development do not need to be separately
tracked. If a coder is working on task A, and prior to release the coder fixed ten bugs
found during development, from a metrics perspective that work can be treated as part
of completing the task. Bugs found post-release, in production, are a different matter.
For those that are deemed serious enough to fix, they will need to be assigned to coders
for investigation and fixing. These can and should be tracked with appropriate com-
plexity ratings just like any other coder tasks.

I suggest tracking coders’ work on design and investigation in exactly the same way as
their work writing code. Tasks can be defined for design and investigation activities
and rated on the same scale of complexity as other coder tasks. I believe this is highly
appropriate, because in the end it is often impossible to separate design and investiga-
tion work from the actual coding tasks themselves. Even in cases where design is done
prior to the coding tasks, many times coders will spend additional time on detailed
design elements and further investigation once they begin the actual coding. For smaller
tasks, coders often plan them exactly this way, assuming that the design and the coding
will be done together.

The Data for Metrics | 47

Measuring coder productivity in testing is a trickier matter, particularly because dif-
ferent coders often have widely different approaches to testing and test development.
Despite the best intentions and management directions, in my experience some coders
are more consistent in testing and in developing automated tests than others. Schedule
pressures may also come into play with coders spending less time on testing when
deadlines loom.

I suggest two ways to track the work that coders do for testing. For work that will be
done at the same time as a coding task, the testing and test-development effort should
just be factored in to the complexity rating for the task. If your team is following test-
driven development principles, or if coders are responsible for certain automated tests
or other testing, then this work and effort does not need to be tracked separately from
the tasks themselves. Again, the main issue is that complexity ratings for tasks remain
consistent and meaningful. If all tasks have a consistent amount of test effort involved,
then this should be straightforward. In cases where the test development or testing
effort is particularly complex itself, I suggest taking this into consideration and then
adjusting the overall complexity rating of the task accordingly.

In the case where testing or test development work is done separately (as a standalone
effort), then these should be tracked as separate tasks, rated according to the complexity
of work involved. For example, if an area of software does not have sufficient automated
testing, and you decide to go back and develop the tests, then this should be tracked
and rated just like any other code work.

Using this method, tracking productivity and work done for coding, design, or test-
related activity, becomes a process of tracking the tasks and the complexity of tasks
completed by each coder and each software team.

The other thing to consider is what to do when a coder fails to complete a task. Failure
could be outright never completing a task, or it could be that the coder only partially
completed a task. In either of these cases, the task may remain incomplete, or another
coder may complete the task. First of all, I have found that it’s useful to keep track of
how many tasks each coder fails to complete. This is simply a count of “failed tasks,”
with no complexity rating. The other adjustment is that if a task is partially complete,
then the complexity rating should be adjusted at the end. For example, if a coder com-
pletes the main work on the task but fails to complete the expected automated tests,
then the complexity rating for the task might be reduced to Medium from High.

To summarize, these are my recommendations for gathering data on coder
productivity:

• Track design, coding, and testing as individual tasks.

• Establish a complexity rating scale for tasks, and rate every task.

• If tasks don’t fit within the complexity scale, then combine or divide tasks
accordingly.

48 | Chapter 3: The Right Data

• Adjust the complexity ratings after tasks are completed, for accuracy and
consistency.

• If multiple coders work on a task, divide the task equally among them for tracking
purposes.

• Do not track bugs found and fixed during development.

• Track production bug fixes separately, the same as you would for any other tasks.

• Design, testing, and test-development done concurrent with coding should just be
combined within each task.

• Track standalone design, testing, or test-development separately, the same as you
would for any other tasks.

• Keep track of how many times a coder fails to complete a task.

• Adjust the complexity rating (down) if a task is only partially completed.

Speed

Speed is a coder skill that may be good or bad (faster work is not always better work),
and I suggest measuring it independently. When you look at speed metrics along with
qualitative metrics, you can analyze whether speed correlates to certain outcomes. For
example, you can see whether coders who work faster are delivering software that has
more problems or maybe the other way around. Individual speed and the results of
speed will of course vary for coders and that may be instructive in itself.

Once you have decided how to track productivity, measuring speed is a simple matter
of keeping track of how productive a coder is during a specific period of time. If Coder
A, for instance, completes five tasks over four weeks with an average complexity rating
of three for each task, then you could say that the coder’s average speed per week was
1.25 tasks, and .75 complexity of work.

I suggest tracking speed in weekly or biweekly increments, making sure you have re-
corded the amount of work done (productivity) by each coder during that time. Hourly
tracking is too small and too onerous for many tasks, and daily is probably more de-
tailed than necessary. If you have a regular schedule for planning and review, such as
weekly planning, or two-week agile sprints, then it may be easiest to track coder speed
at these “built-in” checkpoints. Like all things with metrics, what really matters is that
you pick a measurement duration and stick with it consistently.

The following, then, is what I suggest for measuring coder speed:

• Track speed weekly or biweekly, or using some other consistent time interval.

• Measure speed as the work done (tasks and complexity) by each coder during each
time interval.

The Data for Metrics | 49

Accuracy

Accuracy is obviously a highly desirable coder skill. It is a critical element of quality
that reflects directly on the design, coding, and testing done. Measuring accuracy serves
as a key quality metric, although it’s not the only quality metric. It’s certainly possible
to produce software that has no bugs and meets all the defined requirements but that
no one likes. To gather a more complete picture of quality, therefore, you must also
look at user response, as I’ll discuss more later.

To measure accuracy, I like to focus on post-release production issues and bugs. As
discussed in the previous chapter, I don’t believe development bugs serve as a useful
metric. There is too much variance in development bug counts based on timing and
depth of testing. I believe the best way to account for development bugs from a metrics
perspective is to make sure that tasks are not considered complete until development
bugs are fixed.

Production issues can range from dramatic problems like crashes or downtime for hos-
ted systems, to very small problems like misspelled error messages. Each issue should
be tracked, and as far as possible, each product area and individual coders assigned to
each area should be identified. Each issue should be rated for severity on a consistent
scale, based on the impact to the customers and users. Many software teams already
have such a rating system for bugs—but if you don’t, I suggest a simple scale such as
one to five, where one is Very Low impact and five is Critical.

Of particular note are “regression” bugs, which are production issues where something
that worked before is partially or fully broken. Regression bugs can be particularly
harmful to the perception and confidence of existing users, and therefore even though
the actual issue may be trivial the overall effect may be more severe. In general, you
want coders to be particularly careful about avoiding regression bugs. I suggest that
you consider rating regression bugs with a higher level of severity than they otherwise
might receive. For example, if a product issue is discovered that would normally be
rated Medium severity, you might actually rate it as High severity if it is a regression.

It is also useful to keep track of how many customers (or what percentage of customers)
are affected by a particular issue. A crash bug is a severe issue but it is even more severe
if all customers are experiencing it as opposed to just one. I suggest you rate the severity
of issues in respect to the customers who are reporting the issue, but that you also
separately track the estimated percentage of customers experiencing (or assumed to be
experiencing) each issue. This percentage may get adjusted as you learn more.

It may not be possible, especially at the time that issues are found or reported, to de-
termine the exact product areas involved or the specific coders who have responsibility.
This is understood, but in my experience this is not a major problem. Only a relatively
small percentage of issues will be unclear or unassigned, so this will not introduce
significant errors in the data. Over time, the more important issues will get investigated
and assigned, at which time you can make sure the metrics are adjusted to reflect the

50 | Chapter 3: The Right Data

findings. So, in the end, at least for the higher priority and more severe product issues,
it should be possible to gather good data.

In some cases multiple coders may be responsible for a product issue, and the coder
assigned to fix the issue may not be the one (or only) coder responsible for the problem
in the first place. If multiple coders are responsible for a product area that has an issue,
then bugs in that area should be tracked for all of them and divided equally among
them, regardless of who will be responsible for fixing the bugs (which will be tracked
separately using productivity metrics). When coders work together on product areas,
it can be hard to pin down the exact percent of responsibility each coder has for a
particular bug. So unless you can clearly determine that a specific coder has full re-
sponsibility for the code related to an issue, I suggest you simply tally the issue equally
for each coder who works on that area. For example, if you find a bug in the backend
that reveals a structural problem in the object-relational mapping area worked on by
three coders, I suggest you track that as an issue for all three coders, where each coder
is responsible for one-third. The ideal is to define a very granular list of product areas
and to identify the coder or coders responsible for each product area. Then making
sure that issues are assigned to specific product areas, you will be associating the issues
to the coders. If three coders are assigned to the object-relational mapping system and
that system has nine bugs with an average severity of three each, then I would track
each coder as having a total of three bugs (total nine bugs in the area divided by three
coders) and total severity of nine (total severity of twenty-seven divided by three
coders).

Product issues include configuration problems, scalability problems, or performance
problems as well as outright coding errors. If the system runs too slow or crashes under
load, then those are product issues that you should track. Again, you will need to define
the product areas involved and the coders responsible.

There is a gray line here, too, since in some cases a customer or user may request an
enhancement or feature change that might be interpreted as a product issue, or you
might realize that there is a system limitation or design flaw that needs to be corrected
before it causes bigger problems. For tracking accuracy, I suggest you focus on issues
that are clearly cases where something that was supposed to be working isn’t. That
means that anything that was in scope on the original task requirements, or should
have been implicit and was overlooked (which might be a design or planning error),
should be included. Anything that was not in scope and was not part of the explicit or
implicit requirements should not be tracked as a product accuracy issue. If, for example,
a customer sees that a page is missing a help link, it is an accuracy error if other pages
have a help link and that page should have had one too. But it is not an accuracy error
if all such pages in the product do not have a help link and were not intended to have
one. As another example, if the product is performing slowly under an anticipated load,
then that is definitely a coder accuracy problem. But if the product is only showing
performance problems under a load that was much higher than anticipated, then that
probably is not something you should track as coder inaccuracy. As the examples

The Data for Metrics | 51

indicate, this line is subjective. However in my experience, I have found that there are
generally only a small number of issues that are hard to categorize. Fair assessments
that also allow for team feedback should result in negligible mistakes in your coder
accuracy data.

Once you decide to fix a product issue, it will be assigned as a work task and rated for
complexity. I don’t believe it’s necessary to rate product issues for complexity before
they are assigned to be fixed. One reason is that it is often hard to determine complexity
until someone investigates or actually works on the fix. While you might argue that an
issue that is Critical severity and Very High complexity to fix is much worse than an
issue that is Critical severity but Low complexity to fix, from the perspective of tracking
coder accuracy I would argue that they are the same. Rating issues based on complexity
to fix can be misleading. For example, if the area that Coder A worked on resulted in
three Critical severity production issues, but all were Low complexity to fix, while
Coder B’s area had two Medium and one Low severity production issues, but all were
High complexity to fix, which coder would you say was more accurate in their work?
Personally, I would say Coder B had greater accuracy because that coder’s “mistakes”
had a less severe effect on users, although in fact it may be that Coder B has more work
to do to fix the issues. Many times, the complexity of a fix is directly related to the
complexity of the area that a coder works on, which again I believe means that rating
product issues by complexity is a potentially misleading way to weight them, and one
that can make it hard to compare accuracy across product areas and coders.

Here, then, are the steps I suggest to track coder accuracy:

• Keep track of all post-release production issues where something that was sup-
posed to be working isn’t, or the system isn’t performing as expected.

• Rate every product issue on a consistent and simple scale for severity to the users,
and consider increasing the severity for regression bugs.

• Keep track of the estimated percentage of customers experiencing each issue.

• Define granular product areas, assign each product issue to the appropriate product
area, and identify the coders who worked on each area.

• If a product issue is assigned to an area with multiple coders, for tracking purposes
divide the issue equally among them.

• Do not rate issues for complexity of the work involved to fix them.

Breadth

In helping to understand what each coder is doing, and how the team is functioning, I
find it very useful to keep track of the breadth of items that each coder works on. Breadth
is a key indicator of the overall complexity of the software that a particular team is
responsible for and the utility that each coder provides. Having coders to cover all the
necessary areas is critically important to the success of any software development team.

52 | Chapter 3: The Right Data

Some coders are better at this than others and some coders are just more willing to
handle multiple areas, so I consider this another coder skill.

The easiest way to track this, I have found, is to use the same granular definition of
product areas that you use to track bugs and to make sure that you track all tasks
according to the product area. This applies to all types of tasks, including design, cod-
ing, testing, or bug fixing. The range of work is thereby tracked along with the
tasks themselves. The breadth of any coder is the count of product areas involved in
tasks they complete.

A different way to track breadth would be to keep track of coder check-ins to your
version control system and to either keep count of the number of source files touched,
or to have a system (automatic or manual) that equates the source files to specific
product areas. My concern, however, about just tracking source files is that it may not
be, by itself, a real indicator of breadth. For example, one product area may have many
small but similar files, and a coder who updates these might touch more files than
another coder who works in two truly distinct areas. If you can equate source files to
product areas, then that provides the same result as my suggestion above. If fully au-
tomated, it would be even more reliable. In my experience, however, manually tracking
product areas with tasks has just proved the easier approach.

To measure the breadth of coders, I suggest:

• Define granular product areas, preferably the same ones as defined for issue
tracking.

• Make sure that every coder task is assigned to one or more product areas.

• Use this data to keep track of how many product areas each coder works on.

Helpfulness

As I discussed previously, there are a number of ways that coders can help others inside
and outside the software development team. The amount of help that people ask for
or require can tell you a lot about the current status of a software product and a software
team. Helpfulness in its many forms is a coder skill, one that some coders may possess
more or be called on for more than others. The amount of help that coders provide to
others can tell you a lot about them as individuals, what they are doing that might not
otherwise be easily noticed, and how they are contributing to the overall success of the
team.

Helping others can include, but is not limited to: assisting another coder in figuring
out how to solve a problem or how to handle a specific task; mentoring a team member;
assisting customers; assisting support, sales, or marketing personnel; coordinating a
team outing or event; helping a team member deal with a personal issue that might
interfere with work; inspiring others; or improving morale. Helpfulness can be defined
as anything a coder does or is called on to do to help the team meet its goals but that
was not part of an assigned or planned task.

The Data for Metrics | 53

I believe it is useful to track two pieces of data here. First, I like to track the number of
times that a coder receives a request and in turn helps someone. These are essentially
interruptions in the flow of a coder’s planned, assigned tasks. These may come in the
form of emails, text messages, phone calls, or in-person visits. No request is too small
to count, so any request for help that applies to a coder’s work qualifies as long as it is
not related to a currently assigned task.

The best way I have found to track this data is the simplest, which is to ask the coders
to report at specific intervals (weekly for example) the number of requests they’ve
received and responded to. Using this approach, the numbers are not going to be com-
pletely accurate. Coders will not track the exact number of requests, so they will
estimate, rounding up or down. Yet these self-reported counts will still provide an
order-of-magnitude measurement of the number of requests that each individual and
the team as a whole receives. Sharing these numbers publicly (with the entire team)
will encourage everyone to be reasonably accurate and to self-normalize the reported
numbers with their peers.

The second piece of data I like to track is the number of times a coder proactively helps
someone without having received any request. As with requests, no help that a coder
provides outside of his assigned tasks is too small to count. To track this, I’ve found it
works to ask team members to act as spotters and to notify the data-recorder (me or
someone else gathering metrics data) when they observe a coder providing help to
someone. In many cases the best person to report, in fact, is the person who received
the help. As described above, help can come in many forms, including problem solving,
pitching in, mentoring, motivation, team-building, and personal support. Since
tracking the proactive positive acts of assistance is probably something you want to
encourage, there are a variety of ways you could implement reporting these acts to make
it more visible and fun. For example, you could have a group mailing list like team-
assists@myorg.com or a blog or wiki where team members can cite others for their acts
of helpfulness. Making them public provides encouragement for the acts themselves,
and the reporting thereof. It also makes tracking simple, since you can just tally the
number of messages or threads citing each coder.

You might wonder whether it’s worth capturing more data about these interactions.
My own experience is that there is surprisingly little benefit in trying to pinpoint who
coders are interacting with (within the team or outside the team), or in trying to identify
the reasons, or in trying to track the exact amount of time involved.

First, I’ve found that more detailed data can be hard to gather. When data is being self-
reported or reported by spotters (team members), asking for more granular data can
backfire, resulting in less data. People are willing to gather and report data as long as
it is easy to do and they understand its potential usefulness. If you ask a coder to give
you a weekly count of the times they were asked for help and the times they see others
providing proactive help, that is easy enough. But once you start asking them to keep
track of where the requests are coming from, who they are helping, and how long they’re

54 | Chapter 3: The Right Data

spending, the difficulty of gathering the data is much higher. For many people, if they
can’t do it right or it takes too much time, then they’d rather not do it at all.

Even if gathering greater detail was possible, in this case I don’t think there are things
you would learn that you wouldn’t already see through other means. For example, you
might think that more detail about the coder’s “helpful” interactions would tell you
more about specific quality or team problems. But any real product quality problems
should quickly turn into bugs or tasks, and team problems (such as a coder having
trouble learning a new technology) will also show up as incomplete or delayed tasks.
In the end, my theory is the things that you’d learn from more detail will show up in
your metrics data in other ways. The helpfulness data is unique, however, in that it
shows you another element of coder skills and team dynamics that is highly relevant
for success.

Therefore, I recommend the following to measure coder helpfulness:

• Have coders report weekly how often they receive work-related requests that they
respond to (above and beyond their assigned tasks).

• Have other members of the software development team report if they receive
proactive assistance from a coder, or if they observe a coder proactively helping
someone else.

Innovation and Initiative

Like helping others, when coders innovate or take initiative to solve problems they can
help the team immensely. I can think of many project I’ve worked on where one or two
innovations, or one or two instances of coders taking initiative to tackle unassigned
areas, became the keys to success. I believe it is very important for codermetrics to
include analysis of these sorts of contributions, under the theory that teams where
coders exhibit these skills are more likely to succeed.

But, just as with helpfulness, innovation and initiative are not usually identified or
tracked in any consistent fashion. So you need to get creative in thinking about how to
measure these. In this case, I believe that team leaders and managers are in the best
position to evaluate which coder actions are significantly innovative and to see when
coders demonstrate notable initiative in taking on unsolved problems or opportunities.
Asking your team leaders to act as spotters, they can report each time a coder demon-
strates noteworthy innovation or initiative.

What qualifies as innovation or initiative? I like to use the “happy surprise” heuristic.
If a coder does something that leaves you or others happily surprised, then chances are
they did something innovative or took initiative in some unexpected way. It is the
combination of “happy” and “surprise” here that is key. If you are just happy, but not
surprised, then probably it means they just did something well. If you are surprised,
but not happy, then while they may have tried to innovate or take initiative your lack
of happiness means that they must have done something wrong (putting this into some

The Data for Metrics | 55

other category that I won’t talk about tracking here). When the magic combination of
“happy surprise” exists, then something noteworthy has occurred and, in my estima-
tion, is worth tracking.

While I think the “happy surprise” heuristic works, it sounds kind of funny to actually
call it the happy surprise data element. I’m not sure you want your managers asking
things (joking here) like “How many happy surprises did you have on that project?”
Or saying things like “Wow, I got a real happy surprise today!” It’s better to have
something appropriately adult and important-sounding (especially since this really is
an important data). Personally, therefore, I refer to these as “adds” or “pluses.”

For tracking purposes, I choose to combine innovation from initiative together, they
are quite similar and often overlap. Remember that a coder can show innovation and
initiative on any task, assigned or unassigned, or when helping others. As with help-
fulness, I believe keeping a count of the times a coder demonstrates innovation and
initiative is enough for useful metrics, and there isn’t anything very meaningful to gain
from trying to gather greater detail about the specific types of innovation and initiative
or the amount of time and effort involved. Again, keeping it simple also makes it easier
to get your team to track.

Tracking initiative and innovation is important, so I recommend:

• Have team members report when a coder demonstrates significant innovation or
initiative.

• Ask team leaders to keep a tally of the number of these occurrences for each coder.

Data on Software Adoption, Issues, and Competition
In addition to measuring coder skills, you need to find key measurements of how well
software is received by the intended audience or by those who work with the software
in various ways (external users, internal users, sales and support personnel, or all the
above). You must gather data that can indicate the success of your software and the
quality of people’s response to your work. You will need to gather data on adoption,
benefits, and problems. You can also evaluate your success relative to your known
competitors.

Interest and Adoption

As a basis for a system of metrics, it is critical for you to determine whether a software
product, project, or feature is received positively or negatively, and also to try to meas-
ure the magnitude of the response. The most basic indicators you can track to determine
response are related to usage. While usage itself may not be an indicator of how much
users like the software (since people may adopt or abandon software for many reasons
of which personal preference is only one), usage trends are certainly one important
measure of response. When looking at software products and how well they meet

56 | Chapter 3: The Right Data

organization goals, measuring interest and adoption is arguably more important than
anything else.

For response and usage, you could rely on data from sources “outside” the core software
development team, such as information you get from your sales team, customer sup-
port, or product management. My recommendation, however, is that response and
usage data is so critical to the software team that, as far as possible, you should be self-
reliant and create your own ability to gather and measure these things. In some cases
you may already have what you need in place; but in other cases, this will take some
work and planning. The good news, however, is that in the age of a networked world,
this is entirely possible for most software developed today.

To track interest and adoption, I suggest that you enable your software to identify and
track users in evaluation (if such a stage exists) and through into adoption and regular
use. This can be done, for example, by collecting data when your software is installed
(for on-premise solutions) or when user accounts are created. By having different in-
stallation packages or types of user accounts, you can distinguish between evaluation
users and “customers”—and from there you can track and report on usage, which can
be done in terms of session durations, page accesses, transactions, or similar categories.
With your software enabled in this way, for any given time period you could track the
number of evaluation users, the number of customers, and the amount of user activity
for each type of user (perhaps even down to specific features or portions of the soft-
ware). Ideally, if you keep track when every user account is created, you can also track
data on how long evaluators or customers have been using the software.

All this usage data must be centrally collected, at least in summary form. If you have a
hosted software solution, then this data could just be extracted or exported on a regular
basis. If you have an on-premise or distributed solution, then you could, for example,
have installation and user registration data sent to a central tracking system directly
through web services or indirectly through email (which could then be automatically
tallied). And usage data could be sent similarly on some periodic batch basis or when
users log in. For the purposes defined here, it is not necessary to send any user identifiers
or any other private data, and the usage data has some legitimate support utility. Most
users and most environments will allow such system-level communications as long as
they are low-volume.

Decreases in the amount of software usage per user is also very significant. By tracking
the numbers, you will be able to compare one time to another and observe trends. Then
you can compare trends to the other metrics you have gathered for your coders and
software teams to analyze if there is any cause and effect.

The final element to consider is the complete opposite of adoption, namely those cus-
tomers who choose to stop using your software altogether. Some users might explicitly
signal their intention by cancelling their account or uninstalling the software. Some
users may simply stop logging on to the software. There are a variety of ways you could
gather data on these losses. In the explicit cases, where users uninstall software or cancel

The Data for Metrics | 57

accounts, you can enable your software to report these occurrences back to your central
tracking system from which you can produce appropriate reports. For users who don’t
take explicit action but simply cease all usage, you will need to devise another approach.
For on-premise solutions, you might track centrally the last time the installation re-
ported usage, so if an installation does not get started and doesn’t report back for a
certain period such as 60 or 90 days, it can be flagged as inactive. In this case, if you
centrally track the number of users per installation, you can determine the number of
users who should be counted as inactive. For hosted solutions, you can identify users
that haven’t logged in for a period such as 60 or 90 days, and you could capture these
counts and then flag the users as “inactive” so that you don’t double count them going
forward (users would of course need to have the “inactive” flag removed if they resume
activity). There are a number of other approaches you could consider and implement
according to your setup and the rules you define to identify “lost” or “inactive” users.

As far as possible, to keep track of interest and adoption for every software product or
project, I suggest the following:

• Enable your software to track and centrally report activation for different types of
users (evaluators and customers) as well as the activation date.

• Enable your software to track and centrally report summary usage by user (such
as number of times logging in and duration active), with detail where possible on
different product areas or features (such as number of times performing a specific
type of action).

• Enable your software or data collection system to track and centrally report can-
cellation, deactivation, or an extended period of inactivity for users, as well as the
detection date.

Notable Benefits

If, as part of a release, your goal is to make significant improvements in your software
to benefit existing users as well as new users, you want to find ways to measure those
key benefits in order to determine your level of success. One way you might measure
success is through a reduction in bugs or support calls, which I’ll discuss below. But
for results that cannot be measured in that way, you need to find alternatives.

Suppose, for example, that a key goal of a release is to improve page load times in your
user interface or to improve the backend transaction processing speed. Another exam-
ple might be that you want to increase the scalability of your software, so it can handle
an increased transaction load, or so it can store a larger number of records.

In cases like these, I suggest you instrument your software to gather and summarize
statistics in a way that will allow you to track whether the software is meeting your
goals and delivering the target benefits. You can do this following the same approach
I outlined for gathering usage information above. First, you’ll need to add monitoring
to your software to measure the data you need, such as page load times, transaction
times, concurrent transaction counts, or database record counts. Then you’ll probably

58 | Chapter 3: The Right Data

want to add some sort of batch processing that summarizes the data, maybe on a daily
basis, so that you don’t need to store all the detail. Finally, you’ll need to have the data
delivered so that you can track it. If your software is a hosted or local system, this may
not be necessary, you can just retrieve the data yourself. But if your software is distrib-
uted, you can transmit the statistics electronically, using web services, email, or other
means.

If you haven’t done it earlier, the best time to instrument your software is when you
are making the key improvements. Yes, this means some extra work, but each subse-
quent time becomes easier since you can reuse your instrumentation code and patterns.
The value of instrumentation is well worth the incremental effort. Not only does it give
you a way to analyze all your metrics in light of the reported level of success, it also
gives you data that could help in considering further improvements down the road.
While you may not have historical data to compare to your new statistics, you can still
compare the results to your target goals and thereby measure your success. For exam-
ple, if you sought to reduce page load times to under one second, you can see how you
did by gathering the information on actual user experience.

For target benefits that cannot be measured by instrumentation, there’s only one other
way I know of to evaluate success—you have to ask. You have to figure out who the
enhanced software is intended to benefit and then you need to find out from them
whether or not you succeeded. This is best done, in my estimation, by asking a single
simple question, such as asking users to answer yes or no on whether the software
provided the intended benefit. This type of evaluation isn’t possible for every bug fix
or enhancement, but for work that you believe should deliver significant benefits, it’s
worthwhile if you can’t measure through instrumentation. I don’t think it’s enough to
assume the benefits were delivered just because the work is done.

It is beyond the scope of this book to discuss whether it’s worth conducting more
extensive customer surveys or user testing, and how to do that. Your organization may
have the resources and time, or it may not. For organizations that do surveys or user
testing, it provides a great way to evaluate the benefits of your work. Whether or not
you have such capabilities, however, I believe the software team needs to be able to
confirm, yes or no, whether key target benefits were delivered. If you don’t have cus-
tomer surveys or user testing to answer your questions, you need to find a way to ask
customers yourself.

Your goal shouldn’t be to evaluate whether you had the right requirements or whether
you met all the customer expectations (those are important goals too, just not the goal
that I’m discussing here). Your goal is to find out whether your team succeeded in
delivering the benefit that the coders set out to provide. You could send a target set of
users an email, for example, asking them to let you know if they tried New Feature A
and if it performed its intended function. If you redesigned an interface for better usa-
bility you would want to ask users something that says exactly that, like “did the new
interface deliver improved usability?” Since the answers to the question will help you

The Data for Metrics | 59

measure whether or not you met your goals, you need to make sure you are asking a
question that appropriately reflects your goals.

To measure the success of work designed to deliver key user benefits, I recommend:

• Instrument your software to measure, summarize, and centrally report relevant
data and key statistics that will indicate if the software is meeting the target goals.

• For benefits that cannot be measured with instrumentation, identify a target subset
of users and ask them a specific yes/no question to determine if they obtained the
intended benefit (this data may be acquired in another way if your organization
has a method to survey users or perform user testing).

User Issues

It is one thing to have users; it is another to have satisfied users. If you or your organ-
ization does customer surveys, then that is a great way to find out about user satisfac-
tion. Another way to indirectly measure user satisfaction is by tracking customer
support activity.

Production bugs, including those reported by customers, are tracked as part of quality
and coder accuracy. In addition to tracking bugs, I suggest you keep track of the number
of support issues that customers initiate with your support team. My theory is that the
number and trend of support issues are a useful measurement to determine the relative
level of user satisfaction. Generally speaking, no user who contacts the support team
is ever fully satisfied, and fully satisfied users won’t normally contact the support team.

A “support issue” is loosely defined as a single contact with the customer support team
or as multiple contacts regarding a single issue. The contact can be in person, over the
phone, over email, chat, or any other electronic communication form. It would include
communications through product forums or social media such as Facebook and
Twitter.

If you have a dedicated customer support team, they probably already track support
issues, so hopefully you can work with them to share data. If you don’t have a dedicated
support team, then your software development team may be the support team, and you
will need to institute some sort of basic issue tracking system if you don’t already have
one. You should also consider how to track any “external” support groups that you
have. For example, if you have a product support web forum where users answer each
others questions, you should try to track information about the issues posted there.

For every support issue, I suggest you try to identify the product area to which the issue
applies and the severity or urgency of the issue from the customer’s point of view.
Personally, I prefer a very simple severity rating system, such as Low, Medium, and
High. The severity should be based on how urgently the customer needs it resolved
when they make contact. An issue could be urgent, but it might be resolved by a support
person in five minutes. Again, if you have a support team or well-established support
policies, you may have a formal way to rate issue severity. If not, developing a simple

60 | Chapter 3: The Right Data

rule-of-thumb should work. For example, if the customer cannot complete their work
or use your software, it’s High severity. If the customer is highly inconvenienced but
has a workaround or can live with the issue temporarily, it’s Medium severity. If the
customer is just annoyed and can wait indefinitely for resolution, it’s Low severity.
The severity rating, which is from the customer’s perspective, has nothing to do with
the complexity involved in solving the problem or of fixing the underlying bug if there
is one.

Tracking the product area for every issue helps you identify those issues that are more
likely to be in response to the work done by coders as opposed to the issues that clearly
are not. If a customer calls with a billing question, for example, that may not be relevant
to your software development team (unless you created the billing system). It will be
necessary for you to define the product areas and to make sure that support personnel
know how to categorize issues. Ideally, customer complaints about missing features or
requests for product enhancements would also be put in a separate bucket. In the end,
the categorization of support issues probably won’t be perfect, but the imperfect data
is still useful. Clusters of calls related to specific areas will be a strong indicator that
customers are not satisfied.

As a way to track customer satisfaction, therefore, I suggest:

• Keep track of customer support issues categorized by areas of your software.

• Rate support issues according to the customer urgency to have the issue resolved.

Competitive Position

The final way you can measure user response, in the case of a software product, is to
compare interest and adoption to your known competitors. The goal is to determine
your success in attracting target users by examining your competitive position and
whether you are gaining ground, losing ground, or just staying the same. If you grow
your user base 100%, for example, but your competitors grow 200%, then you might
look at your relative success differently. Or if you lose 10% of your customers, but your
competitors lose more, then what appeared a failure might in fact be a partial success.

Competitive analysis and ranking your product or features to competitors can be chal-
lenging. It is easier if you have access to credible analyst data, such as Gartner Inc.’s
research, particularly if you are working in a mature product field with well-established
and well-known competitors; or if you have a product marketing or product manage-
ment team tasked to track competitors as part of their regular job. But even in smaller
start-ups, you can gather quite a bit of data simply by examining and tracking com-
petitor websites and their self-reported statistics on customer acquisition or revenues
(which you can translate to customer counts based on pricing information that might
be obtained in various ways). Gathering this data and sharing it within the company
can be useful in many ways. Usually the most difficult part is getting started, but once
you begin to record the data, I believe it will prove so useful to the software team and

The Data for Metrics | 61

to others that you will find yourself motivated to continue. It is fairly easy to update
the data once the original methods have been established.

The first important factor that I suggest you track is functionality versus key competi-
tors. This is a measurement of how many useful features your product has that com-
petitors lack and how many useful features they have that you lack. The overall list of
“useful” features is somewhat subjective, but once established, should be fairly con-
sistent. Understanding how your functionality compares is important because it feeds
directly into how likely your software will achieve positive user response.

The other competitive factor to track, as far as possible, is customer acquisition. If you
are competing with public companies, you should be able to get good data on their rate
of acquisition from their quarterly reports. Again, hopefully this is something that your
marketing department is already gathering—but if not, it is something that managers
could do themselves. If you are competing with private companies, especially small
start-ups, this data may be much more difficult to come by, and accuracy may be highly
questionable. In these cases you can use material gathered from interviews, articles,
press releases, or other information on their websites about customer counts or reve-
nues. Because this data may be so imprecise, it can be useful to keep a “confidence
factor” along with competitor numbers. For example, let’s say in the last quarter your
product gained 500 customers; your confidence factor on this would be 100%. Your
analysis of material might be that Competitor A gained 300 customers, and you might
be 66% confident in that number, and Competitor B gained 50 customers, but they are
smaller and you have less information, so you are only 25% confident in that estimate.
Keeping confidence factors like this is very subjective, but it is a way to make sure that
you don’t make too much of metrics that are not as exact as others.

While it is not typically considered something that the software development team itself
should measure, I highly recommend that you establish an ongoing process to gather
the following competitive data, which can be useful for metrics and in a variety of other
ways:

• Product features vs. competitors

• Customer acquisition rate vs. competitors

Timeout for An Example: A Tale of Two Teams
Paraphrasing Dickens, one was the best of teams, one was the worst of teams. I was
part of both. Two similar-sized teams, in two generally similar situations, each tasked
with developing a new product for a target niche in about one year. Both products had
modest goals. One software team exceeded almost every expectation, and the other
failed in almost every way. The question was, which one was which, and why.

One team appeared built for success. Seven coders, every one of them with excellent
training and experience, three of them graduates from renowned computer science
programs. They were considered the cream of the engineering department, brought

62 | Chapter 3: The Right Data

together to build an exciting new product. Most of the team had worked together for
multiple years, some were personal friends, and the team often did things together
outside of work. The company was in one of the hotbeds of US software development,
and there were excellent design resources, testers, and an extremely nice working en-
vironment—pretty much anything the coders needed, they got. The schedule for initial
release of the product was reasonable and flexible.

The other team was a mish-mash, thrown together more by circumstance than plan.
Six coders, all with good experience, one of them a graduate of a renowned computer
science program, the others with solid although unspectacular backgrounds. None of
them had ever worked together before, and their personalities were very different. They
never became friends, they only got together outside work when forced by their man-
ager, and even then, it was uncomfortable. Like the first team, however, the company
was in one of the hotbeds of US software development, and the coders had everything
they needed. The product schedule, too, was very reasonable.

By now you’ve probably guessed that it was the first team, the one that appeared built
for success, that was the failure, and the second team was the great success. In this case,
I can say confidently that one team succeeded and one team failed. The team that
succeeded delivered its product ahead of the planned schedule, and the product went
on to win multiple awards, exceeded adoption goals despite limited marketing, and
had very few technical problems. Managers within the company hadn’t known what
to expect from the team, which only magnified the success in their eyes. The team that
failed never shipped a real product, only a prototype, even though the project took
twice as long as originally planned for a shipping product (because the team decided
to redesign the internal architecture halfway through the project). Despite marketing
hype, the prototype was so poorly received and had so many problems that further
work on the project was cancelled. Considering that so much was expected of this team,
you could say that the failure was even worse.

As a member of both teams, I can also say that I much more enjoyed the time I was
working on the team that failed. Everyone was friendly, enjoyable, and very smart. I
looked forward to working with them every day, and I’ve since maintained contact with
many members of that team. Working with the other team was not nearly as pleasant.
Because we were so different, we worked more in isolation—and when we did interact,
it wasn’t nearly as stimulating. There was tension in the workplace, and a few team
members did not see eye-to-eye. They were at opposite ends of the political spectrum,
which sometimes came up at work, and their philosophical differences extended to
software design.

But for some reason the team that I enjoyed never gelled, and we were all extremely
disappointed with our results. None of us would have argued that the project should
continue, although it was a good idea and could have been a good product if
well-executed. In contrast, the less enjoyable team did come together, despite our ob-
vious differences, to produce software that, while it wasn’t legendary (it is long out of

Timeout for An Example: A Tale of Two Teams | 63

circulation now), did very well in its niche at that time—and which I’m still proud of
to this day.

So why did the team that should have succeeded fail, and the team that was a big
question mark succeed?

Both of these projects were many years ago, but to the best of my recollection I’ve
reconstructed a set of key data that is representative of the teams and the coders in-
volved (since this is a reconstruction, all the obvious caveats apply). The data is shown
in Tables 3-1 and 3-2. The first project (the one that failed) took ten months, and the
second project took thirteen months, so factor that in when looking at the data. Because
only one of the products was actually released, I am focusing here on pre-release coder
skill data, and not post-release data such as user adoption, production bugs, support
issues, or competitive ranking.

Table 3-1. The team that was expected to do great things but failed to deliver a product

 Number of Tasks Avg. Task Complexity % Areas Worked On Helpfulness Pluses

Coder A 112 3.62 16% 3 0

Coder B 91 3.24 22% 5 1

Coder C 104 3.77 8% 6 1

Coder D 129 2.89 14% 11 0

Coder E 84 3.82 8% 2 0

Coder F 107 3.14 12% 18 0

Coder G 88 3.65 18% 12 1

Table 3-2. The team that exceeded expectations and delivered a great product

 Number of Tasks Avg. Task Complexity % Areas Worked On Helpfulness Pluses

Coder U 118 3.44 55% 5 4

Coder V 98 3.32 45% 8 5

Coder W 181 1.81 66% 18 2

Coder X 167 1.55 70% 15 7

Coder Y 145 2.26 58% 9 1

Coder Z 179 1.66 72% 12 3

Three things stand out to me among the data for the two teams. One is that, on the
team that succeeded, more of the complex tasks were concentrated among a few coders,
and the other coders had a greater number of less complex tasks. On the team that
failed, basically everyone had a similar workload, and there was a high average rate of
complexity across the board.

64 | Chapter 3: The Right Data

The second thing that I notice is that, on the team that succeeded, a high percentage
of the team worked on a large number of product areas, whereas on the team that failed
almost everyone worked on a small percentage of areas.

The third thing is that the team that succeeded had multiple pluses from multiple cod-
ers. The team that failed had far fewer “pluses,” which means that team had much less
innovation or initiative, what I called “happy surprises” earlier in this chapter.

What can you learn from this? I have a theory about the differences between these two
teams, and why one succeeded and one failed, and I think the data is consistent with
my theory.

I believe that the first team, the one that failed, was too comfortable, too friendly, and
too confident. Everyone wanted to have interesting, complex work to do, and everyone
wanted to oblige each other. The result was that the less interesting, smaller tasks, the
ones that would actually help finish a product, never really got done. And since all the
complexity was spread around, it became more difficult to make sure the design was
cohesive and to successfully bring it together into a real product. This distributed bal-
ance of complexity was actually a large reason why major parts of the system had to be
redesigned mid-project, because the coders were not communicating well enough and
realized that their original work was not properly aligned. Finally, because this team
was so comfortable and so confident, I believe they became subtly complacent, which
is why there was very little initiative or innovation taking place. Everyone was working
hard, but nothing that happened was surprising, exciting, or new.

The second team, the one that succeeded, on the other hand, benefited from the fact
that a few coders took charge of the central design and the more complex tasks, while
the rest of the team was responsible for the smaller tasks. This resulted in almost ev-
eryone working across lots of product areas, which helped ensure a more cohesive
design. Because the team was not particularly friendly, no one was too concerned with
hurting someone else’s feelings by taking a more interesting task or making sure some-
one handled a less glamorous task. And because coders knew they were being ques-
tioned and were not sure of their standing, they sought ways to impress and exceed
expectations, which resulted in more initiative and innovations.

If I’m right, then the lessons of this single case study are that software teams are more
likely to succeed if they have:

• Centralization of higher complexity tasks among a few coders

• A number of coders working across many product areas

• Coders who feel challenged and want to prove themselves

You are free, of course, to draw your own conclusions and form your own theories.
That’s part of the fun. Having data and metrics lets you analyze results and formulate
theories, and then you can test those theories over time.

Timeout for An Example: A Tale of Two Teams | 65

PART II

Metrics

This section provides details on a complete set of codermetrics with formulas and
examples.

CHAPTER 4

Skill Metrics

A lot of times, a player has a lot of versatility. That’s really what their strength is and
what their role is.

—Bill Belichick, NFL Coach, 5-time Super Bowl winner, 3-time Coach of the Year

This chapter introduces a set of metrics on coder skills that I’ve found interesting and
useful. When you look at these metrics for a set of coders taken over periods of time,
you begin to see patterns about the individuals and the team makeup. Identifying those
patterns can help you understand how the team is functioning, where the team is strong,
and where it might be weak. Comparing one team to another, and in context with other
metrics introduced in the following chapters, you can learn even more.

It’s a good idea to encourage the coders, not just team leaders and managers, to look
at metrics, and to measure areas that might actually change their behavior as well as
reveal it. My choice of metrics, therefore, is deliberate in trying to highlight those skills
that I think are worthwhile to have coders think about and focus on. People pay more
attention to things that are measured. If you tell a team that you’re going to keep track
of how many times they assist others, for example, they will probably pay more atten-
tion to when they are helping others, and take more notice when they don’t. It can spur
discussion around the measured area, and increase thinking about how to improve.

Input Data
Listed in Table 4-1 are the input data elements that will be used in the Skill Metrics.
These data elements were discussed in more detail in the previous chapter. It is assumed
that you will measure each of these in some regular time interval. For example you
might measure and record this data weekly, or if you have two-week development
iterations, you might measure biweekly.

69

Table 4-1. Input data for Skill Metrics

Element Name Description

Tasks Assigned tasks completed by each coder

Complexity Complexity rating of each assigned task

Incompletes Assigned tasks that coder failed to complete

Product Issues Production bugs by product area

Severity Severity rating of each bug, possibly boosted for regression bugs

Population Affected Percent of customers (estimated or known) affected by each bug

Areas Worked Number of product areas worked on by each coder

Issues Fixed Production issues fixed by each coder (as part of assigned tasks)

Interrupts Number of times coder is significantly “interrupted” on assigned activities to respond to requests

Helps Number of times coder proactively helps others in significant ways

Pluses Number of times coder demonstrated significant initiative or innovation

Offensive Metrics
In line with the other sports analogies that I’ve used, the Skill Metrics include categories
for Offense and Defense. Offensive Metrics are those where a coder is helping to move
the software, the team, or the organization forward towards the target goals. This is
analogous to a player on a sports team trying to move the ball forward or otherwise
help the team score.

Points

Purpose

Measure the overall productivity of each coder on assigned tasks.

Formula

Points = Sum (Complexity for all completed tasks)

Example
Coder A completes the following assigned tasks in two development iterations:

Iteration 1: Task 1 with Complexity 3
Iteration 1: Task 2 with Complexity 2
Iteration 1: Task 3 with Complexity 4
Iteration 2: Task 4 with Complexity 1
Iteration 2: Task 5 with Complexity 4
Iteration 2: Task 6 with Complexity 2
Iteration 2: Task 7 with Complexity 1

70 | Chapter 4: Skill Metrics

For Iterations 1 and 2, calculate Points as the sum of the Complexity for all completed tasks:

Points Iteration 1 = (3 + 2 + 4) = 9
Points Iteration 2 = (1 + 4 + 2 + 1) = 8

Having calculated the points per iteration, you can then calculate Total Points, or Average
Points per Iteration:

Total Points = 9 + 8 = 17
Average Points = (9 + 8) / 2 = 8.5

Notes
This is the basic metric for the amount of work coders are doing on assigned tasks. Each task
is weighted by complexity, according to whatever consistent complexity-rating scale you
choose (such as a simple scale of 1 to 4). The sum of complexity provides the number of
“Points” that corresponds to the relative amount of work done. This, of course, says nothing
about the accuracy or quality of the work (which will be indicated by other metrics).

I suggest measuring points per development iteration (such as per sprint if you are using Agile
methodology) or per a regular amount of time. Measured periods should probably be at least
a week but usually not more than a month. You may choose, however, whatever iteration
length best suits your team and the environment.

Using the average per iteration is useful to provide a clearer comparison between coders,
especially over long-running projects. For example, see Table 4-2. If a project takes 20 itera-
tions, looking at Total Points across the project might make it seem that there is a bigger
difference in coder productivity than actually exists. Looking at the average helps normalize
data from longer projects and from projects of different lengths (provided the length of
iterations you measure remains the same).

Table 4-2. Data from a project with 20 iterations shows how Total Points and Avg. Points provide
different perspectives on coder productivity

 Total Points Avg. Points (per iteration)

Coder A 290 14.5

Coder B 322 16.1

Coder C 264 13.2

You may also want to pay attention to the maximum Points per iteration, the minimum, and
specific trends.

Utility

Purpose

Measure how many assigned tasks each coder completes.

Formula

Utility = Number of tasks completed

Offensive Metrics | 71

Example
Coder A completes the following tasks in two development iterations:

Iteration 1: Task 1 with Complexity 3
Iteration 1: Task 2 with Complexity 2
Iteration 1: Task 3 with Complexity 4
Iteration 2: Task 4 with Complexity 1
Iteration 2: Task 5 with Complexity 4
Iteration 2: Task 6 with Complexity 2
Iteration 2: Task 7 with Complexity 1

For Iterations 1 and 2, calculate Utility as the number of completed tasks:

Utility Iteration 1 = 3
Utility Iteration 2 = 4

Having calculated the Utility per iteration, you can then calculate Total Utility or Average
Utility per Iteration:

Total Utility = 3 + 4 = 7
Average Utility = (3 + 4) / 2 = 3.5

Notes
Along with Points, Utility is the other basic metric for the amount of work coders are doing
on assigned tasks. Whereas Points is based on the complexity rating of each task, Utility is a
pure count of the number of tasks completed. As shown in Table 4-3, coders may have lower
Point totals but higher Utility. Such coders may be equally or more productive than coders
with higher Point totals. Higher Utility numbers may indicate that they are assigned different
types of tasks and are productive in different ways. It will be useful to look at Points and Utility
in combination with other metrics, in order to get a more complete picture of each coder’s
contributions.

Table 4-3. Coder productivity shown by the complexity of tasks (Points) and by the number of tasks
(Utility)

 Total Points
(20 Iterations)

Avg. Points
Per Iteration

Total Utility
(20 Iterations)

Avg. Utility
Per Iteration

Coder A 290 14.5 114 5.7

Coder B 322 16.1 98 4.9

Coder C 264 13.2 132 6.6

In addition to Total Utility and Average Utility, you may want to look at maximum and
minimum values per iteration, and trends.

72 | Chapter 4: Skill Metrics

Power

Purpose

Measure the average complexity of the tasks that a coder completes.

Formula

Power = Points / Utility

Example
Coder A completes the following tasks in two development iterations:

Iteration 1: Task 1 with Complexity 3
Iteration 1: Task 2 with Complexity 2
Iteration 1: Task 3 with Complexity 4
Iteration 2: Task 4 with Complexity 1
Iteration 2: Task 5 with Complexity 4
Iteration 2: Task 6 with Complexity 2
Iteration 2: Task 7 with Complexity 1

First obtain the coder’s Total Points as the sum of Complexity for all completed tasks:

Total Points = (3 + 2 + 4 + 1 + 4 + 2 + 1) = 17

To obtain the coder’s Power Rating, divide the Total Points by the number of tasks:

Total Power = 17 / 7 = 2.43

You can also examine the Power rating within individual iterations and across iterations:

Power Iteration 1 = (3 + 2 + 4) / 3 = 3
Power Iteration 2 = (1 + 4 + 2 + 1) / 4 = 2
Average Power per Iteration = 2.5

Notes
The Power rating will fall within the range of your complexity rating. So if you rate task
complexity on a scale of 1 to 4, then the highest possible Power rating is 4 and the lowest is 1.

A higher Power rating means that a coder has completed a higher percentage of complex tasks
than others. This does not necessarily mean that the coder completed a higher number of
complex tasks. For example, see Table 4-4. Coders who complete the most high complexity
tasks may end up with lower Power ratings if they also complete more low complexity tasks
than other coders.

Offensive Metrics | 73

Table 4-4. Coders who complete more tasks with high complexity may end up with lower Power
ratings if they also have more tasks complete

 # High Complexity Tasks # Low Complexity Tasks Total Points Total Utility Total Power

Coder A 6 2 26 8 3.25

Coder B 2 6 14 8 1.75

Coder C 2 1 9 3 3.00

Coder D 1 2 6 3 2.00

It’s useful to look at Points, Utility, and Power together. Power is a useful measure of com-
parison between coders who have somewhat similar Points or Utility, and as a way to under-
stand the types of tasks that an individual coder is handling. Comparing the Power rating of
a coder who averages much lower Points to another who averages higher Points is not an
apples-to-apples comparison. In Table 4-4, for example, the Power comparisons between
Coder A and Coder B, or between Coder C and Coder D, are certainly relevant since they
have the same Utility. It is harder to make a comparison between Coder A and Coder C, or
between Coder B and Coder D. Even though their Power ratings are similar, they are based
on quite different Utility and Point totals for this limited example.

As with Points, it may be useful to look at the Power ratings per iteration, as well as the
maximum, minimum, and trends.

Assists

Purpose

Measure the amount of coder interruptions and how much a coder helps others.

Formula

Assists = Sum (Interrupts) + Sum (Helps)

Example
Over the course of two development iterations, Coder A is noted as having received the fol-
lowing number of unexpected interruptions (Interrupts) and is noted to have proactively
assisted others (Helps) the following number of times:

Iteration 1: 4 Interrupts, 2 Helps
Iteration 2: 1 Interrupt, 2 Helps

The Assists can then be calculated per iteration, and you can determine Total and Average:

Assists Iteration 1 = (4 + 2) = 6
Assists Iteration 2 = (1 + 2) = 3
Total Assists = (6 + 3) = 9
Average Assists = (6 + 3) / 2 = 4.5

74 | Chapter 4: Skill Metrics

Notes
The Assists metric shows you a different side of the contributions that a coder makes to the
team and to the organization. It can be a very useful metric to help analyze the makeup and
the work patterns of software development teams.

For example, look at Tables 4-5 and 4-6. These are metrics for two four-person teams taken
from two small projects, both measured in monthly development iterations, with averages
calculated per iteration. In this case you have the metrics for the individual coders on each
team and then a comparison of the team summaries. Team summaries are calculated by add-
ing the individual coder totals.

Table 4-5. Basic monthly Offensive Metrics for a team of coders on one small project

 Avg. Points Avg. Utility Avg. Assists

Coder A 48.4 15.6 5.1

Coder B 45.2 17.4 7.3

Coder C 39.3 15.7 6.2

Coder D 40.2 18.3 8.1

Team Totals 173.1 67 26.8

Table 4-6. Basic monthly Offensive Metrics for a team of coders on another small project

 Avg. Points Avg. Utility Avg. Assists

Coder W 46.7 20.3 9.1

Coder X 47.1 15.2 8.3

Coder Y 40.5 18.4 15.4

Coder Z 42.9 14.8 13.6

Team Totals 177.2 68.7 46.5

Putting the basic Offensive Metrics together, you can begin to see meaningful patterns emerge
for individual coders and teams. A chart comparing the monthly averages for the team is
shown in Figure 4-1. Now if I told you that the second team was quite successful, and the
first team wasn’t, does a specific metric stand out as perhaps indicating a key difference in
the makeup and work habits of the team? In this case, the balance of Assists is clearly different,
and I believe it gets at why one team was more successful.

As with other metrics, it can be useful to measure Assists per iteration and then to examine
the highs, lows, and trends.

Offensive Metrics | 75

Figure 4-1. Comparing the basic offensive monthly averages for the two teams

Temperature

Purpose

Measure how “hot” or “cold” a coder is at any given time.

Formula

Starting Temperature = 72 at start of period measured (see Notes)
Current Points = Points in the most recently completed measured interval
Previous Points = Points in the prior measured interval
Heat Index = (Current Points / Previous Points)
Temperature = (Previous Temperature × Heat Index)

Example
Coder A completes the following tasks in two development iterations:

Iteration 1: Task 1 with Complexity 3
Iteration 1: Task 2 with Complexity 2
Iteration 1: Task 3 with Complexity 4
Iteration 2: Task 4 with Complexity 1
Iteration 2: Task 5 with Complexity 4
Iteration 2: Task 6 with Complexity 2
Iteration 2: Task 7 with Complexity 1

First calculate the Points for each iteration:

Points Iteration 1 = (3 + 2 + 4) = 9
Points Iteration 2 = (1 + 4 + 2 + 1) = 8

76 | Chapter 4: Skill Metrics

The Temperature cannot be calculated until at least two iterations are complete. After the
second iteration, calculate the Heat Index, then use that to calculate the new Temperature
based on the initial value of 72:

Starting Temperature (the Temperature at end of Iteration 1) = 72
Heat Index after Iteration 2 = (8 / 9) = .89
Temperature after Iteration 2 = (72 × .89) = 64.1

Notes
This metric highlights whether a coder is “hot” or “cold” related to the recent trend of pro-
ductivity. If a coder’s temperature gets higher, then her productivity has increased, and if it
is down then it has decreased. The metric can be applied to teams as well by taking the Average
Temperature of individual team members. You can measure Temperature at the same fre-
quency as you measure Points, Utility, or Assists. I recommend you measure this at most
weekly and at least monthly. If you are working in two- or three-week development sprints,
those are excellent frequencies for measurement.

The actual numeric value of this metric is not so important, what is important is the trend
line for individual coders and the software development team. The idea of calling this metric
Temperature and starting with the value 72 is borrowed from the baseball statistician Bill
James, who uses such metrics for hitters and teams. The number 72 is familiar as a common
room temperature, and helps to keep the numbers in a range that can equate in our minds to
temperature. This way, if a coder hits a Temperature of 90 or more, it is easy to remember
that it means he is “hot” as a result of an increasingly productive trend. If a coder hits a
Temperature of 45 or less, then it means he is “cold” as a result of lowered productivity. You
can choose a different starting temperature if you prefer.

Temperature is not a way to compare overall productivity (which is better done with Points)
but is useful to identify productivity trends. A coder with a higher Temperature, for example,
may actually have fewer Points per iteration than a coder with a lower Temperature. The
higher Temperature indicates that the coder is on a more positive trend of productivity, not
that the coder is doing more work than another coder.

This metric is useful to spot improvements or declines in productivity during a project. It
might reveal that certain coders are more or less productive on specific assignments. It might
also indicate that certain coders have improved their productivity. When a junior coder be-
comes more proficient in a new area, for example, you might expect to see her Temperature
increase.

Basing the Temperature on the number of Points means, of course, that Temperature moves
up and down as the number of Points moves. Having this special metric serves to focus your
attention and make it easier to spot the current and recent trends. For example, compare the
data in Table 4-7 to the data in Table 4-8 (calculations have been rounded to one place after
the decimal). The data in Table 4-8 shows the Temperatures calculated from the Points in
Table 4-7. But with Temperature, it is much easier to spot the current trends.

Offensive Metrics | 77

Table 4-7. Points for coders and team through a series of iterations

 Iteration 1 Points Iteration 2 Points Iteration 3 Points Iteration 4 Points Iteration 5 Points

Coder A 22 24 26 22 18

Coder B 19 23 16 18 19

Coder C 15 16 23 20 22

Team Avg. 18.7 21 21.7 20 21

Table 4-8. Temperature for the same coders and team through the iterations

 Starting
Temperature

Iteration 2
Temperature

Iteration 3
Temperature

Iteration 4
Temperature

Iteration 5
Temperature

Average
Temperature

Coder A 72 79.2 87.1 74 60.7 74.6

Coder B 72 86.4 60.5 66.6 73.3 71.8

Coder C 72 79.2 110.9 99.8 109.8 94.3

Team Avg. 72 81.6 86.2 80.1 81.3 80.2

Because Temperature is designed to help you spot trends, it can be useful to chart the data.
Figure 4-2 shows an example using a line chart for the data in Table 4-8. This provides an
easy way to visualize the trend for each coder.

Figure 4-2. Charting the coder temperatures for each iteration

While I have used Points as the basis for Temperature, you could also consider deriving Tem-
perature from other basic metrics, such as Utility.

78 | Chapter 4: Skill Metrics

O-Impact

Purpose

Provide a single “Offensive Impact” number that summarizes the contributions of a coder
in moving projects along.

Formula

O-Impact = Points + Utility + Assists

Example
Coder A completes the following assigned tasks in two development iterations:

Iteration 1: Task 1 with Complexity 3
Iteration 1: Task 2 with Complexity 2
Iteration 1: Task 3 with Complexity 4
Iteration 2: Task 4 with Complexity 1
Iteration 2: Task 5 with Complexity 4
Iteration 2: Task 6 with Complexity 2
Iteration 2: Task 7 with Complexity 1

Coder A is also noted for the following number of Interrupts and Helps during two iterations:

Iteration 1: 4 Interrupts, 2 Helps
Iteration 2: 1 Interrupt, 2 Helps

The coder’s O-Impact for each iteration is calculated in the following way:

Points Iteration 1 = (3 + 2 + 4) = 9
Utility Iteration 1 = 3
Assists Iteration 1 = (4 + 2) = 6
O-Impact Iteration 1 = (9 + 3 + 6) = 18
Points Iteration 2 = (1 + 4 + 2 + 1) = 8
Utility Iteration 2 = 4
Assists Iteration 2 = (1 + 2) = 3
O-Impact Iteration 2 = (8 + 4 + 3) = 15

Using the calculated O-Impact per iteration, you can calculate the coder’s Total or Average:

Total O-Impact = (18 + 15) = 33
Average O-Impact = (18 + 15) / 2 = 16.5

Notes
Sometimes, when looking for trends and patterns, it is easier to look at summary metrics,
even if these are merely combinations of other more detailed metrics. In baseball, there are
statistics for all the different types of hits, and then there are statistics like Total Bases that
summarize different types of hits together. Having such metrics allows you to quickly compare
individuals and teams and to spot the correlation of values to outcomes. In the cases where
patterns or interesting values are detected, you can delve into the more detailed metrics.

Offensive Metrics | 79

The theory behind O-Impact (which is shorthand for “Offensive Impact”) is that Points, Util-
ity, and Assists represent the fundamental “Offensive” contributions that coders make to
software development teams, but that none of these three metrics is clearly more valuable
than another. By combining them into a single metric, you come up with a value that “equal-
izes” the strengths that various coders might have and that gives you a way to analyze the
overall Offensive productivity of coders and software teams. Table 4-9 illustrates this princi-
ple. The three coders depicted in the table each has a different strength. Calculating the O-
Impact, you gain a new perspective on how these coders compare and, perhaps even more
importantly, a summary metric capturing the basic Offensive productivity of the team. These
numbers can be correlated to the team’s results to determine how overall Offensive production
correlates to success or failure.

Table 4-9. Offensive Metrics for one iteration shows how O-Impact allows comparison of overall
Offensive productivity regardless of specific areas of strength

 Points Utility Assists O-Impact

Coder A 14 4 2 20

Coder B 16 6 1 23

Coder C 9 7 6 22

Team Avg. 13 5.7 3 21.7

Other summary metrics (like adding different groups of Offensive Metrics) could certainly be
formed and might also prove useful. For example, it might be interesting to add Power and
Assists to create another derived metric. Many other more complex combinations of Skill
Metrics might also be found, although it’s beyond the scope of this book to explore all these
possibilities more fully. Here I am focused on presenting a set of metrics that I have found
most interesting or useful and also on providing concepts that will let you explore further on
your own.

Defensive Metrics
Defensive Metrics cover the “non-offense” areas, where a coder’s skills and actions
prevent future problems or helps the team keep from losing ground in relation to the
team goals. These are analogous to defensive-related metrics in sports. In baseball,
these would be pitching and fielding statistics; or in football, statistics like tackles and
interceptions.

Saves

Purpose

Measure how often a coder helps fix urgent production issues.

Formula

Saves = Number of Product Issues with the highest Severity that a coder helps fix

80 | Chapter 4: Skill Metrics

Example
The following production issues are found and are rated on a severity scale from 1 to 4:

Issue 1 with Severity 2
Issue 2 with Severity 3
Issue 3 with Severity 4
Issue 4 with Severity 1
Issue 5 with Severity 4
Issue 6 with Severity 3

For the purpose of calculating Saves, the relevant production issues are those with the highest
severity. In this example, that would be Issues 3 and 5 from the list above. For these issues,
Coder A is assigned the following tasks that are completed over two development iterations:

Iteration 1: Task 1 with Complexity 3 (related to Issue 3)
Iteration 1: Task 2 with Complexity 2 (related to Issue 3)
Iteration 2: Task 3 with Complexity 2 (related to Issue 3)
Iteration 2: Task 4 with Complexity 4 (related to Issue 5)
Iteration 2: Task 5 with Complexity 1 (related to Issue 5)

To calculate Saves per iteration, you sum the number of the highest severity issues that the
coder helped fix, tallying each when the final task related to a production issue is completed:

Saves Iteration 1 = 0 (none of the issues is fully resolved)
Saves Iteration 2 = 2 (all tasks for issues 3 and 5 complete)

Then you can use the iteration Saves to calculate Total or Average for all iterations:

Total Saves = (0 + 2) = 2
Average Saves = (0 + 2) / 2 = 1

Notes
In calculating Saves, the size of the population affected and the complexity of the tasks that
a coder completes to fix the issue are both ignored. If an issue has the highest severity for a
customer, even if it is just one customer affected and even if it is very easy for the coder to fix,
the coder gets credit for the Save. The idea is to put a number on the number of times that a
coder is called on to help in a “crunch,” assuming that the most critical production issues also
have the most urgency and pressure to fix. If multiple coders work to fix an issue, they should
both be credited with the Save.

For mature software, hopefully a software team does not have a frequent flow of high severity
production issues. Assuming the counts are not high, this means that the number of Saves
will also not be high. This metric, therefore, is probably best tracked cumulatively over the
course of entire projects or longer durations, such as monthly, quarterly, semi-annually, or
annually. Table 4-10 provides an example of looking at data quarterly.

Defensive Metrics | 81

Table 4-10. Saves can be analyzed in longer durations, such as quarterly

 Jan-Mar Saves Apr-Jun Saves Jul-Sep Saves Oct-Dec Saves Total Saves

Coder A 2 1 3 1 7

Coder B 0 1 1 1 3

Coder C 1 0 0 0 1

Coder D 0 0 0 0 0

Total 3 2 4 2 11

The cumulative number of Saves for a team is a metric that you can compare and trend across
projects and across software development teams. You might also decide, based on how you
rate the severity of production issues, to include more than just the highest severity issues in
the metric calculation. Or you might decide to have a separate metric that tracks coder’s work
on important but somewhat less critical issues.

Tackles

Purpose

Measure how many potential issues or opportunities a coder handles proactively.

Formula

Tackles = Number of Pluses where coder demonstrates initiative or innovation

Example
Coder A is noted as having contributed the following “pluses,” demonstrating significant
initiative or innovation, over the course of four development iterations:

Iteration 1: 1 Plus (developed a reusable migration script when solving a specific
customer production issue)
Iteration 2: No Pluses
Iteration 3: No Pluses
Iteration 4: 1 Plus (came up with a new stored procedure that improved perform-
ance on a key transaction by 100%)

You can then calculate Tackles per iteration as follows:

Tackles Iteration 1 = 1
Tackles Iteration 2 = 0
Tackles Iteration 3 = 0
Tackles Iteration 4 = 1

Finally you can calculate the Total and the Average across iterations:

Total Tackles = (1 + 0 + 0 + 1) = 2
Average Tackles = (1 + 0 + 0 + 1) / 4 = .5

82 | Chapter 4: Skill Metrics

Notes
In a well-functioning software development team, especially on a mature software project,
Tackles may not occur at an extremely high frequency, but they will probably occur at a
frequency greater than Saves. Also, unlike the work on Product Issues, the work that results
in Tackles is often related directly to new development efforts in ongoing projects. For
this reason, it is useful to track Tackles within each development iteration, as shown in
Table 4-11. Reporting at this granularity also helps highlight for everyone the value of initiative
and innovation and encourages coders to think about how they can accumulate more Tackles
themselves.

Table 4-11. Tackles shown by iteration highlight the amount of innovation and initiative per coder
and per team

 Iteration 1 Tackles Iteration 2 Tackles Iteration 3 Tackles Iteration 4 Tackles Avg. Tackles

Coder A 1 0 0 1 .5

Coder B 0 1 2 1 1

Coder C 1 0 1 1 .75

Coder D 0 0 1 2 .75

Total 2 2 4 5 3

Comparing trends and totals of Tackles across projects and teams provides a way to analyze
the ratio of proactive accomplishments and the innovation and initiative of team members.
Spotting high and low values that occur among teams or at specific times might also be of
interest, and might warrant further investigation to see if there are specific circumstances or
other causes that enable or inhibit this type of work.

Range

Purpose

Measure how many areas of software a coder works on.

Formula

Range = Number of Areas Worked by a coder

Example
Coder A completes the following assigned tasks in two development iterations:

Iteration 1: Task 1 working on Product Area A
Iteration 1: Task 2 working on Product Areas A, B
Iteration 1: Task 3 working on Product Area C
Iteration 2: Task 4 working on Product Area B
Iteration 2: Task 5 working on Product Areas B, D
Iteration 2: Task 6 working on Product Area B
Iteration 2: Task 7 working on Product Area D

Defensive Metrics | 83

By counting the Areas Worked, you can calculate Range per iteration in the following way:

Range Iteration 1 = Count (Area A, Area B, Area C) = 3
Range Iteration 2 = Count (Area B, Area D) = 2

The overall Average Range for a coder is calculated the same as other metric averages, namely
by taking the average of the per iteration values:

Average Range = (3 + 2) / 2 = 2.5

The Total Range, however, is not calculated merely by adding the per iteration values. In this
case, the accurate result comes by taking a final count of the total number of Areas Worked:

Total Range = Count (Area A, Area B, Area C, Area D) = 4

Notes
Most coders work for extended periods on specific areas of a software product. Some coders
are required to have greater versatility and work in more areas. The Range metric provides
insight regarding a coder’s versatility and breadth, and lets you analyze how a wide or narrow
band of work areas might correlate to results.

When looking at a coder’s range over the course of a specific project, it can be useful to record
both the Range within a specific development iteration, and the Total Range across the entire
project to date. For example, see Table 4-12. Looking at the Range within an iteration shows
you one aspect of the variety of work the coder is involved with, and the Total Range shows
you another aspect. Note the difference in Table 4-12 between Coders B and C. Both have
the same Range in each iteration, but Coder B has a significantly larger Total Range.

Table 4-12. Looking at Range per iteration and Total Range reveals different information

 Iteration 1 Areas Iteration 1 Range Iteration 2 Areas Iteration 2 Range Total Range

Coder A A, B 2 A, B 2 2

Coder B A, B, C, D 4 D, E, F 3 6

Coder C B, C, D, E 4 C, D, E 3 4

Coder D F, G, H 3 G, H 2 3

Most coders will likely have a well-defined and fairly consistent Total Range. It is worth noting
coders who have an unusually large Range, to determine what if any effect that has on indi-
vidual and team results.

D-Impact

Purpose

Provide a single “Defensive Impact” number that summarizes the contributions of a coder
in helping to avoid large problems.

Formula

D-Impact = (Saves + Tackles) × Range

84 | Chapter 4: Skill Metrics

Example
Coder A completes the following assigned tasks in two development iterations:

Iteration 1: Task 1 working on Product Area A
Iteration 1: Task 2 working on Product Areas A, B
Iteration 1: Task 3 working on Product Area C, also credited with Save
Iteration 2: Task 4 working on Product Area B
Iteration 2: Task 5 working on Product Areas B, D
Iteration 2: Task 6 working on Product Area B, also credited with Plus
Iteration 2: Task 7 working on Product Area D

Among those Tasks, Task 3 fixes a production issue with the highest severity.

Also, while working on Task 6, the coder is credited with a Plus for taking initiative to create
a scheduled clean-up routine that will avoid overconsumption of disk space in the future.

Using this information, you can calculate the coder’s D-Impact for each iteration and the
Average across iterations in the following way:

Saves Iteration 1 = 1
Tackles Iteration 1 = 0
Range Iteration 1 = Count (Area A, Area B, Area C) = 3
D-Impact Iteration 1 = (1 + 0) × 3 = 3
Saves Iteration 2 = 0
Tackles Iteration 2 = 1
Range Iteration 2 = Count (Area B, Area D) = 2
D-Impact Iteration 2 = (0 + 1) × 2 = 2
Average D-Impact per iteration = (3 + 2) / 2 = 2.5

To calculate the Total D-Impact, you will need to determine the Total Range, which as dis-
cussed before, is not merely the sum of Range values per iteration. The following shows the
method to calculate the Total:

Total Saves = 1
Total Tackles = 1
Total Range = Count (Area A, Area B, Area C, Area D) = 4
Total D-Impact = (1 + 1) × 4 = 8

Notes
As with O-Impact, the D-Impact metric (shorthand for Defensive Impact) provides a single
summary value useful for spotting trends or key correlations. Table 4-13 shows how D-Impact
combines the other Defensive Metrics and allows another way to compare coder contributions
and the strengths or weaknesses of software development teams.

Defensive Metrics | 85

Table 4-13. Defensive Metrics for a project shows how D-Impact allows comparison of overall
Defensive contributions and strength

 Saves Tackles Range D-Impact

Coder A 4 1 2 10

Coder B 3 1 3 12

Coder C 0 0 6 0

Coder D 2 2 4 16

Team Avg. 2.3 1 3.8 9.5

You might have one question: why use Range as a multiplier, rather than just add the Range
value to Saves and Tackles? In Table 4-13, for example, Coder C is shown as having a D-
Impact of zero even though the coder has a larger Range than any of the other coders. The
reason I calculate D-Impact in this way is that Saves and Tackles are the fundamental defensive
metrics, and without any Saves and Tackles, a coder has no measurable Defensive Impact. In
a case where a coder had zero Saves and zero Tackles, if you just add Range, then D-Impact
will just be equal to Range, which really isn’t useful (since you already have the Range metric
by itself). The way the formula is constructed, D-Impact provides a summary of Saves and
Tackles, but coders with more Range are given further credit as having more D-Impact. You
could experiment with variations on this, but I find this calculation does show that Range has
meaningful value, and it highlights and summarizes a coder’s defensive contributions in an
interesting way.

Precision Metrics
The final group of Skill Metrics are the Precision Metrics, which help you analyze the
precision and accuracy of each coder’s work. This includes metrics that capture coder
“mistakes” or “failures,” where inaccurate, imprecise, or incomplete work was done.
For metrics that measure these kind of mistakes, the lower the value the better.

Turnovers

Purpose

Measure the complexity of assigned tasks that a coder fails to complete.

Formula

Turnovers = Sum (Complexity for all completed Tasks)

Example
Coder A fails to complete the following tasks in three development iterations:

Iteration 1: Task 1 with Complexity 3
Iteration 2: Task 2 with Complexity 4
Iteration 3: Task 3 with Complexity 3

86 | Chapter 4: Skill Metrics

www.allitebooks.com

http://www.allitebooks.org

Calculate the Total and Average Turnovers as follows:

Total Turnovers = (3 + 4 + 3) = 10
Average Turnovers = (3 + 4 + 3) / 3 = 3.3

Notes
The Turnovers metric is equivalent to “Points for Incomplete Tasks.” This, along with Errors,
is one of the basic metrics covering coder “mistakes.” Turnovers are weighted by the Com-
plexity of each incomplete Task, assuming that it is a “bigger” mistake to leave a more complex
task incomplete.

For most developers, the number of Turnovers will be small, approaching, or at, zero. It’s just
the nature of how we manage software projects and software development teams that most
developers will not give up on a task before it’s complete, and most managers will not reassign
tasks. Tasks where a coder receives help do not count as Turnovers. Tasks that are reassigned
from one coder to another for scheduling efficiency, simply because the original coder was
too busy, also don’t count. Turnovers refer specifically to tasks that a coder began and was
expected to finish but couldn’t due to technical struggles or other encountered problems.

In certain cases, such as when dealing with very junior coders or interns, or when a coder is
assigned to a new technology area, Turnovers may be more frequent. But in those cases it may
turn out that a higher frequency of incomplete tasks was expected, and therefore has little
effect on the overall success of the software team.

Aside from those specific situations, any other Turnovers may be significant, and multiple
Turnovers certainly could be highly significant for the effect on project success or failure.
Because Turnovers are generally infrequent in software development, this metric is useful to
analyze cumulatively over entire projects. Table 4-14 shows how the cumulative data might
look for one software team.

Table 4-14. Turnovers are typically infrequent and therefore are useful to track on a project basis

 Project 1 Turnovers Project 2 Turnovers Project 3 Turnovers Total Turnovers

Coder A 7 3 12 22

Coder B 0 2 9 11

Coder C 3 0 4 7

Coder D 0 0 0 0

Total 10 5 25 40

While the metric might normally be analyzed in a cumulative fashion, this is a metric to pay
attention to, and you should still track and calculate Turnovers at the same frequency as other
metrics. Although Turnovers don’t occur often, they are significant when they do occur. Part
of the benefit of such metrics are to call attention to these small but significant team issues,
which can be instructive for individuals and the team.

Precision Metrics | 87

Errors

Purpose

Measure the magnitude of production issues found related to areas that a coder is
responsible for.

Formula

Errors = Sum (Severity for each Product Issues × Population Affected)

Example
Coder A has the following production issues found in the coder’s area of responsibility during
two development iterations:

Iteration 1: Issue with Severity 2 affects 100% of users
Iteration 1: Issue with Severity 2 affects 50% of users
Iteration 2: Issue with Severity 3 affects 100% of users
Iteration 2: Issue with Severity 4 affects 100% of users
Iteration 2: Issue with Severity 3 affects 33% of users

You can calculate the Errors per iteration in the following way:

Errors Iteration 1 = (2 × 1.0) + (2 × 0.5) = 3
Errors Iteration 2 = (3 × 1.0) + (4 × 1.0) + (3 × 0.33) = 8

Then you can determine the Total and Average Errors:

Total Errors = (3 + 8) = 11
Average Errors = (3 + 8) / 2 = 5.5

Notes
Turnovers and Errors are the two basic metrics for coder mistakes. Errors are weighted by the
severity of each issue and the percent of the customer population affected. The more severe
the issue, and the more customers affected, the larger the assigned Error value.

You might wonder whether it is fair to weight Errors by the percent of the user population
affected. Is a severe bug that affects all customers a bigger Error than a severe bug that only
affects a few customers? In both cases, the coder made a mistake. And maybe the size of
population affected is only greater based on the area of code where the coder was assigned to
work. Personally, I feel that a production bug that affects everyone is more severe than one
that only affects a few people, and that it is fair or meaningful to measure a coder’s precision
based on the overall severity of the production issues the coder is responsible for. Most bugs
will likely affect the entire user population anyway, but measuring or estimating the popula-
tion affected really is no different than measuring or estimating the severity of the issue. You
could just as well ask why is a severe issue weighted more heavily than a trivial issue, aren’t
they both mistakes, and why not just count the number of mistakes to calculate Errors? Again,
I would say that a coder whose work results in a crash bug has been less precise than one
whose work results in a cosmetic mistake, so you should rate their Errors accordingly.

88 | Chapter 4: Skill Metrics

Production issues, especially for software with a sizable user base, may be found frequently.
Unlike the less frequent Turnovers, therefore, it is advisable to analyze Errors in a more gran-
ular fashion, such as weekly, biweekly, or monthly. See Table 4-15.

Table 4-15. Monthly Errors for a project team measured in the months following a software release

 Month 1 Errors Month 2 Errors Month 3 Errors Month 4 Errors Total Errors

Coder A 12 28 18 13 71

Coder B 4 9 9 7 29

Coder C 21 31 15 3 70

Coder D 14 17 12 6 49

Total 51 85 54 29 219

Both team totals and individual coder totals may be relevant for analysis. A useful way to
analyze data for comparative totals, trends, and distributions is with charts, such as the ex-
ample shown in Figure 4-3.

Figure 4-3. Charting the distribution of Errors for each coder and the team

Trends, peaks, and valleys in the number of Errors for each coder and each product area can
be significant. Production issues might be coming from work done in prior releases and may
factor into post-release analysis of coder contributions and team success.

Precision Metrics | 89

Plus-Minus

Purpose

Measure the amount of positive contributions versus negative issues for each coder.

Formula

Plus-Minus = Points - Turnovers - Errors

Example
Coder A completes the following tasks in two development iterations:

Iteration 1: Task 1 with Complexity 3
Iteration 1: Task 2 with Complexity 2
Iteration 1: Task 3 with Complexity 4
Iteration 2: Task 4 with Complexity 1
Iteration 2: Task 5 with Complexity 4
Iteration 2: Task 6 with Complexity 2
Iteration 2: Task 7 with Complexity 1

Coder A fails to complete the following task in the second development iteration, so another
coder needs to take over this task:

Iteration 2: Task 8 with Complexity 3

Coder A has the following production Issues found in the coder’s area of responsibility during
the two development iterations:

Iteration 1: Issue with Severity 2 affects 100% of users
Iteration 1: Issue with Severity 2 affects 50% of users
Iteration 2: Issue with Severity 3 affects 100% of users
Iteration 2: Issue with Severity 4 affects 100% of users
Iteration 2: Issue with Severity 3 affects 50% of users

To calculate the Plus-Minus for each iteration, perform the following calculations:

Points Iteration 1 = (3 + 2 + 4) = 9
Turnovers Iteration 1 = 0
Errors Iteration 1 = ((2 × 1.0) + (2 × 0.5)) = 3
Plus-Minus Iteration 1 = (9 - 0 - 3) = 6
Points Iteration 2 = (1 + 4 + 2 + 1) = 8
Turnovers Iteration 2 = 3
Errors Iteration 2 = ((3 × 1.0) + (4 × 1.0) + (3 × 0.5)) = 8.5
Plus-Minus Iteration 2 = (8 - 3 - 8.5) = -3.5

After calculating the Plus-Minus for each iteration, you can define the Total or Average:

Total Plus-Minus = (8 + (-3.5)) = 4.5
Average Plus-Minus = (8 + (-3.5)) / 2 = 2.3

90 | Chapter 4: Skill Metrics

Notes
The Plus-Minus weighs the “positive” contributions that a coder makes versus the “negative”
issues that arise from her work. The formula presented here focuses on the completion of
assigned tasks as the positive, and incomplete tasks and production issues as the negative.
Many other variations of Plus-Minus could be created: for example, you could weigh Utility
(tasks completed) versus the count of production issues.

The basic concept of Plus-Minus is that a “plus” number indicates that positive contributions
outweigh the negative, and a “minus” number (less than zero) means that the negative issues
outweigh the positive. The bigger the number, in this case, the better, and the smaller, the
worse.

The formula here uses the complexity of tasks, and the severity of production issues. This will
work best to produce the expected positive and negative numbers if you use the same scale
for both. By this, I mean that if you rate the complexity of tasks on a scale of 1 to 4, with 4
being the highest, the formula will work best if you also rate severity of issues on a scale of 1
to 4 with 4 being the highest. In this case, you are more likely to get a negative number if the
production issues outweigh the tasks completed. However, the formula can still be generally
useful if you use different scales, as long as the scale for both uses higher numbers for “more
complex” or “more severe.” If a production issue with severity 1 is considered more severe
than an issue with severity 3, then this formula will not work (and I suggest you reverse those
ratings when calculating for use in metrics).

I include Plus-Minus in the Offensive Metrics, although it relies on a mix of other Offensive
and Defensive Metrics. Because it includes the use of production issues, which may be dis-
covered over a long period of time, Plus-Minus can be interesting to calculate over longer
periods and in a cumulative fashion. It provides a way to determine a “balanced” view of a
coder’s “Offensive” contribution to the overall team success. Table 4-16 shows an example
of Plus-Minus for a specific project. Note that the rating changes over time even though the
project is complete as more production Issues are discovered. In this case, the picture of which
coder was most productive on the project actually changes over time when looking at the
Plus-Minus metric.

Table 4-16. Plus-Minus measured for a project changes over time, even after project complete

 Total
Points

Total Turnovers Errors After
3 Months

Plus-Minus After
3 Months

Errors After
6 Months

Plus-Minus After
6 Months

Coder A 290 7 37 246 81 202

Coder B 322 0 42 280 104 218

Coder C 277 3 18 256 47 227

When examined over a longer period of time, or for an entire project, clearly any negative
number for Plus-Minus would be cause for major concern.

Precision Metrics | 91

It may also be instructive to look at Plus-Minus in shorter iterations, such as monthly, as
shown in Table 4-17. In this case you can examine the Plus-Minus rating in a specific month
rather than the cumulative total. If a coder sees that their Plus-Minus rating in any specific
month is low, then that might be cause for examination. The monthly Plus-Minus for the
team can also be useful as an indicator of progress and may be a metric that correlates strongly
with other indicators of success.

Table 4-17. Plus-Minus measured monthly for coders and the software development team

 Month 1
Plus-Minus

Month 2
Plus-Minus

Month 3
Plus-Minus

Month 4
Plus-Minus

Avg. Plus-Minus

Coder A 14 31 40 27 28

Coder B 32 19 34 24 27.3

Coder C 28 41 11 25 21

Team Avg. 24.7 30.3 28.3 25.3 27.2

The trend and size of Plus-Minus are both meaningful for software teams and individual
coders. When analyzing multiple dimensions, in addition to looking at the metric values,
sums, and averages, it can be useful to lay the data out in charts. If you store your data in
spreadsheets, this is easily done. Figure 4-4 shows an example chart for the Plus-Minus data
in Table 4-17. You can see how this makes it easier to spot the trends and changes in totals.

Figure 4-4. Charting Plus-Minus provides a useful way to see trends and distributions

92 | Chapter 4: Skill Metrics

Skill Metric Scorecards
One simple way to calculate and track metrics is to use spreadsheets. I have found
Google Docs to be a great way to enter data, automatically calculate the latest metrics,
and then share them online with the team. The charting features of Google Docs
spreadsheets make it easy to present data visually when appropriate, too.

Keeping a single spreadsheet per project, per project team, you can enter data after each
development iteration. See Figure 4-5, which shows a skills “scorecard” for an indi-
vidual coder. In this example, you enter data rows for tasks or production issues, and
as you enter data, the current to-date metrics are calculated at the top. You can enter
the data one task or issue at a time, or you can summarize multiple sets of data into a
single row (although this particular format has some limitations around entering sum-
mary data). The calculations at top are based on the data entered below. In this case
the metrics are all calculated as Totals, but you could easily create versions that calculate
Averages, Minimums, Maximums, or other desired values.

Figure 4-5. An example Skill Metrics spreadsheet for a coder showing to-date totals for metrics on a
specific project

You can have a worksheet for every coder, and then a summary page to view the current
metrics for all the coders. It may also be useful to include a chart on the summary page,
to highlight key metrics and how the coders on the team compare. Figure 4-6 shows
an example summary sheet with chart.

Skill Metric Scorecards | 93

Figure 4-6. An example Skill Metrics summary sheet for a team of coders on a project showing to-
date totals and a chart with key metrics

For certain metrics, either because calculation requires data in a different format or
because you would like separate charting or trending, you may decide to have a separate
spreadsheet. Figure 4-7 shows a tracking sheet to calculate the Temperature metric for
a coder. You enter the Points per iteration, and the sheet shows the Temperature after
every iteration. The summary sheet shown in Figure 4-8 lists the Temperature after
each iteration for all the coders on the team, and the chart shows the trend line for each
coder.

94 | Chapter 4: Skill Metrics

Figure 4-7. An example spreadsheet to calculate Temperature for a coder after every iteration

Skill Metric Scorecards | 95

Figure 4-8. A summary sheet charting Temperature after every iteration for a small software team

Observations on Coder Types
As a wrap-up to this chapter, I’d like to offer some observations on how Skill Metrics
might apply for different types of coders. Not to stereotype or draw too broad of strokes,
but at certain stages of development, coders are more likely to demonstrate certain
strengths and weaknesses. You may choose to watch certain metrics more closely de-
pending on the experience level and obligations of certain coders.

Architects
Coders designated as “architects” are usually the more experienced members of the
team. Their assignments may differ from other coders, with a higher percentage of
complex tasks, including design tasks. They may also be expected to spend more time
guiding and assisting other team members, to ensure that the software is well-designed
and high-quality.

The following Skill Metrics can be particularly relevant for architects:

96 | Chapter 4: Skill Metrics

Power

It is likely that architects will have a higher Power rating than many other
coders, since they will probably have a higher percentage of more complex
tasks. It would not be surprising for an architect to average lower Utility, since
having a high number of complex tasks typically means fewer tasks as well.

Assists

Architects are often sought out for help by other members of the team, and
should also be proactively guiding, mentoring, or otherwise helping team
members, so you would expect architects to have a higher number of Assists
than most coders.

Range

An architect will likely need to be involved with many areas of the software.
The architect’s Range, therefore, will typically be above average for the team.

Tackles

Good architects will proactively anticipate issues and help solve key problems,
so you should expect them to have an above-average number of Tackles over
the course of a project.

Senior Coders
Senior coders are more experienced technically, therefore you will typically expect more
productivity, higher quality, and in some cases more leadership. In some cases they
may be specialized, in some cases they may be generalists, but either way they should
be among the stronger and more consistent contributors on the team.

The following Skill Metrics can provide key insights for the contributions of senior
coders:

Points

In general, you should expect senior coders to have higher average Points than
other members of the team, either due to handling more complex tasks or
simply completing more tasks.

O-Impact

The overall Offensive Impact of senior coders will also likely be above-average,
as measured through the combination of Points, Utility, and Assists.

Observations on Coder Types | 97

D-Impact

While it may not be a stated key responsibility for all your senior coders, many
times the senior coders are those that field the most critical issues or provide
added benefit through initiative and innovation. Overall, Defensive Impact
will provide you insight as to how much the senior coders contribute in these
dimensions, and you would expect some if not all your senior coders to meas-
ure well for D-Impact.

Temperature

Consistency of performance is something that you will typically expect from
senior coders, and the Temperature metric will provide you a way to analyze
that. If a coder is performing consistently, the Temperature will never get too
low. Also, some senior coders may get “hot,” with periods of especially high
productivity. Watching the Temperature metric, you may be able to spot those
periods and take advantage of them (management adjustments based on met-
rics will be discussed more in later chapters).

Junior Coders
Junior coders may provide all kinds of contributions and display many types of skills,
based on their education, background, personal tendencies, and capabilities. Unlike
architects and senior coders, who are by definition more senior members of the team
who probably have more well-established patterns (at least for teams that have been
together for some time), junior coders are more unknown quantities. You may have an
idea what a junior coder will do, where their strengths and weaknesses lay, but you
can’t be sure.

For this reason, all Skill Metrics bear watching for junior coders and also for any interns
you might have on a software development team. Metrics can be an excellent way to
spot tendencies, strengths, and areas for improvement.

Among the metrics, however, a small set may be especially useful and bear close mon-
itoring for junior coders:

Utility

In many cases junior coders will not be assigned the most complex tasks, and
so Utility becomes the key metric to track and compare productivity.

Tackles

You won’t necessarily expect junior coders to demonstrate innovation or ini-
tiative, or proactively take on new areas and unassigned tasks—but when they
do, it will be worth noting. Most junior coders will record few (if any) Tackles,
making those that do have Tackles more impressive.

98 | Chapter 4: Skill Metrics

Turnovers

Clearly, with junior coders you want to spot times and areas where they might
be struggling. Turnovers can be a key metric to help in this regard. Junior
coders with a higher number of Turnovers, or a spike in Turnovers, might need
more assistance. Alternatively, a lower number of Turnovers is a positive sign.

Plus-Minus

While this can be a useful metric for everyone on the software development
team, for junior coders it bears close watching. You want to see how much the
“positive” contribution of tasks completed outweighs the “negative” out-
comes, such as production issues or incomplete tasks. Comparing junior cod-
ers to other members of the team (and to each other) with this metric, you can
get a summary view of their overall contribution. Also it will be useful to watch
the trend over time. Architects and senior coders may have a more consistent
Plus-Minus, but with junior coders there will likely be variance. Ideally, you
will see steady progression until a general plateau is reached, but spotting lack
of progress can also be useful in helping identify where assistance is most
needed.

Observations on Coder Types | 99

CHAPTER 5

Response Metrics

The numbers either refute my thinking or support my thinking, and when there’s any
question, I trust the numbers. The numbers don’t lie.

—Daryl Morey, general manager of the Houston Rockets, 2006–present

This chapter covers metrics that help you analyze the response, both positive and neg-
ative, for the software released by development teams. These metrics provide the basis
to determine whether the software team is meeting team and organizational goals, and
is thereby “winning” or “losing.” Included also are metrics that involve comparing
results to key competitors.

Overall, these metrics are designed to be as straightforward and simple as possible.
They are meant to be achievable, meaning that you can get the data and calculate them.
And they are meant to be understandable, meaning that software team members can
appreciate them and the relevance to their own work.

The Response Metrics show you how well and in what ways each project succeeded or
failed. When examined side-by-side with a team’s Skill Metrics, you will be able to
analyze which skills or combination of skills correlate with positive or negative results.
If you are not already collecting the data for Response Metrics, it may seem more chal-
lenging than the work required to gather data for Skill Metrics. But the payoff comes
in your ability to begin to see the patterns of success over time. Therefore, I strongly
urge you to gather data and keep Response Metrics for your team.

Input Data
Table 5-1 shows the input data elements that will be used in the Response Metrics.
These data elements were discussed in Chapter 3. It is assumed that you will measure
each of these in some regular time interval, although not as frequently at the data used
for Skill Metrics. For example, you might measure and record this data monthly or
quarterly.

101

Some of these data elements may seem challenging for you to gather if you don’t already
do so. As discussed in previous chapters, however, there are a variety of ways you can
put this in your own hands, mostly by implementing the data gathering directly in your
software. If you haven’t already done this, of course, it will take time, but it’s my belief
that the extra effort will be worth it. This data will be highly useful in helping you
improve your software development teams, and once you’ve established a way to gather
the data for these metrics, it will be relatively easy to continue and even enhance the
data gathering on an ongoing basis.

Table 5-1. Input data for Response Metrics

Element Name Description

User Activations New user activations (not including trial or demo users), tracked either through software instal-
lation, user registration, licensing, or other means

User Deactivations Users (not trial or demo users) who explicitly deactivate or cancel accounts or who stop using
software, tracked either through cancellations, software uninstall, detection of non-usage, or
other means

Trials Completed Trial or demo users or accounts that are completed, whatever the outcome, tracked either through
software uninstall, cancellation, or other means

Successful Trials Trial or demo users or accounts who become active, tracked either through software registration,
user registration, or other means

User Accesses Use of specific product functions or features

User Benefits Features or software changes that have direct user benefit as determined through software
instrumentation, user surveys, or other means

Population Benefited Percent of user population that receives each User Benefit

User Issues Customer support issues categorized by product area

Urgency The customer-assigned urgency of every User Issue

New Users vs. Competitors Rating newly activated users for software product vs. key competitors

Features vs. Competitors Rating features of software product vs. key competitors

Win Metrics
Win Metrics measure the success of specific software releases. The actual level of suc-
cess can be determined by comparing the value of Win metrics among projects, to
established goals, or to competitors.

Wins

Purpose

Measure the number of active users added.

102 | Chapter 5: Response Metrics

Formula

Wins = Sum (User Activations)

Example
A new software release is issued at the end of June. The following new user activations are
recorded for the three months following release:

Month of July: 225 new user activations
Month of August: 270 new user activations
Month of September: 350 new user activations

The number of Wins for the software release can then be calculated as follows:

Wins in July = 225
Wins in August = 270
Wins in September = 350
Total Wins at end of August = (225 + 270) = 495
Total Wins at end of September = (225 + 270 + 350) = 845

You can also evaluate the Average number of Wins:

Average Wins per month at end of August = (225 + 270) / 2 = 247.5
Average Wins per month at end of September = (225 + 270 + 350) / 3 = 281.7

Notes
There are a variety of ways you might calculate Wins. The most important point, however,
is that you should have a Win metric. It is surprising how many software teams do not keep
track of some fundamental measure of success, such as the number of customers or users. If
you don’t like the specific formula presented here, I still suggest you choose and establish a
metric to use as your basic measure of progress and achievement.

Why not just call it the “New Users” metric, rather than calling it Wins? As with other metrics
presented in this book, I like to use conceptual names for metrics, which I think makes them
more memorable, easier to discuss, and also helps everyone understand the purpose and not
just the contents of the metric.

The Wins formula that I use here focuses specifically on new user activations, not on the total
number of users. Both, of course, are relevant to the overall success of a software product,
but the theory is that new user activations is a better measure of recent success and recent
software changes.

No doubt that many things go into gaining new users, and many are beyond the control of a
software development team. The amount of money spent on marketing and the effectiveness
of marketing and sales teams are obvious examples. To the best of your ability, you might
factor external elements into your analysis of the Win values. For example, if your company
doubles its marketing spend and the resulting number of new users doubles, then everyone
will understand that doubling the number of Wins was good but not all the credit goes to the
software development team. Partial credit, however, certainly does, so the number is still
relevant. It has been my experience that over time, dramatic changes in marketing and sales
are infrequent, so the value and trends of Wins is a highly meaningful measure of progress
for the software team.

Win Metrics | 103

Table 5-2 shows the Wins by month for three separate software products from a single or-
ganization. By themselves, the raw number of Wins are difficult to analyze, so they are aug-
mented with comparison to goals and trends. For example, just knowing that Product 1 had
585 Wins in January doesn’t tell you whether that number is good or bad. By comparing the
monthly numbers and analyzing the trends, and comparing those numbers to target goals,
you can see how well each product is succeeding and how their success compares across
product lines. Although it has the lowest Total Win numbers, Product 2 is highly successful
based on comparison to goals and the month-to-month trend, while Product 3 (which has
the highest numbers) may in fact be seen as unsuccessful based on the goals.

Table 5-2. Two-month Wins analysis for three non-competitive software products

 Jan Wins Jan % Goal Feb Wins Feb % Goal Jan-Feb Trend

Product 1 585 94% 542 87% down 17%

Product 2 28 93% 67 134% up 140%

Product 3 2,080 69% 1,445 48% down 30%

For this reason, you want to calculate and track Wins, but you’ll then want to analyze
the Averages, Trends, and comparison to goals, to put them in context for each individual
situation.

Wins can be measured for features as well as products, which is appropriate if those features
are licensed or registered separately, meaning that only users who really want that feature get
it and use it. In this case you will need to gather the registration, licensing, or activation data
for the specific feature and that will allow you to calculate Wins by feature.

Win Rate

Purpose

Determine the average amount of time it takes to get a win.

Formula

Win Rate = (Time Elapsed / Wins)

Example
A new software release is issued at the end of June. The following new user activations (Wins)
are recorded for the three months following release:

Month of July: 225 new user activations
Month of August: 270 new user activations
Month of September: 350 new user activations

Assume that you want to calculate Win Rate in term of hours and minutes, which means that
you want to determine how many hours and minutes on average it takes to get each Win. The
calculation can be performed as follows (results are rounded):

104 | Chapter 5: Response Metrics

Win Rate in July (month with 31 days) = (31 × 24) / 225 = 3 hours 20 minutes
Win Rate in August (month with 31 days) = (31 × 24) / 270 = 2 hours 45 minutes
Win Rate in September (month with 30 days) = (30 × 24) / 350 = 2 hours 6 minutes
Average Win Rate (all months) = ((31 + 31 + 30) × 24) / (225 + 270 + 350) =
2 hours 36 minutes

You can calculate different time increments with simple conversions:

Win Rate of 3 hours = Win Rate of .125 days

Notes
Win Rate simply provides a different way to describe and analyze Wins, showing you on
average how long it takes to get each Win (new user activation). Technically you could refer
to this as the “mean time between Wins.”

Wins and Win Rate convey the same information in different forms, and you may find one
version or the other is more useful in certain contexts and analysis. Personally I like the Win
Rate metric because I often find it’s more memorable and impactful for the software team to
think about the fact that the software is adding a new user every 3 hours and 20 minutes (the
Win Rate) than to say the software added 225 new users in the month. I also find Win Rate
to be an interesting way to compare results across releases and software projects.

Depending on how many Wins a software project is accumulating, it may make sense to
calculate Win Rate in terms of days or hours or minutes. For software that accumulates Wins
extremely rapidly you might even want to look at Win Rate in terms of seconds. My general
suggestion is that if your values are larger than three digits or less than one then you should
convert to another time interval. For example, I believe it’s more useful to say that the Win
Rate is 3 hours 12 minutes rather than to say it is 192 minutes (a value with three digits), and
it’s also more useful than saying it is .133 days (a value less than one).

The lower the Win Rate, meaning the faster that Wins are accumulated, the better. Software
with a Win Rate of 30 minutes is doing “better” than software with a Win Rate of 45 minutes.
As with all other Win Metrics, however, the actual evaluation of whether results are “good”
or “bad” must involve comparison to past history, to goals, and to competitors. Table 5-3
shows an example of tracking Win Rate and differentials for the same products across two
months, as shown in Table 5-2. Note one very interesting difference that highlights the
usefulness of Win Rate. In Table 5-2, for Product 1 there are less Wins in February than in
January, and when looking at the month-to-month trend, the result shows that February was
down 17% from January. When looking at Win Rate, however, because February has 3 fewer
days than January, the metric actually shows that February was a small improvement over
January in terms of the average time for each Win.

Table 5-3. Two-month Win Rate analysis for three non-competitive software products

 Jan Win Rate Feb Win Rate Jan-Feb Differential

Product 1 1 hr 16 mins 1 hr 13 mins improved 3 mins

Product 2 26 hr 34 mins 10 hr 2 mins improved 16 hrs 32 mins

Product 3 22 secs 28 secs declined 6 secs

Win Metrics | 105

As with Wins, you can also calculate Win Rate for specific features if you are able to capture
activation information for those features.

Win Percentage

Purpose

Measure the percentage of trials that successfully convert to active users.

Formula

Win Percentage = (Successful Trials / Trials Completed) × 100

Example
A new software release is issued at the end of June. The following trial data is recorded for
the three months following the product release:

Month of July: 81 Trials Complete, 67 Successful Trials
Month of August: 107 Trials Complete, 88 Successful Trials
Month of September: 142 Trials Complete, 119 Successful Trials

The monthly Win Percentages for the product release can then be calculated as follows:

Win Percentage in July = (67 / 81) × 100 = 83%
Win Percentage in August = (82 / 107) × 100 = 77%
Win Percentage in September = (124 / 142) × 100 = 87%

The Total and Average Win Percentage will basically be the same, although they could be
slightly off based on rounding. They can be calculated in either of the following ways:

Total Win Percentage = ((67 + 82 + 124) / (81 + 107 + 142)) × 100 = 83%
Average Win Percentage = (83 + 77 + 87) / 3 = 82%
Win Percentage in September = (124 / 142) × 100 = 87%

Notes
The value of the Win Percentage metric is to provide you an indicator of how well the software
succeeds with the target users. Obviously if your software does not offer trials or demos, then
the formula presented here will not work for you. In that case you might consider whether
there is another way to determine Win Percentage. For example, if the first 30 or 60 days of
use of your software typically translates to an initial trial (even if customers are paying for
usage during this period), then you might keep track of the percentage of customers who
continue usage after that period ends.

As with the Wins metric, since Win Percentage is based on the number of successful trials, it
is very dependent on many factors not directly attributable to the software or the software
development team. Price, sales execution, and quality of customer support are clear examples.
This needs to be factored in to the analysis and use of this metric. It’s assumed, however, that
in general people who become “trial users” are for the most part well-qualified, since they
probably wouldn’t begin a trial without a real interest and some capability to purchase. If
your data includes trial users who register but then never actually use the software, you might

106 | Chapter 5: Response Metrics

want to exclude them from the count of trial users, since this may be a strong indicator that
they were never actually well-qualified, nor did they give your software a fair trial.

Also note that you can either track Win Percentage based on a per-user or per-account basis.
The result should amount to the same thing, so choose the approach which makes it easiest
for you to gather the necessary data.

Because there are multiple factors that influence the conversion of trial users to active cus-
tomers, while the Win Percentage itself may be informative to the software team and indicative
of the relative improvement in each release, the trend may be even more informative, especially
when comparing one release or one product to another. For example, Table 5-4 shows the
Win Percentages for multiple releases of two software products. Examining the data, it would
be hard to say whether the results on the first release of each product were good or bad
(although with contextual information from your organization, you might be able to make
such judgments). But what is clear is that the Win Percentage of Product 1 improved after the
second release, while Product 2 remained basically the same after its second release. These
results are likely at least in part attributable to the work of the software team on those specific
releases.

Table 5-4. Analyzing Win Percentage for multiple product releases

 1st Qtr Win % 2nd Qtr Win % Avg. Win %

Product 1, Release 1 57% 54% 55.5%

Product 1, Release 2 68% 72% 70%

Product 2, Release 1 62% 66% 64%

Product 2, Release 2 63% 69% 66%

Examining Win Percentage per release and the trends across releases will help you identify
noticeable shifts in user response. Using charts can help identify the trends, as shown in
Figure 5-1.

Figure 5-1. Charting Win Percentage can help make the trends more visible

Win Metrics | 107

Boost

Purpose

Measure the amount of additional user benefits delivered.

Formula

Boost = Sum (Population Benefited for each User Benefit)

Example
A new software release is issued at the end of June. In the three months following the release,
the following data is gathered regarding user benefits contained in the release:

• Key transaction performance improvement, validated by embedded performance meas-
urements, Population Benefited is 100%

• Key new reports, validated by usage data, Population Benefited is 75%

• Usability improvements in most used product area, validated by customer survey, Pop-
ulation Benefited is 100%

• New integration utility, validated by usage data, Population Benefited is 10%

The Boost for the release is calculated by adding the Population Benefited amounts for the
four measured user benefits as follows:

Boost = (1.0 + .75 + 1.0 + .10) = 2.85

Notes
The concept is to measure the relative user benefit of each software release and, thereby, the
“boost” to the software’s “win capabilities” delivered by each release. User benefits would be
key enhancements such as measurable performance improvements on key transactions, major
usability improvements, or key new features. The higher the Boost for a software release, the
better.

In general, I suggest that user benefits should be measured and validated, but where that’s
not possible you may still choose to assign value to delivered benefits. One question is where
to draw the line, which benefits to include? Clearly a bug fix, for example, has a benefit to at
least some users. This is another reason to only include measurable benefits under the Boost.
Only more significant improvements or changes will be worth the effort to measure and val-
idate, and in general I suggest you focus on the “significant” benefits in each release. But your
main goal should be to try to maintain consistency in the type of improvements you measure
and include from release to release and across projects, since this metric is a relative measure
that allows you to compare projects and releases.

Taken together, the three Win Metrics provide a picture of the measurable and assumed
positive user response to each software release. Boost is useful in highlighting the positive
benefits delivered by the software team that may not show up in new customer acquisition,
for example, because they are benefits to existing users.

Examine the data in Table 5-5 covering the Win Metrics for a product across five software
releases. What you’ll notice is that some releases had improved Win Rate and Win Percen-
tages, while others had higher Boost. This is exactly what you might see if, for example, you

108 | Chapter 5: Response Metrics

are staggering feature and maintenance releases. The releases with major feature improve-
ments will have the greatest possibility to affect Win values, while releases with the most
quality improvements will likely have the greatest benefit to existing users and, therefore, the
higher Boost. A release with a higher Boost might not be expected to yield as great an im-
provement in Wins or Win Percentage, and the inverse might also be true.

Table 5-5. Win Metrics for a software product across five releases

 Win Rate Win % Boost

Release 1 (feature release) 2 hrs 32 mins 54% 8.5

Release 2 (feature release) 2 hrs 25 mins 65% 6.0

Release 3 (maintenance release) 2 hrs 26 mins 64% 16.75

Release 4 (feature release) 2 hrs 18 mins 77% 5.25

Release 5 (maintenance release) 2 hrs 18 mins 78% 21.0

Analyzing the actual “success” of any project or release involves comparing the results to the
goals of each. In Table 5-5, Releases 3 and 5 were maintenance releases, so they were successful
despite the fact that the Win Rate and Win Percentage stayed basically the same.

Loss Metrics
Loss Metrics are the indicators of negative user response or user-related problems. For
each software release, the Loss Metrics are the counterbalance to the Win Metrics. As
with the Win Metrics, you may well have defined goals that you can measure the Loss
Metrics against to determine whether you have succeeded by maintaining losses below
target thresholds.

Losses

Purpose

Measure the number of active users lost.

Formula

Losses = Sum (User Deactivations)

Example
A new software release is issued at the end of June. The following user deactivations or can-
cellations are recorded for the three months following release:

Month of July: 18 deactivations or cancellations
Month of August: 13 deactivations or cancellations
Month of September: 24 deactivations or cancellations

Loss Metrics | 109

The number of Losses for the software release can then be calculated as follows:

Losses in July = 18
Losses in August = 13
Losses in September = 24
Total Losses at end of August = (18 + 13) = 31
Total Losses at end of September = (18 + 13 + 24) = 55

You can also evaluate the Average number of Losses:

Average Losses per month at end of August = (18 + 13) / 2 = 15.5
Average Losses per month at end of September = (18 + 13 + 24) / 3 = 18.3

Notes
The Losses metric is the counterbalance to the Wins metric. The lower the number of Losses,
of course, the better. As with Wins, there are a variety of ways you might calculate Losses.
Also as with Wins, however, the most important point is that you should define a formula to
track Losses. Just as software teams should have a fundamental measure of success, you
should also have a fundamental measure of failure. My belief is that the most straightforward
and meaningful way to do this is by counting users lost.

The Losses formula that I use here, therefore, focuses specifically on user deactivations. As
discussed earlier, this can be determined in a variety of ways, including account cancellation,
software uninstall, or suspension of use.

Of course there are many factors that can result in the loss of users, much of which is beyond
the control of a software development team. Pricing, competition, customer economics, and
changing user needs are all examples. As far as possible, you might factor these into your
analysis of Losses. For example, if there is a crisis in the national economy, you know that
this might result in much higher Losses, so the higher Losses might not be a strong indicator
of any “failures” of the software or the software development team.

Table 5-6 shows the Losses by month for three software products from one company. As with
Wins, by themselves the raw number of Losses are difficult to analyze. Just knowing that
Product 1 had 23 Losses in January doesn’t tell you whether that number is good or bad. By
comparing the monthly numbers and analyzing the trends, you can see if the Losses reveal
cause for concern and how the numbers might correlate to changes or issues in the software.

Table 5-6. Three-month Loss analysis for three non-competitive software products

 Jan Losses Feb Losses Jan-Feb Trend Mar Losses Feb-Mar Trend

Product 1 23 22 down 5% 22 even

Product 2 28 24 down 17% 19 down 26%

Product 3 14 17 up 18% 25 up 32%

In addition to analyzing the Averages and Trends of Losses, it will be useful to put them in
context with the off-setting number of Wins during each period.

If appropriate and you are able to gather the data indicating the deactivation or suspended
use of individual features, Losses can also be measured for features as well as products.

110 | Chapter 5: Response Metrics

Loss Rate

Purpose

Determine the average amount of time it takes to accumulate each loss.

Formula

Loss Rate = (Time Elapsed / Losses)

Example
A new software release is issued at the end of June. The following user deactivations or can-
cellations (Losses) are recorded for the three months following release:

Month of July: 18 deactivations or cancellations
Month of August: 13 deactivations or cancellations
Month of September: 24 deactivations or cancellations

Assume that you want to calculate Loss Rate in term of hours and minutes, which means that
you want to determine how many days and hours on average between each Loss. The calcu-
lation can be performed as follows (results are rounded):

Loss Rate in July (month with 31 days) = 31 / 18 = 1 day 17 hours
Loss Rate in August (month with 31 days) = 31 / 13 = 2 days 9 hours
Loss Rate in September (month with 30 days) = 30 / 24 = 1 day 6 hours
Average Loss Rate (all months) = (31 + 31 + 30) / (18 + 13 + 24) = 1 day 16 hours

You can calculate different time increments with simple conversions:

Loss Rate of 18 hours = Loss Rate of .75 days

Notes
Loss Rate is the parallel metric for Win Rate, providing another way to measure and analyze
Losses by calculating on average how long it takes to accumulate each Loss (user deactivation,
cancellation, suspension of use, or the like). Loss Rate is equivalent to the “mean time between
Losses.”

As with Win Rate, I like the Loss Rate metric because I believe that people have a stronger
appreciation for the time between each lost user than the number of lost users themselves.
For example, discussing the fact that a software product is losing a user every 8 hours is more
tangible for most people than saying that the product is losing 100 users every month. Using
the time element also provides an interesting way to compare the results across releases and
different software projects.

Depending on how frequently the software is accumulating Losses, it may make sense to
calculate Loss Rate in terms of days or hours or minutes. For software that accumulates Losses
very rapidly, you might even need to calculate Loss Rate in seconds. As with Win Rate, I
suggest you should try to keep the Loss time values less than three digits and greater than one
or switch to another time interval. For example, if you calculate Loss Rate as 118 hours (a
value with three digits) I’d suggest it would be better to translate it to 4 days 22 hours, but if
you calculate a Loss Rate as .8 days (a value less than one) it would be better to translate it to
19 hours 12 minutes.

Loss Metrics | 111

Loss Rate is a “negative” metric, so the higher the Loss Rate, the better—that means that there
are fewer overall Losses. Software with a Loss Rate of 18 hours is doing “better” than software
with a Loss Rate of 12 hours. As with many other Response Metrics, however, the actual
evaluation of whether results are “good” or “bad” must involve comparison to past history
and goals (and maybe to competitors). Table 5-7 shows an example of tracking Loss Rate for
the same products across the same three months as shown in Table 5-6. Note one interesting
difference that highlights the usefulness of Loss Time. In Table 5-6, for Product 1 there are
less Losses in February than in January, and when looking at the month-to-month trend, the
result shows that in February,the Losses were down 5% from January. So that appears to be
an improvement. When looking at Loss Rate, however, because February has three fewer days
than January, the metric actually shows that in February the Loss Rate was actually one hour
less than January—meaning that the product was accumulating Losses at a slightly faster rate,
which is worse.

Table 5-7. Three-month Loss Rate analysis for three non-competitive software products

 Jan Loss Rate Feb Loss Rate Mar Loss Rate

Product 1 1 day 8 hrs 1 day 7 hrs 1 day 10 hrs

Product 2 1 day 3 hrs 1 day 4 hrs 1 day 15 hrs

Product 3 2 days 5 hrs 1 day 16 hrs 1 day 6 hrs

As with Wins, Win Rate, and Losses, you can also calculate Loss Rate for specific features if
you are able to capture deactivation information for those features.

Penalties

Purpose

Measure the overall urgency of customer support issues.

Formula

Penalties = Sum (Urgency for each User Issue)

Example
During a two-week timeframe for one software release, the following user issues are reported
to the customer support team either over the phone or through email, and are rated on a scale
for urgency from 1 (least urgent) to 4 (most urgent):

Week 1: Issue 1 with Urgency 2
Week 1: Issue 2 with Urgency 3
Week 1: Issue 3 with Urgency 1
Week 1: Issue 4 with Urgency 1
Week 2: Issue 5 with Urgency 4
Week 2: Issue 6 with Urgency 2
Week 2: Issue 7 with Urgency 2
Week 2: Issue 8 with Urgency 3

112 | Chapter 5: Response Metrics

To calculate Penalties, add the urgency for all reported user issues as follows:

Penalties during Week 1 = (2 + 3 + 1 + 1) = 7
Penalties during Week 2 = (4 + 2 + 2 + 3) = 11

The Total and Average Penalties can then be calculated simply:

Total Penalties for 2-week period = (7 + 11) = 18
Average Penalties per week = (7 + 11) / 2 = 9

Notes
When customers contact your support team with problems, it’s a sign of some level of trouble
that might result in negative user response. Among the Loss Metrics, therefore, I include the
Penalties metric that measures these reported problems. This is similar to Penalties incurred
by players in some sports such as football and soccer. Penalties don’t necessarily result in
losses—but accumulating many penalties could result in losses, and they may be an indicator
of player mistakes that require more attention or a plan to improve.

Urgency is rated from the perspective of the user, and the more severe the urgency, the higher
the weighting in this metric. You might wonder whether lower urgency issues should be
counted at all, and you might be right. If, for example, your support team takes a call from a
customer asking where they can find documentation or training, and that gets logged as an
issue, should that be counted within Penalties? Or if a customer calls to ask questions about
an invoice or a bill, should that be counted? Neither situation might have anything to do with
the work done by the software team (although they might and it depends), so counting them
as Penalties against the software team might seem wrong.

The easiest thing to do, of course, in terms of making the tracking and calculation simple, is
to include all customer support issues without discrimination. This is the approach I usually
take. My argument for this simplistic approach is that the percentage of issues related to
assisting customers with simple things or with issues that are not really related to the results
and contributions of the software development team will be fairly constant, and therefore you
know that a certain percentage of Penalties are related to those sorts of things and are therefore
OK. When these are included, you focus more on the trends than the raw number of Penalties.
But if you are able to factor out specific types of customer issues, you may want to do that to
increase the accuracy and value of the metric. You could filter out user issues by type, or you
might choose to not include any user issues with the lowest urgency in the calculation. I believe
this can work well either way.

Once you’ve decided how to calculate Penalties, it makes sense to track it in regular intervals
following each release. Table 5-8 shows an example, tracking Penalties accrued in one month,
three months, and six months following three subsequent software releases. In this case, the
number of Penalties accrued is going down gradually across releases, a sign of improvement.

Table 5-8. Tracking Penalties across three subsequent software releases

 Penalties After 1 mo. Penalties After 3 mos. Penalties After 6 mos. Avg. Penalties Per Month

Release 1 87 264 489 81.5

Release 2 78 258 457 76.2

Release 3 62 237 435 72.5

Loss Metrics | 113

To more easily identify trends and make comparisons, consider laying the data out in charts.
The bar charts in Figure 5-2 provide an alternate presentation of the data in Table 5-8 that
makes the differences easy to see.

Figure 5-2. Chart comparing the Penalties accrued per month on each product release

If you are able to categorize user issues by product area, then you can also produce reports
and analysis of Penalties by product area. Some user issues might be easy to categorize and
others might not. Even in this case, it can be useful to understand the Penalties for each
product area as far as possible. This will give you more insight into the patterns or issues that
might exist related to the work done on specific features and the contributions of specific
team members.

Penalties Per Win (PPW)

Purpose

Measure the overall urgency of customer support issues relative to the number of new
users.

Formula

Penalties Per Win = Penalties / Wins

Example
During a two-week timeframe for one software release, the following user issues are reported
to the customer support team either over the phone or through email, and are rated on a scale
for urgency from 1 (least urgent) to 4 (most urgent):

Week 1: Issue 1 with Urgency 2
Week 1: Issue 2 with Urgency 3
Week 1: Issue 3 with Urgency 1

114 | Chapter 5: Response Metrics

Week 1: Issue 4 with Urgency 1
Week 2: Issue 5 with Urgency 4
Week 2: Issue 6 with Urgency 2
Week 2: Issue 7 with Urgency 2
Week 2: Issue 8 with Urgency 3

During the same two-week period, the software release records the following new user
activations:

Week 1: 18 new user activations
Week 2: 22 new user activations

You can calculate the PPW per week and overall as follows:

PPW during Week 1 = (2 + 3 + 1 + 1) / 18 = .4
PPW during Week 2 = (4 + 2 + 2 + 3) / 22 = .5

The Total PPW is not calculated by adding the weekly totals; instead it should be calculated
across the entire period as follows (in this example it would be the same as taking the Average
across the two weeks):

Total PPW = (2 + 3 + 1 + 1 + 4 + 2 + 2 + 3) / (18 + 22) = 18 / 40 = .45

Notes
Penalties Per Win is a normalized view of Penalties, since a software release that is accumu-
lating users more quickly might also accumulate a proportional amount of user issues. If, for
example, one software product adds one hundred users a month (100 Wins) and another adds
ten (10 Wins), it would not be unexpected for the first product to have more calls into cus-
tomer support, simply as a factor of the number of users. PPW provides a better way to
compare results over time and across software projects, where the rate of user adoption differs.

The higher the PPW, the “worse” the results. A high PPW either indicates a large number of
user issues, or a higher ratio of user issues with higher urgency, or both. Anything approaching
1.0 for PPW is probably cause for concern, in that it might indicate that you are generating
more issues than new users, which is typically not a sustainable situation for most organiza-
tions. A higher PPW could well result in greater Losses, a lower Win Percentage, and the like.
You should, however, be able to determine what is a “normal” and “acceptable” baseline for
your software projects, and from there, the most useful analysis will be to observe changes
and trends.

It can be useful to look at PPW along with other Win and Loss Metrics. For example, see
Table 5-9, showing Win Rate, Loss Rate, and PPW for three software products, two releases
each. While certainly there are many other factors to analyze, this snapshot of data indicates
that releases with higher PPW are likely to have higher (slower) Win Rates and lower (faster)
Loss Rates. In this case, Products 1 and 2 made progress from Release 1 to Release 2, but
Product 3 actually regressed. The fact that PPW is significantly higher for Product 3 in Release
2 might indicate that the worse Win Rate and Loss Rate are directly tied to quality problems
(as highlighted by the Penalties Per Win value) in the release.

Loss Metrics | 115

Table 5-9. Analyzing key Win and Loss Metrics for multiple releases of three software products

 Win Rate Loss Rate PPW

Product 1, Release 1 2 hrs 32 mins 1 day 8 hrs 0.24

Product 1, Release 2 2 hrs 5 mins 2 day 13 hrs 0.18

Product 2, Release 1 6 hrs 8 mins 5 days 6 hrs 0.66

Product 2, Release 2 5 hrs 52 mins 4 days 12 hrs 0.43

Product 3, Release 1 2 days 7 hrs 12 days 1 hr 0.84

Product 3, Release 2 2 days 14 hrs 10 days 18 hrs 2.03

Momentum Metrics
The final group of Response Metrics are the Momentum Metrics, which identify the
“momentum” indicated by user response or rankings versus competitors. The metrics
in this section provide key summaries that can be used to rank results across releases
and, in context, across projects. Comparing the values of the Momentum Metrics over
time, you can summarize whether a software product is gaining or losing ground—and
how quickly.

Gain

Purpose

Measure the number of Wins minus the missed opportunities and Losses.

Formula

Gain = Wins - ((Trials Completed – Successful Trials) + Losses)

Example
A new software release is issued at the end of June. The following new user activations are
recorded for the three months following release:

Month of July: 225 new user activations
Month of August: 270 new user activations
Month of September: 350 new user activations

The Total Wins for the software release during this period can then be calculated as follows:

Wins in July = 225
Wins in August = 270
Wins in September = 350
Total Wins = (225 + 270 + 350) = 845

116 | Chapter 5: Response Metrics

The following trial data is recorded for the three months following the product release:

Month of July: 81 Trials Complete, 67 Successful Trials
Month of August: 107 Trials Complete, 88 Successful Trials
Month of September: 142 Trials Complete, 119 Successful Trials

The Total number of Unsuccessful Trials during this period can then be calculated as follows:

Unsuccessful Trials in July = 81 – 67 = 14
Unsuccessful Trials in August = 107 – 88 = 29
Unsuccessful Trials in September = 142 – 119 = 23

The following user deactivations or cancellations are recorded for the three months following
release:

Month of July: 18 deactivations or cancellations
Month of August: 13 deactivations or cancellations
Month of September: 24 deactivations or cancellations

The number of Total Losses for the software release during this period can then be calculated
as follows:

Losses in July = 18
Losses in August = 13
Losses in September = 24
Total Losses = (18 + 13 + 24) = 55

Using the above data, the Gain per month can be calculated as:

Gain for July = 225 - (14 + 18) = 193
Gain for August = 270 / (29 + 13) = 228
Gain for September = 350 / (23 + 24) = 303

The Total Gain can then also be determined:

Total Gain = 193 + 228 + 303 = 724

Notes
Gain is a way to determine how well a software release is doing in gaining new users while
taking into account how many users were lost and how many potential users were lost. Clearly,
the higher the Gain, the better.

By taking into account the lost opportunities in unsuccessful trials, Gain is more than a cal-
culation of “net users gained”—it can be thought of as the net of team wins versus losses,
since a lost opportunity is in some sense as much a loss as a lost user. Including this is, of
course, based on your ability to get data on the number of software trials that were unsuc-
cessful. To ignore this data element, however, would be to ignore a potentially telling indicator
of the improvements made by software teams in each software release.

Momentum Metrics | 117

For example, see the results in Table 5-10. Between Releases 1, 2, and 3, there is a significant
improvement in the Gain in each release. Between Releases 1 and 2, the improvement is mainly
due to the increased number of Avg. Wins, although it was also affected by the slight im-
provement in Avg. Unsuccessful Trials and reduced Losses. The even bigger jump in the Gain
between Releases 2 and 3, however, was accomplished even though the Avg. Wins per month
went down (slightly), because there was a large decrease in the number of unsuccessful trials.
Gain puts weight into each of the key basic measures of success, namely attracting new users,
converting interested users, and avoiding the loss of existing users.

Table 5-10. Analyzing the averages per month on key metrics across four software releases

 Avg. Wins Avg. Unsuccessful Trials Avg. Losses Avg. Gain

Release 1 28 12 6 10

Release 2 36 11 4 21

Release 3 35 4 3 28

Release 4 38 5 3 30

As with many other Response Metrics, the Gain for any software release is dependent on many
factors that are outside the control of the software development team. But also as with the
other metrics, I believe you can factor those elements into your analysis and still get great
value in looking at the results, watching the trends, and relating those to the metrics gathered
for the software team in an attempt to better identify and understand the patterns of success.

Besides external factors such as marketing, competition, and sales execution, Gain will be
affected by the maturity of a software product and the size and familiarity of its target users.
A new software product will likely have a very different Gain than a well-established product,
for example, and highly innovative software will have different results than software that
competes in a well-defined space. As a means to compare across products and projects, there-
fore, Gain as well as other metrics must be understood in context of the specific software
projects and goals.

See Table 5-11 for an example. In some cases, it can be as meaningful to look at the trends
and percentage change of Gain over multiple releases as to look at the raw numbers, but even
the trends will be relative to the specific software. In the example, Product 1 and Product 3
are showing positive trends, and Product 2 has what appears to be a decent Gain but is showing
a negative overall trend. To analyze further, you need more context. If you know that Product
1 is very new and Product 3 is very mature, then that might explain why Product 1 is showing
a much faster Gain progression. Whether a new product like Product 1 will ever achieve the
Gain of another product like Product 3 will be highly dependent on the type of software and
the market opportunity (as well as all the other usual external factors such as sales execution).
In the end, Gain must be analyzed in context and how “good” or “bad” the specific values
are is dependent on the context, the history, and the defined goals.

118 | Chapter 5: Response Metrics

Table 5-11. Analyzing Gain and Trends across products requires context

 Gain Gain Trend

Product 1, Release 2 330 + 65%

Product 1, Release 3 500 + 52%

Product 2, Release 2 480 - 7%

Product 2, Release 3 430 - 12%

Product 3, Release 2 710 + 18%

Product 3, Release 3 820 + 16%

All that said, if you are looking for one summary metric to analyze the overall success of a
software release, and the trends over time, I believe Gain is probably the best. I would still
recommend examining the individual Win and Loss metrics, which provide key details and
can help reveal key patterns for specific software projects and product development teams,
but Gain can be very useful as a summary both for analysis and for targeted improvement of
software teams.

Gain Rate

Purpose

Determine the average amount of time it takes to accumulate each Gain.

Formula

Gain Rate = (Time Elapsed / Gain)

Example
A new software release is issued at the end of June. The following new user activations (Wins)
are recorded for the three months following release:

Month of July: 225 new user activations
Month of August: 270 new user activations
Month of September: 350 new user activations

The following trial data is recorded for the three months following the product release:

Month of July: 81 Trials Complete, 67 Successful Trials
Month of August: 107 Trials Complete, 88 Successful Trials
Month of September: 142 Trials Complete, 119 Successful Trials

The Total number of Unsuccessful Trials during this period can then be calculated as follows:

Unsuccessful Trials in July = 81 – 67 = 14
Unsuccessful Trials in August = 107 – 88 = 29
Unsuccessful Trials in September = 142 – 119 = 23

Momentum Metrics | 119

The following user deactivations or cancellations (Losses) are recorded for the three months
following release:

Month of July: 18 deactivations or cancellations
Month of August: 13 deactivations or cancellations
Month of September: 24 deactivations or cancellations

Using the above data, the Gain per month can be calculated as:

Gain for July = 225 - (14 + 18) = 193
Gain for August = 270 / (29 + 13) = 228
Gain for September = 350 / (23 + 24) = 303

From which the following are the Gain Rate calculations per month and the Average:

Gain Rate in July (month with 31 days) = (31 × 24) / 193 = 3 hours 51 minutes
Gain Rate in August (month with 31 days) = (31 × 24) / 228 = 3 hours 15 minutes
Gain Rate in September (month with 30 days) = (30 × 24) / 303 = 2 hours 22 minutes
Average Gain Rate (all months) = ((31 × 24) + (31 × 24) + (30 × 24)) / (193 + 228
+ 303) = 3 hours 3 minutes

Notes
I call this metric Gain Rate because it represents how quickly the Gains are being accumulated.
I think of this like the time difference between competitors in a bike, running, or horse race.
Clearly, the longer the Gain Rate, the safer the “leader” is. In this case, the race is to gain more
users and to lower the number of losses and failed trials. The lower the Gain Rate, the faster
you are gaining and making progress. If the Gain Rate grows, then you are losing ground.

As with the other metrics in this chapter, comparing Gain Rate across projects and products
is fraught with complexity and you must consider the context. But in tracking a single product
or project over time, over many releases, Gain Rate is an effective metric to identify momentum
and your rate of progress. See Table 5-12 for an example, looking at the Gain Rate over the
course of five releases provides a quick summary of how the changes in Wins, Losses, and
trial results are affecting overall results. In this case, the Gain Rate improved in every release
except between Release 3 and Release 4. The Gain Rate improved partially because Wins
increased, and even more because Losses and unsuccessful trials decreased. The Gain Rate
got worse after Release 4 because the Losses went up, meaning that after the release, there
were users deactivating more frequently. By looking at Gain Rate first, you can quickly identify
which releases are following positive or negative patterns, and from there you can study the
other metrics in more detail to gain greater understanding. Here, Gain Rate is a quick way to
identify that Release 4 had unusually negative results, From there, you would clearly want to
examine other metrics to try to determine the difference between Release 4 and the other
releases.

120 | Chapter 5: Response Metrics

Table 5-12. Gain Rate provides a useful summary of the changes in Wins, Losses, and trial results
across multiple releases (all releases measured over 120 days)

 Wins Unsuccessful Trials Losses Gain Rate Change from Prior
Release

Release 1 935 71 85 3 hours 42 minutes ---

Release 2 1,110 64 77 3 hours 0 minutes - 42 minutes

Release 3 1,245 60 75 2 hours 36 minutes - 24 minutes

Release 4 1,255 67 118 2 hours 42 minutes + 6 minutes

Release 5 1,295 62 71 2 hours 29 minutes - 13 minutes

Acceleration

Purpose

Measure the ratio of user benefits delivered to urgent user issues created.

Formula

Acceleration = (Boost / Number of User Issues with the highest Urgency) × 100

Example
A new software release is issued at the end of June. In the three months following the release,
the following data is gathered regarding user benefits contained in the release:

• Key transaction performance improvement, validated by embedded performance meas-
urements, Population Benefited is 100%

• Key new reports, validated by usage data, Population Benefited is 75%

• Usability improvements in most used product area, validated by customer survey, Pop-
ulation Benefited is 100%

• New integration utility, validated by usage data, Population Benefited is 10%

The Boost for the release is calculated as follows:

Boost = (1.0 + .75 + 1.0 + .10) = 2.85

Also in the three months following the release, the customer support team records 22 User
Issues with the highest customer Urgency rating of 4.

With this data, Acceleration during this timeframe can be calculated in this way:

Acceleration = (2.85 / 22) × 100 = 13

Notes
While Gain gives you a view of how a software release is doing in gaining more users, and
Gain Rate gives you a view of the rate and momentum of growing the user base, the Accel-
eration metric gives you a summary of the gains made for existing users. I call this metric
Acceleration because when the “boost” of user benefits exceeds the “drag” of severe issues,

Momentum Metrics | 121

then the positive response of existing users is greatly “accelerated.” If the drag exceeds the
boost, then it is only marginally “accelerated.”

One little interesting tweak in this formula is that I like to take the ratio of Boost to Urgent
User Issues and then multiply by 100. Why by 100? You don’t have to: clearly, it just moves
the decimal point. My reason for using it is to adjust the result to reflect a percentage of the
customer base, which while not exactly accurate, is a reasonably fair general approximation.
My theory is that, in some sense, Boost is a metric that if multiplied by 100 would represent
the percentage of customers receiving user benefits. So, for example, a Boost of 2.0 is roughly
equivalent to saying that 200% of the user base received a Boost, meaning that every customer
received an average boost of 2 key benefits. The formula for Acceleration also is based on the
idea that every Urgent User Issue diminishes those key benefits proportionally. While with
Boost I prefer to use the factor rather than the percentage (so 2.0 rather than 200), with
Acceleration I prefer to use the larger “percentage” number. So that’s why I multiply by 100.
But this is partially a matter of taste and experience. You might choose to multiply by an even
larger number.

Software that is “accelerating” quickly is software that has higher positive values of the Ac-
celeration metric. This means that the software is delivering more key user benefits and having
few urgent customer issues. Table 5-13 shows an example of Acceleration across a series of
software releases. Unlike many other metrics, the trend of Acceleration is not as important
as the measurement for a given timeframe or a specific software release. For example, in
Table 5-13, the fact that Release 4 has a lower Acceleration than Release 3 doesn’t mean that
things got “worse” or that the software team failed in any way. Release 4 still has a positive
Acceleration, and comparing this value with historical results and expected goals is more
important in this case than trending the values from release to release. In fact, rather than
looking at trends across releases, it could be more interesting to look cumulatively. For Re-
leases 3 and 4 in Table 5-13, for example, the cumulative Acceleration is 149.

Table 5-13. Acceleration provides a summary analysis based on Boost (key benefits) weighted against
Urgent User Issues

 Boost Urgent User Issues Acceleration (this Release) Cumulative Acceleration (all Releases)

Release 1 8.5 18 47 47

Release 2 6.0 23 26 73

Release 3 16.75 16 105 178

Release 4 5.25 12 44 222

Release 5 21.0 13 162 384

You can have fun and call attention to the Acceleration metric and its meaning by charting
the metric in creative ways and posting the charts on the wall or on an office big screen.
Figure 5-3 shows an example using race cars. In this case, charting the cumulative Acceleration
after each release illustrates to the software development team the positive progress.

122 | Chapter 5: Response Metrics

Figure 5-3. You can make Acceleration more memorable with creative charts

Win Ranking

Purpose

Establish ranking versus key competitors based on number of new user activations.

Formula

Win Ranking = Numeric position based on New Users vs. Competitors

Example
In the first three quarters of the year your software product records the following new user
activations:

Product 1 Quarter 1: 748 new user activations
Product 1 Quarter 2: 861 new user activations
Product 1 Quarter 3: 922 new user activations

During the same three quarters, you gather information about two key competitors and record
the following estimated new user activations for each:

Competitor 1 Quarter 1: estimated 500 new user activations
Competitor 1 Quarter 2: estimated 750 new user activations
Competitor 1 Quarter 3: estimated 1000 new user activations

Competitor 2 Quarter 1: estimated 200 new user activations
Competitor 2 Quarter 2: estimated 240 new user activations
Competitor 2 Quarter 3: estimated 300 new user activations

Based on this, you can establish the following quarterly rankings:

Quarter 1 Rankings: (1) Product 1; (2) Competitor 1; (3) Competitor 2
Quarter 2 Rankings: (1) Product 1; (2) Competitor 1; (3) Competitor 2
Quarter 3 Rankings: (1) Competitor 1; (2) Product 1; (3) Competitor 2

Momentum Metrics | 123

Specifically for Product 1, then, the Win Ranking by quarter is:

Win Ranking Quarter 1 = 1st
Win Ranking Quarter 2 = 1st
Win Ranking Quarter 3 = 2nd

Notes
This is a straightforward metric that simply involves measuring the new user activations
(Wins) for a software product against those known or estimated for key competitors, thereby
establishing a simple ranking. While there is not much to this metric, I include it because I
think it is important and useful, as an overall measure of user response, to know where your
software stands in relation to key competitors.

Obviously, if your software doesn’t have any competitors, such as in the case of software
developed for internal use, this metric will not apply.

Similar metrics could be developed for the total number of known users or for other Response
Metrics, such as Losses. All of this requires that you are able to gather or estimate user activity
for your key competitors, which was discussed more in previous chapters. The formula pre-
sented here for Win Ranking focuses on new user activations, under the theory that tracking
how many new users are added in a given timeframe is most directly relevant to the recent
work done by the software development team. Another potentially meaningful way to analyze
the same data would be to look at the number of new user activations as a percentage of the
total number of existing users.

Table 5-14 shows various numbers that might exist and that you can analyze. Personally, I
believe the number of new user activations is the most relevant direct comparison and the
best for competitive ranking, since percentage added is still highly dependent on the total size
of the historical customer base. In Table 5-14, for example, if you were to rank by the per-
centage gain then Competitor 2 would rank first, although it added far fewer new users. If
you were to rank by total users, then Competitor 1 would rank first, and that ranking wouldn’t
change for quite some time, even though Product 1 clearly outgained that competitor in the
measured quarter. The most relevant value, therefore, for a ranking to measure recent user
response is the number of new users.

Table 5-14. Comparing existing and new users for a product and key competitors during a specific
quarter

 Total Users New Users % Added Win Ranking

Product 1 8,500 800 9% 1

Competitor 1 24,500 500 2% 2

Competitor 2 2,500 300 12% 3

If you get data and metrics like this from other groups inside your organization like the product
marketing team; or from outside groups like industry analysts, that’s fine. The important
point is to have at least one metric that shows you and your software development team how
you rank versus competitors in attracting new users, to help you determine how the work
your team is doing translates to user response.

124 | Chapter 5: Response Metrics

Capability Ranking

Purpose

Establish ranking versus key competitors based on breadth and depth of software
features.

Formula

Capability Ranking = Numeric position based on Features vs. Competitors

Example
After a new software release, assume that you compare your software product to those of two
key competitors, rating each on 32 separate features with each feature rated on the following
scale:

0: Does not have the feature
1: Minimal capabilities for the feature
2: Moderate capabilities for the feature
3: Maximum capabilities for the feature

The following are the ratings you come up with for the 32 features for each:

Product 1: 8 features rated 0 (no capability)
Product 1: 4 features rated 1 (minimal capability)
Product 1: 12 features rated 2 (moderate capability)
Product 1: 8 features rated 3 (maximum capability)

Competitor 1: 4 features rated 0 (no capability)
Competitor 1: 11 features rated 1 (minimal capability)
Competitor 1: 6 features rated 2 (moderate capability)
Competitor 1: 11 features rated 3 (maximum capability)

Competitor 2: 9 features rated 0 (no capability)
Competitor 2: 15 features rated 1 (minimal capability)
Competitor 2: 4 features rated 2 (moderate capability)
Competitor 2: 4 features rated 3 (maximum capability)

Based on this data, you can calculate the capability for the product and competitors as follows:

Product 1 Feature Capability = (8 × 0) + (4 × 1) + (12 × 2) + (8 × 3) = 52
Competitor 1 Feature Capability = (4 × 0) + (11 × 1) + (6 × 2) + (11 × 3) = 56
Competitor 2 Feature Capability = (9 × 0) + (15 × 1) + (4 × 2) + (4 × 3) = 35

From there, the Capability Rankings are determined simply:

Capability Rankings: (1) Competitor 1; (2) Product 1; (3) Competitor 2
Product 1 Capability Ranking = 2nd

Momentum Metrics | 125

Notes
If you have a mature product marketing team, it is likely you can get enough data for this
metric from them. The above example just provides one way that features can be rated and
compared. There are of course many others. You could simply count features, or you could
rate features on many other scales.

While the data for this metric is somewhat different, I include this as one of the Response
Metrics because any improvement that the software development team achieves in capability
versus key competitors is likely to result in at least some positive user response. You need to
look at this aspect of accomplishment as well as the more basic accomplishments such as
Wins (new user activations), to get a complete picture of the success and progress of each
software development team.

The Capability Ranking also provides insight that might indicate where other factors have
diminished other metrics. For example, Table 5-15 shows summary metrics for four products.
What’s most telling in these values is that Product 3 ranks fourth among key competitors in
terms of Wins, but ranks first in terms of Capability. While there would certainly be much to
be learned from examining the other metrics for these products, the Win Ranking and the
Capability Ranking, along with what appears to be a solid Gain, would tell you that the
software team working on Product 3 has likely done a solid job, and the lower Win Ranking
may be due to outside factors, such as less marketing, poorer sales execution, or other issues.

Table 5-15. Capability Ranking can provide a balanced view when success and improvement doesn’t
show in other metrics

 Gain Win Ranking Capability Ranking

Product 1 7.3 3 4

Product 2 10.25 1 2

Product 3 5.5 4 1

Product 4 4.9 2 3

Response Metric Scorecards
As with Skill Metrics, a simple way to track metrics is to create a spreadsheet where
you enter the data elements and the metrics are then calculated. You might have sep-
arate spreadsheets for each product, perhaps summarizing results over chosen time-
frames like by month or by quarter—or you might have one spreadsheet that tracks
multiple projects over a given timeframe.

As mentioned in the previous chapter, I find Google Docs very suitable to the purpose
of inputting the data, calculating the Response Metrics, dynamically creating charts,
and sharing the results securely with members of the software development team. I
typically keep a separate spreadsheet for each quarter (each three month period), and
I track all the software projects in the single spreadsheet. Every project has a separate
“scorecard,” which is a separate sheet where the data for that project is entered. I sum-
marize the data for user activations and deactivations in one part of the sheet, and

126 | Chapter 5: Response Metrics

separate areas are used for tracking data on the trials, the key benefits, and the user
issues. Figure 5-4 shows a sample project response scorecard for three months, with
the Response Metrics calculated at the top.

Figure 5-4. A sample Response Metrics spreadsheet for a project during a three-month period

The metrics for multiple projects can then be summarized on a single sheet, and key
chosen metrics can be charted. Figure 5-5 shows how a sample project summary sheet
might look.

Figure 5-5. A sample project summary sheet from a Response Metrics spreadsheet includes summary
metrics for each project and a chart of key Momentum Metrics

Response Metric Scorecards | 127

Observations on Project Types
As a wrap-up to this chapter, the following are some observations on which Response
Metrics might deserve special focus for different types of software projects. Different
project types will have different dynamics and expectations, such as the size of the target
user base, the level of competition, and the amount and type of customer support that
can be expected or tolerated. In general, any of the Response Metrics could be relevant
and useful to help any type of software team gain insight and understanding of user
response. But certain metrics may prove more significant according to the type of soft-
ware you are working on and delivering.

Consumer Software
Consumer software is downloaded to consumer devices, either desktop, laptop, tablet,
or mobile phone computing devices. Consumer software is targeted at individual buy-
ers, although it can be for personal or business use. The software, like all others, may
have a price or it may be free. Consumer software includes traditional packages such
as local document editors, personal information management products, games, and all
manner of applications in between—including those delivered today for smart phones.
By definition, each version of the software is run by one user at a time, although the
software might enable multiple users to communicate concurrently when running the
software.

The following Response Metrics can be particularly useful for a software development
team working on consumer software projects:

Wins

The main goal for most consumer software is to gain new users, so monitoring
the number of Wins is clearly important. The trend and average bear watching,
and keeping the software development team aware of the cumulative Wins for
any software release will help the team stay focused on the top-line goal.

Penalties

Since consumer software typically targets a large audience, maintaining a
manageable number of customer support issues, or reducing the number of
customer support issues, can be critical to building a successful product and
a successful business. Focusing on the values and trends of the Penalties metric
will therefore be important for most consumer software products.

128 | Chapter 5: Response Metrics

Capability Ranking

The competition among many types of consumer software products will be
driven by feature and capability comparisons, since there are usually only small
price differences, especially in mature markets. Having a higher Capability
Ranking can therefore be a leading indicator of positive user response, and
raising the Capability Ranking can represent important progress and success
for the software development team.

Enterprise Software
Enterprise software is designed for business use and is typically differentiated from
consumer software in that it requires specialized enterprise-class servers or is designed
to be run on a server and accessed by multiple users. This category refers specifically
to on-premise or managed enterprise software, meaning that it is software that someone
installs either locally or in a managed hosting environment.

The following Response Metrics can provide key insights for software teams working
on enterprise software projects:

Win Percentage

Many customers test an enterprise software package before committing to on-
going use. Sometimes these are competitive trials, sometimes they are just
demonstrations or trial periods for users to determine whether the software
meets their needs. For enterprise software, therefore, success in trials is very
important, and the Win Percentage of trials that convert to customers is one
of the most important indicators of positive user response for a particular soft-
ware release. Gauging the results of this metric is a good indicator to the team
on the overall user response.

Penalties Per Win (PPW)

Many enterprise software products do not achieve or target the same size user
base as consumer products or cloud services. The business model for enterprise
software is often based on a relatively smaller number of new customers, but
a more sizable amount of revenue per user. In such a model, it is very important
that the software does not require extensive customer support, and improve-
ment in the amount of support required per customer is especially important
because it improves the overall profitability per user. By focusing on PPW, the
software team can gain a picture on how well the project is doing in this regard
and can identify when the team’s work yields progress.

Observations on Project Types | 129

Win Ranking

Since enterprise software is typically targeted at a somewhat constrained pop-
ulation of total potential customers or users, every Win achieved is significant
and the Win Ranking against competitors is both a snapshot of current posi-
tion and a leading indicator of future success. Enterprise software users and
buyers are often conservative in their choices, for obvious reasons, so they are
as influenced by what others have bought as well as by other factors. If a soft-
ware product was clearly a leader in the past, it stands a better chance of
remaining a leader going forward. Tracking the Win Ranking is, therefore,
especially important to the enterprise software development team.

Developer and IT Tools
Developer and IT Tools is a broad category in which I’m referring to software targeted
at developers and IT professionals. Depending on the size, breadth, and complexity of
the software, it might share many characteristics with consumer products or enterprise
software products, and clearly some of the notable metrics discussed in those sections
might also apply. I am focusing here on Developer and IT Tools delivered as packaged
software, as opposed to those that might be delivered as cloud services.

Among the metrics in this chapter, the following may be particularly useful for software
teams that deliver Developer and IT Tools:

Win Rate

Developer and IT Tools, when successful, often grow their user base through
word-of-mouth. While tracking just Wins will show gains, using Win Rate as
a key metric will help the team see how the pace of adoption is increasing (or
decreasing). Positive user response will most likely be demonstrated in im-
proved Win Rate, although the improvements may show up gradually.

Losses

As with all software projects, losing users is clearly something to be watched,
especially if it can be directly correlated to changes made or problems intro-
duced by the software development team. In the case of Developer and IT
Tools, it will be especially helpful if you can track normal usage and gain insight
when usage declines. While users may not have explicitly cancelled or sent
some other clear indicator that they no longer intend to use the software, the
fact that they are no longer actively using the product can be an early signal
that the users are “lost.” The users of Developer and IT Tools are technically
adept, so they often migrate quickly to products that they find new and better,
and clearly it is one of the goals of the software development team to protect
against such Losses.

130 | Chapter 5: Response Metrics

Boost

Due to the high potential for fast churn (users switching from your product to
other “better” tools), it’s especially important to keep introducing key im-
provements and benefits for existing users. Delivering such improvements will
protect against Losses and increase positive user response that should also lead
to more Wins and better Win Rate. The Boost metric can be an excellent focal
point for the software development team to track how well it is doing in de-
livering key user benefits.

Cloud Services
An increasing number of software developers and development teams are now working
on projects delivered as cloud services. This includes all kinds of applications, including
entertainment, e-commerce, personal interest, and front- and back-office business sys-
tems. Some are offered free of charge, sometimes without any activation or registration
at all, while some involve registration and subscription fees.

The following metrics are worth noting for teams working on cloud services and cloud
applications:

Gain

Most cloud services are targeted at large audiences, and for many types of
applications, there may be a great deal of turnover and volatility in the amount
of usage. Gain is an excellent summary metric for high-volume, high-volatility
applications, essentially measuring the number of new users to lost users and
failed opportunities. Tracking this metric and the trend will help the software
team track the top-line progress and determine how work done is translating
to positive results.

Gain Rate

Again, since cloud services generally target a large number of users, the rate of
gaining users versus losing users and failed opportunities is a very good meas-
urement to determine success. The shorter the Gain Rate, the better the rate
of growth. By following the Gain Rate, the software development team can
better identify how well the application is progressing, including how well
existing users are staying engaged and being retained.

Observations on Project Types | 131

Acceleration

Retaining existing users is an important factor for cloud services and cloud
applications, where users often have low barriers to choose other options.
Since many cloud services are offered at low or no fees, there are often few if
any financial barriers to keep users from migrating away. Therefore, the soft-
ware development team will often be called upon to continue delivering new
and key benefits for existing users, while ensuring that there are not major
problems impacting the users. Watching the Acceleration metric is an excellent
way for the software team to keep its eye specifically on how well it is doing
in moving the software forward for existing users.

132 | Chapter 5: Response Metrics

CHAPTER 6

Value Metrics

I don’t pay attention to measuring sticks until we get to the end.

—Bill Polian, NFL General Manager, 6-time NFL Executive of the Year

The final set of metrics described in this book are the Value Metrics. These rely on the
metrics presented in the previous chapters. I call them Value Metrics because they are
meant to help identify the specific type of value that each coder brings to the team.
Using the Skill Metrics and the Response Metrics, this section defines measurements
that highlight how the skills add up to specific strengths, and how you can measure
coder contributions in terms of team achievements. In most cases, these metrics are
mainly useful after software projects are done and the software is released—and in
some cases, many months after release so that complete data is accumulated.

It’s important to note upfront that there are many different types of Value that a coder
can have for a team and an organization. One type of Value is not necessarily better
than another. What’s important is to begin to determine the mix of Skills and Values
that you see on successful software development teams, to help you identify the com-
plementary Skills and Values that might be added to teams for better results. The Value
Metrics are meant to provide you a high-level view of individuals on a team, so that
you can better assess the mix of skills and contributions and more easily identify the
patterns of success or the key weaknesses on existing teams. Various examples of how
metrics can be used in practice and analysis will be presented in the following chapters.

As with the information presented previously, I am trying to provide a useful set of
metrics, but I am also trying to give categories and examples so that you might also
develop your own metrics. There are many variations of metrics that could be devised
like the ones in this chapter. What you find here can be useful and applied immediately,
and will also teach you an approach that you can adjust to fit your situation.

Input Data
The input data for Value Metrics is the output of Skill Metrics and Response Metrics.
Table 6-1 lists the specific metrics that are used for Value Metrics. For details on these

133

metrics, including the data required for each and the formula to calculate them, please
refer to the appropriate chapter and section.

Table 6-1. Input data for Value Metrics

Metric Chapter Description

Utility Skill Metrics Measures how many assigned tasks each coder completes

Power Skill Metrics Measures the average complexity of the tasks that a coder completes

Temperature Skill Metrics Measures how “hot” or “cold” a coder is at any given time

O-Impact Skill Metrics “Offensive Impact” that summarizes the contributions of a coder in moving projects
along

Saves Skill Metrics Measures how often a coder helps fix urgent production issues

Tackles Skill Metrics Measures how many potential issues or opportunities a coder handles proactively

Range Skill Metrics Measures how many areas of software a coder works on

D-Impact Skill Metrics “Defensive Impact” that summarizes the contributions of a coder in helping to avoid
large problems

Turnovers Skill Metrics Measures the magnitude of assigned tasks that a coder fails to complete

Errors Skill Metrics Measures the magnitude of production issues found related to areas that a coder is
responsible for

Wins Response Metrics Measures the number of active users added

Losses Response Metrics Measures the number of active users lost

Acceleration Response Metrics Measures the ratio of user benefits delivered to urgent user issues created

Contribution Metrics
The Contribution Metrics define summary measurements that indicate to what degree
coders are responsible for team results. Like any other summary, the downside of these
metrics is that they might obscure meaningful details. The upside of summary metrics,
on the other hand, is that they can help you spot patterns that might not be as apparent
when looking at all the details.

Obviously, not everyone will have the same level of contribution. A successful team
will have coders at many different levels (and an unsuccessful team will, too). I believe
it’s useful, however, for everyone to understand the level of contribution they’ve made,
and how their own activity translates directly to team results. These metrics help show
that. They don’t tell you whether the team actually did well or poorly, but they do
highlight the relative strengths of the team members.

Influence

134 | Chapter 6: Value Metrics

Purpose

Measure the percentage of positive contributions by each coder relative to others on the
team.

Formula

Influence = Individual (O-Impact + D-Impact) / Team (O-Impact + D-Impact)

Example
The individual coders on a software team have the following Offensive and Defensive Impact
totals during work on a software release:

Coder A: O-Impact 20, D-Impact 10
Coder B: O-Impact 23, D-Impact 12
Coder C: O-Impact 22, D-Impact 0
Coder D: O-Impact 33, D-Impact 16

The sum total of the O-Impact and D-Impact for the team is then:

Team (O-Impact + D-Impact) = (20 + 23 + 22 + 33) + (10 + 12 + 0 + 16) = 136

The Influence for each individual coder can then be calculated as follows:

Influence Coder A = (20 + 10) / 136 = .22
Influence Coder B = (23 + 12) / 136 = .26
Influence Coder C = (22 + 0) / 136 = .16
Influence Coder D = (33 + 16) / 136 = .36

Notes
I call this the Influence metric because, by adding up Offensive and Defensive Impact, it
summarizes the level of impact, or influence, that each individual coder has on the results
achieved by the software team. The higher the number, the better.

The way the metric is calculated, the sum of all team member’s Influence values will add up
to 1.0. There’s no inherent meaning in a particular Influence value, but they are meaningful
in relative measurement to each other. In other words, if a coder has an Influence of .24, that
alone doesn’t tell you much, but it does mean that the coder has twice the Influence as another
coder who has a value of .12.

You will see later that I use this as a factor to calculate further metrics, and ensuring that this
value is less than one fits that usage. But another way to calculate this specific metric would
be to multiply by 100 and refer to it as a percentage. In the example above, Coder A has an
Influence of .22, but you could also multiply by 100 and say that Coder A has an Influence
of 22%.

Influence can be calculated as a summary at the end of a project or software release, or it can
be tracked at regular intervals during a project. You can calculate it after every development
iteration or at the end of each month.

Contribution Metrics | 135

Another interesting way to look at Influence is to analyze how far each coder is above or below
the mean average. For example, see Table 6-2. Highlighting the percentage above or below
the average makes it easy to see which coders had the greatest Influence on the team’s results,
and how the coders compare to each other.

Table 6-2. To analyze Influence, you can compare individual values to the mean average

 Jan Influence Jan +/- Avg. Feb Influence Feb +/- Avg.

Coder A .21 - 12.5% .25 0

Coder B .24 - 4% .28 + 12%

Coder C .19 - 24% .16 - 36%

Coder D .36 + 44% .31 + 24%

An effective way to visualize Influence and other Value Metrics is with pie charts. See
Figure 6-1 for an example.

Figure 6-1. A chart comparing coder Influence in February

Again, Influence alone is not the sole indicator of value to a team. A coder with low Influence
may still be valuable. They may be a junior member of the team, so they are not expected to
have as much impact as a more senior member. Or they may provide other types of value to
the team, such as helping others get items done, covering many areas, or handling hard prob-
lems. Some of these will be highlighted by metrics later in this chapter.

Efficiency

Purpose

Measure the percentage accuracy of each coder relative to others on the team.

136 | Chapter 6: Value Metrics

Formula

Efficiency = 1.0 - (Individual (Turnovers + Errors) / Team (Turnovers + Errors))

Example
The individual coders on a software team have the following total Turnovers and Errors during
work on a software release:

Coder A: Turnovers 22, Errors 71
Coder B: Turnovers 11, Errors 29
Coder C: Turnovers 7, Errors 70
Coder D: Turnovers 0, Errors 49

The sum total of the Turnovers and Errors for the team is then:

Team (Turnovers + Errors) = (22 + 11 + 7 + 0) + (71 + 29 + 70 + 49) = 259

The Efficiency for each individual coder can then be calculated as follows:

Efficiency Coder A = 1.0 - ((22 + 71) / 259) = .64
Efficiency Coder B = 1.0 - ((11 + 29) / 259) = .85
Efficiency Coder C = 1.0 - ((7 + 70) / 259) = .70
Efficiency Coder D = 1.0 - ((0 + 49) / 259) = .81

Notes
Like Influence, the Efficiency metric provides a relative ranking of how efficient each coder
is in the work they’ve done, in the sense that the work they’ve done had less errors and fewer
incomplete tasks. The formula calculates the fractional percentage of Errors plus Turnovers
that each coder has relative to the team, then subtracts from 1.0 to represent the “positive”
aspect, so that coders with higher values are the ones with greater efficiency. You could also
have a slightly different metric, in which you did not subtract the calculation from 1.0, and
you might call that metric something like “Inefficiency” or “Handicap.” This would produce
the exact opposite relative ranking, so coders with a higher Efficiency would have a lower
Inefficiency / Handicap. Personally, when faced with choices like this on calculating a “pos-
itive” versus “negative” metric, I choose the positive. I think it’s easier to talk with each other
about how every person is doing in terms of Efficiency, as opposed to how they are doing in
terms of Inefficiency. And, in the long term, I think people do better when they are focused
on achieving the positive rather than avoiding the negative.

You will see below that Efficiency is used to calculate other metrics. Efficiency is designed to
have a value below 1.0 so that it can serve as a weighting factor in calculating other metrics
such as Win Shares and Loss Shares. If you subtract the value of Efficiency itself from 1.0, as
is done in Loss Shares, you get a value that you might call “Inefficiency.”

As with Influence, Efficiency can be useful as a total taken for an entire project or software
release, or it can be measured at regular intervals during a project. The numbers by themselves
are not meaningful, but they help you spot which coders are more efficient than others. A
coder with a .80 Efficiency is more efficient than a coder with a .60 Efficiency, and is twice as
efficient as a coder with a .40 Efficiency.

Since Efficiency produces a relative ranking, it can be helpful to establish another rating ele-
ment when analyzing the raw values. For example, you could use percentile, or a simple

Contribution Metrics | 137

ranking number for each coder’s Efficiency. Personally, as with Influence, I like to measure
how far each coder’s Efficiency is above or below the mean average. This is a little trickier
than with Influence, because in this case not all the coder Efficiency values will add up to
1.0—they will instead add up to Count(Coders) - 1.0. If you have four coders, their Efficiency
values will add up to 3.0, and the average Efficiency would be .75. Either using that method,
or just by calculating the average from your Efficiency values, you can determine the per-
centage that each coder’s Efficiency deviates from the average. This becomes a quick way for
you to assess relative strengths. See Table 6-3 for an example.

Table 6-3. To analyze Efficiency, you can compare individual values to the mean average

 Jan Efficiency Jan +/- Avg. Feb Efficiency Feb +/- Avg.

Coder A .65 - 13% .68 - 9%

Coder B .84 + 13% .86 + 15%

Coder C .62 - 17% .70 - 7%

Coder D .89 + 19% .76 + 1%

While I call this metric Efficiency, it is a particular type of Efficiency. It is essentially showing
you what percentage of a team’s errors belong to each individual. More complicated metrics
could take into account the ratio of work done (Points) to the number of errors, and possibly
take into account other metrics, too. As a starting point, I believe simpler is better. I find it is
very useful for coders to know how they compare with peers on fairly straightforward meas-
urements such as this one. Not every coder will be expected to produce the same Efficiency.
Based on experience and skill level, it is understood that there are bound to be differences—
but every coder can strive for more Efficiency.

Advance Shares

Purpose

Assign a relative level of credit to each coder for user advances.

Formula

Advance Shares = Acceleration × Influence

Example
The individual coders on a software team have the following Influence for a software release:

Coder A: Influence .22
Coder B: Influence .26
Coder C: Influence .16
Coder D: Influence .36

Based on the measured Boost and the number of User Issues with the highest Urgency, the
software release is calculated to have an Acceleration of 13.

138 | Chapter 6: Value Metrics

The Advance Shares for each individual coder can then be calculated as follows:

Advance Shares Coder A = 13 × .22 = 2.9
Advance Shares Coder B = 13 × .26 = 3.4
Advance Shares Coder C = 13 × .16 = 2.1
Advance Shares Coder D = 13 × .36 = 4.7

Notes
“Share” measurements show how much each team member contributed, relative to the others.
Based on each coder’s relative contributions, they are given a number of “shares.” You can
think of it like shares of stock in a company. In this case, the shares are taken from the total
value of the Acceleration metric for a software release, which represents the key advances
delivered for existing customers. The amount of Acceleration is divided among coders based
on their individual Influence. So this metric tells you the relative amount of existing user
benefits that is attributable to each coder based on their overall influence on a release.

Granted, just because Coder A has a strong influence on a software release, it doesn’t mean
that the coder was directly responsible for the key user benefits. Coder B, who perhaps has a
lower overall Influence, might actually be the one who did the work that resulted in greater
benefits for existing users and, therefore, the higher Acceleration value. You could, if you
wanted, come up with a different formula for Advance Shares that measures the direct impact
coders had on the specific benefits delivered. However, personally, I think that software de-
velopment is a team undertaking, and it is difficult to separate the direct and indirect impact
each person has on the results. For example, while Coder B may have done the work on the
feature that resulted in Acceleration, perhaps Coder A handled more complex tasks that were
higher priority, thus allowing Coder B to work on the key benefits. Or perhaps Coder A
worked on infrastructure that Coder B was able to leverage. These kind of indirect influences
and impact are hard to track.

In the end, my philosophy is that individuals on the team should share equally in the positive
and negative results, relative to their own related contributions and work results within the
team. Put another way, that means that coders who make a greater amount of measurable
positive contributions get more credit for the team’s positive accomplishments, and coders
who have a greater amount of negative issues take more responsibility for the team’s negative
outcomes. This is a philosophical standpoint, and if you don’t agree with it, you could cer-
tainly adjust the metrics to reflect different values based on more direct involvement.

Advance Shares allows coders to see the Acceleration metric in a more personal way, and it
allows them to see how their own Influence translated to advances for existing users. As you
track Acceleration, you can track the Advance Shares for each coder. Table 6-4 shows an
example. This approach helps coders see the value they’ve provided, and prompts them to
consider whether they could make stronger individual contributions in the future.

Contribution Metrics | 139

Table 6-4. Advance Shares helps make Acceleration more personal and puts Influence into context

 Release 1
Influence

Release 1 Adv. Shares
(Acceleration=47)

Release 2
Influence

Release 2 Adv. Shares
(Acceleration=26)

Coder A .22 10.4 .17 4.4

Coder B .26 12.2 .31 8.1

Coder C .16 7.5 .24 6.2

Coder D .36 16.9 .28 7.3

The total number of Advance Shares, when added up for all coders, will equal the team’s
overall Acceleration value. As with other contribution metrics, however, for analytic purposes
the main meaning comes from the relative comparison of one value to another, one coder to
another. Looking at the average or cumulative Advance Shares over time might be informative,
but the main use is to look at this number for each coder by release.

Win Shares

Purpose

Assign a relative level of credit to each coder for new users.

Formula

Win Shares = Wins × Influence × Efficiency

Example
The individual coders on a software team have the following Influence for a software release:

Coder A: Influence .22, Efficiency .64
Coder B: Influence .26, Efficiency .85
Coder C: Influence .16, Efficiency .70
Coder D: Influence .36, Efficiency .81

During the period measured, the software release accumulates 845 Wins.

The Win Shares for each individual coder can then be calculated as follows:

Win Shares Coder A = 845 × .22 × .64 = 119.0
Win Shares Coder B = 845 × .26 × .85 = 186.8
Win Shares Coder C = 845 × .16 × .70 = 94.6
Win Shares Coder D = 845 × .36 × .81 = 246.4

Notes
The Win Shares metric identifies a relative share for each coder based on the number of Wins
accumulated for a software release and their individual Influence and Efficiency. Coders with
a larger Influence and a higher Efficiency are attributed a higher number of Win Shares, and
the number of Win Shares is exactly proportional to their Influence and Efficiency. Again, as
with Advance Shares, this metric takes the perspective that direct and indirect influences
should be taken into account when attributing the number of relative shares for each coder.

140 | Chapter 6: Value Metrics

The usefulness of this metric is to make the number of Wins more personal and to put the
Influence and Efficiency ratings in context of real results. Like all other Value Metrics, it
provides a relative measure, in this case based on the combination of Influence and Efficiency,
which is a powerful aggregate. Wins are a proxy for a specific type of team success, and Win
Shares summarize the credit each coder deserves for Wins.

As Wins are accumulated and tracked at regular intervals, you could also calculate Win
Shares. For example, it could be useful to evaluate coder Win Shares every month. The In-
fluence for the software release for each coder will already be established, since it is based on
the work done and the metrics tracked prior to the release. But the Efficiency for each coder
may change as new production issues are found over time. Table 6-5 shows an example. Again,
calculating and publishing Win Shares monthly makes the results more personal and high-
lights the effects of each person’s contributions.

Table 6-5. Win Shares can be tracked at regular intervals to make the number of Wins more personal
and to put Influence and Efficiency into context

 Influence at
end of Release

Efficiency at
end of Jan

Jan Win Shares
(Wins=225)

Efficiency at
end of Feb

Feb Win Shares
(Wins=270)

Coder A .22 .65 146.3 .68 183.6

Coder B .26 .84 189.0 .86 232.0

Coder C .16 .62 139.5 .70 189.0

Coder D .36 .89 200.3 .76 205.2

You may also choose to calculate the average and cumulative Win Shares for each coder over
multiple projects or releases. Given that the context of each project and release can be quite
different, however, I think the main usefulness of this metric is to help coders appreciate the
value of their individual contributions within a release, and to help you analyze the strengths
and weaknesses of the team in a specific timeframe. Trending or totalling this metric over
many releases over a long period of time, therefore, may not be extremely useful.

Loss Shares

Purpose

Assign a relative level of responsibility to each coder for lost users.

Formula

Loss Shares = Losses × (1.0 - Efficiency)

Example
The individual coders on a software team have the following Efficiency for a software release:

Coder A: Efficiency .64
Coder B: Efficiency .85
Coder C: Efficiency .70
Coder D: Efficiency .81

Contribution Metrics | 141

During the period measured, the software release has 55 Wins.

The Loss Shares for each individual coder can then be calculated as follows:

Loss Shares Coder A = 55 × (1.0 - .64) = 19.8
Loss Shares Coder B = 55 × (1.0 - .85) = 8.3
Loss Shares Coder C = 55 × (1.0 - .70) = 16.5
Loss Shares Coder D = 55 × (1.0 - .81) = 10.5

Notes
Loss Shares identifies a relative share of Losses attributed to each coder based on their Effi-
ciency. Coders with a lower Efficiency, and therefore a higher inefficiency, are assigned a
higher number of Loss Shares. The number of Loss Shares attributed to each coder is relative
to their Efficiency. A coder with a .80 Efficiency will have exactly half the Loss Shares as a
coder with a .40 Efficiency.

As with Advance Shares and Win Shares, this formula does not base Loss Shares on specific
involvement or direct cause and effect. In most cases, you will not be able to pin the loss of a
user to something specific done by individual coders. The philosophy of this metric is that
the entire software team shares in the responsibility of each user loss, and coders who have
produced a larger amount of issues or negatively affected the team’s progress with a greater
amount of inefficiency, therefore, deserve a higher responsibility for user losses.

This may not seem precise or exactly fair to some. A coder who is responsible for a particularly
bad error might actually have greater responsibility for a specific set of Losses than other
coders, and this metric won’t identify that. But the goal of Loss Shares, as well as Advance
Shares and Win Shares, is not to be exactly precise. The goal is to draw a reasonable parallel
between a coder’s contributions and activities and meaningful team outcomes and results. In
this case the metric connects Efficiency to Losses. While it may not be exactly precise, at the
very least it has the benefit of helping coders realize that their personal Efficiency is an im-
portant factor in avoiding Losses. It also makes the number of Losses more personal.

If you are tracking Losses at regular intervals, I suggest you also calculate Loss Shares at the
same time. You might record and publish Loss Shares monthly or quarterly. The Efficiency
for each coder will change as new production issues are found over time, so the proportional
amount of Loss Shares may rise or fall as the Efficiency ratings change. Table 6-6 shows an
example of Loss Shares calculated monthly.

Table 6-6. Loss Shares can be tracked at regular intervals to make the number of Losses more personal
and to put individual Efficiency into context

 Efficiency at
end of Jan

Jan Loss Shares
(Losses=23)

Efficiency at
end of Feb

Feb Loss Shares
(Losses=18)

Coder A .65 8.0 .68 5.8

Coder B .84 3.7 .86 2.5

Coder C .62 8.7 .70 5.7

Coder D .89 2.5 .76 4.3

142 | Chapter 6: Value Metrics

As with Win Shares, the Loss Shares metric is designed to be analyzed at a specific point in
time, particularly to help coders correlate their personal contributions to team results. It is
not clear that there is great value in trending, averaging, or summing a coder’s Loss Shares
over time, since this probably can be done more effectively using the underlying Skill Metrics
for each coder.

Rating Metrics
The Rating Metrics listed in this section provide summary ratings for individual coders
in important dimensions. These metrics can help you determine the specific types of
value that each coder provides on the team, and when analyzed in context of results,
these metrics can help you identify the overall strengths and weaknesses of the team.
If you have a set of coders who rate strongly on a small set of Rating Metrics, and you
do not have any coders who rate well on other Rating Metrics, then you may decide
that you should strengthen the team in those areas, perhaps by increased focus, men-
toring, or personnel changes.

It would be natural to have coders higher on some Rating Metrics and lower on others,
and part of the purpose of these metrics is to categorize different types of strengths.
This is done by summarizing specific Skills Metrics to create “composite” metrics.
Many other Rating Metrics could be devised; these below are ones I have found par-
ticularly interesting or useful.

Teamwork

Purpose

Establish a relative rating for team-oriented contributions.

Formula

Teamwork = Assists + Saves + Range - Turnovers

Example
The individual coders on a software team are measured to have the following Skill Metric
values for a software release:

Coder A: Assists 62, Saves 7, Range 2, Turnovers 22
Coder B: Assists 48, Saves 3, Range 6, Turnovers 11
Coder C: Assists 91, Saves 0, Range 4, Turnovers 7
Coder D: Assists 70, Saves 1, Range 3, Turnovers 0

The Teamwork metric for each coder can then be calculated as follows:

Teamwork Coder A = 62 + 7 + 2 - 22 = 49
Teamwork Coder B = 48 + 3 + 6 - 11 = 46
Teamwork Coder C = 91 + 0 + 4 - 7 = 8
Teamwork Coder D = 70 + 1 + 3 - 0 = 74

Rating Metrics | 143

Notes
Summarizing the Skill Metrics that correlate with a variety of ways that coders help and sup-
port teammates, the Teamwork metric provides a relative value to identify coders who are
strongest in this regard. Coders with a high Teamwork rating can be said to exhibit a higher
level of teamwork in the kinds of contributions they make.

Having a low Teamwork rating does not mean a coder is a bad teammate, or even that the
coder is lacking in teamwork in any way. That coder may have had other responsibilities that
fall outside the elements this metric measures. A coder might take note if they have a lower
Teamwork rating than others, but it doesn’t necessarily mean they did anything wrong. In
this sense, I suggest you look at this metric (and all other Rating Metrics) as especially useful
for identifying coder strengths but not necessarily an accurate indicator of coder weaknesses.

The Teamwork formula adds three key “team-oriented” Skill Metrics which are Assists, Saves,
and Range. Assists and Saves represent positive contributions that are specifically team-
oriented, and having a greater Range is also assumed to represent a special value to the team.
Then the formula subtracts Turnovers, because a Turnover is assumed to have a negative
impact on the team. The higher the Teamwork number, the stronger a coder is in regard to
the measured positives versus the negatives. The ranking of individual coders in this regard
may be noteworthy, but the actual difference between the values is probably not significant.
By nature of the formula and the underlying metrics, I don’t think you can say that a coder
who has a Teamwork rating of 80 is “twice as good in Teamwork” as a coder with a Teamwork
rating of 40. All you can say in this case is that the first coder was particularly strong in
Teamwork. Also, if coders are fairly close in Teamwork ratings, such as in the case where one
coder is calculated as Teamwork 46 and one as Teamwork 49, it is not clear that there is any
meaningful difference. In this case, you would likely just say that the two coders exhibited a
similar or equivalent level of Teamwork.

Over time you may begin to notice specific patterns in this metric and the values in your
organization. For example, you may begin to notice that coders who are strong in Teamwork
have monthly values for this metric in the twenties, whereas for most coders the normal range
is in the teens (or even less than ten). As you observe these trends and learn about the “base-
line” (normal) values for each coder and each team, you may be able to gain further or faster
insights from specific values.

Teamwork can be analyzed on a project by project basis, and it can also be usefully analyzed
at regular intervals during a project. Determining the average over time, for individuals or for
teams, can help you spot the normal baselines, and calculating the cumulative Teamwork
over longer periods can help ensure that no single time period is weighted too heavily. Both
techniques can be useful for identifying meaningful trends and for identifying the coders who
are particularly strong in this regard. Table 6-7 shows an example measuring Teamwork over
a period of time.

144 | Chapter 6: Value Metrics

Table 6-7. Teamwork tracked for a software team over a series of months

 Month 1
Teamwork

Month 2
Teamwork

Month 3
Teamwork

Month 4
Teamwork

Total Teamwork Avg. Teamwork

Coder A 8 4 12 9 33 8.25

Coder B 5 6 3 8 22 5.5

Coder C 14 10 11 13 48 12

Coder D 11 7 13 15 46 11.5

Total 38 27 39 45 149 --

Average 9.5 6.75 9.75 11.25 37.25 --

The Teamwork rating might be higher at specific times for the entire team or for portions of
the team. It might rise and fall depending on the phases of a project or the type of development
work being done. For example, during a design phase or a bug-fixing phase, it’s possible that
the number of Assists and Saves might rise and, therefore, Teamwork values might rise. Once
again, looking at averages and totals can help identify overall shifts, and you can factor that
into your analysis. Analyzing the data in charts, as shown in Figure 6-2, can be helpful to spot
trends and distributions.

Figure 6-2. Charting the Teamwork totals over a series of months

Fielding

Purpose

Establish a relative rating for the range and breadth of work successfully handled.

Formula

Fielding = (Utility + Range) - (Turnovers + Errors)

Rating Metrics | 145

Example
The individual coders on a software team are measured to have the following Skill Metric
values for a software release, calculated through four months following the release:

Coder A: Utility 114, Range 2, Turnovers 22, Errors 71
Coder B: Utility 98, Range 6, Turnovers 11, Errors 29
Coder C: Utility 132, Range 4, Turnovers 7, Errors 70
Coder D: Utility 106, Range 3, Turnovers 0, Errors 49

The Fielding metric for each coder can then be calculated as follows:

Fielding Coder A = (114 + 2) - (22 + 71) = 23
Fielding Coder B = (98 + 6) - (11+ 29) = 64
Fielding Coder C = (132 + 4) - (7 + 70) = 59
Fielding Coder D = (106 + 3) - (0 + 49) = 60

Notes
The Fielding metric is so named for the idea of “fielding” from baseball, which refers to players
on the field catching the ball. Conceptually this metric represents how much activity a “player”
is involved in, and how proficient she is in handling the activity. In this case, the Utility and
Range Skill Metrics are the indicators of how much “stuff” each coder handled, and that is
offset by the number of Turnovers and Errors, which are the counter-indicative magnitude of
mistakes made.

A coder with a high Fielding rating is someone who successfully handles a number of items
while keeping the number of mistakes relatively low. As with other Rating Metrics, you need
to be careful about drawing too many conclusions or in assuming anything is wrong for coders
who have low Fielding ratings. These coders may have been assigned a smaller number of
tasks, for example. A senior coder who successfully handles a small number of complex tasks
still might end up with a low Fielding rating. This may only mean that Fielding is not that
coder’s area of “strength,” or that he did not have a chance to demonstrate utility and range
because of the concentrated workload. A coder with a high Fielding rating, on the other hand,
is providing a certain kind of value to the team, although it doesn’t mean that she is incapable
of handling more complex tasks.

As with other Rating Metrics, it is hard to draw conclusions from or make sense of specific
numeric values without previous context. What does a Fielding rating of 80 mean? Nothing
by itself. But a coder with a Fielding rating of 80 is stronger and adding more value in this
respect than a coder with a Fielding rating of 40. Small differences, plus or minus ten percent
for example, are not really meaningful for this or other Rating Metrics, so you are looking for
the larger differences and the coders with Fielding values that stand out.

Fielding is best examined on a project-by-project basis, since the number of Errors is best
determined after a release has been issued and used for some time. You could calculate and
analyze Fielding during a project, and one option would be to calculate the Fielding metric
without including Errors. But I suggest using this metric by looking at Fielding a quarter or
more after a project is released, and then looking at Fielding averages across multiple projects.

Table 6-8 shows an example calculating the Fielding ratings for a team of coders across three
software releases. In this case, you can say that Coder D is strong and improving in Fielding,

146 | Chapter 6: Value Metrics

and Coder A is the weakest on the team. It can be useful to check such analysis versus your
expectations for each coder, based on their experience and skills. Also, you would want to
examine the success of each release to try to determine if the overall Fielding of the team
correlates with the relative success of each release. In this example, Release 3 shows improved
overall Fielding, so it would be interesting to know if Release 3 also showed improved results
such as more Wins or fewer Losses.

Table 6-8. The Fielding metric tracked for a software team over a series of releases

 Release 1 Fielding Release 2 Fielding Release 3 Fielding Avg. Fielding

Coder A 23 44 51 39.3

Coder B 64 61 57 60.6

Coder C 59 46 53 52.6

Coder D 60 73 82 71.6

Average 51.5 56.0 60.75 56.0

As with Teamwork and other Rating Metrics, the Fielding values may fluctuate with the type
of work done during a release. For example, a maintenance release may result in higher Field-
ing ratings than a feature release. Examining the averages will help you identify the group
trends, identify normal baselines, and make allowances in your analysis based on the type of
work done.

The Fielding metric is designed, as are all Rating Metrics, to help you spot specific types of
value that coders add to the team. This, in turn, helps you analyze the composition of teams.
When you look at a team’s success or failure, as measured by the various Response Metrics,
you can determine whether a team with high-Fielding coders is one that is more likely to
succeed.

Pop

Purpose

Establish a relative rating for the amount of complex work, innovation, and initiative.

Formula

Pop = Power + Tackles

Example
The individual coders on a software team are measured to have the following Skill Metric
values for a software release:

Coder A: Power 2.5, Tackles 2
Coder B: Power 3.3, Tackles 4
Coder C: Power 2.0, Tackles 3
Coder D: Power 2.6, Tackles 3

Rating Metrics | 147

The Pop metric for each coder can then be calculated as follows:

Pop Coder A = 2.5 + 2 = 4.5
Pop Coder B = 3.3 + 4 = 7.3
Pop Coder C = 2.0 + 3 = 5.3
Pop Coder D = 2.6 + 3 = 5.6

Notes
This metric is designed to help you identify the “big hitters” on the team, if there are any. I
use the term “Pop” because it captures how much “burst” or “propulsion” a coder adds over
time, like the “pop” of the ball off of a baseball hitter’s bat when he hits a home run. Coders
with a high value for Pop will have handled a significantly higher number of complex tasks
or have provided more innovation and initiative—or both.

You may not have coders like this on the team. If complex work is shared equally and the
amount of innovation is equally divided among coders, then many or most coders on a team
will fall into a similar range. As with other Rating Metrics, coders with a Pop within ten or
fifteen percent of each other are probably delivering similar value in this regard.

Having a high Pop rating is not necessarily “good” or “better” than the alternative. Coders
who handle more complex tasks may just be meeting expectations, and coders handling less
complex tasks are possibly just as important to the team. I find this an important metric to
look at, however, because it illustrates the composition and approach of the team. Knowing
whether you have coders who have significantly more Pop than other coders, then examining
the results of the software team, you can begin to analyze the effect that such coders and such
work distribution has on a team.

Pop can easily be measured at regular intervals during a project. However, in that case, you
must take into account that some periods may be devoted to more complex tasks and will,
therefore, result in a higher Pop rating. In some sense this may be “temporary” and misleading.
Say, for example, all coders work on the more complex tasks at the beginning of a project.
Then all the coders will have a high Pop rating in the beginning. But over the course of the
project, as coders work on less complex tasks, the Pop ratings will adjust down. For this
reason, I personally don’t use Pop as a metric during a project—instead I just look at the
underlying Power and Tackles. But I like to analyze Pop after a project is complete to see the
final distribution of complexity, innovation, and initiative. I find it useful to analyze the final
distribution for team chemistry and to see whether it matched my expectations going in. It is
useful to look at Pop for individuals on the team, and also for the team as a whole.

Table 6-9 provides a sample analysis of Pop over multiple releases. Again, as with other Rating
Metrics, overall values may fluctuate based on the work included in a release and the length
of the development effort. These must be taken into account. Also, the raw numbers them-
selves are not meaningful—at least not until you have established enough history to identify
patterns and changes. Relative to each other, however, coders with significantly higher or
lower Pop are worth noting, not because they are good or bad, but because they are delivering
different types of value to the team. In the example shown in Table 6-9, in Release 1 and
Release 2 Coder B has significantly higher Pop than the other coders, and the overall average
Pop is also somewhat higher. In Release 3, the Pop is much closer for all coders, but lower
overall. It would be interesting to analyze whether this matched expectations and whether
the results in Release 1 and Release 2 were noticeably different than those in Release 3.

148 | Chapter 6: Value Metrics

Table 6-9. The Pop metric tracked for a software team over a series of releases

 Release 1 Pop Release 2 Pop Release 3 Pop Avg. Pop

Coder A 4.5 4.1 4.2 4.3

Coder B 7.3 8.2 5.5 7.0

Coder C 5.3 4.8 5.6 5.2

Coder D 5.6 5.1 4.9 5.2

Average 5.7 5.6 5.0 5.4

The goal of these metrics is not to have you think that there are simple rules such as “a team
with more Pop will be more successful.” Instead, the purpose is to provide concepts and
techniques that you can put to use in your own analysis, knowing that different people and
different teams will work in different ways. These are methods you can use to help you analyze
team performance and then, with this more detailed knowledge and insight, guide your teams
to greater success.

Intensity

Purpose

Establish a relative rating for heightened productivity and dealing with demanding issues.

Formula

Intensity = Saves + Tackles + (Avg. Temperature - 72)

Example
The individual coders on a software team are measured to have the following Skill Metric
values for a software release:

Coder A: Saves 7, Tackles 2, Avg. Temperature 79.6
Coder B: Saves 3, Tackles 4, Avg. Temperature 66.3
Coder C: Saves 0, Tackles 3, Avg. Temperature 84.8
Coder D: Saves 1, Tackles 3, Avg. Temperature 69.5

The Intensity metric for each coder can then be calculated as follows:

Intensity Coder A = 7 + 2 + (79.6 - 72) = 16.6
Intensity Coder B = 3 + 4 + (66.3 - 72) = 1.3
Intensity Coder C = 0 + 3 + (84.8 - 72) = 15.8
Intensity Coder D = 1 + 3 + (69.5 - 72) = 0.5

Notes
The Intensity metric is designed to help identify coders who provide high-energy value to a
software team by handling pressure situations (Saves), dealing with problems proactively
(Tackles), or by just finishing a lot of work (Avg. Temperature). I call this metric Intensity
because all these accomplishments require a certain focus or intensity, and a coder who dem-
onstrates significantly greater accomplishments in these areas is a coder with greater intensity.

Rating Metrics | 149

The formula relies on determining the difference between the Average Temperature and the
starting “base” temperature of 72. If you choose to use a different base temperature (which I
call “room” temperature in the Skill Metric formula) then you would use that base temperature
here. The idea in this metric is to determine how much a coder’s average temperature is above
or below the initial starting point.

A coder with a low Intensity rating is not necessarily doing a bad job. Not everyone on a team
will have high Intensity. In fact, it may be that no one has significantly higher Intensity than
anyone else. As with all Value Metrics, coders with different experience and skills are likely
to have different ratings—that is natural and expected. What’s significant is to see whether
values match expectations, especially where values are significantly higher or lower than the
norm. And it’s significant to examine the overall composition of a team in order to analyze
what levels of Intensity, or what percentage of coders with higher Intensity, lead to better
results and greater success.

Similar to the Pop metric, the Intensity metric is one that you can calculate during a release,
but it is one that I prefer to calculate at the end of a release. In the middle of a release, Intensity
may fluctuate dramatically based on the current workload and assignments, so while a project
is underway, I prefer to just look at the underlying metrics for Saves, Tackles, and Tempera-
ture. By the end of a release, the fluctuations will have evened out, at which time I like to
analyze Intensity to see how it matches expectations, and as a key metric to correlate with
team results. I also suggest that you analyze the average Intensity across releases, again as a
key indicator that you can use to determine what factor Intensity might play in the results,
positive or negative, for each software release.

Table 6-10. The Intensity metric tracked for a software team over a series of releases

 Release 1 Intensity Release 2 Intensity Release 3 Intensity Avg. Intensity

Coder A 16.6 5.8 9.4 10.6

Coder B 1.3 13.4 3.0 5.9

Coder C 15.8 16.7 16.1 16.2

Coder D 0.5 4.6 0.8 2.0

Average 8.6 10.1 7.3 8.7

Table 6-10 shows an example tracking Intensity for a small team across three software releases.
For many coders, such as Coder A and Coder B in this example, Intensity is likely to vary
widely from release to release, partially based on assignments, but also based on the fact that
this metric tends to highlight bursts of activity. For the example data shown in Table 6-10,
you can note a few things. Coder C clearly has higher and more consistent Intensity than any
of the other coders across the three releases, and Coder D clearly has lower Intensity. It would
be interesting to see if this matches expectations based on their relative experience and skills.
Also, the overall Intensity of all coders was measurably higher in Release 2. You would want
to correlate these measurements with the actual results of the three releases, such as Wins or
Losses or other Response Metrics, to determine if Intensity is a strong contributor to team
success. You might also correlate the Intensity of individual coders with their other Value
Metrics, such as Win Shares and Loss Shares, to see if Intensity might also be an important
indicator of individual contribution to success.

150 | Chapter 6: Value Metrics

As I’ve mentioned many times, you should be careful not to draw too many conclusions from
a single set of data or from a single release. But as you gather more data over multiple releases,
looking at this and other Value Metrics alongside the Response Metrics and supplemented
by the Skill Metrics, you can begin to analyze and hopefully recognize the patterns of success.

Value Metric Scorecards
As with Skill Metrics and Response Metrics, a simple way to calculate and track Value
Metrics is with a spreadsheet. A single master spreadsheet for each project could be
used to track and calculate all your metrics, with the types of metrics on separate
worksheets. As new data comes in, you enter it and the metrics are automatically up-
dated. More elaborate systems, of course, could also be developed. You could design
spreadsheets to pull data from files or a database, for example, or you could develop
simple web applications to enter and calculate metrics using an integrated development
system such as Ruby on Rails.

As mentioned before, I like to use the spreadsheet documents within Google Docs. I
find that it excels in ease of use, has good charting, offers reliable storage and availa-
bility, and makes it easy to share with coders in multiple locations. Certainly other good
hosted or local spreadsheet options are available. I call these metric spreadsheets
“scorecards.”

Figure 6-3 shows an example of a project scorecard that includes calculations for the
Value Metrics. There is a worksheet for every coder, with their individual data and their
Skill Metrics. Then there is a worksheet for the project with the data and the calculations
for the Response Metrics. The Value Metrics worksheet shown in Figure 6-3 uses the
values from the other worksheets, and then it also provides a set of charts that produce
a type of “dashboard” for the key value provided by each coder on the project.

Observations on Team Stages
To conclude this chapter, the following are some observations on how specific Value
Metrics might be particularly noteworthy for companies and software development
teams in early, growth, or mature stages. While I believe all the Value Metrics are
applicable across all the stages, based on my experience working in different stages of
development these are just some thoughts about how particular coder qualities may be
especially aligned with the key priorities at different stages.

Early Stage
Early stage applies to companies that are bootstrapped or investor funded, where the
software development team is usually small and is tasked with creating new software.
Early stage could also apply to a small development team inside a large or mature
organization that is tasked with creating new software. Typically, the software would

Observations on Team Stages | 151

still be considered “early stage” through its first year or two of development, although
it is highly dependent on the type and complexity of the software and the size and
experience of the team. The main goals of software development teams and organiza-
tions in the early stage are to create software that garners interest, attracts new users,
and delivers new capabilities on what is usually an aggressive schedule.

The following Value Metrics are particularly relevant for early stage companies and
teams:

Influence

Small software development teams, in the early stage, usually rely on every
coder making a strong contribution. If that is the philosophy on an early-stage
team, you would want to make sure that there is not a big disparity in Influence.
Having a large difference might indicate that the team is not as strong or bal-
anced as desired. Many teams function very successfully with some coders who
are far more influential than others, so a wide spread of Influence ratings does
not necessarily mean there’s a problem, but especially on early stage teams it
bears watching.

Figure 6-3. An example Value Metrics spreadsheet for one software project

152 | Chapter 6: Value Metrics

Pop

Since the focus in the early stage of a software product or project is usually to
deliver major new functionality and compelling features for users, there needs
to be at least one coder on the team who consistently provides Pop. On many
early-stage teams, you might actually expect more than half your coders to
handle many complex tasks and to provide innovation, which would mean
that more than half the team should have strong Pop ratings. In more mature
organizations, teams might be highly successful and meet organization goals
without much Pop at all. But in the early stage, it is probably mandatory.

Intensity

While we might hope that everyone works hard and with intensity all the time,
on early-stage projects, it is often a requirement. The software development
team is expected to meet schedules, sometimes very aggressive schedules,
while still handling any side issues that might arise. While the Intensity metric
may not be a perfect measure of how hard each coder is working, it is a good
indicator, and on an early-stage team you would want to see positive values
for Intensity, and probably you would not want to see a large discrepancy from
one coder to another. Coders who are outliers on the low side, who have a
much smaller Intensity rating, may be a cause for concern in an early-stage
project.

Growth Stage
Once a company or software development team successfully passes through the early
stage, they enter the growth stage. Initial releases of the software have been at least
partially successful, an initial user base is established, and the user base is growing.
Growth in some cases may be rapid, in some cases gradual, and this will often depend
on the type of software, the marketplace, and the target users. But in most cases, the
organizations and software development teams that have entered the growth stage have
similar goals, such as continuing to attract new users while continuing to address the
requirements of existing users, and continuing to work efficiently although also reduc-
ing risk. Things that might have been required or tolerated in the early stage, like taking
dramatic chances with new functionality or putting up with talented but highly volatile
members of the team, may no longer be advisable or tolerable.

Observations on Team Stages | 153

For organizations and teams in the growth stage, these Value Metrics can be especially
meaningful for the team and individuals to focus on:

Efficiency

Once you have an existing and growing user base, you need to continue to
deliver new capabilities, but you need to avoid quality regression and mistakes.
Also, for most organizations in the growth stage, you are still operating under
general financial constraints with limited resources, so there is not a lot of room
for work that isn’t accomplished in a timely manner, or work that is done badly
and then needs to be redone. All this means that coders must be efficient and
therefore, in the growth stage, you would seek to have most (if not all) coders
on the team rate well for Efficiency. The main thing to look for, in this case, is
that all or most of the coders are in a similar range. If one or a few coders have
very low Efficiency, that would be a cause for concern that the team is not
properly balanced, especially if the team is still somewhat small.

Win Shares

In the growth stage, the number one goal is usually still obtaining new users.
You can use Win Shares as a metric to make sure the coders stay focused on
this fact and on their individual contributions to building further success. Not
every coder will be as strong as the others in value and contribution of Win
Shares, but highlighting this metric will prompt individuals to think about how
they might improve or contribute more.

Teamwork

As software products and teams become more mature, meaning they have been
in existence longer and are experiencing growth, it typically becomes even
more important for the software team members to help each other in order to
sustain success. There is often just more to do, since an increased number of
users translates to an increased need for support, and more opportunities drive
more requirements or other activities in which the coders must pitch in. As-
suming that the organization is still operating with limited resources, all of the
extra work won’t get done along with new software development unless there
is good teamwork. If the teamwork is bad, some tasks will suffer or get missed,
resulting in more stress in the workplace and possibly further deterioration
from there. Bad teamwork in the growth stage can lead to coder dissatisfaction
and departures. You can use the Teamwork metric to keep track of how the
team and individuals are doing in this regard and to highlight to everyone the
importance of these contributions at this particular stage. You would want to
see at least a portion of the team exhibiting strong Teamwork, perhaps even
only one person on small teams, but at least someone. If no one on the team
is rating well for Teamwork, then that would likely be something that you need
to address.

154 | Chapter 6: Value Metrics

Mature Stage
Once a software company and software development team has passed through the early
and growth stages, and acquired some level of success and consistency, it reaches the
mature stage. At this point, priorities shift, and the amount of shift is dependent on the
amount of success already achieved. For mature-stage projects, it can be as important
to keep existing users happy as it is to attract new users. Taking large risks becomes
unacceptable, and even small risks may be a problem. While efficiency, intensity, and
innovation are always welcome and desirable, overall these may be de-emphasized in
favor of quality, stability, and responding to existing user needs.

Among the Value Metrics, then, consider the following as particularly useful to software
teams working on projects that have clearly entered a mature stage:

Advance Shares

The larger the existing user base, the more important it becomes to keep that
community happy. Delivering key benefits to users will keep them from mov-
ing on to other software and can increase profitability if users pay for new
features of if the improvements help reduce support costs. Cultivating happy
users, and especially many happy users, can also be a direct path to further
growth through positive word-of-mouth. The Advance Shares metric can be
useful to help coders identify their personal contributions to this important
goal and to stay focused on the team’s results. Not everyone will contribute
equally, but even small contributions matter, and those whose contribution is
less than might be expected may be motivated to improve upon seeing the
Advance Shares rating and any discrepancies that may exist.

Loss Shares

For successful software, avoiding the loss of existing users may be the number
one goal. You want every coder on the team to identify personally with this
goal, and to think about the value and contributions they make to avoid losses.
The Loss Share metric highlights for everyone how individual issues may cor-
relate to user attrition. Clearly coders with higher Loss Shares should be con-
cerned and motivated to improve their ratings. In general, you would expect
the least experienced or least skilled members of the team to have the highest
Loss Shares. Junior coders with higher Loss Shares would not necessarily be
cause for concern, but the metric can help make sure they realize why quality
matters. Senior coders with higher Loss Shares, on the other hand, might be
an indicator of some unexpected problems on the team.

Fielding

A mature team, working on a mature software project, often has more areas
to cover, more existing issues to address, and often has a longer list of less-
glamorous items that must be addressed. For the reasons stated above, these
tasks not only have to be completed, but they need to be completed well so

Observations on Team Stages | 155

that they don’t introduce other problems and negatively impact existing cus-
tomers. The Fielding metric identifies coders who do a good job covering a
variety of areas and tasks while maintaining a high level of quality. These types
of coders are very useful to any team, but they are often a must on a mature
team. Tracking this metric can help you make sure you have at least some
strong Fielding coders on your mature team and can highlight to everyone the
importance of these skills and the value these coders provide, since these are
the types of contributions that often go overlooked.

156 | Chapter 6: Value Metrics

PART III

Processes

This section presents recommendations for getting started with codermetrics and
integrating them into existing processes.

CHAPTER 7

Metrics in Use

Essentially this has been a business that’s been around for over a hundred years and it
really hasn’t changed much so any time someone’s doing something differently, it’s
probably going to take some friction.

—Billy Beane, general manager of the Oakland Athletics, 1998–present

Software development has existed as a significant industry for less than fifty years. But
that’s more than long enough for organizational philosophies to take hold and become
entrenched, especially given the size that the industry has grown to. Certainly, many
practices have evolved and improved, and software itself has facilitated faster and wider
communications that have increased the pace of its evolution. But within each organ-
ization, within every team, you develop a way of doing things, and once methods are
established then change is hard. Why change, especially if things are already working
well?

As I will try to explain in this chapter, I don’t suggest you change what you’re doing, I
only suggest you incorporate metrics to inform your decisions and help you find gradual
ways to improve your software teams. Metrics don’t have to involve a change in process
or methodology or management style. They can be woven into your existing practices
with just a small amount of additional effort and time.

Not everyone, of course, will be receptive or even interested. Even for those who accept
that codermetrics don’t require radical change, they still might ask what the value is,
and why bother? We are all too busy anyway. Codermetrics might seem like one more
fancy idea for which you don’t have time.

In this chapter, I will offer ideas for how to gradually introduce codermetrics in your
teams, and how to integrate them into your development practices in a step-by-step
approach. I will also try to explain the benefits you can expect to achieve along the way,
and how you can verify those benefits to justify the (relatively small) time and effort
involved. Like the metrics themselves, think of the ideas here more as templates, from
which you can choose and adapt to your own situation.

159

Getting Started
Let’s say you are interested in using codermetrics, but you have no experience and you
are not sure how well they will be received or whether they will provide any benefit.
You also aren’t sure which metrics will work the best for you and your software devel-
opment team. Or, alternatively, let’s say you do have experience with codermetrics,
but you have joined a new organization and you’d like to introduce metrics to the team.
This section introduces a simple set of steps you can use to introduce and test metrics
in either of these cases, and then can be used to expand the use of metrics over time.

Find a Sponsor
Like every project that might eventually expand to wider use in an organization, it is
helpful if you identify a project sponsor, or multiple sponsors, up front. A sponsor is
someone who has the authority to approve a codermetrics trial in your organization—
and if that test is successful, the sponsor can then support or authorize wider use.
Typically, an effective sponsor would be one of the more senior people in a software
development organization.

You might be the project sponsor yourself—but if not, once you have identified a
sponsor candidate you can discuss the ideas for codermetrics and the initial steps out-
lined in this chapter, including the plan for a focus group and an initial trial. The project
sponsor may or may not actually be involved in the trial, but they should be included
in the analysis after the test is conducted and will play a key role in any decisions and
plans to move forward.

Create a Focus Group
As the next step, I suggest you decide who in your organization will initially be involved
in choosing, gathering, and reviewing metrics. You can think of this as a focus group
for the use of metrics in your team. The focus group performs a “trial” of using coder-
metrics, and, if the results of the focus group are positive, then you can expand the use
of metrics to a larger team. If you are on a small team, or you don’t think others have
any interest, you could even start with a focus group of one, just yourself. If you are
the leader on a small team, you might be the focus group and the project sponsor, too.

Likely candidates for a focus group are team managers or team leaders. You might also
want to include one or more coders from the team. The best participants will be those
who are experienced and respected by others on the team. The focus group needs to
approach codermetrics with an open mind but with a critical eye. In the end, the focus
group will help you decide if and how codermetrics might help within your software
development organization, and if you do decide to expand metrics use beyond the focus
group, then the members will become advocates to the rest of the team.

160 | Chapter 7: Metrics in Use

Even in a large organization, a good-sized focus group probably doesn’t need more than
five people. A small team is better able to communicate effectively, and a larger team
might make the trial too complicated. In a very large organization, start with one focus
group—then if that’s successful, you can expand to multiple focus groups (and even-
tually, to the larger team).

Whether you are a single individual forming a “focus group of one” or you have more
people involved, I suggest you publicize the experiment. You can let others know what
the focus group is doing, even to the point of publishing the initial plan and the eventual
findings for those who might be interested. I’m not saying you should make a big deal
about this, which might raise more questions and unnecessary initial concerns, but you
can just let everyone know that the focus group is going to examine whether tracking
codermetrics could help improve your software teams and your software development
process. There are two benefits to letting everyone know and keeping the process open.
First, some of the people outside the focus group may have some useful insights or
suggestions to offer during the initial trial. Second, it will lay the groundwork for dis-
cussions that will ensue if the focus group recommends expanding the use of metrics.

The members of the focus group will be the ones to choose the initial metrics and to
pick the software teams or products that will be measured. The focus group then gathers
the data, tracks the metrics, and reviews the results among themselves and with the
project sponsors. Not everyone in the focus group has to do all these things. For ex-
ample, you might have an initial meeting or series of meetings to discuss codermetrics
and to choose the metrics you will start with. Then a subset of the focus group, maybe
one or two members, might be responsible for gathering the data and publishing the
metrics. At somewhat regular intervals, the focus group can reconvene to discuss the
data gathered so far and to offer observations on the value and benefits of those metrics.

Choose Trial Metrics
Once the focus group is set, they should meet and choose metrics for the initial trial.
As a first choice, I suggest you include metrics that are relevant and of interest to the
entire team. These can be chosen from the Response Metrics presented in Chapter 5.
It will be easiest to start your trial if the focus group chooses metrics for which the data
is easily obtained. Three or four metrics are probably enough for an initial trial. Metrics
to consider are:

• Wins

• Losses

• Win Rate

• Loss Rate

• Penalties

• Penalties Per Win (PPW)

Getting Started | 161

The focus group should also choose a set of metrics that relate to the skills or contri-
butions of individual coders. These can be chosen from the Skill Metrics presented in
Chapter 4. Again, it will be easiest to choose metrics that don’t require new processes
to record and gather data. However, as long as someone in the focus group is willing
and able to record the necessary data, then any metrics can be considered. A set of four
or five of these metrics is probably sufficient to start. Likely candidates to choose are:

• Points

• Utility

• Saves

• Errors

I don’t suggest that the focus group chooses any Value Metrics from Chapter 6 in an
initial trial. These are more complex to analyze—and in most cases, more useful after
the completion of a project. For an initial trial of codermetrics, it is better to choose
metrics that can be useful in the middle of a development project. This will allow the
focus group to review the metrics and discuss the potential value at regular intervals in
the context of current work being done. Later in this chapter, I’ll suggest steps to begin
using Value Metrics.

In addition to identifying the trial metrics, the focus group must decide on the software
team and a timeframe for the trial study. In an organization with just one software team,
the first part of that decision is simple. In an organization with multiple software teams,
a few criteria can be used to select a good candidate. First, it will be ideal if the focus
group includes at least one coder from the studied software team, since he will help
add credibility to the study and may offer unique firsthand observations and explana-
tions as metrics are reviewed. Second, it will make the trial study most widely applicable
if the studied team is considered “typical” for the organization, meaning that it is fairly
similar to the “average” software team in the organization. This might mean that it is
of average size, with coders who have a typical mix of skills and experience. Mainly,
teams that are considered exceptional or different in any significant way are probably
not the best for a trial study (although they certainly would be interesting to study and
compare in more detail to others in the future). Using a “typical” team will help the
focus group make a better recommendation about how potential usefulness of coder-
metrics found in the trial study may translate to other teams.

As far as timeframe for a trial, one month is too short and one year is probably too long.
Three or four months is a good length for a codermetrics trial. If the studied software
team operates in iterations of specific duration, it makes sense to define the timeframe
as a specific number of iterations. For example, if the software team works in two-week
Agile sprints, you might conduct the trial for eight iterations (sixteen weeks). Another
very good approach would be to conduct the codermetrics trial for an entire project,
which can work very well—especially if you have a project that will be about four or
six months long. After the project is completed and the software released, you can
extend the trial to gather data for Response Metrics.

162 | Chapter 7: Metrics in Use

First, it will be ideal if the focus group includes at least one coder from the studied
software team.

Conduct a Trial and Review The Findings
You’ve found a project sponsor, set up a focus group, chose metrics, identified a soft-
ware team to study, and specified a trial duration. At this point, you are ready to begin
the trial.

The first step is to begin actually collecting the data and calculating the metrics. One
or a few people in the focus group should be assigned to this task. This will be the
hardest part of the process, and even if the metrics you are starting with are simple and
the data mostly on-hand, this should not be trivialized. Chances are that some of the
data will need cleaning, and the software team involved may need to be instructed to
more accurately or more regularly enter data. If some data isn’t available, then the
assigned data gatherers will need to act as spotters or institute some other mechanism
to gather the target data. You will need to define documents, such as the scorecards
discussed in previous chapters, where the metrics will be stored for review. You may
need to allocate as much as one to two person-weeks of time to make sure the metrics-
gathering is established and decent enough “tools” are in place. In most cases, this
reasonable time investment should yield reusable processes or capabilities if you choose
to continue using metrics after the trial is complete.

Once the method for gathering and calculating metrics is established, you should cir-
culate them regularly to everyone in the focus group. This might be weekly, biweekly,
or monthly, either via email or published on a shared site to which the group has access.
During the trial, the metrics shouldn’t be sent to anyone outside the focus group. The
whole point of the focus group is to learn about the process and evaluate the potential
usefulness of codermetrics. It would be premature to share the metrics more widely.

You might store the metrics in one or more spreadsheets or using another simple docu-
ment format. Spreadsheets will allow you to include charts which could be helpful to
focus group members, so that they can more quickly analyze the metrics, make com-
parisons, and spot trends. Various chart types can be used. In general, you should select
charts that provide a clear presentation. Examples are shown in Figures 7-1, 7-2, and
7-3.

The focus group should meet at least monthly to discuss the metrics. These meetings
don’t need to be very long, but everyone on the focus group should have a chance to
offer their individual observations about what the metrics are showing and how the
information might be new or useful. The kind of questions that might be discussed can
include:

• Do the metrics reveal information that people previously didn’t know or weren’t
sure about?

• Do the metrics corroborate or challenge existing assumptions?

Getting Started | 163

• Could the metrics be used by team managers to improve their software teams? If
so, how might this happen?

• Could the metrics be used by individual coders to improve their own contributions?
If so, what might they learn and do?

Figure 7-1. An example chart for Wins and Losses

Figure 7-2. An example chart for Coders Skill Metrics

By the time the trial is complete, assuming the focus group has met multiple times in
the process and discussed questions such as those above, chances are that the members
of the focus group will have formed an opinion about codermetrics. You will have
identified the potential benefits and the relative success or failure of the trial. At this
point, the focus group should meet with the project sponsor(s), and the final findings
should be discussed. Alternatively, these findings could be written into a report or

164 | Chapter 7: Metrics in Use

presentation. In either case, the goal is to review the findings and focus group opinions
with the project sponsor(s), and to make a decision on next steps.

There are three possible paths that the parties can decide to follow:

1. If the trial was deemed a success, then expand the use of codermetrics across the
organization (further steps for this path are discussed below).

2. If the trial was only a partial success or was deemed inconclusive, then continue
the current trial or start one or more new trials, possibly choosing new focus
groups, different metrics, and different software teams to study.

3. If the trial was a failure, then conclude the trial and discontinue the exploration of
codermetrics.

Whatever the outcome and the decision on next steps, the focus group should let ev-
eryone in the software development organization know about the final decision. If there
was a written findings document or presentation, at this point it might make sense to
also publish that document, if only for educational purposes.

Introduce Metrics to the Team
If you have completed a successful trial and decided to expand the use of codermetrics,
the next step is to introduce the concepts and use of metrics throughout your software
development organization. The amount of time and effort on this will be dependent on
the size of your organization. You can use all or some combination of written docu-
ments, video presentations, and in-person meetings.

One or more members of the initial focus group should be involved in the introduction.
Ideally, the trial project sponsor or sponsors will be involved, too. To start with,
codermetrics should be introduced to the software team managers and team leaders.

Figure 7-3. An example chart for coder Errors

Getting Started | 165

Making “tools” such as metric scorecards available to team managers, and defining
who and how on teams should be involved in gathering metrics, will make the process
easier. All of this may have already been defined by the trial focus group.

Once the team managers and leaders are informed and on board, the concepts and
plans can be shared with the coders on the team. Again, the best approach depends on
the size of the teams and the organization, but in general it’s probably best to discuss
this in a meeting just among the team, possibly including members of the focus group.
There is no reason to make too big a deal about adding metrics-gathering to existing
processes. It can be thought about and presented as an evolutionary step, not a
revolutionary step. It is important to make the point that metrics are not grades or
judgments: they are just a way to bring clarity and focus to what has happened so that
it will be easier to identify ways to improve.

The remaining sections in this chapter and the next will discuss various ways that
codermetrics can be used. These don’t need to be implemented all at once or quickly.
Start slowly, gather metrics, share metrics with the team, and discuss the findings.
Basically, turn each software team into a focus group of its own. Over time, as the
benefits and possibilities become more apparent and as more data has been gathered,
individual team members or team managers may decide to use codermetrics in other
ways, such as to facilitate mentoring, to inform hiring, or as part of the performance
review process. I’m not trying to discourage you from jumping in faster, but for most
teams a gradual approach will work best, and even the strongest champions will benefit
from progressively adding supporters along the way.

One question is whether codermetrics is something that should be “mandated” within
an organization? Rather than something that needs to be mandated, you should think
of codermetrics as a set of techniques and concepts that separate teams can implement
differently, according to their own preferences and needs. It’s fine and healthy if teams
and leaders take different approaches, and some use metrics while others don’t. This
won’t inhibit the potential usefulness to those who choose to use them.

Create a Metrics Storage System
As teams begin to gather codermetrics on their projects, I suggest you create a centrally
accessible system where the metrics can be stored. I like Google Docs for this purpose,
but other good options are Sharepoint, a Wiki, or simply a shared network drive. You
can store scorecard templates in the central location, and teams can store their own
revised versions or templates.

The analysis that an interested person can do with metrics is increased by the amount
of metrics gathered and stored over time. Creating an online and central repository,
even if the metrics are in separate documents, will allow someone to do this sort of
analysis.

166 | Chapter 7: Metrics in Use

One question is whether you should allow everyone in the software development or-
ganization to see all the metrics. I’m in favor of this approach. I think there is more to
be gained from everyone having open access to all metrics, even though that means all
personal and team statistics are exposed. By seeing all metrics, people may gain a more
objective view of themselves, their teams, and their peers. Also, by sharing, you may
find that certain individuals take an interest and begin to point out interesting things
that can be learned from the metrics, or other metrics that might be added for good
purpose. The potential downside of publishing all metrics for everyone to see is that
some people may be embarrassed or feel that the metrics incorrectly portray their con-
tributions or accomplishments. While this could have a negative effect on morale, I
would argue that if you are using codermetrics you want to identify issues like this
anyway, and publishing the metrics will help make sure they come to light. In situations
like this, perhaps the coder’s concerns are unfounded and can be addressed with further
education about the metrics. Or, if the concerns have merit, you will want to see
whether the metrics are accurate or if better metrics can be used.

Expand the Metrics Used
After your teams get some experience gathering and reviewing codermetrics, you can
begin to experiment with other metrics. Interest in additional metrics may already be
spurred by observation from those in use, or by realizing that there are more questions
that the team or individual members want to analyze.

Once you are have established procedures to gather data and you have a central storage
system, it is easier to add metrics. As with the original metrics, you can try them out
for a period of time and determine the benefits. You might follow the focus group
approach, testing new metrics within one or a few teams, or teams may start trying new
metrics themselves. If the results are good, you can continue and possibly expand the
use, and if not, the new metrics can be abandoned or adapted further.

As you gather more Skill and Response Metrics and begin to build up a history of data
in your central repository, it will be easy to try some of the Value Metrics. You may
also begin to expand how and when you use metrics in your processes, perhaps fol-
lowing some of the suggestions later in this chapter. Expanded use in different areas,
such as in performance reviews or mentoring, may naturally lead you to try new types
of metrics.

Since different people may use metrics for different purposes, once you are gathering
data and calculating a metric you may want to be cautious about discarding it. Just
because one person (or even most people) don’t find a certain metric useful doesn’t
mean that someone isn’t finding that metric useful now or that it won’t be useful in the
future. Once you are gathering and storing codermetrics, there is usually little cost in
keeping extra metrics around with the possibility that they might prove useful at some
point. At the very least, before discarding a metric, you should canvas everyone and
make sure that no one is unexpectedly using it.

Getting Started | 167

Establish a Forum for Discourse
To facilitate use, education, and improvement of codermetrics, I suggest you establish
an online forum, set up regular in-person meetings, or both. Some people prefer in-
person meetings, while some prefer the “interaction on your own time” model that a
Wiki or other discussion forum software will allow. Either way, the goal is to allow
people to share observations, questions, ideas, and to generate the kind of peer-to-peer
exchanges that might increase understanding, adoption, and benefits.

For in-person discussion groups, a good frequency might be every other month or once
a quarter. It’s good to keep such meetings casual, maybe even to have food involved.
A pizza lunch gathering, for example, or an after-hours beer or ice cream bash. Having
some food involved, of course, also spurs more attendance and often stimulates more
participation.

These meetings should be open to whomever is interested. Everyone is invited, and
attendance is optional. It is an open discussion group, with a model similar to a book
club. It helps if someone acts as moderator, with a new volunteer moderating each
meeting. It helps if you have a topic, too. Attendees at one meeting can nominate and
decide on the topic for the next meeting. In some cases, you might ask for volunteers
to spend extra time and come up with a short presentation on that topic for the next
meeting, in order to kick off discussion. Example topics might be specific metrics, or
a specific class of metrics, or tools to make metrics easier or more useful, or possible
areas of new and untried metrics.

If you use an online forum, you might connect it to the in-person meetings by posting
topics and questions or points raised in the meetings. The danger of using an online
forum without in-person meetings is that it might result in a stagnant forum. However,
it can work if you have devoted participants and communicators. If you choose to only
have an online forum, you will want to make sure you have at least a few people in your
organization who are regular contributors to help keep the forum active and spur others
to get involved.

Timeout for an Example: The Seven Percent Rule
In the 1990s, when corporate downsizing was all the rage and watching the NYSE and
NASDAQ stock markets became a regular pastime, many business publications men-
tioned the “seven percent rule.” The gist of the “rule” was that a public corporation
that announced large layoffs would see a quick seven percent jump in its stock price.

As James Surowiecki pointed out in a 2007 New Yorker article, the data over the last
two decades doesn’t support this rule. Downsizing doesn’t always result in a stock price
boost any more than downsizing always results in a better, more profitable business.
In the end, as Surowiecki points out, the value that the employees create and the
opportunities lost in layoffs sometimes outweigh the cost-cutting benefits of workforce
reductions.

168 | Chapter 7: Metrics in Use

http://www.newyorker.com/talk/financial/2007/04/30/070430ta_talk_surowiecki

Whether you work in a for-profit or a not-for-profit software development organiza-
tion, and whether your coders are paid or unpaid, it is always desirable to get more
“value” from the existing coders. Adding new team members is great if you are able,
but changing team members is usually costly. So we all look for ways to do better, both
for our own satisfaction and for the success of our team and our organization.

I have a new “seven percent rule” for you to consider related to software development
teams. This rule doesn’t have anything to do with downsizing—instead, it has to do
with increased productivity and results from existing workers. Like any other organi-
zational “rule,” of course, this is a generalization and individual results will vary. But
my experience in various capacities with multiple teams leads me to believe this is true
enough to put forth as a “rule.” I also believe that this rule might extend beyond soft-
ware development to other types of teams and organizations, but for that I have no data
or proof, only a hypothesis.

Here is the rule:

A software team that starts using codermetrics will see at least a seven percent jump in
their core performance (productivity and precision).

This is a bold statement, I realize. However, it matches my experience with multiple
teams in multiple organizations. Table 7-1 shows example improvement results for
team members on four teams that I worked with. These measurements show the in-
creased monthly productivity and precision within nine months after implementing the
use of metrics within the team. This is based on introducing teams to core metrics such
as Points, Turnovers, and Errors, and then reviewing them in regular team meetings.
The Plus-Minus metric provides the overall summary to jointly rate productivity and
precision, and it is where you look for that seven percent jump.

Table 7-1. Introducing metrics positively impacted a team’s productivity and precision within nine
months, as shown in the following example data taken from four teams

 Points Per Month
% Increase

Turnovers Per Month
% Reduce

Errors Per Month
% Reduce

Plus-Minus Per Month
% Increase

Team 1 9.2% 8.3% 22.1% 10.8%

Team 2 4.3% 12.2% 14.5% 7.1%

Team 3 7.3% 10.1% 16.3% 9.6%

Team 4 8.6% 7.7% 19.3% 11.5%

I have a theory why this happens. For most software teams today, it’s not a regular part
of the process for coders to review data on their productivity or precision. Yes, teams
discuss tasks, bugs, and schedules; and yes, most teams set plans and review progress
regularly. And yes, productivity and precision may be discussed in individual meetings
or performance reviews. But the common process in most software teams today does
not include a regular review of detailed data about what each coder has accomplished
and where they made mistakes.

Timeout for an Example: The Seven Percent Rule | 169

By gathering simple metrics on what coders have done and on the quality of their
work—and by sharing them publicly and reviewing them regularly with the entire
team—the coders get more focused on the items being measured. They don’t neces-
sarily get better at what they do, or improve their skills. But maybe they use their time
more wisely, or give in to distractions less. They get more focused because they see the
numbers, and they know others are seeing the numbers.

They get at least seven percent more focused. So the results get at least seven percent
better.

Is it exactly seven percent? The exact number isn’t the point. What I’ve found is that
people get more focused on what is measured, and the increased focus itself will lead
to a small but meaningful improvement. Seven percent is a fair estimate of the level of
improvement you can expect from using metrics to measure core coder responsibilities,
and my limited data is consistent with that. The other important note is that the im-
provement then becomes the new norm. Once the seven percent or greater gain is
realized, it will at least be maintained as long as you continue using metrics.

Granted, this method is not scientific. There are many changing variables. Software
gets more mature over time, and team members get more experienced. Teams may react
and get more focused under a new manager. Many other factors might also come into
play. However, my experience in seeing the reaction of coders to the use of metrics,
and the consistency of the positive results, makes me believe that there is a true cause-
and-effect between metrics and results.

This is not a benefit I originally sought or expected in using metrics. My main interest
in metrics has always been helping teams identify and appreciate all the contributions
and skills that are important for success—and providing me, as a manager, more in-
formation and ability to improve teams. The increased productivity and precision that
seems to come from just gathering and showing metrics was an unanticipated benefit,
although it’s certainly a nice one.

As others begin to try codermetrics, I look forward to feedback on whether the seven
percent rule holds true.

Utilizing Metrics in the Development Process
If you have successfully moved beyond the trial stage of codermetrics, there are many
ways you can make further use of metrics in your software development process. This
section covers some of the other ways you can use metrics.

Team Meetings
The most obvious place to start regularly using metrics is in team meetings. This is
different than the idea of a “metrics discussion group” presented previously. What I
suggest here is that you should incorporate the review of metrics into your already

170 | Chapter 7: Metrics in Use

scheduled regular team meetings. In these meetings, you should review the key metrics
you are gathering for each team, including Skill, Response, and Value Metrics, choosing
the data appropriate to the meeting (as discussed in more detail below).

You may, of course, focus more attention and time on the metrics that you believe
matter the most. Reviewing key metrics in team meetings can help drive positive be-
havior and reinforce a desired “culture,” to the extent that elements you desire are
included in your metrics. Repeatedly measuring, sharing, and discussing key metrics is
more likely to result in behavioral and systemic changes than, for example, having an
executive simply declare that certain behaviors should change.

I don’t recommend that you review metrics with the team on a daily basis. If you are
using Agile methodology and your teams conduct daily stand-ups, for example, it won’t
make sense to discuss or review metrics in those meetings. Review of metrics is more
appropriate on a weekly, biweekly, or monthly basis.

What works well is to include the review of individual coder’s metrics (Skill Metrics)
in each team’s regularly scheduled review and planning meetings, then to include the
review of all the project success and user response metrics (Response Metrics) in a
regularly scheduled organization or department meeting that includes all teams. The
team meetings that include the individual coder metrics might be more frequent than
the organizational meetings that include the project metrics.

If, for example, you follow an Agile methodology and you have sprint review and plan-
ning meetings for each team every two weeks or every month, I’d suggest that part of
the review should include each team’s gathered metrics. If you are keeping a scorecard
for each sprint, then you can present a summary from this document. You can create
a dashboard to highlight the core metrics that you want coders to focus on. See Fig-
ure 7-4 for an example. Simply present the scorecard to the team and leave it open for
discussion on any points that stand out. You also might review how the current score-
card compares to those in the past by presenting trends and averages. If team perform-
ance has dipped noticeably in one or more areas, those would be worth highlighting in
the meeting.

One concern you might have is that showing everyone the metrics for each coder could
cause embarrassment or an unproductive sense of competition between teammates.
Actually, some embarrassment (when warranted) might be healthy, and some sense of
competition can be positive if it leads to more productivity or focus—and if it’s not
taken too far. To avoid unnecessary embarrassment or fostering an overly competitive
environment, you mainly should avoid offering praise or blame when reviewing met-
rics. The metrics are simply another record of what happened, no different than re-
viewing tasks completed in a sprint review. There may be more details, but they should
be seen as “just the facts” about recent work. Citing coders for great performance or
discussing where they had problems should be handled no differently than you did in
past team meetings. At first, when metrics are new, it may seem unusual and coders
may be a bit sensitive or feel exposed. But after a few meetings, if these are presented

Utilizing Metrics in the Development Process | 171

efficiently and objectively, this should be no more upsetting than reviewing tasks com-
pleted, open tasks, and open bug counts.

If you have monthly or quarterly department meetings, that is a good time to review
the project-by-project Response Metrics. In this case, if you are keeping scorecards for
each project, I’d suggest you go through them one by one, again leaving it open for
discussion and observation, and again presenting comparative information for each
project to that project’s history using trends or averages. Where metrics are trending
particularly well or poorly, those should be highlighted. In order to keep the meetings
interesting and the focus fresh, you might find an interesting story that the metrics
reveal and spend a few minutes presenting that in each meeting.

Provided you are keeping metrics in scorecards or other fairly simple and centrally
stored documents, the amount of time to gather the metrics and put them in a pre-
sentable form for each of these meetings should be manageable. The most time should
go into deciding if there are particular trends that should be highlighted, or finding an
interesting story to tell. If it does take too much time and effort, you should revisit how
you are gathering and storing the metrics and try to come up with improvements to
make this process easier.

Including metrics in team meetings gives team members real information about what
they’ve done, what their peers have done, and how well the team’s work is being re-
ceived. This data can help the team in many ways, but it’s likely that sharing this in-

Figure 7-4. Present a summary dashboard such as this example showing codermetrics for the current
project in each team meeting

172 | Chapter 7: Metrics in Use

formation will spur discussion. Some of the discussion may involve insights on how
the team might improve or feedback on how the metrics themselves might be improved.
You may need to lengthen the team meetings by half an hour and the department
meetings by as much as an hour to include discussion time for the metrics. The benefits
here, such as increased awareness and focus and reinforcing positive behaviors, should
outweigh the extra meeting time required.

Project Post-Mortems
A good time to review metrics is in project post-mortems—the meetings that occur
after a project is complete, to review what worked (and what didn’t) during the project
and what might be improved in the future. Codermetrics, in fact, can help make such
meetings more effective and factual, as opposed to relying strictly on everyone’s mem-
ory and subjective analysis of events. Personal observations and opinions are certainly
still valuable and should be discussed and addressed, but having a historical record of
metrics provides an alternate set of information to review, and in some cases a clearer
set of information.

If you are keeping a record of metrics, you can assign someone to put together a “project
metrics summary” document and presentation. This is probably best done by whom-
ever is the “lead” metrics gatherer or analyzer on the team. You will need to do some
preparation to pull the data together into a suitable presentation for a project review
meeting, and it will take some time. As with the team meetings discussed in the previous
section, your goal here should be mostly to present the data so that the team can review,
discuss, and possibly identify follow-up actions. In general, it’s better to avoid pre-
senting any conclusions or opinions from the metrics gathered. While the conclusions
you’ve already drawn may be correct, presenting them might limit others from finding
or offering other conclusions that also might be correct and useful.

The presentation might be a slideshow or similarly formatted document, and it can
include all Skill, Response, and Value Metrics you are using and for which you have
data at the time (you may only have early Response Metrics if the post-mortem is con-
ducted soon after the software is released). You might present monthly breakdowns
and then project totals and averages, showing the metrics for each individual as well
as summarized values for the team. If you have gathered metrics for previous projects,
then you might also show some comparison between the project and those that came
before. Rather than just presenting the numbers, you can also use charts to highlight
trends and comparisons, as shown in Figures 7-5 and 7-6.

Utilizing Metrics in the Development Process | 173

Figure 7-5. An example using line charts to highlight trends in a project review

Figure 7-6. An example using bar charts to highlight coder comparisons in a project review

174 | Chapter 7: Metrics in Use

Reviewing metrics at the end of a project is also a good time to see if particular man-
agement or process changes were effective. For example, if you made changes in your
development methodology, or if you introduced new incentives or techniques to in-
crease productivity, you can review the metrics to see how well those changes worked.
While these topics may be of particular interest to team leaders and managers, in most
cases it would be beneficial to include the analysis of such changes as part of the post-
mortem meeting, so that the entire team can review them. In the case where the metrics
reflect that the changes had the intended results, the entire team will be able to appre-
ciate that—and if the metrics reflect otherwise, the entire team will understand why
further changes may be required.

If you start using codermetrics and you don’t already conduct project post-mortems,
then I highly recommend you start (if you prefer to call them “project reviews,” that’s
totally understood; the oft-used “post-mortem” is definitely a morbid term). In general,
reviews at the end of a project are a great chance for teams to learn, reflect, internalize,
and identify opportunities for improvement. Adding metrics to this formula can make
it even more powerful and effective. And going through the process of putting together
a metrics project summary document gives you an excellent record of each project,
which can be useful for managers and team leaders in comparing projects and teams
and identifying patterns in the future.

Mentoring
Another useful application of metrics is in building or improving a mentoring program
in your software development organization. If you already have a mentoring program,
or you think you might benefit from one, codermetrics give you a new way to identify
those who could benefit from mentoring and those who might be good mentors.

For example, if you notice that a junior coder has trouble finishing tasks as indicated
by a high rate of Turnovers, then you might find a coder who has traditionally had a
low rate of Turnovers to act as mentor. Or if a junior coder is exhibiting lower pro-
ductivity (lower Points) or delivering software with lower quality (higher Errors) then
you can find coders who are strong in these areas, as demonstrated by their metrics, to
serve as mentor.

Alternatively, if you think that the team needs more strength in certain areas you could
assign coders who have exhibited those strengths to mentor others. For example, if you
have coders who measure strongly in helping others (Assists), handling many areas
(Range), or demonstrating innovation or initiative (Tackles), then you could ask them
to mentor one or more other coders on the team to try to build more strength in these
areas.

Not everyone who is good at something is also good at teaching that to others. Some
people are good mentors, some are not. Perhaps you have a fluid mentoring program,
where coders themselves identify needs and opportunities for mentoring and pair up
based on their own evaluation. Or maybe you have someone, such as a team leader or

Utilizing Metrics in the Development Process | 175

manager, who assigns or suggests mentor relationships. In either case, metrics can help
you identify the people who, from a skills perspective, might be good to mentor others.
From there, you will naturally choose those people who seem to have the personal and
communication skills to be good mentors.

But metrics can help after the fact, too. By assigning mentors based on prior measured
results, you are also establishing an implied criteria for “successful mentoring.” The
sign of success, in these cases, would be that a coder who is mentored shows improve-
ment in the specific target metrics. If a coder is being mentored to improve coding
accuracy, for example, then the coder’s Errors should go down. If a coder is being
mentored to improve productivity, then Points or Utility should go up. This analysis
can be applied to those being mentored and to the mentors, too. As you accumulate
more examples, you can identify the mentors who actually produce better or worse
results, which may lead to more successful assignment and mentoring in the future.
This ability to define goals and measure results is another reason why metrics can be
highly valuable in the mentoring process.

Establishing Team Goals and Rewards
In a later section I will discuss using metrics to set individual performance goals. How-
ever, in this section I’d like to discuss the idea of using metrics to establish team goals
and to determine team rewards. If you are using codermetrics, this is a very effective
method you can take advantage of to accelerate team improvement and meet specific
goals.

Often in software development, team goals and rewards are based on key project mile-
stones. Meeting specific dates and delivering specific functionality are measurable
items, and when dates are met or exceeded, that is often cause for celebration. Software
teams have release ship parties or other events. Sometimes there are bonuses or gifts
given to team members for meeting these goals, especially if an unusual and demanding
amount of effort was required.

These kinds of goals and rewards are valuable, and I am not suggesting you remove or
replace them. But if you are regularly gathering and tracking codermetrics, then you
have an opportunity to set other types of team goals and to reward the team for im-
portant accomplishments, rather than just meeting project dates.

Any measured item—any metric—can become the focus for a team goal and, if war-
ranted, a team reward. Clearly any decision on rewards rests with someone who has
authority such as a manager, director, or executive. If that person is not you, but you
are an advocate of or participant in codermetrics in your organization, then you might
suggest this idea to someone with authority. But setting team goals is something that
the team could decide by itself. Part of the advantage of reviewing metrics in regular
team meetings is that team members can identify for themselves where they as indi-
viduals might need to improve, and where the team can improve. Whether or not re-
wards will be involved, you might identify specific areas to target for improvement.

176 | Chapter 7: Metrics in Use

The idea is simple. Pick a metric that represents an area where you want the team to
focus on improvement, and then set a goal. For example, you might choose a quality-
related metric like Errors or Penalties, or a teamwork metric like Assists. If you pick
Skill Metrics such as these, which are measured for individual coders on the team, then
you would look at the total or the average for the team. Or you might choose a project
success metric like Wins, Win Rate, Win Percentage, or Boost. Or you might choose a
competitive ranking metric, such as Win Ranking or Capability Ranking.

First, you will need to track the metric for a period of time to establish the team’s current
level. Next, you will need to determine the target amount of improvement and the target
timeframe. The duration may be bounded or it might be open-ended. You might say
that the goal is for the team to improve a certain amount in six months, for example.
Or you might say that the goal is for the team to improve a certain amount, no matter
how long it takes. You also might tie the duration to the timeline for a specific project,
in which case the goal would be to improve a certain amount over the course of the
project.

How much improvement you should target is something you may determine based on
experience, or what you think is achievable. I like using a percentage of the current
“normal” level as a target. For example, you might say that the target is a ten percent
improvement in Wins, or a twenty percent increase in Boost. Or you might target a
fifteen percent reduction in Errors or Penalties, or twenty-five percent more Assists.
Ranking metrics can also be very good for team goals. The goal might be to move from
second to first in Win Ranking or Capability Ranking.

Like other team goals and rewards, the key is to set the goal, specify the duration (if
there is one), and then recognize the achievement (or lack thereof). To recognize an
achievement, you could do the same as with project milestones, namely have a party
or an event (which is perfect if the team was setting its own goals), or give out rewards.
The goal and the level of difficulty in achieving the goal, along with the history of
rewards in your organization, will determine what is appropriate. And if specific indi-
viduals were especially instrumental in meeting the team goal, then it is appropriate to
recognize their special contributions in some manner as well.

The advantage of codermetrics is that once you have established a consistent practice
of gathering and sharing the metrics, you are in a much better position to set team goals
based on these metrics. The goal becomes clear and the team can then be properly
focused. You can set team goals and rewards based on a variety of things, and you can
“prove” that the team has met those goals. This is much better than nebulous state-
ments about wanting to improve in areas that are not tracked or measured. Such state-
ments don’t often amount to much.

Utilizing Metrics in the Development Process | 177

The old management adage that “you can’t improve what you don’t measure” is often
true, although I might say it’s actually “you won’t improve what you don’t measure.”
Putting a positive spin on it, you could say that “what you measure, you can improve.”
Codermetrics not only gives you more information about where your team is at, but it
gives you a set of tools to improve. One such tool is the ability to set a wider variety of
specific goals and deliver appropriate rewards.

Timeout for an Example: The Turn-Around
One difficult challenge for any software development team is to turn things around
when they are not going well. I am not talking about ill-conceived or competitively
challenged software products, or software products that have simply not found their
audience yet. I am also not talking about software development teams that are doing
good work but that want to do better. What I am talking about here are specific situa-
tions where a software team is clearly struggling to meet goals, work well together,
produce high-quality software, and meet its own or outsider expectations. These are
the situations that need a real turn-around.

Those of us who have worked in the field for awhile know that sometimes software
teams are judged unfairly. Expectations may be unreasonable, or faults of others (such
as poor prioritizing) might be blamed on the software team. But in other cases there
are legitimate situations where software teams are producing poor software, low quality
software, or badly missing reasonable project dates. When a team is struggling, some-
times the members themselves don’t realize there is a problem, though sometimes they
do.

Having worked in software development for nearly 30 years now, I have seen this sit-
uation a few times, and as a manager I’ve had to address situations like this more than
once. I have come to the conclusion that codermetrics can be particularly valuable when
you are trying to turn around a software development team.

The circumstance I’ll discuss here was at a start-up that already had a product with
initial success. The management team, however, was concerned because the software
was difficult to use, required extensive hand-holding to get started, and had many major
and minor product issues. Since the initial releases, the software team had gotten bog-
ged down in dealing with support issues and it was consistently having to decide be-
tween working on important new features and fixing product issues. The management
team believed the situation was getting worse and morale on the software team was
going downhill. It also wasn’t clear whether the members of the software team had an
answer. The core team and the leaders had been with the company since inception.
They had done a great job delivering an initial product, but they also did not have much
experience in dealing with these kinds of issues.

178 | Chapter 7: Metrics in Use

In this case, the software team realized it was struggling, but the team members didn’t
know what to do. Also, while the team saw itself as struggling, they didn’t realize that
the management team were concerned that they were failing. In other words, the team
members themselves didn’t realize how potentially severe the issues were for the
business.

On the plus side, the software team had good people with a good mix of skills and
experience, everyone had a desire to work hard, and the people generally got along well
together. So there wasn’t the need to lay anyone off or make other drastic changes to
the existing team. But that also meant that the problems were more subtle.

In situations like this, it will help if you can get the software team to see the problems
more clearly so that they will be more open to the changes that may be required. It isn’t
necessary to have metrics from the past for this, but you can begin measuring specific
elements and sharing metrics with the team to help focus on problem areas. With this
particular team, the following three metrics were particularly applicable and could be
measured immediately by taking data from the most recent software release:

Win Percentage
To show how often prospects who demoed the software were transitioning to
customers

Penalties Per Win
To show the load of customer support issues relative to the number of new
customers

Acceleration
To show the amount of new capabilities delivered weighted by the amount of cus-
tomer support issues

In this case, as you might expect, the Win Percentage was low, the Acceleration was
extremely low (basically zero), and the Penalties Per Win was high. In some sense, the
software team already had a sense of these issues. The benefit of metrics is to bring
focus to the problem and to help the team establish specific target goals to improve the
results.

Once the problematic results were more clearly defined and understood, the next step
was to examine the dynamics of how the team was working and the individual contri-
butions that each person was making. The purpose here was not to identify specific
coders who were causing all the problems. As I already mentioned, there was no indi-
cation that problems were caused by just one or a few people. The goal was to objec-
tively analyze the situation in more detail, which would make it easier to find a solution.
While a manager might see or guess the cause of problems without data, there is a
benefit in gathering data so that everyone on the team can see the issues as well. This
way, the entire team can participate in the analysis and in figuring out a solution. Mak-
ing the entire team part of the process helps improve team morale and keeps key people
engaged during a turn-around.

Timeout for an Example: The Turn-Around | 179

To analyze the situation, the following four metrics were particularly relevant and
meaningful:

Points
To show how much development or bug fixing work each team member was doing

Range
To show how many areas each coder was touching

Errors
To show how many production issues were related back to each coder

Saves
To show which coders were fixing the more severe production issues

The data for the team over three months (before there were any changes) is summarized
in Table 7-2. This data shows some interesting things. First, the Points metric shows
that the two most senior coders on the team had consistently low totals. These coders
had taken on management and coordination tasks and were spending so much time
communicating with customers and support that their coding time had been reduced
to about twenty percent. Second, the Range metric shows that everyone on the small
team was touching just about every significant system area at least once a month.
Everyone was spending some time on a variety of system services and data services, and
most coders were also touching the interface services. Third, the Errors metric shows
that the production issues were weighted more to the coders who had worked on the
user interface. Fourth, and final, the Saves metric shows that the junior coders were
fixing a lot of the severe production issues.

Table 7-2. Metrics taken for a start-up software team that was struggling to meet expectations

 Points Per Month Range Per Month Errors Per Month Saves Per Month

Sr. Coder 1 18 4 8 1

Sr. Coder 2 22 5 7 1

UI Coder 1 61 4 34 2

UI Coder 2 49 6 28 0

Jr. Coder 1 55 6 15 3

Jr. Coder 2 53 6 18 2

Jr. Coder 3 46 6 12 2

Average 43 5 17 2

180 | Chapter 7: Metrics in Use

So here we had a team that was struggling to make progress, bogged down with issues,
with software that was deemed hard to use. The most senior people on the team were
not spending a lot of time coding, and to a certain extent, everyone else was working
on everything. The metrics, however, identified where the opportunities existed to re-
align and improve, and where the team needed the most help. The metrics not only
provided the information to define a potential solution but also the data to explain the
reasoning to others on the team. And having the metrics collection underway made it
possible to check whether the changes actually had the intended effect after they were
implemented. This example shows how codermetrics can help identify the problems
and give you the ability to set goals and measure the results.

An analysis of the situation, backed by the metrics, would be as follows:

• The team was far less productive overall than it might have been, because the two
most senior coders were spending a large amount of their time doing things other
than coding new features or fixing production issues.

• The team was slower and more error-prone than it might have been, because too
many people (especially the more junior people) were touching too many areas and
working on critical problems.

• The team clearly had a problem with the user interface, both in number of errors
and usability.

The team, which I managed, discussed and agreed on this analysis. From there, the
solution was clear. First, we unburdened the senior coders so they could spend almost
all their time coding, and we asked them to fix a higher percentage of the severe pro-
duction issues. I took on the coordination and communication tasks myself and in
certain cases we actually asked more junior team members to handle the first investi-
gations on customer support issues. Second, we reduced the areas worked on by most
of the team, both in fixing production issues and in developing new functionality. This
meant that, in certain areas, production issues were fixed or new functionality was
added more slowly, but we reached an agreement with the rest of the business that this
was best, given that it allowed us to improve our overall speed and quality of output.
Third, we hired a great user interface coder to join the team.

With one new hire and no departures, within nine months we turned the team around.
The results are shown in Table 7-3, Table 7-4, and Figure 7-7. The product began
progressing again at a strong start-up pace, and the team was perceived once again by
the management team as over- rather than underachieving. Team morale was high. It
really was a great team all along, and the team might have found ways to improve its
performance and results in another way, but improved focus and better analysis of the
existing dynamics led to better results. Measuring results and measuring activities can
be particularly useful in any situation where you need to rapidly improve the perform-
ance of an existing team.

Timeout for an Example: The Turn-Around | 181

Table 7-3. Metrics for the start-up software team after reducing areas of responsibility and adding
one new coder

 Points Per Month Range Per Month Errors Per Month Saves Per Month

Sr. Coder 1 74 4 6 4

Sr. Coder 2 65 4 5 3

UI Coder 1 59 2 12 1

UI Coder 2 52 3 10 0

UI Coder 3 72 2 14 2

Jr. Coder 1 55 2 8 0

Jr. Coder 2 53 2 9 0

Jr. Coder 3 51 2 6 0

Average 60 3 9 1

Table 7-4. Metrics showing the improvement in results comparing a release before team changes to
a release after team changes

 Win Percentage Penalties Per Win Acceleration

Release prior to changes 15% 41 0.5

Release after changes 63% 8 13

Improvement 4X 5X 26X

Figure 7-7. Charting the improvement in results after team changes

182 | Chapter 7: Metrics in Use

Using Metrics in Performance Reviews
If you begin to use codermetrics in your software development organization, and if they
are appreciated by a large group especially team leaders, managers, directors, or exec-
utives, then it is inevitable that you will begin to wonder how to use metrics in per-
formance reviews. As mentioned in earlier chapters, this is an area that should be
approached carefully. You do not want the metrics to be seen strictly as grades. If coders
believe they are getting graded on specific metrics, they will focus on those areas to the
potential detriment of other areas, which will limit the use of a wider group of metrics
for mentoring, goal setting, or regular project and team reviews.

In this section, I suggest ways that managers can use metrics to more clearly analyze
the contributions, strengths, and areas for improvement for each coder. Then I rec-
ommend ways that metrics can be incorporated into the performance review process
to increase fairness, enhance communications, and help coders better focus on areas
to improve.

Choosing Appropriate Metrics
For each coder, the first step is to decide which metrics you want to include as part of
a performance review. Some of the metrics you may review to see what they tell
you about the coder’s skills and contributions or to check whether they support your
analysis of the coder’s performance. Other metrics you may want to cite specifically
because they identify areas where the coder’s skills and contributions are particularly
strong and therefore deserve praise, or where the coder’s skills and contributions are
weak and therefore need work.

Both Value Metrics and Skill Metrics can be relevant and useful for performance re-
views. Value Metrics can be summarized for the entire period under review. For ex-
ample, if you are conducting an annual performance review, you could gather the Value
Metrics for each coder on the team for the whole year. If you are normally calculating
these metrics quarterly or monthly, this would just mean adding the calculated values.

In evaluating each coder’s relative responsibility for the team’s successes or failures,
Value Metrics can help. Consider reviewing metrics such as these when preparing a
performance review:

• Win Shares

• Loss Shares

• Advance Shares

Using Metrics in Performance Reviews | 183

Metrics like these can inform your rating of a coder’s performance. You can use these
as input to your evaluation, but I don’t recommend mentioning these directly in a
performance review. If a coder has a high rating relative to other team members in Win
Shares or Advance Shares, that means they contributed more than others to key suc-
cesses. But you shouldn’t tell the coder “you got a great rating for Win Shares.” Rather,
you should focus on finding more details to cite about the coder’s key contributions
(possibly revealed in Skill Metrics or other Value Metrics) and make sure the perform-
ance review reflects the strong contribution. Likewise, if a coder has a high rating for
Loss Shares relative to others, that means they have a higher relative responsibility for
the loss of existing users. Again, you shouldn’t tell the coder “your Loss Shares showed
you had some issues.” Instead, the Loss Shares rating would be a clue for you to dig
deeper for reasons and to include discussion of your findings in the performance review.

To identify a coder’s key strengths or weaknesses, you can compare the coder’s ratings
to peers using other Value Metrics. Consider for review:

• Teamwork

• Fielding

• Pop

• Intensity

With these metrics, where a coder stands out from their peers positively, this finding
is notable—though again, it may not make sense to mention the metric value unless
the metric has become common terminology within your team. For example, if a coder
has a higher Teamwork rating than most other coders, then this signals that they have
excelled in the measurable teamwork elements. If you choose to cite this in a review,
you might mention the Teamwork metric, or you might just discuss how well the coder
exhibited teamwork. In the case where a coder has a lower rating than other coders for
any of these metrics, however, you will need to analyze further how much that matters
and whether it indicates something worth mentioning in the review. The fact that a
coder has a lower Fielding rating, for example, may not be a problem, especially if the
coder is strong in other areas such as Pop or Intensity.

To delve more deeply into skills evaluation, I suggest you review the coder’s Skill Met-
rics and compare them to other members of the team. It is useful to look at the trend
of the metrics over the course of the review period. For example, if you are conducting
an annual review, you might gather a monthly breakdown of the Skill Metrics for the
entire team, along with the yearly averages. This will help you analyze relative strengths
and weaknesses and see how these may have changed over time.

All the gathered Skill Metrics are worth analyzing, although certain metrics might be
especially appropriate for inclusion in performance reviews. Metrics that are particu-
larly useful include:

184 | Chapter 7: Metrics in Use

• Points

• Utility

• Power

• Assists

• Saves

• Tackles

• Range

• Turnovers

• Errors

Where a coder is strong in these measured areas, it is worth citing, and where they are
weak, it may be worth noting as an area for improvement. Where a coder is inconsistent,
that also might be worth noting and discussing (unless there is a clear reason). Espe-
cially relevant is how the coder compares in these elements to his immediate peers, as
I will discuss in more detail in the following sections.

One way to select and use appropriate codermetrics in performance reviews is to match
them up to the categories that you employ for review ratings. If your review ratings
include categories like Quality of Work or Level of Effort, for example, then you could
determine the metrics that match to each of these categories and use those to help
determine the appropriate rating. For Quality for Work, you could use metrics such as
Errors and Efficiency. For Level of Effort, you could review the coder’s ratings and
consistency in metrics such as Utility, Range, Saves, Tackles, and Intensity.

Selecting metrics to use in performance reviews does not mean you need to change the
format of your reviews or any rating system you use. The metrics can simply serve as
support in your analysis, to give you more data to provide the most accurate and fair
reviews.

Self-Evaluations and Peer Feedback
A common part of the performance review process is to have coders conduct self-
evaluations. Sometimes you may also ask peers to provide feedback and input for the
performance reviews.

If you are gathering and openly publishing codermetrics, then you can suggest that
coders and peers review the metrics when they are preparing self-evaluations or feed-
back. In self-evaluations this can help coders more objectively analyze their work, since
they can compare their own metrics to those of other team members. If you are using
metrics in regular team meetings, then they will presumably already have seen some of
the comparisons, but it will also be helpful for them to be able to go back to the recorded
metrics when they are preparing a self-evaluation for a longer period of time.

Using Metrics in Performance Reviews | 185

For peers providing input on others, it will be helpful to look at the metrics of the coder
whose performance they are commenting on. In team meetings, each coder is probably
paying more attention to their own metrics, and not as much to peers. By examining
the record of a coder’s metrics, the peer may be able to compare the data to her opinions,
which may result in higher quality feedback. Also, the peer may learn something about
the coder being evaluated, possibly even gaining new appreciation for the contributions
that the coder made.

Other than suggesting that coders review metrics in self- or peer evaluations, I don’t
recommend that you provide more specific guidance in how the metrics should be
considered or included. By leaving it more open-ended, you enable coders to perform
their own analysis and draw their own conclusions, which may lead to findings that
managers themselves might not spot.

Peer Comparison
If you are a manager preparing a performance review, in addition to gathering self-
evaluations and peer feedback you may also want to analyze each coder versus his
peers. For example, you might compare senior coders to other senior coders, junior
coders to other junior coders, database administrators (DBAs) to other DBAs, and so
on.

Codermetrics can be very useful in helping you make accurate and meaningful peer
comparisons. Examining the Skill Metrics and Value Metrics for direct peers, you can
spot key differences that you might want to highlight in a review. Say, for example, you
see that one junior coder is trailing other junior coders in the consistency of Points
produced, or regularly has more Errors. Or on the positive side, you might see that one
junior coder is excelling in productivity (higher than peer group in Points or Utility) or
precision (lower than peer group in Errors). Or maybe they are leading or trailing peers
in other areas that might not be as obvious such as Assists and Teamwork. Any of these
might be worth noting in a performance review.

The relative standing of peers may have become clear in regular team meetings and
project reviews, but small differences that might have gone unnoticed at the time can
actually represent large differences when looked at over six months or an entire year.
For example, if one coder is just five percent less productive than peers every month,
that might not seem like much, but that can add up to quite a big difference in total
productivity over twelve months. Even if you have been reviewing metrics in regular
team meetings, revisiting the data as you prepare a performance review and looking at
totals over the review period can help you spot key peer comparisons. From there you
can decide which comparisons are most relevant to include in each review.

186 | Chapter 7: Metrics in Use

One potential problem is that citing peers by name when conducting performance
reviews can have a negative effect on teamwork going forward. If you tell a coder that
they are not doing as well as another coder, you are making it personal between the
two coders—and the coder doing “worse” may develop personal resentment against
the one doing better. Situations like this are somewhat inevitable on any teams, but in
the end as long as evaluations are fair, most adults can handle the comparisons (and if
they can’t, then maybe they aren’t suitable members of a team). Still, codermetrics gives
you a way to present effective peer comparisons to someone without explicitly naming
the peers to whom they are being compared. For example, you can show a coder how
their productivity or precision compares to the average, maximum, or minimum values
of her peers. If the peer group has only two people, this won’t help, of course—but in
larger teams you can present the metrics without names, which makes your point
without making it too personal.

Setting Goals for Improvement
Codermetrics give you an effective way to establish and track personal goals, very much
like the team goals discussed earlier in this chapter,. Whether you are a manager sug-
gesting goals for improvement or you are a coder setting your own goals, with metrics
you can define specific goals in terms of specific target numbers and timeframes. Having
a real target that is regularly tracked and reported makes it more likely that a goal will
be met or at least progress will be made. Goals that cannot be measured are more likely
to be forgotten and never achieved.

A manager and a coder who agree in a performance review on any area where the coder
will try to improve, can identify the key metric or metrics that apply to the target area.
Then they can review the coder’s past values for those metrics and decide on a reason-
able goal for improvement and a target timeframe. Having established such clear and
measurable goals, a manager and a coder will then be able to review the progress and
accomplishments in future performance reviews or at more frequent intervals.

Promotions
Metrics can be very useful to identify or justify that a coder is ready for promotion. By
looking at Skill Metrics or Value Metrics for a coder and other team members, you can
see if the coder’s results are consistently above his peer group and in line with a more
senior peer group. Such improvement would be a strong indicator that a coder’s con-
tributions warrant a promotion. As an example, see Figure 7-8, which charts a coder’s
progression to the next level of productivity.

Using Metrics in Performance Reviews | 187

Figure 7-8. An example of progression in productivity for a junior coder that would warrant
consideration for promotion

In preparing for a performance review, you can analyze a coder’s level to peers on both
Skill Metrics and Value Metrics. Increased productivity, precision, responsibility,
innovation, or overall contribution to team results are all noteworthy. High and con-
sistent improvements in any of the following metrics might therefore be considered a
strong indicator for promotion:

• Points

• Power

• Assists

• Saves

• Tackles

• Errors

• Plus-Minus

• Win Shares

• Loss Shares

• Advance Shares

Improvement in metrics warrants notice in evaluating a potential promotion, although
of course this would not be the only criteria. Alternatively, if a coder has not demon-
strated consistent improvement in any key measurable area, this might argue against
promotion (although a promotion still might be given for other accomplishments).

188 | Chapter 7: Metrics in Use

Taking Metrics Further
In this section I’d like to present a few ideas for how you can take codermetrics further
in your organization. These techniques are designed to help you find ways to get more
use out of metrics, either by finding new ways to apply them in your processes, or
creating new and better metrics, or discovering new and useful insights from the metrics
you already have in use.

Create a Codermetrics Council
As you begin using codermetrics, chances are there will be a few “fans” or “boosters”
in your organization. These folks, whether they are team leaders or team members, will
likely take more of an interest in the ideas, uses, and analysis of the metrics. They might
be involved with the initial trials, and they will probably take a role in the data gathering,
the calculation, and the storage of metrics. Possibly no one else (or only a few others)
in the organization will initially share their interest or see the usefulness of codermetrics.
This is a fairly typical way for new ideas to take hold in groups.

Over time, if you integrate metrics into your processes and practices, it is likely that
others in the organization will at least gain respect and understanding for metrics. More
people will participate— and maybe become fans, too.

At that point, however, it still may be the case that the main responsibility for metrics
in the organization rests with a few of the original boosters. Because they were instru-
mental in starting the use of codermetrics and because they took the most interest, these
people may be seen as “driving” or at least “influencing” the strategy and processes for
metrics. Others may defer to them to define best practices, changes, and improvements.
Maybe they are the ones who are consulted for metrics analysis. If you have forums for
discourse on metrics, these folks might be the ones who are seen as the authorities and
who do most of the talking.

Again, this is all fairly typical in how ideas spread and then get integrated in groups.
The boosters help drive initial adoption and success, then they become the leaders or
experts that others turn to going forward.

Granted, it will take some time for you to hit this point. But once you do, I suggest that
(unless you have a very small team) you should seek ways to distribute responsibility
and “codermetrics leadership” more widely. This is in everyone’s best interest, includ-
ing the original boosters. The methods and techniques for codermetrics discussed in
this book are not meant to become static or stale. Codermetrics should and will evolve
as you and your teams learn more and as you seek to understand and measure more.
By cultivating new boosters and leaders in your teams, you will accelerate your ability
to enhance and expand codermetrics and how they are applied.

If you have witnessed the adoption of methodologies or technologies in a software
development organization, you have probably seen a similar process. As a new meth-

Taking Metrics Further | 189

odology or technology becomes accepted and “institutionalized,” it makes sense if the
expertise and control spreads beyond what may have originally been a small group.
This protects the organization from too much dependence on too few people, and the
leadership group benefits if the additional people have good ideas, too.

There are two ways to distribute responsibility and spur growth of your codermetrics
leadership team: forcibly or organically. You can probably tell by my choice of loaded
terms which one I prefer. Forced growth would be to assign specific people, such as
team leaders, to take more responsibility and to become codermetrics leaders. Organic
growth would be to let the people who express the most interest and desire join the
codermetrics leadership team. The latter works better, since those with the most pas-
sion will contribute the most, and they will not feel burdened with extra responsibility
even while they continue handling their regular tasks. Also, not all of your codermetric
“leaders” should be organization leaders or managers. It’s better if there is a mix of
seniority and experience so that more junior members are included, too. It brings a
wider variety of ideas and perspectives to the council, and it will make it easier to
disseminate the council’s ideas to a wider audience.

In order to formalize the process and make sure that those interested have a chance to
use their energy and get involved, you might consider creating a codermetrics “strategy
committee” or “council.” The original boosters in the organization would clearly be a
part of this council, and then others could be added organically as they express interest.
You can put a simple process in place where anyone can apply (and for more junior
team members, their manager might need to approve). How large you allow such a
group to grow is always a concern—if it grows too large, then it will likely become
unproductive. In my experience, however, the number of applicants for such a group
will never be that large. You can let people resign from the group when they want, too.
Such teams often become remarkably self-regulating to an appropriate and efficient
size. If not, if the number of interested people is truly too large, then you might consider
dividing into smaller committees each with an area of focus (one group could focus on
Skill Metrics and another on Response Metrics, for example).

A codermetrics council might meet once a month or once a quarter, maybe in an in-
formal environment such as over a meal. The council could kick around ideas and
observations, and as new ideas worth trying arise, specific individuals on the council
could take responsibility for setting up trials. Tests of new metrics or new analyses
could be conducted on the side or by coordinating with one or more software teams
(the team a council member is on becomes a good candidate for testing a new idea).
Depending on the personalities of the council members, they might decide to publish
notes or ideas, maybe in an online location or maybe with an email “newsletter.”
They can also take leadership in ongoing forums and discussions with others in the
organization.

Whether you institute a formal council or you simply encourage others to become more
involved with codermetrics, you will benefit if you cultivate a larger pool of boosters
and leaders. You will be harnessing the natural energy and interest that some team

190 | Chapter 7: Metrics in Use

members might have for metrics and process improvement, and put it to good use.
Having a healthy and changing group of leaders who interact regularly with each other
will increase the chances that codermetrics will stay healthy and evolve within your
organization. This will increase the likelihood that the advantages your organization
gets from codermetrics will be sustained or increased.

Assign Analysis Projects
Another way to get further benefit from codermetrics is to spend more time analyzing
the data you’ve gathered. Analysis might identify hidden patterns in your organization
or in specific teams that could provide useful insights why one team is more productive
or delivers better quality results than another, for example. Analysis might spot inter-
esting outliers, such as if one team has a pattern of producing junior coders who advance
quickly. If you have collected a year or two of data, especially if you have multiple team
tracking metrics, then there could be many hidden gems and patterns that are not being
seen or recognized in normal project and management reviews.

The problem, of course, is that no one really has time to do deeper and open-ended
exploration and analysis of the data. Maybe managers have some time for this, and
maybe some of the metrics fans and boosters in your organization spend some time on
advanced analysis, too. But mostly this will be a side activity for team members that
already have more than enough to do.

If you have people in your organization who have enough interest and general analysis
capabilities, you could consider allowing them a period of focused time to do a metrics
analysis project. One way to initiate this would be to let everyone in the software de-
velopment organization know that they can submit ideas for a codermetrics analysis
project to their managers and possibly to the codermetrics council if one exists. If ap-
proved, the person would be allowed a period of time, perhaps one or two weeks, to
take a “leave” from their normal assignments and work on the analysis project. At the
end of the analysis, she would present her findings to the appropriate audience, which
might be team leaders, team managers, the codermetrics council—or in some cases,
perhaps specific teams or other coders.

Another approach would be to “draft” someone to conduct an analysis project. If a
manager has some specific questions or some specific areas that they would like some-
one to delve into and explore, for example, then that manager might try to find someone
in the organization who is interested in and capable of performing the analysis. That
person might be one of the codermetric boosters in the organization, or they might just
be someone known to have good analytic skills (and might even be someone outside
the software development organization) and sufficient time. If the person being drafted
agrees and his manager approves, then he would be given a period of time to focus on
the analysis project. When complete, he will present findings to the original project
sponsor and to others, as appropriate.

Taking Metrics Further | 191

Topics for analysis projects might be fairly open-ended or very specific. For example,
someone might perform a “General Analysis Comparing Software Teams”, or look at
“Coder Skills that Correlate with Better Quality.” While the topics will vary, in general
every project should result in a set of findings that are captured in some sort of docu-
ment, a set of unanswered questions for further exploration (which might become top-
ics for further analysis projects down the road), and possibly a set of recommendations
about how the gathering or use of metrics might be improved to better answer questions
and identify patterns in the future. This might include the recommendation for new
types of data and metrics to gather.

One thing that everyone should agree on and appreciate is that a codermetrics analysis
project may not yield breakthrough findings. Such projects involve research and ex-
ploration, and the time and effort allocated should be done with an understanding
similar to other research projects—namely that the results may be inconclusive or no
more than was already known or guessed. This should not be seen as a failure of the
assigned analyst, the project, or of such projects in general. It is to be expected. You
spend time searching for more useful patterns and more revealing insights, and some-
times you find them, sometimes you don’t. But if you don’t try, you may never know.

Hire a Stats Guy or Gal
This is not something I’ve ever tried, but it’s something you see in other disciplines and
other fields, and I could imagine it happening someday for metrics-gathering software
teams as well. Instead of (or in addition to) assigning internal people to conduct
codermetrics analysis projects, you could “outsource” metrics analysis to a consultant:
a “stats guy” or “stats girl.”

In major sports such as baseball and basketball, with the rise in popularity of advanced
statistical analysis of players and teams, this has become fairly commonplace. Teams
hire outside consultants who are adept at analyzing data and who help the sports team
leverage statistics to develop new strategies.

This is also commonplace in many companies for marketing, sales, and financial data
analysis. If the company doesn’t possess the skills internally (or there is just more
analysis to be done than people have time to do), consultants may be hired on a tem-
porary basis to help with specific projects. The consultants might be highly skilled,
focused, and experienced in their particular areas, or they might be working to gain
experience (such as summer interns hired from a local MBA program who have basic
competencies in statistics and spreadsheets).

192 | Chapter 7: Metrics in Use

If you have accumulated metrics from many coders across multiple projects and pos-
sibly multiple teams, and you don’t have the time or ability to mine and analyze
the data for patterns and new insights, then it is not far-fetched to consider using a
consultant or a sufficiently skilled part-time hire or intern. You could possibly borrow
an analyst for a short time from another group in your organization, like the marketing
department. The analyst wouldn’t need a background in software development or
codermetrics, just statistical analysis skills. One or more in-house leaders from your
software organization could work with the analyst, discussing ideas and questions that
could be investigated and deciding on avenues to pursue iteratively as the analyst be-
comes more familiar with the data and finds more.

As with the internal codermetrics analysis projects, it’s not guaranteed that a consulting
analyst would deliver great value. But it seems worth considering as an option down
the road as you accumulate data—especially if you find consultants who are suited to
the task.

Timeout for an Example: The Same But Different
When Billy Beane set out to improve the Oakland A’s baseball team, as discussed in
Michael Lewis’ Moneyball, his first step was to learn which player skills or combination
of skills and approaches amounted to greater success. Through statistical analysis, he
learned that hitters taking more pitches and drawing more walks led to better run
production, which led to more wins. He also learned that giving up outs through failed
stolen base attempts and sacrifice bunts resulted in worse run production, which led
to more losses. Using this data, he was able to focus on drafting players who specifically
exhibited hitting traits (good pitch selection and plate discipline) that would translate
to success, and he was able to instruct his coaches to teach the valuable hitting traits
and to tell his managers not to attempt to steal bases or bunt.

This rational and statistics-based approach to player selection, player development,
and coaching brought Beane and the Oakland A’s many years of success, even though
they had less money to spend on player payroll than most of their competitors. Over
the last few years, Oakland has not maintained the same level of success, as competitors
started imitating these techniques and Oakland’s tight budget resulted in the loss of
many successful players that Billy Beane and his team discovered. But that doesn’t
change the validity and usefulness of the methods. First, you must find the keys to
success. Gathering and analyzing data can help you do that more objectively and more
accurately. Then you need to apply those keys to find and develop the proven combi-
nation of skills and approaches that lead to success. These ideas are applicable to soft-
ware development teams. Unlike professional baseball, the skills required are not so
elite that you have to overspend like the leading baseball teams to consistently achieve
(and like Billy Beane, you may be able to apply these techniques to build more successful
teams even if you are operating on a tight budget).

Timeout for an Example: The Same But Different | 193

Codermetrics can help you identify the patterns of success in your organization. By
gathering metrics on multiple projects and multiple teams, you can better see the dif-
ferences between teams and can better identify the “good” and “bad” patterns of soft-
ware development teams. This knowledge can be put to use to improve your teams,
through mentoring and “coaching” or personnel changes, or to build successful new
teams. Some of the patterns and principles you discover may be particular to your
organization or to the particular type of software you develop, but some are likely to
apply across organizations and software teams of different types.

As an example, let me describe two software teams that I worked with in one company.
One of these teams was considered very successful, but became less successful after the
departure of a key team member. The other team was considered solid, but actually
improved its success after a key team member resigned. Having gone through similar
circumstances but with different outcomes, these situations present an interesting case
to study and compare.

I’ll call the first team the “Red Dog” team. At the beginning of the period, which I’ll
call Time A, this team had six coders and was working on a software product in its
fourth release that was approximately doubling the number of users every year and
soundly beating all its competition. The team had two senior coders and four moder-
ately experienced coders. The entire team had been together multiple years. Releases
were delivered on time, with high quality, with features and functionality consistently
exceeding outside expectations.

At a later time, which I’ll call Time B, one of the senior coders resigned to go to another
company. This left the team with five coders. The remaining senior coder took over all
the key technical leadership responsibilities, and other responsibilities were spread
among team members. While the team’s performance remained solid and the product
continued to succeed, by the following release certain aspects of the team’s results
clearly began to drop off. The functional improvements, the innovations, and the level
of quality all dipped enough to be noticed. Figure 7-9 shows a comparison of the prod-
uct’s Response Metrics from Time A (full team) and Time B (after the senior coder left).
Figure 7-10 shows a comparison of the average coder Value Metrics from Time A and
Time B.

194 | Chapter 7: Metrics in Use

Figure 7-9. Comparing monthly average Response Metrics for Red Dog team’s product from Time A
and Time B shows that the rate of adoption and acceleration decreased, while quality problems
increased

Figure 7-10. Comparing the project average Value Metrics for coders on the Red Dog team from Time
A and Time B shows a small but noticeable decline in key metrics

I’ll call the second team the “Blue Dog” team. At Time A for this team, there were seven
coders working on a software product in its third release that was performing solidly
and growing, although it significantly trailed some larger competitors. Like the Red
Dog team, this team had two senior coders who split responsibilities. The remaining
coders were of similar moderate experience, and like the Red Dog team, the Blue Dog
team had all worked together for multiple years.

Timeout for an Example: The Same But Different | 195

At Time B for the Blue Dog team, one of the senior coders resigned to pursue other
interests. The remaining team had six coders, with the other senior coder assuming full
responsibility for architecture and team leadership. At this point, however, unlike the
Red Dog team, the performance of the Blue Dog team improved in a few noticeable
ways. Not that performance had been bad before, but productivity, quality, innovation,
and product advances all became better—to the point that managers and others in the
engineering team noticed. Figure 7-11 shows Blue Dog team’s Response Metrics and
Figure 7-12 shows the coder Value Metrics from Time A and Time B.

Figure 7-11. Comparing monthly average Response Metrics for Blue Dog team’s product from Time
A and Time B shows an improvement in adoption rates and user benefits and quality

Figure 7-12. Comparing the project average Value Metrics for coders on the Blue Dog team from
Time A and Time B shows noticeable improvement in key metrics

196 | Chapter 7: Metrics in Use

So each team had a senior coder leave, but in one case the team’s performance suffered
a little; and in the other, the team’s performance improved. Maybe the senior coder
who left the Red Dog team was just better, more important and knowledgeable, and
harder to replace. Maybe the senior coder who took more responsibility on the Blue
Dog team was stronger, and given more responsibility, simply rose to the occasion.

If you’ve run across situations like these before, you probably haven’t given them a lot
of thought. Things change, teams change, as long as the product is doing reasonably
well, why worry?

But is there more to learn from a situation like this? With more knowledge and under-
standing, would it have been possible to help the Red Dog team continue to perform
well after the senior coder left? Or would the Blue Dog team still have improved if its
other senior coder had stayed on board?

The data in Table 7-5 provides an answer. This is a comparison of the two senior coders
who left their teams, showing what percentage they individually contributed to team
totals for a set of key metrics. The data shows, for example, that the senior coder on
the Red Dog team provided 72% of the total Power rating for the team and provided
81% of the Assists. The senior coder on the Blue Dog team, conversely, only provided
28% of the team’s total Power, and handled only 18% of the Assists.

Table 7-5. Comparing how much the departing senior coders on the Red Dog and Blue Dog teams
individually contributed to team totals in key areas on an average release

 Red Dog Sr. Coder Blue Dog Sr. Coder

Team’s Total Power 72% 28%

Team’s Total Assists 81% 18%

Team’s Total Tackles 95% 31%

Team’s Total Saves 67% 22%

The metrics are dramatically different. They show that the senior coder who left the
Red Dog team handled a much larger share of his team’s key tasks and provided a much
greater percentage of help to others. This might have been because the senior coder
was stronger in those areas, or that the other coders were weaker, but it was most likely
because the team established this particular division of labor early on and then con-
tinued it. Whatever the cause and reason, the data clearly shows that the departure of
the Red Dog senior coder left a much bigger hole to fill.

On the surface, the situations with these two teams look nearly identical, yet coder-
metrics reveals more detail about the differences and the potential impact. But how can
such information and understanding help?

First, with the additional details that metrics provide, you (as a manager or maybe even
as a team member) are able to predict much more clearly the potential impact of a
departure, and thereby identify strategies to address the potential issues. In this case,

Timeout for an Example: The Same But Different | 197

for example, you might insist that the Red Dog team spend extra time focusing on how
the departing coder interacted with and supported others (Assists), or you might spend
extra time to make sure that they learn more about the complex areas (Power areas)
that the departing coder handled. Through identification and action, therefore, you
might better address a loss to keep a team’s performance from declining.

Second, with the extra detail that metrics provide about the level of contributions that
a departing coder made, you will be better able to assess how well current team mem-
bers will be able to step up, or whether the team needs additional personnel. Seeing in
this example that the senior coder leaving the Red Dog team provided nearly all the
innovation (Tackles), you would know to consider that carefully in your evaluation
about whether other team members can fill the gap.

Third, you can also use metrics to help catch such situations earlier. Where one coder
is dominant in multiple key and important areas, you could make sure to create better
balance in the team, in which case the entire team would become stronger and any
subsequent departure would not have as dramatic an effect.

Finally, by understanding the real differences between the situations such as presented
here between the Red Dog and the Blue Dog teams, you avoid jumping to incorrect
conclusions about whether one situation matches another and the reasons why team
performance might be getting better or worse. For example, in the Red Dog case it
might be easy to blame the remaining senior coder for the team’s declining perform-
ance, especially if you think the situation is exactly the same as the Blue Dog case where
performance is improving. But in this case the situations were not the same: the teams
operated differently before the departures. In the case of the Blue Dog team, responsi-
bility in many critical areas was better distributed, so the team was stronger and one
senior coder’s departure didn’t cause any setback (in fact the team continued to pro-
gress, which explains the improvement following the departure). In the case of the Red
Dog team, one person had too many key responsibilities—which was not necessarily
the fault of any of the other team members, but left them in a much weaker position
when that person left.

As codermetrics show you more details about your teams and the differences between
your teams, you stand a much better chance to identify ways to improve those teams.
Could the patterns and the details be seen without codermetrics? Wouldn’t it be pos-
sible to know that one senior coder had disproportionate responsibilities on his team
and would be more difficult to replace? Yes, although perhaps not as readily or effi-
ciently. Billy Beane, too, might have figured out that hitters who walk a lot are very
valuable, and steals and bunts are counterproductive, without statistics. But statistics
helped him see the actions that correlated highly with success, which may seem obvious
in retrospect—yet before, was anything but. Also, using statistics, Billy Beane didn’t
need to see every prospect in person and be intimately familiar with the player’s situa-
tion. In fact, to a large extent he could evaluate many aspects of a player or a team
simply by reviewing the statistics.

198 | Chapter 7: Metrics in Use

So sure, statistics or metrics only help you see what’s there. But metrics can help make
patterns, similarities, and differences more obvious. In the end, the key value of metrics
is that they help you more clearly understand the contributions of coders and the dy-
namics of teams, and they can help you spot key information even if you are not com-
pletely familiar with all the coders and teams.

In the movie The Matrix, the choice between the red pill and the blue pill represented
the choice between ignorance and reality. Working without metrics doesn’t mean you
will work in ignorance, but using metrics can definitely help you gain a clearer and
more accurate view of reality. The situation of the Red Dog and the Blue Dog teams
seemed nearly identical, but as the metrics revealed, the reality was that they were quite
different.

Timeout for an Example: The Same But Different | 199

CHAPTER 8

Building Software Teams

Coaches can teach players only so much, but they can also learn a lot from veteran players.
People look at our team and say we’re old, but we’re old for a reason. Those guys serve
a purpose in our organization. They are there to guide our young players.

—Ken Holland, general manager of the Detroit Red Wings, 1997–present

Aside from people who only like to work alone, everyone wants to be part of a winning
team. While there are many definitions of “winning,” you would probably agree that
for software teams the definition includes producing great software and enjoying the
process. But how do you get that? Hiring the smartest and most skilled people possible
is always a good starting point, but does that alone produce a winning team?

This chapter presents ideas about how codermetrics can be used to help you make
personnel additions and adjustments to build better software teams, and to achieve
greater success according to your defined goals. This can apply to new or existing teams.
The goal is to create a planned approach to personnel decisions and team building,
using metrics to inform and support the process. There are many well-known and
proven ideas that work for professional sports teams and that are analogous to the
needs of software development teams, so I will draw on those throughout the chapter.

As with all parts of this book, the focus here is on coders. Clearly, there are other people
and roles on software development teams, like testers and interface designers. Many of
the ideas laid out here might be extended to other roles, but the teams discussed in this
chapter are groups of coders, along with their team leaders and managers.

Goals and Profiles
Taking a planned approach to building a software team is very similar to building
software itself. First of all, you must determine your business “requirements” and es-
tablish a vision of the team you want, just as with software you need a vision that is
aligned with business and marketing requirements. Next, you need to develop a design
or blueprint of the team you envision, just as with software you need a design. Finally,

201

you need to implement that design to build a team and iteratively improve it over time,
just as software gets built, maintained, and enhanced.

Whether you want to build a new team or improve an existing one, the first step is to
lay out a vision and a plan. This section describes how you can use metrics to establish
targets for new or existing teams.

Set Key Goals
When you want to build a new team or improve an existing team, in a metrics-based
approach, the first step is to determine the key “business” or organization goals for the
team. The goals should be trackable with metrics you have in place. Once goals are
established, you can use them to guide your personnel decisions, and you can track the
metrics to analyze the results.

For example, your team goal might be to increase the number of new users or improve
the quality of your software. For these goals you could use Response Metrics like Wins
or Penalties. Alternative team goals might be to increase productivity or teamwork, in
which case you could use Skill Metrics like Points or Assists, or a Value Metric like
Teamwork. Whatever metrics you choose, you would define a target value or a target
level of improvement. For example, you might say that the team goal is to achieve three
hundred Wins per month, or that the goal is to improve the Wins per month by twenty
percent.

It is best if the goals are defined within a specific timeframe, such as a number or
percentage “per month.” This allows you to measure progress at a reasonable fre-
quency. For example, if you are putting together a new team to build a new software
product and the organization’s goal is to sign up one thousand new users in the first
year, rather than setting one thousand Wins (new users) as the goal, I would suggest
you set something like three hundred Wins per month as the goal (which, if it takes
nine months to reach, would approximately let you reach the organization goal in one
year). This will make it easier for you to see on a monthly basis how close the team is
coming to the goal, and at what point the team has consistently surpassed the goal.

You can chart how well a team is progressing to its goals, shown in Figure 8-1. Such
charts can be shared with the team.

Identify Constraints
Once you have established the goals for a team, you need to identify any constraints
and determine if the goals can be met given those constraints. Budget is often a con-
straint that can limit the number and type of coders you can have on a team. Another
constraint for an existing team might be that it’s not in your power to make personnel
changes and, therefore, any improvement you make must rely on existing team
members.

202 | Chapter 8: Building Software Teams

Another set of constraints might be current or upcoming responsibilities and commit-
ments. If you already know that an existing team must do certain things in specific
timeframes, for example, it may limit the type of changes you can make. Or, if you are
building a new team but you know that the team has to deliver software by a certain
date, that may limit the amount of time you have to recruit experienced coders. Without
enough experienced coders, perhaps the original team goals cannot be met.

If you identify constraints that make the team goals clearly unrealistic, then you need
to either reset the goals or eliminate the constraints. This may require business discus-
sions outside the software development team—but better to have these up front than
to have unreachable goals that will leave everyone disappointed, frustrated, or worse
later on.

In order to proceed with team planning, then, you should identify and evaluate the
constraints so you can:

• Define the limits on team size and potential team changes.

• Adjust team goals to realistically account for constraints.

Find Comparable Team Profiles
If you set out to improve an existing team, then clearly it makes sense to examine that
team and compare them to other teams to identify specific areas to improve. If you set
out to build a new software team, it also makes sense to examine other teams to learn
about patterns of success or failure. You might find teams that you might want to
emulate, or you might identify patterns that you want to avoid.

Traditionally, people have used personal observations to compare their teams to others,
augmenting these observations with informal anecdotes heard from other people. You

Figure 8-1. Key team goals and progress towards them can be captured in simple charts

Goals and Profiles | 203

might have a set of memories or stories about techniques that worked for teams you’ve
worked with or heard about, and you might put those techniques to use going forward.
For example, maybe it was your experience that a team had great success with summer
interns, so now you are in favor of having summer interns on new teams. Over time,
many team-building and management “memes” circulate in various ways and become
common practice, in some sense passed down from one “generation” to the next.

Codermetrics gives you the ability to examine teams—both current and past—in new
and different ways. By capturing a set of metrics, you can create metrics-based “profiles”
of teams. If you gather profiles of multiple teams and determine the relative level of
success of each team, then you can begin to compare profiles to identify the key at-
tributes of success. This helps you zero in on key qualities to emphasize on new teams
or the most valuable areas to improve on existing teams. Rather than just gathering a
set of “best practices” and emulating institutional models for building software teams,
therefore, you can gather data in the form of team profiles that give you a more empirical
view and that you can use as templates for building better teams.

A codermetric profile of a team for this purpose relies on selected Skill Metrics and
Value Metrics. You don’t need to include all the detailed metrics for each individual
coder. In putting together team profiles, what matters most is getting summary metrics
that show the relative distribution of skills and contributions on each team and where
the metrics are normalized for comparison. The metrics can be normalized by using
averages over a specific time period, such as taking the average Points per coder per
month. The profile can be further simplified and normalized by categorizing the team’s
performance in each area on a simple scale such as High, Medium, or Low. The scale
for rating would be based on what you have seen as common over time and across
teams. For example, you might say that for average Points per coder per month, one
team’s value is High and another team is Medium.

When you have enough data, it can also be useful to break down the metrics by category
of coder. For example, if you know the averages per month for senior coders and the
same for junior coders, it gives you a more detailed and useful profile of a team. See
Figure 8-2 for an example team profile that provides both a team summary and a
breakdown by type of coder.

It will be straightforward to put together a profile for a team if you are already gathering
and tracking codermetrics. In general, three or four months of data is enough to build
a team profile, although if more data is easily gathered, that can make the profile more
accurate. If you want to profile a team that isn’t gathering metrics, however, it can still
be done with some data gathering and some estimation. In this case, you would gather
the data available from existing systems such as a project-tracking system, bug-tracking
system, or a customer support system. Then you might gather additional data estimates
by interviewing team leaders, or managers, or team members. Using the data you gather
and your experience, you could then estimate monthly averages for metrics to build an
estimated team profile. This could be done for current teams but could also be done
for teams in the past as long as some data sources or some team members are accessible.

204 | Chapter 8: Building Software Teams

Obviously, profiles constructed in this way are less reliable than those built from ac-
tively tracked codermetrics, but an estimated profile still can provide useful lessons, so
I would argue that it’s better than no profile at all.

The other element that every profile needs is a rating of the team’s success for the time
period covered, which can be derived from Response Metrics. In this case, you want
to come up with a common rating system to use across teams. Consider rating success
in more than one dimension. Table 8-1 shows an example set of rating categories along
with specific codermetrics that you could use to determine the relative success. When
actual metrics are not available, you can establish the success ratings through investi-
gation of available data or through interviews.

Figure 8-2. A metrics-based team profile shows the average per month values for key metrics and a
breakdown of averages by coder categories

Goals and Profiles | 205

Table 8-1. Example categories for rating success in team profiles along with codermetrics that can be
used to determine success

Success Category Useful Codermetrics

New user acquisition Wins, Win Rate, Win Percentage, Gain, Gain Rate

Retaining existing users Losses, Loss Rate

Adding benefit for existing users Boost, Acceleration

Improved quality Penalties, Penalties Per Win

Advances over the competition Win Ranking, Capability Ranking

In the profile, you can rate each team in each category using a fixed scale. For example,
you might rate a team High, Medium, or Low for their level of success in new user
acquisition. The actual rating will be based on team or organization goals and how the
team did compared to those goals. Such ratings are imprecise and may be somewhat
subjective, but since these will be used strictly for categorization and comparison pur-
poses, your main concern is that the ratings are consistent. If, for example, one team
achieved fifty percent of the organization goal and you rate that team’s success as “Me-
dium,” then another team that hits fifty percent of its goal should be “Medium,” too.

As you set out to build a new team or improve an existing team, what you want to do
is find one or more comparable profiles, or “comps,” from existing or past teams that
share similarities with the team you envision while taking into account your identified
goals and constraints. Through analysis of these comps and the patterns they reveal,
you can formulate a more detailed plan for your team.

Professional sports teams do this all the time. If the managers of a budget-constrained
hockey team in a small market want their team to be more competitive or more enter-
taining, they analyze other similarly constrained teams who’ve had success. They may
latch onto the approach of a single successful team as a “blueprint,” or blend of tech-
niques and ideas from multiple teams. In baseball, Billy Beane and his managers de-
veloped their ideas about building winning teams by analyzing the makeup of successful
teams in the past. Then, as teams saw the success that Billy Beane had with the Oakland
A’s, they began to analyze and copy that approach, while also blending in new ideas of
their own.

Using metrics-based profiles of software development teams, you can perform com-
parative analysis of two or more teams. There are many things you can learn from
analysis of these profiles to enhance your planning for a target team. For example, by
comparing the profile of a successful team to one that is less successful, you might
identify key differences that reveal why one team is more successful—and therefore,
where the other team could focus on improving. Or by comparing two profiles of suc-
cessful teams, you might identify common strengths that another team could emulate
to improve its chance of success.

206 | Chapter 8: Building Software Teams

As examples of such comparison and analysis, Table 8-2 and Figure 8-3 show the data
from two team profiles. In this case, Team B did a little better in delivering quality and
user benefits, so you would say that Team B was better overall. Among the areas meas-
ured and listed, Team B was also better in the number of monthly Assists and the level
of Teamwork (which is also based on Assists along with Utility and Range). If you were
building a new team, you might choose Team B’s monthly metric totals as a “blueprint”
or a “target” for your new team. Alternatively, if your goal was to improve Team A to
try to get results like Team B, you might decide that Team A could improve quality and
deliver more benefits if the coders spent more time on helping each other and fulfilling
other support requests (which would increase the number of Assists to be more like
Team B) and by having some coders diversify their time across more areas (which would
increase their Range and thereby the overall Teamwork ratings to be more like Team B).

Table 8-2. Side-by-side comparison of two team profiles; metrics are average per coder per month

 Team A Team B Notable Differences

Success: new users Medium Medium

Success: user retention High High

Success: benefits Medium High Team B better

Success: quality Medium High Team B better

Success: competition High High

Avg. Points 22.6 (High) 23.5 (High)

Avg. Assists 1.4 (Low) 5.1 (High) Team B better

Avg. Errors 3.1 (Medium) 3.3 (Medium)

Avg. Saves 1.4 (Medium) 1.6 (Medium)

Avg. Tackles 0.7 (Low) 0.4 (Low)

Avg. Teamwork 5.1 (Medium) 9.2 (High) Team B better

Avg. Fielding 7.7 (Medium) 7.9 (Medium)

Avg. Pop 3.4 (Medium) 3.1 (Medium)

Avg. Intensity 7.4 (Medium) 7.6 (Medium)

One question in analyzing team profiles is whether it’s reasonable to compare different
teams, especially if they are from different organizations or different time periods. Is it
an apples-to-apples comparison from which you can draw meaningful insights—or is
it apples-to-oranges, in which case conclusions might be misleading? Logic and com-
mon sense can apply. The more similar the situation, the more likely that a comparison
can apply, so you should take the situations and circumstances into account. You might
consider the type of software worked on, the organization goals, and the size of the
team. It is easier to draw meaningful insights from a comparison of two teams that
worked on a similar category of software in the same company than it is to draw

Goals and Profiles | 207

conclusions comparing two teams that worked on entirely different types of software
for different companies.

As you set out to lay plans for your team, you should find the most useful comps you
can. If you already have a “library” of comps, then you can choose those that best fit
your target team and the goals you have set. If you don’t have any comps, then I suggest
you find at least one team that you believe shares characteristics and has shown success,
and develop a profile for that team that you can use as a comp for analysis.

Build a Target Team Profile
At this point you have defined team goals, identified your constraints, and selected a
set of comparable team profiles that you can study and use as examples for your team.
The final step in “team planning” is to build a target team profile that adheres to your
constraints and that you believe, based on your comps and your personal knowledge,
is representative of a team that can achieve the goals.

A target team profile is the same as the team profiles discussed in the previous section,
but it is a “target” used for planning purposes rather than one based on actual per-
formance data. In this case you define the target success ratings to be in line with your
defined team goals, and you define the target monthly metric averages. You may also
break down metric averages for specific categories of coders, such as senior and junior
coders. Figure 8-4 shows an example spreadsheet containing a target team profile.
Analysis of your comps should weigh heavily in building the target team profile. It’s
not necessary that the target profile exactly copies an existing profile, but it should be
derived from the successful patterns observed in other teams.

Figure 8-3. A chart comparing the differences between two team profiles

208 | Chapter 8: Building Software Teams

The theory behind target profiles is that if you build a team that “fits” the target profile
metrics (not exactly but within a small margin of error), then the team also stands a
much better chance to meet its target level of success (again within some margin of
error). This theory is based on the idea that codermetrics can help you identify patterns
of success that are not infallible but that increase the likelihood of success and reduce
the chance of failure. The approach relies on having chosen good comps, having ana-
lyzed those comps, and having applied the analysis correctly to come up with a “good”
target team profile. Once you establish a target team profile, you can build a team whose
metrics will fit that profile. If you are building a team and the target profile calls for
coders to average “High” Points per month and “High” Assists, for example, then
shooting for those metrics would guide your personnel, mentoring, and coaching
decisions.

With the Oakland A’s, Billy Beane and his management team determined that they
wanted a baseball team that would be strong in certain statistics that they, through
analysis of past teams, determined were consistent with greater success. Among the
key metrics they focused on were On-Base Percentage (OBP), On-Base Plus Slugging
Percentage (OPS), numbers of strikeouts (SO), attempted bunt sacrifices (BS), and at-
tempted stolen bases (SB). They set a plan to build a team that would have high OBP
and OPS while having low SO, BS, and SB. Having established this target “profile,”
they went about finding new players that already had those skills, and coaching existing
players to improve those skills. As a result, at least until the competition caught up,

Figure 8-4. A spreadsheet with a target team profile

Goals and Profiles | 209

they were able to field a team that fit their target profile and delivered greater success,
while operating within their budgetary constraints.

For an example of how this might be done with software teams, see Table 8-3. In this
case, you have the current profile of Team A and the profile of a “comp” Team B. These
are the same profiles as shown in Table 8-2. Assuming your goal is to improve Team
A to have results more like Team B, then according to analysis of the comp, you might
focus on improving Team A’s Assists and Teamwork. Table 8-3 shows the goals for
improvement as you might lay them out in each area, as well as the resulting target
team profile.

Table 8-3. Constructing a target profile to improve Team A can be done by adjusting the current
profile to be more like that of Team B, which is comparable but has had greater success (metrics are
per coder per month)

 Current Profile
Team A

Comp Profile
Team B

Notable
Differences

Target Profile
Team A

Success: new users Medium Medium same

Success: user retention High High same

Success: benefits Medium High + 25% + 25%

Success: quality Medium High + 33% + 33%

Success: competition High High same

Avg. Points 22.6 (Medium) 23.5 (Medium) 23 (Medium)

Avg. Assists 1.4 (Low) 5.1 (High) + 3.7 5 (High)

Avg. Errors 3.1 (Medium) 3.3 (Medium) 3 (Medium)

Avg. Saves 1.4 (Medium) 1.6 (Medium) 1.5 (Medium)

Avg. Tackles 0.7 (Low) 0.4 (Low) 1 (Low)

Avg. Teamwork 5.1 (Medium) 9.2 (High) + 4.1 9 (High)

Avg. Fielding 7.7 (Medium) 7.9 (Medium) 8 (Medium)

Avg. Pop 3.4 (Medium) 3.1 (Medium) 3 (Medium)

Avg. Intensity 7.4 (Medium) 7.6 (Medium) 7.5 (Medium)

Emulating a pattern of success, of course, does not ensure success. It only increases the
chances. Whether the end results meet the goals or not, analyzing actual results after
you have used target team profiles can be highly instructive and can give you useful
feedback for even better team-building in the future. If a team you’ve built “fits” your
target profile but the team’s results are worse than the goals, this might indicate that
the comps weren’t good enough, or that better and more detailed metrics are required.
By examining such cases, you can look for ways to improve either the comps, the
analysis, or the metrics—any or all of which can help you plan more accurately later on.

210 | Chapter 8: Building Software Teams

Roles
Once you have planned the key goals and focus areas for a team, you need to “design”
a team that fits the target profile. This is analogous to the design of software after the
target requirements are established. A good design meets the requirements, and a poor
design doesn’t. A great design will exceed the requirements and deliver unanticipated
value.

Every design has constraints. If you are working with an existing team, clearly you are
constrained by the reasonable changes and improvements you can make. In most cases
you are constrained by budget. When recruiting new team members, you may be con-
strained by the candidates available at the time in your region. But, within your con-
straints, you still have many design options from which to choose and many aspects
you will need to consider.

A proven approach to good design is to use patterns and templates. That is where roles
come in. Roles represent the different parts that coders can play on a team based on
their individual qualities and skills and based on the team’s needs. Traditionally, you
may think of roles as the titles or functions that coders fulfill, such as “architect,” or
“database expert,” or “user interface developer.” In this section, I’d like to introduce a
very different set of roles that are aligned with the codermetrics introduced in previous
chapters and are not dependent on a coder’s title or functional role. Again, I use anal-
ogies to sports teams in naming and describing these. With a team’s goals in mind, you
can determine which of these roles need to be filled and how many coders you might
have in each role.

Playmakers and Scorers
To some extent, every software team needs to get new work done, although the amount
and type of new work will vary based on the organization and the category of software
being developed. For example, a start-up setting out to create an exciting new product
has a lot of new work to do and that work might call for handling many complex and
difficult tasks. Alternatively, a software team that is primarily responsible for mainte-
nance on an existing and long-standing system needs to be productive, but the com-
plexity of tasks handled might be significantly less (although the required level of qual-
ity might be much higher).

In your analysis of software teams, think about how much “offensive firepower” the
team needs to achieve its goals. Teams creating new products or adding many new
features, especially for cutting-edge or highly competitive markets, require a high rate
of productivity and must often deal with difficult technical challenges. A software team
that needs a strong offense, meaning the ability to handle complex tasks and deal with
technical challenges in building new software quickly, needs coders who are “play-
makers” and “scorers.”

Roles | 211

Playmakers are the coders who are highly productive themselves but who also help
others get things done. Scorers are the coders who are especially adept at handling
complex and difficult tasks without compromising quality. Coders who fit these roles
will have high ratings for some or all of the following metrics:

• Points

• Power

• Assists

• O-Impact

• Plus-Minus

• Pop

• Win Shares

• Advance Shares

A team that expects to have high average ratings in these metrics will need to have at
least some playmakers and scorers. Most software teams will need at least one coder
who falls into this category. The relative number of coders that should be in these roles
on a team depends on the needs and goals of the team. Some playmakers and scorers
will be very consistent, and some will be sporadic. This should also be considered and
taken into account when planning who can fulfill these roles on a team.

Defensive Stoppers
While there are multiple scenarios where a software team might not need a lot of of-
fensive firepower to succeed, every software team must have a “strong defense.” On a
software team, good “defense” means good quality and fast response to fixing prob-
lems. No software team can be successful if it delivers poor quality software or if it can’t
solve critical issues. And a team is more likely to succeed if it proactively handles prob-
lems and comes up with innovative solutions.

Some teams require more defensive strength than others. A team working on software
that already has many users cannot afford mistakes and absolutely needs to solve critical
problems quickly. A team that is working on a brand new product, however, has a bit
more leeway in initial quality, because there may be many fewer users to start. Those
users may be more willing to live with certain types of problems, knowing it’s a new
product, if the software delivers good value. As you analyze your team’s situation and
goals, you can decide how much defensive strength is required.

Everyone on a software development team is expected to maintain a suitable level of
quality and precision, and to this extent everyone is required to “play defense.” The
following metrics are key measures that should have relatively low values, in line with
expectations for every coder, to ensure everyone is making an appropriate defensive
contribution. If coders stand out with particularly high values for any of these metrics,
then that would be cause for concern and probably an area that requires improvement

212 | Chapter 8: Building Software Teams

because it affects the overall defensive strength of the team. These basic defensive met-
rics for which you want to see low values are:

• Turnovers

• Errors

• Loss Shares

While everyone on a software team needs to perform reasonably well in basic defensive
measures, depending on the team’s goals, you may also need coders who are particu-
larly strong in these and other defensive measures. These are the “defensive stoppers”
on a team, the coders who not only deliver superior quality but who are adept at han-
dling critical issues and, in some cases, take initiative and are innovative in proactively
solving important problems. In addition to measuring well for the defensive metrics
above, coders who fit this role will have high ratings for the following metrics:

• Saves

• Tackles

• D-Impact

If you need to have a team that is strong in these metrics, then you will either need to
ensure that enough coders on the team take on sufficient responsibility, or that you
have some coders who are defensive stoppers and take a majority of the responsibility
for defense. The relative number of defensive stoppers on a team depends on how much
emphasis you want to put here.

Utility Players
Not everyone on a team is a “star.” Not everyone gets to handle the glamorous and
more complex tasks, and not everyone will be assigned to critical production issues or
will provide innovative breakthroughs that solve key problems. Not every coder is a
playmaker or scorer or defensive stopper. But the “utility players” who are able to
handle multiple types of tasks and are willing and able to fill in development gaps are
still very valuable to the success of a team.

A utility player is a coder who does exceedingly well handling a wide range of tasks
across multiple product areas. This can be measured and tracked using the following
metrics:

• Utility

• Range

• Teamwork

• Fielding

By determining a team’s goals and needs and what level of contribution a team will get
from the offensive and defensive “specialists,” you can decide whether the team needs

Roles | 213

utility players and if so, how many. Clearly, utility players add value and can strengthen
a team’s coverage and consistency, which can relate directly to software quality, cus-
tomer satisfaction, and improved team success. But you could argue that utility players
aren’t a necessity as long as other coders do a good enough job covering what needs to
be done.

Decisions like this on which roles to fill or emphasize on a team will be based on your
own analysis, experience, and preferences and can clearly be influenced by the per-
sonnel that a team already has or that’s available. Personally, I recommend having
utility players on software teams because it’s my observation that teams strong in these
areas and metrics have an increased likelihood of success.

Role Players
What about the coders who are not specifically playmakers, scorers, defensive stoppers,
or utility players? Do they have a place on the team? Of course they do. Not everyone
has a specific strength identified by the roles already mentioned. You can think of the
remaining members of the team as “role players.” This means that they do have an
assigned role and set of responsibilities on the team, it is just not one of the other
identified “specialty” roles. Still, role players are expected to do a good job fulfilling
their individual roles.

Not all role players are expected to perform equally. Expectations will be based on each
individual’s experience and skills. You may not be expecting the role players on the
team to rate highly in certain metrics such as Power or Saves or Tackles or Range, but
you will expect them to have good ratings for the core Skill Metrics such as:

• Points

• Utility

• Assists

• Turnovers

• Errors

As you build and work to improve teams, you should determine which coders on the
team are role players, and the expectations and needs for their contributions and skills.
By setting the goals and tracking the metrics, you will be able to identify if the team is
getting what it needs from its role players or whether it’s an area that needs to improve.

Over time, role players may develop key strengths and may emerge as specialists or
leaders on a team. This is something you might enable and encourage through men-
toring or coaching. If role players improve their skills, productivity, and precision, then
this will show up in improved metrics as well. Such improvements, especially if they
become consistent, should only benefit the team and can be factored into ongoing team-
building as role players transition to take on other roles in the team, such as scorer or
defensive stopper.

214 | Chapter 8: Building Software Teams

Backups
Although it’s not related to a separate set of metrics or strengths, I also want to mention
“backups.” You probably already worry about having backups for key areas in your
software or key technologies you use. For example, you might already be concerned
that only one coder understands your key classes or how you integrate with a critical
third-party subsystem. But I suggest you also think about having backups related to
the roles discussed in this section and the types of contributions each coder makes to
the team.

If, for example, your software team’s success is highly reliant on having a few play-
makers and scorers or a few defensive stoppers, ideally you will have backups in case
those key coders become unavailable for any reason. If your team’s success is dependent
on having two scorers, for example, you might decide to have three or four scorers on
the team.

Another strategy is to groom coders as backups and have them ready to “step up” if
needed. A utility player might be groomed as a playmaker, or a role player might be
groomed as a defensive stopper. Over time, you might plan to transition the coders
from one role to another, and you would just accelerate the change if there was a sudden
need. This strategy of “coder development” is riskier in an emergency than having fully
ready backups because coders rushed into new responsibilities may not succeed. But
it’s a reasonable approach that is also efficient.

Having backups is not something that every team can afford. For some, this will be
seen as a luxury or as an “insurance policy” they can live without. If a team loses a coder
in a key role or that coder can no longer perform, you can add someone else to the
team, so the damage may be small and temporary. But as you build teams that you
want to be consistently more successful, it’s worthwhile to consciously consider back-
ups for each of the key roles identified in this section.

Motivators
Another role that you can consider when building teams is that of “motivator.” A person
who is a motivator on a team also must have some other role. He might be a playmaker,
defensive stopper, or a role player—and a motivator, too.

A motivator is someone on the team who inspires others to work harder and work
better through his own intensity and excellence. Some specialists on a team may nat-
urally inspire others through their own good work. Others observe their skill and qual-
ity and may be motivated to emulate them and do better themselves. But motivators
can come in many packages. They don’t necessarily need to be the coders who are
handling the most complex or high-profile tasks. A junior coder, a utility player, or a
role player may be an excellent motivator if they are hard-working, intense, and do
especially well on the tasks they are assigned.

Roles | 215

I am not speaking here of a coach or cheerleader, someone who motivates others with
words, demands, or encouragement. Instead I’m speaking specifically of team members
who exhibit a consistently high level of motivation themselves, as exhibited in their
productivity and precision. I call them “motivators” under the belief that one person’s
commitment may not exactly rub off but tends to motivate others.

Motivators are coders who may exceed in many metrics, but who can be particularly
identified by strength in the following metrics:

• Temperature

• Efficiency

• Intensity

As you look at a team, you might ask: who are your motivators? Who will provide a
level of intensity that will inspire others? Deciding how much intensity and commit-
ment you want on your team and then identifying where that will come from will
increase the team’s chance of success. The motivators on the team may shift and change
over time, but by paying attention to this particular role you can better ensure that there
are a healthy number of higher-intensity individuals on the team at any one time.

Veterans and Rookies
To wrap up this section on roles, I’d like to discuss veterans and rookies. Like motiva-
tors, these are adjuncts to the other roles that coders fill on a team. So a coder could
be a “veteran scorer” or a “rookie role player.”

Sometimes in software development, it seems like “veteran” is a dirty word. People
think of veteran as “old,” and a lot of people (usually younger people) think of coding
and software development as a young person’s game. In some organizations, “rookie”
is also kind of a dirty word. Some organizations don’t want to hire people who have
no experience.

Veteran, of course, does not really mean old, nor does rookie always mean young. A
veteran is someone who has more experience than others. In a world where software
and technology changes all the time, a veteran might be someone who has only two or
three years of experience in a technical area if that technology only emerged two
or three years ago. A rookie is someone who has little or no experience in a particular
area—and again, this has nothing to do with the person’s age.

The reason I bring all this up is that I believe it is healthy and worthwhile to look at the
makeup of a team in terms of veterans, rookies, and those who are in between. There
are also specific implications related to metrics for veterans and rookies that you might
want to keep in mind when building teams.

Veteran coders will normally be expected to deliver a higher level of productivity and
a very good level of accuracy. In many cases,it might be veterans the on the team who
fill key roles such as playmaker, scorer, or defensive stopper. Veterans will also probably

216 | Chapter 8: Building Software Teams

be among the most consistent performers. This would mean that the metrics for a
veteran coder should not show a lot of ups and downs.

One benefit of adding veterans to a team is that they may be a positive influence on
other members, somewhat like motivators, but in this case more through mentoring
and knowledge-sharing. Teams that add veterans to work with less experienced coders
may see a positive effect in the other coders’ performance and metrics. This can be
monitored, and if you see such effects, you could take advantage of them in team-
building. By adding more veterans to the team, or spreading veterans among smaller
groups within a larger team, you may be able to positively affect the performance of
other coders as well. The effects can be charted, as shown in Figure 8-5.

Figure 8-5. Charting the progression in productivity for team members after a veteran coder is added
to the team

On the downside, veterans may be more prone to boredom (although it can happen to
any coder). If someone has been working in a particular technology or on a limited area
of a software product for an extended period of time, then they may begin to lose
interest. In this case, their productivity and perhaps even their precision may decline.
This is something that metrics could indicate, even early on, with a small but noticeable
dip that then levels off. Having spotted the indicators, you could take action by shifting
a coder onto a new area or even a new project to re-engage her interest and take fuller
advantage of her skills.

Rookies, or very inexperienced coders, don’t often become bored. However, unlike the
veterans, it is likely that rookies will be inconsistent in their productivity, precision,
and overall results. They will have ups and downs, and if you see this in the metrics,

Roles | 217

there is no particular reason to be alarmed. Over time, however, rookies would also be
expected to show a faster rate of growth and improvement than veterans who presum-
ably are already consistent at a more advanced level. A rookie who does not show
progression over time, in fact, might need more mentoring or might be cause for con-
cern. Metrics can help spot these situations. See Figure 8-6 for an example.

Figure 8-6. Charting rate of progression for two rookies, one progressing well and the other one not
progressing

One area where rookies may show initial strength is in their enthusiasm and intensity.
This may show up in metrics, and to some extent their excitement and energy may
influence others. Adding rookies to a team may influence other team members posi-
tively, resulting in increased overall productivity that might also have benefits on overall
team success. As you build teams, you might consider adding rookies at regular inter-
vals, not only to add new contributors but also for the positive effect that their energy
and enthusiasm can have on a team.

Like other roles on your software teams, making informed and conscious decisions on
where to add veterans and rookies (and what percentage of each to have) will help you
build better, more sustainable, and more successful development teams.

Timeout for an Example: Two All-Nighters
I admit I am not a big fan of team-building exercises. I like to relax with teammates and
do things outside work like going out to lunch, a movie, or a ballgame—but I’m not a
fan of “staged” outings where teams work together on artificial projects designed to
improve teamwork. There are a variety of ideas and techniques that some organizations

218 | Chapter 8: Building Software Teams

use for team-building, from wall-climbing to paintball to making videos. These can be
fun, and they may allow teammates to get to know each other better. But in terms of
actually improving teamwork or forging closer ties that contribute to long-term sus-
tainable improvement, I am doubtful that such events have any real success.

What I believe does has an effect is when a team goes through difficult and challenging
situations together and achieves hard-won accomplishments. While staged events
might try to emulate such conditions to create similar effects, there is nothing like the
real thing.

One team I worked with at a start-up was a good example. Our product was an on-
premise enterprise solution. We spent nine months making major changes to the first
release of our product to deliver a much more advanced second release. Those nine
months were difficult. We wanted to deliver the second release in six months, but given
everything the release included, this turned out to be impossible. Everyone pushed and
pushed over that nine months, often working nights or weekends. In the end, we made
plans with the entire organization to have the release on a specific date, a Tuesday. The
waiting customers were told, a press release was scheduled, and a major change to the
home page on our website was ready to go live.

We had been in code freeze for almost two weeks conducting testing on our final can-
didate build. Only one showstopper bug had been discovered in that time, it was fixed
fairly quickly, a new candidate was produced, and testing proceeded. At 10:30 in the
morning on Monday (the day before the release), however, another showstopper bug
was found. It had to do with integration to another system that many of our customers
used. A certain data format encountered when pulling information in from the system
would cause our system to crash. We decided we had to fix the bug before release even
though the release was less than twenty-four hours away.

By about 2 in the afternoon we had a fix, and we started a new build which took almost
two more hours. Then we started testing. At about 7 that evening, however, we realized
that a major piece of functionality was missing from the build. Something had gone
wrong in the build process.

The entire team stayed while we tried to figure out what went wrong with the build,
then having discovered what we believed was the answer, we ran the updated build
process (which took another two hours to complete). We got pizza and waited. At the
end of all this, after 11 at night, we confirmed that the build was successful. But there
was still work to do. We needed to complete more basic regression testing on the build,
the build needed to be posted to our various sites for customers to download, and the
downloads needed to be tested and confirmed. A few people went home, but four team
members including coders and testers stayed on all night to complete the process and
make sure the new release was live by 9 on Tuesday morning.

We made it, and everything seemed to be going well after that. We had a nice little
party to celebrate (there were less than twenty people in the company) and a number
of development team members took a long weekend break. Just a little more than two

Timeout for an Example: Two All-Nighters | 219

weeks after the release, however, one of our largest customers had a critical problem
in the upgrade process. Our software, which served a very important function for them,
was hanging and unusable every time they tried to start it after the upgrade, and there
was no way to roll back. Without actually knowing what the problem was or how we
could fix it, we promised them a resolution within two days, and the team set out to
diagnose and then fix the issue. After one day we figured out what had happened, then
it took the rest of that day to make changes and put protections in place in our upgrade
code to fix the problem. We realized that the problem could potentially affect many of
our customers, so it would require more than just a patch for the one customer. We
needed to generate a new release and do a round of testing on the fix and regression
testing on the build, plus post all the downloads—and again, we had less than one day
left. Once more, the team banded together, with everyone working late into the night
and a number of coders and testers staying on all the way through morning to make
sure the work got done.

There were other difficult deadlines that the team dealt with, but these were the only
two all-nighters that we ever pulled. Successfully coming through the particular chal-
lenge and stress of these two situations, however, dramatically boosted the team’s sense
of trust and confidence in each other and forged a closer working relationship.

That team stuck together and its performance continued to improve for many more
releases. Figure 8-7 shows a set of metrics for the team and how it progressed from
release to release. The Plus-Minus metric is particularly useful for tracking the combi-
nation of productivity and precision, and Intensity is useful for tracking the commit-
ment and consistency of a team. From release to release the team improved, which is
something you would want to see with any team. In this case, the two all-nighters, the
other challenges, and the increased experience and knowledge were all part of what
made the team better and stronger.

Good teams are built, but they usually only become better teams or great teams over
time. Whether it’s forged through staged events, real events, or a combination of both,
if you have a good team you also want to see it improve from release to release, year to
year. A team that starts with small wins can build to bigger ones, until a high level of
consistent performance becomes ingrained, common, and expected. Tracking and ob-
serving metrics for the team will help make sure that it is following a healthy improve-
ment pattern and will help avoid the possibility of performance degradation.

Personnel
Players make the team. As has often been observed in professional sports, there are no
great teams without great players. Coaches and managers may help bring out the best
in players and help them work well together, but it’s the players themselves, the indi-
vidual team members, who must do the work, solve the problems, and achieve the
goals.

220 | Chapter 8: Building Software Teams

The most important part of any software development team, therefore, are the coders,
the personnel. This section covers a set of techniques and concepts for using metrics
to help you get the best personnel possible to fit your team goals and team needs.

Recruit for Comps
In the section on team profiles, the idea of “comps” was introduced. Through analysis
of current or past performance, you can capture profiles that describe a team’s key
characteristics. You can then use profiles as “comps” when analyzing an existing team
or planning a new team.

You can also create “profiles” for coder roles and use those as “comps” when recruiting
new coders. You can create profiles of existing coders from their average metrics, then
these profiles can be broken down by roles as defined in the previous section. For
example, you might develop a profile for a scorer and another for a defensive stopper
by gathering metrics for coders who fill those roles on an existing team. Table 8-4 shows
an example of role-based metric profiles, and Figure 8-8 shows a set of charts comparing
the core metrics in those profiles.

Table 8-4. Metrics-based profiles of coder roles built from one or more existing software teams can
be used as comps for recruiting (metrics are rounded averages per month)

 Scorer Defensive Stopper Utility Player Role Player

Avg. Points 26 (High) 22 (Medium) 22 (Medium) 18 (Low)

Avg. Utility 9 (Low) 10 (Medium) 13 (High) 11 (Medium)

Avg. Assists 6 (High) 3 (Medium) 6 (High) 1 (Low)

Figure 8-7. The start-up software team improved its performance over multiple releases, as reflected
in core metrics

Personnel | 221

 Scorer Defensive Stopper Utility Player Role Player

Avg. Errors 3 (Medium) 1 (Low) 3 (Medium) 3 (Medium)

Avg. Saves 1 (Medium) 3 (High) 1 (Medium) 0 (Low)

Avg. Tackles 1 (Medium) 2 (High) 0 (Low) 0 (Low)

Avg. Range 3 (Medium) 3 (Medium) 6 (High) 1 (Low)

Figure 8-8. A chart comparing the profiles of coder roles built from one or more existing software teams

To build comps for recruiting, you can gather metrics for the coders on your team, but
you can also look at other teams in (or outside) your organization. Over time, you might
build a library of coder comps. Then, when you set out to recruit a new coder to join
a team, you can determine which comps best match the skills and contributions you
are seeking to add to the team. Having determined the comp that matches the role you
are trying to fill, you will be able to more clearly communicate what sort of experience
or skills are required for the position, and you will be in a better position to evaluate
candidates in the interview and reference-checking process.

This process is very common to the way professional sports teams analyze prospects
and decide on players they want to add. Today, in many sports, the scouting team will
have defined profiles based on supporting statistics that define the types of players they
are looking for. But they also have summarized these in terms of comps. They might
say, in other words, that they are looking for a basketball player like Current Player X,
or they might say they are looking for a “shooter” or a “rebounder.” If scouts see a
prospect that they decide to analyze, they might describe the prospect in terms of a
comp. For example, they might say that the prospect reminds them of Current Player
Z, or that the prospect is a “prototypical point guard.”

222 | Chapter 8: Building Software Teams

Knowing the comp profile during recruiting can help you write a better job description.
If you know you are looking for a scorer, for example, you can specify that the coder
must have a proven ability to handle complex tasks efficiently. If you are looking for a
utility player, you can make it a key point of the job description that candidates need
to be comfortable and have proven experience dealing with a wide variety of tasks and
responsibilities.

In the interview process, you can focus on exploring the areas that are important ac-
cording to the role and your target comp profile. If your comp calls for someone who
will have a high number of Assists, for example, you can ask candidates how they helped
others in past jobs, or if you are looking for a high number of Tackles, you can ask
questions related to initiative and innovation. You can explore these questions with
references, too. In the end, through interviews and references, you can build at least a
mental profile for each candidate and how they rate in key skill areas (if you were
reviewing a lot of candidates, you might actually want to document these profiles, too).
Clearly, much of this will be estimated, and you will probably focus on rating them
High, Medium, or Low in skill areas, as opposed to assigning them numeric values. For
example, you might determine through the interviews and references that you think a
candidate will produce a high number of Points and Tackles, or a low number of Errors.
The ratings will be based on what you believe a candidate has done in the past, and
what you project that she would do on your team.

Having constructed an estimated profile for each candidate based on their interviews
and references, you can compare each to the comp(s) that you decided best match the
ideal candidate. Table 8-5 shows an example of a target comp (Defensive Stopper) for
an open position, along with the estimated profiles for three candidates constructed
during the recruiting process. In this case, you can see that the data indicates Candidate
B is the best fit for the role, because that candidate is closest to the Defensive Stopper
profile in the key areas of Errors, Saves, and Tackles.

Table 8-5. A comp profile identifying the ideal qualities for a new recruit (Defensive Stopper) and the
constructed profiles of three interviewed candidates

 Defensive Stopper Profile Candidate A Profile
(estimated)

Candidate B Profile
(estimated)

Candidate C Profile
(estimated)

Avg. Points 22 (Medium) Medium Medium Medium

Avg. Utility 10 (Medium) Medium Medium Medium

Avg. Assists 3 (Medium) Medium High Medium

Avg. Errors 1 (Low) High Low Medium

Avg. Saves 3 (High) Low High Medium

Avg. Tackles 2 (High) Low Medium Low

Avg. Range 3 (Medium) Medium Medium Medium

Personnel | 223

The advantage of comps and using metrics in this way in recruiting is to bring more
definition and clarity to the process, which increases the chance that you will find and
choose the best coders to fit your team’s goals and needs. While other factors like
personality, character traits, and salary requirements will clearly weigh into recruiting
decisions, using comps can help inform your decisions and help you avoid mistakes.

Establish a Farm System
Another idea you can borrow from professional sports teams is to establish a “farm
system” for personnel development. The analogy of a “farm” is used because these are
systems where young players are nurtured and cultivated until they are ready for “har-
vest,” the same way that crops on a farm are cared for and grown. In professional
baseball and hockey, there are teams that young players can join the minor leagues to
compete and develop their skills. These leagues are less demanding, so players can focus
on improving (with lower stress) until they have proven they are ready to join the major
league teams. In basketball and American football, teams use a different trial method.
They sometimes sign players to temporary contracts in which they are invited to prac-
tice with a team and “try out” for a permanent roster spot.

There are a variety of ways to build a farm system for your own organization. One
would be to have teams that are working on less critical software projects and use them
to develop coders who might eventually be promoted to teams with more critical re-
sponsibilities. Another way is to have an intern program, where you let university stu-
dents work in your organization for a period of time as part of existing teams, working
on real tasks and projects. A third way you could build a farm system is by using con-
tractors on a temporary basis, which allows you to evaluate their performance before
deciding whether to hire them full-time.

Metrics and comps can be used to evaluate how coders in a farm system are developing
and whether they are ready to “move up” to a permanent position on a target team.
Using comps, you can determine the level of productivity and precision of coders on a
target team and you can compare these comps to the farm system coders. If you are
using interns, you might have different expectations and different comps than if you
have established internal teams for coder development or if you are using contractors.
For example, for interns you might define a comp profile for a rookie role player and
then analyze how well interns fit the rookie comp. For contractors, you might have
higher expectations, so you could compare their performance to the profile of more
veteran members of a team.

Building a farm system is a reliable and proven method for finding good coders to add
to your software development teams. It’s a “try before you buy” approach. It requires
you to make the extra effort to establish the farm system, but it makes the eventual
personnel placement decisions easier and less prone to error. Metrics can help ensure
you carefully and accurately analyze the coders in your farm system, and can help
increase your confidence determining if and when they are ready for the “big leagues.”

224 | Chapter 8: Building Software Teams

Make Trades
When a team isn’t meeting its goals, or one or more team members are struggling, you
have a variety of options. You can recruit new team members or bring up new members
from your farm system. You can “cut” (let go) team members who are struggling if you
don’t feel their performance can be developed and improved, or if you don’t have time
to wait for them to improve.

Another option that can be a faster road to improvement is to “trade” one or more
coders between two teams in your organization. One benefit of this approach is that it
doesn’t require you to cut coders who might still have value to your organization. Also,
you don’t have to wait while you recruit new candidates, nor do you have to take the
risk that comes with new hires. If there is a better fit for coders on other teams, pre-
sumably you can make the move without a lot of risk because the coders are already
“known quantities” in terms of skills, strengths, and weaknesses. Another potential
benefit is that you might improve the performance of two teams with a single move. If
you have multiple teams that are not succeeding as well as you like, swapping certain
coders between the two teams might be an excellent option to consider.

Professional sports teams do this regularly. If a team wants to improve its roster, it may
trade for a player from another team who has a sought-after skill set. In order to obtain
a player in a trade, a team will sometimes trade back one or more other players. In this
case, they will send players to the other team to fit that team’s needs. The players that
a team trades away are either those who weren’t working out or those who are deemed
less critical and more replaceable. The target outcome in any trade is that a team up-
grades its roster, meaning that the gains of players received in a trade are believed to
outweigh the losses of those players traded away. As with any personnel changes, there
is still risk that the results will not turn out as expected or desired, so part of evaluating
whether or not to make a trade is determining whether the risk is worth taking. But
certainly, many sports teams have quickly improved themselves through trades.

In a software development organization, a trade simply involves moving a coder from
one team to another where the coder’s skills are determined to be a better fit for the
target team. Multiple coders and multiple teams might be involved. It is actually easier
than with sports teams, because in this case the internal teams are not competing and
so the two teams are not trying to get the better of each other in a trade. You can make
trade decisions that are meant to be in the best interests of the organization.

Metrics can be very useful in helping you identify which teams and coders are good
candidates for trades. For example, see Figure 8-9. Team A has a strong “offense”
(Points and Power) while Team B has a strong “defense” (Saves and Tackles). If you
wanted to create better balance on these two teams, you might consider trading one or
more scorers from Team A for one or more defensive stoppers on Team B. Analyzing
coders’ metric profiles would help you identify which coders are most appropriate to
include in the trade.

Personnel | 225

Figure 8-9. Team A and Team B have different strengths and weaknesses that might be better balanced
by trading coders from one team to the other

Coach the Skills You Need
It is always worthwhile, of course, if you can find ways to improve the performance of
personnel that you already have on a team. In addition to the normal evolution that
occurs through experience, you can also accelerate improvement with targeted men-
toring and coaching.

As discussed in previous sections in this book, metrics can help you identify the weak-
nesses of a team and the characteristics of individual coders. Examining metrics, com-
bined with your firsthand observations, you can pick out the areas where the team can
improve, determine which coders might best deliver that improvement, and then coach
the coders in the target areas.

For example, you might determine that a team needs more defensive strength. Perhaps
the team has too many production bugs in critical areas, or critical production issues
are not getting solved quickly enough. Or maybe the software has key difficulties that
make it hard for users, but no one has time to solve them. You might, therefore, decide
that you need to add one or more defensive stoppers to the team. One approach to fill
this role would be to coach one or more current team members to become defensive
stoppers.

If you are using metrics regularly as part of your development process, and if you are
sharing and discussing them in team meetings, then the process for coaching improve-
ment in target areas is fairly simple. You can:

226 | Chapter 8: Building Software Teams

• Choose the coders to coach by identifying those who have already displayed
strength (perhaps sporadically) in the needed skills.

• Identify target metrics and the values that you want each coder to reach.

• Make sure that each coder reduces other responsibilities as necessary in order to
focus on the new areas.

• Track the coders’ improvement in key metrics and review with the coders on a
regular basis.

It may help to identify other coders, possibly on other teams, that a coder can study or
talk to, so they can learn more about the skills and techniques to emulate. Formal
mentoring, as discussed in “Mentoring” on page 175, may also be used as part of the
development process. In that case, you would assign a mentor to each coder that you
are coaching.

Coders can often improve in specific areas just through increased focus and dedication
to those areas. Metrics allow the coaches and the coders to track progress. If sufficient
progress is not made in an acceptable timeframe, you may need to choose other
candidates for coaching or to take another approach to improve personnel (such as
recruiting, trades, or using a farm system).

Coaching is an important technique in building and maintaining successful teams. As
with other techniques for building software teams, metrics used intelligently can help
improve the efficiency and results of the coaching process.

Timeout for an Example: No Such Thing As a Perfect Team
Is there such a thing as a perfect team? Unless your definition of “perfect” is pretty
loose, you would have to say no. In sports we know there are no perfect teams or even
perfect seasons. The 1995-1996 Chicago Bulls with Michael Jordan had the best record
ever in professional basketball, winning seventy-two games in the regular season, but
they still lost ten times. Even the 1972 Miami Dolphins, the only American pro football
team to go through an entire season undefeated and win the Super Bowl, had multiple
flaws and four of its seventeen wins were by less than four points.

The best software teams I ever worked on definitely weren’t perfect. Our software
wasn’t perfect, that’s for sure. But I remember these teams fondly and I think of them
as good, maybe even great, because we accomplished the goals that were put before us
and that we set for ourselves. We delivered software that impressed and sometimes
delighted our users. We improved over time, and we had fun along the way.

The closest I ever saw a software team get to perfect was, ironically, a team that worked
on a product that never shipped. After a year of development, with a product already
in beta and one month shy of the ship date, the project was cancelled for business
reasons (the company had to cut back in areas because overall profits were declining).
I was a member of the team, so I’m biased, but I believe the software was revolutionary

Timeout for an Example: No Such Thing As a Perfect Team | 227

and would have been a huge success. Needless to say, I didn’t agree with the business
decision to cancel the project and throw away the work. My teammates and I got
“traded” to other teams in the company.

What made that team so good, so close to perfect in my mind? I think it’s the fact that
everyone on the team had a defined role, that we all embraced our roles, and that our
roles were sufficiently complementary to create a strong and well-balanced team. Ev-
eryone on the team was highly skilled and capable, and probably each of us could have
taken different roles. However we each took on the role that best fit our skills and
preferences, and we were happy to focus on that and leave other roles to our teammates.
On a team of seven coders, we had what I would call:

• One playmaker (a high level of Points and Assists)

• Two scorers (a high level of Power and Pop)

• Two defensive stoppers (a high level of Tackles)

• Two utility players (a high level of Utility and Range)

And in this mix we had three veterans, one rookie, and two motivators.

The result was a team that had a great mix of offensive firepower and defensive strength,
with excellent attention to detail. Because of the complementary mix of skills and be-
cause everyone fully accepted their role, we were highly efficient and had no conflict.
Granted, we were not perfect. Individually we each had flaws, so as a team we had
flaws. We made mistakes in the software—undoubtedly, if it had ever been released
there would have been issues to solve. But while no team is perfect, it is possible to
have teams where the makeup of the team is nearly ideal—where the structure of the
team, the roles, and the mix of experience couldn’t be much better. Take a team with
a near-perfect makeup, with teammates committed to excellence, and then give it a
worthy goal. That’s a formula for success—not perfection, but success.

In my lifetime, I’ve never seen a perfect sports team (although the UCLA Bruins bas-
ketball teams in the late 1960s and early 1970s, which I saw firsthand, were pretty
close). But the teams I think of as the greatest had a superior mix of offensive skill,
defensive determination, hustle, resilience, and a commitment to teamwork and win-
ning that was superior to any individual pursuit of recognition. The players on those
teams had well-defined roles that they gladly accepted, even the back-ups who some-
times only helped in practice and never played in real games. Those teams also exhibited
a joy that appeared to not only come from winning, but from the knowledge that they
were working hard and helping each other to become the best they could be.

There’s no such thing as a perfect team, and it’s impossible to say which team was the
greatest. But you know an excellent team when you see one. With planning and
thought, the patterns of successful teams can be identified and good teams—even great
teams—can be planned and built, if that’s what you want.

228 | Chapter 8: Building Software Teams

CHAPTER 9

Conclusion

Good is not good when better is expected.

—Vin Scully, the voice of the Brooklyn and Los Angeles Dodgers

In the last 25 years, computers and the Internet have forever changed the way that
professional sports teams go about their business, giving them the ability to gather,
store, share, and analyze a vast amount of statistics on their own players, prospects,
and competitors. There is so much money involved in major sports that they can afford
the best technology and software, and they can pay to have analysts whose sole job is
to review statistics and help the team find an advantage. Computers and data analysis
play an integral part in evaluating talent, player development, and competitive strategy.
Coaches and players study tape and detailed statistics to improve their own perform-
ance and to find ways to beat the competition.

Advanced statistical analysis is no longer optional for teams that want to win in the
NFL, NBA, NHL, and MLB. It is required. Every team invests heavily in gathering and
analyzing statistics to arm their player personnel departments, their coaching staffs,
and their players. Teams no longer think it’s enough to just work and try harder, they
want to be smarter. Statistics help teams make more informed personnel decisions.
Statistics help coaches and players identify better competitive strategies and focus on
the right things.

How do statistics help teams make better decisions? Statistics help them analyze pro-
ductivity, skills, strengths, weaknesses, patterns, and trends, which leads to greater
understanding. With more understanding, they have a greater chance to accurately
analyze a situation. Then, with the data to support their analysis, they have a much
better chance that a group of decision-makers will reach a good consensus. In the ab-
sence of such data, people fall back on their preconceived notions, and groups are
disproportionately influenced by the members that argue the best or hardest for their
preferred solutions. Statistics make the decision-making process more rational, more
objective, more informed.

The value of statistics or metrics, therefore, is real and proven, although using metrics
doesn’t mean that every decision will be right or optimal. Sometimes you’ll still make

229

bad decisions or have disappointing outcomes. While the use of metrics and the knowl-
edge they can provide won’t ensure that you make the optimal decision or pursue the
optimal path every time, good metrics will increase the chance that you make a better
decision or choose a better path than you might have otherwise. Over the course of
many choices and opportunities, the effect of better decisions, implementing better
processes, and getting better results can be dramatic.

For example, imagine that you have a software team with twelve coders. Suppose that
two of those coders already perform at their highest capacity. In other words, there
really isn’t anything they can improve. But suppose that the other ten coders all have
room for improvement. If you were to gather metrics for those coders and review and
discuss those metrics regularly, you could imagine that you might identify specific
areas—specific metrics—that each coder could focus on improving. Then you could
measure each coder’s progression, so again you could imagine that using the metrics
would increase the likelihood that some or all of them improve. If, on average, the ten
coders became ten percent more productive and ten percent more accurate in their
work as a result of the increased focus, then multiplied across the team, that would be
the equivalent of hiring another full-time coder.

Metrics, however, are not a solution in and of themselves. That ten percent improve-
ment for each coder is not going to happen just because you start putting numbers in
spreadsheets. But if you’ve decided that you want to be better and that you are willing
to do the hard work to improve, metrics are an extremely useful tool to help you choose
the right path to get there. And metrics are very useful to help you define an ongoing
process for continuous improvement and for maintaining a high level of performance
over time.

When it comes to a team—whether it’s a sports or a software development team—
there are many areas where metrics can help create opportunities. The number of these
opportunities is basically multiplied by the number of people you have on a team. As
has been discussed in this book, metrics can help software teams in recruiting, coder
and team evaluation, goal-setting, and progress analysis. The self-awareness that met-
rics provide can also be highly valuable. You can see this in sports. Many sports players
increasingly use statistics to help them figure out how to improve their own skills, by
identifying areas to focus on and develop. They don’t necessarily focus on statistics
during a game (although some do), but they use analysis between games to help them
better prepare. Coders who review metrics at regular intervals can achieve similar
benefits.

Iterative improvement is the nature of our field. Metrics can be used by coders and
software teams in a cycle of review, adjust, review. Likewise, you may iteratively im-
prove the metrics themselves or the way that you use them. As you include metrics in
your development process, you’ll learn more not only about your teams but about the
metrics and their use. I firmly expect that a year from now, I’ll have new ideas about
metrics and how to use them for software teams—and if you put codermetrics in prac-
tice, I’m sure you will too.

230 | Chapter 9: Conclusion

Part of the reason that metrics and the way we interpret them or use them must evolve
is that the “game” itself changes. In American professional football, rule changes have
vastly altered the way offenses and defenses can operate, which has directly affected
which statistics matter more. In software development, new technologies come along
all the time that may change what you do or the way you work and, therefore, can affect
how you would use metrics. Developing a software application ten years from now
might require a different set of skills, and those skills might be measured in a different
way than they are today. The continued advance of telecommunications may also affect
the makeup of teams and the way they work, which again might require different met-
rics or analysis. For many years now, the Internet has fueled the formation and growth
of open source development teams, which clearly have different dynamics, and could
use specific metrics and analysis tailored to such teams.

Over time, I hope that we can have discourse in our industry to turn codermetrics into
something even richer and better than what I’ve originally laid out here, continuing to
evolve codermetrics as our industry changes. To gather feedback and facilitate the
sharing of new ideas, I am setting up a website at http://www.codermetrics.org, where
I invite you to contribute your own stories and thoughts. The site will be regularly
updated with new information supplied by colleagues, as well as new developments or
ideas. I hope that other writers and websites will emerge on this subject as well. There
are many participants in software development beyond coders that I haven’t touched
on in this book—such as testers, designers, and managers—and metrics for those par-
ticipants are additional areas for further thought.

As a final story, since I’ve focused so much on sports analogies in this book, I’d like to
discuss a great sportsman who epitomizes what it means to be a great teammate: Jack
Roosevelt “Jackie” Robinson, who was born in 1919 in Cairo, Georgia, and died in
1972 at the age of 53. Jackie Robinson was arguably one of the greatest all-around
athletes in the United States in the twentieth century. He was a standout in football,
basketball, and track at UCLA (he was the national long jump champion). Baseball,
for which he became famous, was perhaps his “worst” sport. After college he played
baseball in the Negro Leagues, then he was drafted into the Brooklyn Dodgers’ farm
system—and then in 1947, Branch Rickey asked Jackie Robinson to break the major
league baseball “color barrier,” which he did.

He played ten years for the Dodgers. As their undisputed leader, he helped the team to
six World Series appearances and one world championship (in the prior 25 years, the
team had only had one World Series appearance and no championships). By modern
sabermetrics-type statistical measures, he was one of the top hitters of his time (he
walked frequently, so his on-base percentage was very high), and he is rated as one of
the top defensive second basemen ever. In both team and personal statistics, therefore,
he was a success.

But the statistics only tell part of the story about how great and valuable a teammate
he was. By all accounts, Jackie Robinson was a great competitive leader, and a man of
great integrity and endurance—which he had to be to survive and succeed, given the

Conclusion | 231

http://www.codermetrics.org

pressure he came under for breaking the color barrier. There were also many other great
players on his Dodger teams: you can’t win a world championship in baseball with just
one player. But there was no one who could lay claim to being a better teammate than
Jackie Robinson, no one who brought any more skill and effort to each ballgame to
help his team win, no one who conducted himself in a more dignified way, no one who
spurred his teammates on as much or motivated them more.

In many sports, to honor a former player, a team will “retire” that player’s number so
that no future player will wear that number again. It is no accident that there is only
one player in baseball who has his number retired by the entire league, by every team—
Jackie Robinson and his number, 42. It is not only a testament to what he took on to
advance the sport, but how he did it, how he played the game, and what he stood for.

Jackie Robinson was not just a great ballplayer, he was a great teammate—and he
helped make the Dodgers great. Great teams are made up of great teammates. You
don’t get one without the other. Jackie Robinson had many great teammates on the
1955 Brooklyn Dodgers, including star hitters like Duke Snider, pitchers like Don
Newcombe, and role players like Don Zimmer. Some of the things that go into being
a great teammate are tangible and measurable, but some are not. Skills like hitting and
fielding can be measured. Character traits like integrity, honesty, and competitiveness
are very hard to quantify.

When using metrics, therefore, you should measure and analyze the tangibles, but
remember the intangibles, too. The general managers on professional sports teams have
realized this. Living without metrics in today’s competitive environment would be
stubborn and foolhardy. But to rely solely on metrics without appreciating and evalu-
ating a person’s character would be a mistake, too. Teams with players who have the
winning combination of strength in the measurable skills that fit their roles and strength
in character (players like Jackie Robinson), are the ones who have the greatest and most
consistent success.

It is a trait of great teammates that they want themselves and their teams to be better
than good…they want to be great. Metrics are not everything, but they can help a soft-
ware development team and individual coders improve. Whatever your role, if you are
a person who wants yourself and your team to be better than good—to be great—then
I encourage you to consider the “competitive edge” that metrics can provide in that
regard. Be like Jackie Robinson. Be dignified, be a great teammate, play with honor and
integrity. But play to win.

232 | Chapter 9: Conclusion

APPENDIX A

Codermetrics Quick Reference

The following is a table of all the metrics introduced in this book.

Table A-1. Codermetrics quick reference

Metric Description Formula

Points Measure the overall productivity of each
coder on assigned tasks

Points = Sum (Complexity for all
completed tasks)

Utility Measure how many assigned tasks each
coder completes

Utility = Number of tasks completed

Power Measure the average complexity of the tasks
that a coder completes

Power = Points / Utility

Assists Measure the amount of coder interruptions
and how much a coder helps others

Assists = Sum (Interrupts) + Sum (Helps)

Temperature Measure how “hot” or “cold” a coder is at
any given time

Start with Temperature = 72; thereafter Tem-
perature = Previous Temperature × (Current
Points / Previous Points)

O-Impact Provide a single “Offensive Impact” number
that summarizes the contributions of a coder
in moving projects along

O-Impact = Points + Utility + Assists

Saves Measure how often a coder helps fix urgent
production issues

Saves = Number of Product Issues with the
highest Severity that a coder helps fix

Tackles Measure how many potential issues or op-
portunities a coder handles proactively

Tackles = Number of Pluses where coder dem-
onstrates initiative or innovation

Range Measure how many areas of software a coder
works on

Range = Number of Areas Worked by a coder

D-Impact Provide a single “Defensive Impact” number
that summarizes the contributions of a coder
in helping to avoid large problems

D-Impact = (Saves + Tackles) × Range

Turnovers Measure the complexity of assigned tasks
that a coder fails to complete

Turnovers = Sum (Complexity for all completed
Tasks)

233

Metric Description Formula

Errors Measure the magnitude of production
issues found related to areas that a coder is
responsible for

Errors = Sum (Severity for each Product Issues
× Population Affected)

Plus-Minus Measure the amount of positive contribu-
tions versus negative issues for each coder

Plus-Minus = Points - Turnovers - Errors

Wins Measure the number of active users added Wins = Sum (User Activations)

Win Rate Determine the average amount of time it
takes to get a win

Win Rate = (Time Elapsed / Wins)

Win Percentage Measure the percentage of trials that suc-
cessfully convert to active users

Win Percentage = (Successful Trials /
Trials Completed) × 100

Boost Measure the amount of additional user
benefits delivered

Boost = Sum (Population Benefited for each
User Benefit)

Losses Measure the number of active users lost Losses = Sum (User Deactivations)

Loss Rate Determine the average amount of time it
takes to accumulate each loss

Loss Rate = (Time Elapsed / Losses)

Penalties Measure the overall urgency of customer
support issues

Penalties = Sum (Urgency for each User Issue)

Penalties Per Win
(PPW)

Measure the overall urgency of customer
support issues relative to the number of new
users

Penalties Per Win = Penalties / Wins

Gain Measure the number of Wins minus the
missed opportunities and Losses

Gain = Wins - ((Trials Completed – Successful
Trials) + Losses)

Gain Rate Determine the average amount of time it
takes to accumulate each Gain

Gain Rate = (Time Elapsed / Gain)

Acceleration Measure the ratio of user benefits delivered
to urgent user issues created

Acceleration = (Boost / Number of User Issues
with the highest Urgency) × 100

Win Ranking Establish ranking versus key competitors
based on number of new user activations

Win Ranking = Numeric position based on New
Users vs. Competitors

Capability Ranking Establish ranking versus key competitors
based on breadth and depth of software
features

Capability Ranking = Numeric position based
on Features vs. Competitors

Influence Measure the percentage of positive contri-
butions by each coder relative to others on
the team

Influence = Individual (O-Impact + D-Impact) /
Team (O-Impact + D-Impact)

Efficiency Measure the percentage accuracy of each
coder relative to others on the team

Efficiency = 1.0 - (Individual (Turnovers +
Errors) / Team (Turnovers + Errors))

Advance Shares Assign a relative level of credit to each coder
for user advances

Advance Shares = Acceleration × Influence

Win Shares Assign a relative level of credit to each coder
for new users

Win Shares = Wins × Influence × Efficiency

234 | Appendix A: Codermetrics Quick Reference

Metric Description Formula

Loss Shares Assign a relative level of responsibility to
each coder for lost users

Loss Shares = Losses × (1.0 - Efficiency)

Teamwork Establish a relative rating for team-
oriented contributions

Teamwork = Assists + Saves + Range -
Turnovers

Fielding Establish a relative rating for the range and
breadth of work successfully handled

Fielding = (Utility + Range) - (Turnovers +
Errors)

Pop Establish a relative rating for the amount of
complex work, innovation, and initiative

Pop = Power + Tackles

Intensity Establish a relative rating for heightened
productivity and dealing with demanding
issues

Intensity = Saves + Tackles + (Avg.
Temperature - 72)

Codermetrics Quick Reference | 235

APPENDIX B

Bibliography

The following books and articles were used in the preparation of this book:

Brooks, Jr., Frederick P. The Mythical Man-Month: Essays On Software Engineering,
Anniversary Edition. Boston, MA: Addison Wesley, 1995.

DeMarco, Tom, and Lister, Timothy. Peopleware: Productive Projects and Teams, 2nd
Edition. New York, NY: Dorset House, 1999.

Gladwell, Malcolm. Outliers: The Story Of Success. New York, NY: Little, Brown and
Company, 2008.

Grady, Robert B. Practical Software Metrics For Project Management And Process Im-
provement. Upper Saddle River, NJ: Prentice Hall, 1992.

James, Bill. The Bill James Gold Mine 2009. Skokie, IL: ACTA Sports, 2009.

James, Bill. The Bill James Handbook 2011. Skokie, IL: ACTA Sports, 2010.

Lewis, Michael. Moneyball: The Art Of Winning An Unfair Game. New York, NY:
W. W. Norton and Company, 2003.

Lewis, Michael. “The No-Stats All-Star.” The New York Times Magazine. February
2009.

McConnell, Steve. Software Estimation: Demystifying The Black Art. Redmond, WA:
Microsoft Press, 2006.

Oram, Andy, and Wilson, Greg, eds. Making Software. Sebastopol, CA: O’Reilly, 2010.

Spolsky, Joel. Joel On Software. Berkeley, CA: Apress, 2004.

Spolsky, Joel. More Joel On Software. Berkeley, CA: Apress, 2008.

Spolsky, Joel, ed. The Best Software Writing I. Berkeley, CA: Apress, 2005.

Stelman, Andrew, and Greene, Jennifer, eds. Beautiful Teams: Inspiring And Cautionary
Tales From Veteran Team Leaders. Sebastopol, CA: O’Reilly, 2009.

237

Surowiecki, James. The Wisdom of Crowds: Why The Many Are Smarter Than The Few
And How Collective Wisdom Shapes Business, Economies, Societies, And Nations. New
York, NY: Doubleday, 2004.

Surowiecki, James. “It’s The Workforce, Stupid!.” The New Yorker. April 2007.

Taleb, Nassim Nicholas. The Black Swan: The Impact Of The Highly Improbable. New
York, NY: Random House, 2007.

Also used were other writings, articles, and statistics from Bill James Online.

238 | Appendix B: Bibliography

http://www.billjamesonline.net

Index

A
Acceleration metric, 121

cloud services, as a metric for, 132
accuracy, 50

measures for, 52
adoption, 56
Advance Shares metric, 138

mature stage teams, as a metric for, 155
adversity, 40
all-nighters example, 218–220
American football

changes in coaching, 17
use of metrics in, 12

analysis projects, 191
anomalies, 21
architects, 96
Assists metric, 74

architects, for measuring, 97
assumptions, examining, 16

B
backups (roles), 215
bad metrics versus good metrics, 15
baseball

statistical measures, 16, 20
outliers, 21
peak year stats, 22
summary metrics, 79

Bavasi, Buzzie, 14
Beane, Billy, 6, 193, 206, 209
Belichick, Bill, 69
benefits, 58

measures for, 60
Blue Dog and Red Dog teams example, 194

Boost metric, 108
developer and IT tools, as a metric for, 131

breadth, 52
bug counts, 28
bug tracking systems, 31

C
calibration, 33
candidates for focus groups, 160
Capability Ranking metric, 125

consumer software, measuring, 129
charting of metrics, 163
cloud services development and Response

Metrics, 131
coaching, 226
code complexity, measuring, 30
code testing, 38
codermetrics, x, 10

(see also metrics)
analysis projects, 191
architects, useful measures for, 96
breadth measures, 53
choosing good data, 30
coder responsibilities, measuring, 38–43
codermetrics councils, 189–191
concepts, x
data for, 37
defining target team profiles, 208
determination of team goals, using for, 176
expanding the range of metrics in use, 167
gathering productivity data, 48
helpfulness measures, 55
introducing the process, 159

focus groups, 160
sponsorship, 160

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

239

trial metrics, 161–165
junior coders, useful metrics for, 98
metrics and skeptics example, 34
processes, x
product revenues, 42
productivity in testing, 48
profiling successful teams, 204
rating team successes, 205
Response Metrics (see Response Metrics)
senior coders, useful metrics for, 97
seven percent rule example, 169
Skill Metrics (see Skill Metrics)
software deliveries, 43
software development success or failure, 41
software quality, 43
speed measures, 49
storage systems for data, 166
team profiles, comparing, 206
useful data, 27
user response to software releases, 42
Value Metrics (see Value Metrics)

coders
ability to innovate, 39
accuracy, 52
coder responsibilities, measuring, 38–43
coder types, 96–99
comparing positive versus negative impacts,

90
contributions, measuring the breadth of,

83
crunch time metrics for, 81
disclosure of metrics to teams, 171
helpfulness, 41
interaction with others, 40
junior coders, useful metrics for, 98
measurement of task complexity, 86
measuring coder mistakes, 88
measuring complexity of completed tasks,

73
measuring proactive handling of issues, 82
measuring productivity, 70
performance metrics, 38
performance under pressure, 39
productivity trends, identifying, 77
ranges of skill, 39
response to instructions, 41
responsibilities, range, and initiative, 38
self-evaluations, 185
senior coders, useful metrics for, 97

success in avoidance of large problems, 84
summarizing productivity of, 79

cold streaks, 22
comparable profiles (comps), 206, 221

building comps for recruiting teams, 222
competitive position, 61
consistency in data collection, 33
constraints in the achievement of software

goals, 202
consumer software development and Response

Metrics, 128
Contribution Metrics, 134–143

Advance Shares, 138
Efficiency, 136
Influence, 135
Loss Shares, 141
Win Shares, 140

growth stage teams, as a metric for, 154
crash bugs, 50
crunch time statistics, 23
crunch times, 81
customer satisfaction, measures for, 61
customer support issue tracking systems, 31
customer support issues compared to new user

activations, 114

D
D-Impact metric, 84

senior coders, for measuring, 98
data, 27–34, 37, 45–62

choosing pertinent data, 30
coder skills and contributions, 45–56

accuracy, 50
breadth, 52
helpfulness, 53
productivity, 46
speed, 49

data calibration, 34
data normalization, 33
excluded data types, 28
fairness and consistency, 33
input data elements for Skill Metrics, 69
obtaining, 30
software measures, 56–62

benefits, 58
competitive position, 61
customer interest and adoption, 56
user issues, 60

spotters and stat sheets, 32

240 | Index

tracking systems as sources of, 31
Defensive Metrics, 80–86

D-Impact, 84
Range, 83
Saves, 80
Tackles, 82

defensive stoppers, 212
DePodesta, Paul, 5
designing of code, 38
developer tools development and Response

Metrics, 130
development bugs, 28
development iterations, 71
discussion forums, 168
division of labor, 47

E
early stage software development teams, 151
Earned Run Average (ERA), 12
Efficiency metric, 136

growth stage teams, as a metric for, 154
use in calculating other metrics, 137

efficiency of release deliveries, 43
enterprise software development and Response

Metrics, 129
Epstein, Theo, 6
Errors metric, 88
Errors, example of use in a turnaround, 180

F
failure, measuring, 110
fairness and metrics, 14
fairness in data collection, 33
farm systems, 224
Features versus Competitors, 102
features, deadlines, and software quality, 18
Fielding metric, 145

mature stage teams, as a metric for, 155
focus groups, 160

questions for meetings, 163

G
gain in benefits for existing users, measuring,

121
Gain metric, 116

cloud services, as a metric for, 131
Gain Rate metric, 119

cloud services, as a metric for, 131

Gladwell, Malcolm, 21
goals served in making software, 202
good metrics versus bad metrics, 15
Google Docs spreadsheets, 93
growth stage software development teams,

153

H
helpfulness, 53

measures for, 55
hiring, 201
hot streaks, 22

I
Influence metric, 135

early stage teams, as a metric for, 152
initiative, 39
innovation, 39

and initiative, 55
input data elements, Skill Metrics, 69
inspiration and motivation, 40
Intensity metric, 149

early stage teams, as a metric for, 153
interest, 56
interruptions and work flow, 25
issue tracking for data collection, 31
IT tools development and Response Metrics,

130

J
James, Bill, 5
junior coders, 98

K
KLOCs (1000 lines of code), 28
Koufax, Sandy, 14, 25

L
leadership, 40
Lewis, Michael, 5
limitations of metrics, 25
Loss Metrics, 109–115

Loss Rate, 111
analysis for three non-competing

products, 112
Losses, 109

Index | 241

analysis for three non-competing
products, 110

developer and IT tools, as a metric for,
130

Penalties, 112
consumer software, as a metric for, 128

Penalties Per Win, 114
enterprise software, as a metric for, 129

Loss Shares metric, 141
mature stage teams, as a metric for, 155

Lowrie, Jed, 14
luck in sports, 24

M
magic triangle debunked, 18
mature stage software development teams,

155
meetings, 168, 170
mentoring, 41, 175
metrics, x, 4

(see also codermetrics)
a communication tool, used as, 12
baseball, used for, 16
case study, 6–10
changes in the software industry and, 231
data for (see data)
discussion forums, 168
fairness in rewards, usefulness for, 14
good metrics versus bad metrics, 15
grades and, 13
improvement, for facilitating, 12
limitations of metrics, 25
measurement of mistakes, 88
metrics set, expanding, 167
pattern recognition in, 20
peaks and valleys, 22
purpose, 11, 13
questions addressed by, 37
for recording of events, 12
repeatable success, 24
Response Metrics (see Response Metrics)
revenues used as, 42
ripple effects, 23
sales versus competition, 43
sets of counts for, 4
Skill Metrics (see Skill Metrics)
software development, utilization in, 170–

178
storage and accessibility, 166

team dynamics and, 13
trial metrics (see trial metrics)
usage in performance reviews, 183–188

appropriate metrics, 183
peer comparison, 186
promotions, 187
self-evaluations and peer feedback, 185
setting goals for improvement, 187

usage in software development, 229
usage in sports, 5, 11
using to focus team goals, 176
Value Metrics (see Value Metrics)

mistakes, measurement of, 88
Momentum Metrics, 116–126

Acceleration, 121
Capability Ranking, 125
Gain, 116
Gain Rate, 119
Win Ranking, 123

enterprise software, as a metric for, 130
Morey, Daryl, 5
motivators, 215
MVP (Most Valuable Player), 44

N
new user activations

measuring in comparison to competitors,
124

measuring over time, 103, 104
new user gains

measuring over time, 117, 120
New Users versus Competitors, 102
no perfect teams example, 227
normalization, 33

O
O-Impact metric, 79

senior coders, for measuring, 97
Oakland A's baseball team, 193
Offensive Metrics, 70–80

Assists, 74
O-Impact, 79
Points, 70
Power, 73
Temperature, 76
Utility, 71

OPS (On Base Percentage plus Slugging
Percentage), 20

242 | Index

organizational goals, 15
outliers, 21

P
pattern recognition through metrics, 20
patterns in software development, 3
peaks and valleys, 22
Pedroia, Dustin, 14
peer comparison, 186
peer feedback, 185
Penalties metric, 112

consumer software, as a metric for, 128
urgency measure, 113

Penalties Per Win metric, 114
enterprise software, as a metric for, 129

performance reviews, 183–188
appropriate metrics for, 183
goals for improvement, 187
peer comparison, 186
promotions, 187
self-evaluations and peer feedback, 185

personnel, 220–227
coaching needed skills, 226
farm systems, 224
making trades, 225
no perfect teams example, 227
recruiting, 221

Piazza, Mike, 21
playmakers, 211
Plus-Minus metric, 90

junior coders, for measuring, 99
points for incomplete tasks, 87
Points metric, 70

example of use in a turnaround, 180
senior coders, for measuring, 97

Polian, Bill, 133
Pop metric, 147

early stage teams, as a metric for, 153
Population Benefited, 102
Power metric, 73

architects, for measuring, 97
Precision Metrics, 86–92

Errors, 88
Plus-Minus, 90
Turnovers, 86

product issues, 51
product revenues, 29
production bugs, 60
productivity, 46

professional sports, usage of metrics in, 11
profiles for coder roles, 221
profiles of successful teams, use in building

teams, 203
project post-mortems, 173
project tracking systems, 31
project types, 128–132

cloud services, 131
consumer software, 128
developer and IT tools, 130
enterprise software, 129

Q
questions addressed by metrics, 37

R
Range metric, 83

architects, for measuring, 97
Range, example of use in a turnaround, 180
Rating Metrics, 143–151

Fielding, 145
Intensity, 149
Pop, 147
Teamwork, 143

recruiting, 221
Red Dog and Blue Dog teams example, 194
regression bugs, 50
repeatable success and metrics, 24
Response Metrics, 101

as input to Value Metrics, 133
cloud services projects, 131
for enterprise software projects, 129
for developer and IT tools projects, 130
input data elements, 101
Loss Metrics, 109
Momentum Metrics, 116–126
potential for usage in trials, 161
Response Metric scorecards, 126
types of projects benefiting from, 128–132
use in calculating Value Metrics, 133
useful metrics for teams on consumer

projects, 128
Win Metrics, 102–109

revenues as a metric, 42
Robinson, Jack Roosevelt "Jackie", 231–232
Rodriguez, Ivan, 21
roles, 211–218

backups, 215

Index | 243

defensive stoppers, 212
motivators, 215
playmakers and scorers, 211
profiles for coder roles, 221
role players, 214
utility players, 213
veterans and rookies, 216

rookies, 216

S
sabermetrics, 5
sales lead tracking systems, 31
sales versus competition, 43
Saves metric, 80

example of use in a turnaround, 180
scorecards for Skill Metrics, 93
scorers, 211
self-evaluations, 185
senior coders, 97
seven percent rule, 168
Skill Metrics, 69–99

as input to Value Metrics, 133
coder types, 96–99
Defensive Metrics, 80–86
input data elements, 69
Offensive Metrics, 70–80
potential for usage in trials, 162
Precision Metrics, 86–92
scorecards, 93
usage in performance reviews, 184
use in calculating Value metrics, 133

slumps, 22
software development example

magic triangle debunked, 18
unexpected factors in success, 25

software development teams, 15
assumptions concerning, 17
building teams, 201

all-nighters example, 218–220
identifying constraints, 202
roles (see roles)
setting goals, 202
target team profiles, 208–210
team profiles, 203

change and the evolution of standards, 231
characteristics for success, 65
choosing teams for metrics trials, 162
creating good combinations of coders, 23
difficulty of change, 159

early stage teams, 151
evaluating, 5–9

example case, 6–10
expanding metrics for measuring, 167
forums for discourse on metrics, 168
growth stage teams, 153
hiring analysts, 192
introducing metrics to, 165
mature stage teams, 155
measurement of skills and results, 6
measuring success or failure, 41
metrics and the creation of opportunities,

230
metrics and the skeptic example, 34
metrics, utilizing in software development,

170–178
mentoring, 175
project post-mortems, 173
team goals and rewards, 176
team meetings, 170
turn-around example, 178

MVP example, 44–45
patterns in software development, 3
personnel, recruiting (see personnel)
seven percent rule example, 169
stages of development, 151
statistical analysis, usage by, 229
tale of two teams example, 62–65
useful data for measuring, 27

software quality, 43
speed, 49
sponsors for codermetrics trials, 160
spotters, 32
spreadsheets

Skill Metrics, recording with, 93
usage for storage of metrics data, 166
usage for trial metrics, 163
Value Metric scorecards, for calculating,

151
stat sheets, 32
statistical analysis, 5

Red Dog and Blue Dog teams example, 193–
199

usage in sports, 229
value, 229

statistical analysts, 192
statistics in sports

luck, 24
player combination stats, 23

244 | Index

statistics, usage in sports, 11–13
storage systems for metrics data, 166
success

achieving through metrics, 24
creating definitions of, 24
unexpected factors in, 25

success, measuring, 103
Successful Trials, 102
summary metrics, 79
support issue, 60
Surowiecki, James, 14, 168

T
Tackles metric, 82

architects, for measuring, 97
junior coders, for measuring, 98

Taleb, Nassim Nicholas, 21
task complexity and rating, 46
tasks as a measurement of productivity, 46
team dynamics and metrics, 13
team goals and rewards, 176
team meetings, 170
team profiles, 203

building target profiles, 208
comparing, 206

team stages, 151–156
early stage, 151
growth stage, 153
mature stage, 155

teams, 5
Teamwork metric, 143

growth stage teams, as a metric for, 154
Temperature metric, 76

senior coders, for measuring, 98
testing of code, 38
tracking systems, 31
trades (personnel), 225
trial metrics, 161–165

data collection, metric calculation, and
reviews, 163

evaluation of trials, 165
software development teams, choosing for,

162
Trials Completed, 102
trials converted to new users, measuring, 106
turnaround example, 178–181
Turnovers metric, 86

junior coders, for measuring, 99

U
Urgency, 102
User Accesses, 102
User Activations, 102

over time, 104
user benefit of successive releases, measuring,

108
User Deactivations, 102

measuring, 109, 111
user issues, 60
User Issues, 102
user response to software releases, 42
user support issues, measuring, 112
Utility metric, 71

junior coders, for measuring, 98
utility players, 213

V
Value Metrics, 133

application to team or company stages of
development, 151–156

complexity of analysis using, 162
Contribution Metrics, 134–143
input data for, 133
introducing into the metrics process, 167
Rating Metrics, 143–151
usage in performance reviews, 183
Value Metrics scorecards, 151

venture-backed startup team example, 7–10
veterans, 216

W
Win and Loss rates table for three software

products, 115
Win Metrics, 102–109

analysis for three non-competing products,
104

Boost, 108
developer and IT tools, as a metric for,

131
table for software product releases, 108
Win Percentage, 106

enterprise software, as a metric for, 129
Win Rate, 104

developer and IT tools, as a metric for,
130

Wins, 102
consumer software, as a metric for, 128

Index | 245

Wins and Win Rate metrics compared, 105
Win Ranking metric, 123

enterprise software, as a metric for, 130
Win Shares metric, 140

growth stage teams, as a metric for, 154
Wolfram, Stephen, 20
Wooden, John, 16
work flow and interruptions, 25
writing of code, 38

246 | Index

About the Author
Jonathan Alexander has over 25 years experience in software development. He is cur-
rently VP Engineering at Vocalocity, a leader in cloud-based business telecommunica-
tions. Previously he built and managed software teams at vmSight, Epiphany, and
Radnet. He studied computer science at UCLA, and began his career writing software
for author Michael Crichton.

Colophon
The animal on the cover of Codermetrics is a whitebar surgeonfish (Acanthurus leuco-
pareius). All species of surgeonfish and other members of the Acanthuridae family (such
as tangs and unicornfish) are distinctive for the sharp spines on either side of their tail
fin—and in fact, Acanthurus is derived from the Greek for “thorn tail.” The common
name of surgeonfish also arose due to these scalpel-like appendages, which the fish can
use for defense with a rapid side sweep of their tail.

The whitebar surgeonfish is subtropical, and can be found in coral reefs around Pacific
islands, Australia, and Southeast Asia. They grow to be around 8–9 inches long, and
are primarily beige in color with iridescent blue spots and a dark brown face. Their eyes
are set high in their face, directly in front of a white bar that runs from the top of their
head down toward their throat. These fish also have a white bar on their tail. Their
small mouths have one row of teeth that they use to scrape up algae, their sole food
source.

Whitebar surgeonfish are popular in saltwater aquariums, and widely commercially
available for that purpose. However, some species of surgeonfish tend to grow quickly
(and to a large size) in an aquarium setting, so it’s advisable to do some research before
adding them to a tank.

The cover image is from Cuvier’s Animals. The cover font is Adobe ITC Garamond.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Organization of This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Concepts
	Chapter 1. Introduction
	Chapter 2. Measuring What Coders Do
	The Purpose of Metrics
	Metrics Are Not Grades
	Team Dynamics
	Connecting Activities to Goals
	Good Metrics Shed a Light
	Examining Assumptions

	Timeout for an Example: The Magic Triangle (Partially) Debunked
	Patterns, Anomalies, and Outliers
	Peaks and Valleys
	Ripple Effects
	Repeatable Success

	Understanding the Limits
	Timeout for an Example: An Unexpected Factor in Success
	Useful Data
	Choosing Data
	Obtaining Data
	Spotters and Stat Sheets
	Fairness and Consistency

	Timeout for an Example: Metrics and the Skeptic

	Chapter 3. The Right Data
	Questions That Metrics Can Help Answer
	How Well Do Coders Handle Their Core Responsibilities?
	How well do coders write code?
	How well do coders design their code?
	How well do coders test their code?

	How Much Do Coders Contribute Beyond Their Core Responsibilities?
	How many areas do coders cover?
	How effectively do coders take initiative?
	Do coders innovate?
	How well do coders handle pressure?
	How well do coders deal with adversity?

	How Well Do Coders Interact With Others?
	Do coders demonstrate leadership?
	Do coders inspire or motivate their teammates?
	How well do coders mentor others?
	How well do coders understand and follow directions?
	How much do coders assist others?

	Is the Software Team Succeeding or Failing?
	What is the user response to each software release?
	How is the software doing versus competitors?
	What is the quality of each software release?
	How efficiently does the team deliver new software releases?

	Timeout for an Example: An MVP Season
	The Data for Metrics
	Data on Coder Skills and Contributions
	Productivity
	Speed
	Accuracy
	Breadth
	Helpfulness
	Innovation and Initiative

	Data on Software Adoption, Issues, and Competition
	Interest and Adoption
	Notable Benefits
	User Issues
	Competitive Position

	Timeout for An Example: A Tale of Two Teams

	Part II. Metrics
	Chapter 4. Skill Metrics
	Input Data
	Offensive Metrics
	Points
	Utility
	Power
	Assists
	Temperature
	O-Impact

	Defensive Metrics
	Saves
	Tackles
	Range
	D-Impact

	Precision Metrics
	Turnovers
	Errors
	Plus-Minus

	Skill Metric Scorecards
	Observations on Coder Types
	Architects
	Senior Coders
	Junior Coders

	Chapter 5. Response Metrics
	Input Data
	Win Metrics
	Wins
	Win Rate
	Win Percentage
	Boost

	Loss Metrics
	Losses
	Loss Rate
	Penalties
	Penalties Per Win (PPW)

	Momentum Metrics
	Gain
	Gain Rate
	Acceleration
	Win Ranking
	Capability Ranking

	Response Metric Scorecards
	Observations on Project Types
	Consumer Software
	Enterprise Software
	Developer and IT Tools
	Cloud Services

	Chapter 6. Value Metrics
	Input Data
	Contribution Metrics
	Influence
	Efficiency
	Advance Shares
	Win Shares
	Loss Shares

	Rating Metrics
	Teamwork
	Fielding
	Pop
	Intensity

	Value Metric Scorecards
	Observations on Team Stages
	Early Stage
	Growth Stage
	Mature Stage

	Part III. Processes
	Chapter 7. Metrics in Use
	Getting Started
	Find a Sponsor
	Create a Focus Group
	Choose Trial Metrics
	Conduct a Trial and Review The Findings
	Introduce Metrics to the Team
	Create a Metrics Storage System
	Expand the Metrics Used
	Establish a Forum for Discourse

	Timeout for an Example: The Seven Percent Rule
	Utilizing Metrics in the Development Process
	Team Meetings
	Project Post-Mortems
	Mentoring
	Establishing Team Goals and Rewards

	Timeout for an Example: The Turn-Around
	Using Metrics in Performance Reviews
	Choosing Appropriate Metrics
	Self-Evaluations and Peer Feedback
	Peer Comparison
	Setting Goals for Improvement
	Promotions

	Taking Metrics Further
	Create a Codermetrics Council
	Assign Analysis Projects
	Hire a Stats Guy or Gal

	Timeout for an Example: The Same But Different

	Chapter 8. Building Software Teams
	Goals and Profiles
	Set Key Goals
	Identify Constraints
	Find Comparable Team Profiles
	Build a Target Team Profile

	Roles
	Playmakers and Scorers
	Defensive Stoppers
	Utility Players
	Role Players
	Backups
	Motivators
	Veterans and Rookies

	Timeout for an Example: Two All-Nighters
	Personnel
	Recruit for Comps
	Establish a Farm System
	Make Trades
	Coach the Skills You Need

	Timeout for an Example: No Such Thing As a Perfect Team

	Chapter 9. Conclusion

	Appendix A. Codermetrics Quick Reference
	Appendix B. Bibliography
	Index

